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ON NUMBERS, GERMS, AND TRANSSERIES

Mൺඍඍඁංൺඌ Aඌർඁൾඇൻඋൾඇඇൾඋ, Lඈඎ ඏൺඇ ൽൾඇ Dඋංൾඌ ൺඇൽ Jඈඋංඌ ඏൺඇ ൽൾඋ Hඈൾඏൾඇ

Abstract

Germs of real-valued functions, surreal numbers, and transseries are three ways
to enrich the real continuum by infinitesimal and infinite quantities. Each of these
comes with naturally interacting notions of ordering and derivative. The category of
H -fields provides a common framework for the relevant algebraic structures. We give
an exposition of our results on the model theory of H -fields, and we report on recent
progress in unifying germs, surreal numbers, and transseries from the point of view of
asymptotic differential algebra.

Contemporaneous with Cantor’s work in the 1870s but less well-known, P. du Bois-
Reymond [1871, 1872, 1873, 1875, 1877, 1882] had original ideas concerning non-Cantorian
infinitely large and small quantities (see Ehrlich [2006]). He developed a “calculus of in-
finities” to deal with the growth rates of functions of one real variable, representing their
“potential infinity” by an “actual infinite” quantity. The reciprocal of a function tending
to infinity is one which tends to zero, hence represents an “actual infinitesimal”.

These ideas were unwelcome to Cantor (see Fisher [1981]) and misunderstood by him,
but were made rigorous by F. Hausdorff [1906a,b, 1909] and G. H. Hardy [1910, 1912a,b,
1913]. Hausdorff firmly grounded du Bois-Reymond’s “orders of infinity” in Cantor’s set-
theoretic universe (see Felgner [2002]), while Hardy focused on their differential aspects
and introduced the logarithmico-exponential functions (short: LE-functions). This led to
the concept of a Hardy field (Bourbaki [1951]), developed further mainly by Rosenlicht
[1983a,b, 1984, 1987, 1995] and Boshernitzan [1981, 1982, 1986, 1987]. For the role of
Hardy fields in o-minimality see Miller [2012].

Surreal numbers were discovered (or created?) in the 1970s by J. H. Conway [1976]
and popularized by M. Gardner, and by D. E. Knuth [1974] who coined the term “surreal
number”. The surreal numbers form a proper class containing all reals as well as Cantor’s
ordinals, and come equipped with a natural ordering and arithmetic operations turning
them into an ordered field. Thus with ! the first infinite ordinal, ! � � , 1/!,

p
! make

The first-named author was partially support by NSF Grant DMS-1700439.
MSC2010: primary 03C64; secondary 12J15, 12J20, 34M15.
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sense as surreal numbers. In contrast to non-standard real numbers, their construction is
completely canonical, naturally generalizing both Dedekind cuts and von Neumann’s con-
struction of the ordinals. (In the words of their creator Conway [1994, p. 102], the surreals
are “the only correct extension of the notion of real number to the infinitely large and the
infinitesimally small.”) The surreal universe is very rich, yet shares many properties with
the real world. For example, the ordered field of surreals is real closed and hence, by
Tarski [1951], an elementary extension of its ordered subfield of real numbers. (In fact,
every set-sized real closed field embeds into the field of surreal numbers.) M. Kruskal an-
ticipated the use of surreal numbers in asymptotics, and based on his ideas Gonshor [1986]
extended the exponential function on the reals to one on the surreals, with the same first-
order logical properties; see van den Dries and Ehrlich [2001a,b]. Rudiments of analysis
for functions on the surreal numbers have also been developed by Alling [1987], Costin,
Ehrlich, and Friedman [2015], and Rubinstein-Salzedo and Swaminathan [2014].

Transseries generalize LE-functions in a similar way that surreals generalize reals and
ordinals. Transseries have a precursor in the generalized power series of Levi-Civita
[1892–93, 1898] and Hahn [1907], but were only systematically considered in the 1980s,
independently by Écalle [1992] andDahn andGöring [1987]. Écalle introduced transseries
as formal counterparts to his “analyzable functions”, which were central to his work on
Dulac’s Problem (related to Hilbert’s 16th Problem on polynomial vector fields). Dahn
and Göring were motivated by Tarski’s Problem on the model theory of the real field with
exponentiation. Transseries have since been used in various parts of mathematics and
physics; their formal nature also makes them suitable for calculations in computer algebra
systems. Key examples of transseries are the logarithmic-exponential series (LE-series
for short), see van den Dries, Macintyre, and Marker [1997, 2001]; more general notions
of transseries have been introduced by van der Hoeven [1997] and Schmeling [2001]. A
transseries can represent a function of a real variable using exponential and logarithmic
terms, going beyond the more prevalent asymptotic expansions in terms of powers of the
independent variable. Transseries can be manipulated algebraically—added, subtracted,
multiplied, divided—and like power series, can be differentiated term-wise: they comprise
a differential field. However, they carry much more structure: for example, by virtue
of its construction, the field of LE-series comes with an exponential function; there is
a natural notion of composition for transseries; and differential-compositional equations
in transseries are sometimes amenable to functional-analytic techniques van der Hoeven
[2001].

The logical properties of the exponential field of LE-series have been well-understood
since the 1990s: by Wilkie [1996] and van den Dries, Macintyre, and Marker [1997] it is
model-complete and o-minimal. In our book Aschenbrenner, van den Dries, and van der
Hoeven [2017a] we focused instead on the differential field of LE-series, denoted below by
T , and obtained some decisive results about its model theory. Following A. Robinson’s
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general ideas we placed T into a suitable category of H -fields and, by developing the
extension theory of H -fields, showed that T is existentially closed as an H -field: each
system of algebraic differential equations and inequalities over T which has a solution in
an H -field extension of T already has one in T itself. In Aschenbrenner, van den Dries,
and van der Hoeven [ibid.] we also prove the related fact thatT is model-complete; indeed,
we obtain a quantifier elimination (in a natural language) for T . As a consequence, the
elementary theory of T is decidable, and model-theoretically “tame” in various ways: for
example, it has Shelah’s non-independence property (NIP).

Results from Aschenbrenner, van den Dries, and van der Hoeven [ibid.] about existen-
tial closedness, model completeness, and quantifier elimination substantiate the intuition,
expressed already in Écalle [1992], that T plays the role of a universal domain for the part
of asymptotic differential algebra that steers clear of oscillations. How far does this intu-
ition lead us? Hardy’s field of LE-functions embeds intoT , as an ordered differential field,
but this fails for other Hardy fields. The natural question here is: Are all maximal Hardy
fields elementarily equivalent to T? It would mean that any maximal Hardy field instanti-
ates Hardy’s vision of a maximally inclusive and well-behaved algebra of oscillation-free
real functions. Related is the issue of embedding Hardy fields into more general differ-
ential fields of transseries. Positive answers to these questions would tighten the link
between germs of functions (living in Hardy fields) and their transseries expansions. We
may also ask how surreal numbers fit into the picture: Is there a natural isomorphism be-
tween the field of surreal numbers and some field of generalized transseries? This would
make it possible to differentiate and compose surreal numbers as if they were functions,
and confirm Kruskal’s premonition of a connection between surreals and the asymptotics
of functions.

We believe that answers to these questions are within grasp due to advances in our
understanding during the last decade as represented in our book Aschenbrenner, van den
Dries, and van der Hoeven [2017a]. We discuss these questions with more details in Sec-
tions 3, 4, 5. In Section 1 we set the stage by describing Hardy fields and transseries as
two competing approaches to the asymptotic behavior of non-oscillatory real-valued func-
tions. (Section 5 includes a brief synopsis of the remarkable surreal number system.) In
Section 2 we define H -fields and state the main results of Aschenbrenner, van den Dries,
and van der Hoeven [ibid.].

We let m, n range over N = f0; 1; 2; : : : g. Given an (additive) abelian group A we
let A¤ := A n f0g. In some places below we assume familiarity with very basic model
theory, for example, on the level of Aschenbrenner, van den Dries, and van der Hoeven
[ibid., Appendix B]. “Definable” will mean “definable with parameters”.
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1 Orders of Infinity and Transseries

Germs of continuous functions. Consider continuous real-valued functions whose do-
main is a subset ofR containing an interval (a;+1), a 2 R. Two such functions have the
same germ (at +1) if they agree on an interval (a;+1), a 2 R, contained in both their
domains; this defines an equivalence relation on the set of such functions, whose equiva-
lence classes are called germs. Addition and multiplication of germs is defined pointwise,
giving rise to a commutative ring C. For a germ g of such a function we also let g denote
that function if the resulting ambiguity is harmless. With this convention, given a prop-
erty P of real numbers and g 2 C we say that P

�
g(t)

�
holds eventually if P

�
g(t)

�
holds

for all sufficiently large real t in the domain of g. We identify each real number r with the
germ of the constant function R ! R with value r . This makes the field R into a subring
of C.

Following Hardy we define for f; g 2 C,

f 4 g : () for some c 2 R>0 we have jf (t)j 6 cjg(t)j eventually;

f � g : () for every c 2 R>0 we have jf (t)j < cjg(t)j eventually:

The reflexive and transitive relation 4 yields an equivalence relation � on C by setting
f � g :() f 4 g and g 4 f , and 4 induces a partial ordering on the set of equiva-
lence classes of �; these equivalence classes are essentially du Bois-Reymond’s “orders
of infinity”. Thus with x the germ of the identity function on R:

0 � 1 � log log x � log x �
p

x � x � �2x + x sin x � x2
� ex :

One way to create interesting subrings of C is via expansions of the field of real numbers:
any such expansion R̃ gives rise to the subring H (R̃) of C consisting of the germs of the
continuous functions R ! R that are definable in R̃.

Hausdorff fields. A Hausdorff field is by definition a subfield of C. Simple examples
are

(1) Q; R; R(x); R(
p

x); R(x; ex ; log x):

That R(x; ex ; log x) is a Hausdorff field, for instance, follows from two easy facts: first,
an element f of C is a unit iff f (t) ¤ 0 eventually (and then either f (t) > 0 eventually
or f (t) < 0 eventually), and if f ¤ 0 is an element of the subring R[x; ex ; log x] of C,
then f � xk elx(log x)m for some k; l; m 2 N. Alternatively, one can use the fact that
an expansion R̃ of the field of reals is o-minimal iff H (R̃) is a Hausdorff field, and note
that the examples above are subfields of H (Rexp) where Rexp is the exponential field of
real numbers, which is well-known to be o-minimal by Wilkie [1996].
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Let H be a Hausdorff field. Then H becomes an ordered field with (total) ordering
given by: f > 0 iff f (t) > 0 eventually. Moreover, the set of orders of infinity in H

is totally ordered by 4: for f; g 2 H we have f 4 g or g 4 f . In his landmark
paper, Hausdorff [1909] essentially proved that H has a unique algebraic Hausdorff field
extension that is real closed. (Writing before Artin and Schreier [1927], of course he
doesn’t use this terminology.) He was particularly interested in “maximal” objects and
their order type. By Hausdorff’s Maximality Principle (a form of Zorn’s Lemma) every
Hausdorff field is contained in one that is maximal with respect to inclusion. By the
above, maximal Hausdorff fields are real closed. Hausdorff also observed that maximal
Hausdorff fields have uncountable cofinality; indeed, he proved the stronger result that
the underlying ordered set of a maximal Hausdorff field H is �1: if A; B are countable
subsets of H and A < B , then A < h < B for some h 2 H . A real closed ordered field
is @1-saturated iff its underlying ordered set is �1. Standard facts from model theory (or
Erdős, Gillman, and Henriksen [1955]) now yield an observation that could have been
made by Hausdorff himself in the wake of Artin and Schreier [1927]:

Corollary 1.1. Assuming CH (the Continuum Hypothesis), all maximal Hausdorff fields
are isomorphic.

This observation was in fact made by Ehrlich [2012] in the more specific form that under
CH anymaximal Hausdorff field is isomorphic to the field of surreal numbers of countable
length; see Section 5 below for basic facts on surreals. We don’t know whether here
the assumption of CH can be omitted. (By Esterle [1977], the negation of CH implies
the existence of non-isomorphic real closed �1-fields of size 2@0 .) It may also be worth
mentioning that the intersection of all maximal Hausdorff fields is quite small: it is just
the field of real algebraic numbers.

Hardy fields. AHardy field is a Hausdorff field whose germs can be differentiated. This
leads to a much richer theory. To define Hardy fields formally we introduce the subring

Cn := ff 2 C : f is eventually n times continuously differentiableg

of C, with C0 = C. Then each f 2 Cn+1 has derivative f 0 2 Cn. A Hardy field is
a subfield of C1 that is closed under f 7! f 0; Hardy fields are thus not only ordered
fields but also differential fields. The Hausdorff fields listed in (1) are all Hardy fields;
moreover, for each o-minimal expansion R̃ of the field of reals, H (R̃) is a Hardy field.
As with Hausdorff fields, each Hardy field is contained in a maximal one. For an element
f of a Hardy field we have either f 0 > 0, or f 0 = 0, or f 0 < 0, so f is either eventually
strictly increasing, or eventually constant, or eventually strictly decreasing. (This may fail
for f in a Hausdorff field.) Each element of a Hardy field is contained in the intersection
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T
n Cn, but not necessarily in its subring C1 consisting of those germs which are even-

tually infinitely differentiable. In a Hardy field H , the ordering and derivation interact in
a pleasant way: if f 2 H and f > R, then f 0 > 0. Asymptotic relations in H can be
differentiated and integrated: for 0 ¤ f; g ª 1 in H , we have f 4 g iff f 0 4 g0.

Extending Hardy fields. Early work on Hardy fields focused on solving algebraic equa-
tions and simple first order differential equations: Borel [1899], Hardy [1912a,b], Bour-
baki [1951], Marić [1972], Sjödin [1971], Robinson [1972], Rosenlicht [1983a]. As
a consequence, every Hardy field H has a smallest real closed Hardy field extension
Li(H ) � R that is also closed under integration and exponentiation; call Li(H ) the
Hardy-Liouville closure of H . (Hardy’s field of LE-functions mentioned earlier is con-
tained in Li(R).) Here is a rather general result of this kind, due to Singer [1975]:

Theorem 1.2. If y 2 C1 satisfies a differential equation y0P (y) = Q(y) where P (Y )

andQ(Y ) are polynomials over a Hardy fieldH andP (y) is a unit inC, then y generates
a Hardy field H hyi = H (y; y0) over H .

Singer’s theorem clearly does not extend to second order differential equations: the nonzero
solutions of y00 + y = 0 in C2 do not belong to any Hardy field. The solutions in C2 of
the differential equation

y00 + y = ex2(2)

form a two-dimensional affine space y0 + R sin x + R cos x over R, with y0 any partic-
ular solution. Boshernitzan [1987] proved that any of these continuum many solutions
generates a Hardy field. Since no Hardy field can contain more than one solution, there
are at least continuum many different maximal Hardy fields. By the above, each of them
contains R, is real closed, and closed under integration and exponentiation. What more
can we say about maximal Hardy fields? To give an answer to this question, consider the
following conjectures about Hardy fields H :

A. For any differential polynomial P (Y ) 2 H fY g = H [Y; Y 0; Y 00; : : : ] and f < g in
H with P (f ) < 0 < P (g) there exists y in a Hardy field extension of H such that
f < y < g and P (y) = 0.

B. For any countable subsets A < B in H there exists y in a Hardy field extension of
H such that A < y < B .

Conjecture A for P 2 H [Y; Y 0] holds by van den Dries [2000]. Conjecture A implies that
all maximal Hardy fields are elementarily equivalent as we shall see in Section 2. Con-
jecture B was first raised as a question by Ehrlich [2012]. The conjectures together imply
that, under CH, all maximal Hardy fields are isomorphic (the analogue of Corollary 1.1).
We sketch a program to prove A and B in Section 3.
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Transseries. Hardy [1910, p. 35] made the point that the LE-functions seem to cover all
orders of infinity that occur naturally in mathematics. But he also suspected that the order
of infinity of the compositional inverse of (log x)(log log x) differs from that of any LE-
function (see Hardy [1912a]); this suspicion is correct. For amore revealing view of orders
of infinity and a more comprehensive theory we need transseries. For example, transseries
lead to an easy argument to confirm Hardy’s suspicion (see van den Dries, Macintyre, and
Marker [1997] and van der Hoeven [1997]). Here we focus on the fieldT of LE-series and
in accordance with Aschenbrenner, van den Dries, and van der Hoeven [2017a], simply
call its elements transseries, bearing in mind that many variants of formal series, such as
those appearing in Schmeling [2001] (see Section 4 below), can also rightfully be called
“transseries”.

Transseries are formal series f =
P

m fmm where the fm are real coefficients and
the m are “transmonomials” such as

xr (r 2 R); x� logx ; ex2 ex

; eex

:

One can get a sense by considering an example like

7 eex + ex/2 + ex/4 +���
�3 ex2

+5x
p
2

� (log x)� + 42 + x�1 + x�2 + � � � + e�x :

Here think of x as positive infinite: x > R. The transmonomials in this series are arranged
from left to right in decreasing order. The reversed order type of the set of transmonomials
that occur in a given transseries can be any countable ordinal. (In the example above it is
! + 1 because of the term e�x at the end.) Formally, T is an ordered subfield of a Hahn
field R[[GLE]] where GLE is the ordered group of transmonomials (or LE-monomials).
More generally, let M be any (totally) ordered commutative group, multiplicatively writ-
ten, the m 2 M being thought of as monomials, with the ordering denoted by 4. The
Hahn field R[[M]] consists of the formal series f =

P
m fmm with real coefficients fm

whose support supp f := fm 2 M : fm ¤ 0g is well-based, that is, well-ordered in
the reversed ordering < of M. Addition and multiplication of these Hahn series works
just as for ordinary power series, and the ordering of R[[M]] is determined by declaring a
nonzero Hahn series to be positive if its leading coefficient is positive (so the series above,
with leading coefficient 7, is positive). Both R[[GLE]] and its ordered subfield T are real
closed. Informally, each transseries is obtained, starting with the powers xr (r 2 R), by
applying the following operations finitely many times:

1. multiplication with real numbers;

2. infinite summation in R[[GLE]];

3. exponentiation and taking logarithms of positive transseries.
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To elaborate on (2), a family (fi )i2I in R[[M]] is said to be summable if for each m there
are only finitely many i 2 I with m 2 suppfi , and

S
i2I suppfi is well-based; in this

case we define the sum f =
P

i2I fi 2 R[[M]] of this family by fm =
P

i2I (fi )m for
each m. One can develop a “strong” linear algebra for this notion of “strong” (infinite)
summation (see van der Hoeven [2006] and Schmeling [2001]). As to (3), it may be
instructive to see how to exponentiate a transseries f : decompose f as f = g + c + "

where g :=
P

m�1 fmm is the infinite part of f , c := f1 is its constant term, and " its
infinitesimal part (in our example c = 42 and " = x�1 + x�2 + � � � + e�x); then

ef = eg
� ec

�
X

n

"n

n!

where eg 2 M is a transmonomial, and ec 2 R,
P

n
"n

n!
2 R[[GLE]] have their usual

meaning. The story with logarithms is a bit different: taking logarithms may also create
transmonomials, such as log x, log log x, etc.

The formal definition of T is inductive and somewhat lengthy; see van den Dries,
Macintyre, and Marker [2001], Edgar [2010], and van der Hoeven [2006] for detailed
expositions, or Aschenbrenner, van den Dries, and van der Hoeven [2017a, Appendix A]
for a summary. We only note here that by virtue of the construction of T , series like
1
x
+ 1

ex + 1
eex + � � � or 1

x
+ 1

x logx
+ 1

x logx log logx
+ � � � (involving “nested” exponentials

or logarithms of unbounded depth), though they are legitimate elements of R[[GLE]], do
not appear in T ; moreover, the sequence x; ex ; eex

; : : : is cofinal in T , and the sequence
x; log x; log log x; : : : is coinitial in the set ff 2 T : f > Rg. The map f 7! ef is an
isomorphism of the ordered additive group of T onto its multiplicative group of positive
elements, with inverse g 7! logg. As an ordered exponential field, T turns out to be an
elementary extension of Rexp (see van den Dries, Macintyre, and Marker [1997]).

Transseries can be differentiated termwise; for instance,
�P

n n! ex

xn+1

�0

= ex

x
. We

obtain a derivation f 7! f 0 on the field T with constant field ff 2 T : f 0 = 0g = R
and satisfying (expf )0 = f 0 expf and (logg)0 = g0/g for f; g 2 T , g > 0. Moreover,
each f 2 T has an antiderivative in T , that is, f = g0 for some g 2 T . As in Hardy
fields, f > R ) f 0 > 0, for transseries f . We also have a dominance relation on T : for
f; g 2 T we set

f 4 g :() jf j 6 cjgj for some c 2 R>0

() (leading transmonomial of f ) 4 (leading transmonomial of g),

and as in Hardy fields we declare f � g :() f 4 g and g 4 f , as well as f � g :()

f 4 g and g 64 f . As in Hardy fields we can also differentiate and integrate asymptotic
relations: for 0 ¤ f; g ª 1 in T we have f 4 g iff f 0 4 g0.
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Hardy’s ordered exponential field of (germs of) logarithmic-exponential functions em-
beds uniquely into T so as to preserve real constants and to send the germ x to the
transseries x; this embedding also preserves the derivation. However, the field of LE-
series enjoys many closure properties that the field of LE-functions lacks. For instance,
T is not only closed under exponentiation and integration, but also comes with a natural
operation of composition: for f; g 2 T with g > Rwe can substitute g for x in f = f (x)

to obtain f ı g = f (g(x)). The Chain Rule holds: (f ı g)0 = (f 0 ı g) � g0. Every g > R
has a compositional inverse in T : a transseries f > R with f ıg = gıf = x. As shown
in van der Hoeven [2006], a Newton diagram method can be used to solve any “feasible”
algebraic differential equation in T (where the meaning of feasible can be made explicit).

Thus it is not surprising that soon after the introduction of T the idea emerged that it
should play the role of a universal domain (akin to Weil’s use of this term in algebraic
geometry) for asymptotic differential algebra: that it is truly the algebra-from-which-one-
can-never-exit and that it marks an almost impassable horizon for “ordered analysis”,
as Écalle [1992, p. 148] put it. Model theory provides a language to make such an intuition
precise, as we explain in our survey Aschenbrenner, van den Dries, and van der Hoeven
[2013] where we sketched a program to establish the basic model-theoretic properties of
T , carried out in Aschenbrenner, van den Dries, and van der Hoeven [2017a]. Next we
briefly discuss our main results from Aschenbrenner, van den Dries, and van der Hoeven
[ibid.].

2 H-Fields

We shall consider T as an L-structure where the language L has the primitives 0, 1, +,
�, � , ∂ (derivation), 6 (ordering), 4 (dominance). More generally, let K be any ordered
differential field with constant field C = ff 2 K : f 0 = 0g. This yields a dominance
relation 4 on K by

f 4 g :() jf j 6 cjgj for some positive c 2 C

and we view K accordingly as an L-structure. The convex hull of C in K is the valuation
ring O = ff 2 K : f 4 1g of K, with its maximal ideal O := ff 2 K : f � 1g of
infinitesimals.

Definition 2.1. An H -field is an ordered differential field K such that (with the notations
above), O = C + O, and for all f 2 K we have: f > C ) f 0 > 0.

Examples include all Hardy fields that contain R, and all ordered differential subfields
of T that contain R. In particular, T is an H -field, but T has further basic elementary
properties that do not follow from this: its derivation is small, and it is Liouville closed.
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An H -field K is said to have small derivation if it satisfies f � 1 ) f 0 � 1, and to
be Liouville closed if it is real closed and for every f 2 K there are g; h 2 K, h ¤ 0,
such that g0 = f and h0 = hf . Each Hardy field H has small derivation, and Li(H ) is
Liouville closed.

Inspired by the familiar characterization of real closed ordered fields via the interme-
diate value property for one-variable polynomial functions, we say that an H -field K has
the Intermediate Value Property (IVP) if for all differential polynomials P (Y ) 2 KfY g

and all f < g in K with P (f ) < 0 < P (g) there is some y 2 K with f < y < g and
P (y) = 0. van der Hoeven showed that a certain variant of T , namely its H -subfield of
gridbased transseries, has IVP; see van der Hoeven [2002].

Theorem 2.2. The L-theory of T is completely axiomatized by the requirements: being
an H -field with small derivation; being Liouville closed; and having IVP.

Actually, IVP is a bit of an afterthought: in Aschenbrenner, van den Dries, and van der
Hoeven [2017a] we use other (but equivalent) axioms that will be detailed below. We
mention the above variant for expository reasons and since it explains why Conjecture A
from Section 1 yields that all maximal Hardy fields are elementarily equivalent. Let us
define an H -closed field to be an H -field that is Liouville closed and has the IVP. All
H -fields embed into H -closed fields, and the latter are exactly the existentially closed
H -fields. Thus:

Theorem 2.3. The theory of H -closed fields is model complete.

Here is an unexpected byproduct of our proof of this theorem:

Corollary 2.4. H -closed fields have no proper differentially algebraicH -field extensions
with the same constant field.

IVP refers to the ordering, but the valuation given by 4 is more robust and more useful.
IVP comes from two more fundamental properties: ω-freeness and newtonianity (a differ-
ential version of henselianity). These concepts make sense for any differential field with
a suitable dominance relation 4 in which the equivalence f 4 g () f 0 4 g0 holds for
0 ¤ f; g � 1.

To give an inkling of these somewhat technical notions, letK be anH -field and assume
that for every � 2 K� for which the derivation �∂ is small (that is, �∂O � O), there exists
�1 � � in K� such that �1∂ is small. (This assumption is satisfied for Liouville closed
H -fields.) Let P (Y ) 2 KfY g¤. We wish to understand how the function y 7! P (y)

behaves for y 4 1. It turns out that this function only reveals its true colors after rewriting
P in terms of a derivation �∂ with suitable � 2 K�.

Indeed, this rewritten P has the form a � (N + R) with a 2 K� and where N (Y ) 2

C fY g¤ is independent of � for sufficiently small � 2 K� with respect to 4, subject to �∂
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being small, and where the coefficients of R(Y ) are infinitesimal. We call N the Newton
polynomial of P . Now K is said to be ω-free if for all P as above its Newton polynomial
has the form A(Y ) � (Y 0)n for some A 2 C [Y ] and some n. We say that K is newtonian
if for all P as above with N (P ) of degree 1 we have P (y) = 0 for some y 2 O. For H -
fields, IVP H) ω-free and newtonian; for Liouville closed H -fields, the converse also
holds.

Our main result in Aschenbrenner, van den Dries, and van der Hoeven [ibid.] refines
Theorem 2.3 by giving quantifier elimination for the theory of H -closed fields in the
language L above augmented by an additional unary function symbol � and two extra
unary predicates Λ and Ω. These have defining axioms in terms of the other primitives.
Their interpretations in T are as follows: �(f ) = 1/f if f ¤ 0, �(0) = 0, and with
`0 := x, `n+1 := log `n,

Λ(f ) () f < λn := 1
`0

+ 1
`0`1

+ � � � + 1
`0���`n

for some n,

Ω(f ) () f < ωn := 1
(`0)2

+ 1
(`0`1)2

+ � � � + 1
(`0���`n)2

for some n.

Thus Λ and Ω define downward closed subsets of T . The sequence (ωn) also appears
in classical non-oscillation theorems for second-order linear differential equations. The
ω-freeness of T reflects the fact that (ωn) has no pseudolimit in the valued field T . Here
are some applications of this quantifier elimination:

Corollary 2.5.

(1) “O-minimality at infinity”: if S � T is definable, then for some f 2 T we either
have g 2 S for all g > f in T or g … S for all g > f in T .

(2) All subsets of Rn definable in T are semialgebraic.

Corollaries 2.4 and 2.5 are the departure point for developing a notion of (differential-
algebraic) dimension for definable sets in T ; see Aschenbrenner, van den Dries, and van
der Hoeven [2017b].

The results reported on above make us confident that the category of H -fields is the
right setting for asymptotic differential algebra. To solidify this impression we return
to the motivating examples—Hardy fields, ordered differential fields of transseries, and
surreal numbers—and consider how they are related. We start with Hardy fields, which
historically came first.

3 H-Field Elements as Germs

After Theorem 1.2 and Boshernitzan [1982, 1987], the first substantial “Hardy field” result
on more general differential equations was obtained by van der Hoeven [2009]. In what
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follows we use “d-algebraic” to mean “differentially algebraic” and “d-transcendental” to
mean “differentially transcendental”.

Theorem 3.1. The differential subfield T da of T whose elements are the d-algebraic
transseries is isomorphic over R to a Hardy field.

The proof of this theorem is in the spirit of model theory, iteratively extending by a single
d-algebraic transseries. The most difficult case (immediate extensions) is handled through
careful construction of suitable solutions as convergent series of iterated integrals. We are
currently trying to generalize Theorem 3.1 to d-algebraic extensions of arbitrary Hardy
fields. Here is our plan:

Theorem 3.2. Every Hardy field has an ω-free Hardy field extension.

Theorem 3.3 (in progress). Every ω-free Hardy field has a newtonian d-algebraic Hardy
field extension.

These two theorems, when established, imply that all maximal Hardy fields are H -closed.
Hence (by Theorem 2.2) they will all be elementarily equivalent to T , and since H -closed
fields have the IVP, Conjecture A from Section 1 will follow.

In order to get an even better grasp on the structure of maximal Hardy fields, we also
need to understand how to adjoin d-transcendental germs to Hardy fields. An example of
this situation is given by d-transcendental series such as

P
n n!!x�n. By an old result by

É. Borel [1895] every formal power series
P

n antn over R is the Taylor series at 0 of a
C1-function f on R; then

P
n anx�n is an asymptotic expansion of the function f (x�1)

at +1, and it is easy to show that if this series is d-transcendental, then the germ at +1

of this function does generate a Hardy field. Here is a far-reaching generalization:

Theorem 3.4 (in progress). Every pseudocauchy sequence (yn) in a Hardy field H has a
pseudolimit in some Hardy field extension of H .

The proof of this for H -closed H � R relies heavily on results from Aschenbrenner,
van den Dries, and van der Hoeven [2017a], using also intricate glueing techniques. For
extensions that increase the value group, we need very different constructions. If succesful,
these constructions in combination with Theorem 3.4 will lead to a proof of Conjecture B
from Section 1:

Theorem 3.5 (in progress). For any countable subsets A < B of a Hardy field H there
exists an element y in a Hardy field extension of H with A < y < B .

The case H � C1, B = ¿ was already dealt with by Sjödin [1971]. The various “the-
orems in progress” together with results from Aschenbrenner, van den Dries, and van
der Hoeven [2017a] imply that any maximal Hardy fields H1 and H2 are back-and-forth
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equivalent, which is considerably stronger than H1 and H2 being elementarily equivalent.
It implies for example

Under CH all maximal Hardy fields are isomorphic.

This would be the Hardy field analogue of Corollary 1.1. (In contrast to maximal Haus-
dorff fields, however, maximal Hardy fields cannot be @1-saturated, since their constant
field isR.) When we submitted this manuscript, we had finished the proof of Theorem 3.2,
and also the proof of Theorem 3.4 in the relevant H -closed case.

Related problems. Some authors (such as Sjödin [1971]) prefer to consider only Hardy
fields contained in C1. Theorem 3.2 and our partial result for Theorem 3.4 go through in
the C1-setting. All the above “theorems in progress” are plausible in that setting.

What about real analytic Hardy fields (Hardy fields contained in the subring C! of C
consisting of all real analytic germs)? In that setting Theorem 3.2 goes through. Any d-
algebraic Hardy field extension of a real analytic Hardy field is itself real analytic, and so
Theorem 3.3 (in progress) will hold in that setting as well. However, our glueing technique
employed in the proof of Theorem 3.4 doesn’t work there.

Kneser [1949] obtained a real analytic solution E at infinity to the functional equation
E(x+1) = expE(x). It grows faster than any finite iteration of the exponential function,
and generates a Hardy field. See Boshernitzan [1986] for results of this kind, and a proof
that Theorem 3.5 holds for B = ¿ in the real analytic setting. So in this context we also
have an abundant supply of Hardy fields.

Similar issues arise for germs of quasi-analytic and “cohesive” functions of Écalle
[1992]. These classes of functions are somewhat more flexible than the class of real an-
alytic functions. For instance, the series x�1 + e�x + e� ex

+ � � � converges uniformly
for x > 1 to a cohesive function that is not real analytic.

Accelero-summation. The definition of a Hardy field ensures that the differential field
operations never introduce oscillatory behavior. Does this behavior persist for operations
such as composition or various integral transforms? In this connection we note that the
Hardy field H (R̃) associated to an o-minimal expansion R̃ of the field of reals is always
closed under composition (see Miller [2012]).

To illustrate the problem with composition, let ˛ be a real number > 1 and let y0 2 C2

be a solution to (2). Then z0 := y0(˛x) satisfies the equation

(3) ˛�2z00 + z = e˛2x2

:

It can be shown that fy0 + sin x; z0g generates a Hardy field, but it is clear that no Hardy
field containing both y0 + sin x and z0 can be closed under composition.
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Adjoining solutions to (2) and (3) “one by one” as in the proof of Theorem 3.1 will
not prevent the resulting Hardy fields to contain both y0 + sin x and z0. In order to ob-
tain closure under composition we therefore need an alternative device. Écalle’s theory of
accelero-summation (Écalle [1992]) is much more than that. Vastly extending Borel’s
summation method for divergent series (Borel [1899]), it associates to each accelero-
summable transseries an analyzable function. In this waymany non-oscillating real-valued
functions that arise naturally (e.g., as solutions of algebraic differential equations) can be
represented faithfully by transseries. This leads us to conjecture an improvement on The-
orem 3.1:

Conjecture 3.6. Consider the real accelero-summation process where we systematically
use the organic average whenever we encounter singularities on the positive real axis.
This yields a composition-preserving H -field isomorphism from T da onto a Hardy field
contained in C! .

There is little doubt that this holds. The main difficulty here is that a full proof will in-
volve many tools forged by Écalle in connection with accelero-summation, such as resur-
gent functions, well-behaved averages, cohesive functions, etc., with some of these tools
requiring further elaboration; see also Costin [2009] and Menous [1999].

The current theory of accelero-summation only sums transseries with coefficients in R.
Thus it is not clear how to generalize Conjecture 3.6 in the direction of Theorem 3.3. Such
a generalization might require introducing transseries over a Hardy field H with suitable
additional structure, as well as a corresponding theory of accelero-summation over H for
such transseries. In particular, elements of H should be accelero-summable over H in
this theory, by construction.

4 H-Field Elements as Generalized Transseries

Next we discuss when H -fields embed into differential fields of formal series. A classical
embedding theorem of this type is due to Krull [1932]: any valued field has a spherically
complete immediate extension. As a consequence, any real closed field containing R is
isomorphic over R to a subfield of a Hahn field R[[M]]with divisible monomial group M,
such that the subfield contains R(M). We recently proved an analogue of this theorem for
valued differential fields; see Aschenbrenner, van den Dries, and van der Hoeven [2017c].
Here a valued differential field is a valued field of equicharacteristic zero equipped with a
derivation that is continuous with respect to the valuation topology.

Theorem 4.1. Every valued differential field has a spherically complete immediate exten-
sion.
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For a real closed H -field K with constant field C this theorem gives a Hahn field bK =

C [[M]] with a derivation ∂ on bK making it an H -field with constant field C such that K

is isomorphic over C to an H -subfield of K̂ that contains C (M). A shortcoming of this
result is that there is no guarantee that ∂ preserves infinite summation. In contrast, the
derivation of T is strong (does preserve infinite summation). An abstract framework for
even more general notions of transseries is due to van der Hoeven and his former student
Schmeling [2001].

Fields of transseries. To explain this, consider an (ordered) Hahn field R[[M]] with
a partially defined function exp obeying the usual rules of exponentiation; see van der
Hoeven [2006, Section 4.1] for details. In particular, exp has a partially defined inverse
function log. We say that R[[M]] is a field of transseries if the following conditions hold:

(T1) the domain of the function log is R[[M]]>0;

(T2) for each m 2 M and n 2 supp logm we have n � 1;

(T3) log(1 + ") = " �
1
2
"2 + 1

3
"3 + � � � for all " � 1 in R[[M]]; and

(T4) for every sequence (mn) in M with mn+1 2 supp logmn for all n, there exists an
index n0 such that for all n > n0 and all n 2 supp logmn, we have n < mn+1 and
(logmn)mn+1

= ˙1.

The first three axioms record basic facts from the standard construction of transseries. The
fourth axiom is more intricate and puts limits on the kind of “nested transseries” that are
allowed. Nested transseries such as

y =
p

x + e
p
logx+e

p
log logx+e���(4)

are naturally encountered as solutions of functional equations, in this case

y(x) =
p

x + ey(logx) :(5)

Axiom (T4) does allow nested transseries as in (4), but excludes series like

u =
p

x + e
p
logx+e

p
log logx+e��� + log log logx + log logx + log x;

which solves the functional equation u(x) =
p

x + eu(logx) + log x; in some sense, u is a
perturbation of the solution y in (4) to the equation (5).

In his thesis Schmeling [2001] shows how to extend a given field of transseries K =

R[[M]] with new exponentials and nested transseries like (4), and if K also comes with
a strong derivation, how to extend this derivation as well. Again, (T4) is crucial for
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this task: naive termwise differentiation leads to a huge infinite sum that turns out to be
summable by (T4). A transserial derivation is a strong derivation on K such that nested
transseries are differentiated in this way. Such a transserial derivation is uniquely deter-
mined by its values on the log-atomic elements: those� 2 K for which�; log�; log log�; : : :

are all transmonomials in M.
We can now state a transserial analogue of Krull’s theorem. This analogue is a con-

sequence of Theorem 5.3 below, proved in Aschenbrenner, van den Dries, and van der
Hoeven [2015].

Theorem 4.2. Every H -field with small derivation and constant field R can be embedded
over R into a field of transseries with transserial derivation.

For simplicity, we restricted ourselves to transseries over R. The theory naturally gen-
eralizes to transseries over ordered exponential fields (see van der Hoeven [2006] and
Schmeling [2001]) and it should be possible to extend Theorem 4.2 likewise.

Hyperseries. Besides derivations, one can also define a notion of composition for gen-
eralized transseries (see van der Hoeven [1997] and Schmeling [2001]). Whereas certain
functional equations such as (5) can still be solved using nested transseries, solving the
equation E(x + 1) = expE(x) where E(x) is the unknown, requires extending T to a
field of transseries with composition containing an element E(x) = exp! x > T , called
the iterator of exp x. Its compositional inverse log! x should then satisfy log! log x =

(log! x) � 1, providing us with a primitive for (x log x log2 x � � � )�1:

log! x =

Z dx

x log x log2 x � � �
:

It is convenient to start with iterated logarithms rather than iterated exponentials, and to
introduce transfinite iterators log˛ x recursively using

log˛ x =

Z dxQ
ˇ<˛ logˇ x

(˛ any ordinal):

By Écalle [1992] the iterators log˛ x with ˛ < !! and their compositional inverses exp˛ x

suffice to resolve all pure composition equations of the form

f ık1 ı �1 ı � � � ı f ıkn ı �n = x where �1; : : : ; �n 2 T and k1; : : : ; kn 2 N.

The resolution of more complicated functional equations involving differentiation and
composition requires the introduction of fields of hyperseries: besides exponentials and
logarithms, hyperseries are allowed to contain iterators exp˛ x and log˛ x of any strength˛.



ON NUMBERS, GERMS, AND TRANSSERIES 35

For ˛ < !! , the necessary constructions were carried out in Schmeling [2001]. The ulti-
mate objective is to construct a fieldHy of hyperseries as a proper class, similar to the field
of surreal numbers, endow it with its canonical derivation and composition, and establish
the following:

Conjecture 4.3. Let Φ be any partial function from Hy into itself, constructed from ele-
ments in Hy, using the field operations, differentiation and composition. Let f < g be
hyperseries in Hy such that Φ is defined on the closed interval [f; g] and Φ(f )Φ(g) < 0.
Then for some y 2 Hy we have Φ(y) = 0 and f < y < g.

One might then also consider H -fields with an additional composition operator and try to
prove that these structures can always be embedded into Hy.

5 Growth Rates as Numbers

Turning to surreal numbers, how do they fit into asymptotic differential algebra?

The H-field of surreal numbers. The totality No of surreal numbers is not a set but
a proper class: a surreal a 2 No is uniquely represented by a transfinite sign sequence
(a�)�<`(a) 2 f�;+g`(a) where `(a) is an ordinal, called the length of a; a surreal b is
said to be simpler than a (notation: b <s a) if the sign sequence of b is a proper initial
segment of that of a. Besides the (partial) ordering <s , No also carries a natural (total)
lexicographic ordering<. For any setsL < R of surreals there is a unique simplest surreal
a with L < a < R; this a is denoted by fL j Rg and called the simplest or earliest surreal
between L and R. In particular, a = fLa j Rag for any a 2 No, where La := fb <s a :

b < ag and Ra = fb <s a : b > ag. We let aL range over elements of La, and aR over
elements of Ra.

A rather magical property of surreal numbers is that various operations have natural
inductive definitions. For instance, we have ring operations given by

a + b :=
˚
aL + b; a + bL

ˇ̌
aR + b; a + bR

	
ab :=

˚
aLb + abL

� aLbL; aRb + abR
� aRbR

ˇ̌
aLb + abR

� aLbR; aRb + abL
� aRbL

	
:

Remarkably, these operations make No into a real closed field with < as its field ordering
and with R uniquely embedded as an initial subfield. (A set A � No is said to be initial
if for all a 2 A all b <s a are also in A.)

Can we use such magical recursions to introduce other reasonable operations? Expo-
nentiation was dealt with by Gonshor [1986]. But it remained long open how to define
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a “good” derivation ∂ on No such that ∂(!) = 1. (An ordinal ˛ is identified with the
surreal of length ˛ whose sign sequence has just plus signs.) A positive answer was given
recently by Berarducci and Mantova [2018]. Their construction goes in two parts. They
first analyze No as an exponential field, and show that it is basically a field of transseries
in the sense of Section 4. A transserial derivation on No is determined by its values at
log-atomic elements. There is some flexibility here, but Berarducci and Mantova [ibid.]
present a “simplest” way to choose these derivatives. Most important, that choice indeed
leads to a derivation ∂BM on No. In addition:

Theorem 5.1 (Berarducci and Mantova [ibid.]). The derivation ∂BM is transserial and
makes No a Liouville closed H -field with constant field R.

This result was further strengthened in Aschenbrenner, van den Dries, and van der Hoeven
[2015], using key results fromAschenbrenner, van den Dries, and van der Hoeven [2017a]:

Theorem 5.2. No with the derivation ∂BM is an H -closed field.

EmbeddingH-fields intoNo. In the remainder of this sectionwe considerNo as equipped
with the derivation ∂BM, although Theorems 5.1 and 5.2 and much of what follows hold
for other transserial derivations. Returning to our main topic of embedding H -fields into
specific H -fields such as No, we also proved the following in Aschenbrenner, van den
Dries, and van der Hoeven [2015]:

Theorem 5.3. Every H -field with small derivation and constant field R can be embedded
as an ordered differential field into No.

How “nice” can we take the embeddings in Theorem 5.3? For instance, when can we ar-
range the image of the embedding to be initial? The image of the natural embeddingT ! No
is indeed initial, as has been shown by Elliot Kaplan.

For further discussion it is convenient to introduce, given an ordinal ˛, the set

No(˛) :=
˚
a 2 No : `(a) < ˛

	
:

It turns out that for uncountable cardinals �, No(�) is closed under the differential field
operations, and in Aschenbrenner, van den Dries, and van der Hoeven [ibid.] we also
show:

Theorem 5.4. The H -subfield No(�) of No is an elementary submodel of No.

In particular, the H -field No(!1) of surreal numbers of countable length is an elementary
submodel ofNo. It has the �1-property: for any countable subsets A < B ofNo(!1) there
exists y 2 No(!1) with A < y < B . This fact and the various “theorems in progress”
from Section 3 imply:
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Under CH all maximal Hardy fields are isomorphic to No(!1).

This would be an analogue of Ehrlich’s observation about maximal Hausdorff fields.

Hyperseries as numbers and vice versa. The similarities in the constructions of the field
of hyperseries Hy and the field of surreal numbers No led van der Hoeven [2006, p. 6] to
the following:

Conjecture 5.5. There is a natural isomorphism between Hy and No that associates to
any hyperseries f (x) 2 Hy its value f (!) 2 No.

The problem is to make sense of the value of a hyperseries at !. Thanks to Gonshor’s
exponential function, it is clear how to evaluate ordinary transseries at !. The difficulties
start as soon as we wish to represent surreal numbers that are not of the form f (!) with
f (x) an ordinary transseries. That is where the iterators exp! and log! come into play:

exp! ! := f!; exp!; exp2 !; : : : j g

log! ! := f R j : : : ; log2 !; log!; !g

exp1/2 ! := exp!

�
log!

�
! + 1

2

��
:=

n
!2; exp log2 !; exp2 log22 !; : : :

ˇ̌̌
: : : ; exp2

p
log!; exp

p
!

o
The intuition behind Conjecture 5.5 is that all “holes in No can be filled” using suitable
nested hyperseries and suitable iterators of exp and log. It reconciles two a priori very
different types of infinities: on the one hand, we have growth orders corresponding to
smooth functional behavior; on the other side, we have numbers. Being able to switch
between functions (more precisely: formal series acting as functions) and numbers, we
may also transport any available structure in both directions: we immediately obtain a
canonical derivation ∂c (with constant field R) and composition ıc on No, as well as a
notion of simplicity on Hy.

Does the derivation ∂BM coincidewith the canonical derivation ∂c induced by the conjec-
tured isomorphism? A key observation is that any derivation ∂ onNowith a distinguished
right inverse ∂�1 naturally gives rise to a definition of log! :

log! a := ∂�1(∂a log0
! a) where

log0
! a := 1

� Y
n

logn a (a 2 No; a > R):

(For a family (ai ) of positive surreals,
Q

i ai := exp
P

i log ai if
P

i log ai is defined.)
Since ∂BM is transserial, it does admit a distinguished right inverse ∂�1

BM. According to
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Berarducci and Mantova [2018, Remark 6.8], ∂BM� = 1/ log0
! � for log-atomic � with

� > expn ! for all n. For � = exp! ! and setting exp0
!(a) :=

Q
n logn exp! a for

a 2 No>0, this yields ∂BM� = exp0
! !, which is also the valuewe expect for ∂c�. However,

for� = exp!(exp! !)we get ∂BM� = exp0
!(exp! !)whereaswe expect ∂c� = (exp0

! !)�

exp0
!(exp! !). Thus the “simplest” derivation ∂BM making No an H -field probably does

not coincide with the ultimately “correct” derivation ∂c on No. Berarducci and Mantova
[2017] use similar considerations to conclude that ∂BM is incompatible with any reasonable
notion of composition for surreal numbers.

The surreal numbers from a model theoretic perspective. We conclude with specula-
tions motivated by the fact that various operations defined by “surreal” recursions have a
nice model theory. Examples: (No;6;+; � ) is a model of the theory of real closed fields;
(No;6;+; � ; exp) is a model of the theory of Rexp; and (No;6;+; � ; ∂BM) is a model
of the theory of H -closed fields. Each of these theories is model complete in a natural
language. Is there a model theoretic reason that explains why this works so well?

Let us look at this in connection with the last example. Our aim is to define a deriva-
tion ∂ on No making it an H -field. Let a 2 No be given for which we wish to define ∂a,
and assume that ∂b has been defined for all b 2 La [ Ra. Let ∆a be the class of all sur-
reals b for which there exists a derivation ∂ on No with ∂a = b and taking the prescribed
values on La [ Ra. Assembling all conditions that should be satisfied by ∂a, it is not hard
to see that there exist sets L; R � No such that ∆a = fb 2 No : L < b < Rg. We are
left with two main questions: When do we have L < R, thereby allowing us to define
∂a = fL j Rg? Does this lead to a global definition of ∂ on No making it an H -closed
field? It might be of interest to isolate reasonable model theoretic conditions that imply
the success of this type of construction. If the above construction does work, yet another
question is whether the resulting derivation coincides with ∂BM.
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TOWARDS A THEORY OF DEFINABLE SETS

Sඍൾඉඁൾඇ Jൺർ඄ඌඈඇ

Abstract

The subject of descriptive set theory is traditionally concerned with the theory of
definable subsets of Polish spaces. By introducing large cardinal/determinacy axioms,
a theory of definable subsets of Polish spaces and their associated ordinals has been
developed over the last several decades which extends far up in the definability hi-
erarchy. Recently, much interest has been focused on trying to extend the theory of
definable objects to more general types of sets, not necessarily subsets of a Polish
space or an ordinal. A large class of these objects are represented by equivalence rela-
tions on Polish spaces. Even for some of the simpler of these relations, an interesting
combinatorial theory is emerging. We consider both problems of extending further
the theory of definable subsets of Polish spaces, and that of determining the structure
of these new types of definable sets.

1 Introduction and background

The field of descriptive set theory traditionally in concerned with the theory of definable
sets in Polish spaces (complete, separable, metric spaces). As all uncountable Polish
spaces are isomorphic by a Borel function, it is customary to refer to the elements of
any of several standard Polish spaces as “reals.” Aside from R, familiar examples include
the Baire space !! (homeomorphic to the space of irrationals in R; here ! denotes the
set of natural numbers), and 2! (homeomorphic to the Cantor set in R; here 2 = f0; 1g).
In the latter two cases, ! is endowed with the discrete topology, and !! or 2! with the
product topology. Note that if G is any countable discrete group, then 2G is likewise
homeomorphic to the Cantor set, so it is naturally a compact Polish space.

Using the axiom of choice, AC, “pathological” sets with a variety of properties can
be constructed. Examples include Vitali sets (non-measurable sets), Bernstein sets (a set
such that neither the set nor its complement contains a closed uncountable set), Lusin sets
(a set of reals which meets every meager set in a countable set), and Sierpinski sets (a set
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which meets every measure 0 set in a countable set). A theme of descriptive set theory is
that if we restrict out attention to “definable” sets, then these pathologies disappear and
a reasonable structure theory emerges. The notion of definable is made precise through
hierarchies of collections of sets of increasing complexity. A pointclass Γ is a collection
of subsets of Polish spaces which is closed under inverse images by continuous functions,
that is, if f : X ! Y is continuous and A � Y is in Γ, then f �1(A) is also in Γ. A
basic example is the pointclass of Borel sets, the smallest collection containing the open
and closed sets and closed under countable unions and intersections. The Borel sets are
stratified into the Borel hierarchy, the pointclasses Σ0

˛ , Π
0
˛ , and ∆0

˛ , for ˛ < !1. Here
Σ0

1 � X is the collection of open sets in the Polish space X , Π0
1 � X the closed sets in

X , ∆0
1 � X = Σ0

1 � X \ Π0
1 � X , and in general A 2 Σ0

˛ if A =
S

n An where each
An 2 Π0

ˇn
for some ˇn < ˛. Likewise, A 2 Π0

˛ if A =
T

n An with each An 2 Σ0
ˇn

for
some ˇn < ˛. Also, we define∆0

˛ = Σ0
˛ \Π0

˛ . It is a classical fact that the Borel sets in
any Polish space have the perfect set property (if they are uncountable then they contain
a perfect set, or equivalently an uncountable closed set), and are Lebesgue measurable
and have the Baire property. Thus, they cannot be any of the above types of pathological
sets. Another example of a “regularity property” for sets is the Ramsey property for the
set A � [!]! (here [H ]! denotes the set of infinite subsets of H , which we can identify
with the set of increasing functions from ! to !) which asserts that there is an infinite set
H � ! such that either [H ]! � A or [H ]! � !! � A. Again, all Borel sets have this
regularity property, this being a theorem of Galvin and Prikry (in fact the Borel sets are
completely Ramsey, a somewhat stronger version of the Ramsey property).

The hierarchy of definable sets extends far beyond the Borel sets. The next hierarchy
after the Borel sets is the projective hierarchy, so called because the main operation used
in generating the hierarchy is projection from a product X � Y of Polish spaces to X . The
analytic, orΣ1

1 sets, are defined by projecting closed (or equivalently Borel) sets: A � X

is Σ1
1 iff there is a closed set F � X � !! such that x 2 A iff 9y (x; y) 2 F . In

more succinct notation, we write Σ1
1 � X = 9!!

Π0
1 � (X � !!), where 9Y denotes

the operation of applying existential quantification over Y . A set A � X is co-analytic,
or Π1

1, if it is the complement of an analytic set. That is, Π1
1 is the dual pointclass of

Σ1
1, which we write as Π1

1 = Σ̌
1

1. We set ∆1
1 = Σ1

1 \ Π1
1 to be the sets that are both

Σ1
1 and Π1

1. A classical theorem of Suslin states that ∆1
1 is the collection of Borel sets,

so the projective hierarchy begins where the Borel hierarchy ends. We continue to define
the Σ1

n, Π
1
n, and ∆1

n sets for all n 2 ! by setting Σ1
n+1 = 9!!

Π1
n, Π

1
n+1 = Σ̌

1

n+1 (or
equivalently, Π1

n+1 = 8!!
Σ1

n), and ∆1
n+1 = Σ1

n+1 \ Π1
n+1. The projective hierarchy

is important because it includes all of the sets of conventional analysis. In fact, the sets of
analysis generally occur at the first or second levels of this hierarchy. In any uncountable
Polish space, all of the levels of the Borel and projective hierarchies are distinct, that is,
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Figure 1: The Borel and projective hierarchies.

there is no collapsing in either of these hierarchies. The inclusions of pointclasses within
these hierarchies is shown in Figure 1.

Beginning with the fundamental work of Gödel, it was realized that there were strong
limits to how much further far one could extend the regularity results for Borel sets work-
ing just in ZFC set theory (the set theory of “ordinary mathematics”). For example, the
Σ1

1 sets have the perfect set property, but it is consistent with ZFC that the Π1
1 sets do

not. Likewise, while theΣ1
1 andΠ

1
1 sets are all Lebesgue measurable and have the Baire

property, it is consistent with ZFC that the collection of ∆1
2 sets does not. A theorem of

Silver asserts that the Σ1
1 and Π1

1 sets are all (completely) Ramsey, but it is again consis-
tent that there are ∆1

2 sets which are not. Thus, in order to extend the theory further, one
must assume additional axioms which go beyond the ZFC axioms. There are currently
two main axiom schemes for doing this: large cardinal axioms and determinacy axioms.
Large cardinal axioms, which are generally meant to be added to the ZFC axioms, assert
that cardinals � with certain properties exist which cannot be shown to exist just from
ZFC. Determinacy axioms, on the other hand, assert that certain two-player games are de-
termined. If A � !! , then we associate a two-player integer game G(A) to A in a natural
way: the players I and II alternate picking integers x(n) 2 ! as shown in Figure 2. They
thereby jointly build an x = (x(0); x(1); : : : ) 2 !! . Player I wins the game iff x 2 A.

I

II

x(0)

x(1)

x(2)

x(3)

� � � x 2 !!G(A)

Figure 2: The basic game G(A).

The notions of a winning strategy for one of the players, and of the game being deter-
mined (i.e., one of the players has a winning strategy) are defined in the natural manner.
The axiom of determinacy, AD, is the assertion that G(A) is determined for all A � !! .
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This axiom contradicts the axiom of choice, AC, but is meant to be an axiom for certain
inner models of the full universe of sets V for which the sets are, in some sense, definable.
IfΓ is a pointclass, then det(Γ) is the statement that G(A) is determined for all A � !! in
Γ. A celebrated theorem of Martin says all Borel games are determined. More generally,
if X is any set and A � X! is Borel in the product topology on X! , where X is given the
discrete topology, then (in ZFC) the game G(A) is determined. In fact, a version of this
result holds in ZF (without choice), where now every every Borel game G(A) for A � X!

is quasi-determined (see Moschovakis [1980]). Here a quasi-strategy is like a strategy ex-
cept it is multi-valued. Results of Martin and Harrington show that ZFC + det(Σ1

1) is
strictly stronger than ZFC. The assertions det(Σ1

n) are strictly increasing in strength, and
projective determinacy, PD, is the statement that all projective games are determined. The
modelL(R) is the smallest model of set theory containing all of the reals and ordinals. Ev-
ery set of reals in this model is definable in this model by a formula using only ordinal and
real parameters. Because of this, the axiom ADL(R) that all A 2 L(R) are determined is
a plausible axiom. Since strategies in integer games are essentially reals, if ADL(R) holds
then in fact L(R) satisfies the axiom AD. The model L(R) is thus the smallest candidate
inner model (containing all the ordinals) which satisfies AD. More generally, if M is any
inner model satisfying AD, then we may consider the sets in M as being, in some abstract
sense, definable.

Work of Martin, Steel, and Woodin in the 80’s established the precise connection be-
tween determinacy axioms and large cardinal axioms. It was shown, for example, that
ZFC + 9n Woodin cardinals +9 a larger measurable cardinal implies det(Σ1

n+1). Also,
AD is equiconsistent with the existence of ! many Woodin cardinals, and ADL(R) is im-
plied by the existence of ! manyWoodin cardinals and a measurable cardinal above them.
These fundamental results lend respectability to the determinacy axioms and show that
not only is ADL(R) an intuitively appealing axiom, but that it is actually implied by large
cardinal axioms out in the ZFC universe.

Moving past AD, we many consider the axiom ADX which asserts that every game
played on the set X , that is, where A � X! , is determined. This axiom is inconsistent
for X = !1 or X = P (R), but for X = R the axiom of real game determinacy ADR is
reasonable. This axiom is significantly stronger than AD, and cannot hold in the minimal
model L(R) of AD, or in any model of the form L(T; R), for T � On. Woodin has
identified the exact consistency strength of ADR in the large cardinal hierarchy as well.
Thus we have a progression of the determinacy axioms starting with det(∆1

1), which is
a theorem of ZFC, to det(Σ1

1), det(Σ
1
n), PD, AD, and ADR. There are also stronger

determinacy axioms than ADR involving “long games,” but we will not need to consider
these here. We note that in any model of AD the sets of reals fall into a single hierarchy,
called the Wadge hierarchy, which gives a far-reaching generalization of the Borel and
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projective hierarchies. In particular, in these models we can define theΣ1
˛ ,Π

1
˛ classes for

all ˛ < Θ, where Θ is the length of the Wadge hierarchy in the model. Thus, these higher
level analogs of the projective sets are defined and extend throughout the entire Wadge
hierarchy of sets of reals.

Beginning in the 60’s, and continuing to the present, it was realized that determinacy
axioms were a powerful tool which allowed the classical results for Borel and analytic sets
to be extended to larger classes of sets. Work of Kechris, Martin, Moschovakis, Solovay,
Steel, Woodin, and others showed that assuming determinacy axioms, and in particular
assuming AD, one could propagate a structural theory similar to the ZFC theory of Borel
and analytic sets. This theory is largely presented in terms of scales and Suslin cardinals,
and gives a tight connection between the theory of the sets of reals in a pointclass Γ and
the properties of an ordinal ı(Γ) associated to the pointclass. The notion of a scale was
isolated by Moschovakis, and has origins in the Novikov-Kondo proof ofΠ1

1 uniformiza-
tion. We recall the following definition. By a tree T on a set X we mean a T � X<!

which is closed under subsequence, that is, if s 2 T and m is less than the length of s, then
s � m 2 T . We let [T ] = fx 2 X! : 8n x � n 2 T g be the set of infinite branches (or
body) of T .

Definition 1. We say a setA � !! is �-Suslin, for � 2 On, if there is a tree T � (!��)<!

such that A = p[T ] = fx 2 !! : 9f 2 �! (x; f ) 2 [T ]g.

We say � is a Suslin cardinal if there is a setAwhich is �-Suslin but not �-Suslin for any
� < �. The notions of semi-scale and scale are a more algebraic reformulation of having
Suslin representations, presented in terms of norms 'n : A ! �. In fact, being �-Suslin is
equivalent to having a semi-scale with norms to �, and also equivalent to having a scale
with norms to �. We refer the reader to Moschovakis [ibid.] for the precise definitions of
semi-scales, scales, and the scale property for a pointclass.

Assuming AD, we can propagate the scale/Suslin cardinal analysis past the Σ1
1, Π

1
1

levels to the entire projective hierarchy and beyond. In Jackson [2010] one can find a
presentation of the complete scale and Suslin cardinal analysis from AD. This analysis,
though it extends throughout the full extent of the Suslin cardinals, presents the theory
in terms of the ordinals ı(Γ). A much more detailed inductive analysis is necessary to
analyze these ordinals and describe the cardinal structure below them. In Jackson [1999]
and Jackson [1988] this analysis is described through the projective hierarchy. The extent
of this analysis is currently far short of the extent of scales, and so much about the general
cardinal structure of determinacy models remains unknown.

To give one example of the consequences of this analysis, we first recall that it is clas-
sical fact (proved in ZFC) that every Σ1

1 or Π
1
1 set is !2-Borel, that is, is in the smallest

collection containing the open and closed sets and closed under unions and intersections
of length < !2. In fact, every Σ1

1 or Π
1
1 set is an !1 union of Borel sets (a proof can be
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found in Moschovakis [1980], A. S. Kechris [1978], or Jackson [2010]). From the above
mentioned inductive analysis we get the following extension of this result, assuming de-
terminacy holds for the sets in L(R) (see Jackson [1989]).

Theorem 2. Assume ZFC + ADL(R). Then every projective set is !!-Borel.

Moving forward, in trying to develop the theory of definable objects from stronger set-
theoretic axioms, there are two main directions to pursue. The first is to extend this theory
of sets of reals and their associated ordinals further, and to to attempt to describe the entire
cardinal structure of determinacy models. Wemight refer to this as extending the theory of
“reals and ordinals.” A second direction is to study more general types of objects, moving
past those that be identified with sets in a Polish space or wellordered sets. Of course,
the study of these more general definable objects encompasses the first direction, but the
point is that we can advance the study of these more general objects without having the
complete theory of the cardinals structure in hand.

In Section 2 we describe in a little more detail some of the progress in developing the
theory of “reals and ordinals” and problems that are reasonably aligned with this program.
We describe some of the recent progress various researchers have made, in particular using
new techniques from inner model theory. This emerging area of “descriptive inner model
theory” holds much promise for future progress in this area. We also mention some of the
old questions and conjectures which are still around and which may serve as a benchmark
for further progress. In Section 3 we consider some questions related tomore general types
of objects. Here we see an interesting and fascinating combinatorial structure beginning
to emerge. The focus here is not so much on extending the theory to higher and higher
pointclasses, but to understand how the new nature of these objects affects their combina-
torial structure. Thus, we frequently consider problems at the Borel level, where the sets
and functions used in the definitions of the objects are Borel, or even continuous/clopen.
Recent years have seen a growing interest in this study of “Borel combinatorics” and its
connections with other areas such as ergodic theory, geometric group theory, and descrip-
tive set theory.

2 The theory of reals and ordinals

A well-known consequence of AD is that all sets of reals have the perfect set property, are
measurable (with respect to any Borel measure), and have the Baire property. It follows
that we have the Fubini theorem and its analog for category, theKuratowski-Ulam theorem,
for arbitrary setsA � X �Y in products of Polish spaces. We then also have full additivity
of measure and category, that is, an arbitrary well-ordered union of meager (or measure
0) sets is meager (measure 0). In particular, from the perfect set property we have that
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there are only two possibilities for the cardinality of a set in reals in a determinacy model:
countable and the size of the continuum. We note that one must be careful with the term
“cardinality” in a model without AC as, for example a map from a set X onto a set Y does
not necessarily yield a map from Y into X (in a model of AD there are maps from R onto
any ordinal ˛ < Θ, which is very large in the @ˇ hierarchy, but there is only an injection
from ˛ to R if ˛ is countable). Nevertheless, if a set of reals contains a perfect set, then it
is in bijection with R.

The cardinal structure inside a model of determinacy is interesting and non-trivial. As
we indicated before, the cardinal structure is closely connected with certain associated
pointclasses. At the projective level, the ordinals associated to these classes are called the
projective ordinals. More precisely, let

ı1n = ı(Π1
n) = supfj�j : � is a prewellordering of !! in∆1

ng

where a prewellordering � is a reflexive, transitive, connected relation whose strict part
(x � y $ (x � y) ^ :(y � x)) is wellfounded and j�j denotes its length. The work
of Kechris, Kunen, Martin, Moschovakis, and Solovay established the basic properties of
the ı1

n, and computed their values for n � 4 (these results can be found in A. S. Kechris
[1978] of Jackson [2010]). The author computed their values for all n and described the
structure of the cardinals below their supremeum (c.f. Jackson [1999] and Jackson [1988]).
The Suslin cardinals below their supremum are the odd projective ordinals ı1

2n+1 and their
cardinal predecessors �1

2n+1 = (ı1
2n+1)

�. The ı1
2n+1-Suslin sets are the Σ

1
2n+2 sets, and

the �1
2n+1-Suslin sets are the Σ1

2n+1 sets. The cardinal structure below the supremum
of the projective ordinals reveals some interesting and delicate patterns. The projective
ordinals are all regular cardinals and the even ones are the successors of the odd ones,
ı1
2n+2 = (ı1

2n+1)
+ (this was known from early work), and there are exactly 2n+1�1many

regular cardinals strictly between ı1
2n+1 and ı1

2n+3. The other cardinals between these two
odd projective ordinals are all singular of cofinality one of these 2n+1 � 1 cardinals. The
values of the ı1

n can be computed exactly. The result is that ı1
2n+1 = !e(2n�1)+1, where

e(0) = 1 and e(n + 1) = !e(n) (ordinal exponentiation). Also, the exact cofinalities of
the cardinals below the projective ordinals can be computed (see Jackson and Khafizov
[2016] and Jackson and Löwe [2013]). Figure 3 shows some of the cardinal structure
below the projective ordinals. Note that the three regular cardinals between ı1

3 and ı1
5 are

ı1
4 = !!+2, !!�2+1, and !!!+1.
The detailed inductive analysis which provides the above mentioned analysis of car-

dinal cofinalities does not currently generalize to arbitrary levels of the Wadge hierarchy.
While it does extend past the projective sets, likely to the first weakly inaccessible cardi-
nal, it is known that the methods do not extend to the first “inductive like” pointclass (a
non-selfdual pointclass closed under real quantification). Thus, some questions about car-
dinal cofinalities are still open past the projective hierarchy. To take an example, within
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! ı1
1 = !1 ı1

2 = !2
� � �

!! ı1
3 = !!+1 ı1

4 = !!+2

� � �
!!�2+1

� � �
!!!+1

� � �
�5�5 ı1

5 = !!!!
+1

Figure 3: The cardinal structure below the projective ordinals.

the projective hierarchy there are never more than two regular cardinals in a row. Past
the projective hierarchy, it is known that there can be three regular cardinals in a row (in
Apter, Jackson, and B. Löwe [2013] this and stronger results are shown), however the
evidence seems to suggest that there cannot be four in a row. This seems like a reasonable
benchmark for understanding the cardinal structure, so we state:

Conjecture 3. Assuming AD, there does not exists a cardinal � < Θ such that �, �+,
�++, and �+++ are all regular.

Aside from the cofinalities of the cardinals, there are other interesting combinatorial
properties of the cardinals which we may consider. One class of these concerns partition
properties. In the Erdös-Rado partition notation we write � ! (�)� if for all partitions
P : �� ! f0; 1g of the increasing functions from � to � into two pieces, there is a set
H � � of size � and an i 2 f0; 1g such that P � H � = i . The statement that all sets
A � !! are Ramsey is the strong partition property for � = !. This follows from AD+, a
technical strengthening of AD introduced by Woodin which has found many applications
in determinacy theory (it is not known whetherAD suffices for this result). AssumingAD,
the cardinal analysis shows that all regular Suslin cardinals below the projective ordinals,
which are just the ı1

2n+1, have the strong partition property. This is also not known to
extend to arbitrary levels, so we ask:

Conjecture 4. Assuming AD, every regular Suslin cardinal has the strong partition prop-
erty.

It is shown in Jackson [2011] that for the (finitely many) regular cardinals � between
ı1
2n+1 and ı1

2n+3 we have � ! (�)ı1
2n+1 , but � ¹ (�)ı1

2n+2 . This leads to the following
general problem.

Problem 5. Assume AD. Determine for each regular � < Θ the � such that � ! (�)�.

We close this section by results concerning three large cardinal notions interpreted in
models of determinacy. Namely, we consider the notions of Jónsson cardinal, measurable
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cardinal, and supercompact cardinal. For � < � < � , we say that � is �-supercompact
if there is a fine, normal measure � on P�(�) (the subsets of � of size less than �). Here
fine means that if A 2 P�(�) then fB : B � Ag has � measure one. Normal means that
if f : P�(�) ! � is such that f (A) 2 A for � almost all A, then f is constant � almost
everywhere. Building on H. S. Becker and Jackson [2001] it is shown in Jackson [2001]
that assuming AD+ that every regular cardinal � which is either a Suslin cardinal or the
successor of a Suslin cardinal is �-supercompact for all � < Θ. Again, this leads to a
general problem:

Problem 6. Assume AD. For which regular � and � > � is � �-supercompact?

We say a cardinal � is measurable if there is a non-principal, �-complete ultrafilter � of
�. We recall that assuming AD, every ultrafilter on a set is countably additive, that is, is a
measure. It is not difficult to show that the regular Suslin cardinals are measurable, but for
general regular cardinals the problem seems to require new methods. Specifically, meth-
ods of inner model theory have begun to play an important role in determinacy theory. In
Steel [1995] Steel made an important breakthrough by using progress in inner model the-
ory to analyze the inner model HODL(R) of L(R) assuming a large cardinal/determinacy
hypothesis, which Woodin improved to just assuming ADL(R). A consequence of this
analysis is:

Theorem 7 (Steel). Assume AD + V = L(R). Then every regular cardinal � < Θ is
measurable.

As part of the HOD analysis, it is also shown that HODL(R) satisfies the GCH. Al-
though this is a result about the model HOD, by “relativizing” it (i.e., using the fact that
every set in L(R) is definable from an ordinal and a real) we get:

Theorem 8 (Steel). Assume AD + V = L(R). Then for any � < Θ, any wellordered
sequence of subsets of � has length < �+.

Again, the previous result was known to hold previously for Suslin cardinals �. It is not
known how to obtain either of the two previous theorems by direct determinacy arguments.

In a similar vein one can use the HOD analysis to prove a result concerning Jónsson
cardinals. A cardinal � is said to be Jonsson if for all f : �<! ! � there an A � �

with jAj = � such that f (A<!) ¤ �. Thus, the Jonsson property is a weak form of the
partition property, weaker than being measurable. From the HOD analysis we get Jackson,
Ketchersid, Schlutzenberg, and Woodin [2014]:

Theorem 9 (J, Ketchersid, Schlutzenberg, Woodin). Assume ADL(R). Then every cardi-
nal � < Θ is Jónsson.

Using additional arguments, Woodin has extended the last two theorems to models of
AD+. It remains open if these techniques can be extended to answer Conjectures 3, 4.



52 STEPHEN JACKSON

3 More general sets

In Section 2 we considered the problem of developing the theory of definable sets of reals
and ordinals. The theory at the lower levels of the definability hierarchy seems fairly well
established, though many interesting problems remain in extending this theory to higher
levels. As we described, this theory is developed assuming stronger axioms than ZFC.
In this section we consider the problem of developing the theory of more general types
of sets. To motivate some of the basic objects of study, consider the model L(R). In this
model, every set A � LΘ(R) is the surjective image of R. Say � : R ! A is an onto map.
This defines naturally an equivalence relation E on !! , namely, x E y iff �(x) = �(y).
It follows that A is in bijection with the quotient space R/ ∼. So, all of the sets in this
model, at least those of rank < Θ, can be identified with the set of equivalence classes
(quotient space) of an equivalence relation on the Polish space R. Thus, the collection of
sets which can be represented as quotient spaces by equivalence relations on Polish spaces
is a quite large collection, greatly extending the collection of sets which can be identified
with a subset of a Polish space, or which can be wellordered (identified with an ordinal).

The simplest equivalence relations on Polish spaces are the smooth ones. We say (X; E)

is smooth if there is a Borel map f : X ! Y , for some Polish space Y such that x E y iff
f (x) = f (y). We can, of course, replace “Borel” with more liberal notions of definable,
but in most cases this is a good stand-in for the more general case. In this case, the quotient
space X/E can be identified with a subset of Y , namely the range of f . Conversely,
any subset A of a Polish space X can be identified with the quotient space of a smooth
equivalence relation on X . So, if (X; E) is smooth, or if the classes can be wellordered,
then we are in the case of Section 2. So, from the point of view of introducing new types
of definable objects, we consider these to be “trivial” equivalence relations.

One of the simplest non-trivial equivalence relations is the equivalence relation of even-
tual agreement on 2! known as E0: x E0 y iff 9n 8m � n (x(m) = y(m)). Note that
the E0 relation is a simple (Σ0

2) Borel equivalence relation. There is a natural action of
the group Z on 2! called the odometer action which is defined by 1 � x (1 being the gen-
erator Z) is obtained by adding 1 to x viewed as an infinite binary expansion (with x(0)

being the least significant digit). This Z action is defined on all classes except [0̄] and [1̄],
which are the constant 0 and 1 reals. The natural definition of the odometer map on the
classes [0̄] and [1̄] amalgamates these two classes, but we can redefine the map on these
two classes so that the Z action generates the E0 equivalence relation, that is, x E0 y iff
9n 2 Z (n � x = y). The natural Bernoulli measure on 2! is invariant under this action
(the redefinition on the two distinguished classes doesn’t affect anything). It follows that
there cannot be a Borel, or even measurable, selector for E0, that is, a set S which meets
every E0 class in exactly one point. So, E0 is not smooth. Of course, with AC one can
form a selector by simply picking an element for each E0 class, but this does not result in
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a definable set. This simple argument is just the standard Vitali argument for the construc-
tion of (non-definable) non-measurable set. From our current point of view, focusing on
definable objects, the quotient space of E0 is a new type of object, not given by a subset of
a Polish space or an ordinal. This immediately raises a general question: what can we say
about the structure of these definable equivalence relations on Polish spaces? As the above
example shows, restricting the notion of definable to Borel still captures the main essence
of the new phenomenon, and thus we led to the study of Borel equivalence relations on
Polish spaces.

The motivation expressed in the above arguments for studying Borel equivalence rela-
tions is only one of many such possible. For example, classical dynamic can be viewed
as the study of Borel actions of the group Z on Polish spaces, frequently equipped with
other structure such an an invariant probability measure on X . From the point of view of
“descriptive dynamics” however (a term likely coined by Kechris), we are not just inter-
ested in the structure up to measure zero sets, but rather what can be done everywhere in a
definable (say Borel) manner. It is also of interest to restrict from Borel to continuous in
many questions, that is, asking what can be done in continuous manner leads to interesting
questions as well.

In the rest of this section we first give a brief (and selective) background on some
results concerning Borel equivalence relations, and then describe some recent work on
some problems in this area. We are particularly interested in problems concerning the
combinatorial structure of these quotient spaces. We also mention some questions which
arisewhen going past Borel equivalence relations to consider general equivalence relations
in determinacy models.

If G is a group acting on the Polish space X , then there is an equivalence relation EG ,
the orbit equivalence relation, associated to the action: x EG y iff 9g 2 G (g�x = y). The
case of interest is when G is a Polish group (a topological group which is a Polish space
in the group topology), and G acts in a Borel way on X (that is, the relation R(g; x; y) $

g � x = y is Borel). An important special of this is when G is a countable discrete group,
in which case EG is a countable Borel equivalence relation, that is, all of the EG classes
are countable. In the case of a general Polish group, the relation EG need only be Σ1

1,
though it is a fact that all of the individual orbits [x]EG

are Borel. When G is countable,
EG is Borel. Given any countable group G, a natural action is the (left) shift action of G

on 2G defined by g � x(h) = x(g�1h). The is a natural action and is also important as
it is essentially a universal action of G (we refer the reader to Dougherty, Jackson, and
A. S. Kechris [1994] for details).

The theory largely splits in two directions: the case of general (uncountable) Polish
groups, and the case where G is countable. Both directions are interesting. For example,
the Polish group S1 of permutation of ! has a natural action, the logic action on the space
of countable models of first-order theories (which can viewed as a Polish space). Various
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important questions in model theory/logic can be phrased as question about this Polish
group action. One such question is the well-known Vaught conjecture on the number of
models of a first-order theory (that is, is either countable or of size c), which can rephrased
as a question about this action (we refer the reader to A. S. Kechris and H. Becker [1996]
for details).

For the rest of this section we will focus on the case of countableG, which is illustrative
of the general case and includes many cases of interest, particularly in relation to dynamics,
ergodic theory, and some aspects of descriptive set theory (we note here that the degree
notions of descriptive set theory such as Turing degree, arithmetical degrees,∆1

1 degrees,
etc., all give countable equivalence relations). We refer the reader to Dougherty, Jackson,
and A. S. Kechris [1994], Jackson, A. Kechris, and Louveau [2002], and A. S. Kechris
and Miller [2004] for more general background.

The Feldman-Moore theorem Feldman and Moore [1977] is fundamental to the study
of countable Borel equivalence relations.

Theorem 10. LetE be a countable Borel equivalence relation on the Polish spaceX . then
there is countable group G and a Borel action G Õ X of G on X such that E = EG .

Thus, we may approach the study of countable Borel equivalence relations “group by
group,” starting with the algebraically simplest groups and progressing through groups of
increasing complexity. Finite groups only generate finite equivalence relations, and these
are smooth since there is a Borel linear order on X which we can use to select the least
element from each class. The simplest infinite group is Z. Since E0 is given by a Borel
action of Z, these relations need not be smooth. A basic result of Slaman-Steel identifies
these as the hyperfinite equivalence relations.

Definition 11. A countable Borel equivalence relation E is hyperfinite if E =
S

n En is
the increasing union of finite equivalence relations (that is, each En class is finite).

The Slaman-Steel theorem (see Dougherty, Jackson, andA. S. Kechris [1994]) says that
a countable Borel equivalence relation is hyperfinite iff there is a Borel ordering <X on X

such restricted to each class, <X � [x] is either finite or order-isomorphic to Z. That is, we
have in a uniform Borel manner put the structure of a Z ordering onto each equivalence
class.

The fundamental notion in the theory of Borel equivalence relations is the notion of
a reduction: we say (X; E) � (Y; F ) if there is a Borel f : X ! Y such that for all
x; y 2 X , x E y $ f (x)F f (y). This is saying that have in a definable way (in this
case a Borel way) an injection from the quotient space X/E to Y /F . In other words, this
corresponds to saying that X/E has a definable cardinality no larger than that of Y /F .
Again, “Borel” can be viewed as a stand-in for other notions of definability; we could
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consider models of determinacy and allow arbitrary functions f . The Cantor-Schroeder-
Bernstein theorem applies here, so if (X; E) � (Y; F ) and (Y; F ) � (X; E), then the
quotient spaces are in bijection. A result of Dougherty, Jackson, and A. S. Kechris [ibid.]
says that all non-smooth hyperfinite equivalence relations are Borel bi-reducible, so they
all the same definable cardinality. A central result in the subject is theHarrington-Kechris-
Louveau dichotomy theorem (see Harrington, A. S. Kechris, and Louveau [1990]). This
theorem states that if the Borel equivalence relation (X; E) is not smooth, then E0 �

(X; E). That is, there is nothing between the trivial (smooth) relations and the hyperfinite
relations. In other words, E0 is the smallest definable cardinal past those given as subsets
of a Polish space (among those representable as Borel equivalence relations).

Two general questions are immediately suggested. The first involves understanding the
definable cardinalities of these quotient spaces. That is, determine the structure of the re-
ducibility relation among the family of Borel equivalence relations (or within the countable
Borel equivalence relations). The second questions concerns the hyperfinite equivalence
relations: which countable groups G generate hyperfinite equivalence relations. That is,
which groupsG have the property that ifG Õ X is a Borel action ofG on the Polish space
X , then the orbit equivalence relation EG is hyperfinite? This hyperfiniteness question
was first raised explicitly by Kechris and Weiss. The Connes-Feldman-Weiss theorem an-
swers this question in the ergodic theory/dynamics perspective, that is, up to measure 0
sets with respect to an invariant probability measure � on X . Their theorem says that if
G is amenable then, up to a measure 0 set, the action is hyperfinite, and conversely, if all
the Borel actions of G are hyperfinite up to a measure 0 set for some such measure, then
G is amenable. So, if G is non-amenable then there are Borel actions of G which are not
(everywhere) hyperfinite. The other direction is far from clear, and is an important open
problem in the area.

Concerning the first problem, a result of Dougherty, Jackson, and A. S. Kechris [1994]
shows there is a “largest” countable Borel equivalence relation in the sense that every
countable Borel equivalence relations reduces to it. This is given by the shift action of
the group F2 on 2F2 (F2 here is the free group on 2 generators). While it is not too dif-
ficult to show that there are incomparable Borel equivalence relations, the corresponding
result for countable Borel equivalence relations was open for a significant time. Finally,
A. S. Kechris and Adams [2000] resolved this problem using techniques from Zimmer’s
superrigidity theory in ergodic theory. They showed that there is a large family (of size
continuum) of pairwise incomparable countable Borel equivalence relations. This result
was strengthened by Hjorth. In Miller [n.d.] an elegant simplified presentation of some of
these results can be found.

We mention the best currently known results on the hyperfiniteness problem. First,
Weiss showed (unpublished, but see Jackson, A. Kechris, and Louveau [2002]) the fol-
lowing.
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Theorem 12 (Weiss). All equivalence relations generated by a Borel action of Zn are
hyperfinite.

Next, Gao and the author extended the result to general abelian groups:

Theorem 13 (Gao and Jackson [2015]). All equivalence relations generated by a Borel
action of a countable abelian group are hyperfinite.

The method used to prove Theorem 13 is quite different from that of Theorem 12. Both
proofs employ heavily the use of certainmarker structures on the equivalence relation. By
a marker structure we mean a Borel set M � X which is complete (meets every equiva-
lence class) and co-complete (its complement is complete). For the proofs, it is necessary
to create marker structures with certain delicate geometric properties. Thus, some of the
fundamental questions in this area are closely connected with the question of what types
of marker structures we can put (in a Borel manner) on the equivalence relation. For the
proof of Theorem 13, the notion of an orthogonal marker structure was introduced. This
roughly says that the marker points M give a decomposition of the points in an equiva-
lence class into rectangular regions such that any two parallel faces of nearby regions are
separated by a certain fixed positive fraction of the side lengths. The technology used in
this proof has other applications. For example, it allows us to show that there is a con-
tinuous embedding from 2Zn (with the shift action) into E0 (the fact that there is a Borel
action follows from the shift action on 2Zn being hyperfinite). It also allows us to show
that the Borel chromatic number of F (2Zn

) is 3 (we discuss this more below), and answer
other combinatorial structuring questions.

Theorem 13 was extended further by Schneider and Seward who extended the result to
nilpotent groups, and in fact showed the following.

Theorem 14 (Schneider and Seward [n.d.]). All equivalence relations generated by the
action of a locally nilpotent group are hyperfinite.

By a an important result of Gromov in geometric group theory, the class of finitely
generated groups which have a nilpotent subgroup of finite index (the virtually nilpotent
groups) coincides with the class of finitely generated groups of polynomial growth. We
note that Theorem 14 for the case of finitely generated nilpotent groups (or finitely gen-
erated virtually nilpotent groups) was known previously, a result of Jackson, A. Kechris,
and Louveau [2002]. This suggested the possibility that polynomial growth was the barrier
to extending these hyperfiniteness results. However, in recent as yet unpublished work,
Conley, Marks, Seward, Tucker-Drob, and the author have shown that there are finitely
generated solvable, non-nilpotent (so not of polynomial growth) groups all of whose Borel
actions are hyperfinite. Whether these arguments can be made to extend to all elementary
amenable groups, or even all amenable groups, is not yet known.
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Aside from the above questions concerning the cardinalities of the quotient spaces
X/E, we are interested in questions about the combinatorial structure of these sets. We
can ask these types of question at either the definable level, where we usually use “Borel”
as a representative case, or at the topological level. Roughly speaking, in the latter case,
we require the types of structures we are considering to be given in a continuous manner.
As we said above, the hyperfiniteness arguments require certain types of marker structures,
but there are many other kinds of structuring questions we can ask.

The notion of a continuous or Borel “structuring” of the countable Borel equivalence
relation E can be made precise in a natural manner. If L = (ci ; Ri ; fi ) is a language
of first-order logic, by an L-structuring of E we mean an assignment [x] 7! Ax of L-
structures Ax to the equivalence classes of E, where the domain of the structure Ax is
the equivalence class [x]. If E = EG for some action of the group G, then we frequently
also assume that there are unary function symbols fg in the language L for each group
element g 2 G (these are intended to represent the function fg(x) = g �x). The notion of
the structuring being Borel (or continuous) is defined in a natural manner (e.g., for each
n-ary relation symbol Ri of L, the relation

R(x1; : : : ; xn) $ x1 E x2 � � � E xn ^ A[x1](x1; : : : ; xn)

is a Borel (or clopen) relation on Xn. We can then, for example, ask if Borel or continuous
structurings of E exists with the structures Ax satisfying certain properties (for example,
if they satisfy a certain formula of first-order, or higher-order, logic).

Many types of interesting combinatorial questions can be phrased as instances of struc-
turing questions. Consider a fixed countable group G. Given actions G Õ X and G Õ Y

generating equivalence relations EX and EY , we say f : X ! Y is equivariant if f com-
mutes with the actions, that is, f (g �x) = g �f (x) for all x 2 X . A one-to-one equivariant
map is necessarily a reduction from EX to EY . By a subshift of finite type we mean a
closed, invariant (under the shift action) Y � kG for some k 2 N which is defined by a
finite set p1; : : : ; pt of “forbidden” patterns. Here a pattern is partial function p : G ! k

with finite domain. Then y 2 kG is in the subshift Y determined by the pi (with say
Di = dom(pi )) if for all g 2 G, the function pg : Di ! k given by pg(h) = g � y(h) is
not equal to any of the pi . Asking if there is an equivariant map from EX to the subshift
Y is an instance of a structuring question. Subshift questions of this form are themselves
quite general and include several interesting types of questions. We consider a few of
these types of questions and some recent results concerning them.

If G is a marked group, that is, comes with a distinguished set of generators S (which
does include the identity e), then there is a graphing Γ(EG) of the orbit equivalence rela-
tion EG for any action G Õ X given by xΓ(EG)y iff 9s 2 S (s � x = y _ s � y = x).
If the action is free, then on each equivalence class this graphing is isomorphic to the
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Cayley graph associated to (G; S). The Borel chromatic number, �b(EG) of the equiv-
alence relation is the least cardinal k such that there is a Borel map c : X ! k which
is a chromatic coloring of the graph Γ(EG). We likewise define the continuous chro-
matic number �c(EG), using continuous functions f . The study of definable chromatic
numbers was initiated by Kechris, Solecki, and Todorcevic in A. S. Kechris, Solecki, and
Todorcevic [1999]. One of their basic results is that the Borel chromatic number satisfies
�b(EG) � d +1, where d is the vertex degree of the Cayley graph, for any EG generated
by a free action of G. We refer to the determination of �c(EG) and �b(EG) as the chro-
matic number problem. This is an instance of the more general subshift problem, which is
determine for which subshifts Y � kG (determined by k and the patternsp1; : : : ; pt ) there
is a continuous or Borel equivariant map from EG to Y . Another instance of the subshift
problem is the graph homomorphism problem. Given a countable graph Γ, this problem is
to determine whether there is a continuous or Borel graph homomorphism from Γ(EG) to
Γ. Finally, we mention the tiling problem. By a tile we mean a finite set T � G. Given a
finite set T1; : : : ; T` of tiles, the tiling problem asks whether there is a continuous or Borel
tiling of EG . By this we mean Borel sets Ai � X such that the sets fTi � g : g 2 Ai g

partition X (a “continuous” tiling means that the Ai are clopen sets in X ). There are many
other types of structuring questions one can ask, but these serve as test questions for the
type of definable structures we can put on the equivalence classes. While these questions
are of interest for general countable groups, let us now restrict our attention to simpler
groups.

Consider the groupsG = Zn. Aswe said above, all of these groups induce only hyperfi-
nite actions. Nevertheless, structuring questions about the equivalence relations generated
by actions of these groups are non-trivial. Perhaps even more surprising, given the fact
that all of these shift spaces 2Zn continuously embed into E0, is that some continuous
structuring questions have answers that depend on n.

We mentioned above the method of orthogonal markers, which has been used in recent
hyperfiniteness proofs. This method is normally used in a “positive” sense, that is, to
produce Borel structurings on various types in the equivalence relations EG . Another
method which has been used to obtain negative results in the continuous setting is the
method of hyperaperiodic points. The notion of hyperaperiodic point was introduced by
Gao, Seward, and the author in Gao, Seward, and Jackson [2009] and also independently
byGlasner andUspenskij. Consider the shift space 2G . We say x 2 2G is a hyperaperiodic
point if [x] � F (2G), that is, the closure of the orbit of x lies entirely in the free part of
2G . This definition can be reformulated as a purely combinatorial property of x. Namely,
x 2 2G is hyperaperiodic iff it satisfies the following: for any s 2 G with s ¤ e, there is
a finite T � G such that

8g 2 G 9t 2 T (x(gt) ¤ x(gst)):
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This combinatorial property is sometimes referred to as x being a “2-coloring.” Hyperape-
riodic elements are easy to construct for simple groups such as Zn, however the following
result of Gao, Seward, and Jackson [ibid.] states that they exist for any countable group.

Theorem 15 (Gao, Seward, and Jackson [ibid.]). For every countable group G there is
an x 2 2G which is a hyperaperiodic point.

Hyperaperiodic points are useful since [x] is a compact set contained within the free
part of 2G , and this permits certain compactness arguments. However, to prove some
more delicate results it is necessary to construct hyperiodic points with various addition
properties. To illustrate the use of the orthogonal marker and hyperaperiodic element
arguments, consider the Borel and continuous chromatic number problems for F (2Zn

).
An easy category argument shows that �b(F (2Zn

) > 2 for all n. Also, any easy argument
using the existence of clopen marker sets (see Gao and Jackson [2015]) which are roughly
d -spaced (for any d > 1) shows that �c(F (2Z)) � 3. It follows that in the n = 1 case we
have �b(F (2Z)) = �c(F (2Z)) = 3. For n � 2, the arguments require the new methods.
The result, from Gao, Jackson, Krohne, and Seward [n.d.], is the following.

Theorem 16 (Gao, J, Krohne,Seward). For any n � 2 we have:

3 = �b(F (2Zn

)) < �c(F (2Zn

)) = 4:

This result has two points of interest. First, it shows a difference between the dimension
n = 1 and n � 2 cases, even though both equivalence relations are hyperfinite. Second,
it shows a difference between the continuous and Borel versions of the question.

The proof of Theorem 16 was first first accomplished by the construction of a particular
hyperaperiodic point. The basic idea was to construct x 2 2Zn with certain periodicity
requirements in one direction, but yet keeping the point hyperaperiodic. This is possible as
n � 2. Later, Gao, Krohne, Seward, and the author proved a general theorem applicable to
general subshift questions. The theorem (see Gao, Jackson, Krohne, and Seward [ibid.])
reduces the subshift question forF (2Zn

) down to a question about a family of finite graphs.
Consider the case n = 2. For each 1 � n < p; q we define a finite graph Γn;p;q . The
graph is obtained by starting with 12 individual “grid-graphs.” by a grid-graph we mean
a graph which is isomorphic to a finite rectangular region of Z2 with edges inherited from
the Cayley graphing of Z2. Certain vertices are identified among the vertices in these
grid-graph, and the quotient graph is Γn;p;q . To give the reader a feel for the construction
we show three of the grid graphs in Figure 4 (each of the other graphs comprising Γn;p;q

is similar to one of these). In each of these grid-graphs, certain rectangular subregions
are marked with labels such as R�, Ra, etc. In the graph Γn;p;q the corresponding points
within regions with the same label are identified. For example, the upper-left points of
each R� region are identified in forming Γn;p;q .
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R� R� R�

R� R� R�

Ra Ra

Rd

RdRc

RcR�

R�

R�

R�

Ra Ra

Rc

Rc

R� R� R� R� R� R�

R� R� R� R� R�

Ra Ra
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q copies of Rc , q + 1 copies of R�

p copies of Rd , p + 1 copies of R�

Figure 4: The grid-graphs in Γn;p;q .

The following result of Gao, Jackson, Krohne, and Seward [n.d.] shows that a subshift
question for F (2Zn

) reduces to question about the graph Γn;p;q .

Theorem 17. Let Y � kZ2 be a subshift of finite type described by (k;p1; : : : ; pt ). Then
the following are equivalent.

1. There is a continuous, equivariant map f : F (2Z2
) ! Y .

2. There are positive integers n; p; q with n < p; q, (p; q) = 1, and
n � maxfai ; bi : dom(pi ) = [0; ai ) � [0; bi )g � 1 and a g : Γn;p;q ! k which
respects Y .

3. For all n � maxfai ; bi : dom(pi ) = [0; ai ) � [0; bi )g � 1, for all sufficiently large
p; q with (p; q) = 1 there is a g : Γn;p;q ! k which respects Y .
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In this theorem, when we say g : Γn;p;q ! k respects the subshift y we mean that in
any ai � bi rectangular subregions R of one of the grid-graphs forming Γn;p;q , g � R is
not equal to pi . In other words, we can find a continuous equivariant map from F (2Z2

)

into the subshift Y � kZ2 iff we can find such a map from Γn;p;q ! k for some p; q

with (p; q) = 1 (equivalently, if we can such maps g for all sufficiently large p; q with
(p; q) = 1).

Using this result, a number of subshift questions can be answered for F (2Zn
). More-

over, some general results about the decidability of the subshift problem in general can be
shown which highlight a key difference between the dimension n = 1 and n � 2 cases.
A subshift Y is coded by a finite sequence (k;p1; : : : ; pt ), which can be viewed as an
integer. Let Ym be the subshift coded by the integer m. Consider the set S(n) of m 2 !

such that there is a continuous, equivariant map from F (2Zn
) to Ym. From Theorem 17

it follows that for each n the set S(n) is computably enumerable, that is, is a Σ0
1 set. The

question we consider is whether this set is actually computable (i.e., a ∆0
1 set). We have

the following result of Gao, Jackson, Krohne, and Seward [ibid.].

Theorem 18. For n = 1, the subshift problem is decidable, that is, S(1) is computable.
For n � 2 the subshift problem is not computable.

Theorem 18 shows a remarkable difference between the shift actions of Z and Zn for
n � 2. In Gao, Jackson, Krohne, and Seward [ibid.] it is further shown that even the
specific graph homomorphism problem for F (2Zn

) is not computable for n � 2.
The above results are for the shift actions of the groups Zn. Let us mention a result

of a similar flavor but for a completely different class of groups. this result, obtained by
Marks [2016] concerns the free product of groups. The result is:

Theorem 19 (Marks). If G, H are finitely generated marked groups, then

�b(F (2G�H )) � �b(F (2G) + �b(F (2H )) � 1:

whereF (2G) denotes the free part of the shift action ofG on 2G andG�H denotes the free
product of the groups G and H (the statement of Theorem 19 above actually incorporates
an improvement of the result due to Seward and Tucker-Drob). What is interesting is that
Marks’ method in proving this result involves games and Borel determinacy (a result due
to Martin). This surprising result introduces yet another new technique into the subject.

In this section we have been mainly concerned with objects given by Borel equivalence
relations on Polish spaces. Although Borel is frequently taken as a representative of de-
finable, let us finally return to considering general sets in a model determinacy. Woodin
[2006] has shown an interesting result about cardinalities in determinacy models which
shows that the exact determinacy hypotheses assumed may be important. Woodin shows
that assuming ADR, the axiom of real game determinacy (which is considerably stronger
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than AD or AD+), there are exactly 5 cardinals below the set !!
1 . He also shows that

there are more than 5 cardinals below this set if one assumes AD + :ADR. This surpris-
ing result shows that for some sets, questions about their definable structure may depend
on the background axioms assumed.

The results we have discussed show that a very rich theory of definable sets is emerging,
and is connected with many other areas of mathematics. We believe this will continue to
be an interesting and fruitful line of investigation.
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Abstract

This lecture highlights some recent advances on classical decidability issues in
local and global fields.
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1 Introduction

In 1900, at the International Congress of Mathematicians in Paris, Hilbert presented his
celebrated and influential list of 23 mathematical problems (Hilbert [1900]). One of them
is

Hilbert’s 10th Problem (H10) Find an algorithm which gives on INPUT any
f (X1; : : : ; Xn) 2 Z[X1; : : : ; Xn]

OUTPUT
�
YES if 9x 2 Zn such that f (x) = 0

NO else

Hilbert did not ask to prove that there is such an algorithm. He was convinced that there
should be one, and that it was all a question of producing it — one of those instances of
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Hilbert’s optimism reflected in his famous slogan ‘wir müssen wissen, wir werden wissen’
(‘we must know, we will know’). As it happens, Hilbert was too optimistic: after previous
work since the 50’s by Martin Davis, Hilary Putnam and Julia Robinson (cf., e.g., Davis,
Putnam, and J. Robinson [1961]), Yuri Matiyasevich showed in 1970 that there is no such
algorithm (Y. V. Matiyasevich [1970b]). The key result here is the most remarkable so-
called DPRM-Theorem that every (algorithmically) listable set of integers is diophantine,
i.e., first-order definable in the language of rings Lring := f+; �; 0; 1g by an existential
formula.

The original formulation of Hilbert’s 10th Problem was weaker than the standard ver-
sion above in that he rather asked ‘Given a polynomial f , find an algorithm ...’. So maybe
you could have different algorithms depending on the number of variables and the degree.
Yet it is even possible to find a single polynomial for which no such algorithm exists —
this is essentially because there are universal Turing Machines.

One should, however, mention that, in the special case of n = 1, that is, for polynomials
in one variable, there is an easy algorithm: if, for some x 2 Z, f (x) = 0 then x j f (0);
hence one only has to check the finitely many divisors of f (0). Similarly, by the effective
version of the Hasse-Minkowski-Local-Global-Principle for quadratic forms and some
extra integrality considerations, one also has an algorithm for polynomials in an arbitrary
number of variables, but of total degree � 2. And, even if there is no general algorithm, it
is one of the major projects of computational arithmetic geometry to exhibit other families
of polynomials for which such algorithms exist.

Let us point in a different direction of generalizing Hilbert’s 10th Problem, namely,
generalizing it to rings other than Z: If R is an integral domain, there are two natural
ways of generalizing H10:

H10/R = H10 with the 2nd occurrence of Z replaced by R

H10+/R = H10 with both occurrences of Z replaced by R

Observation 1.1. Let R be an integral domain whose field of fractions does not contain
the algebraic closure of the prime field (Fp resp. Q). Then

H10/R is solvable , Th9+(R) is decidable
H10+/R is solvable , Th9+(hR; r j r 2 Ri) is decidable,

where Th9+ denotes the positive existential theory consisting of existential sentences where
the quantifier-free part is a conjunction of disjunctions of polynomial equations (no in-
equalities).

Note that the language on the right hand side of the 2nd line contains a constant symbol
for each r 2 R.
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Proof: ‘(’ is obvious in both cases. For ‘)’ one has to see that a disjunction of two
polynomial equations is equivalent to (another) single equation, and, likewise, for con-
junctions: By our assumption we can find some monic g 2 Z[X ] of degree > 1 which is
irreducible over R. Then, for any polynomials f1; f2 over Z resp. R and for any tuple x

over R,
f1(x) = 0 _ f2(x) = 0 () f1(x) � f2(x) = 0

f1(x) = 0 ^ f2(x) = 0 () g(f1(x)
f2(x)

) � f2(x)
degg = 0

Since in fields, inequalities can be expressed by a positive existential formula (f (x) ¤

0 $ 9y f (x) � y = 1), we immediately obtain the following:

Corollary 1.2. Let K be a field not containing the algebraic closure of the prime field.
Then

H10/K is solvable , Th9(K) is decidable.

In fact, the same is true for OK , the ring of integers of a number field K:

Observation 1.3. If K is a number field,

OK ˆ 8x[x ¤ 0 $ 9y x j (2y � 1)(3y � 1)]:

Hence Th9(OK) = Th9+(OK).

One of the biggest open questions in the area is

Question 1.4. Is H10/Q solvable?

Let us recall that, by the ground breaking work of Kurt Gödel, the full first order theory
of Z is undecidable, so there is no algorithm which decides, on INPUT any first-order
Lring -sentence �, whether or not � holds in Z (cf. Gödel [1931]). J. Robinson [1949]
managed to find an Lring -first-order definition of Z in Q, thus showing, via Gödel’s
Theorem, that the full first-order theory of Q is also undecidable. If one had an existential
first-order Lring -formula defining Z in Q then one could, via Matiyasevich’s Theorem,
conclude that Hilbert’s 10th Problem over Q is also unsolvable. However, the best we
have at the moment (in terms of logical complexity) is a universal formula for Z in Q (cf.
Theorem 3.1 below).

Hilbert’s 10th Problem for the ring of integers of a number field (that is, a finite exten-
sion ofQ— they are the global fields of characteristic 0) has been shown to be unsolvable
in several cases, the general case could sofar only be proven modulo a (widely believed)
conjecture regarding elliptic curves (see section 3.2).



66 JOCHEN KOENIGSMANN

For global fields of positive characterisitc, that is, for finite extensions of the rational
function field Fp(t) over the finite field Fp in one variable t , Hilbert’s 10th Problem,
again, has no solution (cf. section 3.3).

Many of the results obtained for global fields rely heavily on results and techniques de-
veloped for local fields. Local fields are defined to be fields F which are locally compact
with respect to the topology induced by some non-trivial absolute value on F . It turns out
that local fields are precisely the completions of global fields (w.r.t such absolute values)
and they are classified as follows: the archimedean local fields are just the field R of real
numbers and the field C of complex numbers; the non-archimedean local fields of charac-
teristic 0 are precisely all finite extensions of Qp , the field of p-adic numbers, where p is
any rational prime; and the non-archimedean local fields of positive characteristic p are
precisely the finite extensions of Fp((t)), the field of formal Laurent series over the field
Fp with p elements. For the non-archimedean local fields, the absolute value is induced
by a canonical valuation, which is the p-adic valuation on Qp and the t -adic valuation
on Fp((t)), and these valuations extend uniquely to all finite extensions, a property of
valuations called henselian.

All decidability issues for the two archimedean local fields have been settled by Tarski
in the 1930s: The full first order theory ofR and ofC is decidable (and hence, in particular,
Hilbert’s 10th Problem is solvable for those two fields).

The decidability of Qp was proved independently by Ax and Kochen [1965] and by
Eršov [1965]. They effectively axiomatized Qp as a henselian valued field of characteris-
tic 0whose residue field is Fp , whose value group is aZ-group (so elementarily equivalent
to the ordered abelian group of integers) such that the value of p is minimal positive. And
there are similar axiomatizations for all finite extensions of Qp (see Prestel and Roquette
[1984] for a general treatment of p-adic fields).

Since those results of Ax-Kochen and Ershov in 1965 it has been a big open problem
whether the theory of Fp((t)) is decidable as well. Recently major progress has beenmade
on this problem which we will discuss in section 2 below.

There are several important infinite extension of local and global fields for which de-
cidability issues are of great interest, too. For example, the field Qab , the maximal Galois
extension of Q with an abelian Galois group which, by the famous Kronecker-Weber The-
orem, is just the field obtained from Q by adjoining all roots of unity, is not known to be
decidable or undecidable. Similarly, one does not know this about Qsolv , the maximal
Galois extension of Q with prosolvable Galois group which is obtained from Q by iter-
atedly adjoining radicals (n-th roots of elements for arbitrary n). It is an open problem
in Field Arithmetic whether or not Qsolv is pseudo-algebraically closed in the sense that
every absolutely irreducible curve defined over Qsolv has a Qsolv-rational point (Prob-
lem 11.5.9(a) in Fried and Jarden [2008]). If this Problem has a positive answer and if the
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famous Shafarevich Conjecture that the absolute Galois group of Qab is a free profinite
group is true then one can show that Qsolv is decidable.

In section 4 we will briefly consider two infinite extensions of Qp for which there has
been recent progress, namely Qur

p , the maximal unramified extension of Qp which turns
out to be decidable and model theoretically well behaved, and Qab

p , the maximal abelian
extension of Qp , for which a promising new suggestion for a first-order axiomatization
will be presented.

Some notation from valuation theory: The reader is expected to be acquainted with
the basics of valuation theory (cf., e.g., Engler and Prestel [2005]). For a valued field
(K; v), the valuation ring will be denoted by Ov , the residue field by Kv and the value
group by vK.

2 Local fields of positive characteristic

Regarding the question of decidability of the field Fq((t)) of formal Laurent series over a
finite field Fq there have been two recent breakthroughs: one is the result of Anscombe-
Fehm that the existential Lring -theory of Fq((t)) is decidable (Theorem 2.1). The other
is a new promising suggestion for an effective first order axiomatization for Fq((t)) using
the notion of extremal valued fields.

Throughout this section we will fix q, a power of the rational prime p > 0.

2.1 The existential theory of Fq((t)). In Denef and Schoutens [2003], Jan Denef and
Hans Shoutens managed to prove that the existential theory of Fq((t)) in Lring [ ftg,
the language of rings augmented by a constant symbol for t , is decidable if one assumes
resolution of singularities in positive characteristic. Sylvy Anscombe and Arno Fehm then
found a surprisingly elementary unconditional proof for the decidability of the existential
Lring -theory of Fq((t)) (see S. Anscombe and Fehm [2016]). More generally they prove
the following
Theorem 2.1. Let (K; v) be an equicharacteristic henselian valued field (so char K =

char Kv). Then the existential Lval -theory of K is decidable if and only if the existential
Lring -theory of the residue field Kv is decidable.

Here Lval = Lring [ fOg is the language of valued fields, that is, the language of
rings augmented by a unary predicate symbol O for the valuation ring. There are many
alternative possibilities for a first order language for valued fields (you could, for example,
have a three-sorted language distinguishing the field sort, the residue field sort and the
value group sort with additional function symbols for the valuation map and the canonical
restriction map to the residue field). But it turns out that all these languages are mutually
translatable into each other, so they all have the same expressive power.
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Let us point out that, for the question of the decidability of the existential theory of
Fq((t)), it makes no difference whether you ask this question about the existential theory
in Lring or in Lval , because, by the main theorem of W. Anscombe and Koenigsmann
[2014], the valuation ring Fq [[t ]] of Fq((t)) is existentially first-order definable in the
language of rings. This leads immediately to the following

Corollary 2.2. The existential Lring -theory of Fq [[t ]] is dedicable.

So, in other words, Hilbert’s 10th Problem has a positive solution both for Fq((t)) and
for Fq [[t ]].

A more general result on almost existential definability of henselian valuation rings
in valued fields with finite or pseudo-finite residue fields can be found in Cluckers, Der-
akhshan, Leenknegt, and Macintyre [2013].

Whether or not the existential Lring [ ftg-theory of Fq((t)) is decidable (without as-
suming resolution of singularities) is still open.

2.2 Axiomatizing Fq((t)). The biggest open question in the model theory of valued
fields, however, is the question whether the full first-order theory of Fq((t)) is decid-
able. There have been a number of suggestions of how to axiomatize this field. The
most promising suggestion builds on the notion of extremal valued fields, originally intro-
duced (though with a ‘wrong’ definition) by Ershov [2004], then, following a suggestion
of Sergei Starchenko, the definition was amended and the ‘correct’ definition was put for-
ward in Ershov [2009] and in Azgin, Kuhlmann, and Pop [2012]. The suggested axioma-
tization for Fq((t)) given below first appeared in S. Anscombe and Kuhlmann [2016].

Definition 2.3. A valued field (K; v) is extremal if, for every polynomial f (X1; : : : ; Xn)

2 K[X1; : : : ; Xn], the set

fv(f (a1; : : : ; an)) j a1; : : : ; an 2 Ovg � vK [ f1g

has a maximal element.

It turns out that extremal valued fields are algebraically maximal, that is, for each finite
extension (L; w)/(K; v), the fundamental equality ‘n = e � f ’ holds, where n = [L : K],
e = [wL : vK] and f = [Lw : Kv], and so, in particular, extremal fields are henselian.
Moreover, their value group is either divisible or a Z-group (elementarily equivalent to
the ordered abelian groupZ of integers) and that in the first case the residue field has to be
large in the sense of having infinitely many rational points for each algebraic curve with
at least one rational point (cf. Pop [1996]).

The axiomatization for Fq((t)) using this notion of extremal valued fields is now very
simple:
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(1) (K; v) is an extremal valued field of charactersitic p,

(2) the value group vK is a Z-group,

(3) the residue field Kv is the field Fq .

It has long been known that the ‘naive’ axiomatization for Fq((t)), where axiom (1) is
replaced by just asking (K; v) to be henselian, is not complete.

3 Global fields

3.1 A universal definition forZ inQ. Hilbert’s 10th problem overQ, i.e., the question
whether the existential Lring -theory of Q is decidable, is still open.

If one had an existential (= diophantine) definition of Z in Q (i.e., a definition by an
existential 1st-orderLring -formula) then the existential theory ofZwould be interpretable
in that of Q, and the answer would, by (for short) Matiyasevich’s Theorem, again be no.
But it is still open whether Z is existentially definable in Q.

The earliest 1st-order definition forZ inQ, due to J. Robinson [1949], can be expressed
by an 898-formula of the shape

�(t) : 8x18x29y1 : : : 9y78z1 : : : 8z6 f (t ; x1; x2;y1; : : : ; y7; z1; : : : ; z6) = 0

for some f 2 Z[T ;X1; X2;Y1; : : : ; Y7;Z1; : : : ; Z6], i.e., for any t 2 Q,

t 2 Z iff �(t) holds in Q:

In 2009, Bjorn Poonen ([P09a]) managed to find an 89-definition with 2 universal and
7 existential quantifiers (earlier, in Cornelissen and Zahidi [2007], an 89-definition with
just one universal quantifier was proved modulo an open conjecture on elliptic curves).

In Koenigsmann [2016], the author then provided a 8-definition of Z in Q:

Theorem 3.1. There is a polynomial g 2 Z[T ;X1; : : : ; X418] such that, for all t 2 Q,

t 2 Z iff 8x 2 Q418 g(t ; x) ¤ 0:

If one measures logical complexity in terms of the number of changes of quantifiers
then this is the simplest definition of Z in Q, and, in fact, it is the simplest possible: there
is no quantifier-free definition of Z in Q.

Corollary 3.2. Q n Z is diophantine in Q.

Corollary 3.3. T h89(Q) is undecidable.
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Theorem 3.1 came somewhat unexpected because it does not give what you would like
to have, namely an existential definition of Z in Q. However, if you had the latter the
former would follow:

Observation 3.4. If there is an existential definition ofZ inQ then there is also a universal
one.

Proof: If Z is diophantine in Q then so is

Q n Z = fx 2 Q j 9m; n; a; b 2 Z with n ¤ 0; ˙1; am + bn = 1 and m = xng

The machinery for proving these three first-order definitions of Z in Q is not very
heavy: Julia Robinson made essentially use of the Hasse-Minkowski Local-Global Prin-
ciple for quadratic forms, Bjorn Poonen augmented that using the Hasse bound for the
number of rational points on genus-1 curves over finite fields (and he ingeniously rear-
ranged the use of quadratic form theory), while in Koenigsmann [2016] the Quadratic
Reciprocity Law came in as additional tool, and then some elementary tricks (inspired
by the model theory of valued fields) for transforming existential formulas into universal
ones were needed to complete the proof.

Using more serious number theory, (Park [2013])has generalised Theorem 3.1 to num-
ber fields:

Theorem 3.5. For any number field K, the ring of integers OK is universally definable
in K.

In the course of the proof of Koenigsmann [2016] many new diophantine subsets of
Q emerged, for example the set of non-squares turned out to be diophantine (this was
obtained earlier in Poonen [2009b] using much deeper techniques). If, however, Z was
also diophantine inQ then there would be many more important diophantine subsets ofQ,
for example the set of tuples of coefficients of irreducible polynomials (of fixed degree)
overQ. Later, Philip Dittmannmanaged to prove this unconditionally and in much greater
generality (Dittmann [2016]):

Theorem 3.6. Irreducibility of polynomials over global fields is diophantine.

3.2 Hilbert’s 10th Problem for number rings using elliptic curves. In this section
only one major achievement is being reported on. There is a multitude of surveys on the
subject, each with its own emphasis. For the interested reader, let us mention at least some
of them: R. M. Robinson [1951], Mazur [1994], Pheidas [1994], Y. Matiyasevich [2000],
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Pheidas and Zahidi [2000], Shlapentokh [2000], Poonen [2003], Shlapentokh [2007], Poo-
nen [2008], and Koenigsmann [2014].

