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ON NUMBERS, GERMS, AND TRANSSERIES

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES AND JORIS VAN DER HOEVEN

Abstract

Germs of real-valued functions, surreal numbers, and transseries are three ways
to enrich the real continuum by infinitesimal and infinite quantities. Each of these
comes with naturally interacting notions of ordering and derivative. The category of
H -fields provides a common framework for the relevant algebraic structures. We give
an exposition of our results on the model theory of H -fields, and we report on recent
progress in unifying germs, surreal numbers, and transseries from the point of view of
asymptotic differential algebra.

Contemporaneous with Cantor’s work in the 1870s but less well-known, P. du Bois-
Reymond [1871, 1872, 1873, 1875, 1877, 1882] had original ideas concerning non-Cantorian
infinitely large and small quantities (see Ehrlich [2006]). He developed a “calculus of in-
finities” to deal with the growth rates of functions of one real variable, representing their
“potential infinity” by an “actual infinite” quantity. The reciprocal of a function tending
to infinity is one which tends to zero, hence represents an “actual infinitesimal”.

These ideas were unwelcome to Cantor (see Fisher [1981]) and misunderstood by him,
but were made rigorous by F. Hausdorff [1906a,b, 1909] and G. H. Hardy [1910, 1912a,b,
1913]. Hausdorff firmly grounded du Bois-Reymond’s “orders of infinity” in Cantor’s set-
theoretic universe (see Felgner [2002]), while Hardy focused on their differential aspects
and introduced the logarithmico-exponential functions (short: LE-functions). This led to
the concept of a Hardy field (Bourbaki [1951]), developed further mainly by Rosenlicht
[1983a,b, 1984, 1987, 1995] and Boshernitzan [1981, 1982, 1986, 1987]. For the role of
Hardy fields in o-minimality see Miller [2012].

Surreal numbers were discovered (or created?) in the 1970s by J. H. Conway [1976]
and popularized by M. Gardner, and by D. E. Knuth [1974] who coined the term “surreal
number”. The surreal numbers form a proper class containing all reals as well as Cantor’s
ordinals, and come equipped with a natural ordering and arithmetic operations turning
them into an ordered field. Thus with w the first infinite ordinal,  — 7, 1/, /@ make

The first-named author was partially support by NSF Grant DMS-1700439.
MSC2010: primary 03C64; secondary 12J15, 12J20, 34M15.
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sense as surreal numbers. In contrast to non-standard real numbers, their construction is
completely canonical, naturally generalizing both Dedekind cuts and von Neumann’s con-
struction of the ordinals. (In the words of their creator Conway [1994, p. 102], the surreals
are “the only correct extension of the notion of real number to the infinitely large and the
infinitesimally small.”) The surreal universe is very rich, yet shares many properties with
the real world. For example, the ordered field of surreals is real closed and hence, by
Tarski [1951], an elementary extension of its ordered subfield of real numbers. (In fact,
every set-sized real closed field embeds into the field of surreal numbers.) M. Kruskal an-
ticipated the use of surreal numbers in asymptotics, and based on his ideas Gonshor [1986]
extended the exponential function on the reals to one on the surreals, with the same first-
order logical properties; see van den Dries and Ehrlich [2001a,b]. Rudiments of analysis
for functions on the surreal numbers have also been developed by Alling [1987], Costin,
Ehrlich, and Friedman [2015], and Rubinstein-Salzedo and Swaminathan [2014].

Transseries generalize LE-functions in a similar way that surreals generalize reals and
ordinals. Transseries have a precursor in the generalized power series of Levi-Civita
[1892-93, 1898] and Hahn [1907], but were only systematically considered in the 1980s,
independently by Ecalle [1992] and Dahn and Géring [1987]. Ecalle introduced transseries
as formal counterparts to his “analyzable functions”, which were central to his work on
Dulac’s Problem (related to Hilbert’s 16th Problem on polynomial vector fields). Dahn
and Goring were motivated by Tarski’s Problem on the model theory of the real field with
exponentiation. Transseries have since been used in various parts of mathematics and
physics; their formal nature also makes them suitable for calculations in computer algebra
systems. Key examples of transseries are the logarithmic-exponential series (LE-series
for short), see van den Dries, Macintyre, and Marker [1997, 2001]; more general notions
of transseries have been introduced by van der Hoeven [1997] and Schmeling [2001]. A
transseries can represent a function of a real variable using exponential and logarithmic
terms, going beyond the more prevalent asymptotic expansions in terms of powers of the
independent variable. Transseries can be manipulated algebraically—added, subtracted,
multiplied, divided—and like power series, can be differentiated term-wise: they comprise
a differential field. However, they carry much more structure: for example, by virtue
of its construction, the field of LE-series comes with an exponential function; there is
a natural notion of composition for transseries; and differential-compositional equations
in transseries are sometimes amenable to functional-analytic techniques van der Hoeven
[2001].

The logical properties of the exponential field of LE-series have been well-understood
since the 1990s: by Wilkie [1996] and van den Dries, Macintyre, and Marker [1997] it is
model-complete and o-minimal. In our book Aschenbrenner, van den Dries, and van der
Hoeven [2017a] we focused instead on the differential field of LE-series, denoted below by
T, and obtained some decisive results about its model theory. Following A. Robinson’s
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general ideas we placed T into a suitable category of H -fields and, by developing the
extension theory of H -fields, showed that T is existentially closed as an H-field: each
system of algebraic differential equations and inequalities over T which has a solution in
an H -field extension of T already has one in T itself. In Aschenbrenner, van den Dries,
and van der Hoeven [ibid.] we also prove the related fact that T is model-complete; indeed,
we obtain a quantifier elimination (in a natural language) for T. As a consequence, the
elementary theory of T is decidable, and model-theoretically “tame” in various ways: for
example, it has Shelah’s non-independence property (NIP).

Results from Aschenbrenner, van den Dries, and van der Hoeven [ibid.] about existen-
tial closedness, model completeness, and quantifier elimination substantiate the intuition,
expressed already in Ecalle [1992], that T plays the role of a universal domain for the part
of asymptotic differential algebra that steers clear of oscillations. How far does this intu-
ition lead us? Hardy’s field of LE-functions embeds into T, as an ordered differential field,
but this fails for other Hardy fields. The natural question here is: Are all maximal Hardy
fields elementarily equivalent to T ? Tt would mean that any maximal Hardy field instanti-
ates Hardy’s vision of a maximally inclusive and well-behaved algebra of oscillation-free
real functions. Related is the issue of embedding Hardy fields into more general differ-
ential fields of transseries. Positive answers to these questions would tighten the link
between germs of functions (living in Hardy fields) and their transseries expansions. We
may also ask how surreal numbers fit into the picture: Is there a natural isomorphism be-
tween the field of surreal numbers and some field of generalized transseries? This would
make it possible to differentiate and compose surreal numbers as if they were functions,
and confirm Kruskal’s premonition of a connection between surreals and the asymptotics
of functions.

We believe that answers to these questions are within grasp due to advances in our
understanding during the last decade as represented in our book Aschenbrenner, van den
Dries, and van der Hoeven [2017a]. We discuss these questions with more details in Sec-
tions 3, 4, 5. In Section 1 we set the stage by describing Hardy fields and transseries as
two competing approaches to the asymptotic behavior of non-oscillatory real-valued func-
tions. (Section 5 includes a brief synopsis of the remarkable surreal number system.) In
Section 2 we define H -fields and state the main results of Aschenbrenner, van den Dries,
and van der Hoeven [ibid.].

We let m, n range over N = {0,1,2,...}. Given an (additive) abelian group A we
let A7 := A\ {0}. In some places below we assume familiarity with very basic model
theory, for example, on the level of Aschenbrenner, van den Dries, and van der Hoeven
[ibid., Appendix B]. “Definable” will mean “definable with parameters”.
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1 Orders of Infinity and Transseries

Germs of continuous functions. Consider continuous real-valued functions whose do-
main is a subset of R containing an interval (a, +00), a € R. Two such functions have the
same germ (at +00) if they agree on an interval (a, +00), a € R, contained in both their
domains; this defines an equivalence relation on the set of such functions, whose equiva-
lence classes are called germs. Addition and multiplication of germs is defined pointwise,
giving rise to a commutative ring C. For a germ g of such a function we also let g denote
that function if the resulting ambiguity is harmless. With this convention, given a prop-
erty P of real numbers and g € @ we say that P (g(r)) holds eventually if P(g(t)) holds
for all sufficiently large real ¢ in the domain of g. We identify each real number r with the
germ of the constant function R — R with value r. This makes the field R into a subring
of C.
Following Hardy we define for f, g € C,

f<g :<= forsomec e R wehave|f(t)| < c|g(t)| eventually,
f<g :<= foreveryc € R wehave|f(t)| < c|g(t)| eventually.

The reflexive and transitive relation < yields an equivalence relation < on C by setting
f x g+ f < gand g < f, and < induces a partial ordering on the set of equiva-
lence classes of <; these equivalence classes are essentially du Bois-Reymond’s “orders
of infinity”. Thus with x the germ of the identity function on R:

0 <1 < loglogx < logx < +/x < x =< —2x +xsinx < x? < e,
One way to create interesting subrings of € is via expansions of the field of real numbers:
any such expansion R gives rise to the subring H (]R{) of C consisting of the germs of the
continuous functions R — R that are definable in R.

Hausdorff fields. A Hausdorff field is by definition a subfield of C. Simple examples
are

) Q. R, R(x), R(+vx), R(x,e* logx).

That R(x, e*, log x) is a Hausdorff field, for instance, follows from two easy facts: first,
an element f of € is a unit iff f(¢#) # 0 eventually (and then either f (¢) > 0 eventually
or f(t) < 0 eventually), and if f 5 0 is an element of the subring R[x, e, log x] of C,
then f < xk elx (logx)™ for some k,/,m € N. Alternatively, one can use the fact that
an expansion R of the field of reals is o-minimal iff H (R) is a Hausdorff field, and note
that the examples above are subfields of H (Rexp) where Ry, is the exponential field of
real numbers, which is well-known to be o-minimal by Wilkie [1996].
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Let H be a Hausdorff field. Then H becomes an ordered field with (total) ordering
given by: f > 0iff f(¢) > 0 eventually. Moreover, the set of orders of infinity in H
is totally ordered by <: for f,g € H we have f < gor g < f. In his landmark
paper, Hausdorff [1909] essentially proved that H has a unique algebraic Hausdorff field
extension that is real closed. (Writing before Artin and Schreier [1927], of course he
doesn’t use this terminology.) He was particularly interested in “maximal” objects and
their order type. By Hausdorff’s Maximality Principle (a form of Zorn’s Lemma) every
Hausdorff field is contained in one that is maximal with respect to inclusion. By the
above, maximal Hausdorff fields are real closed. Hausdorff also observed that maximal
Hausdorff fields have uncountable cofinality; indeed, he proved the stronger result that
the underlying ordered set of a maximal Hausdorff field H is ny: if A, B are countable
subsets of H and A < B, then A < h < B for some h € H. A real closed ordered field
is R;-saturated iff its underlying ordered set is 7;. Standard facts from model theory (or
Erdés, Gillman, and Henriksen [1955]) now yield an observation that could have been
made by Hausdorff himself in the wake of Artin and Schreier [1927]:

Corollary 1.1. Assuming CH (the Continuum Hypothesis), all maximal Hausdorff fields
are isomorphic.

This observation was in fact made by Ehrlich [2012] in the more specific form that under
CH any maximal Hausdorff field is isomorphic to the field of surreal numbers of countable
length; see Section 5 below for basic facts on surreals. We don’t know whether here
the assumption of CH can be omitted. (By Esterle [1977], the negation of CH implies
the existence of non-isomorphic real closed 7;-fields of size 2%0.) It may also be worth
mentioning that the intersection of all maximal Hausdorff fields is quite small: it is just
the field of real algebraic numbers.

Hardy fields. A Hardy field is a Hausdorff field whose germs can be differentiated. This
leads to a much richer theory. To define Hardy fields formally we introduce the subring

C" :={f € C: f iseventually n times continuously differentiable}

of @, with @ = @. Then each f € @"*! has derivative f' € C". A Hardy field is
a subfield of @' that is closed under f + f’; Hardy fields are thus not only ordered
fields but also differential fields. The Hausdorff fields listed in (1) are all Hardy fields;
moreover, for each o-minimal expansion R of the field of reals, H (R) is a Hardy field.
As with Hausdorft fields, each Hardy field is contained in a maximal one. For an element
f of a Hardy field we have either /' > 0,0r /" =0, 0r f’ < 0, so f is either eventually
strictly increasing, or eventually constant, or eventually strictly decreasing. (This may fail
for f in a Hausdorff field.) Each element of a Hardy field is contained in the intersection
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(), €", but not necessarily in its subring € consisting of those germs which are even-
tually infinitely differentiable. In a Hardy field H, the ordering and derivation interact in
a pleasant way: if f € H and f > R, then f’ > 0. Asymptotic relations in H can be
differentiated and integrated: for 0  f, g % 1in H, we have f < giff f' < g’

Extending Hardy fields. Early work on Hardy fields focused on solving algebraic equa-
tions and simple first order differential equations: Borel [1899], Hardy [1912a,b], Bour-
baki [1951], Mari¢ [1972], Sjodin [1971], Robinson [1972], Rosenlicht [1983a]. As
a consequence, every Hardy field H has a smallest real closed Hardy field extension
Li(H) 2 R that is also closed under integration and exponentiation; call Li(H ) the
Hardy-Liouville closure of H. (Hardy’s field of LE-functions mentioned earlier is con-
tained in Li(R).) Here is a rather general result of this kind, due to Singer [1975]:

Theorem 1.2. Iy € C! satisfies a differential equation y' P(y) = Q(y) where P(Y)
and Q(Y') are polynomials over a Hardy field H and P (y) is a unitin C, then y generates
a Hardy field H(y) = H(y, y’) over H.

Singer’s theorem clearly does not extend to second order differential equations: the nonzero
solutions of y” + y = 0 in €2 do not belong to any Hardy field. The solutions in €2 of
the differential equation

@ Yty =e

form a two-dimensional affine space yo + R sinx + R cos x over R, with y( any partic-
ular solution. Boshernitzan [1987] proved that any of these continuum many solutions
generates a Hardy field. Since no Hardy field can contain more than one solution, there
are at least continuum many different maximal Hardy fields. By the above, each of them
contains R, is real closed, and closed under integration and exponentiation. What more
can we say about maximal Hardy fields? To give an answer to this question, consider the
following conjectures about Hardy fields H :

A. For any differential polynomial P(Y) € H{Y}=H[Y,Y'.Y",...]and f < gin
H with P(f) <0 < P(g) there exists y in a Hardy field extension of H such that
f<y<gand P(y)=0.

B. For any countable subsets A < B in H there exists y in a Hardy field extension of
H such that A <y < B.

Conjecture A for P € H[Y, Y] holds by van den Dries [2000]. Conjecture A implies that
all maximal Hardy fields are elementarily equivalent as we shall see in Section 2. Con-
jecture B was first raised as a question by Ehrlich [2012]. The conjectures together imply
that, under CH, all maximal Hardy fields are isomorphic (the analogue of Corollary 1.1).
We sketch a program to prove A and B in Section 3.
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Transseries. Hardy [1910, p. 35] made the point that the LE-functions seem to cover all
orders of infinity that occur naturally in mathematics. But he also suspected that the order
of infinity of the compositional inverse of (log x)(loglog x) differs from that of any LE-
function (see Hardy [1912a]); this suspicion is correct. For a more revealing view of orders
of infinity and a more comprehensive theory we need transseries. For example, transseries
lead to an easy argument to confirm Hardy’s suspicion (see van den Dries, Macintyre, and
Marker [1997] and van der Hoeven [1997]). Here we focus on the field T of LE-series and
in accordance with Aschenbrenner, van den Dries, and van der Hoeven [2017a], simply
call its elements fransseries, bearing in mind that many variants of formal series, such as
those appearing in Schmeling [2001] (see Section 4 below), can also rightfully be called
“transseries”.

Transseries are formal series f = ), fm where the fy, are real coefficients and
the m are “transmonomials” such as

X

xr (7‘ c R), x—logx’ er ex’ ee .
One can get a sense by considering an example like
7 He e e _3x? 5 V2 (logx)™ +42+ x4+ x2 4. e .

Here think of x as positive infinite: x > R. The transmonomials in this series are arranged
from left to right in decreasing order. The reversed order type of the set of transmonomials
that occur in a given transseries can be any countable ordinal. (In the example above it is
o + 1 because of the term e~ at the end.) Formally, T is an ordered subfield of a Hahn
field R[[GF]] where G'F is the ordered group of transmonomials (or LE-monomials).
More generally, let I be any (totally) ordered commutative group, multiplicatively writ-
ten, the m € 9N being thought of as monomials, with the ordering denoted by <. The
Hahn field R[[M]] consists of the formal series f =) . fwmm with real coefficients fn
whose support supp f = {mt € M : fix # 0} is well-based, that is, well-ordered in
the reversed ordering > of J!. Addition and multiplication of these Hahn series works
just as for ordinary power series, and the ordering of R[[I0t]] is determined by declaring a
nonzero Hahn series to be positive if its leading coefficient is positive (so the series above,
with leading coefficient 7, is positive). Both R[[G'E]] and its ordered subfield T are real
closed. Informally, each transseries is obtained, starting with the powers x” (r € R), by
applying the following operations finitely many times:

1. multiplication with real numbers;
2. infinite summation in R[[G'E]];

3. exponentiation and taking logarithms of positive transseries.
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To elaborate on (2), a family ( f;);es in R[] is said to be summable if for each m there
are only finitely many i € I with m € supp f;, and | J;; supp f; is well-based; in this
case we define the sum [ =) ;o; fi € R[[IN]] of this family by fix = ;7 (fi)m for
each m. One can develop a “strong” linear algebra for this notion of “strong” (infinite)
summation (see van der Hoeven [2006] and Schmeling [2001]). As to (3), it may be
instructive to see how to exponentiate a transseries f: decompose fas f = g+c+¢
where g := Y .| fmm is the infinite part of f, ¢ := f7 is its constant term, and ¢ its
infinitesimal part (in our example ¢ = 42 and e = x™! + x™2 + --- + e™%); then

n

&
e/ = eg.ec.g _
n!

n

where e® € I is a transmonomial, and ¢¢ € R, ), fl—y: € R[[G"F]] have their usual
meaning. The story with logarithms is a bit different: taking logarithms may also create
transmonomials, such as log x, log log x, etc.

The formal definition of T is inductive and somewhat lengthy; see van den Dries,
Macintyre, and Marker [2001], Edgar [2010], and van der Hoeven [2006] for detailed
expositions, or Aschenbrenner, van den Dries, and van der Hoeven [2017a, Appendix A]
for a summary. We only note here that by virtue of the construction of T, series like
% + e% + e% +---or % + xl;gx + xlogxllog ogx T (involving “nested” exponentials
or logarithms of unbounded depth), though they are legitimate elements of R[[G'E]], do
not appear in T'; moreover, the sequence x,e*, e, ... is cofinal in T, and the sequence
x,log x,loglogx, ... is coinitial in the set { f € T : f > R}. The map f + e/ isan
isomorphism of the ordered additive group of T onto its multiplicative group of positive
elements, with inverse g — log g. As an ordered exponential field, T turns out to be an

elementary extension of R, (see van den Dries, Macintyre, and Marker [1997]).

Transseries can be differentiated termwise; for instance, (Zn n!x,el—il)/ = % We
obtain a derivation f — f’ on the field T with constant field {f € T : f'=0} =R
and satisfying (exp )’ = f'exp f and (logg)’ = g’/g for f,g € T, g > 0. Moreover,
each f € T has an antiderivative in T, that is, f = g’ for some g € T. As in Hardy
fields, f > R = f’ > 0, for transseries f. We also have a dominance relation on T: for
f,g € T weset

f<g = |f| <cl|g|forsomec € R
<= (leading transmonomial of f) < (leading transmonomial of g),
and as in Hardy fields we declare f < g :<—= f < gandg < f,aswellas f < g 1=

f < gand g £ f. Asin Hardy fields we can also differentiate and integrate asymptotic
relations: for0 # f,g % 1inT we have f < giff f' <X g’
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Hardy’s ordered exponential field of (germs of) logarithmic-exponential functions em-
beds uniquely into T so as to preserve real constants and to send the germ x to the
transseries x; this embedding also preserves the derivation. However, the field of LE-
series enjoys many closure properties that the field of LE-functions lacks. For instance,
T is not only closed under exponentiation and integration, but also comes with a natural
operation of composition: for f; g € T with g > R we can substitute g for x in f = f(x)
to obtain f og = f(g(x)). The Chain Rule holds: (fog) = (f'og)-g’. Everyg > R
has a compositional inverse in T: a transseries / > R with fog = go f = x. Asshown
in van der Hoeven [2006], a Newton diagram method can be used to solve any “feasible”
algebraic differential equation in T (where the meaning of feasible can be made explicit).

Thus it is not surprising that soon after the introduction of T the idea emerged that it
should play the role of a universal domain (akin to Weil’s use of this term in algebraic
geometry) for asymptotic differential algebra: that it is truly the algebra-from-which-one-
can-never-exit and that it marks an almost impassable horizon for “ordered analysis”,
as Ecalle [1992, p. 148] put it. Model theory provides a language to make such an intuition
precise, as we explain in our survey Aschenbrenner, van den Dries, and van der Hoeven
[2013] where we sketched a program to establish the basic model-theoretic properties of
T, carried out in Aschenbrenner, van den Dries, and van der Hoeven [2017a]. Next we
briefly discuss our main results from Aschenbrenner, van den Dries, and van der Hoeven

[ibid.].

2 H-Fields

We shall consider T as an £-structure where the language £ has the primitives 0, 1, +,
—, -+, 0 (derivation), < (ordering), < (dominance). More generally, let K be any ordered
differential field with constant field C = {f € K : f’ = 0}. This yields a dominance
relation < on K by

f<g <= |f]|<c]|g|forsome positive c € C

and we view K accordingly as an £-structure. The convex hull of C in K is the valuation
ring O = {f € K : f < 1} of K, with its maximal ideal 0 := {f € K: f < 1} of
infinitesimals.

Definition 2.1. An H-field is an ordered differential field K such that (with the notations
above), O = C + o, and forall f € K we have: f > C = [’ > 0.

Examples include all Hardy fields that contain R, and all ordered differential subfields
of T that contain R. In particular, T is an H-field, but T has further basic elementary
properties that do not follow from this: its derivation is small, and it is Liouville closed.
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An H-field K is said to have small derivation if it satisfies f < 1 = f’ < 1, and to
be Liouville closed if it is real closed and for every f € K therc are g,h € K, h # 0,
such that g’ = f and A’ = hf. Each Hardy field H has small derivation, and Li(H ) is
Liouville closed.

Inspired by the familiar characterization of real closed ordered fields via the interme-
diate value property for one-variable polynomial functions, we say that an H -field K has
the Intermediate Value Property (IVP) if for all differential polynomials P(Y) € K{Y}
and all f < gin K with P(f) < 0 < P(g) there is some y € K with ' <y < g and
P(y) = 0. van der Hoeven showed that a certain variant of T, namely its H -subfield of
gridbased transseries, has [VP; see van der Hoeven [2002].

Theorem 2.2. The §-theory of T is completely axiomatized by the requirements: being
an H -field with small derivation, being Liouville closed; and having IVP.

Actually, IVP is a bit of an afterthought: in Aschenbrenner, van den Dries, and van der
Hoeven [2017a] we use other (but equivalent) axioms that will be detailed below. We
mention the above variant for expository reasons and since it explains why Conjecture A
from Section 1 yields that all maximal Hardy fields are elementarily equivalent. Let us
define an H -closed field to be an H -field that is Liouville closed and has the IVP. All
H -fields embed into H -closed fields, and the latter are exactly the existentially closed
H -fields. Thus:

Theorem 2.3. The theory of H-closed fields is model complete.
Here is an unexpected byproduct of our proof of this theorem:

Corollary 2.4. H-closed fields have no proper differentially algebraic H -field extensions
with the same constant field.

IVP refers to the ordering, but the valuation given by < is more robust and more useful.
IVP comes from two more fundamental properties: w-freeness and newtonianity (a differ-
ential version of henselianity). These concepts make sense for any differential field with
a suitable dominance relation < in which the equivalence f < ¢ <= f’ < g’ holds for
0# fig <1

To give an inkling of these somewhat technical notions, let K be an H -field and assume
that for every ¢ € K> for which the derivation ¢d is small (that is, pdo C 0), there exists
¢1 < ¢ in K™ such that ¢;9 is small. (This assumption is satisfied for Liouville closed
H-fields.) Let P(Y) € K{Y}*. We wish to understand how the function y > P(y)
behaves for y < 1. It turns out that this function only reveals its true colors after rewriting
P in terms of a derivation ¢0 with suitable ¢ € K*.

Indeed, this rewritten P has the form a - (N + R) with a € K> and where N (Y) €
C{Y}# is independent of ¢ for sufficiently small ¢ € K* with respect to =, subject to ¢
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being small, and where the coefficients of R(Y ) are infinitesimal. We call N the Newton
polynomial of P. Now K is said to be w-free if for all P as above its Newton polynomial
has the form A(Y ) - (Y’)" for some A € C[Y] and some n. We say that K is newfonian
if for all P as above with N (P) of degree 1 we have P(y) = 0 for some y € O. For H-
fields, IVP = w-free and newtonian; for Liouville closed H -fields, the converse also
holds.

Our main result in Aschenbrenner, van den Dries, and van der Hoeven [ibid.] refines
Theorem 2.3 by giving quantifier elimination for the theory of H-closed fields in the
language £ above augmented by an additional unary function symbol ¢ and two extra
unary predicates A and Q. These have defining axioms in terms of the other primitives.
Their interpretations in T are as follows: «(f) = 1/f if f # 0, ¢(0) = 0, and with
Lo :=x, €y 41 :=logl,,

AS) = [f<h ::%—s—ﬁ—f—---—&—ﬁforsomen,

Q(f) < f<wn1=ﬁ+m+m+mforsomen.

Thus A and Q define downward closed subsets of T. The sequence (®,) also appears
in classical non-oscillation theorems for second-order linear differential equations. The
o-freeness of T reflects the fact that (®, ) has no pseudolimit in the valued field T'. Here
are some applications of this quantifier elimination:

Corollary 2.5.

(1) “O-minimality at infinity”: if S C T is definable, then for some f € T we either
have g € S forallg > finT org ¢ S forallg > finT.

(2) All subsets of R" definable in T are semialgebraic.

Corollaries 2.4 and 2.5 are the departure point for developing a notion of (differential-
algebraic) dimension for definable sets in T ; see Aschenbrenner, van den Dries, and van
der Hoeven [2017b].

The results reported on above make us confident that the category of H -fields is the
right setting for asymptotic differential algebra. To solidify this impression we return
to the motivating examples—Hardy fields, ordered differential fields of transseries, and
surreal numbers—and consider how they are related. We start with Hardy fields, which
historically came first.

3 H-Field Elements as Germs

After Theorem 1.2 and Boshernitzan [1982, 1987], the first substantial “Hardy field” result
on more general differential equations was obtained by van der Hoeven [2009]. In what
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follows we use “d-algebraic” to mean “differentially algebraic” and “d-transcendental” to
mean “differentially transcendental”.

Theorem 3.1. The differential subfield T% of T whose elements are the d-algebraic
transseries is isomorphic over R to a Hardy field.

The proof of this theorem is in the spirit of model theory, iteratively extending by a single
d-algebraic transseries. The most difficult case (immediate extensions) is handled through
careful construction of suitable solutions as convergent series of iterated integrals. We are
currently trying to generalize Theorem 3.1 to d-algebraic extensions of arbitrary Hardy
fields. Here is our plan:

Theorem 3.2. Every Hardy field has an ®-free Hardy field extension.

Theorem 3.3 (in progress). Every W-free Hardy field has a newtonian d-algebraic Hardy
field extension.

These two theorems, when established, imply that all maximal Hardy fields are H -closed.
Hence (by Theorem 2.2) they will all be elementarily equivalent to T, and since H -closed
fields have the IVP, Conjecture A from Section 1 will follow.

In order to get an even better grasp on the structure of maximal Hardy fields, we also
need to understand how to adjoin d-transcendental germs to Hardy fields. An example of
this situation is given by d-transcendental series such as ), n!!x™". By an old result by
E. Borel [1895] every formal power series Y, a,t" over R is the Taylor series at 0 of a
C*-function f on R; then )", a,x™" is an asymptotic expansion of the function f (x~1)
at 400, and it is easy to show that if this series is d-transcendental, then the germ at 4-c0
of this function does generate a Hardy field. Here is a far-reaching generalization:

Theorem 3.4 (in progress). Every pseudocauchy sequence (yy) in a Hardy field H has a
pseudolimit in some Hardy field extension of H.

The proof of this for H-closed H O R relies heavily on results from Aschenbrenner,
van den Dries, and van der Hoeven [2017a], using also intricate glueing techniques. For
extensions that increase the value group, we need very different constructions. If succesful,
these constructions in combination with Theorem 3.4 will lead to a proof of Conjecture B
from Section 1:

Theorem 3.5 (in progress). For any countable subsets A < B of a Hardy field H there
exists an element y in a Hardy field extension of H with A <y < B.

The case H C C*°, B = & was already dealt with by Sjodin [1971]. The various “the-
orems in progress” together with results from Aschenbrenner, van den Dries, and van
der Hoeven [2017a] imply that any maximal Hardy fields H; and H are back-and-forth
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equivalent, which is considerably stronger than H; and H; being elementarily equivalent.
It implies for example

Under CH all maximal Hardy fields are isomorphic.

This would be the Hardy field analogue of Corollary 1.1. (In contrast to maximal Haus-
dorff fields, however, maximal Hardy fields cannot be X;-saturated, since their constant
field is R.) When we submitted this manuscript, we had finished the proof of Theorem 3.2,
and also the proof of Theorem 3.4 in the relevant H -closed case.

Related problems. Some authors (such as Sjodin [1971]) prefer to consider only Hardy
fields contained in €*°. Theorem 3.2 and our partial result for Theorem 3.4 go through in
the C*°-setting. All the above “theorems in progress” are plausible in that setting.

What about real analytic Hardy fields (Hardy fields contained in the subring C® of C
consisting of all real analytic germs)? In that setting Theorem 3.2 goes through. Any d-
algebraic Hardy field extension of a real analytic Hardy field is itself real analytic, and so
Theorem 3.3 (in progress) will hold in that setting as well. However, our glueing technique
employed in the proof of Theorem 3.4 doesn’t work there.

Kneser [1949] obtained a real analytic solution E at infinity to the functional equation
E(x+1) = exp E(x). It grows faster than any finite iteration of the exponential function,
and generates a Hardy field. See Boshernitzan [1986] for results of this kind, and a proof
that Theorem 3.5 holds for B = & in the real analytic setting. So in this context we also
have an abundant supply of Hardy fields.

Similar issues arise for germs of quasi-analytic and “cohesive” functions of Ecalle
[1992]. These classes of functions are somewhat more flexible than the class of real an-
alytic functions. For instance, the series x ™' + ¢ ¥ +¢~¢" +--- converges uniformly
for x > 1 to a cohesive function that is not real analytic.

Accelero-summation. The definition of a Hardy field ensures that the differential field
operations never introduce oscillatory behavior. Does this behavior persist for operations
such as composition or various integral transforms? In this connection we note that the
Hardy field H (R) associated to an o-minimal expansion R of the field of reals is always
closed under composition (see Miller [2012]).

To illustrate the problem with composition, let & be a real number > 1 and let y, € G2
be a solution to (2). Then zg := yo(ax) satisfies the equation

?3) a2 4z =

It can be shown that {yy + sin x, zo} generates a Hardy field, but it is clear that no Hardy
field containing both yg + sin x and zy can be closed under composition.
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Adjoining solutions to (2) and (3) “one by one” as in the proof of Theorem 3.1 will
not prevent the resulting Hardy fields to contain both yg + sinx and zy. In order to ob-
tain closure under composition we therefore need an alternative device. Ecalle’s theory of
accelero-summation (Ecalle [1992]) is much more than that. Vastly extending Borel’s
summation method for divergent series (Borel [1899]), it associates to each accelero-
summable transseries an analyzable function. In this way many non-oscillating real-valued
functions that arise naturally (e.g., as solutions of algebraic differential equations) can be
represented faithfully by transseries. This leads us to conjecture an improvement on The-
orem 3.1:

Conjecture 3.6. Consider the real accelero-summation process where we systematically
use the organic average whenever we encounter singularities on the positive real axis.
This yields a composition-preserving H -field isomorphism from T onto a Hardy field
contained in C%.

There is little doubt that this holds. The main difficulty here is that a full proof will in-
volve many tools forged by Ecalle in connection with accelero-summation, such as resur-
gent functions, well-behaved averages, cohesive functions, etc., with some of these tools
requiring further elaboration; see also Costin [2009] and Menous [1999].

The current theory of accelero-summation only sums transseries with coefficients in R.
Thus it is not clear how to generalize Conjecture 3.6 in the direction of Theorem 3.3. Such
a generalization might require introducing transseries over a Hardy field H with suitable
additional structure, as well as a corresponding theory of accelero-summation over H for
such transseries. In particular, elements of H should be accelero-summable over H in
this theory, by construction.

4 H-Field Elements as Generalized Transseries

Next we discuss when H -fields embed into differential fields of formal series. A classical
embedding theorem of this type is due to Krull [1932]: any valued field has a spherically
complete immediate extension. As a consequence, any real closed field containing R is
isomorphic over R to a subfield of a Hahn field R[[9)%]] with divisible monomial group I,
such that the subfield contains R (9t). We recently proved an analogue of this theorem for
valued differential fields; see Aschenbrenner, van den Dries, and van der Hoeven [2017c].
Here a valued differential field is a valued field of equicharacteristic zero equipped with a
derivation that is continuous with respect to the valuation topology.

Theorem 4.1. Every valued differential field has a spherically complete immediate exten-
sion.
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For a real closed H -field K with constant field C this theorem gives a Hahn field K =
C[[9M]] with a derivation d on K making it an H-field with constant field C such that K
is isomorphic over C to an H -subfield of K that contains C (IM). A shortcoming of this
result is that there is no guarantee that 0 preserves infinite summation. In contrast, the
derivation of T is strong (does preserve infinite summation). An abstract framework for
even more general notions of transseries is due to van der Hoeven and his former student
Schmeling [2001].

Fields of transseries. To explain this, consider an (ordered) Hahn field R[[I]] with
a partially defined function exp obeying the usual rules of exponentiation; see van der
Hoeven [2006, Section 4.1] for details. In particular, exp has a partially defined inverse
function log. We say that R[[)%]] is a field of transseries if the following conditions hold:

(T1) the domain of the function log is R[[9N]]~°;
(T2) for each m € M and n € supp log m we have n > 1;
(T3) log(1+¢) =& — 62 + 263 4 -+ forall e < 1 in R[[IN]]; and

(T4) for every sequence (11,) in I with m,, 1 € supplogm, for all n, there exists an
index ng such that for all n = n( and all n € supp log m,, we have n > m,; and
(logmy)m,,, = £1.

The first three axioms record basic facts from the standard construction of transseries. The
fourth axiom is more intricate and puts limits on the kind of “nested transseries” that are
allowed. Nested transseries such as

“ y = V4 elerreY e

are naturally encountered as solutions of functional equations, in this case
©) y(x) = Vx ¥ e

Axiom (T4) does allow nested transseries as in (4), but excludes series like

U = fx 4 VBTV IR IR Lloglogx 10
which solves the functional equation u(x) = \/x + €*(°¢*) + log x; in some sense, u is a
perturbation of the solution y in (4) to the equation (5).

In his thesis Schmeling [2001] shows how to extend a given field of transseries K =
R[[9%]] with new exponentials and nested transseries like (4), and if K also comes with
a strong derivation, how to extend this derivation as well. Again, (T4) is crucial for
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this task: naive termwise differentiation leads to a huge infinite sum that turns out to be
summable by (T4). A transserial derivation is a strong derivation on K such that nested
transseries are differentiated in this way. Such a transserial derivation is uniquely deter-
mined by its values on the log-atomic elements: those A € K for which A, log A, loglogA, ...
are all transmonomials in 1.

We can now state a transserial analogue of Krull’s theorem. This analogue is a con-
sequence of Theorem 5.3 below, proved in Aschenbrenner, van den Dries, and van der
Hoeven [2015].

Theorem 4.2. Every H-field with small derivation and constant field R can be embedded
over R into a field of transseries with transserial derivation.

For simplicity, we restricted ourselves to transseries over R. The theory naturally gen-
eralizes to transseries over ordered exponential fields (see van der Hoeven [2006] and
Schmeling [2001]) and it should be possible to extend Theorem 4.2 likewise.

Hyperseries. Besides derivations, one can also define a notion of composition for gen-
eralized transseries (see van der Hoeven [1997] and Schmeling [2001]). Whereas certain
functional equations such as (5) can still be solved using nested transseries, solving the
equation E(x + 1) = exp E(x) where E(x) is the unknown, requires extending T to a
field of transseries with composition containing an element E(x) = exp,, x > T, called
the iterator of exp x. Its compositional inverse log,, x should then satisfy log,, logx =
(log,, x) — 1, providing us with a primitive for (x log x log, x -+ )71

lo x—/ dx
Bu X = xlogxlogyx---

It is convenient to start with iterated logarithms rather than iterated exponentials, and to
introduce transfinite iterators log, x recursively using

dx
log, x = / _ (o any ordinal).
* Hﬂ<(x 108,3 X

By Ecalle [1992] the iterators log, x witha < w® and their compositional inverses exp, X
suffice to resolve all pure composition equations of the form

ffopioofknog, = x whereds,....¢pp € T andky,... k, € N.

The resolution of more complicated functional equations involving differentiation and
composition requires the introduction of fields of hyperseries: besides exponentials and
logarithms, hyperseries are allowed to contain iterators exp,, x and log,, x of any strength or.
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For @ < w®, the necessary constructions were carried out in Schmeling [2001]. The ulti-
mate objective is to construct a field Hy of hyperseries as a proper class, similar to the field
of surreal numbers, endow it with its canonical derivation and composition, and establish
the following:

Conjecture 4.3. Let ® be any partial function from Hy into itself, constructed from ele-
ments in Hy, using the field operations, differentiation and composition. Let [ < g be
hyperseries in Hy such that ® is defined on the closed interval [ f, g] and ®(f)P(g) < 0.
Then for some y € Hy we have ®(y) =0and f <y < g.

One might then also consider H -fields with an additional composition operator and try to
prove that these structures can always be embedded into Hy.

5 Growth Rates as Numbers

Turning to surreal numbers, how do they fit into asymptotic differential algebra?

The H-field of surreal numbers. The totality No of surreal numbers is not a set but
a proper class: a surreal a € No is uniquely represented by a transfinite sign sequence
(ar)r<t(@) € {— +}*@ where £(a) is an ordinal, called the length of a; a surreal b is
said to be simpler than a (notation: b <, a) if the sign sequence of b is a proper initial
segment of that of a. Besides the (partial) ordering <, No also carries a natural (total)
lexicographic ordering <. For any sets L < R of surreals there is a unique simplest surreal
a with L < a < R; this a is denoted by {L | R} and called the simplest or earliest surreal
between L and R. In particular, a = {L, | R;} for any a € No, where L, := {b < a :
b<ayand R, = {b <ga: b > a}. We let a® range over elements of L, and a® over
elements of R,.

A rather magical property of surreal numbers is that various operations have natural
inductive definitions. For instance, we have ring operations given by

a-+b = {aL+b,a+bL|aR—|—b,a—|—bR}
ab = {aLb +ab® —atbt a®b + ab® — aRpR |

alb + ab® — aLbR,aRb +abt — aRbL}.

Remarkably, these operations make No into a real closed field with < as its field ordering
and with R uniquely embedded as an initial subfield. (A set A C No is said to be initial
ifforalla € Aallb <5 a are also in A.)

Can we use such magical recursions to introduce other reasonable operations? Expo-
nentiation was dealt with by Gonshor [1986]. But it remained long open how to define
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a “good” derivation 9 on No such that d(w) = 1. (An ordinal « is identified with the
surreal of length o whose sign sequence has just plus signs.) A positive answer was given
recently by Berarducci and Mantova [2018]. Their construction goes in two parts. They
first analyze No as an exponential field, and show that it is basically a field of transseries
in the sense of Section 4. A transserial derivation on No is determined by its values at
log-atomic elements. There is some flexibility here, but Berarducci and Mantova [ibid.]
present a “simplest” way to choose these derivatives. Most important, that choice indeed
leads to a derivation dgy on No. In addition:

Theorem 5.1 (Berarducci and Mantova [ibid.]). The derivation dgy is transserial and
makes No a Liouville closed H -field with constant field R.

This result was further strengthened in Aschenbrenner, van den Dries, and van der Hoeven
[2015], using key results from Aschenbrenner, van den Dries, and van der Hoeven [2017a]:

Theorem 5.2. No with the derivation dgy; is an H-closed field.

Embedding H-fields into No. Inthe remainder of this section we consider No as equipped
with the derivation dgy, although Theorems 5.1 and 5.2 and much of what follows hold
for other transserial derivations. Returning to our main topic of embedding H -fields into
specific H-fields such as No, we also proved the following in Aschenbrenner, van den
Dries, and van der Hoeven [2015]:

Theorem 5.3. Every H -field with small derivation and constant field R can be embedded
as an ordered differential field into No.

How “nice” can we take the embeddings in Theorem 5.3? For instance, when can we ar-
range the image of the embedding to be initial? The image of the natural embedding T — No
is indeed initial, as has been shown by Elliot Kaplan.

For further discussion it is convenient to introduce, given an ordinal «, the set

No(a) := {a € No: £(a) < a}.

It turns out that for uncountable cardinals «, No(«) is closed under the differential field
operations, and in Aschenbrenner, van den Dries, and van der Hoeven [ibid.] we also
show:

Theorem 5.4. The H-subfield No(k) of No is an elementary submodel of No.

In particular, the H -field No(w; ) of surreal numbers of countable length is an elementary
submodel of No. It has the 7 -property: for any countable subsets A < B of No(w; ) there
exists y € No(w;) with A < y < B. This fact and the various “theorems in progress”
from Section 3 imply:
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Under CH all maximal Hardy fields are isomorphic to No(w1).

This would be an analogue of Ehrlich’s observation about maximal Hausdorff fields.

Hyperseries as numbers and vice versa. The similarities in the constructions of the field
of hyperseries Hy and the field of surreal numbers No led van der Hoeven [2006, p. 6] to
the following:

Conjecture 5.5. There is a natural isomorphism between Hy and No that associates to
any hyperseries f(x) € Hy its value f(w) € No.

The problem is to make sense of the value of a hyperseries at w. Thanks to Gonshor’s
exponential function, it is clear how to evaluate ordinary transseries at w. The difficulties
start as soon as we wish to represent surreal numbers that are not of the form f (@) with
f (x) an ordinary transseries. That is where the iterators exp,, and log,, come into play:

exp,, w = {w,expw,exp, @, ... |}

log, w :={R]| ..., logyw,logw,w}
CXPy /o W 1= CXPy, (log,, (@ + %))
= {a)2,e><plog2(1),exp2 logga), e ‘ .., €XPy \/loga),exp\/E}

The intuition behind Conjecture 5.5 is that all “holes in No can be filled” using suitable
nested hyperseries and suitable iterators of exp and log. It reconciles two a priori very
different types of infinities: on the one hand, we have growth orders corresponding to
smooth functional behavior; on the other side, we have numbers. Being able to switch
between functions (more precisely: formal series acting as functions) and numbers, we
may also transport any available structure in both directions: we immediately obtain a
canonical derivation d. (with constant field R) and composition o, on No, as well as a
notion of simplicity on Hy.

Does the derivation dgy coincide with the canonical derivation d, induced by the conjec-
tured isomorphism? A key observation is that any derivation o on No with a distinguished
right inverse 9~ ! naturally gives rise to a definition of log,,:

log, a := 9 '(0alog), a) where

log), a := 1/Hlogna (a € No, a > R).
n

(For a family (a; ) of positive surreals, [[; a; := exp)_; loga; if )_; loga; is defined.)
Since dpy is transserial, it does admit a distinguished right inverse dgy;. According to
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Berarducci and Mantova [2018, Remark 6.8], dgpmA = 1/log), A for log-atomic A with
A > exp,w for all n. For A = exp, w and setting exp), (a) := [], log, exp, a for
a € No” 0, this yields dpmA = expl, w, which is also the value we expect for d.A. However,
for A = exp,, (exp, w) we getdgmA = exp), (exp,, @) whereas we expect d.A = (exp), »)-
exp,, (exp,, ®). Thus the “simplest” derivation dgy making No an H -field probably does
not coincide with the ultimately “correct” derivation d, on No. Berarducci and Mantova
[2017] use similar considerations to conclude that dgy, is incompatible with any reasonable
notion of composition for surreal numbers.

The surreal numbers from a model theoretic perspective. We conclude with specula-
tions motivated by the fact that various operations defined by “surreal” recursions have a
nice model theory. Examples: (No; <, +, ) is a model of the theory of real closed fields;
(No; <, +, -, exp) is a model of the theory of Reyp; and (No; <, +, -,dgm) is a model
of the theory of H-closed fields. Each of these theories is model complete in a natural
language. Is there a model theoretic reason that explains why this works so well?

Let us look at this in connection with the last example. Our aim is to define a deriva-
tion d on No making it an H-field. Let a € No be given for which we wish to define da,
and assume that db has been defined forall b € L, U R,. Let A, be the class of all sur-
reals b for which there exists a derivation d on No with da = b and taking the prescribed
values on L, U R,. Assembling all conditions that should be satisfied by da, it is not hard
to see that there exist sets L, R € No such that A, = {b € No: L <b < R}. We are
left with two main questions: When do we have L < R, thereby allowing us to define
da = {L| R}? Does this lead to a global definition of d on No making it an H -closed
field? 1t might be of interest to isolate reasonable model theoretic conditions that imply
the success of this type of construction. If the above construction does work, yet another
question is whether the resulting derivation coincides with dgy.

References

Norman L. Alling (1987). Foundations of analysis over surreal number fields. Vol. 141.
North-Holland Mathematics Studies. Notas de Matematica [Mathematical Notes], 117.
North-Holland Publishing Co., Amsterdam, pp. xvi+373. MR: 886475 (cit. on p. 20).