For number rings and number fields, the question of decidability has been answered
in the negative by J. Robinson [1959]. The question whether Hilbert’s 10th Problem is
solvable is much harder. Given that we don’t know the answer over Q (though almost
everyone working in the field believes it to be no) there is even less hope that we find the
answer for arbitrary number fields in the near future. For number rings the situation is
much better.

Let K be a number field with ring of integers OK . Then Hilbert’s 10th Problem could
be shown to be unsolvable over OK in the following cases:

• if K is totally real or a quadratic extension of a totally real number field (Denef
[1975], Denef and Lipshitz [1978] and Denef [1980]),

• if [K : Q] � 3 and cK = 2 (Pheidas [1988])1,

• if K/Q is abelian (Shapiro and Shlapentokh [1989]).

In each of the proofs the authors managed to find an existential definition ofZ inOK using
Pell-equations, the Hasse-Minkowski Local-Global Principle (which holds in all number
fields) and ad hoc methods that are very specific to each of these special cases.

The hope for a uniform proof of the existential undecidability of all number rings only
emerged when elliptic curves were brought into the game:

Theorem 3.7 ([Poo02]). Let K be a number field. Assume2 there is an elliptic curve E

over Q with rk(E(Q)) = rk(E(K)) = 1. Then Z is existentially definable in OK and
so Hilbert’s 10th Problem over OK is unsolvable.

In his proof, Poonen uses divisibility relations for denominators of x-coordinates of n �

P , whereP 2 E(K)nEtor(K) and n �P 2 E(Q) (for a similar approach cf. Cornelissen,
Pheidas, and Zahidi [2005]).

The assumption made in the theorem turns out to hold modulo a generally believed
conjecture, the so called Tate-Shafarevich Conjecture. For an elliptic curve E over a num-
ber field K, it refers to the Tate-Shafarevich group (or Shafarevich-Tate group)ШE/K ,
an abelian group defined via cohomology groups. It measures the deviation from a local-
global principle for rational points on E.

1cK denotes the class number of K, that is, the size of the ideal class group of K. It measures how far OK

is from being a PID: cK = 1 iff OK is a PID, so cK = 2 is ‘the next best’. It is not known whether there are
infinitely many number fields with cK = 1.

2The set E(K) of K-rational points of E is a finitely generated abelian group isomorphic to the direct
product of its torsion subgroup Etor (K) and a free abelian group of rank ‘rk(E(K))’.
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Tate-Shafarevich ConjectureШE/K is finite.

Weak Tate-Shafarevich Conjecture dimF2
ШE/K/2 is even.

The latter follows from the former due to the Cassels pairing (Theorem 4.14 in Silverman
[1986] which is an excellent reference on elliptic curves).

Theorem 3.8 ([MR10]). LetK be a number field. Assume the weak Tate-Shafarevich Con-
jecture for all elliptic curves E/K. Then there is an elliptic curve E/Q with rk(E(Q)) =

rk(E(K)) = 1.

Taking those two theorems together you obtain immediately the following

Corollary 3.9. Let K be a number field. Assume the weak Tate-Shafarevich Conjecture
for all elliptic curves E/K. Then Hilbert’s 10th Problem is unsolvable over OK .

3.3 Global fields of positive characteristic. It is natural to ask decidability questions
not only over number fields, but also over global fields of positive characteristic, i.e.,
algebraic function fields in one variable over finite fields, and also, more generally, for
function fields.

Hilbert’s 10th Problem (with t resp. t1; t2 in the language) has been shown to be un-
solvable for the following function fields:

• R(t) (Denef [1978]),

• C(t1; t2) (Kim and Roush [1992]),

• Fq(t) (Pheidas [1991] and Videla [1994]),

• finite extensions of Fq(t) (Shlapentokh [1992] and Eisenträger [2003]).

The first two cases were achieved by existentially defining Z in the field, and then apply-
ing Matiyasevich’s Theorem. This is, clearly, not possible in the last two cases. Instead of
existentially defining Z the authors existentially interpret Z via elliptic curves: the mul-
tiplication by n-map on an elliptic curve E/K where E(K) contains non-torsion points
easily gives a diophantine interpretation of the additive group hZ; +i. The difficulty is to
find an elliptic curveE/K such that there is also an existential definition for multiplication
on that additive group.

For the ring of polynomials Fq [t ], Demeyer has even shown the analogue of the DPRM-
Theorem: listible subsets are diophantine (Demeyer [2007]).

Generalizing earlier results (Cherlin [1984], Duret [1986] and Pheidas [2004]), it is
shown in Eisenträger and Shlapentokh [2009], that the full first-order theory of any func-
tion field of characteristic > 2 is undecidable.

For analogues of Hilbert’s 10th Problem for fields of meromorphic or analytic functions
cf., e.g., Rubel [1995], Vidaux [2003] and Pasten [2013].
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4 Two infinite extensions of Qp

Let us recall that the field Qp is axiomatized as a valued field (K; v) satisfying the fol-
lowing four axioms:

(1) (K; v) is henselian of mixed characteristic (0; p),

(2)’ Kv = Fp ,

(3)’ vK � Z, so vK is a Z-group,

(4)’ v(p) is minimal positive.

It is an immediate consequence of themain result of Derakhshan andMacintyre [2016] that
the field Qur

p , the maximal unramified extension of Qp (obtained from Qp by adjoining
all prime to p roots of unity), is model complete, that is, every first order definable subset
is already existentially definable. Using this, you can easily give an axiomatization of
Qur

p , namely as valued field (K; v) satisfying these axioms:

(1) (K; v) is henselian of mixed characteristic (0; p),

(2) Kv = Kv, so the residue field is algebraically closed,

(3)’ vK � Z, so vK is a Z-group,

(4)’ v(p) is minimal positive.

The next natural challenge is to find an axiomatization for Qab
p , the maximal abelian ex-

tension of Qp , which, by the local Kronecker-Weber Theorem, is obtained from Qp by
adjoining all roots of unity. The axiomatization suggested (but not yet proved to be com-
plete) in Koenigsmann [2018] is the axiomatization as valued field (K; v) satisfying these
axioms:

(1) (K; v) is henselian of mixed characteristic (0; p),

(2) Kv = Kv,

(3) vK �
1

p1 Z,

(4) q 6 j v(1 � �p) for any prime q ¤ p,

(5) K \ Q = Qab
p \ Q,

(6) v = v
p
K ,

(7) the Frobenius map x 7! xp is surjective on Ov/pOv .



74 JOCHEN KOENIGSMANN

Here 1
p1 Z is the ordered subgroup of the group of rational numbers having only p-th

powers as denominators, �p is a primitive p-th root of unity, and v
p
K is the canonical p-

henselian valuation on K, that is here the coarsest p-henselian valuation with p-closed
residue field, where p-henselian means that the valulation extends uniquely to every Ga-
lois extension of degree p. That these axioms can be expressed by (recursive sets of)
first-order formulas is not too hard to show, except for axiom (6), for which this is proved
in Jahnke and Koenigsmann [2015]. It is also not too difficult to check that all these ax-
ioms are true in Qab

p . However, it requires substantial work to prove that these axioms are
independent, that is, for each of the seven axioms one finds a valued field not satisfying this
particular axiom, but satisfying all the other axioms (this is done in Koenigsmann [2018].
The planned strategy for establishing that these axioms are complete is via showing quan-
tifier elimination in a variant of the Macintyre language for valued fields including n-th
power predicates.
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Abstract
We discuss applications of methods from proof theory, so-called proof interpreta-

tions, for the extraction of explicit bounds in convex optimization, fixed point theory,
ergodic theory and nonlinear semigroup theory.

1 Introduction: Proof Theory, Hilbert’s Program and Kreisel’s
‘Unwinding of Proofs’

Proof theory has its origin in what has been called ‘Hilbert’s program’: Since the 19th cen-
tury noneffective and nonfinitary (set-theoretic) principles became increasingly important
which raised the issue of their legitimacy. Hilbert’s approach was to establish the consis-
tency of a suitable formalization T of mathematics (first number theory and then analysis
and set theory) within some finitary reasoning Tf in: In the language of number theory
and with a minimal amount of number-theoretic tools one can express the consistency
of T (axiomatized by an effective list of axioms) as a purely universal number-theoretic
sentence (a so-called Π0

1-sentence)

ConT := 8n 2 N:P rovT (n; d0 = 1e)

which states that no n 2 N := f0; 1; 2; : : :g is the code of a T -proof of 0 = 1:

Consider now an arbitrary Π0
1-sentence (called a ‘real statement’ by Hilbert) S := 8n 2

N (t(n) = 0) ; where t is some primitive recursive function term. If S is provable in
T (using any nonfinitary ‘ideal elements’ of T ), then also Tf in + ConT proves S (see
Smorynski [1977][5.2.1]). So if ConT could be proved in Tf in; one could convert the
‘ideal’ proof of S in T into a finitistic proof of S in Tf in:

Obviously, Gödel’s second incompleteness theorem rules out that the consistency of any
MSC2010: primary 03F10; secondary 03F35, 47H10, 47H20, 47H25, 90C30.
Keywords: Proof mining, effective bounds, convex optimization, fixed points, ergodic theory, nonlinear
semigroups.
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T � Tf in can be established inside of Tf in: Nevertheless, Hilbert’s program gave rise
to many ‘relative consistency proofs’ where the consistency of T is reduced to that of an
in some sense more elementary theory T 0: ‘More elementary’ often is related to being
‘quantifier-free’: e.g. Gentzen’s proof-theoretic analysis of first-order number theory PA
(Gentzen [1936]) reduces logically complex instances of ordinary induction to quantifier-
free instances of transfinite induction (along ordinals ˛ < "0) and Gödel’s consistency
proof for PA (Gödel [1958]) reduces PA to a quantifier-free calculus of so-called primi-
tive recursive functionals of finite type (considered already by Hilbert himself in Hilbert
[1926]).
In the early 50’s, Georg Kreisel suggested to re-orient proof theory by applying proof-
theoretic methods - which in some way eliminate quantifiers in terms of quantifier-free
constructions - to proofs of theorems which are not purely universal (as consistency state-
ments) but e.g. of the form

(�) 8n 2 N 9m 2 N Aqf (n;m) (Aqf quantifier-free):

Kreisel noted that the respective consistency proofs for PA due to Gentzen (see Kreisel
[1951, 1952]) and Gödel resp. (see Kreisel [1959] (3.4)) actually characterize the class of
subrecursive functions f needed to realize (�) in the form

8n 2 N Aqf (n; f (n))

for theorems (�) which are provable in PA, namely as the class of ˛ < "0-recursive
functions (in the case of Gentzen’s proof) and - equivalently - as the class of functions
definable in the aforementioned calculus of primitive recursive functionals (in the case of
Gödel’s proof Gödel [1941, 1958]), see also Parsons [1972].
While such results concern (the provability of89-sentences in) formal systems such as PA
rather than individual proofs, Kreisel already in Kreisel [1952] also launched the program
of analyzing specific prima facie nonconstructive proofs with the aim of extracting new
(e.g. effective) information on the theorem proven:

Input: A (prima facie) noneffective proof P of a conclusion C:

Goal: Additional information on C such as:

• effective bounds,

• algorithms,

• continuous dependency or full independence from certain parameters,

• generalizations of proofs: weakening of premises.
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Kreisel’s examples and suggestions for applications mainly concerned proofs in number
theory. E.g. in Kreisel [1982], Kreisel suggested to analyze finiteness statements such
as Roth’s theorem in diophantine approximation with the aim of extracting bounds on the
number of solutions. In Luckhardt [1989], Luckhardt extracted the first polynomial such
bound for Roth’s theorem from a proof due to Esnault and Viehweg (independently, this
result was also obtained in Bombieri and van der Poorten [1988]). Since the 90’s, the pro-
gram has been developedmost systematically andwith specially designed so-called logical
metatheorems (see the next section) in the context of nonlinear analysis (‘proof mining’).
Also while Kreisel’s unwindings were based on techniques related to cut-elimination (Her-
brand theory, "-substitution etc.) the applications to analysis are all based on functional
interpretations which have their origin in Gödel’s ‘Dialectica’ interpretation on which
Gödel’s aforementioned consistency proof is based.

2 Logical metatheorems for bound extractions

In order to establish general theorems on the extractability of effective uniform bounds
from given proofs one has to set up an appropriate formal deductive context. As the
bound extraction methods are based on modern (‘monotone’) extensions and variants (see
Kohlenbach [2008a]) of Gödel’s functional interpretation (Gödel [1941, 1958]) one uses
formal systems formulated in the language of functionals in all finite types such as appro-
priate forms of Peano arithmetic in all finite types PA! : In such systems one already can
represent complete separable metric (‘Polish’) spaces (X; d ) as continuous images of the
Baire space NN : However, this requires the separability of the space X and for separa-
ble spaces one can show that the independence of the extracted bounds from parameters
in subspaces of X in general can only be expected if these subspaces are compact (see
Kohlenbach [2008a] for discussions of this point). Many theorems in nonlinear analysis,
however, involve - in addition to concrete Polish spaces such as R - general classes of ab-
stract spaces X (e.g. general Hilbert spaces) which are not required to be separable and
one can extract bounds that are independent from parameters in X (and even functions
T : X ! X ) if general metric bounds (‘majorants’) are given.
Many abstract types of metric structures can be added as atoms to our formal systems.
E.g. this applies to metric, W-hyperbolic (see below), CAT(0), CAT(1), ı-hyperbolic,
normed, uniformly convex, Hilbert, abstract Lp , abstract C (K) spaces and R-trees, and,
in fact, all normed structures that are axiomatizable in so-called positive bounded logic
(see Günzel and Kohlenbach [2016]). In order to be able to speak about such spaces one
adds a new base type X to the formal system and forms all finite types over N; X (see
Kohlenbach [2005b]; one may also have several such types: see Kohlenbach [2008a], sec-
tion 17.6). One also adds constants for the metric dX or normed space operators with
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appropriate axioms that characterize the class of structures in question.
Condition: the defining axioms must have a monotone functional interpretation (possibly
with the addition of appropriate moduli, see Kohlenbach [2008a]).
Counterexamples (to the extractability of uniform bounds) exist for the classes of strictly
convex or separable spaces which get upgraded by the monotone functional interpretation
to uniformly convex resp. boundedly compact spaces.

Formal systems for analysis with abstract spaces X
Types: (i) N; X are types, (ii) with �; � also � ! � is a type.
Functionals of type � ! � map type-� objects to type-� objects.
PA!;X is the extension of PA to all types, A!;X :=PA!;X+DC, where

DC: axiom schema of dependent choice for all types;

which implies the axiom schema of countable choice and so, applied to the law-of-excluded
middle, full comprehension for numbers

CA: 9f N!N
8nN (f (n) = 0 $ A(n);

where A(n) may contain quantifiers (and parameters) of arbitrary types.

A! [X; d; : : :] results by adding constants dX ; : : :with axioms expressing that (X; d; : : :) is
a nonempty metric, hyperbolic…space (we deviate here from the notation used in Kohlen-
bach [ibid.] where this theory is denoted by A! [X; d; : : :]�b; and A! [X; d; : : :] denotes
the theory with an axiom stating the boundedness of (X; d ) by some constant b being
added).
A warning concerning equality: our formal theories only have a quantifier-free rule of
extensionality (with Aqf being a quantifier-free formula)

Aqf ! s =� t

Aqf ! r [s/x] =� r [t/x]
;

where only x =N y is a primitive predicate but for X and � ! � one defines

xX =X yX :� dX (x; y) =R 0R; x =�!� y :� 8v�(x(v) =� y(v)):

This is crucial as the uniform quantitative rendering of the extensionality axiom x =X

y ! T x =X Ty for T of type X ! X implies the uniform continuity of T (on
bounded subsets) and we want (in contrast to the setting of current continuous model the-
ory; see, however, the recent Cho [2016]) also to be able to treat discontinuous situations
(see Kohlenbach [2008a] for extensive discussions of this point).
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Extension of majorizability to the new types: A crucial notion used is an extension of
Howard’s (Howard [1973]) concept of majorizability to the new types, where we ‘bound’
an element in a metric space by the distance it has from a fixed reference point a 2 X

(where a = 0X in the normed case): let y; x be functionals be of types �;b� := �[N/X ]

and aX of type X :

xN &a
N yN :� x � y; xN &a

X yX :� x � d (y; a):

For complex types � ! � this is extended in a hereditary fashion.
Example: for monotone T � one defines

T � &a
X!X T � 8n 2 N; x 2 X [n � d (a; x) ! T �(n) � d (a; T (x))]

(see Gerhardy and Kohlenbach [2008] and Kohlenbach [2008a]).
T : X ! X is nonexpansive (n.e.) if d (T (x); T (y)) � d (x; y).
Then �n:n+ b &a

X!X T; if d (a; T (a)) � b:

Proof mining exhibits the finitary combinatorial kernel of a proof and as a consequence
of this it often is easy to generalize things from a normed linear setting to some geodesic
setting. In fact, the approach has been particularly useful in the context of hyperbolic
spaces which is a variant of notions considered by Takahashi [1970], Goebel and Kirk
[1983] and Kirk [1981/82] and Reich and Shafrir [1990] (see Kohlenbach [2005b] for the
precise relationship):

Definition 2.1 (Kohlenbach [ibid.]). A (W -)hyperbolic space is a triple (X; d;W ) where
(X; d ) is a metric space and W : X � X � [0; 1] ! X s.t. for all x; y; z 2 W and
�; �̃ 2 [0; 1]

(i) d (z;W (x; y; �)) � (1 � �)d (z; x) + �d (z; y);

(ii) d (W (x; y; �);W (x; y; �̃)) = j� � �̃j � d (x; y);

(iii) W (x; y; �) = W (y; x; 1 � �);

(iv) d (W (x; z; �);W (y;w; �)) � (1 � �)d (x; y) + �d (z; w):

CAT(0)-spaces (Gromov) are hyperbolic spaces (X; d;W )which satisfy the CN-inequality
of Bruhat-Tits (determining W uniquely): for all x; y0; y1; y2 2 X�

d (y0; y1) =
1
2
d (y1; y2) = d (y0; y2) !

d (x; y0)
2 �

1
2
d (x; y1)

2 + 1
2
d (x; y2)

2 �
1
4
d (y1; y2)

2:

Small types (over N; X ) include: N; N ! N; X; N ! X; X ! X:
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Theorem 2.2 (Gerhardy and Kohlenbach [2008] and Kohlenbach [2008a]). Let P;K be
Polish resp. compact metric spaces (definable in A!), A9

1 be an 9-formula and � be a
tuple of small types.
If A! [X; d;W ] proves

8x 2 P 8y 2 K 8z�
9vN A9(x; y; z; v);

then one can extract a computable Φ : NN � N(N)
! N s.t. the following holds in every

nonempty hyperbolic space: for all representatives rx 2 NN of x 2 P and all z� and
z� 2 N(N) s.t. 9a 2 X(z� &a

� z):

8y 2 K 9v � Φ(rx ; z
�)A9(x; y; z; v):

For the case of bounded hyperbolic spaces, see Kohlenbach [2005b].

As a special case of the above metatheorem one has:

Corollary 2.3 (Gerhardy andKohlenbach [2008] andKohlenbach [2008a]). IfA! [X; d;W ]

proves
8x 2 P 8y 2 K 8z 2 X 8T : X ! X

�
T n.e. ! 9v 2 N A9

�
;

then one can extract a computable Φ : NN � N ! N s.t. for all x 2 P; b 2 N

8y 2 K 8z 2 X 8T : X ! X
�
T n.e. ^ dX (z; T (z)) � b ! 9v � Φ(rx ; b)A9

�
holds in all nonempty hyperbolic spaces (X; d;W ).

Similar results hold for the other classes of metric and normed structures listed above. In
the normed case, one additionally needs kzk � b as an assumption in the conclusion of
the corollary.

Remark 2.4. Usually, proofs in ordinary mathematics only require a small fragment of
A! [X; d; : : :] with e.g. the binary (‘weak’) König’s lemma WKL instead of DC and Σ0

1-
induction only, which guarantees the extractability of primitive recursive (in the sense
of Kleene) bounds. WKL is equivalent to a sentence of the form 8f N!N 9b �N!N

18xN Aqf (f; b; x) and can be added to the system via a Skolem constant B with the
purely universal axiom 8f; x(Bf � 1^Aqf (f;Bf; x)) which is satisfiable in the full set-
theoretic model and B is trivially majorized by the constant-1 functional in the extracted
bound (see Kohlenbach [2008a]).

1There are some mild restrictions on the types of the quantified variables in A9:
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3 General types of applications

3.1 Asymptotic regularity theorems. Consider ametric space (X; d ) and a continuous
function F : X ! R: Many problems can be stated in the form of finding a zero z 2 X

of F: Such problems are often algorithmically approached by setting up some iterative
procedure resulting in a sequence (xn) in X which converges to a zero z of F :

(�) F ( lim
n!1

xn) = F (z) = 0:

In this case one, in particular, has that

(��) F (xn) ! 0:

Quite often, (��) holds under much more general conditions than those needed to ensure
the convergence of (xn) itself. In the case of fixed point problems for mappings T : X !

X; i.e. the case where F (x) := d (x; T x); results of the form (��) are usually referred to
as asymptotic regularity statements where this term was originally introduced by Browder
and Petryshyn [1966] to refer to the property of T that the sequence xn := T nx of Picard
iterates satisfies d (xn; T xn) ! 0: In many cases (see below) (d (xn; T xn))n2N for some
iterative process not only converges to 0 but does so in a nonincreasing way. In this
situation the asymptotic regularity statement can be equivalently written in the form

8k 2 N 9n 2 N (d (xn; T xn) < 2�k) 2 89

and any upper boundΦ(k) on ‘9n’ provides a rate of convergence. Thismeans that one can
apply the logical metatheorems mentioned in the previous section to extract effective and
highly uniform rates of asymptotic regularity even from prima facie noneffective proofs
of asymptotic regularity. In fact, this has been achieved in many instances in the context
of nonlinear analysis (see some of the applications below and Kohlenbach [2008b, 2017]
for general surveys).

3.2 Strong convergence theorems. Suppose that the theorem to be studied is not about
an asymptotic regularity result but about the convergence of the sequence (xn) itself, e.g.
towards a zero of F or a fixed point of T: Already the Cauchy property of (xn)

(+) 8k 2 N 9n 2 N 8i; j � n (d (xi ; xj ) � 2�k) 2 898

has too complicated a logical form to directly apply the logical metatheorems on uniform
bound extractions and, in fact, there are already simple cases of computable monotone se-
quences of rational numbers in [0; 1] which do not have a computable rate of convergence
(Specker [1949]).
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Roughly speaking, one can distinguish the following situations:
1) The proof of the Cauchy property of (xn) (or of the convergence of (xn) to some known
element x 2 X ) uses - on top of constructive (‘intuitionistic’) reasoning - at most the law-
of-excluded-middle schema LEM for negated formulas

LEM: : :A _ ::A

which, in particular covers the case where A is 9-free (e.g. A 2 Π0
1) as such formulas are

equivalent to their double negation (using the stability of the prime formulas in our formal
systems).
Alternatively (but not combined), one may use the so-called Markov principle

M : ::9n 2 N Aqf (n) ! 9n 2 N Aqf (n) (Aqf quantifier-free with parameters)

together with the following weak form of LEM (weaker than LEM for Π0
1-formulas):

LLPO : :(9n 2 N Aqf (n)^9n 2 N Bqf (n)) ! 8n 2 N :Aqf (n)_8n 2 N :Bqf (n);

where Aqf ; Bqf are quantifier-free formulas. In both scenarios one can set up logical
bound extraction metatheorems, where instead of the purely existential formula A9 one
may now have an arbitrary formula (see Kohlenbach [2008a]). Since (+) is monotone
w.r.t. ‘9n 2 N’ any upper bound on n � Φ(k) in fact is a Cauchy rate for (xn) and so one
can in these cases extract effective rates of convergence.
2) If the proof of the Cauchy property of (xn) uses LEM for Σ0

1-formulas (purely existen-
tial formulas for natural numbers) as in the case of the Specker sequences from Specker
[1949], then one often has the following dichotomy: either one can show that (xn) con-
verges to the unique zero of F or fixed point of T; or one can use the non-uniqueness of
the solution to construct an instance of the Cauchy statement in question which provably
does not allow for an effective Cauchy rate.
(i) Unique existence: in many cases one can obtain effective rates of convergence (and in
fact also with a constructive verification of this fact) for (xn) if (xn) converges towards a
unique zero of F resp. fixed point of T : consider a function F : X ! R on some metric
space (X; d ) which has exactly one zero z: The uniqueness part

(a) 8x; y 2 X (F (x) = 0 = F (y) ! x = y)

can be written equivalently as

(b) 8x; y 2 X 8k 2 N 9n 2 N (jF (x)j; jF (y)j � 2�n
! d (x; y) < 2�k) 2 89:

Then logical metatheorems can be applied to extract from a proof of (a) an effective uni-
form bound Φ(k) on ‘9n 2 N’ in (b); which we called in Kohlenbach [1993] a ‘modulus
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of uniqueness’, where Φ(k) depends on x; y only via general majorizing data and, in par-
ticular, is independent of x; y if X is bounded (in the case where X can be treated as an
abstract space and, otherwise, if X is compact). Suppose now that we can construct some
(bounded) sequence (xn) of approximate zeros, i.e.

(c) 8k 2 N 9n 2 N(jF (xn)j < 2�k) 2 89

from which we then can extract (using again a logical metatheorem) an effective bound
Ψ(k) on ‘9n 2 N’ in (c), then for �(k) := Ψ(Φ(k)) we have

8k 2 N 9n � �(k) (d (xn; z) < 2�k)

and, if we even have that (jF (xn)j)n is nonincreasing, it follows that � is a rate of conver-
gence for lim xn = z: In Briseid [2009], it is shown that for Picard iterations xn = T nx

for suitable classes of mappings T the aforementioned logical metatheorems can be used
to obtain such rates of convergence even when (jF (xn)j)n (for F (x) := d (x; T x)) is not
nonincreasing which explains the explicit construction of effective rates of convergence
for the classes of asymptotic contractions in the sense of Kirk and of uniformly general-
ized p-contractive mappings given by Briseid (see Briseid [ibid.] and the literature cited
there).

(ii) Non-unique existence: when F or T possess many zeros resp. fixed points, one usu-
ally can construct computable instances of iterative procedures (xn) (converging to some
zero or fixed point) that do not have a computable rate of convergence. In fact, Neumann
[2015] shows that this is the case for the usual iterative schemes used in metric fixed point
theory, ergodic theory and convex optimization which even for (firmly) nonexpansive
selfmappings T : [0; 1] ! [0; 1] fail to have a computable rate of convergence for simple
computable such mappings T: One then has to weaken the goal to what has been called an
effective rate of metastability: Noneffectively, (+) is equivalent to

(++) 8k 2 N 8g 2 NN
9n 2 N 8i; j 2 [n; n+ g(n)] (d (xi ; xj ) < 2�k) 2 89;

the so-called Herbrand normal of (+); and a bound Φ(k; g) on ‘9n’ is a bound for the
Kreisel ‘no-counterexample interpretation’ (Kreisel [1951, 1952]) of the Cauchy property.
Since Tao [2008b] calls an interval [n; n + g(n)] with the property in (++) an interval
of ‘metastability’, we call bounds Φ(k; g) on ‘9n’ in (++) rates of metastability. If one
additionally knows that (xn) is converging to a zero of F or a fixed point of T with
some rate of metastability then one can actually combine both rates into a common one
(formulated here for the case of fixed points), i.e. a bound Φ(k; g) such that for all k 2 N
and g : N ! N

(+ + +) 9n � Φ(k; g)8i; j 2 [n; n+ g(n)] (d (xi ; xj ); d (xi ; T xi ) � 2�k):



88 ULRICH KOHLENBACH

If one has a rate of convergence for d (xn; T xn) ! 0; one can even achieve that

9n � Φ(k; g)8i; j 2 [n; n+ g(n)]8l � n (d (xi ; xj ); d (xl ; T xl) � 2�k)

(see e.g. Kohlenbach, Leuştean, and Nicolae [2018] and Kohlenbach [2016], Rem.2.11).
The extraction of explicit bounds Φ on the metastable form of Cauchy or convergence
statements is of interest for the following reasons:
a) Disregarding bounded quantifiers, the statement (+++) is purely universal (‘real’) and
captures all the mathematical content of the theorem limxn = x = T x : by a fixed piece
of proof it implies back the original convergence theorem: forgetting the bound Φ gives
the Herbrand normal form which by recursive comprehension (more precisely QF-AC0;0

in the terminology of Kohlenbach [2008a]) and LEM implies the Cauchy property and
so by arithmetical comprehension (more precisely Π0

1-AC0;0 in our formal context, see
Kohlenbach [ibid.]) the convergence of (xn): Applying (+ + +) to the constant function
g(n) := K 2 N shows the existence of i � K with d (xi ; T xi ) < 2�k which - together
with the continuity of T - gives T x = x for x := lim xn:

b) The proof-theoretic extraction of a rate of metastability from a convergence proof ex-
hibits the finitary combinatorial content of that proof which may lead to generalizations
of the resulting metastable statement and so - when unpacked into the full convergence
statement (see above) - to generalized convergence theorems.
c) The concrete bounds extracted are of numerically interest: often they provide explicit
information on the algorithmic learnability of a rate of convergence which - if a gap con-
dition is satisfied - yields oscillation bounds (Avigad and Rute [2015] and Kohlenbach
and Safarik [2014] and Section 5 below).
d) In many cases, asymptotic regularity is just the special case of metastability where
g(n) := 1; e.g. for Picard iterates of nonexpansive functions T:
Some history:

• 2004, first rate of metastability (for the asymptotic regularity of asymptotically non-
expansive mappings) extracted (Kohlenbach and Lambov [2004]).

• 2005, rate of metastability for Krasnoselski-Mann iterations of nonexpansive self-
mappings T : X ! X of compact hyperbolic spaces X (Kohlenbach [2005a]).

• 2007, Tao [2008b] introduced the term ‘metastability’ in connection with the von
Neumann Mean Ergodic Theorem (MET).

• 2007, independently from Tao, the first rate of asymptotic regularity for MET was
extracted in Avigad, Gerhardy, and Towsner [2010].
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• 2008, Kohlenbach and Leuştean [2009] generalized this with a better bound to uni-
formly convex Banach spaces which, subsequently, led to oscillation bounds by
Avigad and Rute [2015] (see below).

• Since then, many papers extracting explicit rates of metastability have appeared,
including Avigad and Rute [2015], Kohlenbach [2011, 2012, 2016], Kohlenbach
and Koutsoukou-Argyraki [2015], Kohlenbach and Leuştean [2009, 2012, 2014],
Kohlenbach, Leuştean, and Nicolae [2018], Kohlenbach, López-Acedo, and Nico-
lae [2017b], Körnlein [2016], Leuştean and Nicolae [2016], Safarik [2012], and
Sipoş [2017a].

We like to emphasize that sometimes in analyzing convergence proofs one uses a combina-
tion of the approach used in the semi-constructive context discussed further above (applied
to those parts of the proof that do not require Σ0

1-LEM) and the approach to proofs based
on full classical logic (applied to the more noneffective parts of the proof). E.g. Leuştean
[2014] and Sipoş [2017b] provide interesting instances of such a hybrid approach.
In very special, but important, cases for applications one can extract rates of convergence
for iterative procedures towards some non-unique zero of F or fixed point of T; namely
when one has an effective so-called modulus of regularity which is closely related to the
concepts of weak sharp minima and metric regularity used in convex optimization (see
Kohlenbach, López-Acedo, and Nicolae [2017a]).

3.3 Inclusions between sets of solutions. Consider functions F;G : X ! R on a
metric space (X; d ) such that every zero of F is also one of G :

8x 2 X (F (x) = 0 ! G(x) = 0)

which can be re-written in 89-form as

8x 2 X 8k 2 N 9n 2 N

2Σ0
1‚ …„ ƒ

(jF (x)j � 2�n
! jG(x)j < 2�k)

so that logical metatheorems can be applied to extract effective uniform bounds (which
due to monotonicity are in fact realizers) for ‘9n’, i.e.

8k 2 N (jF (x)j � 2�Φ(x�;k)
! jG(x)j < 2�k);

where x� are appropriate majorizing data for x:
For concrete instances of such applications see sections 4 and 6 below.
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3.4 Extraction of effective moduli. The first applications of the proof mining method-
ology in analysis concerned the extraction of explicit moduli of uniqueness in the afore-
mentioned sense (as well as so-called constants of strong unicity) in Chebycheff approxi-
mation by us in 1990-1993 which in 2003 - together with Paulo Oliva - was also carried
out for best L1-approximation (see Kohlenbach [2008a] for an extensive coverage of this
and the references given there). However, many more concepts of quantitative ‘moduli’
exist in mathematics or have been introduced as quantitative proof-theoretic versions of
qualitative concepts in analysis. Proof mining has been used to explicitly transform mod-
uli for one situation into moduli for another one. This e.g. is used essentially in Bačák
and Kohlenbach [2018] and Kohlenbach, López-Acedo, and Nicolae [2017a].
In the rest of the paper we give a few typical examples of explicit bounds which have
been obtained by the proof-theoretic machinery discussed so far. For more comprehen-
sive surveys, see Kohlenbach [2008b] for results up to 2008 and Kohlenbach [2017] for
applications since 2008.

4 Proof Mining in Convex Analysis

A polynomial rate of asymptotic regularity in Bauschke’s solution of the ‘zero dis-
placement conjecture’
Consider a real Hilbert spaceH and nonempty closed and convex subsets C1; : : : ; CN �

H with metric projections PCi
, define T := PCN

ı : : : ıPC1
. In 2003, Bauschke proved

the ‘zero displacement conjecture’ (Bauschke [2003]) which was first stated in Bauschke,
Borwein, and Lewis [1997]:

kT n+1x � T nxk ! 0 (x 2 H ):

Previously, this was only known for N = 2 or F ix(T ) 6= ¿ (or even
TN

i=1 Ci 6= ¿) or
Ci half spaces etc.
The proof uses the Bruck and Reich [1977] theory of firmly and strongly nonexpansive
mappings and the abstract theory ofmaximalmonotone operators: Minty’s theorem, Brézis-
Haraux theorem, Rockafellar’s maximal monotonicity and sum theorems, conjugate func-
tions, normal cone operator.
The sequence (kT n+1x�T nxk)n2N is nonincreasing and hence the conclusion in Bauschke’s
theorem is of the form 89. Logical metatheorems as discussed above, therefore, guaran-
tee (modulo the formalizability of the proof in the resp. formal system which, however,
does not need to be checked if one explicitly has carried out the extraction) the extractabil-
ity of an effective uniform rate of asymptotic regularity which only depends on the er-
ror " > 0; N 2 N and majorants for x 2 H and PC1

; : : : ; PCN
; i.e. b � kxk and
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K � kc1k; : : : ; kcN k for some points c1 2 C1; : : : ; cN 2 CN since

n � kyk ! n+K � kPCi
y � PCi

0k + kPCi
0k � kPCi

yk:

So one gets a computable Φ(";N; b;K) s.t. for b � kxk

8" > 08n � Φ(";N; b;K) (kT n+1x � T nxk < "):

Strongly nonexpansive mappings

Definition 4.1 (Kohlenbach [2016]). Let S � X be a nonempty subset of a normed space
X: T : S ! X is strongly nonexpansive with SNE-modulus ! : R�

+ � R�
+ ! R�

+ if

8d; " > 08x; y 2 S (kx � yk � d ^ kx � yk � kT x � Tyk < !(d; ")

! k(x � y) � (T x � Ty)k < "):

Remark: T is strongly nonexpansive in the sense of Bruck and Reich [1977] iff it pos-
sesses an SNE-modulus.
Recall that in Hilbert spacesH = X , a function T : S ! H is called firmly nonexpansive
if

8x; y 2 S (kT x � Tyk
2

� hx � y; T x � Tyi)

and metric projections onto closed convex subsets ofH are firmly nonexpansive.
The next two results have been obtained by a proof-theoretic analysis of Bruck and Reich
[ibid.]:

Lemma 4.2 (Kohlenbach [2016]). LetH be a real Hilbert space and T = TN ı : : : ı T1
with firmly nonexpansive T1; : : : ; TN : H ! H . Then T is SNE with modulus

!T (d; ") :=
1

16d

� "
N

�2

:

A rate of asymptotic regularity for SNE-mappings

Theorem 4.3 (Kohlenbach [2018]). Let T : S ! S be SNE with modulus ! s.t. inffkx�

T xk : x 2 Sg = 0 and let ˛ : R�
+ ! R�

+ be such that

8" > 0 9y 2 S (kyk � ˛(") ^ ky � Tyk � ") :

Then for x 2 S; xn := T nx andD > 0 such that kx � T xk � D one has

8" > 08n �  ("; b;D; ˛; !) (kxn+1 � xnk < ") ; where

 ("; b;D; ˛; !) :=

�
18b + 12˛("/6)

"
� 1

� ��
D

!(D; "̃)

��
; "̃ :=

"2

27b + 18˛("/6)
:
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The proof-theoretic analysis of the operator-theoretic part of Bauschke’s proof gives:

Theorem 4.4 (Kohlenbach [2018]). Let H be real Hilbert space, C1; : : : ; CN � H

nonempty closed and convex subsets, PCi
metric projections onto Ci for i = 1; : : : ; N .

Let c = (c1; : : : ; cN ) 2 C1 � : : : � CN be arbitrary and K � kck =

qPN
i=1 kci k

2. Let
T := PCN

ı : : : ı PC1
. Then for every " 2 (0; 1) there exists a point y 2 CN with

kyk � ˛(") and kTy � yk � "; where

˛(") :=
(K2 +N 3(N � 1)2K2)N 2

"
:

Corollary 4.5 (Kohlenbach [ibid.]).

Φ(";N; b;K) :=

�
18b + 12˛("/6))

"
� 1

� ��
D

!(D; "̃)

��
is a rate of asymptotic regularity in Bauschke’s result, where

"̃ :=
"2

27b + 18˛("/6)
; D := 2b +NK; !(D; "̃) :=

1

16D
("̃/N )2:

˛(") :=
(K2 +N 3(N � 1)2K2)N 2

"
:

The case where F ix(T ) 6= ¿ is much simpler:

Theorem 4.6 (Kohlenbach [2016]). Let C � H be any nonempty subset of a real Hilbert
space H , T1; : : : ; TN : C ! C be firmly nonexpansive. Let T := TN ı : : : ı T1 possess
a fixed point p 2 C and, for x 2 C , let b � kx � pk; b > 0: Then for xn := T nx:

8" > 08n � db/!T (b; ")e (kxn+1 � xnk < "); where

!T (b; ") :=
1

16b
("/N )2:

Convex feasibility problems
If in Theorem 4.6 the fixed point sets F ix(T1); : : : ; F ix(TN ) have a nonempty inter-
section, then any fixed point of T in fact is a common fixed point of T1; : : : ; TN : This
even holds for arbitrary strongly nonexpansive mappings T1; : : : ; TN in arbitrary Banach
spaces X: In Kohlenbach [ibid.], an explicit bound �(b; ") (in terms of SNE-moduli for
T1; : : : ; TN ) is extracted from the classical proof of this fact such that for x; p 2 C; p a
common fixed point of T1; : : : ; TN and b � kx � pk

8" > 0 (kTNTN �1 : : : T1x � xk < �(b; ") !

N̂

i=1

(kTix � xk < ")):
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Combined with a rate of asymptotic regularity for T = TN ı : : : ı T1 (which even in
this generality is provided in Kohlenbach [ibid.]) this quantitatively solves the problem of
constructing a common approximate fixed point of T1; : : : ; TN :

All this largely holds even in general metric spaces and for strongly quasi-nonexpansive
mappings in the sense of Bruck [1982]. Metric projections in so-called CAT(�)-spaces
X (in the sense of Gromov) with � > 0 are strongly quasi-nonexpansive and one can
construct an explicit modulus for this property which then makes it possible to quantita-
tively solve the problem to construct a point in the intersection of ("-neighbourhoods of)
finitely many overlapping closed convex subsets of X (i.e. the so-called convex feasibil-
ity problem for CAT(�)-spaces). In the case where X is compact one obtains a rate of
metastability for the strong convergence of the iterative use of the composition of the cor-
responding projections towards a point in the intersection of these sets (see Kohlenbach
[2016]).
Other quantitative results in convex optimization have been obtained in

• Ariza-Ruiz, López-Acedo, and Nicolae [2015] and Kohlenbach, López-Acedo, and
Nicolae [2017b]: rates of asymptotic regularity and - for compact X - metastability
for iterations of compositions of two resolvents in CAT(0)-spaces.

• Kohlenbach, Leuştean, and Nicolae [2018], Kohlenbach, López-Acedo, and Nico-
lae [2017a], and Sipoş [2017a] rates of asymptotic regularity, strong convergence
(in special cases) resp. metastability for the proximal point algorithm.

• Körnlein [2016] explicit such rates for Yamada’s hybrid steepest descent method.

5 Proof Mining in Ergodic Theory

Let H be a real Hilbert space, T : H ! H be linear and kT (x)k � kxk for all x 2 H:

Consider the Cesàro mean of the iterates of T :

An(x) :=
1

n
Sn(x); where Sn(x) :=

n�1X
i=0

T i (x) (n � 1):

The von Neumann Mean Ergodic Theorem in the formulation of Riesz states:

Theorem 5.1 (von Neumann Mean Ergodic Theorem). For every x 2 H; the sequence
(An(x))n strongly converges.

In Avigad, Gerhardy, and Towsner [2010], it is shown that in general there is no com-
putable rate of convergence, but a primitive recursive rate of metastability is extracted
using the proof-theoretic methods discussed above. Tao [2008a] also established (without
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bound) a uniform metastable version of the Mean Ergodic Theorem in Hilbert space and
used that uniformity as a base step for a generalization to commuting families of operators.
On the connection to the proof-theoretic approach he comments:
‘We shall establish Theorem 1.6 by “finitary ergodic theory” techniques, reminiscent of
those used in [Green-Tao]...’ ‘The main advantage of working in the finitary setting ... is
that the underlying dynamical system becomes extremely explicit’...‘In proof theory, this
finitisation is known as Gödel functional interpretation...which is also closely related to
the Kreisel no-counterexample interpretation’ (T. Tao [2008a]).
In 1939, Garrett Birkhoff proved:

Theorem5.2 (Birkhoff [1939]). TheMean Ergodic Theorem holds for arbitrary uniformly
convex Banach spaces.

Remark 5.3. In the same year as Birkhoff [ibid.], Lorch [1939] showed that the mean
ergodic theorem even holds in all reflexive spaces. However, the class of reflexive spaces
does not have enough uniformity to allow for a logical metatheorem on uniform bound
extractions and, in fact, in Avigad and Rute [2015] it is shown that a uniform rate of
metastability has to depend on the modulus of uniform convexity.

SinceBirkhoff’s proof formalizes in the deductive framework of uniformly convex normed
spaces (with modulus �) A! [X; k � k; �] (see Kohlenbach [2008a] for the definition of this
system) the following is guaranteed a-priorily:

Let X be a uniformly convex Banach space with modulus � and T : X ! X nonexpan-
sive linear operator. Let b > 0. Then there is an effective functional Φ in "; g; b; � s.t. for
all x 2 X with kxk � b, all " > 0; all g : N ! N :

9n � Φ("; g; b; �)8i; j 2 [n; n+ g(n)]
�
kAi (x) � Aj (x)k < "

�
:

Note that T � := id majorizes T:
Based on the logical metatheorem above (for uniformly convex normed spaces) the fol-
lowing rate of metastability was extracted from Birkhoff’s proof:

Theorem 5.4 (Kohlenbach and Leuştean [2009]). Let X be a uniformly convex Banach
space, � a modulus of uniform convexity, T : X ! X be as above and b > 0. Then for
all x 2 X with kxk � b, all " > 0 and all g : N ! N :

9n � Φ("; g; b; �)8i; j 2 [n; n+ g(n)]
�
kAi (x) � Aj (x)k < "

�
; where

Φ("; g; b; �) :=M � h̃(K)(1); withM :=
l
16b

"

m
; 
 := "

16
�

�
"
8b

�
; K :=

l
b



m
;

h; h̃ : N ! N; h(n) := 2(Mn+ g(Mn)); h̃(n) := maxi�n h(i):
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If �(") = " � �̃(") with increasing �̃; then we can replace ‘�’ by ‘�̃’ and ‘16’ by ‘8’. In
particular, for X = Lp with 1 < p < 1; we may take �̃(") = "p�1/(p2p):

Bounding the number of fluctuations: We say that (xn) admits k "-fluctuations if there
are i1 � j1 � : : : ik � jk s.t. kxjn

� xink � " for n = 1; : : : ; k:

Using the analysis of Birkhoff’s proof in Kohlenbach and Leuştean [ibid.], Avigad and
Rute subsequently improved the rate of metastability to a bound on the number of "-
fluctuations:

Theorem 5.5 (Avigad and Rute [2015]). (An(x)) admits at most�
4 log(M ) �

b

"

�
+

�
b




�
�

�
(4 log(2M ) �

b

"

�
+

�
b




�
many "-fluctuations with b;M; 
 as in Theorem 5.4.

In the Hilbert space case, fluctuation bounds had already been obtained in Jones, Ostro-
vskii, and Rosenblatt [1996].
If the linearity of the nonexpansive operator T is dropped, then the convergence of (xn)

holds weakly (but in general not strongly, see Genel and Lindenstrauss [1975]) by Bail-
lon’s nonlinear ergodic theorem:

Theorem 5.6 (Baillon [1975]). Let H be a real Hilbert space, C � H bounded closed
and convex and T : C ! C be nonexpansive. Then for every x0 2 C; the sequence of
Cesàro means (xn) converges weakly to a fixed point of T:

A rate of metastability for the weak Cauchy property is extracted in Kohlenbach [2012].
If one either changes the Cesàro means slightly (or adds some weak form of linearity,
see below) one can achieve strong convergence. Consider the so-called Halpern iteration
Halpern [1967]: Let T : C ! C be nonexpansive, x1 2 C; ˛n 2 [0; 1]

xn+1 := ˛n x1 + (1 � ˛n)T (xn) (n � 1):

In contrast to other iterative schemes such as Krasnoselski-Mann iterations, the Halpern
iteration often converges strongly (one reason, though, why it is less used convex opti-
mization is that it is not Fejér monotone; see Kohlenbach, Leuştean, and Nicolae [2018]
for explicit rates of metastability from strong convergence proofs based on Fejér mono-
tonicity).
Using a weak compactness argument, Wittmann proved in 1992 the following strong con-
vergence result:

Theorem 5.7 (Wittmann [1992]). Let H be a real Hilbert space, C � H closed and
convex, x0 2 C andF ix(T ) 6= ¿:Under suitable conditions on (˛n) (e.g. for˛n := 1

n+1
)

(xn) converges strongly towards the fixed point of T that is closest to x0:
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Remark 5.8. 1. Wittmann’s theorem is a nonlinear generalization of the Mean Er-
godic Theorem: for ˛n := 1/(n+ 1); C := H and linear T; the Halpern iteration
coincides with the Cesàro means.

2. Another nonlinear generalization of the Mean Ergodic Theorem has been obtained
in Baillon [1976]. Here one keeps the original Cesàro means but requires that T
(in addition to being nonexpansive) is odd (and C is symmetric). This was further
generalized in Wittmann [1990] from which an explicit rate of metastability was
extracted in Safarik [2012].

Wittmann’s result has been generalized to CAT(0)-spaces by Saejung [2010] using Ba-
nach limits. Explicit rates of metastability have been extracted in Kohlenbach [2011] (for
Hilbert spaces) with an elimination of the use of weak compactness and in Kohlenbach
and Leuştean [2012, 2014] (for CAT(0) spaces) with an elimination of the use of Banach
limits.
Moreover, one has a quadratic rate of asymptotic regularity d (xn; T (xn)) ! 0 :

8" > 08n �
4M

"
+

32M 2

"2
(d (xn; T (xn)) < ")

(SeeKohlenbach and Leuştean [2012].) In Leuştean andNicolae [2016], the proof-theoretic
analysis of Saejung’s proof has been further generalized to the highly nontrivial case of
CAT(�)-spaces for � > 0 producing an explicit rate of metastability even in this context.

6 Proof Mining in Nonlinear Semigroup Theory

Let X be a Banach space, C � X be a nonempty subset and � 2 (0; 1).
Definition: A family fT (t) : t � 0g of nonexpansive mappings T (t) : C ! C is a
nonexpansive semigroup if

(i) T (s + t) = T (s) ı T (t) (s; t � 0);

(i i) for each x 2 C , the mapping t 7! T (t)x is continuous.

Theorem 6.1 (Suzuki [2006]). Let 0 < ˛ < ˇ such that ˛/ˇ is irrational. Then any fixed
point p 2 C of

S := �T (˛) + (1 � �)T (ˇ) : C ! X

is a common fixed point of T (t) for all t � 0:

Let t 7! T (t)x be equicontinuous on norm-bounded subsets of C with modulus !, let f


be an effective irrationality measure for 
 := ˛/ˇ; Λ; N;D 2 N be s.t. 1/Λ � �; 1 � �
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and 1/N � ˇ � D. Then one can extract a bound (see Section 3.3) Φ(";M; b) :=

Φ(";M; b;N;Λ;D; f
 ; !) s.t. for allM;b 2 N; p 2 C; " > 0

kpk � b ^ kS(p) � pk � Φ(";M; b) ! 8t 2 [0;M ] (kT (t)p � pk � "):

The main noneffective tool used in Suzuki’s proof is the binary König’s lemma WKL and
by Remark 2.4 it is guaranteed to have a primitive recursive (in the sense of Kleene) bound
Φ: In fact, the bound actually extracted in Kohlenbach and Koutsoukou-Argyraki [2016]
is of rather low complexity:

Φ(2�m;M; b) =
2�m

8(
P�(k;f
 )�1

i=1 Λi + 1)(1 +MN )
; where

k := D2!D;b(3+[log2(1+MN )]+m)+1; �(k; f ) := maxf2f (i) + 6 : 0 < i � kg:

Example: ˛ =
p
2; ˇ = 2; � = 1/2: Then Λ = 2; N = 1;D = 2; f
 (p) = 4p2:

If C is convex (so that S : C ! C ) and xn+1 := 1
2
xn +

1
2
Sxn 2 C starting from x0 2 C

is a d -bounded Krasnoselski iteration sequence of S one has a quadratic rate of asymptotic
regularity Ψ("; d ) := 4d 2/(�"2) (Baillon and Bruck [1996]) and so

8n � Ψ(Φ(";M; b); d ) 8t 2 [0;M ] (kT (t)xn � xnk � "):

Nonexpansive semigroups feature prominently - via the Crandall-Liggett formula - in
the study of abstract Cauchy problems that are given by accretive set-valued operators.
Explicit rates on the asymptotic behavior of solutions have been obtained by our proof-
theoreticmethods inKohlenbach andKoutsoukou-Argyraki [2015] andKoutsoukou-Argyraki
[2017].
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Abstract

The articlemotivates recent work on saturation of ultrapowers from a generalmath-
ematical point of view.

Introduction

In the history ofmathematics the idea of the limit has had a remarkable effect on organizing
and making visible a certain kind of structure. Its effects can be seen from calculus to
extremal graph theory.

At the end of the nineteenth century, Cantor introduced infinite cardinals, which allow
for a stratification of size in a potentially much deeper way. It is often thought that these
ideas, however beautiful, are studied in modern mathematics primarily by set theorists,
and that aside from occasional independence results, the hierarchy of infinities has not
profoundly influenced, say, algebra, geometry, analysis or topology, and perhaps is not
suited to do so.

What this conventional wisdommisses is a powerful kind of reflection or transmutation
arising from the development of model theory. As the field of model theory has developed
over the last century, its methods have allowed for serious interaction with algebraic geom-
etry, number theory, and general topology. One of the unique successes of model theoretic
classification theory is precisely in allowing for a kind of distillation and focusing of the
information gleaned from the opening up of the hierarchy of infinities into definitions and
tools for studying specific mathematical structures.

By the time they are used, the form of the tools may not reflect this influence. However,
if we are interested in advancing further, it may be useful to remember it. Along this seam,
so to speak, may be precisely where we will want to re-orient our approach.
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1 The model theoretic point of view

Themodel theoretic setup is designed to allow in a specific way for placing a given infinite
mathematical structure in a class or family in which size and certain other features, such
as the appearance of limit points, may vary.

Suppose we wanted to look abstractly at the structure the reals carry when viewed as
an ordered field. We might consider R as a set decorated by the following: a directed
graph edge representing the ordering, a first directed hyperedge representing the graph of
addition, a second directed hyperedge representing the graph of multiplication, perhaps
a third for the graph of subtraction, and two constant symbols marking the additive and
multiplicative identities. Stepping back, and retaining only this data of a set of size contin-
uum along with the data of which sets of elements or tuples correspond to which constants,
edges, or hyperedges, we might try to analyze the configurations which do or do not arise
there.

Suppose we were interested in the structure the group operation gives to the discrete
Heisenberg groupH . Wemight considerH simply as an infinite set along with the data of
the multiplication table. A priori, this setup just records a countably infinite set made into
a group in the given way; it doesn’t a priori record that its elements are matrices, much
less uni-upper-triangular matrices over Z.

These examples suggest how models arise – simply as sets decorated by the data of
relations or functions we single out for study.1

The initial loss of information in such a representation will be balanced by the fact that
it allows us to place a model within a class and to study models in the class alongside each
other. From the model theoretic point of view – the following statement is a starting point
for investigation, not its conclusion – this class contains all other models which differ from
M in inessential ways.

To place our model M in its class, we consider the theory of the model, that is, the
set of all sentences of first order logic which hold in M . The elementary class of M is
the class of all other models with the same theory. We may frame our study as: of such
classes, or of theories.

Every model carries what are essentially derived relations, the boolean algebras of de-
finable sets (see the Appendix). We might say very informally that the theory of a model
takes a photograph of these boolean algebras which remembers only finitary information,

1A k-place relation on a set X is a subset of Xk . The set of first coordinates of a binary relation is called
its domain. A k-place function on a set X is a single-valued binary relation whose domain is Xk . To specify a
model, we first choose a language, which can include relation symbols, function symbols, and constant symbols.
Then a model is given by the following data: a set X , called the domain; for each relation symbol, a relation on
X of the right arity; for each function symbol, a function on X of the right arity; for each constant symbol, an
element of X .
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such as which finite intersections are and are not empty. The models which share the
theory ofM will also share this photograph.

The differences among models with the same theory come essentially from the infinite
intersections which are finitely approximated, in other words, with the filters and ultrafil-
ters on the boolean algebra of definable sets, as we now explain.

2 Limit points

To see what engenders variation within an elementary class, the following story will mo-
tivate the definition of type. (The motivation is in the telling, not an historical assertion.
Filters independently arose in other, earlier contexts in the early part of the twentieth cen-
tury.)

Writing their book on general topology in 1937, Bourbaki were discussing whether the
definition of limit could be liberated from the countable. Cartan’s suggestion was effec-
tively that working in a topological space X , one might turn the problem around and look
from the point of view of a limit point. Given a point x 2 X , the family of neighborhoods
containing x had certain very nice features – such as upward closure, closure under finite
intersection – which may be abstracted as the definition of filter.2

Definition 2.1. For I an infinite set, F � P (I ) is a filter on I when (i) A � B � I and
A 2 F implies B 2 F , (ii) A;B 2 F implies A \ B 2 F , (iii) ¿ … F .

Conversely, to any filter, one can assign a (possibly empty) set of limit points: those
elements of I which belong to all A 2 F . In defining a filter, we may restrict to any
boolean algebra B � P (I ), asking that F � B, and adding that B in item (ii) belong to
B. In the model theoretic context, this idea gives us a natural way to define limit points
for any model, not requiring a metric or a topology per se:

Definition 2.2. Informally, a partial type p over a model M is a filter on M for the
boolean algebra of M -definable subsets of M . [More correctly, it is a set of formulas
with parameters from M , whose solution sets in M form such a filter.3] It is a type if it

2I learned this story from Maurice Mashaal’s biography of Bourbaki, which also cites biographical work of
Liliane Beaulieu. Regarding Cartan’s definition of filters: “At first [the others] met the idea with skepticism, but
Chevalley understood the importance of Cartan’s suggestion and even proposed another idea based on it (which
became the concept of ultrafilters). Once the approval was unanimous, someone yelled « boum ! » (French for
“bang!”) to announce that a breakthrough had been made – this was one of Bourbaki’s many customs.” Mashaal
[2006]

3This difference is visible in the idea of realizing a given type over M in a model N extending M . The new
limit point will belong to the solution sets, in N , of the formulas in the type. Note that 2.2 describes types of
elements, corresponding to sets of formulas in one free variable plus parameters from M . For each n > 1 there
is an analogous Sn(M ) describing types of n-tuples.
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is maximal, i.e. not strictly contained in any other partial type overM . The Stone space
S(M ) is the set of types overM .

A type is realized if a corresponding limit point exists in the model, otherwise it is
omitted. For example, ifM = (Q; <) is the rationals considered as a linear order, S(M )

includes a type for each element of M , which are realized, and types for each irrational
Dedekind cut, for +1, for �1, and for various infinitessimals, which are omitted.

The compactness theorem for first order logic ensures that for any model M and any
type or set of types over M we can always find an extension of M to a larger model in
the same class in which all these types are realized. (Put otherwise, we may realize types
without changing the theory.) Types are fundamental objects in all that follows. From the
depth and subtlety of their interaction comes much of the special character of the subject.4

In Definition 2.2, we may use “A-definable sets” instead of “M -definable sets” for
some A � M [more correctly, formulas in one free variable with parameters from A].
In this case, call p a type or partial type of M over A. Then the following fundamental
definition, from work of Morley and of Vaught in the early 1960s, generalizing ideas from
Hausdorff on �˛ sets, gives a measure of the completeness of a model.

Definition 2.3. For an infinite cardinal �, we say a modelN is �+-saturated if every type
of N over every A � N of size � � is realized in N .

For example, if M is an algebraically closed field then for any subfield K of M , the
types ofM over K will include a distinct type for each minimal polynomial over K (de-
scribing a root) and one type describing an element transcendental over K. Since it is
algebraically closed,M will be �+-saturated if and only if it has transcendence degree at
least �+.

3 Towards classification theory

Having described a model theoretic point of view – first, regarding a given mathematical
object as a model; second, placing it within an elementary class of models sharing the
same first-order theory; third, studying as our basic objects these theories, looking both
at how models may vary for a given theory (by paying close attention to the structure of
types) and at structural differences across theories – some first notable features of this
setup are:

4And a certain possible conversion of combinatorial into algebraic information, as in the remarkable group
configuration theorems of Zilber and Hrushovski.
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a) one can study the truth of statements of first order logic by ‘moving’ statements among
models in allowed ways.5

b) whenworking in a given elementary class, unusual constraints observed on variation of
models may give leverage for a structural understanding of all models in the class. E.g.
Morley’s theorem, the ‘cornerstone’ of modern model theory, says that if a countable
theory has only one model up to isomorphism in some uncountable size �, then this
must be true in every uncountable size. Moreover its models must behave analogously
to algebraically closed fields of a given characteristic in the sense that, e.g., there are
prime models over sets, there are relatively few types, and for each model there is
a single invariant, a dimension (the equivalent of transcendence degree) giving the
isomorphism type.

c) simply understanding the structure of the definable sets, say in specific classes contain-
ing examples of interest, can already involve deep mathematics. For instance, Tarski’s
proof of quantifier elimination for the reals and the cell decomposition theorem for
o-minimal structures.

In the examples given so far, as is often the case in mathematics, the specific role of
the infinite may be mainly as a kind of foil reflecting the fine structure of compactness,
irrespective of the otherwise depth of proofs.

To see the interaction of model theory and set theory which we invoked at the begin-
ning, we need to go further up and further in. (As an aside, already in Hilbert’s remarks,
via Church, there is an implicit parallel between the understanding of infinite sizes and
the development of different models.6) Suppose we step back and study the class of all
theories.

A thesis of Shelah’s groundbreaking Classification Theory (1978) is that one can find
dividing lines among the class of first-order theories. A dividing line marks a sea change
in the combinatorial structure. (The assertion that something is a dividing line requires
evidence on both sides: showing that models of theories on one side are all complex in

5 A clever example is Ax’s proof that any injective polynomial map from Cn to Cn is surjective. For each
finitek andn, there is a sentence'n;k of first order logic in the language f+; �; 0; 1g asserting that any injective
map given by (x1; : : : ; xn) 7! (p1(x1; : : : ; xn); : : : ; pn(x1; : : : ; xn)) where the pi are of degree � k is
surjective. For each prime p, we may write F̄p as the union of an increasing chain of finite fields. The assertion
'n;k is true in each finite field because it is finite, and it follows (e.g. from its logical form) that 'n;k holds in
F̄p . For D any nonprincipal ultrafilter on the primes,

Q
p2P F̄p/D is isomorphic to C, so by Łos’ theorem

'n;k is true in C.
6 “Hilbert does not say that the order in which the [list of 23] problems are numbered gauges their relative

importance, and it is not meant to suggest that he intended this. But he does mention the arithmetical formu-
lation of the concept of the continuum and the discovery of non-Euclidean geometry as being the outstanding
mathematical achievements of the preceding century, and gives this as a reason for putting problems in these
areas first, ” Church [1968].
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some given sense, while models of theories on the other side admit some kind of structure
theory.) A priori it is not at all obvious that these should exist. Why wouldn’t the seem-
ingly unconstrained range and complexity of theories allow for some kind of continuous
gradation along any reasonable axis? The example of extremal combinatorics may give
a hint: graphs of a given large finite size are not so easily classifiable, but by examining
asymptotic growth rates of certain phenomena, jumps may appear.

Stability, the dividing line which has most profoundly influenced the present field,
arises in Shelah [1978] from counting limit points. For a theory T and an infinite cardinal
�, we say T is �-stable if for every modelM of T of size �, jS(M )j = �. Conversely, if
some modelM of T of size � has jS(M )j > �, T is �-unstable. For a given �, T is either
�-stable or �-unstable by definition. But varying �, the gap appears7:

Theorem 3.1 (Shelah 1978). Any theory T is either stable, meaning stable in all � such
that �jT j = �, or unstable, meaning unstable in all �.

This theorem materializes in step with the development of the internal structure theory.
The set theoretic scaffolding is not only in the statement, but intricately connected to its
development. A few examples from chs. II-III of Shelah [ibid.] will give a flavor:

i) it turns out stability is local: if T is unstable, then there is a single formula ' such that
in all �, we can already get many types just using definable sets which are instances
of '. (This leads to discovering instability has a characteristic combinatorial config-
uration, the order property.) Its proof is a counting argument relying on the fact that
T is unstable in some � such that � = �jT j.

ii) a characteristic property of stable theories is that once there is enough information,
types have unique generic extensions to types over larger sets. This is first explained
by the finite equivalence relation theorem which studies types over sets A of size at
least 2 in models which are (jAjjT j)+-saturated.

iii) conversely, large types are essentially controlled by their restrictions to “small” sets.
The cardinal defining this use of “small,” �(T ), is � jT j+. Above this cardinal the
mist clears and stability’s effects are easier to see; one can e.g. characterize larger sat-
uratedmodels of stable theories as those which are �(T )-saturated and everymaximal
indiscernible set has the cardinality of the model.

iv) instability has a more random form and a more rigid form, and at least one must occur.
To see the difference between the two by counting types, one has to know that 2� can
potentially be different from the number of cuts in a dense linear order of size � (or
the number of branches in a tree with � nodes), which was originally noted by appeal
to an independence result.

7jT j, the size of T , will be the maximum of the size of the language and @0.
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Of course, to say infinite cardinals are strongly connected to the development of sta-
bility doesn’t mean they are necessarily there at the end. The order property, definability
of types, forking, the independence property, and the strict order property, to name a few,
don’t bear the imprint of their origin. This translation is part of model theory’s power.

Looking forwards: the effect of stability, inside and outside model theory, has been
significant. Despite this conclusive evidence that some dividing lines do exist, and that
they can be very useful, further ones have been challenging to find. We know very few
in the vast territory of unstable theories, found – like stability – one by one in response to
specific counting problems. To go further, perhaps we can try to shift the way in which
set theory sounds out model theoretic information.

The reader may wonder: is model theory being described as a kind of extension to
the infinite setting of extremal arguments in combinatorics, with the hierarchy of infinite
cardinals replacing the natural numbers? This analogy is challenging, but incomplete. It
is incomplete because the finitary, extremal picture doesn’t seem to provide a precedent
or explanation for the role of model theory, which builds in a remarkable way a bridge
between the infinite combinatorial world and a more algebraic one. Still, it is challenging
because it leads us to ask what in the infinite setting may play the role of those crucial
tools of the combinatorial setting, which may seem to have little place in current model
theoretic arguments – namely, probability and randomness.

4 Ultrapowers

Only in the move to ultrapowers does one really recover, albeit in a metaphorical way, that
other key ingredient of extremal arguments, the understanding of probability and average
behavior.

Stability arises from counting limit points. Recall from 2.3 that saturation is a notion
of completeness for a model: �+-saturation means all types over all submodels of size
at most � are realized. The ultrapower construction, given formally below, starts with a
givenmodel and amplifies it – staying within the elementary class – according to a specific
kind of averaging mechanism, an ultrafilter. The resulting larger model, which depends
only on the model we began with and the ultrafilter, is called an ultrapower. The level of
saturation in the ultrapower reflects whether the given averaging mechanism, applied to
the given model, leads to the appearance of many limit points of smaller sets.

If so, this may indicate either that the ultrafilter is powerful, or that the types of the
model are not complex. Since we can apply the same ultrafilter to different models and
compare the results, however, we can use this construction to compare the ‘complexity’ of
different models (and, dually, of ultrafilters). Restricting to the powerful class of regular
ultrafilters, whose ability to produce saturation in ultrapowers will be an invariant of the
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elementary class of the model we begin with, we can use this construction to compare the
complexity of theories. Informally for now, the relation on complete countable theories
setting T1 E T2

if for any regular ultrafilter D, if D-ultrapowers of models of T2 are suffi-
ciently saturated, so are D-ultrapowers of models of T1

is Keisler’s order, defined in 1967. It is a pre-order on theories, considered as a partial
order on the equivalence classes of theories.

The theorem which convinced the author of this essay, reading around 2005, that it was
urgent to study E further was a theorem in Shelah’s Classification Theory in a chapter
devoted to the ordering. The theorem says that the union of the first two equivalence
classes in Keisler’s order is precisely the stable theories.

This theorem can be understood as saying that the class of stable theories, which we can
see by counting types, can also be seen by asking about good average behavior. Beyond
stability, our counting is less useful, and yet the other half, about average behavior, retains
its power.

5 In more detail

The idea of a filter was used in 2.2 above to find limit points, but it can also be used to
give averages. Maximal filters, called ultrafilters, can be thought of as a coherent choice
of which subsets of a given set I are “large.”

Definition 5.1. For an infinite set I , D � P (I ) is an ultrafilter if it is a filter not strictly
contained in any other filter. (We will assume ultrafilters contain all co-finite sets.)

The ultraproduct by D of a family of models hMi : i 2 I i is a model, built in two
steps, reflecting the definition of model. First, we define the domain. Identify two el-
ements ha[i ] : i 2 I i, hb[i ] : i 2 I i of the Cartesian product

Q
i Mi if fi 2 I :

a[i ] = b[i ]g 2 D. Definition 2.1 makes this an equivalence relation, and the domain
of our ultraproduct N is the set of equivalence classes. Next, fix for transparency a rep-
resentative of each equivalence class, so that for a 2 N and i 2 I , “a[i ]” makes sense.
The relations, functions, and constants of our language are defined on the ultraproduct
by consulting the average of the models: e.g. we say a given k-place relation R holds
on a1; : : : ; ak in N iff fi : R(a1[i ]; : : : ; ak [i ]) holds in Mi g 2 D, and for an n-place
function f , define f (a1; : : : ; an) to be the equivalence class of hb[i ] : i 2 I i where
b[i ] = f (a1[i ]; : : : ; an[i ]) computed inMi . The special case of an ultrapower, where all
the factor models are isomorphic, transforms a given structure into a larger, ‘amplified’
model in the same elementary class. For example, letting D be a regular ultrafilter on the
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set of primes,
Q

p Fp/D Š C, but if we consider the ultrapowerMP /D whereM is the
algebraic closure of the rationals, we also get C.

There is a veiled interaction between the two model theoretic uses of filters: the real-
ization of types in the ultrapower, and the ultrafilter used in the construction. This is most
useful when the ultrafilter is regular, ensuring that saturation depends only on finitary in-
put from each factor model. For each regular D, whether or not an ultrapowerM I/D is
jI j+-saturated is an invariant of the elementary class of the modelM we began with.8

Keisler’s suggestion was that this could be used to compare theories.

Definition 5.2 (Keisler’s order, 1967). Let T1; T2 be complete countable theories.

T1 E T2

if for every infinite �, every regular ultrafilter D on �, every modelM1 of T1 and every
modelM2 of T2, if (M2)

�/D is �+-saturated, then (M1)
�/D is �+-saturated.

Informally, say “D saturates T ” if for some (by regularity of D, the choice does not
matter) modelM of T ,M�/D is �+-saturated: all limit points over small submodels ap-
pear. Then Keisler’s order puts T1 less than T2 if every regular ultrafilter able to saturate
T2 is able to saturate T1. Note that any two theories may in principle be compared – alge-
braically closed fields of fixed characteristic, random graphs, real closed fields. Keisler
proved his order was well defined and had a minimum and a maximum class (he gave a
sufficient condition for membership in each), and asked about its structure.

The crucial chapter on Keisler’s order in Shelah [1978] was already mentioned. Its
structure on the unstable, non-maximal theories was left there as an important open ques-
tion. Following Shelah [ibid.], work on Keisler’s order stalled for about thirty years. The
question was reopened in Malliaris’ thesis and in the series of papers Malliaris [2009,
2010b,a, 2012a,b], guided by the perspective described above. Then in the last few years,
a very productive ongoing collaboration of Malliaris and Shelah [2015a, 2014a, 2013a,b,
2016a,b, 2018b]... has advanced things considerably.

6 The current picture

Along this road, what does one find?
(a) First, we do indeed see evidence of dividing lines – manymore than previously thought.
Much remains to be done in understanding them and in characterizing the structure/nonstructure
which come with the assertion of a dividing line, but already their appearance, in a region

8That can be taken as a definition of regular; alternatively, D is a regular ultrafilter on I if there is a set
fX˛ : ˛ < jI jg � D such that the intersection of any infinitely many of its elements is empty. Regular
ultrafilters are easy to build and exist on any infinite set.
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of theories thought to be relatively tame, is surprising and exciting. In Malliaris and She-
lah [2018b], Malliaris and Shelah prove that Keisler’s order has infinitely many classes.
The theories which witness these different classes come from higher analogues of the
countable triangle-free random graph, originally studied by Hrushovski [2002]: the infi-
nite generic tetrahedron-free three-hypergraph, the infinite generic 4-uniform hypergraph
with no complete hypergraph on 5 vertices, and so on. The proof shows they may have
very different average behavior, as reflected in their differing sensitivity to a certain degree
of calibration in the ultrafilters.

These results build on advances in ultrafilter construction, which allow for a greater
use of properties of cardinals, even for ultrafilters in ZFC.

Several incomparable classes are known Malliaris and Shelah [2018a], Ulrich [2017],
Malliaris and Shelah [2015b] and it may be that future work will reveal many. Perhaps
the way that such averages could be perturbed or distorted, and by extension the structure
of dividing lines among unstable theories, will be much finer than what we now see. If so,
even independence results could be quite useful model theoretically. These may simply
witness that the boolean algebras associated to different theories are essentially different,
because they react differently to certain exotic averaging mechanisms, when these appear.
The internal theories of each equivalence class, giving an account of what allows for the
different reactions, would presumably be, like IP or SOP, absolute.
(b) Second, this line of work has led to some surprising theorems about the finite world.
These theorems have the following general form. We know that among theories with
infinite models, stability is a dividing line, with models of stable theories admitting a
strong structure theory. There is a specific combinatorial configuration, the order property,
which (in infinite models) characterizes instability. In an infinite graph, instability for the
edge relation would correspond to having arbitrarily large half-graphs, that is, for all k
having vertices a1; : : : ; ak and b1; : : : ; bk with an edge between ai and bj iff i < j .
(Note that there are no assertions made about edges among the a’s and among the b’s, so
in forbidding k-half graphs, we forbid a family of configurations.) The thesis of Malliaris
and Shelah [2014b] is essentially that finite graphs with no long half-graphs, called stable
graphs, behave much better than all finite graphs, in the sense predicted by the infinite
case.

Szemerédi’s celebrated regularity lemma says, roughly, that for every � > 0 there
is N = N (�) such that any sufficiently large graph may be equitably partitioned into
k � N pieces such that all but at most �k2 pairs of pieces have the edges between them
quite evenly distributed (i.e. are �-regular). The elegant picture of this lemma absorbs the
general complexity of graphs in two ways: first, by work of Gowers, N is a very large
function of �; second, as noticed independently by a number of researchers, the condition
that some pairs of pieces be irregular cannnot be removed, as shown by the example of
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half-graphs (Komlós and Simonovits [1996]). As a graph theorist, one might expect half-
graphs to be just one example of bad behavior, not necessarily unique; but in light of the
above, a model theorist may guess that in the absence of long half-graphs one will find
structured behavior. The stable regularity lemma of Malliaris and Shelah [2014b] shows
that indeed, half-graphs are the only reason for irregular pairs: finite stable graphs admit
regular partitions with no irregular pairs and the number of pieces singly-exponential in �.

A second theorem in that paper, a stable Ramsey theorem, proves that for each k there
is c = c(k) such that if G is a finite graph with no k-half graphs then G contains a
clique or an independent set of size jGjc , much larger than what is predicted by Ramsey’s
theorem. This meets the prediction of the Erdős-Hajnal conjecture, which says that for
any finite graphH there is c = c(H ) such that ifG contains no induced copies ofH then
G contains a clique or an independent set of size jGjc . But very few other cases of this
conjecture are known. What is the contribution of the infinite here? The infinite version
of Ramsey’s theorem says that a countably infinite graph contains a countable clique or a
countable independent set. Extending this to larger cardinals doesn’t get far: Erdős-Rado
shows the graph and the homogeneous set may not, in general, increase at the same rate.
Model theory, however, refracts this result across different classes of theories, and across
dividing lines, and in some classes, such as the stable theories, it behaves differently: the
existence of large sets of indiscernibles in stable theories implies, a fortiori, that an infinite
stable graph of size �+ will have a clique or independent set of size �+, much larger than
predicted by Erdős–Rado. Once one knows where to look, one can find the analogous
phenomenon in the finite case (also for hypergraphs).

The stable Ramsey theorem was applied by Malliaris and Terry [2018] to re-prove a
theorem in the combinatorics literature, by re-organizing the proof into cases which take
advantage of the stable Ramsey theorem, and thus to obtain better bounds for the origi-
nal theorem; finitary model-theoretic analysis may be useful even where model theoretic
hypotheses are not used in the theorems.

It may seem that these theorems of Malliaris and Shelah [2014b], from the first joint
paper of Malliaris and Shelah, could in principle have been discovered earlier, and yet
they were not. They belong to the perspective of this program in a deep way. They were
motivated by work in Malliaris [2010b] and Malliaris [2010a], directed towards Keisler’s
order, which first applied Szemerédi regularity to study the complexity of formulas (and
showed that the simple theories, of special interest in Keisler’s order, were in some sense
controlled by stable graphs).
(c) Third, by means of these methods model theory has paid an old debt to set theory and
general topology, by solving a seventy-year-old problem about cardinal invariants of the
continuum. Two infinite cardinals, p and t, known to be uncountable but no larger than
the continuum, are shown in Malliaris and Shelah [2013b], Malliaris and Shelah [2016a]
to be unconditionally equal. The proof is model-theoretic, and comes in the context of
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the solution of an a priori unrelated problem, determining a new sufficient condition for
maximality in Keisler’s order.

In slightly more detail, in order for a regular ultrafilter to handle the most complex the-
ories, those in the maximum class, it must be in some sense very balanced. Distortions
and so to speak imperfections which might pass unnoticed in more robust theories will
translate immediately in maximal theories to the omission of types. However, a surpris-
ing fact from Shelah [1978] is that what is needed for the theory to be complex is not
necessarily that it be expressive. A kind of brittleness or overall rigidity as exemplified by
the theory of linear order will also suffice. Remarkably, it turns out even less will suffice:
the engine of the proof in Malliaris and Shelah [2016a] is in showing that if the ultrafilter
can ensure certain paths through trees have upper bounds, it must be strong enough to pro-
duce the needed limit points for any theory. The resulting comparison of theories whose
models contain the relevant trees, to models of linear orders, via ultrapowers, turns out to
be parallel in a precise sense to the comparison of p and t. It was possible to give a fun-
damental model-theoretic framework encompassing both problems and so to solve them
both. A commentary and an expository account of the proof are Moore [2013], Casey and
Malliaris [2017].

Still, a model theoretic necessary condition for maximality remains open.
It has been almost ten years since Malliaris [2009]. Profound questions remain, urgent in
their simplicity.

Appendix: on definable sets

By convention, we always assume our language L contains a binary relation symbol =,
and that in every L-model this symbol is interpreted as equality. Besides the symbols ofL,
our alphabet for building formulas includes infinitely many variables along with logical
symbols (; );^;_;:;(); H) ;8; 9.

For awhile letM? denote a model for the language L? = f+;�;�; 0; 1; <g, where +,
�, � are binary function symbols,< is a binary relation, and 0; 1 are constants. Let us say
the domain ofM? is R and the symbols have their usual interpretation.9

The terms of a language are elaborate names. We define terms by induction. All vari-
ables and constant symbols are terms; if f is a k-place function symbol and t1; : : : ; tk are
terms, then f (t1; : : : ; tk) is a term; and a finite string of allowed symbols is a term iff it
can be built in finitely many steps in this way.

9Pedantically, the form of the symbols makes no demands on their interpretation (other than the basic condi-
tions in the footnote on p. 102); we could, for example, give a perfectly valid model by interpreting both+ and
� by projection onto the first coordinate.



MODEL THEORY AND ULTRAPRODUCTS 113

The L?-terms include 0, 1, 1 + 1 which we may abbreviate 2, x + 1, x � y, (x � 1) +

(y + 0), ((x � x) � x) which we may abbreviate x3. Using similar abbreviations, and
dropping parentheses for readability, x5 + 15x2 + 3x + 5 is also a term.

A key feature of terms is that if we are working in a model, and we are given a term
along with instructions of which elements of the model to put in for which, if any, variables
in the term (recall that in any model, any constant symbols must already refer to specific
elements), then the term will evaluate unambiguously to some other element of the model.

Next, by induction, we define formulas. Atomic formulas are assertions that a given
relation symbol of our language holds on a given sequence of terms. (In L?, the relation
symbols are= and<, so these will include x3+5x+2 = 0 and also 5+x+15y2 > 37�z.)
Atomic formulas are formulas. If ' is a formula, then :(') is a formula. If ' and  are
formulas, then (' ^  ), (' _  ), (' H)  ), (' ()  ) are also formulas. If '
is a formula, and x is a variable, then (9x)' and (8x)' are formulas. A finite string of
allowed symbols is a formula iff it can be built in finitely many steps in this way.

In our example here are some more formulas: (8x)(x + 0 = x), (9x)(y + x2 = z).
Note an important difference between the two. (8x)(x+0 = x) is an assertion which will
be true or false in any given model; in our givenM? it is true. By contrast, (9x)(y+x2 =

z) is neither true nor false, since it has two free variables; rather, it has a solution set, the
pairs (a; b) of elements ofM such that (9x)(a + x2 = b). In any model N , the solution
sets of formulas with one or more [but always finitely many] free variables are called the
definable sets. The closure properties of the set of formulas show that for each n, the
definable sets on N n form a boolean algebra.

The formulas with no free variables are called sentences, and the theory of a model
N is the set of all sentences which hold in N . The elementary class of N is the class
of all other models in the same language with the same theory. The reason a theory may
make assertions about definable sets which are meaningful across different models is by
referring to their defining formulas.

When a formula has many free variables, it may be useful to look at the restricted
solution set we get after specifying that certain of the free variables take certain values in
the model. For example, in the formula xy2 + zy +w = 0 with free variables x; y; z; w,
we might want to consider the solution set under specific values of x; z and w. Such a
solution set is called definable with parameters, the specific values being the parameters.
Wemay wish to record their provenance: given a subsetA of a modelN , the sets definable
with parameters from A are called A-definable sets. Finally, a word on types. GivenM
and A � M , the set of formulas with parameters from A and (say) one free variable can
be made into a boolean algebra once the formulas are identified up to logical equivalence
(equivalently, identified if they define the same set in M ). Its Stone space is the set of
types ofM over A in the sense of 2.2 above, and its compactness as a topological space
is explained by the compactness theorem.
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Some examples – here, definable means with parameters:

1) in the model M? above, the definable sets include the semialgebraic sets (and it is a
theorem that they are exactly the semialgebraic sets). Its elementary class is the class
of real closed ordered fields.

2) if L = f+;�;�; 0; 1g and M is the algebraic closure of the rationals on which the
symbols have their usual interpretation, the definable sets include (and, in fact, are) the
constructible sets. The elementary class of M is the class of all algebraically closed
fields of characteristic zero.

3) if L = f<; g, andM is the rationals on which < has its usual interpretation, the defin-
able sets in one free variable are finite unions of points and intervals (and the definable
sets in k > 1 free variables satisfy a cell decomposition theorem). The elementary
class ofM , the class of dense linear orders without a first or last element, has only one
countable model, up to isomorphism, but 2� nonisomorphic models of each uncount-
able size �.
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Abstract
We give an overview of our effort to introduce (dual) semicanonical bases in the

setting of symmetrizable Cartan matrices.

1 Introduction

One of the original motivations of Fomin and Zelevinsky for introducing cluster algebras
was “to understand, in a concrete and combinatorial way, G. Lusztig’s theory of total pos-
itivity and canonical bases” Fomin [2010]. This raised the question of finding a cluster
algebra structure on the coordinate ring of a unipotent cell, and to study its relation with
Lusztig’s bases. In a series of works culminating with Geiß, Leclerc, and Schröer [2011]
and Geiß, Leclerc, and Schröer [2012], we showed that the coordinate ring of a unipotent
cell of a symmetric Kac-Moody group has indeed a cluster algebra structure, whose cluster
monomials belong to the dual of Lusztig’s semicanonical basis of the enveloping algebra
of the attached Kac-Moody algebra. Since the semicanonical basis is built in terms of
constructible functions on the complex varieties of nilpotent representations of the prepro-
jective algebra of a quiver, it is not straightforward to extend those results to the setting of
symmetrizable Cartan matrices, which appears more natural from the Lie theoretic point
of view. The purpose of these notes is to give an overview of Geiß, Leclerc, and Schröer
[2017a] - Geiß, Leclerc, and Schröer [2017d], where we are trying to make progress into
this direction.

The starting point of our project was Hernandez and Leclerc [2016], where they ob-
served that certain quivers with potential allowed to encode the q-characters of the Kirillov-
Reshetikhin modules of the quantum loop algebra Uq(Lg), where g is a complex simple
Lie algebra of arbitrary Dynkin type. This quiver with potential served as model for the
definition of our generalized preprojective algebras Π = ΠK(C;D) associated to a sym-
metrizable Cartan matrix C with symmetrizerD over an arbitrary fieldK, which extends
MSC2010: primary 16G20; secondary 17B67, 13F60, 14M15.
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the classical construction of Gelfand and Ponomarev [1979]. After the completion of a
preliminary version of Geiß, Leclerc, and Schröer [2017a] we learned that Cecotti and
Del Zotto [2012] and Yamakawa [2010] had introduced similar constructions for quite
different reasons. In comparison to the classical constructions of Dlab and Ringel [1974],
Dlab and Ringel [1980] for a symmetrizable Cartan matrix C , we replace field extensions
by truncated polynomial rings. Many of the core results of representations of species carry
over over to this setting if we restrict our attention to the so-called locally free modules,
see Geiß, Leclerc, and Schröer [2017a]. In particular, we have for each orientation Ω of
C an algebra H = HK(C;D;Ω) such that in many respects Π can be considered as the
preprojective algebra of H . Our presentation of these results in Section 3 is inspired by
the thesis Geuenich [2016], he obtains similar results for a larger class of algebras.

Since our construction works in particular over algebraically closed fields, we can ex-
tend to our algebrasH andΠ several basic results about representation varieties of quivers
and of varieties of nilpotent representations of the preprojective algebra of a quiver in our
new context, again if we restrict our attention to locally free modules, see Section 4. Nan-
dakumar and Tingley [2016] obtained similar results by studying the set of K-rational
points of the representation scheme of a species preprojective algebra, which is defined
over certain infinite, non algebraically closed fields K.

In our setting we can take K = C, and study algebras of constructible functions on
those varieties of locally free modules and realize in this manner the universal enveloping
algebra U (n) of the positive part n of a complex semisimple Lie algebra, together with a
Ringel type PBW-basis in terms of the representations ofH . For arbitrary symmetrizable
Cartan matrices we can realize U (n) together with a semicanonical basis, modulo our
support conjecture, see Section 5.

Conventions. We use basic concepts from representation theory of finite dimensional
algebras, like Auslander-Reiten theory or tilting theory without further reference. A good
source for this material is Ringel [1984]. For us, a quiver is an oriented graph Q =

(Q0;Q1; s; t) with vertex set Q0, arrow set Q1 and functions s; t : Q1 ! Q0 indicating
the start and terminal point of each arrow. We also writeD = HomK(�; K). We say that
an A-moduleM is rigid if Ext1A(M;M ) = 0.

2 Combinatorics of symmetrizable Cartan matrices

2.1 Symmetrizable Cartan matrices and quivers. Let I = f1; 2; : : : ; ng. A sym-
metrizable Cartan matrix is an integer matrix C = (cij ) 2 ZI�I such that the following
holds:

• ci i = 2 for all i 2 I and cij � 0 for all i ¤ j ,
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• there exist (ci )i2I 2 NI
+ such that diag(c1; : : : ; cn) � C is a symmetric.

In this situationD := diag(c1; : : : ; cn) 2 ZI�I is called the symmetrizer of C . Note that
the symmetrizer is not unique. In particular, for all k 2 N+ also kD is a symmetrizer of
C .

It is easy to see that the datum (C;D) of a symmetrizable Cartan matrix C and its
symmetrizerD is equivalent to displaying a weighted graph (Γ; d ) with

• I the set of vertices of Γ,

• gij := gcd(cij ; cj i ) edges between i and j ,

• d : I ! N+; i 7! ci .

Here we agree that gcd(0; 0) = 0. We have then cij = �
lcm(ci ;cj )

ci
gij for all i ¤ j .

2.2 Bilinear forms, reflections and roots. We identify the root lattice of the Kac-
Moody Lie algebra g(C ) associated to C with ZI = ˚i2I Z˛i , where the simple roots
(˛i )i2I form the standard basis. We define on ZI by

(˛i ; ˛j )C;D = cicij ;

a symmetric bilinear form. The Weyl group W = W (C ) is the subgroup of Aut(ZI ),
which is generated by the simple reflections si for i 2 I , where

si (˛j ) = ˛j � cij˛i :

The real roots are the set
∆re(C ) := [i2IW (˛i ):

The fundamental region is

F := f˛ 2 NI
j supp(˛) is connected, and (˛; ˛i )C;D � 0 for all i 2 I g:

Here, supp(˛) is the full subgraph of Γ(C ) with vertex set fi 2 I j ˛(i) ¤ 0g. Then the
imaginary roots are by definition the set

∆im(C ) := W (F ) [W (�F ):

Finally the set of all roots is

∆(C ) := ∆re [ ∆im(C ):
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The positive roots are∆+(C ) := ∆(C )\NI , and it is remarkable that∆(C ) = ∆+(C )[

�∆+(C ).
A sequence i = (i1; i2; : : : ; il) 2 I l is called a reduced expression for w 2 W if

w = sil � � � si2si1 and w can’t be expressed as a product of less than l = l(w) reflections
of the form si (i 2 I ). In this case we set

(2.1) ˇi;k := si1si2 � � � sik�1
(˛ik ) and 
i;k := sil sil�1

� � � sik+1
(˛ik )

for k = 1; 2; : : : ; l , and understand ˇi;1 = ˛i1 as well as 
i;l = ˛il . It is a standard fact
that ˇi;k 2 ∆+ for k = 1; 2; : : : ; l , and that these roots are pairwise different. Obviously,

w(ˇi;k) = �
i;k for k = 1; 2; : : : ; l:

The following result is well known.

Proposition 2.1. For a connected, symmetrizable Cartan matrix C the following are
equivalent:

• C is of Dynkin type.

• The Weyl group W (C ) is finite.

• The root system ∆(C ) is finite

• All roots are real: ∆(C ) = ∆re(C ).

Moreover, if in this situation i is a reduced expression for w0, the longest element of W ,
then∆+ = fˇi;1; ˇi;2; : : : ; ˇi;lg.

2.3 Orientation and Coxeter elements. An orientation of C is a set Ω � I � I such
that

• jΩ \ f(i; j ); (j; i)gj > 0 () cij < 0,

• for each sequence i1; i2; : : : ; ik+1 with (ij ; ij+1) 2 Ω for j = 1; 2; : : : ; k we have
i1 ¤ ik+1.

The orientation Ω can be interpreted as upgrading the weighted graph (Γ; d ) of (C;D) to
a weighted quiver (Qı; d ) with gij arrows ˛(1)ij ; : : : ˛

(gij )

ij from j to i if (i; j ) 2 Ω, such
thatQı = Qı(C;Ω) has no oriented cycles.

For an orientation Ω of the symmetrizable Cartan matrix C 2 ZI�I and i 2 I we
define

si (Ω) := f(r; s) 2 Ω j i 62 fr; sgg \ f(s; r) 2 I � I j (r; s) 2 Ω and i 2 fr; sgg:
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Thus, in Qı(C; si (Ω)) the orientation of precisely the arrows in Qı(C;Ω), which are
incident with i , is changed. If i is a sink or a source of Qı(C;Ω) then si (Ω) is also an
orientation of C . It is convenient to define

Ω(�; i) := fj 2 I j (j; i) 2 Ωg and Ω(j;�) := fi 2 I j (j; i) 2 Ωg:

We have on ZI the non-symmetric bilinear form

(2.2) h�;�iC;D;Ω : ZI
� ZI

! Z; (˛i ; ˛j ) 7!

8̂<̂
:
ci if i = j;

cicij if (j; i) 2 Ω;

0 else.

We leave it as an exercise to verify that

(2.3) h˛; ˇiC;D;Ω = hsi (˛); si (ˇ)iC;D;si (Ω)

if i is a sink or a source for Ω.
We say that a reduced expression i = (i1; i2; : : : ; il) ofw 2 W is+-admissible forΩ if

i1 is a sink ofQı(C;Ω), and ik is a sink ofQı(C; sik�1
� � � si2si1(Ω)) for k = 2; 3; : : : ; l .

If moreover l = n and fi1; : : : ; ing = I , we say that c = sin � � � si2si1 is the Coxeter
element for (C;Ω).

2.4 Kac-Moody Lie algebras. For a symmetrizable Cartan matrix C 2 ZI�I , the
derived Kac-Moody Lie algebra g0 = g0(C ) over the complex numbers has a presentation
by 3n generators ei ; hi ; fi (i 2 I ) subject to the following relations:

(i) [ei ; fj ] = ıijhi ;

(ii) [hi ; hj ] = 0;

(iii) [hi ; ej ] = cij ej ; [hi ; fj ] = �cijfj ;

(iv) (ad ei )
1�cij (ej ) = 0; (adfi )

1�cij (fj ) = 0 (i 6= j ).

Note that forC of Dynkin type this is the Serre presentation of the corresponding semisim-
ple Lie algebra. In case rankC < jI j we have of g0(C ) ¤ g(C ) and the latter has in this
case a slightly larger Cartan subalgebra, which makes for a more complicated definition,
see for example Geiß, Leclerc, and Schröer [2017c, Sec. 5.1] for a few more details. Of
course, the main reference is Kac [1990].

Let n = n(C ) be the Lie subalgebra generated by the ei (i 2 I ). Then U (n) is the
associative C-algebra with generators ei (1 � i � n) subject to the relations

(2.4) (ad ei )
1�cij (ej ) = 0; (i; j 2 I; i ¤ j ):
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U (n) is NI graded with deg(ei ) = ˛i (i 2 I ). With

n˛ := n \ U (n)˛ for ˛ 2 ∆+(C )

we recover the usual root space decomposition of n.

3 Quivers with relations for symmetrizable Cartan matrices

We keep the notations from the previous section, in particular C 2 ZI�I is a symmetriz-
able Cartan matrix with symmetrizerD and Ω is an orientation for C .

3.1 A class of 1-Iwanaga-Gorenstein algebras. LetK be a field andQ = Q(C;D;Ω)

the quiver obtained fromQı(C;D;Ω), see Section 2.3, by adding a loop �i at each vertex
i 2 I . Then H = HK(C;D;Ω) is the path algebra KQ modulo the ideal which is
generated by the following relations:

• �ci

i for all i 2 I

• ��cji/gji

i ˛
(k)
ij � ˛

(k)
ij �

�cij /gij

j for all (i; j ) 2 Ω and k = 1; 2; : : : gij .

Recall that gij = gj i = gcd(cij ; cj i ), thus �cij /gij = lcm(ci ; cj )/ci .
For (i; j ) 2 Ω let c0

ij = cij /gij and c0
j i = cj i/gij . We may consider the following

symmetrizable Cartan matrix, symmetrizer and orientation:

C (i;j ) =

 
2 c0

ij

c0
j i 2

!
; D(i;j ) =

�
ci 0

0 cj

�
and Ω(i;j ) = f(i; j )g:

Thus,

Q(i;j ) := Q(C (i;j );Ω(i;j )) = i�i :: j
˛ijoo �jee

and

H (i;j ) := HK(C (i;j );D(i;j );Ω(i;j )) = KQ(i;j )/h�
ci

i ; �
cj

j ; �
�c0

ji

i ˛ij � ˛ij �
�c0

ij

j i:

Note, that with

iH
0
j := eiH

(i;j )ej and Hi = eiHiei = K[�i ]/(�
ci

i )

it is easy to see that iHj := iH
0
j

˚gij is aHi -Hj -bimodule, which is free of rank �cij as a
Hi -module, and free of rank �cj i asHj -(right)-module. If we define similarlyH (j;i) :=
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HK(C (i;j );D(i;j ); f(j; i)g) and jH
0
i := ejH

(j;i)ej , then jHi = jH
0
i
˚gij is a Hj -Hi -

bimodule, which is free of rank �cj i as Hj -module and free of rank �cij as Hi -(left)-
module. It is easy to see that we get an isomorphism ofHi -Hj -bimodules

iHj Š HomK(jHi ; K):

The adjunction yields forHk-modulesMk , for k 2 fi; j g, a natural isomorphism of vector
spaces

(3.1) HomHi
(iHj ˝Hj

Mj ;Mi ) ! HomHj
(Mj ; jHi ˝Hi

Mi ); f 7! f _:

Quite similarly to the representation theory of modulated graphs, in the sense of Dlab
and Ringel [1974], we have the following basic results from Geiß, Leclerc, and Schröer
[2017a, Prop. 6.4] and Geiß, Leclerc, and Schröer [ibid., Prop. 7.1].

Proposition 3.1. Set H := HK(C;D;Ω). With S := �i2IHi we can consider B :=M
(i;j )2Ω

iHj as an S -S -bimodule and find:

(a) H Š TS (B) :=
M
j 2N

B˝S j , i.e.H is a tensor algebra.

(b) There is a canonical short exact sequence ofH -H -bimodules

0 ! H ˝S B ˝S H
ı
�! H ˝S H

mult
��! H ! 0;

where ı(hl ˝ b ˝ hr) = hlb ˝ hr � hl ˝ bhr .

Note that the H -H -bimodules H ˝S B ˝S H and H ˝S H are in general only pro-
jective as H -left- or right-modules, but not as bimodules. Anyway, the above sequence
yields a functorial projective resolution for certain modules which we are going to define
now. We say that aH -moduleM is locally free if eiM is a freeHi -module for all i 2 I .
In this case we define

rank(M ) := (rankHi
(eiM ))i2I :

For example, there is a unique (indecomposable) locally free H -module Ei with
rank(Ei ) = ˛i for each i 2 I . For later use we define for all r 2 NI the module
Er := ˚i2IE

r(i)
i , and observe that rank(Er) = r. Let us write down the following con-

sequences of Proposition 3.1, see Geiß, Leclerc, and Schröer [ibid., Sec. 3.1] and Geiß,
Leclerc, and Schröer [ibid., Cor.7.1].

Corollary 3.2. ForH as above we have:
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(a) The projective and injectiveH -modules are locally free. More precisely we have

rank(Heik ) = ˇi;k and rank(DeikH ) = 
i;k for k 2 I;

where i is a reduced expression for the Coxeter element of (C;Ω).

(b) Each locally freeH -moduleM has a functorial projective resolution

0 ! H ˝S B ˝S M
ı˝M
���! H ˝S M

mult
��! M ! 0:

Moreover, ifM is not locally free, then proj: dimM = 1.

(c) H is 1-Iwanaga-Gorenstein, i.e. proj: dim(HDH ) � 1 and inj: dim(HH ) � 1.
Moreover anH -moduleM is locally free if and only if proj: dim(M ) � 1.

It follows that the Ringel (homological) bilinear form descends as the non-symmetric
bilinear form (2.2) to the Grothendieck group of locally free modules, where we iden-
tify the classes of the generalized simples Ei with the coordinate vector ˛i (i 2 I ), see
also Geiß, Leclerc, and Schröer [2017a, Prop. 4.1].

Corollary 3.3. IfM and N are locally freeH -modules, we have

dimHomH (M;N ) � dimExt1H (M;N ) = hrank(M ); rank(N )iC;D;Ω:

By combining Corollary 3.2 with standard results from Auslander-Reiten theory we
obtain now the following result.

Corollary 3.4. LetM be an indecomposable, non projective, locally freeH -module such
that the Auslander-Reiten translate �HM is locally free. Then

rank(�HM ) = c � (rank(M ));

where c = sin � � � si1 is the Coxeter element for (C;Ω). Moreover, if we take R 2 ZI�I ,
such that D � R is the matrix of h�;�iC;D;Ω with respect to the standard basis, we get
c = �R�1(C �R).

This is the K-theoretic shadow of a deeper connection between the Auslander-Reiten
translate and reflection functors, which we will discuss in the next subsection.

3.2 Auslander-Reiten theory and Coxeter functors. By Proposition 3.1 wemay view
H = HK(C;D;Ω) as a tensor algebra. Thus, we identify aH -moduleM naturally with
a S -moduleM = ˚i2IMi together with an element (Mij )(i;j )2Ω of

(3.2) H (M) :=
M

(i;j )2Ω

2 HomHi
(iHj ˝Hj

Mj ;Hi ):
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Write si (H ) := Hk(C;D; si (Ω)) for any i 2 I . If k is a sink of Qı(C;Ω), we have for
eachH -moduleM a canonical exact sequence
(3.3)

0 ! Ker(Mk;in) !
M

j 2Ω(k;�)

kHj ˝Hj
Mj

Mk;in
���! Mk ; whereMk;in = ˚j 2Ω(k;�)Mkj :

We can define now the BGP-reflection functor

F+
k
: rep(H ) ! rep(si (H )); (F+

k
M )i =

(
Mi if i ¤ k;

Ker(Mk;in) if i = k:

We can moreover define in this situation dually the left adjoint F �
k
: rep(sk(H )) !

rep(H ). Note that k is a source of Qı(C; skΩ). See Geiß, Leclerc, and Schröer [ibid.,
Sec. 9.2] for more details. We observe that the definitions imply easily the following:

Lemma 3.5. If k is a sink forΩ andM is a locally freeH -module which has no direct sum-
mand isomorphic to Ek and F+

k
(M ) is locally free, then rank(F+

k
M ) = sk(rank(M )).

The proof of Geiß, Leclerc, and Schröer [ibid., Prop. 9.6] implies the following, less
obvious result:

Lemma 3.6. Suppose that k is a sink for Ω and M a locally free rigid H -module, with
no direct summand isomorphic to Ek , then HomH (M;Ek) = 0.

We can interpret F+
k

as a kind of APR-tilting functor Auslander, Platzeck, and Reiten
[1979]. See Geiß, Leclerc, and Schröer [2017a, Sec. 9.3] for a proof of this non-trivial
result.

Theorem 3.7. Let k be a sink ofQı(C;Ω). ThenX := HH/Hek ˚��Hek is a classical
tilting module forH . With B := EndH (X)op we have an equivalence S : rep(sk(H )) !

rep(B) such that the functors S ı F+
l

and HomH (X;�) are isomorphic.

Standard tilting theory arguments and Auslander–Reiten theory, together with
Lemma 3.5 and Lemma 3.6 yield the following important consequence:

Corollary 3.8. Let k 2 I be a sink for Ω and M a locally free rigid H -module, then
F+

k
(M ) is a rigid, locally free sk(H )-module.

Consider the algebra automorphism ofH , which is defined bymultiplying the non-loop
arrows of Q(C;Ω) by �1. It induces the so called twist automorphism T : rep(H ) !

rep(H ). Moreover, let sin � � � si2si1 be the Coxeter element for (C;Ω), corresponding to
the +-admissible sequence i1; i2; : : : ; in, see Section 2.3. Now we can define the Coxeter
functor

C+ := F+
in

ı � � � ı F+
i2

ı F+
i1
: rep(H ) ! rep(H ):
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Following ideas of Gabriel [1980, Sec. 5], by a careful comparison of the definitions
of the reflection functors and Auslander–Reiten translate, we obtain the following result.
See Geiß, Leclerc, and Schröer [2017a, Sec. 10] for the lengthy proof.

Theorem 3.9. With theH -H -bimodule Y := Ext1H (DH;H ) we have an isomorphism of
endofunctors of rep(H ):

HomH (Y;�) Š T ı C+

IfM is locally free, we have functorial isomorphisms

�H (M ) Š HomH (Y;M ) and ��
HM Š Y ˝H M:

In particular, in this case the Coxeter functor C+ and the Auslander–Reiten translate �
may be identified up to the twist T .

It is not true in general that the Auslander–Reiten translate of a locally freeH -module is
again locally free. In Geiß, Leclerc, and Schröer [ibid., pp. 13.6–13.8] several examples of
this behavior are documented. This motivates the following definition. AH -moduleM is
� -locally free if �kM is locally free for all k 2 Z. In particular, rigid locally free modules
are � -locally free. We call an indecomposableH -module preprojective, resp. preinjective,
if it is of the form ��k(Hei ) resp. �k(DeiH ) for some k 2 N0 and i 2 I . Thus, these
modules are particular cases of rigid � -locally free modules.

3.3 Dynkin type. By combining the findings of previous section with standard Aus-
lander–Reiten theory and the characterization of Dynkin diagrams in Proposition 2.1, we
obtain the following analog of Gabriel’s theorem, see Geiß, Leclerc, and Schröer [ibid.,
Thm. 11.10].

Theorem 3.10. LetH = HK(C;D;Ω) be as above. There are only finitely many isomor-
phism classes of indecomposable, � -locally freeH -modules if and only if C is of Dynkin
type. In this case the mapM 7! rank(M ) induces a bijection between the isomorphism
classes of indecomposable, � -locally free modules and the positive roots ∆+(C ). More-
over, all these modules are preprojective and preinjective.

Note however, that even for C of Dynkin type, the algebra H (C;D;Ω) is in most
cases not of finite representation type, see Geiß, Leclerc, and Schröer [ibid., Prop. 13.1]
for details.

Let C be a symmetrizable Cartan matrix of Dynkin type and i = (i1; i2; : : : ; ir) a re-
duced expression for the longest elementw0 of the Weyl groupW , which is+-admissible
for the orientationΩ. With the notation of (2.1) we abbreviate ˇj = ˇi;j for j = 1; : : : ; r ,
and recall that this gives a complete list of the positive roots. By Theorem 3.10 we have
for each j a unique, locally free, indecomposable and rigid representation M (ˇj ) with
rank(M (ˇj )) = ˇj .
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Proposition 3.11. With the above notations we have

hˇi ; ˇj iC;D;Ω =

(
dimHomH (M (ˇi );M (ˇj )) if i � j;

� dimExt1H (M (ˇi );M (ˇj )) if i > j:

In particular, HomH (M (ˇi );M (ˇj )) = 0 if i > j and Ext1H (M (ˇi );M (ˇj )) = 0 if
i � j .

In fact, by Theorem 3.7 and equation (2.3) we may assume that either i = 1 or j = 1.
In any caseM (ˇ1) = Ei1 is projective. In the first case we have Ext1H (E1;M (ˇj )) = 0.
In the second case we have HomH (M (ˇi ); Ei1) = 0 by Lemma 3.6. Now our claim
follows by Corollary 3.3.

The next result is an easy adaptation of similar results by Dlab and Ringel [1979] for
species. The proof uses heavily Proposition 3.11 and reflection functors. This version was
worked out in Omlor’s Masters thesis Omlor [2016], see also Geiß, Leclerc, and Schröer
[2017d, Sec. 5].

Proposition 3.12. With the same setup as above let k 2 f1; 2; : : : ; rg and
m = (m1; : : : ; mr) 2 Nr such that ˇk =

Pr
j=1mjˇj and mk = 0. Then M (ˇk)

admits a non-trivial filtration by locally free submodules

0 =M(0) � M(1) � � � � � M(r) =M (ˇk)

such thatM(j )/M(j �1) Š M (ˇj )
mj for j = 1; 2; : : : ; r . It follows, thatM (ˇk) has no

filtration by locally free submodules

0 =M (r)
� M (r�1)

� � � � � M (0) =M (ˇk);

such that rank(M (j �1)/M (j )) = mjˇj for j = 1; 2; : : : ; r .

3.4 Generalized preprojective algebras. Let Q = Q(C ) be the quiver which is ob-
tained from Q(C;Ω) by inserting for each (i; j ) 2 Ω additional gij arrows ˛(1)j i ; : : : ;

˛
(gij )

j i from i to j , and consider the potential

W =
X

(i;j )2Ω

gijX
k=1

(˛
(k)
j i ˛

(k)
ij �

�cij /gij

j � ˛
(k)
ij ˛

(k)
j i �

�cji/gij

i ):

The choice ofΩ only affects the signs of the summands ofW . Recall that for a cyclic path
˛1˛2 � � �˛l inQ by definition

@cyc˛ (˛1˛2 � � �˛l) :=
X

i2fj 2[1;l]j˛j =˛g

˛i+1˛i+2 � � �˛l˛1˛2 � � �˛i�1:
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The generalized preprojective algebra ofH is

Π = Π(Q;D) := KQ/h@cyc˛ (W ) j˛2Q1
; �

ci

i ji2I i:

It is easy to see that Π does not depend on the choice of Ω, up to isomorphism. Notice
that for (i; j ) 2 Ω we have

@
cyc
˛
(k)

ji

(W ) = ˛
(k)
ij �

�cij /gij

j � �
�cji/gij

i ˛
(k)
ij :

It follows, that for any orientation Ω of C we can equip ΠK(C;D) with a N0-grading by
assigning each arrow ˛(k)j i with (i; j ) 2 Ω degree 1 and the remaining arrows get degree
0. We write then

ΠK(C;D) =

1M
i=0

Π(C;D;Ω)i ;

and observe that ΠK(C;D;Ω)0 = HK(C;D;Ω). We obtain from Theorem 3.9 the fol-
lowing alternative description of our generalized preprojective algebra, which justifies its
name:

Proposition 3.13. Let C be a symmetrizable Cartan matrix with symmetrizer D, and Ω

an orientation for C . Then, withH = HK(C;D;Ω) we have

Π(C;D;Ω)1 Š Ext1H (DH;H )

as anH -H -bimodule, moreover

Π(C;D) Š TH (Ext1H (DH;H )) and HΠ(C;D) Š
M

i2I;k2N0

��k
H Hei :

Here the first isomorphism is an isomorphism of K-algebras, and the second one of H -
modules.

Similarly to Proposition 3.1 we have the following straightforward description of our
generalized preprojective algebra as a tensor algebra modulo canonical relations Geiß,
Leclerc, and Schröer [2017a, Prop. 6.1], which yields a standard bimodule resolution.
See Geiß, Leclerc, and Schröer [ibid., Sec. 12.1] for the proof, where we closely fol-
low Crawley-Boevey and Shaw [2006, Lem. 3.1]. See also Brenner, Butler, and King
[2002, Sec. 4].

Proposition 3.14. LetC be a symmetrizable, connectedCartanmatrix andΠ := ΠK(C;D).
WithB := ˚(i;j )2Ω(iHj ˚jHi )we haveΠ Š TS (B)/h@

cyc
�i

(W ) ji2I i, where we interpret
@
cyc
�i

(W ) 2 B ˝S B in the obvious way. We obtain an exact sequence of Π-Π-bimodules

(3.4) Π ˝S Π
f
�! Π ˝S B ˝S Π

g
�! Π ˝S Π

h
�! Π ! 0;
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where

f (ei ˝ ei ) = @cyc�i
(W ) ˝ ei + ei ˝ @cyc�i

(W ); g(ei ˝ b ˝ ej ) = eib ˝ ej � ei ˝ bej

and h is the multiplication map. Moreover Ker(f ) Š HomΠ(DΠ;Π) if C is of Dynkin
type, otherwise f is injective.

Wecollect below several consequences, which can be foundwith detailed proofs inGeiß,
Leclerc, and Schröer [2017a, Sec. 12.2]. They illustrate that locally free Π-modules be-
have in many aspects like modules over classical preprojective algebras. Note that part (b)
is an extension of Crawley-Boevey’s remarkable formula Crawley-Boevey [2000, Lem. 1]

Corollary 3.15. LetC be a connected, symmetrizable Cartan matrix, andΠ = ΠK(C;D)

as above. Moreover, letM and N be locally free Π-modules.

(a) If N finite-dimensional, we have a functorial isomorphism

Ext1Π(M;N ) Š D Ext1Π(N;M ):

(b) IfM and N are finite-dimensional, we have

dimExt1Π(M;N ) = dimHomΠ(M;N )+dimHomΠ(N;M )�(rank(M ); rank(N ))C;D :

(c) If C is not of Dynkin type, proj: dim(M ) � 2.

(d) IfC is of Dynkin type,Π is a finite-dimensional, self-injective algebra and repl:f:(Π)

is a 2-Calabi-Yau Frobenius category.

Similar to Corollary 3.2 (b) the complex (3.4) yields (the beginning of) a functorial
projective resolution for all locally free Π-modules. Thus (a), (b) and (c) follow by ex-
ploring the symmetry of the above complex. For (d) we note that in this case Π is finite-
dimensional and ΠΠ is a locally free module by Theorem 3.10 and Proposition 3.13.

4 Representation varieties

4.1 Notation. Let K be now an algebraically closed field. For Q a quiver and �j 2

etj (KQ�2)esj
for j = 1; 2; : : : ; l we set A = KQ/h�1; : : : ; �li. Note, that every finite

dimensional basic K-algebra is of this form. We abbreviateQ0 = I and set for d 2 NI
0 :

Rep(KQ; d) := �a2Q1
HomK(Kd(sa); Kd(ta)) and GLd := �i2I GLd(i)(K):

The reductive algebraic group GLd acts on Rep(KQ;d) by conjugation, and the GLd-
orbits correspond bijectively to the isoclasses of K-representations of Q. For M 2
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Rep(KQ; d) and � 2 eiKQej we can define M (�) 2 HomK(Kd(j ); Kd(i)) in a natu-
ral way. We have then the GLd-stable, Zariski closed subset

Rep(A;d) := fM 2 Rep(KQ; d) j M (�i ) = 0 for j = 1; 2; : : : ; lg:

TheGLd-orbits on Rep(A;d) correspond now to the isoclasses of representations ofAwith
dimension vector d. It is in general a hopeless task to describe the irreducible components
of the affine variety Rep(A;d).

4.2 Varieties of locally free modules for H . The set of locally free representations
of H = HK(C;D;Ω) is relatively easy to describe. Clearly, for each locally free M 2

rep(H ) we have dim(M ) = D � rank(M ).

Proposition 4.1. For r 2 NI we have the open subset

Repl:f:(H; r) := fM 2 rep(H;D � r) j M is locally freeg � Rep(H;D � r);

which is irreducible and smooth with dim repl:f:(H; r) = dimGLD�r �
1
2
(r; r)C;D .

In fact, it is well known that the modules of projective dimension at most 1 form always
an open subset of rep(A;d). One verifies next that Repl:f:(H; r) is a vector bundle over
the GLD�r-orbit O(˚i2IE

r(i)
i ), with the fibers isomorphic to the vector space H (r) :=

H (Er), see (3.2).
This yields the remaining claims. Note that the (usually) non-reductive algebraic group

Gr := �i2I GLr(i)(Hi ) = AutS (˚i2IE
r(i)
i )

acts on the affine spaceH (r) naturally by conjugation, and the orbits are in bijection with
isoclasses of locally freeH -modules with rank vector r.

As a consequence, ifM andN are rigid, locally freemoduleswith rank(M ) = rank(N ),
then alreadyM Š N , since the orbits of rigid modules are open.

4.3 Varieties of E-filtered modules for Π. Recall the description of ΠK(C;D) in
Proposition 3.14. A H := TS (B)-module M is given by a S -module M = ˚i2IMi

such thatMi is aHi -module for i 2 I , together with an element (Mij )(i;j )2Ω of

H (M) :=
M

(i;j )2Ω

HomHi
(iHj ˝Hj

Mj ;Mi );
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where Ω = Ω \ Ωop. Extending somewhat (3.3) we set

Mi;in :=

0@ M
j 2Ω(i;�)

sgn(i; j )Mij

1A :
M

j 2Ω(i;�)

iHj ˝Hj
Mj ! Mi and

Mi;out :=

0@ Y
j 2Ω(�;i)

M_
j i

1A : Mi !
M

j 2Ω(�;i)

iMj ˝Hj
Mj :

We define now for any S -moduleM, as above, the affine variety

Repfib(Π;M) := f(Mij )(i;j )2Ω 2 H (M) j Mk;in ıMk;out = 0 for all k 2 I g;

and observe that the orbits of the, usually non-reductive, group AutS (M) on Repfib(Π;M)

correspond to the isoclasses of possible structures of representations of Π onM, since the
conditionMk;in ıMk;out corresponds to the relation @

cyc
�k

(W ).
Similarly to the previous section we can define the open subset

Repl:f:(Π; r) := fM 2 Rep(Π;D � r) j M locally freeg � Rep(Π;D � r);

and observe that Repl:f:(Π; r) is a fiber bundle over the GLD�r-orbit O(Er), with typical
fiber Repfib(Π;Er). Finally we define for any projective S -module M the constructible
subset

Π(M) = f(Mij )(i;j )2Ω 2 Repfib(Π;M) j ((Mij )ij ;M) is E-filteredg:

Here, a Π-module X is E-filtered if it admits a flag of submodules 0 = X(0) � X(1) �

� � � � X(l) = X , such that for all k we have X(k)/X(k�1) Š Eik for some i1; i2; : : : ; il 2

I . Note that for C symmetric andD trivial this specializes to Lusztig’s notion of a nilpo-
tent representation for the preprojective algebra of a quiver. However, if C is not symmet-
ric even in the Dynkin case there exist finite-dimensional, locally free Π-modules which
are not E-filtered, see Geiß, Leclerc, and Schröer [2017c, Sec. 8.2.2] for an example.

We consider Π(r) with the Zariski topology and call it by a slight abuse of notation a
variety. In any case, it makes sense to speak of the dimension ofΠ(r) and we can consider
the set

Irr(Π(r))max

of top-dimensional irreducible components of Π(r).

Theorem 4.2. Let C be a symmetrizable generalized Cartan matrix with symmetrizerD
and H = HK(C;D;Ω);Π = ΠK(C;D) for an algebraically closed field K. For the
spaces Π(r) of E-filtered representations of Π we have
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(a) dimΠ(r) = dimH (r) =
X
i2I

cir(i)2 �
1

2
(r; r)C;D for all r 2 NI .

(b) The set B :=
`

r2NI Irr(Π(r))max has a natural structure of a crystal of type
BC (�1) in the sense of Kashiwara. In particular, we have

jIrr(Π(r))max
j = dimU (n)r;

where U (n) the universal enveloping algebra of the positive part n of the Kac-
Moody Lie algebra g(C ).

We will sketch in the next two sections a proof of these two statements, which are the
main result of Geiß, Leclerc, and Schröer [2017c].

4.4 Bundle constructions. The bundle construction in this section is crucial. It is our
version Geiß, Leclerc, and Schröer [ibid., Sec. 3] of Lusztig’s construction Lusztig [1991,
Sec. 12].

For m 2 N we denote by Pm the set of sequences of integers p = (p1; p2; : : : ; pt )

with m � p1 � p2 � � � � � pt � 0. Obviously Pck
parametrizes the isoclasses of

Hk-modules, and we defineH p
k
= ˚t

j=1Hk/(�
pj

k
). For k 2 I andM 2 rep(Π) we set

fack(M ) :=Mk/ Im(Mk;in) and subk(M ) := Ker(Mk;out):

With this we can define

Π(M)k;p = fM 2 Π(M) j fack(M ) Š H
p
k

g and
Π(M)k;p = fM 2 Π(M) j subk(M ) Š H

p
k

g

for p 2 Pck
. We abbreviate Π(M)k;m = Π(M)k;cm

k . In what follows, we will focus our
exposition on the varieties of the formΠ(M)k;p, however one should be aware that similar
statements and constructions hold for the dual versions Π(M)k;p.

For an E-filtered representation M 2 rep(Π) there exists always a k 2 I such that
fack(M ), viewed as an Hk-module, has a non-trivial free summand. It is also important
to observe that Π(M)k;0 is an open subset of Π(M).

Fix now k 2 I , let M be a projective S -module and U be a proper, projective S -
submodule of M with Uj = Mj for all j ¤ k. Thus, M/U Š Er

k
for some r 2 N+,

and can choose a (free) complement Tk , such that Mk = Uk ˚ Tk . For partitions p =

(cr
k
; q1; q2; : : : ; qt ) and q = (q1; : : : ; qt ) in Pck

we set moreover Hominj
S (U;M) := ff 2

HomS (U;M ) j f injectiveg, and define

Y k;p;q := f(U;M; f ) 2 Π(U)k;q
� Repfib(Π;M) � Hominj

S (U;M) j f 2 HomΠ(U;M )g:
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Note that for (U;M; f ) 2 Y k;p;q we have in fact M 2 Π(M)k;p, and that the group
AutS (U) acts freely on Y k;p;q via

g � (U;M; f ) := ((giUij (id˝g�1
j ))(i;j )2Ω; M; g � f �1):

Lemma 4.3. Consider in the above situation the diagram

Y k;p;q

p0

vvmmm
mmm

mmm
mmm

m
p00

$$II
III

III
II

Π(U)k;q � Hominj
S (U;M) Π(M)k;p

with p0(U;M; f ) = (U; f ) and p00(U;M; f ) =M . Then the following holds:

(a) p0 is a vector bundle of rank m, where

m =
X

j 2Ω(�;k)

dimK HomK(Tk ; kMj ˝Hj
Mj ) � dimK HomHk

(Tk ; Im(Uk;in)):

(b) p00 is a fiber bundle with smooth irreducible fibers isomorphic to

AutS (U) � GrTk

Hk
(H

p
k
);

where GrTk

Hk
(H

p
k
) := Homsurj

Hk
(H

p
k
; Tk)/AutHk

(Tk).

Corollary 4.4. In the situation of Lemma 4.3, the correspondence

Z0
7! p00(p0�1

(Z0
� Hominj

S (U;M)) := Z00

induces a bijection between the sets of irreducible components Irr(Π(U )k;q) and
Irr(Π(M)k;p). Moreover we have then

dimZ00
� dimZ0 = dimH (M) � dim(U):

Note, that this implies already part (a) of Theorem 4.2. In fact the Corollary allows us
to conclude by induction that dimΠ(r) � dimRepfib(H; r). On the other hand, we can
identifyH (r) with an irreducible component of Π(r).

4.5 Crystals. ForM 2 rep(Π) and j 2 I there are two canonical short exact sequences

0 ! Kj (M ) ! M ! facj (M ) ! 0 and 0 ! subj (M ) ! M ! Cj (M ) ! 0:
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We define recursively thatM is a crystal module if facj (M ) and subj (M ) are locally free
for all j 2 I , andKj (M ) as well as Cj (M ) are crystal modules for all j 2 I . Clearly, if
M is a crystal module, for all j 2 I there exist 'j (M ); '�

j (M ) 2 N such that

(4.1) subj (M ) Š E
'j (M )

j and facj (M ) Š E
'�

j
(M )

j :

Note moreover, that crystal modules are by construction E-filtered. It is now easy to see
that for all projective S -modulesM the set

Π(M)cr := fM 2 Π(M) j M is a crystal representationg

is a constructible subset of Π(M). The following result from Geiß, Leclerc, and Schröer
[2017c, Sec. 4] is crucial for the proof of Theorem 4.2 (b). It has no counterpart for the
case of trivial symmetrizers.

Proposition 4.5. For each projective S -moduleM the set Π(M)cr is a dense and equidi-
mensional subset of the union of all top dimensional irreducible components of Π(M).

This allows us in particular to define for all Z 2 Irr(Π(M))max and i 2 I the value
'i (Z), see (4.1), such that for a dense open subset U � Z we have 'i (M ) = 'i (Z) for
allM 2 U . Similarly, we can define '�

i (Z).
Next we set

Irr(Π(r)i;p)max := fZ 2 Irr(Π(r)i;p) j dimZ = dimH (r)g

for i 2 I and p 2 N0, and similarly Irr(Π(r)i;p . By Lemma 4.3 we get a bijection

e�
i (r; p) : Irr(Π(r)i;p)max

! Irr(Π(r+ ˛i )
i;p+1)max; Z 7! p00(p0�1(Z � J0))

Similarly we obtain a bijection

ei (r; p) : Irr(Π(r)i;p)
max

! Irr(Π(r+ ˛i )i;p+1)
max:

This allows us to define for all r 2 NI the operators

ẽi : Irr(Π(r))max
! Irr(Π(r+ ˛i )); Z 7! ei (r; 'i (Z))(Zı);

where Zı 2 Irr(Π(r)i;'i (Z))
max is the unique irreducible component with Zı = Z. Simi-

larly, we can define the operators ẽ�
i in terms of the bijections e�

i (r; p). We define now

(4.2) B :=
a
r2N0

Irr(Π(r))max and wt : B ! ZI ; Z 7! rank(Z):

It is easy to see that (B;wt; (ẽi ; 'i )i2I ) is special case of a lowest weight crystal in the
sense of Kashiwara [1995, Sec. 7.2], namely we have
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• 'i (ẽi (b)) = 'i (b) + 1; wt(ẽi (b)) = wt(b) + ˛i ,

• with fb�g := Irr(Π(0))max, for each b 2 B there exists a sequence i1; : : : ; il of
elements of I with ẽi1 ẽi2 � � � ẽil (b�) = b,

• 'i (b) = 0 implies b 62 Im(ẽi ).

Similarly (B;wt; (ẽ�
i ; '

�
i )i2I ) is a lowest weight crystal with the same lowest weight ele-

ment b�.

Lemma 4.6. The above defined operators and functions on B fulfill additionally the fol-
lowing conditions:

(a) If i 6= j , then ẽ�
i ẽj (b) = ẽj ẽ

�
i (b).

(b) For all b 2 B we have 'i (b) + '
�
i (b) � hwt(b); ˛i i � 0.

(c) If 'i (b) + '
�
i (b) � hwt(b); ˛i i = 0, then ẽi (b) = ẽ�

i (b).

(d) If 'i (b) + '
�
i (b) � hwt(b); ˛i i � 1, then 'i (ẽ

�
i (b)) = 'i (b) and

'�
i (ẽi (b)) = '�

i (b).

(e) If 'i (b) + '
�
i (b) � hwt(b); ˛i i � 2, then ẽi ẽ

�
i (b) = ẽ�

i ẽi (b).

The proof of this Lemma in Geiß, Leclerc, and Schröer [2017c, Sec. 5.6] uses the
homological features of locally free Π-modules from Corollary 3.15 in an essential way.
Note that here, by definition, hr; ˛i i = (C � r)i .

Altogether this means, by a criterion of Kashiwara and Saito [1997, Prop. 3.2.3], which
we use here in a reformulation due to Tingley andWebster [2016, Prop. 1.4], that (B;wt; (ẽi ; 'i )i2I ) Š

(B;wt; (ẽ�
i ; '

�
i )i2I ) Š BC (�1). Here, BC (�1) is the crystal graph of the quantum

group Uq(n(C )). This implies part (b) of Theorem 4.2.

Remark 4.7. We did not give here Kashiwara’s general definition of a crystal graph, or
that of a lowest weight crystal associated to a dominant integral weight. The reason is
that, due to limitations of space, we can not to set up the, somehow unwieldy, notations
for the integral weights of a Kac-Moody Lie algebra. The interested reader can look up
the relevant definitions, in a form which is compatible with these notes, in Geiß, Leclerc,
and Schröer [2017c, Sec. 5.1, 5.2].

5 Algebras of constructible functions

5.1 Constructible functions and Euler characteristic. Recall that the topological Eu-
ler characteristic, defined in terms of singular cohomology with compact support and ra-
tional coefficients, defines a ring homomorphism from the Grothendieck ring of complex
varieties to the integers.
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By definition, a constructible function f : X ! C on a complex algebraic variety X
has finite image, and f �1(c) � C is a constructible set for all c 2 C. By the above
remark it makes sense to defineZ

x2X

fd� :=
X
c2C

c �(f �1(c)):

If ' : X ! Y is a morphism of varieties, we can define the push forward of constructible
functions via ('�(f ))(y) :=

R
x2'�1(y) fd�. This is functorial in the sense that ( ı

')�(f ) =  �('�(f )) for  : Y ! Z an other morphism, by result of MacPherson
[1974, Prop. 1]. See also Joyce [2006, Sec. 3] for a careful discussion.

5.2 Convolution algebras as enveloping algebras. LetA = CQ as in Section 4.1. We
consider for a dimension vector d 2 NI the vector space F (A)d of constructible functions
f : Rep(A;d) ! C which are constant on GLd(C)-orbits and set

F (A) :=
M
d2Ni

F (A)d:

Following Lusztig [1991] F (A) has the structure of a unitary, graded associative algebra.
The multiplication is defined by

(f � g)(X) =

Z
U 2GrAd (X)

f (U )g(X/U )d�;

where f 2 F (A)d, g 2 F (A)e,X 2 Rep(A;d+e), and GrAd (X) denotes the quiver Grass-
mannian of d-dimensional subrepresentations ofX . The associativity of themultiplication
follows easily from the functoriality of the push-forward of constructible functions. We
have an algebra homomorphism

(5.1) c : F (A) ! F (A � A); with (c(f ))(X; Y ) = f (X ˚ Y );

see for example Geiß, Leclerc, and Schröer [2016, Sec. 4.3]. The proof depends crucially
on the Białynicki-Birula result about the fixpoints of algebraic torus actions
Białynicki-Birula [1973, Cor. 2]. This fails for example over the real numbers.

Remark 5.1. If X = (Xj )j 2J is a family of indecomposable representations ofA, we de-
fine the characteristic functions �j 2 FdimXj

(A) of theGLdimXj
-orbitO(Xj ) � Rep(A; dimXj )

and consider the graded subalgebra M(A) = MX(A) of F (A), which is generated by
the �j . Clearly, the homogeneous components of M are finite dimensional. If j =
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(j1; j2; : : : ; jl) is a sequence of elements of j we have by the definition of the multi-
plication

�j1 � �jl
� � � � � �jl

(X) = �(FlAX;j(M ));

where FlAX;j(M ) denotes the variety of all flags of submodules

0 =M (0)
� M (1)

� � � � � M (l) =M

withM (k)/M (k�1) Š Xjk
for k = 1; 2; : : : ; l . In particular, ifM has no filtration with

all factors isomorphic to someXj , we have f (M ) = 0 for all f 2 M(A)dimM . See Geiß,
Leclerc, and Schröer [2016, Lemma 4.2].

Lemma5.2. Themorphism c from (5.1) induces a comultiplication∆: M(A) ! M(A)˝

M(A) with∆(�j ) = �j ˝1+1˝�j for all j . With this structure M is a cocommutative
Hopf algebra, which is isomorphic to the enveloping algebraU (P (M)) of the Lie algebra
of its primitive elements P (M).

See Geiß, Leclerc, and Schröer [ibid., Prop. 4.5] for a proof. Recall, that an element
x of a Hopf algebra is called primitive iff ∆(x) = x ˝ 1 + 1 ˝ x. It is straightforward
to check that the primitive elements of a Hopf algebra form a Lie algebra under the usual
commutator [x; y] = xy � yx.

Remark 5.3. It is important to observe that, by the definition of the comultiplication, the
support of any primitive element of M consists of indecomposable, X-filtered modules.
In fact, for f 2 P (M) and M;N 2 rep(A) we have f (M ˚ N ) = cf (M;N ) =

(f ˝ 1 + 1 ˝ f )(M;N ). See Geiß, Leclerc, and Schröer [ibid., Lem. 4.6].

We are here interested in the two special cases when A = HC(C;D;Ω) or A =

ΠC(C;D) and X = E = (Ei )i2I . Note that by Remark 5.1 only locally free modules
can appear in the support of any f 2 ME(H ). Similarly, the support of any f 2 ME(Π)

consists only of E-filtered modules. For this reason we will consider in what follows, both
ME(H ) and ME(Π) as graded by rank vectors. In other words, from now on

M(H ) := ME(H ) =
M
r2NI

Mr(H ) and M(Π) = ME(Π) =
M
r2NI

Mr(Π);

where we may consider the the elements of Mr(H ) := ME(H )D�r as constructible func-
tions on H (r). Similarly we may consider the elements of Mr(Π) := ME(Π)D�r as
constructible functions on Π(r).

5.3 ME(H ) and a dual PBW-basis in the Dynkin case. We have the following basic
result from Geiß, Leclerc, and Schröer [ibid., Cor. 4.10].
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Proposition 5.4. Let C be a symmetrizable Cartan matrix, D a symmetrizer and Ω an
orientation for C . With H = HC(C;D;Ω) we have an surjective Hopf algebra homo-
morphism

�H : U (n(C )) ! ME(H ) defined by ei 7! �i (i 2 I ):

The main point is to show that for the �i (i 2 I ) fulfill the Serre relations (2.4). More
precisely we need that the primitive elements

�ij := (ad �i )
1�cij (�j ) 2 P (M(H ))(1�cij )˛i+˛j

(i ¤ j )

actually vanish. For this it is enough, by Remark 5.3, to show that there exists no inde-
composable, locally freeH -moduleM with rank(M ) = (1� cij )˛i +˛j . This is carried
out in the proof of Geiß, Leclerc, and Schröer [2016, Prop. 4.9].

The proof of the following result, which is Geiß, Leclerc, and Schröer [ibid., Thm. 6.1],
occupies the major part of that paper.

Proposition 5.5. Let C be a symmetrizable Cartan matrix of Dynkin type, D a sym-
metrizer and Ω an orientation for C and H = HC(C;D;Ω). Then for each positive
root ˇ 2 ∆+ there exists a primitive element �ˇ 2 P (M(H ))ˇ with �ˇ (M (ˇ)) = 1.

The idea of the proof is as follows: By Geiß, Leclerc, and Schröer [2017b, Cor. 1.3]
for any ˇ 2 ∆+(C ) and any sequence i in I , the Euler characteristic �(FlHE;i(M (ˇ))) is
independent of the choice of the symmetrizerD. So, we may assume that C is connected
and D minimal. In the symmetric (quiver) case, our claim follows now by Schofield’s
result Schofield [n.d.], who showed that in this case P (M(H )) can be identified with
n(C ). By Gabriel’s theorem in this case the �ˇ are the characteristic function of the GLˇ -
orbit ofM (ˇ).

In the remaining cases, we construct the �ˇ by induction on the height of ˇ in terms of
(iterated) commutators of “smaller” �
 . Note however that in this case this construction
is delicate since the support of the �ˇ may contain several indecomposable, locally free
modules. See for example Geiß, Leclerc, and Schröer [2017d, Sec. 13.2(d)].

Since in the Dynkin case all weight spaces of n(C ) are one-dimensional, the main
result of Geiß, Leclerc, and Schröer [2016], Theorem 1.1 (ii), follows easily:

Theorem 5.6. If C is of Dynkin type, the Hopf algebra homomorphism �H is an isomor-
phism.

Recall the notation used in Proposition 3.11. In particular, i is a reduced expression
for the longest element w0 2 W (C ), which is +-adapted to Ω, and ˇk = ˇi;k for k =

1; 2; : : : ; r . Let us abbreviate

�m :=
1

mr ! � � �m1!
�

mr

ˇr
� � � � � �

m1

ˇ1
and M (m) := ˚

r
k=1M (ˇk)

mk
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for m = (m1; m2; : : : ; mr) 2 Nr . By the above results (�m)m2Nr is a normalized PBW-
basis of M(H ) Š U (n(C )) in the Dynkin case.

Moreover we consider the graded dual M(H )� of M(H ), and the evaluation form
ıM (m) 2 M(H )� with ım(f ) := f (M (m)). By the definition of the comultiplication in
M(H ), the graded dual is a commutative Hopf algebra, and ıM (m) � ıM (n) = ıM (m+n).
Our next result is essentially Geiß, Leclerc, and Schröer [2017d, Thm. 1.3].

Proposition 5.7. With the above notation we have

ıM (m)(�n) = ım;n for allm;n 2 Nr :

Thus (ıM (m))m2Nr is a basis of M(H )� which is dual to the PBW-basis (�m)m2Nr , and
M(H )� = C[ıM (ˇ1); : : : ; ıM (ˇr )].

In the quiver case (with trivial symmetrizer) this result is easy to prove, since with
Gabriel’s theorem and Proposition 3.11 follows quickly that �r is the characteristic func-
tion of the orbit of M (r). However, in our more general setting, already the �ˇk

are
usually not the characteristic function ofM (ˇk), as we observed above. The more sophis-
ticated Proposition 3.12 implies, by the definition of the multiplication in ME(H ), that
�m(M (ˇk)) = 0 if m ¤ ek , the k-th unit vector. The remaining claims follow now by
formal arguments, see the proof of Geiß, Leclerc, and Schröer [ibid., Thm. 6.1].

Remark 5.8. For M 2 repl:f:(H ) and e 2 NI we we introduce the quasi-projective
variety

GrlfHe (M ) := fU � M j U locally free submodule and rank(U ) = eg;

which is an open subset of the usual quiver Grassmannian GrHD�e(M ). With this notation
we can define

FM :=
X
e2NI

�(GrlfHe (M ))Y e
2 Z[Y1; : : : ; Yn] and gM := �R � rank(M );

where R is the matrix introduced in Corollary 3.4. By the main result of Geiß, Leclerc,
and Schröer [ibid.] this yields for M = M (ˇ) with ˇ 2 ∆+(C ) the F -polynomial and
g-vector, in the sense of Fomin and Zelevinsky [2007], for all cluster variables of a finite
type cluster algebra Fomin and Zelevinsky [2003] of type C with respect to an acyclic
seed defined by Ω. The proof is based on Proposition 5.7, and on the description by Yang
and Zelevinsky [2008] of the F -polynomial of a cluster variable in terms of generalized
minors.
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5.4 Semicanonical functions and the support conjecture for ME(Π). Recall, that
we abbreviate Π = ΠC(C;D) for a symmetrizable Cartan matrix C with symmetrizerD.
By definition M(Π) = ME(Π) � F (Π) is generated by the functions �̃i 2 M˛i

(Π) for
i 2 I , where �̃i is the characteristic function of the orbit ofEi , viewed as aΠ-module. We
use here the notation �̃i rather than �i to remind us that the multiplication is now defined
in terms of constructible functions on a larger space. More precisely, we have for each
r 2 NI an injective AutS (Er)-equivariant, injective morphism of varieties

�r : H (r) ! Π(d):

These morphisms induce, via restriction, a surjective morphism of graded Hopf algebras

��Ω : M(Π) ! M(H ); �̃i 7! �i for i 2 I:

The proof of the following result is, almost verbatim, the same induction argument as the
one used by Lusztig [2000], see Geiß, Leclerc, and Schröer [2017c, Lem. 7.1].

Lemma 5.9. Let r 2 NI . For each Z 2 Irr(Π(r))max there exists an open dense subset
UZ � Z and a function fZ 2 Mr(Π) such that for Z;Z0 2 Irr(Π(r))max and any
u0 2 UZ0 we have

fZ(u0) = ıZ;Z0 :

In particular, the functions (fZ)Z2Irr(Π(r))max are linearly independent in Mr(Π).

Note however, that the result is not trivial since we claim that the fZ 2 Me(Π) and
not in the much bigger space F (Π)C �r. On the other hand, it is important to observe that
the inductive construction of the semicanonical functions fZ involves some choices.

As in Section 5.3, we define now for each i ¤ j in I the primitive element

�̃ij = (ad �̃i )
1�cij (�̃j ) 2 P (M(Π)):

Unfortunately, we have the following result, which is a combination of Lemma 6.1, Propo-
sition 6.2 and Lemma 6.3 from Geiß, Leclerc, and Schröer [ibid.].

Lemma 5.10. Suppose with the above notations that cij < 0.

(a) If ci � 2 then there exists an indecomposable, Π = Π(C;D)-module X = X(ij )

with rank(X(ij ) = (1 � cij )˛i + ˛j and �̃ij (X(ij )) ¤ 0.

(b) IfM is crystal module with rank(M ) = (1 � cij )˛i + ˛j we have �̃ij (M ) = 0.

This leads us to define in M(Π) the ideal I, which is generated by the homogeneous
elements �̃ij for i; j 2 I with i ¤ j . We set moreover

M(Π) = M(Π)/I andf̄ := f + I (f 2 M(Π)):
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Thus, by Proposition 5.4, the morphism ��Ω induces a surjective algebra homomorphism
�̄�Ω : M(Π) ! M(H ). On the other hand, we can define for each r 2 NI the space of
functions with non maximal support

Sr := ff 2 Mr(Π) j dim supp(f ) < dimH (r)g and S := ˚r2NI Sr:

Recall that dimΠ(r) = dimH (r). Proposition 4.5 and Lemma 5.10 imply at least that
�̃ij 2 S. In view of Lemma 5.9 and Theorem 4.2 it is easy to show the following result:

Proposition 5.11. The following three conditions are equivalent:

(1) I � S; (2) I = S; (3) S is an ideal.

In this case the surjective algebra homomorphism

� : U (n) ! M(Π); ei 7! �̃i + I

would be an isomorphism, and the (��1(f̄Z))B would form a basis of U (n) which is
independent of the possible choices for the (fZ)Z2B.

Thus we call the equivalent conditions of the above proposition our Support conjecture.

Remark 5.12. Our semicanonical basis would yield, similarly to Lusztig [2000, Sec. 3],
in a natural way a basis for each integrable highest weight representation L(�) of g(C ),
if the support conjecture is true. See Geiß, Leclerc, and Schröer [2017c, Se. 7.3] for more
details.
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TILTING COHEN–MACAULAY REPRESENTATIONS

Oඌൺආඎ Iඒൺආൺ

Dedicated to the memory of Ragnar-Olaf Buchweitz

Abstract
This is a survey on recent developments in Cohen-Macaulay representations via

tilting and cluster tilting theory. We explain triangle equivalences between the singu-
larity categories of Gorenstein rings and the derived (or cluster) categories of finite
dimensional algebras.

1 Introduction

The study of Cohen-Macaulay (CM) representations (Curtis and Reiner [1981], Yoshino
[1990], Simson [1992], and Leuschke andWiegand [2012]) is one of the active subjects in
representation theory and commutative algebra. It has fruitful connections to singularity
theory, algebraic geometry and physics. This article is a survey on recent developments
in this subject.

The first half of this article is spent for background materials, which were never written
in one place. In Section 2, we recall the notion of CMmodules over Gorenstein rings, and
put them into the standard framework of triangulated categories. This gives us powerful
tools including Buchweitz’s equivalence between the stable category CMR and the singu-
larity category, and Orlov’s realization of the graded singularity category in the derived
category, giving a surprising connection between CM modules and algebraic geometry.
We also explain basic results including Auslander-Reiten duality stating that CMR is a
Calabi-Yau triangulated category for a Gorenstein isolated singularity R, and Gabriel’s
Theorem on quiver representations and its commutative counterpart due to Buchweitz-
Greuel-Schreyer.

In Section 3, we give a brief introduction to tilting and cluster tilting. Tilting theory
controls equivalences of derived categories, and played a central role in Cohen-Macaulay
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approximation theory around 1990 (Auslander and Buchweitz [1989] and Auslander and
Reiten [1991]). The first main problem of this article is to find a tilting object in the stable
category CMGR of a G-graded Gorenstein ring R. This is equivalent to find a triangle
equivalence

(1-1) CMGR ' Kb(projΛ)

with some ring Λ. It reveals a deep connection between rings R and Λ.
The notion of d -cluster tilting was introduced in higher Auslander-Reiten theory. A

Gorenstein ring R is called d -CM-finite if there exists a d -cluster tilting object in CMR.
This property is a natural generalization of CM-finiteness, and closely related to the ex-
istence of non-commutative crepant resolutions of Van den Bergh. On the other hand,
the d -cluster category Cd (Λ) of a finite dimensional algebra Λ is a d -Calabi-Yau trian-
gulated category containing a d -cluster tilting object, introduced in categorification of
Fomin-Zelevinsky cluster algebras. The second main problem of this article is to find a
triangle equivalence

(1-2) CMR ' Cd (Λ)

with some finite dimensional algebra Λ. This implies that R is d -CM-finite.
In the latter half of this article, we construct various triangle equivalences of the form

(1-1) or (1-2). In Section 4, we explain results in Yamaura [2013] and Buchweitz, Iyama,
and Yamaura [2018]. They assert that, for a large class of Z-graded Gorenstein rings R in
dimension 0 or 1, there exist triangle equivalences (1-1) for some algebras Λ.

There are no such general results in dimension greater than 1. Therefore in the main
Sections 5 and 6 of this article, we concentrate on special classes of Gorenstein rings. In
Section 5, we explain results on Gorenstein rings obtained from classical and higher pre-
projective algebras (Amiot, Iyama, and Reiten [2015], Iyama and Oppermann [2013], and
Kimura [2018, 2016]). A crucial observation is that certain Calabi-Yau algebras are higher
preprojective algebras and higher Auslander algebras at the same time. In Section 6, we
explain results on CMmodules on Geigle-Lenzing complete intersections and the derived
categories of coherent sheaves on the associated stacks (Herschend, Iyama, Minamoto,
and Oppermann [2014]). They are higher dimensional generalizations of weighted projec-
tive lines of Geigle-Lenzing.

Acknowledgements The author would like to thank Claire Amiot, Bernhard Keller and
Idun Reiten for valuable comments on this article.
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2 Preliminaries

2.1 Notations. We fix some conventions in this paper. All modules are right modules.
The composition of f : X ! Y and g : Y ! Z is denoted by gf . For a ringΛ, we denote
by modΛ the category of finitely generated Λ-modules, by projΛ the category of finitely
generated projective Λ-modules, and by gl:dimΛ the global dimension of Λ. When Λ is
G-graded, we denote by modG Λ and projG Λ the G-graded version, whose morphisms
are degree preserving. We denote by k an arbitrary field unless otherwise specified, and
by D the k-dual or Matlis dual over a base commutative ring.

2.2 Cohen-Macaulay modules. We start with the classical notion of Cohen-Macaulay
modules over commutative rings (Bruns and Herzog [1993] and Matsumura [1989]).

Let R be a commutative noetherian ring. The dimension dimR of R is the supremum
of integers n � 0 such that there exists a chain p0 ¨ p1 ¨ � � � ¨ pn of prime ideals of R.
The dimension dimM of M 2 modR is the dimension dim(R/ annM ) of the factor ring
R/ annM , where annM is the annihilator of M .

The notion of depth is defined locally. Assume that R is a local ring with maximal
ideal m and M 2 modR is non-zero. An element r 2 m is called M -regular if the
multiplication map r : M ! M is injective. A sequence r1; : : : ; rn of elements in m

is called an M -regular sequence of length n if ri is (M/(r1; : : : ; ri�1)M )-regular for
all 1 � i � n. The depth depthM of M is the supremum of the length of M -regular
sequences. This is given by the simple formula

depthM = inffi � 0 j ExtiR(R/m; M ) ¤ 0g:

The inequalities depthM � dimM � dimR hold. We callM (maximal)Cohen-Macaulay
(or CM) if the equality depthM = dimR holds or M = 0.

When R is not necessarily local, M 2 modR is called CM if Mm is a CM Rm-module
for all maximal ideals m of R. The ring R is called CM if it is CM as an R-module. The
ring R is called Gorenstein (resp. regular) if Rm has finite injective dimension as an Rm-
module (resp. gl:dimRm < 1) for all maximal ideals m of R. In this case, the injective
(resp. global) dimension coincides with dimRm, but this is not true in the more general
setting below. The following hierarchy is basic.

Regular rings +3 Gorenstein rings +3 Cohen-Macaulay rings

We will study CM modules over Gorenstein rings. Since we apply methods in representa-
tion theory, it is more reasonable to work in the following wider framework.

Definition 2.1 (Iwanaga [1979] and Enochs and Jenda [2000]). LetΛ be a (not necessarily
commutative) noetherian ring, and d � 0 an integer. We call Λ (d -)Iwanaga-Gorenstein
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(or Gorenstein) if Λ has injective dimension at most d as a Λ-module, and also as a Λop-
module.

Clearly, a commutative noetherian ring R is Iwanaga-Gorenstein if and only if it is
Gorenstein and dimR < 1. Note that there are various definitions of non-commutative
Gorenstein rings, e.g. Artin and Schelter [1987], Curtis and Reiner [1981], Fossum, Grif-
fith, and Reiten [1975], Goto and Nishida [2002], and Iyama and Wemyss [2014]. Al-
though Definition 2.1 is much weaker than them, it is sufficient for the aim of this paper.

Noetherian rings with finite global dimension are analogues of regular rings, and form
special classes of Iwanaga-Gorenstein rings. The first class consists of semisimple rings
(i.e. rings Λ with gl:dimΛ = 0), which are products of matrix rings over division rings by
Artin-Wedderburn Theorem. The next class consists of hereditary rings (i.e. rings Λ with
gl:dimΛ � 1), which are obtained from quivers.

Definition 2.2 (Assem, Simson, and Skowroński [2006]). A quiver is a quadruple Q =

(Q0; Q1; s; t) consisting of sets Q0, Q1 and maps s; t : Q1 ! Q0. We regard each
element in Q0 as a vertex, and a 2 Q1 as an arrow with source s(a) and target t(a). A
path of length 0 is a vertex, and a path of length `(� 1) is a sequence a1a2 � � � a` of arrows
satisfying t(ai ) = s(ai+1) for each 1 � i < `.

For a field k, the path algebra kQ is defined as follows: It is a k-vector space with
basis consisting of all paths on Q. For paths p = a1 � � � a` and q = b1 � � � bm, we define
pq = a1 � � � a`b1 � � � bm if t(a`) = s(b1), and pq = 0 otherwise.

Clearly dimk(kQ) is finite if and only if Q is acyclic (that is, there are no paths p of
positive length satisfying s(p) = t(p)).

Example 2.3. (a) (Assem, Simson, and Skowroński [ibid.]) The path algebra kQ of a
finite quiver Q is hereditary. Conversely, any finite dimensional hereditary algebra
over an algebraically closed field k is Morita equivalent to kQ for some acyclic quiver
Q.

(b) A finite dimensional k-algebra Λ is 0-Iwanaga-Gorenstein if and only if Λ is self-
injective, that is, DΛ is projective as a Λ-module, or equivalently, as a Λop-module.
For example, the group ring kG of a finite group G is self-injective.

(c) (Iyama and Wemyss [2014] and Curtis and Reiner [1981]) Let R be a CM local ring
with canonical module ! and dimension d . An R-algebra Λ is called an R-order if it
is CM as an R-module. Then an R-order Λ is d -Iwanaga-Gorenstein if and only if Λ
is a Gorenstein order, i.e. HomR(Λ; !) is projective as a Λ-module, or equivalently,
as a Λop-module.
An R-order Λ is called non-singular if gl:dimΛ = d . They are classical objects for
the case d = 0; 1 (Curtis and Reiner [1981]), and studied for d = 2 (Reiten and Van



TILTING COHEN–MACAULAY REPRESENTATIONS 147

den Bergh [1989]). Non-singular orders are closely related to cluster tilting explained
in Section 3.2.

2.3 The triangulated category of Cohen-Macaulay modules. CM modules can be
defined naturally also for Iwanaga-Gorenstein rings.

Definition 2.4. Let Λ be an Iwanaga-Gorenstein ring. We call M 2 modΛ (maximal)
Cohen-Macaulay (or CM) if ExtiΛ(M;Λ) = 0 holds for all i > 0. We denote by CMΛ

the category of CM Λ-modules.

We also deal with graded rings and modules. For an abelian group G and a G-graded
Iwanaga-Gorenstein ring Λ, we denote by CMG Λ the full subcategory of modG Λ con-
sisting of all X which belong to CMΛ as ungraded Λ-modules.

WhenΛ is commutative Gorenstein, Definition 2.4 is one of the well-known equivalent
conditions of CM modules. Note that, in a context of Gorenstein homological algebra
(Auslander and Bridger [1969] and Enochs and Jenda [2000]), CMmodules are also called
Gorenstein projective, Gorenstein dimension zero, or totally reflexive.

Example 2.5. (a) Let Λ be a noetherian ring with gl:dimΛ < 1. Then CMΛ = projΛ.

(b) Let Λ be a finite dimensional self-injective k-algebra. Then CMΛ = modΛ.

(c) Let Λ be a Gorenstein R-order in Example 2.3(c). Then CM Λ-modules are precisely
Λ-modules that are CM as R-modules.

We study the category CMG Λ from the point of view of triangulated categories. We
start with Quillen’s exact categories (see Bühler [2010] for a more axiomatic definition).

Definition 2.6 (Happel [1988]). (a) An exact category is a full subcategory F of an abelian
category A such that, for each exact sequence 0 ! X ! Y ! Z ! 0 in A
with X; Z 2 F , we have Y 2 F . In this case, we say that X 2 F is projective if
Ext1A(X; F ) = 0 holds. Similarly we define injective objects in F .

(b) An exact category F in A is called Frobenius if:

� an object in F is projective if and only if it is injective,
� any X 2 F admits exact sequences 0 ! Y ! P ! X ! 0 and 0 ! X ! I !

Z ! 0 in A such that P and I are projective in F and Y; Z 2 F .

(c) The stable category F has the same objects as F , and the morphisms are given by
HomF (X; Y ) = HomF (X; Y )/P (X; Y ), where P (X; Y ) is the subgroup consisting
of morphisms which factor through projective objects in F .
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Frobenius categories are ubiquitous in algebra. Here we give two examples.

Example 2.7. (a) For a G-graded Iwanaga-Gorenstein ring Λ, the category CMG Λ of
G-graded Cohen-Macaulay Λ-modules is a Frobenius category.

(b) For an additive category A, the category C(A) of chain complexes in A is a Frobenius
category, whose stable category is the homotopy category K(A).

A triangulated category is a triple of an additive category T , an autoequivalence [1] : T !

T (called suspension) and a class of diagrams X
f
�! Y

g
�! Z

h
�! X [1] (called triangles)

satisfying a certain set of axioms. There are natural notions of functors and equivalences
between triangulated categories, called triangle functors and triangle equivalences. For
details, see e.g. Happel [1988] and Neeman [2001]. Typical examples of triangulated cate-
gories are given by the homotopy category K(A) of an additive categoryA and the derived
category D(A) of an abelian category A.

A standard construction of triangulated categories is given by the following.

Theorem 2.8 (Happel [1988]). The stable category F of a Frobenius category F has a
canonical structure of a triangulated category.

Such a triangulated category is called algebraic. Note that the suspension functor [1]
of F is given by the cosyzygy. Thus the i -th suspension [i ] is the i -th cosyzygy for i � 0,
and the (�i)-th syzygy for i < 0. We omit other details.

As a summary, we obtain the following.

Corollary 2.9. Let G be an abelian group and Λ a G-graded Iwanaga-Gorenstein ring.
Then CMG Λ is a Frobenius category, and therefore the stable category CMGΛ has a
canonical structure of a triangulated category.

Wedenote byDb(modG Λ) the bounded derived category ofmodG Λ, and byKb(projG Λ)

the bounded homotopy category of projG Λ. We regard Kb(projG Λ) as a thick subcate-
gory of Db(modG Λ). The stable derived category (Buchweitz [1987]) or the singularity
category (Orlov [2009]) is defined as the Verdier quotient

DG
sg(Λ) = Db(modG Λ)/Kb(projG Λ):

This is enhanced by the Frobenius category CMG Λ as the following result shows.

Theorem 2.10 (Buchweitz [1987], Rickard [1989a], and Keller and Vossieck [1987]). Let
G be an abelian group and Λ a G-graded Iwanaga-Gorenstein ring. Then there is a
triangle equivalence DG

sg(Λ) ' CMGΛ.

Let us recall the following notion (Bruns and Herzog [1993]).
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Definition 2.11. Let G be an abelian group and R a G-graded Gorenstein ring with
dimR = d such that R0 = k is a field and

L
i¤0 Ri is an ideal of R. The a-invariant

a 2 G (or Gorenstein parameter �a 2 G) is an element satisfying ExtdR(k; R(a)) ' k in
modZ R.

For a G-graded noetherian ring Λ, let

(2-1) qgrΛ = modG Λ/modG
0 Λ

be the Serre quotient of modG Λ by the subcategory modG
0 Λ of G-graded Λ-modules of

finite length (Artin and Zhang [1994]). This is classical in projective geometry. In fact, for
a Z-graded commutative noetherian ring R generated in degree 1, qgrR is the category
cohX of coherent sheaves on the scheme X = ProjR (Serre [1955]).

The following result realizes DZ
sg(R) and Db(qgrR) inside of Db(modZ R), where

mod�n R is the full subcategory of modZ R consisting of all X satisfying X =
L

i�n Xi ,
and (�)� is the duality RHomR(�; R) : Db(modZ R) ! Db(modZ R).

Theorem 2.12 (Orlov [2009] and Iyama and Yang [2017]). Let R =
L

i�0 Ri be a Z-
graded Gorenstein ring such that R0 is a field, and a the a-invariant of R.

(a) There is a triangle equivalence Db(mod�0 R) \ Db(mod�1 R)� ' DZ
sg(R).

(b) There is a triangle equivalence Db(mod�0 R) \ Db(mod�a+1 R)� ' Db(qgrR).

Therefore if a = 0, then DZ
sg(R) ' Db(qgrR). If a < 0 (resp. a > 0), then there is

a fully faithful triangle functor DZ
sg(R) ! Db(qgrR) (resp. Db(qgrR) ! DZ

sg(R)). This
gives a new connection between CM representations and algebraic geometry.

2.4 Representation theory. We start with Auslander-Reiten theory.
Let R be a commutative ring, and D the Matlis duality. A triangulated category T

is called R-linear if each morphism set HomT (X; Y ) has an R-module structure and the
composition HomT (X; Y ) � HomT (Y; Z) ! HomT (X; Z) is R-bilinear. It is called
Hom-finite if each morphism set has finite length as an R-module.

Definition 2.13 (Reiten and Van den Bergh [2002]). A Serre functor is an R-linear autoe-
quivalence S : T ! T such that there exists a functorial isomorphism HomT (X; Y ) '

D HomT (Y; SX) for any X; Y 2 T (called Auslander-Reiten duality or Serre duality).
The composition � = S ı [�1] is called the AR translation.

For d 2 Z, we say that T is d -Calabi-Yau if [d ] gives a Serre functor of T .

A typical example of a Serre functor is given by a smooth projective variety X over a
field k. In this case, Db(cohX) has a Serre functor � ˝X ![d ], where ! is the canonical
bundle of X and d is the dimension of X (Huybrechts [2006]).
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Example 2.14 (Happel [1988] and Buchweitz, Iyama, and Yamaura [2018]). Let Λ be
a finite dimensional k-algebra. Then Kb(projΛ) has a Serre functor if and only if Λ is
Iwanaga-Gorenstein, and Db(modΛ) has a Serre functor if and only if gl:dimΛ < 1. In

both cases, the Serre functor is given by � = �
L
˝Λ(DΛ), and the AR translation is given

by � = � ı [�1].

For AR theory of CM modules, we need the following notion.

Definition 2.15. Let R be a Gorenstein ring with dimR = d . We denote by CM0 R

the full subcategory of CMR consisting of all X such that Xp 2 projRp holds for all
p 2 SpecR with dimRp < d . When R is local, such an X is called locally free on
the punctured spectrum (Yoshino [1990]). If R is G-graded, we denote by CMG

0 R the
full subcategory of CMG R consisting of all X which belong to CM0 R as ungraded R-
modules.

As before, CMG
0 R is a Frobenius category, and CMG

0 R is a triangulated category. Note
that CM0 R = CMR holds if and only if R satisfies Serre’s (Rd�1) condition (i.e. Rp is
regular for all p 2 SpecR with dimRp < d ). This means that R has at worst an isolated
singularity if R is local.

The following is a fundamental theorem of CM representations.

Theorem 2.16 (Auslander [1978] and Auslander and Reiten [1987]). Let R be a Goren-
stein ring with dimR = d . Then CM0R is a (d �1)-Calabi-Yau triangulated category. If
R is G-graded and has an a-invariant a 2 G, then CMG

0 R has a Serre functor (a)[d �1].

Let us introduce a key notion in Auslander-Reiten theory. We call an additive category
C Krull-Schmidt if any object in C is isomorphic to a finite direct sum of objects whose
endomorphism rings are local. We denote by indC the set of isomorphism classes of
indecomposable objects in C.

Definition 2.17 (Happel [1988]). Let T be a Krull-Schmidt triangulated category. We
call a triangle X

f
�! Y

g
�! Z

h
�! X [1] in T an almost split triangle if:

� X and Z are indecomposable, and h ¤ 0 (i.e. the triangle does not split).

� Any morphism W ! Z which is not a split epimorphism factors through g.

� Any morphism X ! W which is not a split monomorphism factors through f .

We say that T has almost split triangles if for any indecomposable object X (resp. Z),
there is an almost split triangle X ! Y ! Z ! X [1].

There is a close connection between almost split triangles and Serre functors.
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Theorem 2.18 (Reiten andVan den Bergh [2002]). Let T be anR-linear Hom-finite Krull-
Schmidt triangulated category. Then T has a Serre functor if and only if T has almost split
triangles. In this case, X ' �Z holds in each almost split triangle X ! Y ! Z ! X [1]

in T .

When T has almost split triangles, one can define the AR quiver of T , which has ind T
as the set of vertices. It describes the structure of T (see Happel [1988]). Similarly, almost
split sequences and the AR quiver are defined for exact categories (Assem, Simson, and
Skowroński [2006] and Leuschke and Wiegand [2012]).

In the rest of this section, we discuss the following notion.

Definition 2.19. A finite dimensional k-algebraΛ is called representation-finite if ind(modΛ)
is a finite set. It is also said to be of finite representation type.

The classification of representation-finite algebras was one of the main subjects in the
1980s. Here we recall only one theorem, and refer to Gabriel and Roı̆ter [1997] for further
results.

A Dynkin quiver (resp. extended Dynkin quiver) is a quiver obtained by orienting each
edge of one of the following diagrams An, Dn and En (resp. eAn, eDn and eEn).
(2-2)

ı

An (n � 1) � � � � � � � � � eAn (n � 1) � � � � � � � � �

� �

Dn (n � 4) � � � � � � � � eDn (n � 4) � � � � � � � �

ı ı

� �

E6 � � � � � eE6 � � � � �

� �

E7 � � � � � � eE7 ı � � � � � �

� �

E8 � � � � � � � eE8 � � � � � � � ı

Now we are able to state Gabriel’s Theorem below. For results in non-Dynkin case, we
refer to Kac’s theorem in Gabriel and Roı̆ter [ibid.].

Theorem 2.20 (Assem, Simson, and Skowroński [2006]). Let Q be a connected acyclic
quiver and k a field. Then kQ is representation-finite if and only if Q is Dynkin. In this
case, there is a bijection between ind(mod kQ) and the setΦ+ of positive roots in the root
system of Q.
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For a quiver Q, we define a new quiver ZQ: The set of vertices is Z�Q0. The arrows
are (`; a) : (`; s(a)) ! (`; t(a)) and (`; a�) : (`; t(a)) ! (` + 1; s(a)) for each ` 2 Z

and a 2 Q1. For example, if Q = [1
a
�! 2

b
�! 3], then ZQ is as follows.

� � �

(�2;3)

(�1;1)

(�1;2)

(�1;3)

(0;1)

(0;2)

(0;3)

(1;1)

(1;2)

(1;3)

(2;1)

(2;2)

(2;3)

(3;1)

(3;2)

(3;3)

(4;1)

� � �
??��

??��
??��

??��
??��

??��
??��

??��
??��

??����
??

��
??

��
??

��
??

��
??

��
??

��
??

��
??

��
??

��
??

If the underlying graph∆ of Q is a tree, then ZQ depends only on∆. Thus ZQ is written
as Z∆.

The AR quiver of Db(mod kQ) has a simple description (Happel [1988]).

Proposition 2.21 (Happel [ibid.]). (a) Let Λ be a finite dimensional hereditary algebra.
Then there is a bijection ind(modΛ) � Z ! indDb(modΛ) given by (X; i) 7! X [i ].

(b) For each Dynkin quiver Q, the AR quiver of Db(mod kQ) is ZQop. Moreover, the
category Db(mod kQ) is presented by the quiver ZQop with mesh relations.

Note that ZQ has an automorphism � given by �(`; i) = (`�1; i) for (`; i) 2 Z�Q0,
which corresponds to the AR translation.

Now we discuss CM-finiteness. For an additive category C and an object M 2 C, we
denote by addM the full subcategory of C consisting of direct summands of finite direct
sum of copies of M . We call M an additive generator of C if C = addM .

Definition 2.22. An Iwanaga-Gorenstein ring Λ is called CM-finite if CMΛ has an addi-
tive generator M . In this case, we call EndΛ(M ) the Auslander algebra. When CMΛ is
Krull-Schmidt, Λ is CM-finite if and only if ind(CMΛ) is a finite set. It is also said to be
of finite CM type or representation-finite.

Let us recall the classification of CM-finite Gorenstein rings given in the 1980s. Let k

be an algebraically closed field of characteristic zero. A hypersurfaceR = k[[x; y; z2 : : : ; zd ]]/(f )

is called a simple singularity if

(2-3) f =

8̂̂̂̂
<̂
ˆ̂̂:

xn+1 + y2 + z2
2 + � � � + z2

d
An

xn�1 + xy2 + z2
2 + � � � + z2

d
Dn

x4 + y3 + z2
2 + � � � + z2

d
E6

x3y + y3 + z2
2 + � � � + z2

d
E7

x5 + y3 + z2
2 + � � � + z2

d
E8:

We are able to state the following result. We refer to Leuschke and Wiegand [2012] for
results in positive characteristic.
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Theorem 2.23 (Buchweitz, Greuel, and Schreyer [1987] and Knörrer [1987]). Let R be
a complete local Gorenstein ring containing the residue field k, which is an algebraically
closed field of characteristic zero. Then R is CM-finite if and only if it is a simple singu-
larity.

Wewill see that tilting theory explainswhyDynkin quivers appear in both Theorems 2.20
and 2.23 (see Example 4.5 and Corollary 5.2 below).

Now we describe the AR quivers of simple singularities. Recall that each quiver Q

gives a new quiverZQ. For an automorphism � ofZQ, an orbit quiverZQ/� is naturally
defined. For example, ZQ/� is the double Q of Q obtained by adding an inverse arrow
a� : j ! i for each arrow a : i ! j .

Proposition 2.24 (Yoshino [1990] and Dieterich and Wiedemann [1986]). Let R be a
simple singularity with dimR = d . Then the AR quiver of CMR is Z∆/�, where ∆ and
� are given as follows.

(a) If d is even, then∆ is the Dynkin diagram of the same type as R, and � = � .

(b) If d is odd, then∆ and � are given as follows.
R A2n�1 A2n D2n D2n+1 E6 E7 E8

∆ Dn+1 A2n D2n A4n�1 E6 E7 E8

� �� �1/2 �2 �� �� �2 �2

Here � is the involution of Z∆ induced by the non-trivial involution of∆, and �1/2 is
the automorphism of ZA2n satisfying (�1/2)2 = � .

In dimension 2, simple singularities (over a sufficiently large field) have an alternative
description as invariant subrings. This enables us to draw the AR quiver of the category
CMR systematically.

Example 2.25 (Auslander [1986] and Leuschke and Wiegand [2012]). Let k[[u; v]] be a
formal power series ring over a field k and G a finite subgroup of SL2(k) such that #G

is non-zero in k. Then CMSG = addS holds, and the Auslander algebra EndSG (S) is
isomorphic to the skew group ring S � G. This is a free S -module with basis G, and the
multiplication is given by (sg)(s0g0) = sg(s0)gg0 for s; s0 2 S and g; g0 2 G. Thus the
AR quiver of CMSG coincides with the Gabriel quiver of S � G, and hence with the
McKay quiver of G, which is the double of an extended Dynkin quiver. This is called
algebraic McKay correspondence.

On the other hand, the dual graph of the exceptional curves in the minimal resolution
X of the singularity SpecSG is a Dynkin graph. This is called geometric McKay corre-
spondence. There is a geometric construction of CM SG-modules using X (Artin and
Verdier [1985]), which is a prototype of non-commutative crepant resolutions (Van den
Bergh [2004b,a]).
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3 Tilting and cluster tilting

3.1 Tilting theory. Tilting theory is a Morita theory for triangulated categories. It has
an origin in Bernstein-Gelfand-Ponomarev reflection for quiver representations, and es-
tablished by works of Brenner-Butler, Happel-Ringel, Rickard, Keller and others (see e.g.
Angeleri Hügel, Happel, and Krause [2007]). The class of silting objects was introduced
to complete the class of tilting objects in the study of t-structures (Keller and Vossieck
[1988]) and mutation (Aihara and Iyama [2012]).

Definition 3.1. Let T be a triangulated category. A full subcategory of T is thick if it
is closed under cones, [˙1] and direct summands. We call an object T 2 T tilting (resp.
silting) if HomT (T; T [i ]) = 0 holds for all integers i ¤ 0 (resp. i > 0), and the smallest
thick subcategory of T containing T is T .

The principal example of tilting objects appears in Kb(projΛ) for a ring Λ. It has a
tilting object given by the stalk complex Λ concentrated in degree zero. Conversely, any
triangulated category with a tilting object is triangle equivalent to Kb(projΛ) under mild
assumptions (see Kimura [2016] for a detailed proof).

Theorem 3.2 (Keller [1994]). Let T be an algebraic triangulated category and T 2 T
a tilting object. If T is idempotent complete, then there is a triangle equivalence T '

Kb(proj EndT (T )) sending T to EndT (T ).

As an application, one can deduce Rickard’s fundamental Theorem (Rickard [1989b]),
characterizing when two rings are derived equivalent in terms of tilting objects. Another
application is the following converse of Proposition 2.21(b).

Example 3.3. Let T be a k-linear Hom-finite Krull-Schmidt algebraic triangulated cate-
gory over an algebraically closed field k. If the AR quiver of T is ZQ for a Dynkin quiver
Q, then T has a tilting object T =

L
i2Q0

(0; i) for (0; i) 2 Z � Q0 = (ZQ)0 = ind T .
Thus there is a triangle equivalence T ' Db(mod kQop).

The following is the first main problem we will discuss in this paper.

Problem 3.4. Find a G-graded Iwanaga-Gorenstein ring Λ such that there is a triangle
equivalence CMGΛ ' Kb(projΓ) for some ring Γ. Equivalently (by Theorem 3.2), find a
G-graded Iwanaga-Gorenstein ring Λ such that there is a tilting object in CMGΛ.

3.2 Cluster tilting and higher Auslander-Reiten theory. The notion of cluster tilting
appeared naturally in a context of higher Auslander-Reiten theory (Iyama [2008]). It also
played a central role in categorification of cluster algebras (Fomin and Zelevinsky [2002])
by using cluster categories, a new class of triangulated categories introduced in Buan,
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Marsh, Reineke, Reiten, and Todorov [2006], and preprojective algebras (Geiss, Leclerc,
and Schröer [2013]). Here we explain only the minimum necessary background for the
aim of this paper.

Let Λ be a finite dimensional k-algebra with gl:dimΛ � d . Then Db(modΛ) has
a Serre functor � by Example 2.14. Using the higher AR translation �d := � ı [�d ]

of Db(modΛ), the orbit category Cı
d
(Λ) = Db(modΛ)/�d is defined. It has the same

objects as Db(modΛ), and the morphism space is given by

HomCı
d
(Λ)(X; Y ) =

M
i2Z

HomDb(modΛ)(X; �i
d (Y ));

where the composition is defined naturally. In general, Cı
d
(Λ) does not have a natural

structure of a triangulated category. The d -cluster category ofΛ is a triangulated category
Cd (Λ) containing Cı

d
(Λ) as a full subcategory such that the composition Db(modΛ) !

Cı
d
(Λ) � Cd (Λ) is a triangle functor. It was constructed in Buan, Marsh, Reineke, Reiten,

and Todorov [2006] for hereditary case where Cd (Λ) = Cı
d
(Λ) holds, and in Keller [2005,

2011], Amiot [2009], and Guo [2011] for general case by using a DG enhancement of
Db(modΛ).

We say that Λ is �d -finite if H 0(��i
d
(Λ)) = 0 holds for i � 0. This is automatic if

gl:dimΛ < d . In the hereditary case d = 1,Λ is �1-finite if and only if it is representation-
finite. The following is a basic property of d -cluster categories.

Theorem 3.5 (Amiot [2009] and Guo [2011]). Let Λ be a finite dimensional k-algebra
with gl:dimΛ � d . Then Λ is �d -finite if and only if Cd (Λ) is Hom-finite. In this case,
Cd (Λ) is a d -Calabi-Yau triangulated category.

Thus, if Λ is �d -finite, then Cd (Λ) never has a tilting object. But the object Λ in
Cd (Λ) still enjoys a similar property to tilting objects. Nowwe recall the following notion,
introduced in Iyama [2007b] as a maximal (d � 1)-orthogonal subcategory.

Definition 3.6 (Iyama [ibid.]). Let T be a triangulated or exact category and d � 1. We
call a full subcategory C of T d -cluster tilting if C is a functorially finite subcategory of
T such that

C = fX 2 T j 8i 2 f1; 2; : : : ; d � 1g ExtiT (C; X) = 0g

= fX 2 T j 8i 2 f1; 2; : : : ; d � 1g ExtiT (X; C) = 0g:

We call an object T 2 T d -cluster tilting if addT is a d -cluster tilting subcategory.

If T has a Serre functor S, then it is easy to show (S ı [�d ])(C) = C. Thus it is natural
in our setting T = Db(modΛ) to consider the full subcategory

(3-1) Ud (Λ) := addf�i
d (Λ) j i 2 Zg � Db(modΛ):
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Equivalently, Ud (Λ) = ��1(add�Λ) for the functor � : Db(modΛ) ! Cd (Λ). In the
hereditary case d = 1, U1(Λ) = Db(modΛ) holds if Λ is representation-finite, and oth-
erwise U1(Λ) is the connected component of the AR quiver of Db(modΛ) containing Λ.
This observation is generalized as follows.

Theorem 3.7 (Amiot [2009] and Iyama [2011]). Let Λ be a finite dimensional k-algebra
with gl:dimΛ � d . If Λ is �d -finite, then Cd (Λ) has a d -cluster tilting object Λ, and
Db(modΛ) has a d -cluster tilting subcategory Ud (Λ).

We define a full subcategory of Db(modΛ) by

DdZ(modΛ) = fX 2 Db(modΛ) j 8i 2 Z n dZ; H i (X) = 0g:

If gl:dimΛ � d , then any object in DdZ(modΛ) is isomorphic to a finite direct sum of
X [di ] for someX 2 modΛ and i 2 Z. This generalizes Proposition 2.21(a) for hereditary
algebras, and motivates the following definition.

Definition 3.8 (Herschend, Iyama, and Oppermann [2014]). Let d � 1. A finite dimen-
sional k-algebra Λ is called d -hereditary if gl:dimΛ � d and Ud (Λ) � DdZ(modΛ).

It is clear that 1-hereditary algebras are precisely hereditary algebras. We have the
following dichotomy of d -hereditary algebras.

Theorem3.9 (Herschend, Iyama, andOppermann [ibid.]). LetΛ be a ring-indecomposable
finite dimensional k-algebra with gl:dimΛ � d . Then Λ is d -hereditary if and only if ei-
ther (i) or (ii) holds:

(i) There exists a d -cluster tilting object in modΛ.

(ii) ��i
d
(Λ) 2 modΛ holds for any i � 0.

When d = 1, the above (i) holds if and only if Λ is representation-finite, and the above
(ii) holds if and only if Λ is d -representation-infinite.

Definition 3.10. Let Λ be a d -hereditary algebra. We call Λ d -representation-finite if the
above (i) holds, and d -representation-infinite if the above (ii) holds.

Example 3.11. (a) LetΛ = kQ for a connected acyclic quiverQ. ThenΛ is 1-representation-
finite if Q is Dynkin, and 1-representation-infinite otherwise.

(b) Let X be a smooth projective variety with dimX = d , and T 2 cohX a tilting object
in Db(cohX). Then Λ = EndX (T ) always satisfies gl:dimΛ � d . If the equality
holds, then Λ is d -representation-infinite (Buchweitz and Hille [2014]).
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(c) There is a class of finite dimensional k-algebras called Fano algebras (Minamoto
[2012] and Minamoto and Mori [2011]) in non-commutative algebraic geometry. So-
called extremely Fano algebras Λ with gl:dimΛ = d are d -representation-infinite.

It is known that d -cluster tilting subcategories of a triangulated (resp. exact) category
T enjoy various properties which should be regarded as higher analogs of those of T . For
example, they have almost split (d + 2)-angles by Iyama and Yoshino [2008] (resp. d -
almost split sequences by Iyama [2007b]), and structures of (d +2)-angulated categories
by Geiss, Keller, and Oppermann [2013] (resp. d -abelian categories by Jasso [2016]).
These motivate the following definition.

Definition 3.12 (cf. Definition 2.22). An Iwanaga-Gorenstein ringΛ is called d -CM-finite
if there exists a d -cluster tilting object M in CMΛ. In this case, we call EndΛ(M ) the
d -Auslander algebra and EndΛ(M ) the stable d -Auslander algebra.

1-CM-finiteness coincides with classical CM-finiteness since 1-cluster tilting objects
are precisely additive generators. d -Auslander correspondence gives a characterization
of a certain nice class of algebras with finite global dimension as d -Auslander algebras
(Iyama [2007a]). As a special case, it gives a connection with non-commutative crepant
resolutions (NCCRs) of Van den Bergh [2004a]. Recall that a reflexive module M over a
Gorenstein ring R gives an NCCR EndR(M ) of R if EndR(M ) is a non-singular R-order
(see Example 2.3(c)).

Theorem 3.13 (Iyama [2007a]). Let R be a Gorenstein ring with dimR = d +1. Assume
M 2 CMR has R as a direct summand. Then M is a d -cluster tilting object in CMR if
and only if M gives an NCCR of R and R satisfies Serre’s (Rd ) condition.

The following generalizes Example 2.25.

Example 3.14 (Iyama [2007b] and Van den Bergh [2004a]). Let S = k[[x0; : : : ; xd ]] be
a formal power series ring and G a finite subgroup of SLd+1(k) such that #G is non-zero
in k. Then the SG-module S gives an NCCR EndSG (S) = S � G of SG . If SG has at
worst an isolated singularity, then S is a d -cluster tilting object in CMSG , and hence SG

is d -CM-finite with the d -Auslander algebra S � G. As in Example 2.25, the quiver of
addS coincides with the Gabriel quiver of S � G and with the McKay quiver of G.

The following is the second main problem we will discuss in this paper.

Problem 3.15. Find a d -CM-finite Iwanaga-Gorenstein ring. More strongly (by Theo-
rem 3.7), find an Iwanaga-Gorenstein ring Λ such that there is a triangle equivalence
CMΛ ' Cd (Γ) for some algebra Γ.
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We refer to Erdmann and Holm [2008] and Bergh [2014] for some necessary conditions
for d -CM-finiteness. Besides results in this paper, a number of examples of NCCRs have
been found, see e.g. Leuschke [2012], Wemyss [2016], and Špenko and Van den Bergh
[2017] and references therein.

It is natural to ask how the notion of d -CM-finiteness is related to CM-tameness (e.g.
Burban and Y. Drozd [2008]) and also the representation type of homogeneous coordinate
rings of projective varieties (e.g. Faenzi and Malaspina [2017]).

4 Results in dimension 0 and 1

4.1 Dimension zero. In this subsection, we consider finite dimensional Iwanaga-Gorenstein
algebras. We start with a classical result due to Happel [1988]. Let Λ be a finite dimen-
sional k-algebra. The trivial extension algebra of Λ is T (Λ) = Λ ˚ DΛ, where the mul-
tiplication is given by (�; f )(�0; f 0) = (��0; �f 0 + f �0) for (�; f ); (�0; f 0) 2 T (Λ).
This is clearly a self-injective k-algebra, and has a Z-grading given by T (Λ)0 = Λ,
T (Λ)1 = DΛ and T (Λ)i = 0 for i ¤ 0; 1.

Theorem 4.1 (Happel [ibid.]). Let Λ be a finite dimensional k-algebra with gl:dimΛ <

1. Then modZT (Λ) has a tilting object Λ such that EndZ
T (Λ)(Λ) ' Λ, and there is a

triangle equivalence

(4-1) modZT (Λ) ' Db(modΛ):

As an application, it follows from Gabriel’s Theorem 2.20 and covering theory that
T (kQ) is representation-finite for any Dynkin quiver Q. More generally, a large family
of representation-finite self-injective algebras was constructed from Theorem 4.1. See a
survey article (Skowroński [2006]).

Recently, Theorem 4.1 was generalized to a large class of Z-graded self-injective alge-
bras Λ. For X 2 modZ Λ, let X�0 =

L
i�0 Xi .

Theorem 4.2 (Yamaura [2013]). Let Λ =
L

i�0 Λi be a Z-graded finite dimensional
self-injective k-algebra such that gl:dimΛ0 < 1. Then modZΛ has a tilting object T =L

i>0 Λ(i)�0, and there is a triangle equivalence modZΛ ' Kb(proj EndZ
Λ(T )).

If socΛ � Λa for some a 2 Z, then EndZ
Λ(T ) has a simple description

EndZ
Λ(T ) '

26666664
Λ0 0 � � � 0 0

Λ1 Λ0 � � � 0 0
:::

:::
: : :

:::
:::

Λa�2 Λa�3 � � � Λ0 0

Λa�1 Λa�2 � � � Λ1 Λ0

37777775 :
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For example, if Λ = k[x]/(xa+1) with deg x = 1, then EndZ
Λ(T ) is the path algebra kAa

of the quiver of type Aa.
We end this subsection with posing the following open problem.

Problem 4.3. Let Λ =
L

i�0 Λi be a Z-graded finite dimensional Iwanaga-Gorenstein
algebra. When does CMZΛ have a tilting object?

Recently, it was shown in Lu and Zhu [2017] and Kimura, Minamoto, and Yamaura
[n.d.] independently that if Λ =

L
i�0 Λi is a Z-graded finite dimensional 1-Iwanaga-

Gorenstein algebra satisfying gl:dimΛ0 < 1, then the stable category CMZΛ has a silting
object. We will see some other results in Section 5.4. We refer to Darpö and Iyama [2017]
for some results on Problem 3.15.

4.2 Dimension one. In this subsection, we consider a Z-graded Gorenstein ring R =L
i�0 Ri with dimR = 1 such that R0 is a field. Let S be the multiplicative set of all

homogeneous non-zerodivisors of R, and K = RS�1 the Z-graded total quotient ring.
Then there exists a positive integer p such that K(p) ' K as Z-graded R-modules. In
this setting, we have the following result (see Definitions 2.15 and 2.11 for CMZ

0 R and
the a-invariant).

Theorem4.4 (Buchweitz, Iyama, andYamaura [2018]). LetR =
L

i�0 Ri be aZ-graded
Gorenstein ring with dimR = 1 such that R0 is a field, and a the a-invariant of R.

(a) Assume a � 0. Then CMZ
0 R has a tilting object T =

La+p
i=1 R(i)�0, and there is a

triangle equivalence CMZ
0 R ' Kb(proj EndZ

R(T )).

(b) Assume a < 0. Then CMZ
0 R has a silting object

La+p
i=1 R(i)�0. Moreover, it has a

tilting object if and only if R is regular.

An important tool in the proof is Theorem 2.12. The endomorphism algebra of T above
has the following description.

EndZ
R(T ) =

2666666666666666664

R0 0 � � � 0 0 0 0 � � � 0 0

R1 R0 � � � 0 0 0 0 � � � 0 0
:::

:::
: : :

:::
:::

:::
::: � � �

:::
:::

Ra�2 Ra�3 � � � R0 0 0 0 � � � 0 0

Ra�1 Ra�2 � � � R1 R0 0 0 � � � 0 0

Ka Ka�1 � � � K2 K1 K0 K�1 � � � K2�p K1�p

Ka+1 Ka � � � K3 K2 K1 K0 � � � K3�p K2�p

:::
:::

:::
:::

:::
:::

:::
: : :

:::
:::

Ka+p�2 Ka+p�3 � � � Kp Kp�1 Kp�2 Kp�3 � � � K0 K�1

Ka+p�1 Ka+p�2 � � � Kp+1 Kp Kp�1 Kp�2 � � � K1 K0

3777777777777777775
:
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As an application, we obtain the following graded version of Proposition 2.24(b).

Example 4.5. Let R = k[x; y]/(f ) be a simple singularity (2-3) with dimR = 1 and
the grading given by the list below. Then there is a triangle equivalence CMZR '

Db(mod kQ), where Q is the Dynkin quiver in the list below. In particular, the AR quiver
of CMZR is ZQop (Araya [1999]).

R A2n�1 A2n D2n D2n+1 E6 E7 E8

(deg x; degy) (1; n) (2; 2n + 1) (1; n � 1) (2; 2n � 1) (3; 4) (2; 3) (3; 5)

Q Dn+1 A2n D2n A4n�1 E6 E7 E8

This gives a conceptual proof of the classical result that simple singularities in dimension
1 are CM-finite (Jacobinski [1967], J. A. Drozd and Roı̆ter [1967], and Greuel and Knörrer
[1985]).

In the following special case, one can construct a different tilting object, whose endo-
morphism algebra is 2-representation-finite (Definition 3.10). This is closely related to
the 2-cluster tilting object constructed in Burban, Iyama, Keller, and Reiten [2008].

Theorem 4.6 (Herschend and Iyama [n.d.]). Let R = k[x; y]/(f ) be a hypersurface
singularity with f = f1f2 � � � fn for linear forms fi and deg x = degy = 1. Assume that
R is reduced.

(a) CMZR has a tilting object

U =

nM
i=1

(k[x; y]/(f1f2 � � � fi ) ˚ k[x; y]/(f1f2 � � � fi )(1))

(b) EndZ
R(U ) is a 2-representation-finite algebra. It is the Jacobian algebra of a certain

quiver with potential.

We refer to Demonet and Luo [2016], Jensen, King, and Su [2016], and Gelinas [2017]
for other results in dimension one.

5 Preprojective algebras

5.1 Classical preprojective algebras. Preprojective algebras are widely studied ob-
jects with various applications, e.g. cluster algebras (Geiss, Leclerc, and Schröer [2013]),
quantum groups (Kashiwara and Y. Saito [1997] and Lusztig [1991]), quiver varieties
(Nakajima [1994]). Here we discuss a connection to CM representations.
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LetQ be an acyclic quiver, andQ the double ofQ obtained by adding an inverse arrow
a� : j ! i for each arrow a : i ! j in Q. The preprojective algebra of Q is the factor
algebra of the path algebra kQ defined by

(5-1) Π = kQ/(
X

a2Q1

(aa�
� a�a)):

We regardΠ as a Z-graded algebra by deg a = 0 and deg a� = 1 for any a 2 Q1. Clearly
Π0 = kQ holds. Moreover Π1 = Ext1kQ(D(kQ); kQ) as a kQ-bimodule, and Π is
isomorphic to the tensor algebra TkQ Ext1kQ(D(kQ); kQ). Thus the kQ-module Πi is
isomorphic to the preprojective kQ-module H 0(��i (kQ)), where � = � ı [�1] is the AR
translation. This is the reason why Π is called the preprojective algebra. Moreover, for
the category U1(kQ) defined in (3-1), there is an equivalence

(5-2) U1(kQ) = addf��i (kQ) j i 2 Zg ' projZ Π

given by X 7!
L

i2Z HomU1(kQ)(kQ; ��i (X)), which gives the following trichotomy.

Q Dynkin extended Dynkin else
kQ representation-finite representation-tame representation-wild

dimk Πi dimk Π < 1 linear growth exponential growth

It was known in 1980s that, Π in the extended Dynkin case has a close connection to
simple singularities.

Theorem 5.1 (Auslander [1978], Geigle and Lenzing [1987, 1991], and Reiten and Van
den Bergh [1989]). Let Π be a preprojective algebra of an extended Dynkin quiver Q, e

the vertex ı in (2-2), and R = eΠe.

(a) R is a simple singularity k[x; y; z]/(f ) in dimension 2 with inducedZ-grading below,
where p in type An is the number of clockwise arrows in Q. (Note that f coincides
with (2-3) after a change of variables if k is sufficiently large.)

Q; R f (deg x; degy; deg z)

An xn+1 � yz (1; p; n + 1 � p)

Dn
x(y2 + x`�1y) + z2 if n = 2`

x(y2 + x`�1z) + z2 if n = 2` + 1
(2; n � 2; n � 1)

E6 x2z + y3 + z2 (3; 4; 6)

E7 x3y + y3 + z2 (4; 6; 9)

E8 x5 + y3 + z2 (6; 10; 15)

(b) Πe is an additive generator of CMR and satisfies EndR(Πe) = Π. Therefore R is
CM-finite with an Auslander algebra Π.



162 OSAMU IYAMA

(c) Π is Morita equivalent to the skew group ring k[u; v] � G for a finite subgroup G of
SL2(k) if k is sufficiently large (cf. Example 2.25).

By (b) and (5-2) above, there are equivalences CMZ R ' projZ Π ' U1(kQ) �

Db(mod kQ). Thus theARquivers of CMZ R andCMZR are given byZQop andZ(Qopnfeg)

respectively. Now the following result follows from Example 3.3.

Corollary 5.2. Under the setting in Theorem 5.1, there is a triangle equivalenceCMZR '

Db(mod kQ/(e)).

Two other proofs were given in Kajiura, K. Saito, and A. Takahashi [2007], one uses
explicit calculations of Z-graded matrix factorizations, and the other uses Theorem 2.12.
In Theorem 5.8 below, we deduce Corollary 5.2 from a general result on higher prepro-
jective algebras. We refer to Kajiura, K. Saito, and A. Takahashi [2009] and Lenzing and
de la Peña [2011] for results for some other hypersurfaces in dimension 2.

5.2 Higher preprojective algebras. There is a natural analog of preprojective algebras
for finite dimensional algebras with finite global dimension.

Definition 5.3 (Iyama and Oppermann [2013]). Let Λ be a finite dimensional k-algebra
with gl:dimΛ � d . We regard the highest extension ExtdΛ(DΛ;Λ) as a Λ-bimodule natu-
rally, and define the (d + 1)-preprojective algebra as the tensor algebra

Πd+1(Λ) = TΛ ExtdΛ(DΛ;Λ):

This is the 0-th cohomology of the Calabi-Yau completion of Λ (Keller [2011]). For
example, for an acyclic quiver Q, Π2(kQ) is the preprojective algebra (5-1).

The algebra Π = Πd+1(Λ) has an alternative description in terms of the higher AR
translation �d = � ı [�d ] of Db(modΛ). The Z-grading on Π is given by

Πi = ExtdΛ(DΛ;Λ)˝Λi = HomDb(modΛ)(Λ; ��i
d (Λ))

for i � 0. Thus there is an isomorphism Π ' EndCd (Λ)(Λ) and an equivalence

(5-3) Ud (Λ) ' projZ Π

given by X 7!
L

i2Z HomUd (Λ)(Λ; ��i
d
(X)). In particular, Π is finite dimensional if and

only if Λ is �d -finite.
We see below that Πd+1(Λ) enjoys nice homological properties if Λ is d -hereditary.

Definition 5.4 (cf. Ginzburg [2006]). Let Γ =
L

i�0 Γi be a Z-graded k-algebra. We
denote by Γe = Γop ˝k Γ the enveloping algebra of Γ. We say that Γ is a d -Calabi-Yau
algebra of a-invariant a (or Gorenstein parameter �a) if Γ belongs to Kb(projZ Γe) and
RHomΓe(Γ;Γe)(a)[d ] ' Γ holds in D(ModZ Γe).
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For example, the Z-graded polynomial algebra k[x1; : : : ; xd ] with deg xi = ai is a
d -Calabi-Yau algebra of a-invariant �

Pn
i=1 ai .

Now we give a homological characterization of the (d + 1)-preprojective algebras of
d -representation-infinite algebras (Definition 3.10) as the explicit correspondence.

Theorem 5.5 (Keller [2011], Minamoto and Mori [2011], and Amiot, Iyama, and Reiten
[2015]). There exists a bijection between the set of isomorphism classes ofd -representation-
infinite algebras Λ and the set of isomorphism classes of (d + 1)-Calabi-Yau algebras Γ
of a-invariant �1. It is given by Λ 7! Πd+1(Λ) and Γ 7! Γ0.

Note that Γ above is usually non-noetherian. If Γ is right graded coherent, then for the
category qgrΓ defined in (2-1), there is a triangle equivalence (Minamoto [2012])

(5-4) Db(modΛ) ' Db(qgrΓ):

Applying Theorem 5.5 for d = 1; 2, we obtain the following observations (see Van den
Bergh [2015] for a structure theorem of (ungraded) Calabi-Yau algebras).

Example 5.6. Let k be an algebraically closed field.

(a) (cf. Bocklandt [2008]) 2-Calabi-Yau algebras of a-invariant �1 are precisely the pre-
projective algebras of disjoint unions of non-Dynkin quivers.

(b) (cf. Bocklandt [2008] and Herschend and Iyama [2011]) 3-Calabi-Yau algebras of a-
invariant �1 are precisely the Jacobian algebras of quivers with ‘good’ potential with
cuts.

The setting of our main result is the following.

Assumption 5.7. Let Γ be a (d +1)-Calabi-Yau algebras of a-invariant �1. Equivalently
by Theorem 5.5, Γ is a (d + 1)-preprojective algebra of some d -representation-infinite
algebra. We assume that the following conditions hold for Λ = Γ0.

(i) Γ is a noetherian ring, e 2 Λ is an idempotent and dimk(Γ/(e)) < 1.

(ii) eΛ(1 � e) = 0.

For example, let Q be an extended Dynkin quiver. If the vertex ı in (2-2) is a sink,
then Γ = Π2(kQ) and e = ı satisfy Assumption 5.7 by Theorem 5.1.

Under Assumption 5.7(i), let R = eΓe. Then R is a (d +1)-Iwanaga-Gorenstein ring,
and the (Γ; R)-bimodule Γe plays an important role. It is a CM R-module, and gives a
d -cluster tilting object in CMR. Moreover the natural morphism Γ ! EndR(Γe) is an
isomorphism. Thus R is d -CM-finite and has a d -Auslander algebra Γ. The proof of
these statements is parallel to Example 3.14.
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Regarding Γe as a Z-graded R-module, we consider the composition

F : Db(modΛ/(e)) ! Db(modΛ)
�

L
˝Λ Γe

�����! Db(modZ R) ! CMZR;

where the first functor is induced from the surjective morphism Λ ! Λ/(e), and the last
functor is given by Theorem 2.10. Under Assumption 5.7(ii), F is shown to be a triangle
equivalence. A crucial step is to show that F restricts to an equivalence Ud (Λ/(e)) !

addfΓe(i) j i 2 Zg, which are d -cluster tilting subcategories of Db(modΛ/(e)) and
CMZR respectively (Theorem 3.7). Similarly, we obtain a triangle equivalence Cd (Λ/(e)) '

CMR by using universality of d -cluster categories (Keller [2005]). As a summary, we ob-
tain the following results.

Theorem 5.8 (Amiot, Iyama, and Reiten [2015]). Under Assumption 5.7(i), let R = eΓe

and Λ = Γ0.

(a) R is a (d + 1)-Iwanaga-Gorenstein algebra, and Γe is a CM R-module.

(b) Γe is a d -cluster tilting object in CMR and satisfies EndR(Γe) = Γ. Thus R is
d -CM-finite and has a d -Auslander algebra Γ

(c) If Assumption 5.7(ii) is satisfied, then there exist triangle equivalences

Db(modΛ/(e)) ' CMZR and Cd (Λ/(e)) ' CMR:

Similar triangle equivalences were given in de Völcsey and Van den Bergh [2016] and
Kalck and Yang [2016] using different methods. There is a connection between (c) and
(5-4) above via Theorem 2.12, see Amiot [2013].

In the case d = 1, the above (c) recovers Corollary 5.2 and a triangle equivalence
CMR ' C1(kQ/(e)), which implies algebraic McKay correspondence in Example 2.25.
Motivated by Example 3.14 and Theorem 5.1(c), we consider the following.

Example 5.9 (Amiot, Iyama, and Reiten [2015],Ueda [2008]). Let S = k[x0; : : : ; xd ] be
a polynomial algebra, and G a finite subgroup of SLd+1(k). Then the skew group ring
Γ = S � G is a (ungraded) (d + 1)-Calabi-Yau algebra. Assume that G is generated
by the diagonal matrix diag(�a0 ; : : : ; �ad ), where � is a primitive n-th root of unity and
0 � aj � n � 1 for each j . Then Γ is presented by the McKay quiver of G, which
has vertices Z/nZ, and arrows xj : i ! i + aj for each i; j . Define a Z-grading on Γ

by deg(xj : i ! i + aj ) = 0 if i < i + aj as integers in f1; : : : ; ng, and 1 otherwise.
Then Γ is a (d +1)-Calabi-Yau algebra of a-invariant �

P
0�j �d aj /n. Assume that this

is �1, and let e = en. Then Assumption 5.7 is satisfied, and eΓe = SG holds. Thus
Theorem 5.8 gives triangle equivalences

Db(modΛ/(e)) ' CMZSG and Cd (Λ/(e)) ' CMSG :
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Below we draw quivers for two cases (i) n = d + 1 and a0 = � � � = ad = 1, and (ii)
d = 2, n = 5 and (a0; a1; a2) = (1; 2; 2).
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In (i), _*4 shows d+1 arrows, SG is the Veronese subring S (d+1) andΛ is the Beilinson
algebra. For d = 2, we recover the triangle equivalence C2(kQ) ' CMSG for Q =

[ 1
// //// 2 ] given in Keller and Reiten [2008] and Keller, Murfet, and Van den Bergh [2011].

Note that similar triangle equivalences are given in Iyama and R. Takahashi [2013],
Ueda [2012], and Mori and Ueyama [2016] for the skew group rings S � G whose a-
invariants are not equal to �1.

Example 5.10 (Dimer models). Let G be a bipartite graph on a torus, and G0 (resp. G1,
G2) the set of vertices (resp. edges, faces) of G. We associate a quiver with potential
(Q; W ): The underlying graph of Q is the dual of the graph G, and faces of Q dual
to white (resp. black) vertices are oriented clockwise (resp. anti-clockwise). Hence any
vertex v 2 G0 corresponds to a cycle cv of Q. Let W =

P
v:white cv �

P
v:black cv , and Γ

the Jacobian algebra of (Q; W ).
Under the assumption that G is consistent, Γ is a (ungraded) 3-Calabi-Yau algebra, and

for any vertex e, R = eΓe is a Gorenstein toric singularity in dimension 3 (see Broomhead
[2012] and Bocklandt [2012] and references therein). Using a perfect matching C on G,
define a Z-grading on Γ by deg a = 1 for all a 2 C and deg a = 0 otherwise. If both
Γ/(e) and Λ = Γ0 are finite dimensional and eΛ(1 � e) = 0 holds, then Theorem 5.8
gives triangle equivalences

Db(modΛ/(e)) ' CMZR and C2(Λ/(e)) ' CMR:

5.3 d -representation-finite algebras. In this subsection, we study the (d + 1)-pre-
projective algebras of d -representation-finite algebras. We start with the following basic
properties.

Proposition 5.11 (Geiss, Leclerc, and Schröer [2006], Iyama [2011], and Iyama and Op-
permann [2013]). Let Λ be a d -representation-finite k-algebra and Π = Πd+1(Λ).

(a) Π is a Z-graded finite dimensional self-injective k-algebra.

(b) modZΠ has a Serre functor (�1)[d + 1], and modΠ is (d + 1)-Calabi-Yau.
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(c) Π is a (unique) d -cluster tilting object in modΛ.

Now we give an explicit characterization of such Π.

Definition 5.12. Let Γ =
L

i�0 Γi be a Z-graded finite dimensional self-injective k-
algebra. We denote byΓe = Γop˝kΓ the enveloping algebra ofΓ. We say thatΓ is a stably
d -Calabi-Yau algebra of a-invariant a (orGorenstein parameter�a) ifRHomΓe(Γ;Γe)(a)[d ] '

Γ in DZ
sg(Γ

e).

Now we give a homological characterization of the (d + 1)-preprojective algebras of
d -representation-finite algebras as the explicit correspondence.

Theorem 5.13 (Amiot and Oppermann [2014]). There exists a bijection between the set
of isomorphism classes of d -representation-finite algebras Λ and the set of isomorphism
classes of stably (d+1)-Calabi-Yau self-injective algebrasΓ of a-invariant�1. It is given
by Λ 7! Πd+1(Λ) and Γ 7! Γ0.

Now let Λ be a d -representation-finite k-algebra, and Π = Πd+1(Λ). Let Γ =

EndΛ(Π) be the stable d -Auslander algebra of Λ. Then we have an equivalence

(5-5) Ud (Λ) ' projZ T (Γ)

of additive categories. Thus we have triangle equivalences

modZΠ
(5-3)
' modUd (Λ)

(5-5)
' modZT (Γ)

(4-1)
' Db(modΓ):

ByProposition 5.11(b), the automorphism (�1) onmodZΠ corresponds to �d+1 onDb(modΓ).
Using universality of (d+1)-cluster categories (Keller [2005]), we obtain a triangle equiv-
alence modΠ ' Cd+1(Γ). As a summary, we obtain the following.

Theorem 5.14 (Iyama and Oppermann [2013]). Let Λ be a d -representation-finite k-
algebra, Π = Πd+1(Λ), and Γ = EndΛ(Π) the stable d -Auslander algebra of Λ. Then
there exist triangle equivalences

modZΠ ' Db(modΓ) and modΠ ' Cd+1(Γ):

Applying Theorem 5.14 for d = 1, we obtain the following observations.

Example 5.15 (Amiot [2009] and Iyama and Oppermann [2013]). Let Π be the prepro-
jective algebra of a Dynkin quiver Q, and Γ the stable Auslander algebra of kQ. Then
there exist triangle equivalences

modZΠ ' Db(modΓ) and modΠ ' C2(Γ):

As an application, if a quiver Q0 has the same underlying graph with Q, then the stable
Auslander algebra Γ0 of kQ0 is derived equivalent to Γ since Π is common.
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In the rest of this subsection, we discuss properties of Πd+1(Λ) for a more general
class of Λ. We say that a finite dimensional k-algebra Λ with gl:dimΛ � d satisfies the
vosnex property if Λ is �d -finite and satisfies HomDb(modΛ)(Ud (Λ)[i ];Ud (Λ)) = 0 for all
1 � i � d � 2. This is automatic if d = 1; 2 or Λ is d -representation-finite. In this case,
the following generalization of Theorem 5.14 holds.

Theorem 5.16 (Iyama and Oppermann [2013]). Let Λ be a finite dimensional k-algebra
with gl:dimΛ � d satisfying the vosnex property. Then Π = Πd+1(Λ) is 1-Iwanaga-
Gorenstein,Γ = EndΛ(Π) satisfies gl:dimΓ � d+1, and there exist triangle equivalences

CMZΠ ' Db(modΓ) and CMΠ ' Cd+1(Γ):

For more general Λ, we refer to Beligiannis [2015] for some properties of Πd+1(Λ).

5.4 Preprojective algebras and Coxeter groups. We discuss a family of finite dimen-
sional k-algebras constructed from preprojective algebras and Coxeter groups.

Let Q be an acyclic quiver and Π the preprojective algebra of kQ. The Coxeter group
of Q is generated by si with i 2 Q0, and the relations are the following.

• s2i = 1 for all i 2 Q0.

• si sj = sj si if there is no arrow between i and j in Q.

• si sj si = sj si sj if there is precisely one arrow between i and j in Q.

Let w 2 W . An expression w = si1si2 � � � si` of w is called reduced if ` is minimal among
all expressions of w. For i 2 Q0, let Ii be the two-sided ideal of Π generated by the
idempotent 1 � ei . For a reduced expression w = si1 � � � si` , we define a two-sided ideal
of Π by

Iw := Ii1Ii2 � � � Ii` :

This is independent of the choice of the reduced expression of w. The corresponding
factor algebra Πw := Π/Iw is a finite dimensional k-algebra. It enjoys the following
remarkable properties.

Theorem5.17 (Buan, Iyama, Reiten, and Scott [2009], Geiss, Leclerc, and Schröer [2007],
and Amiot, Reiten, and Todorov [2011]). Let w 2 W .

(a) Πw is a 1-Iwanaga-Gorenstein algebra.

(b) CMΠw is a 2-Calabi-Yau triangulated category.

(c) There exists a 2-cluster tilting object
L`

j=1 eij Πsij
���si`

in CMΠw .
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(d) There exists a triangle equivalence CMΠw ' C2(Λ) for some algebra Λ.

Therefore it is natural to expect that there exists a triangle equivalence CMZΠw '

Db(modΛ0) for some algebra Λ0. In fact, the following results are known, where we refer
to Kimura [2018, 2016] for the definitions of c-sortable, c-starting and c-ending.

Theorem 5.18. Let w = si1 � � � si` be a reduced expression of w 2 W .

(a) (Kimura [2018]) If w is c-sortable, then CMZΠw has a tilting object
L

i>0 Πw(i)�0.

(b) (Kimura [2016]) CMZΠw has a silting object
L`

j=1 eij Πsij
���si`

. This is a tilting
object if the reduced expression is c-starting or c-ending.

We end this section with posing the following natural question on ‘higher cluster com-
binatorics’ (e.g. Oppermann and Thomas [2012]), which will be related to derived equiv-
alences of Calabi-Yau algebras since our Iw is a tilting object in Kb(projΠ) if Q is non-
Dynkin.

Problem 5.19. Are there similar results to Theorems 5.17 and 5.18 for higher preprojec-
tive algebras? What kind of combinatorial structure will appear instead of the Coxeter
groups?

6 Geigle-Lenzing complete intersections

Weighted projective lines of Geigle and Lenzing [1987] are one of the basic objects in
representation theory. For example, the simplest class of weighted projective lines gives
us simple singularities in dimension 2 as certain Veronese subrings. We introduce a higher
dimensional generalization of weighted projective lines following Herschend, Iyama, Mi-
namoto, and Oppermann [2014].

6.1 Basic properties. For a field k and an integer d � 1, we consider a polynomial
algebra C = k[T0; : : : ; Td ]. For n � 0, let `1; : : : ; `n be linear forms in C and p1; : : : ; pn

positive integers. For simplicity, we assume pi � 2 for all i . Let

R = C [X1; : : : ; Xn]/(X
pi

i � `i j 1 � i � n)

be the factor algebra of the polynomial algebra C [X1; : : : ; Xn], and

L = hEx1; : : : ; Exn; Eci/hpi Exi � Ec j 1 � i � ni:

the factor group of the free abelian group hEx1; : : : ; Exn; Eci. Then L is an abelian group of
rank 1 with torsion elements in general, andR isL-graded by degTi = Ec for all 0 � i � d

and degXi = Exi for all 1 � i � n.
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We call the pair (R; L) a Geigle-Lenzing (GL) complete intersection if `1; : : : ; `n are
in general position in the sense that each set of at most d + 1 elements from `1; : : : ; `n is
linearly independent. We give some basic properties.

Proposition 6.1. Let (R; L) be a GL complete intersection.

(a) X
p1

1 � `1; : : : ; X
pn
n � `n is a C [X1; : : : ; Xn]-regular sequence.

(b) R is a complete intersection ring with dimR = d + 1 and has an a-invariant

E! = (n � d � 1)Ec �

nX
i=1

Exi :

(c) After a suitable linear transformation of variables T0; : : : ; Td , we have

R =

(
k[X1; : : : ; Xn; Tn; : : : ; Td ] if n � d + 1;

k[X1; : : : ; Xn]/(X
pi

i �
Pd+1

j=1 �i;j �1X
pj

j ) j d + 2 � i � n) if n � d + 2:

(d) R is regular if and only if R is a polynomial algebra if and only if n � d + 1.

(e) CML R = CML
0 R holds, and CMLR has a Serre functor ( E!)[d ] (Theorem 2.16).

Let ı : L ! Q be a group homomorphism given by ı(Exi ) = 1
pi

and ı(Ec) = 1. We
consider the following trichotomy given by the sign of ı( E!) = n � d � 1�

Pn
i=1

1
pi
. For

example, (R; L) is Fano if n � d + 1.

ı( E!) < 0 = 0 > 0

(R; L) Fano Calabi-Yau anti-Fano
d = 1 domestic tubular wild

In the classical case d = 1, the ring R has been studied in the context of weighted projec-
tive lines. The above trichotomy is given explicitly as follows.

� 5 types for domestic: n � 2, (2; 2; p), (2; 3; 3), (2; 3; 4) and (2; 3; 5).

� 4 types for tubular: (3; 3; 3), (2; 4; 4), (2; 3; 6) and (2; 2; 2; 2).

� All other types are wild.

There is a close connection between domestic type and simple singularities. The following
explains Corollary 5.2, where R( E!) =

L
i2Z Ri E! is the Veronese subring.
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Theorem6.2 (Geigle and Lenzing [1991]). If (R; L) is domestic, thenR( E!) is a simple sin-
gularity k[x; y; z]/(f ) in dimension 2, and we have an equivalenceCML R ' CMZ R( E!).
The AR quiver is ZQ, where Q is given by the following table.

(p1; : : : ; pn) x y z f Q

(p; q) X1X2 X
p+q
2 X

p+q
1 xp+q � yz eAp;q

(2; 2; 2p) X2
3 X2

1 X1X2X3 x(y2 + xpy) + z2 eD2p+2

(2; 2; 2p + 1) X2
3 X1X2 X2

1X3 x(y2 + xpz) + z2 eD2p+3

(2; 3; 3) X1 X2X3 X3
2 x2z + y3 + z2 eE6

(2; 3; 4) X2 X2
3 X1X3 x3y + y3 + z2 eE7

(2; 3; 5) X3 X2 X1 x5 + y3 + z2 eE8

6.2 Cohen-Macaulay representations. To study the category CML R, certain finite
dimensional algebras play an important role. For a finite subset I of L, let

AI =
M

Ex; Ey2I

REx� Ey :

We define the multiplication in AI by (rEx; Ey)Ex; Ey2I � (r 0

Ex; Ey
)Ex; Ey2I = (

P
Ez2I rEx;Ezr 0

Ez; Ey
)Ex; Ey2I .

Then AI forms a finite dimensional k-algebra called the I -canonical algebra.
We define a partial order � on L by writing Ex � Ey if Ey � Ex belongs to L+, where L+

is the submonoid of L generated by Ec and Exi for all i . For Ex 2 L, let [0; Ex] be the interval
in L, and A[0;Ex] the [0; Ex]-canonical algebra. We call

ACM = A[0;d Ec+2 E!]

the CM-canonical algebra.

Example 6.3. The equality d Ec + 2 E! = (n � d � 2)Ec +
Pn

i=1(pi � 2)Exi holds.

(a) If n � d + 1, then ACM = 0. If n = d + 2, then ACM =
Nn+2

i=1 kApi �1.

(b) If n = d + 3 and pi = 2 for all i , then ACM has the left quiver below.

(c) If d = 1, n = 4 and (pi )
4
i=1 = (2; 2; 2; 3), then ACM has the right quiver below.
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The following is a main result in this section.

Theorem 6.4. Let (R; L) be a GL complete intersection. Then there is a triangle equiva-
lence

CMLR ' Db(modACM):

In particular, CMLR has a tilting object.

The case n = d + 2 was shown in Kussin, Lenzing, and Meltzer [2013] (d = 1) and
Futaki and Ueda [2011]. An important tool in the proof is an L-analogue of Theorem 2.12.

As an application, one can immediately obtain the following analogue of Theorem 2.23
by using the knowledge on ACM in representation theory, where we call (R; L) CM-finite
if there are only finitely many isomorphism classes of indecomposable objects in CML R

up to degree shift (cf. Definition 2.22).

Corollary 6.5. Let (R; L) be a GL complete intersection. Then (R; L) is CM-finite if and
only if one of the following conditions hold.

(i) n � d + 1.

(ii) n = d + 2, and (p1; : : : ; pn) = (2; : : : ; 2; pn), (2; : : : ; 2; 3; 3), (2; : : : ; 2; 3; 4) or
(2; : : : ; 2; 3; 5) up to permutation.

We call a GL complete intersection (R; L) d -CM-finite if there exists a d -cluster tilting
subcategory C of CML R such that there are only finitely many isomorphism classes of
indecomposable objects in C up to degree shift (cf. Definition 3.12). Now we discuss
which GL complete intersections are d -CM-finite. Our Theorem 3.7 gives the following
sufficient condition, where a tilting object is called d -tilting if the endomorphism algebra
has global dimension at most d .

Proposition 6.6. If CMLR has a d -tilting object U , then (R; L) is d -CM-finite and
CML R has the d -cluster tilting subcategory addfU (` E!); R(Ex) j ` 2 Z; Ex 2 Lg.

Therefore the following problem is of our interest.

Problem 6.7. When does CMLR have a d -tilting object? Equivalently, when is ACM

derived equivalent to an algebra Λ with gl:dimΛ � d?

Applying Tate’s DG algebra resolutions (Tate [1957]), we can calculate gl:dimACM.
Note that any element Ex 2 L can be written uniquely as Ex = aEc +

Pn
i=1 ai Exi for a 2 Z

and 0 � ai � pi � 1, which is called the normal form of Ex.

Theorem 6.8. (a) Write Ex 2 L+ in normal form Ex = aEc +
Pn

i=1 ai Exi . Then

gl:dimA[0;Ex] =

(
minfd + 1; a + #fi j ai ¤ 0gg if n � d + 1;

2a + #fi j ai ¤ 0g if n � d + 2:



172 OSAMU IYAMA

(b) If n � d + 2, then ACM has global dimension 2(n � d � 2) + #fi j pi � 3g.

We obtain the following examples from Theorem 6.8 and the fact that kA2 ˝k kAm is
derived equivalent to kD4 if m = 2, kE6 if m = 3, and kE8 if m = 4.

Example 6.9. In the following cases, CMLR has a d -tilting object.

(i) n � d + 1.

(ii) n = d + 2 � 3 and (p1; p2; p3) = (2; 2; p3), (2; 3; 3), (2; 3; 4) or (2; 3; 5).

(iii) n = d + 2 � 4 and (p1; p2; p3; p4) = (3; 3; p3; p4) with p3; p4 2 f3; 4; 5g.

(iv) #fi j pi = 2g � 3(n � d ) � 4.

The following gives a necessary condition for the existence of d -tilting object.

Proposition 6.10. If CMLR has a d -tilting object, then (R; L) is Fano.

Note that the converse is not true. For example, let d = 2 and (2; 5; 5; 5). Then (R; L)

is Fano since ı( E!) = �
1
10
. On the other hand, ACM =

N3
i=1 kA4 satisfies �5 = [9]. One

can show that ACM is not derived equivalent to an algebra Λ with gl:dimΛ � 2 by using
the inequality 2(5 � 1) < 9.

6.3 Geigle-Lenzing projective spaces. Let (R; L) be a GL complete intersection. Re-
call that modL

0 R is the Serre subcategory of modL R consisting of finite dimensional
modules. We consider the quotient category

cohX = qgrR = modL R/modL
0 R:

We call objects in cohX coherent sheaves on the GL projective space X. We can regard
X as the quotient stack [(SpecR n fR+g)/Spec k[L]] for R+ =

L
Ex>0 REx . For example,

if n = 0, then X is the projective space P d .
We study the bounded derived category Db(cohX), which is canonically triangle equiv-

alent to theVerdier quotient Db(modL R)/Db(modL
0 R). The duality (�)� = RHomR(�; R) : Db(modL R) !

Db(modL R) induces a duality (�)� : Db(cohX) ! Db(cohX). We define the category
of vector bundles on X as

vectX = cohX \ (cohX)�:

The composition CML R � modL R ! cohX is fully faithful, and we can regard CML R

as a full subcategory of vectX. We have CML R = vectX if d = 1, but this is not the
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case if d � 2. In fact, we have equalities

CML R = fX 2 vectX j 8Ex 2 L; 1 � i � d � 1; ExtiX(O(Ex); X) = 0g(6-1)

= fX 2 vectX j 8Ex 2 L; 1 � i � d � 1; ExtiX(X; O(Ex)) = 0g

where O(Ex) = R(Ex). Now we define the d -canonical algebra by

Aca = A[0;d Ec]:

Example 6.11. (a) If d = 1, then Aca is precisely the canonical algebra of Ringel [1984].
It is given by the following quiver with relations x

pi

i = �i0x
p1

1 + �i1x
p2

2 for any i
with 3 � i � n.
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(b) If n = 0, then Aca is the Beilinson algebra.

(c) If d = 2, n = 3 and (pi )
3
i=1 = (2; 2; 2), then Aca has the left quiver below.

(d) If d = 2, n = 4 and (pi )
4
i=1 = (2; 2; 2; 2), then Aca has the right quiver below.
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As in the case of CMLR and ACM, we obtain the following results.

Theorem 6.12. Let X be a GL projective space. Then there is a triangle equivalence

Db(cohX) ' Db(modAca):

Moreover Db(cohX) has a tilting bundle
L

Ex2[0;d Ec] O(Ex).
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Some cases were known before (n = 0 by Beilinson [1978], d = 1 by Geigle and
Lenzing [1987], n � d + 1 by Baer [1988], n = d + 2 by Ishii and Ueda [2012]). An
important tool in the proof is again an L-analogue of Theorem 2.12.

We call X vector bundle finite (VB-finite) if there are only finitely many isomorphism
classes of indecomposable objects in vectX up to degree shift. There is a complete clas-
sification: X is VB-finite if and only if d = 1 and X is domestic.

We call X d -VB-finite if there exists a d -cluster tilting subcategory C of vectX such
that there are only finitely many isomorphism classes of indecomposable objects in C up
to degree shift. In the rest, we discuss which GL projective spaces are d -VB-finite. We
start with the following relationship between d -cluster tilting subcategories of CML R

and vectX, which follows from (6-1).

Proposition 6.13. The d -cluster-tilting subcategories ofCML R are precisely the d -cluster-
tilting subcategories of vectX containing O(Ex) for all Ex 2 L. Therefore, if (R; L) is
d -CM-finite, then X is d -VB-finite.

For example, if n � d + 1, then CML R = projL R is a d -cluster tilting subcate-
gory of itself, and hence vectX has a d -cluster tilting subcategory addfO(Ex) j Ex 2 Lg.
This implies Horrocks’ splitting criterion for vectP d (Okonek, Schneider, and Spindler
[1980]).

We give another sufficient condition for d -VB-finiteness. Recall that we call a tilting
object V in Db(cohX) d -tilting if gl:dimEndDb(cohX)(V ) � d .

Proposition 6.14. Let X be a GL projective space, and V a d -tilting object in Db(cohX).

(a) (cf. Example 3.11(b)) gl:dimEndDb(cohX)(V ) = d holds. If V 2 cohX, then EndX(T )

is a d -representation-infinite algebra.

(b) If V 2 vectX, then X is d -VB-finite and vectX has the d -cluster tilting subcategory
addfV (` E!) j ` 2 Zg.

Therefore it is natural to ask when X has a d -tilting bundle, or equivalently, when Aca

is derived equivalent to an algebra Λ with gl:dimΛ = d . It follows from Theorem 6.8(a)
that

gl:dimAca =

(
d if n � d + 1;

2d if n � d + 2:

Thus, if n � d + 1, then X has a d -tilting bundle. Using Example 6.9 and some general
results on matrix factorizations, we have more examples.

Theorem 6.15. In the following cases, X has a d -tilting bundle.

(i) n � d + 1.
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(ii) n = d + 2 � 3 and (p1; p2; p3) = (2; 2; p3), (2; 3; 3), (2; 3; 4) or (2; 3; 5).

(iii) n = d + 2 � 4 and (p1; p2; p3; p4) = (3; 3; p3; p4) with p3; p4 2 f3; 4; 5g.

As in the previous subsection, we have the following necessary condition.

Proposition 6.16. If X has a d -tilting bundle, then X is Fano.

Some of our results in this section can be summarized as follows.

(R; L) is
d -CM-finite

Proposition 6:13
��

CMLR has a
d -tilting object

Proposition 6:6ks Proposition 6:10 +3 Fano

X is
d -VB-finite

X has a
d -tilting bundle

Proposition 6:14ks Proposition 6:14 +3

Proposition 6:16

19kkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkk X is derived equivalent
to a d -representation

infinite algebra

It is important to understand the precise relationship between these conditions. We refer
to Chan [2017] and Buchweitz, Hille, and Iyama [n.d.] for results on existence of d -tilting
bundles on more general varieties and stacks.
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ON NEGATIVE ALGEBRAIC K -GROUPS

Mඈඋංඍඓ Kൾඋඓ

Abstract

We sketch a proof of Weibel’s conjecture on the vanishing of negative algebraic
K-groups and we explain an analog of this result for continuous K-theory of non-
archimedean algebras.

1 Negative K-groups of schemes

For a scheme X Grothendieck introduced the K-group K0(X) in his study of the general-
ized Riemann–Roch theorem in Berthelot, Grothendieck, and Illusie [1971, Def. IV.2.2].
In case X has an ample family of line bundles one can describe K0(X) as the free abelian
group generated by the locally free OX -modules V of finite type modulo the relation
[V0] + [V00] � [V] for any short exact sequence

0! V0
! V ! V00

! 0;

see Berthelot, Grothendieck, and Illusie [ibid., Sec. IV.2.9]. We denote by X [t ] resp.
X [t�1] the scheme X � A1 with parameter t resp. t�1 for the affine line A1, and we
denote by X [t; t�1] the scheme X � Gm, where Gm = A1 n f0g. Bass successively de-
fined negative algebraic K-groups of the scheme X (at least in the affine case) in degree
i < 0 to be

Ki (X) = coker
�
Ki+1(X [t ]) �Ki+1(X [t�1])! Ki+1(X [t; t�1])

�
:

The two classical key properties, essentially due to Bass [1968], satisfied by these alge-
braic K-groups are the Fundamental Theorem and Excision.
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Proposition 1 (Fundamental Theorem). For a quasi-compact, quasi-separated scheme
X and i � 0 there exists an exact sequence

0! Ki (X)! Ki (X [t ]) �Ki (X [t�1])! Ki (X [t; t�1])! Ki�1(X)! 0

Furthermore, for a noetherian, regular scheme X we have Ki (X) = 0 for i < 0.

Proposition 2 (Excision). For a ring homomorphism A! A0 and an ideal I � A which
maps isomorphically onto an ideal I 0 of A0 the map Ki (A; I ) ! Ki (A

0; I 0) of relative
K-groups is an isomorphism for i � 0.

Combining Proposition 2 with the Artin-Rees Lemma we get the following more geo-
metric reformulation:

Corollary 3. For a finite morphism of affine noetherian schemes f : X 0 ! X and a
closed immersion Y ,! X such that f is an isomorphism overXnY the mapKi (X; Y )!

Ki (X
0; Y 0) is an isomorphism for i < 0. Here Y 0 = Y �X X 0.

In general it is a hard problem to actually calculate the negative K-groups in concrete
examples. One of the examples calculated in C. Weibel [2001, Sec. 6] reads:

Example 4. For a field k and the normal surface X = Spec k[x; y; z]/(z2 � x3 � y7)

we have K�1(X) = k and Ki (X) = 0 for i < �1.

In fact it is shown in C. Weibel [ibid.] that for a normal surface X we have K�2(X) =

Z� and Ki (X) = 0 for i < �2, where � is the number of “loops” in the exceptional
divisor of a resolution of singularities of X . We extend this calculation in Theorem 8 and
Theorem 11 to higher dimensions.

For our results it is essential to understand in which sense we can extend Corollary 3
to global schemes. For this we have to study the non-connective algebraic K-theory spec-
trum K(X) of a scheme X introduced in Thomason and Trobaugh [1990]. Its homotopy
groups Ki (X) = �i K(X) for i � 0 agree with the K-groups defined above.

As shown in Thomason and Trobaugh [ibid., Sec. 8], the functor K satisfies Zariski
descent. More concretely, consider a noetherian schemeX of finite dimension and a closed
subscheme Y ,! X . LetK(X; Y ) be the homotopy fibre ofK(X)! K(Y ). LetKi;(X;Y )

be the Zariski presheaf onX given byU 7! �i K(U; Y \U ) and letK∼
i;(X;Y ) be its Zariski

sheafification. There exists a convergent descent spectral sequence

(1) E
p q
2 = H p(X; K∼

�q;(X;Y ))) K�p�q(X; Y ):

As a direct consequence of Corollary 3 and of Zariski descent we observe:
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Corollary 5. Let X be a noetherian scheme, let Y ,! X be a closed subscheme and let
d be the dimension of the closure X n Y . Assume that Y ,! X is an isomorphism away
from X n Y . Let f : X̃ ! X be a finite morphism which is an isomorphism over X n Y .
Set E = f �1(Y ). Then the map f � : Ki (X; Y ) ! Ki (X̃ ; E) is an isomorphism for
i < �d .

Remark 6. For X̃ = Xred and Y = ¿ Corollary 5 can be refined to an isomorphism
Ki (X)

'
�! Ki (Xred) for i � � dim(X).

Proof. In order to prove Corollary 5 one compares the descent spectral sequence (1) with
the corresponding descent spectral sequence

E
p q
2 = H p(X; (f�K

�q;(X̃;E))
∼)) K�p�q(X̃ ; E):

and one uses that

(i) K∼
i;(X;Y ) ! (f�Ki;(X̃;E))

∼ is an isomorphism for i � 0 by Corollary 3,

(ii) the sheaves K∼
i;(X;Y ) and (f�Ki;(X̃;E))

∼ vanish away from X n Y .

Note that (ii) implies that E
p q
2 = 0 for p > d in both spectral sequences.

2 Platification par éclatement

In this section we explain an application of platification par éclatement Raynaud and
Gruson [1971, Sec. 5], which generalizes the vanishing result Kerz and Strunk [2017,
Prop. 5]. The motivating picture one should keep in mind is that negative K-groups of
Zariski-Riemann spaces vanish, since all coherent sheaves on Zariski-Riemann spaces
have Tor-dimension � 1.

Let X be a quasi-compact and quasi-separated scheme, let Y ,! X be a closed sub-
scheme defined by an invertible ideal sheaf. Recall that an admissible blow-up of X

(with respect to Y ) is a blow up BlZX ! X with center Z ,! X of finite presentation
and set theoretically contained in Y , see Raynaud and Gruson [1971, Def. 5.1.3]. Also
recall that the composition of admissible blow-ups is admissible Raynaud and Gruson
[ibid., Lem. 5.1.4]. Let X 0 ! X be a smooth morphism of finite presentation and set
Y 0 = Y �X X 0.

The following proposition is clear in case there exists a suitable resolution of singular-
ities for X , in view of Proposition 1. We denote by Ki (X on Y ) the K-theory of X with
support on Y as in Thomason and Trobaugh [1990, Def. 6.4].
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Proposition 7. Assume that X 0 has an ample family of line bundles and assume that X is
reduced. For i < 0 and 
 2 Ki (X

0 on Y 0) there exists an admissible blow-up X̃ ! X

such that the pullback of 
 to Ki (X
0 �X X̃ on Y 0 �X X̃) vanishes.

Proof. For simplicity of notation we assume that X = X 0 throughout the proof.
By noetherian approximation, see Thomason and Trobaugh [1990, App. C], there exists

a directed inverse system (X˛)˛ of schemes of finite type over Z with affine transition
maps such that X = lim

 �˛
X˛ . We may further assume that Y descends to a system of

closed subschemes Y˛ ,! X˛ and that there exists 
˛ 2 Ki (X˛ on Y˛) pulling back to 
 .
Under the assumption that we know Proposition 7 for noetherian schemes we can, for

some fixed ˛, find a closed subscheme Z˛ which is set theoretically contained in Y˛ and
such that the pullback of 
˛ to Ki (BlZ˛

X˛ on Y˛�X˛
BlZ˛

X) vanishes. Let X̃ be BlZX ,
where Z is the pullback of Z˛ to X . In view of the commutative diagram

X̃

��

// BlY˛
X˛

��
X // X˛

the scheme X̃ satisfies the requested property of Proposition 7.
By what has been explained, we can assume without loss of generality that all schemes

in Proposition 7 are noetherian. In view of Bass’ definition of negative K-theory, dis-
cussed in Section 1, we see that K�k(X on Y ) is a quotient of K0(Gk

m;X on Gk
m;Y ) for

k > 0 in which elements induced from K0(Ak
X on Ak

Y ) vanish. However, combining
Kerz and Strunk [2017, Lem. 6] and Thomason and Trobaugh [1990, Ex. 5.7] we see that
the latter groups are generated by coherent O-modules on Gk

m;X resp. Ak
X which have

support over Y and have Tor-dimension � 1 over X . So without loss of generality the
given element 
 is induced by such an OGk

m;X
-module V (here k = �i ).