Emil Artin and Otto Schreier (1927). “Algebraische Konstruktion reeller Korper”. Abh.
Math. Sem. Univ. Hamburg 5.1, pp. 85-99. MR: 3069467 (cit. on p. 23).

Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven (2013). “Toward
a model theory for transseries”. Notre Dame J. Form. Log. 54.3-4, pp. 279-310. MR:
3091660 (cit. on p. 27).


http://www.ams.org/mathscinet-getitem?mr=MR886475
https://doi.org/10.1007/BF02952512
http://www.ams.org/mathscinet-getitem?mr=MR3069467
https://doi.org/10.1215/00294527-2143898
https://doi.org/10.1215/00294527-2143898
http://www.ams.org/mathscinet-getitem?mr=MR3091660

ON NUMBERS, GERMS, AND TRANSSERIES 39

— (Dec. 2015). “The surreal numbers as a universal H -field”. J. Eur. Math. Soc. (JEMS),
to appear. arXiv: 1512.02267 (cit. on pp. 34, 36).

— (2017a). Asymptotic differential algebra and model theory of transseries. Vol. 195. Ann.
of Math. Stud. Princeton University Press, Princeton, NJ (cit. on pp. 20, 21, 25-30, 36).

— (2017b). “Dimension in the realm of transseries”. In: Ordered algebraic structures and
related topics. Vol. 697. Contemp. Math. Amer. Math. Soc., Providence, RI, pp. 23-39.
MR: 3716064 (cit. on p. 29).

— (Jan. 2017c¢). “Maximal immediate extensions of valued differential fields”. Proc. Lon-
don Math. Soc., to appear. arXiv: 1701.06691 (cit. on p. 32).

Alessandro Berarducci and Vincenzo Mantova (Mar. 2017). “Transseries as germs of sur-
real functions”. Trans. Amer. Math. Soc., to appear. arXiv: 1703.01995 (cit. on p. 38).

— (2018). “Surreal numbers, derivations and transseries”. J. Eur. Math. Soc. (JEMS) 20.2,
pp- 339-390. arXiv: 1503.00315. MR: 3760298 (cit. on pp. 36, 38).

Paul du Bois-Reymond (1871). “Sur la grandeur relative des infinis des fonctions”. Ann.
Mat. Pura Appl. 4, pp. 338-353 (cit. on p. 19).

— (1872). “Théoréme général concernant la grandeur relative des infinis des fonctions
et de leurs dérivées”. J. Reine Angew. Math. T4, pp. 294-304. MR: 1579548 (cit. on
p. 19).

— (1873). “Eine neue Theorie der Convergenz und Divergenz von Reihen mit positiven
Gliedern”. J. Reine Angew. Math. 76, pp. 61-91. MR: 1579577 (cit. on p. 19).

— (1875). “Ueber asymptotische Werthe, infinitdre Approximationen und infinitére Auf-
16sung von Gleichungen”. Math. Ann. 8.3, pp. 363—414. MR: 1509850 (cit. on p. 19).

— (1877). “Ueber die Paradoxen des Infinitércalciils”. Math. Ann. 11.2, pp. 149-167. MR:
1509910 (cit. on p. 19).

— (1882). Die allgemeine Functionentheorie. Verlag der H. Laupp’schen Buchhandlung,
Tiibingen (cit. on p. 19).

Emile Borel (1895). “Sur quelques points de la théorie des fonctions”. Ann. Sci. Ecole
Norm. Sup. (3) 12, pp. 9-55. MR: 1508908 (cit. on p. 30).

— (1899). “Mémoire sur les séries divergentes”. Ann. Sci. Ecole Norm. Sup. (3) 16, pp. 9—
131. MR: 1508965 (cit. on pp. 24, 32).

Michael Boshernitzan (1981). “An extension of Hardy’s class L of ‘orders of infinity’”. J.
Analyse Math. 39, pp. 235-255. MR: 632463 (cit. on p. 19).

— (1982). “New ‘orders of infinity’”. J. Analyse Math. 41, pp. 130-167. MR: 687948
(cit. on pp. 19, 29).

— (1986). “Hardy fields and existence of transexponential functions”. Aequationes Math.
30.2-3, pp. 258-280. MR: 843667 (cit. on pp. 19, 31).

— (1987). “Second order differential equations over Hardy fields”. J. London Math. Soc.
(2) 35.1, pp. 109—120. MR: 871769 (cit. on pp. 19, 24, 29).


http://arxiv.org/abs/1512.02267
http://arxiv.org/abs/1512.02267
http://www.ams.org/mathscinet-getitem?mr=MR3716064
http://arxiv.org/abs/1701.06691
http://arxiv.org/abs/1701.06691
http://arxiv.org/abs/1703.01995
http://arxiv.org/abs/1703.01995
http://arxiv.org/abs/1703.01995
https://doi.org/10.4171/JEMS/769
http://arxiv.org/abs/1503.00315
http://www.ams.org/mathscinet-getitem?mr=MR3760298
https://doi.org/10.1515/crll.1872.74.294
https://doi.org/10.1515/crll.1872.74.294
http://www.ams.org/mathscinet-getitem?mr=MR1579548
https://doi.org/10.1515/crll.1873.76.61
https://doi.org/10.1515/crll.1873.76.61
http://www.ams.org/mathscinet-getitem?mr=MR1579577
https://doi.org/10.1007/BF01443187
https://doi.org/10.1007/BF01443187
http://www.ams.org/mathscinet-getitem?mr=MR1509850
https://doi.org/10.1007/BF01442663
http://www.ams.org/mathscinet-getitem?mr=MR1509910
http://www.numdam.org/item?id=ASENS_1895_3_12__9_0
http://www.ams.org/mathscinet-getitem?mr=MR1508908
http://www.numdam.org/item?id=ASENS_1899_3_16__9_0
http://www.ams.org/mathscinet-getitem?mr=MR1508965
https://doi.org/10.1007/BF02803337
http://www.ams.org/mathscinet-getitem?mr=MR632463
https://doi.org/10.1007/BF02803397
http://www.ams.org/mathscinet-getitem?mr=MR687948
https://doi.org/10.1007/BF02189932
http://www.ams.org/mathscinet-getitem?mr=MR843667
https://doi.org/10.1112/jlms/s2-35.1.109
http://www.ams.org/mathscinet-getitem?mr=MR871769

40 M. ASCHENBRENNER, L. VAN DEN DRIES AND J. VAN DER HOEVEN

Nicolas Bourbaki (1951). Elements de mathématique. XII. Premierére partie: Les struc-
tures fondamentales de I’analyse. Livre IV: Fonctions d’'une variable réelle. (Théorie
élémentaire). Chapitre IV: Equations différentielles. Chapitre V: Etude locale des fonc-
tions. Chapitre VI: Développements tayloriens généralisés; formule sommatoire d’Euler-
Maclaurin. Chapitre VII: La fonction gamma. Actualités Sci. Ind., no. 1132. Hermann
et Cie., Paris, pp. ii+200. MR: 0045774 (cit. on pp. 19, 24).

John H. Conway (1976). On numbers and games. London Mathematical Society Mono-
graphs, No. 6. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New
York, pp. ix+238. MR: 0450066 (cit. on p. 19).

— (1994). “The surreals and the reals”. In: Real numbers, generalizations of the reals, and
theories of continua. Vol. 242. Synthese Lib. Kluwer Acad. Publ., Dordrecht, pp. 93—
103. MR: 1340456 (cit. on p. 20).

Ovidiu Costin (2009). Asymptotics and Borel summability. Vol. 141. Chapman & Hall,
CRC Monographs and Surveys in Pure and Applied Mathematics. CRC Press, Boca
Raton, FL, pp. xiv+250. MR: 2474083 (cit. on p. 32).

Ovidiu Costin, Philip Ehrlich, and Harvey M. Friedman (May 2015). “Integration on the
surreals: a conjecture of Conway, Kruskal and Norton”. arXiv: 1505 . 02478 (cit. on
p- 20).

Bernd I. Dahn and Peter Goring (1987). “Notes on exponential-logarithmic terms”. Fund.
Math. 127.1, pp. 45-50. MR: 883151 (cit. on p. 20).

Lou van den Dries (2000). “An intermediate value property for first-order differential
polynomials”. In: Connections between model theory and algebraic and analytic ge-
ometry. Vol. 6. Quad. Mat. Dept. Math., Seconda Univ. Napoli, Caserta, pp. 95-105.
MR: 1930683 (cit. on p. 24).

Lou van den Dries and Philip Ehrlich (2001a). “Erratum to: ‘Fields of surreal numbers
and exponentiation’”. Fund. Math. 168.3, pp. 295-297. MR: 1853411 (cit. on p. 20).

— (2001b). “Fields of surreal numbers and exponentiation”. Fund. Math. 167.2, pp. 173—
188. MR: 1816044 (cit. on p. 20).

Lou van den Dries, Angus Macintyre, and David Marker (1997). “Logarithmic-exponen-
tial power series”. J. London Math. Soc. (2) 56.3, pp. 417-434. MR: 1610431 (cit. on
pp. 20, 25, 26).

— (2001). “Logarithmic-exponential series”. Ann. Pure Appl. Logic 111.1-2, pp. 61—113.
MR: 1848569 (cit. on pp. 20, 26).

Jean Ecalle (1992). Introduction aux fonctions analysables et preuve constructive de la
conjecture de Dulac. Actualités Mathématiques. [Current Mathematical Topics]. Her-
mann, Paris, pp. ii+340. MR: 1399559 (cit. on pp. 20, 21, 27, 31, 32, 34).

G. A. Edgar (2010). “Transseries for beginners”. Real Anal. Exchange 35.2, pp. 253-309.
MR: 2683600 (cit. on p. 26).


http://www.ams.org/mathscinet-getitem?mr=MR0045774
http://www.ams.org/mathscinet-getitem?mr=MR0450066
http://www.ams.org/mathscinet-getitem?mr=MR1340456
http://www.ams.org/mathscinet-getitem?mr=MR2474083
http://arxiv.org/abs/1505.02478
http://arxiv.org/abs/1505.02478
http://arxiv.org/abs/1505.02478
https://doi.org/10.4064/fm-127-1-45-50
http://www.ams.org/mathscinet-getitem?mr=MR883151
http://www.ams.org/mathscinet-getitem?mr=MR1930683
https://doi.org/10.4064/fm168-3-5
https://doi.org/10.4064/fm168-3-5
http://www.ams.org/mathscinet-getitem?mr=MR1853411
http://dx.doi.org/10.4064/fm167-2-3
http://www.ams.org/mathscinet-getitem?mr=MR1816044
https://doi.org/10.1112/S0024610797005437
https://doi.org/10.1112/S0024610797005437
http://www.ams.org/mathscinet-getitem?mr=MR1610431
https://doi.org/10.1016/S0168-0072(01)00035-5
http://www.ams.org/mathscinet-getitem?mr=MR1848569
http://www.ams.org/mathscinet-getitem?mr=MR1399559
http://projecteuclid.org/euclid.rae/1285160533
http://www.ams.org/mathscinet-getitem?mr=MR2683600

ON NUMBERS, GERMS, AND TRANSSERIES 41

Philip Ehrlich (2006). “The rise of non-Archimedean mathematics and the roots of a mis-
conception. I. The emergence of non-Archimedean systems of magnitudes”. Arch. Hist.
Exact Sci. 60.1, pp. 1-121. MR: 2206281 (cit. on p. 19).

— (2012). “The absolute arithmetic continuum and the unification of all numbers great
and small”. Bull. Symb. Log. 18, pp. 145 (cit. on pp. 23, 24).

Paul Erdés, Leonard Gillman, and Melvin Henriksen (1955). “An isomorphism theorem
for real-closed fields”. Ann. of Math. (2) 61, pp. 542—-554. MR: 0069161 (cit. on p. 23).

Jean Esterle (1977). “Solution d’un probléme d’Erdés, Gillman et Henriksen et applica-
tion a ’étude des homomorphismes de C(K)”. Acta Math. Acad. Sci. Hungar. 30.1-2,
pp. 113—127. MR: 0482216 (cit. on p. 23).

Ulrich Felgner (2002). “Die Hausdorffsche Theorie der 1,-Mengen und ihre Wirkungs-
geschichte”. In: Felix Hausdorff—gesammelte Werke. Vol. 11. Springer-Verlag, Berlin,
pp. 645—-674. MR: 2229142 (cit. on p. 19).

Gordon Fisher (1981). “The infinite and infinitesimal quantities of du Bois-Reymond and
their reception”. Arch. Hist. Exact Sci. 24.2, pp. 101-163. MR: 632567 (cit. on p. 19).

Harry Gonshor (1986). An introduction to the theory of surreal numbers. Vol. 110. London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
pp. vit192. MR: 872856 (cit. on pp. 20, 35).

Hans Hahn (1907). “Uber die nichtarchimedischen GroBensysteme”. S.-B. Akad. Wiss.
Wien, Math.-naturw. KI. Abt. Ila 116, pp. 601-655 (cit. on p. 20).

Godfrey H. Hardy (1910). Orders of infinity. The Infinitdircalciil of Paul du Bois-Reymond.
Vol. 12. Cambridge Tracts in Mathematics and Mathematical Physics. Cambridge Univ.
Press, Cambridge, pp. v+62. MR: 0349922 (cit. on pp. 19, 25).

— (1912a). “Properties of logarithmico-exponential functions”. Proc. London Math. Soc.
(2) 10, pp. 54-90. MR: 1576038 (cit. on pp. 19, 24, 25).

— (1912b). “Some results concerning the behaviour at infinity of a real and continuous
solution of an algebraic differential equation of the first order”. Proc. London Math.
Soc. (2) 10, pp. 451-468. MR: 1576033 (cit. on pp. 19, 24).

— (1913). “Oscillating Dirichlet’s integrals: An essay in the ‘Infinitdrcalciil’ of Paul du
Bois-Reymond”. Quart. J. Pure Appl. Math 44, 1-40 and 24263 (cit. on p. 19).

Felix Hausdorff (1906a). “Untersuchungen {iber Ordnungstypen, I, IL, I11”. Sitzungsbericht
der Koniglich Sichsischen Gesellschaft fiir Wissenschaft Leipzig, Mathematische Physik
58, pp. 106—169 (cit. on p. 19).

— (1906b). “Untersuchungen tiber Ordnungstypen, 1V, V. Sitzungsbericht der Kéniglich
Sdchsischen Gesellschaft fiir Wissenschaft Leipzig, Mathematische Physik 59, pp. 84—
159 (cit. on p. 19).

— (1909). “Die Graduierung nach dem Endverlauf”. Abh. Sdchs. Akad. Wiss. Leipzig
Math.-Natur. KI. 31, pp. 295-334 (cit. on pp. 19, 23).


https://doi.org/10.1007/s00407-005-0102-4
https://doi.org/10.1007/s00407-005-0102-4
http://www.ams.org/mathscinet-getitem?mr=MR2206281
https://doi.org/10.2307/1969812
https://doi.org/10.2307/1969812
http://www.ams.org/mathscinet-getitem?mr=MR0069161
https://doi.org/10.1007/BF01895655
https://doi.org/10.1007/BF01895655
http://www.ams.org/mathscinet-getitem?mr=MR0482216
http://www.ams.org/mathscinet-getitem?mr=MR2229142
https://doi.org/10.1007/BF00348259
https://doi.org/10.1007/BF00348259
http://www.ams.org/mathscinet-getitem?mr=MR632567
https://doi.org/10.1017/CBO9780511629143
http://www.ams.org/mathscinet-getitem?mr=MR872856
http://www.ams.org/mathscinet-getitem?mr=MR0349922
https://doi.org/10.1112/plms/s2-10.1.54
http://www.ams.org/mathscinet-getitem?mr=MR1576038
https://doi.org/10.1112/plms/s2-10.1.451
https://doi.org/10.1112/plms/s2-10.1.451
http://www.ams.org/mathscinet-getitem?mr=MR1576033

42 M. ASCHENBRENNER, L. VAN DEN DRIES AND J. VAN DER HOEVEN

Joris van der Hoeven (1997). Asymptotique automatique. PhD thesis. Université Paris VII,
Paris, pp. vi+405. MR: 1458614 (cit. on pp. 20, 25, 34).

— (2001). “Operators on generalized power series”. Illinois J. Math. 45.4, pp. 1161-1190.
MR: 1894891 (cit. on p. 20).

— (2002). “A differential intermediate value theorem”. In: Differential equations and the
Stokes phenomenon. World Scientific, pp. 147—170 (cit. on p. 28).

— (20006). Transseries and real differential algebra. Vol. 1888. Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, pp. xii+255. MR: 2262194 (cit. on pp. 26, 27, 33, 34,
37).

— (2009). “Transserial Hardy fields”. Astérisque 323, pp. 453—487 (cit. on p. 29).

Hellmuth Kneser (1949). “Reelle analytische Losungen der Gleichung ¢(¢(x)) = e*
und verwandter Funktionalgleichungen”. J. Reine Angew. Math. 187, pp. 56-67. MR:
0035385 (cit. on p. 31).

Donald E. Knuth (1974). Surreal numbers. Addison-Wesley Publishing Co., Reading,
Mass.-London-Amsterdam, pp. iii+119. MR: 0472278 (cit. on p. 19).

Wolfgang Krull (1932). “Allgemeine Bewertungstheorie”. J. Reine Angew. Math. 167,
pp. 160-196. MR: 1581334 (cit. on p. 32).

Tullio Levi-Civita (1898). “Sui numeri transfiniti”. A#ti Della R. Accademia Dei Lincei 7,
91-96 and 113-121 (cit. on p. 20).

— (1892-93). “Sugli infiniti ed infinitesimi attuali quali elementi analitici”. Ist. Veneto
Sci. Lett. Arti Atti CL. Sci. Mat. Natur. 4, pp. 1765—1815 (cit. on p. 20).

Vojislav Mari¢ (1972). “Asymptotic behavior of solutions of a nonlinear differential equa-
tion of the first order”. J. Math. Anal. Appl. 38, pp. 187-192. MR: 0306640 (cit. on
p. 24).

Frédéric Menous (1999). “Les bonnes moyennes uniformisantes et une application a la re-
sommation réelle”. Ann. Fac. Sci. Toulouse Math. (6) 8.4, pp. 579-628. MR: 1815157
(cit. on p. 32).

Chris Miller (2012). “Basics of o-minimality and Hardy fields”. In: Lecture notes on o-
minimal structures and real analytic geometry. Vol. 62. Fields Inst. Commun. Springer,
New York, pp. 43—69. MR: 2976990 (cit. on pp. 19, 31).

Abraham Robinson (1972). “On the real closure of a Hardy field”. In: Theory of sets and
topology (in honour of Felix Hausdorff, 1868—1942). VEB Deutsch. Verlag Wissensch.,
Berlin, pp. 427-433. MR: 0340225 (cit. on p. 24).

Maxwell Rosenlicht (1983a). “Hardy fields”. J. Math. Anal. Appl. 93.2, pp. 297-311. MR:
700146 (cit. on pp. 19, 24).

— (1983b). “The rank of a Hardy field”. Trans. Amer. Math. Soc. 280.2, pp. 659—671. MR:
716843 (cit. on p. 19).

— (1984). “Rank change on adjoining real powers to Hardy fields”. Trans. Amer. Math.
Soc. 284.2, pp. 829-836. MR: 743747 (cit. on p. 19).


http://www.ams.org/mathscinet-getitem?mr=MR1458614
http://projecteuclid.org/euclid.ijm/1258138061
http://www.ams.org/mathscinet-getitem?mr=MR1894891
https://doi.org/10.1007/3-540-35590-1
http://www.ams.org/mathscinet-getitem?mr=MR2262194
http://www.ams.org/mathscinet-getitem?mr=MR0035385
http://www.ams.org/mathscinet-getitem?mr=MR0472278
https://doi.org/10.1515/crll.1932.167.160
http://www.ams.org/mathscinet-getitem?mr=MR1581334
https://doi.org/10.1016/0022-247X(72)90126-6
https://doi.org/10.1016/0022-247X(72)90126-6
http://www.ams.org/mathscinet-getitem?mr=MR0306640
http://www.numdam.org/item?id=AFST_1999_6_8_4_579_0
http://www.numdam.org/item?id=AFST_1999_6_8_4_579_0
http://www.ams.org/mathscinet-getitem?mr=MR1815157
https://doi.org/10.1007/978-1-4614-4042-0_2
http://www.ams.org/mathscinet-getitem?mr=MR2976990
http://www.ams.org/mathscinet-getitem?mr=MR0340225
https://doi.org/10.1016/0022-247X(83)90175-0
http://www.ams.org/mathscinet-getitem?mr=MR700146
https://doi.org/10.2307/1999639
http://www.ams.org/mathscinet-getitem?mr=MR716843
https://doi.org/10.2307/1999110
http://www.ams.org/mathscinet-getitem?mr=MR743747

ON NUMBERS, GERMS, AND TRANSSERIES 43

— (1987). “Growth properties of functions in Hardy fields”. Trans. Amer. Math. Soc.
299.1, pp. 261-272. MR: 869411 (cit. on p. 19).

— (1995). “Asymptotic solutions of Y = F(x)Y”. J. Math. Anal. Appl. 189.3, pp. 640—
650. MR: 1312544 (cit. on p. 19).

Simon Rubinstein-Salzedo and Ashvin Swaminathan (2014). “Analysis on surreal num-
bers”. J. Log. Anal. 6, Paper 5, 39. MR: 3267278 (cit. on p. 20).

Michael Ch. Schmeling (2001). “Corps de transséries”. PhD thesis. Université Paris VII
(cit. on pp. 20, 25, 26, 33-35).

Michael F. Singer (1975). “Asymptotic behavior of solutions of differential equations and
Hardy fields: preliminary report”. Manuscript (cit. on p. 24).

Gunnar Sjodin (1971). “Hardy-fields”. Ark. Mat. 8, pp. 217-237. MR: 0294577 (cit. on
pp. 24, 30, 31).

Alfred Tarski (1951). A decision method for elementary algebra and geometry. 2nd ed.
University of California Press, Berkeley and Los Angeles, Calif., pp. iii+63. MR: 0044472
(cit. on p. 20).

Alex J. Wilkie (1996). “Model completeness results for expansions of the ordered field
of real numbers by restricted Pfaffian functions and the exponential function”. J. Amer.
Math. Soc. 9.4, pp. 1051-1094. MR: 1398816 (cit. on pp. 20, 22).

Received 2017-11-17.

MATTHIAS ASCHENBRENNER

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, LOS ANGELES
Los ANGELES, CA 90095

USA

matthias@math.ucla.edu

Lou vAN DEN DRIES

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, IL 61801

USA

vddries@math.uiuc.edu

JoRris VAN DER HOEVEN

ECOLE POLYTECHNIQUE

91128 PALAISEAU CEDEX

FrANCE
vdhoeven@lix.polytechnique.fr


https://doi.org/10.2307/2000493
http://www.ams.org/mathscinet-getitem?mr=MR869411
https://doi.org/10.1006/jmaa.1995.1042
http://www.ams.org/mathscinet-getitem?mr=MR1312544
http://www.ams.org/mathscinet-getitem?mr=MR3267278
http://www4.ncsu.edu/~singer
http://www4.ncsu.edu/~singer
https://doi.org/10.1007/BF02589574
http://www.ams.org/mathscinet-getitem?mr=MR0294577
http://www.ams.org/mathscinet-getitem?mr=MR0044472
https://doi.org/10.1090/S0894-0347-96-00216-0
https://doi.org/10.1090/S0894-0347-96-00216-0
http://www.ams.org/mathscinet-getitem?mr=MR1398816
mailto:matthias@math.ucla.edu
mailto:vddries@math.uiuc.edu
mailto:vdhoeven@lix.polytechnique.fr




A 25
.:‘% i o
OO s Proc. INT. CONG. OF MATH. — 2018

N
ICM 2018 Rio de Janeiro, Vol. 2 (43-62)

TOWARDS A THEORY OF DEFINABLE SETS

STEPHEN JACKSON

Abstract

The subject of descriptive set theory is traditionally concerned with the theory of
definable subsets of Polish spaces. By introducing large cardinal/determinacy axioms,
a theory of definable subsets of Polish spaces and their associated ordinals has been
developed over the last several decades which extends far up in the definability hi-
erarchy. Recently, much interest has been focused on trying to extend the theory of
definable objects to more general types of sets, not necessarily subsets of a Polish
space or an ordinal. A large class of these objects are represented by equivalence rela-
tions on Polish spaces. Even for some of the simpler of these relations, an interesting
combinatorial theory is emerging. We consider both problems of extending further
the theory of definable subsets of Polish spaces, and that of determining the structure
of these new types of definable sets.

1 Introduction and background

The field of descriptive set theory traditionally in concerned with the theory of definable
sets in Polish spaces (complete, separable, metric spaces). As all uncountable Polish
spaces are isomorphic by a Borel function, it is customary to refer to the elements of
any of several standard Polish spaces as “reals.” Aside from R, familiar examples include
the Baire space w® (homeomorphic to the space of irrationals in R; here @ denotes the
set of natural numbers), and 2® (homeomorphic to the Cantor set in R; here 2 = {0, 1}).
In the latter two cases, w is endowed with the discrete topology, and w® or 2% with the
product topology. Note that if G is any countable discrete group, then 2¢ is likewise
homeomorphic to the Cantor set, so it is naturally a compact Polish space.

Using the axiom of choice, AC, “pathological” sets with a variety of properties can
be constructed. Examples include Vitali sets (non-measurable sets), Bernstein sets (a set
such that neither the set nor its complement contains a closed uncountable set), Lusin sets
(a set of reals which meets every meager set in a countable set), and Sierpinski sets (a set
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which meets every measure O set in a countable set). A theme of descriptive set theory is
that if we restrict out attention to “definable” sets, then these pathologies disappear and
a reasonable structure theory emerges. The notion of definable is made precise through
hierarchies of collections of sets of increasing complexity. A pointclass T is a collection
of subsets of Polish spaces which is closed under inverse images by continuous functions,
that is, if /: X — Y is continuous and 4 € Y is in I, then f~!(4) is also in . A
basic example is the pointclass of Borel sets, the smallest collection containing the open
and closed sets and closed under countable unions and intersections. The Borel sets are
stratified into the Borel hierarchy, the pointclasses EO 1'[0 and AO for « < w;. Here
EO M X is the collection of open sets in the Polish space X, 1'[0 P X the closed sets in
X,AY X =32 } X NI } X, and in general 4 € X0 if A = |, A, where each
A, € I for some B, < a. Likewise, 4 € Ty, if A = ), A, with each 4, € X for
some f8, < a. Also, we define A) = X2 NTIY. It is a classical fact that the Borel sets in
any Polish space have the perfect set property (if they are uncountable then they contain
a perfect set, or equivalently an uncountable closed set), and are Lebesgue measurable
and have the Baire property. Thus, they cannot be any of the above types of pathological
sets. Another example of a “regularity property” for sets is the Ramsey property for the
set A C [w]? (here [H]® denotes the set of infinite subsets of H, which we can identify
with the set of increasing functions from ® to w) which asserts that there is an infinite set
H C o such that either [H]® € A or [H]” C w® — A. Again, all Borel sets have this
regularity property, this being a theorem of Galvin and Prikry (in fact the Borel sets are
completely Ramsey, a somewhat stronger version of the Ramsey property).

The hierarchy of definable sets extends far beyond the Borel sets. The next hierarchy
after the Borel sets is the projective hierarchy, so called because the main operation used
in generating the hierarchy is projection from a product X x Y of Polish spaces to X. The
analytic, or E} sets, are defined by projecting closed (or equivalently Borel) sets: 4 C X
is 31 iff there is a closed set F € X x w® such that x € A iff 3y (x,y) € F. In
more succinct notation, we write 1 } X = 3°“TI¢ } (X x 0®), where 37 denotes
the operation of applying existential quantification over Y. A set A C X is co-analytic,
or I3, if it is the complement of an analytic set. That is, II} is the dual pointclass of
31, which we write as TI] = 21 We set A} = 2] N II; to be the sets that are both
%1 and II]. A classical theorem of Suslin states that A1 is the collection of Borel sets,
so the projective hierarchy begins where the Borel hierarchy ends. We continue to define
the 3}, TI}, and A}, sets for all n € w by setting 2,11+1 = 3°11}, 1'[1_5_1 = Z,H_l (or
equivalently, H 41 = = ve’x! »), and A 1= =x! na1 N Hn +1- The projective hierarchy
is important because it includes all of the sets of conventional analysis. In fact, the sets of
analysis generally occur at the first or second levels of this hierarchy. In any uncountable
Polish space, all of the levels of the Borel and projective hierarchies are distinct, that is,



TOWARDS A THEORY OF DEFINABLE SETS 45

b 25 Za D 25
2RSS ¢ O 2NN
A? Ag Ag e Ag ASH—l A% A% A%
NI < ¢ NN
I} 115 I, 11} I}

Figure 1: The Borel and projective hierarchies.

there is no collapsing in either of these hierarchies. The inclusions of pointclasses within
these hierarchies is shown in Figure 1.

Beginning with the fundamental work of Godel, it was realized that there were strong
limits to how much further far one could extend the regularity results for Borel sets work-
ing just in ZFC set theory (the set theory of “ordinary mathematics”). For example, the
E} sets have the perfect set property, but it is consistent with ZFC that the H} sets do
not. Likewise, while the 31 and TI; sets are all Lebesgue measurable and have the Baire
property, it is consistent with ZFC that the collection of AJ sets does not. A theorem of
Silver asserts that the E% and H} sets are all (completely) Ramsey, but it is again consis-
tent that there are Aé sets which are not. Thus, in order to extend the theory further, one
must assume additional axioms which go beyond the ZFC axioms. There are currently
two main axiom schemes for doing this: large cardinal axioms and determinacy axioms.
Large cardinal axioms, which are generally meant to be added to the ZFC axioms, assert
that cardinals k with certain properties exist which cannot be shown to exist just from
ZFC. Determinacy axioms, on the other hand, assert that certain two-player games are de-
termined. If A € w®, then we associate a two-player integer game G (A) to A4 in a natural
way: the players I and II alternate picking integers x(n) € w as shown in Figure 2. They
thereby jointly build an x = (x(0), x(1),...) € w®. Player I wins the game iff x € A.

G(A) x € 0%

I x(1) x(3)
Figure 2: The basic game G (A).

The notions of a winning strategy for one of the players, and of the game being deter-
mined (i.e., one of the players has a winning strategy) are defined in the natural manner.
The axiom of determinacy, AD, is the assertion that G (A4) is determined for all A C w®.
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This axiom contradicts the axiom of choice, AC, but is meant to be an axiom for certain
inner models of the full universe of sets V' for which the sets are, in some sense, definable.
IfT is a pointclass, then det(T") is the statement that G (A) is determined for all A C w® in
T'. A celebrated theorem of Martin says all Borel games are determined. More generally,
if X is any setand A € X ® is Borel in the product topology on X ¢, where X is given the
discrete topology, then (in ZFC) the game G (A) is determined. In fact, a version of this
result holds in ZF (without choice), where now every every Borel game G (A4) for A € X
is quasi-determined (see Moschovakis [1980]). Here a quasi-strategy is like a strategy ex-
cept it is multi-valued. Results of Martin and Harrington show that ZFC + det(X7) is
strictly stronger than ZFC. The assertions det(X) are strictly increasing in strength, and
projective determinacy, PD, is the statement that all projective games are determined. The
model L(R) is the smallest model of set theory containing all of the reals and ordinals. Ev-
ery set of reals in this model is definable in this model by a formula using only ordinal and
real parameters. Because of this, the axiom ADY®) that all 4 € L(R) are determined is
a plausible axiom. Since strategies in integer games are essentially reals, if ADL®) polds
then in fact L(R) satisfies the axiom AD. The model L(R) is thus the smallest candidate
inner model (containing all the ordinals) which satisfies AD. More generally, if M is any
inner model satisfying AD, then we may consider the sets in M as being, in some abstract
sense, definable.

Work of Martin, Steel, and Woodin in the 80’s established the precise connection be-
tween determinacy axioms and large cardinal axioms. It was shown, for example, that
ZFC + 3n Woodin cardinals +3 a larger measurable cardinal implies det(X; 41)- Also,
AD is equiconsistent with the existence of @ many Woodin cardinals, and AD®) g im-
plied by the existence of @ many Woodin cardinals and a measurable cardinal above them.
These fundamental results lend respectability to the determinacy axioms and show that
not only is ADL®) an intuitively appealing axiom, but that it is actually implied by large
cardinal axioms out in the ZFC universe.

Moving past AD, we many consider the axiom ADx which asserts that every game
played on the set X, that is, where A € X, is determined. This axiom is inconsistent
for X = w; or X = @(R), but for X = R the axiom of real game determinacy ADp is
reasonable. This axiom is significantly stronger than AD, and cannot hold in the minimal
model L(R) of AD, or in any model of the form L(7,R), for T € On. Woodin has
identified the exact consistency strength of ADg in the large cardinal hierarchy as well.
Thus we have a progression of the determinacy axioms starting with det(A%), which is
a theorem of ZFC, to det(E%), det(E,ll), PD, AD, and ADgr. There are also stronger
determinacy axioms than ADg involving “long games,” but we will not need to consider
these here. We note that in any model of AD the sets of reals fall into a single hierarchy,
called the Wadge hierarchy, which gives a far-reaching generalization of the Borel and
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projective hierarchies. In particular, in these models we can define the 3}, TT,, classes for

all @ < ©, where O is the length of the Wadge hierarchy in the model. Thus, these higher
level analogs of the projective sets are defined and extend throughout the entire Wadge
hierarchy of sets of reals.

Beginning in the 60’s, and continuing to the present, it was realized that determinacy
axioms were a powerful tool which allowed the classical results for Borel and analytic sets
to be extended to larger classes of sets. Work of Kechris, Martin, Moschovakis, Solovay,
Steel, Woodin, and others showed that assuming determinacy axioms, and in particular
assuming AD, one could propagate a structural theory similar to the ZFC theory of Borel
and analytic sets. This theory is largely presented in terms of scales and Suslin cardinals,
and gives a tight connection between the theory of the sets of reals in a pointclass I' and
the properties of an ordinal §(I") associated to the pointclass. The notion of a scale was
isolated by Moschovakis, and has origins in the Novikov-Kondo proof of H} uniformiza-
tion. We recall the following definition. By atree 7 on a set X we meana 7" € X =%
which is closed under subsequence, that is, if s € T and m is less than the length of s, then
s ImeT. Welet[T] ={x € X“: Vnx | n € T} be the set of infinite branches (or
body) of T'.

Definition 1. Wesayaset A € w® is k-Suslin, for k € On, ifthereisatree T C (wxk)=¢
suchthat A = p[T]| ={x e w®: 3f €«® (x, f) € [T]}.

We say k is a Suslin cardinal if there is a set A which is k-Suslin but not A-Suslin for any
A < k. The notions of semi-scale and scale are a more algebraic reformulation of having
Suslin representations, presented in terms of norms ¢, : A — k. In fact, being k-Suslin is
equivalent to having a semi-scale with norms to «, and also equivalent to having a scale
with norms to k. We refer the reader to Moschovakis [ibid.] for the precise definitions of
semi-scales, scales, and the scale property for a pointclass.

Assuming AD, we can propagate the scale/Suslin cardinal analysis past the 3}, IT;
levels to the entire projective hierarchy and beyond. In Jackson [2010] one can find a
presentation of the complete scale and Suslin cardinal analysis from AD. This analysis,
though it extends throughout the full extent of the Suslin cardinals, presents the theory
in terms of the ordinals §(I"). A much more detailed inductive analysis is necessary to
analyze these ordinals and describe the cardinal structure below them. In Jackson [1999]
and Jackson [1988] this analysis is described through the projective hierarchy. The extent
of this analysis is currently far short of the extent of scales, and so much about the general
cardinal structure of determinacy models remains unknown.

To give one example of the consequences of this analysis, we first recall that it is clas-
sical fact (proved in ZFC) that every 21 or TI] set is wo-Borel, that is, is in the smallest
collection containing the open and closed sets and closed under unions and intersections
of length < w,. In fact, every Z} or H} set is an w; union of Borel sets (a proof can be
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found in Moschovakis [1980], A. S. Kechris [1978], or Jackson [2010]). From the above
mentioned inductive analysis we get the following extension of this result, assuming de-
terminacy holds for the sets in L(R) (see Jackson [1989]).

Theorem 2. Assume ZFC + ADE®). Then every projective set is wq,-Borel.

Moving forward, in trying to develop the theory of definable objects from stronger set-
theoretic axioms, there are two main directions to pursue. The first is to extend this theory
of sets of reals and their associated ordinals further, and to to attempt to describe the entire
cardinal structure of determinacy models. We might refer to this as extending the theory of
“reals and ordinals.” A second direction is to study more general types of objects, moving
past those that be identified with sets in a Polish space or wellordered sets. Of course,
the study of these more general definable objects encompasses the first direction, but the
point is that we can advance the study of these more general objects without having the
complete theory of the cardinals structure in hand.

In Section 2 we describe in a little more detail some of the progress in developing the
theory of “reals and ordinals” and problems that are reasonably aligned with this program.
We describe some of the recent progress various researchers have made, in particular using
new techniques from inner model theory. This emerging area of “descriptive inner model
theory” holds much promise for future progress in this area. We also mention some of the
old questions and conjectures which are still around and which may serve as a benchmark
for further progress. In Section 3 we consider some questions related to more general types
of objects. Here we see an interesting and fascinating combinatorial structure beginning
to emerge. The focus here is not so much on extending the theory to higher and higher
pointclasses, but to understand how the new nature of these objects affects their combina-
torial structure. Thus, we frequently consider problems at the Borel level, where the sets
and functions used in the definitions of the objects are Borel, or even continuous/clopen.
Recent years have seen a growing interest in this study of “Borel combinatorics” and its
connections with other areas such as ergodic theory, geometric group theory, and descrip-
tive set theory.

2 The theory of reals and ordinals

A well-known consequence of AD is that all sets of reals have the perfect set property, are
measurable (with respect to any Borel measure), and have the Baire property. It follows
that we have the Fubini theorem and its analog for category, the Kuratowski-Ulam theorem,
for arbitrary sets A € X x Y in products of Polish spaces. We then also have full additivity
of measure and category, that is, an arbitrary well-ordered union of meager (or measure
0) sets is meager (measure 0). In particular, from the perfect set property we have that
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there are only two possibilities for the cardinality of a set in reals in a determinacy model:
countable and the size of the continuum. We note that one must be careful with the term
“cardinality” in a model without AC as, for example a map from a set X onto a set ¥ does
not necessarily yield a map from Y into X (in a model of AD there are maps from R onto
any ordinal o < ©, which is very large in the Ng hierarchy, but there is only an injection
from « to R if « is countable). Nevertheless, if a set of reals contains a perfect set, then it
is in bijection with R.

The cardinal structure inside a model of determinacy is interesting and non-trivial. As
we indicated before, the cardinal structure is closely connected with certain associated
pointclasses. At the projective level, the ordinals associated to these classes are called the
projective ordinals. More precisely, let

8y = 8(IL}) = sup{|<|: < is a prewellordering of ®* in A}

where a prewellordering < is a reflexive, transitive, connected relation whose strict part
(x <y < (x 2 y)A=(y < x))is wellfounded and |<| denotes its length. The work
of Kechris, Kunen, Martin, Moschovakis, and Solovay established the basic properties of
the § ,1,, and computed their values for n < 4 (these results can be found in A. S. Kechris
[1978] of Jackson [2010]). The author computed their values for all n and described the
structure of the cardinals below their supremeum (c.f. Jackson [1999] and Jackson [1988]).
The Suslin cardinals below their supremum are the odd projective ordinals § %n 41 and their
cardinal predecessors A3, , | = (8%,,“)_. The 8%n+1—Suslin sets are the 2%n+2 sets, and
the A3, ,-Suslin sets are the ) 41 sets. The cardinal structure below the supremum
of the projective ordinals reveals some interesting and delicate patterns. The projective
ordinals are all regular cardinals and the even ones are the successors of the odd ones,
83,40 = (85,,1)" (this was known from early work), and there are exactly 2"+ —1 many
regular cardinals strictly between 83, , , and 83, , ;. The other cardinals between these two
odd projective ordinals are all singular of cofinality one of these 2”1 — 1 cardinals. The
values of the § ,ll can be computed exactly. The result is that § %n 41 = We(2n—1)+1, Where
e(0) = land e(n + 1) = 0™ (ordinal exponentiation). Also, the exact cofinalities of
the cardinals below the projective ordinals can be computed (see Jackson and Khafizov
[2016] and Jackson and Lowe [2013]). Figure 3 shows some of the cardinal structure
below the projective ordinals. Note that the three regular cardinals between 8§ and 8% are
8}1 = Wp+2, Dp-2+1, aNd Wuo 1 1.

The detailed inductive analysis which provides the above mentioned analysis of car-
dinal cofinalities does not currently generalize to arbitrary levels of the Wadge hierarchy.
While it does extend past the projective sets, likely to the first weakly inaccessible cardi-
nal, it is known that the methods do not extend to the first “inductive like” pointclass (a
non-selfdual pointclass closed under real quantification). Thus, some questions about car-
dinal cofinalities are still open past the projective hierarchy. To take an example, within
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Figure 3: The cardinal structure below the projective ordinals.

the projective hierarchy there are never more than two regular cardinals in a row. Past
the projective hierarchy, it is known that there can be three regular cardinals in a row (in
Apter, Jackson, and B. Lowe [2013] this and stronger results are shown), however the
evidence seems to suggest that there cannot be four in a row. This seems like a reasonable
benchmark for understanding the cardinal structure, so we state:

Conjecture 3. Assuming AD, there does not exists a cardinal ¥k < © such that «, kT,
«t*, and kT are all regular.

Aside from the cofinalities of the cardinals, there are other interesting combinatorial
properties of the cardinals which we may consider. One class of these concerns partition
properties. In the Erdos-Rado partition notation we write k — (lc))k if for all partitions
®: k* — {0,1} of the increasing functions from A to « into two pieces, there is a set
H C k of size k and an i € {0,1} such that ® } H* = i. The statement that all sets
A C w® are Ramsey is the strong partition property for k = w. This follows from AD™, a
technical strengthening of AD introduced by Woodin which has found many applications
in determinacy theory (it is not known whether AD suffices for this result). Assuming AD,
the cardinal analysis shows that all regular Suslin cardinals below the projective ordinals,
which are just the 8§n 11, have the strong partition property. This is also not known to
extend to arbitrary levels, so we ask:

Conjecture 4. Assuming AD, every regular Suslin cardinal has the strong partition prop-
erty.

It is shown in Jackson [2011] that for the (finitely many) regular cardinals x between
8;,”1 and 6%n+3 we have k — (K)Sé’”rl , but k = (/c)‘s%nﬂ. This leads to the following
general problem.

Problem 5. Assume AD. Determine for each regular k < © the A such that k — (k).

We close this section by results concerning three large cardinal notions interpreted in
models of determinacy. Namely, we consider the notions of Jonsson cardinal, measurable
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cardinal, and supercompact cardinal. For k < A < 6, we say that k is A-supercompact
if there is a fine, normal measure v on ®,(A) (the subsets of A of size less than k). Here
fine means that if A € ®(A) then {B: B 2 A} has v measure one. Normal means that
if f: ®(X) — Ais such that f(A4) € A for v almost all A, then f is constant v almost
everywhere. Building on H. S. Becker and Jackson [2001] it is shown in Jackson [2001]
that assuming AD™ that every regular cardinal « which is either a Suslin cardinal or the
successor of a Suslin cardinal is A-supercompact for all A < ©. Again, this leads to a
general problem:

Problem 6. Assume AD. For which regular x and A > « is k¥ A-supercompact?

We say a cardinal « is measurable if there is a non-principal, k-complete ultrafilter p of
k. We recall that assuming AD, every ultrafilter on a set is countably additive, that is, is a
measure. It is not difficult to show that the regular Suslin cardinals are measurable, but for
general regular cardinals the problem seems to require new methods. Specifically, meth-
ods of inner model theory have begun to play an important role in determinacy theory. In
Steel [1995] Steel made an important breakthrough by using progress in inner model the-
ory to analyze the inner model HOD®R) of L(R) assuming a large cardinal/determinacy
hypothesis, which Woodin improved to just assuming ADE®) A consequence of this
analysis is:

Theorem 7 (Steel). Assume AD + V = L(R). Then every regular cardinal k < O is
measurable.

As part of the HOD analysis, it is also shown that HOD* (R) satisfies the GCH. Al-
though this is a result about the model HOD, by “relativizing” it (i.e., using the fact that
every set in L(R) is definable from an ordinal and a real) we get:

Theorem 8 (Steel). Assume AD + V = L(R). Then for any k < ©, any wellordered
sequence of subsets of k has length < k.

Again, the previous result was known to hold previously for Suslin cardinals k. It is not
known how to obtain either of the two previous theorems by direct determinacy arguments.

In a similar vein one can use the HOD analysis to prove a result concerning Jonsson
cardinals. A cardinal « is said to be Jonsson if for all f: k= — K there an A C «
with |A| = « such that f(A<®) # k. Thus, the Jonsson property is a weak form of the
partition property, weaker than being measurable. From the HOD analysis we get Jackson,
Ketchersid, Schlutzenberg, and Woodin [2014]:

Theorem 9 (J, Ketchersid, Schlutzenberg, Woodin). Assume ADER) Then every cardi-
nal k < © is Jonsson.

Using additional arguments, Woodin has extended the last two theorems to models of
AD™ . It remains open if these techniques can be extended to answer Conjectures 3, 4.
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3 More general sets

In Section 2 we considered the problem of developing the theory of definable sets of reals
and ordinals. The theory at the lower levels of the definability hierarchy seems fairly well
established, though many interesting problems remain in extending this theory to higher
levels. As we described, this theory is developed assuming stronger axioms than ZFC.
In this section we consider the problem of developing the theory of more general types
of sets. To motivate some of the basic objects of study, consider the model L(R). In this
model, every set A C Lo (R) is the surjective image of R. Say 7 : R — A is an onto map.
This defines naturally an equivalence relation E on w®, namely, x E y iff 7 (x) = 7 (y).
It follows that A is in bijection with the quotient space R/ ~. So, all of the sets in this
model, at least those of rank < O, can be identified with the set of equivalence classes
(quotient space) of an equivalence relation on the Polish space R. Thus, the collection of
sets which can be represented as quotient spaces by equivalence relations on Polish spaces
is a quite large collection, greatly extending the collection of sets which can be identified
with a subset of a Polish space, or which can be wellordered (identified with an ordinal).

The simplest equivalence relations on Polish spaces are the smooth ones. We say (X, E)
is smooth if there is a Borel map f: X — Y, for some Polish space Y such that x E y iff
f(x) = f(y). We can, of course, replace “Borel” with more liberal notions of definable,
but in most cases this is a good stand-in for the more general case. In this case, the quotient
space X /E can be identified with a subset of ¥, namely the range of f. Conversely,
any subset A of a Polish space X can be identified with the quotient space of a smooth
equivalence relation on X. So, if (X, E) is smooth, or if the classes can be wellordered,
then we are in the case of Section 2. So, from the point of view of introducing new types
of definable objects, we consider these to be “trivial” equivalence relations.

One of the simplest non-trivial equivalence relations is the equivalence relation of even-
tual agreement on 2% known as Eg: x Eq y iff 3n Vm > n (x(m) = y(m)). Note that
the Ey relation is a simple (Eg) Borel equivalence relation. There is a natural action of
the group Z on 2% called the odometer action which is defined by 1 - x (1 being the gen-
erator Z) is obtained by adding 1 to x viewed as an infinite binary expansion (with x(0)
being the least significant digit). This Z action is defined on all classes except [0] and [1],
which are the constant 0 and 1 reals. The natural definition of the odometer map on the
classes [0] and [1] amalgamates these two classes, but we can redefine the map on these
two classes so that the Z action generates the E( equivalence relation, that is, x Eq y iff
dn € Z (n-x = y). The natural Bernoulli measure on 2 is invariant under this action
(the redefinition on the two distinguished classes doesn’t affect anything). It follows that
there cannot be a Borel, or even measurable, selector for E, that is, a set S which meets
every Eq class in exactly one point. So, Eq is not smooth. Of course, with AC one can
form a selector by simply picking an element for each Eq class, but this does not result in
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a definable set. This simple argument is just the standard Vitali argument for the construc-
tion of (non-definable) non-measurable set. From our current point of view, focusing on
definable objects, the quotient space of E| is a new type of object, not given by a subset of
a Polish space or an ordinal. This immediately raises a general question: what can we say
about the structure of these definable equivalence relations on Polish spaces? As the above
example shows, restricting the notion of definable to Borel still captures the main essence
of the new phenomenon, and thus we led to the study of Borel equivalence relations on
Polish spaces.

The motivation expressed in the above arguments for studying Borel equivalence rela-
tions is only one of many such possible. For example, classical dynamic can be viewed
as the study of Borel actions of the group Z on Polish spaces, frequently equipped with
other structure such an an invariant probability measure on X. From the point of view of
“descriptive dynamics” however (a term likely coined by Kechris), we are not just inter-
ested in the structure up to measure zero sets, but rather what can be done everywhere in a
definable (say Borel) manner. It is also of interest to restrict from Borel to continuous in
many questions, that is, asking what can be done in continuous manner leads to interesting
questions as well.

In the rest of this section we first give a brief (and selective) background on some
results concerning Borel equivalence relations, and then describe some recent work on
some problems in this area. We are particularly interested in problems concerning the
combinatorial structure of these quotient spaces. We also mention some questions which
arise when going past Borel equivalence relations to consider general equivalence relations
in determinacy models.

If G is a group acting on the Polish space X, then there is an equivalence relation Eg,
the orbit equivalence relation, associated to the action: x Eg y iffdg € G (g-x = y). The
case of interest is when G is a Polish group (a topological group which is a Polish space
in the group topology), and G acts in a Borel way on X (that is, the relation R(g, x, y) <
g - x = y is Borel). An important special of this is when G is a countable discrete group,
in which case E¢ is a countable Borel equivalence relation, that is, all of the Eg classes
are countable. In the case of a general Polish group, the relation Eg need only be E%,
though it is a fact that all of the individual orbits [x]g, are Borel. When G is countable,
E¢ is Borel. Given any countable group G, a natural action is the (left) shift action of G
on 26 defined by g - x(h) = x(g~'h). The is a natural action and is also important as
it is essentially a universal action of G (we refer the reader to Dougherty, Jackson, and
A. S. Kechris [1994] for details).

The theory largely splits in two directions: the case of general (uncountable) Polish
groups, and the case where G is countable. Both directions are interesting. For example,
the Polish group S of permutation of w has a natural action, the logic action on the space
of countable models of first-order theories (which can viewed as a Polish space). Various
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important questions in model theory/logic can be phrased as question about this Polish
group action. One such question is the well-known Vaught conjecture on the number of
models of a first-order theory (that is, is either countable or of size ¢), which can rephrased
as a question about this action (we refer the reader to A. S. Kechris and H. Becker [1996]
for details).

For the rest of this section we will focus on the case of countable G, which is illustrative
of the general case and includes many cases of interest, particularly in relation to dynamics,
ergodic theory, and some aspects of descriptive set theory (we note here that the degree
notions of descriptive set theory such as Turing degree, arithmetical degrees, Al degrees,
etc., all give countable equivalence relations). We refer the reader to Dougherty, Jackson,
and A. S. Kechris [1994], Jackson, A. Kechris, and Louveau [2002], and A. S. Kechris
and Miller [2004] for more general background.

The Feldman-Moore theorem Feldman and Moore [1977] is fundamental to the study
of countable Borel equivalence relations.

Theorem 10. Let E be a countable Borel equivalence relation on the Polish space X . then
there is countable group G and a Borel action G ~, X of G on X such that E = Eg.

Thus, we may approach the study of countable Borel equivalence relations “group by
group,” starting with the algebraically simplest groups and progressing through groups of
increasing complexity. Finite groups only generate finite equivalence relations, and these
are smooth since there is a Borel linear order on X which we can use to select the least
element from each class. The simplest infinite group is Z. Since Ej is given by a Borel
action of Z, these relations need not be smooth. A basic result of Slaman-Steel identifies
these as the hyperfinite equivalence relations.

Definition 11. A countable Borel equivalence relation E is hyperfinite if £ = | J,, E, is
the increasing union of finite equivalence relations (that is, each E, class is finite).

The Slaman-Steel theorem (see Dougherty, Jackson, and A. S. Kechris [1994]) says that
a countable Borel equivalence relation is hyperfinite iff there is a Borel ordering <x on X
such restricted to each class, <x | [x] is either finite or order-isomorphic to Z. That is, we
have in a uniform Borel manner put the structure of a Z ordering onto each equivalence
class.

The fundamental notion in the theory of Borel equivalence relations is the notion of
a reduction: we say (X, E) < (Y, F) if there is a Borel f: X — Y such that for all
x,y € X,xEy < f(x)F f(y). This is saying that have in a definable way (in this
case a Borel way) an injection from the quotient space X /E to Y/ F. In other words, this
corresponds to saying that X /E has a definable cardinality no larger than that of Y /F.
Again, “Borel” can be viewed as a stand-in for other notions of definability; we could
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consider models of determinacy and allow arbitrary functions f. The Cantor-Schroeder-
Bernstein theorem applies here, so if (X, E) < (Y, F) and (Y, F) < (X, E), then the
quotient spaces are in bijection. A result of Dougherty, Jackson, and A. S. Kechris [ibid.]
says that all non-smooth hyperfinite equivalence relations are Borel bi-reducible, so they
all the same definable cardinality. A central result in the subject is the Harrington-Kechris-
Louveau dichotomy theorem (see Harrington, A. S. Kechris, and Louveau [1990]). This
theorem states that if the Borel equivalence relation (X, E) is not smooth, then Ey <
(X, E). That is, there is nothing between the trivial (smooth) relations and the hyperfinite
relations. In other words, Ej is the smallest definable cardinal past those given as subsets
of a Polish space (among those representable as Borel equivalence relations).

Two general questions are immediately suggested. The first involves understanding the
definable cardinalities of these quotient spaces. That is, determine the structure of the re-
ducibility relation among the family of Borel equivalence relations (or within the countable
Borel equivalence relations). The second questions concerns the hyperfinite equivalence
relations: which countable groups G generate hyperfinite equivalence relations. That is,
which groups G have the property thatif G ~, X is a Borel action of G on the Polish space
X, then the orbit equivalence relation Eg is hyperfinite? This hyperfiniteness question
was first raised explicitly by Kechris and Weiss. The Connes-Feldman-Weiss theorem an-
swers this question in the ergodic theory/dynamics perspective, that is, up to measure 0
sets with respect to an invariant probability measure p on X. Their theorem says that if
G is amenable then, up to a measure 0 set, the action is hyperfinite, and conversely, if all
the Borel actions of G are hyperfinite up to a measure 0 set for some such measure, then
G is amenable. So, if G is non-amenable then there are Borel actions of G which are not
(everywhere) hyperfinite. The other direction is far from clear, and is an important open
problem in the area.

Concerning the first problem, a result of Dougherty, Jackson, and A. S. Kechris [1994]
shows there is a “largest” countable Borel equivalence relation in the sense that every
countable Borel equivalence relations reduces to it. This is given by the shift action of
the group F, on 2f2 (F, here is the free group on 2 generators). While it is not too dif-
ficult to show that there are incomparable Borel equivalence relations, the corresponding
result for countable Borel equivalence relations was open for a significant time. Finally,
A. S. Kechris and Adams [2000] resolved this problem using techniques from Zimmer’s
superrigidity theory in ergodic theory. They showed that there is a large family (of size
continuum) of pairwise incomparable countable Borel equivalence relations. This result
was strengthened by Hjorth. In Miller [n.d.] an elegant simplified presentation of some of
these results can be found.

We mention the best currently known results on the hyperfiniteness problem. First,
Weiss showed (unpublished, but see Jackson, A. Kechris, and Louveau [2002]) the fol-
lowing.
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Theorem 12 (Weiss). All equivalence relations generated by a Borel action of Z" are
hyperfinite.

Next, Gao and the author extended the result to general abelian groups:

Theorem 13 (Gao and Jackson [2015]). All equivalence relations generated by a Borel
action of a countable abelian group are hyperfinite.

The method used to prove Theorem 13 is quite different from that of Theorem 12. Both
proofs employ heavily the use of certain marker structures on the equivalence relation. By
a marker structure we mean a Borel set M C X which is complete (meets every equiva-
lence class) and co-complete (its complement is complete). For the proofs, it is necessary
to create marker structures with certain delicate geometric properties. Thus, some of the
fundamental questions in this area are closely connected with the question of what types
of marker structures we can put (in a Borel manner) on the equivalence relation. For the
proof of Theorem 13, the notion of an orthogonal marker structure was introduced. This
roughly says that the marker points M give a decomposition of the points in an equiva-
lence class into rectangular regions such that any two parallel faces of nearby regions are
separated by a certain fixed positive fraction of the side lengths. The technology used in
this proof has other applications. For example, it allows us to show that there is a con-
tinuous embedding from 2Z" (with the shift action) into E (the fact that there is a Borel
action follows from the shift action on 22" being hyperfinite). It also allows us to show
that the Borel chromatic number of F (2%" ) is 3 (we discuss this more below), and answer
other combinatorial structuring questions.

Theorem 13 was extended further by Schneider and Seward who extended the result to
nilpotent groups, and in fact showed the following.

Theorem 14 (Schneider and Seward [n.d.]). A/l equivalence relations generated by the
action of a locally nilpotent group are hyperfinite.

By a an important result of Gromov in geometric group theory, the class of finitely
generated groups which have a nilpotent subgroup of finite index (the virtually nilpotent
groups) coincides with the class of finitely generated groups of polynomial growth. We
note that Theorem 14 for the case of finitely generated nilpotent groups (or finitely gen-
erated virtually nilpotent groups) was known previously, a result of Jackson, A. Kechris,
and Louveau [2002]. This suggested the possibility that polynomial growth was the barrier
to extending these hyperfiniteness results. However, in recent as yet unpublished work,
Conley, Marks, Seward, Tucker-Drob, and the author have shown that there are finitely
generated solvable, non-nilpotent (so not of polynomial growth) groups all of whose Borel
actions are hyperfinite. Whether these arguments can be made to extend to all elementary
amenable groups, or even all amenable groups, is not yet known.
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Aside from the above questions concerning the cardinalities of the quotient spaces
X /E, we are interested in questions about the combinatorial structure of these sets. We
can ask these types of question at either the definable level, where we usually use “Borel”
as a representative case, or at the topological level. Roughly speaking, in the latter case,
we require the types of structures we are considering to be given in a continuous manner.
As we said above, the hyperfiniteness arguments require certain types of marker structures,
but there are many other kinds of structuring questions we can ask.

The notion of a continuous or Borel “structuring” of the countable Borel equivalence
relation E can be made precise in a natural manner. If £ = (¢;, R;, f;) is a language
of first-order logic, by an £-structuring of E we mean an assignment [x] + 2, of £-
structures 2, to the equivalence classes of E, where the domain of the structure 2 is
the equivalence class [x]. If E = E¢ for some action of the group G, then we frequently
also assume that there are unary function symbols f, in the language £ for each group
element g € G (these are intended to represent the function fg(x) = g-x). The notion of
the structuring being Borel (or continuous) is defined in a natural manner (e.g., for each
n-ary relation symbol R; of £, the relation

R(x1,....Xn) < x1 Exg Exp A Uppe, (X150, Xn)

is a Borel (or clopen) relation on X”. We can then, for example, ask if Borel or continuous
structurings of E exists with the structures 2 satisfying certain properties (for example,
if they satisfy a certain formula of first-order, or higher-order, logic).

Many types of interesting combinatorial questions can be phrased as instances of struc-
turing questions. Consider a fixed countable group G. GivenactionsG ~, X andG ~, Y
generating equivalence relations Ex and Ey,wesay f: X — Y is equivariant if f com-
mutes with the actions, thatis, f(g-x) = g- f(x) forall x € X. A one-to-one equivariant
map is necessarily a reduction from Ex to Ey. By a subshift of finite type we mean a
closed, invariant (under the shift action) ¥ € k€ for some k € N which is defined by a
finite set p1, ..., p; of “forbidden” patterns. Here a pattern is partial function p: G — k
with finite domain. Then y € k© is in the subshift ¥ determined by the p; (with say
D; = dom(p;)) if for all g € G, the function pg: D; — k given by pg(h) = g - y(h) is
not equal to any of the p;. Asking if there is an equivariant map from Ex to the subshift
Y is an instance of a structuring question. Subshift questions of this form are themselves
quite general and include several interesting types of questions. We consider a few of
these types of questions and some recent results concerning them.

If G is a marked group, that is, comes with a distinguished set of generators S (which
does include the identity e), then there is a graphing I'( Eg) of the orbit equivalence rela-
tion Eg for any action G ~, X given by xI'(Eg)y iffds € S (s x =y Vs-y = x).
If the action is free, then on each equivalence class this graphing is isomorphic to the
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Cayley graph associated to (G, S). The Borel chromatic number, yp(Eg) of the equiv-
alence relation is the least cardinal k£ such that there is a Borel map ¢: X — k which
is a chromatic coloring of the graph I'(Eg). We likewise define the continuous chro-
matic number y.(Eg), using continuous functions f. The study of definable chromatic
numbers was initiated by Kechris, Solecki, and Todorcevic in A. S. Kechris, Solecki, and
Todorcevic [1999]. One of their basic results is that the Borel chromatic number satisfies
xp(Eg) < d +1, where d is the vertex degree of the Cayley graph, for any Eg generated
by a free action of G. We refer to the determination of y.(Eg) and yxp(Eg) as the chro-
matic number problem. This is an instance of the more general subshift problem, which is
determine for which subshifts Y C k€ (determined by k and the patterns p1, ..., p;) there
is a continuous or Borel equivariant map from Eg to Y. Another instance of the subshift
problem is the graph homomorphism problem. Given a countable graph I', this problem is
to determine whether there is a continuous or Borel graph homomorphism from I'( Eg ) to
I'. Finally, we mention the tiling problem. By a tile we mean a finite set 7 € G. Given a
finite set 71, . . ., Ty of tiles, the tiling problem asks whether there is a continuous or Borel
tiling of Eg. By this we mean Borel sets A; € X such that the sets {7; - g: g € 4;}
partition X (a “continuous” tiling means that the A; are clopen sets in X). There are many
other types of structuring questions one can ask, but these serve as test questions for the
type of definable structures we can put on the equivalence classes. While these questions
are of interest for general countable groups, let us now restrict our attention to simpler
groups.

Consider the groups G = Z". As we said above, all of these groups induce only hyperfi-
nite actions. Nevertheless, structuring questions about the equivalence relations generated
by actions of these groups are non-trivial. Perhaps even more surprising, given the fact
that all of these shift spaces 2Z" continuously embed into Eg, is that some continuous
structuring questions have answers that depend on 7.

We mentioned above the method of orthogonal markers, which has been used in recent
hyperfiniteness proofs. This method is normally used in a “positive” sense, that is, to
produce Borel structurings on various types in the equivalence relations Eg. Another
method which has been used to obtain negative results in the continuous setting is the
method of hyperaperiodic points. The notion of hyperaperiodic point was introduced by
Gao, Seward, and the author in Gao, Seward, and Jackson [2009] and also independently
by Glasner and Uspenskij. Consider the shift space 2¢. Wesay x € 2¢ is a hyperaperiodic
point if m C F(29), that is, the closure of the orbit of x lies entirely in the free part of
2¢ . This definition can be reformulated as a purely combinatorial property of x. Namely,
x € 29 is hyperaperiodic iff it satisfies the following: for any s € G with s # e, there is
a finite T € G such that

Vge G3areT (x(gt) # x(gst)).
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This combinatorial property is sometimes referred to as x being a “2-coloring.” Hyperape-
riodic elements are easy to construct for simple groups such as Z", however the following
result of Gao, Seward, and Jackson [ibid.] states that they exist for any countable group.

Theorem 15 (Gao, Seward, and Jackson [ibid.]). For every countable group G there is
an x € 29 which is a hyperaperiodic point.

Hyperaperiodic points are useful since [x] is a compact set contained within the free
part of 2¢, and this permits certain compactness arguments. However, to prove some
more delicate results it is necessary to construct hyperiodic points with various addition
properties. To illustrate the use of the orthogonal marker and hyperaperiodic element
arguments, consider the Borel and continuous chromatic number problems for F(2%").
An easy category argument shows that yp (F (QZn ) > 2 for all n. Also, any easy argument
using the existence of clopen marker sets (see Gao and Jackson [2015]) which are roughly
d-spaced (for any d > 1) shows that y, (F(QZ)) < 3. It follows that in the n = 1 case we
have yp(F(2%)) = yc(F(2%)) = 3. For n > 2, the arguments require the new methods.
The result, from Gao, Jackson, Krohne, and Seward [n.d.], is the following.

Theorem 16 (Gao, J, Krohne,Seward). For any n > 2 we have:
3=1p(F(2"")) < xe(F(2"")) = 4.

This result has two points of interest. First, it shows a difference between the dimension
n = 1and n > 2 cases, even though both equivalence relations are hyperfinite. Second,
it shows a difference between the continuous and Borel versions of the question.

The proof of Theorem 16 was first first accomplished by the construction of a particular
hyperaperiodic point. The basic idea was to construct x € 22" with certain periodicity
requirements in one direction, but yet keeping the point hyperaperiodic. This is possible as
n > 2. Later, Gao, Krohne, Seward, and the author proved a general theorem applicable to
general subshift questions. The theorem (see Gao, Jackson, Krohne, and Seward [ibid.])
reduces the subshift question for F (22” ) down to a question about a family of finite graphs.
Consider the case n = 2. For each 1 < n < p,q we define a finite graph I';, , ;. The
graph is obtained by starting with 12 individual “grid-graphs.” by a grid-graph we mean
a graph which is isomorphic to a finite rectangular region of Z2 with edges inherited from
the Cayley graphing of Z?2. Certain vertices are identified among the vertices in these
grid-graph, and the quotient graph is I', ,, ;. To give the reader a feel for the construction
we show three of the grid graphs in Figure 4 (each of the other graphs comprising I, 5 4
is similar to one of these). In each of these grid-graphs, certain rectangular subregions
are marked with labels such as Rx, Ry, etc. In the graph I, , 4 the corresponding points
within regions with the same label are identified. For example, the upper-left points of
each Ry region are identified in forming I';, 4.
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Ry | Re | Ry Ry | Ri | R« | Re| R«
R, R, R, R,
Rx | Re | Rx Ry | Re| Rx | Ry | R«

q copies of R., g + 1 copies of Ry

Ry | Re | R« | Re | R« | Re| R« | R. | Rx e | Rx
R, R,
Ry« Ry Ry« Ry Ry« Ry R« R«

p copies of Ry, p + 1 copies of Rx

Figure 4: The grid-graphs in 'y, p 4.

The following result of Gao, Jackson, Krohne, and Seward [n.d.] shows that a subshift
question for F(22") reduces to question about the graph T, , 4.

Theorem 17. Let Y C k%° be a subshifi of finite type described by (k; py, ..., p:). Then
the following are equivalent.

1. There is a continuous, equivariant map f : F(QZz) — Y.

2. There are positive integers n,p,q with n < p,q, (p,q) = 1, and
n > max{a;,b;: dom(p;) = [0,a;) x [0,b;)} —1land a g: Ty, pq — k which
respects Y .

3. Foralln > max{a;, b; : dom(p;) = [0,a;) x [0,b;)} — 1, for all sufficiently large
p.q with (p,q) = 1thereisa g: T'y p 4 — k which respects Y .
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In this theorem, when we say g: I',,, 4 — k respects the subshift y we mean that in
any a; X b; rectangular subregions R of one of the grid-graphs forming I'; 5 4, & | R is
not equal to p;. In other words, we can find a continuous equivariant map from F (2%%)
into the subshift ¥ € kZ” iff we can find such a map from I',, , , — k for some p,q
with (p,q) = 1 (equivalently, if we can such maps g for all sufficiently large p, g with
(p.q)=1).

Using this result, a number of subshift questions can be answered for F(2%"). More-
over, some general results about the decidability of the subshift problem in general can be
shown which highlight a key difference between the dimension n = 1 and n > 2 cases.
A subshift Y is coded by a finite sequence (k; p1, ..., pr), which can be viewed as an
integer. Let Y, be the subshift coded by the integer m. Consider the set S(n) of m € w
such that there is a continuous, equivariant map from F(2%") to Y,,. From Theorem 17
it follows that for each n the set S(n) is computably enumerable, that is, is a X9 set. The
question we consider is whether this set is actually computable (i.c., a A} set). We have
the following result of Gao, Jackson, Krohne, and Seward [ibid.].

Theorem 18. For n = 1, the subshift problem is decidable, that is, S(1) is computable.
For n > 2 the subshift problem is not computable.

Theorem 18 shows a remarkable difference between the shift actions of Z and Z”" for
n > 2. In Gao, Jackson, Krohne, and Seward [ibid.] it is further shown that even the
specific graph homomorphism problem for F (QZ") is not computable for n > 2.

The above results are for the shift actions of the groups Z”". Let us mention a result
of a similar flavor but for a completely different class of groups. this result, obtained by
Marks [2016] concerns the free product of groups. The result is:

Theorem 19 (Marks). If' G, H are finitely generated marked groups, then
xp(F 29 ) = xp(F(29) + xp(F(27)) - L.

where F (29) denotes the free part of the shift action of G on 2° and G * H denotes the free
product of the groups G and H (the statement of Theorem 19 above actually incorporates
an improvement of the result due to Seward and Tucker-Drob). What is interesting is that
Marks’ method in proving this result involves games and Borel determinacy (a result due
to Martin). This surprising result introduces yet another new technique into the subject.
In this section we have been mainly concerned with objects given by Borel equivalence
relations on Polish spaces. Although Borel is frequently taken as a representative of de-
finable, let us finally return to considering general sets in a model determinacy. Woodin
[2006] has shown an interesting result about cardinalities in determinacy models which
shows that the exact determinacy hypotheses assumed may be important. Woodin shows
that assuming ADg, the axiom of real game determinacy (which is considerably stronger



62 STEPHEN JACKSON

than AD or AD™), there are exactly 5 cardinals below the set w®. He also shows that
there are more than 5 cardinals below this set if one assumes AD + —ADg. This surpris-
ing result shows that for some sets, questions about their definable structure may depend
on the background axioms assumed.

The results we have discussed show that a very rich theory of definable sets is emerging,
and is connected with many other areas of mathematics. We believe this will continue to
be an interesting and fruitful line of investigation.
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Abstract
This lecture highlights some recent advances on classical decidability issues in
local and global fields.
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1 Introduction

In 1900, at the International Congress of Mathematicians in Paris, Hilbert presented his
celebrated and influential list of 23 mathematical problems (Hilbert [1900]). One of them
is

Hilbert’s 10th Problem (H10) Find an algorithm which gives on INPUT any
f(Xl,...,Xn) EZ[XL...,X"}

YES if 3x € Z" such that f(X) =0

OUTPUT NO else

Hilbert did not ask to prove that there is such an algorithm. He was convinced that there
should be one, and that it was all a question of producing it — one of those instances of

MSC2010: primary 11U0S; secondary 03B25, 11F85, 12J10, 12L05.

63


http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v2-p

64 JOCHEN KOENIGSMANN

Hilbert’s optimism reflected in his famous slogan ‘wir miissen wissen, wir werden wissen’
(‘we must know, we will know’). As it happens, Hilbert was too optimistic: after previous
work since the 50’s by Martin Davis, Hilary Putnam and Julia Robinson (cf., e.g., Davis,
Putnam, and J. Robinson [1961]), Yuri Matiyasevich showed in 1970 that there is no such
algorithm (Y. V. Matiyasevich [1970b]). The key result here is the most remarkable so-
called DPRM-Theorem that every (algorithmically) listable set of integers is diophantine,
i.e., first-order definable in the language of rings L,;ng := {+. X, 0, 1} by an existential
formula.

The original formulation of Hilbert’s 10th Problem was weaker than the standard ver-
sion above in that he rather asked ‘Given a polynomial f, find an algorithm ...". So maybe
you could have different algorithms depending on the number of variables and the degree.
Yet it is even possible to find a single polynomial for which no such algorithm exists —
this is essentially because there are universal Turing Machines.

One should, however, mention that, in the special case of n = 1, that is, for polynomials
in one variable, there is an easy algorithm: if, for some x € Z, f(x) = 0 then x | f(0);
hence one only has to check the finitely many divisors of f'(0). Similarly, by the effective
version of the Hasse-Minkowski-Local-Global-Principle for quadratic forms and some
extra integrality considerations, one also has an algorithm for polynomials in an arbitrary
number of variables, but of total degree < 2. And, even if there is no general algorithm, it
is one of the major projects of computational arithmetic geometry to exhibit other families
of polynomials for which such algorithms exist.

Let us point in a different direction of generalizing Hilbert’s 10th Problem, namely,
generalizing it to rings other than Z: If R is an integral domain, there are two natural
ways of generalizing H10:

H10/R = H10 with the 2nd occurrence of Z replaced by R
H10™" /R = H10 with both occurrences of Z replaced by R

Observation 1.1. Let R be an integral domain whose field of fractions does not contain
the algebraic closure of the prime field (F, resp. Q). Then

H10/R is solvable < Tha+(R) is decidable
H10" /R is solvable < Thz+ ({R;r | r € R)) is decidable,

where Tha+ denotes the positive existential theory consisting of existential sentences where
the quantifier-free part is a conjunction of disjunctions of polynomial equations (no in-
equalities).

Note that the language on the right hand side of the 2nd line contains a constant symbol
foreach r € R.
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Proof: ‘<’ is obvious in both cases. For ‘=" one has to see that a disjunction of two
polynomial equations is equivalent to (another) single equation, and, likewise, for con-
junctions: By our assumption we can find some monic g € Z[X] of degree > 1 which is
irreducible over R. Then, for any polynomials fi, fo over Z resp. R and for any tuple X
over R,

AFE) =0V fo(X) =0 = fix)- f2(x) =0

AE) =0/ HE) =0 <= (L2 fo(x)*ef =0

O
Since in fields, inequalities can be expressed by a positive existential formula ( f'(X) #
0 < 3y f(X)-y = 1), we immediately obtain the following:

Corollary 1.2. Let K be a field not containing the algebraic closure of the prime field.
Then

H10/K is solvable < Th3(K) is decidable.
In fact, the same is true for O, the ring of integers of a number field K:
Observation 1.3. If K is a number field,
Ok EVx[x #0< 3y x| (2y - 1)@y —1)].
Hence Th3(Og) = Tha+(Ok).
One of the biggest open questions in the area is
Question 1.4. Is H10/Q solvable?

Let us recall that, by the ground breaking work of Kurt Godel, the full first order theory
of Z is undecidable, so there is no algorithm which decides, on INPUT any first-order
L,ing-sentence ¢, whether or not ¢ holds in Z (cf. Godel [1931]). J. Robinson [1949]
managed to find an L,;,e-first-order definition of Z in Q, thus showing, via Godel’s
Theorem, that the full first-order theory of Q is also undecidable. If one had an existential
first-order L,;,q-formula defining Z in Q then one could, via Matiyasevich’s Theorem,
conclude that Hilbert’s 10th Problem over Q is also unsolvable. However, the best we
have at the moment (in terms of logical complexity) is a universal formula for Z in Q (cf.
Theorem 3.1 below).

Hilbert’s 10th Problem for the ring of integers of a number field (that is, a finite exten-
sion of Q — they are the global fields of characteristic 0) has been shown to be unsolvable
in several cases, the general case could sofar only be proven modulo a (widely believed)
conjecture regarding elliptic curves (see section 3.2).
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For global fields of positive characterisitc, that is, for finite extensions of the rational
function field F,(¢) over the finite field F, in one variable ¢, Hilbert’s 10th Problem,
again, has no solution (cf. section 3.3).

Many of the results obtained for global fields rely heavily on results and techniques de-
veloped for local fields. Local fields are defined to be fields F which are locally compact
with respect to the topology induced by some non-trivial absolute value on F'. It turns out
that local fields are precisely the completions of global fields (w.r.t such absolute values)
and they are classified as follows: the archimedean local fields are just the field R of real
numbers and the field C of complex numbers; the non-archimedean local fields of charac-
teristic 0 are precisely all finite extensions of Q , the field of p-adic numbers, where p is
any rational prime; and the non-archimedean local fields of positive characteristic p are
precisely the finite extensions of F, ((¢)), the field of formal Laurent series over the field
I, with p elements. For the non-archimedean local fields, the absolute value is induced
by a canonical valuation, which is the p-adic valuation on Q, and the z-adic valuation
on F,((7)), and these valuations extend uniquely to all finite extensions, a property of
valuations called henselian.

All decidability issues for the two archimedean local fields have been settled by Tarski
in the 1930s: The full first order theory of R and of C is decidable (and hence, in particular,
Hilbert’s 10th Problem is solvable for those two fields).

The decidability of Q, was proved independently by Ax and Kochen [1965] and by
ErSov [1965]. They effectively axiomatized QQ , as a henselian valued field of characteris-
tic 0 whose residue field is IF ,, whose value group is a Z-group (so elementarily equivalent
to the ordered abelian group of integers) such that the value of p is minimal positive. And
there are similar axiomatizations for all finite extensions of Q , (see Prestel and Roquette
[1984] for a general treatment of p-adic fields).

Since those results of Ax-Kochen and Ershov in 1965 it has been a big open problem
whether the theory of F, (7)) is decidable as well. Recently major progress has been made
on this problem which we will discuss in section 2 below.

There are several important infinite extension of local and global fields for which de-
cidability issues are of great interest, too. For example, the field Q¢?, the maximal Galois
extension of QQ with an abelian Galois group which, by the famous Kronecker-Weber The-
orem, is just the field obtained from Q by adjoining all roots of unity, is not known to be
decidable or undecidable. Similarly, one does not know this about Q%Y the maximal
Galois extension of Q with prosolvable Galois group which is obtained from Q by iter-
atedly adjoining radicals (n-th roots of elements for arbitrary n). It is an open problem
in Field Arithmetic whether or not Q%°? is pseudo-algebraically closed in the sense that
every absolutely irreducible curve defined over Q%°/? has a Q%°/?-rational point (Prob-
lem 11.5.9(a) in Fried and Jarden [2008]). If this Problem has a positive answer and if the
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famous Shafarevich Conjecture that the absolute Galois group of Q4% is a free profinite
group is true then one can show that Q°!? is decidable.

In section 4 we will briefly consider two infinite extensions of Q, for which there has
been recent progress, namely Q7", the maximal unramified extension of Q, which turns
out to be decidable and model theoretically well behaved, and Q%, the maximal abelian
extension of QQ,, for which a promising new suggestion for a first-order axiomatization
will be presented.

Some notation from valuation theory: The reader is expected to be acquainted with
the basics of valuation theory (cf., e.g., Engler and Prestel [2005]). For a valued field
(K, v), the valuation ring will be denoted by O,, the residue field by Kv and the value
group by vK.

2 Local fields of positive characteristic

Regarding the question of decidability of the field [F,; ((¢)) of formal Laurent series over a
finite field I, there have been two recent breakthroughs: one is the result of Anscombe-
Fehm that the existential L,ing-theory of F,((¢)) is decidable (Theorem 2.1). The other
is a new promising suggestion for an effective first order axiomatization for F, (7)) using
the notion of extremal valued fields.

Throughout this section we will fix ¢, a power of the rational prime p > 0.

2.1 The existential theory of F,((¢)). In Denefand Schoutens [2003], Jan Denef and
Hans Shoutens managed to prove that the existential theory of F,((¢)) in L,ing U {t},
the language of rings augmented by a constant symbol for ¢, is decidable if one assumes
resolution of singularities in positive characteristic. Sylvy Anscombe and Arno Fehm then
found a surprisingly elementary unconditional proof for the decidability of the existential
L,ing-theory of Fy((¢)) (see S. Anscombe and Fehm [2016]). More generally they prove
the following

Theorem 2.1. Let (K, v) be an equicharacteristic henselian valued field (so char K =
char Kv). Then the existential L,q4;-theory of K is decidable if and only if the existential
Lying-theory of the residue field Kv is decidable.

Here Lyg1 = Lying U {O} is the language of valued fields, that is, the language of
rings augmented by a unary predicate symbol O for the valuation ring. There are many
alternative possibilities for a first order language for valued fields (you could, for example,
have a three-sorted language distinguishing the field sort, the residue field sort and the
value group sort with additional function symbols for the valuation map and the canonical
restriction map to the residue field). But it turns out that all these languages are mutually
translatable into each other, so they all have the same expressive power.
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Let us point out that, for the question of the decidability of the existential theory of
F,((¢)), it makes no difference whether you ask this question about the existential theory
in L,;ng or in Ly, because, by the main theorem of W. Anscombe and Koenigsmann
[2014], the valuation ring F,[[¢]] of Fy((¢)) is existentially first-order definable in the
language of rings. This leads immediately to the following

Corollary 2.2. The existential Ly;ng-theory of Fy[[t]] is dedicable.

So, in other words, Hilbert’s 10th Problem has a positive solution both for F,((¢)) and
for I [[t]].

A more general result on almost existential definability of henselian valuation rings
in valued fields with finite or pseudo-finite residue fields can be found in Cluckers, Der-
akhshan, Leenknegt, and Macintyre [2013].

Whether or not the existential L,;,e U {¢}-theory of F,((7)) is decidable (without as-
suming resolution of singularities) is still open.

2.2 Axiomatizing F,((¢)). The biggest open question in the model theory of valued
fields, however, is the question whether the full first-order theory of F,((¢)) is decid-
able. There have been a number of suggestions of how to axiomatize this field. The
most promising suggestion builds on the notion of extremal valued fields, originally intro-
duced (though with a ‘wrong’ definition) by Ershov [2004], then, following a suggestion
of Sergei Starchenko, the definition was amended and the ‘correct’ definition was put for-
ward in Ershov [2009] and in Azgin, Kuhlmann, and Pop [2012]. The suggested axioma-
tization for [, ((¢)) given below first appeared in S. Anscombe and Kuhlmann [2016].

Definition 2.3. 4 valued field (K, v) is extremal if, for every polynomial f(X1,...,Xn)
€ K[X1,...,Xy), the set

{v(f(ay,....an)) |l a1,...,a, € Oy} CvK U {o0}
has a maximal element.

It turns out that extremal valued fields are algebraically maximal, that is, for each finite
extension (L, w)/(K, v), the fundamental equality ‘n = e - £ holds, where n = [L : K],
e = [wL : vK]and f = [Lw : Kv], and so, in particular, extremal fields are henselian.
Moreover, their value group is either divisible or a Z-group (elementarily equivalent to
the ordered abelian group Z of integers) and that in the first case the residue field has to be
large in the sense of having infinitely many rational points for each algebraic curve with
at least one rational point (cf. Pop [1996]).

The axiomatization for F, ((¢)) using this notion of extremal valued fields is now very
simple:



DECIDABILITY IN LOCAL AND GLOBAL FIELDS 69

(1) (K,v) is an extremal valued field of charactersitic p,
(2) the value group vK is a Z-group,
(3) the residue field Kv is the field IF,.

It has long been known that the ‘naive’ axiomatization for F,((¢)), where axiom (1) is
replaced by just asking (K, v) to be henselian, is not complete.

3 Global fields

3.1 A universal definition for Z in Q. Hilbert’s 10th problem over Q, i.e., the question
whether the existential L,;,,-theory of Q is decidable, is still open.

If one had an existential (= diophantine) definition of Z in Q (i.e., a definition by an
existential 1st-order £,;,,-formula) then the existential theory of Z would be interpretable
in that of Q, and the answer would, by (for short) Matiyasevich’s Theorem, again be no.
But it is still open whether Z is existentially definable in Q.

The earliest 1st-order definition for Z in Q, due to J. Robinson [1949], can be expressed
by an V3V-formula of the shape

o) : VYx1Vxodyy...3y7Vzy ... Vzg f(t;x1, %25 V1, Y7321, -+, 26) =0
forsome f € Z[T; X1, Xo;Y1,...,Y7;Z1,...,Zgl,1.e., forany t € Q,
t € Z iff ¢(¢) holds in Q.

In 2009, Bjorn Poonen ([P09a]) managed to find an V3-definition with 2 universal and

7 existential quantifiers (earlier, in Cornelissen and Zahidi [2007], an V3-definition with

just one universal quantifier was proved modulo an open conjecture on elliptic curves).
In Koenigsmann [2016], the author then provided a V-definition of Z in Q:

Theorem 3.1. There is a polynomial g € Z|T; X1, ..., Xa1s] such that, for all t € Q,

t € Ziff VX € Q8 g(1;X) # 0.

If one measures logical complexity in terms of the number of changes of quantifiers
then this is the simplest definition of Z in Q, and, in fact, it is the simplest possible: there
is no quantifier-free definition of Z in Q.

Corollary 3.2. Q \ Z is diophantine in Q.

Corollary 3.3. Thy3(Q) is undecidable.
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Theorem 3.1 came somewhat unexpected because it does not give what you would like
to have, namely an existential definition of Z in Q. However, if you had the latter the
former would follow:

Observation 3.4. [fthere is an existential definition of Z. in Q then there is also a universal
one.

Proof: If Z is diophantine in Q then so is
Q\Z ={x€Q|3Im,n,a,b € Zwithn #0,+1, am+bn =1andm = xn}

O

The machinery for proving these three first-order definitions of Z in Q is not very
heavy: Julia Robinson made essentially use of the Hasse-Minkowski Local-Global Prin-
ciple for quadratic forms, Bjorn Poonen augmented that using the Hasse bound for the
number of rational points on genus-1 curves over finite fields (and he ingeniously rear-
ranged the use of quadratic form theory), while in Koenigsmann [2016] the Quadratic
Reciprocity Law came in as additional tool, and then some elementary tricks (inspired
by the model theory of valued fields) for transforming existential formulas into universal
ones were needed to complete the proof.

Using more serious number theory, (Park [2013])has generalised Theorem 3.1 to num-
ber fields:

Theorem 3.5. For any number field K, the ring of integers Ok is universally definable
in K.

In the course of the proof of Koenigsmann [2016] many new diophantine subsets of
Q emerged, for example the set of non-squares turned out to be diophantine (this was
obtained earlier in Poonen [2009b] using much deeper techniques). If, however, Z was
also diophantine in QQ then there would be many more important diophantine subsets of Q,
for example the set of tuples of coefficients of irreducible polynomials (of fixed degree)
over Q. Later, Philip Dittmann managed to prove this unconditionally and in much greater
generality (Dittmann [2016]):

Theorem 3.6. Irreducibility of polynomials over global fields is diophantine.

3.2 Hilbert’s 10th Problem for number rings using elliptic curves. In this section
only one major achievement is being reported on. There is a multitude of surveys on the
subject, each with its own emphasis. For the interested reader, let us mention at least some
of them: R. M. Robinson [1951], Mazur [1994], Pheidas [1994], Y. Matiyasevich [2000],
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Pheidas and Zahidi [2000], Shlapentokh [2000], Poonen [2003], Shlapentokh [2007], Poo-
nen [2008], and Koenigsmann [2014].

For number rings and number fields, the question of decidability has been answered
in the negative by J. Robinson [1959]. The question whether Hilbert’s 10th Problem is
solvable is much harder. Given that we don’t know the answer over Q (though almost
everyone working in the field believes it to be no) there is even less hope that we find the
answer for arbitrary number fields in the near future. For number rings the situation is
much better.

Let K be a number field with ring of integers Og. Then Hilbert’s 10th Problem could
be shown to be unsolvable over Ok in the following cases:

« if K is totally real or a quadratic extension of a totally real number field (Denef
[1975], Denef and Lipshitz [1978] and Denef [1980]),

* if [K : Q] > 3 and cx = 2 (Pheidas [1988])!,
« if K/Q is abelian (Shapiro and Shlapentokh [19897).

In each of the proofs the authors managed to find an existential definition of Z in O g using
Pell-equations, the Hasse-Minkowski Local-Global Principle (which holds in all number
fields) and ad hoc methods that are very specific to each of these special cases.

The hope for a uniform proof of the existential undecidability of all number rings only
emerged when elliptic curves were brought into the game:

Theorem 3.7 ([Poo02]). Let K be a number field. Assume?® there is an elliptic curve E
over Q with rk(E(Q)) = rk(E(K)) = 1. Then Z is existentially definable in Ox and
so Hilbert’s 10th Problem over Ok is unsolvable.

In his proof, Poonen uses divisibility relations for denominators of x-coordinates of 7 -
P,where P € E(K)\ Eor (K)andn-P € E(Q) (for a similar approach cf. Cornelissen,
Pheidas, and Zahidi [2005]).

The assumption made in the theorem turns out to hold modulo a generally believed
conjecture, the so called Tate-Shafarevich Conjecture. For an elliptic curve E over a num-
ber field K, it refers to the Tate-Shafarevich group (or Shafarevich-Tate group) g /g,
an abelian group defined via cohomology groups. It measures the deviation from a local-
global principle for rational points on E.

¢k denotes the class number of K, that is, the size of the ideal class group of K. It measures how far O g
is from being a PID: cx = 1 iff Ok is a PID, so cx = 2 is ‘the next best’. It is not known whether there are
infinitely many number fields with cx = 1.

2The set E(K) of K-rational points of E is a finitely generated abelian group isomorphic to the direct
product of its torsion subgroup E;,,(K) and a free abelian group of rank ‘rk(E (K))’.
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Tate-Shafarevich Conjecture IIlg  is finite.
Weak Tate-Shafarevich Conjecture dimp, I/ x /2 is even.

The latter follows from the former due to the Cassels pairing (Theorem 4.14 in Silverman
[1986] which is an excellent reference on elliptic curves).

Theorem 3.8 ([MR10]). Let K be a number field. Assume the weak Tate-Shafarevich Con-
Jjecture for all elliptic curves E | K. Then there is an elliptic curve E /Q withrk(E(Q)) =
rk(E(K)) =1

Taking those two theorems together you obtain immediately the following

Corollary 3.9. Let K be a number field. Assume the weak Tate-Shafarevich Conjecture
for all elliptic curves E /K. Then Hilbert’s 10th Problem is unsolvable over Ok.

3.3 Global fields of positive characteristic. It is natural to ask decidability questions
not only over number fields, but also over global fields of positive characteristic, i.e.,
algebraic function fields in one variable over finite fields, and also, more generally, for
function fields.

Hilbert’s 10th Problem (with ¢ resp. ¢, t2 in the language) has been shown to be un-
solvable for the following function fields:

« R(t) (Denef [1978]),
e C(t1,12) (Kim and Roush [1992]),
» F,(¢) (Pheidas [1991] and Videla [1994]),

+ finite extensions of F, (7) (Shlapentokh [1992] and Eisentréger [2003]).

The first two cases were achieved by existentially defining Z in the field, and then apply-
ing Matiyasevich’s Theorem. This is, clearly, not possible in the last two cases. Instead of
existentially defining 7 the authors existentially interpret Z via elliptic curves: the mul-
tiplication by n-map on an elliptic curve E /K where E(K) contains non-torsion points
easily gives a diophantine interpretation of the additive group (Z; +). The difficulty is to
find an elliptic curve E /K such that there is also an existential definition for multiplication
on that additive group.

For the ring of polynomials F4 t], Demeyer has even shown the analogue of the DPRM-
Theorem: listible subsets are diophantine (Demeyer [2007]).

Generalizing earlier results (Cherlin [1984], Duret [1986] and Pheidas [2004]), it is
shown in Eisentrdger and Shlapentokh [2009], that the fu/l first-order theory of any func-
tion field of characteristic > 2 is undecidable.

For analogues of Hilbert’s 10th Problem for fields of meromorphic or analytic functions
cf., e.g., Rubel [1995], Vidaux [2003] and Pasten [2013].
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4 Two infinite extensions of Q ,

Let us recall that the field Q, is axiomatized as a valued field (K, v) satisfying the fol-
lowing four axioms:

(1) (K,v) is henselian of mixed characteristic (0, p),
(2 Kv=F,,

(3) vK = Z, so vK is a Z-group,

(4y v(p) is minimal positive.

It is an immediate consequence of the main result of Derakhshan and Macintyre [2016] that

the field Q}", the maximal unramified extension of Q , (obtained from Q , by adjoining

all prime to p roots of unity), is model complete, that is, every first order definable subset

is already existentially definable. Using this, you can easily give an axiomatization of
“r namely as valued field (K, v) satisfying these axioms:

p b
(1) (K,v) is henselian of mixed characteristic (0, p),

(2) Kv = Kv, so the residue field is algebraically closed,
(3) vK = Z, so vK is a Z-group,

(4y v(p) is minimal positive.