Extend V to a coherent OAk
X
-module V with support over Y . Because of the exis-

tence of an ample family of line bundles there exists an exact sequence of coherent OAk
X
-

modules
0! V1 ! V2 ! V ! 0

with V2 locally free. By Raynaud and Gruson [1971, Thm. 5.2.2] there exists an admis-
sible blow-up f : X̃ ! X such that the strict transform of V1 along f is flat over X .
This implies that the pullback f �V has Tor-dimension � 1 over X . So the latter induces
an element in K0(Ak

X̃
) which induces f �(
) 2 Ki (X̃) via the Bass construction. This

shows the requested vanishing of f �(
).
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3 Weibel’s conjecture

In C. A. Weibel [1980, p. 2.9] Weibel conjectured that the following Theorem 8 holds.

Theorem 8. For a noetherian scheme X of dimension d <1 we have:

(i) Ki (X) = 0 for i < �d ,

(ii) Ki (X)
'
�! Ki (X [t1; : : : ; tr ]) is an isomorphism for i � �d and any number of

variables r .

There have been various partial results on Weibel’s conjecture during the past twenty
years, in particular it was shown for varieties X in characteristic zero Cortiñas, Haese-
meyer, Schlichting, and C. Weibel [2008]. A complete proof of Theorem 8 was first given
in Kerz, Strunk, and Tamme [2018, Thm. B] based on a pro-descent result for algebraic
K-theory of blow-ups. In this section we sketch a simplified and more direct version of
that proof which does not use the excision theory for K-theory of simplicial rings, as de-
veloped in Kerz, Strunk, and Tamme [ibid., Sec. 4]. For simplicity we will stick to part (i)
of Theorem 8 in the proof.

Remark 9. Almost verbatim the same argument as in the proof of Theorem 8 shows that
the conclusion remains true with X replaced by a scheme X 0 which is smooth of finite
type over a noetherian scheme of dimension d <1. This was observed in Sadhu [2017].

The essential observation is that using derived schemes and derived blow-ups one can
show that the analog of Corollary 5 holds for blow-ups, see Proposition 10 below.

For the convenience of the reader we summarize some properties of derived schemes
in the following. A derived scheme X is roughly speaking given by a topological space
jXj together with a ‘derived’ sheaf of commutative simplicial rings OX on jXj, see Lurie
[2016, Sec. 1.1.5]. For a derived scheme X its topological space together with its sheaf
of homotopy groups �0OX defines an ordinary scheme, which we denote tX. The 1-
category of derived schemes has finite limits and t preserves finite limits.

For a quasi-compact, quasi-separated derived scheme X one can construct its associ-
ated stable1-category of perfect OX-modules Perf(X), see Lurie [ibid., Sec. 9.6], and
one can define the K-theory spectrum K(X) as the non-connective K-theory spectrum
of Perf(X) in the sense of Blumberg, Gepner, and Tabuada [2013, Sec. 9.1].

The two key properties about the K-theory of a derived scheme X that we need— and
that are well-known to the experts — are:

(DK1) For a quasi-compact, quasi-separated derived scheme X and a finite covering U of
X by quasi-compact open subschemes there is a descent spectral sequence

E
p q
2 = Ȟ p(U; K�q;X)) K�p�q(X);
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compare Clausen, Mathew, Naumann, and Noel [2016, App. A] and Thomason and
Trobaugh [1990, Prop. 8.3].

(DK2) For X affine, that is X is the spectrum of a simplicial ring, the map Ki (X)
'
�!

Ki (tX) is an isomorphism for i � 1, compare Blumberg, Gepner, and Tabuada
[2013, Thm. 9.53] and Kerz, Strunk, and Tamme [2018, Thm. 2.16].

Putting properties (DK1) and (DK2) together yields:

(DK3) For a quasi-compact, separated derived scheme X which has a covering by d + 1

affine open subschemes the maps Ki (X)
'
�! Ki (tX)

'
�! Ki ((tX)red) are isomor-

phisms for i � �d .

Proposition 10. Let X = SpecA be a noetherian local scheme, let Y ,! X be a closed
subscheme. Set d = dim(X), X̃ = BlY X and E = f �1(Y ). Then the map f � :

Ki (X; Y )! Ki (X̃ ; E) is an isomorphism for i < �d .

Proof. Let I � A be the ideal corresponding to Y . After replacing I by some power, we
can assume that there exists a reduction of I generated by elements a0; : : : ; ar with r < d ,
see Huneke and Swanson [2006, Prop. 8.3.8]. Choose a noetherian ring A0 together with
a regular sequence a0

0; : : : ; a0
r 2 A0 whose image under a ring homomorphism A0 ! A

is the sequence a0; : : : ; ar . Set X 0 = SpecA0 and Y 0(n) = SpecA0/((a0
0)

2n
; : : : ; (a0

r)
2n
)

for n � 0. The derived blow-up square

X̃(m)

��

E(m; n)oo

��
X Y(n)oo

(2)

is defined as the derived pullback of the usual cartesian blow-up square

BlY 0(m)X
0

��

E 0(m; n)oo

��
X 0 Y 0(n)oo

According to a derived generalization Kerz, Strunk, and Tamme [2018, Thm. 3.7] of a
descent result of Thomason [1993], the square (2) gives rise to an equivalence of relative
K-theory spectra K(X; Y(n))

'
�! K(X̃(n); E(n; n)) for any n � 0.

By property (DK2) above, we know that

Ki (X; Y(n))
'
�! Ki (X; Y )
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is an isomorphism for i � 0, n � 0 and by property (DK3) we know that

Ki (X̃(n); E(n; n))
'
�! Ki (tX̃(n); tE(n; n))

is an isomorphism for i < �d , n � 0. Note that X̃ and E have affine coverings by
r + 1 � d open subschemes.

Finally, we apply Corollary 5 to the cartesian square

X̃

��

E(n)oo

��
tX̃(m) tE(m; n)oo

for n large depending on m, in which the vertical maps are finite by Huneke and Swanson
[2006, Thm. 8.2.1]. We deduce that

lim
n

Ki (tX̃(m); tE(m; n))
'
�! lim

n
Ki (X̃ ; E(n))

is an isomorphism for i < �d and m � 0. For i < �d composing the isomorphisms

Ki (X; Y )
'
�! lim

n
Ki (X; Y(n))

'
�! lim

n
Ki (X̃(n); E(n; n))

'
�!

lim
n

Ki (tX̃(n); tE(n; n))
'
�! lim

m
lim

n
Ki (tX̃(m); tE(m; n))

'
�!

lim
n

Ki (X̃ ; E(n))
'
�! Ki (X̃ ; E)

finishes the proof of Proposition 10.

Proof of Theorem 8(i). For the proof we make an induction on d = dim(X). The case
d = 0 is clear as then Ki (X)

'
�! Ki (Xred) vanishes for i < 0 by Proposition 1. For the

induction step we use the descent spectral sequence (1) in order to reduce to the case of
a local scheme X = SpecA, see Kerz, Strunk, and Tamme [2018, Prop. 6.1] for details.
Since in the affine case Ki (X)

'
�! Ki (Xred) is an isomorphism for i � 0, we can assume

without loss of generality that X is reduced.
Fix 
 2 Ki (X) for some i < �d . Let Y ,! X be a closed subscheme defined by an

invertible ideal sheaf such that 
 jXnY = 0. This means that 
 can be lifted to an element

 0 2 Ki (X on Y ). By Proposition 7 there exists a blow-up f : X̃ ! X in a center
Z ,! X which is set theoretically contained in Y such that the pullback of 
 0 along f

vanishes, in particular f �(
) = 0 2 Ki (X̃).
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Set E = f �1(Z) and consider the commutative diagram with exact rows

Ki+1(E) // Ki (X̃ ; E) // Ki (X̃) // Ki (E)

Ki+1(Z) //

OO

Ki (X; Z) //

OO

Ki (X) //

f �

OO

Ki (Z)

OO

(3)

As dim(Z); dim(E) < d theK-groups in the outer corners of diagram (3) vanish by our in-
duction assumption. The second vertical arrow in (3) is an isomorphism by Proposition 10.
So the third vertical arrow is an isomorphism as well, which implies that 
 = 0.

While the negative K-groups Ki (X) for �d = � dim(X) < i < 0 can be quite hard
to calculate, there is nice formula for K�d (X), which was shown in complete generality
in Kerz, Strunk, and Tamme [2018, Cor. D] and previously for varieties in characteristic
zero Cortiñas, Haesemeyer, Schlichting, and C. Weibel [2008].

Theorem 11. For a noetherian scheme of dimension d <1 there is a canonical isomor-
phism

K�d (X) = H d
cdh(X; Z);

where on the right we take sheaf cohomology with respect to the cdh-topology on X .

4 Negative K-groups of affinoid algebras

In this section let k be a (non-discrete) non-archimedean complete field with ring of inte-
gers kı. By � we denote an element with absolute value 0 < j�j < 1. For an affinoid
algebra A over k, see Bosch [2014, Sec. 3.1], we write Ahti for the Tate algebra over A,
which consists of those formal power series a0 + a1t + � � � 2 AJtK with limi!1 ai = 0,
similarly for Aht�1i and Aht; t�1i. One defines non-positive continuous K-groups of A

successively by Kcont
0 (A) = K0(A) and

Kcont
i (A) = coker

�
Kcont

i+1(Ahti) �Kcont
i+1(Aht

�1
i)! Kcont

i+1(Aht; t�1
i)

�
for i < 0. These negative continuous K-groups were defined and studied in Karoubi and
Villamayor [1971, Sec. 7] and Calvo [1985]. They also coincide with the continuous pro-
groups defined in Morrow [2016, Sec. 3] as is shown in Kerz, Saito, and Tamme [2018,
Sec. 5].

We are about to show that the analog of Weibel’s conjecture, i.e. Theorem 8, holds in
the non-archimedean situation:

Theorem 12. Assume that k is discretely valued. For an affinoid k-algebra A of dimen-
sion d we have:
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(i) Kcont
i (A) = 0 for i < �d ,

(ii) Kcont
i (A)

'
�! Kcont

i (Aht1; : : : ; tri) is an isomorphism for i � �d and any number
of variables r .

I expect that the condition that k is discretely valued in Theorem 12 can be removed.
Note that even for smooth affinoid algebras A the negative continuous K-groups do not
necessarily vanish, as the following example shows.

Example 13. Assume that the residue field of k has characteristic zero and let � 2 k be
an element of absolute value 0 < j�j < 1. For the affinoid algebra A = khs; ti/(t2 �

s3 + s2 � �) we have Kcont
�1 (A) = Z.

The key fact for us is that for an admissible kı-algebra A0 in the sense of Bosch [2014,
Def. 7.3.3] with A = A0[1/� ] we obtain an exact sequence, see Kerz, Saito, and Tamme
[2018, Sec. 5],

(4) K0(A0 on (�))! K0((A0/(�))red)!

Kcont
0 (A)! K�1(A0 on (�))! � � � :

Recall that an admissible kı-algebra A0 is �-adically complete, topologically of finite
type and �-torsion free.

The claim made in Example 13 follows from the exact sequence (4) by setting A0 =

kıhs; ti/(t2 � s3 + s2 � �) and using that in this case Ki (A0 on (�)) = 0 for i < 0 and
that K�1((A0/(�))red) = Z.

Proof of Theorem 12(i). We can assume without loss of generality that A is reduced. An
admissible blow-up ofX = SpecA0, whereA0 is an admissible kı-algebra as above, is de-
fined as a blow-up in a center Y ,! X which is set theoretically contained in SpecA0/(�).
Let now X̃ = BlY X be such an admissible blow-up, X0 = (X ˝A0

A0/(�))red and
X̃0 = (X̃ ˝A0

A0/(�))red. For i < �d we obtain from Kerz, Saito, and Tamme [ibid.,
Prop. 5.8] the upper exact sequence in the commutative diagram

Ki (X̃0) // Kcont
i (A) // Ki�1(X̃ on (�))

Ki (X0) //

OO

Kcont
i (A) // Ki�1(X on (�))

OO

(5)

while the lower exact sequence is just part of (4). Both groups on the left of (5) vanish
by Theorem 8 since i < �d = � dim(X0) = � dim(X̃0). Consider an element ˛ 2

Kcont
i (A). For its image ˛0 2 Ki�1(X on (�))we can use Proposition 7 in order to choose
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the admissible blow-up X̃ such that the pullback of ˛0 to Ki�1(X̃ on (�)) vanishes. A
diagram chase in (5) shows that ˛ vanishes.

The forthcoming PhD thesis of C. Dahlhausen will discuss the following conjecture,
which is the non-archimedean analytic variant of Theorem 11.

Conjecture 14. For an affinoid k-algebra A of dimension d there is an isomorphism

Kcont
�d (A) Š H d (M(A); Z):

HereM(A) is the Berkovich spectrum ofmultiplicative seminorms Berkovich [1990, Ch. 1].

Acknowledgments. I would like to thank H. Esnault, O. Gabber, M. Groechenig, M.
Morrow, S. Saito, F. Strunk, G. Tamme and C. Weibel for helpful discussions.
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ON THE CLASSIFICATION OF FUSION CATEGORIES

Sඈඇංൺ Nൺඍൺඅൾ

Abstract
We report, from an algebraic point of view, on some methods and results on the

classification problem of fusion categories over an algebraically closed field of char-
acteristic zero.

For I could not count or name the multitude who came to Troy, though I had
ten tongues and a tireless voice, and lungs of bronze as well...

Homer, Iliad, Book II (The catalogue of ships)

1 Introduction

Fusion categories arise from many areas of mathematics and mathematical physics encod-
ing symmetries of structures of different nature and in this sense they can be regarded
as a generalization of (finite) groups. This makes the problem of classifying fusion cate-
gories both an exciting and at the same time a colossal task. Some classes of examples of
fusion categories with distinct features come from such structures like finite groups them-
selves, quantum groups at roots of 1, subfactors, vertex algebras... A unifying systematic
approach to the theory of fusion categories was initiated in the paper Etingof, Nikshych,
and Ostrik [2005]. The classification is still in an early age and perhaps awaiting for its
monsters to wake up. Some progress has been made however towards the classification
of fusion categories in certain classes. What we want to present here is an overview of
some constructions, results and open questions related to the classification problem that
we think are interesting. The world of fusion categories is a vast one and there are also im-
portant constructions, results and questions that we are not going to discuss here, mainly
due to space constraints. Our approach concerns the algebraic aspect of fusion categories
The author is supported by CONICET and Secyt (UNC).
2000 Mathematics Subject Classification: primary 18D10; secondary 16T05.
Keywords: tensor category, fusion category, braided fusion category.

191

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v2-p


192 SONIA NATALE

and it is for the most part motivated by different notions of extensions. The perspectives
we present are the fruit of the efforts of many and the list of references at the end of the
paper is not exhaustive.

We shall work over an algebraically closed base field k. Except in Sections 2.1, 2.2
and Section 4, we assume that k is of characteristic zero. We refer the reader to the book
Etingof, Gelaki, Nikshych, and Ostrik [2015] and references therein for most notions on
tensor and fusion categories appearing throughout.

2 Fusion categories

We start by recalling some basic definitions and notation regarding monoidal and tensor
categories and the relevant functors between them. A detailed study can be found in the
books Bakalov and Kirillov [2001], Etingof, Gelaki, Nikshych, and Ostrik [2015], Kassel
[1995], Majid [1995], V. G. Turaev [1994].

2.1 Basic notions. A monoidal category is a collection (C;˝; 1; a; l; r), where C is a
category,˝ : C � C! C is a functor, 1 is an object of C, called the unit object,

a : ˝ ı (˝� idC)!˝ ı (idC �˝); l : 1˝ idC ! idC; r : idC˝1! idC;

are natural isomorphisms called, respectively, the associativity and left and right unit con-
traints, subject to the so-called pentagon and triangle axioms. For the sake of brevity, we
shall simply speak of ’the monoidal category C’.

Let C, D be monoidal categories. A monoidal functor C! D is a triple (F; F 2; F 0)1,
where F : C ! D is a functor, F 0 : 1 ! F (1) is an isomorphism compatible with the
unit constraints, and F 2 : ˝ ı (F � F )! F ı ˝ is a natural isomorphism such that, for
all objects X; Y; Z of C,

(F 2
X;Y ˝Z)(idF (X)˝F 2

Y;Z)aF (X);F (Y );F (Z) = F (aX;Y;Z)F 2
X˝Y;Z(F 2

X;Y ˝ idF (Z)):

An equivalence of monoidal categories is a monoidal functor (F; F 2; F 0) such that F is
an equivalence of categories.

A monoidal category C is called strict if the associativity and unit constraints of C
are identities. A famous result of Mac Lane states that every monoidal category is mo-
noidally equivalent to a strict monoidal category. This allows us in (most of) what follows
to suppress the associativity and unit isomorphisms.

1The explicit mention of F 2 and F 0 will be often omitted in what follows.
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A braiding in a monoidal categoryC is a natural isomorphism cX;Y : X˝Y ! Y ˝X ,
X; Y 2 C, subject to the so-called hexagon axioms. A braided monoidal category is a
monoidal category endowed with a braiding Joyal and Street [1993]. Braided monoidal
categories such that cY;X cX;Y = idX˝Y , for all objects X; Y 2 C, are called symmetric.

Let C be a monoidal category. Then the Drinfeld center Z(C) of C is the braided
monoidal category whose objects are pairs (Z; �Z), where Z is an object of C and �Z :

Z˝� ! �˝Z is a natural isomorphism satisfying appropriate compatibility conditions.
The tensor product of Z(C) is induced from that of C.

Let C be a monoidal category. A left dual of an object X of C is a triple
(X�; evX ; coevX ), where X� is an object of C and evX : X� ˝ X ! 1, coevX : 1 !
X˝X�, are morphisms in C called, respectively, evaluation and coevaluation morphisms
such that the following compositions are identities:

X
coevX ˝idX

�������! X ˝ X� ˝ X
idX ˝evX

������! X; X�
idX� ˝coevX

��������! X� ˝ X ˝ X�
evX ˝idX�

�������! X�;

A right dual of X is defined as a triple (�X; ev’X ; coev’X ), where ev’X : X ˝ �X ! 1,
coev’X : 1! �X ˝X are morphisms satisfying similar axioms. The monoidal category
C is called rigid if every object X has left and right duals X�, �X .

A tensor category over the field k is a k-linear abelian category with finite dimensional
Hom spaces and objects of finite length, endowed with a rigid monoidal category structure,
such that the monoidal product is k-linear in each variable and the unit object is simple. In
a tensor category the monoidal product is exact in each variable. A tensor functor between
tensor categories is a k-linear exactmonoidal functor. Every tensor functor preserves duals
and it is automatically faithful. A tensor functor F : C! D between tensor categories C
and D is dominant if every object of D is a subobject of F (X), for some X 2 C.

A tensor category over k is called finite if it is equivalent as a k-linear category to the
category of finite dimensional left modules over a finite dimensional k-algebra. A fusion
category over k is a semisimple finite tensor category.

Example 2.1. Examples of tensor categories over k are given by the categories of finite
dimensional left (resp. right) modules and finite dimensional left (resp. right) comodules
over a Hopf algebra over k with bijective antipode. The tensor product in these examples
is ˝k and the associativity and unit constraints are the canonical vector space isomor-
phisms. These categories will be denoted, respectively, by H -mod, mod-H , H -comod,
comod-H . Finite tensor categories C equivalent to H -mod, for some finite-dimensional
Hopf algebra H , are exactly those that admit a fiber functor, that is, a tensor functor
C! Vectk , where Vectk is the tensor category of finite dimensional k-vector spaces.

More generally, if H is a quasi-Hopf algebra over k, then the category H -mod of
finite dimensional H -modules is a tensor category over k; here the tensor product is ˝k

but the associativity constraint is induced by the associator Φ 2 H ˝3 V. G. Drinfeld
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[1989b]. Let H1; H2 be finite dimensional quasi-Hopf algebras. The tensor categories
H1-mod and H2-mod are equivalent if and only if H1 and H2 are gauge equivalent, that
is, H2 Š (H1)F as quasi-Hopf algebras, where (H1)F is certain quasi-Hopf algebra such
that (H1)F = H1 as an algebra with comultiplication ∆F (h) = F∆(h)F �1, h 2 H1,
and associator ΦF = (1˝ F )(id˝∆)(F )Φ(∆˝ id)(F �1)(F �1 ˝ 1).

When C is the representation category of a finite dimensional (quasi-)Hopf algebra H ,
then the Drinfeld center Z(C) is equivalent to the category D(H )-mod, where D(H ) is
the quantum double of H V. G. Drinfeld [1989a], Hausser and Nill [1999], Majid [1998].

The previous example admits several generalizations. In the next example we give an
outline of a construction from Hopf monads Bruguières and Virelizier [2007],
Bruguières, Lack, and Virelizier [2011].

Example 2.2. A monad on a category C is an algebra in the monoidal category of end-
ofunctors of C. We refer the reader to Mac Lane [1998] for a study of this notion and
its relation with adjunctions of functors. A bimonad on C (introduced previously by Mo-
erdijk under the name ’Hopf monad’) is a monad T endowed with a structure of a (lax)
comonoidal endofunctor, that is, a natural transformation T2 : T ı˝ ! ˝ı (T � T ) and
a morphism T0 : T (1) ! 1 satisfying certain compatibility conditions. A Hopf monad
on a rigid monoidal category C is a bimonad equipped with a left and a right antipode
Bruguières and Virelizier [2007]. If T is a Hopf monad on a rigid monoidal category C,
then the category CT of T -modules in C is a rigid monoidal category and the forgetful
functor U : CT ! C is a strict monoidal functor. Furthermore, suppose that C is a tensor
category over k, and let T be a k-linear right exact Hopf monad on C. Then CT is a tensor
category over k, and the forgetful functor U : CT ! C is a tensor functor Bruguières and
Natale [2011]. Further, CT is a fusion category if and only if C is a fusion category and
T is a semisimple Hopf monad in the sense of Bruguières and Virelizier [2007].

Let F : C ! D be a tensor functor between tensor categories. Suppose F admits a
left adjoint (which is always the case if C and D are finite tensor categories). Since F is
faithful exact, as a consequence of results of Beck on monadicity of adjunctions (see Mac
Lane [1998]), there exists a Hopf monad T on D such that C Š DT as tensor categories.

Let G be a finite group. The next two basic examples are special cases of those in
Example 2.1.

Example 2.3. The category RepG of finite dimensional k-linear representations of G is
a finite tensor category over k with the usual tensor product of representations and whose
unit object is the trivial representation. Thus RepG = kG-mod, where kG is the group
(Hopf) algebra of G. By Maschke theorem, RepG is a fusion category if and only if the
order of G is coprime to the characteristic of k.
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Two finite groups G1 and G2 are called isocategorical if the categories RepG1 and
RepG2 are equivalent as tensor categories. This notion was introduced in Etingof and
Gelaki [2001], where necessary and sufficient conditions for two finite groups to be iso-
categorical were given. In particular, isocategorical groups need not be isomorphic when
their (common) order is divisible by 4.

Example 2.4. Let ! : G � G � G ! k be a 3-cocycle on G. The category Vect!G of
finite dimensional G-graded k-vector spaces is a fusion category with tensor product˝k ,
unit object 1 = k (graded in degree 1 2 G), and associativity constraint induced by !.
Indeed, Vect!G = H -mod, where H is the quasi-Hopf algebra kG of k-valued functions
on G with the usual comultiplication and associator ! 2 kG�G�G Š (kG)˝3. The
category Vect!G admits a fiber functor if and only if the class of ! is trivial in H 3(G; k�).
Equivalence classes of fusion categories of the form Vect!G are in bijection with the orbit
space H 3(G; k�)/Out G with respect to the natural action of the group Out G of outer
automorphisms of G in the third cohomology group H 3(G; k�).

Suppose that C is a tensor category. An object X of C is called invertible if the evalua-
tion evX and the coevaluation coevX are isomorphisms. The setG of isomorphism classes
of invertible objects of C is a group with multiplication induced by the tensor product of
C. The tensor category C is called pointed if every simple object of C is invertible. Every
pointed fusion category is equivalent to a category Vect!G , for some 3-cocycle !, where
G is the group of invertible objects of C.

2.2 Quantum groupoids. A weak Hopf algebra (or quantum groupoid) over k is an
associative algebra H endowed with a coassociative coalgebra structure (H;∆; �) such
that∆ is multiplicative, that is,∆(ab) = ∆(a)∆(b), for all a; b 2 H , and

(∆˝ id)∆(1) = (∆(1)˝ 1) (1˝∆(1)) = (1˝∆(1)) (∆(1)˝ 1) :

�(abc) = �(ab(1))�(b(2)c) = �(ab(2))�(b(1)c); 8a; b; c 2 H;

where b(1) ˝ b(2) = ∆(b). The existence of an antipode is also required: this is a linear
map S : H ! H satisfying appropriate conditions. See Böhm, Nill, and Szlachányi
[1999], Bòhm and Szlachónyi [1996], Nikshych and Vainerman [2002].

A quantum groupoid H gives rise to the tensor category H -mod of its finite dimen-
sional representations. Here, the tensor product˝ is defined as

V ˝W = ∆(1) V ˝k W;

for objects V; W 2 H -mod, and by restriction of the tensor product on morphisms. The
unit object is the so-called base subalgebra of H , and the left and right duals of an object
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V 2 H -mod are defined using the antipode. Examples of quantum groupoids from cer-
tain so-called double groupoids were constructed in Andruskiewitsch and Natale [2006].
Semisimple finite dimensional quantum groupoids give rise to fusion categories. The key
fact about them is that every fusion category is the representation category of a quantum
groupoid, in view of results of Hayashi and Ostrik:

Theorem2.5. Hayashi [2000], Ostrik [2003a]. LetC be a (multi-)fusion2 category over k.
Then there exists a finite semisimple quantum groupoid H over k such that C is equivalent
toH -mod. Moreover, it is always possible to chooseH such that its base is a commutative
algebra.

Theorem 2.5 can be generalized to finite tensor categories; in this case the result states
that every finite tensor category is equivalent to H -mod for some finite dimensional left
Hopf algebroid (a more complicated structure than a quantum groupoid that will not be
discussed here). This is proved in Bruguières, Lack, and Virelizier [2011] using Hopf
monads.

For the rest of this section we assume that k is the field of complex numbers.

2.3 Fusion categories from quantum groups at roots of 1. Let g be a simple complex
Lie algebra. Let h_ be the dual Coxeter number of g and let q 2 C such that q2 is a
primitive root of unity of order ` � h_. We sketch here a celebrated construction, due to
Andersen and Paradowski Andersen and Paradowski [1995], of a fusion category, called
Verlinde category, associated to the pair (g; q).

Let Uq(g) denote the Lusztig’s quantized enveloping algebra specialized at q Lusztig
[1993]. A Uq(g)-module T is called a tilting module if both T and its dual T � have
composition series whose factors are Weyl modules. The category T of tilting modules,
although not abelian, is a k-linear ribbon category (c.f. SubSection 6.1), which allows to
define the trace of an endomorphism f : T ! T . A morphism f : T1 ! T2 in T is
called negligible if Tr(fg) = 0 for every morphism g : T2 ! T1. The Verlinde fusion
category associated to the pair (g; q) is defined as the category whose objects are tilting
modules and the morphism spaces are defined by modding out negligible morphisms. We
refer the reader to Andersen and Paradowski [1995], Bakalov and Kirillov [2001], Sawin
[2006], V. G. Turaev [1994] and references therein for a detailed exposition about this
construction.

Other celebrated construction of fusion (in fact modular) categories arising from the
simple complex Lie algebra g are the categories C(g; k) of integrable highest weight mod-
ules of level k 2 Z+ over the corresponding affine Lie algebrabg. See Bakalov andKirillov

2The definition of a multi-fusion category is like that of a fusion category, but dropping the assumption of
simplicity of the unit object.
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[2001, Chapter 7] for a proof of this fact as well as for the relevant references and a his-
torical overview. Alternatively, the category C(g; k) can be described as the category of
finite length modules over the simple vertex algebra V (g; k) associated with the vacuumbg-module of level k Huang and Lepowsky [1999]. The relation between these categories
and Verlinde categories is given by a theorem of Finkelberg [1996] that asserts thatC(g; k)

is equivalent as a modular category to the Verlinde category associated to the pair (g; q),
where q = exp (�i/m(k + h_)), such that m := hh˛; ˛ii/2 for a long root ˛ of g, hh ; ii

being an invariant bilinear form on g normalized so that hhˇ; ˇii = 2 for short roots ˇ.
See Huang [2008].

2.4 Fusion categories from subfactors. A subfactor is an inclusion A � B of von
Neumann algebras with trivial centers. A subfactor A � B is called of finite depth if the
tensor powers of the A-bimodule B contain a finite number of isomorphism classes of
simple bimodules. A subfactor A � B of finite index Jones [1983] and finite depth gives
rise to a (unitary) fusion category C, called its principal even part: this is the full subcat-
egory of the category of A-bimodules generated by the tensor powers of the A-bimodule
B . The full subcategory of the category of B-bimodules generated by the tensor powers
of the B-bimodule B ˝A B is also a fusion category, called the dual even part of A � B ,
which is categorically Morita equivalent to the principal even part (c.f. SubSection 3.3).

Certain examples of fusion categories associated to subfactors do not arise from quan-
tum groups or finite groups by means of any known contruction. Such exotic examples
appear related to the Haagerup subfactor, the Asaeda-Haagerup subfactor Asaeda and
Haagerup [1999], Haagerup [1994] and the extended Haagerup subfactor Bigelow, Pe-
ters, Morrison, and Snyder [2012] and have been intesively studied in the literature; see
Grossman, Izumi, and Snyder [2015], Izumi [2001], Jones, Morrison, and Snyder [2014],
Peters [2010], and references therein.

The Haagerup and the extended Haagerup subfactors give rise to examples of fusion
categories that cannot be defined over a cyclotomic field Morrison and Snyder [2012].
Nevertheless, a result of Etingof, Nikshych, and Ostrik [2005] known as Ocneanu rigidity
implies that every fusion category can always be defined over an algebraic number field.

3 Some invariants of a fusion category

3.1 Grothendieck ring. Let C be a fusion category over k and let Irr(C) denote the set
of isomorphism classes of simple objects of C. The Grothendieck group Gr(C) is the free
abelian group with basis Irr(C). The cardinality of Irr(C) is called the rank of C. The
tensor product of C endows Gr(C) with a ring structure with unit element [1] such that,
for all objects X and Y , [X ][Y ] = [X ˝ Y ], where [X ] denotes the isomorphism class of
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the object X .3 For all X; Y 2 Irr(C) we have decompositions

XY =
X

Z2Irr(C)

N Z
X;Y Z;

called the fusion rules of C, where the fusion coefficients N Z
X;Y of C are the non-negative

integers given by N Z
X;Y = dimk HomC(Z; X ˝ Y ), for all X; Y; Z 2 Irr(C).

The duality of C induces an anti-involution of the Grothendieck ring Gr(C) that makes
it into a fusion ring Etingof, Gelaki, Nikshych, and Ostrik [2015, Definition 3.1.3]. In
particular, the fusion coefficients satisfy the relations

N 1
X;Y = ıY;X� ; N Z�

X;Y = N Y �

Z;X = N X�

Y;Z ; for all X; Y; Z 2 Irr(C):

Two fusion categories C and D are Grothendieck equivalent (or have the same fusion
rules) if there is a bijection between Irr(C) and Irr(D) that induces a unit preserving ring
isomorphism Gr(C) Š Gr(D). Non-equivalent fusion categories may share the same
fusion rules: examples are the fusion categories of finite dimensional representations of
the non-isomorphic non-abelian groups of order 8 Tambara and Yamagami [1998].

A fusion subcategory of a fusion category C is a full abelian subcategory closed under
subquotients and tensor products. A fusion subcategory is automatically closed under
duality, whence it contains the unit object of C, and thus it is a fusion category Etingof,
Gelaki, Nikshych, and Ostrik [2015, Corollary 4.11.4]. Fusion subcategories of C are in
bijective correspondence with unital subrings of Gr(C) spanned by subsets of Irr(C). In
particular, if C and D are Grothendieck equivalent fusion categories, then the lattices of
fusion subcategories of C and D are isomorphic.

The following theorem is a consequence of a result known as Ocneanu rigidity, which
states that fusion categories do not admit nontrivial deformations.

Theorem 3.1. Etingof, Nikshych, and Ostrik [2005]. Up to equivalence, there is a finite
number of fusion categories with a given Grothendieck ring.

The following question remains open, although it has been established in Bruillard, Ng,
E. C. Rowell, and Wang [2016b] for modular categories (see SubSection 6.1 below).

Question 3.2. Ostrik [2003b]. Are there finitely many equivalence classes of fusion cat-
egories with a given finite rank?

The answer to this question is known to be affirmative for fusion categories whose
Frobenius-Perron dimension (as defined in SubSection 3.2 below) is an integer Etingof,
Nikshych, and Ostrik [2005]. A related result of Etingof says that there is a finite number,

3By abuse of notation, we shall also write X to indicate the class of X in Gr(C).
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up to Hopf algebra isomorphism, of semisimple Hopf algebras with a given finite number
of irreducible representations Ostrik [2003b, Appendix]. The answer is also affirmative
in small rank under certain restrictions: this was proved by Ostrik for rank 2 Ostrik [ibid.]
and for rank 3 pivotal fusion categories Ostrik [2015].

3.2 Frobenius-Perron dimension. Let C be a fusion category. The Frobenius-Perron
dimension of a simple object X 2 C is the Frobenius-Perron eigenvalue of the matrix
of left multiplication by the class of X in the basis Irr(C) of the Grothendieck ring of C
consisting of isomorphism classes of simple objects. The Frobenius-Perron dimension
of C is the number FPdimC =

P
X2Irr(C)(FPdimX)2. The Frobenius-Perron dimension

extends to a ring homomorphism FPdim : Gr(C)! R which is characterized by the fact
that FPdimX > 0, for all X 2 Irr(C).

Let C and D be fusion categories. Suppose that F : C ! D is a dominant tensor
functor. Then the number FPdimC/FPdimD is an algebraic integer. This is also true if
D is a fusion subcategory of C. See Etingof, Nikshych, and Ostrik [2005]. In particular,
if C is integral, then FPdimD divides FPdimC.

Let C be any fusion category. For every object X of C, FPdimX is a cyclotomic
integer � 1. Furthermore, it is known that if FPdim(X) < 2, for some X 2 Irr(C), then
FPdim(X) = 2cos(�/n), for some integer n � 3. See Etingof, Nikshych, and Ostrik
[ibid.]. We have the following result on small dimensions of objects in a fusion category:

Theorem 3.3. Calegari, Morrison, and Snyder [2011]. Let X be an object in a fusion
category such that FPdimX belongs to the interval (2; 76/33]. Then FPdimX is equal to
one of the following:

p
7 +
p
3

2
;
p
5; 1 + 2 cos(

2�

7
);

1 +
p
5

p
2

;
1 +
p
13

2
:

Moreover, each of these numbers occurs as the Frobenius-Perron dimension of an object
of a fusion category.

A fusion category C is called integral if FPdimX 2 Z, for all simple object X 2

C. A fusion category over k is integral if and only if it is equivalent to the category of
finite dimensional representations of a finite dimensional semisimple quasi-Hopf algebra
over k. If this is the case, then for every H -module V we have FPdimV = dimk V .
Every fusion category of odd integer Frobenius-Perron dimension is integral Gelaki and
Nikshych [2008].

Let C be an integral fusion category. One can attach some graphs to the set cd(C) of
Frobenius-Perron dimensions of simple objects in the category C: the prime graph∆(C),
whose vertices are the prime divisors of elements of cd(C) such that two vertices p and q
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are joined by an edge if and only if the product pq divides some element of cd(C), and the
common divisor graph Γ(C), whose vertices are the elements of cd(C)�f1g such that two
vertices are joined by an edge if and only if they are not coprime. These graphs extend the
corresponding graphs associated to the irreducible character degrees and the conjugacy
class sizes of a finite group. Some generalizations of known results on the number of
connected components of these graphs for finite groups hold as well in the context of
fusion categories Natale and Pacheco Rodrı́guez [2016].
Remark 3.4. The categorical or global dimension of a fusion category C is defined as
dimC =

P
X2Irr(C) jX j

2 where, for each simple object X of C,
jX j2 = TrL(aX )TrL((a�1

X )�), aX : X ! X�� being a fixed isomorphism (which nec-
essarily exists in a fusion category), and TrL(aX ) = evX�(aX ˝ idX�)coevX Müger
[2003a]. A spherical structure on C is an isomorphism of tensor functors � : idC ! ( )��

such that TrL(f ) = TrR(f ), for any endomorphism f : X ! X in C, where TrL and
TrR are certain left and right traces induced by � . A fusion category C is called pseudo-
unitary if dim(C) = FPdim(C); this is always the case if FPdimC is an integer. Every
pseudo-unitary fusion category C has a unique spherical structure whose categorical di-
mensions coincide with the Frobenius-Perron dimensions Etingof, Nikshych, and Ostrik
[2005].

In the next examples we discuss some classes of non-pointed fusion categories with
distinguished fusion rules.

Example 3.5. (Near group fusion categories.) A near-group fusion category is a fusion
categoryCwith exactly one non-invertible simple objectX up to isomorphism. The fusion
rules of C are determined by the multiplication in the group G of invertible objects of C
and an additional relation

(3-1) X2 =
X
g2G

g + nX;

where n is a non-negative integer Siehler [2003]. We say in this case thatC has fusion rules
of type (G; n). Near-group fusion categories of type (1; 1) are called Yang-Lee categories:
they fall into two equivalence classes and were classified by Moore and Seiberg [1989a].
Not all pairs (G; n) arise from the fusion rules of a fusion category: Ostrik proved in Ostrik
[2003b] that if n � 2 then there exist no near-group fusion category with fusion rules of
type (1; n). Examples and results on near-group fusion categories, including restrictions
on the possible values of n and its relation with the structure of G, have been obtained by
Evans and Gannon and Izumi. See Evans and Gannon [2014] and references therein.

Example 3.6. (Tambara-Yamagami fusion categories.) A fusion category C is called a
Tambara-Yamagami fusion category if C has near-group fusion rules of type (G; 0) for
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some (necessarily abelian) group G. We have FPdimX =
p
jGj and FPdimC = 2jGj.

The classification of these fusion categories was given by Tambara and Yamagami in
Tambara and Yamagami [1998]: for each finite abelian group G, they are parameterized,
up to equivalence, by isomorphism classes of non-degenerate symmetric bilinear forms
� : G �G ! k and elements � 2 k such that �2 = jGj�1.

A Tambara-Yamagami fusion category is integral if and only if the order of G is a
square. Tambara-Yamagami fusion categories such that G is of order 2 are called Ising
fusion categories. These are the only non-pointed fusion categories of Frobenius-Perron
dimension 4.

3.3 Categorical Morita equivalence. Let C be a fusion category over k. A (right)
C-module category is a finite semisimple k-linear abelian category M equipped with a
k-bilinear functor ¯̋ : M � C ! M and natural isomorphisms � : ¯̋ ı (idM �˝) !
¯̋ ı ( ¯̋ � idC), r : � ¯̋ 1 ! idM, satisfying certain coherence conditions similar to the
pentagon and triangle axioms of a monoidal category.

Let A be an algebra in C. Then the category AC of left A-modules in C is a right C-
module category with action ¯̋ :A C � C !A C, given by M ¯̋X = M ˝ X endowed
with the natural left A-module structure. The associativity constraint of AC is induced
from that of C.

Let (M; ¯̋ ) and (M0; ¯̋ 0) be right C-module categories. A C-module functor M !

M0 is a pair (F; �), where F : M ! M0 is a functor and �M;X : F (M ¯̋X) !

F (M ) ¯̋ 0X is a natural isomorphism such that, for all M 2M, X; Y 2 C,

(�M;X ˝ idY ) �M ¯̋X;Y F (�M;X;Y ) = �0
F (M );X;Y �M;X˝Y ; r 0

F (M ) �M;1 = F (rM ):

An equivalence of C-module categories M !M0 is a C-module functor (F; �) : M !

M0 such that F is an equivalence of categories. A C-module category is called indecom-
posable if it is not equivalent to a direct sum of two nontrivial C-submodule categories.

Let M; M0 be indecomposable C-module categories. The category EndC(M) of C-
module endofunctors of M is a fusion category with tensor product induced by composi-
tion of functors. In particular, this gives a tool for building new examples of fusion cate-
gories from ’basic’ ones. The category FunC(M; M0) of C-module functors M ! M0

is an indecomposable module category over EndC(M) in a natural way. If A and B are
indecomposable algebras in C such that M Š AC and M0 Š BC, then EndC(M)op is
equivalent to the fusion category ACA of (A; A)-bimodules in C and there is an equiva-
lence of ACA-module categories BCA Š FunC(M; M0), where BCA is the category of
(B; A)-bimodules in C.

Two fusion categories C and D are called categorically Morita equivalent if D Š

End C(M)op for some indecomposable module category M. If C and D are categorically
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Morita equivalent fusion categories, then FPdimC = FPdimD. In addition the class
of integral fusion categories is closed under categorical Morita equivalence. See Müger
[2003a], Etingof, Nikshych, and Ostrik [2005]. An important characterization of the no-
tion of categorical Morita equivalence is given by the following theorem.

Theorem 3.7. Etingof, Nikshych, and Ostrik [2011]. Two fusion categories C and D are
categorically Morita equivalent if and only if Z(C) and Z(D) are equivalent as braided
fusion categories.

4 Extensions of tensor categories

4.1 Exact sequences of tensor categories. Let C; D be tensor categories and let F :

C! D be a tensor functor. LetKerF � C denote the full subcategory ofC whose objects
are those X such that F (X) is a trivial object of D, that is, such that F (X) is isomorphic
to a direct sum of copies of the unit object 1 of D.

A tensor functor F : C! D is called normal if for every object X of C there exists a
subobject X0 such that F (X0) is the largest trivial subobject of F (X) in D. The notion of
normal tensor functor was introduced in Bruguières and Natale [2011] as a generalization
of the notion of normal Hopf subalgebra. When C is a fusion category, the functor F is
normal if and only if for every simple object X 2 C such that HomD(1; F (X)) ¤ 0, we
have that X 2 KerF .

Definition 4.1. Bruguières and Natale [ibid.]. An exact sequence of tensor categories is
a sequence of tensor functors

(4-1) C0 i
�! C

F
�! C00

such that the functor F is dominant and normal, and i is a full embedding whose essential
image is KerF . In this case we say that C is an extension of C00 by C0.

Remark 4.2. An exact sequence of tensor categories (4-1) defines a fiber functor C0 !

Vectk , since the composition F ıf maps C0 to the trivial subcategory of C00. By Tannaka
reconstruction, (4-1) gives rise to a finite dimensional semisimple Hopf algebra H (the
induced Hopf algebra of (4-1)), such that C0 Š comod-H .

Exact sequences of tensor categories (4-1) are classified in terms of algebraic data under
suitable conditions. We say that a k-linear right exact Hopf monad T on a tensor category
C is normal if T (1) is a trivial object. If T is such a Hopf monad, and if T is faithful,
then it gives rise to an exact sequence of tensor categories comod-H ! CT ! C, where,
roughly, H is the Hopf algebra such that T jh1i Š H ˝ � (the induced Hopf algebra of
T ).



ON THE CLASSIFICATION OF FUSION CATEGORIES 203

Theorem 4.3. Bruguières and Natale [ibid.]. Let C0, C00 be tensor categories and assume
that C0 is finite. Then the following data are equivalent:

(i) An exact sequence (4-1);

(ii) A normal faithful k-linear right exact Hopf monad T on C00, with induced Hopf
algebra H , endowed with a tensor equivalence K : C0 Š comod-H .

Let C and D be finite tensor categories. In this case exact sequences (4-1) such that F

has an exact right adjoint are also classified by commutative algebras (A; �) in the center
Z(C) Bruguières and Natale [ibid., Section 6] which are self-trivializing, that is, such that
A˝ A Š An as right A-modules in C, for some n � 1.

An exact sequence of finite tensor categories (4-1) is called central if, denoting by
(A; �) the corresponding commutative algebra in Z(C), the tensor functor i : C0 ! C
lifts to a tensor functor ĩ : C0 ! Z(C) such that ĩ(A) = (A; �) Bruguières and Natale
[2014].

4.2 Hopf algebra extensions. Let H; H 0; H 00 be Hopf algebras over the field k. A
sequence of Hopf algebra maps

(4-2) k�!H 0 i
�!H

f
�!H 00

�!k;

is called a (strictly) exact sequence of Hopf algebras if i is injective, � is surjective,
i(H 0) = H co� = fh 2 H : (id˝�)∆(h) = h ˝ 1g, and H is right faithfully flat
over i(H 0) (the last condition is automatic in the finite dimensional case). Letting � = i�
and F = f� to be the functors induced by restriction along i and f , respectively, the
exact sequence (4-2) induces an exact sequence of tensor categories

comod-H 0 �
�!comod-H

F
�!comod-H 00:

Suppose H is finite dimensional. If (4-2) is an exact sequence, then i(H 0) is a normal
Hopf subalgebra of H , that is, a Hopf subalgebra stable under the adjoint actions of H .
Conversely, every normal Hopf subalgebra H 0 of H gives rise to an exact sequence (4-2),
where i : H 0�!H is the inclusion and f : H�!H/H (H 0)+ =: H 00 is the canonical
projection. In this case H can be recovered as a bicrossed product H 0#H 00 with respect
to suitable cohomological data Andruskiewitsch and Devoto [1995]. A Hopf algebra is
called simple if it contains no proper normal Hopf subalgebra. The following result implies
that the simplicity of a Hopf algebra is not a categorical notion.

Theorem 4.4. Galindo and Natale [2007]. There exists a simple Hopf algebra H such
that H -mod Š RepG, where G is a solvable group.
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In fact in the examples of Galindo and Natale [2007], one may take H of dimension
p2q2, where p and q are distinct prime numbers, thus showing that the analogue of Burn-
side’s paqb-Theorem does not extend to the context of semisimple Hopf algebras with
the natural definition of normal Hopf subalgebra. In the (characteristic zero) semisimple
case, the only simple examples with dimension � 60 arise in dimensions 36 and 60 and
they are twistings of group algebras Natale [2007], Natale [2010].

Composition series of a finite dimensional Hopf algebra H were introduced by An-
druskiewitsch andMüller as a sequence of finite dimensional simpleHopf algebrasH1; : : : ; Hn

defined recursively as follows: If H is simple, then n = 1 and H1 = H . If, on the other
hand, k ¨ A ¨ H is a normal Hopf subalgebra, and A1; : : : ; Am, B1; : : : ; Bl , are com-
position series of A and B = H/HA+, respectively, then we let n = m+ l and Hi = Ai ,
if 1 � i � m, Hi = Bi�m, if m < i � m + l .

The following analogue of the Jordan-Hölder theorem holds for finite dimensional
Hopf algebras; see Andruskiewitsch [2002, Question 2.1].

Theorem 4.5. Natale [2015]. Let H1; : : : ; Hn and H0
1; : : : ; H0

m be two composition series
of H . Then there exists a bijection f : f1; : : : ; ng ! f1; : : : ; mg such that Hi Š H0

f (i)
as

Hopf algebras.

4.3 Exact sequences with respect to amodule category. The notion of exact sequence
of tensor categories was generalized in Etingof and Gelaki [2017] to that of exact sequence
of finite tensor categories with respect to a module category.

Let C and D be finite k-linear abelian categories. Their Deligne tensor product is a
finite tensor category denoted C � D endowed with a functor � : C�D! C � D exact
in both variables such that for any k-bilinear right exact functor F : C �D ! A, where
A is a k-linear abelian category, there exists a unique right exact functor F̃ : C � D! A
such that F̃ ı� = F . Such a category exists and it is unique up to equivalences. In fact,
if C Š A-mod and D Š B-mod, for some finite dimensional k-algebras A and B , then
C � D Š (A ˝ B)-mod. See Deligne [1990]. The tensor product of two finite tensor
categories C and D is again a finite tensor category and if C and D are fusion categories,
then so is C � D.

Let A � B and C be finite tensor categories and let M be an exact indecomposable
left A-module category4; in particular, M is finite. Let End (M) denote the category of
k-linear right exact endofunctors of M, which is a monoidal category with tensor product
given by composition of functors. Let also i : A! B denote the inclusion functor.

4Exactness of M means that P ˝M is projective for any projective object P 2 A and any object M 2 M.
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Definition 4.6. Etingof and Gelaki [2017]. An exact sequence of tensor categories with
respect to M is a sequence of tensor functors

A
i
�! B

F
�! C � End (M);

such thatF is dominant, A coincides with the subcategory ofBmapped to End (M) under
F and, for every object X of B, there exists a subobject X0 of X such that F (X0) is the
largest subobject of F (X) contained in End (M). In this case B is said an extension of C
by A with respect to M.

It was shown in Etingof and Gelaki [ibid.] that the Deligne tensor product of two tensor
categories gives rise to an exact sequence in the sense of the previous definition. The
notion of exact sequence with respect to a module category is self-dual in an appropriate
sense. In addition, if A and C are fusion categories and M is an indecomposable exact
(thus semisimple) module category over A, then any extension of C by A with respect to
M is also a fusion category.

The answers to the following natural questions are at the moment not known:

Question 4.7. Does an analogue of the Jordan-Hölder theorem hold for finite tensor (fu-
sion) categories? Is it possible to classify simple tensor (fusion) categories?

5 Fusion categories from finite groups

A fusion category C is called group-theoretical if it is categorically Morita equivalent to
a pointed fusion category. Let C be a pointed fusion category, so that there exist a finite
groupG and a 3-cocycle! : G�G�G ! k� such thatC Š Vect!G , c.f. Example 2.4. Ev-
ery indecomposable module category over Vect!G arises from a pair (F; ˛), where F is a
subgroup of G and ˛ : F �F ! k� is a 2-cochain on F such that d˛ = !jF �F �F . Thus,
the restriction !jF represents the trivial cohomology class in H 3(F; k�). The (left) mod-
ule category associated to such pair (F; ˛) is the category M0(F; ˛) = (Vect!G)k˛F of
(right) k˛F -modules in Vect!G , where k˛F is the twisted group algebra of F . The group-
theoretical category (Vect!G)�

M0(F;˛) is denoted C(G; !; F; ˛). Every group-theoretical
fusion category is integral. Necessary and sufficient conditions for a group-theoretical
category to be equivalent to the representation category of a (semisimple) Hopf algebra
were given in Ostrik [2003c].

The class of group-theoretical fusion categories is quite well-understood. It is almost
tautologically closed under categorical Morita equivalence, as well as under Deligne ten-
sor products and Drinfeld centers. Moreover, a fusion category C is equivalent to a group-
theoretical fusion category C(G; !; F; ˛) if and only if its Drinfeld center Z(C) is equiv-
alent as a braided fusion category to the category of finite-dimensional representations of
the twisted quantum double D!G Dijkgraaf, Pasquier, and Roche [1991], Majid [1998].



206 SONIA NATALE

The next theorem illustrates that certain restrictions on the dimension of an integral
fusion category force it to be group-theoretical.

Theorem 5.1. Let p; q; r be distinct prime numbers. Then:
(i) V. Drinfeld, Gelaki, Nikshych, and Ostrik [2007]. Every integral fusion category of

Frobenius-Perron dimension pn, n � 0, is group-theoretical.
(ii) Etingof, Gelaki, and Ostrik [2004], Etingof, Nikshych, and Ostrik [2011]. Every

integral fusion category of Frobenius-Perron dimension pq or pqr is group-theoretical.

Example 5.2. (Abelian extensions of Hopf algebras.) Exact sequences of finite dimen-
sional Hopf algebras (4-2) such that H 0 Š kΓ and H 00 Š kF , for some finite groups
F and Γ, are called abelian extensions. An abelian extension of kF by kΓ arises from
mutual actions by permutations Γ

C
 Γ � F

B
! F that make (F;Γ) into a matched

pair of finite groups. This amounts to the existence of a group G together with an ex-
act factorization G = FΓ: the actions C; B are this case determined by the relations
gx = (g B x)(g C x), for all x 2 F , g 2 Γ.

Let (F;Γ) be a matched pair of finite groups. Let also � : F � F ! (k�)Γ and
� : Γ � Γ ! (k�)F be normalized 2-cocycles. Under suitable conditions, one can
associate a Hopf algebra H = kΓ �#� kF (with crossed product algebra structure and
crossed coproduct coalgebra structure) that fits into an exact sequence of Hopf algebras
k ! kΓ ! H ! kF ! k. Moreover, every Hopf algebra H fitting into an exact
sequence of this form is isomorphic to kΓ �#� kF for appropriate data C; B; �; � . Equiv-
alence classes of such extensions associated to a fixed pair (C; B) form an abelian group
whose unit element is the class of the split extension kΓ#kF .

Abelian extensions are among the first non-commutative and non-cocommutative ex-
amples of Hopf algebras in the literature; they were studied by G.I. Kac in the 60’s Kac
[1962]. We refer to Masuoka [2002] for results on the cohomology underlying an abelian
exact sequence and generalizations.

Every abelian extension is group-theoretical. Indeed, if H Š kΓ �#� kF , then there is
equivalence of tensor categories mod -H Š C(G; !; F; 1), where ! : G �G �G ! k�

is a 3-cocycle coming from the class of H in an exact sequence due to G. I. Kac. How-
ever, group-theoretical Hopf algebras are not closed under taking extensions. Examples
of semisimple Hopf algebras H which are not group-theoretical were constructed by
Nikshych, answering a question of Etingof, Nikshych, and Ostrik [2005]:

Theorem 5.3. Nikshych [2008]. There exist semisimple Hopf algebras which are not
group-theoretical.

The examples ofNikshych [ibid.] have dimension 4p2, wherep is an odd prime number.
These Hopf algebras H fit into a central exact sequence k ! kZ2 ! H ! A ! k,
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where A is certain group-theoretical Hopf algebra of dimension 2p2. The 36 dimensional
example arising from Nikshych [ibid.] gives the smallest semisimple Hopf algebra which
is not group-theoretical.

5.1 Group extensions and equivariantization. Let G be a finite group. A G-grading
on a fusion category C is a decomposition C = ˚g2GCg , such that Cg ˝ Ch � Cgh, for
all g; h 2 G. The fusion category C is called a G-extension of a fusion category D if there
is a faithful grading C = ˚g2GCg with neutral component C1 Š D. Group extensions
of a fusion category were classified in Etingof, Nikshych, and Ostrik [2010] in terms of
various data related to some low degree cohomology groups.

IfC is any fusion category, there exist a finite groupU (C), called the universal grading
group of C, and a canonical faithful grading C = ˚g2U (C)Cg , with neutral component
Cad , where Cad is the adjoint subcategory of C, that is, the fusion subcategory generated
by X ˝ X�, X 2 Irr(C). In addition, if FPdimC 2 Z, then C is faithfully graded by an
elementary abelian 2-group E. Moreover, there is a set of distinct square-free integers ng ,
g 2 E, such that n1 = 1 and FPdimX 2 Z

p
ng , for every simple object X of Cg . The

neutral component of this grading is the unique maximal integral fusion subcategory of C.
See Gelaki and Nikshych [2008].

A fusion category C is (cyclically) nilpotent if there exists a sequence of fusion cate-
gories Vectk = C0 � C1 � � � � Cn = C, and finite (cyclic) groups G1; : : : ; Gn, such that
for all i = 1; : : : ; n, Ci is a Gi -extension of Ci�1.

Another kind of ’group extension’ of a fusion category is provided by the equivarianti-
zation under a finite group action. An action of a finite group G on a fusion category C
by tensor autoequivalences is a monoidal functor � : G ! Aut˝ C, where G is the strict
monoidal category with objects g 2 G, identities as its only morphisms, and group mul-
tiplication as tensor product, and Aut˝ C is the monoidal category of tensor autoequiva-
lences ofC wheremorphisms are isomorphisms of tensor functors. The equivariantization
of C with respect to the action �, denoted CG , is a fusion category whose objects are pairs
(X; �), such that X is an object of C and � = (�g)g2G , is a collection of isomorphisms
�g : �gX ! X , g 2 G, satisfying

�g�g(�h) = �gh�
g;h
2X

; �1�0X = idX ;

for all g; h 2 G, where �2 and �0 denote the monoidal structure of �.

Remark 5.4. If � : G ! Aut˝ C is an action of a group G by tensor autoequivalences,
then the forgetful functor F : CG ! C, F (X; �) = X , is a normal dominant tensor func-
tor and it gives rise to a central exact sequence of fusion categories RepG ! CG ! C
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Bruguières and Natale [2014]. Thus equivariantization provides examples of exact se-
quences of tensor categories. The notion of equivariantization explained above can be ex-
tended to define equivariantization of tensor categories under finite group scheme actions.
Some characterizations of an exact sequence of tensor categories arising from equivari-
antization where given in Bruguières and Natale [ibid.]. In particular, an exact sequence
of finite tensor categories arises from an equivariantization if and only if the sequence is
central (see SubSection 4.1), which is an alternative formulation of a previous characteri-
zation given in Etingof, Nikshych, and Ostrik [2011] in the context of fusion categories.

A generalization of the equivariantization construction was given in Natale [2016b]:
the input for this construction is a crossed action of a matched pair of finite groups (G;Γ)

in a tensor category C, which means a k-linear action of G on C (not necessarily by tensor
autoequivalences) and a Γ-grading on C satisfying certain compatibility conditions. The
resulting tensor category C(G;Γ) also fits into an exact sequence RepG ! C(G;Γ) ! C.
The representation categories of abelian extensions (c.f. Example 5.2) are also contained
in this construction.

Associated to an action of a group on a fusion category, there is another fusion cate-
gory, called a crossed product, and denoted C Ì G Tambara [2001]. As a k-linear abelian
category C Ì G = C � VectG with tensor product defined by

(X � g)˝ (Y � h) = (X ˝ �g(Y )) � gh;

for all X; Y 2 C, g; h 2 G, unit object 1�k and associativity and unit constraints induced
from those ofC. The categoryCÌG is aG-extension ofC with homogeneous components
(C Ì G)g = C � g, g 2 G. The relation with the equivariantized fusion category is given
by an equivalence of tensor categories (CG)�

C Š C Ì G Nikshych [2008]. In particular,
every equivariantization is categorically Morita equivalent to a (graded) group extension.

Remark 5.5. The representation category of the non-group-theoretical examples ofNikshych
are constructed in Nikshych [ibid.] as an equivariantization of a Tambara-Yamagami cat-
egory of dimension 2p2 under the action of the group Z2. Thus, a fortiori, the class of
group-theoretical fusion categories is not closed under group equivariantizations and nei-
ther under group extensions. Necessary and sufficient conditions for a group extension of
a fusion category to be group-theoretical were given in Nikshych [ibid.].

Example 5.6. (Equivariantization of pointed fusion categories.) Let C = Vect!Γ be a
pointed fusion category, whereΓ is a finite group and! : Γ�Γ�Γ! k� is a normalized 3-
cocycle. Let alsoG be a finite group. An action � : G ! Aut˝ C corresponds to an action
by group automorphisms ofG onΓ, x 7! gx, x 2 Γ, g 2 G andmaps � : G�Γ�Γ! k�,
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� : G �G � Γ! k�, obeying, for all x; y; z 2 Γ, g; h; l 2 G, the following conditions:

�(h; l ; x) �(g; hl ; x) = �(gh; l ; x) �(g; h; lx)

!(x; y; z)

!(gx; gy; gz)
=

�(g; xy; z)�(g; x; y)

�(g;y; z) �(g; x; yz)

�(gh; x; y)

�(g; hx; hy) �(h; x; y)
=

�(g; h; x) �(g; h;y)

�(g; h; xy)

In this example, the category C Ì G is pointed: indeed, C Ì G Š Vect!̃ΓÌG , where
Γ Ì G is the semidirect product associated to the given action by group automorphisms
of G on Γ and !̃ is a certain 3-cocycle on Γ Ì G Tambara [2001]. In particular, any
equivariantization of a pointed fusion category is group-theoretical.

5.2 Weakly group-theoretical fusion categories. A fusion category C is called
weakly group-theoretical (respectively, solvable) if it is categorically Morita equivalent
to a nilpotent (respectively, cyclically nilpotent) fusion category Etingof, Nikshych, and
Ostrik [2011]. Weakly group-theoretical fusion categories can be described by means of
group-theoretical data. The notion of solvability extends that of finite groups: the fusion
categories RepG and Vect!G are solvable if and only if G is solvable. However, not every
nilpotent fusion category is solvable: for instance, VectG is always nilpotent.

The class of weakly group-theoretical fusion categories is stable under the operations
of taking extensions, equivariantizations, Morita equivalent categories, tensor products,
Drinfeld center, fusion subcategories and components of quotient categories. Also, the
class of solvable fusion categories is stable under taking extensions and equivariantizations
by solvable groups, Morita equivalent categories, tensor products, Drinfeld center, fusion
subcategories and components of quotient categories. See Etingof, Nikshych, and Ostrik
[ibid.].

Every weakly group-theoretical fusion category has integer Frobenius-Perron dimen-
sion. The following is the most important open question regarding the classification of
this class of fusion categories:

Question 5.7. Etingof, Nikshych, and Ostrik [ibid.]. Is every fusion category with integer
Frobenius-Perron dimension weakly group-theoretical?

A related open question is the following:

Question 5.8. Is the class of weakly group-theoretical fusion categories closed under ex-
tensions?

We summarize in the next theorem some results related to Question 5.7. Part (ii) is a
generalization of a well-known theorem of Bunrside for finite groups.
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Theorem 5.9. Let C be a fusion category. Then the following hold:
(i) Etingof, Nikshych, and Ostrik [2005]. If FPdimC = pn, p prime, n � 0, then C is

nilpotent.
(ii) Etingof, Nikshych, and Ostrik [2011]. If FPdimC = pnqm, p; q primes, n; m � 0,

then C is solvable.
(iii) Natale [2014]. If C is braided non-degenerate and FPdimC = dqn, p prime,

n � 0 and d a square-free integer, then C is solvable.

It was shown in Etingof, Nikshych, and Ostrik [2011] that a fusion categoryC is weakly
group-theoretical if and only if there exists a series of fusion categories

(5-1) Vect = C0; C1; : : : ; Cn = C;

such that for all 1 � i � n, the Drinfeld center Z(Ci ) contains a Tannakian subcategory
Ei and the de-equivariantization of the Müger centralizer E0

i in Z(Ci ) by Ei is equivalent
to Z(Ci�1) as braided fusion categories. Since the categories Ei are Tannakian, then, for
all i = 1; : : : ; n, there exist finite groupsG1; : : : ; Gn, such that Ei Š RepGi as symmetric
fusion categories (c.f. Section 6 below). A composition series of C is a series (5-1) whose
factors G1; : : : ; Gn, are simple groups.

The following theorem is an analogue of the Jordan-Hölder theorem. Its proof relies
on the structure of a crossed braided fusion category (c.f. SubSection 6.3).

Theorem 5.10. Natale [2016a]. Let C be a weakly group-theoretical fusion category.
Then two composition series of C have, up to isomorphisms, the same factors counted
with multiplicities. Thus they are invariants of C under categorical Morita equivalence.

The solvability of a finite group G is known to be determined by its character table
or, equivalently, by the fusion rules of the category RepG. The answer to the analogous
question for fusion categories is not known.

Question 5.11. Escañuela González and Natale [2017]. Is the solvability of a fusion
category determined by its fusion rules?

6 Braided fusion categories

Let C be a braided fusion category and let D be a fusion subcategory of C. The Müger
centralizer of D in C, denoted D0, is the full fusion subcategory generated by all objects
X 2 C such that cY;X cX;Y = idX˝Y , for all objects Y 2 D. The category C0 is called the
Müger center (or symmetric center) of C. If C is any braided fusion category, its Müger
centerC0 is a symmetric fusion subcategory ofC. On the opposite extreme,C is called non-
degenerate if C0 Š Vect. See V. Drinfeld, Gelaki, Nikshych, and Ostrik [2010], Müger
[2003b].
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For a fusion category C, the Drinfeld center Z(C) is a non-degenerate braided fusion
category of Frobenius-Perron dimension FPdimZ(C) = (FPdimC)2. Drinfeld centers
of fusion categories are characterized as those non-degenerate braided fusion categories
Z containing a Lagrangian algebra, that is, a separable commutative algebra A such that
HomC(1; A) Š k and FPdim(A)2 = FPdim(Z) Davydov, Müger, Nikshych, and Ostrik
[2013].

Example 6.1. (Group-theoretical braided fusion categories.) Let G be a finite group
and let ! be a normalized 3-cocycle on G. Let also D!G-mod be the twisted quan-
tum double Dijkgraaf, Pasquier, and Roche [1991]. Then there is an equivalence of
braided fusion categories D!G-mod Š Z(Vect!G). Suppose that C is a braided group-
theoretical fusion category. Then there are equivalences of braided fusion categories
Z(C) Š Z(Vect!G) Š D!G-mod, for some finite group G and 3-cocycle !. Thus, every
braided group-theoretical fusion category can be embedded in D!G-mod. A description
of the fusion subcategories of D!G-mod was given in Naidu, Nikshych, andWitherspoon
[2009] in terms of subgroups of G and certain so-called !-bicharacters on them.

Let G be a finite group. The fusion category RepG is a symmetric fusion category
with respect to the canonical braiding given by the flip of vector spaces. A braided fusion
category E is called Tannakian if E Š RepG for some finite group G as symmetric fusion
categories. More generally, if u 2 G is a central element such that u2 = 1, then the cate-
gory Rep(G; u) of representations of G on finite dimensional super-vector spaces where
u acts as the parity operator is a symmetric fusion category. The category Rep(Z2; u),
where 1 ¤ u 2 Z2 is denoted sVect.

The following result of Deligne is a crucial ingredient in the approach to the classifica-
tion of braided fusion categories in the literature. Related results in a C �-context are due
to Doplicher and Roberts [1989].

Theorem 6.2. Deligne [1990], Deligne [2002]. Let C be a symmetric fusion category.
Then C is equivalent as a braided fusion category to the category Rep(G; u) for some
finite group G and central element u 2 G such that u2 = 1, which are, up to isomorphism,
uniquely determined by C.

Let C Š Rep(G; u) be a symmetric fusion category. Then C is a Z2-extension of
the Tannakian subcategory E = Rep(G/(u)). Thus if FPdimC > 2, then C contains a
Tannakian subcategory, and a non-Tannakian symmetric fusion category of dimension 2

is equivalent to the category sVect.
Let C be a fusion category and suppose that E Š RepG is a Tannakian subcategory

of the center Z(C). The de-equivariantization of C with respect to G (or with respect
to E), denoted CG , is the category CA of right A-modules in C, where A 2 E is the
(commutative, separable) algebra corresponding to kG 2 RepG under an equivalence
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of braided fusion categories RepG ! E. This is a fusion category with tensor product
˝A and unit object A. De-equivariantization and equivariantization are inverse processes.
Indeed, the natural action by translations of G on A induces an action of G on CG by
tensor auto-equivalences such that C Š (CG)G . See Bruguières [2000], Müger [2000],
V. Drinfeld, Gelaki, Nikshych, and Ostrik [2010, Section 4].

6.1 Modular categories. A premodular category (Bruguières [2000]) is a braided fu-
sion category endowed with a natural isomorphism � : idC ! idC, called a ribbon struc-
ture, satisfying

(6-1) �X˝Y = (�X ˝ �Y )cY;X cX;Y ; ��
X = �X� ;

for all objects X; Y of C. Equivalently, C is a braided fusion category endowed with a
spherical structure. The ribbon structure of C allows to consider the quantum trace of an
endomorphism f : X ! X of an object X of C and in particular the quantum dimension
of X defined as dimX = Tr(idX ).

Suppose C is a premodular category. Let X; Y be simple objects of C and let SX;Y 2 k

denote the quantum trace of the squared braiding cY;X cX;Y : X ˝ Y ! Y ˝ X . The
S -matrix of C is defined in the form S = (SXY )X;Y 2Irr(C).

A premodular category C is calledmodular if its S -matrix is invertible. Equivalently, a
premodular categoryC ismodular if and only if it is non-degenerate. Every non-degenerate
fusion category with integral Frobenius-Perron dimension is a modular category with its
canonical spherical structure (c.f. Remark 3.4).

Let C be a modular category. The following relation, known as Verlinde formula, gives
the fusion coefficients of C in terms of its S -matrix:

N Z
XY =

1

dimC

X
T 2Irr(C)

SXT SY T SZ�T

dT

;

for all X; Y; Z 2 Irr(C), where dT is the categorical dimension of the object T and
dimC =

P
T 2Irr(C) d 2

T is the categorical dimension ofC; c.f. Bakalov and Kirillov [2001].

Let C be a premodular category. A modularization of C is a dominant tensor functor
F : C! C0 compatible with the braiding and the ribbon structures, whereC0 is a modular
category Bruguières [2000]. If such a modularization exists, then C is called modulariz-
able. In Bruguières [ibid.], Müger [2000], Bruguières and Müger showed that a premodu-
lar category is modularizable if and only if its symmetric centerC0 is a Tannakian category.
In this case, C0 Š RepG for some finite group G and C0 is the de-equivariantization CG .
In this context, the group G acts on C0 by braided auto-equivalences and there is an equiv-
alence of braided fusion categories C Š CG

0 .
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The following theorem was conjectured by Z. Wang. It implies the feasibility of the
classification of modular fusion categories of a given rank:

Theorem 6.3. Bruillard, Ng, E. C. Rowell, and Wang [2016b]. For every natural number
r there is, up to equivalence, a finite number of modular categories of rank r .

As pointed out by Etingof, the number of modular categories of rank r is, however,
not bounded by any polynomial in r . Up to monoidal equivalence, the classification of
modular categories has been achieved up to rank 5 Bruillard, Ng, E. C. Rowell, and Wang
[2016a], E. Rowell, Stong, and Wang [2009].

6.2 Witt group of non-degenerate braided fusion categories. The (abelian) groupW
of Witt classes of non-degenerate braided fusion categories was introduced in Davydov,
Müger, Nikshych, and Ostrik [2013]. Two non-degenerate braided fusion categories C1

and C2 are called Witt equivalent if there exist fusion categories D1 and D2 such that
C1 � Z(D1) Š C2 � Z(D2) as braided tensor categories.

The Witt group W consists of equivalence classes of non-degenerate braided fusion
categories under this equivalence relation with multiplication induced by Deligne’s tensor
product �. The unit element is the class of the category Vect of finite-dimensional vector
spaces over k and the inverse of the class of a non-degenerate braided fusion category C
is the class of the reverse braided fusion category Crev (this is the fusion category C with
the reversed braiding crev

X;Y = c�1
Y;X ). The explicit determination of the relations in W is a

relevant problem in connection with the classification of fusion categories.
Let Wpt and WIsing denote the subgroups of Witt classes of pointed non-degenerate

fusion categories and Ising braided categories, respectively. The subgroups Wpt and
WIsing were described in V. Drinfeld, Gelaki, Nikshych, and Ostrik [2010]. Let fW
be the subgroup of W generated by the Witt classes of the modular categories C(g; l)

of integrable highest weight modules of level l 2 Z+ over the affinization of a simple
finite-dimensional Lie algebra g (see SubSection 2.3). It was shown in Davydov, Müger,
Nikshych, and Ostrik [2013] that Wpt ; WIsing �

fW. The following open question was
raised in Davydov, Müger, Nikshych, and Ostrik [ibid.] as a mathematical formulation of
a conjecture stated by Moore and Seiberg [1989b]:

Question 6.4. Davydov, Müger, Nikshych, and Ostrik [2013]. Does fW coincide with
be the subgroup Wun of Witt classes of pseudo-unitary non-degenerate braided fusion
categories?

In relation with Question 5.7, we have:

Theorem 6.5. Natale [2014]. The Witt class of a weakly group-theoretical non-dege-
nerate braided fusion category belongs to the subgroup generated by WIsing and Wpt ,
whence also to fW.
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6.3 Tannakian categories and braidedG-crossed fusion categories. LetG be a finite
group. A G-crossed braided fusion category is a fusion category D endowed with a G-
grading D = ˚g2GAg and an action of G by tensor autoequivalences � : G ! Aut˝ D,
such that �g(Dh) � Dghg�1 , for all g; h 2 G, and aG-braiding c : X˝Y ! �g(Y )˝X ,
g 2 G, X 2 Dg , Y 2 D, subject to certain compatibility conditions. This notion was
introduced by Turaev; see V. Turaev [2010].

The equivariantization DG of a G-crossed braided fusion category is a braided fusion
category. The canonical embedding RepG ! DG of fusion categories is fact an embed-
ding of braided fusion categories, with respect to the canonical braiding in RepG. The
G-braiding on D restricts to a braiding in the neutral component D1 of the G-grading.
Furthermore, the group G acts by restriction on D1 and this action is by braided tensor
autoequivalences. This makes the equivariantization (D1)

G into a braided fusion subcat-
egory of DG . This fusion subcategory coincides with the centralizer E0 of the Tannakian
subcategory E Š RepG in DG .

Conversely, if C is a braided fusion category containing a Tannakian subcategory E Š
RepG, then the de-equivariantization CG of C with respect to E is a braided G-crossed fu-
sion category. Thus equivariantization defines a bijective correspondence between equiv-
alence classes of braided fusion categories containing RepG as a Tannakian subcategory
and G-crossed braided fusion categories Jr [2001], Müger [2004].

Let D be a G-crossed braided fusion category. The braided fusion category DG is non-
degenerate if and only if the neutral component D1 is non-degenerate and the G-grading
of D is faithful. If this is the case, then there is an equivalence of braided fusion categories
Z(D) Š DG � Drev

1 Davydov, Müger, Nikshych, and Ostrik [2013].

An important invariant of a braided fusion category is its core, introduced in V. Drinfeld,
Gelaki, Nikshych, and Ostrik [2010]. As a braided fusion category, the core of a braided
fusion category C is the neutral homogeneous component C0

G of the de-equivariantization
of C by a maximal Tannakian subcategory E Š RepG. The core of C is independent of E.
Furthermore, the core of a braided fusion category isweakly anisotropic, that is, it contains
no Tannakian subcategories stable under all braided auto-equivalences. In addition, the
core of C is non-degenerate if C is non-degenerate. A complete classification of pointed
weakly anisotropic braided fusion categories has been proposed in V. Drinfeld, Gelaki,
Nikshych, and Ostrik [ibid.].

A braided fusion category is weakly group-theoretical if and only if it can be obtained
from a crossed braided fusion categorywith pointed neutral component, thus from a pointed
category by means of suitable group extensions and equivariantizations:

Theorem 6.6. Natale [2017]. Let C be a weakly group-theoretical braided fusion cate-
gory. Then the core of C is equivalent to a Deligne tensor product B � D, where D is a
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pointed weakly anisotropic braided fusion category and B Š Vect or B is an Ising cate-
gory. In particular, if C is integral, then its core is a pointed weakly anisotropic braided
fusion category.

The following theorem summarizes some known results related to Question 5.7 whose
proofs rely on the existence of Tannakian subcategories and its relation with G-crossed
braided fusion categories outlined above.

Theorem 6.7. Let C be a braided fusion category. Then the following hold:
(i) Bruguières and Natale [2011]. If FPdimC is an odd square-free integer, then C is

equivalent to RepG as a fusion category for some finite group G.
(ii) Natale [2014]. If C is non-degenerate and FPdimC is a natural number less than

1800, or an odd natural number less than 33075, then C is weakly group-theoretical.
(iii) Natale and Pacheco Rodrı́guez [2016]. If FPdimC 2 Z and the Frobenius-Perron

dimensions of any simple object of C is a pi -power, for some 1 � i � r , where let
p1; : : : ; pr be prime numbers, then C is weakly group-theoretical. Moreover, it is solvable
is either r � 2, or pi > 7, for all i = 1; : : : ; r .

(iv) Natale [2017]. If C is integral and non-degenerate such that FPdimX � 2, for
every simple object X , then C is group-theoretical.

(v) Dong and Natale [2017]. If C is a non-degenerate and FPdimC = dqn, where
n � 0, d is a square-free natural number and q is an odd prime number, then C is group-
theoretical.
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Abstract

Let R be a regular local ring. Let G be a reductive group scheme over R. A well-
known conjecture due to Grothendieck and Serre assertes that a principal G-bundle
over R is trivial, if it is trivial over the fraction field of R. In other words, if K is the
fraction field of R, then the map of non-abelian cohomology pointed sets

H1
ét(R;G) ! H1

ét(K;G);

induced by the inclusion of R into K, has a trivial kernel. The conjecture is solved
in positive for all regular local rings contaning a field. More precisely, if the ring
R contains an infinite field, then this conjecture is proved in a joint paper due to R.
Fedorov and I. Panin published in 2015 in Publications l’IHES. If the ring R contains a
finite field, then this conjecture is proved in 2015 in a preprint due to I. Paninwhich can
be found on preprint server Linear Algebraic Groups and Related Structures. A more
structured exposition can be found in Panin’s preprint of the year 2017 on arXiv.org.

This and other results concerning the conjecture are discussed in the present paper.
We illustrate the exposition by many interesting examples. We begin with couple
results for complex algebraic varieties and develop the exposition step by step to its
full generality.
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1 Introduction

The conjecture was stated by J.-P. Serre in 1958 in so called constant case and by A.
Grothendieck in 1968 in the general case. In this introduction we give couple results mo-
tivating the conjecture in the constant case. To do that recall some notation. Let X be an
affine complex algebraic variety, smooth and irreducible. Let C[X ] be the ring of regular
functions on X and f 2 C[X ] be a non-zero function. Let Xf := fx 2 X : f (x) ¤ 0g.
This open subset is called the principal open subset of X corresponding to the function f .
This open subsetXf is itself is an affine algebraic variety and its ring of regular functions
C[Xf ] is the localization C[X ]f of the ring C[X ] with respect to the element f . If A is a
C[X ]-algebra, then we write Af for the localization of A with respect to f 2 C[X ]. We
are ready now to formulate first result, which is due to Serre [1958].

Let A be a C[X ]-algebra, which is a free finitely generated C[X ]-module of rank n.
Suppose that A is isomorphic to the matrix algebra Mr(C[X ]) locally for the complex
topology on X . Suppose further that for a non-zero function f 2 C[X ] the C[Xf ]-
algebras Af andMr(C[Xf ]) are isomorphic. Then for any point x 2 X there is a regular
function g 2 C[X ] such that g(x) ¤ 0 and the C[Xg ]-algebras Ag and Mr(C[Xg ])

are isomorphic. In the other words, the C[X ]-algebras A andMr(C[X ]) are isomorphic
locally for the Zarisky topology on X .

Let us point out that the C[X ]-algebras A and Mr(C[X ]) are isomorphic locally for
the complex topology on X by the assumption of the theorem. The theorem states that
these C[X ]-algebras are isomorphic locally for the Zarisky topology on X provided that
they are isomorphic over a non-empty Zarisky open subset of X .

It is easy to give many examples of C[X ]-algebras A, which are isomorphic to the
matrix algebraM2(C[X ]) locally for the complex topology, but which are not isomorphic
to the matrix algebraM2(C[X ]) locally for the Zarisky topology. These algebras can be
found for instance among generalized quaternion algebras. Second result illustrating the
conjecture is due to Ojanguren [1980].
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LetX and C[X ] be as above and let ai ; bi 2 C[X ] be invertible functions onX , where
i 2 f1; :::; rg. Consider two quadratic spaces P := Σr

i=1aiT
2
i andQ := Σr

i=1biT
2
i over

C[X ]. Suppose for a non-zero function f 2 C[X ] these quadratic spaces are isomorphic
over the ring C[Xf ]. Then the quadratic spaces P and Q are isomorphic locally for the
Zarisky topology on X . In other words, for any point x 2 X there is a regular function
g 2 C[X ] such that g(x) ¤ 0 and quadratic spaces P andQ are isomorphic as quadratic
spaces over C[X ]g .

A very partial case of the above Serre’s result can be formulated as follows. Let a
and b two invertible regular functions on X . Consider so called generalized quaternion
C[X ]-algebra A given by two generators u; v subjecting to defining relations u2 = a,
v2 = b, uv = �vu. Suppose the C(X)-algebra A ˝C[X ] C(X) is isomorphic to the
matrix algebraM2(C(X)). Then the C[X ]-algebra A is isomorphic to the matrix algebra
M2(C[X ]) locally for the Zarisky topology on X .

The indicated results can be restated in terms of principal bundles for groups PGLr ,
SOr and PGL2 respectively. It is pretty clear now that one can try to state a rather general
theorem in terms of principal homogeneous spaces. That will be done in the next section.

2 Principal G-bundles

Recall some notion. Let G be a linear complex algebraic group, that is a closed subgroup
of the general linear group GLn(C) with respect to the Zarisky topology. Let X be as
above. Let (E; � : G � E ! E) be a pair such that E is a complex algebraic variety
together with a regular map p : E ! X and � is a G-action on E respecting to the map
p, that is p(�(g; e)) = p(e) for any e 2 E and g 2 G. We will write ge for �(g; e).

A principal G-bundle over X is a pair (E; � : G �E ! E) above such that
1) the regular map G � E ! E �X E taking (g; e) to (ge; e) is an isomorphism of
algebraic varieties;
2) for any point x 2 X there are a neighborhood V of x in the complex topology on X
and an isomorphism of complex holomorphic varieties ' : EjV := p�1(V ) ! G � V

such that ' respects to the projection on V and ' respects to obvious G-actions on both
sides.

A morphism between two principal G-bundles (E1; �1) and (E2; �2) is a morphism
 : E1 ! E2 which respects as to the projections on the base X , so to the G-actions. A
trivialized G-bundle is the G-bundle (G � X;�), where �(g0(g; x)) = (g0g)x. A trivial
G-bundle is aG-bundle isomorphic to the trivialized one. Clearly, aG-bundle (E; �) over
X is trivial if there is a section s : X ! E of the projection p : E ! X . For a principal
G-bundle (E; �) over X we often will write just E skipping � from the notation. We will
write often a G-bundle for a principal G-bundle.
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Many examples of principal G-bundles are obtained by the following simple construc-
tion. Consider a closed embedding of algebraic groups G � GLn(C) and set X =

GnGLn(C) (the orbit variety of right cosets with respect toG). Then the pair (GLn(C); � :

G � GLn(C) ! GLn(C)), where � takes (g; h) to gh is a principal G-bundle over X .
The fibres of the projection p : GLn(C) ! X are right cosets of GLn(C) with respect to
the subgroup G. This principal G-bundle is very often not trivial locally for the Zarisky
topology. For instance, if G is the special orthogonal group SOn(C) � GLn(C), then the
above principal G-bundle is not trivial locally for the Zarisky topology.

A principalG-bundleE overX is not necessary trivial locally for the Zarisky topology
onX , however it is always trivial locally for the étale topology onX . The latter means the
following: there is a regular map � : X 0 ! X of smooth algebraic varieties and a regular
map s0 : X 0 ! E such that p ı s0 = � , � is surjective and for any point x0 2 X 0 the
induced map of tangent spaces TX 0;x0 ! TX;�(u) is an isomorphism. In the other words,
� : X 0 ! X is a surjective étale regular map and the principalG-bundleX 0 �XE overX 0

is trivial. Indeed, the regular map (idX 0 ; s0) : X 0 ! X 0 �XE is a section of the projection
prX 0 .

We are ready now to state a very general result concerning principal G-bundles and
extending the results from the introduction.

Theorem 2.1. LetG be a simple (or a semi-simple, or even a reductive) complex algebraic
group. Let X be an affine complex algebraic variety, smooth and irreducible and let E1,
E2 be two principal G-bundles over X . Suppose there is a non-zero regular function
f 2 C[X ] such that the principal G-bundles E1jXf

and E2jXf
are isomorphic over Xf .

Then the principal G-bundles E1 and E2 are isomorphic locally for the Zarisky topology
on X .

In other words, for any point x 2 X there is a regular function g 2 C[X ] such that
g(x) ¤ 0 and the principal G-bundles E1jXg

and E2jXg
are isomorphic over Xg .

Remark 2.2. LetE2 be a trivial principalG-bundle, then this theorem states the following.
If E1 is trivial over a non-empty Zarisky open subset of X , then E1 is trivial locally for
the Zarisky topology on X .

If E2 is a trivial , then this theorem is due to Colliot-Thélène and Ojanguren [1992].

The general case of the theorem is due to R. Fedorov and the speaker Fedorov and
I. Panin [2015].

Remark 2.3. The case when E2 is trivial corresponds to the so called ”constant” case of
the conjecture. Indeed, in this case one principalG-bundleE = E1 is given and the result
is a theorem about that principal G-bundle. The general case of the theorem can not be
reduced to an equivalent statement concerning a principal G for the group G.
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Let us give now few examples illustrating Theorem 2.1. Those examples are partial
cases of Theorem 2.1 for the projective linear groups PGL2,PGLn, for the exceptional
group G2 and for the special projective orthogonal PSO2n and for the projective simplectic
groups PSp2n respectively.
(1) LetA1, A2 be two generalized quaternion C[X ]-algebras corresponding to pairs a1; b1
and a2; b2 respectively. Suppose for a non-zero function f 2 C[X ] the C[Xf ]-algebras
(A1)f and (A2)f are isomorphic. Then the C[X ]-algebras A1 and A2 are isomorphic
locally for the Zarisky topology on X .
(2) Let A1 and A2 be two algebras as in the Serre’s theorem above. They are called
Azumaya C[X ]-algebras. Suppose for a non-zero function f 2 C[X ] theC[Xf ]-algebras
(A1)f and (A2)f are isomorphic. Then the C[X ]-algebras A1 and A2 are isomorphic
locally for the Zarisky topology on X .
(3) Let a1; b1; c1 be invertible functions in C[X ] and let O(a1; b1; c1) be a generalized
octonion C[X ]-algebra. That is as a C[X ]-module O(a1; b1; c1) is a free of rank 8 with
a free basis 1; e1; e2; :::; e7. And the multiplication table is as follows: e21 = a1; e

2
2 =

b1; e
2
3 = c1

e4 = e1e2 = �e2e1; e5 = e2e3 = �e3e2; e6 = e3e4 = �e4e3; e7 = e4e5 = �e5e4:

Let a2; b2; c2 be invertible functions in C[X ] and let O(a2; b2; c2) be one more gener-
alized octonion C[X ]-algebra. Suppose for a non-zero function f 2 C[X ] the C[Xf ]-
algebras O(a1; b1; c1)f and O(a2; b2; c2)f are isomorphic. Then the C[X ]-algebras
O(a1; b1; c1) and O(a2; b2; c2) are isomorphic locally for the Zarisky topology on X .
(4) Let (A1; �1) be an Azumaya C[X ]-algebra with involution. That is A1 is an Azumaya
algebra and �1 : A1 ! A

op
1 is an C[X ]-algebras isomorphism, where Aop

1 is the opposite
C[X ]-algebra. Let (A2; �2) be one more Azumaya C[X ]-algebra with involution. Sup-
pose for a non-zero function f 2 C[X ] the C[Xf ]-algebras (A1; �1)f and (A2; �2)f are
isomorphic as C[Xf ]-algebras with involutions. That is there is a C[Xf ]-algebras iso-
morphism ' : (A1)f ! (A2)f with �2 ı' = ' ı�1. Then the C[X ]-algebras A1 and A2

are isomorphic locally for the Zarisky topology on X as C[X ]-algebras with involutions.

3 Non-constant case of the conjecture for complex algebraic
varieties

We begin with few examples illustrating the conjecture in the non-constant case. Let X
be as above an affine complex algebraic variety, smooth and irreducible.
1) Let a; b be invertible functions in C[X ]. Consider an equation

(1) T 2
1 � aT 2

2 = b
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If this equation has a solution over the field C(X) of rational functions onX , then for any
point x 2 X there is a function g 2 C[X ] such that g(x) ¤ 0 and the Equation (1) has a
solution in C[Xg ].
2) Let tn+an�1t

n�1+:::+a0 = F (t) 2 C[X ]with ai 2 C[X ] be amonic polinomial such
that for any point x 2 X the polinomial Fx(t) = tn + an�1(x)t

n�1 + :::+ a0(x) 2 C[t ]

has no multiple roots. Let X 0 � X � A1 be a closed subvariety defined by the equation
fF = 0g. The regular function ring C[X 0] is the factor ring C[X ][t ]/(F ). It is a free rank
n module over C[X ]. Therefore there is a norm map NC[X 0]/C[X ] : C[X 0]� ! C[X ]�,
which takes an element ˛ to the element det(m˛), where m˛ : C[X 0] ! C[X 0] is a
multiplication by ˛. Let a 2 C[X ]� be a unit. Suppose the equation

(2) NC(X 0)/C(X)(˛) = a

has a solution in C(X 0), then for any point x 2 X there is a function g 2 C[X ] such that
g(x) ¤ 0 and the equation NC[X 0

g ]/C[Xg ](˛) = a has a solution in C[X 0]g .
3) Let a; b; c 2 C[X ] be invertible functions. Consider an equation

(3) T 2
1 � aT 2

2 � bT 2
3 + abT 2

4 = c

Suppose this equation has a solution over the field C(X). Then for any point x 2 X there
is a function g 2 C[X ] such that g(x) ¤ 0 and the Equation (3) has a solution in C[Xg ].
4) Let A be an Azumaya C[X ]-algebra of rank n from the introduction. Let Nrd : A !

C[X ] be the reduced norm map. It is a map such that for any point x 2 X the map
A/mxA =Mr(C) ! C is the determinant. Let a 2 C[X ]�. Suppose the equation

(4) Nrd (˛) = a

has a solution in A˝C[X ] C(X). Then for any point x 2 X there is a function g 2 C[X ]

such that g(x) ¤ 0 and the Equation (4) has a solution in Ag .
5) LetQ = Σr

i=1biT
2
i be the quadratic space overC[X ] from the introduction. LetQC(X)

be the same quadratic space regarded over the fieldC(X). Let a 2 C[X ]� be a unite. Sup-
pose a is a spinor norm over the field C(X), that is a = Q(v1) � ::: � Q(v2n) for some
vectors v1; :::; v2n 2 C(X)r . Then a is a spinor norm locally for the Zarisky topology on
X . In the other words, for any point x in X there is a function g 2 C[X ] not vanishing at
x and there is a non-negative integer s and there are vectors w1; : : : ; w2s 2 C[Xg ]

r such
that a = Q(w1) � : : : �Q(w2s).
6) Let (A; �) be an Azumaya C[X ]-algebra with involution and let the involution be oth-
rogonal, that is � corresponds to a quadratic space locally for the complex topology on
X . We use the terminology of Definition 3.1 here. Let SOA;� � GL1;A be the special
orthogonal X -group scheme of the Azumaya C[X ]-algebra with involution (A; �). Let
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� : SpinA;� ! SOA;� be the corresponding spinor X -group scheme. The X -group
scheme SOA;� is the factor of SpinA;� modulo an inolution ". Consider an involution �
on the variety SpinA;� � C�, which takes any point (g; z) to the point ("(g);�z). Let
Γ+ be the factor variety of SpinA;� � C� modulo the involution � . It is easy to check

that Γ+ is an X -group scheme. The map SpinA;� � C�
prC�

����! C�
"2
�! C� induces a

map Sn : Γ+ ! C� called the spinor norm map. For any section ˛ : X ! Γ+ of the
projection Γ+ ! X set Sn(˛) = Snı˛. Let a 2 C[X ]� be a unite. Consider an equation

(5) Sn(˛) = a:

If this equation has a solution over the field C(X), then it has a solution locally for the
Zarisky topology on X . If A = Mr(C[X ]) and the involution � corresponds to the
quadratic space Q as above, then this result is equivalent to the result from the previ-
ous example.

Definition 3.1. Let X be as above. A smooth X -group scheme consists of the following
data p : G ! X;� : G �X G ! G; i : G ! G; e : X ! G, where p, �, i , e are
a regular maps. The requirements are these ones: p is smooth, � is associative, e is a
two-sided neutral ”element” of the composition law �, i is the inverse ”element” for the
composition law �, e is a section of p.

If G0 � GLn(C) is a linear complex algebraic group, then G = X � G0 with the
obvious regular maps p = prX ; �; i; e form an X -group scheme. We say that an X -
group scheme G is holomorphically isomorphic to the X -group scheme X � G0 locally
for the complex topology, if for any point x 2 X there is a holomorphic isomorphism
' : GjU = p�1(U ) ! U �G0, which respects to the projection onU and to all the group
data on both sides.

An X -group scheme G is called a reductive (respectively, semi-simple; respectively,
simple) if it is an affine complex algebraic variety and for certain complex algebraic
reductive group G0 it is holomorphically isomorphic to the X -group scheme X � G0

locally for the complex topology on X . Recall that G0 is required to be connected .
This definition in the case of smooth affine complex algebraic variety X coincides

with the one from Demazure and Grothendieck [1970b][Exp. XIX, Defn.2.7]. The class
of reductive group schemes contains the class of semi-simple group schemes which in
turn contains the class of simple group schemes. This notion of a simpleX -group scheme
coincides with the notion of a simple semi-simple X -group scheme from Demazure and
Grothendieck [ibid.][Exp. XIX, Def. 2.7 and Exp. XXIV, 5.3].

Definition 3.2. Let G be a reductive X -group scheme. A principal G-bundle over X
consists of data (p : E ! X; � : G �X E ! E) such that p is a smooth surjective
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regular map, � is a G-action on E respecting to the projections on X and
1) the regular map G �X E ! E �X E taking (g; e) to (ge; e) is an isomorphism of
algebraic varieties;
2) for any point x 2 X there are a neighborhood V of x in the complex topology on X
and an isomorphism of complex holomorphic varieties ' : EjV := p�1(V ) ! GjV such
that ' respects to the projection on V and ' respects to the obvious leftG-actions on both
sides.

A principal G-bundle E is called trivial if there is an isomorphism E ! G over X ,
which respects to the obvious left G-action on both sides. It is easy to check that E is
trivial if and only if there is a section s : X ! E of the projection p : E ! X .

In the Equation (1) in this section the X -group scheme is defined by the equation
T 2
1 � aT 2

2 = 1. In the example (2) the X -group scheme is defined by the equation
NC[X 0]/C[X ](˛) = 1. In the example (3) the X -group scheme is defined by the equa-
tion T 2

1 � aT 2
2 � bT 2

3 + abT 2
4 = 1. In the example (4) the X -group scheme is defined

by the equation Nrd (˛) = 1. In the example (5) the X -group scheme is SpinQ. In the
example (6) the X -group scheme is SpinA;� . The corresponding principal homogeneous
bundles are described in examples (1)-(6). All these and many other examples illustrating
the conjecture are simple consequences or partial cases of the following general result.

Theorem 3.3 (Fedorov and I. Panin [2015]). Let X be as above in this section. Let G
be a reductive X -group scheme and E be a principal G-bundle. Suppose for a non-zero
function f the principal G-bundle EjXf

is trivial over Xf . Then it is trivial locally for
the Zarisky topology onX . That is for any point x 2 X there is a function g 2 C[X ] such
that g(x) ¤ 0 and the principal G-bundle EjXg

is trivial over Xg .

Remark 3.4. Let us point out that the author still does not know any proof of the re-
sult from the example (6), different from deriving it from Theorem 3.3. All results from
examples (1)–(5) do have proofs avoiding any reference to Theorem 3.3.

Corollary 3.5 (of Theorem 3.3). LetX be as above in this section. LetG be a reductiveX -
group scheme andE1; E2 be two principalG-bundles. Suppose for a non-zero f 2 C[X ]

the principal G-bundles E1jXf
and E2jXf

over Xf . Then the principal G-bundles E1

and E2 are isomorphic locally for the Zarisky topology on X .

Indeed, consider an X -group scheme AutG(E1) of the G-bundle automorphisms and
an X -scheme of principal G-bundle isomorphisms IsoG(E1; E2). The latter scheme is a
principal AutG(E1)-bundle and the X -group scheme AutG(E1) is a reductive X -group
scheme isomorphic to the X -group scheme G locally for the complex topology on X . A
principal G-bundle isomorphism ' : E1jXf

! E2jXf
is a section of IsoG(E1; E2) over

Xf . Hence IsoG(E1; E2) has sections locally for the Zarisky topology on X . Thus the
principal G-bundles E1 and E2 are isomorphic locally for the Zarisky topology on X .
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Corollary 3.6 (of Theorem 3.3). Let G1;G2 be two simple X -group schemes of the type
G2 (resp. F4, resp. E8). That is the fibres and G1;G2 over a point x 2 X are of the
type G2 (resp. F4, resp. E8). Suppose for a non-zero element f 2 C[X ] the Xf -group
schemes (G1)jXf

and (G2)jXf
are isomorphic. Then the X -group schemes G1 and G2

are isomorphic locally for the Zarisky topology on X .

Indeed, consider an X -scheme IsoX�gr�sch(G1;G2). There is a regular map

G1 �X IsoX�gr�sch(G1;G2) ! IsoX�gr�sch(G1;G2)

given by (g1; ') 7! ' ı conj(g1). This map makes the X -scheme IsoX�gr�sch(G1;G2)

a principal G1-bundle over X . This principal G1-bundle has a section over Xf . Hence
for any point x 2 X there is a function g 2 C[X ] such that g(x) ¤ 0 and the X -scheme
IsoX�gr�sch(G1;G1) has a section overXg . The latter means that theXg -group schemes
(G1)jXg

and (G2)jXg
are isomorphic.

4 The conjecture, main results and some corollaries

Assume that U is a regular scheme. Let G be a reductive U -group scheme, that is, G is
affine and smooth as a U -scheme and, moreover, the geometric fibers ofG are connected
reductive algebraic groups (see Demazure and Grothendieck [1970b][Exp. XIX, Defini-
tion 2.7]). Recall that a U -scheme E with an action of G is called a principal G-bundle
overU , ifG is faithfully flat and quasi-compact overU and the action is simply transitive,
that is, the natural morphism G �U E ! E �U E is an isomorphism. It is well known
that such a bundle is trivial locally in the étale topology but in general not in the Zariski
topology. Grothendieck and Serre conjectured that if E is generically trivial, then it is
locally trivial in the Zariski topology (see Serre [1958][Remarque, p. 31], Grothendieck
[1958][Remarque 3, pp. 26–-27], and Grothendieck [1968a][Remarque 1.11.a]). More
precisely, the following conjecture is widely attributed to them.

Conjecture 1. Let R be a regular local ring, let K be its field of fractions. Let G be a
reductive group scheme over U := SpecR, let E be a principal G-bundle. If E is trivial
over SpecK, then it is trivial. That is E(R) ¤ ¿.

Theorem 4.1 (Main). If R is a regular local ring containing a field, then the above con-
jecture holds.

This theorem is proved by R. Fedorov and the author in Fedorov and I. Panin [2015] in
the case, when R contains an infinite field. It is proved by the author in I. Panin [2017b],
when R contains a finite field.
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Corollary 4.2 (of Theorem 4.1). LetR be a regular local ring containing a field andG be
a reductive R-group scheme. Let E1; E2 be two principal G-bundles. Suppose they are
isomorphic over the fraction field of R. Then they are isomorphic.

The proof literally repeats the proof of Corollary 3.5.
Corollary 4.3 (of Theorem 4.1). LetR be a regular local ring containing a field andG be
a reductive R-group scheme. Let � : G ! T be a group scheme morphism to an R-torus
T such that � is locally in the étale topology on SpecR surjective. Assume further that
the R-group scheme H := Ker(�) is reductive. Let K be the fraction field of R. Then
the group homomorphism

T(R)/�(G(R)) ! T(K)/�(G(K)):

is injective.
To derive this corollary from Theorem 4.1 consider a commutative diagram

G(R)
� //

��

T(R) � //

��

H 1
et (R;H)

��
G(K)

� // T(K)
� // H 1

et (K;H)

By Theorem 4.1 the right vertical arrow has trivial kernel. Now a simple diagram chase
completes the proof. The latter corollary extends all the known results of this form proved
in Colliot-Thélène and Ojanguren [1992], I. A. Panin and Suslin [1997], Zaĭnullin [2000],
and Ojanguren, I. Panin, and Zainoulline [2004].
Corollary 4.4 (of Theorem 4.1). Under the notation and the hypothesis of the previous
corollary the following sequence is exact

f1g ! T(R)/�(G(R)) ! T(K)/�(G(K))
Σ resp
�����! ˚ht(p)=1T(K)/T(Rp) � �(G(K)) ! f1g;

where p runs all hight 1 prime ideals in R and resp is the obvious map.
The exactness at the term T(R)/�(G(R)) is due to the previous corollary. The surjec-

tivity of the map Σ resp is due to Colliot-Thélène and Sansuc [1987]. The exactness at
the middle term is proved in I. A. Panin [2016a], I. Panin [2017c].

There are two other very general results concerning the conjecture: due to Nisnevič
[1977] and due to Colliot-Thélène and Sansuc [1987] (see the history of the topic).

5 History of the topic

History of the topic. — In his 1958 paper Jean-Pierre Serre asked whether a principal
bundle is Zariski locally trivial, once it has a rational section (see Serre [1958][Remar-
que, p. 31]). In his setup the group is any algebraic group over an algebraically closed
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field. He gave an affirmative answer to the question when the group is PGL(n) (see Serre
[ibid.][Prop. 18]) and when the group is an abelian variety (see Serre [ibid.][Lemme 4]).
In the same year, Alexander Grothendieck asked a similar question (see Grothendieck
[1958][Remarque 3, pp. 26–27]). A few years later, Grothendieck conjectured that the
statement is true for any semi-simple group scheme over any regular local scheme (see
Grothendieck [1965][Remarque 1.11.a]). Now by the Grothendieck–Serre conjecture we
mean Conjecture 1 though this may be slightly inaccurate from historical perspective.
Many results corroborating the conjecture are known.

Here is a list of known results in the same vein, corroborating the Grothendieck–Serre
conjecture.

� The case when the group is PGLn and the base field is algebraically closed is done
by J.-P. Serre in 1958 in Serre [1958, Prop. 18].

� The case when the group scheme is PGLn and the ring R is an arbitrary regular local
ring is done by A. Grothendieck in 1968 in Grothendieck [1968a].

� The case when the local ring R contains a field of characteristic not 2 the group is
SOn over the ground field is done by M. Ojanguren in 1982 in Ojanguren [1980].

� The case of an arbitrary reductive group scheme over a discrete valuation ring or over
a henselian ring is solved by Nisnevič [1977] in 1984.

�The case, whereG is an arbitrary torus over a regular local ring, was settled by Colliot-
Thélène and Sansuc [1987] in 1987.

� The case, when G is quasi-split reductive group scheme over arbitrary two-dimen-
sional local rings, is solved by Nisnevich [1984] in 1989.

� The case, where the group scheme G comes from an infinite perfect ground field,
solved by Colliot-Thélène and Ojanguren [1992] in 1992. As far as we know this work
was inspired by the one Ojanguren [1980].

� The case, where the group scheme G comes from an arbitrary infinite ground field,
solved by Raghunathan [1994, 1995] in 1994;

� O. Gabber announced in 1994 a proof for group schemes coming from arbitrary
ground fields (including finite fields).

� For the group scheme SL1;A, where A is an Azumaya R-algebra and R contains a
field the conjecture is solved by I. A. Panin and Suslin [1997] in 1998.

� For the unitary group scheme U"
A;� , where (A; �) is an Azumaya R-algebra with

involution R contains a field of characteristic not 2 the conjecture is solved by Ojanguren
and I. Panin [2001] in 2001.

� For the special unitary group scheme SUA;� , where (A; �) is an Azumaya R-algebra
with a unitary involution and R contains a field of characteristic not 2 the conjecture is
solved by Zaĭnullin [2000] in 2001.
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� For the spinor group scheme SpinQ of a quadratic spaceQ over R containing a field
of characteristic not 2 the conjecture is solved Ojanguren, I. Panin, and Zainoulline [2004]
in 2004.

�Under an isotropy condition onG the conjecture is proved by A. Stavrova, N. Vavilov
and the author in a series of preprints in 2009, published as papers in 2015 in I. Panin, A.
Stavrova, and Vavilov [2015a] and in 2016 in I. A. Panin [2016a].

� The case of strongly inner simple adjoint group schemes of the types E6 and E7 is
done by the second author, V. Petrov, A. Stavrova and the second author in 2009 in I. Panin,
Petrov, and A. Stavrova [2009]. No isotropy condition is imposed there.

� The case, when G is of the type F4 with trivial f3-invariant and the field is infinite
and perfect, is settled by Petrov and A. Stavrova [2009] in 2009.

� The case, when G is of the type F4 with trivial g3-invariant and the field is of char-
acteristic zero, is settled by Chernousov [2010] in 2010;

� The conjecture is solved when R contains an infinite field, by R. Fedorov and the
author in a preprint in 2013 and published in Fedorov and I. Panin [2015] in 2015.

� The conjecture is solved by the author in the case, when R contains a finite field in
I. Panin [2015] (for a better structured proof see I. Panin [2017b]).

So, the conjecture is solved in the case, when R contains a field.
The case of mixed characteristic is widely open. Let us indicate two recent interesing

preprints Fedorov [2015] and I. A. Panin and A. K. Stavrova [2016]. In Fedorov [2015]
the conjecture is solved for a large class of regular local rings of mixed characteristic
assuming that G splits. In I. A. Panin and A. K. Stavrova [2016] the conjecture is solved
for any semi-local Dedekind domain providing that G is simple simply-connected and G
contains a torus Gm;R.

6 Sketch of the proof of Theorem 4.1 for an infinite field

To escape technicalities we suppose also that the field k below is algebraically closed
(for instance, k is the complex numbers C). And also suppose that the ring R is the
semi-local ring OX;x1;:::;xn

of finitely many closed points on a smooth affine k-variety X .
There are two very general purity theorems I. A. Panin [2016a, Thm. 1.0.1, Thm. 1.0.2]
which allows I. A. Panin [ibid., Thm. 1.0.3] to reduce Theorem 4.1 to the case, when
the group scheme G is semi-simple simply-connected. Then using standard arguments as
in I. Panin, A. Stavrova, and Vavilov [2015b] one can reduce the latter case to the case
of simple and simply-connected group scheme G (point out that this reduction requires
to work with semi-local rings). So, we will consider below only the case of simple and
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simply-connected group schemeG. And for simplicity of notation we will suppose below
the ring R is the local ring OX;x of a closed point x on a smooth affine k-variety X .

Theorem 6.1 (I. Panin, A. Stavrova, and Vavilov [ibid.]). Let R be the local ring of a
closed point on an irreducible smooth affine variety over the field k, set U = SpecR. Let
G be a simple simply-connected group scheme over U (see Demazure and Grothendieck
[1970a, Exp. XXIV, Sect. 5.3] for the definition). Let G be a principal G-bundle over U
which is trivial over the principal open subset Uf � U for a non-zero f 2 R. Then there
exists a principal G-bundle Et over A1

U and a monic polynomial h(t) 2 R[t ] such that
(i) the G-bundle Et is trivial over (A1

U )h,
(ii) the evaluation of Et at t = 0 coincides with the original G-bundle G,
(iii) f1g � U � (A1

U )h.

Remark 6.2. If the field k = C, then the principal G-bundle Et regarded as a topologi-
cal principal G-bundle for the complex topology is of the form p�(E0) for a topological
principal G-bundle E0, where p : A1

U ! U is the projection. By the item (iii) and (ii) of
the latter theorem the principalG-bundle G regarded as a topological principal G-bundle
is trivial. Hence it is trivial even as the complex holomorphic principal G-bundle.

However these kind of arguments do not work in general for algebraic principal G-
bundles since there are principal G-bundles on A1

U which do not come from U (see Fe-
dorov [2016]). If k = R then there are many examples of principal G-bundles on A1

U

which do not come from U . Those examples can be deduced from Knus, R. Parimala, and
Sridharan [1981/82], Ojanguren, R. Parimala, and Sridharan [1983], S. Parimala [1978].

That is why we need in the following proposition and theorem.

Proposition 6.3 (Fedorov and I. Panin [2015]). Let k,R, U , G, be the same as in Theo-
rem 6.1. LetZ � A1

U be a closed subscheme finite overU . Then there exists a closed sub-
schemeY inA1

U such thatY is étale and finite overU , theY -group schemeGY := G�U Y

is quasi-split and Y \Z = ¿.

Theorem6.4 (Fedorov and I. Panin [ibid.]). Let k,R,U ,G, be the same as in Theorem 6.1.
Let Z � A1

U be a closed subscheme finite over U . Let Y � A1
U be a closed subscheme

étale and finite over U . Assume that Y \Z = ¿, and GY := G �U Y is quasi-split.
Let E be a principal G-bundle over P 1

U such that its restriction to P 1
U � Z is trivial.

Then the restriction of E to P 1
U � Y is also trivial.

Derive now the simple simply-connected case (geometric) of Theorem 4.1 from these
three statements. Let G be a principalG-bundle over U which is trivial over the principal
open subsetUf � U for a non-zero f 2 R. By Theorem 6.1 there are a monic polinomial
h(t) 2 R[t ] and a principal G-bundle Et over A1

U such that (i) and (ii) hold. Since Et

is trivial over (A1
U )h(t) there is a principal G-bundle E over P 1

U such that EjP1
U

�Z is
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trivial and EA1
U

= Et (here Z � A1
U � P 1

U is the vanishing locus of h(t) = 0). By
Proposition 6.3 there is a closed subscheme Y in A1

U such that Y is étale and finite over
U , the Y -group scheme GY := G �U Y is quasi-split and Y \Z = ¿. By Theorem 6.4
the restriction of E to P 1

U � Y is trivial. Since U is local for each section s : U ! A1
U

of the projection A1
U ! U either s(U ) \ Y = ¿ or s(U ) \ Z = ¿. In any case, the

principalG-bundle s�(Et ) = s�(E) is trivial. By the item (ii) of Theorem 6.1 the original
G-bundle G is trivial.

First, we give a sketch of the proof of Theorem 6.1. Let k be the field. LetX be an affine
k-smooth irreducible k-variety, and let x be a closed point in X . Let U = Spec(OX;x)

and f 2 k[X ] be a non-zero function vanishing the point x. Let GX be a simple simply-
connected group scheme over X , G be its restriction to U .

Beginningwith these data it is constructed in I. Panin, A. Stavrova, andVavilov [2015b]
a monic polinomial h 2 OX;x [t ], a commutative diagram of schemes with the irreducible
affine U -smooth variety Y

(6) (A1 � U )h

inc

��

Yh := Y��(h)
�hoo

inc

��

(pX )jYh // Xf

inc

��
(A1 � U ) Y

�oo pX // X

and a morphism ı : U ! Y subjecting to the following conditions:

(a) the left hand side square is an elementary distinguished square in the category of
affine U -smooth schemes in the sense of Morel and Voevodsky [1999, Defn.3.1.3];

(b) pX ı ı = can : U ! X , where can is the canonical morphism;

(c) � ı ı = i0 : U ! A1 �U is the zero section of the projection prU : A1 �U ! U ;

(d) h(1) 2 OX;x [t ] is a unit;

(e) for pU := prU ı� there is a Y -group scheme isomorphismΦ : p�
U (G) ! p�

X (GX )

with ı�(Φ) = idG.

Given this geometric result a proof of Theorem 6.1 run as follows. In general, G does
not come from X . However we may assume, that G is a restriction to U of a simple and
simply-connected X -group scheme GX , G is defined over X . Say, let G0 be a principal
GX -bundle on X with G0jU = G and such that G0 is trivial over Xf for an 0 ¤ f 2 k[X ]

with f (x) = 0. In this case there are two reductive group schemes on Y . Namelly, p�
U (G)

and p�
X (GX ). By the property (b) they coincides when restricted to ı(U ). By the property

(e) the scheme Y is chosen such that two reductive group schemes p�
U (G) and p�

X (GX )



GROTHENDIECK–SERRE CONJECTURE 233

on Y are isomorphic via an Y -group scheme isomorphism Φ and the restriction of Φ to
ı(U ) is the identity. Take p�

X (G0) and regard it as a principal p�
U (G)-bundle using the

isomorphism Φ. Denote that principal p�
U (G)-bundle

U
p�

X (G). It is trivial on Yh, since
p�

X (G0) is trivial on Yh. Take the trivial pr�
U (G)-bundle on A1 � U and glue it with

U
p�

X (G) via an isomorphism over Yh. That is possible by the condition (a). This way
we get a principal G-bundle Gt over A1 � U which is trivial over the open subscheme
(A1 �U )h and such that

U
p�

X (G) = ��(Gt ). Clearly, it is the desired one. The polinomial
h is the polinomial above. Whence the Theorem 6.1.