The next natural challenge is to find an axiomatization for Q%2, the maximal abelian ex-
tension of Q@ ,, which, by the local Kronecker-Weber Theorem, is obtained from Q, by
adjoining all roots of unity. The axiomatization suggested (but not yet proved to be com-
plete) in Koenigsmann [2018] is the axiomatization as valued field (K, v) satisfying these
axioms:

(1) (K,v) is henselian of mixed characteristic (0, p),
(2) Kv = Kv,
_ 1
(3) vK = -L 7,
4 g fo(1=Ep) forany prime g # p,
—ap =
(5) KNQ=Q,’NQ,
(6) v =0k,

(7) the Frobenius map x +— x? is surjective on O/ pO,,.
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Here p%oZ is the ordered subgroup of the group of rational numbers having only p-th
powers as denominators, ¢, is a primitive p-th root of unity, and v;} is the canonical p-
henselian valuation on K, that is here the coarsest p-henselian valuation with p-closed
residue field, where p-henselian means that the valulation extends uniquely to every Ga-
lois extension of degree p. That these axioms can be expressed by (recursive sets of)
first-order formulas is not too hard to show, except for axiom (6), for which this is proved
in Jahnke and Koenigsmann [2015]. It is also not too difficult to check that all these ax-
ioms are true in ng . However, it requires substantial work to prove that these axioms are
independent, that is, for each of the seven axioms one finds a valued field not satisfying this
particular axiom, but satisfying all the other axioms (this is done in Koenigsmann [2018].
The planned strategy for establishing that these axioms are complete is via showing quan-
tifier elimination in a variant of the Macintyre language for valued fields including n-th
power predicates.
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PROOF-THEORETIC METHODS IN NONLINEAR ANALYSIS

ULRICH KOHLENBACH

Abstract
We discuss applications of methods from proof theory, so-called proof interpreta-

tions, for the extraction of explicit bounds in convex optimization, fixed point theory,
ergodic theory and nonlinear semigroup theory.

1 Introduction: Proof Theory, Hilbert’s Program and Kreisel’s
‘Unwinding of Proofs’

Proof theory has its origin in what has been called ‘Hilbert’s program’: Since the 19th cen-
tury noneffective and nonfinitary (set-theoretic) principles became increasingly important
which raised the issue of their legitimacy. Hilbert’s approach was to establish the consis-
tency of a suitable formalization 7' of mathematics (first number theory and then analysis
and set theory) within some finitary reasoning 7'r;,. In the language of number theory
and with a minimal amount of number-theoretic tools one can express the consistency
of T (axiomatized by an effective list of axioms) as a purely universal number-theoretic
sentence (a so-called I19-sentence)

Cont :=Vn € N=Provr(n,[0=1])

which states thatnon € N := {0, 1,2, ...} is the code of a T-proof of 0 = 1.

Consider now an arbitrary I19-sentence (called a ‘real statement’ by Hilbert) S := Vn €
N (¢(n) = 0), where ¢ is some primitive recursive function term. If S is provable in
T (using any nonfinitary ‘ideal elements’ of T'), then also T'r;, + Conr proves S (see
Smorynski [1977][5.2.1]). So if Conr could be proved in T's;,, one could convert the
‘ideal’ proof of § in T into a finitistic proof of § in T's;p,.

Obviously, Godel’s second incompleteness theorem rules out that the consistency of any

MSC2010: primary 03F10; secondary 03F35, 47H10, 47H20, 47H25, 90C30.
Keywords: Proof mining, effective bounds, convex optimization, fixed points, ergodic theory, nonlinear
semigroups.
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T 2 Tyi, can be established inside of Ts;,. Nevertheless, Hilbert’s program gave rise
to many ‘relative consistency proofs’ where the consistency of 7' is reduced to that of an
in some sense more elementary theory 7’. ‘More elementary’ often is related to being
‘quantifier-free’: e.g. Gentzen’s proof-theoretic analysis of first-order number theory PA
(Gentzen [1936]) reduces logically complex instances of ordinary induction to quantifier-
free instances of transfinite induction (along ordinals o < gg) and Gddel’s consistency
proof for PA (Gddel [1958]) reduces PA to a quantifier-free calculus of so-called primi-
tive recursive functionals of finite type (considered already by Hilbert himself in Hilbert
[1926]).

In the early 50’s, Georg Kreisel suggested to re-orient proof theory by applying proof-
theoretic methods - which in some way eliminate quantifiers in terms of quantifier-free
constructions - to proofs of theorems which are not purely universal (as consistency state-
ments) but e.g. of the form

(x) Vn e Ndm e N A, r(n,m) (Ayr quantifier-free).

Kreisel noted that the respective consistency proofs for PA due to Gentzen (see Kreisel
[1951, 1952]) and Godel resp. (see Kreisel [1959] (3.4)) actually characterize the class of
subrecursive functions f needed to realize () in the form

VneNAgr(n, f(n))

for theorems () which are provable in PA, namely as the class of @ < gp-recursive
functions (in the case of Gentzen’s proof) and - equivalently - as the class of functions
definable in the aforementioned calculus of primitive recursive functionals (in the case of
Godel’s proof Godel [1941, 1958]), see also Parsons [1972].

While such results concern (the provability of V3-sentences in) formal systems such as PA
rather than individual proofs, Kreisel already in Kreisel [1952] also launched the program
of analyzing specific prima facie nonconstructive proofs with the aim of extracting new
(e.g. effective) information on the theorem proven:

Input: A (prima facie) noneffective proof P of a conclusion C.
Goal: Additional information on C such as:
* effective bounds,
* algorithms,
+ continuous dependency or full independence from certain parameters,

» generalizations of proofs: weakening of premises.
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Kreisel’s examples and suggestions for applications mainly concerned proofs in number
theory. E.g. in Kreisel [1982], Kreisel suggested to analyze finiteness statements such
as Roth’s theorem in diophantine approximation with the aim of extracting bounds on the
number of solutions. In Luckhardt [1989], Luckhardt extracted the first polynomial such
bound for Roth’s theorem from a proof due to Esnault and Viehweg (independently, this
result was also obtained in Bombieri and van der Poorten [1988]). Since the 90’s, the pro-
gram has been developed most systematically and with specially designed so-called logical
metatheorems (see the next section) in the context of nonlinear analysis (‘proof mining’).
Also while Kreisel’s unwindings were based on techniques related to cut-elimination (Her-
brand theory, e-substitution etc.) the applications to analysis are all based on functional
interpretations which have their origin in Godel’s ‘Dialectica’ interpretation on which
Godel’s aforementioned consistency proof is based.

2 Logical metatheorems for bound extractions

In order to establish general theorems on the extractability of effective uniform bounds
from given proofs one has to set up an appropriate formal deductive context. As the
bound extraction methods are based on modern (‘monotone’) extensions and variants (see
Kohlenbach [2008a]) of Gddel’s functional interpretation (Godel [1941, 1958]) one uses
formal systems formulated in the language of functionals in all finite types such as appro-
priate forms of Peano arithmetic in all finite types PA®. In such systems one already can
represent complete separable metric (‘Polish”) spaces (X, d) as continuous images of the
Baire space NN, However, this requires the separability of the space X and for separa-
ble spaces one can show that the independence of the extracted bounds from parameters
in subspaces of X in general can only be expected if these subspaces are compact (see
Kohlenbach [2008a] for discussions of this point). Many theorems in nonlinear analysis,
however, involve - in addition to concrete Polish spaces such as R - general classes of ab-
stract spaces X (e.g. general Hilbert spaces) which are not required to be separable and
one can extract bounds that are independent from parameters in X (and even functions
T : X — X) if general metric bounds (‘majorants’) are given.

Many abstract types of metric structures can be added as atoms to our formal systems.
E.g. this applies to metric, W-hyperbolic (see below), CAT(0), CAT(1), §-hyperbolic,
normed, uniformly convex, Hilbert, abstract L?, abstract C (K) spaces and R-trees, and,
in fact, all normed structures that are axiomatizable in so-called positive bounded logic
(see Giinzel and Kohlenbach [2016]). In order to be able to speak about such spaces one
adds a new base type X to the formal system and forms all finite types over N, X (see
Kohlenbach [2005b]; one may also have several such types: see Kohlenbach [2008a], sec-
tion 17.6). One also adds constants for the metric dx or normed space operators with
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appropriate axioms that characterize the class of structures in question.

Condition: the defining axioms must have a monotone functional interpretation (possibly
with the addition of appropriate moduli, see Kohlenbach [2008a]).

Counterexamples (to the extractability of uniform bounds) exist for the classes of strictly
convex or separable spaces which get upgraded by the monotone functional interpretation
to uniformly convex resp. boundedly compact spaces.

Formal systems for analysis with abstract spaces X

Types: (i) N, X are types, (ii) with p, T also p — 7 is a type.

Functionals of type p — t map type-p objects to type-t objects.

PA®X is the extension of PA to all types, @2>X :=PA®X 4+ DC, where

DC: axiom schema of dependent choice for all types,

which implies the axiom schema of countable choice and so, applied to the law-of-excluded
middle, full comprehension for numbers

CA: AfN="NwuN (f(n) =0« An),

where A(n) may contain quantifiers (and parameters) of arbitrary types.

@®[X,d,...]results by adding constants dx, . . . with axioms expressing that (X, d, ...) is
anonempty metric, hyperbolic ...space (we deviate here from the notation used in Kohlen-
bach [ibid.] where this theory is denoted by @*[X,d,...]—p, and R®[X, d, .. .] denotes
the theory with an axiom stating the boundedness of (X, d) by some constant b being
added).

A warning concerning equality: our formal theories only have a quantifier-free rule of
extensionality (with A, being a quantifier-free formula)

Agr = s =pt

Agr = rls/x] =c r[t/x]’
where only x =y y is a primitive predicate but for X and p — t one defines

N =y y¥ i=dx(x,y) =R Or, X =por ¥ 1= V0P (x(v) = y(v)).

This is crucial as the uniform quantitative rendering of the extensionality axiom x =y
y — Tx =x Ty for T of type X — X implies the uniform continuity of 7" (on
bounded subsets) and we want (in contrast to the setting of current continuous model the-
ory; see, however, the recent Cho [2016]) also to be able to treat discontinuous situations
(see Kohlenbach [2008a] for extensive discussions of this point).
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Extension of majorizability to the new types: A crucial notion used is an extension of
Howard’s (Howard [1973]) concept of majorizability to the new types, where we ‘bound’
an element in a metric space by the distance it has from a fixed reference pointa € X
(where a = Oy in the normed case): let y, x be functionals be of types p, p := p[N/X]
and aX of type X:

N sa N b

XV Z{ Y :Exzy,xNZ‘)’(y =x>d(y,a).

For complex types p — 7 this is extended in a hereditary fashion.

Example: for monotone 7* one defines
T*"2%,.x T=VneN,xeXn>d(ax)—>T"n)>d(a,T(x))

(see Gerhardy and Kohlenbach [2008] and Kohlenbach [2008a]).

T : X — X is nonexpansive (n.e.) if d(7(x), T (y)) < d(x,y).

ThenAn.n+b 2% _x T.ifd(a,T(a)) <b.

Proof mining exhibits the finitary combinatorial kernel of a proof and as a consequence
of this it often is easy to generalize things from a normed linear setting to some geodesic
setting. In fact, the approach has been particularly useful in the context of hyperbolic
spaces which is a variant of notions considered by Takahashi [1970], Goebel and Kirk
[1983] and Kirk [1981/82] and Reich and Shafrir [1990] (see Kohlenbach [2005b] for the
precise relationship):

Definition 2.1 (Kohlenbach [ibid.]). 4 (W-)hyperbolic space is a triple (X, d, W) where
(X.,d) is a metric space and W : X x X x [0,1] — X s.t. forall x,y,z € W and
A, A €]0,1]

(i) d(z.W(x.y.1)) =(1—-2A)d(z.x) + Ad(z. y),
(ii) d(W(x,y, ), W(x,y,A)) = [A=A]-d(x,y),
(iii) W(x,y,A)=W(y,x,1—=21),
(iv) d(W(x,z,A),W(y,w,A)) <(1—=A)d(x,y)+ Ad(z,w).

CAT(0)-spaces (Gromov) are hyperbolic spaces (X, d, W) which satisfy the CN-inequality
of Bruhat-Tits (determining W uniquely): for all x, yg, y1,y2 € X

d(y1,y2) = d(yo,y2) =
d(x,y1)? + 3d(x,y2)? — 1d (y1. y2)*.

Small types (over N, X) include: N, N - N, X, N - X, X — X.
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Theorem 2.2 (Gerhardy and Kohlenbach [2008] and Kohlenbach [2008a]). Let P, K be
Polish resp. compact metric spaces (definable in @®), A3' be an I-formula and t be a

tuple of small types.
IfR®[X,d, W] proves

Vxe PVye K VzE3N As(x,y,z,v),

then one can extract a computable ® : NN x N®™ Nt the following holds in every
nonempty hyperbolic space: for all representatives r, € NN of x € P and all z* and
z*e NW gt 3a € X(* 2% z)

Vye K3v < @(rx,g*)Aa(X»va»U)~

For the case of bounded hyperbolic spaces, see Kohlenbach [2005b].

As a special case of the above metatheorem one has:

Corollary 2.3 (Gerhardy and Kohlenbach [2008] and Kohlenbach [2008a]). IfQ®[X,d, W]
proves

VxePVyeKVzeXVT:X—>X(Tn.e.—>EIUENA5|),

then one can extract a computable ® : NN x N — N s.t. forallx € P,b € N
Vye KVze XVT : X —» X (T ne. Adx(z,T(z)) <b — Jv < O(ry,b)A3)

holds in all nonempty hyperbolic spaces (X, d, W).

Similar results hold for the other classes of metric and normed structures listed above. In
the normed case, one additionally needs ||z|| < b as an assumption in the conclusion of
the corollary.

Remark 2.4. Usually, proofs in ordinary mathematics only require a small fragment of
Q®[X,d,...] with e.g. the binary (‘weak’) Kénig’s lemma WKL instead of DC and X9-
induction only, which guarantees the extractability of primitive recursive (in the sense
of Kleene) bounds. WKL is equivalent to a sentence of the form ¥ fN"N3p <y_n
1vxN Agr(f.b,x) and can be added to the system via a Skolem constant B with the
purely universal axiom N f, x(Bf < 1A Aqz(f. Bf. x)) which is satisfiable in the full set-
theoretic model and B is trivially majorized by the constant-1 functional in the extracted
bound (see Kohlenbach [2008a]).

I'There are some mild restrictions on the types of the quantified variables in A3.
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3 General types of applications

3.1 Asymptotic regularity theorems. Consider a metric space (X, d ) and a continuous
function F : X — R. Many problems can be stated in the form of finding a zero z € X
of F. Such problems are often algorithmically approached by setting up some iterative
procedure resulting in a sequence (x,) in X which converges to a zero z of F :

(%) F( lim x,)=F(z)=0.

n—oQ

In this case one, in particular, has that
(%) F(xq) = 0.

Quite often, () holds under much more general conditions than those needed to ensure
the convergence of (x;, ) itself. In the case of fixed point problems for mappings 7 : X —
X, i.e. the case where F(x) := d(x, T x), results of the form (xx) are usually referred to
as asymptotic regularity statements where this term was originally introduced by Browder
and Petryshyn [1966] to refer to the property of 7" that the sequence x, := T"x of Picard
iterates satisfies d (x,, Tx,) — 0. In many cases (see below) (d (x5, Tx,)), ey for some
iterative process not only converges to 0 but does so in a nonincreasing way. In this
situation the asymptotic regularity statement can be equivalently written in the form

Vk e Nan € N (d (xp. Tx,) < 27%) e v3

and any upper bound ®(k) on ‘In’ provides a rate of convergence. This means that one can
apply the logical metatheorems mentioned in the previous section to extract effective and
highly uniform rates of asymptotic regularity even from prima facie noneffective proofs
of asymptotic regularity. In fact, this has been achieved in many instances in the context
of nonlinear analysis (see some of the applications below and Kohlenbach [2008b, 2017]
for general surveys).

3.2 Strong convergence theorems. Suppose that the theorem to be studied is not about
an asymptotic regularity result but about the convergence of the sequence (x,) itself, e.g.
towards a zero of F or a fixed point of T. Already the Cauchy property of (x,)

(+)Vk e N3In e NVi, j >n (d(x;.x;) <27%) e vav

has too complicated a logical form to directly apply the logical metatheorems on uniform
bound extractions and, in fact, there are already simple cases of computable monotone se-
quences of rational numbers in [0, 1] which do not have a computable rate of convergence
(Specker [1949]).
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Roughly speaking, one can distinguish the following situations:

1) The proof of the Cauchy property of (x, ) (or of the convergence of (x;,) to some known
element x € X) uses - on top of constructive (‘intuitionistic’) reasoning - at most the law-
of-excluded-middle schema LEM for negated formulas

LEM- : =AV ——A4

which, in particular covers the case where A is 3-free (e.g. 4 € I1?) as such formulas are
equivalent to their double negation (using the stability of the prime formulas in our formal
systems).

Alternatively (but not combined), one may use the so-called Markov principle

M: ——3n e NA,;r(n) -» In e NA,r(n) (Ags quantifier-free with parameters)
together with the following weak form of LEM (weaker than LEM for I19-formulas):
LLPO : —=(In € N Agr(n)AIn € N Byr(n)) = Vn e N=A,r(n)vV¥n € N=B,r(n),

where A,r, B, are quantifier-free formulas. In both scenarios one can set up logical
bound extraction metatheorems, where instead of the purely existential formula A3 one
may now have an arbitrary formula (see Kohlenbach [2008a]). Since (+4) is monotone
w.r.t. ‘In € N” any upper bound on n < ®(k) in fact is a Cauchy rate for (x, ) and so one
can in these cases extract effective rates of convergence.

2) If the proof of the Cauchy property of (x,) uses LEM for ¥9-formulas (purely existen-
tial formulas for natural numbers) as in the case of the Specker sequences from Specker
[1949], then one often has the following dichotomy: either one can show that (x,) con-
verges to the unique zero of F or fixed point of 7, or one can use the non-uniqueness of
the solution to construct an instance of the Cauchy statement in question which provably
does not allow for an effective Cauchy rate.

(i) Unique existence: in many cases one can obtain effective rates of convergence (and in
fact also with a constructive verification of this fact) for (x,) if (x,) converges towards a
unique zero of F resp. fixed point of 7': consider a function F : X — R on some metric
space (X, d) which has exactly one zero z. The uniqueness part

(@) Vx,y e X (F(x)=0=F(y) > x=y)
can be written equivalently as
(b)Vx,y e XVk e NIn e N(|F(x)|.|F(y)| <27 = d(x,y) <27%) e va.

Then logical metatheorems can be applied to extract from a proof of (@) an effective uni-
form bound ®(k) on ‘In € N’ in (b), which we called in Kohlenbach [1993] a ‘modulus
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of uniqueness’, where ®(k) depends on x, y only via general majorizing data and, in par-
ticular, is independent of x, y if X is bounded (in the case where X can be treated as an
abstract space and, otherwise, if X is compact). Suppose now that we can construct some
(bounded) sequence (x,) of approximate zeros, i.e.

(¢)Vk € N3n € N(|F(xn)| < 27%) € v3

from which we then can extract (using again a logical metatheorem) an effective bound
U(k)on ‘In € N’ in (¢), then for y(k) := U(P(k)) we have

Vk e Nan < y(k) (d(xn,2) < Q_k)

and, if we even have that (| F(x,)|)» is nonincreasing, it follows that y is a rate of conver-
gence for lim x,, = z. In Briseid [2009], it is shown that for Picard iterations x,, = T"x
for suitable classes of mappings T the aforementioned logical metatheorems can be used
to obtain such rates of convergence even when (| F (x,)|), (for F(x) := d(x, Tx)) is not
nonincreasing which explains the explicit construction of effective rates of convergence
for the classes of asymptotic contractions in the sense of Kirk and of uniformly general-
ized p-contractive mappings given by Briseid (see Briseid [ibid.] and the literature cited
there).

(i) Non-unique existence: when F or 7" possess many zeros resp. fixed points, one usu-
ally can construct computable instances of iterative procedures (x, ) (converging to some
zero or fixed point) that do not have a computable rate of convergence. In fact, Neumann
[2015] shows that this is the case for the usual iterative schemes used in metric fixed point
theory, ergodic theory and convex optimization which even for (firmly) nonexpansive
selfmappings T : [0, 1] — [0, 1] fail to have a computable rate of convergence for simple
computable such mappings 7. One then has to weaken the goal to what has been called an
effective rate of metastability: Noneffectively, (+) is equivalent to

(++)Vk e NVg e NN3n e NVi,j € [n,n+ g(n)] (d(xi.x;) <27%) e v3,

the so-called Herbrand normal of (+), and a bound ®(k, g) on ‘dn’ is a bound for the
Kreisel ‘no-counterexample interpretation’ (Kreisel [1951, 1952]) of the Cauchy property.
Since Tao [2008b] calls an interval [n,n + g(n)] with the property in (++) an interval
of ‘metastability’, we call bounds ®(k, g) on ‘In’ in (++) rates of metastability. If one
additionally knows that (x,) is converging to a zero of F or a fixed point of T with
some rate of metastability then one can actually combine both rates into a common one
(formulated here for the case of fixed points), i.e. a bound ®(k, g) such that forall k € N
andg: N - N

(+4++) I < ®(k, g) Vi, j € [n,n+gn)] (d(xi,x;),d(x;, Tx;) < 275).



88 ULRICH KOHLENBACH

If one has a rate of convergence for d (x,, T x,) — 0, one can even achieve that
In < ®(k,g)Vi.j €[n.n+gn)|Vl>n(d(xi.x;).d(x;. Tx;) < 275)

(see e.g. Kohlenbach, Leustean, and Nicolae [2018] and Kohlenbach [2016], Rem.2.11).
The extraction of explicit bounds ® on the metastable form of Cauchy or convergence
statements is of interest for the following reasons:

a) Disregarding bounded quantifiers, the statement (+++) is purely universal (‘real”) and
captures all the mathematical content of the theorem lim x,, = x = Tx : by a fixed piece
of proof it implies back the original convergence theorem: forgetting the bound & gives
the Herbrand normal form which by recursive comprehension (more precisely QF-AC?-0
in the terminology of Kohlenbach [2008a]) and LEM implies the Cauchy property and
so by arithmetical comprehension (more precisely I19-AC%? in our formal context, see
Kohlenbach [ibid.]) the convergence of (x,). Applying (+ + +) to the constant function
g(n) := K € N shows the existence of i > K with d (x;, Tx;) < 27% which - together
with the continuity of T - gives Tx = x for x := lim x,,.

b) The proof-theoretic extraction of a rate of metastability from a convergence proof ex-
hibits the finitary combinatorial content of that proof which may lead to generalizations
of the resulting metastable statement and so - when unpacked into the full convergence
statement (see above) - to generalized convergence theorems.

¢) The concrete bounds extracted are of numerically interest: often they provide explicit
information on the algorithmic learnability of a rate of convergence which - if a gap con-
dition is satisfied - yields oscillation bounds (Avigad and Rute [2015] and Kohlenbach
and Safarik [2014] and Section 5 below).

d) In many cases, asymptotic regularity is just the special case of metastability where
g(n) :=1, e.g. for Picard iterates of nonexpansive functions 7.
Some history:

* 2004, first rate of metastability (for the asymptotic regularity of asymptotically non-
expansive mappings) extracted (Kohlenbach and Lambov [2004]).

* 2005, rate of metastability for Krasnoselski-Mann iterations of nonexpansive self-
mappings 7 : X — X of compact hyperbolic spaces X (Kohlenbach [2005a]).

* 2007, Tao [2008b] introduced the term ‘metastability’ in connection with the von
Neumann Mean Ergodic Theorem (MET).

* 2007, independently from Tao, the first rate of asymptotic regularity for MET was
extracted in Avigad, Gerhardy, and Towsner [2010].



PROOF-THEORETIC METHODS IN NONLINEAR ANALYSIS 89

* 2008, Kohlenbach and Leustean [2009] generalized this with a better bound to uni-
formly convex Banach spaces which, subsequently, led to oscillation bounds by
Avigad and Rute [2015] (see below).

+ Since then, many papers extracting explicit rates of metastability have appeared,
including Avigad and Rute [2015], Kohlenbach [2011, 2012, 2016], Kohlenbach
and Koutsoukou-Argyraki [2015], Kohlenbach and Leustean [2009, 2012, 2014],
Kohlenbach, Leustean, and Nicolae [2018], Kohlenbach, Lépez-Acedo, and Nico-
lac [2017b], Kdrnlein [2016], Leustean and Nicolae [2016], Safarik [2012], and
Sipos [2017a].

We like to emphasize that sometimes in analyzing convergence proofs one uses a combina-
tion of the approach used in the semi-constructive context discussed further above (applied
to those parts of the proof that do not require $¢-LEM) and the approach to proofs based
on full classical logic (applied to the more noneffective parts of the proof). E.g. Leustean
[2014] and Sipos [2017b] provide interesting instances of such a hybrid approach.

In very special, but important, cases for applications one can extract rates of convergence
for iterative procedures towards some non-unique zero of F or fixed point of T, namely
when one has an effective so-called modulus of regularity which is closely related to the
concepts of weak sharp minima and metric regularity used in convex optimization (see
Kohlenbach, Lopez-Acedo, and Nicolae [2017a]).

3.3 Inclusions between sets of solutions. Consider functions F,G : X — R ona
metric space (X, d) such that every zero of F is also one of G :

Vxe X (F(x)=0— G(x)=0)

which can be re-written in V3-form as

ex?

Vxe XVkeNaneN (|[F(x)| <27 - |G(x)] <27%)

so that logical metatheorems can be applied to extract effective uniform bounds (which
due to monotonicity are in fact realizers) for ‘3In’, i.e.

Vk € N (|F(x)] < 27250 |G (x)| < 27%),

where x* are appropriate majorizing data for x.
For concrete instances of such applications see sections 4 and 6 below.
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3.4 Extraction of effective moduli. The first applications of the proof mining method-
ology in analysis concerned the extraction of explicit moduli of uniqueness in the afore-
mentioned sense (as well as so-called constants of strong unicity) in Chebycheff approxi-
mation by us in 1990-1993 which in 2003 - together with Paulo Oliva - was also carried
out for best L'-approximation (see Kohlenbach [2008a] for an extensive coverage of this
and the references given there). However, many more concepts of quantitative ‘moduli’
exist in mathematics or have been introduced as quantitative proof-theoretic versions of
qualitative concepts in analysis. Proof mining has been used to explicitly transform mod-
uli for one situation into moduli for another one. This e.g. is used essentially in Bacak
and Kohlenbach [2018] and Kohlenbach, Lopez-Acedo, and Nicolae [2017a].

In the rest of the paper we give a few typical examples of explicit bounds which have
been obtained by the proof-theoretic machinery discussed so far. For more comprehen-
sive surveys, see Kohlenbach [2008b] for results up to 2008 and Kohlenbach [2017] for
applications since 2008.

4 Proof Mining in Convex Analysis

A polynomial rate of asymptotic regularity in Bauschke’s solution of the ‘zero dis-
placement conjecture’

Consider a real Hilbert space H and nonempty closed and convex subsets Cq,...,Cy <
H with metric projections Pc;,, define T := Pc,, o...0 Pc,. In 2003, Bauschke proved
the ‘zero displacement conjecture’ (Bauschke [2003]) which was first stated in Bauschke,
Borwein, and Lewis [1997]:

|T" ' x —T"x|| - 0 (x € H).

Previously, this was only known for N = 2 or Fix(T) # @& (or even ﬂfvzl C; # @) or
C; half spaces etc.

The proof uses the Bruck and Reich [1977] theory of firmly and strongly nonexpansive
mappings and the abstract theory of maximal monotone operators: Minty’s theorem, Brézis-
Haraux theorem, Rockafellar’s maximal monotonicity and sum theorems, conjugate func-
tions, normal cone operator.

The sequence (|| 7”1 x—T"x||)nen is nonincreasing and hence the conclusion in Bauschke’s
theorem is of the form V3. Logical metatheorems as discussed above, therefore, guaran-
tee (modulo the formalizability of the proof in the resp. formal system which, however,
does not need to be checked if one explicitly has carried out the extraction) the extractabil-
ity of an effective uniform rate of asymptotic regularity which only depends on the er-
ror ¢ > 0, N € N and majorants for x € H and Pc,,..., Pcy,ie. b > |x| and
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K > |cill, ..., len] for some points ¢; € C1,...,cy € Cy since
n = Iyl = n+K = | Pe,y — Pe,0ll + | P, 0l = | Pe, .
So one gets a computable ®(g, N, b, K) s.t. for b > || x|
Ve >0Vn > ®(e,N,b,K) (|T"'x — T"x|| < &).
Strongly nonexpansive mappings

Definition 4.1 (Kohlenbach [2016]). Let S C X be a nonempty subset of a normed space
X. T :S — X is strongly nonexpansive with SNE-modulus @ : R} x R% — R if

Vd,e >0Vx,y e S(lx—yll<d A|lx=y||=ITx=Ty| < w(d,e)
> (x=y)=(Tx =Tyl <e).

Remark: T is strongly nonexpansive in the sense of Bruck and Reich [1977] iff it pos-
sesses an SNE-modulus.

Recall that in Hilbert spaces H = X, afunction 7 : S — H is called firmly nonexpansive
if
Vx,y € S(ITx = Ty|? < (x =y, Tx = Ty))

and metric projections onto closed convex subsets of H are firmly nonexpansive.

The next two results have been obtained by a proof-theoretic analysis of Bruck and Reich
[ibid.]:

Lemma 4.2 (Kohlenbach [2016]). Let H be a real Hilbert space and T = Ty o...0o T
with firmly nonexpansive Ty, ..., Ty : H — H. Then T is SNE with modulus

wr(d,e) = ﬁ (%)2 .

A rate of asymptotic regularity for SNE-mappings

Theorem 4.3 (Kohlenbach [2018]). Let T : S — S be SNE with modulus w s.t. inf{||x —
Tx||:xe€S}=0andleta:R} — R besuch that

Ve>03yeS (vl sale)nlly—Tyl<e).
Then for x € S, x, :== T"x and D > 0 such that |x — Tx|| < D one has

Ve >0Vn > v¥(e,b, D,a,w) (| xnsr1 —xnll <e&), where

Y (e.b, D, 0) = [M - ﬂ [(w(g, g)ﬂ €= ﬁza(s/&'
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The proof-theoretic analysis of the operator-theoretic part of Bauschke’s proof gives:

Theorem 4.4 (Kohlenbach [2018]). Let H be real Hilbert space, C1,...,Cny < H
nonempty closed and convex subsets, Pc; metric projections onto C; fori = 1,...,N.

Letc = (c1,...,cn) € Cy X ... x Cy be arbitrary and K > ||c|| = ZlNzl llci 2. Let
T := Pcy o...0 Pc,. Then for every ¢ € (0, 1) there exists a point y € Cy with

Iyl < ale) and |Ty — y|| < &, where

(K? + N3(N —1)2K?)N?
. .

a(e) =
Corollary 4.5 (Kohlenbach [ibid.]).

N[

is a rate of asymptotic regularity in Bauschke s result, where

82

fi=—— D :=2b+NK, w(D,é):

27b + 18¢.(2/6)’ 55 EN

~ 16D

(K2 + N3(N — 1)2K2)N2
- .

oe) =
The case where Fix(T) # @ is much simpler:

Theorem 4.6 (Kohlenbach [2016]). Let C € H be any nonempty subset of a real Hilbert
space H, Ty, ..., Ty : C — C be firmly nonexpansive. Let T := Ty o ... o T} possess
a fixed point p € C and, for x € C, letb > ||x — p||,b > 0. Then for x, := T"x:

Ve > 0Vn > [b/wr (b, €)] (| xnt1 — xull < &), where

1
16h —(e/N)*

wr (b, €)=
Convex feasibility problems
If in Theorem 4.6 the fixed point sets Fix(71),..., Fix(Tx) have a nonempty inter-
section, then any fixed point of 7 in fact is a common fixed point of 71, ..., Tx. This
even holds for arbitrary strongly nonexpansive mappings 77, ..., Ty in arbitrary Banach
spaces X. In Kohlenbach [ibid.], an explicit bound p(b, ) (in terms of SNE-moduli for
Ti,...,Tn) is extracted from the classical proof of this fact such that for x, p € C, p a

common fixed point of Ty,..., Ty and b > ||x — p||

N
Ve >0 (|TnTy-1...Tix — x| < p(b.&) > \(ITix — x| < &)).

i=1
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Combined with a rate of asymptotic regularity for T = Ty o ... o T7 (which even in
this generality is provided in Kohlenbach [ibid.]) this quantitatively solves the problem of
constructing a common approximate fixed point of 77, ..., Tx.

All this largely holds even in general metric spaces and for strongly quasi-nonexpansive
mappings in the sense of Bruck [1982]. Metric projections in so-called CAT(k)-spaces
X (in the sense of Gromov) with ¥ > 0 are strongly quasi-nonexpansive and one can
construct an explicit modulus for this property which then makes it possible to quantita-
tively solve the problem to construct a point in the intersection of (e-neighbourhoods of)
finitely many overlapping closed convex subsets of X (i.e. the so-called convex feasibil-
ity problem for CAT(k)-spaces). In the case where X is compact one obtains a rate of
metastability for the strong convergence of the iterative use of the composition of the cor-
responding projections towards a point in the intersection of these sets (see Kohlenbach
[2016]).

Other quantitative results in convex optimization have been obtained in

* Ariza-Ruiz, Lopez-Acedo, and Nicolae [2015] and Kohlenbach, Lopez-Acedo, and
Nicolae [2017b]: rates of asymptotic regularity and - for compact X - metastability
for iterations of compositions of two resolvents in CAT(0)-spaces.

» Kohlenbach, Leustean, and Nicolae [2018], Kohlenbach, Lopez-Acedo, and Nico-
lac [2017a], and Sipos [2017a] rates of asymptotic regularity, strong convergence
(in special cases) resp. metastability for the proximal point algorithm.

» Kornlein [2016] explicit such rates for Yamada’s hybrid steepest descent method.

5 Proof Mining in Ergodic Theory

Let H be areal Hilbert space, 7 : H — H be linear and || T (x)|| < |lx| forall x € H.
Consider the Cesaro mean of the iterates of T :

Ap(x) := %S,,(x), where S, (x) ==Y T'(x) (n=1).
i=0

The von Neumann Mean Ergodic Theorem in the formulation of Riesz states:

Theorem 5.1 (von Neumann Mean Ergodic Theorem). For every x € H, the sequence
(An(x))n strongly converges.

In Avigad, Gerhardy, and Towsner [2010], it is shown that in general there is no com-
putable rate of convergence, but a primitive recursive rate of metastability is extracted
using the proof-theoretic methods discussed above. Tao [2008a] also established (without
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bound) a uniform metastable version of the Mean Ergodic Theorem in Hilbert space and
used that uniformity as a base step for a generalization to commuting families of operators.
On the connection to the proof-theoretic approach he comments:

‘We shall establish Theorem 1.6 by “finitary ergodic theory” techniques, reminiscent of
those used in [Green-Tao]...” ‘The main advantage of working in the finitary setting ... is
that the underlying dynamical system becomes extremely explicit’...‘In proof theory, this
finitisation is known as Gddel functional interpretation...which is also closely related to
the Kreisel no-counterexample interpretation’ (T. Tao [2008a]).

In 1939, Garrett Birkhoff proved:

Theorem 5.2 (Birkhoff [1939]). The Mean Ergodic Theorem holds for arbitrary uniformly
convex Banach spaces.

Remark 5.3. In the same year as Birkhoff [ibid.], Lorch [1939] showed that the mean
ergodic theorem even holds in all reflexive spaces. However, the class of reflexive spaces
does not have enough uniformity to allow for a logical metatheorem on uniform bound
extractions and, in fact, in Avigad and Rute [2015] it is shown that a uniform rate of
metastability has to depend on the modulus of uniform convexity.

Since Birkhoff’s proof formalizes in the deductive framework of uniformly convex normed
spaces (with modulus n) R [X, || - ||, n] (see Kohlenbach [2008a] for the definition of this
system) the following is guaranteed a-priorily:

Let X be a uniformly convex Banach space with modulus n and 7' : X — X nonexpan-
sive linear operator. Let » > (0. Then there is an effective functional ¢ in ¢, g, b,  s.t. for
all x € X with ||x|| < b,alle >0,allg: N - N :

In < (e, g,b,n) Vi, j €[n,n+ g(n) (||Ai(x) —Aj(x)] < 8).

Note that T* := id majorizes T.
Based on the logical metatheorem above (for uniformly convex normed spaces) the fol-
lowing rate of metastability was extracted from Birkhoff’s proof:

Theorem 5.4 (Kohlenbach and Leustean [2009]). Let X be a uniformly convex Banach
space, n a modulus of uniform convexity, T : X — X be as above and b > 0. Then for
all x € X with ||x|| <b,alle >0andallg : N — N :

In < ®(e,g.b.n)Vi,j €n,n+gn)(4i(x)—A;(x)|| <¢), where

B(e, g.b, 1) 1= M - hE) (1), with M ::[ W yi=L£n(5). K= {ﬂ
h(

h,h:N — N, h(n) :=2(Mn+g(Mn)), h(n):=max;<,h(i).
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If n(e) = ¢ - 7(e) with increasing ], then we can replace n’ by ‘i’ and 16” by 8". In
particular, for X = LP with 1 < p < oo, we may take 7j(g) = e?~1/(p2P).

Bounding the number of fluctuations: We say that (x, ) admits k e-fluctuations if there
are iy < j1 < ...ig < jrk st ||xj, —x;,|| =eforn=1,... k.

Using the analysis of Birkhoff’s proof in Kohlenbach and Leustean [ibid.], Avigad and
Rute subsequently improved the rate of metastability to a bound on the number of &-
fluctuations:

Theorem 5.5 (Avigad and Rute [2015]). (A, (x)) admits at most

o) 2 2]t |

many e-fluctuations with b, M, y as in Theorem 5.4.

In the Hilbert space case, fluctuation bounds had already been obtained in Jones, Ostro-
vskii, and Rosenblatt [1996].

If the linearity of the nonexpansive operator T is dropped, then the convergence of (x)
holds weakly (but in general not strongly, see Genel and Lindenstrauss [1975]) by Bail-
lon’s nonlinear ergodic theorem:

Theorem 5.6 (Baillon [1975]). Let H be a real Hilbert space, C  H bounded closed
and convex and T : C — C be nonexpansive. Then for every xo € C, the sequence of
Cesaro means (xy) converges weakly to a fixed point of T.

A rate of metastability for the weak Cauchy property is extracted in Kohlenbach [2012].

If one either changes the Cesaro means slightly (or adds some weak form of linearity,
see below) one can achieve strong convergence. Consider the so-called Halpern iteration
Halpern [1967]: Let T : C — C be nonexpansive, x; € C, o, € [0, 1]

Xpp1 = on X1+ (L—an) T(xn) (n>1).

In contrast to other iterative schemes such as Krasnoselski-Mann iterations, the Halpern
iteration often converges strongly (one reason, though, why it is less used convex opti-
mization is that it is not Fejér monotone; see Kohlenbach, Leustean, and Nicolae [2018]
for explicit rates of metastability from strong convergence proofs based on Fejér mono-
tonicity).

Using a weak compactness argument, Wittmann proved in 1992 the following strong con-
vergence result:

Theorem 5.7 (Wittmann [1992]). Let H be a real Hilbert space, C < H closed and
convex, xg € C and Fix(T) # @. Under suitable conditions on (o, ) (e.g. for oy := ﬁ)
(xn) converges strongly towards the fixed point of T that is closest to x.



96 ULRICH KOHLENBACH

Remark 5.8. 1. Wittmann's theorem is a nonlinear generalization of the Mean Er-
godic Theorem: for ay :=1/(n + 1), C := H and linear T, the Halpern iteration
coincides with the Cesaro means.

2. Another nonlinear generalization of the Mean Ergodic Theorem has been obtained
in Baillon [1976]. Here one keeps the original Cesaro means but requires that T
(in addition to being nonexpansive) is odd (and C is symmetric). This was further
generalized in Wittmann [1990] from which an explicit rate of metastability was
extracted in Safarik [2012].

Wittmann’s result has been generalized to CAT(0)-spaces by Saejung [2010] using Ba-
nach limits. Explicit rates of metastability have been extracted in Kohlenbach [2011] (for
Hilbert spaces) with an elimination of the use of weak compactness and in Kohlenbach
and Leustean [2012, 2014] (for CAT(0) spaces) with an elimination of the use of Banach
limits.

Moreover, one has a quadratic rate of asymptotic regularity d (x,, T (x,)) — 0 :

AM  32M?
Ve>0Vn > — +
&

(d(xn, T(xn)) <e)

g2

(See Kohlenbach and Leustean [2012].) In Leustean and Nicolae [2016], the proof-theoretic
analysis of Saejung’s proof has been further generalized to the highly nontrivial case of
CAT(x)-spaces for k > 0 producing an explicit rate of metastability even in this context.

6 Proof Mining in Nonlinear Semigroup Theory

Let X be a Banach space, C C X be a nonempty subset and A € (0, 1).
Definition: A family {T'(z) : t > 0} of nonexpansive mappings 7(t) : C — C is a
nonexpansive semigroup if

(()T(s+t)=T(s)oT(t) (s,t >0),
(ii) for each x € C, the mapping ¢ + T (¢)x is continuous.

Theorem 6.1 (Suzuki [2006]). Let 0 < « < B such that o/ B is irrational. Then any fixed
point p € C of
S=AT()+1-M)TB):C > X

is a common fixed point of T (t) for all t > 0.

Lett +— T'(t)x be equicontinuous on norm-bounded subsets of C with modulus w, let f,
be an effective irrationality measure for y := «/B, A, N,D € Nbest. 1/A <A, 1—-2A
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and 1/N < B < D. Then one can extract a bound (see Section 3.3) ®(¢, M, b) :=
O(e, M,b,N, A\, D, f,,w)st. foral M,be N, peC,e>0

Pl < b AlIS(p) = pll < (e, M, b) — Vi € [0, M]([T(1)p — pll < &),

The main noneffective tool used in Suzuki’s proof is the binary Kénig’s lemma WKL and
by Remark 2.4 it is guaranteed to have a primitive recursive (in the sense of Kleene) bound
®. In fact, the bound actually extracted in Kohlenbach and Koutsoukou-Argyraki [2016]
is of rather low complexity:

o—m
(Z¢(k Sv)— 1A’ )(1 +MN)

(27", M,b) = , where

k := D20p.»3+log (EMN)+m)+L gy f £y .= max{2f (i) +6 : 0 <i <k}

Example: « = /2, =2,1=1/2. Then A =2,N = 1,D =2, f,(p) = 4p>.

If C isconvex (sothat S : C — C)and x4 := %xn + %an € C starting from xg € C
is a d -bounded Krasnoselski iteration sequence of S one has a quadratic rate of asymptotic
regularity W (e, d) := 4d?/(7&?) (Baillon and Bruck [1996]) and so

Vn > U(®(e, M,b),d)Vt € [0, M] (|IT(¢)xn — xn|| <¢).

Nonexpansive semigroups feature prominently - via the Crandall-Liggett formula - in
the study of abstract Cauchy problems that are given by accretive set-valued operators.
Explicit rates on the asymptotic behavior of solutions have been obtained by our proof-
theoretic methods in Kohlenbach and Koutsoukou-Argyraki [2015] and Koutsoukou-Argyraki
[2017].
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MODEL THEORY AND ULTRAPRODUCTS

MARYANTHE MALLIARIS

Abstract

The article motivates recent work on saturation of ultrapowers from a general math-
ematical point of view.

Introduction

In the history of mathematics the idea of the limit has had a remarkable effect on organizing
and making visible a certain kind of structure. Its effects can be seen from calculus to
extremal graph theory.

At the end of the nineteenth century, Cantor introduced infinite cardinals, which allow
for a stratification of size in a potentially much deeper way. It is often thought that these
ideas, however beautiful, are studied in modern mathematics primarily by set theorists,
and that aside from occasional independence results, the hierarchy of infinities has not
profoundly influenced, say, algebra, geometry, analysis or topology, and perhaps is not
suited to do so.

What this conventional wisdom misses is a powerful kind of reflection or transmutation
arising from the development of model theory. As the field of model theory has developed
over the last century, its methods have allowed for serious interaction with algebraic geom-
etry, number theory, and general topology. One of the unique successes of model theoretic
classification theory is precisely in allowing for a kind of distillation and focusing of the
information gleaned from the opening up of the hierarchy of infinities into definitions and
tools for studying specific mathematical structures.

By the time they are used, the form of the tools may not reflect this influence. However,
if we are interested in advancing further, it may be useful to remember it. Along this seam,
so to speak, may be precisely where we will want to re-orient our approach.

Partially supported by NSF 1553653, and at IAS by NSF 1128155 and a Minerva Research Foundation mem-
bership.
MSC2010: primary 03C45; secondary 03C20, 03E17, 05C99.
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1 The model theoretic point of view

The model theoretic setup is designed to allow in a specific way for placing a given infinite
mathematical structure in a class or family in which size and certain other features, such
as the appearance of limit points, may vary.

Suppose we wanted to look abstractly at the structure the reals carry when viewed as
an ordered field. We might consider R as a set decorated by the following: a directed
graph edge representing the ordering, a first directed hyperedge representing the graph of
addition, a second directed hyperedge representing the graph of multiplication, perhaps
a third for the graph of subtraction, and two constant symbols marking the additive and
multiplicative identities. Stepping back, and retaining only this data of a set of size contin-
uum along with the data of which sets of elements or tuples correspond to which constants,
edges, or hyperedges, we might try to analyze the configurations which do or do not arise
there.

Suppose we were interested in the structure the group operation gives to the discrete
Heisenberg group H. We might consider H simply as an infinite set along with the data of
the multiplication table. A priori, this setup just records a countably infinite set made into
a group in the given way; it doesn’t a priori record that its elements are matrices, much
less uni-upper-triangular matrices over Z.

These examples suggest how models arise — simply as sets decorated by the data of
relations or functions we single out for study.!

The initial loss of information in such a representation will be balanced by the fact that
it allows us to place a model within a class and to study models in the class alongside each
other. From the model theoretic point of view — the following statement is a starting point
for investigation, not its conclusion — this class contains all other models which differ from
M in inessential ways.

To place our model M in its class, we consider the theory of the model, that is, the
set of all sentences of first order logic which hold in M. The elementary class of M is
the class of all other models with the same theory. We may frame our study as: of such
classes, or of theories.

Every model carries what are essentially derived relations, the boolean algebras of de-
finable sets (see the Appendix). We might say very informally that the theory of a model
takes a photograph of these boolean algebras which remembers only finitary information,

'A k-place relation on a set X is a subset of X Kk The set of first coordinates of a binary relation is called
its domain. A k-place function on a set X is a single-valued binary relation whose domain is X k. To specify a
model, we first choose a language, which can include relation symbols, function symbols, and constant symbols.
Then a model is given by the following data: a set X, called the domain; for each relation symbol, a relation on
X of the right arity; for each function symbol, a function on X of the right arity; for each constant symbol, an
element of X .
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such as which finite intersections are and are not empty. The models which share the
theory of M will also share this photograph.

The differences among models with the same theory come essentially from the infinite
intersections which are finitely approximated, in other words, with the filters and ultrafil-
ters on the boolean algebra of definable sets, as we now explain.

2 Limit points

To see what engenders variation within an elementary class, the following story will mo-
tivate the definition of #ype. (The motivation is in the telling, not an historical assertion.
Filters independently arose in other, earlier contexts in the early part of the twentieth cen-
tury.)

Writing their book on general topology in 1937, Bourbaki were discussing whether the
definition of limit could be liberated from the countable. Cartan’s suggestion was effec-
tively that working in a topological space X, one might turn the problem around and look
from the point of view of a limit point. Given a point x € X, the family of neighborhoods
containing x had certain very nice features — such as upward closure, closure under finite
intersection — which may be abstracted as the definition of filter.?

Definition 2.1. For I an infinite set, ¥ C ®([I) is a filter on I when (i) A < B C I and
A€ ¥ implies Be ¥, (i) A,B €% implies ANB €%, (iii) 3¢ F.

Conversely, to any filter, one can assign a (possibly empty) set of limit points: those
elements of / which belong to all A € ¥. In defining a filter, we may restrict to any
boolean algebra 8 C ®(7), asking that ¥ C ®, and adding that B in item (ii) belong to
®B. In the model theoretic context, this idea gives us a natural way to define limit points
for any model, not requiring a metric or a topology per se:

Definition 2.2. Informally, a partial type p over a model M is a filter on M for the
boolean algebra of M -definable subsets of M. [More correctly, it is a set of formulas
with parameters from M, whose solution sets in M form such a filter’] It is a type if it

2] learned this story from Maurice Mashaal’s biography of Bourbaki, which also cites biographical work of
Liliane Beaulieu. Regarding Cartan’s definition of filters: “At first [the others] met the idea with skepticism, but
Chevalley understood the importance of Cartan’s suggestion and even proposed another idea based on it (which
became the concept of ultrafilters). Once the approval was unanimous, someone yelled « boum ! » (French for
“bang!”) to announce that a breakthrough had been made — this was one of Bourbaki’s many customs.” Mashaal
[2006]

3This difference is visible in the idea of realizing a given type over M in a model N extending M . The new
limit point will belong to the solution sets, in N, of the formulas in the type. Note that 2.2 describes types of
elements, corresponding to sets of formulas in one free variable plus parameters from M. For each n > 1 there
is an analogous S;, (M) describing types of n-tuples.
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is maximal, i.e. not strictly contained in any other partial type over M. The Stone space
S(M) is the set of types over M.

A type is realized if a corresponding limit point exists in the model, otherwise it is
omitted. For example, if M = (Q, <) is the rationals considered as a linear order, S(M )
includes a type for each element of M, which are realized, and types for each irrational
Dedekind cut, for 4+o00, for —oc, and for various infinitessimals, which are omitted.

The compactness theorem for first order logic ensures that for any model M and any
type or set of types over M we can always find an extension of M to a larger model in
the same class in which all these types are realized. (Put otherwise, we may realize types
without changing the theory.) Types are fundamental objects in all that follows. From the
depth and subtlety of their interaction comes much of the special character of the subject.*

In Definition 2.2, we may use “A-definable sets” instead of “M -definable sets” for
some A € M [more correctly, formulas in one free variable with parameters from A].
In this case, call p a type or partial type of M over A. Then the following fundamental
definition, from work of Morley and of Vaught in the early 1960s, generalizing ideas from
Hausdorff on 7, sets, gives a measure of the completeness of a model.

Definition 2.3. For an infinite cardinal k, we say a model N is k+-saturated if every type
of N over every A C N of'size < k is realized in N.

For example, if M is an algebraically closed field then for any subfield K of M, the
types of M over K will include a distinct type for each minimal polynomial over K (de-
scribing a root) and one type describing an element transcendental over K. Since it is
algebraically closed, M will be «*-saturated if and only if it has transcendence degree at
least k.

3 Towards classification theory

Having described a model theoretic point of view — first, regarding a given mathematical
object as a model; second, placing it within an elementary class of models sharing the
same first-order theory; third, studying as our basic objects these theories, looking both
at how models may vary for a given theory (by paying close attention to the structure of
types) and at structural differences across theories — some first notable features of this
setup are:

#And a certain possible conversion of combinatorial into algebraic information, as in the remarkable group
configuration theorems of Zilber and Hrushovski.
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a) one can study the truth of statements of first order logic by ‘moving’ statements among
models in allowed ways.

b) when working in a given elementary class, unusual constraints observed on variation of
models may give leverage for a structural understanding of all models in the class. E.g.
Morley’s theorem, the ‘cornerstone’ of modern model theory, says that if a countable
theory has only one model up to isomorphism in some uncountable size «, then this
must be true in every uncountable size. Moreover its models must behave analogously
to algebraically closed fields of a given characteristic in the sense that, e.g., there are
prime models over sets, there are relatively few types, and for each model there is
a single invariant, a dimension (the equivalent of transcendence degree) giving the
isomorphism type.

c) simply understanding the structure of the definable sets, say in specific classes contain-
ing examples of interest, can already involve deep mathematics. For instance, Tarski’s
proof of quantifier elimination for the reals and the cell decomposition theorem for
o-minimal structures.

In the examples given so far, as is often the case in mathematics, the specific role of
the infinite may be mainly as a kind of foil reflecting the fine structure of compactness,
irrespective of the otherwise depth of proofs.

To see the interaction of model theory and set theory which we invoked at the begin-
ning, we need to go further up and further in. (As an aside, already in Hilbert’s remarks,
via Church, there is an implicit parallel between the understanding of infinite sizes and
the development of different models.®) Suppose we step back and study the class of all
theories.

A thesis of Shelah’s groundbreaking Classification Theory (1978) is that one can find
dividing lines among the class of first-order theories. A dividing line marks a sea change
in the combinatorial structure. (The assertion that something is a dividing line requires
evidence on both sides: showing that models of theories on one side are all complex in

5 A clever example is Ax’s proof that any injective polynomial map from C” to C” is surjective. For each
finite k and n, there is a sentence @, x of first order logic in the language {+, X, 0, 1} asserting that any injective
map given by (X1,...,Xn) = (P1(X1,..-,%n)s---, Pn(X1,...,Xn)) where the p; are of degree < k is
surjective. For each prime p, we may write F, as the union of an increasing chain of finite fields. The assertion
©n .k 1s true in each finite field because it is finite, and it follows (e.g. from its logical form) that ¢,, x holds in
Fp. For ® any nonprincipal ultrafilter on the primes, [],c p Fp /D is isomorphic to C, so by Los’ theorem
©n k istrue in C.

6 “Hilbert does not say that the order in which the [list of 23] problems are numbered gauges their relative
importance, and it is not meant to suggest that he intended this. But he does mention the arithmetical formu-
lation of the concept of the continuum and the discovery of non-Euclidean geometry as being the outstanding
mathematical achievements of the preceding century, and gives this as a reason for putting problems in these
areas first, ” Church [1968].
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some given sense, while models of theories on the other side admit some kind of structure
theory.) A priori it is not at all obvious that these should exist. Why wouldn’t the seem-
ingly unconstrained range and complexity of theories allow for some kind of continuous
gradation along any reasonable axis? The example of extremal combinatorics may give
a hint: graphs of a given large finite size are not so easily classifiable, but by examining
asymptotic growth rates of certain phenomena, jumps may appear.

Stability, the dividing line which has most profoundly influenced the present field,
arises in Shelah [1978] from counting limit points. For a theory 7" and an infinite cardinal
A, wesay T is A-stable if for every model M of T of size A, |[S(M )| = A. Conversely, if
some model M of T of size A has |S(M )| > A, T is A-unstable. For a given A, T is either
A-stable or A-unstable by definition. But varying A, the gap appears’:

Theorem 3.1 (Shelah 1978). Any theory T is either stable, meaning stable in all A such
that M)T! = A, or unstable, meaning unstable in all M.

This theorem materializes in step with the development of the internal structure theory.
The set theoretic scaffolding is not only in the statement, but intricately connected to its
development. A few examples from chs. II-I1I of Shelah [ibid.] will give a flavor:

1) it turns out stability is local: if T is unstable, then there is a single formula ¢ such that
in all A, we can already get many types just using definable sets which are instances
of ¢. (This leads to discovering instability has a characteristic combinatorial config-
uration, the order property.) Its proof is a counting argument relying on the fact that
T is unstable in some A such that A = A!T1,

ii) a characteristic property of stable theories is that once there is enough information,
types have unique generic extensions to types over larger sets. This is first explained
by the finite equivalence relation theorem which studies types over sets A of size at
least 2 in models which are (| 4|!T!)*-saturated.

iii) conversely, large types are essentially controlled by their restrictions to “small” sets.
The cardinal defining this use of “small,” «(T), is < |T|T. Above this cardinal the
mist clears and stability’s effects are easier to see; one can e.g. characterize larger sat-
urated models of stable theories as those which are « (T')-saturated and every maximal
indiscernible set has the cardinality of the model.

iv) instability has a more random form and a more rigid form, and at least one must occur.
To see the difference between the two by counting types, one has to know that 2* can
potentially be different from the number of cuts in a dense linear order of size A (or
the number of branches in a tree with A nodes), which was originally noted by appeal
to an independence result.

7|T|, the size of T, will be the maximum of the size of the language and 8.
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Of course, to say infinite cardinals are strongly connected to the development of sta-
bility doesn’t mean they are necessarily there at the end. The order property, definability
of types, forking, the independence property, and the strict order property, to name a few,
don’t bear the imprint of their origin. This translation is part of model theory’s power.

Looking forwards: the effect of stability, inside and outside model theory, has been
significant. Despite this conclusive evidence that some dividing lines do exist, and that
they can be very useful, further ones have been challenging to find. We know very few
in the vast territory of unstable theories, found — like stability — one by one in response to
specific counting problems. To go further, perhaps we can try to shift the way in which
set theory sounds out model theoretic information.

The reader may wonder: is model theory being described as a kind of extension to
the infinite setting of extremal arguments in combinatorics, with the hierarchy of infinite
cardinals replacing the natural numbers? This analogy is challenging, but incomplete. It
is incomplete because the finitary, extremal picture doesn’t seem to provide a precedent
or explanation for the role of model theory, which builds in a remarkable way a bridge
between the infinite combinatorial world and a more algebraic one. Still, it is challenging
because it leads us to ask what in the infinite setting may play the role of those crucial
tools of the combinatorial setting, which may seem to have little place in current model
theoretic arguments — namely, probability and randomness.

4 Ultrapowers

Only in the move to ultrapowers does one really recover, albeit in a metaphorical way, that
other key ingredient of extremal arguments, the understanding of probability and average
behavior.

Stability arises from counting limit points. Recall from 2.3 that saturation is a notion
of completeness for a model: AT -saturation means all types over all submodels of size
at most A are realized. The ultrapower construction, given formally below, starts with a
given model and amplifies it — staying within the elementary class — according to a specific
kind of averaging mechanism, an ultrafilter. The resulting larger model, which depends
only on the model we began with and the ultrafilter, is called an ultrapower. The level of
saturation in the ultrapower reflects whether the given averaging mechanism, applied to
the given model, leads to the appearance of many limit points of smaller sets.

If so, this may indicate either that the ultrafilter is powerful, or that the types of the
model are not complex. Since we can apply the same ultrafilter to different models and
compare the results, however, we can use this construction to compare the ‘complexity’ of
different models (and, dually, of ultrafilters). Restricting to the powerful class of regular
ultrafilters, whose ability to produce saturation in ultrapowers will be an invariant of the
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elementary class of the model we begin with, we can use this construction to compare the
complexity of theories. Informally for now, the relation on complete countable theories
setting 71 I T

if for any regular ultrafilter 9, if D-ultrapowers of models of T, are suffi-
ciently saturated, so are D-ultrapowers of models of T3

is Keisler’s order, defined in 1967. It is a pre-order on theories, considered as a partial
order on the equivalence classes of theories.

The theorem which convinced the author of this essay, reading around 2005, that it was
urgent to study < further was a theorem in Shelah’s Classification Theory in a chapter
devoted to the ordering. The theorem says that the union of the first two equivalence
classes in Keisler’s order is precisely the stable theories.

This theorem can be understood as saying that the class of stable theories, which we can
see by counting types, can also be seen by asking about good average behavior. Beyond
stability, our counting is less useful, and yet the other half, about average behavior, retains
its power.

5 In more detail

The idea of a filter was used in 2.2 above to find limit points, but it can also be used to
give averages. Maximal filters, called ultrafilters, can be thought of as a coherent choice
of which subsets of a given set / are “large.”

Definition 5.1. For an infinite set I, ® C ® (1) is an ultrafilter if it is a filter not strictly
contained in any other filter. (We will assume ultrafilters contain all co-finite sets.)

The ultraproduct by O of a family of models (M; : i € I) is a model, built in two
steps, reflecting the definition of model. First, we define the domain. Identify two el-
ements (a[i] : i € I), (b[i] : i € I) of the Cartesian product [[; M; if {i € I :
ali] = bli]} € 9. Definition 2.1 makes this an equivalence relation, and the domain
of our ultraproduct N is the set of equivalence classes. Next, fix for transparency a rep-
resentative of each equivalence class, so that fora € N andi € I, “a[i]” makes sense.
The relations, functions, and constants of our language are defined on the ultraproduct
by consulting the average of the models: e.g. we say a given k-place relation R holds

ondai,...,ar in N iff {i : R(ay[i],...,ar[i]) holds in M;} € 9, and for an n-place
function f, define f(ai,...,a,) to be the equivalence class of (b[i] : i € I) where
bli] = f(aili],...,an[i]) computed in M;. The special case of an ultrapower, where all

the factor models are isomorphic, transforms a given structure into a larger, ‘amplified’
model in the same elementary class. For example, letting  be a regular ultrafilter on the
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set of primes, [ [, F,/® = C, but if we consider the ultrapower M /9 where M is the
algebraic closure of the rationals, we also get C.

There is a veiled interaction between the two model theoretic uses of filters: the real-
ization of types in the ultrapower, and the ultrafilter used in the construction. This is most
useful when the ultrafilter is regular, ensuring that saturation depends only on finitary in-
put from each factor model. For each regular 9, whether or not an ultrapower M’ /9 is
|I|*-saturated is an invariant of the elementary class of the model M we began with.®

Keisler’s suggestion was that this could be used to compare theories.

Definition 5.2 (Keisler’s order, 1967). Let T, To be complete countable theories.
T\ 4T,

if for every infinite A, every regular ultrafilter O on A, every model M1 of Ty and every
model My of Ty, if (M2)* /9 is AT -saturated, then (M1)* /9 is At -saturated.

Informally, say “9 saturates 7 if for some (by regularity of &, the choice does not
matter) model M of T, M* /D is A T-saturated: all limit points over small submodels ap-
pear. Then Keisler’s order puts 77 less than 75 if every regular ultrafilter able to saturate
T, is able to saturate 77. Note that any two theories may in principle be compared — alge-
braically closed fields of fixed characteristic, random graphs, real closed fields. Keisler
proved his order was well defined and had a minimum and a maximum class (he gave a
sufficient condition for membership in each), and asked about its structure.

The crucial chapter on Keisler’s order in Shelah [1978] was already mentioned. Its
structure on the unstable, non-maximal theories was left there as an important open ques-
tion. Following Shelah [ibid.], work on Keisler’s order stalled for about thirty years. The
question was reopened in Malliaris’ thesis and in the series of papers Malliaris [2009,
2010b,a, 2012a,b], guided by the perspective described above. Then in the last few years,
a very productive ongoing collaboration of Malliaris and Shelah [2015a, 2014a, 2013a,b,
2016a,b, 2018b]... has advanced things considerably.

6 The current picture

Along this road, what does one find?

(a) First, we do indeed see evidence of dividing lines — many more than previously thought.
Much remains to be done in understanding them and in characterizing the structure/nonstructure
which come with the assertion of a dividing line, but already their appearance, in a region

8That can be taken as a definition of regular; alternatively, 9 is a regular ultrafilter on I if there is a set
{Xo : @ < |[I|} € 9 such that the intersection of any infinitely many of its elements is empty. Regular
ultrafilters are easy to build and exist on any infinite set.
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of theories thought to be relatively tame, is surprising and exciting. In Malliaris and She-
lah [2018b], Malliaris and Shelah prove that Keisler’s order has infinitely many classes.
The theories which witness these different classes come from higher analogues of the
countable triangle-free random graph, originally studied by Hrushovski [2002]: the infi-
nite generic tetrahedron-free three-hypergraph, the infinite generic 4-uniform hypergraph
with no complete hypergraph on 5 vertices, and so on. The proof shows they may have
very different average behavior, as reflected in their differing sensitivity to a certain degree
of calibration in the ultrafilters.

These results build on advances in ultrafilter construction, which allow for a greater
use of properties of cardinals, even for ultrafilters in ZFC.

Several incomparable classes are known Malliaris and Shelah [2018a], Ulrich [2017],

Malliaris and Shelah [2015b] and it may be that future work will reveal many. Perhaps
the way that such averages could be perturbed or distorted, and by extension the structure
of dividing lines among unstable theories, will be much finer than what we now see. If so,
even independence results could be quite useful model theoretically. These may simply
witness that the boolean algebras associated to different theories are essentially different,
because they react differently to certain exotic averaging mechanisms, when these appear.
The internal theories of each equivalence class, giving an account of what allows for the
different reactions, would presumably be, like IP or SOP, absolute.
(b) Second, this line of work has led to some surprising theorems about the finite world.
These theorems have the following general form. We know that among theories with
infinite models, stability is a dividing line, with models of stable theories admitting a
strong structure theory. There is a specific combinatorial configuration, the order property,
which (in infinite models) characterizes instability. In an infinite graph, instability for the
edge relation would correspond to having arbitrarily large half-graphs, that is, for all k
having vertices ai,...,ax and by, ..., by with an edge between a; and b; iff i < j.
(Note that there are no assertions made about edges among the a’s and among the b’s, so
in forbidding k-half graphs, we forbid a family of configurations.) The thesis of Malliaris
and Shelah [2014b] is essentially that finite graphs with no long half-graphs, called stable
graphs, behave much better than all finite graphs, in the sense predicted by the infinite
case.

Szemerédi’s celebrated regularity lemma says, roughly, that for every ¢ > 0 there
is N = N(e) such that any sufficiently large graph may be equitably partitioned into
k < N pieces such that all but at most ek? pairs of pieces have the edges between them
quite evenly distributed (i.e. are e-regular). The elegant picture of this lemma absorbs the
general complexity of graphs in two ways: first, by work of Gowers, N is a very large
function of €; second, as noticed independently by a number of researchers, the condition
that some pairs of pieces be irregular cannnot be removed, as shown by the example of
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half-graphs (Komlos and Simonovits [1996]). As a graph theorist, one might expect half-
graphs to be just one example of bad behavior, not necessarily unique; but in light of the
above, a model theorist may guess that in the absence of long half-graphs one will find
structured behavior. The stable regularity lemma of Malliaris and Shelah [2014b] shows
that indeed, half-graphs are the only reason for irregular pairs: finite stable graphs admit
regular partitions with no irregular pairs and the number of pieces singly-exponential in €.

A second theorem in that paper, a stable Ramsey theorem, proves that for each k there
is ¢ = c¢(k) such that if G is a finite graph with no k-half graphs then G contains a
clique or an independent set of size |G |¢, much larger than what is predicted by Ramsey’s
theorem. This meets the prediction of the Erdés-Hajnal conjecture, which says that for
any finite graph H there is ¢ = ¢(H) such that if G contains no induced copies of H then
G contains a clique or an independent set of size |G|¢. But very few other cases of this
conjecture are known. What is the contribution of the infinite here? The infinite version
of Ramsey’s theorem says that a countably infinite graph contains a countable clique or a
countable independent set. Extending this to larger cardinals doesn’t get far: Erdds-Rado
shows the graph and the homogeneous set may not, in general, increase at the same rate.
Model theory, however, refracts this result across different classes of theories, and across
dividing lines, and in some classes, such as the stable theories, it behaves differently: the
existence of large sets of indiscernibles in stable theories implies, a fortiori, that an infinite
stable graph of size ™ will have a clique or independent set of size « T, much larger than
predicted by Erdés—Rado. Once one knows where to look, one can find the analogous
phenomenon in the finite case (also for hypergraphs).

The stable Ramsey theorem was applied by Malliaris and Terry [2018] to re-prove a
theorem in the combinatorics literature, by re-organizing the proof into cases which take
advantage of the stable Ramsey theorem, and thus to obtain better bounds for the origi-
nal theorem; finitary model-theoretic analysis may be useful even where model theoretic
hypotheses are not used in the theorems.

It may seem that these theorems of Malliaris and Shelah [2014b], from the first joint
paper of Malliaris and Shelah, could in principle have been discovered earlier, and yet
they were not. They belong to the perspective of this program in a deep way. They were
motivated by work in Malliaris [2010b] and Malliaris [2010a], directed towards Keisler’s
order, which first applied Szemerédi regularity to study the complexity of formulas (and
showed that the simple theories, of special interest in Keisler’s order, were in some sense
controlled by stable graphs).

(c) Third, by means of these methods model theory has paid an old debt to set theory and
general topology, by solving a seventy-year-old problem about cardinal invariants of the
continuum. Two infinite cardinals, p and t, known to be uncountable but no larger than
the continuum, are shown in Malliaris and Shelah [2013b], Malliaris and Shelah [2016a]
to be unconditionally equal. The proof is model-theoretic, and comes in the context of
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the solution of an a priori unrelated problem, determining a new sufficient condition for
maximality in Keisler’s order.

In slightly more detail, in order for a regular ultrafilter to handle the most complex the-
ories, those in the maximum class, it must be in some sense very balanced. Distortions
and so to speak imperfections which might pass unnoticed in more robust theories will
translate immediately in maximal theories to the omission of types. However, a surpris-
ing fact from Shelah [1978] is that what is needed for the theory to be complex is not
necessarily that it be expressive. A kind of brittleness or overall rigidity as exemplified by
the theory of linear order will also suffice. Remarkably, it turns out even less will suffice:
the engine of the proof in Malliaris and Shelah [2016a] is in showing that if the ultrafilter
can ensure certain paths through trees have upper bounds, it must be strong enough to pro-
duce the needed limit points for any theory. The resulting comparison of theories whose
models contain the relevant trees, to models of linear orders, via ultrapowers, turns out to
be parallel in a precise sense to the comparison of p and t. It was possible to give a fun-
damental model-theoretic framework encompassing both problems and so to solve them
both. A commentary and an expository account of the proof are Moore [2013], Casey and
Malliaris [2017].

Still, a model theoretic necessary condition for maximality remains open.

It has been almost ten years since Malliaris [2009]. Profound questions remain, urgent in
their simplicity.

Appendix: on definable sets

By convention, we always assume our language £ contains a binary relation symbol =,
and that in every £-model this symbol is interpreted as equality. Besides the symbols of £,
our alphabet for building formulas includes infinitely many variables along with logical
symbols (,), A, V, -, <=, = ,V,3.

For awhile let M, denote a model for the language £, = {+, x,—,0, 1, <}, where +,
x, — are binary function symbols, < is a binary relation, and 0, 1 are constants. Let us say
the domain of M, is R and the symbols have their usual interpretation.’

The ferms of a language are elaborate names. We define terms by induction. All vari-
ables and constant symbols are terms; if f is a k-place function symbol and 1, . . ., #; are
terms, then f(f1,...,1) is a term; and a finite string of allowed symbols is a term iff it
can be built in finitely many steps in this way.

9Pedantically, the form of the symbols makes no demands on their interpretation (other than the basic condi-
tions in the footnote on p. 102); we could, for example, give a perfectly valid model by interpreting both + and
X by projection onto the first coordinate.
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The £,-terms include 0, 1, 1 + 1 which we may abbreviate 2, x + 1, x x y, (x x 1) +
(y +0), ((x x x) x x) which we may abbreviate x. Using similar abbreviations, and
dropping parentheses for readability, x> + 15x2 + 3x + 5 is also a term.

A key feature of terms is that if’ we are working in a model, and we are given a term
along with instructions of which elements of the model to put in for which, if any, variables
in the term (recall that in any model, any constant symbols must already refer to specific
elements), then the term will evaluate unambiguously to some other element of the model.

Next, by induction, we define formulas. Atomic formulas are assertions that a given
relation symbol of our language holds on a given sequence of terms. (In £,, the relation
symbols are = and <, so these will include x®+5x+2 = O and also 5+x+15y2 > 37—z.)
Atomic formulas are formulas. If ¢ is a formula, then —(¢) is a formula. If ¢ and ¥ are
formulas, then (¢ A ¥), (¢ V¥), (¢ = V), (¢ < V) are also formulas. If ¢
is a formula, and x is a variable, then (3x)¢ and (Vx)g are formulas. A finite string of
allowed symbols is a formula iff it can be built in finitely many steps in this way.

In our example here are some more formulas: (Vx)(x +0 = x), (3x)(y + x2 = z).
Note an important difference between the two. (Vx)(x+0 = x) is an assertion which will
be true or false in any given model; in our given M, it is true. By contrast, (3x)(y +x2 =
z) is neither true nor false, since it has two free variables; rather, it has a solution set, the
pairs (a, b) of elements of M such that (3x)(a + x? = b). In any model N, the solution
sets of formulas with one or more [but always finitely many] free variables are called the
definable sets. The closure properties of the set of formulas show that for each n, the
definable sets on N form a boolean algebra.

The formulas with no free variables are called sentences, and the theory of a model
N is the set of all sentences which hold in N. The elementary class of N is the class
of all other models in the same language with the same theory. The reason a theory may
make assertions about definable sets which are meaningful across different models is by
referring to their defining formulas.

When a formula has many free variables, it may be useful to look at the restricted
solution set we get after specifying that certain of the free variables take certain values in
the model. For example, in the formula xy? + zy + w = 0 with free variables x, y, z, w,
we might want to consider the solution set under specific values of x, z and w. Such a
solution set is called definable with parameters, the specific values being the parameters.
We may wish to record their provenance: given a subset A of a model N, the sets definable
with parameters from A are called A-definable sets. Finally, a word on types. Given M
and A C M, the set of formulas with parameters from A and (say) one free variable can
be made into a boolean algebra once the formulas are identified up to logical equivalence
(equivalently, identified if they define the same set in M). Its Stone space is the set of
types of M over A in the sense of 2.2 above, and its compactness as a topological space
is explained by the compactness theorem.
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Some examples — here, definable means with parameters:

1) in the model M, above, the definable sets include the semialgebraic sets (and it is a
theorem that they are exactly the semialgebraic sets). Its elementary class is the class
of real closed ordered fields.

2) if £ = {+,x,—,0,1} and M is the algebraic closure of the rationals on which the
symbols have their usual interpretation, the definable sets include (and, in fact, are) the
constructible sets. The elementary class of M is the class of all algebraically closed
fields of characteristic zero.

3) if £ = {<, }, and M is the rationals on which < has its usual interpretation, the defin-
able sets in one free variable are finite unions of points and intervals (and the definable
sets in k > 1 free variables satisfy a cell decomposition theorem). The elementary
class of M, the class of dense linear orders without a first or last element, has only one
countable model, up to isomorphism, but 2* nonisomorphic models of each uncount-
able size A.
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QUIVERS WITH RELATIONS FOR SYMMETRIZABLE
CARTAN MATRICES AND ALGEBRAIC LIE THEORY

CHRISTOF GEIf3

Abstract

We give an overview of our effort to introduce (dual) semicanonical bases in the
setting of symmetrizable Cartan matrices.

1 Introduction

One of the original motivations of Fomin and Zelevinsky for introducing cluster algebras
was “to understand, in a concrete and combinatorial way, G. Lusztig’s theory of total pos-
itivity and canonical bases” Fomin [2010]. This raised the question of finding a cluster
algebra structure on the coordinate ring of a unipotent cell, and to study its relation with
Lusztig’s bases. In a series of works culminating with Geil3, Leclerc, and Schréer [2011]
and Geil3, Leclerc, and Schrder [2012], we showed that the coordinate ring of a unipotent
cell of a symmetric Kac-Moody group has indeed a cluster algebra structure, whose cluster
monomials belong to the dual of Lusztig’s semicanonical basis of the enveloping algebra
of the attached Kac-Moody algebra. Since the semicanonical basis is built in terms of
constructible functions on the complex varieties of nilpotent representations of the prepro-
jective algebra of a quiver, it is not straightforward to extend those results to the setting of
symmetrizable Cartan matrices, which appears more natural from the Lie theoretic point
of view. The purpose of these notes is to give an overview of Geil3, Leclerc, and Schrder
[2017a] - Geil3, Leclerc, and Schroer [2017d], where we are trying to make progress into
this direction.

The starting point of our project was Hernandez and Leclerc [2016], where they ob-
served that certain quivers with potential allowed to encode the g-characters of the Kirillov-
Reshetikhin modules of the quantum loop algebra U, (Lg), where g is a complex simple
Lie algebra of arbitrary Dynkin type. This quiver with potential served as model for the
definition of our generalized preprojective algebras II = IIg (C, D) associated to a sym-
metrizable Cartan matrix C with symmetrizer D over an arbitrary field K, which extends
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the classical construction of Gelfand and Ponomarev [1979]. After the completion of a
preliminary version of Geil3, Leclerc, and Schroer [2017a] we learned that Cecotti and
Del Zotto [2012] and Yamakawa [2010] had introduced similar constructions for quite
different reasons. In comparison to the classical constructions of Dlab and Ringel [1974],
Dlab and Ringel [1980] for a symmetrizable Cartan matrix C, we replace field extensions
by truncated polynomial rings. Many of the core results of representations of species carry
over over to this setting if we restrict our attention to the so-called locally free modules,
see Geil, Leclerc, and Schroer [2017a]. In particular, we have for each orientation €2 of
C an algebra H = Hg(C, D, Q) such that in many respects II can be considered as the
preprojective algebra of H. Our presentation of these results in Section 3 is inspired by
the thesis Geuenich [2016], he obtains similar results for a larger class of algebras.

Since our construction works in particular over algebraically closed fields, we can ex-
tend to our algebras H and II several basic results about representation varieties of quivers
and of varieties of nilpotent representations of the preprojective algebra of a quiver in our
new context, again if we restrict our attention to locally free modules, see Section 4. Nan-
dakumar and Tingley [2016] obtained similar results by studying the set of K-rational
points of the representation scheme of a species preprojective algebra, which is defined
over certain infinite, non algebraically closed fields K.

In our setting we can take K = C, and study algebras of constructible functions on
those varieties of locally free modules and realize in this manner the universal enveloping
algebra U (n) of the positive part n of a complex semisimple Lie algebra, together with a
Ringel type PBW-basis in terms of the representations of H. For arbitrary symmetrizable
Cartan matrices we can realize U (n) together with a semicanonical basis, modulo our
support conjecture, see Section 5.

Conventions. We use basic concepts from representation theory of finite dimensional
algebras, like Auslander-Reiten theory or tilting theory without further reference. A good
source for this material is Ringel [1984]. For us, a quiver is an oriented graph 0 =
(Qo, 01, s,t) with vertex set Qg, arrow set Q1 and functions s,7: Q1 — Q indicating
the start and terminal point of each arrow. We also write D = Homg (—, K). We say that
an A-module M is rigid if Exty (M, M) = 0.

2 Combinatorics of symmetrizable Cartan matrices
2.1 Symmetrizable Cartan matrices and quivers. Let I = {1,2,...,n}. A sym-

metrizable Cartan matrix is an integer matrix C = (c;;) € Z?*! such that the following
holds:

s ¢;; =2foralli e [ andc;; <Oforalli # j,



QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN MATRICES 119

« there exist (¢;)ie; € NZ such that diag(cy, ..., c,) - C is a symmetric.

In this situation D := diag(cy,...,c,) € Z1*! is called the symmetrizer of C. Note that
the symmetrizer is not unique. In particular, for all k € N also kD is a symmetrizer of
C.

It is easy to see that the datum (C, D) of a symmetrizable Cartan matrix C and its
symmetrizer D is equivalent to displaying a weighted graph (T, d) with

* I the set of vertices of I,
* gij = ged(cij, ¢j;i) edges between i and j,
ed: ] > N,,iq.

lem(c;,c;)

Here we agree that gcd(0, 0) = 0. We have then ¢;; = —— ¢ gij foralli £ J.

2.2 Bilinear forms, reflections and roots. We identify the root lattice of the Kac-
Moody Lie algebra g(C) associated to C with 71 = ®;e1Za;, where the simple roots
(a;)ier form the standard basis. We define on 7' by

(i ot)c,p = cicij,

a symmetric bilinear form. The Weyl group W = W (C) is the subgroup of Aut(Z'),
which is generated by the simple reflections s; fori € I, where

The real roots are the set

The fundamental region is
F :={a € NT | supp(a) is connected, and (a, a;)c,p < 0 foralli € I}.

Here, supp(«) is the full subgraph of I'(C) with vertex set {i € I | a(i) # 0}. Then the
imaginary roots are by definition the set

Ain(C) := W(F)U W(=F).
Finally the set of all roots is

A(C) i= A U Ajy (C).
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The positive roots are AT (C) := A(C)NNZ, and it is remarkable that A(C) = AT (C)uU
—AT(C).

A sequence i = (i1,ia,...,1]) € 1! is called a reduced expression for w € W if
w = s, - i, 8i, and w can’t be expressed as a product of less than / = /(w) reflections
of the form s; (i € I). In this case we set

(21) ﬂi,k =80 Siy  Sig (aik) and Vik *= SiySij_y * Sig gy (aik)

fork = 1,2,...,/, and understand B = o;, as well as y;; = o;,. It is a standard fact
that B; x € AT fork =1,2,...,1, and that these roots are pairwise different. Obviously,

w(Bix) =—vikfork=1,2,...,1L
The following result is well known.

Proposition 2.1. For a connected, symmetrizable Cartan matrix C the following are
equivalent:

* C is of Dynkin type.

» The Weyl group W (C) is finite.

¢ The root system A(C) is finite
 All roots are real: A(C) = Ap(C).

Moreover, if in this situation i is a reduced expression for wy, the longest element of W,

then AT = {Bi1.Biz2..... B}

2.3 Orientation and Coxeter elements. An orientation of C isaset Q2 C I x I such
that

QN {GE 7). (i)} >0 c¢ij <O,

» for each sequence i1, iz, ..., igr1 With (ij,i;41) € Qfor j =1,2,...,k we have
i1 # kg1

The orientation {2 can be interpreted as upgrading the weighted graph (I', d) of (C, D) to

W %) from j to 7 if (i, j) € ©, such

a weighted quiver (Q°, d) with g;; arrows oy

that Q° = Q°(C, ) has no oriented cycles.
For an orientation © of the symmetrizable Cartan matrix C € Z/*! andi € I we
define

5i(Q):={(r,s) e Q)i &{r,s}}n{(s,r) el xI]|(r,s)eQandi € {r,s}}.
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Thus, in Q°(C, s;(2)) the orientation of precisely the arrows in Q°(C, ), which are
incident with 7, is changed. If i is a sink or a source of Q°(C, 2) then s; (§2) is also an
orientation of C. It is convenient to define

Q= i)=4{jel|(j,i)eQandQ(j,—):={iel]|(ji)eQ}

We have on Z! the non-symmetric bilinear form

Ci ifi = j,
(2.2) (—=)epa: N x 2! — Z, (i, ;) v qeici;  if (j.0) € 9,
0 else.
We leave it as an exercise to verify that
(2.3) (. B)c.p,o = (si(@),si(B))c.p.si (2
if i is a sink or a source for 2.
We say that a reduced expressioni = (i1, iz, ...,i;) of w € W is +-admissible for ) if
i1 is a sink of Q°(C,Q), and iy is a sink of Q°(C,s;,_, -+~ 5i,58:,(Q)) fork =2,3,...,1.
If moreover I = n and {iy,...,i,} = I, we say that ¢ = s;, ---s;,5;, is the Coxeter

element for (C, Q).

2.4 Kac-Moody Lie algebras. For a symmetrizable Cartan matrix C € Z'*!, the
derived Kac-Moody Lie algebra ¢’ = g’(C) over the complex numbers has a presentation
by 3n generators e;, h;, f; (i € I) subject to the following relations:

() [ei, f7] = Sijhi;
(i) [hi, hj]=0;
(i) [hi.ej] = cijej.  [his fi] = —cij /i
(iv) (ade;)' ™ (e;) = 0. (ad i)™ (f;) =0 (i #]).

Note that for C of Dynkin type this is the Serre presentation of the corresponding semisim-
ple Lie algebra. In case rank C < |I| we have of g¢’(C) # g(C) and the latter has in this
case a slightly larger Cartan subalgebra, which makes for a more complicated definition,
see for example Geil}, Leclerc, and Schrder [2017¢, Sec. 5.1] for a few more details. Of
course, the main reference is Kac [1990].

Let 1 = u(C) be the Lie subalgebra generated by the ¢; (i € I). Then U(n) is the
associative C-algebra with generators e; (1 <i < n) subject to the relations

(2.4) (ade;) i (e;) =0, (i,jeli#j).



122 CHRISTOF GEIf

U(n)is N/ graded with deg(e;) = a; (i € I). With
g :=uNU(n)y fora € AT(C)

we recover the usual root space decomposition of 1.

3 Quivers with relations for symmetrizable Cartan matrices

We keep the notations from the previous section, in particular C € Z*! is a symmetriz-
able Cartan matrix with symmetrizer D and (2 is an orientation for C.

3.1 Aclass of 1-Twanaga-Gorenstein algebras. Let K beafieldand Q = Q(C, D, Q)
the quiver obtained from Q°(C, D, ), see Section 2.3, by adding a loop ¢; at each vertex
i € I. Then H = Hg(C, D, () is the path algebra KQ modulo the ideal which is
generated by the following relations:

. ¢ foralli €I

. ei_c"i/g"’al.(jl.c) —al.(]l.c)e;ci"/g"i forall (i,j) € Qandk =1,2,...g;;.
Recall that g;; = gj; = ged(cij, ¢ji), thus —c;j/gij = lem(ci, cj)/ci.

For (i, j) € Qletcj; = cij/gij and ¢; = c;i/gij. We may consider the following
symmetrizable Cartan matrix, symmetrizer and orientation:

C(w):(c/ CU)» D(””:(Cl O) and - Q) = {(i. )}.

i 2 0 ¢y
Thus,
00) .= o(C) Qi) = {;i ) ij
and
HOD = Hy (), pld) Qid)) = KQ(i’j)/(el-ci,ejj,ei_cj"a,-j _aije;ch_

Note, that with
iH]/- = eiH(i’j)ej and H,‘ = e,-H,-ei = K[Gi}/(éici)

itis easy to see that; H; := ,-H; ®8ij isa H;-H j-bimodule, which is free of rank —¢;; as a
H;-module, and free of rank —c;; as H j-(right)-module. If we define similarly H i) .=
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HK(C(i’j), D(i’j), {(], l)}) and jHi/ = €jH(j’i)€j, then jHi = jHl-/@gij isa Hj—Hi-
bimodule, which is free of rank —c;; as Hj-module and free of rank —c;; as H;-(left)-
module. It is easy to see that we get an isomorphism of H;-H ;-bimodules

iHj = HomK(jHi,K).

The adjunction yields for H;-modules My, for k € {i, j}, anatural isomorphism of vector
spaces

3.D HomHi(,-Hj ®H, Mj,Mi) — HomHj(Mj,]-H,- ®H,; M), f— fv.

Quite similarly to the representation theory of modulated graphs, in the sense of Dlab
and Ringel [1974], we have the following basic results from Geil3, Leclerc, and Schrder
[2017a, Prop. 6.4] and GeiB, Leclerc, and Schréer [ibid., Prop. 7.1].

Proposition 3.1. Set H := Hg(C,D,Q). With S := X;er H; we can consider B :=
@ iHj as an S-S-bimodule and find:
(i,7)€Q

(@) H=Ts(B):= @ B®S/ je. H is a tensor algebra.
JEN

(b) There is a canonical short exact sequence of H-H -bimodules

$ m
0> H®s BRs H>Hes H™ H -0,

where §(h; ® b ® hy) = hib ® hy — h; ® bh,.

Note that the H-H-bimodules H ®s B ®s H and H ®s H are in general only pro-
jective as H -left- or right-modules, but not as bimodules. Anyway, the above sequence
yields a functorial projective resolution for certain modules which we are going to define
now. We say that a H-module M is locally free if e; M is a free H;-module forall i € .
In this case we define

rank(M ) := (rankg, (e; M ))ier.
For example, there is a unique (indecomposable) locally free H-module E; with
rank(E;) = o; for each i € I. For later use we define for all r € N’ the module

E' := ®jer Elr (i), and observe that rank(E") = r. Let us write down the following con-
sequences of Proposition 3.1, see Geil, Leclerc, and Schréer [ibid., Sec. 3.1] and GeiB3,
Leclerc, and Schréer [ibid., Cor.7.1].

Corollary 3.2. For H as above we have:
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(a) The projective and injective H-modules are locally free. More precisely we have
rank(He;, ) = Bix and rank(De; H) = yix fork € I,
where i is a reduced expression for the Coxeter element of (C, 2).

(b) Each locally free H-module M has a functorial projective resolution

mult

§
0> H®sBosM 2% Hesm ™ M —o.
Moreover, if M is not locally free, then proj. dim M = oo.

(c) H is I-Iwanaga-Gorenstein, i.e. proj.dim(ygDH) < 1 and inj.dim(gH) < 1.
Moreover an H-module M is locally fiee if and only if proj. dim(M) < 1.

It follows that the Ringel (homological) bilinear form descends as the non-symmetric
bilinear form (2.2) to the Grothendieck group of locally free modules, where we iden-
tify the classes of the generalized simples E; with the coordinate vector oi; (i € 1), see
also Geil}, Leclerc, and Schroer [2017a, Prop. 4.1].

Corollary 3.3. If M and N are locally free H-modules, we have
dim Hompg (M, N) — dimExty; (M, N) = (rank(M ), rank(N ))c.p.a.

By combining Corollary 3.2 with standard results from Auslander-Reiten theory we
obtain now the following result.

Corollary 3.4. Let M be an indecomposable, non projective, locally free H -module such
that the Auslander-Reiten translate tg M is locally free. Then

rank(ty M) = c - (rank(M)),

where ¢ = s;, -+-5;, is the Coxeter element for (C,SY). Moreover, if we take R € 7./*1,

such that D - R is the matrix of (—, —)c,p,q With respect to the standard basis, we get
¢c=—-RY(C -R).

This is the K-theoretic shadow of a deeper connection between the Auslander-Reiten
translate and reflection functors, which we will discuss in the next subsection.

3.2 Auslander-Reiten theory and Coxeter functors. By Proposition 3.1 we may view
H = Hg(C, D,Q) as a tensor algebra. Thus, we identify a H-module M naturally with
a S-module M = @;e1 M; together with an element (M;;) i, j)eq of

(32) HM):= P eHomp, (iH; ®u; M;. H,).
(i-)e
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Write s; (H) := Hy(C, D,s;(Q)) forany i € I. Ifk is a sink of Q°(C, 2), we have for
each H-module M a canonical exact sequence

(3.3)

M in
0— Ker(Mk,m) — @ kHj ®Hj Mj L) M., where Mk,in = ®jeQ(k,—)Mkj-
JeQ(k,—)

We can define now the BGP-reflection functor
M; ifi #k,

F': rep(H) — rep(s;(H)), (FM); =
¢ rep(H) > rep(si (H)). (FIMyi= g 0T

We can moreover define in this situation dually the left adjoint F,~: rep(sx(H)) —
rep(H ). Note that k is a source of Q°(C,s;€2). See Geil}, Leclerc, and Schrder [ibid.,
Sec. 9.2] for more details. We observe that the definitions imply easily the following:

Lemma 3.5. Ifk is a sink for Q and M is a locally free H-module which has no direct sum-
mand isomorphic to Ey, and Fk+ (M) is locally free, then rank(F,:'M) = sy (rank(M)).

The proof of Geil3, Leclerc, and Schréer [ibid., Prop. 9.6] implies the following, less
obvious result:

Lemma 3.6. Suppose that k is a sink for Q and M a locally free rigid H-module, with
no direct summand isomorphic to Ey, then Homyg (M, Ey) = 0.

We can interpret F; k+ as a kind of APR-tilting functor Auslander, Platzeck, and Reiten
[1979]. See GeiB, Leclerc, and Schrder [2017a, Sec. 9.3] for a proof of this non-trivial
result.

Theorem 3.7. Let k be asinkof Q°(C,<)). Then X := g H/He, &t~ Hey is a classical
tilting module for H. With B := Endg (X)° we have an equivalence S : rep(s(H)) —
rep(B) such that the functors S o F;" and Homp (X, —) are isomorphic.

Standard tilting theory arguments and Auslander—Reiten theory, together with
Lemma 3.5 and Lemma 3.6 yield the following important consequence:

Corollary 3.8. Let k € I be a sink for Q) and M a locally free rigid H-module, then
Fk+ (M) is a rigid, locally free sy (H )-module.

Consider the algebra automorphism of H, which is defined by multiplying the non-loop
arrows of Q(C, Q) by —1. It induces the so called twist automorphism 7': rep(H) —
rep(H ). Moreover, let s;, ---s;,5;, be the Coxeter element for (C, ), corresponding to
the +-admissible sequence i1, is, . . ., i, see Section 2.3. Now we can define the Coxefer
functor

Ct:= Fl:' 0---0 Fij o Fi‘f: rep(H) — rep(H).
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Following ideas of Gabriel [1980, Sec. 5], by a careful comparison of the definitions
of the reflection functors and Auslander—Reiten translate, we obtain the following result.
See Geil}, Leclerc, and Schrder [2017a, Sec. 10] for the lengthy proof.