Secondly, we give a sketch of the proof of Proposition 6.3. Let B be the U -scheme
of Borel subgroup schemes of G. It is a smooth projective U -scheme (see Demazure and
Grothendieck [1970a, Cor. 3.5, Exp. XXVI]). Take an embedding of B into a projective
space P N

U and intersect B with appropriately chosen family of hyperplanes. Arguing as
in the proof of Ojanguren and I. Panin [2001, Lemma 7.2], we get a scheme Y finite and
étale over U and such that the Y -group scheme GY := G �U Y is quasi-split. Since the
field k is infinite and Y is finite étale over U , we can choose a closed U -embedding of Y
in A1

U . We will identify Y with the image of this closed embedding. Since Y is finite over
U , it is closed in P 1

U . Applying to Y an appropriative affine U -transformation of A1
U we

get Y such that Y \Z = ¿. Whence the Proposition 6.3
The next result is a partial case of Theorem 9.6 of I. Panin, A. Stavrova, and Vavilov

[2015b].

Proposition 6.5. Let U be as above and let u 2 U be its closed point. Let E be a G-
bundle over P 1

U such that EjP1
u
is a trivial Gu-bundle. Assume that there exists a closed

subscheme T of P 1
U finite overU such that the restriction of E to P 1

U �T is trivial. ThenE
is of the form: E = pr�(E0), where E0 is a principal G-bundle over U and pr : P 1

U ! U

is the canonical projection.
If furthermore T \ f1g � U = ¿, then E is trivial.

Finally, we give a sketch of the proof of Theorem 6.4. Let (Y h; � : Y h ! A1
U ; s :

Y ! Y h) be the henselization of the pair (A1
U ; Y ). Here s : Y ! Y h is the canonical

closed embedding, see Fedorov and I. Panin [2015, Sect. 5.3] for more details. Let
in : A1

U ! P 1
U be the embedding. Set Ẏ h := Y h � s(Y ). Note that as Y h, so Ẏ h are

affine schemes, see Fedorov and I. Panin [ibid., Sect. 5.3, Prop. 5.13]. Consider the
following cartesian square of schemes

(7)

Ẏ h
j

�����! Y h??y ??yinı�

P 1
U � Y

i
�����! P 1

U
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As explained in Fedorov and I. Panin [2015, Prop. 5.15, Constr. 5.16] that square can
be used to getG-bundles onP 1

U beginning with aG-bundle onP 1
U �Y and its trivialization

over Ẏ h. LetE 0 be aG-bundle over P 1
U �Y . Denote by Gl(E 0; ') theG-bundle over P 1

U

obtained by gluing E 0 with the trivial G-bundle G �U Y h via a G-bundle isomorphism
' : G �U Ẏ h ! E 0jẎ h .

Similarly, set Yu := Y �U u and denote by Y h
u the henselization of the pair (A1

u; Yu),
let su : Yu ! Y h

u be the closed embedding. Set Ẏ h
u := Y h

u � su(Yu). Let E 0
u be a Gu-

bundle over P 1
u � Yu, where Gu := G�U u. Denote by Glu(E 0

u; 'u) the Gu-bundle over
P 1

u obtained by gluingE 0
u with the trivial bundleGu �u Y

h
u via aGu-bundle isomorphism

'u : Gu �u Ẏ
h

u ! E 0
ujẎ h

u
.

Note that theG-bundleE can be presented in the formGl(E 0; '), whereE 0 = EjP1
U

�Y .
The idea is to show that

(�)
There is ˛ 2 G(Ẏ h) such that the Gu-bundle Gl(E 0; ' ı ˛)jP1

u
is trivial (here ˛ is

regarded as an automorphism of theG-bundleG�U Ẏ
h given by the right translation

by the element ˛).
If we find ˛ satisfying condition (�), then Proposition 6.5, applied to T = Y [Z, shows

that the G-bundle Gl(E 0; ' ı ˛) is trivial over P 1
U . On the other hand, its restriction to

P 1
U � Y coincides with the G-bundle E 0 = EjP1

U
�Y . Thus EjP1

U
�Y is a trivial G-bundle

.
To prove (�), one should show that
(i) the bundle EjP1

u�Yu
is trivial;

(ii) each element 
u 2 Gu(Ẏ
h

u ) can be written in the form 
u = ˛jẎ h
u
for a certain

element ˛ 2 G(Ẏ h).
If we succeed to show (i) and (ii), then we proceed as follows. Present theG-bundleE

in the form Gl(E 0; ') as above. Observe that

Gl(E 0; ')jP1
u

Š Glu(E 0
u; 'u);

where E 0
u := E 0jP1

u�Yu
, 'u := 'jGu�uẎ h

u
.

Using property (i), find an element 
u 2 Gu(Ẏ
h

u ) such that theGu-bundle Glu(E 0
u; 'uı


u) is trivial. For this 
u find an element ˛ as in (ii). Finally take theG-bundle Gl(E 0; ' ı

˛). Then its restriction toP 1
u is trivial. Indeed, one has a chain ofGu-bundle isomorphisms

Gl(E 0; ' ı ˛)jP1
u

Š Glu(E 0
u; 'u ı ˛jẎ h

u
) = Glu(E 0

u; 'u ı 
u);

which is trivial by the very choice of 
u. Thus, (�) will be achieved.
Let us prove (i) and (ii). TheGu-bundleEu is trivial over P 1

u �Zu. The field k(u) = k

is algebraically closed. By a theorem Grothendieck–Harder Harder [1968, Satz 3.1, 3.4]
there is an algebraic group morphism � : Gm;k(u) ! Gu such that the Gu-bundle Eu

on P 1
u is isomorphic to the one Gu �Gm;k(u)

O(�1), where O(�1) is the Gm;k(u)-bundle
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A2
k(u)

� 0 ! P 1
k(u)

. Since the field k is algebraically closed, hence P 1
u � Yu is contained

in an affine line A1
u. Thus the restrictions of O(�1) and Eu to P 1

u � Yu are trivial. So, (i)
is achieved.

To complete the proof it remains to achieve (ii). By our assumption on Y , the group
scheme GY = G �U Y is quasi-split. Thus we can and will choose a Borel subgroup
scheme B+ in GY .

Since Y is an affine scheme, by Demazure and Grothendieck [1970a, Exp. XXVI,
Cor. 2.3, Th 4.3.2(a)] there is an opposite to B+ Borel subgroup scheme B� in GY . Let
U+ be the unipotent radical of B+, and let U� be the unipotent radical of B�.

We will write E for the functor, sending a Y -scheme T to the subgroup E(T ) of the
group GY (T ) = G(T ) generated by the subgroups U+(T ) and U�(T ) of the group
GY (T ) = G(T ).

The functor E has the property that for every closed subscheme S in an affine Y -
scheme T the induced map E(T ) ! E(S) is surjective. Indeed, the restriction maps
U˙(T ) ! U˙(S) are surjective, sinceU˙ are isomorphic to vector bundles asY -schemes
(see Demazure and Grothendieck [ibid., Exp. XXVI, Cor. 2.5]).

Recall that (Y h; �; s) is the henselization of the pair (A1
U ; Y ). Also, in : A1

U ! P 1
U

is the embedding. Denote the projection A1
U ! U by pr and the projection A1

Y ! Y by
prY . It is proved in Fedorov and I. Panin [2015, Lemma 5.25] the following
Claim. There is a morphism r : Y h ! Y making the following diagram commutative

(8)

Y h r
�����! Y

inı�

??y ??yprjY

P 1
U

pr
�����! U

and such that r ı s = IdY .
We view Y h as a Y -scheme via r . Thus various subschemes of Y h also become Y -

schemes. In particular, Ẏ h and Ẏ h
u are Y -schemes, and we can consider

E(Ẏ h) � G(Ẏ h) and E(Ẏ h
u ) � G(Ẏ h

u ) = Gu(Ẏ
h

u ):

Since Ẏ h
u is an affine scheme corresponding to the direct product of few fields, Gu is

simply-connected and quasi-split, hence one has an equality Gu(Ẏ
h

u ) = E(Ẏ h
u ). As in-

dicated right above the diagram (7) the scheme Ẏ h is affine. Since Ẏ h
u is its closed sub-

scheme the group homomorphism E(Ẏ h) ! E(Ẏ h
u ) is surjective. Thus the the group

homomorphism G(Ẏ h) ! G(Ẏ h
u ) = Gu(Ẏ

h
u ) is surjective as well. We achieved the

property (ii). Whence the Theorem 6.4. The sketch of the proof of the Theorem 4.1 is
completed.
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7 Sketch of the proof of Theorem 4.1 for a finite field

Let k be a finite field. Give a sketch of the proof of Theorem 4.1 in this case. The outline
of the proof is the same. So, we will focus on crucial differences. There is a reduction
to the case of simple and simply-connected group scheme G over the semi-local ring of
finitely many closed points on a smooth affine variety X So, we will consider below only
the case of simple and simply-connected group scheme G. And for simplicity of notation
we will suppose below the ring R is the local ring OX;x of a closed point x on a smooth
affine k-variety X .

The statement of Theorem 6.1 remains the same in the case of finite base field.

Theorem 7.1 (I. Panin [2017a]). LetR be the local ring of a closed point on an irreducible
smooth affine variety over the finite field k, set U = SpecR. Let G be a simple simply-
connected group scheme over U . Let G be a principal G-bundle over U which is trivial
over the principal open subset Uf � U for a non-zero f 2 R. Then there exists a
principal G-bundle Et over A1

U and a monic polynomial h(t) 2 R[t ] such that
(i) the G-bundle Et is trivial over (A1

U )h,
(ii) the evaluation of Et at t = 0 coincides with the original G-bundle G,
(iii) h(1) 2 R is invertible in R.

Proposition 6.3 one needs to replace with the following one

Proposition 7.2 (I. Panin [2017b]). Let k,R, U , G, be the same as in Theorem 6.1 and k
be the finite field. Let Z � A1

U be a closed subscheme finite over U . Then there exists a
closed subscheme Y in A1

U such that Y is étale and finite over U ,
(a) the Y -group scheme GY := G �U Y is quasi-split,
(b) Pic(P 1

u � Yu) = 0,
(c) Y \Z = ¿.

Theorem 6.4 one needs to replace with the following one

Theorem 7.3 (I. Panin [ibid.]). Let k, R, U , G, be the same as in Theorem 6.1. Let
Z � A1

U be a closed subscheme finite over U . Let Y � A1
U be a closed subscheme

étale and finite over U . Assume that Y \ Z = ¿, GY := G �U Y is quasi-split and
Pic(P 1

u � Yu) = 0.
Let E be a principal G-bundle over P 1

U such that its restriction to P 1
U � Z is trivial.

Then the restriction of E to P 1
U � Y is also trivial.

The derivation of the simple simply-connected case (geometric) of Theorem 4.1 from
these three statements remains the same as in the infinite field case above.

The proof of Theorem 7.1 is essentially more involved than the proof of Theorem 6.1
and is based on some new ideas (see I. Panin [2017a]).
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Give a sketch of the proof of Proposition 7.2. For the closed point u 2 U choose
a Borel subgroup Bu in Gu. The latter is possible since the field k(u) is finite. Let B
be the U -scheme of Borel subgroup schemes of G. It is a smooth projective U -scheme
(see Demazure and Grothendieck [1970a, Cor. 3.5, Exp. XXVI]). The subgroup Bu inGu

is a k(u)-rational point b in the fibre of B over the point u.
Applying several many times Poonen’s Bertini type theorem Poonen [2004, Thm. 1.2]

find a closed subscheme Y 0 of B such that Y 0 is étale over U and the point b is in Y 0.
Clearly, the Y -group scheme GY := G �U Y is quasi-split. To finish the proof of Propo-
sition 7.2 it remains to find a closed embedding of Y 0 into A1

U which satisfies properties
(b) and (c).

However it might happen that there is no closed embedding of Y 0 intoA1
U at all. Indeed,

if the number of k(u)-rational point on Y 0
u is strictly more than the cardinality of the field

k(u), than there is no closed embedding of Y 0 into A1
U at all. To avoid this trouble we

need in the following
Lemma 7.4 (I. Panin [2017b]). Let U be as in the Proposition 7.2. Let Z � A1

U be a
closed subscheme finite over U . Let Y 0 ! U be a finite étale morphism such that for the
closed point u in U the fibre Y 0

u of Y 0 over u contains a k(u)-rational point. Then there
are finite field extensions k1 and k2 of the finite field k such that
(i) the degrees [k1 : k] and [k2 : k] are coprime,
(ii) k(u) ˝k kr is a field for r = 1 and r = 2,
(iii) the degrees [k1 : k] and [k2 : k] are strictly greater than any of the degrees [k(z) :

k(u)], where z runs over all closed points of Z,
(iv) there is a closed embedding of U -schemes Y 00 = ((Y 0 ˝k k1)t (Y 0 ˝k k2))

i
�! A1

U ,
(v) for Y = i(Y 00) one has Y \Z = ¿,
(vi) for the closed point u in U one has Pic(P 1

u � Yu) = 0.
Finish now the proof of the proposition. The U -scheme Y 0 satisfies the hypotheses

of Lemma 7.4. Take the closed subscheme Y of A1
U as in the item (v) of the Lemma.

For that specific Y the conditions (b) and (c) of the Proposition are obviously satisfied.
The condition (a) is satisfied too, since it is satisfied already for the U -scheme Y 0. The
proposition follows.

Finally, we give a sketch of the proof of Theorem 7.3. It almost literally repeats the
sketch of the proof of Theorem 6.4. The only difference is in checking the triviality of the
bundle EjP1

u�Yu
.

The Gu-bundle Eu is trivial over P 1
u � Zu. The field k(u) is finite and the k(u)-

group Gu is quasi-split. By a theorem due to Harder Harder [1968, Satz 3.1, 3.4] there
is an algebraic group morphism � : Gm;k(u) ! Gu such that the Gu-bundle Eu on
P 1 is isomorphic to the one Gu �Gm;k(u)

O(�1), where O(�1) is the Gm;k(u)-bundle
A2

k(u)
� 0 ! P 1

k(u)
. Since Pic(P 1

u � Yu) = 0, hence the restriction of O(�1) to P 1
u � Yu
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is trivial. Thus, so is the restriction ofEu to P 1
u �Yu. Theorem 4.1 for the finite field case

is proved.
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Abstract
We discuss some basic problems in representation theory of finite groups, and cur-

rent approaches and recent progress on some of these problems. We will also outline
some applications of these and other results in representation theory of finite groups
to various problems in group theory, number theory, and algebraic geometry.

1 Introduction

Let G be a finite group and F be a field. A (finite-dimensional) representation of G over
F is a group homomorphism Φ : G ! GL(V ) for some finite-dimensional vector space
V over F . Such a representation Φ is called irreducible if f0g and V are the only Φ(G)-
invariant subspaces of V .

Representation theory of finite groups started with the letter correspondence between
Richard Dedekind and Ferdinand Georg Frobenius in April (12th, 17th, 26th) 1896. In the
same year, Frobenius constructed the character table of PSL2(p), p any prime. Later on,
the foundations of the complex representation theory (i.e. when F = C), were developed
by Frobenius, Dedekind, Burnside, Schur, Noether, and others. Foundations of the modu-
lar representation theory (that is, when p = char(F) > 0 and p divides jGj) were (almost
singlehandedly) laid out by Richard Brauer, started in 1935 and continued over the next
few decades.

A natural question arises: in a more-than-century-old theory such as the representa-
tion theory of finite groups, what could still remain to be studied? By the Jordan–Hölder
theorem, irreducible representations are the building blocks of any finite-dimensional rep-
resentation of any finite group G. The main problem of representation theory of finite
groups, which still remains wide open in full generality as well as for many important
families of finite groups, can be formulated as follows:
The author gratefully acknowledges the support of the NSF (grants DMS-1201374 and DMS-1665014), the
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Problem 1.1. Given a finite group G and a field F , describe all irreducible representa-
tions of G over F .

Likewise, finite simple groups are building blocks of any finite group, and they are
known thanks to the Classification of Finite Simple Groups (CFSG) Gorenstein, Lyons,
and Solomon [1994], arguably one of themost monumental achievements of modernmath-
ematics. So it is natural to focus our attention on studying Problem 1.1 for groups G that
are simple, or more generally, almost quasisimple, that is, when S � G/Z(G) � Aut(S)

for some finite non-abelian simple group S . Aside from the symmetric group Sn and
alternating group An of degree n, almost quasisimple groups include the finite classical
groups with natural module V = Fn

q (such as the special linear group SL(V ) Š SLn(q),
the special unitary group SU(V ) Š SUn(q

1/2) when q is a square, the symplectic group
Sp(V ) Š Spn(q) when 2jn, and the special orthogonal groups SO(V )), as well as their
exceptional and twisted analogues. When q is a power of a fixed prime p, the latter are
usually referred to as finite groups of Lie type in characteristic p. A more precise defini-
tion and a technically convenient framework, particularly for the Deligne-Lusztig theory
Lusztig [1988, 1984], are provided by viewing the latter groups as the fixed point sub-
groups

GF := fg 2 G j F (g) = gg

for a Steinberg endomorphism F : G ! G on a connected reductive algebraic group G
defined over a field of characteristic p.

Throughout the paper, for a finite group G, Irr(G) denotes the set of complex irre-
ducible characters of G, and IBrp(G) denotes the set of irreducible p-Brauer characters
ofG (that is, the Brauer characters of irreducible representations ofG over Fp) for a given
prime p.

Example 1.2. Just to see how difficult Problem 1.1 can be, let us consider the example of
the symmetric group G = Sn.

(i)WhenF = C, according to the classical theory of Frobenius andYoung, the complex
irreducible characters � = �� ofG are labeled by the partitions � of n, and the hook length
formula gives us the degree ��(1) for any � ` n, and the Frobenius character formula
determines the character values ��(g) for all g 2 G. Nevertheless, for a random partition
� of a large n and a random permutation g 2 Sn, it remains a difficult problem to compute
��(g) efficiently. Even by now one still does not know a precise formula for the largest
degree b(Sn) = max�`n ��(1) (which has importance in probabilistic group theory and
various applications). The best until now, still asymptotic, answer to this question is given
by work of Vershik and Kerov [1985] and independently of Logan and Shepp [1977] in
1977:

e�1:2826
p

n
p

n! � b(Sn) � e�0:1156
p

n
p

n!:
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(This result implies that, in a sense, a randomly chosen partition � of n already yields an
irreducible character of degree close to be largest possible, and thus explains the difficulty
of the question.)

(ii) For various applications, one also needs to know good exponential bounds on char-
acter values for symmetric groups. For instance, for each 1 ¤ g 2 Sn one would like to
find an (explicit) constant 0 < ˛ = ˛(g) < 1 such that j�(g)j � �(1)˛ for all � 2 Irr(Sn).
Such an ˛(g) was found by Fomin and Lulov [1995] in the case all cycles of g have same
size. The general case was settled by Larsen and Shalev [2008] only in 2008, and it led to
important results in a number of applications.

(iii) Now let us keep the same group G = Sn but change F to F2. Then the irreducible
representations of G over F are labeled by partitions of � into distinct parts. But now, for
a given degree, say n = 1000, and given such a partition �, one still does not know what is
the dimension of the corresponding representation. The same story goes with the similar
question for G = GL1000(2) and F = F2 or F = F3.

Various questions mentioned in Example 1.2 also remain open, say, for most of the
finite groups of Lie type.

Problem 1.3. Let G be a finite group of Lie type. For any g 2 G XZ(G), find a constant
0 < ˛ = ˛(g) < 1, as small and explicit as possible, such that j�(g)j � �(1)˛ for all
� 2 Irr(G).

Given a finite group G, let dp(G) denote the smallest degree of faithful representations
ofG over Fp . Wewould like to study the following special instance of Problem 1.1, which
turns out to be of importance for many applications:

Problem 1.4. Given an almost quasisimple group G and a prime p,
(i) determine dp(G), and
(ii) classify irreducible FpG-representations of degree up to dp(G)2�� , for a fixed

0 < � < 1.

To formulate further conjectures, let us introduce some more notation. For a fixed
group G and p, let P 2 Sylp(G), and let

Irrp0(G) = f� 2 Irr(G) j p − �(1)g:

We say that � 2 Irr(G) has p-defect 0 if �(1)p = jGjp . If � belongs to a p-block B of
G with defect group D, then � is said to have height 0 if �(1)p = [G : D]p .

Several fundamental conjectures in representation theory of finite groups follow the
global-local principle, which in this case states that certain global invariants of a finite
group G can be determined locally, in terms of its p-subgroups, their normalizers, etc.
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The following is probably the easiest one to formulate among all the global-local con-
jectures:

Conjecture 1.5 (McKay [1972]). There exists a bijection Irrp0(G)
�
 ! Irrp0(NG(P )).

The Alperin-McKay conjecture Alperin [1976] is a blockwise version of the McKay
conjecture and asserts: If a p-blockB of a finite groupG has a defect groupD and Brauer
correspondent b, a p-block of NG(D), then B and b have the same number of characters
of height 0. There are several recent refinements (due to Isaacs, Navarro, Turull, and
others) of the McKay conjecture, which roughly say that in Conjecture 1.5 there should
exist a bijection � that is compatible with the action of certain Galois automorphisms of
Q and preserving congruences modulo p, local Schur indices, etc.

Even if the Problem 1.1 remains unsolved, can one hope for a “natural” labeling of the
irreducible representations of G? If G is a connected reductive algebraic group defined
over F , then one can label the finite-dimensional rational irreducible representations of G

by their highest weights. Alperin [1987] conjectured in 1986 that one should be able to do
the same for any finite group G. More precisely, a p-weight of G is a pair (Q; ı), where
Q is a p-subgroup of G and ı 2 Irr(NG(Q)/Q) has p-defect 0.

Conjecture 1.6 (Alperin). The number of irreducible p-Brauer characters of a finite
group G equals the number of G-conjugate classes of p-weights of G.

Given a p-block B of G, a p-weight of B is a p-weight (Q; ı) with ı belonging to
an NG(Q)-block b with bG = B . Then the blockwise version of the Alperin weight
Conjecture 1.6 asserts that the number of irreduciblep-Brauer characters ofG that belong
to B equals the number of G-conjugate classes of p-weights of B .

Finally, we recall the Brauer height zero conjecture Brauer [1956], perhaps one of the
oldest and deepest conjectures in the modular representation theory:

Conjecture 1.7 (Brauer, 1955). All complex irreducible characters in a p-block B of a
finite group G have height zero if and only if the defect groups D of B are abelian.

2 Current Approaches and Recent Results

The aforementioned, and several other, fundamental conjectures in representation theory
of finite groups have been proved to hold for many classes of finite groups, including
solvable groups, p-solvable groups, as well as various families of simple groups. As
important evidence in favor of these conjectures as these results are, none of the above
conjectures has been proved to hold for all arbitrary finite groups.

A possible approach to tackle these conjectures, which was already one of the main
ideas in Dade’s works in the ’90s, is to try to use the CFSG to reduce to simple groups. As
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we will see, such reductions are possible, on the one hand, and they have led to important
progress on some of these conjectures. On the other hand, oftentimes such reductions
require one to prove much stronger statements about the simple groups, not merely the
original conjecture in question. We will now discuss recent progress on various problems
mentioned in §1.

2.1 TheMcKay conjecture. In 2007, Isaacs, Malle, and Navarro succeeded in proving
the following reduction theorem for the McKay Conjecture 1.5:

Theorem 2.1.1. Isaacs, Malle, and Navarro [2007] Suppose that every finite non-abelian
simple group S is McKay-good for the prime p. Then the McKay conjecture holds for
arbitrary finite groups (for the prime p).

Here, the McKay-goodness (also known as the inductive McKay condition) for the
prime p is much more than just satisfying the McKay conjecture. It is in fact a long
and complicated list of conditions concerning representations and cohomology of certain
subgroups of the universal cover of S , occupying a couple of pages of Isaacs, Malle, and
Navarro [ibid.]. Later, a reduction theorem in the same spirit for the Alperin-McKay con-
jecture was obtained by Späth in Späth [2013a]. Combined efforts of Malle, Cabanes, and
Späth have also led to the proof of the inductive McKay condition for all simple groups,
except for simple orthogonal groups in odd characteristics and exceptional groups of type
E6, 2E6, andE7. Moreover, a breakthough has recently been achieved byMalle and Späth,
showcasing the strengths of the current approach:

Theorem 2.1.2. Malle and Späth [2016] The McKay conjecture for p = 2 holds for all
finite groups G.

Less is currently known about various refinements of the McKay conjecture, which,
if true, would imply many interesting consequences. For instance, the Galois-McKay
conjecture, as proposed by Navarro in Navarro [2004], implies that the character table
of any finite group G detects whether a Sylow p-subgroup of G is self-normalizing. This
would give a partial answer to Problem 12 in Brauer’s celebrated list Brauer [1963]: Given
the character table of a group G and a prime p dividing jGj, how much information about
the Sylow p-groups P of G can be obtained? In fact, a unconditional answer has been
obtained, supporting the Galois-McKay conjecture:

Theorem 2.1.3. Let G be a finite group, p a prime, and let P 2 Sylp(G).

(i) Navarro, Tiep, and Turull [2007] Suppose p > 2. Then P = NG(P ) if and only if
Irrp0(G) contains a unique character � with Q(�) � Q(exp(2�i/jGjp0)).
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(ii) Schaeffer Fry [2016] and Schaeffer Fry and J. Taylor [2018] Suppose p = 2 and let
� be the automorphism of Q(exp(2�i/jGj)) that fixes every root of unity of 2-power
order and squares every root of unity of odd order. Then P = NG(P ) if and only if
every � 2 Irr20(G) is fixed by � .

Finite groups with self-normalizing Sylow p-subgroups (with p > 2) also stand out as
one of the few cases where a canonical bijection � satisfying the McKay Conjecture 1.5
can be found (and therefore it is compatible with the action of Galois automorphisms).
As shown in Navarro, Tiep, and Vallejo [2014], in this case �(�) can be taken to be the
(unique) linear constituent of �jP for any � 2 Irrp0(G). (Also see Isaacs [1973], Navarro
[2003], Giannelli, Kleshchev, Navarro, and Tiep [2017], Isaacs, Navarro, Olsson, and Tiep
[2017], Giannelli, Tent, and Tiep [2018] for some other occurrences of canonical McKay
correspondences.) We also note the following recent result:

Theorem2.1.4. Guralnick, Navarro, and Tiep [2016] LetG be a finite group,p be a prime,
and P 2 Sylp(G). Suppose that NG(P ) has odd order. Then the McKay conjecture, the
Alperin weight conjecture, and their blockwise versions hold for G and the prime p.

2.2 The Alperin weight conjecture (AWC). The following reduction theorem for the
Alperin weight Conjecture 1.6 was proved in 2011:

Theorem 2.2.1. Navarro and Tiep [2011] Suppose that every finite non-abelian simple
group S is AWC-good for the prime p. Then the Alperin weight conjecture holds for
arbitrary finite groups (for the prime p).

Another reduction theorem for the AWC was obtained by Puig [2011], and the block-
wise version of the AWC was reduced to simple groups by Späth in Späth [2013b].

As it was the case with the inductive McKay condition, the AWC-goodness in Theorem
2.2.1 is much stronger than just satisfying the AWC. Nevertheless, the list of AWC-good
simple groups for the prime p has been shown to include the simple groups of Lie type in
the same characteristic p, the alternating groups, and all the sporadic simple groups.

2.3 The Brauer height zero conjecture (BHZ). The “if” direction of the Brauer height
zero Conjecture 1.7 was reduced by Berger and Knörr [1988] in 1988 to quasisimple
groups. This was a “pure” reduction; namely they showed that if the “if” direction of
the BHZ holds for all blocks (with abelian defect groups) of all finite quasisimple groups,
then it also holds for all blocks (with abelian defect groups) of all finite groups. The ver-
ification of (both directions of) the BHZ for quasisimple groups was completed recently
by Kessar and Malle [2013, 2017]. Thus the “if” direction of the BHZ holds for arbitrary
finite groups.
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The “only if” direction of the BHZ is even more difficult. The Gluck–Wolf proof of
this direction forp-solvable groups was already extraordinarily complicated. For arbitrary
finite groups, the following reduction theorem was obtained in 2014:

Theorem 2.3.1. Navarro and Späth [2014] Suppose all of the following statements hold:

(i) The inductive Alperin-McKay condition Späth [2013a] holds for all finite simple
groups S for the prime p;

(ii) A generalized Gluck-Wolf theorem (gGW) holds; and

(iii) The “only if” direction of the BHZ holds for all finite quasisimple groups.

Then the “only if” direction of the BHZ holds for all finite groups for the prime p.

Another reduction theorem, with condition 2.3.1(i) replaced by the projective Dade
conjecture Dade [1994], was obtained earlier by Murai in Murai [2012]. As mentioned
above, condition (iii) in Theorem 2.3.1 holds, thanks to Kessar and Malle [2017]. The
statement (gGW) alluded to in Theorem 2.3.1(ii) is a relative version of the BHZ, and is
now also a theorem:

Theorem 2.3.2. Navarro and Tiep [2013] Let G be a finite group with a normal subgroup
Z, p be a prime, and let � 2 Irr(Z). Suppose that �(1)/�(1) is coprime to p for all
� 2 Irr(G) lying above �. Then the Sylow p-subgroups of G/Z are abelian.

Let us also mention

Theorem 2.3.3. Navarro and Tiep [2012] The Brauer height zero conjecture holds for all
2-blocks of G with defect groups P 2 Syl2(G).

2.4 Dimensions of irreducible representations and Problem 1.4. For an almost qua-
sisimple group G, let S denote the unique non-abelian composition factor of G. In the
case S is a sporadic simple group, Problem 1.4 depends largely on latest developments in
computational group theory. In particular, dp(G) has been completely determined Jansen
[2005]. However, Problem 1.4 remains open for a number of large sporadic groups, for
instance in the case where G = M is the Monster and p = 2.

Next, let us consider the case S = An with n � 5. Here, certainly the case of com-
plex representations is very well understood, thanks to classical work of Frobenius and
Schur. The case of modular representations of Sn was settled by James in James [1983].
In particular, he showed that

dp(Sn) =

�
n � 1; p 6 jn

n � 2; pjn
:
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In fact, James proved that, for a fixed p-regular partition � = (�2; : : : ; �k) of m,

dimD(n�m;�2;:::;�k) �
nm

m!
dimD�

when n ! 1 (if D� is the p-modular irreducible representation of Sn labeled by the
p-regular partition � ` n). This beautiful result gives however only an asymptotic bound
on the dimension of D�. For a number of applications, one needs an effective bound on
dimD�, and the first such bound was obtained in Guralnick, Larsen, and Tiep [2012].
Define for p ¤ 2

mp(�) := max(�1; (�M)1);

(the longest row of partitions � and �M), where � 7! �M is the Mullineux bijection on the
set of p-regular partitions of n; also set m2(�) := �1.

Theorem 2.4.1. Guralnick, Larsen, and Tiep [ibid.] For any p � 0, and any p-regular
partition � of n,

dimD�
� 2

n�mp(�)

2 :

This effective bound was used to establish polynomial representation growth for the
modular representations of Sn and An, see Guralnick, Larsen, and Tiep [ibid., Theorem
1.1]. It also allowed to deduce quantitative results on branching rules for irreducible Sn-
representations over An, and, as a consequence, resolve Problem 1.4 for G = An. How-
ever, the bound in Theorem 2.4.1 is not of the right magnitude. This issue has been recti-
fied very recently:

Theorem 2.4.2. Kleshchev and Tiep [n.d.] Let p be a prime, m � 2, and let � = (n �

m; �2; : : : ; �k) be a p-regular partition of n � (m � 1)p + 2. Then

dimD�
�

8<:
�Qm�1

j=0 (n � jp)
�
/m!; p � 5�Qm�1

j=0 (n � 2 � jp)
�
/m!; p = 2; 3

:

For spin representations, i.e. faithful representations of double covers of Sn and An,
Problem 1.4 has been studied in Kleshchev and Tiep [2004, 2012]. In particular, it was
shown in Kleshchev and Tiep [2004] that

dp(2Sn) =

�
2b(n�1)/2c; p 6 jn

2b(n�2)/2c; pjn:

Furthermore, irreducible spin modular representations of degree up to (n/2) � dp(G) for
G = 2Sn and 2An were determined in Kleshchev and Tiep [2012].
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Now we discuss the main case of Problem 1.4 when S is a simple group of Lie type
in characteristic `. In the defining characteristic case, that is when p = char(F) = `,
Problem 1.4 can be solved using the representation theory of reductive algebraic groups
(namely the theory of highest weight modules), and Premet’s theorem Premet [1987]. In
fact, this was done by Liebeck for classical groups, and by Lübeck for exceptional groups.

Next we consider the cross characteristic case, that is when p = char(F) ¤ `. If,
moreover, p = 0 or 0 < p − jGj, then Problem 1.4 can be solved using the Deligne-
Lusztig theory Lusztig [1988, 1984]. This was done in Tiep and Zalesskii [1996] for
classical groups, and by Lübeck for exceptional groups.

The remaining case (` ¤ p > 0 and pjjGj) turns out to be much harder and is still
ongoing. Complete results have been obtained for groups of type A, that is when G =

SLn(q), see Guralnick and Tiep [1999] and Brundan and Kleshchev [2000], and when
G = SUn(q), see Hiss and Malle [2001] and Guralnick, Magaard, Saxl, and Tiep [2002].

Theorem 2.4.3. Guralnick and Tiep [1999] Assume n � 4 and (n; q) ¤ (4; 2), (4; 3).
Then

dp(SLn(q)) =
qn � 1

q � 1
�

(
1; p − qn�1

q�1

2; pjq
n�1

q�1
:

Moreover, SLn(q) has one irreducible representation over F of degree dp and (q�1)p0�1

of degree (qn � 1)/(q � 1). All other nontrivial irreducible representations have degree

at least (qn�1 � 1)

�
qn�2 � q

q � 1
� 1

�
.

Theorem 2.4.4. Guralnick, Magaard, Saxl, and Tiep [2002] Assume n � 5 and (n; q) ¤

(6; 2). Then

dp(SUn(q)) =

�
qn � 1

q + 1

�
:

Moreover, SUn(q) has (q+1)p0 irreducible representations over F of degree dp or dp+1.

All other nontrivial irreducible representations have degree at least
(qn � 1)(qn�1 � q2)

(q + 1)(q2 � 1)
.

The case of symplectic groups was also settled in Guralnick, Magaard, Saxl, and Tiep
[ibid.] and Guralnick and Tiep [2004]; in particular,

dp(Sp2n(q)) =

�
(qn � 1)/2; q odd
(qn � 1)(qn � q)/2(q + 1); q even:

Less complete results have also been obtained for other families of finite groups of Lie
type, see Tiep [2003], Tiep [2006] for relevant references. All these results rely crucially
on the Deligne-Lusztig theory and further important results of Broué and Michel [1989]
and Bonnafé and Rouquier [2003].
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As mentioned in Example 1.2, of interest is also the largest degree

b(G) = max
�2Irr(G)

�(1)

of complex irreducible characters of an almost quasisimple group G. In the case G is of
Lie type in characteristic p, the Steinberg character St has quite a large degree, equal to
jGjp . It turns out that b(G)/St(1) can grow unbounded when we fix the size q of the
defining field Fq and let the rank r of G grow. An upper bound for b(G) was given in
Seitz [1990, Theorem 2.1], which yields the exact value of b(G) when q is large enough
compared to r .

Theorem 2.4.5. Larsen, Malle, and Tiep [2013] For any 1 > " > 0, there are (explicit)
constants A; B > 0 depending on " such that, for any simple algebraic group G in charac-
teristic p of rank r and any Steinberg endomorphism F : G! G, the largest degree b(G)

of the corresponding finite group G := GF over Fq satisfies the following inequalities:

A(logq r)(1�")/
 <
b(G)

jGjp
< B(1 + logq r)2:54/


if G is classical, and 1 � b(G)/jGjp < B if G is an exceptional group of Lie type. Here,

 = 1 if G is untwisted of type A, and 
 = 2 otherwise.

A lower bound for the largest degree of modular irreducible representations ofG = GF

was also given in Larsen, Malle, and Tiep [ibid., Theorem 1.4]. Theorem 2.4.5 implies
the following, somewhat surprising, consequence which answers a question raised by D.
Vogan and J. Berstein:

Corollary 2.4.6. Let q be any prime power and letn > 2q6815. Consider a non-degenerate
quadratic space V = Fn

q , a non-degenerate subspace U of codimension 1 in V , and em-
bed the full orthogonal group H = GO(U ) Š GO˙

n�1(q) via g 7! diag(g; det(g)) in
the special orthogonal group G = SO(V ) Š SO˙

n (q). Then there exists a character
� 2 Irr(G) such that its restriction to H is not multiplicity-free (and � is trivial at Z(G)).

Proof. We give a proof for the case n = 2m + 1 � 9; the case n = 2m is completely
similar. By Larsen, Malle, and Tiep [ibid., Theorem 5.2] (and its proof), there is� 2 Irr(G)

such that � is trivial at Z(G) and

�(1) > qm2

�
1

5

�
logq(m + 10)

�3/8
:

On the other hand, j Irr(H )j < 15qm by Theorems 3.14 and 3.21 of Fulman and Guralnick
[2012]. Now if �jH is multiplicity-free, then by Schwarz’s inequality we must have that

�(1) �
X

˛2Irr(H)

˛(1) � (jH j � j Irr(H )j)1/2 <
p
30 � qm2

;
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contradicting the above lower bound on �(1) when m � q6815.

In fact, Corollary 2.4.6 also holds if we takeU to be any nonzero proper non-degenerate
subspace of V and replace H with SO(V ) \ (GO(U ) � GO(U ?)).

2.5 Bounds on character values: Problem 1.3. For a finite groupG, a character ratio
is a complex number of the form�(g)/�(1), where g 2 G and� is an irreducible character
of G. Upper bounds for absolute values of character values and character ratios have
long been of interest, for various reasons; these include applications to random generation,
covering numbers, mixing times of randomwalks, wordmaps, representation varieties and
other areas.

The first significant bounds on character ratios for finite groups of Lie type G, de-
fined over a field Fq , were obtained by Gluck [1993, 1997]. In particular, he showed that
j�(g)j/�(1) � C q�1/2 for any non-central element g 2 G and any non-linear character
� 2 Irr(G), where C is an absolute constant. Another explicit character bound for finite
classical groups, with natural module V = Fn

q , was obtained in Larsen, Shalev, and Tiep
[2011, Theorem 4.3.6]:

j�(g)j

�(1)
< q�

p
supp(g)/481;

where supp(g) is the codimension of the largest eigenspace of g 2 G on V ˝Fq
Fq .

These bounds have played a crucial role in a number of applications (some described
in §3). However, in many situations of these and other applications, one needs stronger,
exponential character bounds as described in Problem 1.3. Such a bound was established
for Sn in Larsen and Shalev [2008]. For finite groups of Lie type, it has been obtained
for the first time in Bezrukavnikov, Liebeck, Shalev, and Tiep [n.d.]. For a subgroup X

of an algebraic group G, write Xunip for the set of non-identity unipotent elements of X .
For a fixed Steinberg endomorphism F : G ! G, a Levi subgroup L of G is called split,
if it is an F -stable Levi subgroup of an F -stable proper parabolic subgroup of G. For an
F -stable Levi subgroup L of G and L := LF , we define

˛(L) := max u2Lunip

dimuL

dimuG
; ˛(L) := max u2Lunip

dimuL

dimuG

if L is not a torus, and ˛(L) = ˛(L) := 0 otherwise.

Theorem 2.5.1. Bezrukavnikov, Liebeck, Shalev, and Tiep [ibid.] There exists a function
f : N ! N such that the following statement holds. Let G be a connected reductive
algebraic group such that [G; G] is simple of rank r over a field of good characteristic
p > 0. Let G := GF for a Steinberg endomorphism F : G ! G. Let g 2 G be any
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element such that CG(g) � L := LF , where L is a split Levi subgroup of G. Then, for
any character � 2 Irr(G) and ˛ := ˛(L), we have

j�(g)j � f (r)�(1)˛:

The ˛-bound in Theorem 2.5.1 is sharp in many cases; for instance, it is always opti-
mal in the case G = SLn(q), see Bezrukavnikov, Liebeck, Shalev, and Tiep [n.d., Theo-
rem 1.3]. Furthermore, the function f (r) is given explicitly in Bezrukavnikov, Liebeck,
Shalev, and Tiep [ibid., Proposition 2.7]. Explicit bounds for ˛(L) can be found in
Bezrukavnikov, Liebeck, Shalev, and Tiep [ibid.]; in particular, it is shown inBezrukavnikov,
Liebeck, Shalev, and Tiep [ibid., Theorem 1.6] that

˛(L) � ˛(L) �
1

2

�
1 +

dimL

dim G

�
if G is a classical group. As a consequence, the following Lie-theoretic analogue of the
celebrated Fomin–Lulov bound Fomin and Lulov [1995] was obtained in Bezrukavnikov,
Liebeck, Shalev, and Tiep [n.d.]:

Corollary 2.5.2. Let m < n be a divisor of n and let L � G = GLn(q) be a Levi
subgroup of the form L = GLn/m(q)m. Let g 2 G with CG(g) � L. Then we have

j�(g)j � f (n � 1)�(1)
1
m

for all � 2 Irr(G), where f : N ! N is the function specified in Theorem 2.5.1.

Again, the exponent 1/m in Corollary 2.5.2 is sharp. Moreover, an exponential char-
acter bound for `-Brauer characters of G = GLn(q), SLn(q) (in the case ` − q and for
the elements g 2 G with CG(g) contained in a split Levi subgroup of G), has also been
established in Bezrukavnikov, Liebeck, Shalev, and Tiep [ibid.].

The above results do not cover, for instance, the case where g 2 GF is a unipotent
element. However, a complete result covering all elements in GLn(q) and SLn(q) has
been obtained in Bezrukavnikov, Liebeck, Shalev, and Tiep [ibid.]:

Theorem 2.5.3. There is a function h : N ! N such that the following statement holds.
For any n � 5, any prime power q, any irreducible complex character � of G := GLn(q)

or SLn(q), and any non-central element g 2 G,

j�(g)j � h(n) � �(1)1� 1
2n :

There is also a different approach to Problem 1.3, which so far has been worked out
completely for groups of type A in Guralnick, Larsen, and Tiep [n.d.]. It has long been
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observed that irreducible characters of symmetric groups and of finite groups of Lie type
seem to appear in “clusters”, where the characters in a given cluster have roughly the
same degree (as a polynomial function of n in the case of Sn, and of qr in the case of
a Lie-type group of rank r over Fq), and display roughly the same behavior in several
contexts. The main goal of this approach is to develop the concept of character level – the
characters � 2 Irr(G) will then be grouped in clusters according to their level, and then
prove exponential character bounds for characters (at least of not-too-large level).

Let us use the notation GL� to denote GL when � = + and GU when � = �, and
similarly for SL� . Let V = Fn

Q be the natural module of G 2 fGL�
n(q);SL

�
n(q)g, where

Q = q when � = +, and Q = q2 when � = �. It is known that the class function

� : g 7! �n(�q)
dimFQ

Ker(g�1V )

is a (reducible) character of G. The true level l�(�) of a character � 2 Irr(G) is then
defined to be the smallest non-negative integer j such that � is an irreducible constituent
of �j ; and the level l(�) is the smallest non-negative integer j such that�� is an irreducible
constituent of �j for some character � of degree 1 of G, see Guralnick, Larsen, and Tiep
[ibid.].

Theorem 2.5.4. Guralnick, Larsen, and Tiep [ibid.] Let G 2 fGL�
n(q);SL

�
n(q)g with

n � 2, � = ˙, and let � 2 Irr(G) have level j = l(�). Then the following statements
hold.

(i) qj (n�j )/2(q + 1) � �(1) � qnj . If furthermore j � n/2, then

�(1) > qn2/4�2/(q � �):

(ii) If n � 7 and d(1/n) logq �(1)e <
p

n � 1 � 1, then

l(�) =

� logq �(1)

n

�
:

(iii) If l(�) �
p
(8n � 17)/12 � 1/2 for � 2 Irr(G), then j�(g)j < 2:43�(1)1�1/n for

all g 2 G X Z(G). Moreover, if l(�) � (
p
12n � 59 � 1)/6 for � 2 Irr(G), then

j�(g)j < 2:43�(1)max(1�1/2l(�);1�supp(g)/n)

for all g 2 G.

(iv) Suppose that g 2 G satisfies jCGL�
n(q)

(g)j � qn2/12. Then j�(g)j � �(1)8/9.
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Note that the exponent 1� 1/n in the character bound in Theorem 2.5.4(iii) is optimal.
Another feature of character level is provided by the following result, which shows that
the characters of level j < n/2 of SL�

n(q) are controlled by GL
�
j (q):

Theorem 2.5.5. Guralnick, Larsen, and Tiep [n.d.] For any 0 � j � n, there is a
canonical bijection ˛ 7! Θ(˛) between f˛ 2 Irr(GL�

j (q)) j l�(˛) � 2j � ng and
f� 2 Irr(GL�

n(q)) j l�(�) = j g. If furthermore j < n/2, then the map ˛ 7! Θ(˛)jS
yields a canonical bijection between Irr(GL�

j (q)) and f� 2 Irr(S) j l(�) = j g for S =

SL�
n(q).

3 Some Recent Applications

Results on Problems 1.3, 1.4 and other have been used in the revision of the Classifica-
tion of Finite Simple Groups (for instance, in the classification of quadratic modules),
in computational group theory (e.g. in the recognition of permutation/matrix groups of
moderate degree). They also played a key role in the proofs Guralnick and Tiep [2005],
Guralnick and Tiep [2008] of Larsen’s conjecture on moments Katz [2004, 2005] and the
Kollár-Larsen conjecture Balaji and Kollár [2008] on symmetric powers, and the solution
Guralnick and Tiep [2012] of the Kollár-Larsen problem Kollár and Larsen [2009] on
linear groups generated by elements of bounded deviation and crepant resolutions.

We will now discuss some recent applications in group theory, number theory, and
algebraic geometry.

3.1 Automorphy lifting and adequate groups. For a number field K, let GK denote
the absolute Galois group of K. A key ingredient of Wiles’ celebrated proof of Fermat’s
Last Theorem is the following modularity lifting theorem:

Theorem 3.1.1 (Taylor-Wiles, R. Taylor and Wiles [1995]). Let p > 2, O be the ring
of integers in some finite extension of Qp , and let Φ : GQ ! GL2(O) be a Galois
representation such that

(i) Φ “looks like” coming from a modular form;
(ii) The associated p-modular representation Φ : GQ ! GL2(Fp) is modular;
(iii) Φ(G

Q(
p

(�1)(p�1)/2p)
) is big.

Then Φ is modular.

Here, bigness means just irreducibility.
In 2010, Harris, Shepherd-Barron, and R. Taylor [2010] proved the Sato-Tate conjec-

ture for any non-CM elliptic curve overQwith non-integral j -invariant. A key role in this
important result is played by an automorphy lifting theorem, due to Clozel, Harris, and
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R. Taylor [2008], that generalizes the Taylor-Wiles Theorem 3.1.1 to GLn. Now, bigness
means irreducibility plus some more conditions, including a condition on the existence of
a special element with a special multiplicity-one eigenvalue. The Clozel–Harris–Taylor
theorem was generalized further by Thorne [2012], removing the multiplicity-one condi-
tion, and thus replacing bigness by adequacy:

Definition 3.1.2 (Thorne Thorne [2012] and Guralnick, Herzig, and Tiep [2015]). Let F
be a field of characteristic p. A finite irreducible subgroup G � GL(V ) = GLn(F) is
called adequate, if

(A1) H 1(G; F) = 0;
(A2) H 1(G;End(V )/F) = 0;
(A3) End(V ) is linearly spanned by the p0-elements g 2 G.

Which irreducible subgroups of GL(V ) are adequate? Extending Guralnick, Herzig,
R. Taylor, and Thorne [2012], and using results on Problem 1.4 as well as Blau and Zhang
[1993], the following adequacy theorem has recently been proved:

Theorem 3.1.3. Guralnick, Herzig, and Tiep [2015] Let G < GL(V ) be a finite irre-
ducible subgroup and let Op0

(G) denote the subgroup of G generated by all p-elements
x 2 G. Suppose that the Op0

(G)-module V contains an irreducible submodule of dimen-
sion < p. Then, aside from a few explicitly described examples, G is adequate.

This result has been extended in Guralnick, Herzig, and Tiep [2017] to include finite
linear groups in dimension p. As a by-product, answers to a question of Serre concerning
complete reducibility of subgroups in classical groups of low dimension, and a question
of Mazur concerning dimExt1(V; V ) and dimExt1(V; V �) (which is of interest in defor-
mation theory), have been obtained.

3.2 The ˛-invariant and Thompson’s conjecture. Let V = Cn and let G < GL(V )

be a finite group. ThenG acts on the dual spaceV �, and a nonzero elementf 2 Symk(V �)

is said to be an invariant, respectively a semi-invariant, of degree k for G if G fixes f ,
respectively if G fixes the 1-dimensional space hf iC . Let

d (G) := minfk 2 NjG has a semi-invariant of degree kg:

In 1981, Thompson proved the following theorem:

Theorem 3.2.1. Thompson [1981] Let n 2 N be any integer and G < GLn(C) be any
finite subgroup. Then d (G) � 4n2.

It turns out that this result also has interesting implications in algebraic geometry, in
particular, in regard to the ˛-invariant ˛G(P n�1)whenG < GL(V ) acts on the projective
space PV = P n�1.



256 PHAM HUU TIEP

The ˛-invariant ˛G(X) for a compact groupG of automorphisms of a Kähler manifold
X was introduced by Tian in 1987 Tian [1987], Tian and Yau [1987]. This invariant is
of importance in differential geometry and algebraic geometry. As shown by Demailly
and Kollár Demailly and Kollár [2001], in the case X is a Fano variety the ˛-invariant
coincides with the log-canonical threshold

lct(X; G) = sup
�
� 2 Q

ˇ̌̌̌
the log pair (X; �D) has log-canonical singularities

for every G-invariant effective Q-divisor D ∼Q �KX

�
:

An important example of Fano varieties is the projective space PV = P n�1, where V =

Cn. Consider the natural action of any finite subgroup G < GL(V ) on P n�1. Then

˛G(PV ) �
d (G)

dim(V )
;

see Cheltsov and Shramov [2011, §1], and so Theorem 3.2.1 implies

Theorem 3.2.2. Thompson [1981] Let n 2 N be any integer and G < GLn(C) be any
finite subgroup. Then ˛G(P n�1) � 4n.

In the same paper Thompson [ibid.], Thompson raised (the first part of) the following
conjecture:

Conjecture 3.1 (Thompson). There is a positive constant C such that for any n 2 N and
for any finite subgroup G < GLn(C), the following statements hold:

(i) d (G) � C n; and

(ii) ˛G(P n�1) � C .

This conjecture has recently been proved in Tiep [2016], relying on Aschbacher’s the-
orem Aschbacher [1984] and results on Problem 1.4:

Theorem 3.2.3. Tiep [2016] Thompson’s Conjecture 3.1 is true, with C = 1184036.

This implies

Corollary 3.2.4. Let G � GL(V ) be a finite group. Then G has a nonzero polynomial
invariant, of degree at most min(1184036 � dim(V ) � exp(G/G0); jGj).

3.3 Word maps on simple groups. The classical Waring problem, solved in 1909 by
Hilbert, asks if given any k � 1, there is a (smallest) g(k) such that every positive integer
is a sum of at most g(k) kth powers. Recently, there has been considerable interest in
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non-commutative versions of the Waring problem, particularly for finite simple groups.
Here, one asks if given any k � 1, there exists a (smallest) f (k) such that every element
in any finite non-abelian simple group G is a product of f (k) kth powers, provided that
exp(G) − k. It was shown by Martinez and Zelmanov [1996] and independently by Saxl
and Wilson [1997] that f (k) exists (but implicitly).

More generally, given aword, i.e. an elementw(x1; : : : ; xd ) of the free groupF (x1; : : : ; xd ),
and a group G, one considers the word map w : Gd ! G and defines

w(G) := fw(g1; : : : ; gd ) j gi 2 Gg

to be the image of the word map w on Gd . Then the non-commutative Waring problem
(for simple groups) can be formulated as follows

Problem 3.2. Is there any integer c (possibly depending on w) such that

w(G)c := fy1y2 : : : yc j yi 2 w(G)g

equals G, for any finite non-abelian simple group G with w(G) ¤ 1?

Such smallest c = c(w) is called the width of w. Of particular interest is the case
where w = w(x; y) = xyx�1y�1, where the assertion c(w) = 1 is known as the Ore
conjecture (1951), which is now a theorem:

Theorem 3.3.1. Liebeck, O’Brien, Shalev, and Tiep [2010] Every element in any finite
non-abelian simple group is a commutator.

A particular motivation for Problem 3.2 comes from the celebrated Nikolov–Segal
proof of the Serre conjecture on finitely generated profinite groups. The existence of c(w)

was first established in Liebeck and Shalev [2001] (again implicitly). Note that, in general,
the width of w on simple groups can grow unbounded: as shown in Kassabov and Nikolov
[2013] and Guralnick and Tiep [2015], for any k 2 N, there is a word w and a simple
group S such that w(S) ¤ 1 but w(S)N ¤ S . So in Problem 3.2 it is natural to bound the
width of w on sufficiently large simple groups. In this asymptotic setting, a breakthrough
was achieved by Shalev [2009], where he proved that for any w ¤ 1, w(S)3 = S for
all sufficiently large simple groups S . Building on Shalev [ibid.] and Larsen and Shalev
[2008, 2009], the best solution for Problem 3.2 was achieved in Larsen, Shalev, and Tiep
[2011]:

Theorem 3.3.2. Larsen, Shalev, and Tiep [ibid.] The following statements hold.

(i) For any word w ¤ 1, there exists a constant Nw depending on w, such that for all
finite non-abelian simple groups S of order greater than Nw we have w(S)2 = S .
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(ii) For any two words w1; w2 ¤ 1, there exists a constant Nw1;w2
depending on w1 and

w2 such that for all finite non-abelian simple groups S of order greater than Nw1;w2

we have w1(S)w2(S) = S .

As regards the Waring problem for quasisimple groups, the best solution has also been
achieved:

Theorem 3.3.3. Larsen, Shalev, and Tiep [2013] and Guralnick and Tiep [2015] The
following statements hold.

(i) For any w1; w2; w3 ¤ 1, there exists a constant Nw1;w2;w3
depending on w1, w2,

and w3 such that for all finite quasisimple groups G of order greater than Nw1;w2;w3

we have w1(G)w2(G)w3(G) = G.

(ii) For any w1; w2 ¤ 1, there exists a constant Nw1;w2
depending on w1 and w2

such that for all finite quasisimple groups G of order greater than Nw1;w2
we have

w1(G)w2(G) � G X Z(G).

The aforementioned results on the Waring problem are mostly asymptotic and non-
effective. Recently, effective versions of the main results of Martinez and Zelmanov
[1996] and Saxl and Wilson [1997], as well as of Theorem 3.3.2 for power word maps,
have been obtained:

Theorem 3.3.4. Guralnick and Tiep [2015]

(i) Let k � l � 1. If S is any finite simple group of order � k8k2 , then every g 2 S

can be written as xk � yl for some x; y 2 S .

(ii) Let k � 1 and let S be any finite simple group such that exp(S) − k. Then any
element of S is a product of at most 80k

p
2 log2 k + 56 kth powers in S .

Also for power word maps, the following result has been proved, which generalizes
classical theorems of Burnside and Feit–Thompson:

Theorem 3.3.5. Guralnick, Liebeck, O’Brien, Shalev, and Tiep [n.d.]

(i) Let p; q be primes, let a; b be non-negative integers, and let N = paqb . The word
map (x; y) 7! xN yN is surjective on all finite non-abelian simple groups.

(ii) Let N be an odd positive integer. The word map (x; y; z) 7! xN yN zN is surjective
on all finite quasisimple groups.

See also Guralnick, Liebeck, O’Brien, Shalev, and Tiep [ibid., Theorems 3–5] for re-
sults concerning power word maps x 7! xN for a general composite integer N .



REPRESENTATIONS OF FINITE GROUPS AND APPLICATIONS 259

3.4 Random walks, probabilistic generation, and representation varieties of Fuch-
sian groups. Let G be a finite group with a generating set S . Then the corresponding
Cayley graph Γ = Γ(G; S) hasG as its vertex set and f(g; gs) j g 2 G; s 2 Sg as edge set.
A random walk on Γ starts from 1, and at each step moves from a vertex g to gs chosen
according to some probability distribution P on S . For any t 2 N, let P t (x) denote the
probability of reaching x 2 G after t steps. A basic question is how fast P t is converging
to the uniform distribution U on G (i.e. U (x) = 1/jGj for all x 2 G), in the l1-norm:

jjP t
� U jj =

X
x2G

jP t (x) � U (x)j:

One then defines the mixing time T = T (G; S) as

T = minft 2 N j jjP t
� U jj < 1/eg:

The study of random walks is pioneered by the influential work of Diaconis. A classical
random walk was studied in Diaconis and Shahshahani [1981], where we want to shuffle
a deck of n cards and at each shuffle we swap cards i and j with i; j chosen uniformly at
random from f1; 2; : : : ; ng, that is, with G = Sn and S = f1; (ij ) j 1 � i ¤ ng. It was
shown in Diaconis and Shahshahani [ibid.] that T � (n logn)/2 for this card shuffle.

We will consider the case where S = gG = fzgz�1 j z 2 Gg and the distribution
P is uniform: P (s) = 1/jS j for all s 2 S . In this case, the “Upper Bound Lemma” of
Diaconis and Shahshahani [ibid.] states:

Lemma 3.4.1. Suppose G is generated by S = gG and P is uniform on S . Then for any
t 2 N,

jjP t
� U jj2 �

X
1G¤�2Irr(G)

�
j�(g)j

�(1)

�2t

�(1)2:

Another tool allowing us to apply character-theoretic methods to these questions is
provided by the following analogue of the Riemann zeta function

�G(s) =
X

�2Irr(G)

�(1)�s;

first considered byWitten [1991]. Now, sharp bounds on �G(s) and exponential character
bounds on j�(g)j lead to strong results on mixing time T (G; gG), see e.g. Larsen and
Shalev [2008] for the case of Sn.

Theorem 3.4.2. Guralnick, Larsen, and Tiep [n.d.] Let G = SL�
n(q) with � = ˙ and

n � 10. Suppose that g 2 G is such that jCGL�
n(q)

(g)j � qn2/12. Then T (G; gG) � 10

for q sufficiently large.
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Proof. According to Theorem 2.5.4(iv), j�(g)j � �(1)8/9. It then follows by Lemma 3.4.1
that

jjP t
� U jj2 �

X
1G¤�2Irr(G)

�
j�(g)j

�(1)

�2t

�(1)2 � �G(2t/9 � 2) � 1:

Taking t � 10, we have 2t/9 � 2 � 2/9 > 2/n, whence limq!1 �G(2t/9 � 2) = 1 by
Liebeck and Shalev [2005a, Theorem 1.1], and the result follows.

Similarly, the character bounds in Theorem 2.5.1 imply the following results on mixing
time of random walks on quasisimple groups:

Theorem 3.4.3. Bezrukavnikov, Liebeck, Shalev, and Tiep [n.d.] Suppose G is a simple
algebraic group in good characteristic, andG = G(q) = GF is a finite quasisimple group
over Fq . Let g 2 G be such that CG(g) � L, where L = LF for a split Levi subgroup L
of G. Let r = rank(G) and let h = (dim G)/r � 1 be the Coxeter number of G.

(i) Suppose G is of classical type. Then the mixing time

T (G; gG) � min
�
r + 2;

�
(2 +

2

h
) �

dim G

dim G � dimL

��
for large q.

(ii) If G is of exceptional type, then T (G; gG) � 3 for large q.

Using Theorem 2.5.3, we obtain the following result covering all elements of SLn(q):

Corollary 3.4.4. Bezrukavnikov, Liebeck, Shalev, and Tiep [ibid.] Let G = SLn(q)

with n � 5 and let g be an arbitrary non-central element of G. Then the mixing time
T (G; gG) � 2n + 3 for large q.

Next we discuss some applications to the study of representation varieties of Fuchsian
groups, and also to probabilistic generation of finite simple groups. Recall that Fuchsian
groups are finitely generated non-elementary discrete groups of isometries of the hyper-
bolic plane. Fuchsian groups, which include free groups, the modular group PSL2(Z),
surface groups, the Hurwitz group and hyperbolic triangle groups, play an important role
in geometry, analysis, and algebra. Representation varieties of Fuchsian groups provide a
convenient framework to generalize various results on random generation of finite simple
groups (e.g. by two random elements, or by elements of orders 2 and 3). An old conjecture
of G. Higman (now a theorem thanks to work of Conder, Everitt, and Liebeck and Shalev
[2005b]) states that every Fuchsian group surjects onto all large enough alternating groups.
Extending this, the following conjecture was raised by Liebeck and Shalev in Liebeck and
Shalev [ibid.]:
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Conjecture 3.3. For any Fuchsian group Γ there is an integer f (Γ), such that if G is
a finite simple classical group of rank at least f (Γ), then the probability PG(Γ) that a
randomly chosen homomorphism from Γ to G is onto tends to 1 as jGj ! 1.

This conjecture was proved in Liebeck and Shalev [ibid.] for oriented Fuchsian groups
of genus at least 2 and non-oriented Fuchsian groups of genus at least 3. Our new results
on character bounds have allowed us to establish Conjecture 3.3 in various cases that had
resisted all attacks so far.

Let Γ be a co-compact Fuchsian group of genus g having d elliptic generators of orders
m1; : : : ; md (all at least 2). Thus if Γ is oriented, it has a presentation of the following
form:

ha1; b1; : : : ; ag ; bg ; x1; : : : ; xd j x
m1

1 = � � � = x
md

d
= 1; x1 � � � xd

gY
i=1

[ai ; bi ] = 1i;

and if Γ is non-oriented it has a presentation

ha1; : : : ; ag ; x1; : : : ; xd j x
m1

1 = � � � = x
md

d
= 1; x1 � � � xd a2

1 � � � a
2
g = 1i:

The measure of Γ is defined to be

� = �(Γ) := vg � 2 +

dX
i=1

�
1 �

1

mi

�
> 0;

where v = 2 if Γ is oriented and v = 1 otherwise. Let

N (Γ) := max

 
2 +

P 1
mi

�
;

d + 16

4(� � 2)
; m1; : : : ; md

!
+ 1:

Theorem 3.4.5. Liebeck, Shalev, and Tiep [n.d.] Let K = K be a field of characteristic
not dividing m1 � � �md .

(i) If � > 2 and n � N (Γ), then

dimHom(Γ;GLn(K)) = n2(1 + �) � c;

where �1 � c � � + 1 +
Pd

i=1 mi .

(ii) Assume � > � := max
�
2; 1 +

P 1
mi

�
, and define

Q :=
[

primes p

fq : q = pa
� 1(mod mi ) 8ig:
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Then for n � �N (Γ) + 2
P

mi , we have

lim
q!1; q2Q

PΓ(SLn(q)) = 1:

(iii) Let G(q) denote a simple group of exceptional Lie type over Fq , and suppose that
gcd(m1 � � �md ; 30) = 1. Then

lim
q!1; q2Q; gcd(q;30)=1

PΓ(G(q)) = 1:

Theorem 3.4.5(iii) implies, for instance, that exceptional groups of Lie type G(q), with
q 2 Q sufficiently large and gcd(m1m2m3q; 30) = 1, are images of the triangle group

Tm1;m2;m3
= hx1; x2; x3 j x

m1

1 = x
m2

2 = x
m3

3 = x1x2x3 = 1i:

Results of this flavor on triangle generationwere obtained by completely differentmethods
in Larsen, Lubotzky, and Marion [2014a,b]. Further results concerning other finite groups
of Lie type are also obtained in Liebeck, Shalev, and Tiep [n.d.].
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Abstract
We review the construction of analytic families of Siegel modular cuspforms based

on the notion of overconvergent modular forms of p-adic weight. We then present
recent developments on the following subjects: the halo conjecture, the construction
of p-adic L-functions, and the modularity of irregular motives.

1 Introduction

We start by fixing a number field F , a prime integer p > 0 and an integer n � 1 and
by denoting GF and respectively AF the absolute Galois group and the ring of adeles of
F . We fix an isomorphism C ' Qp . One of the most mysterious conjectures in num-
ber theory, known as the Langlands, Clozel, Fontaine-Mazur Conjecture is the statement
of the existence of a bijection respecting L-functions between the following families of
isomorphic classes of representations:

Repgeomp;F := fIrreducible representations � : GF ! GLn(Q̄p) which are continuous,
ramified only at a finite number of places and de Rham at the places dividing pg

and

AutalgF := fCuspidal algebraic automorphic representations � of the group GLn(AF )g.

The algebraicity condition of an automorphic form � is the condition that the infinitesi-
mal character (also called the weight) of the �v is algebraic for all infinite places v of F
(Clozel [1990], Buzzard and Gee [2011]). It is known that there are only countably many
isomorphism classes of algebraic automorphic representations (Harish-Chandra [1968],
Thm. 1). On the other hand the objects in Repgeomp;F should arise from the cohomology of
proper smooth varieties over F (Fontaine and Mazur [1995], Conj. 1). The bijection we
are seeking should therefore be a bijection of (conjecturally) countable sets.

Having written this let us remark that in fact each of these countable sets can be em-
bedded in certain analytic varieties over Qp . To be more precise, for Repgeomp;F , one can
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relax the condition of the representations being de Rham at places dividing p and obtain
a moduli space of more general, non-geometric p-adic Galois representations enjoying
reasonable finiteness properties (Mazur [1989]).

Concerning AutalgF , one would also like to see them as a subset of a larger set of p-adic
automorphic forms. For the moment there are several good definitions of a p-adic auto-
morphic form depending on the way one endows the space AutalgF with a p-adic topology.

The general method to study elements of AutalgF is to realize them (when this is possi-
ble!) in the Betti cohomology of a locally symmetric space or in the coherent cohomology
of a Shimura variety (Harris [1990]). These cohomology groups naturally carry struc-
tures of finite dimensional Q-vector spaces and these structures can be used to equip the
automorphic forms with a p-adic topology. Once a cohomological realization has been
chosen, one can start to vary the levels and the weights of the algebraic automorphic rep-
resentations. Miraculously, we find in many cases that the countable set of systems of
eigenvalues associated to the cuspidal algebraic automorphic forms is not isolated in the
space of p-adic automorphic forms and that its closure acquires the structure of an analytic
space.

The point of view of p-adically deforming the elements of Repgeomp;F and AutalgF proves
to be very fruitful as it is sometimes easier to study and work with these analytic varieties
than to work with the geometric Galois representations and algebraic automorphic forms
individually.

In this note we begin by explaining one possible approach for the construction of the
p-adic analytic spaces (also called eigenvarieties) attached to p-adic automorphic forms
based on the coherent cohomology realization in a Shimura variety of PEL type1. We shall
actually limit ourselves to the Siegel moduli spaces of polarized abelian varieties with level
structure. We explain how to vary p-adically the weight of the automorphic forms. One
has as a guiding principle that in order to be able to deform automorphic forms one needs
to allow them, seen as global sections of certain automorphic sheaves, to have essential
singularities at non-ordinary points. Restricting the automorphic vector bundles to the
complement of these non-ordinary points has the advantage that they (the automorphic
vector bundles) acquire extra structures arising from the universal p-divisible group via
the Hodge-Tate period map. Our main task is to define overconvergent modular forms of
any p-adic weight. This is a refinement of the definition of p-adic modular forms of Serre,
Katz [1973] and Hida [1986] and an interpolation of the notion of overconvergent modular
forms of integral weight considered by Dwork, Coleman and Mazur [1998]... This mate-
rial has already appeared in print (for example in Andreatta, Iovita, and Pilloni [2015]).

1This choice is made to the expense of ignoring interesting automorphic forms because the condition of
admitting a cohomological realization in the coherent cohomology of a Shimura variety is restrictive. There are
other approaches based on the Betti realization but for the sake of brevity we will not discuss them here.
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Next we present three recent developments in this area: the halo conjecture, the construc-
tion of triple product p-adic L functions in the finite slope case, and the modularity of
certain irregular motives.

2 Vector bundles with marked sections

In this section we review some constructions which applied to various contexts provide
examples of interpolation of automorphic sheaves in the subsequent sections. We have
tried to isolate the key representation theoretic ideas outlining a general method to get
interpolations that might be useful in other situations.

2.1 Some classical representation theory. We start by recalling the construction of the
irreducible representations of the group GLg . Let B � GLg be the upper triangular Borel
and let T be the usual diagonal torus. Let X(T) be the character group of T. This group is
isomorphic to Zg via the map sending (k1; � � � ; kg) to the character diag(t1; � � � ; tg) 7!Qg
i=1 t

ki

i . We let X(T)+ be the cone of dominant weights given by the condition k1 �

k2 � � � � kg .
If k 2 X(T)+, we define the algebraic induction V k = ff : GLg ! A1; f (gb) =

k(b)f (g); 8(g; b) 2 GLg � Bg where k has been extended to a character of B via the
projection B ! T. The group GLg acts on this space via f 7! f (g � �).

2.2 p-Adic representation theoretic variations. Next we explain how to interpolate
the weights k and the spaces V k , for k 2 X(T)+. We let Λ = Zp[[T (Zp)]] be the Iwa-
sawa algebra of the torus. The universal continuous character of T(Zp) is the tautological
character:

kun : T(Zp) �! Λ�:

We can consider the formal spectrum W = Spf Λ and denote by W its rigid analytic
fiber over Spa(Qp;Zp). This is a finite union of open unit polydiscs of dimension g.
Given a complete Huber pair (B;B+) over (Qp;Zp), the morphisms Spa(B;B+) ! W
correspond to Homcont(T(Zp); B�). In particular W(Qp) contains the algebraic weights
X(T). Observe that X(T) is totally disconnected in W but Zariski dense and that W has
only a finite number of connected components.

The character kun interpolates the algebraic characters X(T). We now explain how to
interpolate the representations fV kgk2X(T)+ over W (Stevens [2000]). We switch to the
analytic setting and let now GLg , T, B denote the analytifications over Spa(Qp;Zp) of
the respective group schemes. Let Iw � GLg(Zp) be the Iwahori subgroup of matrices
which are upper triangular modulo p. For any number w 2 Q>0 [ f1g, we denote by
Iww � GLg the adic analytic subgroup of GLg of integral matrices which are congruent
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modulo pw to an element of Iw and we let Bw = B \ Iww and Tw = T \ Iww . Let
U ,! W be an open subspace. Let w be such that the universal character extends to a
pairing kunU : Tw � U ! Gm. In this case we say that kun is w-analytic over U. Remark
that if U is quasi-compact, then kunU is always w-analytic for some w 2 Q>0. We may
define a representation of the group Iww as the analytic induction

V
kunU
w = ff : Iww � U ! A1

� U; 8(i; b) 2 Iww � Bw f (ib) = kunU(b)f (i)g:

If U = Spa(Qp;Zp) and kunU = k 2 X(T)+ (k is algebraic and therefore w-analytic for
all w) we have an inclusion V k ,! V

kunU
w . Observe that unless g = 1, the space V k

un
U

w

is an infinite dimensional Banach space and the inclusion is not an isomorphism. This
should not be a surprise as for g � 2 the dimensions of the spaces fV kgk2X(T)+ vary
and the only possibility to interpolate them is to embed them in larger spaces (infinite
dimensional) which can then be interpolated. It is moreover possible to characterize V k

inside V k
un
U

w by using some differential operators (analytic BGG resolution, Jones [2011]).

2.3 Relative constructions. The classical case. We use the notation of Section 2.1.
Let X be a scheme, let E be a locally free sheaf of rank g over X and denote by E_ =

Hom(E;OX ) the dual sheaf. We associate to any dominant weight k 2 X(T)+ a locally
free sheaf Ek over X as follows. Consider the GLg -torsor f : T (E) ! X associated to
E, namely T (E) := Isom(Og

X ;E
_). Define Ek = f�OT (E)[k], the functions on T (E)

transforming via k under the action of B. One gets a finite, locally free OX -module which
locally on X is isomorphic to the space V k introduced in Section 2.1.

2.4 Relative constructions. p-Adic variations. We now assume that X is an analytic
adic space over Spa(Qp;Zp). Let E be a locally free sheaf of rank g over X and let E+

be an integral structure, namely a subsheaf of finite and locally free O+
X-modules of rank

g such that E = E+ ˝O
+

X
OX. Let w 2 Q>0 [ f1g. We now provide a formalism which

leads to the construction of families of sheaves interpolating the sheaves fEkgk2X(T)+ on
X and which, locally on X, are isomorphic to the spaces V kw of Section 2.2. The new
essential ingrediants are the “marked sections” s1; : : : ; sg 2 H0(X;E+/pwE+) with the
property that the induced map (O+

X/pwO+
X)g ! E+/pwE+ is bijective.

Define Tw(E+; fs1; : : : ; sgg) as the functor that associates to any adic space t : Z ! X
the set of sections (�1; � � � ; �g) 2 H0

�
Z; t�(E+)_

�
such that (ht�(si ); �j i)1�i;j�g 2 Iw

mod pw . Here t?(E+) is the sheaf t�1(E+) ˝t�1O
+

X
O+

Z and t?(E+)_ is its O+
Z-dual.

One proves easily that Tw(E+; fs1; : : : ; sgg) is representable by an adic space and is a
Iww -torsor. We now assume that there is a map X ! W and that the character kX pulled
back from the universal character on W is w-analytic. Under this assumption we define
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the sheaf
Ekw := f�OTw(E+;fs1;:::;sgg)

�
kX

�
:

This sheaf is a relative version of the construction of V kX
w given in Section 2.2.

We now describe a slight variant of this construction where we only assume that we
have a partial set of sections. In this situation it is still possible to realize a partial interpo-
lation. Let 1 � r � g. We define the subgroup Iww;r of GLg of integral matrices of the
form �

A D

B C

�
;

where A 2 GLr and A mod pw is upper triangular with entries in Zp/pw ,D 2 Mr;g�r ,
C 2 GLg�r , B 2 Mg�r;r and B = 0 mod pw . We denote by Tw;r = T \ Iww;r ,
Bw;r = B\ Iww;r and Tw;r = T\ Iww;r . We assume that we have sections s1; � � � ; sr 2

H0(X;E+/pwE+) such that the induced map (O+
X/pwO+

X)r ! E+/pwE+ is injective
with locally free cokernel of rank g � r . We define
Tw(E+; fs1; : : : ; srg) as the functor that associates to any adic space t : Z ! X the set of
basis (�1; � � � ; �g) 2 H0

�
Z; t?(E+)_

�
such that:

• (ht?(si ); �j i)1�i;j�r 2 GLr(Zp) mod pw and is upper triangular modulo pw ,

• ht?(si ); �j i = 0 mod pw for all 1 � i � r and g � r + 1 � j � g.

It is clear that Tw(E+; fs1; : : : ; srg) is an Iww;r -torsor. We now assume that the charac-
ter kX extends to a character of Tw;r and we denote by Ekw := f�OTw(E+;fs1;:::;sr g)[kX].

We remark that the relative constructions in Sections 2.2 and 2.4 could have been made
exactly in the same way by working with an invertible ideal I � O+

X such that I \ Zp =

pwZp , instead of with pwO+
X.

3 Variations in the Siegel case

Let GSp2g be the group of similitudes of (Z2g ; h; i) where h; i is the alternating form
given by hei ; e2g�i+1i = 1 if 1 � i � g and hei ; ej i = 0 if i + j ¤ 2g + 1. Let K �

GSp2g(Af ) be a neat compact open subgroup, whereAf denotes the ring of finite adels of
the rationals. Let YK ! Spec Q be the Siegel moduli space of polarized abelian varieties
A of dimension g and level structure K. Its complex analytification (YK � Spec C)an

is the locally symmetric space GSp2g(Q)n
�
Hg � GSp2g(Af )/K

�
where Hg = fM 2

Mg(C);M t = M; Im(M ) is definite positive or negativeg is the Siegel space i.e. the
union of the Siegel upper and lower half-spaces.
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3.1 The classical construction. To any g-uple k = (k1; : : : ; kg) 2 Zg satisfying k1 �

k2 � : : : � kg , one attaches an automorphic locally free sheaf !k on YK using the con-
struction of Section 2.3 for the sheaf !A of invariant differentials of the universal abelian
scheme over YK . LetXK be a toroidal compactification of YK (Faltings and Chai [1990]).
The sheaf !k extends canonically to XK . The global sections form the space of classical
holomorphic Siegel modular forms of weight k and level K. This is a finite dimensional
Q-vector space. It carries an action of the Hecke algebra C1

c (GSp2g(Af )//K;Z) of lo-
cally constant and compactly supported functions which are left and right K invariant on
GSp2g(Af ).

After tensoring with C, these Siegel modular forms can be described as holomorphic
vector valued functions on Hg satisfying a transformation property with respect to a con-
gruence subgroup of GSp2g(Q). The cuspidal forms (those vanishing onD = XK n YK)
define (via a usual lifting process) special vectors in the space of algebraic automorphic
forms for the group GSp2g(A). Here and elsewhere A denotes the ring of adels of Q.

3.2 Interpolation. Let p > 0 be a prime integer. We now assume that K = KpKp

where Kp � GSp2g(A
(p)

f
) and Kp = GSp2g(Zp). In this setting, YK and XK admit

canonical models over Spec Z(p) and we denote by Y and respectively X the associated
analytic spaces over Spa(Qp;Zp). Over Y there is a universal p-divisible group A[p1],
which comes with a quasi-polarisation: A[p1] ' (A[p1])D .

We review the method of Andreatta, Iovita, and Pilloni [2015] to construct a sheaf
interpolating the classical automorphic sheaves !k . We shall work over Y for simplicity,
but everything extends to X. This construction relies on the Hodge-Tate period map

HT : Tp(A) ! !A

where Tp(A) is the Tate-module of the p-divisible group A[p1], a pro-étale sheaf locally
isomorphic toZ2g

p . Over the ordinary locusYord we have an étale-multiplicative extension
0 ! Tp(A)

m ! Tp(A) ! Tp(A)
et ! 0 and the Hodge-Tate map factors through a map

Tp(A)
et ! !A which induces an isomorphism of pro-étale sheaves Tp(A)et ˝ OYord !

!AjYord . Thus the GLg -torsor !A arises from a GLg(Zp)-torsor over the ordinary locus
and this allows the interpolation of the sheaves !k over Yord. It is nevertheless important
in order to have compact operators and for the construction of eigenvarieties to go beyond
the ordinary locus.

Given an integer r � 0 we let Yr � Y be the open defined by the valuations x satis-
fying the inequality jfHapr+1

jx � jpjx where fHa is locally defined as a (any) lift of the
Hasse invariant on the special fiber of YK . Each Yr should be thought of as a tubular
neighborhood of the ordinary locus Yord in Y, where Yord is defined by the condition that
jfHajx � 1. It follows from the theory of the canonical subgroup that the pr -torsion of A



p-ADIC VARIATION OF AUTOMORPHIC SHEAVES 273

over Yr contains a canonical subgroup Hr � A[pr ] (see Fargues [2011]). Over Yord it
coincides with the multiplicative part of A[pr ].

In order to apply the general machinery of Section 2.4 we need to exhibit a vector
bundle with marked sections. Consider the finite étale cover of adic spaces IGr ! Yr
classifying trivializations  : (Z/prZ)g Š HD

r . Then IGr carries several sheaves:
1) we have the sheafHr and its Cartier dualHD

r ;
2) we have a sheaf !+

A , resp. !A of O+
IGr

-modules, resp. of OIGr
-modules, which are

locally free and finite of rank g. Over affinoids Spa(B;B+) � IGr such that the pull-back
of A extends to an abelian scheme eA over B+, the value of !+

A and of !A are the module
of invariant differentials of eA, resp. of A;

3) we have a sheaf !+
Hr

of O+
IGr

-modules and a morphism HT : HD
r ! !+

Hr
. Over

affinoids Spa(B;B+) � IGr such that the pull-back of Hr extends to a finite and flat
group scheme eH r ,! eA overB+, the value of !+

Hr
is the module of invariant differentials

!eHr
and the map HT is the Hodge-Tate map.

Notice that we have a natural morphism !+
A ! !+

Hr
. With this we define a modi-

fication !]A � !+
A as the inverse image in !+

A of HT
�
HD
r ˝ O+

IGr

�
. One proves that

this is a finite and locally free sheaf of O+
IGr

-modules over IGr of rank g and that for
every rational number 0 < w � r �

1
p(p�1)

the morphism HT defines an isomorphism of
O+

IGr
/pw -modules

HTw : HD
r ˝ O+

IGr
/pw Š !

]
A/p

w!
]
A:

which is a good substitute of the comparison map we had over the ordinary locus.
ConsiderE := !A, E+ := !

]
A and the sections s1; : : : ; sg of!]A/p

w!
]
A provided by the

images of the canonical basis of (Z/prZ)g via HTw ı . Let U � W be an open subset
where the character kunU isw-analytic. Applying the construction explained in Section 2.4
we get the sheaves we are looking for

!k
un

r;U := �?
�
O

Tw(!
]
A
;fs1;:::;sgg)�U

��
kun

�
;

where � : Tw(!
]
A; fs1; : : : ; sgg) ! IGr is the torsor of trivializations of !]A with marked

sections s1; : : : ; sg .
Actually, denote by YIw;r ! Yr be the covering parametrizing full flags ofHD

1 . Then
the sheaf !kun

r;U descends canonically along the natural map IGr ! YIw;r . Moreover it
extends without much difficulties to the toroidal compactification XIw;r of YIw;r .

3.2.1 A perfectoid digression. We’d like to explain the construction of the previous
sectionwhen g = 1 inmore elementary terms. LetN be an integer,N � 3 and (N;p) = 1.
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Recall (see Katz [1973]) that a modular form f of weight k 2 Z with level Γ1(N ) over
Z[1/N ] can be viewed as a functorial rule mapping a triple (E/R;P; !) (consisting of an
elliptic curve E ! Spec R for a Z[1/N ]-algebra R, a point P 2 E[N ] of order exactly
N , and a nowhere vanishing differential form !) to f (E/R;P; !) 2 R satisfying the
additional transformation property: f (E;P; �:!) = ��kf (E;P; !) for any � 2 R�

and some growth condition at infinity.
Over C, we can pull back f to a function on the Poincaré upper half plane by setting

F (�) = f (C/(Z + �Z); 1
N
; dz) for the coordinate z on C. For 
 =

�
a b

c d

�
2 Γ1(N ),

multiplication by (c�+d )�1 onC identifies the triples (C/(Z+�Z); 1
N
; dz) and (C/(Z+


:�Z); 1
N
; (c� + d )dz) and therefore F satisfies a descent condition with respect to the

action of Γ1(N ), namely F (
:�) = (c� + d )kF (�).
We now express our definition of overconvergent modular forms of some Cp-valued

character k : Z�
p ! C�

p in similar terms. Assume that k is w-analytic and choose a
positive integer r such that r�1 < w � r�

1
(p�1)p

(this can be achieved at the expense of
increasingw). Then an r-overconvergent modular form f of weight k is a rule associating
to every quadruple (E;P; ; !) an element f (E;P; ; !) 2 Cp , where E is an elliptic
curve over Cp such that jH̃ap

r+1

(E)j � jpj , P is a point of order N ,  is point of order
pr of the dual canonical subgroup HD

r , ! is an integral differential form on E such that
! mod pw = HTw(Ψ). Moreover we demand that f is “analytic”, extends to the cusps,
and satisfies the functional equation f (E;P; � ; �!) = k�1(�)f (E;P; ; !) for all
� 2 Z�

p(1 + p
wCp).2

Following Chojecki, Hansen, and Johansson [2017], one can describe an analogue of
the passage from f to F in the p-adic world. Let X(1) ! X be the prefectoid modular
curve of level Γ(p1)\Γ1(N ) constructed by Scholze [2015] and Y(1) the complement
of the boundary. Over Y(1) we have a universal trivialization  1 : Z2

p Š Tp(E) and
the Hodge-Tate map HT : Tp(E) ! !E induces a period map:

�HT : X(1) �! P 1

which, over Y(1), is characterized by the fact that �?HT
�
OP1(1)

�
= !E and the pull-back

of the two canonical sections s0 and s1 of OP1(1) are the images via HT ı  1 of the
canonical basis e0, e1 of Zp ˚ Zp . For any v 2 Q>0, let P 1

v be the open of P 1 defined
by the condition js1j � jpvs0j.

LetX(1)v = ��1
HT (P

1
v ) andY(1)v = Y(1)\X(1)v . For v large enough, (E;P; 1) 2

Y(1)v has a canonical subgroup of level r which is generated by the image of  1(e1) in

2In order to make sense of the functional equation it is necessary to restrict to differential forms which “arise”
from the dual canonical subgroup
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E[pr ], and  1(e0) maps to a generator  1(e0) ofHD
r . We can therefore pullback f to

a function on Y(1)v by setting F (E;P; 1) = f (E;P; 1(e0); s0 = HT( 1(e0))).
This identifies the space of overconvergent modular forms of weight k with a space

of functions on the open X(1)v of X(1). These functions satisfy a descent condition
which reminds us of the descent condition on the upper half plane. Namely, let n be
the smallest integer greater than v. We consider the subgroup K0(p

n) � GL2(Zp) of

elements
�
a b

c d

�
such that c 2 pnZp . For any 
 2 K0(p

n) as above, we find that

F (E;P; 1 ı 
) = k�1(a + b s1
s0
)F (E;P; 1): 3

3.3 Eigenvarieties. The sheaves !kun
r;U produce variations of Hecke eigensystems as

follows. The global sections of !kun
r;U over XIw;r , vanishing at the boundary, form the Ba-

nach module of r-overconvergent, w-analytic cuspidal Siegel modular forms of weight
parametrized by U. Passing to the limit over r and w we obtain the space of overconver-
gent, locally analytic cuspidal Siegel modular forms of weight parametrized by U. LetN
be the product of primes different from p for whichK` ¤ GSp2g(Z`). This space carries
an action of the commutative spherical Hecke algebraTNp := C1

c (GSp2g(A
(Np)

f
)//KNp;Z).

Let Iwp � GSp2g(Zp) be the Iwahori parahoric of upper triangular matrices modulo
p. At p, there is an action of the dilating Hecke algebra Up := Z[Up;1; � � � ; Up;g ]

4 �

C1
c (GSp2g(Qp)//Iwp;Z), and the operator U =

Q
i Up;i is compact.

Let f be a classical cuspidal eigenform of weight k and level KpIwp . We denote by
Θf : TNp ˝ Up ! Q̄ the associated character.5 We have the following:

Theorem 3.1. There is a rigid analytic space E, called the eigenvariety of tame levelKp ,
equipped with a weight map w : E ! W which is locally on the source and the target
finite and torsion free and there is a universal Hecke character Θ : TNp ˝ Up ! OE

with dense image such that:

• Any classical cuspidal eigenform f of weight k and levelKpIwp provides a unique
point xf on E such that Θjxf

= Θf and w(xf ) = k,

• Conversely, any point x 2 E satisfying w(x) = (k1; : : : ; kg) 2 X(T)+ satisfying
v(Θjx(Up;i )) < kg�i � kg�i+1 + 1 for 1 � i � g � 1 and v(Θjx(Up;g)) <

kg �
g(g+1)

2
arises from a cuspidal eigenform f of weight k and level KpIwp .

3 F (E;P; 1 ı 
) = f (E;P; 1(ae0);HT ı  1(ae0 + be1)) = f (E;P; 1(ae0); (a +
b s1

s0
)HT ı 1(e0)) = k

�1(a+ b s1
s0

)F (E;P; 1):
4If i 2 f1; � � � ; g � 1g, Up;i is the characteristic function of the double class

Iwpdiag(p2Idi ; pId2g�2i ; Idi )Iwp , Up;g is the characteristic function of the double class
Iwpdiag(pIdg; Idg)Iwp

5 Since f has Iwahori level at p, then Θf (Up;i ) ¤ 0 and f is of finite slope.
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Remark 3.3.1. 1) The case g = 1 of Theorem 3.1 was first proved by Coleman andMazur
in Coleman and Mazur [1998]. They used a different construction of the p-adic families
of modular forms in which the Eisenstein family plays a crucial role and which could not
be generalized for g > 1.

2) The cuspidality condition is crucial for the theorem for g � 2. We prove an acyclicity
result for the cuspidal sheaves !kun

r;U(�D) using that XIw;r has affine image in the minimal
compactification and showing that the relative cohomology of cuspidal sheaves between
the toroidal and the minimal compactifications vanishes in degrees greater than 1. In
particular the acyclicity allows us to prove that the degree zero cohomology of !kun

r;U(�D)

commutes with specializations in the weight space U � W.
3) We outlined the construction for Siegel modular varieties but the same method ap-

plies more generally for PEL type Shimura varieties having dense ordinary locus, see An-
dreatta, Iovita, and Pilloni [2016a] for the Hilbert case and Brasca [2016] for the general
case.

4) Even for Shimura varieties with empty ordinary locus, one can proceed in a sim-
ilar way. The ordinary locus is replaced by the so called �-ordinary locus, introduced
by T. Wedhorn, and the Hasse invariant is replaced by the �-Hasse invariant, defined
at various levels of generality by G. Boxer, W. Goldring-M.H. Nicole, V. Hernandez,
J.S. Koskivirta-T. Wedhorn. The last ingredient one needs is a replacement for the canon-
ical subgroup and the Hodge-Tate map. We refer to Kassaei [2013] and Brasca [2013] for
the case of Shimura curves and to Hernandez [2016] for the more general case of PEL
type Shimura varieties and for a thorough account of the problem.

5) The last point of the Theorem 3.1 is proven in Bijakowski, Pilloni, and Stroh [2016]
(and already by Coleman and Kassaei for g = 1). It is a classicity criterionwhich roughly
asserts that small slope overconvergent modular forms are classical. It is a crucial result
in order to study eigenvarieties as it provides a dense set of points, the classical ones. In
a certain sense, these classical points characterize uniquely the eigenvariety. In particular,
it often happens that a given property known at the classical points can be inferred by
continuity for the whole eigenvariety.

4 Variations at infinity

We now restrict to the case g = 1. In this case we have an eigencurve E ! Z ! W
where Z ,! W � Gm, the so called spectral curve, is the zero locus of the characteristic
series P (X) of the U -operator acting on the space of overconvergent modular forms. The
map E ! Z is finite and both E and Z are equidimensional of dimension 1. Therefore
the geometry of E can be understood, to some extent, by studying the apparently simpler
space Z.
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4.1 The spectral halo. Recall that the weight space W is the rigid analytic fiber of
Spf Zp[[Z�

p]]. One can consider a slightly bigger space Wan defined by the analytic points
of the adic space Spa(Zp[[Z�

p]];Zp[[Z
�
p]]). Recall that

Zp[[Z
�
p]] Š Zp

��
Z/pZ

���
[[T ]]

where T is defined by imposing that the grouplike element exp(p) is equal to T +1. The
complement of W in Wan consists of finitely many points in characteristic p, correspond-
ing to the T -adic valuations on Fp[

�
Z/pZ

��
]((T )) and Wan is a compactification of W,

obtained by adding a point at the boundary of each rigid analytic open unit disc.
Coleman observed that the characteristic series P (X) of the U -operator on the eigen-

curve has coefficients inΛ and, hence one can consider the extended spectral curveZan ,!

Wan � Gm = V (P ). The fiber of Zan over a boundary point

k : Spa
�
Fp((T ));Fp[[T ]]

�
! Wan

is the zero set of the specialization Pk(X) at k, over the non-archimedean field Fp((T )).
In Andreatta, Iovita, and Pilloni [2018] we prove a conjecture of Coleman in which

he stated the existence of a Banach space over Fp((T )) and of a compact operator whose
characteristic series is Pk(X). More precisely, we prove the following result. Let XWan

be the analytic adic space defined by the pull back of the modular curve to Wan. Given
v 2 Q�

�0 we define XWan(v) to be the open consisting of the points x satisfying the
condition jfHajx � sup

˚
jT vjx ; jp

vjx

	
.

Theorem 4.1. For v > 0 small enough we have an invertible sheaf !kun over XWan(v),
endowed with an action of the Hecke operators, that coincides with the construction in
Section 3.2 over Spa(Qp;Zp).

Moreover, given a boundary point k of Wan, the sections of the fiber of !kun at k form
a Banach module over Fp((T )) such that the characteristic series of the U -operator is
Coleman’s series Pk(X).

The sections of the characteristic p fiber of!kun are called T -adic overconvergent mod-
ular forms (of radius of convergence v). They are actually functions on certain overcon-
vergent Igusa tower in characteristic p. Using the sheaf !kun over XWan(v) one manages
to extend the Coleman-Mazur eigencurve to an eigencurve Ean over the whole Zan.

Each finite slope eigenform f in characteristic p defines a point on Ean and we can
associate to it a semi-simple two dimensional Galois representation

�f : Gal(Q/Q) ! GL2

�
Fp[[T ]]

�
unramified at the primes different form p and not dividing the tame level. Here Fp[[T ]]
denotes an algebraic closure of Fp[[T ]]. If f is ordinary, �f has already been constructed
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by Hida. For finite slopes we get new, mysterious objects in the realm of Galois repre-
sentations that deserve further study and understanding. Here are some questions that we
find interesting.

Given �f as above, one can construct an equicharacteristic p, étale (';Γ)-module
D(�) over the Robba ring for the discretely valued field F̄p((t)) (as in Berger and Colmez
[2008]). Is D(�) trianguline (i.e., extension of one dimensional (';Γ)-modules)?

Does this characterize the two dimensional representations of Gal(Q/Q)with values in
finite extensions of F̄p((T )) which arise from T -adic overconvergent modular eigenforms
of finite slope?

4.2 The halo conjecture. We would now like to discuss the halo conjecture and some
questions related to the global geometry of Ean. Let x : Spa(K;OK) ! Wan be a rank
one point. The choice of a pseudo uniformizer $ allows to normalize the associated
valuation v : K ! R [ f1g by v($) = 1. In that case we write v$ for v. There are in
general two natural choices of pseudo-uniformizer in OK , namely p and T , except at the
boundary when p = 0 and at the very center T = 0. One can attach to the characteristic
series Pk(X) =

P
n�0 anX

n and a choice of pseudo uniformizer $ a Newton polygon
NP$ (Pk) which is the convex enveloppe of the points (n; v$ (an)) � R2. This is the
graph of a piecewise linear function and the sequence of slopes ofNP$ (Pk) is giving the
sequence of$ -adic valuations of finite slope eigenvalues of U .

Conjecture 1 (Coleman-Mazur-Buzzard-Kilford). Let k 2 Wan be a boundary point.
Then there exists a positive rational number r such that for all rank one points

k0 : Spa
�
K;OK

�
! Wan

in a neighbourhood U = fx; jpr jx � jT jxg of k we have NPT (Pk0) = NPT (Pk):
Moreover, the slopes in NPT (Pk) form a finite union of arithmetic progressions.

Before discussing what is known about this conjecture, let us describe some of the con-
sequences. The first implication is that ZanjU =

`
s Zan(s) splits as a disjoint union of

components according to the slopes s occurring in NPT (Pk). Each component Zan(s) is
finite flat over U. In certain numerical examples it actually maps isomorphically onto U.
In this case the complement of the points at infinity can be visualized as halos, explaining
the name of the conjecture.

A second implication is that the p-adic slopes tend to zero as one approaches the bound-
ary. In particular, T -adic overconvergent modular eigenforms of finite slope (for the U -
operator) are limits of classical modular forms of arbitrary fixedweight k � 2 (of course of
increasing level at p) by Coleman’s classicity theorem. It is known that each irreducible
component of Zan has image in the weight space equal to the complement of a finite
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number of points. Therefore, any irreducible component of Zan contains at least one ir-
reducible component of some Zan(s). Thus each irreducible component of Zan contains
infinitely many classical points of a given weight k � 2.

Another consequence of the fact that the p-adic slopes tend to zero approaching infinity
is that an irreducible component of Zan is finite over the weight space if and only if it is
ordinary (i.e., the slope is 0) (Liu, Wan, and Xiao [2017], prop. 3.24).

The conjecture has not yet been proved for the whole eigencurve Ean but it is known
for all the irreducible components that arise from the p-adic Jaquet-Langlands correspon-
dence thanks to Liu, Wan, and Xiao [ibid.]. Independently, in Bergdall and Pollack [2016]
it is proved that the constancy of the Newton Polygon implies the second part of the halo
conjecture, namely that the slopes form a finite union of arithmetic progressions.

Motivated by the boundary behavior provided by the conjecture and by a conjecture of
Buzzard’s for classical weights, Bergdall and Pollack have elaborated a unifying conjec-
ture in Bergdall and Pollack [2017], called ghost conjecture, predicting (under some extra
assumptions) the slopes of overconvergent cuspforms over the whole weight space.

Finally let us remark that, even though we discussed only the elliptic case, eigenvari-
eties might be defined over the whole analytic adic weight space for more general Shimura
varieties. We refer to Andreatta, Iovita, and Pilloni [2016b] for the Hilbert case and to Jo-
hansson and Newton [2016] for a Betti cohomology approach. In contrast with the elliptic
case, where at infinity the weight space consists of a finite set of points, in the Hilbert
case, for a totally real field of degree g, at infinity the weight space has components of
dimension g � 1.

5 p-Adic variation of de Rham automorphic sheaves

In this section we use the notations and results of Section 2 and Section 3 forG = GL2/Q,
i.e., for g = 1. Here we briefly present the constructions and results of Andreatta and
Iovita [2017], using adic analytic spaces instead of formal schemes. The interested reader
should consult Andreatta and Iovita [ibid.] for more details.

Before getting into technicalities let us briefly explain the problem we are faced with
and explain how we chose to solve it. Let p > 2 be a prime integer, N � 3 an integer
relatively prime to p, X the adic analytic projective modular curve of level Γ1(N ) over
Spa(Qp;Zp) and ˛ : E �! X the generalized, universal elliptic curve. We denote by�
HE ;Fil�;r

�
the data consisting of:

i) the relative de Rham cohomology sheaf of E over X, i.e.

HE := R1˛�

�
Ω�
E/X(log(˛�1(cusps))

�
;
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ii) the Hodge filtration Fil� of HE , i.e., Fil0 := !E = ˛�

�
Ω1
E/X(log(˛�1(cusps))

�
,

Fili = 0 for i < 0 and Fili = HE for i � 1.
iii) r : HE �! HE ˝OX

Ω1
X/Qp

�
log(cusps)

�
, the Gauss-Manin connection, an inte-

grable connection satisfying Griffith’s transversality property.
We now consider the following family of data indexed by the integers:

(�)
��
Symn(HE );Filn;�;rn

��
n2Z

;

where Filn;� and rn are the natural increasing filtrations and connections on the n-th sym-
metric powers of HE .

Over the complex numbers one can use the Hodge decomposition of HE in order to de-
scribe the global sections of!k�r

E ˝Symr(HE ) as suitableC1-functions on the upper half
plane, called nearly holomorphic modular forms of weight k and order � r�1. Using this
interpretation, the Gauss-Manin connection takes the form of the so calledMaass-Shimura
differential operator ık(f ) = 1

2�i

�
@f
@�

+ k
2iy
f

�
where � is the standard coordinate on

the upper half plane and y = Im(�). For k > 2r one also has a holomorphic projection
Hhol to weight k modular forms and, hence, a q-expansion of nearly holomorphic forms.
See Urban [2014, §2] for details. This is used, for example, to study special values of
triple product L-functions as follows.

Let f , g, h be a triple of normalized primitive cuspidal classical eigenforms of weights
k, `, m, characters �f , �g , �h and tame levels Nf , Ng , Nh respectively. We write f 2

Sk(Nf ; �f ), g 2 S`(Ng ; �g), h 2 Sm(Nh; �h). We assume that (k; `;m) is unbalanced,
i.e., there is an integer t � 0 such that k � `�m = 2t . We set N := `:c:m:(Nf ; Ng ; Nh)
and Qf;g;h := Qf �Qg �Qh the number field generated over Q by the Hecke eigenvalues
of f; g; h. We assume that �f � �g � �h = 1.

A result of Harris and Kudla [1991], previously conjectured by H. Jacquet and re-
cently refined by Ichino [2008] andWatson [2002] implies that there are choices of Hecke-
equivariant embeddings of Sk(Nf ; �f ), S`(Ng ; �g), (Sm(Nh; �h) into Sk(N ), S`(N ),
Sm(N ) respectively such that the images f o, go, ho of f , g, h respectively satisfy Ichino’s
formula, i.e.,

L

�
f; g; h;

k + `+m � 2

2

�
= (non-zero algebraic constant) � jI (f o; go; ho)j2;

where

I (f o; go; ho) :=
h(f o)�;Hhol�ıt (go)[p] � ho

�
i

h(f o)�; (f o)�i
:
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Here L(f; g; h; s) is the complex Garrett-Rankin triple product L-function attached to
f , g, h. We have denoted by h ; i the Peterson inner product on the space of weight k-
modular forms, (f o)� = f o˝��1

f
, (go)[p] is defined on q-expansions by: (go)[p](q) :=P1

n=1;(n;p)=1 anq
n if go(q) =

P1

n=1 anq
n and finally ı, Hhol are the operators on nearly

holomorphic forms introduced above.

5.1 p-Adic variations of (HE ;Fil�). The task before us is to p-adically interpolate the
constructions over the complex numbers previously described. We fix I := [0; b] a closed
interval, with b 2 Z>0 and let WI be the open adic subspace of W defined by

WI := fx 2 W j jT bjx � jpjx ¤ 0g:

Let r � 0 be an integer and denote by Xr;I the open adic subspace of X � WI defined
as in Section 3 by the valuations x such that jfHapr+1

jx � jpjx . If Er;I is the inverse
image of the universal generalized elliptic curve over X. We remark that the universal
character kun of WI is r-analytic and there is a canonical subgroup Hr � Er;I [p

r ] of
order pr over Xr;I . LetHD

r denote the Cartier dual ofHr .
We denote by IGr;I := IsomXr;I

�
Z/prZ;HD

r

�
the adic space over Xr;I of trivializa-

tions of HD
r . Then IGr;I �! Xr;I is a finite, étale and Galois cover with Galois group�

Z/prZ
��. We introduce the ideals:

i) Hdg, the ideal ofO+
Xr;I

locally generated by any lift of the Hasse invariant Hamodulo
p.

ii) ˇ
r
, the ideal of O+

Xr;I
locally generated by

p

Hdg
pr �1
p�1

.

iii) ı, the ideal of O+
IGr;I

locally generated by a precisely defined (p � 1)-st root of
Hdg. For p � 5 one considers the overconvergent modular form D of weight 1 which is
a certain precisely defined (p � 1)-st root of the Eisenstein series Ep�1. Then D locally
generates ı.

In Section 3 we have exhibited the pair of sheaves (!E ; !+
E ) over IGr;I which are

invertible OIGr;I
and respectively O+

IGr;I
-modules and the modification !#

E of !+
E , an

O+
IGr;I

submodule of !+
E which is itself invertible. In fact in the g = 1 case, the situation

is very simple and we happen to have !#
E = ı � !+

E , which implies that over IGr;I for
p � 5 we have !#

E = D � O+
IGr;I

, i.e., it is globally free.
Moreover if  : Z/prZ Š HD

r denotes the universal trivialization ofHD
r over IGr;I

then P :=  (1) is a universal generator of HD
r over IGr;I and s := HT(P ) is a

O+
IGr;I

/ˇ
r
-basis of !#

E/ˇn!
#
E . In other words the pair (!#

E ; s) is a locally free sheaf
with a marked section as in Section 2.
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Let us now denote by H+
E the locally free O+

Xr;I
-module of rank 2 characterized by

the following property. For U = Spa(B;B+) � Xr;I an open such that the generalized
elliptic curveE/B is in fact defined over B+ we let � : E �! Spf(B+) be the structural
morphism. Then

H+
E jU = R1��

�
Ω�
E/B+(log(��1(cusps)))

�
:

We have H+
E ˝O

+

Xr;I

OXr;I
= HE and H+

E has a natural Hodge filtration Fil+� , expressed
by the exact sequence:

0 �! !+
E �! HE

+
�! (!+

E )
�1

�! 0:

We also have a connection on H+
E but we will discuss it later.

It is natural to consider: H#
E := ı �H+

E and Fil#� := ı �Fil+� as
�
H#
E ; s = HT(P )

�
is a pair

consisting of a locally free sheaf of rank 2 with a marked section and (!#
E ; s) � (H#

E ; s)

is a compatible filtration. Let us then consider the sequence of adic spaces and morphisms

Tˇ
n
(H#
E ; s)

u
�! IGr;I

v
�! Xr;I

and denote by � := v ı u. Here Tˇ
r
(H#
E ; s) denotes the VBMS of Section 2 associated to

the pair (H#
E ; s) and ideal sheaf ˇn. This VBMS was denoted V0(H#

E ; s) in Andreatta and
Iovita [2017]. Then we have a natural action of Z�

p on the sheaf W + := ��

�
O+

V0(H#
E
;s)

�
.

Definition 5.1.1. We denote by k : Z�
p �! Λ�

I a weight in WI (it could be the universal
weight or not), denote byW +

k
theO+

Xr;I
-moduleW +[k], i.e. W +

k
is the sub-O+

Xr;I
module

of sections of W + on which Z�
p acts by multiplication with the values of k. The formalism

of vector bundles with marked sections implies that W +
k

has a filtration by locally free,
coherent O+

Xr;I
-submodules Fil+

k;�
.

We let Wk := W +
k

˝O
+

Xr;I

OXr;I
. It is a sheaf of Banach modules on Xr;I with a

filtration Filk;� and Filk;0 coincides with the sheaf !kr;I of Section 3.2.

5.2 p-Adic variations of the connection. In order to obtain a connection on Wk we
need to first choose a formal model of the morphism � : E �! Xr;I , say � : E �! X.
Our favorite such formal model is obtained by taking for X the partial blow-up of the base
change of the formal completion of themodular curveX1(N ) overZp to the formal weight
space Spf(ΛI ), with respect to the ideal (p;Hdgp

r+1

) and taking E to be the inverse image
of the generalized elliptic curve over X1(N ). We also obtain a natural formal model IG

of IGr;I given by the normalization of X in IGr;I . Having fixed these formal models we
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obtain: a canonical O+
IGr;I

-submodule Ω1;+
IGr;I /WI

(log) of Ω1
IGr;I /WI

(log) and a natural
connection

r
+ : H+

E �! H+
E ˝O

+

IGr;I

Ω1;+
IGr;I /WI

(log);

whose generic fiber is the connection r described at the beginning of this section.
The connection r+, the weight k : Z�

p �! Λ�
I and the formalism of VBMS produce

a connection
rk : Wk �! Wk ˝OXr;I

Ω1
Xr;I /WI

(log(cusps))

whose properties are described in the next theorem.

Theorem 5.2.1. a) The connection rk satisfies Griffith’s transversality property with re-
spect to the filtration i.e. rk(Filk;i ) � Filk;i+1 ˝OXr;I

Ω1
Xr;I /WI

(log), for all i � 0.
b) If ˛ 2 Z>0 \ WI (Qp;Zp) then the specialization at ˛ of

�
Wk ;Filk;�;rk

�
; which

we denote by
�
W˛;Fil˛;�;r˛

�
, has

�
Sym˛(HE );Fil˛;�;r˛

�
as canonical submodule with

filtration and connection. Moreover their global sections with slopes h < ˛� 1 are equal
(classicity).

For every ΛI -valued weight k of WI the elements H0(Xr;I ;Wk) have natural q-
expansions (for details see Andreatta and Iovita [ibid.].)

Another very interesting occurrence is the fact that given a ΛI -valued weight k of WI

satisfying certain conditions (see below) the integral powers (rk)n of the connection rk ,
for all n 2 Z>0 (whenwewrite (rk)n we reallymeanrk+2(n�1)ırk+2(n�2)ı: : :ırk) can
be interpolated p-adically on H0(Xr;I ;Wk)

Up=0 to the expense of possibly increasing r .
More precisely we have (see Andreatta and Iovita [ibid.] for more details).

Theorem5.2.2. For every pair of weights 
; k inWI satisfying the assumptions Andreatta
and Iovita [ibid.] Assumption 4.1 there is b � r such that for everyw 2 H0

�
Xr;I ;Wk

�Up=0

we have a unique section r



k
(w) 2 H0(Xb;I ;Wk+2
 ) satisfying the property: if the q-

expansion of w is w(q) :=
P1

n=0 anq
n then the q-expansion of r




k
(w) is r




k
(w)(q) :=P1

n=1;(p;n)=1 
(n)anq
n.

5.3 The overconvergent projection. Finally, in view of the applications to the triple
product p-adic L-functions which we have in mind, we define the “overconvergent pro-
jection” which is seen as a p-adic analogue of Shimura’s “holomorphic projection”.

Let us fix a ΛI -valued weight k of WI and denote by W �
k
the complex of sheaves

Wk

rk
�! Wk ˝OXr;I

Ω1
Xr;I /WI

on Xr;I . We denote by HidR(Xr;I ;W �
k
) for i � 0, the

i -th hypercohomology group with values in the complex W �
k
.
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We have natural actions of all the Hecke operators on these cohomology groups and
remark that if h � 0 is a finite slope, we have natural slope decompositions for the action
of the operator Up of the groups HidR(Xr;I ;W �

k
) and we denote by HidR(Xr;I ;W �

k
)�h the

subgroup of slope less then or equal to h classes for the action of Up (see Andreatta and
Iovita [2017] section §3.8). If we denote by K the total ring of fractions of ΛI , we can
describe the base change of H1

dR(Xr;I ;W �
k
)�h to K as follows:

H1
dR(Xr;I ;W

�
k )

�h
˝ΛI [1/p] K Š H0(Xr;I ; !

k+2
r;I )�h

˝ΛI [1/p] K:

Therefore the “overconvergent projection” denotedH � is the natural map obtained as the
composition:

H0(Xr;I ;Wk)
�h

�! H1
dR(Xr;I ;W

�
k )

�h
˝ΛI [1/p] K Š H0(Xr;I ; !

k+2
r;I )�h

˝Λ[1/p] K:

5.4 Application: the triple product p-adic L-function in the finite slope case. Let
f , g, h be a triple of normalized primitive cuspidal classical eigenforms of weights k, `,
m, characters �f , �g , �h and tame levels Nf , Ng , Nh respectively. Write f o, go, ho for
their images in Sk(N ), S`(N ), Sm(N ) respectively as explained at the beginning of this
section. We assume that f has finite slope a and that (k; `;m) is unbalanced, i.e., there
is an integer t � 0 such that k � ` � m = 2t . We denote by K a finite extension of
Qp which contains all the values of �f , �g , �h. Let ˛f , ˛g , ˛h denote overconvergent
families of modular forms interpolating f o, go, ho in weights k, `, m respectively. More
precisely there are: a non-negative integer r , closed intervals If , Ig and Ih such that the
weights of these families, denoted respectively kf : Z�

p ! Λ�
If ;K

, kg : Z�
p ! Λ�

Ig ;K
,

kh : Z�
p ! Λ�

Ih;K
are all adapted to a certain integer n � 0. This data gives an adic space

Xr;I �! X, where I is a closed interval containing If � Ig � Ih.
We denote by !kf ; !kg ; !kh the respective modular sheaves (over Xr;I ), then ˛f 2

H0(Xr;If
; !kf ), ˛g 2 H0(Xr;Ig

; !kg ), ˛h 2 H0(Xr;Ih
; !kh). We make the following

assumption on the weights of ˛f , ˛g , ˛h:
1) Suppose that the weights kf , kg , kh are such that kf � kg � kh is even, i.e., there

is a weight u : Z�
p �! (ΛI;K)

� with 2u = kf � kg � kh:

2) the weights kg , u are each of the form: a finite order character multiplied a strongly
analytic weight (see Andreatta and Iovita [ibid.]).