Theorem 3.9. With the H-H -bimodule Y := Exty, (DH, H) we have an isomorphism of
endofunctors of rep(H ):
Homg(Y,—)x=ToCt

If M is locally free, we have functorial isomorphisms
tg(M) =~ Homy(Y,M) and tuzM =Y @u M.

In particular, in this case the Coxeter functor Ct and the Auslander—Reiten translate t
may be identified up to the twist T .

Itis not true in general that the Auslander—Reiten translate of a locally free H-module is
again locally free. In GeiB3, Leclerc, and Schroer [ibid., pp. 13.6—13.8] several examples of
this behavior are documented. This motivates the following definition. A H-module M is
t-locally free if T M is locally free for all k € Z. In particular, rigid locally free modules
are t-locally free. We call an indecomposable H -module preprojective, resp. preinjective,
if it is of the form t=%(He;) resp. t*(De; H) for some k € Ny and i € I. Thus, these
modules are particular cases of rigid t-locally free modules.

3.3 Dynkin type. By combining the findings of previous section with standard Aus-
lander—Reiten theory and the characterization of Dynkin diagrams in Proposition 2.1, we
obtain the following analog of Gabriel’s theorem, see Geil3, Leclerc, and Schrder [ibid.,
Thm. 11.10].

Theorem 3.10. Let H = Hg (C, D, QY) be as above. There are only finitely many isomor-
phism classes of indecomposable, t-locally free H-modules if and only if C is of Dynkin
type. In this case the map M +— rank(M) induces a bijection between the isomorphism
classes of indecomposable, T-locally free modules and the positive roots AT (C). More-
over, all these modules are preprojective and preinjective.

Note however, that even for C of Dynkin type, the algebra H(C, D,(?) is in most
cases not of finite representation type, see Geif3, Leclerc, and Schrder [ibid., Prop. 13.1]
for details.

Let C be a symmetrizable Cartan matrix of Dynkin type and i = (i1, i2,...,i,) a re-
duced expression for the longest element wq of the Weyl group W, which is +-admissible
for the orientation 2. With the notation of (2.1) we abbreviate 8; = B ; forj =1,....r,
and recall that this gives a complete list of the positive roots. By Theorem 3.10 we have
for each j a unique, locally free, indecomposable and rigid representation M (8;) with

rank(M (B;)) = B;-
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Proposition 3.11. With the above notations we have

dimHomp (M (B:). M (B;)) ifi < j.
—dimExty (M (B:). M (B;)) ifi > j.

In particular, Hompg (M (B;), M (B;)) = 0ifi > j and Exty (M (B;), M(B;)) = 0 if
i<

(Bi.Bj)c.p.o =

In fact, by Theorem 3.7 and equation (2.3) we may assume that eitheri = 1 or j = 1.
In any case M (B1) = E;, is projective. In the first case we have Exty, (E1, M (B;)) =0
In the second case we have Homg (M (8;), E;;) = 0 by Lemma 3.6. Now our claim
follows by Corollary 3.3.

The next result is an easy adaptation of similar results by Dlab and Ringel [1979] for
species. The proof uses heavily Proposition 3.11 and reflection functors. This version was
worked out in Omlor’s Masters thesis Omlor [2016], see also Geil3, Leclerc, and Schroer
[2017d, Sec. 5].

Proposition 3.12. With the same setup as above let k € {1,2,...,r} and
m = (my,...,m;) € N" such that By = Y;_,m;B; and my = 0. Then M (By)
admits a non-trivial filtration by locally free submodules

0= M) C Mu) C--- C Mgy = M)

such that M(jy/Mj—1y = M(B;)" for j =1,2,...,r. It follows, that M (By) has no
filtration by locally free submodules

OZM(r) C M(r_l) Cc---C M(O) :M(ﬂk)v
such that rank( MUY /MU))y =m;B; for j =1,2,....,r

3.4 Generalized preprojective algebras. Let 0 = O (C) be the quiver which is ob-

(€]

tained from Q(C, ) by inserting for each (i, j) € 2 additional g;; arrows o i

(&ij)

o from i to j, and consider the potential
(k) , (k) ~cij /8i (k) (k) —cji/gi
Z Z Oji ®ij '” ”_au ®ji € .
(i,j)EQ k=1

The choice of €2 only affects the signs of the summands of W. Recall that for a cyclic path
a10g - --oy in Q by definition

9 (arorg - ap) = > iy agonan o
ie{je[L,l]loj=a}
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The generalized preprojective algebra of H is
N =11(Q,D):=KO/(F*W) lyeq,> & lier)-

It is easy to see that IT does not depend on the choice of €2, up to isomorphism. Notice
that for (i, j) € Q2 we have
9 (W) = algllf)efCij/gij _éfcji/gij (k)

o
(k) j i o
o

It follows, that for any orientation €2 of C we can equip Il (C, D) with a Ny-grading by
assigning each arrow agf) with (i, j) € Q degree 1 and the remaining arrows get degree
0. We write then

o0
Mk (C. D) = @1(C. D.Q);.
i=0
and observe that IIx (C, D,Q)o = Hg(C, D, ). We obtain from Theorem 3.9 the fol-

lowing alternative description of our generalized preprojective algebra, which justifies its
name:

Proposition 3.13. Let C be a symmetrizable Cartan matrix with symmetrizer D, and )
an orientation for C. Then, with H = Hg (C, D, <)) we have

II(C, D, ), = Exty (DH, H)

as an H-H -bimodule, moreover

I

II(C, D) = Ty (Exty (DH,H)) and glI(C, D)

@ t,}kHe,-.

iel,keNg

Here the first isomorphism is an isomorphism of K-algebras, and the second one of H -
modules.

Similarly to Proposition 3.1 we have the following straightforward description of our
generalized preprojective algebra as a tensor algebra modulo canonical relations Geil3,
Leclerc, and Schroer [2017a, Prop. 6.1], which yields a standard bimodule resolution.
See GeiB, Leclerc, and Schrder [ibid., Sec. 12.1] for the proof, where we closely fol-
low Crawley-Boevey and Shaw [2006, Lem. 3.1]. See also Brenner, Butler, and King
[2002, Sec. 4].

Proposition 3.14. Let C be a symmetrizable, connected Cartan matrix and11 := g (C, D).
With B == @i, jyea (i H;®, H;) we have Il = Ts(B) /{0 (W) lier), where we interpret

8§ly.°(W) € B ®s B in the obvious way. We obtain an exact sequence of II-TI-bimodules

_ h
(3.4) Mes L M es Bos S e I 1T - 0,



QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN MATRICES 129

where
flei®e) =02 (W)®ei +e ®IT(W), gles®b®ej)=eib®ej—e; ®be,

and h is the multiplication map. Moreover Ker(f) = Homp(DIL II) if C is of Dynkin
type, otherwise f is injective.

We collect below several consequences, which can be found with detailed proofs in GeiB,
Leclerc, and Schroer [2017a, Sec. 12.2]. They illustrate that locally free II-modules be-
have in many aspects like modules over classical preprojective algebras. Note that part (b)
is an extension of Crawley-Boevey’s remarkable formula Crawley-Boevey [2000, Lem. 1]

Corollary 3.15. Let C be a connected, symmetrizable Cartan matrix, and 11 = Il (C, D)
as above. Moreover, let M and N be locally free 11-modules.

(a) If N finite-dimensional, we have a functorial isomorphism

Extf;(M, N) = D Ext;;(N, M).

(b) If M and N are finite-dimensional, we have

dim Ext{;(M, N) = dim Homp (M, N)+dim Homy; (N, M) — (rank(M ), rank(N ))c.p.

(c) If C is not of Dynkin type, proj. dim(M) < 2.

(d) If C is of Dynkin type, 11 is a finite-dimensional, self-injective algebra and rep, ¢ (1I)
is a 2-Calabi-Yau Frobenius category.

Similar to Corollary 3.2 (b) the complex (3.4) yields (the beginning of) a functorial
projective resolution for all locally free II-modules. Thus (a), (b) and (c) follow by ex-
ploring the symmetry of the above complex. For (d) we note that in this case II is finite-
dimensional and ;11 is a locally free module by Theorem 3.10 and Proposition 3.13.

4 Representation varieties

4.1 Notation. Let K be now an algebraically closed field. For O a quiver and p; €
er;(KQxz)es; for j =1,2,...,1 weset A= KQ/{p1,...,pr). Note, that every finite
dimensional basic K-algebra is of this form. We abbreviate Qg = I and set ford € Né :

Rep(KQ,d) := x4e0, Homg (K969, K44)) and  GLg := Xjes GLq(i)(K).

The reductive algebraic group GL4 acts on Rep(KQ,d) by conjugation, and the GLg-
orbits correspond bijectively to the isoclasses of K-representations of Q. For M €
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Rep(KQ,d) and p € e; KQe; we can define M (p) € Homg (K4V), K4()) in a natu-
ral way. We have then the GLq4-stable, Zariski closed subset

Rep(A,d) :=={M € Rep(KQ.d) | M(p;) =0forj =1,2,...,1}.

The GLq4-orbits on Rep(A, d) correspond now to the isoclasses of representations of A with
dimension vector d. It is in general a hopeless task to describe the irreducible components
of the affine variety Rep(4, d).

4.2 Varieties of locally free modules for H. The set of locally free representations
of H = Hkg(C, D, Q) is relatively easy to describe. Clearly, for each locally free M €
rep(H ) we have dim(M ) = D - rank(M).

Proposition 4.1. Forr € N’ we have the open subset
Rep ;s (H,r) :={M erep(H,D -r) | M is locally free} C Rep(H, D -r),
which is irreducible and smooth with dimrep, ¢ (H,r) = dimGLp., —1(r,r)c,p.

In fact, it is well known that the modules of projective dimension at most 1 form always
an open subset of rep(A4, d). One verifies next that Rep, ¢ (H, r) is a vector bundle over
the GL p.x-orbit O(®;er Elr (l)), with the fibers isomorphic to the vector space H (r) :=
H(E"), see (3.2).

This yields the remaining claims. Note that the (usually) non-reductive algebraic group

Gr == Xier GLy(i)(H;) = Auts(éBieIEir(i))

acts on the affine space H (r) naturally by conjugation, and the orbits are in bijection with
isoclasses of locally free H-modules with rank vector r.

Asaconsequence, if M and N are rigid, locally free modules with rank(M ) = rank(N),
then already M = N, since the orbits of rigid modules are open.

4.3 Varieties of E-filtered modules for II. Recall the description of IIx(C, D) in
Proposition 3.14. A H := Ts(B)-module M is given by a S-module M = @;c; M;
such that M; is a H;-module for i € I, together with an element (Mi_i)(i,j)eﬁ of

HM) = @ Homp, (i H; ®u; M;, M;),
(i,7)€Q
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where O = Q N Q°. Extending somewhat (3.3) we set

M;n := @ sgn(i, j)Mij | : @ ij ®un; M; — M; and
JjeQ(i,—) jeQ(i,-)

Mi,out = l_[ M]vl : M,' — @ iM/' ®H./' Mj.
J€Q(=0) JEQ(=0)

We define now for any S-module M, as above, the affine variety
Rep™(ILM) := {(Mij) i jyeq € H(M) | Myin © Mo = 0 forall k € I},

and observe that the orbits of the, usually non-reductive, group Autgs (M) on Rep"™®(II, M)
correspond to the isoclasses of possible structures of representations of IT on M, since the
condition M i, © My oy corresponds to the relation dg, (W).

Similarly to the previous section we can define the open subset

Rep ¢ (IL, ) := {M € Rep(IL, D - r) | M locally free} C Rep(IL, D - r),

and observe that Rep, ; (II, r) is a fiber bundle over the GL p..-orbit O (E™), with typical
fiber Rep®™ (I, E¥). Finally we define for any projective S-module M the constructible
subset

(M) = {(Mi;); jyeq € Rep™(IL, M) | ((M;;);j, M) is E-filtered}.

Here, a I[I-module X is E-filtered if it admits a flag of submodules 0 = X (o) C X (1) C
- C Xy =X, such that for all k£ we have X(k)/X(k_l) ~ E;, forsomeiy, iz, ... 0] €
I. Note that for C symmetric and D trivial this specializes to Lusztig’s notion of a nilpo-
tent representation for the preprojective algebra of a quiver. However, if C is not symmet-
ric even in the Dynkin case there exist finite-dimensional, locally free II-modules which
are not E-filtered, see Geil3, Leclerc, and Schréer [2017¢, Sec. 8.2.2] for an example.

We consider II(r) with the Zariski topology and call it by a slight abuse of notation a
variety. In any case, it makes sense to speak of the dimension of II(r) and we can consider
the set

Trr(TI(r))™™

of top-dimensional irreducible components of TI(r).

Theorem 4.2. Let C be a symmetrizable generalized Cartan matrix with symmetrizer D
and H = Hg(C,D,Q), 11 = IIx(C, D) for an algebraically closed field K. For the
spaces 11(r) of E-filtered representations of I1 we have
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(@) dimII(r) = dim H(r) = »_¢;r(i (r.r)c.p forallr € N1,

iel

(b) The set 8 = |],enz Irr(IL(r))™ has a natural structure of a crystal of type
B¢ (—00) in the sense of Kashiwara. In particular, we have

|Irr(II(r)) ™| = dim U (u),,

where U (n) the universal enveloping algebra of the positive part v of the Kac-
Moody Lie algebra g(C).

We will sketch in the next two sections a proof of these two statements, which are the
main result of Geif3, Leclerc, and Schroer [2017c¢].

4.4 Bundle constructions. The bundle construction in this section is crucial. It is our
version Geif3, Leclerc, and Schroer [ibid., Sec. 3] of Lusztig’s construction Lusztig [1991,
Sec. 12].

For m € N we denote by @, the set of sequences of integers p = (p1, p2, ..., pr)
withm > p1 > ps > --- > p; > 0. Obviously @, parametrizes the isoclasses of
Hj.-modules, and we define Hf = &';_, Hy/(e;”). Fork € I and M € rep(IT) we set

facy (M) := My /Im(My ;) and  subg (M) := Ker(Mg ou)-
With this we can define

I(M)FP = {M € TI(M) | fack (M) = H}'} and
II(M)gp = {M € II(M) | subx (M) = H}'}

for p € @, . We abbreviate TI[(M)*" = II(M)*k" . In what follows, we will focus our
exposition on the varieties of the form I1(M)*?, however one should be aware that similar
statements and constructions hold for the dual versions II(M)y .

For an E-filtered representation M € rep(1l) there exists always a k € I such that
facy (M), viewed as an Hy-module, has a non-trivial free summand. It is also important
to observe that ITI(M)*- is an open subset of II(M).

Fix now k € I, let M be a projective S-module and U be a proper, projective S-
submodule of M with U; = M for all j # k. Thus, M/U = Ej for some r € N,
and can choose a (free) complement T, such that My = Uy & Tk For partitions p =
(cg-q1:92+---.q:) and q = (q1,...,q;) in @, we set moreover HomS (UM):={f €
Homg (U, M) | f injective}, and define

YRP4 .= (U, M, f) € TI(U)*9 Rep™(II, M) x Homg (U, M) | f € Homp (U, M)}.
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Note that for (U, M, f) € Y*P4 we have in fact M € II(M)P, and that the group
Autg (U) acts freely on Y K-P-4 via

g- (UM, f):=((gUy(id®¢7")) i jyeas M. g- f71).
Lemma 4.3. Consider in the above situation the diagram
ykpa
/ P’
TI(U)*4 x Hom'' (U, M) II(M)k-»
with p'(U, M, ) = (U, f) and p" (U, M, ) = M. Then the following holds:
(a) p'is avector bundle of rank m, where

m = Z dimg HomK(Tk, kM; ®Hj Mj) — dimg Hompg, (Tk, Im(Uk,in))~
J€Q(—.k)

(b) p" is a fiber bundle with smooth irreducible fibers isomorphic to
Auts (U) x Grg (HP).
where GrZ"k (HY) := Homsfulj (HY . Tx)/ Autg, (Tg).
Corollary 4.4. In the situation of Lemma 4.3, the correspondence
Z' s p"(p''(Z' x Homg (U,M)) := Z"

induces a bijection between the sets of irreducible components Irr(II(U)59) and
Trr(II(M)KP). Moreover we have then

dim Z"” — dim Z' = dim H (M) — dim(U).

Note, that this implies already part (a) of Theorem 4.2. In fact the Corollary allows us
to conclude by induction that dimII(r) < dimRep™(H,r). On the other hand, we can
identify H (r) with an irreducible component of II(r).

4.5 Crystals. For M € rep(IT) and j € I there are two canonical short exact sequences

0—-Kj(M)—>M —facij(M)—-0 and O0—sub;(M)—>M —C;(M)—0.
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We define recursively that M is a crystal module if fac j (M ) and sub; (M ) are locally free
forall j € I,and K; (M) as well as C; (M) are crystal modules for all j € I. Clearly, if
M is a crystal module, for all j € I there exist ¢; (M), 97 (M) € N such that

A (M
(4.1) sub; (M) = E;‘-” M) and fac; (M) = E;J-’( ),

Note moreover, that crystal modules are by construction E-filtered. It is now easy to see
that for all projective S-modules M the set

II(M)* := {M € II(M) | M is a crystal representation}

is a constructible subset of II(M). The following result from Geif3, Leclerc, and Schroer
[2017c, Sec. 4] is crucial for the proof of Theorem 4.2 (b). It has no counterpart for the
case of trivial symmetrizers.

Proposition 4.5. For each projective S-module M the set II(M)®" is a dense and equidi-
mensional subset of the union of all top dimensional irreducible components of TI(M).

This allows us in particular to define for all Z € Irr(II(M))™* and i € I the value
@i (Z), see (4.1), such that for a dense open subset U C Z we have ¢; (M) = ¢;(Z) for
all M € U. Similarly, we can define ¢/ (Z).

Next we set

Trr(T(r)"P)™™ .= {Z € Trr(I(r)"?) | dim Z = dim H (r)}
fori € I and p € Ny, and similarly Irr(II(r); ,. By Lemma 4.3 we get a bijection
e (r. p): Ir(TL(r)"? )™ — Lrr(TII(r + 0 ) P H1)™, Z 1 p"(p"™H(Z % Jp))
Similarly we obtain a bijection
ei(r, p): Tre(T(r); p)™ — Trr(TL(r + o4 )i, pr1) ™.
This allows us to define for all r € N/ the operators
& Trr(LL(r)™ — I(IL(r + &), Z +=> & (r. 91 (2))(Z°),

where Z° € Irr(II(r); ¢, (z))™ is the unique irreducible component with Z° = Z. Simi-
larly, we can define the operators & in terms of the bijections e/ (r, p). We define now

(4.2) ®:= [ ] rr(II(r))™ and wt: 8 — Z”. Z > rank(Z).
reNy

It is easy to see that (B, wt, (&;, ¢; )ier) is special case of a lowest weight crystal in the
sense of Kashiwara [1995, Sec. 7.2], namely we have
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* pi(ei(b)) = @i(b) + 1, wt(e; (b)) = wt(b) + oy,

o with {b_} := Irr(II(0))™>*, for each b € ® there exists a sequence iy, ...,i; of
elements of  with ¢;, ¢, ---¢;,(b—) = b,

* @i (b) = 0 implies b & Im(é¢;).

Similarly (8, wt, (€], ¢ )ier) is a lowest weight crystal with the same lowest weight ele-
ment b_.

Lemma 4.6. The above defined operators and functions on ® fulfill additionally the fol-
lowing conditions:

(@) Ifi # ], thenefej(b) =ejef(b).
(b) Forallb € B we have ¢;(b) + ¢} (b) — (wt(b), ;) > 0.
(© If gi(b) + ¢ (b) — (Wt(b), i) = 0, then &;(b) = e} ().

(@) If ¢i(b) + ¢7 (b) — (wt(b), ;) = 1, then @i (e[ (b)) = @i (b) and
7 (ei(b)) = ¢/ (b).

(e) If g (b) + (pz*(b) - (wt(b),a,-) > 2, then é,él*(b) = é;‘él‘ (b)

The proof of this Lemma in Geil3, Leclerc, and Schroer [2017¢, Sec. 5.6] uses the
homological features of locally free 1I-modules from Corollary 3.15 in an essential way.
Note that here, by definition, (r,«;) = (C -r);.

Altogether this means, by a criterion of Kashiwara and Saito [1997, Prop. 3.2.3], which
we use here in a reformulation due to Tingley and Webster [2016, Prop. 1.4], that (B, wt, (&;, ¢; )ier
(B, wt, (e, ¢ )ier) = Bc(—0o0). Here, Bc(—00) is the crystal graph of the quantum
group U, (n(C)). This implies part (b) of Theorem 4.2.

Remark 4.7. We did not give here Kashiwara’s general definition of a crystal graph, or
that of a lowest weight crystal associated to a dominant integral weight. The reason is
that, due to limitations of space, we can not to set up the, somehow unwieldy, notations
for the integral weights of a Kac-Moody Lie algebra. The interested reader can look up
the relevant definitions, in a form which is compatible with these notes, in Geif3, Leclerc,
and Schroer [2017c, Sec. 5.1, 5.2].

5 Algebras of constructible functions

5.1 Constructible functions and Euler characteristic. Recall that the topological Eu-
ler characteristic, defined in terms of singular cohomology with compact support and ra-
tional coefficients, defines a ring homomorphism from the Grothendieck ring of complex
varieties to the integers.
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By definition, a constructible function f: X — C on a complex algebraic variety X
has finite image, and f~!(c) C C is a constructible set for all ¢ € C. By the above
remark it makes sense to define

[ =Y exs ),

ceC

Ifp: X — Y is a morphism of varieties, we can define the push forward of constructible
functions via (¢«(f))(y) := fxe(p,l(y) fdx. This is functorial in the sense that (¢ o
©)«(f) = Yx(p«(f)) for : Y — Z an other morphism, by result of MacPherson
[1974, Prop. 1]. See also Joyce [2006, Sec. 3] for a careful discussion.

5.2 Convolution algebras as enveloping algebras. Let A = CQ asin Section4.1. We
consider for a dimension vector d € N7 the vector space ¥ (A)q of constructible functions
f: Rep(A,d) — C which are constant on GL4(C)-orbits and set

F(4):= P F(A)a.

deN/

Following Lusztig [1991] ¥ (A) has the structure of a unitary, graded associative algebra.
The multiplication is defined by

(f % g)(X) = / F(U)(X /Uy,

UeGrf (X)

where f € ¥(A)a, g € F(A)e, X € Rep(A, d+e), and Gr (X) denotes the quiver Grass-
mannian of d-dimensional subrepresentations of X . The associativity of the multiplication
follows easily from the functoriality of the push-forward of constructible functions. We
have an algebra homomorphism

(5.1) c:F(A) > F(AxA), with (c(f))(X,Y)=f(X®Y),

see for example Geil3, Leclerc, and Schroer [2016, Sec. 4.3]. The proof depends crucially
on the Biatynicki-Birula result about the fixpoints of algebraic torus actions
Biatynicki-Birula [1973, Cor. 2]. This fails for example over the real numbers.

Remark 5.1. If X = (X ) jey is a family of indecomposable representations of A, we de-
fine the characteristic functions 6; € Fgimx ; (A) of the GLgimx ;-orbit O(X;) C Rep(4, dimX )
and consider the graded subalgebra Ml (A4) = Mx(A4) of F(A), which is generated by
the ;. Clearly, the homogeneous components of Tl are finite dimensional. If j =



QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN MATRICES 137

(j1, j2,---,j1) is a sequence of elements of j we have by the definition of the multi-
plication
0, % 0j, % - % 0, (X) = x(FIg;(M)),

where Flij (M) denotes the variety of all flags of submodules
0=MO cMO coc.c MDD =pm

with M(k)/M(k_l) =~ X;, fork =1,2,...,/. In particular, if M has no filtration with
all factors isomorphic to some X ;, we have f (M) = Oforall £ € WM (A)dgimm. See Geil,
Leclerc, and Schroer [2016, Lemma 4.2].

Lemma 5.2. The morphism c from (5.1) induces a comultiplication A: TL(A) - M(4A)®
M(A) with A(6;) = 0; ®1+1® 6, forall j. With this structure W, is a cocommutative
Hopf algebra, which is isomorphic to the enveloping algebra U (® (W\)) of the Lie algebra
of its primitive elements ® (M ).

See Geil}, Leclerc, and Schroer [ibid., Prop. 4.5] for a proof. Recall, that an element
x of a Hopf algebra is called primitive ifft A(x) = x ® 1 + 1 ® x. It is straightforward
to check that the primitive elements of a Hopf algebra form a Lie algebra under the usual
commutator [x, y] = xy — yx.

Remark 5.3. It is important to observe that, by the definition of the comultiplication, the
support of any primitive element of Til consists of indecomposable, X-filtered modules.
In fact, for f € ®(M) and M, N € rep(4) we have f(M & N) = ¢f(M,N) =
(f®1+1® f)(M,N). See Geil, Leclerc, and Schréer [ibid., Lem. 4.6].

We are here interested in the two special cases when A = Hc(C,D,Q) or A =
IIc(C,D) and X = E = (E;);es. Note that by Remark 5.1 only locally free modules
can appear in the support of any f € Wg(H ). Similarly, the support of any f € Wlg(II)
consists only of E-filtered modules. For this reason we will consider in what follows, both
Mg(H) and Mg (II) as graded by rank vectors. In other words, from now on

W(H):=Tg(H)= @ M(H) and ML) = Mg(I) = P M.(1I).
reN/ reN/
where we may consider the the elements of W, (H ) := WMg(H ) p.r as constructible func-

tions on H (r). Similarly we may consider the elements of M (II) := Mg(II)p. as
constructible functions on II(r).

53 WMlg(H) and a dual PBW-basis in the Dynkin case. We have the following basic
result from Geil3, Leclerc, and Schréer [ibid., Cor. 4.10].
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Proposition 5.4. Let C be a symmetrizable Cartan matrix, D a symmetrizer and () an
orientation for C. With H = Hc(C, D, Q) we have an surjective Hopf algebra homo-
morphism

ng: U@(C)) — Mg(H) defined by e; — 0;(i € I).

The main point is to show that for the ; (i € I) fulfill the Serre relations (2.4). More
precisely we need that the primitive elements

6 = (ad6,)'~ (6;) € O(M(H)) (1, oo, (i 7 J)

actually vanish. For this it is enough, by Remark 5.3, to show that there exists no inde-
composable, locally free H-module M with rank(M ) = (1 —c¢;;)o; + ;. This is carried
out in the proof of Geil3, Leclerc, and Schréer [2016, Prop. 4.9].

The proof of the following result, which is Geil3, Leclerc, and Schréer [ibid., Thm. 6.1],
occupies the major part of that paper.

Proposition 5.5. Let C be a symmetrizable Cartan matrix of Dynkin type, D a sym-
metrizer and S an orientation for C and H = Hc(C, D,Q). Then for each positive
root B € A" there exists a primitive element g € ® (W.(H))g with g(M (B)) = 1.

The idea of the proof is as follows: By Geil3, Leclerc, and Schréer [2017b, Cor. 1.3]
for any B € AT(C) and any sequence i in I, the Euler characteristic X(Flg (M(B))) is
independent of the choice of the symmetrizer D. So, we may assume that C is connected
and D minimal. In the symmetric (quiver) case, our claim follows now by Schofield’s
result Schofield [n.d.], who showed that in this case ®(TL(H)) can be identified with
n(C). By Gabriel’s theorem in this case the 6 are the characteristic function of the GLg-
orbit of M ().

In the remaining cases, we construct the g by induction on the height of 8 in terms of
(iterated) commutators of “smaller” 6,. Note however that in this case this construction
is delicate since the support of the g may contain several indecomposable, locally free
modules. See for example Geil3, Leclerc, and Schrder [2017d, Sec. 13.2(d)].

Since in the Dynkin case all weight spaces of n(C) are one-dimensional, the main
result of GeiB3, Leclerc, and Schréer [2016], Theorem 1.1 (ii), follows easily:

Theorem 5.6. If C is of Dynkin type, the Hopf algebra homomorphism ng is an isomor-
phism.

Recall the notation used in Proposition 3.11. In particular, i is a reduced expression
for the longest element wy € W(C), which is +-adapted to €2, and B = Bix for k =
1,2,...,r. Let us abbreviate

1

— my m —mr m
b i= o Oy e * O and M(m) = @ M (B)™
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form = (my,msq,...,m,) € N”. By the above results (6, )menr is a normalized PBW-
basis of M (H) = U (u(C)) in the Dynkin case.

Moreover we consider the graded dual WL(H)* of M (H ), and the evaluation form
Sp(m) € M(H)* with §(f) := f (M (m)). By the definition of the comultiplication in
TW.(H), the graded dual is a commutative Hopf algebra, and 837 (m) - Spm(n) = SM (mtn)-
Our next result is essentially Geif3, Leclerc, and Schrder [2017d, Thm. 1.3].

Proposition 5.7. With the above notation we have
SM(m)(On) = Sm,nfor allmn e N".

Thus (81 (m))meNr is a basis of W(H )* which is dual to the PBW-basis (Om)menr, and
m(H)* - C[SM(ﬁl), ceey SM(ﬂr)]

In the quiver case (with trivial symmetrizer) this result is easy to prove, since with
Gabriel’s theorem and Proposition 3.11 follows quickly that 6, is the characteristic func-
tion of the orbit of M (r). However, in our more general setting, already the fg, are
usually not the characteristic function of M (By ), as we observed above. The more sophis-
ticated Proposition 3.12 implies, by the definition of the multiplication in W g(H ), that
Om(M (Bx)) = 0if m # e, the k-th unit vector. The remaining claims follow now by
formal arguments, see the proof of Geil3, Leclerc, and Schréer [ibid., Thm. 6.1].

Remark 5.8. For M € rep,;(H) and e € N’ we we introduce the quasi-projective
variety

Grlfff (M) := {U ¢ M | U locally free submodule and rank(U) = e},

which is an open subset of the usual quiver Grassmannian Grg.e(M ). With this notation
we can define

Fy =Y x(Griff (M))Y* € Z[Y1.....Y,] and gps := —R - rank(M),

eeN/

where R is the matrix introduced in Corollary 3.4. By the main result of Geil3, Leclerc,
and Schroer [ibid.] this yields for M = M (8) with B € A*(C) the F-polynomial and
g-vector, in the sense of Fomin and Zelevinsky [2007], for all cluster variables of a finite
type cluster algebra Fomin and Zelevinsky [2003] of type C with respect to an acyclic
seed defined by 2. The proof is based on Proposition 5.7, and on the description by Yang
and Zelevinsky [2008] of the F-polynomial of a cluster variable in terms of generalized
minors.
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5.4 Semicanonical functions and the support conjecture for MWl g(II). Recall, that
we abbreviate IT = TI¢ (C, D) for a symmetrizable Cartan matrix C with symmetrizer D.
By definition TL(IT) = Mg (II) C ¥ (II) is generated by the functions 6; € My, (IT) for
i € I,where éi is the characteristic function of the orbit of E;, viewed as a II-module. We
use here the notation é,- rather than 6; to remind us that the multiplication is now defined
in terms of constructible functions on a larger space. More precisely, we have for each
r € N7 an injective Autg (E")-equivariant, injective morphism of varieties

t: H(r) — II(d).
These morphisms induce, via restriction, a surjective morphism of graded Hopf algebras
5 M) — M(H), 6; — 6 fori el.
The proof of the following result is, almost verbatim, the same induction argument as the
one used by Lusztig [2000], see Geil3, Leclerc, and Schréer [2017¢, Lem. 7.1].

Lemma 5.9. Letr € N!. For each Z € Trr(I1(x))™ there exists an open dense subset
Uz C Z and a function fz € W.(II) such that for Z,Z’ € TIrr(II(r))™* and any
u' € Uz we have

fz(') =68z.2".
In particular, the functions ( [7)z ci(ri(r))m~ are linearly independent in W, (IT).

Note however, that the result is not trivial since we claim that the fz € M. (II) and
not in the much bigger space ¥ (IT)c.,. On the other hand, it is important to observe that
the inductive construction of the semicanonical functions fz involves some choices.

As in Section 5.3, we define now for each i # j in [ the primitive element

6;; = (ad 6;)' 1 (§;) € ®(M(II)).

Unfortunately, we have the following result, which is a combination of Lemma 6.1, Propo-
sition 6.2 and Lemma 6.3 from Geil3, Leclerc, and Schroer [ibid.].

Lemma 5.10. Suppose with the above notations that c;; < 0.
(@) If c; > 2 then there exists an indecomposable, 11 = II(C, D)-module X = Xij)
with rank(X(ij) =(1- cij)oz,- + o and 0;; (X(,'_/)) #0.
(b) If M is crystal module with rank(M) = (1 — ¢;j)a; + a; we have 6;; (M) = 0.

This leads us to define in MW (II) the ideal &, which is generated by the homogeneous
elements 0;; fori, j € [ withi # j. We set moreover

WM(IT) = M(ID) /L and f := £+ & (f € W(ID)).
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Thus, by Proposition 5.4, the morphism (g, induces a surjective algebra homomorphism
7% : WM(II) — WL(H). On the other hand, we can define for each r € N7 the space of
functions with non maximal support

Sy :={f € M) | dimsupp(f) < dim H(r)} and S := P,en7 Si-

Recall that dimII(r) = dim H (r). Proposition 4.5 and Lemma 5.10 imply at least that
0i; € 8. In view of Lemma 5.9 and Theorem 4.2 it is easy to show the following result:

Proposition 5.11. The following three conditions are equivalent:
(Hacs, (2) 4 =38, (3) 8 is an ideal.
In this case the surjective algebra homomorphism
n: Un) — M(ID), e; — 0; + &

would be an isomorphism, and the (n~'(fz))g would form a basis of U(n) which is
independent of the possible choices for the (fz)zeg.

Thus we call the equivalent conditions of the above proposition our Support conjecture.

Remark 5.12. Our semicanonical basis would yield, similarly to Lusztig [2000, Sec. 3],
in a natural way a basis for each integrable highest weight representation L(A) of g(C),
if the support conjecture is true. See Geil3, Leclerc, and Schréer [2017c, Se. 7.3] for more
details.
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OsamU Iyama

Dedicated to the memory of Ragnar-Olaf Buchweitz

Abstract
This is a survey on recent developments in Cohen-Macaulay representations via
tilting and cluster tilting theory. We explain triangle equivalences between the singu-
larity categories of Gorenstein rings and the derived (or cluster) categories of finite
dimensional algebras.

1 Introduction

The study of Cohen-Macaulay (CM) representations (Curtis and Reiner [1981], Yoshino
[1990], Simson [1992], and Leuschke and Wiegand [2012]) is one of the active subjects in
representation theory and commutative algebra. It has fruitful connections to singularity
theory, algebraic geometry and physics. This article is a survey on recent developments
in this subject.

The first half of this article is spent for background materials, which were never written
in one place. In Section 2, we recall the notion of CM modules over Gorenstein rings, and
put them into the standard framework of triangulated categories. This gives us powerful
tools including Buchweitz’s equivalence between the stable category CM R and the singu-
larity category, and Orlov’s realization of the graded singularity category in the derived
category, giving a surprising connection between CM modules and algebraic geometry.
We also explain basic results including Auslander-Reiten duality stating that CMR is a
Calabi-Yau triangulated category for a Gorenstein isolated singularity R, and Gabriel’s
Theorem on quiver representations and its commutative counterpart due to Buchweitz-
Greuel-Schreyer.

In Section 3, we give a brief introduction to tilting and cluster tilting. Tilting theory
controls equivalences of derived categories, and played a central role in Cohen-Macaulay

The author was partially supported by JSPS Grant-in-Aid for Scientific Research (B) 16H03923 and (S)
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approximation theory around 1990 (Auslander and Buchweitz [1989] and Auslander and
Reiten [1991]). The first main problem of this article is to find a tilting object in the stable
category MGR of a G-graded Gorenstein ring R. This is equivalent to find a triangle
equivalence

(1-1) CMER ~ K*(proj A)

with some ring A. It reveals a deep connection between rings R and A.

The notion of d-cluster tilting was introduced in higher Auslander-Reiten theory. A
Gorenstein ring R is called d -CM-finite if there exists a d -cluster tilting object in CM R.
This property is a natural generalization of CM-finiteness, and closely related to the ex-
istence of non-commutative crepant resolutions of Van den Bergh. On the other hand,
the d-cluster category C4(A) of a finite dimensional algebra A is a d-Calabi-Yau trian-
gulated category containing a d-cluster tilting object, introduced in categorification of
Fomin-Zelevinsky cluster algebras. The second main problem of this article is to find a
triangle equivalence

(1-2) CMR = Cy(A)

with some finite dimensional algebra A. This implies that R is d -CM-finite.

In the latter half of this article, we construct various triangle equivalences of the form
(1-1) or (1-2). In Section 4, we explain results in Yamaura [2013] and Buchweitz, [yama,
and Yamaura [2018]. They assert that, for a large class of Z-graded Gorenstein rings R in
dimension 0 or 1, there exist triangle equivalences (1-1) for some algebras A.

There are no such general results in dimension greater than 1. Therefore in the main
Sections 5 and 6 of this article, we concentrate on special classes of Gorenstein rings. In
Section 5, we explain results on Gorenstein rings obtained from classical and higher pre-
projective algebras (Amiot, lyama, and Reiten [2015], [yama and Oppermann [2013], and
Kimura [2018, 2016]). A crucial observation is that certain Calabi-Yau algebras are higher
preprojective algebras and higher Auslander algebras at the same time. In Section 6, we
explain results on CM modules on Geigle-Lenzing complete intersections and the derived
categories of coherent sheaves on the associated stacks (Herschend, Iyama, Minamoto,
and Oppermann [2014]). They are higher dimensional generalizations of weighted projec-
tive lines of Geigle-Lenzing.

Acknowledgements The author would like to thank Claire Amiot, Bernhard Keller and
Idun Reiten for valuable comments on this article.
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2 Preliminaries

2.1 Notations. We fix some conventions in this paper. All modules are right modules.
The compositionof f: X — Y andg: Y — Z isdenoted by g f. For aring A, we denote
by mod A the category of finitely generated A-modules, by proj A the category of finitely
generated projective A-modules, and by gl.dim A the global dimension of A. When A is
G-graded, we denote by mod® A and projG A the G-graded version, whose morphisms
are degree preserving. We denote by k an arbitrary field unless otherwise specified, and
by D the k-dual or Matlis dual over a base commutative ring.

2.2 Cohen-Macaulay modules. We start with the classical notion of Cohen-Macaulay
modules over commutative rings (Bruns and Herzog [1993] and Matsumura [1989]).

Let R be a commutative noetherian ring. The dimension dim R of R is the supremum
of integers n > 0 such that there exists a chain po & p1 & --+ & p, of prime ideals of R.
The dimension dim M of M € mod R is the dimension dim(R/ ann M) of the factor ring
R/ ann M, where ann M is the annihilator of M.

The notion of depth is defined locally. Assume that R is a local ring with maximal
ideal m and M € mod R is non-zero. An element r € m is called M-regular if the
multiplication map r: M — M is injective. A sequence rq,..., 7, of elements in m
is called an M -regular sequence of length n if r; is (M /(r1,...,ri—1)M)-regular for
all 1 < i < n. The depth depth M of M is the supremum of the length of M -regular
sequences. This is given by the simple formula

depth M = inf{i > 0 | Extiy(R/m, M) # 0}.

The inequalities depth M < dim M < dim R hold. We call M (maximal) Cohen-Macaulay
(or CM) if the equality depth M = dim R holds or M = 0.

When R is not necessarily local, M € mod R is called CM if My, isa CM Ry,-module
for all maximal ideals m of R. The ring R is called CM if it is CM as an R-module. The
ring R is called Gorenstein (resp. regular) if Ry, has finite injective dimension as an Ry, -
module (resp. gl.dim Ry, < 0o) for all maximal ideals m of R. In this case, the injective
(resp. global) dimension coincides with dim Ry, but this is not true in the more general
setting below. The following hierarchy is basic.

Regular rings == Gorenstein rings ==> Cohen-Macaulay rings

We will study CM modules over Gorenstein rings. Since we apply methods in representa-
tion theory, it is more reasonable to work in the following wider framework.

Definition 2.1 (Iwanaga [1979] and Enochs and Jenda [2000]). Let A be a (not necessarily
commutative) noetherian ring, and d > 0 an integer. We call A (d-)Iwanaga-Gorenstein
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(or Gorenstein) if A has injective dimension at most d as a A-module, and also as a A°P-
module.

Clearly, a commutative noetherian ring R is Iwanaga-Gorenstein if and only if it is
Gorenstein and dim R < oo. Note that there are various definitions of non-commutative
Gorenstein rings, e.g. Artin and Schelter [1987], Curtis and Reiner [1981], Fossum, Grif-
fith, and Reiten [1975], Goto and Nishida [2002], and Iyama and Wemyss [2014]. Al-
though Definition 2.1 is much weaker than them, it is sufficient for the aim of this paper.

Noetherian rings with finite global dimension are analogues of regular rings, and form
special classes of Iwanaga-Gorenstein rings. The first class consists of semisimple rings
(i.e. rings A with gl.dim A = 0), which are products of matrix rings over division rings by
Artin-Wedderburn Theorem. The next class consists of hereditary rings (i.e. rings A with
gl.dim A < 1), which are obtained from quivers.

Definition 2.2 (Assem, Simson, and Skowronski [2006]). A guiver is a quadruple Q =
(Qo, Q1,s,t) consisting of sets Qp, Q1 and maps s,t: Q1 — Qp. We regard each
element in Qg as a vertex, and @ € Q1 as an arrow with source s(a) and target ¢ (a). A
path of length 0 is a vertex, and a path of length £(> 1) is a sequence ajas - - - ag of arrows
satisfying 7(a;) = s(a; 1) foreach 1 <i < £.

For a field k, the path algebra kQ is defined as follows: It is a k-vector space with
basis consisting of all paths on Q. For paths p = a;---ag and ¢ = by - - - by, we define
pq =ay---agby---by, ift(ag) = s(by), and pg = 0 otherwise.

Clearly dimy (kQ) is finite if and only if Q is acyclic (that is, there are no paths p of
positive length satisfying s(p) = ¢(p)).

Example 2.3. (a) (Assem, Simson, and Skowronski [ibid.]) The path algebra kQ of a
finite quiver Q is hereditary. Conversely, any finite dimensional hereditary algebra
over an algebraically closed field k is Morita equivalent to k Q for some acyclic quiver

0.

(b) A finite dimensional k-algebra A is 0-Iwanaga-Gorenstein if and only if A is self-
injective, that is, DA is projective as a A-module, or equivalently, as a A°’-module.
For example, the group ring kG of a finite group G is self-injective.

(¢) (Iyama and Wemyss [2014] and Curtis and Reiner [1981]) Let R be a CM local ring
with canonical module @ and dimension d. An R-algebra A is called an R-order if it
is CM as an R-module. Then an R-order A is d-Iwanaga-Gorenstein if and only if A
is a Gorenstein order, i.e. Hompg (A, o) is projective as a A-module, or equivalently,
as a A°P-module.

An R-order A is called non-singular if gl.dim A = d. They are classical objects for
the case d = 0, 1 (Curtis and Reiner [1981]), and studied for d = 2 (Reiten and Van
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den Bergh [1989]). Non-singular orders are closely related to cluster tilting explained
in Section 3.2.

2.3 The triangulated category of Cohen-Macaulay modules. CM modules can be
defined naturally also for Iwanaga-Gorenstein rings.

Definition 2.4. Let A be an Iwanaga-Gorenstein ring. We call M € mod A (maximal)
Cohen-Macaulay (or CM) if Exty (M, A) = 0 holds for all i > 0. We denote by CM A
the category of CM A-modules.

We also deal with graded rings and modules. For an abelian group G and a G-graded
Iwanaga-Gorenstein ring A, we denote by CMY A the full subcategory of mod® A con-
sisting of all X which belong to CM A as ungraded A-modules.

When A is commutative Gorenstein, Definition 2.4 is one of the well-known equivalent
conditions of CM modules. Note that, in a context of Gorenstein homological algebra
(Auslander and Bridger [1969] and Enochs and Jenda [2000]), CM modules are also called
Gorenstein projective, Gorenstein dimension zero, or totally reflexive.

Example 2.5. (a) Let A be a noetherian ring with gl.dim A < co. Then CM A = proj A.
(b) Let A be a finite dimensional self-injective k-algebra. Then CM A = mod A.

(c) Let A be a Gorenstein R-order in Example 2.3(c). Then CM A-modules are precisely
A-modules that are CM as R-modules.

We study the category CMC A from the point of view of triangulated categories. We
start with Quillen’s exact categories (see Biihler [2010] for a more axiomatic definition).

Definition 2.6 (Happel [1988]). (a) Anexact category is a full subcategory 3 of an abelian
category @ such that, for each exact sequence 0 - X — Y — Z — 0in Q@
with X, Z € ¥, we have Y € ¥. In this case, we say that X € ¥ is projective if
Ext}i(X ,¥) = 0 holds. Similarly we define injective objects in ¥ .

(b) An exact category 3 in @ is called Frobenius if:

e an object in F is projective if and only if it is injective,

e any X € ¥ admits exact sequences) - Y - P - X - 0and0 - X — [ —
Z — 0in @ such that P and [ are projectivein¥ and Y, Z € 7.

(¢) The stable category 3 has the same objects as ¥, and the morphisms are given by
Homg (X,Y) = Homg (X,Y)/P(X,Y), where P(X,Y) is the subgroup consisting
of morphisms which factor through projective objects in F .
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Frobenius categories are ubiquitous in algebra. Here we give two examples.

Example 2.7. (a) For a G-graded Iwanaga-Gorenstein ring A, the category CM® A of
G-graded Cohen-Macaulay A-modules is a Frobenius category.

(b) For an additive category @, the category C(Q ) of chain complexes in @ is a Frobenius
category, whose stable category is the homotopy category K(Q).

A triangulated category is a triple of an additive category ¥, an autoequivalence [1]: T —

T (called suspension) and a class of diagrams X i> v % 7 i X [1] (called triangles)
satisfying a certain set of axioms. There are natural notions of functors and equivalences
between triangulated categories, called triangle functors and triangle equivalences. For
details, see e.g. Happel [1988] and Neeman [2001]. Typical examples of triangulated cate-
gories are given by the homotopy category K(Q ) of an additive category @ and the derived
category D(Q®) of an abelian category Q.

A standard construction of triangulated categories is given by the following.

Theorem 2.8 (Happel [1988]). The stable category 3 of a Frobenius category & has a
canonical structure of a triangulated category.

Such a triangulated category is called algebraic. Note that the suspension functor [1]
of F is given by the cosyzygy. Thus the i-th suspension [i] is the i-th cosyzygy fori > 0,
and the (—i)-th syzygy for i < 0. We omit other details.

As a summary, we obtain the following.

Corollary 2.9. Let G be an abelian group and A a G-graded Iwanaga-Gorenstein ring.
Then CMS A is a Frobenius category, and therefore the stable category mGA has a
canonical structure of a triangulated category.

We denote by D (mod® A) the bounded derived category of mod® A, and by K (proj© A)
the bounded homotopy category of proj® A. We regard Kb(projG A) as a thick subcate-
gory of D*(mod® A). The stable derived category (Buchweitz [1987]) or the singularity
category (Orlov [2009]) is defined as the Verdier quotient

DG (A) = D°(mod® A) /K" (proj A).
This is enhanced by the Frobenius category CMC A as the following result shows.

Theorem 2.10 (Buchweitz [1987], Rickard [1989a], and Keller and Vossieck [1987]). Let
G be an abelian group and A a G-graded Iwanaga-Gorenstein ring. Then there is a
triangle equivalence DSGg(A) ~ CMPA.

Let us recall the following notion (Bruns and Herzog [1993]).
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Definition 2.11. Let G be an abelian group and R a G-graded Gorenstein ring with
dim R = d such that Ry = k is a field and €D, , R; is an ideal of R. The a-invariant
a € G (or Gorenstein parameter —a € G) is an element satisfying Ext% (k, R(a)) ~ k in
modZ R.

For a G-graded noetherian ring A, let
2-1) qgr A = mod® A/ modg A

be the Serre quotient of mod® A by the subcategory modg A of G-graded A-modules of
finite length (Artin and Zhang [1994]). This is classical in projective geometry. In fact, for
a Z-graded commutative noetherian ring R generated in degree 1, qgr R is the category
coh X of coherent sheaves on the scheme X = Proj R (Serre [1955]).

The following result realizes DSZg(R) and DP(qgr R) inside of D°(modZ R), where
mod=" R is the full subcategory of modZ R consisting of all X satisfying X = €p,.., Xi,
and (—)* is the duality RHomg (—, R): D*(modZ R) — D°(modZ R).

Theorem 2.12 (Orlov [2009] and Iyama and Yang [2017]). Let R = @izo R; be a Z-
graded Gorenstein ring such that Ry is a field, and a the a-invariant of R.

(a) There is a triangle equivalence D’(mod=° R) N D*(mod>' R)* ~ DZ(R).
(b) There is a triangle equivalence D*(mod=° R) N D®(mod=*"" R)* ~ D°(qgr R).

Therefore if @ = 0, then DSZg(R) ~ D(qgr R). If a < O (resp. a > 0), then there is
a fully faithful triangle functor D% (R) — DP(qgr R) (resp. D°(qgr R) — DZ(R)). This
gives a new connection between CM representations and algebraic geometry.

2.4 Representation theory. We start with Auslander-Reiten theory.

Let R be a commutative ring, and D the Matlis duality. A triangulated category T
is called R-linear if each morphism set Homg (X, Y) has an R-module structure and the
composition Homg (X, Y) x Homg (Y, Z) — Homg (X, Z) is R-bilinear. It is called
Hom-finite if each morphism set has finite length as an R-module.

Definition 2.13 (Reiten and Van den Bergh [2002]). A Serre functor is an R-linear autoe-
quivalence S: T — T such that there exists a functorial isomorphism Homg (X,Y) =~
D Homg (Y,SX) for any X,Y € T (called Auslander-Reiten duality or Serre duality).
The composition t = S o [—1] is called the AR translation.

For d € Z, we say that T is d-Calabi-Yau if [d] gives a Serre functor of §.

A typical example of a Serre functor is given by a smooth projective variety X over a
field k. In this case, D®(coh X) has a Serre functor — ® x w[d], where  is the canonical
bundle of X and d is the dimension of X (Huybrechts [2006]).
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Example 2.14 (Happel [1988] and Buchweitz, Iyama, and Yamaura [2018]). Let A be
a finite dimensional k-algebra. Then K®(proj A) has a Serre functor if and only if A is
Iwanaga-Gorenstein, and D?(mod A) has a Serre functor if and only if gl.dim A < co. In

L
both cases, the Serre functor is given by v = — ® (D A), and the AR translation is given
byt =vo[-1].

For AR theory of CM modules, we need the following notion.

Definition 2.15. Let R be a Gorenstein ring with dim R = d. We denote by CMy R
the full subcategory of CM R consisting of all X such that X, € proj R, holds for all
p € Spec R with dimR, < d. When R is local, such an X is called locally free on
the punctured spectrum (Yoshino [1990]). If R is G-graded, we denote by CMg R the
full subcategory of CMC R consisting of all X which belong to CMy R as ungraded R-
modules.

As before, CMOG R is a Frobenius category, and C_Mf); R is a triangulated category. Note
that CMy R = CM R holds if and only if R satisfies Serre’s (R;—1) condition (i.e. Ry is
regular for all p € Spec R with dim R, < d). This means that R has at worst an isolated
singularity if R is local.

The following is a fundamental theorem of CM representations.

Theorem 2.16 (Auslander [1978] and Auslander and Reiten [1987]). Let R be a Goren-
stein ring with dim R = d. Then CM R is a (d — 1)-Calabi-Yau triangulated category. If
R is G-graded and has an a-invariant a € G, then C_MgR has a Serre functor (a)[d —1].

Let us introduce a key notion in Auslander-Reiten theory. We call an additive category
C Krull-Schmidt if any object in C is isomorphic to a finite direct sum of objects whose
endomorphism rings are local. We denote by ind C the set of isomorphism classes of
indecomposable objects in C.

Definition 2.17 (Happel [1988]). Let T be a Krull-Schmidt triangulated category. We

call a triangle X i) vy <z LY X[1]in T an almost split triangle if:

e X and Z are indecomposable, and & # 0 (i.e. the triangle does not split).

e Any morphism W — Z which is not a split epimorphism factors through g.

e Any morphism X — W which is not a split monomorphism factors through f.

We say that T has almost split triangles if for any indecomposable object X (resp. Z),
there is an almost split triangle X — Y — Z — X|[1].

There is a close connection between almost split triangles and Serre functors.
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Theorem 2.18 (Reiten and Van den Bergh [2002]). Let T be an R-linear Hom-finite Krull-
Schmidt triangulated category. Then'S has a Serre functor if and only if T has almost split
triangles. In this case, X >~ tZ holds in each almost split triangle X — Y — Z — X[1]

in¥.

When T has almost split triangles, one can define the AR quiver of T, which has ind T
as the set of vertices. It describes the structure of T (see Happel [1988]). Similarly, almost
split sequences and the AR quiver are defined for exact categories (Assem, Simson, and
Skowronski [2006] and Leuschke and Wiegand [2012]).

In the rest of this section, we discuss the following notion.

Definition 2.19. A finite dimensional k-algebra A is called representation-finite if ind(mod A)
is a finite set. It is also said to be of finite representation type.

The classification of representation-finite algebras was one of the main subjects in the
1980s. Here we recall only one theorem, and refer to Gabriel and Roiter [1997] for further
results.

A Dynkin quiver (resp. extended Dynkin quiver) is a quiver obtained by orienting each
edge of one of the following diagrams A,, D, and E, (resp. An, D and E n)-

(2-2)

[e)

Ap(n>1) e—e—0e—--—0e—0—0 Zn(nzl) el e—0—---—0—0—0
. .
Dp(n>4) e—e—e—--—e—se Dy(n>4) e—e—e—--—e—se
o o
. .
Eg e—6o—_0o—0o—o Ees .7.7.‘7.7.
. .
E; e—6—0o—0o—0o—0o E- b—e—0—0o—o—0o—o
. .
Eg ,7,717,7,7,7, Es ,7,717,7,7.7,70

Now we are able to state Gabriel’s Theorem below. For results in non-Dynkin case, we
refer to Kac’s theorem in Gabriel and Roiter [ibid.].

Theorem 2.20 (Assem, Simson, and Skowronski [2006]). Let Q be a connected acyclic
quiver and k a field. Then kQ is representation-finite if and only if Q is Dynkin. In this
case, there is a bijection between ind(mod k Q) and the set ® .. of positive roots in the root

system of Q.
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For a quiver Q, we define a new quiver Z Q: The set of vertices is Z x Q. The arrows
are (£,a): (£,s(a)) = (£,t(a)) and (£,a*): ({,t(a)) > (£ +1,s(a)) foreach £ € Z

b
anda € Q;. For example, if Q0 = [1 L9 3], then Z Q is as follows.

(—2.3) (—1.3) (0,3) (1,3) (2.3) (3.3)
NN AN SN S N S
(=1.2) (0.2) (1.2) (2.2) (3.2)
NN SN S N SN

(—1.1) (0.1) (1.1) (2.1) (3.1 (4.1)

If the underlying graph A of Q is a tree, then Z Q depends only on A. Thus Z Q is written
as ZA.
The AR quiver of D’(mod kQ) has a simple description (Happel [1988]).

Proposition 2.21 (Happel [ibid.]). (a) Let A be a finite dimensional hereditary algebra.
Then there is a bijection ind(mod A) x Z — ind D°(mod A) given by (X,i) — X[i].

(b) For each Dynkin quiver Q, the AR quiver of D*(modkQ) is Z. Q. Moreover, the
category D°(mod k Q) is presented by the quiver 7.Q°® with mesh relations.

Note that Z Q has an automorphism t given by t(£,i) = (£—1,i) for ({,i) € Z x Qy,
which corresponds to the AR translation.

Now we discuss CM-finiteness. For an additive category C and an object M € C, we
denote by add M the full subcategory of C consisting of direct summands of finite direct
sum of copies of M. We call M an additive generator of C if € = add M .

Definition 2.22. An Iwanaga-Gorenstein ring A is called CM-finite if CM A has an addi-
tive generator M . In this case, we call Ends (M) the Auslander algebra. When CM A is
Krull-Schmidt, A is CM-finite if and only if ind(CM A) is a finite set. It is also said to be
of finite CM type or representation-finite.

Let us recall the classification of CM-finite Gorenstein rings given in the 1980s. Let k
be an algebraically closed field of characteristic zero. A hypersurface R = k[[x, y,z2...,z4]]/(f
is called a simple singularity if

xn+1+y2+zg_~_...+zt21 An
x"_1+xy2+Z§+"‘+Zg21 D,
(2-3) f=qx*+y*+z25+--+23 Eg
Xy +y?+z25 4+ +z5  E;
X+ yS+zi 4423 Es.

We are able to state the following result. We refer to Leuschke and Wiegand [2012] for
results in positive characteristic.
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Theorem 2.23 (Buchweitz, Greuel, and Schreyer [1987] and Knoérrer [1987]). Let R be
a complete local Gorenstein ring containing the residue field k, which is an algebraically
closed field of characteristic zero. Then R is CM-finite if and only if it is a simple singu-
larity.

We will see that tilting theory explains why Dynkin quivers appear in both Theorems 2.20
and 2.23 (see Example 4.5 and Corollary 5.2 below).

Now we describe the AR quivers of simple singularities. Recall that each quiver O
gives anew quiver Z Q. For an automorphism ¢ of Z Q, an orbit quiver Z Q /¢ is naturally
defined. For example, Z Q /7 is the double Q of Q obtained by adding an inverse arrow
a*: j — i foreacharrowa: i — j.

Proposition 2.24 (Yoshino [1990] and Dieterich and Wiedemann [1986]). Let R be a
simple singularity with dim R = d. Then the AR quiver of CMR is ZA /¢, where A and
¢ are given as follows.

(a) Ifd is even, then A is the Dynkin diagram of the same type as R, and ¢ = .
(b) Ifd is odd, then A and ¢ are given as follows.

| R[[A2n—1] A2n [ Dan | Dany1 | Ec | Ev | Es]
A\ Dnta | A2n | Don | Aan—1 | E6 | E7 | Es

¢ | 1/2] 2 TL | 72| 22

Here 1 is the involution of ZA induced by the non-trivial involution of A\, and t'/? is
the automorphism of 7, Aoy satisfying (t/?)? = 1.

In dimension 2, simple singularities (over a sufficiently large field) have an alternative
description as invariant subrings. This enables us to draw the AR quiver of the category
CM R systematically.

Example 2.25 (Auslander [1986] and Leuschke and Wiegand [2012]). Let k[[u, v]] be a
formal power series ring over a field k and G a finite subgroup of SLo (k) such that #G
is non-zero in k. Then CM S¢ = add S holds, and the Auslander algebra Endgc (S) is
isomorphic to the skew group ring S * G. This is a free S-module with basis G, and the
multiplication is given by (sg)(s'g’) = sg(s')gg’ fors,s’ € S and g, ¢’ € G. Thus the
AR quiver of CM S¢ coincides with the Gabriel quiver of S * G, and hence with the
McKay quiver of G, which is the double of an extended Dynkin quiver. This is called
algebraic McKay correspondence.

On the other hand, the dual graph of the exceptional curves in the minimal resolution
X of the singularity Spec S€ is a Dynkin graph. This is called geometric McKay corre-
spondence. There is a geometric construction of CM S¢-modules using X (Artin and
Verdier [1985]), which is a prototype of non-commutative crepant resolutions (Van den
Bergh [2004b,a]).
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3 Tilting and cluster tilting

3.1 Tilting theory. Tilting theory is a Morita theory for triangulated categories. It has
an origin in Bernstein-Gelfand-Ponomarev reflection for quiver representations, and es-
tablished by works of Brenner-Butler, Happel-Ringel, Rickard, Keller and others (see e.g.
Angeleri Hiigel, Happel, and Krause [2007]). The class of silting objects was introduced
to complete the class of tilting objects in the study of t-structures (Keller and Vossieck
[1988]) and mutation (Aihara and Iyama [2012]).

Definition 3.1. Let T be a triangulated category. A full subcategory of § is thick if it
is closed under cones, [£1] and direct summands. We call an object T € T tilting (resp.
silting) if Homg (T, T[i]) = 0 holds for all integers i # 0 (resp. i > 0), and the smallest
thick subcategory of T containing 7" is T .

The principal example of tilting objects appears in K®(proj A) for a ring A. It has a
tilting object given by the stalk complex A concentrated in degree zero. Conversely, any
triangulated category with a tilting object is triangle equivalent to K®(proj A) under mild
assumptions (see Kimura [2016] for a detailed proof).

Theorem 3.2 (Keller [1994]). Let T be an algebraic triangulated category and T € T

a tilting object. If T is idempotent complete, then there is a triangle equivalence S =~
K®(proj Ends (T')) sending T to Endy (T).

As an application, one can deduce Rickard’s fundamental Theorem (Rickard [1989b]),
characterizing when two rings are derived equivalent in terms of tilting objects. Another
application is the following converse of Proposition 2.21(b).

Example 3.3. Let T be a k-linear Hom-finite Krull-Schmidt algebraic triangulated cate-
gory over an algebraically closed field k. If the AR quiver of T is Z Q for a Dynkin quiver
Q, then T has a tilting object T = P, ¢, (0,7) for (0,i) € Z x Q¢ = (ZQ)o = ind T
Thus there is a triangle equivalence 3 ~ D°(mod kQ°P).

The following is the first main problem we will discuss in this paper.

Problem 3.4. Find a G-graded Iwanaga-Gorenstein ring A such that there is a triangle
equivalence MGA ~ K®(proj I) for some ring I'. Equivalently (by Theorem 3.2), find a
G-graded Iwanaga-Gorenstein ring \ such that there is a tilting object in CMY A.

3.2 Cluster tilting and higher Auslander-Reiten theory. The notion of cluster tilting
appeared naturally in a context of higher Auslander-Reiten theory (Iyama [2008]). It also
played a central role in categorification of cluster algebras (Fomin and Zelevinsky [2002])
by using cluster categories, a new class of triangulated categories introduced in Buan,
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Marsh, Reineke, Reiten, and Todorov [2006], and preprojective algebras (Geiss, Leclerc,
and Schroer [2013]). Here we explain only the minimum necessary background for the
aim of this paper.

Let A be a finite dimensional k-algebra with gl.dimA < d. Then D°(mod A) has
a Serre functor v by Example 2.14. Using the higher AR translation vg = v o [—d]
of D*(mod A), the orbit category C3(A) = D?(mod A) /vy is defined. It has the same
objects as D®(mod A), and the morphism space is given by

Homce (x) (X, Y) = @5 Homps moq 1) (X v (Y)),
i€Z

where the composition is defined naturally. In general, C5(A) does not have a natural
structure of a triangulated category. The d -cluster category of A is a triangulated category
Ca(A) containing C(A) as a full subcategory such that the composition D*(mod A) —
C5(A) C C4(A) is atriangle functor. It was constructed in Buan, Marsh, Reineke, Reiten,
and Todorov [2006] for hereditary case where Cy4 (A) = C7;(A) holds, and in Keller [2005,
2011], Amiot [2009], and Guo [2011] for general case by using a DG enhancement of
D°(mod A).

We say that A is vg-finite if H°(v;"(A)) = 0 holds for i > 0. This is automatic if
gl.dim A < d. In the hereditary case d = 1, A is v;-finite if and only if it is representation-
finite. The following is a basic property of d-cluster categories.

Theorem 3.5 (Amiot [2009] and Guo [2011]). Let A be a finite dimensional k-algebra
with gl.dim A < d. Then A is vg-finite if and only if C4(A) is Hom-finite. In this case,
C4(A) is a d-Calabi-Yau triangulated category.

Thus, if A is vg-finite, then C,(A) never has a tilting object. But the object A in
C4(A) still enjoys a similar property to tilting objects. Now we recall the following notion,
introduced in Tyama [2007b] as a maximal (d — 1)-orthogonal subcategory.

Definition 3.6 (Iyama [ibid.]). Let T be a triangulated or exact category and d > 1. We
call a full subcategory C of T d-cluster tilting if C is a functorially finite subcategory of
T such that

C={XeT|Vie{l,2,....,d —1} Ext;(C,X) =0}
={X €T |Vie{l,2,....,d —1} Ext;(X,C) =0}
We call an object T' € T d-cluster tilting if add T is a d-cluster tilting subcategory.

If T has a Serre functor S, then it is easy to show (S o[—d])(€C) = €. Thus it is natural
in our setting T = D°(mod A) to consider the full subcategory

(3-1) Uy (A) := add{v(A) | i € Z} C D°(mod A).
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Equivalently, Uz (A) = 7~ '(addwA) for the functor 77 : D*(mod A) — C4(A). In the
hereditary case d = 1, Uj(A) = D(mod A) holds if A is representation-finite, and oth-
erwise Uy (A) is the connected component of the AR quiver of D°(mod A) containing A.
This observation is generalized as follows.

Theorem 3.7 (Amiot [2009] and Iyama [2011]). Let A be a finite dimensional k-algebra
with gl.dimA < d. If A is vg-finite, then C4(A) has a d-cluster tilting object A, and
D®(mod A) has a d-cluster tilting subcategory Ug (A).

We define a full subcategory of D°(mod A) by
D% (modA) = {X € D°(modA) | Vi € Z\dZ, H (X) = 0}.

If gl.dim A < d, then any object in D4Z(mod A) is isomorphic to a finite direct sum of
X|[di] forsome X € mod A andi € Z. This generalizes Proposition 2.21(a) for hereditary
algebras, and motivates the following definition.

Definition 3.8 (Herschend, Iyama, and Oppermann [2014]). Letd > 1. A finite dimen-
sional k-algebra A is called d-hereditary if gl.dim A < d and Uy (A) € D?Z(mod A).

It is clear that 1-hereditary algebras are precisely hereditary algebras. We have the
following dichotomy of d -hereditary algebras.

Theorem 3.9 (Herschend, Iyama, and Oppermann [ibid.]). Let A be a ring-indecomposable
finite dimensional k-algebra with gl.dim A < d. Then A is d-hereditary if and only if ei-
ther (i) or (ii) holds:

(1) There exists a d-cluster tilting object in mod A.
(ii) v;*(A) € mod A holds for any i > 0.

When d = 1, the above (i) holds if and only if A is representation-finite, and the above
(ii) holds if and only if A is d -representation-infinite.

Definition 3.10. Let A be a d-hereditary algebra. We call A d-representation-finite if the
above (i) holds, and d -representation-infinite if the above (ii) holds.

Example 3.11. (a) Let A = kQ foraconnected acyclic quiver Q. Then A is 1-representation-
finite if Q is Dynkin, and 1-representation-infinite otherwise.

(b) Let X be a smooth projective variety with dim X = d, and T € coh X a tilting object
in D*(coh X). Then A = Endy (T) always satisfies gl.dim A > d. If the equality
holds, then A is d -representation-infinite (Buchweitz and Hille [2014]).
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(¢) There is a class of finite dimensional k-algebras called Fano algebras (Minamoto
[2012] and Minamoto and Mori [2011]) in non-commutative algebraic geometry. So-
called extremely Fano algebras A with gl.dim A = d are d-representation-infinite.

It is known that d -cluster tilting subcategories of a triangulated (resp. exact) category
T enjoy various properties which should be regarded as higher analogs of those of §". For
example, they have almost split (d + 2)-angles by Iyama and Yoshino [2008] (resp. d-
almost split sequences by Tyama [2007b]), and structures of (d + 2)-angulated categories
by Geiss, Keller, and Oppermann [2013] (resp. d-abelian categories by Jasso [2016]).
These motivate the following definition.

Definition 3.12 (cf. Definition 2.22). An Iwanaga-Gorenstein ring A is called d -CM-finite
if there exists a d-cluster tilting object M in CM A. In this case, we call Enda (M) the
d-Auslander algebra and End, (M ) the stable d -Auslander algebra.

1-CM-finiteness coincides with classical CM-finiteness since 1-cluster tilting objects
are precisely additive generators. d-Auslander correspondence gives a characterization
of a certain nice class of algebras with finite global dimension as d-Auslander algebras
(Iyama [2007a]). As a special case, it gives a connection with non-commutative crepant
resolutions (NCCRs) of Van den Bergh [2004a]. Recall that a reflexive module M over a
Gorenstein ring R gives an NCCR Endg (M) of R if Endg (M) is a non-singular R-order
(see Example 2.3(c)).

Theorem 3.13 (Iyama [2007a]). Let R be a Gorenstein ring with dim R = d + 1. Assume
M € CM R has R as a direct summand. Then M is a d-cluster tilting object in CM R if
and only if M gives an NCCR of R and R satisfies Serre’s (Rg) condition.

The following generalizes Example 2.25.

Example 3.14 (Iyama [2007b] and Van den Bergh [2004a]). Let S = k[[xo, ..., xq4]] be
a formal power series ring and G a finite subgroup of SL4 1 (k) such that #G is non-zero
in k. Then the S¢-module S gives an NCCR Endgc (S) = S * G of SC. If SC has at
worst an isolated singularity, then S is a d -cluster tilting object in CM S ¢, and hence S¢
is d-CM-finite with the d-Auslander algebra S * G. As in Example 2.25, the quiver of
add S coincides with the Gabriel quiver of S * G and with the McKay quiver of G.

The following is the second main problem we will discuss in this paper.

Problem 3.15. Find a d-CM-finite Iwanaga-Gorenstein ring. More strongly (by Theo-
rem 3.7), find an Iwanaga-Gorenstein ring A such that there is a triangle equivalence
CMA =~ Cy4(T") for some algebra T
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We refer to Erdmann and Holm [2008] and Bergh [2014] for some necessary conditions
for d -CM-finiteness. Besides results in this paper, a number of examples of NCCRs have
been found, see e.g. Leuschke [2012], Wemyss [2016], and Spenko and Van den Bergh
[2017] and references therein.

It is natural to ask how the notion of d -CM-finiteness is related to CM-tameness (e.g.
Burban and Y. Drozd [2008]) and also the representation type of homogeneous coordinate
rings of projective varieties (e.g. Faenzi and Malaspina [2017]).

4 Results in dimension 0 and 1

4.1 Dimensionzero. Inthissubsection, we consider finite dimensional Iwanaga-Gorenstein
algebras. We start with a classical result due to Happel [1988]. Let A be a finite dimen-
sional k-algebra. The trivial extension algebra of A is T(A) = A & DA, where the mul-
tiplication is given by (A, f)(A', f') = (AXM,Af" + fA) for (A, f), (A, f') € T(A).
This is clearly a self-injective k-algebra, and has a Z-grading given by T(A)y = A,
T(A); =DAand T(A); =0fori #0,1.

Theorem 4.1 (Happel [ibid.]). Let A be a finite dimensional k-algebra with gl.dim A <
0o. Then mod?T (A) has a tilting object A such that Eﬂi%(/\) (A) ~ A, and there is a
triangle equivalence

4-1) modZ T (A) ~ DP(mod A).

As an application, it follows from Gabriel’s Theorem 2.20 and covering theory that
T (kQ) is representation-finite for any Dynkin quiver Q. More generally, a large family
of representation-finite self-injective algebras was constructed from Theorem 4.1. See a
survey article (Skowronski [2006]).

Recently, Theorem 4.1 was generalized to a large class of Z-graded self-injective alge-
bras A. For X € mod? A, let X>0 = @D, Xi-

Theorem 4.2 (Yamaura [2013]). Let A = P, Ai be a Z-graded finite dimensional
self-injective k-algebra such that gl.dim Ay < co. Then modZ A has a tilting object T =
®D,- Ali)=0, and there is a triangle equivalence mod” A ~ K®(proj End% (T')).
If soc A C A, for some a € Z, then Eﬂl% (T') has a simple description

Ao O - 0 0

Aq Ap -+ 0 O

Endf(T) = | ST
Ag—2 Ag—3 -+ Ao O
Aa—1 Ag—2 -+ A1 Ag
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For example, if A = k[x]/(x?*!) with deg x = 1, then End% (T') is the path algebra k A,
of the quiver of type A,.
We end this subsection with posing the following open problem.

Problem 4.3. Let A = ;. Ai be a Z-graded finite dimensional Iwanaga-Gorenstein
algebra. When does CMZA have a tilting object?

Recently, it was shown in Lu and Zhu [2017] and Kimura, Minamoto, and Yamaura
[n.d.] independently that if A = P, A; is a Z-graded finite dimensional 1-Iwanaga-
Gorenstein algebra satisfying gl.dim Ay < oo, then the stable category mz A has asilting
object. We will see some other results in Section 5.4. We refer to Darp6 and Iyama [2017]
for some results on Problem 3.15.

4.2 Dimension one. In this subsection, we consider a Z-graded Gorenstein ring R =
D, Ri with dim R = 1 such that R is a field. Let S be the multiplicative set of all
horr;ogeneous non-zerodivisors of R, and K = RS~ the Z-graded total quotient ring.
Then there exists a positive integer p such that K(p) ~ K as Z-graded R-modules. In
this setting, we have the following result (see Definitions 2.15 and 2.11 for CMOZ R and
the a-invariant).

Theorem 4.4 (Buchweitz, [yama, and Yamaura [2018]). Let R = @izo R; be a Z-graded
Gorenstein ring with dim R = 1 such that Ry is a field, and a the a-invariant of R.

(a) Assume a > 0. Then CMZ R has a tilting object T = @7:1” R(i)>0, and there is a
triangle equivalence CME R ~ K (proj Eﬂi%(T)).

(b) Assume a < 0. Then CMZ R has a silting object @;1:117 R(i)>0. Moreover, it has a
tilting object if and only if R is regular.

An important tool in the proof is Theorem 2.12. The endomorphism algebra of 7" above
has the following description.

Ro 0 - 0 0 0 o -+ 0 0 7
Ry Ro o 0 0 0 o -+ 0 0
Ra—2 Rs—3 -+ Ro 0 0 o -+ 0 0
R, Rg—o -+ Ry Ry 0 0 0 0
End%(T)=| " a
End(T) Ka  Kg1 -+ K2 K1 Ko K1 - Kap Kiop
Kot Ka -+ K3 Ko Ki Ko - Kz—p Kop
Ka+p—2 Ka+p—3 Kp Kp—l Kp—2 Kp—3 Ko K
_Ka+p—1 Ka+p—2 Kp+1 Kp Kp—l Kp—2 K1 Ko
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As an application, we obtain the following graded version of Proposition 2.24(b).

Example 4.5. Let R = k[x, y]/(f) be a simple singularity (2-3) with dim R = 1 and
the grading given by the list below. Then there is a triangle equivalence CM?%R ~
D®(mod kQ), where Q is the Dynkin quiver in the list below. In particular, the AR quiver
of CMZR is Z Q° (Araya [1999]).

’ R [A2n—1] Aan | Don | Donyr | E¢ | Er | Es |
(degx,degy) |l (1,n) |(2,2n+1)|(L,n—1)|(2,2n—1)|(3,4)|(2,3)|(3,5)
Q Dn+1 A2n D2n A4n—1 E6 E7 E8

This gives a conceptual proof of the classical result that simple singularities in dimension
1 are CM-finite (Jacobinski [1967], J. A. Drozd and Roiter [1967], and Greuel and Kndrrer
[1985)).

In the following special case, one can construct a different tilting object, whose endo-
morphism algebra is 2-representation-finite (Definition 3.10). This is closely related to
the 2-cluster tilting object constructed in Burban, Iyama, Keller, and Reiten [2008].

Theorem 4.6 (Herschend and Iyama [n.d.]). Let R = k[x,y]/(f) be a hypersurface
singularity with f = fi fo--- f, for linear forms f; and degx = degy = 1. Assume that
R is reduced.

(a) CMZ R has a tilting object

U= @(HX»Y]/(.ﬁfz o i) @ klx, v/ (fife-- fi)(D)

(b) Eﬂilze (U) is a 2-representation-finite algebra. It is the Jacobian algebra of a certain
quiver with potential.

We refer to Demonet and Luo [2016], Jensen, King, and Su [2016], and Gelinas [2017]
for other results in dimension one.

5 Preprojective algebras

5.1 Classical preprojective algebras. Preprojective algebras are widely studied ob-
jects with various applications, e.g. cluster algebras (Geiss, Leclerc, and Schroer [2013]),
quantum groups (Kashiwara and Y. Saito [1997] and Lusztig [1991]), quiver varieties
(Nakajima [1994]). Here we discuss a connection to CM representations.
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Let Q be an acyclic quiver, and Q the double of Q obtained by adding an inverse arrow
a*: j — i foreach arrow a: i — j in Q. The preprojective algebra of Q is the factor
algebra of the path algebra k Q defined by

(5-1) M=kQ/()_ (aa* —a*a)).

acQ,

We regard I1 as a Z-graded algebra by dega = 0 and dega™ = 1 forany a € Q. Clearly
Iy, = kQ holds. Moreover II; = ExtiQ(D(kQ),kQ) as a kQ-bimodule, and IT is
isomorphic to the tensor algebra Tyo Ext}cQ(D(kQ), kQ). Thus the kQ-module II; is
isomorphic to the preprojective kQ-module H° (t=* (kQ)), where = v o [—1] is the AR
translation. This is the reason why II is called the preprojective algebra. Moreover, for
the category Uy (kQ) defined in (3-1), there is an equivalence

(5-2)

given by X > @D,z Homy, (ko) (kQ. 77 (X)), which gives the following trichotomy.

Uy (kQ) = add{z ™ (kQ) | i € Z} ~ projZ 11

’ 0 H Dynkin ‘ extended Dynkin ‘ else
kQ | representation-finite | representation-tame | representation-wild
dimy II; dimg IT < oo linear growth exponential growth

It was known in 1980s that, II in the extended Dynkin case has a close connection to
simple singularities.

Theorem 5.1 (Auslander [1978], Geigle and Lenzing [1987, 1991], and Reiten and Van
den Bergh [1989]). Let 11 be a preprojective algebra of an extended Dynkin quiver Q, e
the vertex o in (2-2), and R = elle.

() Risasimple singularity k|x,y,z]|/(f) in dimension 2 with induced Z-grading below,
where p in type Ay is the number of clockwise arrows in Q. (Note that f coincides
with (2-3) after a change of variables if k is sufficiently large.)

’Q,RH f \(degx,degy,degz)‘
An X —yz (Lpn+1-p)
x(y2+xly) 422 ifn =20
Dn x(P24+xt )+ 22 ifn=20+1 @n=2n-1)
Eg x2z 4 y3 4 22 (3,4,6)
E7 x3y +y3 + 22 (4,6,9)
Eg x5+ 3422 (6,10, 15)

(b) e is an additive generator of CM R and satisfies Endg (Ile) = IL. Therefore R is
CM-finite with an Auslander algebra 11.
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(c) II is Morita equivalent to the skew group ring k[u,v] * G for a finite subgroup G of
SLy(k) if' k is sufficiently large (cf. Example 2.25).

By (b) and (5-2) above, there are equivalences CMZ R ~ projZ Il ~ U;(kQ) C
D®(mod kQ). Thus the AR quivers of CMZ R and CMZ R are given by Z Q° and Z( Q°P\{e})
respectively. Now the following result follows from Example 3.3.

Corollary 5.2. Under the setting in Theorem 5.1, there is a triangle equivalence C_MZ R ~
D(modkQ/(e)).

Two other proofs were given in Kajiura, K. Saito, and A. Takahashi [2007], one uses
explicit calculations of Z-graded matrix factorizations, and the other uses Theorem 2.12.
In Theorem 5.8 below, we deduce Corollary 5.2 from a general result on higher prepro-
jective algebras. We refer to Kajiura, K. Saito, and A. Takahashi [2009] and Lenzing and
de la Pefia [2011] for results for some other hypersurfaces in dimension 2.

5.2 Higher preprojective algebras. There is a natural analog of preprojective algebras
for finite dimensional algebras with finite global dimension.

Definition 5.3 (Iyama and Oppermann [2013]). Let A be a finite dimensional k-algebra
with gl.dim A < d. We regard the highest extension Exti(DA, A) as a A-bimodule natu-
rally, and define the (d + 1)-preprojective algebra as the tensor algebra

My1(A) = Ty Extd (DA, A).

This is the 0-th cohomology of the Calabi-Yau completion of A (Keller [2011]). For
example, for an acyclic quiver Q, Il (k Q) is the preprojective algebra (5-1).

The algebra IT = II;,1(A) has an alternative description in terms of the higher AR
translation vy = v o [~d] of D’(mod A). The Z-grading on II is given by

II; = Ext{ (DA, A)®* = Hompp (eg a) (A V7" (A))
fori > 0. Thus there is an isomorphism II ~ End¢,(1)(A) and an equivalence
(5-3) Ug(A) ~ projZ 11

givenby X > @; 5 Homy, () (A, v;* (X)). In particular, IT is finite dimensional if and
only if A is v, -finite.
We see below that 15,1 (A) enjoys nice homological properties if A is d -hereditary.

Definition 5.4 (cf. Ginzburg [2006]). Let I' = ;. ,I'; be a Z-graded k-algebra. We
denote by I'* = I'°? @y T the enveloping algebra of I'. We say that I" is a d-Calabi-Yau
algebra of a-invariant a (or Gorenstein parameter —a) if I" belongs to Kb(pron I'¢) and
RHompe (I, T¢)(a)[d] ~ I holds in D(ModZ I'®).
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For example, the Z-graded polynomial algebra k[x1, ..., x4] with degx; = a; is a
d-Calabi-Yau algebra of a-invariant — Z?:l a;.

Now we give a homological characterization of the (d + 1)-preprojective algebras of
d -representation-infinite algebras (Definition 3.10) as the explicit correspondence.

Theorem 5.5 (Keller [2011], Minamoto and Mori [2011], and Amiot, Iyama, and Reiten
[2015]). There exists a bijection between the set of isomorphism classes of d -representation-
infinite algebras A and the set of isomorphism classes of (d + 1)-Calabi-Yau algebras T
of a-invariant —1. It is given by A +— 31 (A) and T + T.

Note that I" above is usually non-noetherian. If T is right graded coherent, then for the
category qgr I defined in (2-1), there is a triangle equivalence (Minamoto [2012])

(5-4) D°(mod A) ~ D°(qgrT).

Applying Theorem 5.5 for d = 1,2, we obtain the following observations (see Van den
Bergh [2015] for a structure theorem of (ungraded) Calabi-Yau algebras).

Example 5.6. Let k be an algebraically closed field.

(a) (cf. Bocklandt [2008]) 2-Calabi-Yau algebras of a-invariant —1 are precisely the pre-
projective algebras of disjoint unions of non-Dynkin quivers.

(b) (cf. Bocklandt [2008] and Herschend and Iyama [2011]) 3-Calabi-Yau algebras of a-
invariant —1 are precisely the Jacobian algebras of quivers with ‘good’ potential with
cuts.

The setting of our main result is the following.

Assumption 5.7. Let " be a (d + 1)-Calabi-Yau algebras of a-invariant —1. Equivalently
by Theorem 5.5, I" is a (d + 1)-preprojective algebra of some d -representation-infinite
algebra. We assume that the following conditions hold for A = T'.

(i) T is a noetherian ring, e € A is an idempotent and dimg (I'/(e)) < oo.
(ii) eA(1—e) =0.

For example, let Q be an extended Dynkin quiver. If the vertex o in (2-2) is a sink,
then I' = II5(kQ) and e = o satisfy Assumption 5.7 by Theorem 5.1.

Under Assumption 5.7(i), let R = el'e. Then R is a (d + 1)-Iwanaga-Gorenstein ring,
and the (T', R)-bimodule I'e plays an important role. It is a CM R-module, and gives a
d~cluster tilting object in CM R. Moreover the natural morphism I' — Endg(T'e) is an
isomorphism. Thus R is d-CM-finite and has a d-Auslander algebra I'. The proof of
these statements is parallel to Example 3.14.
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Regarding I'e as a Z-graded R-module, we consider the composition

L
F:D°(mod A/(e)) — D°(mod A) —22% DP(modZ R) — CMZR,

where the first functor is induced from the surjective morphism A — A/(e), and the last
functor is given by Theorem 2.10. Under Assumption 5.7(ii), F' is shown to be a triangle
equivalence. A crucial step is to show that F restricts to an equivalence Uy (A/(e)) —
add{T'e(i) | i € Z}, which are d-cluster tilting subcategories of D®(mod A/(e)) and
CMZ R respectively (Theorem 3.7). Similarly, we obtain a triangle equivalence Cy4 (A/(e))
CMR by using universality of d -cluster categories (Keller [2005]). As a summary, we ob-
tain the following results.

Theorem 5.8 (Amiot, [yama, and Reiten [2015]). Under Assumption 5.7(i), let R = el'e
and A =T.

(@) Risa (d + 1)-Iwanaga-Gorenstein algebra, and I'e is a CM R-module.

(b) Te is a d-cluster tilting object in CM R and satisfies Endg(T'e) = T'. Thus R is
d-CM-finite and has a d-Auslander algebra T’

(¢) If Assumption 5.7(ii) is satisfied, then there exist triangle equivalences

D°(mod A/(e)) ~ CMZR and C4(A/(e)) ~ CMR.

Similar triangle equivalences were given in de Vo6lcsey and Van den Bergh [2016] and
Kalck and Yang [2016] using different methods. There is a connection between (c) and
(5-4) above via Theorem 2.12, see Amiot [2013].

In the case d = 1, the above (c) recovers Corollary 5.2 and a triangle equivalence
CMR >~ Cy(kQ/(e)), which implies algebraic McKay correspondence in Example 2.25.
Motivated by Example 3.14 and Theorem 5.1(c), we consider the following.

Example 5.9 (Amiot, Iyama, and Reiten [2015],Ueda [2008]). Let S = k[xo,...,x4] be
a polynomial algebra, and G a finite subgroup of SLy 1 1(k). Then the skew group ring
I' = S % G is a (ungraded) (d + 1)-Calabi-Yau algebra. Assume that G is generated
by the diagonal matrix diag({?°, ..., {%), where { is a primitive n-th root of unity and
0 < aj < n—1foreach j. Then I' is presented by the McKay quiver of G, which
has vertices Z/nZ, and arrows x;: i — i + a; for each i, j. Define a Z-grading on T’
by deg(xj:i — i+a;) =0ifi <i+a; asintegers in {1,...,n}, and 1 otherwise.
ThenI'isa (d + 1)-Calabi-Yau algebra of a-invariant — » 3 ; _; a; /n. Assume that this
is —1, and let e = e,. Then Assumption 5.7 is satisfied, and el'e = S G holds. Thus
Theorem 5.8 gives triangle equivalences

D°(mod A/(e)) >~ CMZSY and C4(A/(e)) ~ CMSC.

~
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Below we draw quivers for two cases (i) n = d + 1 andag = --- = a4 = 1, and (ii)
d =2,n=>5and (ag,ai,a2) = (1,2,2).

@r A AJ(e) (i) I A/(e)
d+1=>1  d+1 1

dﬂ) w ﬂ) 1\x>2d &2 5@%&2 5 \2 \‘2
N T Y > T ¥ /
. 3 =3 44— 3 4

e — Ng +——3 4<—3

N
!

In(i), = showsd+1arrows, S€ is the Veronese subring § (@+1) and A is the Beilinson
algebra. For d = 2, we recover the triangle equivalence Co(kQ) ~ CMSY for Q =
[ 1 =3 2] given in Keller and Reiten [2008] and Keller, Murfet, and Van den Bergh [2011].

Note that similar triangle equivalences are given in Iyama and R. Takahashi [2013],
Ueda [2012], and Mori and Ueyama [2016] for the skew group rings S * G whose a-
invariants are not equal to —1.

Example 5.10 (Dimer models). Let G be a bipartite graph on a torus, and G (resp. G1,
G») the set of vertices (resp. edges, faces) of G. We associate a quiver with potential
(Q,W): The underlying graph of Q is the dual of the graph G, and faces of Q dual
to white (resp. black) vertices are oriented clockwise (resp. anti-clockwise). Hence any
vertex v € G corresponds to acycle ¢, of Q. Let W =) €y — D 1 plack Cv- and T’
the Jacobian algebra of (Q, W).

Under the assumption that G is consistent, I is a (ungraded) 3-Calabi-Yau algebra, and
for any vertex e, R = el'e is a Gorenstein toric singularity in dimension 3 (see Broomhead
[2012] and Bocklandt [2012] and references therein). Using a perfect matching C on G,
define a Z-grading on I by dega = 1 for all @ € C and dega = 0 otherwise. If both
I'/(e) and A = T’y are finite dimensional and eA(1 — e¢) = 0 holds, then Theorem 5.8
gives triangle equivalences

D°(modA/(e)) ~ CMZR and Cy(A/(e)) ~ CMR.

5.3 d-representation-finite algebras. In this subsection, we study the (d + 1)-pre-
projective algebras of d -representation-finite algebras. We start with the following basic
properties.

Proposition 5.11 (Geiss, Leclerc, and Schrder [2006], Iyama [2011], and Iyama and Op-
permann [2013]). Let A be a d-representation-finite k-algebra and 11 = 4,1 (A).

(a) Il is a Z-graded finite dimensional self-injective k-algebra.
(b) mod?TI has a Serre functor (—1)[d + 1], and modIl is (d + 1)-Calabi-Yau.
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(¢) Il is a (unique) d-cluster tilting object in mod A.
Now we give an explicit characterization of such II.

Definition 5.12. Let I' = €,.,I'; be a Z-graded finite dimensional self-injective k-
algebra. We denote by ' = T'°P QI the enveloping algebra of I'. We say that I is a stably
d-Calabi-Yau algebra of a-invariant a (or Gorenstein parameter —a) if RHompe (I', I'*) (a) [d] ~
I in DZ(T°).

Now we give a homological characterization of the (d + 1)-preprojective algebras of
d -representation-finite algebras as the explicit correspondence.

Theorem 5.13 (Amiot and Oppermann [2014]). There exists a bijection between the set
of isomorphism classes of d-representation-finite algebras A and the set of isomorphism
classes of stably (d +1)-Calabi-Yau self-injective algebras I of a-invariant —1. It is given
byA— Tz 1(A)andT Ty

Now let A be a d-representation-finite k-algebra, and II = II;1(A). Let I' =
End, (IT) be the stable d -Auslander algebra of A. Then we have an equivalence

(5-5) Uq(A) =~ proj” T(I)

of additive categories. Thus we have triangle equivalences
(5-3) (5-5) (1)
mod?TI ~ modUy (A) ~ mod?T(I') ~ DP(modT).

By Proposition 5.11(b), the automorphism (—1) on modZIT corresponds to vy, ; on D*(mod T").
Using universality of (d 4 1)-cluster categories (Keller [2005]), we obtain a triangle equiv-
alence modII ~ C4,1(T"). As a summary, we obtain the following.

Theorem 5.14 (Iyama and Oppermann [2013]). Let A be a d-representation-finite k-
algebra, 11 = Iz.1(A), and T' = End, (IT) the stable d-Auslander algebra of A. Then
there exist triangle equivalences

modZIT ~ D®(modT) and modIl ~ C4 ().
Applying Theorem 5.14 for d = 1, we obtain the following observations.

Example 5.15 (Amiot [2009] and Iyama and Oppermann [2013]). Let IT be the prepro-
jective algebra of a Dynkin quiver Q, and I the stable Auslander algebra of kQ. Then
there exist triangle equivalences

modZ1I ~ D®(modT') and modIl ~ Cy(T).

As an application, if a quiver Q' has the same underlying graph with Q, then the stable
Auslander algebra I of kQ’ is derived equivalent to I" since IT is common.
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In the rest of this subsection, we discuss properties of II;1(A) for a more general
class of A. We say that a finite dimensional k-algebra A with gl.dim A < d satisfies the
vosnex property if A is vg-finite and satisfies Hompy noq 2) (Ua (A)[i], Ug (A)) = 0 for all
1 <i <d — 2. This is automatic if d = 1,2 or A is d-representation-finite. In this case,
the following generalization of Theorem 5.14 holds.

Theorem 5.16 (Iyama and Oppermann [2013]). Let A be a finite dimensional k-algebra
with gl.dim A < d satisfying the vosnex property. Then I1 = 11z, 1(A) is I-Iwanaga-
Gorenstein, I' = End , (IT) satisfies gl.dimT" < d+1, and there exist triangle equivalences

CMZTI ~ D°(modT") and CMII ~ C44(T).

For more general A, we refer to Beligiannis [2015] for some properties of T17, 1 (A).

5.4 Preprojective algebras and Coxeter groups. We discuss a family of finite dimen-
sional k-algebras constructed from preprojective algebras and Coxeter groups.