We see ˛f , ˛g , ˛h as global sections of Fil0(W an
kf

), Fil0(W an
kg
) and Fil0(W an

kh
) respec-

tively. In particular we have that (rkg
)u(˛

[p]
g ) makes sense and

(rkg
)u(˛

[p]
g ) 2 H0(Xr 0;I ;W

an
kg+2u);
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for some positive integer r 0 � r . Therefore we have a section

(rkg
)u

�
˛
[p]
g

�
� ˛h 2 H0(Xr 0;Iu

;W an
kf

):

Consider its class in H1
�
Xr 0;Iu

; !kf �2
�

˝ Kf via the natural projection and its overcon-
vergent projection

H �
�
(rkg

)u
�
˛
[p]
g

�
� ˛h

�
2 H0

�
Xr 0;Iu

; !kf
�

˝ΛIf
Kf ;

to which we can apply the slope smaller or equal to a projector, e�a:

e�a
�
H �

�
(rkg

)u
�
˛
[p]
g

�
� ˛h

��
2 H0

�
Xr 0;Iu

; !kf
��a

˝ΛIf
Kf :

We are finally able to define the Garrett-Rankin triple product p-adic L-function attached
to the triple (˛f ; ˛g ; ˛h) of p-adic families of modular forms, of which ˛f has finite slope
� a, to be:

Lfp
�
˛f ; ˛g ; ˛h

�
:=

D
˛�
f
; e�a

�
H �

�
(rkg

)u
�
˛
[p]
g

�
� ˛h

��E
h˛�
f
; ˛�
f

i
2 Kf b̋Λkg ;K

b̋Λkh;K :

By the definition of the overconvergent projection the p-adic L-function
Lfp (˛f ; ˛g ; ˛h) has only finitely many poles, i.e., it is meromorphic.
Remark 5.4.1. The triple product p-adic L-function attached to a triple of ordinary fami-
lies of modular forms has been defined in Darmon and Rotger [2014], using q-expansions.

Let now x 2 WIf
, y 2 WIg

, z 2 WIg
be a triple of unbalanced classical weights,

i.e., such that x, y, z 2 Z�2 and such that there is t 2 Z�0 with x � y � z = 2t . Let
us denote by fx , gy , hz the specializations of ˛f , ˛g , ˛h at x, y, z respectively, seen as
sections over Xr 0;Iu

of !x � Filx�2(W an
x�2) = Symmx�2(HE ), !y � Fily�2(W an

y�2) =

Symmy�2(HE ), !z � Filz�2(W an
z�2) = Symmz�2(HE ) respectively.

If we fix embeddings of Q in C and Cp respectively, using the identifications between
the p-adic overconvergent projection and the complex holomorphic one and between the
Gauss-Manin connection and the Shimura-Maass differential operator on the one hand and
the classical expressions of the special values of the complex triple product L-functions
on the other, we obtain:

jLfp (˛f ; ˛g ; ˛h)(x; y; z)jp = (explicit constant)�

�
Lalg(fx ; gy ; hz ;

x + y + z � 2

2
)
� 1

2

:

In particular for x = k; y = `; z = m we have Lfp (˛f ; ˛g ; ˛h)(k; `;m) ¤ 0 which
implies that Lfp (˛f ; ˛g ; ˛h) ¤ 0.
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6 Higher coherent cohomology

The purpose of this last section is to explain how the higher coherent cohomology of au-
tomorphic bundles enters the picture and how this is related to irregular motives. Let
K � GSp2g(Af ) be a compact open subgroup. Let XK ! Spec C be a toroidal
compactification of the Siegel variety of genus g and level K. For any classical weight
k = (k1; � � � ; kg), we can consider the cuspidal cohomology Hi (XK ; !k(�D)), as well
as the usual cohomology Hi (XK ; !k). They don’t depend on the choice of the toroidal
compactification. Let us define the interior coherent cohomology

Hi (XK ; !k) = Im(Hi (XK ; !k(�D)) ! Hi (XK ; !k))

Recall that limK Hi (XK ; !k) is an admissible GSp2g(Af )-representation. We first recall
the following result, saying that a generic weight has only cohomology in one degree.

Theorem 6.0.1 (Harris [1990], Li and Schwermer [2004], Lan [2016]). There is an (ex-
plicit) constant C 6 which only depends on g such that if (k = (k1; � � � ; kg)) and:

1. jki � ki+1j � C for all 1 � i � g � 1,

2. jki + kj j � C for all 1 � i � j � g

then H?(XK ; !k) is concentrated in one degree.

Let us explain how one should think about this theorem. Identify Zg with the space of
characters of the maximal diagonal torus of the group Sp2g . We make a choice of positive
roots R+ to be the union of the compact positive roots R+

c = fei � ej g1�i<j�g and
non-compact positive roots R+

nc = fei + ej g1�i�j�g .
We can associate to k the g-uple � = (�1; � � � ; �g) = (k1 � 1; � � � ; kg � g) = k +

�c � �nc 2 Zg where �c is half the sum of the positive compact roots, and �nc is half the
sum of the positive non-compact roots. We see that k is dominant if and only if � is R+

c

regular: h�; ˛i > 0 for all ˛ 2 R+
c .

The theorem above says that if k is such that � is far enough from all the walls perpen-
dicular to all the roots, then H?(X;!k) is concentrated in one single degree which can
be determined as follows: let C � Zg be the chamber defined by �1 > : : : > �g � 0;
the cohomological degree is the minimum of the length of the elements of the Weyl group
WSp2g

= (Z/2Z)g Ì Sg that take � to an element of C . Let � be far enough from the

6One can be more precise. For example, if g = 1, H?
(XK ; !

k) is concentrated in degree 0 if k � 2 and
in degree 1 if k � 0. If g = 2, Hi

(XK ; !
k) is concentrated in degree 0 if k2 � 4; degree 1 if k2 � 0 and

k1 + k2 � 5; degree 2 if k2 + k1 � 1 and k1 � 3; degree 3 if k1 � �1.
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walls and letw be an element of the Weyl group of minimal length such thatw:� 2 C . Al-
though the Hecke modules H`(w)

(XK ; !
���c+�nc ) and H0

(XC; !
w:���c+�nc ) are rarely

isomorphic (except for g = 1), they are closely related 7.
So from that perspective, a generic weight has cohomology in one single degree, and

moreover, one can often reduce to degree 0 cohomology. In that sense, Theorem 3.1 is
optimal as long as we want to work over the total weight space.

We’d now like to consider “singular” weights � that lie on the walls h�; ˛i = 0 for
˛ 2 R+

nc . The main reason is that the corresponding cohomology groups of weight � �

�c + �n are conjecturally related to irregular motives. Moreover, they don’t admit a Betti
cohomology realization and can only be seen in the coherent cohomology. In one direction,
one knows how to attach compatible systems of Galois representations to automorphic
forms realized in the coherent cohomology 8 (Deligne and Serre [1974], Taylor [1991],
Goldring [2014], Pilloni and Stroh [2016], Boxer [2015], Goldring and Koskivirta [2017]).
The method is to establish congruences with automorphic forms which are holomorphic
discrete series at infinity and whose Galois representations can (often) be constructed in
the étale cohomology of a Shimura variety.

Example 1 (Limits of discrete series). Let � be an automorphic representation for the
group GSp2g/Q for which �1 is a limit of discrete series with infinitesimal character �
lying on such non-compact wall. Then �f is realized in limK Hi (XK ; !���c+�nc ). More-
over, it will often be realized (for instance if the associated parameter has trivial central-
izer) in several consecutive degrees (the number of consecutive degrees is the number of
non-compact roots˛ 2 R+

nc such that h�; ˛i = 0). For the standard 2g+1 dimensional rep-
resentation of theL-group GSpL2g ! GL2g+1, the associated compatible system has (con-
jectural) Hodge-Tate weights (�1;��1; � � � ; �g ;��g ; 0). The simplest situation is g = 1,
� = 0, k = 1. There is an isomorphism of Hecke modules H0

(XK ; !
1) = H1

(XK ; !
1)

and limK Hi (XK ; !1) = ˚�f where �f runs over all admissible GL2(Af )-modules for
which �1 ˝ �f is cuspidal automorphic for �1 the unique limit of discrete series of
GL2(R) 9. For the tautological 2-dimensional representation of the L-group, the associ-
ated compatible system arises from an Artin motive (Deligne and Serre [1974]).

When g = 1 we have the following theorem (a particular case of Artin’s conjecture):

7If� is far enough from the walls, all the cohomology is represented by automorphic forms�1 ˝�f which
are discrete series at infinity. The L-packet corresponding to �1 contains a holomorphic discrete series �h

1.
It the global Langlands parameter associated to � has trivial centralizer, then �h

1 ˝ �f is still automorphic
and realized in the degree 0 cohomology

8For automorphic forms which are not holomorphic limits of discrete series, they are very “weak” compatible
systems since they are not known to be de Rham.

9� is normalized by imposing that the central character of is j:j � � where � is a finite character
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Theorem 6.0.2 (Langlands [1980], Tunnell [1981], Buzzard, Dickinson, Shepherd-Bar-
ron, and Taylor [2001], Khare and Wintenberger [2009], Kisin [2009], Kassaei [2013],
Kassaei, Sasaki, and Tian [2014], Pilloni and Stroh [2016], Calegari and Geraghty [2018]).
There is a bijective correspondence between isomorphism classes of continuous irreducible
odd Galois representations � : GQ ! GL2(C) and cuspidal automorphic forms � =

�1 ˝ �f on GL2/Q such that �1 is a limit of discrete series. This bijection satisfies
L(�; s) = L(� ˝ j j�

1
2 ; s).

Remark 6.0.3. The theorem holds also for totally odd irreducible two dimensional repre-
sentations of the Galois group GF of a totally real finite field extension F of Q. Under
mild technical hypothesis one can also prove that a representation � : GF ! GL2(Qp)

which is totally odd, irreducible and geometric with Hodge-Tate weights all equal to 0 is
an Artin representation. See Pilloni and Stroh [2016].

The case g = 2 is also particularly interesting. Let A ! Spec Q be a simple abelian
surface and denote by H1(A) the associated motive. For every prime p, we can define a
Weil-Deligne representation WDp(H1(A)) : WDQp

! GSp4(C). By Gan and Takeda
[2011] there is a localL-packetΠp(A)whose Langlands parameter isWDp(H1(A))˝j j

3
2 .

This local L-packet contains at most two elements and exactly one generic element �gp .
At the infinite place there is a local L-packet Π1(A) which consists of the two limits
of discrete series (respectively holomorphic and generic) f�h1; �

g
1g with infinitesimal

character � = (1; 0)10. We letΠ(A) =
Q
p Πp(A)�Π1(A). The following is a particular

example of Langlands’s conjectures:

Conjecture 2. The global L-packet Π(A) contains a cuspidal automorphic form. As a
consequence the complex L-function L(H1(A); s) extends to an entire function over C
and satisfies a functional equation as predicted in Serre [1970].

Remark 6.0.4. 1) If End(A) ¤ Z (the GL2-type case), the conjecture is known thanks to
the works Khare and Wintenberger [2009], Kisin [2009] and Yoshida [1984].

2) �f = ˝p�p 2
Q
p Πp(A) is realized (with multiplicity one) in

limK H0
(XK ; !

(2;2)) provided �h1 ˝ �f is automorphic, and in limK H1
(XK ; !

(2;2))

provided �g1 ˝ �f is automorphic.
3) The character formula of Labesse and Langlands [1979] describes which elements

of Π(A) should be cuspidal automorphic. If End(A) = Z, all elements of Π(A) should
be cuspidal automorphic. If End(A) ¤ Z an element �1 ˝ �p should be automorphic if
and only if the number of non-generic representations occurring in the product is even. If
End(A) = Z we can choose the particular element of Π(A) which is generic at all finite

10we normalize here f�h; �gg by asking that the central character is j j2 on the connected component of the
center
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places and �h1 at infinity. This representation has a unique line which is generated by a
lowest weight vector at 1 and is invariant under the paramodular group of a certain level
N (A) at all finite places. Therefore there should be a well determined (up to scalar) holo-
morphic weight (2; 2) cuspform of paramodular levelN (A)with rational Hecke eigenval-
ues attached to A. This is the paramodular conjecture of Brumer and Kramer [2014].

Theorem 6.0.2 and Conjecture 2 share high similarities: the Hodge-Tate weights of the
motives considered have multiplicity two and the relevant automorphic forms contribute
to two coherent cohomology degrees of the same automorphic sheaf. We will now explain
how these singular weights behave in p-adic families: this appears to be a crucial tool in
the proof of Theorem 6.0.2 and in the approaches to Conjecture 2.

6.1 Modular curves and weight one forms. We slightly change notations. Let p be a
prime integer andN � 3 an integer prime top. LetX be themodular curve of levelΓ1(N )

over Spec Zp and XIw the modular curve of level Γ1(N ) \ Γ0(p). We now examine the
behaviour of p-adic families at weight one. We restrict ourselves to ordinary families
because weight one modular forms of finite slope at p are necessarily ordinary.

Theorem 6.1.1 (Hida [1986]). There is a finite projective Λ = Zp[[Z�
p]]-module M 11

such that for all k 2 Z�2,

M ˝Λ;k Zp = ordH0(XIw; !
k(�D)):

Here ord = limn U n!p is the ordinary projector for Up . There is a control theorem in
weight 1, but it is more complicated to state. By construction ofM , there is an injective
map H0(XIw ; !(�D)) ! M ˝Λ;1 Zp . In order to state the classicity theorem in weight
1, we need to look at the Galois representation picture. For any k 2 Z, and any eigenform
f inM ˝Λ;k Zp , there is an associated two dimensional Galois representation �f whose
restriction to inertia at p is nearly ordinary (�p is the p-adic cyclotomic character):

�f jIQp
'

�
1 ?

0 �1�k
p

�
If k � 2 the representation �f is automatically de Rham which is consistent with the
control theorem. If k = 1, the representation is de Rham if and only if it is unramified at
p and the classicity theorem in weight 1 states:

Theorem 6.1.2 (Buzzard and Taylor [1999], Pilloni and Stroh [2016]). An eigenclass f 2

M ˝Λ;1 Zp is classical if and only if the associated Galois representation is unramified
at p.

11 Moreover,M carries an action of the Hecke algebra and the control isomorphism is Hecke equivariant.
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This classicity theorem is one of the key steps towards the proof of Theorem 6.0.2
via the strategy envisionned in Buzzard and Taylor [1999]12: establish a congruence be-
tween an icoashedral artin representation and a modular elliptic curve modulo 5, and prove
a modular lifting theorem. There is a difficulty to prove a modular lifting theorem with
weight one forms because congruences are obstructed (since H1(X;!) ¤ 0) and the usual
Taylor-Wiles method doesn’t apply. The strategy is to prove the modular lifting theorem
with the module of ordinary p-adic modular forms of weight one instead (that is the mod-
ule M ˝Λ;1 Zp , for which the usual Taylor-Wiles method applies) and then argue via
this classicity theorem. In order to obtain a full proof of Theorem 6.0.2, it is necessary to
combine this strategy with solvable base change, and therefore one needs an extension of
theorem Theorem 6.1.2 over totally real fields (Pilloni and Stroh [2016]). Observe that
Theorem 6.0.2 was first proved in full generality as a consequence of Serre’s modular-
ity conjecture. Calegari and Geraghty [2018] found a way to modify the Taylor-Wiles
method in order to apply it directly to weight one forms, therefore eliminating the use of
Theorem 6.1.2. This method is very promising but as its application depends on certain
conjectural inputs it has not yet given a complete new proof of Theorem 6.0.2.

6.2 The group GSp4 and potentially modular abelian surfaces. We now let X !

Spec Zp be the Siegel threefold of hyperspecial level at p (and some fixed level away
from p). We let XIw ! XKli ! X be the Siegel threefolds of Iwahori and Klingen level
at p. As we have seen, for all weights k = (k1; k2)with k1 � k2, we have an automorphic
vector bundle !k . The tempered part (at infinity) of the cohomology H?(XC; !

(k1;k2)) is
concentrated in degree 0 if k2 � 3 while there is cohomology in degree 0 and 1 if k2 = 2.
The situation resembles that of modular curves and weight one forms, except that there
are now infinitely many singular weights: all those of the form (k; 2) for k � 2.

Let Λ1 = Zp[[Z�
p]] and Λ2 = Zp[[(Z�

p)
2]]. We first state the main theorem of classical

Hida theory:

Theorem 6.2.1 (Hida [1986], Pilloni [2011]). There exists a finite projective Λ2-module
M such that for (k1; k2) with k1 � k2 � 4

M ˝Λ2;(k1;k2) Zp = ordH0(XIw; !
(k1;k2)(�D))

Here ord is the ordinary projector for the operator Up;1Up;2. The bound k2 � 4 is an
accident and the expected optimal bound is k2 � 3. It is instructive to look at the Galois
representation picture. For all eigenclasses f 2 M ˝Λ2;(k1;k2) Zp there is an associated
nearly ordinary Galois representation �f : GQ ! GSp4(Qp) such that:

12Granting the fact that it is known in the solvable image case by automorphic methods
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�f jIQp
'

0BBB@
1 ? ? ?

0 �
�k2+2
p ? ?

0 0 �
�k1+1
p ?

0 0 0 �
�k1�k2+3
p

1CCCA
Such a representation is automatically geometric if k1 � k2 � 3. It is tempting to

believe that an eigenclass of weight k1 � k2 = 2 is classical if and only if

�f jIQp
'

0BB@
1 0 ? ?

0 1 ? ?

0 0 �
�k1+1
p 0

0 0 0 �
�k1+1
p

1CCA
(the analogue of Theorem 6.1.2). The techniques of Theorem 6.1.2 which crucially de-
pend on the explicit relation between q-expansion and Hecke eigenvalues don’t appear
to generalize to this case. In particular, it seems impossible to generalize the strategy of
Buzzard and Taylor [1999] to Conjecture 2.

We now state the main theorem of Higher Hida theory which deals with the singular
weights:

Theorem 6.2.2 (Pilloni [2017]). There exists a perfect complex M �13 of Λ1-modules of
amplitude [0; 1] such that for all k 2 Z�2:

M �
˝
L
(k;2) Qp = ord0RΓ

�
XKli; !

(k;2)(�D) ˝ Qp

�
:

Here ord0 is the ordinary projector for the operator Up;1. The control theorem is sharp.
Let us explain briefly the construction ofM �. Let X ! Spec Zp be the Siegel threefold
of level prime to p. We let X be the p-adic completion ofX and denote by X�i the p-rank
stratification on X. As we have seen in Section 3, over the ordinary locus X�2 we have
a multiplicative subgroup of rank 2 of G[p1] which provides the extra structure on !G
allowing for the interpolation property. Over X�1 there is still an extra structure as we
can choose a multiplicative Barsotti-Tate group of height 1,H1 ,! G[p1] and for such
a choice we have an exact sequence

0 ! !G[p1]/H1
! !G[p1] ! !H1 ! 0

and the Hodge-Tate map realizes an isomorphism Tp(H
D
1) ˝ OX�1(p1) ! !H1

. Thus,
we end up with half the extra structure we had over the ordinary locus and, this allows the
interpolation of the automorphic sheaves in one direction. It is quite important to work

13M� carries an action of the Hecke algebra and the control theorem is Hecke equivariant



292 FABRIZIO ANDREATTA, ADRIAN IOVITA AND VINCENT PILLONI

over this larger base since X�1 is morally of cohomological dimension 1, while X�2 is of
cohomological dimension 014.

The projective moduleM is obtained by considering the (degree 0) ordinary cohomol-
ogy of an interpolation sheaf over X�2 as explained in Section 3, while the complexM � is
obtained by considering the ordinary cohomology of an other interpolation sheaf, whose
weight is parametrized by Λ1 over X�1.

The cohomology M � ˝L
Λ1;2

Zp is an integral modification of
ord0RΓ

�
XKli; !

(2;2)(�D)
�
. One important property ofM � is that it is concentrated in two

degrees, while this is not known to hold for RΓ
�
X;!(2;2)(�D)

�
. In Boxer, Calegari, Gee,

and Pilloni [2018] we manage to study the Galois representation supported by M � and
prove under some technical assumptions that it is ordinary. As a corollary,M � ˝L

Λ1;2
Zp

can be used to construct modified Taylor-Wiles systems in the sense of Calegari and Ger-
aghty [2018]. It is an important ingredient in the proof of the following theorem:

Theorem 6.2.3 (Boxer, Calegari, Gee, and Pilloni [2018]). Let A/Q be an abelian sur-
face. Then there is a finite field extension F of Q such that H1(AjF ) is automorphic. In
particular L(H1(A); s) has a meromorphic continuation to C.

The theorem holds also when Q is replaced by a totally real field.
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PERFECTOID SPACES AND THE HOMOLOGICAL
CONJECTURES
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Abstract

This is a survey of recent advances in commutative algebra, especially in mixed
characteristic, obtained by using the theory of perfectoid spaces. An explanation of
these techniques and a short account of the author’s proof of the direct summand con-
jecture are included. One then portrays the progresses made with these (and related)
techniques on the so-called homological conjectures.

1 The direct summand conjecture

LetR be a Noetherian (commutative) ring and S a finite ring extension, and let us consider
the exact sequence of finitely generated R-modules

(1-1) 0 ! R ! S ! S/R ! 0:

When does this sequence split? Equivalently, when is R ! S pure, i.e. remains
injective after any base change? This holds for instance when R ! S is flat, or when R

is a normal Q-algebra, but not in general (the embedding of Q[x; y]/(xy) in its normal
closure gives a counter-example, since it is no longer an embedding modulo x + y).

The direct summand conjecture, formulated by M. Hochster around 1969, claims that
(1-1) splits whenever R is regular. Hochster proved it when R contains a field Hochster
[1973]. R. Heitmann proved it in dimension � 3 R. C. Heitmann [2002].

Recently, the author proved it in general André [2016a]:

1.0.1 Theorem. (1-1) splits if R is regular.

This has many (non trivially) equivalent forms. One of them is that every ideal of a
regular ring R is contracted from every finite (or integral) extension of R. Another (more

MSC2010: primary 13D22; secondary 13H05, 14G20.
Keywords: homological conjectures, big Cohen–Macaulay algebra, perfectoid algebra, purity.
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indirect) equivalent form is the following statement, which settles a question raised by L.
Gruson and M. Raynaud Raynaud and Gruson [1971, p. 1.4.3]1:

1.0.2 Theorem. Any integral extension of a Noetherian ring descends flatness of modules.

We will see one more equivalent form below in the framework of the so-called homo-
logical conjectures (4.2).

2 The role of perfectoid spaces

2.1 Some heuristics. After Hochster’s work Hochster [1983], it is enough to prove the
direct summand conjecture in the case when R is a complete unramified local regular ring
of mixed characteristic (0; p) and perfect residue field k. By Cohen’s structure theorem,
one may thus assume R = W (k)[[x1; : : : ; xn]].

In characteristic p, all proofs of the direct summand conjecture use the Frobenius en-
domorphism F in some way. In mixed characteristic, R = W (k)[[x1; : : : ; xn]] carries a
Frobenius-like endomorphism (acting as the canonical automorphism of W (k) and send-
ing xi to x

p
i ), which however does not extend to general finite extensions S of R. To

remedy this, p-adic Hodge theory suggests to “ramify deeply”, by adjoining iterated pth

roots of p; x1; : : : ; xn. Doing this, one leaves the familiar shore of Noetherian commuta-
tive algebra for perfectoid geometry, recently introduced by P. Scholze [2012].

To begin with, W (k) is replaced by the non-Noetherian complete valuation ring Ko :=
5
W (k)[p

1
p1 ]. The valuation ring Lo of any finite extension L of the field K[ 1

p
] satisfies:

(2-1)
F : Lo/p

x 7!xp

! Lo/p is surjective, and Lo is p
1

p1 -almost finite etale over Ko;

this being understood in the context of almost ring theory, introduced by G. Faltings and
developped by Gabber and Ramero [2003], which gives precise meaning to “up to p

1
p1 -

torsion”; for instance, p
1

p1 -almost etaleness means that p
1

p1 ΩLo/Ko = 0. Actually,
Gabber and Ramero [ibid.] is much more general: it deals with modules over a commu-
tative ring up to k-torsion, for some idempotent ideal k. Going beyond the case of a val-
uation ideal k will be crucial: beside “p

1
p1 -almost” modules, we will have to consider

“(pg)
1

p1 -almost” modules for some “geometric” discriminant g.

1cf. Ohi [1996] for the equivalence. Gruson and Raynaud settled the case of a finite extension and outlined
that the transition to integral extensions is not a routine exercise.
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2.2 Perfectoid notions. In perfectoid geometry, one works with certain Banach2 K-
algebras A. One denotes by Ao the Ko-subalgebra of power-bounded elements. One
says that A is uniform if Ao is bounded, and that A is perfectoid if it is uniform and
F : Ao/p

x 7!xp

! Ao/p is surjective. An example which plays a crucial role in the sequel

is [̂i W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x
1

pi

n ]][ 1
p
] , a deeply ramified avatar of R. Morphisms of per-

fectoid algebras A ! B are continuous algebra homomorphisms (one then says that B is
a perfectoid A-algebra).

Perfectoid algebras enjoy three fundamental stability properties Scholze [2012]:

2.2.1 Tensor product. IfB andC are perfectoidA-algebras, so isB ˆ̋AC, and (B ˆ̋AC)o

is p
1

p1 -almost isomorphic to Bo ˆ̋AoCo.

2.2.2 Localization. The ring of functions Af
f
g

g on the subset of the perfectoid space

Spa(A; Ao) where jf j � jgj holds is perfectoid, and Af
f
g

go is p
1

p1 -almost isomorphic

to Aoh(f 0

g0 )
1

p1 i for some approximations f 0; g0 of f; g which admit iterated pth-roots in
A.

2.2.3 Finite etale extension. Any finite etale extension B of A is perfectoid, and Bo is
a p

1
p1 -almost finite etale extension of Ao.
This generalization of 2-1 to perfectoid algebras is Faltings’s “almost purity theorem”

Faltings [2002] as revisited by Scholze [2012] and Kedlaya and Liu [2015].

Let us explain how the second assertion of 2.2.3 follows from the first following André [2016b,
p. 3.4.2]. The idea is to reduce to the case when B is Galois over A with Galois group G, i.e.
BG = A and B ˝A B

∼
!

Q
G B. This implies BoG = Ao. On the other hand, since B is a finitely

generated projective A-module, B ˝A B = B ˆ̋AB, and one deduces from 2.2.1 (assuming B

perfectoid) thatBo ˆ̋AoBo !
Q

G Bo is ap
1

p1 -almost isomorphism. To get rid of the completion,
one passes modulo pm: Bo/pm is almost Galois over Ao/pm, hence almost finite etale, and a
variant of Grothendieck’s “équivalence remarquable” Gabber and Ramero [2003, p. 5.3.27] allows
to conclude that Bo it itself almost finite etale over Ao.

2.3 Direct summand conjecture: the case when S [ 1
p
] is etale over R[ 1

p
]. Let us go

back to the direct summand conjecture for R = W (k)[[x1; : : : ; xn]]. The special case
2here and in the sequel, one can work with any perfectoid field K (of mixed char. (0; p)), - i.e. complete,

non-discretely valued, and such that F is surjective on Ko/p. An extensive dictionary between the langage
of commutative algebra and the language of non-archimedean functional analysis is presented in André [2016b,
p. 2.3.1].
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when S [ 1
p
] is etale over R[ 1

p
]was settled by B. Bhatt [2014] and by K. Shimomoto [2016],

using 2.2.3. Here is a slightly different account, suitable to the sequel.

Let us consider the perfectoid algebra A = [̂i W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x
1

pi

n ]][ 1
p
] and

notice that Ao = [̂i W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x
1

pi

n ]] is a faithfully flat extension of R. By
assumption B := S ˝R A is finite etale over A, hence by 2.2.3, Bo is p

1
p1 -almost

finite etale, hence almost pure (in the sense: almost universally injective) over Ao. A
fortiori, (1-1) almost splits after tensoring with Ao. In other words, if e 2 Ext1R(S/R; R)

denotes the class corresponding to (1-1), then p
1

p1 (e ˝ 1) = 0 in Ext1R(S/R; R) ˝R

Ao Š Ext1Ao((S ˝R Ao)/Ao; Ao). One concludes that e = 0 by the following general
elementary lemma (applied to M = Re and K = p

1
p1 Ao):

2.3.1 Lemma. André [2016a, p. 1.1.2] Let R be a local Noetherian ring, M a finitely
generated R-module, A a faithfully flat R-algebra. Let K be an idempotent ideal of A

such that K:MA = 0 and R \ K ¤ 0. Then M = 0.

2.4 The perfectoid Abhyankar lemma. In the general case, S ˝R A is no longer etale
overA: onemust take into account a discriminant g 2 R ofS [ 1

p
] overR[ 1

p
]. This suggests

to try to generalize 2.2.3 to ramified extensions of perfectoid algebras. It turns out that this
is possible, provided one extracts suitable roots of g in the spirit of Abhyankar’s lemma.

This leads to replace everywhere “p
1

p1 -almost” by “(pg)
1

p1 -almost”, thereby ex-
tending the basic setting of almost ring theory beyond the usual situation of a non-discrete
valuation ring. This also leads to introduce the notion of almost perfectoid algebra, where
F : Ao/p

x 7!xp

! Ao/p is only assumed to be (pg)
1

p1 -almost surjective André [2016b,
p. 3.5.4].

2.4.1 Theorem. André [ibid.] Let A be a perfectoid K-algebra, which contains a com-
patible system of p-power roots g

1

pj of some non-zero-divisor g 2 Ao. Let B0 be a finite
etale A[ 1

g
]-algebra. Let B be the integral closure of g

� 1
p1 A in B0, so that B[ 1

g
] = B0.

Then B is almost perfectoid, and for any n, Bo/pm is (pg)
1

p1 -almost finite etale
(hence (pg)

1
p1 -almost flat) over Ao/pm.

(If g = 1, one may use Gabber and Ramero [2003, p. 5.3.27] again to conclude that
Bo is itself almost finite etale over Ao and recover 2.2.3).

The basic idea is to look at the pro-system of algebras of functions Aj := Af
pj

g
g on

complements of tubular neighborhoods of the hypersurface g = 0 in the perfectoid space
Spa(A; Ao), resp. at the pro-system Bj := B0 ˝A[ 1g ] Af

pj

g
g. Each Aj is perfectoid
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(2.2.2), and each Bj is finite etale over Aj , hence perfectoid; moreover Bjo is p
1

p1 -
almost finite etale over Ajo by almost purity (2.2.3). One can show that Bo is isomorphic
to limBjo, and that the latter has the asserted properties,

However, in the sequel, the identification of (limBjo)[ 1
p
] with the integral closure of

g
� 1

p1 A in B0 plays no role; changing notation, we will set B := (limBjo)[ 1
p
], which is

a uniform Banach algebra, and sktech the proof that B is almost perfectoid and that for
every m, Bo/pm is (pg)

1
p1 -almost finite etale over Ao/pm.

The proof involves six steps.

1) For any r 2 N[ 1p ], lim(Ajo/pr ) is (pg)
1

p1 -almost isomorphic toAo/pr . This is essentially
Scholze’s perfectoid version of Riemann’s extension theorem Scholze [2015, p. II.3.1] (hint: if R

denotes Ao/pr for short, Ajo/pr is p
1

p1 -almost isomorphic to Rj := R[(pj

g )
1

p1 ]; the key

idea is that for j 0 � j + rpk ; Rj 0
! Rj factors through Rjk :=

P
s� 1

pk
R(pj

g )s , so that

limRj Š limRjk ; on the other hand, the kernel and cokernel of R ! Rjk are killed by g raised to
a power which tends to 0 when j; k ! 1). Passing to the limit r ! 1, it follows that limAjo =

g
� 1

p1 A; and this also holds under the weaker assumption that A is almost perfectoid, cf. André
[2016b, p. 4.2.2].

2) lim1(Bjo/pr ) is (pg)
1

p1 -almost zero. The technique is similar to the one in 1), cf. André
[ibid., p. 4.4.1].

3) lim(Bjo/p)
F
! lim(Bjo/p) is (pg)

1
p1 -almost surjective. Indeed, taking the limit of the

exact sequence 0 ! Bjo/p
p�1

p ! Bjo/p ! Bjo/p
1
p ! 0, one deduces from 2) (for r = p�1

p ),

that lim(Bjo/p) ! lim(Bjo/p
1
p ) is (pg)

1
p1 -almost surjective; on the other hand, Bjo/p

1
p !

Bjo/p is an isomorphism because Bj is perfectoid.
4) B is almost perfectoid. From 3), it suffices to show that the natural map

Bo/p = (limBjo)/p ! lim(Bjo/p) is a (pg)
1

p1 -almost isomorphism. It is easy to see that
it is injective André [ibid., p. 2.8.1], and on the other hand, the composition limF;j (B

jo/p) =

B[o ! (limBjo)/p ! lim(Bjo/p) is almost surjective by 3).

5) B ! Bj factors through a g
1

p1 -almost isomorphism Bf
pj

g g
a
Š Bj . The factorization

comes from the fact that Bj Š Bj f
pj

g g, and one constructs an almost inverse to Bf
pj

g g
a
! Bj

as follows (cf. André [ibid., p. 4.4.4]): the integral closure of Ao in B0 maps to the integral closure
Ajo in Bj , which is p

1
p1 -almost Bjo (by almost purity). Passing to the limit and inverting pg,

one gets a morphism B0 ı
! B[ 1g ], and the sought for inverse is induced by ı ˝ 1Aj .

6) for every m, Bo/pm is (pg)
1

p1 -almost finite etale over Ao/pm. This is the decisive step:
how to keep track of the almost finite etaleness of Bjo over Ajo at the limit? As in 2.2.3, the
idea is to reduce to the case when B0 is Galois over A[ 1g ] with Galois group G, i.e. (B0)G =
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A[ 1g ] and B0 ˝A[ 1g ] B0 ∼
!

Q
G B0. It follows that Bj is G-Galois over Aj , and (as in 2.2.3) that

Bjo ˆ̋
AjoBjo !

Q
G Bjo is a p

1
p1 -almost isomorphism. Passing to the limit, (and taking into

account that by 4) and 5), B ˆ̋AB is an almost perfectoid algebra, and B ˆ̋ABf
pj

g g Š Bj ˆ̋
Aj Bj ,

so that one can apply 1)), one concludes that Ao ! BoG and Bo ˆ̋AoBo !
Q

G Bo are (pg)
1

p1 -
almost isomorphisms. To get rid of the completion, one passes modulopm: Bo/pm is almost Galois
over Ao/pm, hence (pg)

1
p1 -almost finite etale (in constrast to 2.2.3, one cannot conclude that Bo

is (pg)
1

p1 -almost finite etale over Ao since p may not belong to (pg)
1

p1 ). �

2.5 Infinite Kummer extensions. In order to extend the strategy of 2.3 to the general
case by means of the perfectoid Abhyankar lemma, one has first to adjoin to the perfectoid

algebra [̂i W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x
1

pi

n ]][ 1
p
] the iterated pth-roots of a discriminant g. At

finite level i , it seems very difficult to control the extension

(W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x
1

pi

n ]][g
1

pi ;
1

p
])o

which is bigger than W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x
1

pi

n ]][g
1

pi ], but things turn easier at the infi-
nite level, thanks to the perfectoid theory.

2.5.1 Theorem. André [2016a, p. 2.5.2] Let A be a perfectoid K-algebra, and let g 2 Ao

be a non-zero divisor. Then for any n, Ahg
1

p1 io/pm is p
1

p1 -almost faithfully flat over
Ao/pm.

The basic idea is to add one variable T , consider the perfectoid algebra C := AhT
1

p1 i

and look at the ind-system of algebras of functions Ci := Cf
T �g

pi g on tubular neighbor-
hoods of the hypersurface T = g in the perfectoid space Spa(C; Co).

The proof involves three steps.

7) Ahg
1

p1 io is p
1

p1 -almost isomorphic to bcolimi Co
i . This is an easy consequence of the

general fact that for any uniform Banach algebra B and f 2 Bo, bcolimi Bf
f

pi
go is p

1
p1 -almost

isomorphic to (B/f B)o, cf. André [2016b, p. 2.9.3].
8) Co contains a compatible system of p-power roots of some non-zero-divisor fi such that Co

i

is p
1

p1 -almost isomorphic to bcolimj ChU io/(p
1

pj U � f

1

pj

i ). This is one instance of Scholze’s
approximation lemma Scholze [2012, p. 6.7]; one may assume fi � T � g mod p

1
p .

9) ChU io/(p
1

pj U � f

1

pj

i ; pm) is faithfully flat over Ao/pm. One may replace pm by any

positive power of p, e.g. p
1

pj+1 . Since C is perfectoid, there is gij 2 C
1

p1 io such that g
pj

ij �
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g mod p. Then f

1

pj

i � T
1

pj � gij mod p
1

pj+1 ; and ChU io/(p
1

pj U � f

1

pj

i ; p
1

pj+1 ) Š

(Ao/p
1

pj+1 )[T
1

p1 ; U ]/(T
1

pj � gij ), a free Ao/p
1

pj+1 -module. �

2.6 Conclusion of the proof of the direct summand conjecture. One chooses g 2

R such that S [ 1
pg

] is etale over R[ 1
pg

]. One then follows the argument of 2.3, replac-

ing A = [̂i W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x
1

pi

n ]][ 1
p
] by the “infinite Kummer extension” A :=

([̂i W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x
1

pi

n ]][ 1
p
])hg

1
p1 i. One introduces the finite etale extensionB0 :=

S ˝R A[ 1
g
] of A[ 1

g
], and one replaces B = S ˝R A in 2.3 by B := (limBjo)[ 1

p
], noting

that Bo is the S -algebra limBjo. Translating Th. 2.4.1 and Th. 2.5.1 in terms of almost
purity modulo pm, and reasoning as in 2.3 (using the same lemma), one obtains that (1-1)
splits modulo pm for any n André [2016a, §3]. A Mittag-Leffler argument (retractions of
R/pm ! S/pm form a torsor under an artinian R/pm-module Hochster [1973, p. 30])
shows that (1-1) itself splits. �

2.7 Derived version. In , B. Bhatt revisits this proof and proposes a variant, which
differs in the analysis of the pro-system Ajo/pr occurring in the proof of Th. 2.4.1: he
strengthens step 1) by showing that the pro-system of kernels and cokernels of (A/pr)j !

(Ajo/pr)j is pro-isomorphic to a pro-system of (pg)
1

p1 -torsion modules; this allows to
apply various functors before passing to the limit j ! 1, whence a gain in flexibility.
More importantly, he obtains the following derived version of the direct summand conjec-
ture, which had been conjectured by J. de Jong:

2.7.1 Theorem. Bhatt [n.d.] Let R be a regular Noetherian ring, and f : X ! SpecR

be a proper surjective morphism. Then the map R ! RΓ(X; OX ) splits in the derived
category D(R).

3 Existence of (big) Cohen–Macaulay algebras

3.1 Cohen–Macaulay rings andCohen–Macaulay algebras for the non-Cohen-Macaulay
rings. Let S be a local Noetherian ring with maximal ideal m and residue field k. Recall
that a sequence x = (x1; : : : ; xn) inm is secant3 if dimS/(x) = dimS �n, and regular if
for every i , multiplication by xi is injective in S/(x1; : : : ; xi�1)S . Any regular sequence

3following Bourkaki’s terminology (for instance); it is also often called “part of a system of parameters”,
although grxS may not be a polynomial ring in the “parameters” xi (it is if x is regular).
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is secant, and if the converse holds, S is said to be Cohen–Macaulay. Regular local rings
have a secant sequence generating m, and are Cohen–Macaulay.

Cohen–Macaulay rings form the right setting for Serre duality and the use of local ho-
mological methods in algebraic geometry, and have many applications to algebraic com-
binatorics Bruns and Herzog [1993]. When confronted with a non-Cohen–Macaulay ring
S , one may try two expedients:

1)Macaulayfication: construct a proper birational morphismX ! SpecS such that all
local rings of X are Cohen–Macaulay. This weak resolution of singularities, introduced
by Faltings, has been established in general by T. Kawasaki [2000]. Hovewer, secant
sequences in S may not remain secant (hence not become regular) in the local rings of X ;
this motivates the second approach:

2) Construction of a Cohen–Macaulay algebra4: an S -algebra C such that any secant
sequence of S becomes regular in C , and mC ¤ C .

The existence of Cohen–Macaulay algebras implies the direct summand conjecture:
indeed, if C is a Cohen–Macaulay algebra for a finite extension S of a regular local ring
R, it is also a Cohen–Macaulay R-algebra; this implies that R ! C is faithfully flat,
hence pure, and so is R ! S .

3.2 Constructions of Cohen–Macaulay algebras. The existence of a (big) Cohen–
Macaulay algebra was established by Hochster and C. Huneke under the assumption that
S contains a field Hochster and Huneke [1995]. One may assume that S is a complete
local domain. In char. p > 0, one may then take C to be the total integral closure of S

(i.e. the integral closure of S in an algebraic closure of its field of fractions). This is no
longer true in the case of equal char. 0, which can nevertheless be treated by reduction to
char. p >> 0 using ultraproduct techniques.

The remaining case of mixed characteristic was settled in André [2016a], using the
same perfectoid methods, so that one has:

3.2.1 Theorem. Any local Noetherian ring S admits a (big) Cohen–Macaulay algebra
C .

In the case of a complete local domain S of char (0; p) and perfect residue field k (to which
one reduces), one proceeds as follows. Cohen’s theorem allows to present S as a finite extension of
R = W [[x1; : : : ; xn]]. One first considers the R-algebra

A := ([̂i W (k)[p
1

pi ][[x
1

pi

1 ; : : : ; x

1

pi

n ]][
1

p
])hg

1
p1 i

o

4since it would be too restrictive to impose that C is Noetherian, one often speaks of “big” Cohen–Macaulay
algebra.
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and the S -algebra Bo = limBjo as above 2.6. It follows from Th. 2.4.1 and Th. 2.5.1 that Bo is
(pg)

1
p1 -almost isomorphic to a faithfully flat R algebra modulo any power of p. From there, one

deduces that the sequence (p; x1; : : : ; xn) is “(pg)
1

p1 -almost regular” in Bo.
To get rid of “almost”, Lemma 2.3.1 is no longer sufficient: instead, one uses Hochster’s tech-

nique ofmonoidal modifications Hochster [2002]Hochster andHuneke [1995]. Afterm-completion,
one gets a S -algebraC in which (p; x1; : : : ; xn), as well as any other secant sequence of S , becomes
regular. �

Subsequently, using the tilting equivalence between perfectoid algebras in char. 0 and
in char.p and applying Hochster’s modifications in char.p rather than in char.0, K. Shi-
momoto [2017] shows that in Th. 3.2.1, in mixed characteristic, C can be taken to be
perfectoid. In particular, if S is regular, it admits a perfectoid faithfully flat algebra (one
may speculate about the converse).

3.3 Finite and fpqc covers. Since Cohen–Macaulay algebras for regular local rings are
faithfully flat, Th. 3.2.1 implies André [2016a]:

3.3.1 Theorem. Any finite cover of a regular scheme is dominated by a faithfully flat
quasi-compact cover.

If regularity is omitted, Spec(Q[x; y]/(xy)) and its normalization provide a counter-
example.

4 Homological conjectures

4.1 Origins from intersection theory. Under the influence of M. Auslander, D. Buchs-
baum and J.-P. Serre, commutative algebra has shifted in the late 50s from the study of
ideals of commutative rings to the homological study ofmodules (cf. their characterization
of regular local rings by the existence of finite free resolutions for any finitely generated
module, resp. for the residue field).

Serre proved that for any three prime ideals p; q; r of a regular local ring R such that r

is a minimal prime of p+q, ht r � htp+htq Serre [1965]. The special case r = m can be
amplified: for any ideals I; J of R such that I +J is m-primary, dimR/I + dimR/J �

dimR.
This is no longer true ifR is not regular, and attempts to understand the general situation

led to the so-called homological conjectures cf. Bruns and Herzog [1993, ch. 9], Hochster
[2007].

4.2 Intersection conjectures. Let (R; m) be local Noetherian ring.
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The first “intersection conjecture” was proposed by Peskine and Szpiro [1973], proved
by them when R contains a field by reduction to char. p and Frobenius techniques, and
later proved in general by P. Roberts using K-theoretic methods Roberts [1987]. It states
that if M; N are finitely generated R-modules such that M ˝ N has finite length, then
dimN � pdM . It implies that R is Cohen–Macaulay if and only if there is an R-module
M of finite length and finite projective dimension (in the spirit of Serre’s characterization
of regular rings, which is the case M = k), resp. if there is an R-module M of finite
injective dimension.

Indeed, one may take N = R and deduce that dimR � pdM ; by the Auslander-Buchsbaum
formula, pdM = depthR � depthM , so that the inequality depthR � dimR is an equality. The
second assertion follows from the fact that idM = depthR Bass [1963].

The “new intersection conjecture”, also proved by Peskine and Szpiro [1973] and
Roberts [1987], states that for any non exact complex F� of free R-modules concentrated
in degrees [0; s] with finite length homology, s > dimR.

The “improved new intersection conjecture” is a variant due to E. Evans and P. Evans
and Griffith [1981], in which the condition on F� is “slightly” relaxed: the Hi>0 are of
finite length and there exists a primitive cyclic submodule of H0 of finite length. They
proved it, assuming the existence of (big) Cohen–Macaulay algebras5, and showed that
it implies their “syzygy conjecture”. In spite of appearances, the passage from the new
intersection conjecture to its “improved” variant is no small step6: in fact, according to
Hochster [2007] and S. Dutta [1987], the latter is equivalent to the direct summand con-
jecture.

On the other hand, in the wake of the new intersection conjecture (and motivated by the
McKay correspondence in dimension 3 and the “fact” that threefold flops induce equiv-
alences of derived categories), T. Bridgeland and S. Iyengar obtained a refinement of
Serre’s criterion for regular rings assuming the existence of Cohen–Macaulay algebras
Bridgeland and Iyengar [2006, p. 2.4].

By Th. 1.0.1 and Th. 3.2.1, the improved new intersection conjecture and theBridgeland-
Iyengar criterion thus hold inconditionally:

4.2.1 Theorem. Let R be a Noetherian local ring and F� be a complex of finitely gener-
ated free R-modules concentrated in degree [0; s], such that H>0(F�) has finite length.

1. IfH0(F�) contains a cyclicR-submodule of finite length not contained inmH0(F�),
then s � dimR.

5if R is Cohen–Macaulay, the Buchsbaum-Eisenbud criterion gives a condition for the exactness of F� in
terms of codimension of Fitting ideals of syzygies. In general, the same condition guarantees that F� ˝ C is
exact for any Cohen–Macaulay R-algebra C Bruns and Herzog [1993, p. 9.1.8].

6K-theoretic techniques failed to make the leap.
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2. If H0(F�) has finite length and contains k as a direct summand, and s = dimR,
then R is regular.

And so does the syzygy conjecture:

4.2.2 Theorem. Let R be a Noetherian local ring and M a finitely generated R-module
of finite projective dimension s. Then for i 2 f1; : : : ; s � 1g, the i -th syzygy module of M

has rank � i .

4.3 Further work around the homological conjectures using perfectoid spaces.

4.3.1 . In 2017, Heitmann and L. Ma show that Cohen–Macaulay algebras can be con-
structed in a way compatible with quotients S ! S/p by primes of height one7. Using
arguments similar to Bhatt’s derived techniques, they deduce the vanishing conjecture for
maps of Tor Hochster and Huneke [1995]:

4.3.1 Theorem. R. Heitmann and Ma [2017a] Let R ! S ! T be morphisms such that
the composed map is a local morphism of mixed characteristic regular local rings, and S

is a finite torsion-free extension of R. Then for every R-module M and every i , the map
TorRi (M; S) ! TorRi (M; T ) vanishes.

They obtain the following corollary, which generalizes results byHochster and J. Roberts,
J.-F. Boutot et al.:

4.3.2 Corollary. R. Heitmann andMa [ibid.] Let R ,! S be a pure, local morphism, with
S regular. Then R is pseudo-rational, hence Cohen–Macaulay.

4.3.2 . In 2017, Ma and K. Schwede define and study perfectoid multiplier/test ideals in
mixed characteristic, and use them to bound symbolic powers of ideals in regular domains
in terms of ordinary powers:

4.3.3 Theorem. Ma and Schwede [2017] Let R be a regular excellent Noetherian domain
and let I � R be a radical ideal such that each minimal prime of I has height � h. Then
for every n, I (hn) � I n.

Here I (hn) denotes the ideal of elements of R which vanish generically to order hn at
I . When R contains a field, the result was proved in Ein, Lazarsfeld, and Smith [2001]
and Hochster and Huneke [1990].

7weak functoriality of Cohen–Macaulay algebras in general has been since announced by the author Andre
[2018].
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4.3.3 . An efficient and unified way of dealingwith questions related to the homological
conjectures in char. p is provided by “tight closure theory”, which has some flavor of
almost ring theory. Using Th. 2.4.1 and Th. 2.5.1 above, Heitmann and Ma give evidence
that the “extended plus closure” introduced in R. C. Heitmann [2001] is a good analog of
tight closure theory in mixed characteristic R. Heitmann and Ma [2017b].
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LA COURBE

Lൺඎඋൾඇඍ Fൺඋ඀ඎൾඌ

Résumé
On présente un résumé de nos travaux sur la courbe que nous avons introduite

avec Jean-Marc Fontaine et ses applications en théorie de Hodge p-adique ainsi qu’au
programme de Langlands.

Introduction

La courbe fondamentale en théorie de Hodge p-adique a été introduite par Jean-Marc
Fontaine et l’auteur dans Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017]. On présente d’abord celle-ci, l’étude
des fibrés vectoriels et de leurs modifications dans la Section 1. Dans la Section 2 on ex-
plique nos résultats sur l’étude des G-fibrés et leurs applications aux espaces de périodes
p-adiques. Enfin, on conclut dans la Section 3 par des résultats récents sur les familles de
fibrés et le lien conjectural avec la correspondance de Langlands locale. Ce texte est en
quelque sorte un récit du parcours qui nous a mené des filtrations de Harder-Narasimhan
des schémas en groupes finis et plats (Fൺඋ඀ඎൾඌ [2010b]) à la conjecture de géométrisation
de la correspondance de Langlands locale (Section 3).

1 Courbe et fibrés vectoriels

1.1 Fonctions holomorphes de la variable p. Soient E un corps local de corps rési-
duel le corps fini Fq et � une uniformisante de E. On a donc soit [E : Qp] < +1, soit
E = Fq((�)). Soit F jFq un corps perfectoïde. On note $ 2 F une pseudo-uniformisante
i.e. 0 < j$ j < 1. Considérons l’anneau de Fontaine (Fඈඇඍൺංඇൾ [1979],
Fඈඇඍൺංඇൾ [1994a])

A =

(
WOE

(OF ) si EjQp

OF J�K si E = Fq((�)):

L’auteur a bénéficié du support des projets ANR-14-CE25 ”PerCoLaTor” et ERCAdvanced Grant 742608 ”Geo-
LocLang”.
MSC2010 : primary 11S31 ; secondary 11S37, 11G18, 14K10.
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La théorie de la courbe schématique ne nécessite pas la théorie des espaces perfectoïdes
qu’elle prédate ou des espaces adiques. Néanmoins il est plus naturel maintenant de l’ex-
poser en introduisant ces objets. Considérons donc l’espace adique

Y = Spa(A;A) n V (� [$ ]):

Si E = Fq((�)) il s’agit d’un disque ouvert épointé de la variable � , D�F = f0 < j�j <

1g � A1
F qui est exactement celui qui apparaît dans les travaux de (Hൺඋඍඅ et Pංඇ඄ [2004]).

Néanmoins on ne le considère pas ici comme un espace adique sur F mais sur E,

Y = D�F

Spa(F ) D�Fq
= Spa(Fq((�))):

loc. de type fini pas loc. de type fini

Il est préperfectoïde, siEjQp etE1 est le complété de l’extension engendrée par les points
de torsion d’un groupe de Lubin-Tate, l’espace Y ˆ̋E E1 est perfectoïde de basculé le
même espace associé à E[

1 i.e. D�;1/p1

F un disque perfectoïde épointé (Fൺඋ඀ඎൾඌ [2015c]
sec. 2.2).

L’algèbre de Fréchet O(Y ) est obtenue par complétion des fonctions holomorphes sur
Y , méromorphes le long des diviseurs (�) et ([$ ]),

A[ 1
�

; 1
[$ ]

];

relativement aux normes de Gauss j:j� pour des rayons � 2]0; 1[ˇ̌ X
n��1

[xn]�
n
ˇ̌
�
= sup

n
jxnj�n:

Un élément � =
P

n[xn]�
n 2 A est dit primitif de degré d > 0 si x0 ¤ 0, x0; : : : ; xd�1

2 mF et xd 2 O�F . Le produit d’un élément primitif de degré d par un de degré d 0 est
primitif de degré d + d 0 et on a donc une bonne notion d’élément primitif irréductible.
Deux tels éléments sont équivalents s’ils sont multiples par une unité dans A�. Le résultat
suivant est un un résultat clef pour toute la suite (on renvoie également aux articles de
revue Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2012], Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2011] et Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ
[2014]).

Théorème 1.1 (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017] théo. 2.4, coro. 2.2.23, théo. 3.1.11).
1. Si F est algébriquement clos alors tout élément primitif dans A irréductible est de

degré 1, équivalent à � � [a] avec 0 < jaj < 1. En d’autres termes, tout � primitif
a une factorisation (de Weierstrass)

� = u(� � [a1]) : : : (� � [ad ]); u 2 A�; 0 < jai j < 1:
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2. Pour � primitif irréductible dansA,A[ 1
�
]/(�) = O(Y )/(�) est un corps perfectoïde

de basculé une extension de degré deg(�) de F via x 7! [x] mod �. Cela induit une
équivalence

féléments primitifs irréductibles de degré 1g/ ∼ ∼
��! débasculements de F sur E:

Par définition les points classiques de Y , jY jcl , sont les zéros des éléments primitifs de
A. Les normes de Gauss j:j� sont multiplicatives et on dispose donc d’une bonne notion
de polygone de Newton pour les fonctions holomorphes f sur Y ainsi que sur ses cou-
ronnes, ceci par application d’une transformée de Legendre inverse appliquée à la fonction
concave ]0;+1[3 r 7! � log jf jq�r . Par « bonne notion de polygone de Newton » on
entend typiquement le fait que le polygone d’un produit est le concaténé des polygones
(Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [ibid., sec. 1], Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2014, sec. 1]). Par exemple, le
polygone de Newton de

P
n�0[xn]�

n 2 A[ 1
�

; 1
[$ ]

] est l’enveloppe convexe décroissante
des points (n; v(xn))n2Z. Si � =

P
n[xn]�

n est primitif de degré d on définit sa valuation
(la « distance à l’origine � = 0 dans le disque épointé Y ») comme étant 1

d
v(x0).

Théorème 1.2 (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017, théo. 3.4.4]).
1. Pour f 2 O(Y ) non nul les pentes de son polygone de Newton sont les valuations

des zéros de f dans jY jcl , f (y) = 0 avec y 2 jY jcl , comptées avec multiplicité
ordy(f ) deg(y) où la valuation ordy est celle de l’anneau de périodes de FontainebOY;y = B+

dR
(k(y)) associé au corps perfectoïde k(y).

2. L’algèbre de Banach des fonctions holomorphes sur une couronne compacte f�1 �

j�j � �2g de Y est un anneau principal de spectre maximal les éléments de jY jcl

dans cette couronne (à une unité près tout élément irréductible est primitif irréduc-
tible dans A).

Concrètement, siF est algébriquement clos et si � est une pente du polygone de f alors
f = (� � [a])g avec v(a) = � et la multiplicité de � dans le polygone de g est une de
moins. L’analyse p-adique d’une fonction d’une variable développée dans Lൺඓൺඋൽ [1962]
s’étend à ce cadre. On peut typiquement former des produits deWeierstrass et vérifier ainsi
que tout f 2 O(Y ) se met sous la formeY

n�0

�
1 �

[xn]
�

�
� g

avec xn ! 0, g sans zéros au voisinage de � = 0 et donc méromorphe en � = 0, de la
forme

P
n�0[xn]�

n avec xn 2 F et pour tout � 2]0; 1[, lim
n!+1

jxnj�n = 0 (Fൺඋ඀ඎൾඌ et
Fඈඇඍൺංඇൾ [2017] sec. 1.2). Cela permet de rendre concret les éléments de O(Y ) puisqu’en
général, sauf si bien sûr si E = Fq((�)), un tel élément n’admet pas de développement
unique en série de Laurent de la forme

P
n2Z[xn]�

n.
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1.2 La courbe schématique. L’espace Y est muni d’un Frobenius ' induit par le Fro-
benius x 7! xq de F . Les théorèmes de factorisation précédents permettent d’analyser
les périodes p-adiques. Typiquement un élément de O(Y )'=�d a un polygone de Newton
satisfaisant une équation fonctionnelle qui se résout facilement. On peut alors lui appliquer
les résultats de factorisation précédent. Utilisant ces résultats on obtient le théorème clef
suivant.

Théorème 1.3 (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017, théo. 6.2.1]). Si le corps F est algébrique-
ment clos l’algèbre de périodes P =

L
d�0 O(Y )'=�d est graduée factorielle i.e. le

monoïde abélien
`

d�0 Pd n f0g/E� est libre de base P1 n f0g/E�.

Concrètement, si f 2 Pd n f0g, f = f1 : : : fd avec fi 2 P1 et une telle écriture est
unique à des scalaires dans E� près. Ce théorème (qui se formule et se démontre sans es-
paces adiques) s’est récemment retrouvé de nouveau au coeur de résultats plus complexes
à priori, cf. proposition 3.2. Il est au coeur même de la courbe.

De la même façon, en utilisant ces résultats d’analyse concernant les fonctions deO(Y )

et leurs zéros, on donne une démonstration rapide de la suite exacte fondamentale de la
théorie de Hodge p-adique dans (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [ibid., théo. 6.4.1]). En combinant
ces divers résultats on obtient la construction de la courbe schématique.

Théorème 1.4 (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [ibid., théo. 6.5.2, 7.3.3]). Le schéma X = Proj(P )

est noethérien régulier de dimension 1, i.e. de Dedekind. De plus
1. Il y a un morphisme d’espaces annelés Y ! X qui induit une bijection jY jcl/'Z

! jX j (points fermés de X ) tel que si y 7! x alors k(y) = k(x) et B+
dR

(k(y)) =bOY;y = bOX;x .
2. La courbe est « complète » au sens où si pour x 2 jX j on pose deg(x) := [k(x)[ :

F ], alors pour tout f 2 E(X)�, deg(�f ) = 0.
3. Si F est algébriquement clos alors tout point est de degré 1, P1 n f0g/E�

∼
�! jX j

via t 7! V +(t). De plus OX (D+(t)) = O(Y )[ 1
t
]'=Id = Bcris(Ct )

'=Id est un
anneau principal où Ct est le corps résiduel en V +(t), C [

t = F .

1.3 La courbe adique. Comme on l’a dit précédemment l’espace Y est adique préper-
fectoïde. On définit alors la courbe adique comme étant

Xad = Y /'Z:

C’est un espace adique quasicompact partiellement propre (mais pas de type fini) sur
Spa(E). Il y a un morphisme d’espaces annelés Xad ! X qui identifie les points clas-
siques de Xad et les points fermés de X ainsi que les complétés des anneaux locaux cor-
respondants. Bien que non localement de type fini on sait que Y et Xad sont localement
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noethériens (Fൺඋ඀ඎൾඌ [2015c] conjecture 1 démontrée par Kൾൽඅൺඒൺ [2016a]). L’un des
intérêts de ce résultat est que du coup Y et Xad rentrent dans le cadre de la théorie « clas-
sique » développée par Hඎൻൾඋ [1996]. Ainsi, par exemple, si Z est un E-espace rigide
de Tate, i.e. un E-espace adique localement de type fini, on peut former l’espace adique
Xad � Z et regarder les faisceaux cohérents dessus lorsque Z varie (cf. Kൾൽඅൺඒൺ, Pඈඍ-
ඍඁൺඋඌඍ et Xංൺඈ [2014] pour une exemple d’une version non perfectoïde de cela).

1.4 Fibrés vectoriels. Bien que l’algèbre graduée de périodesP utilisée pour définirX

dépende du choix de � , X n’en dépend canoniquement pas. Ceci dit, le choix de � définit
un fibré « très ample » O(1) = eP [1] sur X tel que

P =
M
d�0

H 0(X; O(d )):

On suppose maintenant que F contient une clôture algébrique Fq de Fq . On note En

l’extension non ramifiée de degré n de E et Ĕ = bEnr muni de son Frobenius � . On a une
identification (l’indice E signifie la courbe associée au choix de E)

XE ˝E En = XEn

et le revêtement cyclique Xad
En

! Xad
E s’identifie à

Y /'nZ
�! Y /'Z:

Ainsi,
trivialisation du revêtement Y ! Y /'Z

Xad

monde perfectoïde:

ext. des scalaires non ramifiées

ext. des scalaires ramifiées

Pour tout � = d
h

2 Q, (d; h) = 1, on définit OX (�) comme étant le poussé en avant par le
revêtement étale fini XEh

! XE de OXEh
(d ). Un des points fondamentaux de la théorie

est maintenant le suivant : puisque la courbe est complète (théorème 1.4) on peut définir
naturellement le degré d’un fibré en droites et on dispose en particulier du formalisme des
filtrations de Harder-Narasimhan (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017] sec. 5.5). Ainsi le fibré
O(�) est stable de pente �.

Théorème 1.5 (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [ibid.] théo. 8.2.10). Supposons F algébriquement
clos.
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1. Pour tout � 2 Q, un fibré sur X est semi-stable de pente � si et seulement si il est
isomorphe à une somme directe de O(�).

2. La filtration de Harder-Narasimhan d’un fibré sur X est scindée.
3. L’application (�i )i 7! ˚i O(�i ) induit une bijection entre suites décroissantes de

nombres rationnels et classes d’isomorphisme de fibrés sur X .

Ce résultat ressemble fortement à une généralisation du théorème de Grothendieck
concernant la droite projective. Néanmoins sa preuve est beaucoup plus complexe car
contrairement à ‘1, H 1(X; O(�1)) ¤ 0 : si V +(t) = 1 avec t 2 P1 n f0g alors l’anneau
principal O(Y )[1/t ]'=Id muni du stathme �ord1 n’est pas euclidien ! La démonstration
de ce résultat utilise des résultats fins de théorie de Hodge p-adique concernant les périodes
de groupes p-divisibles et leurs liens avec les modifications de fibrés (cf. Section 1.7.2).

Lorsque le corps F n’est plus algébriquement clos des phénomènes monodromiques
apparaissent. On vérifie typiquement que pour t 2 P1 n f0g

Cl(O(Y )[1/t ]'=Id ) = Pic0(X) = Hom(Gal(F jF ); E�):

On a plus généralement le résultat suivant.

Théorème 1.6 (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017] théo. 9.3.1, du type Narasimhan Nൺඋൺඌංආ-
ඁൺඇ et Sൾඌඁൺൽඋං [1965]). Via le foncteur E 7! H 0(XbF ; EjXb

F

), la catégorie des fibrés

semi-stables de pente 0 sur XF est équivalente à celle des représentations p-adiques de
Gal(F jF ) à coefficients dans E.

Enfin, venons en au théorème GAGA.

Théorème 1.7 (GAGA, Fൺඋ඀ඎൾඌ [2015c] théo. 3.5, Kൾൽඅൺඒൺ et Lංඎ [2015] théo. 8.5.5).
L’image réciproque par le morphisme d’espaces annelés Xad ! X induit une équiva-
lence entre faisceaux cohérents sur X et Xad .

La première démonstration de ce résultat (Fൺඋ඀ඎൾඌ [2015c]) consistait à comparer le
théorème de classification 1.4 avec celui de Kൾൽඅൺඒൺ [2004] lorsque EjQp ou bien le
théorème d’Hartl Pink en égales caractéristiques (Hൺඋඍඅ et Pංඇ඄ [2004]). Plus précisément,
les fibrés vectoriels sur Xad s’identifient aux fibrés '-équivariants sur Y , qui eux-même
s’identifient aux germes de fibrés vectoriels '-équivariants au voisinage de � = 0 sur
Y (si U est un tel voisinage alors Y = [n�0'n(U )). L’anneau des germes de fonctions
holomorphes au voisinage de � = 0 s’identifie à l’anneau de Robba associé à F , et donc
les fibrés vectoriels sur Xad s’identifient aux '-modules sur cet anneau de Robba.

Kൾൽඅൺඒൺ et Lංඎ [2015] ont donné une autre démonstration reposant sur leur preuve du
fait que O(1) est ample sur Xad : pour tout fibré E sur Xad , pour d � 0, E(d ) est
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engendré par ses sections globales (bien sûr ce résultat est tautologique sur la courbe sché-
matique, c’est une des raisons pour laquelle elle est plus simple à manipuler, ce résultat
est intégré dans sa construction). Il s’agit de construire suffisamment de sections de E(d ),
d � 0, par un processus itératif convergeant (Kൾൽඅൺඒൺ et Lංඎ [ibid.] sec. 6.2), les mé-
thodes usuelles de séries de Poincaré (Cൺඋඍൺඇ [1958]) sur Y ne semblant pas fonctionner
(de plus, si F est algébriquement clos, on ne sait pas à l’avance que le tiré en arrière à Y

d’un fibré sur Xad est trivial, i.e. qu’un tel fibré est donné par un facteur d’automorphie,
alors que c’est une conséquence du théorème de classification).

Une façon plus intrinsèque d’exposer le théorème de classification des fibrés est d’utili-
ser les isocristaux tels qu’ils apparaissent dans le théorème deDieudonné-Manin ;'�ModĔ

qui est la catégorie des couples (D; ') où D est un Ĕ–espace vectoriel de dimension finie
et ' un automorphisme � -linéaire. L’espace Y vit au dessus de Spa(Ĕ). Dès lors on peut
construire pour un tel isocristal

E(D; ') = Y �'Z D �! Y /'Z = Xad

qui est un fibré trivialisé de fibre D sur Y ayant pour facteur d’automorphie ' agissant
sur D. Via GAGA cela correspond au fibré associé au P -module gradué ˚d�0(D ˝

O(Y ))'˝'=�d . Dès lors le théorème 1.5 s’énonce en disant que

E(�) : '�ModĔ �! Fibrés sur X

est essentiellement surjectif.

1.5 Simple connexité géométrique de la courbe. Du théorème de classification des
fibrés on peut déduire le résultat suivant.

Théorème 1.8 (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017] théo. 8.6.1). Si F est algébriquement clos
le schéma XE est simplement connexe : tout revêtement étale fini est scindé.

En d’autres termes�1(X) = Gal(EjE). Plus généralement, pourF quelconque,�1(X) =

Gal(F jF ) � Gal(EjE) (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [ibid.] théo. 9.5.1). On dispose du même
résultat, soit par la même méthode soit par GAGA, sur la courbe adique : les revêtements
étales finis de Spa(E) correspondent à ceux de Xad . Ce résultat a d’importantes applica-
tions. Il se réinterprète de façon formelle en disant que si F est algébriquement clos alors
le diamant au sens de Sർඁඈඅඓൾ [p. d., 2014] (cf. Fൺඋ඀ඎൾඌ [2017] par exemple pour ce
diamant en particulier et la Section 3.3)

Div1F = Spa(F ) � Spa(E)˘/'Z
E˘
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a pour �1 le groupe de Galois Gal(EjE) (Xad;˘
F et Div1F ont même catégorie de revête-

ments étales). On a
Spa(F ) � Spa(E)˘ = D

�;1/p1

F /O�E

un disque perfectoïde épointé divisé par l’action de Lubin-Tate de O�E (Fൺඋ඀ඎൾඌ [2015c]
sec.2 et Sർඁඈඅඓൾ [2014]). Dès lors, si F = C[

p on trouve comme corollaire du théo-
rème 1.8 que le groupe de Galois Gal(EjE) classifie les revêtements étales finis O�E -
équivariants de D�Cp

/'Z (Wൾංඇඌඍൾංඇ [2017]). Ce résultat a motivé l’article Kඎർඁൺඋർඓඒ඄
et Sർඁඈඅඓൾ [2016] de Kucharczyk et Scholze qui est la recherche d’un résultat analogue
sur les corps de nombres.

Le théorème 1.8 est également à la base de la preuve du lemme de Drinfeld-Scholze
(Sർඁඈඅඓൾ [2014]) qui affirme que « �1

�
(Div1)d

�
= �1(Div1)d » (cf. Fൺඋ඀ඎൾඌ [2017]

sec. 4 pour une signification précise de cet énoncé en termes de Div1).

1.6 Fibrés et espaces deBanach-Colmez. La découverte de la courbe remonte à l’étude
par Fontaine et l’auteur des résultats de Colmez sur les espaces de Banach de dimension
finie (Cඈඅආൾඓ [2002], Cඈඅආൾඓ [2008]). C’est en définissant des filtrations de Harder-
Narasimhan sur ceux-ci et en tentant de les classifier que nous sommes tombés sur la
courbe. Maintenant, le lien entre fibrés vectoriels sur la courbe et espaces de Banach-
Colmez est complètement clarifié par le théorème suivant.

Théorème 1.9 (Lൾ Bඋൺඌ [2017]). Supposons que F = C [ avec C algébriquement clos.

1. La catégorie des espaces de Banach-Colmez est la plus petite sous-catégorie abé-
lienne de la catégorie des faisceaux pro-étales de E-espaces vectoriels sur Spa(C )

contenant Ga, E et stable par extensions.

2. Le foncteur cohomologie relative induit une équivalence entre le coeur dansDb
coh

(OX )

de la t -structure
— dont la partie� 0 est formée des complexes E� satisfaisantHi (E�) = 0 si i > 0

et H0(E�) est à pentes de HN � 0,
— la partie � 0 des complexes satisfaisant Hi (E�) = 0 si i < �1 et H�1(E�) est

à pentes de HN < 0,
et la catégorie des espaces de Banach-Colmez.

3. L’équivalence précédente s’étend en une équivalence dérivée.

Ici par cohomologie relative on entend la chose suivante. On peut définir un morphisme
de (gros) topos pro-étales

� : (Xad
C [ )

e
pro-ét �! Spa(C [)epro-ét = Spa(C )epro-ét
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grâce à la fonctorialité de la courbe adique : S 7! Xad
S (cf. Section 3.1) où S est un espace

perfectoïde sur Spa(Fq). Dès lors, si E� est un complexe de faisceaux cohérents sur Xad
C [

on peut définir R��E
�.

Certains de ces faisceaux de cohomologie relative, ceux associés aux fibrés vectoriels à
pentes dans [0; 1], sont représentables par des C -espaces perfectoïdes du type lim

 �
�p

Grig où

G est un groupe formel p-divisible surOC (cf. sec. 4 de Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017], c’est
ce que Scholze et Weinstein ont appelé plus tard le revêtement universel d’un groupe p-
divisible (Sർඁඈඅඓൾ etWൾංඇඌඍൾංඇ [2013]). Néanmoins en général ils ne sont représentables
que par des diamants (et ces espaces de Banach-Colmez ont probablement été une forte
source d’inspiration pour l’introduction par Scholze de la théorie des diamants).

Via le théorème de classification des fibrés 1.5 cela fournit une classification des es-
paces de Banach-Colmez. Remarquons que la t-structure intervenant dans ce dernier théo-
rème est analogue à celle utilisée par Bridgeland (Bඋංൽ඀ൾඅൺඇൽ [2006]) qui a été une ins-
piration pour ce résultat.

Dans ce cadre là, Fontaine a récemment fait le lien entre le coeur de la t -structure
analogue sur les fibrés Galois équivariants et sa théorie des presque Cp-représentations
(Fඈඇඍൺංඇൾ [2003]). Cela permet de boucler la boucle puisque cette théorie a été une forte
inspiration pour la théorie des espaces de Banach-Colmez (Fඈඇඍൺංඇൾ [ibid.] sec. 4.1 par
exemple).

Enfin, les résultats de Bൾඋ඀ൾඋ [2008a] clarifient complètement le lien entre fibrés Ga-
lois équivariants et la théorie « classique » des (';Γ)-modules : si K est de valuation
discrète à corps résiduel parfait,C = bK etF = C [ alors la catégorie des fibrés Gal(KjK)-
équivariants sur la courbe est équivalente à celle des (';Γ)-modules.

1.7 Modifications de fibrés et théorie de Hodge p-adique.

1.7.1 Faiblement admissible implique admissible. La première application que nous
avons donnée de la courbe avec Fontaine dans Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017], sec. 10, est
une nouvelle preuve du théorème « faiblement admissible équivalent à admissible » de
Cඈඅආൾඓ et Fඈඇඍൺංඇൾ [2000], Bൾඋ඀ൾඋ [2008b]). C’était la seconde fois, après la preuve du
théorème de classification des fibrés, que sont apparues naturellement les modifications de
fibrés qui sont devenues essentielles dans la suite (dans l’exposé Fൺඋ඀ඎൾඌ [2010a], p.53,
on dit appliquer une correspondance de Hecke lorsqu’on modifie un fibré).

Plus précisément, prenons E = Qp et soit KjQ̆p une extension de degré fini. On note
C = bK et Γ = Gal(KjK). La courbe associée à C [ est munie d’une action de Γ et d’un
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point fermé 1 de corps résiduel C invariant sous l’action de Γ. Cette action « arithmé-
tique » de Γ rigidifie complètement la situation. On a en effet les propriétés suivantes :

1. 1 est le seul point fermé dont la Γ-orbite soit finie et donc la catégorie des fibrés Γ-
équivariants sur X nf1g est abélienne (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017] 10.1.1, 10.1.3)

2. si (D; ') 2 '�ModQ̆p
alors les sous-fibrés Γ-invariants de E(D; ')jXnf1g sont

en bijection avec les sous-isocristaux de (D; ') (Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [ibid.] théo.
10.2.14).

Soit donc (D; ') 2 '�ModQ̆p
un isocristal. On s’intéresse auxmodificationsΓ-équivariantes

de E(D; ') en 1. Ce fibré est trivialisé en 1 et 2E(D; ')1 = D ˝ B+
dR

= DK ˝K B+
dR

.
On dispose maintenant de l’énoncé suivant : pour W un K-espace vectoriel de dimension
finie il y a une bijection

Filtrations de W
∼

��! réseaux Γ-invariants dans W ˝ BdR

Fil�W 7�! Fil0(W ˝ BdR):

Du point de vue « de la grassmanienne affine » (Sർඁඈඅඓൾ [2014] où Scholze montre
que l’on peut mettre une structure de ind-diamant sur ces objets), si � est un cocaractère
diagonal dominant à valeurs dans GLn et

Gr� = GLn(B
+
dR

)�(t)GLn(B
+
dR

)/GLn(B
+
dR

)

est une cellule de Schubert affine (comme ensemble), il y a une application de Bialynicki-
Birula (Cൺඋൺංൺඇං et Sർඁඈඅඓൾ [2017, prop. 3.4.3] pour la version en familles pour n’im-
porte quel groupe)

Gr� �! GLn(C )/P�(C ):

Le résultat précédent dit que cela induit une bijection

GrΓ�
∼

��! GLn(K)/P�(K):

Il s’agit là d’un résultat analogue au résultat « classique » sur C qui dit que pour l’action
de Gm sur la cellule affine Gr�, avec ici Gr(C) = GLn

�
C((t))

�
/GLn

�
CJtK�, induite par

�:t = �t avec � 2 Gm, alors
GrGm

�

∼
��! G/P�:

Du point de vue des espaces de lacets cette action algébrique de Gm correspond à l’action
de U (1) de rotation des lacets. Il y a donc une forte analogie entre U (1) et Γ. Par exemple,
pour � 2 Γ, �(t) = �cyc(�)t où ici t est le 2i� p-adique de Fontaine.

Il résulte de cela que les modifications Γ-équivariantes de E(D; ') sont en bijection
avec les filtrations de DK . Partant donc d’un '-module filtré (D; '; Fil�DK) au sens
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de Fontaine (Fඈඇඍൺංඇൾ [1994b]) on en déduit par modification un fibré Γ-équivariant
E(D; '; Fil�DK). Sa filtration de Harder-Narasimhan est Γ-invariante et provient donc
d’une filtration de (D; '). Partant de là « le théorème faiblement admissible » implique
admissible est une conséquence facile du théorème de classification des fibrés qui im-
plique que dimE H 0(X; F ) = rg(F ) ssi F est semi-stable de pente 0.

On donne également dans Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017], sec. 10.6, une preuve du théo-
rème de la monodromie p-adique (de Rham implique potentiellement semi-stable (Cඈඅ-
ආൾඓ [2003])) en utilisant la courbe.

1.7.2 Modifications de fibrés et groupes p-divisibles. La preuve du théorème de clas-
sification des fibrés utilise de façon fondamentale deux résultats sur les modifications de
fibrés qui se déduisent de résultats sur les périodes de groupes p-divisibles. C’est au cours
de cette preuve que l’auteur a commencé à s’intéresser aux liens entre groupesp-divisibles
et modifications de fibrés. Plus précisément, supposons que E = Qp et F = C [ avec
C jQp algébriquement clos. Si BTOC

désigne les groupes de Barsotti-Tate sur OC il y a
un foncteur

M : BTOC
˝ Q �!

�
modifications minuscules de fibrés en 1

F ,! E avec F semi-stable de pente 0 i.e. trivial

�
:

Ce foncteur admet les deux descriptions suivantes, si G 7! [F ,! E],
— [Périodes de de Rham] On a F = Vp(G) ˝ OX et E = E(D; p�1') où (D; ')

est le module de Dieudonné covariant de GkC
. Le morphisme F ,! E est alors

donné par une application linéaire

Vp(G) ! H 0(E(D; p�1')) = (D ˝ O(Y ))'=p

qui est une application de périodes cristallines de Fontaine. Le faisceau
coker(F ! E) est alors le faisceau gratte-ciel Lie(G)

�
1
p

�
en 1.

— [Périodes de Hodge-Tate] Il y a un morphisme de Hodge-Tate ˛GD : Vp(GD) !

!G

�
1
p

�
(Fඈඇඍൺංඇൾ [1981], Fൺඋ඀ඎൾඌ [2008], Fൺඋ඀ඎൾඌ [2011]) qui induit une surjec-

tion Vp(GD)˝OX � i1�!G

�
1
p

�
et donc une modification. La modification duale

de cette modification est [F ,! E].
Ces deux types de périodes ont été unifiées plus tard via l’introduction des '-modules

surAinf (cf. Section 1.7.3). Le théorème de classification des fibrés utilise les deux résultats
suivants :

1. (Lafaille/Gross-Hopkins) Tout élément de ‘n�1(C ) est la période de de Rham d’un
groupe formel de hauteur n et de dimension 1
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2. (Drinfeld) Tout élément de P n�1(C ) n
S

H2‘̌n�1(Qp) H (C ) est la période de de
Rham d’un OD-module formel spécial et donc (principe des tours jumelles, cf. Sec-
tion 2.3) la période de Hodge-Tate d’un groupe formel de hauteur n et de dimension
1.

Via le foncteur M le point (1) implique que toute modification de degré 1 de O( 1
n
) est

isomorphe à On. Le point (2) implique que tout modification de degré �1 de On est iso-
morphe à On�r ˚ O( 1

r
), 1 � r � n (cf. sec. 8.3 de Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017]).

Réciproquement, le théorème de classification fournit de nouveaux résultats concernant
les espaces de périodes p-adiques (cf. Section 2.3). Ainsi, la courbe est une machine qui
recycle les deux résultats précédents pour en produire de nouveaux.

La catégorie de modifications précédente dans le but de M s’identifie (du point de
vue des périodes de Hodge-Tate) à celle des couples (V; W ) où : V est un Qp-espace
vectoriel de dimension finie et W � VC est un sous-espace. On introduit dans Fൺඋ඀ඎൾඌ
[2013] la notion de groupes rigides analytiques de type p-divisible. Il s’agit de groupes
rigides analytiques abéliens G sur C tels que

— �p : G ! G est surjectif de noyau fini
— �p : G ! G est topologiquement nilpotent i.e. « G est topologiquement de p1-

torsion ».
On a alors le théorème suivant.

Théorème 1.10 (Fൺඋ඀ඎൾඌ [ibid.]). 1. Le foncteur G 7! Grig de la catégorie des groupes
formels p-divisibles sur OC vers les groupes rigides analytiques de type p-divisible
est pleinement fidèle, d’image essentielle les groupes G tels que G ' B̊d

C comme
espaces rigide pour un entier d .

2. La catégorie des groupes rigides analytiques p-divisibles s’identifie à celle des tri-
plets (Λ; W; u) où Λ est un Zp-module libre de rang fini, W un C -espace vectoriel
de dimension finie et u : W ! ΛC est C -linéaire.

Dans le point (2), au triplet (Λ; W; u) on associe le groupe rigide analytique
(log˝Id )�1(W ˝ Ga) dans la suite exacte

0 �!
�
Λ

�
1
p

�
/Λ

�
(1) �! bGrig

m ˝Zp
Λ

log˝Id
������! Ga ˝ ΛC �! 0:

Les groupesG associés aux triplets (Λ; W; u) avec u injectif correspondent aux groupesG

«hyperboliques » i.e. tels que tout morphisme rigide analytiqueA1 ! G soit constant. Les
groupes rigides analytiques de type p-divisible hyperboliques à isogénie près sont donc
équivalents aux modifications minuscules dans le but du foncteur M. Ce même foncteur
M est donc de plus pleinement fidèle d’après le point (1) du théorème précédent. Scholze
et Weinstein on complété ce résultat en montrant qu’il est en fait essentiellement surjectif.
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Théorème 1.11 (Sർඁඈඅඓൾ et Wൾංඇඌඍൾංඇ [2013]). Le foncteur M est une équivalence de
catégories.

Leur preuve consiste àmontrer que siC est sphériquement complet avec comme groupe
de valuations R, alors pour tout groupe rigide analytique de type p-divisible G « hyperbo-
lique» on aG ' B̊d

C . Ils montrent ensuite que l’on peut descendre du casC sphériquement
complet au cas C quelconque en utilisant le fait que les orbites de Hecke, comme fibres
des applications de périodes de de Rham de Rapoport-Zink, sont des espaces rigides de
dimension 0.

1.7.3 '-modules sur Ainf et modifications de fibrés. Il s’est alors posé la question
de savoir comment faire le lien par un objet intermédiaire entre périodes de Hodge-Tate
et de de Rham. Le point de départ est la remarque suivante qui résulte du théorème de
factorisation 1.3 : les modifications de O ,! O(d ) sont toutes obtenues par un procédé
itératif qui est le suivant. Partant de � primitif de degré d tel que � =

P
n�0[xn]�

n avec
xd 2 1 + mF on peut former le produit de WeierstrassY

n�0

'n(�)

�d
� «

Y
n<0

'n(�) » 2 O(Y )'=�d

le produit entre guillemets n’étant pas convergeant mais pouvant être défini comme so-
lution de l’équation fonctionelle '(x) = �x dans A (cf. Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017]
sec. 6.3). Cela a conduit (Fൺඋ඀ඎൾඌ [2015c]) à la « version perfectoïde » suivante des '-
modules de Breuil-Kisin (Kංඌංඇ [2006]). Soit � primitif de degré 1 qui engendre le noyau
de � : A ! OC . Par définition un '-module sur A est un couple (M; ') où M est un
A-module libre et ' : M ! M est semi-linéaire de conoyau annulé par une puissance de
� . On a alors le résultat suivant.

Théorème 1.12 (Fൺඋ඀ඎൾඌ [2015c], Sർඁඈඅඓൾ [2014]). Il y a une anti-équivalence entre
'�ModA et la catégorie des modifications de fibrés en 1, F ,! G avec F trivial muni
d’un réseau dans H 0(X; F ).

Partant d’un '-module (M; ') on construit un « Shtuka » (M; ') = (M ˝ OY ; ' ˝ ')

sur Y dont le zéro est localisé en V (�), coker(M
'
�! M) est supporté en V (�). On forme

alors (Fൺඋ඀ඎൾඌ [2015c] sec. 4.4)

M1 = lim
 �

n�0 'n�M et M1 = lim
�!

n�0 'n�M;

(opération qui est l’analogue du produit de Weierstrass précédent pour GL1). Puisque
' « dilate sur le disque épointé Y » les deux limites précédentes sont essentiellement
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constantes sur tout ouvert quasicompact de Y , et M1 et M1 sont donc des fibrés '-
équivariants i.e. des fibrés sur Xad . La modification associée à (M; ') est alors la duale
de M1 ,! M1.
Dans l’autre sens une telle modification fournit par un procédé inverse un tel Shtuka
(M; ') sur Y . On utilise alors la compactification par deux diviseurs (Sർඁඈඅඓൾ [2014])

Y = Spa(A;A) n V (�; [$ ]) = Y [ V (�) [ V ([$ ]):

En utilisant le théorème 11.1.7 de Fൺඋ඀ඎൾඌ et Fඈඇඍൺංඇൾ [2017] on vérifie que M s’étend
automatiquement grâce à la structure de Frobenius le long du diviseur ([$ ]). En utili-
sant la condition de trivialité de F couplée au choix du réseau dans H 0(X; F ) on vé-
rifie que M s’étend en � = 0. Le fibré M s’étend donc canoniquement à Y. On peut
alors appliquer le résultat GAGA de Kedlaya (Kൾൽඅൺඒൺ [2016b]) qui dit que les fibrés sur
Spec(A) n V (�; [$ ]) et Spa(A;A) n V (�; [$ ]) s’identifient et que ceux-ci sont triviaux
pour conclure (A se comporte en quelque sorte comme un anneau local régulier de dimen-
sion 2).

Partant de (M; ') 2 '�ModA, si (N; ') = (M; ') ˝ OY :
— si V (�) = fyétg (diviseur étale) : (Nyét ; ') fournit le fibré trivial F _ ainsi que le

réseau dans H 0(X; F _),
— si V ([$ ]) = fycrisg (diviseur cristallin) : (Nycris ; ') fournit le fibré G_ qui est

associé à l’isocristal (Nycris ˝ k(ycris); '),
— siV (�) = fydRg (diviseur de deRham) : l’inclusion deB+

dR
-réseaux' : bN'(ydR) ,!bNydR fournit la filtration de Hodge i.e. la modification G_ ,! F _.

C’est en ce sens là que l’on a unifié les différentes périodes. On renvoie à Sർඁඈඅඓൾ [2014]
pour plus de détails.

Comme corollaire du théorème précédent on déduit comme dans Kංඌංඇ [2006] que la
catégorie des groupes p-divisibles sur OC s’identifie à celle des '-modules surA, (M; '),
tels que coker' soit annulé par � (Fൺඋ඀ඎൾඌ [2015c] sec 4.8). Ce résultat a été repris par Lau
sur des bases affinoïdes perfectoïdes plus générales dans Lൺඎ [2016] par les méthodes de
Displays/Windows de Zink. Remarquons enfin que surOC l’hypothèse p ¤ 2 de Fൺඋ඀ඎൾඌ
[2015c] et Lൺඎ [2016] n’est en fait pas nécessaire puisque tout groupe p-divisible G sur
OC est somme directe d’un groupe étale et d’un groupe connexe.

Si X est un schéma propre et lisse sur OK de valuation discrète à corps résiduel parfait
avec C = bK, les différents théorèmes de comparaison cristallins/semi-stables (Fඈඇඍൺංඇൾ
et Mൾඌඌංඇ඀ [1987], Tඌඎඃං [1999], Nංඓංඈඅ [2008] par exemple) fournissent automatique-
ment de telles modifications de fibrés avec F = H �ét(XK ; Qp) ˝ OX et G = E(D; '),
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(D; ') étant la cohomologie cristalline de la fibre spécialeXkK
. On peut donc définir grâce

à 1.12 une théorie cohomologique sur de tels X à valeurs dans les '-modules sur A.
À la suite de cela Bhatt, Morrow et Scholze (Bඁൺඍඍ, Mඈඋඋඈඐ et Sർඁඈඅඓൾ [2015],

Bඁൺඍඍ, Mඈඋඋඈඐ et Sർඁඈඅඓൾ [2016]) ont défini de manière géométrique une telle théorie
cohomologique sur les schémas formels propres et lisses sur OC , à valeurs dans des com-
plexes de '-modules sur A et ont donné des applications à l’étude de la torsion dans la
cohomologie étale de ces variétés. Le point est qu’ils ne construisent pas seulement des '-
modules surAmais plutôt un complexe de cohomologie, ce qui raffine la construction pré-
cédente et donne des informations sur la torsion. En effet, l’équivalence du théorème 1.12
n’est pas une équivalence exacte et ne passe pas aux complexes de cohomologie.

Notons également que Niziol a interprété la cohomologie syntomique géométrique en
termes de fibrés sur la courbe dans Nංඓංඈඅ [p. d.]. Plus précisément, la cohomologie de
Deligne s’interprète parfois comme groupes d’extensions de structures de Hodge mixtes,
les régulateurs archimédiens envoyant une extension de motifs mixtes sur l’extension cor-
respondante de structures de Hodge. Niziol donne une interprétation similaire dans Nංඓංඈඅ
[ibid.] pour la cohomologie syntomique en termes d’extensions de modifications de fibrés
vectoriels.

Enfin concluons par la conjecture suivante, apparue au cours de nombreuses discus-
sions avec Le Bras et Scholze, également inspirée par les travaux de Colmez et Niziol
(Cඈඅආൾඓ et Nංඓංඈඅ [2017] sec. 5.2 où les espaces de Banach-Colmez apparaissent natu-
rellement) qui devrait généraliser la cohomologie de Hyodo-Kato des schémas propres et
lisses à réduction semi-stable.

Conjecture 1.13. Soit C jQp complet et algébriquement clos. On peut définir une théorie
cohomologique sur les C -espaces rigides lisses quasicompacts séparés, à valeurs dans
les fibrés vectoriels sur la courbe associée à C [ qui généralise la cohomologie de Hyodo-
Kato des schémas propres et lisses à réduction semi-stable. Cette théorie cohomologique
devrait se factoriser par la catégorie des motifs rigides de Ayoub (Aਙਏਕਂ [2015]).

On espère même la construction d’un complexe de cohomologie dans Db
coh

(OX ). Par
semi-simplification de la filtration de Harder-Narasimhan cela fournirait une théorie coho-
mologique à valeurs dans les isocristaux. Cependant la conjecture précédente est plus sub-
tile puisqu’on prédit l’existence d’un relèvement au niveau des fibrés. Bien sûr si C = bK
cela devrait définir une théorie cohomologique sur de telsK-espaces rigides à valeurs dans
les fibrés Galois équivariants.

2 Géométrisation de l’ensemble de Kottwitz et applications
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2.1 Géométrisation. Dans cette section X est la courbe associée à un corps F algé-
briquement clos et E comme précédemment. Soit G un groupe réductif sur E. On consi-
dère l’ensemble de Kottwitz B(G) = G(Ĕ)/� -conj: des classes d’isomorphismes de
G-isocristaux. Ici par � -conjugaison on entend b ∼ gbg�� . Si b 2 G(Ĕ) on peut lui
associer un G-fibré sur X par composition

Rep(G) �! '�ModĔ

E(�)
����! fibrés sur X

(V; �) 7�! (VĔ ; �(b)�
�
:

On le note Eb et on le voit également comme un G-torseur étale. Tiré en arrière sur la
courbe adique il s’agit du Gan-torseur localement trivial pour la topologie adique

Y �'Z Gan

Ĕ

où ' agit sur GĔ via b� . Le théorème principal de Fൺඋ඀ඎൾඌ [2016a] est alors le suivant (cf.
Aඇඌർඁඳඍඓ [2017] pour le cas E = Fq((�))). Il s’agit d’une généralisation du théorème
de classification 1.5.

Théorème 2.1 (Fൺඋ඀ඎൾඌ [2016a], Aඇඌർඁඳඍඓ [2017]). Il y a une bijection d’ensembles
pointés

B(G)
∼

��! H 1
ét(X; G)

[b] 7�! [Eb]:

Ce résultat est utilisé dans Cൺඋൺංൺඇං et Sർඁඈඅඓൾ [2017] afin de construire des applica-
tions de périodes de Hodge-Tate pour des variétés de Shimura de type Hodge et stratifier
par un ensemble de Kottwitz la variété de drapeaux au but de ces applications de périodes.

Cette bijection satisfait des propriétés très agréables :
— Il y a un dictionnaire entre théorie de la réduction de Harder-Narasimhan/ Atiyah-

Bott et la description par Kottwitz de B(G). Par exemple :
— b est basique ssi Eb est semi-stable
— le polygone de Harder-Narasimhan f�Eb

g vu comme classe de conjugaison géo-
métrique de cocaractère D ! GF est égal à f��1

b
g l’inverse du polygone de

Newton.
— L’application � : B(G) ! �1(G)Γ de Kottwitz s’interprète comme l’opposé d’une

première classe de Chern d’un G-fibré.
— On dispose d’un analogue du théorème de Drinfeld-Simpson : lorsque G est quasi-

déployé, pour tout point fermé 1 2 jX j, EjXnf1g est trivial. Les fibrés sur X s’ob-
tiennent ainsi par recollement « à la Beauville-Laszlo » et donc si f1g = V +(t), de
corps résiduel C , le groupoïde des G-fibrés sur X s’identifie au groupoïde quotient�

G
�
O(Y )[ 1

t
]'=Id

�
nG(BdR(C ))/G(B+

dR
(C ))

�
:
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2.2 Interprétation géométrique de certains résultats de Tate. On suppose dans cette
section que EjQp . Durant la démonstration du théorème 2.1 est apparu un lien intéressant
entre théorie du corps de classe et fibrés sur la courbe. Par exemple, si B est une algèbre à
division sur E, d’après la théorie du corps de classe (calcul du groupe de Brauer), il existe
un isocristal isocline (D; ') tel que B ' End (D; '). On a alors

B ˝E OX
∼

��! End (E(D; ')):

Il en résulte que le morphisme Br(E) ! Br(X) est nul. Partant de ce résultat on démontre
dans Fൺඋ඀ඎൾඌ [2016a] que le groupe de Brauer Br(X) est nul. On conjecture même en
fait que le corps des fonctions de X est (C1) (Fൺඋ඀ඎൾඌ [ibid.]).

On peut aller plus loin dans les liens entre corps de classe et cohomologie de la courbe.
On note Γ = Gal(EjE). D’après le théorème 1.8 les systèmes locaux étales finis sur X

correspondent par tiré en arrière via X ! Spec(E) aux Γ-modules discrets finis. On a
alors le résultat suivant.

Théorème 2.2 (Fൺඋ඀ඎൾඌ [ibid.]). Soit M un Γ-module discret fini et F le faisceau étale
localement constant associé sur X par tiré en arrière via X ! Spec(E). On a alors :

1. H �(E; M )
∼

��! H �ét(X; F ).
2. Via cet isomorphisme pour M = Z/nZ(1), la classe fondamentale de la théorie du

corps de classe correspond à la classe fondamentale de la courbe �X = c1(O(1)) 2

H 2
ét(X; Z/nZ(1)), c’est à dire la classe de cycle d’un point fermé sur la courbe.

On peut ainsi réinterpréter (mais pas redémontrer complètement jusqu’à maintenant i.e.
par des méthodes purement géométriques) géométriquement les deux théorèmes suivants
de Tate :

1. La dualité de Tate-Nakayama s’interprète comme la dualité de Poincaré sur la
courbe.

2. La formule de Tate pour la caractéristique d’Euler-Poincaré de la cohomologie ga-
loisienne s’interprète comme une formule de Grothendieck-Ogg-Shafarevich.

On espère pouvoir étudier les systèmes locaux sur des ouverts de la courbe ainsi que
leur cohomologie (cf. Fൺඋ඀ඎൾඌ [ibid.] sec. 3.3 pour des conjectures précises et également
Fൺඋ඀ඎൾඌ [2015a] sec. 7 pour une description conjecturale du groupe fondamental d’un
ouvert).

2.3 Application aux espaces de périodes p-adiques. Rapoport a donné une première
application du théorème 2.1 aux espaces de périodes de Rൺඉඈඉඈඋඍ et Zංඇ඄ [p. d.] dans
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Rൺඉඈඉඈඋඍ [p. d.] en montrant que le lieu admissible coïncide avec toute la variété de
drapeaux uniquement dans le cas Lubin-Tate et son dual de Cartier. Il faut faire attention
ici que, bien que le théorème de Colmez-Fontaine dise que « admissible est équivalent
à faiblement admissible », du point de vue géométrique des espaces de périodes cela dit
uniquement que les lieux admissible et faiblement admissible ont mêmes points à valeurs
dans des corps p-adiques de valuation discrète, mais ils ne sont pas égaux en général.

Rappelons le contexte de ce type de problème (Rൺඉඈඉඈඋඍ et Zංඇ඄ [p. d.],Dൺඍ, Oඋඅං඄ et
Rൺඉඈඉඈඋඍ [2010]). On fixe une classe de conjugaison géométrique de cocaractère minus-
cule f�g à valeurs dans G et on regarde la variété de drapeaux associée F (G; �) comme
espace adique sur le complété de l’extension maximale non ramifiée du corps de défini-
tion de f�g. On fixe un isocristal avec G-structure [b] 2 B(G; �), l’ensemble de Kottwitz
(Kඈඍඍඐංඍඓ [1997]) qui paramètre les strates de Newton dans les variétés de Shimura dont
la donnée induit (G; �) localement en p (la non vacuité des strates de Newton associées
à un élément de B(G; �), conjecturée dans Fൺඋ඀ඎൾඌ [2004], est connue dans de très nom-
breux cas maintenant). On regarde le lieu faiblement admissible F (G; �; b)fa, un ouvert
partiellement propre obtenu en enlevant un nombre fini de Jb(E)-orbites de variétés de
Schubert où la condition de faible admissibilité de Fontaine n’est pas satisfaite. Rapoport
et Zink avaient conjecturé dans Rൺඉඈඉඈඋඍ et Zංඇ඄ [p. d.] l’existence d’un ouvert

F (G; �; b)a � F (G; �; b)fa

ayant même points classiques de Tate (à valeurs dans un corps de valuation discrète) que
F (G; �)a, ainsi que l’existence d’un E-système local étale avec G-structure dessus qui
interpolerait les représentations cristallines à valeurs dans G(E) en les points classiques.
Ces dernières représentations sont fournies par Fontaine via le théorème « faiblement ad-
missible équivalent à admissible » en ces points. L’existence de cet ouvert est maintenant
connue grâce à la courbe, les travaux de Kedlaya-Liu (Kൾൽඅൺඒൺ et Lංඎ [2015], cf. le point
(1) du théorème 3.1) et de Scholze (Sർඁඈඅඓൾ [p. d.]), cf. sec. 3 de Cඁൾඇ, Fൺඋ඀ඎൾඌ et
Sඁൾඇ [2017] pour un rapide survol. Grâce à cela on peut construire les variétés de Shi-
mura locales associées (Rൺඉඈඉඈඋඍ et Vංൾඁආൺඇඇ [2014]) comme espace de réseaux dans
ce système local (de Jඈඇ඀ [1995]).

Dans Hൺඋඍඅ [2013] Hartl classifie les � minuscules associés à G = GLn tels que
F a = F fa. Inspirés entre autre par ce résultat, Rapoport et l’auteur ont conjecturé le résultat
suivant qui est maintenant démontré.

Théorème 2.3 (Cඁൾඇ, Fൺඋ඀ඎൾඌ et Sඁൾඇ [2017]). Pour [b] 2 B(G; �) basique sont équi-
valents

1. F (G; �; b)a = F (G; �; b)fa.

2. L’ensemble B(G; �) est pleinement HN décomposable.
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Par définition l’ensemble B(G; �) est pleinement HN décomposable si pour tout [b0] 2

B(G; �) non basique son polygone de Newton, comme élément d’une chambre de Weyl
positive, « touche le polygone de Hodge défini par � en dehors de ses extrémités ». Les
espaces/variétés de Shimura associés aux ensembles B(G; �) pleinement HN décompo-
sables jouissent de propriétés tout à fait remarquables (Gඈൾඋඍඓ, Hൾ et Nංൾ [2016]). Le
premier exemple de tel ensemble qui a intrigué l’auteur remonte à « l’astuce de Boyer »
aka la décomposition de Hodge-Newton (Bඈඒൾඋ [1999] pour l’astuce originelle, Hൺඋඋංඌ
et Tൺඒඅඈඋ [2001] pour sa variante variétés de Shimura, Mൺඇඍඈඏൺඇ [2008], Mൺඇඍඈඏൺඇ et
Vංൾඁආൺඇඇ [2010], Sඁൾඇ [2014b] pour des généralisations au cas des variétés de Shimura,
Gඈൾඋඍඓ, Hൾ et Nංൾ [2016] pour le cas de la fibre spéciale, Hൺඇඌൾඇ [2016] and Gൺංඌංඇ et
Iආൺං [2016] pour des versions ”modernes” dans le cadre des espaces de module de Shtukas
locaux).

Voici un exemple de (2) ) (1) dans le théorème précédent. Il avait été traité aupara-
vant (Fൺඋ඀ඎൾඌ [2015b], appendice de Sඁൾඇ [2016]) et a servi de guide dans la démonstra-
tion de (2) ) (1).

Corollaire 2.4 (Application de la courbe aux surfaces). Supposons p ¤ 2. Soit F = fq =

0g � ‘20
Q̆p

la variété de drapeaux formées des droites isotropes pour la forme quadratique

q telle que q(x) =
P21

i=1 xi x22�i . Soit Z = fx12 = � � � = x21 = 0g \ F , une variété de
Schubert pour G = SO(q). L’espace des périodes p-adiques des surfaces K3 polarisées
à réduction supersingulière s’identifie à F n G(Qp) � Z.

La démonstration du théorème 2.3 repose sur la construction suivante. À
x 2 F (G; �)(C ) est associé une modification Eb;x de Eb . En effet, Eb est canonique-
ment trivialisé en 1 et on utilise le fait que � est minuscule afin d’associer à un tel x une
donnée de modification dans G(BdR)/G(B+

dR
). Via le théorème 2.1 la classe d’isomor-

phisme de Eb;x fournit un élément de B(G). On peut classifier ces éléments possibles par
un autre ensemble (fini) de Kottwitz B(G; 0; �b��1) (Rൺඉඈඉඈඋඍ [p. d.] coro. 0.10, Cඁൾඇ,
Fൺඋ඀ඎൾඌ et Sඁൾඇ [2017] sec. 4). Cela fournit une stratification de F (G; �), la strate ou-
verte étant celle associée à [1] 2 B(G) qui est exactement l’ouvert admissible i.e. le lieu
où le G-fibré Eb;x est trivial (cf. Cඁൾඇ, Fൺඋ඀ඎൾඌ et Sඁൾඇ [ibid.] sec. 5). C’est l’étude de
cette stratification qui mène à la preuve du théorème 2.3. Ce type de stratification apparaît
également dans Cൺඋൺංൺඇං et Sർඁඈඅඓൾ [2017] par le même type de construction. En effet,
les périodes de Hodge-Tate et de de Rham de la Section 1.7.2 s’interprètent agréablement
au sens où si Eb Ý E1 est une modification minuscule de type � en 1 :

— sa période de de Rham est donnée par l’élément x 2 F (G; �)(C ) qui identifie la
modification à Eb Ý Eb;x

— sa période de Hodge-Tate est donnée par l’élément y 2 F (G; ��1)(C ) qui identifie
la modification à E1;y Ý Eb .
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Ces périodes de Hodge-Tate et de de Rham sont l’ombre de deux pattes du champ de
Hecke des modifications des G-fibrés (cf. Section 3.3). Ce type de considérations sur les
périodes de Hodge-Tate et de de Rham a été une très forte inspiration pour l’introduction
de la conjecture de géométrisation de la Section 3.

Puisque nous l’utilisons dans la preuve du théorème 2.3, remarquons que la considéra-
tion desG-fibrés sur la courbe, pourG quelconque, clarifie complètement l’isomorphisme
entre les tours jumelles de Fൺඅඍංඇ඀ඌ [2002] et Fൺඅඍංඇ඀ඌ [2004] (cf. également Fൺඋ඀ඎൾඌ
[2008] et Sർඁඈඅඓൾ et Wൾංඇඌඍൾංඇ [2013]). Plus précisément, pour [b] 2 B(G) basique le
groupe réductif Jb devient une forme intérieure pure de G après extension des scalaires à
la courbe : Jb � X est la torsion intérieure de G � X par le G-torseur Eb . Il en résulte
une équivalence de groupoïdes entre Jb-fibrés sur X et G-fibrés sur X qui respecte les
modifications. À partir de là les espaces de modules de modifications sont identifiés. On
renvoie à la section 5.1 de Cඁൾඇ, Fൺඋ඀ඎൾඌ et Sඁൾඇ [2017] pour plus de détails.

Enfin, l’auteur a commencé à s’intéresser aux filtrations du type Harder-Narasimhan
en théorie de Hodge p-adique lors de la découverte de l’existence de telles filtrations sur
les schémas en groupes finis et plats (Fൺඋ඀ඎൾඌ [2010b]). Ces filtrations permettent de dé-
finir des domaines fondamentaux dans les espaces de modules de groupes p-divisibles
(Fൺඋ඀ඎൾඌ [ibid.] coro. 11 et Sඁൾඇ [2014a]). On a alors la conjecture suivante concer-
nant l’existence de « domaines fondamentaux de Siegel » dans les espaces de périodes
p-adiques. Cette conjecture est liée au théorème 2.3 via le fait que lorsque B(G; �) est
pleinement HN décomposé alors F (G; �) n F (G; �; b)a est « paraboliquement induit »
(Cඁൾඇ, Fൺඋ඀ඎൾඌ et Sඁൾඇ [2017] sec. 7).

Conjecture 2.5 (Cඁൾඇ, Fൺඋ඀ඎൾඌ et Sඁൾඇ [ibid.] sec. 7). Pour [b] 2 B(G; �) basique,
sont équivalents :

1. F (G; �; b)a = F (G; �; b)fa

2. Il existe un ouvert quasicompactU � F (G; �; b)a tel que F (G; �; b)a = Jb(E)�U .

Si G est un modèle entier de G, les filtrations de Harder-Narasimhan des schémas en
groupes finis et plats s’étendent aux '-modules de Breuil-Kisin avecG-structure (Lൾඏංඇ et
Wൺඇ඀-Eඋංർ඄ඌඌඈඇ [2016], Pൾർඁൾ Iඋංඌඌൺඋඋඒ [p. d.]) ainsi qu’aux '-modules sur Ainf de la
Section 1.7.3. En étudiant les G-Shtukas sur Y il est probable que l’on puisse généraliser
la preuve de 1.12 à cadre là. On peut donc espérer des constructions générales de tels
domaines fondamentaux grâce à ces techniques.

3 Géométrisation de la correspondance de Langlands locale
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3.1 La courbe en familles. Soit PerfFq
la catégorie desFq-espaces perfectoïdes (Sർඁඈඅඓൾ

[2012]). On ne s’intéresse désormais qu’à la courbe adique et on note X ce que l’on notait
auparavant Xad . Pour S 2 PerfFq

on peut construire un E-espace adique XS que l’on
peut voir comme étant « la famille de courbes adiques (Xk(s);k(s)+)s2S ». Comme dans le
cas d’un point base

XS = YS/'Z

où YS est « Stein ». Par exemple, si E = Fq((�)), YS = D�S = f0 < j�j < 1g � A1
S et le

Frobenius ' est donné par celui de S . Lorsque S = Spa(R; R+) est affinoïde perfectoïde
l’espace YS se définit comme étant

Spa(A;A) n V (� [$ ])

oùA = WOE
(R+) siEjQp ,A = R+J�K siE = Fq((�)) et$ est une pseudo-uniformisante

de R, 0 < j$ j < 1. Ces E-espaces adiques sont pré-perfectoïdes et on montre que

Y ˘S = S � Spa(E)˘

où ' $ 'S � Id . Ici on utilise la notion de diamant introduite par Scholze (Sർඁඈඅඓൾ
[2014], Sർඁඈඅඓൾ [p. d.]). Si Z est un E-espace adique alors Z˘ est le faisceau sur PerfFq

tel que

Z˘(T ) = f(T ]; �; f ) jT ] est perfectoïde; � : T
∼
�! T ];[; f : T ]

! Zg/ ∼ :

Cette formule catégorique, bien que particulièrement élégante, ne dit rien sur la géométrie
de YS (par exemple elle ne dit rien sur ce qu’est un fibré vectoriel sur XS ).

3.2 Résultats de Kedlaya et Liu sur les familles de fibrés. Kedlaya et Liu ont montré
que l’on dispose d’une bonne notion de fibré vectoriel sur des espaces adiques du type XS

(Kൾൽඅൺඒൺ et Lංඎ [2015] sec. 2.7). Ils ont également démontré les trois résultats suivants
qui sont au coeur de la structure du champ des G-fibrés sur la courbe (leurs résultats sont
énoncés de manière moins « géométrique » en termes de '-modules sur des anneaux de
Robba mais sont équivalents à ceux qui suivent). Dans cet énoncé

� : (XS )
e
pro-ét �! eSpro-ét

est un morphisme de topos pro-étales obtenu par exemple grâce à la fonctorialité de la
courbe en la base S .

Théorème 3.1. Pour S un Fq-espace perfectoïde et E un fibré vectoriel sur XS

1. La fonction jS j 3 s 7�! HN(EjXk(s);k(s)+
) (polygone de Harder-Narasimhan) est

semi-continue supérieurement. En particulier le lieu semi-stable dans S est un ou-
vert partiellement propre.
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2. Les foncteurs R�� et ��(�)˝E OX induisent des équivalences inverses entre fibrés
vectoriels, fibre à fibre sur S semi-stables de pente 0, et E-systèmes locaux pro-
étales sur S .

3. Le fibré O(1) est ample au sens où, si S est affinoïde perfectoïde, alors pour d � 0

il existe une surjection On
XS

� E(d ).

Le point (1) se reformule de façon agréable de la façon suivante (c’est un exercice de
vérifier que les deux sont équivalents). Il y a deux fonctions additives (introduites par Col-
mez dans Cඈඅආൾඓ [2002]) sur la catégorie des espaces de Banach-Colmez sur C jE (cf.
Section 1.6). Ce sont les fonctions dimension et hauteur déterminées par dimGa = 1,
dimE = 0, htGa = 0 et htE = 1 (par référence à la hauteur et la dimension du revête-
ment universel d’un groupe p-divisible, un cas particulier d’espace de Banach-Colmez).
Pour un fibré vectoriel F sur la courbe XF associée à F = C [ on peut alors définir la
dimension et la hauteur des espaces de Banach-Colmez H 0(XF ; F ) et H 1(XF ; F ) (plus
précisément, ces espaces sont définis par troncature via la t-structure du théorème 1.9, la
fonction dimension sur le coeur de cette t -structure coïncide alors avec le degré et la hau-
teur avec le rang, les deux vues comme fonctions additives sur Db

coh
(OXF

)). Le point (1)
se reformule alors en le fait que pour � 2 N, la fonction

jS j �!
�
dimH �(Xk(s);k(s)+ ; EjXk(s);k(s)+

); htH �(Xk(s);k(s)+ ; EjXk(s);k(s)+
)
�

2 N � Z

est semi-continue supérieurement (puisque dimH 0�dimH 1 = degE et htH 0�htH 1 =

rgE qui sont localement constants, cela se ramène au même énoncé pour le H 0). Cela
replace ce type de résultat dans le cadre conceptuel des résultats de semi-continuité de
Gඋඈඍඁൾඇൽංൾർ඄ [1963] (mais malheureusement l’auteur ne sait pas donner un sens au fait
que R��E soit un « complexe parfait de quoi que ce soit », ce qui donnerait une preuve
rapide de cette semi-continuité).

Le point (2) est une vaste généralisation aux Qp-systèmes locaux du théorème de
Lang (qui concerne les Zp-systèmes locaux). Plus précisément, si S = Spa(R; R+) alors
d’après Lang,

OE -systèmes locaux pro-étales
∼

��! '�ModétAR;R+

où les '-modules sont ceux de la Section 1.7.3 et la condition d’être étale signifie simple-
ment que ' : M

∼
�! M est un isomorphisme. Cette condition se réécrit du point de vue du

théorème précédent en demandant que pour tout s 2 S , (M; ') ˝AR;R+ Ak(s);k(s)+ soit
étale. Le point (2) du théorème précédent remplace donc la condition d’être étale fibre à
fibre par la condition d’être semi-stable de pente 0 fibre à fibre et l’anneauA par un anneau
de Robba.
Remarquons que le point (2) est également une généralisation du résultat «du typeNarasimhan-
Seshadri » 1.6.

Pour le point (3) on renvoie à la discussion après 1.7.
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3.3 Le champBunG et la conjecture de géométrisation. Motivé par l’apparition systé-
matique des modifications de fibrés vectoriels (Section 1.7.2), le théorème 2.1, les conjec-
tures de Kottwitz décrivant la partie discrète de la cohomologie des espaces de Rapoport-
Zink (Rൺඉඈඉඈඋඍ [1995]), les travaux naissants de Scholze sur la construction de L-paramètres
via la cohomologie des espaces de Shtukas locaux (Sർඁඈඅඓൾ [2014],Lൺൿൿඈඋ඀ඎൾ [p. d.]) et
bien sûr ceux de l’école russe autour du programme de Langlands géométrique (Dඋංඇൿൾඅൽ
[1983], Gൺංඍඌ඀ඈඋඒ [2002]), on a formulé une conjecture de géométrisation de la corres-
pondance de Langlands locale (Fൺඋ඀ඎൾඌ [2016b], Fൺඋ඀ඎൾඌ et Sർඁඈඅඓൾ [p. d.]). Puisqu’il
s’agit d’un travail en cours nous n’allons pas nous étendre en détail dessus. Indiquons
seulement quelques points en lien avec les résultats précédents.

On définit le champ BunG sur PerfFq
comme étant S 7! fG-fibrés sur XS g. On le

voit comme un champ pour la v-topologie (Sർඁඈඅඓൾ [p. d.]). Le point de départ est que le
théorème 2.1 donne une identification

B(G) = jBunG j:

Il faut prendre garde au fait que la topologie quotient sur B(G) = G(Ĕ)/� -conj. est la
topologie discrète (si les matrices de Frobenius de deux isocristaux sont proches elles sont
� -conjuguées). Ce n’est pas la topologie qui nous intéresse, on regarde plutôt celle de
jBunG j induite par les sous-champs ouverts. L’application première classe de Chern , i.e.
-� sur B(G) (cf. Section 2.1), est localement constante (Fൺඋ඀ඎൾඌ et Sർඁඈඅඓൾ [p. d.]) et
fournit une décomposition en sous-champs ouverts/fermés

BunG =
a

˛2�1(G)Γ

Bun˛
G :

Il y a une application polygone de Harder-Narasimhan semi-continue à valeurs dans une
chambre de Weyl (cet énoncé peut se déduire de 3.1 (1)). Contentons nous seulement de
dire que le lieu semi-stable est ouvert. Cet énoncé est à mettre en parallèle avec le fait
que le lieu basique dans la fibre spéciale d’une variété de Shimura est fermé ; la cohérence
entre les deux énoncés provenant du fait que le tube, au sens de la géométrie rigide, au
dessus d’un fermé est ouvert. D’après Kottwitz (Kඈඍඍඐංඍඓ [1985]) la restriction de �

induit une bijection B(G)basique

∼
�! �1(G)Γ. Cela s’interprète géométriquement en :

toute composante de BunG indexée par un élément de �1(G)Γ possède un unique point
semi-stable (l’auteur n’avait jamais vraiment compris la signification de cet énoncé de
Kottwitz avant de tomber sur ce simple énoncé géométrique). Soit donc [b] basique et
˛ = ��(b). En utilisant le point (2) de 3.1 on peut démontrer le résultat suivant qui
calcule la gerbe résiduelle en l’unique point semi-stable de la composante associée à ˛ :
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via le G-fibré Eb , il y a un isomorphisme�
Spa(Fq)/Jb(E)

� ∼
��! Bun˛;ss

G :

(champ classifiant des Jb(E)-torseurs pro-étales). C’est là une des différences majeures
avec le champ « classique » des G-fibrés sur une courbe : le groupe des automorphismes
du G-fibré trivial est G(E) qui est totalement discontinu tandis que dans la situation
«classique» c’est le groupe algébrique connexeG.Cette différence de nature entre champs
classifiants, couplée aux travaux de Kaletha et Kottwitz (Kൺඅൾඍඁൺ [2016] par exemple),
est importante afin de comprendre la conjecture de géométrisation. Plus précisément, si
l’on prend la fibre en un point semi-stable d’un faisceau `-adique sur BunG on obtient
une représentation lisse de Jb(E) (alors que dans la situation « classique », puisque G est
connexe, on n’obtiendrait qu’un simple espace vectoriel `-adique).

Venons en maintenant aux modifications de fibrés qui ont joué un rôle très important
dans l’intuition de la conjecture. Ici l’intuition vient du point (2) de 1.1. En effet, les débas-
culements de S 2 PerfFq

sur E, S] un E-espace perfectoïde avec S
∼
�! S];[, fournissent

des diviseurs de Cartier
S] ,! XS

donnés par S] = V (�) ,! YS si S est affinoïde perfectoïde et � 2 AR;R+ est primitif de
degré 1 définissant le débasculement S]. Posons alors

Div1S = S � Spa(E)˘/'Z
E˘

comme S -diamant. Cet objet est en quelque sorte « le miroir » de X˘S = S �Spa(E)˘/'Z
S

(tous deux ont même site étale puisque 'S ı 'E˘ est le Frobenius absolu de S �Spa(E)˘,
c’est ce que l’on utilise dans la Section 1.5). Le faisceau Div1 est alors celui des « divi-
seurs de Cartier effectifs de degré 1 sur la courbe » (qui n’est pas la courbe elle-même
contrairement à la situation « classique »).

Un autre point important est la construction d’un système de carte perfectoïdes « lisses »
(`-cohomologiquement lisses au sens de Sർඁඈඅඓൾ [p. d.] pour être plus précis) sur le
champ BunG , dont on montre au final qu’il est lisse de dimension 0 (Fൺඋ඀ඎൾඌ et Sർඁඈඅඓൾ
[p. d.]). Le point de départ a été la remarque suivante liée aux espaces de Banach-Colmez
(Section 1.6) : le champ classifiant

�
Spa(Fq)/GLn(Qp)

�
est lisse. En effet, l’espace demo-

dule des injectionsOn ,! O(1)n s’identifie à l’ouvertU du diamant relatifH 0(O(1))n2
!

Spa(Fq) formé des matrices de déterminant dans H 0(O(n)) n f0g. L’espace de Banach-
Colmez relatif H 0(O(1)) ! Spa(Fq) est représentable par un disque ouvert perfectoïde
(le revêtement universel d’un groupe de Lubin-Tate) et U ! Spa(Fq) est donc lisse. Le
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groupe GLn(Qp) agit librement sur U , si K � GLn(Qp) est un sous-groupe compact
ouvert pro-p et F = Fq((T

1/p1)) alors

UF /K �!
�
Spa(Fq)/GLn(Qp)

�
est une présentation lisse par un diamant lisse.

Finalement, on peut alors définir des correspondances de Hecke pour � une classe de
conjugaison de cocaractère

Hecke�

BunG BunG � Div1:

 

h
!

h

où
!

h est une fibration étale localement triviale en la cellule de Schubert associée à �

dans la BdR-Grassmanienne de Scholze au dessus de Div1 (Sർඁඈඅඓൾ [2014], Cൺඋൺංൺඇං et
Sർඁඈඅඓൾ [2017]). L’étude des modifications de fibrés en lien avec les groupesp-divisibles
(Section 1.7.2) et le lien avec les espaces de périodes (Section 2.3) sont une motivation
importante pour l’introduction de ce type de diagramme.

La conjecture se formule alors sommairement de la façon suivante. On supposeG quasi-
déployé et on fixe une donnée de Whittaker (la construction devrait dépendre de ce choix).
On considère le L-groupe LG = bG Ì WE de G sur Q` construit canoniquement à par-
tir d’un isomorphisme de Satake géométrique associé à la BdR-grassmanienne affine de
Scholze (Fൺඋ඀ඎൾඌ et Sർඁඈඅඓൾ [p. d.]). Considérons un L-paramètre discret ' : WE !
LG. On conjecture alors l’existence d’un faisceau perversF' sur BunG muni d’une action
de S' , propre pour l’action des correspondances de Hecke et dont les fibres en les points
semi-stables de BunG réalisent des correspondances de Langlands locales pour toutes les
formes intérieures pures de G (les Jb lorsque b parcourt les éléments basiques). Sans ren-
trer dans les détails, outre le fait que cette conjecture construise des correspondances de
Langlands locales dans la direction

L-paramètre 7�! représentation;

l’un de ses points forts est qu’elle prédit la structure interne des L-paquets associés à
' via l’action de S' . La propriété de Hecke spécialisée aux points semi-stables implique
automatiquement les conjectures de Kottwitz sur la cohomologie des espaces de Rapoport-
Zink (Rൺඉඈඉඈඋඍ [1995]) via le lien entre modifications de fibrés vectoriels et groupes
p-divisibles (Section 1.7.2).
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On renvoie à Fൺඋ඀ඎൾඌ [2016b] et Fൺඋ඀ඎൾඌ et Sർඁඈඅඓൾ [p. d.] pour un énoncé précis de
la conjecture et ses conséquences, en espérant avoir expliqué au lecteur quelques éléments
de la démarche qui a mené à sa formulation.

3.4 Simple connexité des fibres d’une application d’Abel-Jacobi. Les résultats pré-
sentés dans l’article Fൺඋ඀ඎൾඌ [2017] sont un cas particulier de la conjecture de géométri-
sation qui ne nécessite pas en quelques sortes de l’avoir comprise entièrement. Il s’agit du
cas de GL1 i.e. de la théorie du corps de classe géométrique. Dans ce cas là, dans le cadre
« classique », il est bien connu que cette même théorie résulte de ce qu’en grand degré
le morphisme d’Abel-Jacobi est une fibration localement triviale en variétés algébriques
simplement connexes (des espaces projectifs). On démontre que c’est également le cas
dans notre cadre dans Fൺඋ඀ඎൾඌ [ibid.].

Voici tout d’abord comment recycler le théorème de factorisation des périodes 1.3 dans
un cadre joailler (ce recyclage n’était pas prévu à l’origine mais il montre combien ce
théorème de factorisation des périodes est au coeur de la machine). Plus généralement que
Div1, pour d � 1, on peut définir un un faisceau pro-étale Divd des diviseurs de Cartier
effectifs de degré d sur la courbe.

Proposition 3.2 (Fൺඋ඀ඎൾඌ [ibid.]). Le faisceau pro-étale Divd est un diamant. De plus le
morphisme somme de d -diviseurs Σd : (Div1)d ! Divd est quasi-pro-étale surjectif et
induit un isomorphisme de faisceaux pro-étales (Div1)d/Sd

∼
�! Divd .

Il y a alors un morphisme d’Abel-Jacobi

AJd : Divd
�! P icd = Bund

GL1
:

On démontre alors le résultat suivant.

Théorème 3.3 (Fൺඋ඀ඎൾඌ [ibid.]). Le morphisme AJd : Divd
! P icd est une fibration

pro-étale localement triviale en diamants simplement connexes si d > 2.

D’après le point (2) du théorème théorème 3.1, l’application qui à un fibré en droites,
fibre à fibre de degré d , associe le torseur pro-étale des isomorphismes avec O(d ) induit
une identification

P icd =
�
Spa(Fq)/E�

�
:

Le morphisme d’Abel-Jacobi se réécrit alors sous la forme

H 0(O(d )) n f0g/E� �! [Spa(Fq)/E�]:
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Ici H 0(O(d )), le faisceau S 7! H 0(XS ; O(d )), est un « espace de Banach-Colmez ab-
solu » i.e. relatif au dessus de Spa(Fq), l’objet final du topos pro-étale qui n’est pas repré-
sentable par un espace perfectoïde (les espaces de Banach-Colmez, qui sont des diamants,
tels qu’introduits par Colmez, vivent d’habitude au dessus d’une base perfectoïde fixée, cf.
Section 1.6). Bien que H 0(O(d )) ne soit pas un diamant, on montre que H 0(O(d )) n f0g

en est un et est simplement connexe lorsque d > 2.
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MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS, AND
CORRELATIONS OF MULTIPLICATIVE FUNCTIONS

Kൺංඌൺ Mൺඍඈආඟ඄ං ൺඇൽ Mൺ඄ඌඒආ Rൺൽඓංඐංඖඖ

Abstract

Our goal in this note is two-fold. In part I, we motivate and explain the ideas
behind a recent theorem of ours.

Theorem 1 (Matomäki-Radziwiłł). Let f be a real-valued multiplicative function
with jf j � 1. Then, for all X < x � 2X , with at most o(X) exceptions,

1

H

X
x<x�x+H

f (n) �
1

X

X
X<n�2X

f (n) = o(1)

as soon as H ! 1 with X ! 1.

In part II, which can be read independently, our goal is to survey some of the recent
developments connected to Theorem 1. These have been by far and large related to
Chowla’s conjecture.

Conjecture 1 (Chowla). Let � denote the Möbius function. Then, for any set of dis-
tinct integers h1; : : : ; hk ,X

n�X

�(n + h1) : : : �(n + hk) = o(X)

as X ! 1.

Part I

We will be interested throughout in multiplicative functions, that is f : N ! C such that
f (ab) = f (a)f (b) for all co-prime a; b. A basic example is the Möbius function �,
defined by �(p) = �1 and �(p˛) = 0 for all ˛ > 1 and primes p. The Möbius function
is closely connected to the primes as we now explain. Let Λ denote the von Mangoldt
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functionΛ(n) defined by settingΛ(n) = logp whenever n = p˛ andΛ(n) = 0 otherwise.
Then, by inclusion-exclusion,

Λ(n) = �
X
d jn

�(d ) log d:

Using this relationship one can show that,

(1)
X
n�x

Λ(n) ∼ x ()
X
n�x

�(n) = o(x)

and
(2)X
n�x

Λ(n) = x+O"(x
1/2+") for all " > 0 ()

X
n�x

�(n) = O"(x
1/2+") for all " > 0:

The statement on the left-hand side of (1) is known as the Prime number theorem, while
the statement on the left of (2) is an equivalent reformulation of the Riemann Hypothesis.

An immediate consequence of the Riemann Hypothesis is that the prime number the-
orem holds in all intervals [x; x + x˛] with ˛ > 1

2
. In principle deeper information than

the Riemann Hypothesis is contained in the explicit formula,X
n�x

Λ(n) = x �
X

�

x�

�
+ O(1)

where the sum over � corresponds to a sum over zeros of the Riemann zeta-function. How-
ever from this formula it is possible to see that without understanding cancellations be-
tween zeros of the Riemann zeta-function nothing can be said about intervals with ˛ �

1
2
.

For ˛ 2 (0; 1
2
] it is thus natural to relax the question and ask whether the prime num-

ber theorem holds in most intervals [x; x + x˛] with ˛ 2 (0; 1
2
]. Conditionally on the

Riemann Hypothesis, Selberg [1943] succeeded in providing a positive answer to this
question. Here we state a weak version of his result.

Theorem 2 (Selberg). Assume the Riemann Hypothesis. Let " > 0 be given. The number
of integers x 2 [0; X ] for whichˇ̌̌ X

x<n�x+x˛

Λ(n) � x˛
ˇ̌̌

> x˛/2+"

is o(X) as X ! 1.
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The proof of this result is not difficult : Covering the interval [0; X ] by dy-adic intervals,
the result will follow from Chebyschev’s inequality if we can show that,Z 2X

X

ˇ̌̌ X
x<n�x+x˛

Λ(n) � x˛
ˇ̌̌2

dx �" X1+˛+":

By the explicit formula, for X � x � 2X ,X
x<n�x+x˛

Λ(n) � x˛
� x˛

X
j�j�X1�˛

x��1:

where � is a sum over the zeros of the Riemann zeta-function, and here and later � means
that the statement is “morally true”. Therefore,

(3)
Z 2X

X

ˇ̌̌ X
x<n�x+x˛

Λ(n) � x˛
ˇ̌̌2

dx � X2˛

Z 2X

X

ˇ̌̌ X
j�j�X1�˛

x��1
ˇ̌̌2

dx

Expanding the square, and executing the integration over x 2 [X; 2X ] we obtain that the
integral over x is

�
X

j�j�X1�˛

j�0j�X1�˛

X�+�0�1

� + �0 � 1

We then bound this trivially by

(4)
X

j�j�X1�˛

j�0j�X1�˛

1

j� + � � 1j
� X1�˛+":

Altogether this shows that the left-hand side of (3) is�" X1+˛+", as needed. A similar but
more complicated argument establishes a corresponding theorem for the Möbius function.

The Riemann Hypothesis is used crucially in the upper bound (4) which uses that<� =

<�0 = 1
2
. In order to run this argument unconditionally one needs a zero-density estimate

for the number of zeros of the Riemann zeta function in the strip <s > � and with height
j=sj � T . Using Huxley’s zero-density estimate Huxley [1972] allows one to prove the
following theorem (see Ramachandra [1976] for details).

Theorem 3 (Huxley). Let a(n) = Λ(n)� 1 or a(n) = �(n). Then, for H > X1/6+", we
have, for almost all X < x < 2X ,ˇ̌̌ X

x<n�x+H

a(n)
ˇ̌̌

�A H (logX)�A:
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Two features are worth noticing : Compared to the conditional Theorem 2, the saving
that we obtain is weaker, and the range of H is worse. Crucial in the proof of Theorem 3
is the relationship of Λ(n) or �(n) with the zeros of the Riemann zeta-function.

Until recently this is where things stood. In a recent result we have obtained an im-
provement of Theorem 3 for arbitrary multiplicative function which is optimal in terms
of H . We will begin with a very special case of our result for the Möbius function in the
range H = X".

Theorem 4 (Matomäki-Radziwiłł). Let " > 0 be given. Let H = X". Then, for almost
all 1 � x � X , X

x<n�x+H

�(n) = o(H ):

Unlike Huxley’s result our theorem depends directly on the multiplicativity of �(�).
While the proof that we will give at first will depend on the fact that �(p) = �1 for all
primesp, we will soon see that this is in no way crucial. A complete account of this special
case can be found in Matomäki and Radziwiłł [2016a].

0.1 Sketch of the proof of Theorem 4. Consider

(5)
Z 2X

X

ˇ̌̌ X
x<n�x+H

�(n)
ˇ̌̌2

dx

Our goal is to show that this is o(XH 2). By an application of Plancherel, (5) is (essentially)
equivalent to

(6)
Z X/H

0

ˇ̌̌ X
X<n�2X

�(n)

n1+it

ˇ̌̌2
dt = o(1):

We have at our disposal two distributional estimates forX
X<n�2X

�(n)

n1+it
:

On the one hand the prime number theorem in the form of Vinogradov-Korobov Korobov
[1958] implies that the above Dirichet polynomial is less thanOA((logX)�A) for all jt j �

exp((logX)3/2�"). On the other hand a result of Montgomery and Vaughan [1974] shows
that for arbitrary complex coefficients a(n) and T; X � 1,

(7)
Z T

0

ˇ̌̌ X
X<n�2X

a(n)nit
ˇ̌̌2

dt = (T + O(X))
X

X<n�2X

ja(n)j2:
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Neither result is directly sufficient for obtaining (6). The first result allows us to only
handle the range jt j � (logX)B for any fixed B . This is not sufficient to obtain the result
(unless H > X/(logX)B ). However, in any case it allows to reduce our attention to
showing that

(8)
Z X/H

(logX)B

ˇ̌̌ X
X�n�2X

�(n)

n1+it

ˇ̌̌2
dt = o(1):

for any fixed B > 0. Applying (7) to (8) shows that (8) is O(1). This barely fails to
be non-trivial. The situation is reminiscent with what one encounters in the proof of the
Bombieri-Vinogradov theorem Vaughan [1981] 1. Similarly, the missing additional input
is a bilinear structure.

We create the bilinear structure using Ramaré’s identity,

(9) �(n) =
X

n=pm
P �p�Q
(m;p)=1

�(p) �
�(m)

1 + #fP � q � Q : qjmg
+ 1(n;

Q
P �p�Q p)=1 � �(n)

valid for any interval [P; Q]. If the parameters P; Q are chosen so that

X
P �p�Q

1

p
! 1

as X ! 1, then all but o(X) of the integers X < n � 2X have a prime factor in [P; Q].
Consequently the second term in Ramaré’s identity (9) is typically zero. The point of
Ramaré’s identity is that it roughly allows us to write

X
X<n�2X

�(n)

n1+it
�

�
1

log logQ
logP

X
P �R=2k�Q

� X
R<p�2R

�(p)

p1+it
�

X
X/R<m�2X/R

�(m)

m1+it

�
+ “small in L2”:

1If one attempts to prove Bombieri-Vinogradov without a combinatorial decomposition of Λ(n) then the
available tools turn out to be insufficient: Siegel-Walfisz can handle moduli with Q � (logX)A while the
large sieve recovers the trivial bound. This is similar to the situation we are facing here.
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where “small in L2” is a Dirichlet polynomial that is small on average. As a result, we
roughly have

Z X/H

(logX)B

ˇ̌̌ X
X<n�2X

�(n)

n1+it

ˇ̌̌2
dt

“ � ”
logQ

logR

X
P �R=2k�Q

Z X/H

(logX)B

ˇ̌̌ X
R<p�2R

1

p1+it
�

X
X/R<m�2X/R

�(m)

m1+it

ˇ̌̌2
dt + o(1):

Now we have a bilinear decomposition and we can use both distributional estimates al-
luded to above. First of all, if the parameter P is chosen so that P � exp((logX)2/3+"),
then the prime number theorem of Vinogradov-Korobov applies to the Dirichlet polyno-
mial over the primes, and gives usX

R<p�2R

1

p1+it
� (logX)�B/2

for all R = 2k in the range [P; Q] and all jt j > (logX)B . Secondly, (7) shows that,Z X/H

(logX)B

ˇ̌̌ X
X/R<m�2X/R

�(m)

m1+it

ˇ̌̌2
dt �

� X

H
+

X

R

� X
X/R<m�2X/R

1

m2
�

R

H
+ 1:

Applying both to (8), we conclude that (8) is

�
X

P �R=2k�Q

(logX)�B
�

� R

H
+ 1

�
+ o(1):

This is o(1) as long R/H � (logX)B/2. We collect all our requirements to see if they
can be satisfied at once. We require that

1. P � exp((logX)2/3+") (so that the prime number theorem is applicable).

2. P /H � (logX)B/2 (so that the mean-value theorem is efficient).

3. Q is chosen so that
P

P �p�Q p�1 ! 1 as X ! 1 (so that in Ramaré’s identity
the second term is negligible).

Tomeet all these requirements it suffices to pickQ = H � X" andP = exp((logX)2/3+").
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0.2 General multiplicative functions. The main thrust of the previous argument still
came from a harmonious relationship between � and prime numbers (manifested for ex-
ample in the property that �(p) = �1 for all primes p). If one wishes to extend the result
to general multiplicative functions, this is a bottleneck. But more generally, before we
can proceed we need to understand what is the analogue of the prime number theorem for
general multiplicative functions.

Since the prime number theorem can be expressed asX
n�x

�(n) = o(x)

it is natural to expect that “having a prime number theorem” for f (n) would amount to
knowing the behavior of X

n�x

f (n):

as x ! 1. There is at present a rather well-developed theory of such mean-values. The
central result is due to Halász (see also Montgomery and Vaughan [2001] and Granville,
Harper, and Soundararajan [2017]).

Theorem 5 (Halász). Let f be multiplicative with jf j � 1. Then, for all X; T � 1,

1

X

X
X<m�2X

f (m) � M exp(�M ) +
log logX

logX
+

1

T

where

M := min
jt j�T

X
p�X

1 � <f (p)p�it

p

The quantity M singles out cases in which f (p) is close to pit for most primes p.
This is indeed important. If f = miT then the mean-value is of size approximately X/T

showing that the last term is optimal. The other two terms are unfortunately also optimal.
For instance the second term takes into account multiplicative functions f such that for
example f (p) = 0 for p < X/2 and f (p) = 1 for X/2 � p � X . In recent literature
the function M is frequently denoted by D2(f; pit ) and refered to as a distance function.

Going back to our main problem, we would like to show that for almost all X � x �

2X ,

(10)
1

H

X
x<n�x+H

f (n) �
1

X

X
X<n�2X

f (n) = o(1):

and for H as small as possible, compared to X . Since we aim to prove this for an arbitrary
multiplicative function f with jf j � 1 one should think of (10) as a statement about



346 KAISA MATOMÄKI AND MAKSYM RADZIWIŁŁ

the factorization of the integers, rather than about multiplicative functions. Indeed, (10)
states that in most short intervals [x; x+H ] integers factorize in a way that is similar to the
long interval [X; 2X ]. Thus in the way that integers factorize in short intervals, there can
be no consistently pathological behavior that would work out to still be consistent with,
for example, the prime number theorem. An example of such a pathological behavior
is the existence of a positive proportion of intervals [x; x + H ] on which for instance
�(n) = 1 and a positive proportion of intervals [x; x + H ] on which �(n) = �1. The
intervals could be arranged in such a way so that their existence would be consistent with
the prime number theorem

P
n�x �(n) = o(x). What (10) achieves is that it rules out

such a possibility.
Let us try to prove (10). Expressing both expressions in (10) in terms of Mellin trans-

form and applying Plancherel, reveals that showing (10) amounts to proving thatZ X/H

(logX)"

ˇ̌̌ X
X<n�2X

f (n)

n1+it

ˇ̌̌2
dt = o(1):

Notice that the integral starts at (logX)", this is important and corresponds to the fact that
the Mellin transform of the short sum and the long sum, coincide at the small frequencies
jt j � (logX)".

We now run the same argument as before. The crucial issue is to show that,
(11)Z X/H

(logX)"

ˇ̌̌ X
R<p�2R

f (p)

p1+it

ˇ̌̌2
�

ˇ̌̌ X
X/R<m�2X/R

f (m)

m1+it

ˇ̌̌2
dt = O

�
(logX)�"/2

�

� logQ

logP

��2�
for some " > 0. One could get away with a smaller saving. Notice that the coefficients
f (p) are arbitrary, so there are no point-wise bounds for

P
R<p�2R f (p)p�1�it . In

particular the prime number theorem is of no use!
However the sum over primes is still small for “most” t . Indeed by (7),Z X/H

0

ˇ̌̌ X
R<p�2R

f (p)

p1+it

ˇ̌̌2
dt ∼

X

H
�

1

R logR
:

This shows that for “most” t the sum over the primes is of size R�1/2+o(1). Thus for most
t 2 [(logX)"; X/H ] our previous argument works. As a result we can focus on the set
U of those t 2 [(logX)"; X/H ] for which,ˇ̌̌ X

R<p�2R

1

p1+it

ˇ̌̌2
� (logX)�"

X
R<p�2R

1

p
:
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We can find a 1-spaced set V � U such thatZ
t2U

ˇ̌̌ X
R<p�2R

f (p)

p1+it
�

X
X/R<m�2X/R

f (m)

m1+it

ˇ̌̌2
dt(12)

�
X
t2V

ˇ̌̌ X
R<p�2R

f (p)

p1+it

ˇ̌̌2
�

ˇ̌̌ X
X/R<m�2X/R

f (m)

m1+it

ˇ̌̌2
A first task is to understand the cardinality of V. If Q < exp((logX)1�2") then one

can compute moments Z X/H

0

ˇ̌̌ X
R<p�2R

f (p)

p1+it

ˇ̌̌2k

dt

with a judiciously chosen k, to conclude that jVj is very small.
On the set t 2 V � [(logX)"; X/H ] we cannot expect cancellations in the sum over

the primes. In fact if there exists a single t for which there are no cancellations in both
sums over p and m then we cannot succeed. Thankfully, for real-valued multiplicative
functions Halász’s theorem ensures that the sum over m is always non-trivially small. In
fact we can hope for a saving of a small power of the logarithm in the sum over m. This
leads to a bound for (12) of the form,

(13) (logX)�"
X
t2V

ˇ̌̌ X
R<p�2R

f (p)

p1+it

ˇ̌̌2
A variant of a distributional result of Halász and Turán [1969] (see Matomäki and Radzi-
wiłł [2016b, Lemma 11]) then shows that once the set V is small enough, the sum over
t 2 V behaves as if there was exactly one term t 2 V at which there are no cancellations.
Therefore (13) is

� (logX)�"
�

� 1

logR

�2

� (logX)�"
� (logQ/ logP )�2

provided that P; Q are choosen so that P � exp(
p
logQ), which we can assume. For

instance, simply choose Q = exp((logX)1�2") and P = exp((logX)2/3+"). This gives
(11) and proves

Corollary 1 (Matomäki-Radziwiłł). Let f : N ! [�1; 1] be multiplicative. Let " > 0 be
given and set H = X". Then for almost all X < x � 2X ,

1

H

X
x<n�x+H

f (n) �
1

X

X
X<n�2X

f (n) = o(1)

as X ! 1.
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0.3 The full result. In our joint workMatomäki and Radziwiłł [2016b] we succeeded in
pushing the dependence on H to its optimal form. In particular we obtained the following
result.

Theorem 6 (Matomäki-Radziwiłł). Let jf j � 1 be multiplicative and real-valued. Let
ı > 0 be fixed. Then, ˇ̌̌ 1

H

X
x<n�x+H

f (n) �
1

X

X
X<n�2X

f (n)
ˇ̌̌

< ı:

for all X < x � 2X with � X/H ı/30 + X/(logX)1/50 exceptions.

This implies that if H goes to infinity with X , no matter how slowly, then,

(14)
1

H

X
x<n�x+H

f (n) =
1

X

X
X�n�2X

f (n) + o(1)

for almost all X � x � 2X . This is optimal. If H were bounded then (14) is not true: for
instance take H = p+1 with p prime and, and f equal to a quadratic character mod p.
Then the short sum is always equal to 1/H in absolute value, while the long sum is tiny. In
any case when H is bounded the statement is conjectured to be false for all multiplicative
functions f . However such counterexamples are open even for f = �.

It is not a matter of simple technique to go fromH = X" toH ! 1. This can be most
clearly seen in the fact that previously even on the assumption of the Riemann Hypothesis
a result like (6) for f = � was only known for H > (logX)A for some large A.

There is in fact a very conceptual reason for this. For simplicity let’s focus on the case
of the Möbius function. After converting the problem to Dirichlet polynomials, for the
method to work we have to create bilinear forms with Dirichlet polynomials over primes
p in the range of H (or smaller, but for simplicity let’s focus on p of size H ). Then we
have to understand the size of X

H�p�2H

1

p1+it

Ideally one would like to say that this Dirichlet polynomial is always small. The Riemann
Hypothesis guarantees this to be the case for H > (logX)2+". When (logX)1+" < H <

(logX)2+" there is a gap in our knowledge: we still expect the Dirichlet polynomial to
be always small, but even the Riemann Hypothesis is unable to confirm this. Finally the
rangeH < (logX)1�" is particularly difficult : Using diophantine approximation one can
show that there are arbitrarily large X < t < 2X , such that,ˇ̌̌ X

H�p�2H

1

p1+it

ˇ̌̌
�

1

4

X
H�p�H

1

p
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Moreover the number of such t up to X is expected to be a small power of X . Therefore
any argument that works in scales H < (logX)1�" will need to be able to exploit this
feature to its advantage. This is not something that arguments in analytic number theory
are designed to address!

The main new idea in the proof of Theorem 6 is an iterative scheme, factoring out from
the Dirichlet polynomial X

X�n�2X

f (n)

n1+it

Dirichlet polynomials supported on the primes in various ranges. The argument is de-
signed to react to the size of the Dirichlet polynomial in each range. If the Dirichlet poly-
nomial exhibits cancellations we are done. If it does not we move to a subsequent range,
but retain the information that the Dirichlet polynomial in the previous range was large.
Without doing this we would not be able to succeed. For the reader interested in these
details we refer to an exposition of Soundararajan [2017] or our original paper Matomäki
and Radziwiłł [2016b].

Part II

While analytic number theorists have by now a coherent set of tools to tackle problems
about mean-values,

(15)
X
n�X

a(n)

with a(n) sequences of arithmetical interest, very little is known about correlations,

(16)
X
n�X

a(n)a(n + h)

with h ¤ 0. To get a sense of the gap in the difficulty set a(n) = Λ(n). Then (15)
corresponds to the prime number theorem, while (16) is the Hardy-Littlewood 2-tuple
conjecture.

If one writes,

(17) Λ(n) =
X

n=ab

�(a) log b

then the problem of estimating (16) reduces to that of understanding correlations of the
Möbius function. For a few technical reasons we will be interested instead in correla-
tions of the Liouville function, which differs from the Möbius function only on powers of
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primes. This makes in practice the two interchangeable. The Liouville function �(n) is
defined as �(n) = (�1)Ω(n) where Ω(n) is the number of prime factors of n counted with
multiplicity.

For our approach to succeed, we need to at the very least understand (16) with a(n) =

�(n) or a(n) = �(n). A conjecture of Chowla [1965] predicts that such sums always
exhibit cancellations.

Conjecture 2 (Chowla). Let a(n) = �(n) or a(n) = �(n). Then, for any distinct set of
integers h1; : : : ; h`, X

n�x

a(n + h1) : : : a(n + h`) = o(x):

as x ! 1.

Instead of (17) one could use Linnik’s identity,

Λ(n)

logn
=

X
k�1

d ?
k
(n)

k
� (�1)k+1

where d ?
k
(n) counts the number of solutions to n = n1 : : : nk with all ni > 1. Then

estimating (16) requires us to understand correlations of the kth divisor function.

Conjecture 3. Let h1; : : : ; h` be a set of distinct integers and k1; : : : ; k` � 1 integers.
Then, X

n�x

dk1
(n + h1) : : : dk`

(n + h`) ∼ C (k;h) � x(log x)k1+:::+k`�`:

as x ! 1, withC (k;h) a complicated constant depending on the tuples k = (k1; : : : ; k`)

and h = (h1; : : : ; h`).

Unfortunately for us both conjectures are open. At first the second conjecture appears
somewhat more approachable. For instance the problem of estimating,

(18)
X

n

d (n)d (n + h)W
� n

X

�
with W (�) a smooth function is completely resolved. Following works of Kuznetsov we
are able to write down an explicit formula for (18), with the error term involving L-
functions associated to eigenfunctions of the hyperbolic Laplacian on SL2(Z)nH ((see
Motohashi [1994] for details). The triangle inequality shows that the error term is of size
O(X1/2+"), and moreover this is optimal. One would hope that a similar strategy will
work for the estimation of correlations of the third divisor function, and that the error term
should involve objects related to SL3(Z). So far such attempts have proven unsuccess-
ful Vinogradov and Tahtadžjan [1978], and not even an asymptotic formula is known the
mean-value of d3(n)d3(n + 1).
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0.4 Logarithmic Chowla. However it is no longer clear that Conjecture 2 will be the
first to fall. At present our understanding of such convolution sums has changed dramati-
cally. For instance we highlight a recent result of Tao [2016b].

Theorem 7 (Tao). We have,

(19)
X
n�x

�(n)�(n + 1)

n
= o(log x)

as x ! 1.

This is refered to as logarithmic Chowla.
To see the relevance of Theorem 6 let us start from the very modest goal of obtaining

any cancellations at all in correlations of the Liouville function. So let us suppose thatX
n∼X

�(n)�(n + 1) = (1 + o(1))X

as X ! 1, and see if we can disprove it. The above would mean that for most n, the sign
of �(n) and �(n + 1) is equal. Therefore there exists an H going to infinity very slowly,
so that, ˇ̌̌ X

x<n<x+H

�(n)
ˇ̌̌
∼ H

in at least a positive proportion of the intervals [x; x + H ]. Theorem 6 rules out such
a possibility. In fact a quick consequence of Theorem 6 (see Matomäki and Radziwiłł
[2016b, Corollary 2]) is that there exists ı > 0 such that,ˇ̌̌ X

n�X

�(n)�(n + 1)
ˇ̌̌

� (1 � ı)X

this resolved an old folklore conjecture (see for instance Hildebrand [n.d.]) and opened
the door for further progress on Conjecture 1.

The next natural step is to establish Chowla’s conjecture “on average”. In joint work
with Tao Matomäki, Radziwiłł, and Tao [2015] we obtained such a result.

Theorem 8 (Matomäki-Radziwiłł-Tao). We have,

(20)
X

jhj�H

ˇ̌̌ X
n�X

�(n)�(n + h)
ˇ̌̌
= o(HX):

as soon as H ! 1 with X ! 1.
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This was the crucial arithmetic ingredient in Theorem 7. Let us quickly sketch the ideas
that go into the proof of Theorem 8. The identityZ 1

0

� Z
R

ˇ̌̌ X
x�n<x+H
X�n�2X

�(n)e(n˛)
ˇ̌̌2�2

d˛ = H
X

jhj�H

(H � jhj)
ˇ̌̌ X

n�X

�(n)�(n + h)
ˇ̌̌2

shows that Theorem 8 will follow from

(21) sup
˛2R

X
X�x�2X

ˇ̌̌ X
x�n�x+H

�(n)e(n˛)
ˇ̌̌
= o(XH )

as X ! 1 and H ! 1 with X , arbitrarily slowly. This is a short-interval analogue of
a classical result of Davenport (itself a variant of Vinogradov’s result for primes),

sup
˛

ˇ̌̌ X
X�n�2X

�(n)e(n˛)
ˇ̌̌
= o(X):

Similarly to the proof of Davenport’s theorem, the proof of (21) splits depending on
the diophantine nature of ˛. For simplicity let us imagine that ˛ is fixed and we are aiming
at obtaining cancellations in X

x�n�x+H

�(n)e(n˛)

in almost all short intervals X � x � 2X as X ! 1, and H ! 1 with X . The
proof splits into two cases depending on whether ˛ 2 Q or ˛ 62 Q. When ˛ 62 Q the
phase e(n˛) oscilates rather randomly, and we succeed by using ideas of Daboussi and
Delange [1974], which are a variant of Vinogradov’s method. This requires f (n) to be
multiplicative only in a certain range [P; Q]. 2 On the other hand when ˛ 2 Q the phase
e(n˛) is predictable and we need to obtain cancellations from �(n). The most extreme
case corresponds to ˛ = 0. However this is exactly a consequence of Theorem 6! As
one might expect the proof for rational ˛ follows by generalizing Theorem 6 to the case
of arithmetic progressions. Note that in this case we use the multiplicativity of f (n) in
many intervals, and thus this case is significantly more arithmetic.

The estimate (21) is the crucial arithmetic input in the proof of logarithmic Chowla (19).
The other input is an ingenious use of entropy allowing to replace the event �(n+p)1pjn

by �(n + p)/p, and the creation of a bilinear structure which is possible thanks to the

2Daboussi-Delange’s work is also often refered to as the Bourgain-Katai-Sarnak-Ziegler criterion (after Bour-
gain, Sarnak, and Ziegler [2013], Kátai [1986]), however the correct attribution is to Daboussi-Delangewhowere
the first to obtain such a result



MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS 353

logarithmic weights. In fact rather than directly attacking the Chowla conjecture, Tao
shows cancellations in

(22)
X
n�X

�(n)
� X

pjn
P �p�2P

�(n + p)
�
:

A feature of the logarithmic weights is that if one can show that (22) is non-trivially small,
for any choice of P , then this implies (19). Tao’s entropy decrement argument shows the
existence of a range P on which one can replace the event �(n + p)1pjn by �(n + p)/p.
Effectively this shows that (22) is close to

1

P

X
P �p�2P

X
n�X

�(n)�(n + p)

This is now a ternary problem, that we can hope to address by the circle method. The
main ingredient here is (21): The range of P can be quite small with respect to X , and
one needs a form of (21) with H of size about P .

0.4.1 Odds and ends. Of course one wonders if logarithmic Chowla has implications
for prime numbers. Unfortunately while until recently this was the heuristic expectations
of most experts, it turns out that the error terms in (19) are too weak to give back anything
about prime numbers. This appears to be a conceptual obstruction rather than a purely
technical one. The proof of (19) hinges on Theorem 6 which in turn, in the first step,
discards prime numbers from consideration. Thus it seems that these methods cannot be
used for a direct attack on the twin prime conjecture.

Nonetheless the logarithmic Chowla conjecture had some dramatic consequence out-
side of number theory. It led for instance to the resolution of the Erdős Discrepancy Prob-
lem Tao [2016a] in combinatorics.

Concerning the cases of logarithmic Chowla with more shifts, there has been recent
progress due to Tao-Teräväinen Tao and Teräväinen [2017]. It turns out that the case of an
odd number of shifts is considerably simpler, and does not require any short interval results.
That this is reasonable can be perhaps most easily seen in a result of Elliott according to
which, there exists a ı > 0 such that,ˇ̌̌ X

n�x

�(n)�(n + 1)�(n + 2)
ˇ̌̌

� (1 � ı)X

The proof of the above inequality is completely elementary (see Cassaigne, Ferenczi,
Mauduit, Rivat, and Sárközy [1999]). This is in stark contrast with the binary case that
requires Theorem 6.



354 KAISA MATOMÄKI AND MAKSYM RADZIWIŁŁ

0.5 Sarnak’s conjecture. One can think of Chowla’s conjecture probabilistically, as
asserting that if one picks a typical integer n, and we are given �(n); �(n+1); : : : ; �(n+

k � 1) then we get no discernible advantage in predicting �(n + k).
Such a point of view is appealing from the point of view of information theory: We can

think of the “signal” � = (�(1); �(2); �(3); : : :), and then ask how redundant this signal
is? More precisely is knowing the neighborhood of a point �(n) enough to reconstruct
�(n) at least with some positive probability? If the sequence �(n) is truly random, then
the answer should be no. In particular �(n) should be “orthogonal” to all sequences that
have a lot of redundancies, i.e those of entropy 0.

Let us then define what we mean by the entropy of a sequence. Let f : N ! C be
an arbitrary sequence, and consider the set Sm = f(f (n); f (n+1); : : : ; f (n+m � 1)) :

n > 0g � Cm of m-tuples in Cm. Given " let B(m; ") be the number of m-dimensional
balls in Cm of radius " that are needed to cover Sm. Then, the topological entropy of f is
defined as

� = sup
">0

�
lim sup
m!1

1

m
logB(m; ")

�
:

Conjecture 4 (Sarnak). Let f : N ! C, have topological entropy zero. Then,X
n�x

�(n)f (n) = o(x):

Sarnak’s conjecture is a natural generalization of Davenport’s theorem. The latter cor-
responds to the case of f (n) = e(˛n) which clearly has entropy 0 (simply cover the
m-dimensional unit circle by a finite union of " balls). Sarnak’s conjecture also appears
naturally in additive combinatorics. A fundamental step in the proof of the Green-Tao
theorem is the orthogonality of the Möbius function to nilsystems Green and Tao [2012],
this corresponds to a special case of Sarnak’s conjecture.

As one might expect there is a tight link between the conjectures of Chowla and Sarnak.
Chowla’s conjecture implies Sarnak’s conjecture. Moreover if one considers the logarith-
mic versions of the two conjectures, then they are equivalent Tao [2017] This leads one to
believe that Chowla’s conjecture and Sarnak’s conjecture are equivalent, but this is so far
unproven.

There is a large body of literature concerning Sarnak’s conjecture (see Ferenczi, Kułaga-
Przymus, and Lemańczyk [2017]). There are currently two main tools : When the the se-
quence f is sufficiently random, one uses a criterion steeming from the work of Daboussi-
Delange, also known as the Bourgain-Katai-Sarnak-Ziegler criterion. This says that if, for
all fixed primes p; q,

(23)
X
n�x

f (pn)f (qn) = o(X);
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then Sarnak’s conjecture holds. Verifying the above condition in practice might require a
substantial amount of work depending on the f under consideration. There are also cases
for which (23) fails but Sarnak conjecture is expected to hold nonetheless (the simplest
example being an f that changes randomly signs on blocks that grow to infinity very
slowly). In such a situation one frequently tries to find a way to use Theorem 6. In fact
Theorem 6 can be rephrased in purely ergodic terms.

Due to the large number of works on the subject we cannot cover it in great depth, but
refer to the recent survey Ferenczi, Kułaga-Przymus, and Lemańczyk [ibid.] for the state
of the art.

0.6 The shfited convolution problem on average and L-functions. When the se-
quence a(n) is of an automorphic origin, then the problem of estimating the correlations,X

n�x

a(n)a(n + h)

is often-times refered to as the shifted convolution problem. The reason for the differ-
ent terminology is that the problem occurs frequently and naturally when trying to either
estimate moments of L-functions or obtain subconvex bounds.

The prototypical moment problem is the problem of estimating,

Mk(T ) :=

Z 2T

T

j�( 1
2
+ i t)j2kdt:

as T ! 1 where �(s) is the Riemann zeta-function. It is conjectured that Mk(T ) �

T 1+" for all k > 0, and even more precisely that,

(24) Mk(T ) = TPk(logT ) + O(T 1�ık )

with Pk a polynomial of degree k2 and ık > 0 a positive exponent. This is a powerful
conjecture that implies the bound j�( 1

2
+ i t)j �" 1 + jt j". Such a bound (known as

the Lindelöf hypothesis) would be a great substitute for the Riemann Hypothesis in many
applications.

Unfortunately (24) is known only for k = 1 and k = 2. While the case of k = 1 can
be treated with harmonic analysis alone, the estimation for k = 2 depends crucially on
having a power-saving in the shifted convolution problem. In fact one finds that,

(25)
Z 2T

T

j�( 1
2
+ i t)j2kdt �

� TPk(logT ) + “
1

T k/2�1

X
jhj∼T k/2�1+"

eih/T k/2�1
X

n∼T k/2

dk(n)dk(n + h)”
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where the meaning of∼ is left vague on purpose. Notice that the error term is trivial when
k = 1, and is barely non-trivial for k = 2. Once k � 3 the error term is unfortunately too
big to be manageable by any known method, and k > 4 seems to present extraordinary
challenges as even square-root cancellation is no longer sufficient (but see B. Conrey and
Keating [2015] for possible ways to circumvent this). Many results on moments focus
exactly on the threshold where the sum in the error term is barely non-trivial.

0.6.1 The shifted convolution problem for dk(n). The shape of the error term in (25)
motivates us to understand, X

n�X

dk(n)dk(n + h)

on average over h, or more generally with dk(n) replaced by coefficients of a GL(k) auto-
morphic form. The literature contains average results when the number of shifts jhj � H

is substantial, i.e H > X1/3+" (and recently for H > X8/33+"). However using methods
related to Theorem 6 one can reduce the number of shifts to be as small as (logX)O(k logk).

Theorem 9 (Matomäki-Radziwiłł-Tao). Let k � ` � 2 be real numbers. Then, for
H = (logX)10000k logk ,X

jhj�H

ˇ̌̌ X
n�X

dk(n)d`(n + h) � XPk+`(logX)
ˇ̌̌
= o(HX(logX)k+`�2)

where Pk+` is a polynomial of degree k + ` � 2.

Compared to our earlier work multiplicative functions such as dk(n) present new chal-
lenges because they are unbounded. But it is not the fact that they are unbounded in itself
which is the main difficulty – it’s rather the fact that because they are unbounded, the main
contribution to X

n�X

dk(n)dk(n + h)

comes from a thin subset of integers having (k + o(1)) log log x prime factors and on
which dk(n) is unusually large. The density of such integers is about (logX)�k logk+k�1.

The idea behind the proof of Theorem 9 is to first restrict to a density one subset of inte-
gers N on which we can construct efficient sieve majorants for dk(n). Subsequently after
some harmonic analysis, we find that the crucial issue is to obtain a non-trivial estimate
for

JX
j=1

X
X�x�2X

ˇ̌̌ X
x<n<x+H

n2N

dk(n)e(n˛j )
ˇ̌̌
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where ˛j is a set of well-spaced points and J is arbitrary. When J is large one can simply
appeal to the large sieve. On the other hand when J is bounded obtaining a non-trivial
result amounts to a variant of Theorem 6 for unbounded multiplicative functions (similar
variants for other sparse sets of integers were studied in Goudout [2017] and Teräväinen
[2016]). It is the intermediate range between bounded and large J which turns out the
most subtle. In this range through a use of duality we (essentially) replace dk(n) by the
corresponding sieve majorant ed k(n), and we are reduced to needing cancellations inX

x<n<x+H

ed k(n)e(n˛j )

after a substantial amount of effort (this would be trivial if H > X"). We then estimate
high moments of such a sum to conclude that it exhibits cancellations for most x.

In fact the argument works quite generally for estimating dk(n)b(n+h)with b(n) any
sequence for which efficient sieve majorants can be constructed. For instance, we obtain
results for the higher-order Titchmarsh divisor problem,X

n�X

dk(n)Λ(n + h)

with an average over jhj � H of size at most H = (logX)10000k logk . For individual h

the problem is open for all k > 2.

0.6.2 Moments ofL-functions. Coming back to themoment problem, our results (such
as Theorem 9) say nothing new in the case of the Riemann zeta-function, but they are
nonetheless useful in other families. For instance, a q-analogue of moments of the Rie-
mann zeta-function, is the problem of estimating,

(26)
X
q�Q

X
� (mod q)

Z
R

jL( 1
2
+ i t; �)j2k

� Φ(t)dt

where � is a sum over primitive characters, L(s; �) is a Dirichlet L-function and Φ(t)

is a fixed smooth function. This problem (but without the t averaging) is also related to
understanding the distribution of dk(n) in arithmetic progressions.

The large sieve gives sharp upper bound for the above moment problem when k � 4.
A few years ago, J. B. Conrey, Iwaniec, and Soundararajan [2013] devised a method to
obtain asymptotic estimates in moments such as (26). They illustrated their method to
obtain an asymptotic for (26) when k = 3. The case k = 4 represents the absolute limit
of their method, and also the limit of what should be realistically feasible. In Chandee and
Li [2014] it was addressed conditionally on the Generalized Riemann Hypothesis.
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Roughly for the solution of the case k = 4 one needs to estimate on average a shifted
convolution problem in a short interval. It turns out that this problem is amenable to our
earlier methods and leads to the following Theorem (the write-up is currently in prepara-
tion).

Theorem 10 (Chandee-Li-Matomäki-Radziwiłł). Let Φ(t) be a fixed smooth function.
Then, X

q�Q

X
� (mod q)

Z
R

jL( 1
2
+ i t; �)j8 � Φ(t)dt ∼ CbΦ(0) � Q2(logQ)16:

as Q ! 1, where the summation is over primitive characters and C > 0 is an absolute
constant.

Previously the assumption of the Generalized Riemann Hypothesis was used to esti-
mate non-trivially the shifted convolution problem that arises in this problem.

0.6.3 Gaps between multiplicative sequences. The applications of the shifted convo-
lution problem are not restricted to problems related in one way or another to L-functions.
A prominent example is Hooley’s Hooley [1971] work on gaps between sums of two
squares. Let 1 = s1 < s2 < : : : be the sequence of integers representable as sums of
two squares. Then the average gap between sn+1 � sn for sn � x is �

p
log x. Hooley

investigated how often the gaps deviate from the mean. He proved that for 
 < 5/3,

(27)
X

sn�x

(sn+1 � sn)



� x(log x)
1
2
(
�1)

:

The form of the expression is motivated by Erdős’s conjecture that,X
pn�x

(pn+1 � pn)
2

� x log x:

In (27) the lower bound is easy and follows from Holder’s inequality against the case

 = 1. In principle (27) is conjectured to hold for all finite 
 , but this is a very deep
conjecture. It implies for instance that for any fixed " > 0 in all intervals of the form
[x; x + x"] there is a sum of two squares.

The problem of showing (27) is equivalent to obtaining the following frequency bound,

(28) #
n
x � X :

X
x<sn�x+H

p
logX

1 = 0
o

�
X

H 
�1

uniformly in 1 � H � X . It is the uniformity that is difficult to maintain in this problem.
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Hooley’s approach goes as follows: In order to obtain (28) he notices that for any
weight wn supported on sums of two squares, and for any constant A, the frequency (28)
is

(29) �
1

A2

X
x�X

ˇ̌̌ X
x�n�x+H

wn � A
ˇ̌̌2

Moreover the estimation of (29) is feasible if we can get a good estimate for the correla-
tions X

jhj�H

X
n�X

wnwn+h

that saves at least a power of H over the trivial bound.
When H is small, Hooley selects wn = r(n)�(n) where r(n) is the number of repre-

sentations of n as a sums of two squares, and �(n) is a sieve weight dampening the size
of r(n) so that r(n)�(n) � 1 on average. When H is large (say H > X") we can afford
to loose powers of the logarithm, and it’s enough to choose wn = r(n). Then we require
a shifted convolution on average, with a power-saving. This is possible to obtain because
r(n) is roughly similar to the divisor function, and similar techniques that can be used to
estimate, X

n�x

d (n)d (n + h)

will also do the job for the r(n) function.
The sequence of sums of two squares is a norm-form, since a2 + b2 is the norm of

Gaussian integers. It is natural to ask if Hooley’s result can be extended to norm forms
of higher degree fields. Unfortunately we run right away in a serious difficulty : If K

is a number field of degree 3 and rK(n) is the number of representations of n as a norm
of an ideal in K, then there are no results with power-savings for the shifted convolution
problem, X

jhj�Xı

X
n�X

rK(n)rK(n + h)

In fact this is of a comparable difficulty as our Conjecture 2 in the case ` = 2 and k1 =

k2 = 3.
It turns out however that we can circumvent these difficulties by using techniques re-

lated to Theorem 6. The advantage of using these “more restrictive techniques” (after all
we forfeit any possibility of power-savings) is that not only we can extend the result to
norm-forms, but more generally to any “multiplicative sequence” (of which norm-forms
are an example).
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Corollary 2 (Matomäki-Radziwiłł). Let P be a set of primes of positive density ı. Let N
be the set of all square-free integers all of whose prime factors belong to P . Denote the
elements of N by n1 < n2 < : : :. Then, for all 
 < 3

2
,

(30)
X

nk�x

(nk+1 � nk)



�P ;
 x(log x)(1�ı)(
�1):

We think it is remarkable that the exponent 3
2
does not depend on the density of P .

Let us very quickly explain the kind of ideas that go into the proof of Corollary (2). The
case of H small can be disposed by proving a variant of our Theorem 6 for multiplicative
functions that are supported on a set of primes of density 0 < ı < 1.

WhenH is large, the techniques that go into Theorem 6 are not immediately applicable,
and need to be modified. Let us highlight the spirit of these modifications in the case of
norm forms. Whatmakes the shifted convolution problem (30) difficult are certain specific
sets of integers, for instance the integers n that factor into abc with a; b; c roughly of equal
size. However if one restricts in the shifted convolution problem to integers of the form
n = abc with a; b; c in a certain special configuration then the problem can be solved with
a power-saving in X . Unfortunately the set of integers in such a desirable configuration
might be of density zero, but this is not a problem when H is large!

The reason is that in the regime H large we can afford to lose some powers of the
logarithm, and by restricting to a density zero subset (instead of the full sequence) we are
typically loosing at most powers of the logarithm. So we simply run Hooley’s method
on the subsequence of integers representable as norm forms and that factor as n = abc

with abc in certain desirable configurations. In reality the proof of Corollary 2 goes along
completely different lines, however what we explained highlights the spirit of the ideas.

0.7 The structure of multiplicative functions. Our Theorem 6 is of course rather im-
mediately applicable to the study of general multiplicative functions. For instance it im-
mediately implies the following result.

Corollary 3. Let f : N ! R be a multiplicative function which is non-zero for positive
proportion of natural numbers. Then f has a positive proportion of sign changes if and
only if f (n) < 0 for some n 2 N.

This was an improvement even in the case of f (n) = �(n). This result has been the
starting point of several “rigidity theorems” of Klurman [2017] and Klurman and Man-
gerel [2017]. We highlight a few of their results. For instance, in Klurman [2017] an old
conjecture of Katai is resolved. This asserts that for f taking values on the unit disk,

(31)
X
n�x

jf (n + 1) � f (n)j = o(x)



MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS 361

if and only if, f (n) = nit for some t 2 R, orX
n�x

jf (n)j = o(x):

Notice that if f is assumed to be real-valued and lying on the unit-disk (i.e f (n) = ˙1)
then Katai’s conjecture is nothing more than a convoluted restatement of Corollary 3.

Moreover in Klurman and Mangerel [2017] appears a solution to an old conjecture of
Chudakov. The conjecture states that if f is a multiplicative function such that f (n) takes
only finitely many values, and f (p) is zero on only finitely many primes, andX

n�x

f (n) = ˛x + O(1)

then f is a Dirichlet character. In a similar vein one can think of the Erdős Discrepancy
Problem as a rigidity theorem, since it implies that there are no completely multiplicative
functions f with

P
n�x f (n) = O(1) for all x.
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Abstract
We discuss recent advances on weak forms of the Prime k-tuple Conjecture, and

its role in proving new estimates for the existence of small gaps between primes and
the existence of large gaps between primes.

1 Introduction

It follows from the Prime Number Theorem that the average gap between primes less than
X is of size roughly logX when X is large. We expect, however, that occasionally these
gaps are rather smaller than logX , and occasionally rather larger. Specifically, based on
random models and numerical evidence, we believe that the largest and smallest gaps are
as described in the following two famous conjectures1.

Conjecture 1 (Twin Prime Conjecture). There are infinitely many pairs of primes which
differ by exactly 2.

Conjecture 2 (Cramér’s Conjecture, weak form). Let pn denote the nth prime. Then

sup
pn�X

(pn+1 � pn) = (logX)2+o(1):

Moreover, the Twin Prime Conjecture can be thought of as a special case of the far-
reaching Prime k-tuple Conjecture describing more general patterns of many primes.

Conjecture 3 (Prime k-tuple Conjecture). Let L1; : : : ; Lk be integral linear functions
Li (n) = ai n + bi such that for every prime p there is an integer np with

Qk
i=1 Li (np)

coprime to p. Then there are infinitely many integers n such that all of L1(n); : : : ; Lk(n)

are primes.
The author is funded by a Clay Research Fellowship. This article was written whilst the author was a member

of the Institute for Advanced Study, Princeton and supported by the National Science Foundation under Grant
No. DMS - 1638352.
MSC2010: primary 11N05; secondary 11N35.
1The original conjecture of Cramér [1936] was a stronger statement which is no longer fully believed to be

true. We expect the weaker version given here to hold.
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Unfortunately all these conjectures seem well beyond the current techniques, but we
are able to make partial progress by showing that we do have gaps which are smaller or
larger than the average gap. A key part of recent progress on results about gaps between
primes has been weak versions of Conjecture 3, where one shows there are infinitely many
integers n such that several (rather all) of the linear functions are prime at n.

Theorem 1 (Maynard [2015]). LetL1; : : : ; Lk be integral linear functionsLi (n) = ai n+

bi such that for every prime p there is an integer np with
Qk

i=1 Li (np) coprime to p.
Then there is a constant c > 0 such that there are infinitely many integers n where at least
c log k of L1(n); : : : ; Lk(n) are primes.

Variants of Theorem 1 have been important in recent results on small and large gaps be-
tween primes, and have proven useful because themethod of proof is quite flexible and can
generalize to other situations. Specifically, we now know the following approximations
to Conjecture 1 and Conjecture 2.

Theorem 2 (Polymath [2014]). There are infinitely many pairs of primes which differ by
at most 246.

Theorem 3 (Ford, Green, Konyagin, Maynard, and Tao [2018]). There exists a constant
c > 0 such that

sup
pn�X

(pn+1 � pn) � c
logX � log logX � log log log logX

log log logX
:

Moreover, in the case of small gaps between primes, we can show the existence of
many primes in bounded length intervals.

Theorem 4 (Maynard [2016a]). There exists a constant c > 0 such that, for all X � 2

there are at least cX exp(�
p
logX) integers x 2 [X; 2X ] such that

#fprimes in [x; x + y]g � c logy:

For example, this shows that there are infinitely many intervals of length em/c contain-
ingm primes, and, for fixed � > 0, infinitely many x such that the interval [x; x+(log x)�]

contains �c log log x primes.

2 The GPY sieve method

We aim to prove Theorem 1 by the ‘GPY method’, which can be interpreted as a first mo-
mentmethodwhichwas introduced to study small gaps between primes byGoldston, Pintz,
and Yıldırım [2009]. This takes the following basic steps, for some given set fL1; : : : ; Lkg

of distinct functions satisfying the hypotheses of Conjecture 3:
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1. We choose a probability measure w supported on integers in [X; 2X ].

2. We calculate the expected number of the functions Li (n) which are prime at n, if n

is chosen randomly with probability w(n).

3. If this expectation is at least m, then there must be some n 2 [X; 2X ] such that at
least m of L1(n); : : : ; Lk(n) are primes.

4. If this holds for all large X , then there are infinitely many such integers n.

This procedure only works if we can find a probability measure w which is suitably con-
centrated on integers n where many of the Li (n) are prime, but at the same time is simple
enough that we can calculate this expectation unconditionally. We note that by linearity
of expectation, it suffices to be able to calculate the probability that any one of the linear
functions is prime. However, any slowly changing smooth function w is insufficient since
the primes have density 0 in the integers, whereas any choice of w explicitly depending
on the joint distribution of prime values of the Li is likely to be too complicated to handle
unconditionally.

Sievemethods are a flexible set of tools, developed over the past century, which provide
natural choices for the probability measure w. The situation of simultaneous prime values
of L1; : : : ; Lk is a ‘k-dimensional’ sieve problem. For such problems when k is large but
fixed, the Selberg sieve tends to be the type of sieve which performs best. The standard
choice of Selberg sieve weights (which are essentially optimal in closely related situations)
are

(2-1) w(n) /

� X
d j

Qk
i=1 Li (n)
d<R

�(d )
�
log

R

d

�k�2

;

where R is a parameter which controls the complexity of the sieve weights, and w is
normalized to sum to 1 on [X; 2X ].

To calculate the probability that Lj (n) is prime with this choice of w(n), we wish to
estimate the sum of w(n) over n 2 [X; 2X ] such that Lj (n) is prime. To do this we
typically expand the divisor sum in the definition (2-1) and swap the order of summa-
tion. This reduces the problem to estimating the number of prime values of Lj (n) for
n 2 [X; 2X ] in many different arithmetic progressions with moduli of size about R2.
The Elliott-Halberstam conjecture Elliott and Halberstam [1970] asserts that we should
be able to do this when R2 < X1�� , but unconditionally we only know how to do this
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when R2 < X1/2�� , using the Bombieri-Vinogradov Theorem Bombieri [1965] and Vino-
gradov [1965]. After some computation one finds that, provided we do have suitable esti-
mates for primes in arithmetic progressions, the choice (2-1) gives

(2-2) E #f1 � i � k : Li (n) primeg =
�
2 �

2

k + 1
+ o(1)

� logR

logX
:

In particular, this is less than 1 for all large X , even if we optimistically assume the Elliott-
Halberstam conjecture and take R � X1/2�� , and so it appears that we will not be able to
conclude anything about primes in this manner.

The groundbreakingwork ofGoldston, Pintz, andYıldırım [2009] showed that a variant
of this choice of weight actually performs much better. They considered

(2-3) w(n) /

� X
d j

Qk
i=1 Li (n)
d<R

�(d )
�
log

R

d

�k+`�2

;

where ` is an additional parameter to be optimized over. With the choice (2-3), one finds
that provided we have suitable estimates for primes in arithmetic progressions, we obtain

E #f1 � i � k : Li (n) primeg =
�
4 + O

�1
`

�
+ O

� `

k

�� logR

logX
:

This improves upon (2-2) by a factor of about 2 when k is large and ` � k1/2. This
falls just short of proving that two of the linear functions are simultaneously prime when
R = X1/4�� as allowed by the Bombieri-Vinogradov theorem, but any small improve-
ment allowing R = X1/4+� would give bounded gaps between primes! By considering
additional possible primes, Goldston Pintz and Yıldırım were able to show

lim inf
n

pn+1 � pn

logpn

= 0;

finally extending a long sequence of improvements to upper bounds for the left hand
side Erdős [1940], Rankin [1950], Ricci [1954], Bombieri and Davenport [1966], Pilt’ja
[1972], Uchiyama [1975], M. N. Huxley [1973, 1977], M. Huxley [1984], and Maier
[1988].

Building on earlier work of Fouvry and Iwaniec [1980] and Bombieri, Friedlander, and
Iwaniec [1986, 1987, 1989], Zhang [2014] succeeded in establishing an extended version
of the Bombieri-Vinogradov Theorem for moduli with no large prime factors allowing
R = X1/4+� , and ultimately this allowed him to show

E #f1 � i � k : Li (n) primeg > 1;
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if k > 3 500 000 and X is sufficiently large. The key breakthrough in Zhang’s work was
this result on primes in arithmetic progressions of modulus slightly larger than X1/2. By
choosing suitable linear functions, this then showed that

lim inf
n

(pn+1 � pn) � 7 � 107:

3 A modified GPY sieve method

An alternative approach to extending the work of Goldston, Pintz and Yıldırım was de-
veloped independently by the author Maynard [2015] and Tao (unpublished). The key
difference was to consider the multidimensional generalization

(3-1) w(n) /

� X
d1;:::;dk

di jLi (n)Qk
i=1 di <R

�(d )F
� log d1

logR
; : : : ;

log dk

logR

��2

;

for suitable smooth functions F : Rk ! R supported on [0; 1)k . The flexibility of
allowing the function F to depend on each divisor d1; : : : ; dk of L1(n); : : : ; Lk(n) allows
us to make w(n) more concentrated on integers n when many of the Li (n) are prime.

With this choice, after some computation, one finds that

(3-2) E #f1 � i � k : Li (n) primeg =
�Pk

i=1 Ji (F̃ )

I (F̃ )
+ o(1)

� logR

logX
;

provided, as before, we are able to count primes in arithmetic progressions to modulus
R2 on average. Here the Ji (F̃ ) and I (F̃ ) are k-dimensional integrals depending on a
transform2 F̃ of F , given by

J`(F̃ ) =

Z
� � �

Z
P

i¤` ti �1

�Z 1�
P

i¤` ti

0

F̃ (t1; : : : ; tk)dt`

�2

dt1 : : : dt`�1dt`+1 : : : dtk ;

I (F̃ ) =

Z
� � �

Z
Pk

i=1 ti �1

F̃ (t1; : : : ; tk)
2dt1 : : : dtk :

For any piecewise smooth choice of F̃ supported on
Pk

i=1 ti � 1 there is a corresponding
choice of F . In particular, we can show that many of the Li are simultaneously prime
infinitely often, if we can show that supF̃ (

Pk
i=1 Ji (F̃ )/I (F̃ )) ! 1 as k ! 1.

2F̃ is F differentiated with respect to each coordinate.
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A key advantage of this generalization is that we can make use of high dimensional
phenomena such as concentration of measure. We concentrate on functions F̃ the form

F̃ (t1; : : : ; tk) =

(Qk
i=1 G(ti );

Pk
i=1 ti < 1;

0; otherwise,

and make a probabilistic interpretation of the integrals Ji (F̃ ) and I (F̃ ). Let Z1; : : : ; Zk

be i.i.d. random variables on [0; 1] with probability density function G2, expectation
� =

R 1

0 tG(t)2dt and variance �2 =
R 1

0 (t � �)2G(t)2dt . Then

I (F̃ ) = P
� kX

i=1

Zi < 1
�
; J`(F̃ ) �

�Z 1/2

0

G(t)dt
�2

P
� kX

i=1

Zi <
1

2

�
:

The random variable
Pk

i=1 Zi has mean k� and variance k�2, and so it becomes concen-
trated on k� when k is large provided �2/� ! 0 as k ! 1. In particular, if � < 1/3k

and �2k ! 0, then P (
Pk

i=1 Zi < 1/2) approaches 1 as k ! 1. Therefore, to show thatPk
`=1 J`(F̃ )/I (F̃ ) ! 1 as k ! 1, it suffices to find a function G satisfyingZ 1

0

tG(t)2 <
1

3k
;

Z 1

0

G(t)2dt = 1;

k

Z 1

0

t2G(t)2dt ! 0 and k
�Z 1

0

G(t)dt
�2

! 1 as k ! 1:

We find that choosing

(3-3) G(t) �

8<:
p

k logk

1+tk logk
; t < k�3/4;

0; otherwise,

gives a function G satisfying these constraints. (This choice can be found via the calculus
of variations, and further calculations show that this choice is essentially optimal.) Putting
this all together, we find that for some constant c > 0

E #fi : Li (n) primeg � (c log k + o(1))
logR

logX
:

In particular, taking R = X1/4�o(1) (as allowed by the Bombieri-Vinogradov theorem)
and letting k be sufficiently large, we find that there are infinitelymany integers n such that
(c log k)/4 + o(1) of the Li (n) are simultaneously prime. Performing these calculations
carefully allows one to take c � 1 when k is large.
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Morally, the effect of such a choice of function F̃ is tomake ‘typical’ divisors (d1; : : : ; dk)

occurring in (3-1) to have
Qk

i=1 di smaller, but for it to be more common that some of the
components of (d1; : : : ; dk) are unusually large when compared with (2-1) or (2-3). This
correspondingly causes the random integer n chosen with probability w(n) to be such that
the Li (n) are more likely to have slightly smaller prime factors, but it is also more likely
that some of the Li (n) are prime.

4 Consequences for small gaps between primes

The above argument shows that there is a constant c > 0 such that for any set fL1; : : : ;

Lkg of integral linear functions satisfying the hypotheses of Conjecture 3, at least c log k

of the linear functions Li are simultaneously prime infinitely often. To show that there are
primes close together, we simply take the linear functions to be of the formLi (n) = n+hi

for some integers h1 � � � � � hk chosen to make
Qk

i=1 Li (n) have no fixed prime divisor,
and so that hk � h1 is small.

In general, a good choice of the hi is to take hi to be the i th prime after the integer k.
With this choice,

Qk
i=1 Li (n) has no fixed prime divisor and hk �hi � k log k, so we can

find intervals of length k log k containing c log k primes infinitely often. By working out
the best possible implied constants, the argument we have sketched allows us to show that
there are m primes in an interval of length O(m3e4m) infinitely often. By incorporating
refinements of the work of Zhang on primes in arithmetic progressions by the Polymath
8a project Castryck et al. [2014], and using some bounds from Harman’s sieve Harman
[2007], this can be improved slightly to O(e3:815m) by work of R. C. Baker and Irving
[2017].

If we are only interested in just how small a single gap can be, then we can improve the
analysis and get an explicit bound on the size of the gap by adopting a numerical analysis
perspective. The key issue is to find the smallest value of k such that for all large X

E #f1 � i � k : Li (n) primeg > 1;

since this immediately implies that two of the linear functions are simultaneously prime.
Recalling that we can choose R = x1/4�� for any � > 0, using (3-2) we reduce the
problem to finding a value of k as small as possible, such that we can find a function
F̃ : [0; 1)k ! R with Pk

i=1 Ji (F̃ )

I (F̃ )
> 4:

We fix some basis functions g1; : : : ; gr : [0; 1)k ! R which are supported on (t1; : : : ;

tk) satisfying
Pk

i=1 ti � 1, and restrict our attention to functions F̃ in the linear span of
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the gi ; that is functions F̃ of the form

F̃ (t1; : : : ; tk) =

rX
i=1

fi gi (t1; : : : ; tr);

for some coefficients f = (f1; : : : fr) 2 Rr which we think of as variables we will opti-
mize over. For such a choice, we find that

Pk
i=1 Ji (F̃ ) and I (F̃ ) are both quadratic forms

in the variables f1; : : : ; fr , and the coefficients of these quadratic forms are explicit in-
tegrals in terms of g1; : : : ; gr . If we choose a suitably nice basis g1; : : : ; gr , then these
integrals are explicitly computable, and so we obtain explicit r �r real symmetric matrices
M1 and M2 such that Pk

i=1 Ji (F̃ )

I (F̃ )
=

fT M1f
fT M2f

:

We then find that the choice of coefficients fwhich maximizes this ratio is the eigenvector
of M �1

2 M1 corresponding to the largest eigenvalue, and the value of the ratio is given
by this largest eigenvalue. Thus the existence of a good function F̃ can be reduced to
checking whether the largest eigenvalue of a finite matrix is larger than 4, which can be
performed numerically by a computer.

If we choose the gi to be symmetric polynomials of low degree, then this provides a
nice basis since the corresponding integrals have a closed form solution, and allows one to
make arbitrarily accurate numerical approximations to the optimal function F̃ with enough
computation. For the problem at hand, these numerical calculations are large but feasible.
This approach ultimately allows one to show that if k = 54 there is a function F̃ such thatP54

i=1 Ji (F̃ )/I (F̃ ) > 4.
To turn this into small gaps between primes we need to choose the shifts hi in our linear

functions Li (n) = n + hi so that
Q54

i=1 Li (n) has no fixed prime divisor, and the hi are
in as short an interval as possible. This is a feasible exhaustive numerical optimization
problem, with an optimal choice of the fh1; : : : ; h54g given by 3

f0; 2; 6; 12; 20; 26; 30; 32; 42; 56; 60; 62; 72; 74; 84; 86; 90; 96;

104; 110; 114; 116; 120; 126; 132; 134; 140; 144; 152; 156;

162; 170; 174; 176; 182; 186; 194; 200; 204; 210; 216; 222;

224; 230; 236; 240; 242; 246; 252; 254; 260; 264; 266; 270g:

Putting this together, we find

lim inf
n

(pn+1 � pn) � 270:

3Such computations were first performed by Engelsma - see http://www.opertech.com/primes/
k-tuples.html

http://www.opertech.com/primes/k-tuples.html
http://www.opertech.com/primes/k-tuples.html
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This result is not quite the current record - in Polymath [2014] we make some further tech-
nical refinements to the sieve, which corresponds to modifying the expressions Ji (F̃ ) and
I (F̃ ) slightly. This ultimately allows us to improve k = 54 to k = 50 and correspond-
ingly improve from gaps of size at most 270 to gaps of at most 246, giving Theorem 2.
The main ideas are the same as above.

5 Large gaps between primes

It turns out that because Theorem 1 gives strong partial information about the joint distribu-
tion of prime solutions to linear equations, which lie at the heart of many basic estimates
about primes, it can be used to make progress on the existence of large gaps between
primes, although the connection is less direct than with small gaps.

The first major breakthrough on large gaps between primes was due to Westzynthius
[1931], who showed that there were gaps which could be arbitrarily large compared with
the average gap. During the 1930s this was refined with ideas due to Erdős [1940] and
Rankin [1936], giving

(5-1) sup
pn�X

(pn+1 � pn) � c0 logX � log logX � log log log logX

(log log logX)2
;

for some constant c0 > 0. Subsequent improvements over the next 75 years Schönhage
[1963], Rankin [1962/1963], and Maier and Pomerance [1990] were only in improving
the value of the constant c0, the strongest being c0 = 2e
 + o(1), due to Pintz [2014].
All of these approaches are based on a variant of the following lemma, which reduces the
problem of constructing large gaps between primes to a combinatorial covering problem.

Lemma 5. If one can choose residue classes ap (mod p) for p � x such that every
element of f1; : : : ; yg is congruent to ap (mod p) for some p � x, then there is a prime
pn � ex such that pn+1 � pn � y.

This lemma (which is a simple consequence of the Chinese Remainder Theorem), can
be thought of as a natural generalization of the argument that n! + 2; : : : ; n! + n are n

consecutive composite integers, and so explicitly demonstrates a prime gap of size at least
n. (This roughly corresponds to choosing ap = 1 for all primes p and taking y = x.)

The key idea in the Erdős–Rankin construction was to choose ap = 0 for ‘medium
sized’ primes, and choose ap differently for small and large primes. Specifically, a ver-
sion of their argument follows the following strategy to choose the ap in turn, for some
parameter 2 < z < x1/2:

1. Choose ap = 0 for ‘medium primes’ p 2 [z; x/3].
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2. Choose ap = 1 for ‘small primes’ p < z.

3. Choose ap greedily for ‘large primes’ p 2 (x/3; x].

By ‘choosing greedily’ wemean that we pick a residue class aq (mod q)which contains the
largest number of integers in f1; : : : ; yg which are not congruent to ap (mod p) for some
previously chosen ap . There must be a residue class containing at least one uncovered
element if we have not already covered all elements.

By choosing z appropriately4, this allows one to cover f1; : : : ; yg by residue classes
ap (mod p) for p � 7y(log logy)2/(logy � log log logy), which ultimately results in
the bound (5-1). The key feature making this construction work is that choosing ap = 0

for a very large number of ‘medium primes’ is much more efficient that a typical choice.
This is because integers in f1; : : : ; yg with no prime factors bigger than z1 are much less
common than integers avoiding a random residue class for each prime bigger than z1.

It was a well-known challenge of Erdős as to whether one could improve upon (5-1) by
an arbitrarily large constant, and this was verified independently by Ford, Green, Konya-
gin, and Tao [2016] and the author Maynard [2016b]. Ultimately the approach of Ford-
Green-Konyagin-Tao relied on the work of Green-Tao and Green-Tao-Ziegler on linear
equations in primes Green and Tao [2010], Green and Tao [2012], and Green, Tao, and
Ziegler [2012], whereas the work of the author relied on versions of Theorem 1. So far
this second approach has proved more flexible for gaining quantitative improvements over
(5-1), the strongest known results being due to a collaboration between all these authors
Ford, Green, Konyagin, Maynard, and Tao [2018].

We focus here on the approach based around Theorem 1, first thinking about obtaining
an arbitrarily large constant improvement over (5-1). We follow the same overall strategy
as Erdős–Rankin, but improve the analysis for the large primes. By choosing the residue
classes in amore sophisticatedmanner, we are able to removemany uncovered elements on
average, rather than just 1 element, and this is the key feature which allows us to improve
on (5-1).

Using the same choice of ap as Erdős–Rankin for p � x/3, we see that the elements of
f1; : : : ; yg which are not covered by ap (mod p) for p � x/3 are integers n < y where n

has no prime factors in [z; x/3] and n � 1 has no prime factors less than z. Let us call the
set of such integers S. This is a set which is very similar to the primes, since most elements
have a very large prime factor, and it is not clear that there are any possible ap whichmight
cover more than one additional element. Indeed, a typical residue class ap (mod p) for
p > x/3 will contain no elements of S. The problem of showing the existence of unusual
residue classes containing many elements of S leads us to the following toy problem.

4z = exp(logx � log log logx / 2 log logx) gives a suitable choice.
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Problem 1. Given a prime modulus q, can we find a residue class aq (mod q) which
contains many primes all less than q(log q)1/2?

This toy problem can be answered in the positive by a variant of Theorem 1. If we
choose our linear functions to be of the form Li (n) = n + hi q for suitable constants hi ,
then the existence of a residue class containing many small primes is implied by many of
the Li being simultaneously prime at n for some n � q. The underlying sieve methodol-
ogy is flexible enough to handle the fact that now the linear functions depend on q, and so
can solve the toy problem. This correspondingly shows that for each large prime p, there
are some residue classes ap (mod p) containing many elements of S.5

To turn this into an actual covering, we need the residue classes for different large
primes to be approximately ‘independent’ from one another. To do this we use the proba-
bilistic method, by choosing a residue class at random for each large primep 2 (x/3; x/2],
and showing that with high probability this results in approximately independent behavior.
Specifically, we choose ap randomly with

P (ap = a (mod p)) /
X

n�a (mod p)
L1(n);:::;Lk(n)2S

wLp
(n);

where wLp
(n) is the normalized sieve weight introduced in Section 3 for the functions

L1; : : : ; Lk with Li (n) = n + hi p. We make these choices independently for all p 2

(x/3; x/2], so

P (n not covered by large primes) =
Y

p2[x/3;x/2]

�
1 �

X
m�n (mod p)

wLp
(m)

�
� exp

�
�E #fp 2 [x/3; x/2] : n � ap (mod p)g

�
:

In particular, if the expected number of times any n 2 S is congruent to ap (mod p)

for some p 2 (x/3; x/2] is at least t , then the expected number of elements of S which
are not covered by ap (mod p) for p � x/2 is at most e�t#S. If t is large, we can then
greedily choose residue classes ap (mod p) for p 2 (x/2; x] to cover these few remaining
elements.

Thus our new strategy for choosing the ap is:

1. Choose ap = 0 for ‘medium primes’ p 2 [z; x/3].

2. Choose ap = 1 for ‘small primes’ p < z.
5The work of Green-Tao on linear equations in primes allows one to show for most large primes q there are

k primes less than q(logq)1/2 for any fixed k, which is sufficient to improve the estimates for large primes.
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3. Choose ap randomly according to the sieve weights wLp
independently for ‘large

primes’ p 2 (x/3; x/2].

4. Choose ap greedily for ‘very large primes’ p 2 (x/2; x].

This gives an arbitrarily large constant improvement over (5-1) provided we show that
we can take t arbitrarily large. Calculations similar to those of Section 3 allow us to take
t to be of size log k when we consider k linear functions, and so letting k be large enough
we succeed in showing that the constant in (5-1) can indeed be taken to be arbitrarily large.

To get a quantitative improvement over (5-1) we run the essentially the same argument,
but we need a version of Theorem 1 which has uniformity with respect to the number k of
linear functions we consider as well as uniformity with respect to the coefficients of the
linear functions. Such a version of Theorem 1 was established in Maynard [2016a]. With
some technical modifications, this would ultimately yield a bound

sup
pn�X

(pn+1 � pn) � c00 logX � log logX

log log logX

for some constant c00 > 0. This is not quite as good as Theorem 3, because one can im-
prove the quantitative argument further by being more careful about the manner in which
we choose the ap for different large primes. If instead of choosing residue classes indepen-
dently at random we use ideas based on the ‘semi-random’ or ‘Rödl nibble’ method from
combinatorics, we are able to establish a hypergraph covering lemma which allows our
covering by residue classes to have almost no overlaps. After working through the tech-
nical details, this ultimately gives an additional improvement of a factor log log log logX ,
and hence gives Theorem 3.

6 Limitations

Both Theorem 1 and Theorem 3 appear to be the qualitative limit of what these methods
can give, and require an entirely new approach to do better. Theorem 2 depends on the
quantitative aspects of Theorem 1, and can potentially be improved slightly. New ideas
are likely needed to significantly improve upon Theorem 2, however.

Optimal weights in high-dimensional sieves are poorly understood, andwe do not know
of general barriers beyond the parity phenomenon. In the context of Theorem 1 the parity
phenomenon means that we cannot hope to prove k/2 of our linear functions are simulta-
neously prime based on a sieve argument. In particular, significant new ideas are required
to attack the Twin Prime Conjecture.

Although in principle this leaves open the possibility of having rather more than log k

of the linear functions being simultaneously prime, since the Selberg sieve weights seem
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to perform best in high dimensional sieving situations, we expect that it is unlikely to be
possible to much do better than (3-2) based on weights formed by short divisor sums, even
if we cannot prove a direct obstruction. Heuristic arguments show that over fairly general
classes of potential Selberg sieve weights, we do not expect to do better than the choice
given by (3-1). Given the choice (3-1), it is possible to show that a choice of smooth
function similar to (3-3) is essentially best possible.

For the question of explicit small gaps between primes, there is some potential for fur-
ther progress. Stronger results about primes in arithmetic progressions allow us to take
R in (3-2) larger, which should reduce the critical value of k, and hence the size of the
gap. The current record of 246 in Theorem 2 does not make use of the new equidistri-
bution estimates of Zhang or its refinements (but these would likely only lead to small
improvements). If we assume optimistic conjectures on the distribution of primes then we
can do significantly better. Under the Elliott-Halberstam conjecture one can show gaps
of size 12 Maynard [2015], and a generalization of the Elliott-Halberstam conjecture to
numbers with several prime factors allows us to reach the absolute limit of these methods.
Specifically, we have the following.

Theorem 6 (Polymath [2014]). Assume the ‘Generalized Elliott-Halberstam Conjecture’
(see Polymath [ibid.]). Then we have

lim inf
n

(pn+1 � pn) � 6:

The parity phenomenon makes it impossible for a first moment method of this type to
prove a result less than 6, and so Theorem 6 is the strongest result of this type we can hope
to prove along these lines.

All proofs showing the existence of large gaps between primes rely on some variant
of Lemma 5, which allows one to construct a sequence of consecutive composite integers
n1; : : : ; n1 + y all with a prime factor of size O(logn1). This places a severe limitation
on how large the gaps we produce can be, since we expect that a large gap between primes
will involve many composites n whose smallest prime factor is much larger than logn.
Specifically, Maier and Pomerance [1990] conjectured that the largest string of consecu-
tive integers less than X all containing such a small prime factor should be of length

logX � (log logX)2+o(1):

Therefore we do not expect to be able to produce gaps larger than this without a new ap-
proach. The ‘semi-random’ method used in Ford, Green, Konyagin, Maynard, and Tao
[2018] to show the existence of a good choice residue classes for large primes is essen-
tially as good as one can hope for, so any quantitative progress based on the same overall
method would likely require an improvement to Problem 1, showing the existence of more
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than log log q primes less than q(log q)1/2 in some residue class modulo q. A uniform
version of Conjecture 3 suggests that there should be residue classes containing roughly
(log q)1/2/ log log q such primes, but we do not know how to prove this.

7 Other applications and further reading

For a more thorough survey of the details of these ideas on small gaps between primes, as
well as the ideas behind the breakthrough of Zhang, we refer the reader to the excellent
survey articles of Granville [2015] and Kowalski [2015]. For a more details of the original
work of Goldston, Pintz and Yıldırım we refer the reader to survey by Soundararajan
[2007].

One useful feature of the argument of Section 3 is that the full strength of the Bombieri-
Vinogradov theorem was not required to prove bounded gaps between primes. Provided
we can estimate primes in arithmetic progressions with modulus of size x� on average, we
would obtain a version of Theorem 1 with c� log k of the linear functions are prime. This
allows one to show the existence of bounded gaps between primes in many subsets of the
primes where one has this type of weaker arithmetic information. A general statement of
this type was established in Maynard [2016a]. The fact that one can restrict the entire ar-
gument to an arithmetic progression also allows one to get some control on the joint distri-
bution of various arithmetic functions. There have been many recent works making use of
these flexibilities in the setup of the sievemethod, including Thorner [2014], Castillo, Hall,
Lemke Oliver, Pollack, and Thompson [2015], Banks, Freiberg, and Turnage-Butterbaugh
[2015], Freiberg [2016], Pollack [2014], H. Li and Pan [2015], R. C. Baker and Pollack
[2016], Matomäki and Shao [2017], R. C. Baker and Zhao [2016a], Chua, Park, and Smith
[2015], Vatwani [2017], Troupe [2016], Pintz [2015, 2017], Huang and Wu [2017], R. C.
Baker and Zhao [2016b], Banks, Freiberg, and Maynard [2016], R. Baker and Freiberg
[2016], Kaptan [2016], Parshall [2016], and Pollack and Thompson [2015].

New results on long gaps between primes have also found further applications to other
situations R. Baker and Freiberg [2016], Maier and Rassias [2017], and J. Li, Pratt, and
Shakan [2017]. It is hopeful that the ideas behind Theorem 1thrm:ManyGaps can find
further applications in the future.
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THE SUBCONVEXITY PROBLEM FOR L-FUNCTIONS
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Abstract

Estimating the size of automorphic L-functions on the critical line is a central
problem in analytic number theory. An easy consequence of the standard analytic
properties of theL-function is the convexity bound, whereas the generalised Riemann
Hypothesis predicts a much sharper bound. Breaking the convexity barrier is a hard
problem. The moment method has been used to surpass convexity in the case of L-
functions of degree one and two. In this talk I will discuss a different method, which
has been quite successful to settle certain longstanding open problems in the case of
degree three.

At the 1994 International Congress at Zürich, J. B. Friedlander [1995] briefly described
the essence of the amplified moment method which he was developing in a series of
joint works with Duke and Iwaniec, with the aim of obtaining non-trivial bounds for L-
functions. Since then the amplification technique has proved to be very effective in a
number of scenarios involvingGL(2)L-functions (see J. Friedlander and Iwaniec [1992],
Duke, J. B. Friedlander, and Iwaniec [1993, 1994, 1995, 2001, 2002], Kowalski, Michel,
and VanderKam [2002], Michel [2004], Harcos and Michel [2006], and Blomer and Har-
cos [2008]). But there are major hurdles in extending the method far beyond. In the last
decade the automorphic period approach has been developed in great detail and general-
ity (over number fields), by Michel, Venkatesh and others (see Bernstein and Reznikov
[2010], Michel and Venkatesh [2010], Wu [2014]). This puts the moment method in a
proper perspective and gives a satisfactory explanation to the ‘mysterious identities be-
tween families of L-functions’ that already occurs in the study of the moments of the
Rankin-Selberg L-functions Harcos and Michel [2006], Michel [2004]. This has been
the topic of Michel’s address at the 2006 International Congress at Madrid Michel and
Venkatesh [2006]. Here I will briefly describe a new approach to tackle subconvexity,
which has not only settled some of the longstanding open problems in the field, but has
also matched in strength the existing benchmarks. As there are several excellent accounts
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Keywords: L-functions, subconvexity, circle method.
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on the subconvexity problem for general automorphic L-functions and on its importance
in number theory, equidistribution and beyond (see J. B. Friedlander [1995], Iwaniec and
Sarnak [2000], Michel [2007], Michel and Venkatesh [2006], Sarnak [1998]), I will dis-
cuss some specific cases which will easily bring out the new features of the method in
contrast to the amplified moment method of Friedlander-Iwaniec.

First let us recall the subconvexity problem and the amplification technique with the
aid of an example. The Ramanujan∆-function

∆(z) = �(z)24 =

1X
n=1

�(n)e2�inz

is a modular form of weight 12 for the full modular group SL(2;Z), and is the pro-
totype for all modular forms. Let � be a primitive Dirichlet character with modulus
M , then the twist ∆ ˝ � is a modular form of weight 12 for the congruence group
Γ0(M

2) with nebentypus �2. It was conjectured by Ramanujan, and later proved by
Deligne, that �(n) � n

11
2 +". Accordingly we define the normalized Fourier coefficients

�∆(n) = �(n)/n11/2, so that the associated Hecke L-function

L(s;∆ ˝ �) =

1X
n=1

�∆(n)�(n)

ns

is absolutely convergent for Re(s) > 1 and satisfies the Riemann type functional equation
s ! 1 � s with center at s = 1/2. The multiplicativity of the � function, again conjec-
tured by Ramanujan and proved shortly thereafter by Mordell (and by Hecke in general),
leads to a degree two Euler product representation of this L-function. The basic analytic
properties of this type of L-functions - analytic continuation, functional equation - were
established by Hecke. This is an example of an automorphicL-function of degree two. In
general, understanding the behaviour of automorphic L-functions inside the critical strip
0 � Re(s) � 1, and in particular on the central line Re(s) = 1/2, is the main problem in
this field.

There are few results in complex analysis which dictate the behaviour of holomorphic
functions inside a domain, once their behaviour is known on the boundary. One such
result is the convexity principle of Phragmén-Lindelöf, which when applied to the above
L-function, yields the bound

L
�
1
2
+ i t;∆ ˝ �

�
� C 1/4+"
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for any t 2 R and any " > 0, where C = [M (1 + jt j)]2. (The notation ‘�’ here means
that there exists a constant c(") depending only on " such that the absolute value of the left-
hand side is smaller than c(") times the right-hand side.) The same bound can be obtained
through the approximate functional equation which gives a Dirichlet series approximation
to the L-value. It is now understood that the length of this approximation can not be
smaller than the square-root of the size of the analytic conductor J. B. Friedlander [1995],
Iwaniec and Sarnak [2000], which for the particular example we are considering is given
by C . A direct consequence of the approximate functional equation is the bound

L( 1
2
+ i t;∆ ˝ �) � C " sup

N�C1/2+"

jS(N )j

N 1/2
+ C�2018;

where S(N ) are Dirichlet polynomials of the form

S(N ) =

1X
n=1

�∆(n)�(n)n
it W

� n
N

�
with W a smooth bump function. A trivial estimation of this sum recovers the above
convexity bound O(C 1/4+"). This is far from what one expects to be the truth. Indeed
the Generalized Riemann Hypothesis (GRH) implies the Generalized Lindelöf Hypothe-
sis which predicts a bound with exponent 0 in place of 1/4. Any bound with exponent
1/4 � ı for some ı > 0 is called a subconvex bound. Such bounds have several striking
applications Michel [2007], Sarnak [1995].

In the example we are considering there are two distinct parameters of interest, namely
t , which is allowed to take any real value, and M which can take any positive integral
value. In other words, there are two types of subfamilies of L-values of interest, viz.

fL( 1
2
+ i t;∆ ˝ �) : t 2 Rg

where the character � is kept fixed, and

fL( 1
2
+ i t;∆ ˝ �) : � modM primitive;M 2 Ng

where t is held fixed and the character varies with the modulus tending to infinity. A
subconvex bound for the former type of subfamilies is called t -aspect subconvexity and
that for the latter type is calledM -aspect (or twist aspect). Often, especially in arithmetic
applications, the parameterM is of interest, and one is required to the break the convexity
barrier in theM -aspect only. One such application is the uniform distribution of rational
points on sphere (Linnik’s problem) Michel [2007].
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The t -aspect subconvexity for L(s;∆) (� principal character) was first established by
Good using the spectral theory of Maass forms. Good’s approach is via the moment
method and is based on getting a strong error term in the asymptotic expansion for the
second moment Z 2T

T

jL(1/2 + i t;∆)j2dt:

In Good [1982] he establishes that the above integral is asymptotically

TP (logT ) +O((T logT )2/3)

where P is a linear polynomial. This strong error term is achieved by studying the more
concentrated second momentZ T+T /U

T�T /U

jL(1/2 + i t;∆)j2dt:

where one strives to get U as big as possible. Expanding the absolute value square using
the approximate functional equation, and then executing the t -integral one is left with a
shifted convolution sum problem which may be tackled by studying the Dirichlet series

1X
n=1

�(n)�(n+ h)

(n+ h/2)s
:

The automorphic forms enter the picture as the above series can be realised as the Petersson
inner product of the form∆ and the h-th Poincare series. The analytic continuation of this
L-series beyond the region of absolute convergence was first obtained by Selberg [1965].
But it was Good who first effectively used the spectral interpretation of the above Dirichlet
series to obtain estimates for moments of L-function. The estimates obtained by Good
give the optimal choice U = (T logT )1/3, and the above asymptotic expansion follows.
This in turn yields

L( 1
2
+ i t;∆) � (1 + jt j)1/3+";

which is the GL(2) analogue of the famous estimate of Hardy-Littlewood-Weyl for the
Riemann zeta function �(1/2 + i t) � (1 + jt j)1/6+". The most straightforward way to
prove the Weyl bound for the zeta function is through exponential sums, but a proof based
on the moment method, similar in spirit as above, was obtained by Iwaniec [1980].

The twist aspect subconvexity for L(s;∆ ˝ �) is a harder problem. One reason being
that there is no simple way to recover a subconvex bound for an individual L-value from
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an asymptotic for the second momentX
 modM

jL(1/2 + i t;∆ ˝  )j2:

There is no natural way (while retaining some sort of spectral completeness of the family)
to shorten the outer sum so as to obtain a secondmoment concentrated around �, the partic-
ular character we are interested in. (However this is again possible for the weight/spectral
aspect, e.g. Lau, Liu, and Ye [2006], Sarnak [2001].) Of course, one way will be to es-
timate a higher moment, say the fourth, but this turns out to be a much harder problem.
Though one would not need an asymptotic expansion in this case, but even getting an
appropriately strong bound is difficult. The amplification technique originated to bypass
this problem. The simple idea being to consider the weighted momentX

 modM

w( )jL(1/2 + i t;∆ ˝  )j2;

where the weights are necessarily non-negative, andw(�) is in some sense larger than the
average weight. One way to assign such weights (amplifier) is to consider sums of the
form

w( ) =

ˇ̌̌̌
ˇX
`∼L

a(`) (`)

ˇ̌̌̌
ˇ
2

;

where the coefficients a(`) are allowed to depend on �, ∆ and t . In the particular ex-
ample we are looking at, the choice is rather simple a(`) = �̄(`). Indeed j�(`)j = 1,
hence bounded away from 0, if (`;M ) = 1. (But such simple effective lower bounds
are not available for Fourier coefficients of modular or Maass forms, and the construction
of the amplifier, in the more general setup, has to go through deeper arithmetic structure
like Hecke relations.) Using this amplifier Duke, J. B. Friedlander, and Iwaniec [1993]
obtained the subconvex bound

L(1/2;∆ ˝ �) � M
1
2 � 1

22+":

This bound has been improved and extended to cover twists of any GL(2) automorphic
form. The strongest bound is due to Blomer and Harcos [2008], where they get the ex-
ponent 1/2 � 1/8 pushing to the limit the amplification method and utilising ideas of
Bykovskii. This exponent corresponds to the classic result of Burgess L(1/2; �) �

M 3/16+" for the Dirichlet L-function Burgess [1963]. In the same paper Blomer and
Harcos get a hybrid subconvex bound

L( 1
2
+ i t;∆ ˝ �) � [M (1 + jt j)]

1
2 � 1

40+":
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A strong hybrid subconvex bound for Dirichlet L-function was obtained by Heath-Brown
[1980] extending the work of Burgess [1963].

In general, the basic philosophy of the moment method and the amplification technique
can be described as follows. Suppose one seeks to get a bound for L(�0) = L(1/2; �0)

where �0 is an automorphic form. The approximate functional equation reduces the prob-
lem to getting cancellation in a sum of the form

S�0
=

X
n∼C1/2

��0
(n)

where ��0
are the Whittaker-Fourier coefficients and C is the conductor of �0. As a first

step, we need to find a ‘spectrally complete family’ F containing �0, where all the objects
in F have ‘comparable conductors’. Let

M =
X
�2F

jS� j
2;

then dropping all terms in the sum except the particular object we are interested in, we
conclude the bound S�0

� M1/2. Since M cannot be smaller than jF j, the diagonal
contribution, for subconvexity we at least need that jF j � C 1/2�ı . So the family cannot
be too big. Indeed, larger the family less likely it is, even with amplification, to obtain
a non-trivial bound for a particular L-value L(�0), as the individual contribution gets
washed out in the large average. Now let us consider the problem of estimating themoment
M. The usual way for the moment method is to open the absolute value and then execute
the sum over forms X

�2F

��(n)��(m);

using some sort of quasi-orthogonality (e.g. Petersson trace formula). So to get a good
estimate we need the family to be big enough - e.g. the off-diagonal contribution in the
Petersson trace formula is easily seen to be smaller for larger families, say when the level
is bigger. This dichotomy on the size of the family puts a severe restriction on the choice
of F . It is probably ‘an accident’ that such families exist for L-functions of degree one
and two. The amplification technique kicks in when one stumbles upon a family, where
jF j = C 1/2. Then one has to manufacture a suitable amplifier A� , and has to estimate
the amplified moment

M] =
X
�2F

jA� j
2
jS� j

2;

instead of M.
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I shall now explain a different approach to subconvexity in the context of the above
example. We are seeking cancellation in the sum S(N ) =

P
n∼N �∆(n)�(n)n

it ; where
N = C 1/2. The basic idea is to separate the oscillation of the Fourier coefficient �∆(n)
from that of �(n)nit . We do this bluntly by introducing a new variable, and rewriting the
sum as

S(N ) =
X X
m;n∼N
m=n

�∆(n)�(m)m
it :

Next we detect the equation m = n using the circle method to arrive at

S(N ) =
1

Q2

X
q∼Q

X
a mod q
(a;q)=1

h X
n∼N

�∆(n)eq(an)
i h X

m∼N

�(m)miteq(�am)
i

with Q = N 1/2 = C 1/4, where we are using the standard shorthand notation eq(z) =

e2�iz/q . Summation formulas of Poisson and Voronoi, reduces the expression to a bilinear
form with Kloosterman fractionsX X

m;q∼Q
(m;q)=1

�(qm̄)(qm�1)iteq(�Mm̄)

where m̄ is the multiplicative inverse of m modulo q. The trivial estimation of this sum
yields the convexity bound. A deep result of Duke, Friedlander and Iwaniec gives some
cancellation in such sums. But inMunshi [2014] I proceeded in a different direction which
paved the way for further developments in the method. Suppose by some means we had
reached a similar expression with a factorizable modulus q = q1q2 with qi ∼ Qi and
Q1Q2 = Q. Then one could apply the Cauchy inequality to dominate the above expres-
sion by

Q1/2
X
q2∼Q2

2664 X
m∼Q

(m;q2)=1

ˇ̌̌ X
q1∼Q1

(m;q1)=1

�(q1)q
it
1 eq1q2(�Mm̄)

ˇ̌̌23775
1/2

;

and now it would be possible to get more cancellation by opening the absolute value square
and applying the Poisson summation formula on the sum over m. The new input that one
would need is the Weil bound for Kloosterman sums. But how does one get this desired
structure on the modulus? In Munshi [ibid.] I used Jutila’s version of the circle method to
achieve this goal, and was able to prove

L( 1
2
+ i t;∆ ˝ �) � [M (1 + jt j)]

1
2 � 1

18+";
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which was an improvement over the above mentioned result of Blomer-Harcos. There is
another interesting way to achieve the same structure - ‘congruence-equation trick’. Pick
a set of primes Q1 from the interval [Q1; 2Q1]. Then for any q1 2 Q1 we split the inte-
gral equation m = n into a congruence m � n mod q1 and a smaller integral equation
(m � n)/q1 = 0. The last equation can be detected by a circle method with modulus
Q2 =

p
N /Q1. Detecting the congruence using additive characters modulo q1, we ar-

rive at an expression similar to one we got above with q = q1q2. Of course the price we
pay to get this factorization is the increase in the size of the modulus q ∼

p
Q1N . But

the structural advantage compensates this loss adequately, and even provides the desired
extra saving. (For applications of this trick to Diophantine problems, see Browning and
Munshi [2013] and Munshi [2015a].)

Unfortunately, this simple approach does not work for the twisted GL(3) L-functions
L(s; �˝�)where � is a Hecke-Maass cusp form for SL(3;Z). Previously Li [2011] and
Blomer [2012] had studied the t -aspect and theM -aspect subconvexity problems for these
L-functions in the special case where � is a symmetric square lift of a SL(2;Z) Hecke-
Maass cusp form. (A p-adic version of Li’s result was established in Munshi [2013b]
using the ideas of Munshi [2013a].) Their approach is an extension of Conrey and Iwaniec
[2000] method where non-negativity of certain L-values plays a crucial role. As such
their results could not be extended to cover generic SL(3;Z) forms. In Munshi [2015d]
I partially succeeded in theM -aspect. Suppose the character � factorises as �1�2 where
�i is primitive moduloMi with (M1;M2) = 1,M1 < M2. We are seeking cancellation
in the sum

S3(N ) =
X
n∼N

��(n; 1)�(n);

where ��(n; r) are the normalised Whittaker-Fourier coefficients of the form � , andN =

M 3/2 - square-root of the size of the conductor. As before we separate the oscillation of
the Fourier coefficients from that of the character by introducing a new variable and an
equation,

S3(N ) =
X X
m;n∼N
m=n

��(n; 1)�(m):

Now we use the congruence-equation trick to split the integral equation m = n as m �

n modM1 and the integral equation (m � n)/M1 = 0. Here this trick acts as a level
lowering mechanism as the modulus M1 was intrinsic to the problem. The remaining
integral equation is detected using the circle method with modulus of smaller size Q =



THE SUBCONVEXITY PROBLEM 389

p
N /M1. The resulting expression now looks like

S3(N ) =
1

Q2M1

X
q∼Q

X
a mod qM1

(a;q)=1

h X
n∼N

��(n; 1)eqM1
(an)

i
�

h X
m∼N

�(m)eqM1
(�am)

i
;

and one is again able to win, as long as
p
M2 < M1 < M2, by applying summation

formulas - Poisson summation and GL(3) Voronoi summation - followed by an applica-
tion of Cauchy to escape from the trap of involution, and another application of Poisson
summation. Here one needs to use Deligne’s bound for complete exponential sums.

Though it was clear that this approach would not extend to general characters, the t -
aspect subconvexity for L(s; �) for � a SL(3;Z) form, became tractable. Indeed the
t -aspect is related to twists by highly factorizable characters. In Munshi [2015b] I estab-
lished the following subconvex bound.

Theorem 1. Let � be a Hecke-Maass cusp form for SL(3;Z). Then we have

L( 1
2
+ i t; �) � (1 + jt j)

3
4 � 1

16+":

Curiously the exponent matches with Li’s bound in Li [2011] for symmetric square
lifts, though the two approaches are totally different. The above result is proved using
the technique outlined above, but now one have to use the archimedean analogue of the
congruence-equation trick. Imagine M1 = pr with p a fixed prime and r ! 1, then
the congruence condition m � n modM1 corresponds to a condition on the p-adic size
of m � n. This translates as jm � nj � N /M1 in the archimedean situation of t -aspect.
In Munshi [2015b] we choose a suitable parameter V and factorise the integral equation
m� n = 0 (of size N ) into a distance condition jm� nj � N /V and the smaller integral
equationm� n = 0 (of size N /V ). The size restriction jm� nj � N /V is then detected
using an integral involving (m/n)iv .

For the twist aspect one needs to introduce higher order harmonics. The usual circle
methods and the DFI delta method are based on GL(1) harmonics, or the harmonics of
the abelian circle group S1. These are the trigonometric functions e(z). The delta method
gives a Fourier resolution of the delta symbol ı : Z ! f0; 1g, ı(0) = 1 and ı(n) = 0 for
n ¤ 0. A very rough version of this formula looks like

ı(n) �
1

C 2

X
c∼C

X
a mod c
(a;c)=1

ec(an):
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Usually to detect the event n = 0with n varying in the range [�N;N ] one takesC =
p
N

so as to minimise the total conductor - the arithmetic modulus c and the amplitude of the
oscillation in the weight function (which we have ignored above) - in the circle method
formula. In several cases, it turns out that all one needs is a circle method formula with C
slightly smaller than

p
N . For example, the subconvexity of L(s;∆ ˝ �) follows quite

easily if one has such an elusive circle method.

In the above applications we always needed a souped up version of the usual circle
method formula, which we achieved by putting extra structural conditions on the fractions
a/c that parametrise the outer sum. In all cases we ended up relating the L-value under
focus to an average of products of L-values, e.g.

L(1/2 + i t;∆ ˝ �) !
X
f 2F

L(s1;∆ ˝ vf )L(s2 + i t; �˝ vf )

where F is a collection of (Farey) fractions with suitable factorization of denominator, and
for f = (a; c), vf is the additive character n ! ec(an). Hence at the end we are still
computing moments of certain products of L-values (but not sizes of L-values). Since
clearly the GL(1) harmonics will not suffice for higher degree L-functions, one looks for
expansions of delta involving higher order harmonics. The trace formulas of non-abelian
groups are natural sources for such expansions. For example, the Petersson trace formula
for modular forms gives

ı(m � n) =
X

f 2Hk(q; )

w�1
f �f (n)�f (m)

� 2�i�k
1X
c=1

S (m; n; cq)

cq
Jk�1

�
4�

p
nm

cq

�

for m; n > 0. HereHk(q;  ) is an orthogonal Hecke basis for the space of cusp forms of
weight k level q and nebentypus , S (m; n; c) are Kloosterman sums and Jk�1(x) is the
J -Bessel function. Since the left hand side does not depend on  , q or k, one may take
suitable averages to jazz up the formula a bit and make it more suitable for application. In
Munshi [2015c] and Munshi [2016], where I was considering the arithmetic twist aspect,
it was more natural to take averages over q and  . One would imagine that when the
problem in focus is in the t -aspect or spectral aspect, one would need to take average over
k. Taking averages over nebentypus and level, executing the sum over  in the second
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part, and applying the reciprocity relations, we get

ı(m � n) �
1

Q2

X
q∼Q

X
 mod q

 (�1)=(�1)k

X
f 2Hk(q; )

w�1
f �f (n)�f (m)

�
2�i�k

Q

X
q∼Q

h 1

N

X
c∼C

X
a mod c
(a;c)=1

ec((a + 1)q̄m+ (ā + 1)q̄n)
i
;

with C = N /Q. The first part of the formula involves GL(2) harmonics, or Fourier co-
efficients of modular forms, the second part is like the usual circle method formula, and
in fact matches in length to that if we takeQ =

p
N . There are however two advantages

- first one can take larger Q and thereby make c smaller, and secondly one can take ad-
vantage of the extra averaging over q. The cost one pays is of course the introduction of
the more complicatedGL(2) harmonics in the formula. This version of delta method was
introduced inMunshi [2015c] to tackle theM -aspect subconvexity forL(s; �˝�)with �
a SL(3;Z) form. In the follow up paper Munshi [2016] a much simplified version of the
approach was given. The second version of the proof is more in line with Munshi [2015d]
and Munshi [2015b].

Theorem 2. Let � be a Hecke-Maass cusp form for SL(3;Z) and � is a primitive char-
acter moduloM . Then we have

L( 1
2
; � ˝ �) � M

3
4 �� ;

for some explicitly computable � > 0.

The reader perhaps has already realised that the above method is robust enough and
that these results should generalise to Hecke-Maass cusp forms for any congruence sub-
groups of SL(3;Z). Also in the last stated theoremwe can have a subconvex bound at any
point on the critical line with polynomial dependence on t . The work of Blomer [2012]
for quadratic twists of symmetric square lifts, in contrast, is only for the central point.
There are other trace formulas which can be utilised in the same fashion. For example the
Kuznetsov trace formula can be used to give an expansion of the delta involving Fourier
coefficients of Maass forms and Einsenstein series. I believe that this would be the key
in settling the weight/spectral aspect subconvexity for the symmetric square L-functions
or the t -aspect subconvexity for GL(4) L-functions. My recent preprint Munshi [2017b]
addresses the level aspect subconvexity for the symmetric squareL-function. Let me also
mention that a preprint of Blomer and Buttcane [2015] gives a partial result towards set-
tling the spectral aspect subconvexity for GL(3) L-functions. They do not use the above
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method.

Few recent works have used the above method to get strong bounds for lower degreeL-
functions. First Aggarwal [2017] and Singh [2017] have independently revisited Good’s
problem using the method of Munshi [2015b]. Here it is likely that this method is strong
enough to yield theWeyl exponent. I have shown that theGL(2) delta method can be used
to prove the Burgess exponent both for twists of GL(2) forms and for classical Dirichlet
L-functions Munshi [2017a]. New ideas are still required to break the Burgess barrier.
However in a joint work with Singh Munshi and Singh [2017], we have shown that the
Weyl bound holds in the M -aspect for twists of GL(2) L-functions when the modulus
is a suitable prime power, for example if M = p3 for a prime p. This work again
uses the congruence-equation trick. In this context, let me mention that Milićević [2016]
and Blomer and Milićević [2015] have developed a p-adic version of the Van der Corput
method, which yields a sub-Weyl bound for Dirichlet L-functions when the modulus is a
suitably high p power, and gives a sub-Burgess bound (which asymptotically decreases
to Weyl bound) for twists of GL(2) L-functions by similar characters.

Finally I would like to mention that Holowinsky and Nelson [n.d.] have come up with
a much ‘abridged version’ of the method. This have simplified and shortened the proofs
substantially. Their work is pivoted on a crucial observation that there is a ‘central iden-
tity’ which makes the circle method approach to subconvexity work. They have shown
that in many cases this central identity can be derived using simpler summation formulas,
completely avoiding the circle method. However one drawback that still remains in their
work is that it is not clear how to predict this central identity without taking recourse to the
circle method approach. This is now an active topic of research. First Holowinsky-Nelson
have given a simpler proof for the twists of GL(3) L-functions. Y. Lin [n.d.] have used
this approach to give a hybrid bound for GL(3) L-functions, and Aggarwal, Holowinsky,
Lin, and Sun [n.d.] have given the non-circle method version of Munshi [2017a]. Apart
from the problem of breaking the longstanding Burgess barrier, the following two prob-
lems should be the main focus of the circle method approach.

Problem 1: Weight/spectral aspect subconvexity for symmetric square L-functions.

Problem 2: t -aspect subconvexity for GL(4) L-functions.

I hope one of these would be solved before the next International Congress.
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ARITHMETIC MODELS FOR SHIMURA VARIETIES

Gൾඈඋ඀ංඈඌ Pൺඉඉൺඌ

Abstract

We describe recent work on the construction of well-behaved arithmetic models
for large classes of Shimura varieties and report on progress in the study of these
models.

Introduction

Before the term became standard, certain “Shimura varieties” such as modular curves,
Hilbert-Blumenthal varieties, and Siegel modular varieties, were already playing an im-
portant role in number theory. Indeed, these are, respectively, quotients of the domains
on which modular, Hilbert, and Siegel modular forms, are defined. In a series of ground-
breaking works Shimura [1964, 1970], Shimura initiated the arithmetic study of general
quotients ΓnH of a hermitian symmetric domainH by the action of a discrete congruence
arithmetic group Γ of holomorphic automorphisms of H . Such quotients are complex al-
gebraic varieties and Shimura used the theory of moduli and of complex multiplication
of abelian varieties to construct canonical models over explicit number fields for many of
them.

Deligne reformulated and generalized Shimura’s theory and emphasized the group and
motivic theoretic source of the constructions (Deligne [1971, 1979] and Deligne, Milne,
Ogus, and Shih [1982]). In Deligne’s elegant definition, one starts with a pair (G; X) of a
connected reductive algebraic group G defined over the rational numbers Q and a G(R)-
conjugacy class X = fhg of an algebraic group homomorphism h : S! G ˝Q R. Here,
S = ResC/R(Gm) is the algebraic torus overRwhose real points are the groupC�. When
the pair (G; X) satisfies Deligne’s conditions (Deligne [1979, (2.1.1.1)-(2.1.1.3)]), we say
that (G; X) is a Shimura datum. These conditions imply that each connected component

Partially supported by NSF grants DMS-1360733 and DMS-1701619.
MSC2010: primary 11G18; secondary 14G35.
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X+ of X is naturally a hermitian symmetric domain. The Shimura varieties ShK(G; X)

are then the quotients

ShK(G; X) = G(Q)nX � (G(Af )/K)

for K an open compact subgroup of the finite adelic points G(Af ) of G. Here, G(Q) acts
diagonally on X � (G(Af )/K), with the action on X given by G(Q) � G(R) followed
by conjugation, and on G(Af )/K by G(Q) � G(Af ) followed by left translation. Such
a quotient is the disjoint union of a finite number of quotients of the form ΓnX+, where
Γ are discrete congruence arithmetic groups. Hence, ShK(G; X) has a natural complex
analytic structure induced from that on X . In fact, by work of Baily and Borel, there is a
quasi-projective complex algebraic structure on ShK(G; X). Following the original work
of Shimura and others, the existence of canonical models of ShK(G; X) over a number
field (the “reflex field” E = E(G; X)) was shown in all generality by Borovoĭ [1987] and
Milne (see Milne [1990] and the references there).