Let Q be an acyclic quiver and II the preprojective algebra of kQ. The Coxeter group
of Q is generated by s; with i € Qy, and the relations are the following.

« s?=1foralli € Qy.
* s;s; = s;s; if there is no arrow between i and j in Q.
* s;8j8; = §;5;5; if there is precisely one arrow between i and j in Q.

Letw € W. An expression w = s;, 5, - - - 8;, of w is called reduced if £ is minimal among
all expressions of w. Fori € Qy, let I; be the two-sided ideal of II generated by the
idempotent 1 — ¢;. For a reduced expression w = s;, ---s;,, we define a two-sided ideal
of IT by

Iw = Iilliz '“Iilf'

This is independent of the choice of the reduced expression of w. The corresponding
factor algebra II,, := II/I,, is a finite dimensional k-algebra. It enjoys the following
remarkable properties.

Theorem 5.17 (Buan, Iyama, Reiten, and Scott [2009], Geiss, Leclerc, and Schréer [2007],
and Amiot, Reiten, and Todorov [2011]). Let w € W.

(a) Iy is a 1-Iwanaga-Gorenstein algebra.
(b) CMIIy, is a 2-Calabi-Yau triangulated category.
(¢) There exists a 2-cluster tilting object @ﬁ‘:l e, HSf/ g, 11 CM T,

4
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(d) There exists a triangle equivalence CMII,, ~ Co(A) for some algebra A.

Therefore it is natural to expect that there exists a triangle equivalence mz I, ~
D®(mod A’) for some algebra A’. In fact, the following results are known, where we refer
to Kimura [2018, 2016] for the definitions of c-sortable, c-starting and c-ending.

Theorem 5.18. Let w = s;, ---5;, be a reduced expression of w € W.
(a) (Kimura [2018]) If w is c-sortable, then CMZ11,, has a tilting object Do Huw(i)so

(b) (Kimura [2016]) C_MZHw has a silting object @ﬁ-:l e, Hsij
object if the reduced expression is c-starting or c-ending.

Siy- This is a tilting

We end this section with posing the following natural question on ‘higher cluster com-
binatorics’ (e.g. Oppermann and Thomas [2012]), which will be related to derived equiv-
alences of Calabi-Yau algebras since our I, is a tilting object in K®(proj IT) if Q is non-
Dynkin.

Problem 5.19. Are there similar results to Theorems 5.17 and 5.18 for higher preprojec-
tive algebras? What kind of combinatorial structure will appear instead of the Coxeter
groups?

6 Geigle-Lenzing complete intersections

Weighted projective lines of Geigle and Lenzing [1987] are one of the basic objects in
representation theory. For example, the simplest class of weighted projective lines gives
us simple singularities in dimension 2 as certain Veronese subrings. We introduce a higher
dimensional generalization of weighted projective lines following Herschend, Iyama, Mi-
namoto, and Oppermann [2014].

6.1 Basic properties. For a field k and an integer d > 1, we consider a polynomial
algebra C = k[Ty, ..., T4]. Forn > 0,let {4, ..., £, be linear forms in C and p1,..., p,
positive integers. For simplicity, we assume p; > 2 for all i. Let

R=C[X1,....Xn|/(XP" —4; |1 <i <n)
be the factor algebra of the polynomial algebra C [X7, ..., X,], and
L= (21,...,£n,5>/(pi£i—5|1§i <n).

the factor group of the free abelian group (X1, ..., X,,¢). Then LL is an abelian group of
rank 1 with torsion elements in general, and R is L-graded by deg T; = ¢ forall0 <i < d
anddeg X; = X; forall 1 <i <n.
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We call the pair (R, L) a Geigle-Lenzing (GL) complete intersection if 1, . .., L, are
in general position in the sense that each set of at most d + 1 elements from £1,...,¢, is
linearly independent. We give some basic properties.

Proposition 6.1. Let (R,1L) be a GL complete intersection.
(@ XP'—4ty,..., X" —tyisa C[Xy,..., Xn|-regular sequence.

(b) R is a complete intersection ring with dim R = d + 1 and has an a-invariant

n
&=(n—-d-1)F-Y .
i=1

(c) After a suitable linear transformation of variables Ty, . .., T, we have
B k[ X1,.... Xn, Ty, ..., T4 ifn <d+1,
(X1, Xl /(XD =9 My XY [ d +2<i<n) ifn=>d+2.

(d) R is regular if and only if R is a polynomial algebra if and only ifn < d + 1.
(e) CMT R = CMY R holds, and CME R has a Serre functor (&)[d] (Theorem 2.16).

Let §: L. — Q be a group homomorphism given by §(¥;) = ﬁ and §(¢) = 1. We
consider the following trichotomy given by the sign of (&) =n—d —1-) 7, %. For
example, (R,L) is Fano ifn < d + 1.

[8@) [ <o =0 | >0 |
(R,L)|| Fano |Calabi-Yau|anti-Fano
d =1 || domestic| tubular wild

In the classical case d = 1, the ring R has been studied in the context of weighted projec-
tive lines. The above trichotomy is given explicitly as follows.

e 5 types for domestic: n < 2, (2,2, p), (2,3,3), (2,3,4) and (2, 3, 5).
e 4 types for tubular: (3,3, 3), (2,4,4), (2,3,6) and (2,2, 2,2).
o All other types are wild.

There is a close connection between domestic type and simple singularities. The following
explains Corollary 5.2, where R(®) = ;7 R;s is the Veronese subring.
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Theorem 6.2 (Geigle and Lenzing [1991]). If (R, L) is domestic, then R'®) is a simple sin-

gularityk[x, y, z]/( f) in dimension 2, and we have an equivalence CM* R ~ CM?% R(®),
The AR quiver is Z.Q, where Q is given by the following table.

(o) x [ vy | 2 ] f | 0 |

(p.q) X1 Xo | XPTI] xPTe xPt4 — yz Apg
(2,2,2p) X2 | X7 | X1XoXs3|x(y2 +xPy) + 22| Dopio
(2.2.2p+1) || X2 | X1Xo| X7X3 [x(y%2+xPz) 4+ 2% |Dopis

(2.3,3) X1 | XoXs| X3 x2z 4 y3 4 22 Eg
(2,3,4) Xo | X7 | XiXs | x3y+y3+22 E7
(2,3,5) X3 X9 X1 x5+y3+22 Esg

6.2 Cohen-Macaulay representations. To study the category CML R, certain finite
dimensional algebras play an important role. For a finite subset 7 of L, let

I _
A" = @ R;C_Jj.
x,yel

We define the multiplication in A7 by (r3.5)z.5er * (r)icj);c’;e, = (D zes r;’gré,y);,;el.

Then A’ forms a finite dimensional k-algebra called the I -canonical algebra.

We define a partial order < on IL by writing ¥ < ¥ if y — X belongs to I, where LL
is the submonoid of L generated by ¢ and X; for all i. For X € L, let [0, X] be the interval
in I, and A% the [0, X]-canonical algebra. We call

ACM _ 4[0,dE+23]
the CM-canonical algebra.
Example 6.3. The equality d¢ + 20 = (n —d —2)¢ + Y _,(pi — 2)X; holds.
(a) Ifn <d +1,then AM = 0. If n = d + 2, then AM = @717 kA, ;.
(b) Ifn =d + 3 and p; = 2 for all i, then A“M has the left quiver below.
(c) Ifd =1,n =4and (p;)}_, = (2,2,2,3), then A has the right quiver below.

X1

X1 — X1+ Xy

X2

o

A

n—1

Xn
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The following is a main result in this section.

Theorem 6.4. Let (R,1L) be a GL complete intersection. Then there is a triangle equiva-
lence

CMER ~ DP(mod A™M).
In particular, CMY R has a tilting object.

The case n = d + 2 was shown in Kussin, Lenzing, and Meltzer [2013] (d = 1) and
Futaki and Ueda [2011]. An important tool in the proof'is an [L-analogue of Theorem 2.12.

As an application, one can immediately obtain the following analogue of Theorem 2.23
by using the knowledge on AM in representation theory, where we call (R, L) CM-finite
if there are only finitely many isomorphism classes of indecomposable objects in cME R
up to degree shift (cf. Definition 2.22).

Corollary 6.5. Let (R, L) be a GL complete intersection. Then (R, L) is CM-finite if and
only if one of the following conditions hold.

()n<d+1

) n=d+2 and(pry....pn) = (200 2 pu)s (2,....2,3,3), (2,....2,3,4) or
(2,...,2,3,5) up to permutation.

We call a GL complete intersection (R, IL) d -CM-finite if there exists a d -cluster tilting
subcategory @ of CM™ R such that there are only finitely many isomorphism classes of
indecomposable objects in C up to degree shift (cf. Definition 3.12). Now we discuss
which GL complete intersections are d -CM-finite. Our Theorem 3.7 gives the following
sufficient condition, where a tilting object is called d -tilting if the endomorphism algebra
has global dimension at most d.

Proposition 6.6. If CM“R has a d-tilting object U, then (R,L) is d-CM-finite and
CMY R has the d-cluster tilting subcategory add{U ({&), R(X) | £ € Z,% € LL}.
Therefore the following problem is of our interest.
Problem 6.7. When does C_M]LR have a d-tilting object? Equivalently, when is A™M
derived equivalent to an algebra A with gl.dim A < d?
Applying Tate’s DG algebra resolutions (Tate [1957]), we can calculate gl.dim A“M.
Note that any element X € LL can be written uniquely as X = ac + Y ;_, a;X; fora € Z
and 0 < a; < p; — 1, which is called the normal form of X.

Theorem 6.8. (a) Write X € L in normal form X = a¢ + Y ;_, a;X;. Then

min{d + 1,a +#{i |a; #0}} ifn<d+1,

gl.dim A1%%] =
2a +#{i | a; # 0} if n>d+2.
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(b) Ifn > d + 2, then AM has global dimension 2(n —d —2) +#{i | p; > 3}.

We obtain the following examples from Theorem 6.8 and the fact that k A; ®y kA, is
derived equivalent to kDy if m = 2, kEg if m = 3, and kEg if m = 4.

Example 6.9. In the following cases, CM™ R has a d -tilting object.
(i)n=<d+1
(i) n =d +2 > 3and (p1, p2, p3s) = (2,2, p3), (2,3,3), (2,3,4) or (2,3,5).
(iii) n =d +2 > 4 and (p1, p2, p3s, P4) = (3,3, p3, pa) with p3, ps € {3,4,5}.
(v) #i | pi=2}>3(n—d)—4.
The following gives a necessary condition for the existence of d -tilting object.
Proposition 6.10. [f CM" R has a d-tilting object, then (R, L) is Fano.

Note that the converse is not true. For example, let d = 2 and (2,5, 5,5). Then (R, L)
is Fano since §(@) = —15. On the other hand, AM = ®?_, kA, satisfies 1° = [9]. One
can show that A“M is not derived equivalent to an algebra A with gl.dim A < 2 by using
the inequality 2(5 — 1) < 9.

6.3 Geigle-Lenzing projective spaces. Let (R,IL) be a GL complete intersection. Re-

call that modg‘ R is the Serre subcategory of mod™ R consisting of finite dimensional
modules. We consider the quotient category

cohX = qgr R = mod" R/mod]g; R.

We call objects in coh X coherent sheaves on the GL projective space X. We can regard
X as the quotient stack [(Spec R \ {R4})/ Spec k[LL]] for R = @3z Rz. For example,
if n = 0, then X is the projective space P¢.
We study the bounded derived category D(coh X), which is canonically triangle equiv-
alent to the Verdier quotient D*(mod™ R)/DP(mod} R). The duality (—)* = RHomg(—, R): D®(
D®(mod™ R) induces a duality (—)*: D®(coh X) — D’(cohX). We define the category
of vector bundles on X as

vect X = coh X N (coh X)*.

The composition CMY R c mod® R — coh X is fully faithful, and we can regard cME R
as a full subcategory of vect X. We have CME R = vectX if d = 1, but this is not the
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case if d > 2. In fact, we have equalities
(6-1)  CMER={X evectX |VXel, 1<i<d—1, Exti(O(%),X) =0}
={X evectX |V¥ e, 1 <i <d—1, Exti(X,0(X)) = 0}
where O(X) = R(X). Now we define the d-canonical algebra by
qea — 4l0.dé]

Example 6.11. (a) Ifd = 1, then A is precisely the canonical algebra of Ringel [1984].
It is given by the following quiver with relations x = Xiox?" + A;1x2? for any i
with3 <i <n.

%1 2%1 (p1—1)x1
X1 - X2 > X2 X2 -
P 2X2 (p2 = 1)X2 N\t
X2 2
x\) _.. Xn _. Xn ' Xn ’ N Xn
" Xn 2Xn (pn — 1)Xn

(b) If n = 0, then A® is the Beilinson algebra.
(¢) Ifd =2,n =3and (p;)?_, = (2,2,2), then A® has the left quiver below.
(d) Ifd =2,n =4and (p;)!_, = (2.2,2,2), then A has the right quiver below.

i —> Xzg+¢ — 2¢

VAN N <

NN £
VN

LT X

i —> X3+ — 2¢

As in the case of CM" R and A“M, we obtain the following results.
Theorem 6.12. Let X be a GL projective space. Then there is a triangle equivalence
D°(cohX) ~ D®(mod A*).
Moreover D®(coh X) has a tilting bundle Diepo.az) O(X).
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Some cases were known before (n = 0 by Beilinson [1978], d = 1 by Geigle and
Lenzing [1987], n < d + 1 by Baer [1988], n = d + 2 by Ishii and Ueda [2012]). An
important tool in the proof is again an [L-analogue of Theorem 2.12.

We call X vector bundle finite (VB-finite) if there are only finitely many isomorphism
classes of indecomposable objects in vect X up to degree shift. There is a complete clas-
sification: X is VB-finite if and only if d = 1 and X is domestic.

We call X d-VB-finite if there exists a d-cluster tilting subcategory C of vect X such
that there are only finitely many isomorphism classes of indecomposable objects in € up
to degree shift. In the rest, we discuss which GL projective spaces are d-VB-finite. We
start with the following relationship between d-cluster tilting subcategories of CM™ R
and vect X, which follows from (6-1).

Proposition 6.13. The d-cluster-tilting subcategories of CM™ R are precisely the d -cluster-
tilting subcategories of vectX containing O(X) for all X € 1. Therefore, if (R,1L) is
d-CM-finite, then X is d-VB-finite.

For example, if n < d + 1, then CMER = proj]L R is a d-cluster tilting subcate-
gory of itself, and hence vect X has a d-cluster tilting subcategory add{O(x) | X € L}.
This implies Horrocks” splitting criterion for vect P4 (Okonek, Schneider, and Spindler
[1980]).

We give another sufficient condition for d-VB-finiteness. Recall that we call a tilting
object V in D®(coh X) d-filting if gl.dim Endpp conx) (V) < d.

Proposition 6.14. Let X be a GL projective space, and V a d-tilting object in D®(coh X).
(a) (cf- Example 3.11(b)) gl.dim Endpp(conx) (V') = d holds. IfV € cohX, then Endx (T')

is a d-representation-infinite algebra.

(b) If'V € vectX, then X is d-VB-finite and vect X has the d-cluster tilting subcategory
add{V (L&) | £ € Z}.

Therefore it is natural to ask when X has a d -tilting bundle, or equivalently, when A

is derived equivalent to an algebra A with gl.dim A = d. It follows from Theorem 6.8(a)
that

d if n <d+1,

gl.dim A% — mn=ds

2d  ifn>d+2.
Thus, if n < d + 1, then X has a d-tilting bundle. Using Example 6.9 and some general
results on matrix factorizations, we have more examples.

Theorem 6.15. In the following cases, X has a d-tilting bundle.
(i)n=<d+1
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(i) n =d + 2> 3and (p1, p2, p3) = (2,2, p3), (2,3,3), (2,3,4) or (2,3,5).
(iii) n =d +2 > 4 and (p1, p2, P3, pa) = (3.3, p3, pa) with ps, ps € {3,4,5}.
As in the previous subsection, we have the following necessary condition.
Proposition 6.16. If X has a d-tilting bundle, then X is Fano.

Some of our results in this section can be summarized as follows.

(R, ]L) is Proposition 6.6 CM]LR has a Proposition 6.10 F
ano

d-CM-finite d-tilting object /
Proposition 6.
Proposition 6.13\“/
X is derived equivalent

X is Proposition 6.14 X has a Proposition 6.14

d-VB-finite = d-tilting bundle to a d-representation

infinite algebra

It is important to understand the precise relationship between these conditions. We refer
to Chan [2017] and Buchweitz, Hille, and Iyama [n.d.] for results on existence of d -tilting
bundles on more general varieties and stacks.
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ON NEGATIVE ALGEBRAIC K-GROUPS

Moritz KERZ

Abstract

We sketch a proof of Weibel’s conjecture on the vanishing of negative algebraic
K-groups and we explain an analog of this result for continuous K-theory of non-
archimedean algebras.

1 Negative K-groups of schemes

For a scheme X Grothendieck introduced the K-group Ko (X) in his study of the general-
ized Riemann—Roch theorem in Berthelot, Grothendieck, and Illusie [1971, Def. 1V.2.2].
In case X has an ample family of line bundles one can describe Ko (X) as the free abelian
group generated by the locally free Ox-modules U of finite type modulo the relation
[V'] + [V”] — [V] for any short exact sequence

0>V ->V—->V" -0,

see Berthelot, Grothendieck, and Illusie [ibid., Sec. IV.2.9]. We denote by X|t] resp.
X[t7'] the scheme X x A! with parameter 7 resp. 1! for the affine line A', and we
denote by X[t,771] the scheme X x G, where G,, = A® \ {0}. Bass successively de-
fined negative algebraic K-groups of the scheme X (at least in the affine case) in degree
i <0tobe

K;i(X) = coker [ K 11(X[1]) x Kis1(X[t7"]) > Kipa (X[t.07'])].

The two classical key properties, essentially due to Bass [1968], satisfied by these alge-
braic K-groups are the Fundamental Theorem and Excision.

The author is supported by the DFG through CRC 1085 Higher Invariants (Universitét Regensburg).
MSC2010: primary 19D35; secondary 13D15.
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Proposition 1 (Fundamental Theorem). For a quasi-compact, quasi-separated scheme
X andi < 0 there exists an exact sequence

0— Ki(X) > Ki(X[t]) x Ki(X[t7']) > Ki(X[t.t7"]) > Ki—1(X) > 0
Furthermore, for a noetherian, regular scheme X we have K; (X) = 0 fori < 0.

Proposition 2 (Excision). For a ring homomorphism A — A" and an ideal I C A which
maps isomorphically onto an ideal 1" of A’ the map K;(A,I) — K;(A',I') of relative
K-groups is an isomorphism fori < 0.

Combining Proposition 2 with the Artin-Rees Lemma we get the following more geo-
metric reformulation:

Corollary 3. For a finite morphism of affine noetherian schemes f : X' — X and a
closed immersion Y — X such that f is an isomorphism over X\Y themap K;(X,Y) —
K;(X',Y') is an isomorphism fori < 0. HereY' =Y xx X'.

In general it is a hard problem to actually calculate the negative K-groups in concrete
examples. One of the examples calculated in C. Weibel [2001, Sec. 6] reads:

Example 4. For a field k and the normal surface X = Speck|x,y,z]/(z? — x3 — y7)
we have K_1(X) =k and K;(X) = 0 fori < —1.

In fact it is shown in C. Weibel [ibid.] that for a normal surface X we have K_o(X) =
ZP and K;(X) = 0 for i < —2, where p is the number of “loops” in the exceptional
divisor of a resolution of singularities of X. We extend this calculation in Theorem 8 and
Theorem 11 to higher dimensions.

For our results it is essential to understand in which sense we can extend Corollary 3
to global schemes. For this we have to study the non-connective algebraic K-theory spec-
trum K (X) of a scheme X introduced in Thomason and Trobaugh [1990]. Its homotopy
groups K;(X) = m; K(X) fori < 0 agree with the K-groups defined above.

As shown in Thomason and Trobaugh [ibid., Sec. 8], the functor K satisfies Zariski
descent. More concretely, consider a noetherian scheme X of finite dimension and a closed
subscheme Y < X. Let K(X,Y) be the homotopy fibre of K(X) — K(Y). Let K; (x.v)
be the Zariski presheafon X givenby U +— 7; K(U, Y NU) and let Kl.'j( X¥) be its Zariski
sheafification. There exists a convergent descent spectral sequence

(1) EPT=HP(X.K™, xy) = K pq(X.Y).

As a direct consequence of Corollary 3 and of Zariski descent we observe:
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Corollary 5. Let X be a noetherian scheme, let Y — X be a closed subscheme and let
d be the dimension of the closure X \ Y. Assume that Y — X is an isomorphism away
from X \ Y. Let f : X — X be a finite morphism which is an isomorphism over X \ Y.
Set E = f~Y(Y). Then the map * : K;(X.Y) — K;(X,E) is an isomorphism for
i <—d.

Remark 6. For X = X,.q and Y = @ Corollary 5 can be refined to an isomorphism
K; (X) — K; (Xred) fori < —dlm(X)

Proof. In order to prove Corollary 5 one compares the descent spectral sequence (1) with
the corresponding descent spectral sequence

E3Y = HP(X.(f«K_y (3.5)") = K_p—q(X.E).
and one uses that

0 K xy) — (f*Ki,(X,E))N is an isomorphism for i < 0 by Corollary 3,
(i) the sheaves K7 y ) and (f*Ki,(X,E))N vanish away from X \ Y.

Note that (ii) implies that £Z 9 = 0 for p > d in both spectral sequences. O

2 Platification par éclatement

In this section we explain an application of platification par éclatement Raynaud and
Gruson [1971, Sec. 5], which generalizes the vanishing result Kerz and Strunk [2017,
Prop. 5]. The motivating picture one should keep in mind is that negative K-groups of
Zariski-Riemann spaces vanish, since all coherent sheaves on Zariski-Riemann spaces
have Tor-dimension < 1.

Let X be a quasi-compact and quasi-separated scheme, let ¥ — X be a closed sub-
scheme defined by an invertible ideal sheaf. Recall that an admissible blow-up of X
(with respect to Y') is a blow up Blz X — X with center Z < X of finite presentation
and set theoretically contained in Y, see Raynaud and Gruson [1971, Def. 5.1.3]. Also
recall that the composition of admissible blow-ups is admissible Raynaud and Gruson
[ibid., Lem. 5.1.4]. Let X’ — X be a smooth morphism of finite presentation and set
Y =Y xx X'

The following proposition is clear in case there exists a suitable resolution of singular-
ities for X, in view of Proposition 1. We denote by K; (X on Y) the K-theory of X with
support on Y as in Thomason and Trobaugh [1990, Def. 6.4].
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Proposition 7. Assume that X' has an ample family of line bundles and assume that X is
reduced. Fori < 0 andy € K;(X’' on Y') there exists an admissible blow-up X — X
such that the pullback of y to K; (X' xx X on Y’ xx X) vanishes.

Proof. For simplicity of notation we assume that X = X' throughout the proof.

By noetherian approximation, see Thomason and Trobaugh [1990, App. C], there exists
a directed inverse system (Xg)q of schemes of finite type over Z with affine transition
maps such that X = Liﬁla Xo. We may further assume that ¥ descends to a system of
closed subschemes Y, < X, and that there exists y, € K; (X, on Y) pulling back to y.

Under the assumption that we know Proposition 7 for noetherian schemes we can, for
some fixed o, find a closed subscheme Z,, which is set theoretically contained in Y, and
such that the pullback of y, to K; (Blz, X4 on Y, X x, Blz, X) vanishes. Let X beBlz X,
where Z is the pullback of Z, to X. In view of the commutative diagram

X ——Bly, X,
X — X,
the scheme X satisfies the requested property of Proposition 7.

By what has been explained, we can assume without loss of generality that all schemes
in Proposition 7 are noectherian. In view of Bass’ definition of negative K-theory, dis-
cussed in Section 1, we see that K_; (X on Y) is a quotient of Ko(an ¥ on an y) for
k > 0 in which elements induced from K (A’)‘( on A’{,) vanish. However, combining
Kerz and Strunk [2017, Lem. 6] and Thomason and Trobaugh [1990, Ex. 5.7] we see that
the latter groups are generated by coherent O-modules on an x TEsp. AI)‘( which have

support over Y and have Tor-dimension < 1 over X. So without loss of generality the
given element y is induced by such an O« Py -module VU (here k = —i).

Extend U to a coherent O Ak -module VU with support over Y. Because of the exis-
tence of an ample family of line bundles there exists an exact sequence of coherent O Ak

modules .
0>V, —>Vy—>V—0

with Vs locally free. By Raynaud and Gruson [1971, Thm. 5.2.2] there exists an admis-
sible blow-up f : X — X such that the strict transform of V; along f is flat over X.
This implies that the pullback f*% has Tor-dimension < 1 over X. So the latter induces
an element in Ky (A];?) which induces f*(y) € K;(X) via the Bass construction. This
shows the requested vanishing of f*(y).

O
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3  Weibel’s conjecture

In C. A. Weibel [1980, p. 2.9] Weibel conjectured that the following Theorem & holds.
Theorem 8. For a noetherian scheme X of dimension d < co we have:
(i) Ki(X)=0fori <—d,

(ii) K;(X) =K (X[t1,....t]) is an isomorphism for i < —d and any number of
variables r.

There have been various partial results on Weibel’s conjecture during the past twenty
years, in particular it was shown for varieties X in characteristic zero Cortiias, Haese-
meyer, Schlichting, and C. Weibel [2008]. A complete proof of Theorem 8§ was first given
in Kerz, Strunk, and Tamme [2018, Thm. B] based on a pro-descent result for algebraic
K-theory of blow-ups. In this section we sketch a simplified and more direct version of
that proof which does not use the excision theory for K-theory of simplicial rings, as de-
veloped in Kerz, Strunk, and Tamme [ibid., Sec. 4]. For simplicity we will stick to part (i)
of Theorem & in the proof.

Remark 9. Almost verbatim the same argument as in the proof of Theorem 8 shows that
the conclusion remains true with X replaced by a scheme X’ which is smooth of finite
type over a noetherian scheme of dimension d < co. This was observed in Sadhu [2017].

The essential observation is that using derived schemes and derived blow-ups one can
show that the analog of Corollary 5 holds for blow-ups, see Proposition 10 below.

For the convenience of the reader we summarize some properties of derived schemes
in the following. A derived scheme X is roughly speaking given by a topological space
| X' | together with a ‘derived’ sheaf of commutative simplicial rings Ox on | X|, see Lurie
[2016, Sec. 1.1.5]. For a derived scheme X its topological space together with its sheaf
of homotopy groups 7pOx defines an ordinary scheme, which we denote 1 X. The oco-
category of derived schemes has finite limits and ¢ preserves finite limits.

For a quasi-compact, quasi-separated derived scheme X one can construct its associ-
ated stable co-category of perfect O x-modules Perf(X), see Lurie [ibid., Sec. 9.6], and
one can define the K-theory spectrum K(X) as the non-connective K-theory spectrum
of Perf(X) in the sense of Blumberg, Gepner, and Tabuada [2013, Sec. 9.1].

The two key properties about the K-theory of a derived scheme X that we need — and
that are well-known to the experts — are:

(DK1) For a quasi-compact, quasi-separated derived scheme X and a finite covering W of
X by quasi-compact open subschemes there is a descent spectral sequence

EJ? = H?(W. K_q,x) = K—p—q(X),
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compare Clausen, Mathew, Naumann, and Noel [2016, App. A] and Thomason and
Trobaugh [1990, Prop. 8.3].

(DK2) For X affine, that is X is the spectrum of a simplicial ring, the map K;(X) 5
K;(tX) is an isomorphism for i < 1, compare Blumberg, Gepner, and Tabuada
[2013, Thm. 9.53] and Kerz, Strunk, and Tamme [2018, Thm. 2.16].

Putting properties (DK 1) and (DK2) together yields:

(DK3) For a quasi-compact, separated derived scheme X which has a covering by d + 1

affine open subschemes the maps K; (X) =K (tX) =K ((£ X )1eq) are isomor-
phisms fori < —d.

Proposition 10. Ler X = Spec A be a noetherian local scheme, let Y — X be a closed
subscheme. Set d = dim(X), X = BlyX and E = f~Y(Y). Then the map f* :
Ki(X,Y) — Ki(X, E) is an isomorphism for i < —d.

Proof. Let I C A be the ideal corresponding to Y. After replacing / by some power, we
can assume that there exists a reduction of / generated by elements aq, ..., a, withr < d,
see Huneke and Swanson [2006, Prop. 8.3.8]. Choose a noetherian ring A’ together with
a regular sequence ag, ..., a, € A’ whose image under a ring homomorphism A" — A
is the sequence ao, .. .,a,. Set X' = Spec A" and Y'(n) = Spec A’/((a})?",..., (a.)*")
for n > 0. The derived blow-up square

X(m) <— &(m,n)
L
X<=—YM0)
is defined as the derived pullback of the usual cartesian blow-up square
Bly/ () X' <—— E'(m,n)
| |
X <—Y'(n)

According to a derived generalization Kerz, Strunk, and Tamme [2018, Thm. 3.7] of a
descent result of Thomason [1993], the square (2) gives rise to an equivalence of relative
K-theory spectra K (X, ¥(n)) = K(X(n),&(n,n)) forany n > 0.

By property (DK2) above, we know that

Ki(X.Y(n)) = Ki(X.Y)
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is an isomorphism for i < 0, n > 0 and by property (DK3) we know that

Ki(X(n), €(n.n)) = K;(tX(n),t&(n.n))

is an isomorphism for i < —d, n > 0. Note that X and & have affine coverings by
r + 1 < d open subschemes.
Finally, we apply Corollary 5 to the cartesian square

~—E@)

|
1X(m) <——t&(m,n)

for n large depending on m, in which the vertical maps are finite by Huneke and Swanson
[2006, Thm. 8.2.1]. We deduce that

lim K; (1 X (m), 1€ (m, n)) = lim K; (X, E(n))

is an isomorphism for i < —d and m > 0. Fori < —d composing the isomorphisms

Ki(X.Y)> lim K; (X, ¥(n)) S limK; (X (n). &(n.n)) =

n

lim K; (t X (n), 18 (n.n)) — limlim K; (¢ X (m). 18 (m.n)) —

m n

lim K; (X, E(n)) = Ki(X.E)

finishes the proof of Proposition 10. O

Proof of Theorem 8(i). For the proof we make an induction on d = dim(X). The case

d = 0 is clear as then K; (X) = K; (Xieq) vanishes for i < 0 by Proposition 1. For the
induction step we use the descent spectral sequence (1) in order to reduce to the case of
a local scheme X = Spec A, see Kerz, Strunk, and Tamme [2018, Prop. 6.1] for details.
Since in the affine case K; (X) 5 K; (Xreq) is an isomorphism for i < 0, we can assume
without loss of generality that X is reduced.

Fix y € K;(X) forsome i < —d. Let Y — X be a closed subscheme defined by an
invertible ideal sheaf such that y|x\y = 0. This means that y can be lifted to an element
¥’ € K;(X onY). By Proposition 7 there exists a blow-up f : X — X in a center
Z < X which is set theoretically contained in Y such that the pullback of y’ along f
vanishes, in particular £*(y) =0 € K;(X).
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Set E = f~1(Z) and consider the commutative diagram with exact rows

Kit1(E) —= Ki(X,E) — K;(X) — K;(E)

o T

Kit1(Z)—=K;(X,Z) —=K;(X) —= K;i(Z)

Asdim(Z), dim(E) < d the K-groups in the outer corners of diagram (3) vanish by our in-
duction assumption. The second vertical arrow in (3) is an isomorphism by Proposition 10.
So the third vertical arrow is an isomorphism as well, which implies that y = 0. O

While the negative K-groups K;(X) for —d = —dim(X) < i < 0 can be quite hard
to calculate, there is nice formula for K_; (X ), which was shown in complete generality
in Kerz, Strunk, and Tamme [2018, Cor. D] and previously for varieties in characteristic
zero Cortifias, Haesemeyer, Schlichting, and C. Weibel [2008].

Theorem 11. For a noetherian scheme of dimension d < oo there is a canonical isomor-
phism
K_q(X) = H4(X.2),

where on the right we take sheaf cohomology with respect to the cdh-topology on X.

4 Negative K-groups of affinoid algebras

In this section let k be a (non-discrete) non-archimedean complete field with ring of inte-
gers k°. By m we denote an element with absolute value 0 < || < 1. For an affinoid
algebra A over k, see Bosch [2014, Sec. 3.1], we write A(¢) for the Tate algebra over A,
which consists of those formal power series ag + a1t + --- € A[t] with lim; e a; = 0,
similarly for A{(t') and A(z,t~1). One defines non-positive continuous K -groups of A
successively by K{"(A4) = Ko(A) and

Ko™ (A) = coker K (A(r)) x KE(A(™")) — KEm(A(t.17)]

fori < 0. These negative continuous K-groups were defined and studied in Karoubi and
Villamayor [1971, Sec. 7] and Calvo [1985]. They also coincide with the continuous pro-
groups defined in Morrow [2016, Sec. 3] as is shown in Kerz, Saito, and Tamme [2018,
Sec. 5].

We are about to show that the analog of Weibel’s conjecture, i.e. Theorem 8, holds in
the non-archimedean situation:

Theorem 12. Assume that k is discretely valued. For an affinoid k-algebra A of dimen-
sion d we have:
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(i) K"(A) =0fori < —d,

(ii) K" (A) = K" (At . ... ty)) is an isomorphism for i < —d and any number
of variables r.

I expect that the condition that k is discretely valued in Theorem 12 can be removed.
Note that even for smooth affinoid algebras A the negative continuous K-groups do not
necessarily vanish, as the following example shows.

Example 13. Assume that the residue field of k has characteristic zero and let w € k be
an element of absolute value 0 < || < 1. For the affinoid algebra A = k(s,t)/(t* —
53 + 5% — ) we have K¢'(A) = Z.

The key fact for us is that for an admissible k°-algebra A in the sense of Bosch [2014,
Def. 7.3.3] with A = Ay[1/7] we obtain an exact sequence, see Kerz, Saito, and Tamme
[2018, Sec. 5],

4) Ko(Agon (7)) — Ko((Ag/(7))red) —
Kg™(A) — K_1(Ag on (7)) — -+

Recall that an admissible k°-algebra Ag is w-adically complete, topologically of finite
type and mr-torsion free.

The claim made in Example 13 follows from the exact sequence (4) by setting Ay =
k°(s,t)/(t? — 53 + 5% — 7) and using that in this case K; (4o on (7)) = 0 fori < 0 and
that K_1((A0/(7))red) = Z.

Proof of Theorem 12(i). We can assume without loss of generality that A is reduced. An
admissible blow-up of X = Spec A, where A is an admissible k°-algebra as above, is de-
fined as a blow-up in a center Y < X which is set theoretically contained in Spec Ao /(7).
Let now X = Bly X be such an admissible blow-up, Xo = (X ®4, Ao/(7))wea and
Xo = (X ®4, Ao/(7))red. Fori < —d we obtain from Kerz, Saito, and Tamme [ibid.,
Prop. 5.8] the upper exact sequence in the commutative diagram

Ki(Xo) — K{*"(A) — K;—1(X on (n))

o |

Ki(Xo) —= K®"(A) —> K;_1(X on (1))

while the lower exact sequence is just part of (4). Both groups on the left of (5) vanish
by Theorem 8 since i < —d = —dim(Xy) = —dim(X,). Consider an element o €
K{"(A). Forits image o’ € K;_1(X on (1)) we can use Proposition 7 in order to choose
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the admissible blow-up X such that the pullback of o to K;_;(X on (1)) vanishes. A
diagram chase in (5) shows that o vanishes. O

The forthcoming PhD thesis of C. Dahlhausen will discuss the following conjecture,
which is the non-archimedean analytic variant of Theorem 11.

Conjecture 14. For an affinoid k-algebra A of dimension d there is an isomorphism
n ~ d
K5'(A) = HY(W(A). Z).

Here WL(A) is the Berkovich spectrum of multiplicative seminorms Berkovich [1990, Ch. 1].

Acknowledgments. I would like to thank H. Esnault, O. Gabber, M. Groechenig, M.
Morrow, S. Saito, F. Strunk, G. Tamme and C. Weibel for helpful discussions.
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ON THE CLASSIFICATION OF FUSION CATEGORIES

SONIA NATALE

Abstract

We report, from an algebraic point of view, on some methods and results on the
classification problem of fusion categories over an algebraically closed field of char-
acteristic zero.

For I could not count or name the multitude who came to Troy, though I had
ten tongues and a tireless voice, and lungs of bronze as well...

Homer, Iliad, Book II (The catalogue of ships)

1 Introduction

Fusion categories arise from many areas of mathematics and mathematical physics encod-
ing symmetries of structures of different nature and in this sense they can be regarded
as a generalization of (finite) groups. This makes the problem of classifying fusion cate-
gories both an exciting and at the same time a colossal task. Some classes of examples of
fusion categories with distinct features come from such structures like finite groups them-
selves, quantum groups at roots of 1, subfactors, vertex algebras... A unifying systematic
approach to the theory of fusion categories was initiated in the paper Etingof, Nikshych,
and Ostrik [2005]. The classification is still in an early age and perhaps awaiting for its
monsters to wake up. Some progress has been made however towards the classification
of fusion categories in certain classes. What we want to present here is an overview of
some constructions, results and open questions related to the classification problem that
we think are interesting. The world of fusion categories is a vast one and there are also im-
portant constructions, results and questions that we are not going to discuss here, mainly
due to space constraints. Our approach concerns the algebraic aspect of fusion categories
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and it is for the most part motivated by different notions of extensions. The perspectives
we present are the fruit of the efforts of many and the list of references at the end of the
paper is not exhaustive.

We shall work over an algebraically closed base field k. Except in Sections 2.1, 2.2
and Section 4, we assume that k is of characteristic zero. We refer the reader to the book
Etingof, Gelaki, Nikshych, and Ostrik [2015] and references therein for most notions on
tensor and fusion categories appearing throughout.

2 Fusion categories

We start by recalling some basic definitions and notation regarding monoidal and tensor
categories and the relevant functors between them. A detailed study can be found in the
books Bakalov and Kirillov [2001], Etingof, Gelaki, Nikshych, and Ostrik [2015], Kassel
[1995], Majid [1995], V. G. Turaev [1994].

2.1 Basic notions. A monoidal category is a collection (C, ®,1,a,[,r), where C is a
category, ® : C x C — C is a functor, 1 is an object of C, called the unit object,

a:Q®o0(®xide) > ®o (ide x®), [:1®ide - ide, r:ide ®1 — ide,

are natural isomorphisms called, respectively, the associativity and left and right unit con-
traints, subject to the so-called pentagon and triangle axioms. For the sake of brevity, we
shall simply speak of "the monoidal category C’.

Let C, D be monoidal categories. A monoidal functor C — & is atriple (F, F2, F°)!,
where F : € — D is a functor, F® : 1 — F(1) is an isomorphism compatible with the
unit constraints, and F? : ® o (F x F) — F o ® is a natural isomorphism such that, for
all objects X, Y, Z of C,

(F¥yoz)(idrx) ®Fy 2)ar (x),Fv)Fz) = Flaxy,z) Figyz(Fry ® idF(z)).

An equivalence of monoidal categories is a monoidal functor (F, F2, FY) such that F is
an equivalence of categories.

A monoidal category € is called strict if the associativity and unit constraints of C
are identities. A famous result of Mac Lane states that every monoidal category is mo-
noidally equivalent to a strict monoidal category. This allows us in (most of) what follows
to suppress the associativity and unit isomorphisms.

I'The explicit mention of F2 and F© will be often omitted in what follows.
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A braiding in amonoidal category C is a natural isomorphismcyy : X ®Y — Y ® X,
X,Y € C, subject to the so-called hexagon axioms. A braided monoidal category is a
monoidal category endowed with a braiding Joyal and Street [1993]. Braided monoidal
categories such that cy, xcx,y = idxgy, for all objects X, Y € C, are called symmetric.

Let € be a monoidal category. Then the Drinfeld center Z(€) of C is the braided
monoidal category whose objects are pairs (Z, 0z), where Z is an object of € and o :
Z ® — — —® Z is anatural isomorphism satisfying appropriate compatibility conditions.
The tensor product of Z () is induced from that of €.

Let € be a monoidal category. A left dual of an object X of C is a triple
(X*,evyx,coevy), where X* is an objectof Candevy : X* ® X — 1, coevy : 1 —
X ® X*, are morphisms in C called, respectively, evaluation and coevaluation morphisms
such that the following compositions are identities:

coevy Qidy idy Qevy id y * Qcoevy evy ®idy =

X — S5 XQX*X — > X, X¥ —— 5 X*QXQX* ———— X*,
A right dual of X is defined as a triple (*X,ev’x,coev’y), whereev’y : X ® *X — 1,
coev’y : 1 = *X ® X are morphisms satisfying similar axioms. The monoidal category
C is called rigid if every object X has left and right duals X *, *X.

A tensor category over the field k is a k-linear abelian category with finite dimensional
Hom spaces and objects of finite length, endowed with a rigid monoidal category structure,
such that the monoidal product is k-linear in each variable and the unit object is simple. In
a tensor category the monoidal product is exact in each variable. A tensor functor between
tensor categories is a k-linear exact monoidal functor. Every tensor functor preserves duals
and it is automatically faithful. A tensor functor F' : ¢ — 9 between tensor categories C
and 9 is dominant if every object of 9 is a subobject of F(X), for some X € C.

A tensor category over k is called finite if it is equivalent as a k-linear category to the
category of finite dimensional left modules over a finite dimensional k-algebra. A fusion
category over k is a semisimple finite tensor category.

Example 2.1. Examples of tensor categories over k are given by the categories of finite
dimensional left (resp. right) modules and finite dimensional left (resp. right) comodules
over a Hopf algebra over k with bijective antipode. The tensor product in these examples
is ® and the associativity and unit constraints are the canonical vector space isomor-
phisms. These categories will be denoted, respectively, by H-mod, mod-H, H-comod,
comod-H . Finite tensor categories € equivalent to H - mod, for some finite-dimensional
Hopf algebra H, are exactly those that admit a fiber functor, that is, a tensor functor
€ — Vecty, where Vecty is the tensor category of finite dimensional k-vector spaces.
More generally, if H is a quasi-Hopf algebra over k, then the category H-mod of
finite dimensional H -modules is a tensor category over k; here the tensor product is ®p
but the associativity constraint is induced by the associator ® € H®? V. G. Drinfeld
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[1989b]. Let Hy, Hs be finite dimensional quasi-Hopf algebras. The tensor categories
H,-mod and Hs- mod are equivalent if and only if H; and H, are gauge equivalent, that
is, Hy =~ (H1)F as quasi-Hopf algebras, where (H1 ) F is certain quasi-Hopf algebra such
that (Hy)r = H; as an algebra with comultiplication Ag(h) = FA(h)F~, h € Hj,
and associator ®r = (1 ® F)(id @A) (F)®(A ®id)(F)(F' ®1).

When C is the representation category of a finite dimensional (quasi-)Hopf algebra H,
then the Drinfeld center Z(C€) is equivalent to the category D (H )-mod, where D (H ) is
the quantum double of H V. G. Drinfeld [1989a], Hausser and Nill [1999], Majid [1998].

The previous example admits several generalizations. In the next example we give an
outline of a construction from Hopf monads Bruguiéres and Virelizier [2007],
Bruguiéres, Lack, and Virelizier [2011].

Example 2.2. A monad on a category C is an algebra in the monoidal category of end-
ofunctors of C. We refer the reader to Mac Lane [1998] for a study of this notion and
its relation with adjunctions of functors. A bimonad on C (introduced previously by Mo-
erdijk under the name "Hopf monad’) is a monad 7" endowed with a structure of a (lax)
comonoidal endofunctor, that is, a natural transformation 75 : T o ® — ® o (T x T') and
a morphism 7y : T(1) — 1 satisfying certain compatibility conditions. A Hopf monad
on a rigid monoidal category C is a bimonad equipped with a left and a right antipode
Bruguiéres and Virelizier [2007]. If T is a Hopf monad on a rigid monoidal category C,
then the category CT of T-modules in C is a rigid monoidal category and the forgetful
functor U : €T — @ is a strict monoidal functor. Furthermore, suppose that C is a tensor
category over k, and let 7' be a k-linear right exact Hopf monad on C. Then @7 is a tensor
category over k, and the forgetful functor U : @7 — C is a tensor functor Bruguiéres and
Natale [2011]. Further, @7 is a fusion category if and only if € is a fusion category and
T is a semisimple Hopf monad in the sense of Bruguiéres and Virelizier [2007].

Let F : € — 9 be a tensor functor between tensor categories. Suppose F admits a
left adjoint (which is always the case if C and O are finite tensor categories). Since F' is
faithful exact, as a consequence of results of Beck on monadicity of adjunctions (see Mac
Lane [1998]), there exists a Hopf monad 7 on ® such that C =~ D7 as tensor categories.

Let G be a finite group. The next two basic examples are special cases of those in
Example 2.1.

Example 2.3. The category Rep G of finite dimensional k-linear representations of G is
a finite tensor category over k with the usual tensor product of representations and whose
unit object is the trivial representation. Thus Rep G = kG- mod, where kG is the group
(Hopf) algebra of G. By Maschke theorem, Rep G is a fusion category if and only if the
order of G is coprime to the characteristic of k.
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Two finite groups G and G, are called isocategorical if the categories Rep G, and
Rep G- are equivalent as tensor categories. This notion was introduced in Etingof and
Gelaki [2001], where necessary and sufficient conditions for two finite groups to be iso-
categorical were given. In particular, isocategorical groups need not be isomorphic when
their (common) order is divisible by 4.

Example 2.4. Letw : G x G x G — k be a 3-cocycle on G. The category Vectg of
finite dimensional G-graded k-vector spaces is a fusion category with tensor product ®¢,
unit object 1 = k (graded in degree 1 € G), and associativity constraint induced by w.
Indeed, Vect? = H-mod, where H is the quasi-Hopf algebra k¢ of k-valued functions
on G with the usual comultiplication and associator @ € kG*9*G =~ (kG)®3  The
category Vectg admits a fiber functor if and only if the class of w is trivial in H3(G,k>).
Equivalence classes of fusion categories of the form Vectg are in bijection with the orbit
space H3(G,k™)/Out G with respect to the natural action of the group Out G of outer
automorphisms of G in the third cohomology group H3(G, k).

Suppose that C is a 