Many of the applications of Shimura varieties in number theory depend on understand-
ing models of them over the ring of integers OE of the reflex field, or over localizations
and completions of OE. Indeed, perhaps the main application of Shimura varieties is to
Langlands’ program to associate Galois representations to automorphic representations. A
related goal is to express the Hasse-Weil zeta functions of Shimura varieties as a product
of automorphic L-functions.

After some earlier work by Eichler, Shimura, Sato and Ihara, a general plan for realizing
this goal was given by Langlands, first for the local factor of the zeta function at a prime of
good (i.e. smooth) reduction.1 Langlands suggested expressing the numbers of points over
finite fields of an integral model in terms of orbital integrals which appear in versions of the
Arthur-Selberg trace formula. This was extended and realized in many cases, mainly by
(Kottwitz [1990, 1992], see Langlands and Ramakrishnan [1992]). It is now often referred
to as the Langlands-Kottwitz method. Langlands also considered the local factor of the
zeta function for an example of a Shimura surface at a prime of bad (non-smooth) reduction
Langlands [1979]. This example was treated carefully and the argument was extended to a
larger class of Shimura varieties by Rapoport and Zink [1982] and by Rapoport [1990]. At
primes of bad reduction, the singularities of the model have to be accounted for; the points
need to be weighted by the semi-simple trace of Frobenius on the sheaf of nearby cycles.
In fact, the Galois action on the nearby cycles can be used to study the local Langlands
correspondence, as in the work of Harris and Taylor [2001]. In relation to this, Scholze
recently extended the Langlands-Kottwitz method so that it can be applied, in principle at
least, to the general case of bad reduction (Scholze [2013]).

1At least for proper Shimura varieties; in our brief report, we will ignore the issues arising from non-
properness and the extensive body of work on compactifications.
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A starting point of all the above is the existence of a reasonably well-behaved arithmetic
model of the Shimura variety. For some time, such models could only be constructed for
Shimura varieties of PEL type, i.e. those given as moduli spaces of abelian varieties with
additional polarization, endomorphism, and level structures, and over primes at which the
level subgroup is “parahoric” (e.g. Rapoport and Zink [1996]). Recently, due to advances
in p-adic Hodge theory and in our understanding of the underlying group theory, the con-
struction has been extended to most Shimura varieties of “abelian type” (at good reduction
by Kisin [2010], see also earlier work of Vasiu [1999]; at general parahoric level in Kisin
and Pappas [2015]). These Shimura varieties include most cases with G a classical group.

The construction and properties of these models is the subject of our report. There are,
of course, more uses for these in number theory besides in the Langlands program. For
example, one could mention showing Gross-Zagier type formulas via intersection theory
over the integers, or developments in the theory of p-adic automorphic forms. Here, we
view their construction and study as a topic of its own and discuss it independently of
applications.

In fact, there are deep relations and analogies between this subject and the study of
other spaces of interest in number theory, representation theory, and the geometric Lang-
lands program, such as moduli spaces of bundles, or versions of affine Grassmannians and
flag varieties. Increasingly, these connections, especially with the geometric side of Lang-
lands program, are taking center stage. For example, certain p-adically integral models
of homogeneous spaces that appear as subschemes of global (“Beilinson-Drinfeld”) affine
Grassmannians, the so-called “local models”, play an important role. These local models
also appear in the theory of deformations of Galois representations Kisin [2009]. After
first giving some background, we start by discussing local models. We then describe re-
sults on arithmetic models of Shimura varieties and their reductions, and finish with an
account of the local theory of Rapoport-Zink formal schemes.

Acknowledgments. I would like to thank my collaborators, especially M. Kisin and
X. Zhu, for making much of the progress reported on here possible, and M. Rapoport
for generously sharing his knowledge over the years.

1 Recollections on p-adic groups

Let G be a connected reductive group over the field of p-adic numbers Qp for a prime
number p. Let Q̄p be an algebraic closure of Qp . We denote by L the p-adic completion
of the maximal unramified extension of Qp in Q̄p and by OL the integers of L. We
will also denote by k = F̄p the algebraically closed residue field of L and by � the
automorphism of L which lifts the Frobenius x 7! xp .
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Recall that g, g0 2 G(L) are � -conjugate, if there is h 2 G(L) with g0 = h�1g�(h).
We denote by B(G) the set of � -conjugacy classes of G(L). Recall the functorial surjec-
tive homomorphism �G(L) : G(L)! �1(G)I fromKottwitz [1997]. Here, Gal(L̄/L) '
I � Gal(Q̄p/Qp) is the inertia subgroup and �1(G)I the inertia coinvariants of the alge-
braic fundamental group �1(G) ofG over Q̄p . We denote the kernel of �G(L) byG(L)1.

Let S be a maximal split torus of GL. By Steinberg’s theorem, GL is quasi-split
and the centralizer of S is a maximal torus T of GL. Denote by N the normalizer of
T . The quotient eW = eW G;S = N (L)/T (L)1 is the Iwahori-Weyl group associated to
S . It is an extension of the relative Weyl group W0 = N (L)/T (L) by �1(T )I . Since
�1(T ) = X�(T ) (the group of cocharacters of T over L̄), we obtain an exact sequence
1! X�(T )I ! eW ! W0 ! 1:

Suppose that f�g is the conjugacy class of a cocharacter� : GmQ̄p
! GQ̄p

. Then f�g
is defined over the local reflex field E which is a finite extension of Qp contained in Ē =

Q̄p . Denote by OE the integers ofE and by kE its residue field. There is a corresponding
homogeneous space GĒ/P��1 which has a canonical model X� = X(f�g) defined over
E. Here, P� denotes the parabolic subgroup that corresponds to the cocharacter �.

A pair (G; f�g) of a connected reductive group G over Qp , together with a conjugacy
class f�g of a cocharacter � as above, is a local Shimura pair,2 if � is minuscule (i.e., for
any root ˛ of GQ̄p

, h˛;�i 2 f�1; 0; 1g.)
We denote byB(G;Qp) the (extended) Bruhat-Tits building ofG(Qp)Bruhat and Tits

[1972, 1984] and Tits [1979]. The group G(Qp) acts on B(G;Qp) on the left. If Ω is a
subset of B(G;Qp), we write G(Qp)Ω = fg 2 G(Qp) j g � y = y; for all y 2 Ωg for
the pointwise fixer of Ω. Similarly, we have the subgroup G(L)Ω of G(L).

By the main result of Bruhat and Tits [1984], ifΩ is bounded and contained in an apart-
ment, there is a smooth affine group scheme GΩ over Spec (Zp) with generic fiber G and
with GΩ(OL) = G(L)Ω, which is uniquely characterized by these properties. By defini-
tion, the “connected fixer” G(Qp)

ı
Ω is Gı

Ω(Zp); where Gı
Ω is the connected component of

GΩ: It is a subgroup of finite index inG(Qp)Ω. WhenΩ = fxg is a point, we simply write
G(Qp)x and G(Qp)

ı
x . If Ω is an open facet and x 2 Ω, then G(Qp)

ı
Ω = G(Qp)

ı
x .

A parahoric subgroup of G(Qp) is any subgroup which is the connected stabilizer
G(Qp)

ı
x of some point x in B(G;Qp) as above. These are open compact subgroups of

G(Qp). We call Gı
x a “parahoric group scheme”.

We now recall some more terms and useful facts (Tits [1979], Haines and Rapoport
[2008]): A point x 2 B(G;Qp) is hyperspecial, when Gx is reductive; then Gx = Gı

x .
Hyperspecial points exist if and only if G is unramified over Qp , i.e. if G is quasi-split
and splits over an unramified extension of Qp . When x is a point in an open alcove,

2Compare this with the term “local Shimura datum” used in Rapoport and Viehmann [2014]. A local Shimura
datum (G; f�g; [b]) also includes the choice of a �-conjugacy class [b].
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then the parahoric G(Qp)
ı
x is called an Iwahori subgroup. Iwahori subgroups exist for

all G. Each maximal open compact subgroup of G(Qp) contains a parahoric subgroup
with finite index. If the group �1(G)I has no torsion, then G(Qp)x = G(Qp)

ı
x , for all

x. Then, all maximal open compact subgroups are parahoric.
LetK = G(Qp)

ı
x be parahoric and denote by K̃ the corresponding parahoric subgroup

G(L)ı
x of G(L); we have K̃ = Gı

x(OL).
Suppose x lies in the apartment associated to S . A choice of an alcove C � B(G;L)

contained in that apartment provides the Iwahori-Weyl group eW = eW G;S with a Bruhat
partial order�. Suppose x 2 C and set eW K̃ = (N (L)\K̃)/T (L)1;which is a subgroup
of eW . The inclusion N (L) � G(L) induces Haines and Rapoport [ibid.] a bijection

eW K̃
neW /eW K̃ ∼

�! K̃nG(L)/K̃:

There is also a partial order� on these double cosets: Set [w] = eW K̃weW K̃ . Then [w1] �

[w2] if and only if there are w0
1 2 [w1], w0

2 2 [w2], with w0
1 � w

0
2.

We refer the reader to Pappas, Rapoport, and Smithling [2013] for the definition of the
f�g-admissible subset

AdmK̃(f�g) � eW K̃
neW /eW K̃

' K̃nG(L)/K̃

of Kottwitz and Rapoport. This is a finite set which has the following property: If [w] 2
AdmK̃(f�g) and [w0] � [w], then [w0] 2 AdmK̃(f�g).

Let us continue with the above set-up. The affine Deligne-Lusztig set XK(f�g; b) as-
sociated to G, f�g,K, and b 2 G(L), is the subset of G(L)/K̃ consisting of those cosets
gK̃ for which g�1b�(g) 2 K̃wK̃, for some [w] 2 AdmK̃(f�g).

If b0 and b are � -conjugate b0 = h�1b�(h), then gK̃ 7! hgK̃ gives a bijection
XK(f�g; b)

∼
�! XK(f�g; b0): The group Jb(Qp) = fj 2 G(L) j j�1b�(j ) = bg

acts on XK(f�g; b) by j � gK̃ = jgK̃. Set f = [kE : Fp]. The identity ΦE (gK̃) =

b�(b) � � � �f �1(b)�f (g)K̃ defines a map ΦE : XK(f�g; b)! XK(f�g; b).
Our last reminder is of the affine Grassmannian of G. By definition, the affine Grass-

manianAffG ofG is the ind-projective ind-scheme over Spec (Qp)which represents (e.g.
Pappas and Rapoport [2008]) the fpqc sheaf associated to the quotient presheaf given by
R 7! G(R((t)))/G(R[[t ]]).

2 Local models

Let (G; f�g) be a local Shimura pair and K a parahoric subgroup of G(Qp). Denote by
G the corresponding parahoric group scheme over Spec (Zp) so that K = G(Zp) and set
again K̃ = G(OL). A form of the following appears in Rapoport [2005].
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Conjecture 2.1. There exists a projective and flat scheme MK(G; f�g) over Spec (OE )

which supports an action of G˝Zp
OE and is such that:

(i) The generic fiberMK(G; f�g)˝OE
E is GE -isomorphic to X�,

(ii) There is a K̃-equivariant bijection betweenMK(G; f�g)(k) and

fgK̃ 2 G(L)/K̃ j K̃gK̃ 2 AdmK̃(f�g)g � G(L)/K̃:

The scheme MK(G; f�g) is a local model associated to (G; f�g) and K.
We now consider the following “tameness” condition:

(T) The group G splits over a tamely ramified extension of Qp and p does not divide the
order of the fundamental group �1(G

der) of the derived group.
Under the assumption (T), Conjecture 2.1 is shown in Pappas and Zhu [2013]. The

construction of the local models in Pappas and Zhu [ibid.] is as follows.
(I) We first construct a smooth affine group scheme G over Zp[u] which, among other
properties, satisfies:

1) the restriction of G over Zp[u; u
�1] is reductive,

2) the base change G˝Zp [u] Zp , given by u 7! p, is isomorphic to the parahoric group
scheme G.

For this, we use that Zp[u
˙1] = Zp[u; u

�1] ! Qp , given by u 7! p, identifies the
étale fundamental group of Zp[u

˙1] with the tame quotient of the Galois group of Qp;
our tameness hypothesis enters this way. We first obtain the restriction GjZp [u˙1] from its
constant Chevalley form H ˝Zp

Zp[u
˙1] by using, roughly speaking, the “same twist”

that gives G from its constant form H ˝Zp
Qp . This is quite straightforward when G

is quasi-split and the twist is given using a diagram automorphism; the general case uses
explicit Azumaya algebras overZp[u

˙1]. The extension G toZp[u] of the reductive group
scheme GjZp [u˙1] is then given by generalizing some of the constructions in Bruhat and
Tits [1984] to this two-dimensional set-up.
(II) Consider the functor that sends ' : Zp[u] ! R to the set of isomorphism classes
of pairs (E; ˇ), with E a G-torsor over A1

R and ˇ a section of E over Spec (R[u; (u �
'(u))�1]). We show that this is represented by an ind-projective ind-scheme (the global
affine Grassmannian, cf. Beilinson and Drinfeld [1996]) AffG;A1 ! A1 = Spec (Zp[u]).
Using the construction of G and Beauville and Laszlo [1994], we obtain an equivariant
isomorphism

AffG
∼
�! AffG;A1 ˝Zp [u] Qp

where the base change is given by u 7! p. (The above isomorphism is induced by t 7!
u � p, with the notation of Section 1 for AffG .)
(III) Since Gm = Spec (Qp[t; t

�1]), our cocharacter � defines �(t) 2 G(Q̄p((t))). In
turn, this gives a Q̄p-point [�(t)] = �(t)G(Q̄p[[t ]]) of AffG .
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Since � is minuscule and the conjugacy class f�g is defined over E, the orbit

G(Q̄p[[t ]]) � [�(t)] � G(Q̄p((t)))/G(Q̄p[[t ]]) = AffG(Q̄p);

is equal to the set of Q̄p-points of a closed subvariety S� of AffG;E := AffG˝Qp
E. The

stabilizer H��1 := G(Q̄p[[t ]]) \ �(t)G(Q̄p[[t ]])�(t)
�1 of [�(t)] is the inverse image of

P��1(Q̄p) under G(Q̄p[[t ]]) ! G(Q̄p) given by reduction modulo t . This gives a GE -
equivariant isomorphism X�

∼
�! S� which we can use to identify X� with S� � AffG;E .

Definition 2.2. We defineMK(G; f�g) to be the (flat, projective) scheme over Spec (OE )

given by the reduced Zariski closure of the image of

X�
∼
�! S� � AffG;E

∼
�! AffG;A1 ˝Zp [u] E

in the ind-scheme AffG;A1 ˝Zp [u] OE .

The next includes the main general facts about the structure of MK(G; f�g) and can be
extracted from the results of Pappas and Zhu [2013].

Theorem 2.3. Suppose that (T ) holds. The schemeMK(G; f�g) of Definition 2.2 satisfies
Conjecture 2.1. In addition:

a) The schemeMK(G; f�g) is normal.
b) The geometric special fiber MK(G; f�g)˝OE

k is reduced and admits a G˝Zp
k-

orbit stratification by locally closed and smooth strata S[w], with S[w](k) ' fgK̃ 2

G(L)/K̃ j [w] = K̃gK̃g; for each [w] 2 AdmK̃(f�g).
c) The closure S [w] of each stratum is normal and Cohen-Macaulay and equal to the

union
S

[w0]�[w] S[w0]; where � is given by the Bruhat order.

One main ingredient is the proof, by Zhu [2014], of the coherence conjecture of Pappas
and Rapoport [2008]. The coherence conjecture is a certain numerical equality in the
representation theory of (twisted) Kac-Moody groups. Its statement is, roughly speaking,
independent of the characteristic, and so enough to show in the function field case where
more tools are available.

Before Pappas and Zhu [2013], there have been various, often ad hoc, constructions
of local models obtained by using variants of linked Grassmannians (Rapoport and Zink
[1996], Pappas [2000]; see the survey Pappas, Rapoport, and Smithling [2013] and the
references within, and Section 3 below for an example).

An extension of the above construction of local models, to the case G is the restriction
of scalars of a tame group from a wild extension, is given in Levin [2016]. One would
expect that a completely general construction of the local model MK(G; f�g) can be given
by using a hypothetical version of the affine Grassmannian in which R 7! G(R[[u]]) is re-
placed by the functor R 7! G(W (R)). HereW (R) is the ring of p-typical Witt vectors of
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R. (See Section 5 for a related construction when G is reductive.) Such Witt affine Grass-
mannians are defined in characteristic p by Zhu [2017] (but only “after perfection”) and
further studied by Bhatt and Scholze [2017]; other variations have been used by Scholze.

3 Global theory: Arithmetic models

Let (G; fhg) be a Shimura datum as in the introduction. Define �h : GmC ! GC by
�h(z) = hC(z; 1). The G(C)-conjugacy class f�hg is defined over the reflex field E �
Q̄ � C. WriteZs for the maximal subtorus of the centerZ(G)which is R-split but which
has no Q-split subtorus and set Gc = G/Zs .

Consider aQ-vector spaceV with a perfect alternating bilinear pairing : V�V ! Q.
Set dimQ(V ) = 2g. Let G = GSp(V ;  ) be the group of symplectic similitudes and
X = S˙ the Siegel double space. This is the set of homomorphisms h : S ! GR such
that: (1) The C�-action given by h(R) : C� ! G(R) gives on VR a Hodge structure of
type f(�1; 0); (0;�1)g: VC = V �1:0˚V 0;�1; and, (2) the form (x; y) 7!  (x; h(i)y) on
VR is positive (or negative) definite. The pairs (GSp(V ;  ); S˙) give the most important
examples of Shimura data. By Riemann’s theorem, if VZ is a Z-lattice in V , and h 2 S˙,
the quotient torus V �1;0/VZ is a complex abelian variety of dimension g. This leads
to an interpretation of the Shimura varieties ShK(GSp(V ;  ); S˙) as moduli spaces of
(polarized) abelian varieties of dimension g with level structure.

A Shimura datum (G; X) with X = fhg is of Hodge type, when there is a symplec-
tic space (V ;  ) over Q and a closed embedding � : G ,! GSp(V ;  ) such that the
composition � ı h lies in the Siegel double space S˙. Then, we also have G = Gc . In
this case, the Shimura varieties ShK(G; X) parametrize abelian varieties together with
(absolute) Hodge cycles (see below). A special class of Shimura data of Hodge type are
those of PEL type Kottwitz [1992, §5], Rapoport and Zink [1996, Ch. 6]. For those, the
corresponding Shimura varieties ShK(G; X) are (essentially) moduli schemes of abelian
varieties together with polarization, endomorphisms and level structure.

A Shimura datum (G; X) is of abelian type if there is a datum of Hodge type (G1; X1)

and a central isogenyGder
1 ! Gder between derived groups which induces an isomorphism

(Gad
1 ; X

ad
1 )

∼
�! (Gad; X ad). Here, the superscript ad denotes passing to the adjoint group:

If X = fhg, then X ad = fhadg with had the composition of h : S! GR with GR ! Gad
R .

Roughly speaking, most Shimura data (G; X)with G a classical group are of abelian type.
Fix a prime number p and a prime p of the reflex field E above p which is obtained

from an embedding Q̄ ,! Q̄p . LetE be the completion ofE at p and setG = GQp
. Then

f�hg gives a conjugacy class f�g of G defined over the local reflex field E and (G; f�g)

is a local Shimura pair.
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Fix a parahoric subgroup K = Kp � G(Qp) = G(Qp). For any open compact
subgroup Kp � G(Ap

f
) we can consider the Shimura variety ShK(G; X) over E, where

K = KpK
p � G(Af ).

We now assume that a local model MK(G; f�g) as in Conjecture 2.1 is given for
(G; f�g) and parahoric K.

Conjecture 3.1. There is a scheme SKp
(G; X) over Spec (OE ) which supports a right

action of G(Ap

f
) and has the following properties:

a) Any sufficiently small open compact subgroupKp � G(Ap

f
) acts freely onSKp

(G; X),
and the quotient SK(G; X) := SKp

(G; X)/Kp is a scheme of finite type over OE which
extends ShK(G; X)˝E E. We have SKp

(G; X) = lim
 �Kp

SKpKp (G; X) where the limit
is over all such Kp � G(Ap

f
).

b) For any discrete valuation ring R � OE of mixed characteristic (0; p), the map
SKp

(G; X)(R)! SKp
(G; X)(R[1/p]) is a bijection.

c) There is a smooth morphism of stacks over Spec (OE )

� : SKp
(G; X)! [(Gc

˝Zp
OE )nMK(G; f�g)]

which is invariant for the G(Ap

f
)-action on the source and is such that the base change

�E is given by the canonical principal Gc
E -bundle over ShKp

(G; X)˝EE (Milne [1990,
III, §3]). Here, we set Gc = G/Zs , where Zs is the Zariski closure of the central torus
Zs � G in G.

It is important to record that the existence of the smooth � as in (c) implies:
(c’) For each closed point x 2 SKp

(G; X), there is a closed point y 2 MK(G; f�g) and
étale neighborhoods Ux ! SKp

(G; X) of x and Vy ! MK(G; f�g) of y, which are
isomorphic over OE .

The significance of (c’) is that the singularities of MK(G; f�g) control the singularities
of SKp

(G; X), and so, by (a), also of the integral models SK(G; X) for K = KpK
p , with

Kp sufficiently small. In what follows, we will often assume thatKp is sufficiently small
without explicitly saying so.

The “extension property” (b) ensures that the special fiber of SKp
(G; X) is sufficiently

large, in particular, it cannot be empty. Unfortunately, it is not clear that properties (a)-(c)
uniquely characterize the schemes SKp

(G; X). We will return to this question later.
Before we give some general results we discuss the illustrative example of the Siegel

Shimura datum (GSp(V ;  ); S˙) as in Section 3.
Fix a prime p. Set V = VQp

and denote the induced form on V also by  . For a Zp-
lattice Λ in V , its dual is Λ_ = fx 2 V j  (x; y) 2 Zp ; for all y 2 Λg: Now choose a
chain of lattices fΛigi2Z in V with the following properties: Λi � Λi+1 andΛi�m = pΛi ,
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for all i and a fixed “period” m > 0, and Λ_
i = Λ�i+a, for all i and (fixed) a = 0 or 1.

The chain fΛigi2Z gives rise to a point in the building of G = GSp(V; ) over Qp . The
corresponding parahoricK is the subgroup of all g 2 GSp(V; ) such that gΛi = Λi , for
all i . Every parahoric subgroup of G(Qp) is obtained from such a lattice chain.

In this case, schemes SK(GSp(V ;  ); S˙) that satisfy the conjecture are given bymod-
uli spaces as we will now explain. Recall that the category AV(p) of abelian schemes up
to prime-to-p isogeny has objects abelian schemes and morphisms given by tensoring the
Hom groups by Z(p). We consider the functor which associates to a Zp-algebra R the set
of isomorphism classes ofm-tuples f(Ai ; ˛i ; �̃; �)gi2Z/mZ where (see Rapoport and Zink
[1996, Ch. 6] for details):

1) Ai are up to prime-to-p isogeny projective abelian schemes over R,
2) ˛i : Ai ! Ai+1 are isogenies of height logp([Λi+1 : Λi ]) in AV(p) such that the

compositions ˛r+m�1 � � �˛r+1˛r = p, for all 0 � r < m,
3) �̃ is a set of isomorphisms f�i : Ai

∼
�! A_

�i+agi2Z/mZ in AV(p) which are compati-
ble with ˛i , and is a Z�

(p)-homogeneous polarization,
4) � is a prime-to-p level structure of type Kp on f(Ai ; ˛i ; �̃)gi .
When Kp � G(Ap

f
) is sufficiently small, this functor is represented by a scheme

SKKp (GSp(V ;  ); S˙) over Zp . The limit overKp is easily seen to satisfy (a) while (b)
follows from the Néron-Ogg-Shafarevich criterion for good reduction of abelian varieties.
Next, we discuss (c).

For a Zp-algebra R, set Λi;R := Λi ˝Zp
R and denote by ai;R : Λi;R ! Λi+1;R the

map induced by the inclusion Λi ! Λi+1 and by ( ; )i : Λi;R�Λ�i+a;R ! R the perfect
R-bilinear pairing induced by  since Λ_

i = Λ�i+a.
A result of Görtz [2003] implies that, in this case, the local model MK(G; f�g) of

Pappas and Zhu [2013] represents the functor which sends a Zp-algebra R to the set of
sequences fFigi2Z, where: Fi � Λi;R is an R-submodule which is Zariski locally a direct
summand of Λi;R of rank g, and, for all i , we have: ai (Fi ) � Fi+1, (Fi ; F�i+a)i = 0, and
Fi�m = pFi � pΛi;R = Λi�m;R.

The morphism � is defined by first showing that the “crystalline” system of modules,
homomorphisms and pairings, obtained by applying theDieudonné functor to f(Ai ; ˛i ; �i )g,
is locally isomorphic to the corresponding “Betti” system given by the lattice chain fΛig

and  . Then, � sends f(Ai ; ˛i ; �̃; �)g to Fi given by the Hodge filtration of Ai . It is
smooth since, by Grothendieck-Messing theory, deformations of an abelian variety are
determined by lifts of its Hodge filtration. This argument first appeared in de Jong [1993]
and Deligne and Pappas [1994]. It extends to most PEL type cases Rapoport and Zink
[1996]. In general, we need a different approach which we explain next.
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We now discuss general results. Assume that p is odd and that (T ) holds. Assume
also that the local models MK(G; f�g) are as defined in Pappas and Zhu [2013]. The next
result is shown in Kisin and Pappas [2015], following earlier work of Kisin [2010].

Theorem 3.2. (i) Assume that (G; X) is of abelian type. Then Conjecture 3.1 with (c)
replaced by (c’), is true for (G; X) and K.

(ii) Assume that (G; X) is of Hodge type and that the parahoric subgroup K is equal
to the stabilizer of a point in the Bruhat-Tits building of G. Then Conjecture 3.1 is true
for (G; X) and K.

Let us try to explain some ideas in the proofs.
We will first discuss (ii). So, the Shimura datum (G; X) is of Hodge type and the

parahoric subgroup K � G(Qp) is the stabilizer of a point z in the building B(G;Qp),
i.e. the stabilizer group scheme is already connected, G = Gz = Gı

z .
After adjusting the symplectic representation � : G ,! GSp(V ;  ) which gives the

Hodge embedding, we can find a Zp-latticeΛ � V = VQp
on which takes Zp-integral

values, such that � induces
1) a closed group scheme embedding �Zp

: G = Gz ,! GL(Λ); and
2) an equivariant closed embedding �� : MK(G; f�g) ,! Gr(g;Λ_)˝Zp

OE :

Here Gr(g;Λ_) is the Grassmannian over Zp with R-points given by R-submodules
F � Λ_

R which are locally direct summands of rank g = dimQ(V )/2. Finding Λ is subtle
and uses that the representation � is minuscule.

Choose a Z-lattice VZ � V such that VZ(p)
:= VZ ˝Z Z(p) = V \ Λ. We can now

find fs˛g˛ � V ˝

Z(p)
� V ˝ such that the functor

R 7! GZ(p)
(R) = fg 2 GL(VZ(p)

˝Z(p)
R) j g � s˛ = s˛; for all ˛g

gives the unique flat group scheme GZ(p)
over Z(p) that extends both G and G. Here,

V ˝ :=
L

r;s�0(V
˝r ˝ (V _)˝s), similarly for V ˝

Z(p)
.

Now fixKp � G(Ap

f
) small enough so, in particular, VẐ := VZ˝Z Ẑ is stable by the

action of Kp; then VẐ is K = KKp-stable also. We can find K 0p � GSp(V )(Ap

f
) such

that � gives a closed embedding

� : ShKKp (G; X) ,! ShK0
pK0p (GSp(V ); S˙)˝Q E;

where K 0
p is the subgroup of GSp(V; ) that stabilizes the lattice Λ, and such that VẐ is

also stable by the action of K0 = K 0
pK

0p .
We define SKKp (G; X) to be the normalization of the reduced Zariski closure of the

image of �E in the integral model SK0
pK0p (GSp(V ); S˙) ˝Zp

OE (which is a moduli
scheme, as in Section 3) and set SK(G; X) := lim

 �Kp
SKKp (G; X). Checking property
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(a) is straightforward and (b) follows from the Néron-Ogg-Shafarevich criterion for good
reduction. The hard work is in showing (c).

Since VẐ is stable by the action of K0, which is sufficiently small, we have a universal
abelian scheme over ShK0(GSp(V ); S˙) which we can restrict via � to obtain an abelian
schemeA over ShK(G; X). By construction, the tensors s˛ above give sections s˛;B of the
local system of Q-vector spaces over ShK(G; X)(C) with fibers H1

B(Av(C);Q)˝ given
using the first Betti (singular) cohomology of the fibers Av(C) of the universal abelian
variety. These are “Hodge cycles” in the sense that they are of type (0; 0) for the induced
Hodge structure on H1

B(A(C);Q)˝. We are going to chase these around using various
comparison isomorphisms.

Let � � E be a field with an embedding � : �̄ ,! C over E of its algebraic clo-
sure. Suppose x 2 ShK(G; X)(�) and let Ax be the corresponding abelian variety over
�. There are comparison isomorphisms H1

B(Ax(C);Q)˝Q C ' H1
dR(Ax)˝�;� C, and

H1
B(Ax(C);Q)˝Q Ql ' H1

et(Ax ˝� �̄;Ql); for any prime l . Set s˛;B;x be the fiber of
s˛;B over the complex point �(x) and denote by s˛;dR;x , s˛;et;x , the images of s˛;B;x under
these isomorphisms. The tensors s˛;et;x are independent of the embedding � , are fixed by
the action of Gal(�̄/�), and it follows from Deligne’s “Hodge implies absolute Hodge”
theorem that s˛;dR;x lie in H1

dR(Ax)
˝ and, in fact, in F 0(H1

dR(Ax)
˝) (Kisin [2010]).

For l = p, the corresponding Gal(�̄/�)-invariant tensors (“Tate cycles”) s˛;et;x lie in
the lattice H1

et(Ax ˝� �̄;Zp)
˝ = Tp(Ax)

˝, where Tp(Ax) is the p-adic Tate module
lim
 �n

(Ax˝� �̄)[p
n]. In order to control the local structure of SKKp (G; X) and eventually

relate it to MK(G; f�g), we need to employ some form of crystalline deformation theory
and so we also have to understand the “crystalline realization” of our tensors. Assume
that � = F is a finite extension of E and that the abelian variety Ax has good reduction.
Then we obtain an OF -valued point x̃ of SKKp (G; X) that extends x and reduces to x̄.
A key point is to show that the Tate cycles s˛;et;x for l = p give, via the étale/crystalline
comparison, corresponding “nice” integral crystalline cycles s˛;cris;x̄ 2 D(Ax̄)

˝ on the
Dieudonné module D(Ax̄) of the abelian variety Ax̄ over the residue field of F . For this
we need a suitably functorial construction that relates crystalline p-adic Galois represen-
tations of Gal(F̄ /F ) to Frobenius semilinear objects integrally, and without restriction on
the absolute ramification of F . This is provided by the theory of Breuil-Kisin modules
Kisin [2009, 2010].

Let F0 be the maximal unramified extension of Qp contained in F . Denote byW0 the
ring of integers of F0 and by ' : W0[[u]] ! W0[[u]] the lift of Frobenius with '(u) = up .
Choose a uniformizer � of F which is a root of an Eisenstein polynomial E(u) 2 W0[u].
A Breuil-Kisin module (M;Φ) is a finite free W0[[u]]-module M with an isomorphism
Φ : '�(M)[1/E(u)]

∼
�! M[1/E(u)], where '�(M) := W0[[u]] ˝';W0[[u]] M. Kisin has
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constructed a fully faithful tensor functor T 7! M(T ) from the category of Gal(F̄ /F )-
stable Zp-lattices in crystalline Qp-representations to the category of Breuil-Kisin mod-
ules.

Now let T _ = HomZp
(T;Zp) be the linear dual of the p-adic Tate module T =

Tp(Ax). Then there are natural isomorphisms Kisin [2009]

'�(M(T _)/uM(T _)) ' D(Ax̄); '�(M(T _))˝W0[[u]];u 7!� OF ' H1
dR(Ax̃):

Applying Kisin’s functor to the Tate cycles s˛;et;x gives Frobenius invariant tensors s̃˛ 2
M(Tp(Ax)

_)˝. By using the isomorphism above, these give the crystalline cycles s˛;cris;x̄ 2

D(Ax̄)
˝. The main result now is:

Theorem 3.3. There is a W0[[u]]-linear isomorphism

ˇ : Λ_
˝Zp

W0[[u]]
∼
�!M(Tp(Ax)

_)

such that ˇ˝ takes s˛ ˝ 1 to s̃˛ , for all ˛.

In addition to the properties of Kisin’s functor, the important input in the proof is the
statement that all G-torsors over Spec (W0[[u]]) � f(0; 0)g are trivial. This uses crucially
that G = Gı

z is parahoric.
Using ˇ and the above, we obtain isomorphisms

ˇdR : Λ_
˝Zp

OF
∼
�! H1

dR(Ax̃); ˇcris : Λ
_
˝Zp

W0
∼
�! D(Ax̄);

such that ˇ˝
dR(s˛ ˝ 1) = s˛;dR;x̃ , resp. ˇ˝

cris(s˛ ˝ 1) = s˛;cris;x̄
3.The inverse image

ˇ�1
dR (F

0(Ax̃)) � Λ_
˝Zp

OF

of the deRham filtration F 0(Ax̃) = H0(Ax̃ ;Ω
1
Ax̃/OF

) � H1
dR(Ax̃) now gives an OF -

point of the Grassmannian Gr(g;Λ_). This is easily seen to factor through �� to the local
model MK(G; f�g) and defines the image of � on x̃ 2 SK(G; X)(OF ).

Next, we use ˇ to construct a versal deformation of the abelian scheme Ax̃ over the
completion S = bOMK(G;f�g);ȳ of the local ring of MK(G; f�g) at ȳ = �(x̄). This defor-
mation is equipped with Frobenius invariant crystalline tensors that appropriately extend
s̃˛ . It is constructed using Zink’s theory of displays Zink [2002]. In this, (connected)
p-divisible groups over a p-adic ring S are described by “displays”, which are systems
of Frobenius modules over the ring of Witt vectors W (S). In our case, we give a dis-
play over W (S) whose Frobenius semilinear maps are, roughly speaking, valued in the

3In the case that K is hyperspecial and F = F0, the existence of such an isomorphism ˇcris was conjectured
by Milne and was shown by Kisin [2010] and Vasiu [2013].
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group scheme G. Our construction is inspired by the idea that the local model MK(G; f�g)

should also appear inside a Witt affine Grassmannian (see Section 2 and also Section 5 for
a similar construction).

Finally, using a result of Blasius and Wintenberger and parallel transport for the Gauss-
Manin connection, we show that there exists a homomorphism S ! bOSK(G;X);x̄ which
matches x̃ and ỹ and then has to be an isomorphism. Property (c’) and then (c) follows.

To deal with the case that (G; X) is of abelian type, we follow Deligne’s strategy
Deligne [1979] for constructing canonical models for these types. Deligne relates a con-
nected component of the Shimura variety for (G; X) to one of the Hodge type (G1; X1)

(as in the definition of abelian type above). In this, he uses an action ofGad(Q)\Gad(R)+

on these varieties. The argument extends after giving a moduli interpretation for this ac-
tion. Then, SK(G; X) is constructed, by first taking a quotient of a connected component
of SK1

(G1; X1) by a finite group action (which is shown to be free), and then “inducing”
from that quotient.

The strategy for these proofs is due to Kisin [2010] who showed the results whenK is
hyperspecial (i.e. G is reductive). Then MK(G; f�g) is the natural smooth model of the
homogeneous space X� and SK(G; X) is smooth over OE . (The condition on �1(G

der)

is not needed then. Also, the case p = 2 is treated by Kim and Madapusi Pera [2016].)
In this important hyperspecial case, the integral models SK(G; X) can be shown to be
“canonical”, in the sense of Milne: They can be characterized as the unique, up to isomor-
phism, regular, formally smooth schemes that satisfy (a), (c’), and an extension property
stronger than (b) in which Spec (R) is replaced by any regular, formally smooth scheme
over OE (see Kisin [2010], Vasiu and Zink [2010]). Hence, they are also independent
of the various choices made in their construction. It is unclear if schemes satisfying (a),
(b) and (c) as in the conjecture, with MK(G; f�g) given a priori, are uniquely determined
in the general parahoric case. In Kisin and Pappas [2015], we show this in a few cases.
Regardless, we conjecture that the schemes SK(G; X) produced by the above results are
independent of the choices made in their construction.

In the hyperspecial case, there is also earlier work of Vasiu [1999] who pursued a dif-
ferent approach (see also Moonen [1998]). Vasiu applied directly an integral compari-
son homomorphism between p-adic étale cohomology and crystalline cohomology due to
Faltings, to understand carefully chosen crystalline tensors of low degree that should be
enough to control the group.

Let us note here that, in contrast to all the previous theory, there are few results when
K is a subgroup smaller than parahoric, even in PEL cases: When K is the pro-p radical
of an Iwahori subgroup, combining the above with results of Oort-Tate or Raynaud on
p-torsion group schemes, often leads to well-behaved models (Pappas [1995], Haines and
Rapoport [2012]). Also, when the deformation theory is controlled by a formal group (or
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“O-module”) of dimension 1 (as is in the case of modular curves) the notion of Drinfeld
level structure can be used to describe integral models for all level subgroups (Katz and
Mazur [1985], Harris and Taylor [2001]).

4 Reductions: Singularities and points

Singularities: Kottwitz-Rapoport stratification and nearby cycles. To fix ideas, we as-
sume that the assumptions of Theorem 3.2 (ii) are satisfied so that the result applies. In
particular, (G; X) is of Hodge type. Set S := SK(G; X), M := MK(G; f�g), S :=

Spec (OE ) and d := dim(ShK(G; X)).
Since the morphism � is smooth, Theorem 2.3 implies that special fiber S ˝OE

kE is
reduced, and that we obtain a stratification of S ˝OE

F̄p by locally closed smooth strata
S[w] = ��1

K (S[w]), for [w] 2 AdmK̃(f�g). Furthermore:

Theorem 4.1. For each [w] 2 AdmK̃(f�g), the Zariski closure S [w] is equal to the unionS
[w0]�[w] S[w0] and is normal and Cohen-Macaulay.

Now pick a prime l ¤ p and consider the complex of nearby cycles RΨ(S ; Q̄l) of
S ! S on S ˝OE

F̄p . This is obtained from the nearby cycles RΨ(M; Q̄l) of M ! S

by pulling back along the smooth �. Set f = [kE : Fp] and q = pf . For each r � 1, the
semi-simple trace of Rapoport [1990] defines a function

 K;r : S(Fqr )! Q̄l ;  K;r(x̄) = Trss(Frobx̄ ;RΨ(S ; Q̄l)x̄):

The smoothness of � and G, and Lang’s lemma, gives that  K;r factors through

�K(Fqr ) : S(Fqr )! G(Fqr )nMK(G; f�g)(Fqr ):

Denote by Qpn the unramified extension of Qp of degree n contained in L; let Zpn '

W (Fpn) be its integers. Set Kr = G(Zqr ). If G is quasi-split over Qqr , then we have a
bijection G(Fqr )nMK(G; f�g)(Fqr ) Š KrnG(Qqr )/Kr ; and so the map �K(Fqr ) gives
�K;r : S(Fqr )! KrnG(Qqr )/Kr :

By combining results of Pappas and Zhu [2013] on RΨ(M; Q̄l) with the above, we
obtain:

Theorem 4.2. a) Suppose that G splits over the finite extension F /Qp . Then the inertia
subgroup IEF � Gal(Q̄p/EF ) acts unipotently on RΨ(S ; Q̄l).

b) Suppose that G is quasi-split over Qqr . Then the semi-simple trace of Frobenius
 r;K : S(Fqr )! Q̄l is a composition

S(Fqr )
�K;r

���! KrnG(Qqr )/Kr

z�;r

���! Q̄l
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where z�;r is in the center of the Hecke algebra Q̄l [KrnG(Qqr )/Kr ] with multiplication
by convolution.

c) Suppose that G is split over Qqr . Then in (b) above, we can take z�;r such that
q�d/2z�;r is a Bernstein function for �.

Part (c) has been conjectured by Kottwitz, see Rapoport [2005, (10.3)] and also work
of Haines [2014] for more details and an extension of the conjecture. Let us mention that
the study of RΨ(M; Q̄l) in Pappas and Zhu [2013] (as also the proof of Theorem 2.3),
uses techniques from the theory of the geometric Langlands correspondence. The “Hecke
central” statement was first shown by Gaitsgory for split groups over function fields Gaits-
gory [2001], and by Haines and Ngô for unramified unitary and symplectic groups Haines
and Ngô [2002]. Gaitsgory’s result was, in turn, inspired by Kottwitz’s conjecture.

Points modulo p. Under certain assumptions, Langlands and Rapoport gave a conjec-
tural description of the set of F̄p-points of a model of a Shimura variety together with
its actions by Frobenius and Hecke operators Langlands and Rapoport [1987]. The idea,
very roughly, is as follows (see also Langlands [1976], Kottwitz [1992]). Since, as sug-
gested by Deligne, most Shimura varieties are supposed to be moduli spaces of certain
motives, we should be describing this set via representations of the fundamental groupoid
attached to the Tannakian category of motives over F̄p . A groupoid Q which should be
this fundamental groupoid (and almost is, assuming the Tate conjecture and other stan-
dard conjectures) can be constructed explicitly. Then “G-pseudo-motives” are given by
groupoid homomorphisms ' : Q! G. The choice of the domainX imposes restrictions,
and we should be considering only ' which are “admissible”. Then, we also give p and
prime-to-p level structures on these ', as we do for abelian varieties.

The Langlands–Rapoport conjecture was corrected, modified and extended along the
way (Reimann [1997] and Kisin [2017]). The conjecture makes better sense when it refers
to a specific integral model of the Shimura variety ShK(G; X). When K is hyperspecial,
p odd, and (G; X) of abelian type, an extended version of the conjecture was essentially
proven (with a caveat, see below) by Kisin [2017], for the canonical integral models con-
structed in Kisin [2010]. In fact, the conjecture also makes sense whenK is parahoric, for
the integral models of Kisin and Pappas [2015]. More precisely, let us suppose that the as-
sumptions of Theorem 3.2 are satisfied and that SK(G; X) is provided by the construction
in the proof.

Conjecture 4.3. There is a hΦE i �G(Ap

f
)-equivariant bijection

(LR) SK(G; X)(F̄p)
∼
�!

G
[']

lim
 �Kp

I'(Q)n(Xp(') � (Xp(')/Kp))

whereΦE is the Frobenius over kE and the rest of the notations and set-up followRapoport
[2005, §9], Kisin [2017, (3.3)] (taking into account the remark (3.3.9) there).
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In particular: The disjoint union is over a set of equivalence classes ['] of admissible
' : Q! G, where one uses Kisin’s definition of “admissible” for non simply connected
derived group. (The classes ['] often correspond to isogeny classes of abelian varieties
with additional structures.) We have I' = Aut('), an algebraic group over Q. The
set Xp(') is a right G(Ap

f
)-torsor and the set Xp(') can be identified with the affine

Deligne-Lusztig set XK(f��1g; b) for b 2 G(L) obtained from '. The group I'(Q) acts
on Xp(') on the left, and there is an injection I'(Q) ! Jb(Qp) which also produces a
left action on Xp(') = XK(f��1g; b); the quotient is by the diagonal action.

Theorem 4.4. (Kisin [ibid.]) Assume thatK is hyperspecial, p odd, and (G; X) of abelian
type. Then there is a bijection as in (LR) respecting the action of hΦE i �G(Ap

f
) on both

sides, but with the action of I'(Q) on Xp(') � (Xp(')/Kp) obtained from the natural
diagonal action above by conjugating by a (possibly trivial) element �(') 2 I ad' (Af ).

Due to lack of space, we will omit an account of any of the beautiful and subtle argu-
ments in Kisin’s proof, or in related earlier work by Kottwitz [1992] and others. We hope
that the interested reader will consult the original papers. Let us just mention here that
Zhou [2017] has recently made some progress towards the proof of Conjecture 4.3.

5 Local theory: Formal schemes

We now return to the local set-up as in Section 1. Let (G; f�g) be a local Shimura pair
and [b] 2 B(G) a � -conjugacy class. Fix a parahoric subgroup K � G(Qp) and assume
that the local model MK(G; f��1g) is defined.

Conjecture 5.1. There exists a formal scheme XK(f�g; b) over Spf(OE ) with Jb(Qp)-
action, which is locally formally of finite type, and is such that:

a) There is a hΦE i � Jb(Qp)-equivariant bijection between XK(f�g; b)(F̄p) and the
affine Deligne-Lusztig set XK(f�g; b).

b) For any v 2 XK(f�g; b), there isw 2 MK(G; f��1g)(F̄p) such that the completion
of XK(f�g; b) at the point corresponding to v via (a) is isomorphic to the completion of
MK(G; f��1g) at w.

Assuming XK(f�g; b) exists, we let XK(f�g; b) be its underlying reduced scheme
which is locally of finite type over Spec (kE ). (Then XK(f�g; b) could be called an affine
Deligne-Lusztig “variety”.) Its “perfection” XK(f�g; b)perf, has been constructed by Zhu
[2017], using a Witt vector affine flag variety. The rigid fiber
XK(f�g; b)rig over E would be the local Shimura variety for (G; f�g; [b]) and level K
whose existence is expected by Rapoport and Viehmann [2014].

Let us take G = GLn, �d (z) = diag(z; : : : ; z; 1; : : : ; 1)�1, with d copies of z, and
K = GLn(Zp). For simplicity, set W = W (F̄p). The formal schemes XGLn

:=
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XK(f�d g; b) were constructed by Rapoport and Zink [1996]: Fix a p-divisible groupH0

of height n and dimension d over F̄p with Frobenius F = b �� on the rational Dieudonné
module. Then the formal scheme XGLn

ˆ̋Zp
W represents (Rapoport and Zink [ibid., The-

orem 2.16]) the functor which sends a W -algebra R with p nilpotent on R, to the set
of isomorphism classes of pairs (H; �), where: H is a p-divisible group over R, and
� : H0 ˝k R/pR Ü H ˝R R/pR is a quasi-isogeny. The formal scheme XGLn

over
Spf(Zp) is obtained from this by descent. This construction of XK(f�g; b) generalizes to
(G; f�g) that are of “EL” or “PEL” type, for many parahoric K; these types are defined
similarly to (and often arise from) global Shimura data (G; X) of PEL type.

The models SK(G; X) of Conjecture 3.1 and the formal schemes XK(f�g; b) above,
should be intertwined via the bijection (LR) as follows:

Suppose that (G; X) is a Shimura datumwhich produces the local Shimura pair (G; f��1g).
Take x̄ 2 SK(G; X)(F̄p) with corresponding b 2 G(L). Then, there should be a mor-
phism of Spf(OE )–formal schemes

ix̄ : XK(f�g; b) �G(Ap

f
)/Kp

�! bSK(G; X) := lim
 �n

SK(G; X)˝OE
OE/(pn);

which, on F̄p-points is given by (LR) and surjects on the “isogeny class” ['0] of x̄, and
induces isomorphisms on the formal completions at closed points.

An interesting special case is when the � -conjugacy class [b] is basic (Kottwitz [1997]).
Then the image Z of ix̄ should be closed in the special fiber of SK(G; X) and ix̄ should
be giving a “p-adic uniformization” (cf. Rapoport and Zink [1996])

(U ) I'0
(Q)nXK(f�g; b) � (G(Ap

f
)/Kp)

∼
�! bSK(G; X)/Z ;

of the completion of SK(G; X) along Z.
Assume that (G; X) is of Hodge type and that the rest of the assumptions of Theo-

rem 3.2 (ii) are also satisfied. Then we can hope to construct XK(f�g; b) using the model
SK(G; X) as follows: First consider the fiber product

F ! (XGSp � 1) ˆ̋Zp
OE

# # ix̄bSK(G; X)
�
�! bSK0(GSp(V ); S˙) ˆ̋Zp

OE ;

where � is an appropriate Hodge embedding as in Kisin [2010], or Kisin and Pappas [2015],
and XGSp is the Rapoport-Zink formal scheme for the symplectic PEL type. Then, pro-
vided we have the set mapXK(f�g; b)! SK(G; X)(F̄p) sending 1 �K̃ to x̄ (as predicted
by the (LR) conjecture), we can define XK(f�g; b) to be the formal completion of F

along the (closed) subset given by XK(f�g; b). The existence of the “uniformization”
morphism ix̄ follows immediately. Howard and the author applied this idea to show:
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Theorem 5.2. (Howard and Pappas [2017]) Assume p ¤ 2, (G; X) is of Hodge type
and K is hyperspecial. Choose a Hodge embedding �, a lattice Λ, and tensors fs˛g˛ , as
in the proof of Theorem 3.2 (ii). Suppose x̄ 2 SK(G;X)(F̄p) and b are as above. Then,
XK(f�g; b) satisfying Conjecture 5.1 can be defined as above, and only depends, up to
isomorphism, on (G; f�g; b;K) and �Zp

: G! GL(Λ).

For basic [b], the uniformization (U ) also follows. In the above result, the formal
scheme XK(f�g; b) ˆ̋OE

W represents a functor on the category of formally finitely gen-
erated adicW -algebras (A; I ) which are formally smooth overW /(pm), for somem � 1

as follows. Set H0 for the p-divisible group Ax̄ [p
1]. We send (A; I ) to the set of

isomorphism classes of triples (H; �; ft˛g˛), where H is a p-divisible group over A,
� : H0 ˝k A/(p; I ) Ü H ˝A A/(p; I ) is a quasi-isogeny, and t˛ are (Frobenius in-
variant) sections of the Dieudonné crystal D(H )˝. We require that the pull-backs ��(t˛)

agree in D(H0˝k A/(p; I ))
˝[1/p] with the constant sections given by s˛;crys;x̄ , and also

some more properties listed in Howard and Pappas [ibid., (2.3.3), (2.3.6)]. For K hyper-
special, a different, local, construction of the formal scheme XK(f�g; b) (still only for
“local Hodge types”) first appeared in work of Kim [2013].

In some cases, we can also give XK(f�g; b) directly, by using a group theoretic version
of Zink’s displays. Assume that K is hyperspecial, so G is reductive over Zp . Set GW =

G ˝Zp
W and pick � : GmW ! GW in our conjugacy class. Set L+G, resp. LG, for the

“positiveWitt loop” group scheme, resp. “Witt loop” ind-group scheme, representingR 7!
G(W (R)), resp. R 7! G(W (R)[1/p]). Let H� be the subgroup scheme of L+GW with
R-points given by g 2 G(W (R))whose projection g0 2 G(R) lands in theR-points of the
parabolic subgroup scheme P� � GW associated to �. We can define a homomorphism
ΦG;� : H� ! L+GW such that ΦG;�(h) = F � (�(p) � h � �(p)�1) in G(W (R)[1/p]),
with F given by the FrobeniusW (R)! W (R) (Bueltel and Pappas [2017]). Let R be a
p-nilpotent W -algebra. Set

X0
G(R) = f(U; g) 2 L

+G(R) � LG(R) j g�1bF (g)
(�)
= U�� (p)g/H�(R);

where (�) is taken in LG(R) and the quotient is for the action given by

(U; g) � h = (h�1UΦG;�(h); gh):

Denote by XG the étale sheaf associated to R 7! X0
G(R).

If R is perfect, then F is an isomorphism and W (R) is p-torsion free, so a pair (U; g)
with g�1bF (g) = U�� (p) is determined by g. Then

X0
G(R) = fg 2 LG(R)/L+G(R) j g�1bF (g) 2 L+G(R)�� (p)L+G(R)g:

In particular, XG(F̄p) = X0
G(F̄p) Š XK(f�g; b) and the perfection of XG agrees with the

space XK(f�g; b)perf of Zhu [2017]. If XG is representable by a formal scheme, then this
satisfies Conjecture 5.1 and gives XK(f�g; b) ˆ̋OE

W .
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Theorem 5.3. (Bueltel and Pappas [2017]) Let �Zp
: G ,! GLn be a closed group

scheme embedding. Suppose �Zp
ı � is minuscule and �Zp

(b) has no zero slopes. Then
the restriction of XG to Noetherian p-nilpotent W -algebras is represented by a formal
scheme which is formally smooth and locally formally of finite type over Spf(W ).

The proof also gives that, ifXK(f�g; b) is defined as in Theorem 5.2 and �Zp
(b) has no

zero slopes, then XG(R) = XK(f�g; b)(R); for R Noetherian. Hence, then XK(f�g; b)

of Theorem 5.2 is independent of �Zp
.
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HEURISTICS FOR THE ARITHMETIC OF ELLIPTIC CURVES
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Abstract

This is an introduction to a probabilistic model for the arithmetic of elliptic curves,
a model developed in a series of articles of the author with Bhargava, Kane, Lenstra,
Park, Rains, Voight, andWood. We discuss the theoretical evidence for the model, and
we make predictions about elliptic curves based on corresponding theorems proved
about the model. In particular, the model suggests that all but finitely many elliptic
curves over Q have rank � 21, which would imply that the rank is uniformly bounded.

1 Introduction

Let E be an elliptic curve over Q (see Silverman [2009] for basic definitions). Let E(Q)

be the set of rational points on E. The group law on E gives E(Q) the structure of an
abelian group, and Mordell [1922] proved that E(Q) is finitely generated; let rkE(Q)

denote its rank. The present survey article, based primarily on articles Poonen and Rains
[2012], Bhargava, Kane, Lenstra, Poonen, and Rains [2015], and Park, Poonen, Voight,
and Wood [2016], is concerned with the following question:

Question 1.1. Is rkE(Q) bounded as E varies over all elliptic curves over Q?

Question 1.1 was implicitly asked by Poincaré [1901, p. 173] in 1901, even before
E(Q) was known to be finitely generated! Since then, many authors have put forth
guesses, and the folklore expectation has flip-flopped at least once; see Poincaré [1950,
p. 495, end of footnote (3)], Honda [1960, p. 98], Cassels [1966, p. 257], Tate [1974,
p. 194], Mestre [1982], Mestre [1986, II.1.1 and II.1.2], Brumer [1992, Section 1], Ul-
mer [2002, Conjecture 10.5], and Farmer, Gonek, and Hughes [2007, (5.20)], or see Park,
Poonen, Voight, and Wood [2016, Section 3.1] for a summary.

The writing of this article was supported in part by National Science Foundation grant DMS-1601946 and
Simons Foundation grants #402472 (to Bjorn Poonen) and #550033.
MSC2010: primary 11G05; secondary 11G40, 14G25, 14H52, 14K15.
Keywords: Elliptic curve, rank, Selmer group, Shafarevich–Tate group, abelian variety.
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The present survey describes a probabilistic model for the arithmetic of elliptic curves,
and presents theorems about the model that suggest that rkE(Q) � 21 for all but finitely
many elliptic curves E, and hence that rkE(Q) is bounded. Ours is not the first heuristic
for boundedness: there is one by Rubin and Silverberg [2000, Remarks 5.1 and 5.2], for
a family of quadratic twists and another by Granville, discussed in Watkins, Donnelly,
Elkies, Fisher, Granville, and Rogers [2014, Section 11] and developed further in Watkins
[2015]. Interestingly, the latter also suggests a bound of 21.

Modeling ranks directly is challenging because there are few theorems about the dis-
tribution of ranks. Also, although there exists extensive computational data that suggests
answers to some questions (e.g., Balakrishnan, Ho, Kaplan, Spicer, Stein, and Weigandt
[2016]), it seems that far more data would be needed to suggest answers to others. There-
fore, instead ofmodeling ranks in isolation, wemodel ranks, Selmer groups, and Shafarevich–
Tate groups simultaneously, so that we can calibrate and corroborate the model using a
diverse collection of known results.

2 The arithmetic of elliptic curves

2.1 Counting elliptic curves by height. Every elliptic curve E over Q is isomorphic
to the projective closure of a unique curve y2 = x3 + Ax + B in which A and B are
integers with 4A3 + 27B2 ¤ 0 (the smoothness condition) such that there is no prime p

such that p4jA and p6jB . Let E be the set of elliptic curves of this form, so E contains
one curve in each isomorphism class. Define the height of E 2 E by

htE := max(j4A3
j; j27B2

j):

(This definition is specific to the ground field Q, but it has analogues over other number
fields.) Define

E�H := fE 2 E : htE � H g:

Ignoring constant factors, we have about H 1/3 integers A with j4A3j � H , and
H 1/2 integers B with j27B2j � H . A positive fraction of such pairs (A; B) satisfy the
smoothness condition and divisibility conditions, so one should expect #E�H to be about
H 1/3H 1/2 = H 5/6. In fact, an elementary sieve argument [Brumer 1992, Lemma 4.3]
proves the following:

Proposition 2.1. We have

#E�H = (24/33�3/2�(10)�1 + o(1)) H 5/6

as H ! 1.



HEURISTICS FOR THE ARITHMETIC OF ELLIPTIC CURVES 419

Define the density of a subset S � E as

lim
H!1

#(S \ E�H )

#E�H

;

if the limit exists. For example, it is a theorem that 100% of elliptic curves E over Q have
no nontrivial rational torsion points; this statement is to be interpreted as saying that the
density of the set S := fE 2 E : E(Q)tors = 0g is 1 (even though there do exist E with
E(Q)tors ¤ 0).

2.2 Elliptic curves over local fields. Our model will be inspired by theorems and con-
jectures about the arithmetic of elliptic curves over Q. But before studying elliptic curves
over Q, we should thoroughly understand elliptic curves over local fields.

Let Qv be the completion of Q at a place v. There is a natural injective homomorphism
inv : H2(Qv; Gm) ! Q/Z that is an isomorphism if v is nonarchimedean.

Let E be an elliptic curve over Qv . Fix n � 1. Taking Galois cohomology in the exact
sequence

0 �! E[n] �! E
n

�! E �! 0

yields a homomorphism E(Qv)/nE(Qv) ! H1(Qv; E[n]). Let Wv be its image. If v is
a nonarchimedean place not dividing n and E has good reduction, then Wv equals the sub-
group of unramified classes in H1(Qv; E[n]) [Poonen and Rains 2012, Proposition 4.13].

The theory of the Heisenberg group [Mumford 1991, pp. 44–46] yields an exact se-
quence

1 �! Gm �! H �! E[n] �! 1;

which induces a map of sets

qv : H1(Qv; E[n]) �! H2(Qv; Gm)
inv
,! Q/Z:

It turns out that qv is a quadratic form in the sense that qv(x + y) � qv(x) � qv(y) is
bi-additive [Zarhin 1974b, §2]. Moreover, qvjWv

= 0 [O’Neil 2002, Proposition 2.3]. In
fact, using Tate local duality one can show that Wv is a maximal isotropic subgroup of
H1(Qv; E[n]) with respect to qv [Poonen and Rains 2012, Proposition 4.11].

2.3 Selmer groups and Shafarevich–Tate groups. Now letE be an elliptic curve over
Q. Let A =

Q0

v(Qv; Zv) be the adèle ring of Q; here v ranges over nontrivial places of
Q, Write E(A) for

Q
v E(Qv)/nE(Qv), and write H1(A; E[n]) for the restricted product
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Q0

v(H
1(Qv; E[n]); Wv). We have a commutative diagram

E(Q)/nE(Q) //

��

H1(Q; E[n])

ˇ

��
E(A)/nE(A) ˛ // H1(A; E[n]):

The n-Selmer group is defined by Seln E := ˇ�1(im˛) � H1(Q; E[n]). (This is
equivalent to the classical definition; we have only replaced

Q
v H

1(Qv; E[n]) with a
subgroup H1(A; E[n]) into which ˛ and ˇ map.) The reason for defining Seln E is that it
is a computable finite upper bound for (the image of) E(Q)/nE(Q). On the other hand,
the Shafarevich–Tate group is defined by

Ш =Ш(E) := ker

 
H1(Q; E) !

Y
v

H1(Qv; E)

!
:

It is a torsion abelian group with an alternating pairing

[ ; ] : Ш �Ш ! Q/Z

defined by Cassels. Conjecturally,Ш is finite; in this case, [ ; ] is nondegenerate and #Ш
is a square [Cassels 1962]. The definitions easily yield an exact sequence

(1) 0 �!
E(Q)

nE(Q)
�! Seln E �! Ш[n] �! 0;

soШ[n] is measuring the difference between Seln E and the group E(Q)/nE(Q) it is
trying to approximate.

Each group in (1) decomposes according to the factorization of n into powers of distinct
primes, so let us restrict to the case in which n = pe for some prime p and nonnegative
integer e. Taking the direct limit over e yields an exact sequence

0 �! E(Q) ˝
Qp

Zp

�! Selp1 E �! Ш[p1] �! 0

of Zp-modules in which Selp1 E := lim
�!

Selpe E andШ[p1] :=
S

e�0Ш[pe]. More-
over, one can show that if E(Q)[p] = 0 (as holds for 100% of curves), then Selpe E !

(Selp1 E)[pe] is an isomorphism (cf. Bhargava, Kane, Lenstra, Poonen, and Rains [2015,
Proposition 5.9(b)]), so no information about the individual pe-Selmer groups has been
lost in passing to the limit.



HEURISTICS FOR THE ARITHMETIC OF ELLIPTIC CURVES 421

2.4 The Selmer group as an intersection of maximal isotropic direct summands.
If � = (�v) 2 H1(A; E[n]), then for all but finitely many v we have �v 2 Wv and
hence qv(�v) = 0, so we may define Q(�) :=

P
v qv(�v). This defines a quadratic form

Q : H1(A; E[n]) ! Q/Z.

Theorem 2.2.

(a) Each of im˛ and imˇ is a maximal isotropic subgroup of H1(A; E[n]) with respect
to Q [Poonen and Rains 2012, Theorem 4.14(a)].

(b) If n is prime or GQ ! GL2(Z/nZ) is surjective, then ˇ is injective. (See Poonen and
Rains [ibid., Proposition 3.3(e)] and Bhargava, Kane, Lenstra, Poonen, and Rains
[2015, Proposition 6.1].)

By definition, ˇ(Seln E) = (im˛) \ (imˇ). Thus, under either hypothesis in (b),
Seln E is isomorphic to an intersection of maximal isotropic subgroups of H1(A; E[n]).

Moreover, im˛ is a direct summand of H1(A; E[n]) [ibid., Corollary 6.8]. It is conjec-
tured that imˇ is a direct summand as well, at least for asymptotically 100% of elliptic
curves over Q [ibid., Conjecture 6.9], and it could hold for all of them.

2.5 The Birch and Swinnerton-Dyer conjecture. See Wiles [2006] for an introduc-
tion to the Birch and Swinnerton-Dyer conjecture more detailed than what we present here,
and see Stein and Wuthrich [2013, Section 8] for some more recent advances towards it.

Let E 2 E . To E one can associate its L-function L(E; s), a holomorphic function
initially defined when Re s is sufficiently large, but known to extend to a holomorphic
function on C (this is proved using the modularity of E). Just as the Dirichlet analytic
class number formula expresses the residue at s = 1 of the Dedekind zeta function of a
number field k in terms of the arithmetic of k, the Birch and Swinnerton-Dyer conjecture
expresses the leading term in the Taylor expansion of L(E; s) around s = 1 in terms of
the arithmetic of E. We will state it only in the case that rkE(Q) = 0 since that is all that
we will need. In addition to the quantities previously associated to E, we need

• the real period Ω, defined as the integral over E(R) of a certain 1-form; and

• the Tamagawa number cp for each finite prime p, a p-adic volume analogous
to the real period.

Also define

Ш0(E) :=

(
#Ш(E); if rkE(Q) = 0;
0; if rkE(Q) > 0.
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Conjecture 2.3 (The rank 0 part of the Birch and Swinnerton-Dyer conjecture). If E 2 E ,
then

(2) L(E; 1) =
Ш0 Ω

Q
p cp

#E(Q)2tors
:

Remark 2.4. In the case where the rank r := rkE(Q) is greater than 0, Conjecture 2.3
states only that L(E; 1) = 0, whereas the full Birch and Swinnerton-Dyer conjecture pre-
dicts that ords=1 L(E; s) = r and predicts the leading coefficient in the Taylor expansion
of L(E; s) at s = 1.

Let H = htE. Following Lang [1983] (see also Goldfeld and Szpiro [1995], de Weger
[1998], Hindry [2007], Watkins [2008], and Hindry and Pacheco [2016]), we estimate the
typical size of Ш0 by estimating all the other quantities in (2) as H ! 1; see Park,
Poonen, Voight, and Wood [2016, Section 6] for details. The upshot is that if we average
over E and ignore factors that are H o(1), then (2) simplifies to 1 ∼Ш0 Ω and we obtain
Ш0 ∼ Ω�1 ∼ H 1/12. More precisely:

•
Q

p cp = H o(1) [deWeger 1998, Theorem 3], [Hindry 2007, Lemma 3.5], [Watkins
2008, pp. 114–115], [Park, Poonen, Voight, and Wood 2016, Lemma 6.2.1];

• #E(Q)tors � 16 [Mazur 1977];

• Ω = H �1/12+o(1) [Hindry 2007, Lemma 3.7], [Park, Poonen, Voight, and Wood
2016, Corollary 6.1.3]; and

• the Riemann hypothesis for L(E; s) implies that L(E; 1) � H o(1) [Iwaniec and
Sarnak 2000, p. 713]. In fact, it is reasonable to expect Average

E2E�H

L(E; 1) � 1. (The

symbol � means that the left side is bounded above and below by positive constants
times the right side.)

Thus we expect

(3) Average
E2E�H

Ш0(E) = H 1/12+o(1)

as H ! 1.

3 Modeling elliptic curves over Q

3.1 Modeling the p-Selmer group. According to Theorem 2.2, Selp E is isomorphic
to an intersection of maximal isotropic subspaces in an infinite-dimensional quadratic
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space over Fp . So one might ask whether one could make sense of choosing maximal
isotropic subspaces in an infinite-dimensional quadratic space at random, so that one could
intersect two of them to obtain a space whose distribution is conjectured to be that of
Selp E. This can be done by equipping an infinite-dimensional quadratic space with a lo-
cally compact topology [Poonen and Rains 2012, Section 2], but the resulting distribution
can be obtained more simply by working within a 2n-dimensional quadratic space and
taking the limit as n ! 1. Now every nondegenerate 2n-dimensional quadratic space
with a maximal isotropic subspace is isomorphic to the quadratic space Vn = (F2n

p ; Q),
where Q is the quadratic form

Q(x1; : : : ; xn; y1; : : : ; yn) := x1y1 + � � � + xnyn:

Therefore we conjecture that the distribution of dimFp
Selp E as E varies over E equals

the limit as n ! 1 of the distribution of the dimension of the intersection of two maximal
isotropic subspaces in Vn chosen uniformly at random from the finitely many possibilities.
The limit exists and can be computed explicitly; this yields the formula on the right in the
following:

Conjecture 3.1 (Poonen and Rains [ibid., Conjecture 1.1]). For each s � 0, the density
of fE 2 E : dimFp

Selp E = sg equals

(4)
Y
j �0

(1 + p�j )�1
sY

j=1

p

pj � 1
:

Remark 3.2. Let Ed be the elliptic curve dy2 = x3 � x over Q. Heath-Brown [1993,
1994] proved that the density of integers d such that dimF2

Sel2 Ed � 2 = s equalsY
j �0

(1 + 2�j )�1
sY

j=1

2

2j � 1
;

matching (4) forp = 2. (The�2 is there to remove the “causal” contribution to dimSel2 Ed

coming from Ed (Q)[2].) As we have explained, this result is a natural consequence of the
theory of Section 2.4, but in fact Heath-Brown’s result came first and the theory was re-
verse engineered from it [Poonen and Rains 2012]! Heath-Brown’s result was extended by
Swinnerton-Dyer [2008] and Kane [2013] to the family of quadratic twists of any E 2 E
with E[2] � E(Q) and no cyclic 4-isogeny.

3.2 Modeling the pe-Selmer group. If p is replaced by pe , then we should replace
F2n

p by Vn := ((Z/peZ)2n; Q). But now there are different types of maximal isotropic
subgroups up to isomorphism. For example, if e = 2, then (Z/p2Z)n�f0gn and (pZ/p2Z)2n
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are both maximal isotropic subgroups; of these, only the first is a direct summand of Vn.
In what follows, we will use only direct summands, for reasons to be explained at the end
of this section.

Conjecture 3.3. If we intersect two random maximal isotropic direct summands of Vn :=

((Z/peZ)2n; Q) and take the limit as n ! 1 of the resulting distribution, we obtain the
distribution of Selpe E as E varies over E .

For m � 1, let �(m) denote the sum of the positive divisors of m. One can prove that
the limit as n ! 1 of the average size of the random intersection equals �(pe), and there
is an analogous result for positive integers m not of the form pe [Bhargava, Kane, Lenstra,
Poonen, and Rains 2015, Proposition 5.20]. This suggests the following:

Conjecture 3.4 (Poonen and Rains [2012, Conjecture 1(b)], Bhargava, Kane, Lenstra,
Poonen, and Rains [2015, Section 5.7], Bhargava and Shankar [2013a, Conjecture 4]).
For each positive integer m,

Average
E2E

# Selm E = �(m):

(The average is interpreted as the limit as H ! 1 of the average over E�H .)

One could similarly compute the higher moments of the conjectural distribution; see
Poonen and Rains [2012, Proposition 2.22(a)] and Bhargava, Kane, Lenstra, Poonen, and
Rains [2015, Section 5.5].

There are several reasons why insisting upon direct summands in Conjecture 3.3 seems
right:

• Conjecturally, both of the maximal isotropic subgroups arising in the arithmetic of
the elliptic curve are direct summands: see the last paragraph of Section 2.4.

• Requiring direct summands is essentially the onlyway tomake themodel for Selpe E

consistent with the model for Selp E, given that Selp E ' (Selpe E)[p] for 100%
of curves [ibid., Remark 6.12].

• It leads to Conjecture 3.4, which has been proved for m � 5 [Bhargava and Shankar
2015a,b, 2013a,b].

3.3 Modeling the p1-Selmer group and the Shafarevich–Tate group. Choosing a
maximal isotropic direct summand of ((Z/peZ)2n; Q) compatibly for all e is equiva-
lent to choosing a maximal isotropic direct summand of the quadratic Zp-module Vn :=

(Z2n
p ; Q). This observation will lead us to a process that models Selpe E for all e simul-

taneously, or equivalently, that models Selp1 E directly. To simplify notation, for any
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Zp-module X , let X 0 denote X ˝
Qp

Zp
; if X is a Zp-submodule of Vn, then X 0 is a Zp-

submodule of V 0
n.

Now choose maximal isotropic direct summands Z and W of Vn with respect to the
measure arising from taking the inverse limit over e of the uniform measure on the set
of maximal isotropic direct summands of (Z/peZ)2n [Bhargava, Kane, Lenstra, Poonen,
and Rains 2015, Sections 2 and 4]; then we conjecture that the limiting distribution of
Z0 \ W 0 as n ! 1 equals the distribution of Selp1 E as E varies over E . Again,
the point is that this limiting distribution is compatible with the previously conjectured
distribution for Selpe E for each nonnegative integer e, and the conjecture for Selpe E

was based on theorems about Selmer groups of elliptic curves (see Section 2.4).
Even better, using the same ingredients, we canmodel rkE(Q) andШ[p1] at the same

time:

Conjecture 3.5 (Bhargava, Kane, Lenstra, Poonen, and Rains [ibid., Conjecture 1.3]). If
we choose maximal isotropic direct summands Z and W of (Z2n

p ; Q) at random as above,
and we define

R := (Z \ W )0; S := Z0
\ W 0; T := S/R;

then the limit as n ! 1 of the distribution of the exact sequence

0 �! R �! S �! T �! 0

equals the distribution of the sequence

0 �! E(Q) ˝
Qp

Zp

�! Selp1 E �! Ш[p1] �! 0

as E varies over E .

There are several pieces of indirect evidence for the rank andШ predictions of Conjec-
ture 3.5:

• Each ofR andE(Q)˝
Qp

Zp
is isomorphic to (Qp/Zp)

r for some nonnegative integer
r , called the Zp-corank of the module.

• The Zp-corank of R is 0 or 1, with probability 1/2 each [ibid., Proposition 5.6].
Likewise, a variant of a conjecture of Goldfeld (see Goldfeld [1979, Conjecture B]
and Katz and Sarnak [1999a,b]) predicts that rkE(Q) (which equals the Zp-corank
of E(Q) ˝

Qp

Zp
) is 0, 1, � 2 with densities 1/2, 1/2, 0, respectively.

• The group T is finite and carries a nondegenerate alternating pairing with values in
Qp/Zp , just asШ[p1] conjecturally does (the p-part of the Cassels pairing). In
particular, #T is a square.
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• [Smith 2017] has proved a result analogous to Conjecture 3.5 for the family of
quadratic twists of any E 2 E with E[2] � E(Q) and no cyclic 4-isogeny.

Further evidence is that there are in fact three distributions that have been conjectured
to be the distribution ofШ[p1] as E varies over rank r elliptic curves, and these three dis-
tributions coincide [Bhargava, Kane, Lenstra, Poonen, and Rains 2015, Theorems 1.6(c)
and 1.10(b)]. This is so even in the cases with r � 2, which conjecturally occur with
density 0. For a fixed nonnegative integer r , the three distributions are as follows:

1. A distribution defined by Delaunay [2001, 2007] and Delaunay and Jouhet [2014], who
adapted the Cohen–Lenstra heuristics for class groups [Cohen and Lenstra 1984].

2. The limit as n ! 1 of the distribution of T := (Z0 \ W 0)/(Z \ W )0 when (Z; W )

is sampled from the set of pairs of maximal isotropic direct summands of (Z2n
p ; Q)

satisfying rkZp
(Z \ W ) = r . (This set of pairs is the set of Zp-points of a scheme

of finite type, so it carries a natural measure [Bhargava, Kane, Lenstra, Poonen, and
Rains 2015, Sections 2 and 4].)

3. The limit as n ! 1 through integers of the same parity as r of the distribution of
(cokerA)tors whenA is sampled from the space of matrices inMn(Zp) satisfyingAT =

�A and rkZp
(kerA) = r ; here kerA and cokerA are defined by viewing A as a Zp-

linear homomorphism Zn
p ! Zn

p .

The last of these is inspired by the theorem of Friedman and Washington [1989] that for
each odd prime p, the limit as n ! 1 of the distribution cokerA for A 2 Mn(Zp)

chosen at random with respect to Haar measure equals the distribution conjectured by
Cohen and Lenstra to be the distribution of the p-primary part of the class group of a
varying imaginary quadratic field.

3.4 Modeling the rank of an elliptic curve. In the previous section, we saw in the third
construction that conditioning on rkZp

(kerA) = r yields the conjectural distribution of
Ш[p1] for rank r curves. The simplest possible explanation for this would be that sam-
pling A at random from Mn(Zp)alt := fA 2 Mn(Zp) : AT = �Ag without conditioning
on rkZp

(kerA) caused rkZp
(kerA) to be distributed like the rank of an elliptic curve.

What is the distribution of rkZp
(kerA)? If n is even, then the locus in Mn(Zp)alt

defined by detA = 0 is the set of Zp-points of a hypersurface, which has Haar measure 0,
so rkZp

(kerA) = 0 with probability 1. If n is odd, however, then rkZp
(kerA) cannot be

0, because n� rkZp
(kerA) is the rank of A, which is even for an alternating matrix. For n

odd, it turns out that rkZp
(kerA) = 1 with probability 1. If we imagine that n was chosen

large and with random parity, then the result is that rkZp
(kerA) is 0 or 1, with probability

1/2 each. This result agrees with the variant of Goldfeld’s conjecture mentioned above.
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Thismodel cannot, however, distinguish the relative frequencies of curves of various ranks
� 2, because in the model the event rkZp

(kerA) � 2 occurs with probability 0.
Therefore we propose a refined model in which instead of sampling A fromMn(Zp)alt,

we sample A from the set Mn(Z)alt;�X of matrices in Mn(Z)alt with entries bounded by
a number X depending on the height H of the elliptic curve being modeled, tending to
1 as H ! 1. This way, for elliptic curves of a given height H , the model predicts a
potentially positive but diminishing probability of each rank � 2 (the probability that an
integer point in a box lies on a certain subvariety), and we can quantify the rate at which
this probability tends to 0 as H ! 1 in order to count curves of height up to H having
each given rank. In fact, we let n grow with H as well.

Here, more precisely, is the refined model. To model an elliptic curve E of height H ,
using functions �(H ) and X(H ) to be specified later, we do the following:

1. Choose n to be an integer of size about �(H ) of random parity (e.g., we could choose
n uniformly at random from fd�(H )e; d�(H )e + 1g).

2. Choose AE 2 Mn(Z)alt;�X(H) uniformly at random, independently for each E.

3. Define random variablesШ0
E := (cokerA)tors and rk0

E := rkZ(kerA).

Think ofШ0
E as the “pseudo-Shafarevich–Tate group” of E and rk0

E as the “pseudo-rank”
of E; their behavior is intended to model the actualШ and rank.

To complete the description of the model, we must specify the functions �(H ) and
X(H ). We do this by asking “How large isШ0 on average?”, both in the model and in
reality. Recall from (3) that we expect

(5) Average
E2E�H

Ш0(E) = H 1/12+o(1):

Define

Ш0
E;0 :=

(
#Ш0

E ; if rk0
E = 0;

0; if rk0
E > 0.

Using that the determinant of an n � n matrix is given by a polynomial of degree n in the
entries, we can prove that

(6) Average
E2E�H

Ш0
E;0 = X(H )�(H)(1+o(1));

assuming that �(H ) does not grow too quickly with H . Comparing (5) and (6) suggests
choosing �(H ) and X(H ) so that X(H )�(H) = H 1/12+o(1). We assume this from now
on. It turns out that we will not need to know any more about �(H ) and X(H ) than this.
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3.5 Consequences of the model. To see what distribution of ranks is predicted by the
refinedmodel, wemust calculate the distribution of ranks of alternatingmatrices whose en-
tries are integers with bounded absolute value; the relevant result, whose proof is adapted
from Eskin and Katznelson [1995], is the following:

Theorem 3.6 (cf. Park, Poonen, Voight, and Wood [2016, Theorem 9.1.1]). If 1 � r � n

and n � r is even, and A 2 Mn(Z)alt;�X is chosen uniformly at random, then

Prob(rk(kerA) � r) �n (Xn)�(r�1)/2:

(The subscript n on the symbol � means that the implied constants depend on n.)

Theorem 3.6 implies that for fixed r � 1 and E 2 E of height H ,

(7) Prob(rk0
E � r) = (X(H )�(H))�(r�1)/2+o(1) = H �(r�1)/24+o(1):

Using this, and the fact #E�H � H 5/6 = H 20/24 (Proposition 2.1), we can now sum (7)
over E 2 E�H to prove the following theorem about our model:

Theorem 3.7 (Park, Poonen, Voight, and Wood [ibid., Theorem 7.3.3]). The following
hold with probability 1:

#fE 2 E�H : rk0
E = 0g = H 20/24+o(1)

#fE 2 E�H : rk0
E = 1g = H 20/24+o(1)

#fE 2 E�H : rk0
E � 2g = H 19/24+o(1)

#fE 2 E�H : rk0
E � 3g = H 18/24+o(1)

:::

#fE 2 E�H : rk0
E � 20g = H 1/24+o(1)

#fE 2 E�H : rk0
E � 21g � H o(1);

#fE 2 E : rk0
E > 21g is finite:

This suggests the conjecture that the same statements hold for the actual ranks of elliptic
curves over Q. In particular, we conjecture that rkE(Q) is uniformly bounded, bounded
by the maximum of the ranks of the conjecturally finitely many elliptic curves of rank
> 21.

Remark 3.8. Elkies [2006] has found infinitely many elliptic curves over Q of rank � 19,
and one of rank � 28; these have remained the records since 2006.
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4 Generalizations

4.1 Elliptic curves over global fields. What about elliptic curves over other global
fields K? Let EK be a set of representatives for the isomorphism classes of elliptic curves
over K. Let BK := lim supE2EK

rkE(K). For example, the conjecture suggested by
Theorem 3.7 predicts that 20 � BQ � 21.

Theorem 4.1 (Tèı̆t and Šafarevič [1967], Ulmer [2002]). If K is a global function field,
then BK = 1.

Even for number fields, BK can be arbitrarily large (but maybe still always finite):

Theorem 4.2 (Park, Poonen, Voight, and Wood [2016, Theorem 12.4.2]). There exist
number fields K of arbitrarily high degree such that BK � [K : Q].

Examples of number fields K for which BK is large include fields in anticyclotomic
towers and certain multiquadratic fields; see Park, Poonen, Voight, and Wood [ibid., Sec-
tion 12.4].

A naive adaptation of our heuristic (see Park, Poonen, Voight, andWood [ibid., Sections
12.2 and 12.3]) would suggest 20 � BK � 21 for every global field K, but Theorems 4.1
and 4.2 contradict this conclusion. Our rationalization of this is that the elliptic curves
of high rank in Theorems 4.1 and 4.2 are special in that they are definable over a proper
subfield of K, and these special curves exhibit arithmetic phenomena that our model does
not take into account. To exclude these curves, let E ı

K be the set of E 2 EK such that E is
not a base change of a curve from a proper subfield, and let Bı

K
:= lim supE2E ı

K
rkE(K).

It is possible that Bı
K < 1 for every global field K.

Remark 4.3. On the other hand, it is not true thatBı
K � 21 for all number fields, as we now

explain. Shioda [1992] proved that y2 = x3 + t360 + 1 has rank 68 over C(t). In fact, it
has rank 68 also over K(t) for a suitable number field K. For this K, specialization yields
infinitely many elliptic curves in E ı

K of rank � 68. Thus Bı
K � 68. See Park, Poonen,

Voight, and Wood [2016, Remark 12.3.1] for details.

4.2 Abelian varieties.

Question 4.4. For abelian varieties A over number fields K, is there a bound on rkA(K)

depending only on dimA and [K : Q]?

By restriction of scalars, we can reduce to the case K = Q at the expense of increas-
ing the dimension. By “Zarhin’s trick” that A4 � (A_)4 is principally polarized [Zarhin
1974a], we can reduce to the case that A is principally polarized, again at the expense of
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increasing the dimension. For fixed g � 0, one can write down a family of projective vari-
eties including all g-dimensional principally polarized abelian varieties over Q, probably
with each isomorphism class represented infinitely many times. We can assume that each
abelian variety A is defined by a system of homogeneous polynomials with integer coeffi-
cients, in which the number of variables, the number of polynomials, and their degrees are
bounded in terms of g. Define the height of A to be the maximum of the absolute values of
the coefficients. Then the number of g-dimensional principally polarized abelian varieties
over Q of height � H is bounded by a polynomial in H . If there is a model involving
a pseudo-rank rk0

A whose probability of exceeding r gets divided by at least a fixed frac-
tional power of H each time r is incremented by 1, as we had for elliptic curves, then
the pseudo-ranks are bounded with probability 1. This might suggest a positive answer to
Question 4.4, though the evidence is much flimsier than in the case of elliptic curves.

Acknowledgments. I thankNicolas Billerey, SergeCantat, AndrewGranville, Eric Rains,
Michael Stoll, and John Voight for comments.
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POTENTIAL AUTOMORPHY OF bG -LOCAL SYSTEMS

Jൺർ඄ Tඁඈඋඇൾ

Abstract

Vincent Lafforgue has recently made a spectacular breakthrough in the setting
of the global Langlands correspondence for global fields of positive characteristic,
by constructing the ‘automorphic–to–Galois’ direction of the correspondence for an
arbitrary reductive group G. We discuss a result that starts with Lafforgue’s work and
proceeds in the opposite (‘Galois–to–automorphic’) direction.

1 Introduction

Let Fq be a finite field, and let G be a split reductive group over Fq . Let X be a smooth
projective connected curve over Fq , and letK be its function field. LetAK denote the ring
of adèles of K. Automorphic forms on G are locally constant functions f : G(AK) ! Q
which are invariant under left translation by the discrete group G(K) � G(AK).1 The
space of automorphic forms is a representation of G(AK), and its irreducible constituents
are called automorphic representations.

Let ` − q be a prime. According to the Langlands conjectures, any automorphic repre-
sentation � of G(AK) should give rise to a continuous representation �(�) : �ét

1 (U ) !bG(Q`) (for some open subscheme U � X ). This should be compatible with the (known)
unramified local Langlands correspondence, which describes the pullback of �(�) to
�ét
1 (Fqv

) for every closed point v : SpecFqv
,! U in terms of the components �v of

a factorization � = ˝0
v�v into representations of the local groups G(Kv).

Vincent Lafforgue has given an amazing construction of the representation �(�), which
crystallizes and removes many of the ambiguities in this picture in a beautiful way. We
give a brief description of this work below.

Our main goal in this article is to describe a work due to Gebhard Böckle, Michael
Harris, Chandrashekhar Khare, and myself, where we establish a partial converse to this

MSC2010: 11F80.
1This is not the full definition. In the rest of this article we consider only cuspidal automorphic forms, which

are defined precisely below.
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result Böckle, Harris, Khare, and J. A. Thorne [n.d.]. We restrict to representations � :

�ét
1 (X) ! bG(Q`) of Zariski dense image, and show that any such representation is po-

tentially automorphic, in the sense that there exists a Galois cover Y ! X such that the
pullback of � to �ét

1 (Y ) is contained in the image of Lafforgue’s construction. We will
guide the reader through the context surrounding this result, and discuss some interesting
open questions that are suggested by our methods.

2 Review of the case G = GLn

We begin by describing what is known about the Langlands conjectures in the setting of
the general linear group G = GLn. In this case very complete results were obtained
by L. Lafforgue [2002]. As in the introduction, we write Fq for the finite field with q

elements, and let X be a smooth, projective, connected curve over Fq . The Langlands
correspondence predicts a relation between representations of the absolute Galois group
of K and automorphic representations of the group GLn(AK). We now describe each of
these in turn.

Let Ks be a fixed separable closure of K. We write ΓK = Gal(Ks/K) for the absolute
Galois group of K, relative to Ks . It is a profinite group. If S � X is a finite set of closed
points, then we write KS � Ks for the maximal extension of K which is unramified
outside S , and ΓK;S = Gal(KS/K) for its Galois group. This group has a geometric
interpretation: if we set U = X � S , and write � for the geometric generic point of U

corresponding to Ks , then there is a canonical identification ΓK;S Š �ét
1 (U; �) of the

Galois group with the étale fundamental group of the open curve U .
Fix a prime ` − q and a continuous character ! : ΓK ! Q

�

` of finite order. If
n � 1 is an integer, then we write Galn;! for the set of conjugacy classes of continuous
representations � : ΓK ! GLn(Q`) with the following properties:

1. � factors through a quotient ΓK ! ΓK;S , for some finite subscheme S � X .

2. det � = !.

3. � is irreducible.

To describe automorphic representations, we need to introduce adèles. If v 2 X is
a closed point, then the local ring OX;v is a discrete valuation ring, and determines a
valuation ordv : K� ! Z which we call a place of K. The completion Kv of K with
respect to this valuation is a local field, which can be identified with the field of Laurent
series Fqv

((tv)), where Fqv
is the residue field of OX;v and tv 2 OX;v is a uniformizing

parameter. We write OKv
� Kv for the valuation ring.

The adèle ring AK is the restricted direct product of the rings Kv , with respect to their
open compact subrings OKv

. It is a locally compact topological ring. Taking adèle points
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of GLn, we obtain the group GLn(AK), which is a locally compact topological group,
and which can itself be identified with the restricted direct product of the groups GLn(Kv)

with respect to their open compact subgroups GLn(OKv
).

If n = 1, then GL1(AK) = A�
K and class field theory gives a continuous map

ArtK : K�
nA�

K ! Γab
K ;

which is injective with dense image. We write An;! for the Q`-vector space of functions
f : GLn(AK) ! Q` satisfying the following conditions:

1. f is invariant under left translation by the discrete subgroup GLn(K) � GLn(AK).

2. For any z 2 A�
K , g 2 GLn(AK), f (gz) = !(ArtK(z))f (g).

3. f is smooth, i.e. there exists an open compact subgroup U � GLn(AK) such that
for all u 2 U , g 2 GLn(AK), f (gu) = f (g).

Then the groupGLn(AK) acts onAn;! by right translation. WewriteAn;!;cusp � An;! for
the subspace of cuspidal functions, i.e. those satisfying the following additional condition:

4. For each proper parabolic subgroup P � GLn, of unipotent radical N , we haveZ
n2N (K)nN (AK)

f (ng) dn = 0

for all g 2 GLn(AK). (Note that the quotient N (K)nN (AK) is compact, so the
integral, taken with respect to a quotient Haar measure on N (AK), is well-defined.)

With this definition, An;!;cusp � An;! is an Q`[GLn(AK)]-submodule. The following
theorem describes the basic structure of this representation of GLn(AK).

Theorem 2.1. 1. An;!;cusp is a semisimple admissible Q`[GLn(AK)]-module. Each
irreducible constituent � � An;!;cusp appears with multiplicity 1.

2. If � � An;!;cusp is an irreducible submodule, then there is a decomposition � =

˝0
v�v of � as a restricted tensor product of irreducible admissible representations

�v of the groups GLn(Kv) (where v runs over the set of all places of K).

If � is an irreducible constituent of An;!;cusp, then we call � a cuspidal automorphic
representation of GLn(AK). We write Autn;! for the set of isomorphism classes of cusp-
idal automorphic representations of GLn(AK).

We can now state Langlands reciprocity for GLn.

Theorem 2.2. There is a bijection Galn;! $ Autn;! .
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In order for this theorem to have content, we need to describe how to characterize the
bijection whose existence it asserts. The most basic characterization uses restriction to
unramified places. Let v be a place ofK. If � 2 Galn;! , thenwe can consider its restriction
�v = �jWKv

to the Weil group WKv
� ΓKv

.2 If � 2 Autn;! , then we can consider the
factor �v , which is an irreducible admissible representation of the group GLn(Kv).

Definition 2.3. 1. A continuous homomorphism �v : WKv
! GLn(Q`) is said to be

unramified if it factors through the unramified quotient WKv
! Z.

2. An irreducible admissible representation of the groupGLn(Kv) is said to be unram-
ified if the subspace �

GLn(OKv )
v of GLn(OKv

)-invariant vectors is non-zero.

These two kinds of unramified objects are related by the unramified local Langlands
correspondence, which can be phrased as follows:

Theorem 2.4. Let v be a place of K. There is a canonical3 bijection �v 7! t(�v) between
the following two sets:

1. The set of isomorphism classes of unramified irreducible admissible representations
�v of GLn(Kv) over Q`.

2. The set of semisimple conjugacy classes t in GLn(Q`).

Proof (sketch). The proof, which is valid for any reductive group G over Fq , goes via the
Satake isomorphism. If G is split then this is an isomorphism

H(G(Kv); G(OKv
)) ˝Z Z[q

˙ 1
2

v ] ! Z[bG]bG ˝ Z[q
˙ 1

2
v ];

Tv;f 7! f

where H is the Hecke algebra of G(OKv
)-biinvariant functions f : G(Kv) ! Z of

compact support, and Z[bG]bG is the algebra of conjugation-invariant functions on the dual
group bG (which is GLn if G = GLn). If �v is an irreducible admissible representation of
G(Kv) over Ql and �

G(OKv )
v ¤ 0, then �

G(OKv )
v is a simple H ˝Z Ql -module, which

therefore determines a homomorphism Z[bG]bG ! Q`. The geometric invariant theory of
the adjoint quotient of the reductive group bG implies that giving such a homomorphism
is equivalent to giving a conjugacy class of semisimple elements in bG(Q`).

2Here ΓKv = Gal(Ks
v/Kv) is the absolute Galois group of Kv , with respect to a fixed choice of separable

closure. An embedding Ks ! Ks
v extending the map K ! Kv determines an embedding ΓKv ! ΓK . The

Weil group WKv � ΓKv is the subgroup of elements which act on the residue field by an integral power of the
(geometric) Frobenius element Frobv ; see for example Tate [1979] for a detailed discussion.

3As the proof shows, we need to fix as well a choice of a square root of q in Q`.
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Let S be a finite set of places of K. We write Galn;!;S � Galn;! for the set of � such
that for each place v 62 S of K, �jWKv

is unramified (we say that ‘� is unramified outside
S ’). We write Autn;!;S � Autn;! for the set of � = ˝0

v�v such that for each place v 62 S

of K, �v is unramified (we say that ‘� is unramified outside S ’). We can now state a more
precise version of Theorem 2.2:

Theorem 2.5. Let S be a finite set of places of K. Then there is a bijection � 7! �(�) :

Autn;!;S ! Galn;!;S with the following property: for each place v 62 S , �(�)(Frobv)
ss 2

t(�v)
4.

This defining property uniquely characterizes the bijection, if it exists. Indeed, the
isomorphism class of any representation � 2 Autn;!;S is uniquely determined by the
representations �v (v 62 S ): this is the strong multiplicity one theorem. Similarly, any
representation � 2 Galn;!;S is uniquely determined by the conjugacy classes of the ele-
ments �(Frobv)

ss (v 62 S ): the irreducible representation � is uniquely determined up to
isomorphism by its character tr �. This continuous function tr � : ΓK;S ! Q` is deter-
mined by its values at a dense set of elements, and the Chebotarev density theorem implies
that the Frobenius elements Frobv (v 62 S ) form such a set.

L. Lafforgue proved Theorem 2.5 using an induction on n. If the theorem is known for
n0 < n, then the ‘principe de récurrence de Deligne’ (see L. Lafforgue [2002, Appendice
B]) reduces the problem to constructing, for any � 2 Autn;!;S , the corresponding Ga-
lois representation �(�) 2 Galn;!;S , as well as proving that certain L– and �–factors are
matched up under the correspondence. The three main ingredients that make this possi-
ble are Grothendieck’s theory of L-functions of Galois representations, Laumon’s product
formula for the �–factors of Galois representations, and Piatetski-Shapiro’s converse theo-
rem, which can be used to show that an irreducible admissible representation of GLn(AK)

with sufficiently well-behaved associated L-functions is in fact cuspidal automorphic. We
note that in carrying this out Lafforgue actually obtains a much more precise result than
Theorem 2.5, in particular re-proving the local Langlands correspondence for GLn and
showing that the global correspondence is compatible with the local one.

One would like to generalise Theorem 2.5 to an arbitrary reductive group G over Fq .
However, there are a number (!) of difficulties. To begin with, it is not even clear what
the correct statement should be: it is easy to write down the naive analogues of the sets
Autn;! and Galn;! , but we will see some reasons why they cannot be related by a simple
bijection. Moreover, no converse theorem is known for a general group G, which means
there is no apparent way of proving that a given admissible representation of G(AK) is
in fact cuspidal automorphic. This is the motivation behind proving a result like our main
theorem.

4Here and elsewhere, we write xss for the semisimple part in the Jordan decomposition x = xssxu of an
element x of a linear algebraic group.
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3 Pseudocharacters

Let us now pass to the case of a general reductive group G over Fq . In order to simplify
the discussion here, we will assume that G is split. In this case one can associate to G its
dual group bG, a split reductive group over Z, which is characterized by the property that
its root datum is dual to that of G (see e.g. Borel [1979]). If G = GLn, then bG = GLn,
so our discussion will include n-dimensional linear representations as a special case.

We will describe the results of Vincent Lafforgue’s construction in the next section.
First, we make a detour to describe the notion of bG-pseudocharacter, which was intro-
duced for the first time in V. Lafforgue [n.d.]. This is a generalization of the notion of
the pseudocharacter of an n-dimensional representation (to which it reduces in the case
G = GLn).

Let Γ be a group, and letΩ be an algebraically closed field of characteristic 0. We recall
that to any representation � : Γ ! GLn(Ω), we can associate the character tr � : Γ ! Ω;
it clearly depends only on � up to conjugacy and up to semisimplification. We have the
following theorem, the second part of which was proved by Taylor using results of Taylor
[1991] and Procesi [1976].

Theorem 3.1. 1. Let �; �0 : Γ ! GLn(Ω) be semisimple representations. Then they
are isomorphic if and only if tr � = tr �0.

2. Let t : Γ ! Ω be a function satisfying the following conditions:

(a) t(1) = n.
(b) For all 
1; 
2 2 Γ, t(
1
2) = t(
2
1).
(c) For all 
1; : : : ; 
n+1 2 Γ,

P
�2Sn+1

t� (
1; : : : ; 
n+1) = 0, where if � has
cycle decomposition

� = (a1 : : : ak1
)(b1 : : : bk2

) : : :

then we set

t� (
1; : : : ; 
n+1) = t(
a1
: : : 
ak1

)t(
b1
: : : 
bk2

) : : : :

Then there exists a representation � : Γ ! GLn(Ω) such that tr � = t .

We can call a function t : Γ ! Ω satisfying the condition of Theorem 3.1 a pseudochar-
acter of dimension n. Then the theorem says that sets of conjugacy classes of semisimple
representations � : Γ ! GLn(Ω) and of pseudocharacters of dimension n are in canonical
bijection.

Here is Lafforgue’s definition of a bG-pseudocharacter. Let A be a ring.
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Definition 3.2. Let t = (tn)n�1 be a collection of algebramaps tn : Z[bGn
]bG ! Fun(Γn; A)

satisfying the following conditions:

1. For each n; m � 1 and for each � : f1; : : : ; mg ! f1; : : : ; ng, f 2 Z[bGm
]bG , and


 = (
1; : : : ; 
n) 2 Γn, we have

tn(f
� )(
1; : : : ; 
n) = tm(f )(
�(1); : : : ; 
�(m));

where f � (g1; : : : ; gn) = f (g�(1); : : : ; g�(m)).

2. For each n � 1, 
 = (
1; : : : ; 
n+1) 2 Γn+1, and f 2 Z[bGn
]bG , we have

tn+1(f̂ )(
1; : : : ; 
n+1) = tn(f )(
1; : : : ; 
n�1; 
n
n+1);

where f̂ (g1; : : : ; gn+1) = f (g1; : : : ; gn�1; gngn+1).

Then t is called a bG-pseudocharacter of Γ over A.

Note that bG acts on bGn
by diagonal conjugation. The subring Z[bGn

]bG � Z[bGn
] is

the ring of functions invariant under this action. We observe that if � : Γ ! bG(A) is a
homomorphism, then we can define a bG-pseudocharacter tr � = (tn)n�1 of Γ over A by
the formula

tn(f )(
1; : : : ; 
n) = f (�(
1); : : : ; �(
n)):

It is clear that this depends only on the bG(A)-conjugacy class of �.

Theorem 3.3. Let Γ be a group, and let Ω be an algebraically closed field.

1. Let �; �0 : Γ ! bG(Ω) be bG-completely reducible representations.5 Then �; �0 arebG(Ω)-conjugate if and only if tr � = tr �0.

2. Let t be a bG-pseudocharacter. Then there exists a representation � : Γ ! bG(Ω)

such that t = tr �.

The proof of Theorem 3.3 is based onRichardson’s results about the geometric invariant
theory of the action of bG on bGn

by diagonal conjugation Richardson [1988].
In the case where Γ is profinite, we want to impose continuity conditions on its bG-

pseudocharacters. Fortunately, bG-pseudocharacters are well-behaved from this point of
view.

5A representation � is said to be bG-irreducible if its image is contained in no proper parabolic subgroup ofbGΩ, and bG-completely reducible if for any parabolic subgroup P � bGΩ containing the image, there exists a
Levi subgroup L � P such that �(Γ) � L(Ω). See e.g. Serre [2005].
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Definition 3.4. Let A be a topological ring, and let Γ be a profinite group. We say that abG-pseudocharacter t of Γ over A is continuous if each map tn : Z[bGn
]bG ! Fun(Γn; A)

takes values in the subset of continuous functions Functs(Γn; A).

Proposition 3.5. Let ` be a prime, and let Γ be a profinite group. Let Ω = Q` (with its
`-adic topology) or F` (with the discrete topology). Let � : Γ ! bG(Ω) be a bG-completely
reducible representation. Then � is continuous if and only if tr � is continuous.

Finally, we note that bG-pseudocharacters are well-behaved from the point of view of
reduction modulo `. We will need this in our discussion of the deformation theory of
pseudocharacters later on.

Proposition 3.6. Let ` be a prime, and let Γ be a profinite group. Then:

1. Let t be a continuous bG-pseudocharacter of Γ over Q`. Then t takes values in Z`

and t, its reduction modulo `, is a continuous bG-pseudocharacter over F`.

2. Let � : Γ ! bG(Q`) be a continuous representation. After replacing � by a bG(Q`)-
conjugate, we can assume that � takes values in bG(Z`). Let � : Γ ! bG(F`) denote
the semisimplification of the reduction of � modulo `. Then � depends only on � up
to bG(Q`)-conjugacy, and tr � = tr �.

We now come back to our original case of interest, namely pseudocharacters of the
group Γ = ΓK;S . We can define a compatible family of pseudocharacters of ΓK;S of
dimension n to consist of the data of a number field E and, for each prime-to-q place � of
E, a pseudocharacter t� : ΓK;S ! E� of dimension n. These should satisfy the following
property:

• For each place v 62 S ofK, the number t�(Frobv) lies inE � E� and is independent
of the choice of �.

Thus, for example, Deligne [1980, Conjecture I.2.10] asks that every pseudocharacter
t` : ΓK;S ! Q` satisfying certain conditions should be a member of a compatible family.
This leads us to our first question:

Question 3.7. Is it possible to define a notion of ‘compatible family of bG-pseudocharac-
ters’, generalizing the above notion for GLn?

If we are willing to consider instead compatible families of representations, then Drin-
feld [n.d.] gives a satisfying (positive) answer to Question 3.7 using the results of L. Laf-
forgue [2002]. The question remains, however, of whether we can phrase this for pseu-
docharacters in elementary terms and, in particular, whether it is possible to make sense
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of compatible families when K is instead a global field of characteristic 0 (i.e. a number
field).

Here is one case it is easy to make sense of the notion of compatible family:

Proposition 3.8. Let ` − q be a prime, and let � : ΓK;S ! bG(Q`) be a continuous
representation of Zariski dense image. Assume that bG is semisimple. Then we can find
a number field E and an embedding E ,! Q`, inducing the place �0 of E, with the
following properties:

• For each place v 62 S of K and for each f 2 Z[bG]bG , f (�(Frobv)) 2 E. In other
words, the conjugacy class of �(Frobv)

ss is defined over E.

• For each prime-to-q place � of E, there exists a continuous homomorphism �� :

ΓK;S ! bG(E�) of Zariski dense image such that for each place v 62 S of K and
for each f 2 Z[bG]bG , f (��(Frobv)) lies in E and equals f (�(Frobv)). In other
words, ��(Frobv)

ss lies in the same geometric conjugacy class as �(Frobv)
ss.

Furthermore, for any prime-to-q place � of E and for any continuous homomorphism
�0

�
: ΓK;S ! bG(E�) such that for each place v 62 S of K and for each f 2 Z[bG]bG ,

f (�0
�
(Frobv)) lies in E and equals f (�(Frobv)), �0

�
is bG(E�)-conjugate to ��. In par-

ticular, � and ��0
are bG(Q`)-conjugate.

The proof makes use of the proof of the global Langlands correspondence for GLn

by L. Lafforgue [ibid.], together with Chin’s application of this work to the analysis of
compatible families Chin [2004]; see Böckle, Harris, Khare, and J. A. Thorne [n.d., §6].

4 The work of V. Lafforgue

Having introduced the notion of bG-pseudocharacter, we can now describe the basic shape
of Vincent Lafforgue’s results in V. Lafforgue [n.d.]. We recall that G is a split reductive
group over Fq . In order to simplify statements, we are now going to impose the further
assumption that G has finite centre (i.e. is semisimple).6 We write AG for the Q`-vector
space of functions f : G(AK) ! Q` satisfying the following conditions:

1. f is invariant under left translation by the discrete subgroup G(K) � G(AK).

2. f is smooth.

6By contrast, the paper V. Lafforgue [n.d.] does not impose any restriction on G; see in particular §12 of op.
cit.
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Then the group G(AK) acts on AG by right translation. We write AG;cusp � AG for the
subspace of cuspidal functions, i.e. those satisfying the following condition:

3. For any proper parabolic subgroup P � G of unipotent radical N , we haveZ
n2N (K)nN (AK)

f (ng) dn = 0

for all g 2 G(AK).

With this definition, AG;cusp is a semisimple admissible Q`[G(AK)]-module. In general,
understanding the constituents of this space is much more complicated than for the group
GLn. For example:

• Multiplicity one does not hold: there can exist representations � of G(AK) which
appear in AG;cusp with multiplicity greater than 1.

• Strongmultiplicity one does not hold: there can exist representation�; � 0 ofG(AK)

which have positive multiplicity in AG;cusp, such that �v Š � 0
v for all but finitely

many places v of K, but such that � 6Š � 0.

These phenomena are reflected in what happens on the Galois side. For example:

• There can exist everywhere unramified homomorphisms �; �0 : ΓK ! bG(Q`) such
that �(Frobv) and �0(Frobv) are conjugate for every v, but such that �; �0 are not
conjugate.

• There can exist homomorphisms �; �0 : ΓK ! bG and a place v0 of K such that
for all v ¤ v0, � and �0 are unramified at v and �(Frobv), �0(Frobv) are bG(Q`)-
conjugate; but �jΓKv0

6Š �0jΓKv0
. (Another reason for the failure of strong mul-

tiplicity one, not related to this Galois–theoretic phenomenon, is the existence of
non-trivial L-packets.)

We refer the reader to Wang [2012] for a survey of how the relation between these phe-
nomena can be understood in terms of Arthur’s conjectural decomposition of the space of
automorphic forms in terms of A-parameters Arthur [1989].

Lafforgue’s construction, quite remarkably, gives a decomposition of the space AG;cusp
of cusp forms on G which is quite close in appearance to that predicted by Arthur. He
defines for each n � 1, function f 2 Z[bGn

]bG , and tuple of elements 
 = (
1; : : : ; 
n) 2

Γn
K , an operator Sn;f;
 2 EndQ`

(AG;cusp). He calls these ‘excursion operators’, and
proves the following two theorems:

Theorem 4.1. 1. The operators Sn;f;
 commute with each other and with the action
of G(AK).
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2. Let B � EndQ`
(AG;cusp) denote the Q`-subalgebra generated by the operators

Sn;f;
 for all possible choices of n, f , and 
 . Then the system of maps t = (tn)n�1

given by
tn : Z[bGn

]bG ! Fun(Γn
K ; B);

f 7! (
 7! Sn;f;
 )

is a bG-pseudocharacter of ΓK valued in B.

Theorem 4.2. Let S be a finite set of places of K, and let U � G(AK) be an open
compact subgroup such that for each place v 62 S of K, Uv = G(OKv

). Let BU denote
the quotient of B which acts faithfully on AG;cusp;U . Then:

1. The pushforward of t along B ! BU is pulled back from a bG-pseudocharacter tU
of ΓK;S valued in BU .

2. If v 62 S , then the image of S1;f;Frobv
in BU equals the unramified Hecke operator

Tv;f (defined as in the proof of Theorem 2.4, via the Satake isomorphism).

Since the algebra BU contains the unramified Hecke operators, it can be viewed as an
enlargement of the usual Hecke algebra.

Corollary 4.3. Let � be a cuspidal automorphic representation of G(AK), and let V� �

AG;cusp be the �-isotypic component. LetB� denote the quotient ofBwhich acts faithfully
on V� . ThenB� is a finite-dimensionalQ`-algebra and for each maximal ideal p, one can
associate a continuous representation ��;p : ΓK ! bG(Q`) with the following properties:

1. tr ��;p = t� mod p.

2. Let S be a finite set of places of K such that �
G(OKv )
v ¤ 0 if v 62 S . Then ��;p is

unramified outside S and if v 62 S , then ��;p(Frobv)
ss 2 t(�v).

3. If p ¤ p0, then ��;p 6Š ��;p0 .

Proof. Since V� has finite length as a Q`[G(AK)]-module and B� is contained inside
EndQ`[G(AK)](V�), B� is a finite-dimensional Q`-algebra. Since B� is a quotient of B,
it carries a bG-pseudocharacter t� . Each maximal ideal p � B� has residue field Q`,
and the pushforward of t� along the map B� ! B�/p Š Q` therefore corresponds,
by Theorem 3.3, to a continuous bG-completely reducible representation ��;p : ΓK;S !bG(Q`) satisfying the following property: for all n � 1, f 2 Z[bGn

]bG , 
 = (
1; : : : ; 
n) 2

Γn
K;S , we have

f (��;p(
1); : : : ; ��;p(
n)) = Sn;f;
 mod p:
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From this identity it is apparent that ��;p determines p. Specializing to n = 1 and 
 =

Frobv for some v 62 S , this identity reduces to the formula

f (��;p(Frobv)) = Tv;f mod p;

or equivalently that ��;p(Frobv)
ss is in the conjugacy class t(�v).

Question 4.4. The space V� can be defined over Q. Is there a sense in which its decom-
position V� = ˚V�;p is independent of `?

Presumably a positive answer to this question must be tied up with a positive answer
to Question 3.7.

We can now define what it means for a Galois representation to be cuspidal automor-
phic, in the sense of the algebra B.

Definition 4.5. We say that a representation � : ΓK ! bG(Q`) is cuspidal automorphic
if there exists a cuspidal automorphic representation � of G(AK) and a maximal ideal
p � B� such that � Š ��;p.

Note that this definition depends in an essential way on Lafforgue’s excursion opera-
tors!

We are now in a position to state the main theorem of Böckle, Harris, Khare, and J. A.
Thorne [n.d.]:

Theorem 4.6. Let � : ΓK;¿ ! bG(Q`) be a continuous representation of Zariski dense
image. Then � is potentially cuspidal automorphic: there exists a finite Galois extension
L/K such that �jΓL;¿ is cuspidal automorphic in the sense of Definition 4.5.

Corollary 4.7. Let � : ΓK;¿ ! bG(Q`) be a continuous representation of Zariski dense
image. Then there exists a finite Galois extension L/K and an everywhere unramified
cuspidal automorphic representation � of G(AL) such that for each place w of L, �jWLw

and �w are related under the unramified local Langlands correspondence for G(Lw).

(In fact, Proposition 3.8 implies that the theorem and its corollary are equivalent.) In
the remainder of this article we will sketch the proof of Theorem 4.6.

5 An automorphy lifting theorem for G

How can one show that a Galois representation � : ΓK;¿ ! bG(Q`) is automorphic, in
the sense of Definition 4.5? For a general group G, we no longer know how to construct
automorphic forms using converse theorems.
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We pursue a different path which is inspired by the proofs of existing potential auto-
morphy results for Galois representations ΓE ! GLn, where E is a number field. These
are in turn based on automorphy lifting theorems, which are provable instances of the
following general principle:

Principle 5.1. Let �; �0 : ΓK;¿ ! bG(Q`) be continuous representations and let �,
�0 : ΓK;¿ ! bG(F`) denote their reductions modulo `. Suppose that �, �0 are bG(F`)-
conjugate and bG-irreducible. Suppose that � is cuspidal automorphic. Then �0 is also
cuspidal automorphic.

The first theorem of this type was stated by Wiles on his way to proving Fermat’s
Last Theorem Wiles [1995]. Our proof of an analogous result is inspired by Diamond’s
elaboration of the Taylor–Wiles method Diamond [1997], which gives a way to construct
an isomorphism R Š T , where R is a Galois deformation ring and T is a Hecke algebra
acting on cuspidal automorphic forms. By contrast, we prove an ‘R = B’ theorem, where
B is a suitable ring of Lafforgue’s excursion operators.

We describe these objects in order to be able to state a precise result. We will stick to
the everywhere unramified case. We first consider the Galois side. Let k � F l be a finite
subfield, and let � : ΓK;¿ ! bG(k) be a continuous homomorphism. Let Artk denote the
category of Artinian local W (k)-algebras A, equipped with an isomorphism A/mA Š k.
We define Lift� : Artk ! Sets to be the functor of liftings of �, i.e. of homomorphisms
�A : ΓK;¿ ! bG(A) such that �A mod mA = �.

For any A 2 Artk , the group ker(bG(A) ! bG(k)) acts on Lift�(A) by conjugation, and
we write Def� : Artk ! Sets for the quotient functor (given by the formula Def�(A) =

Lift�(A)/ ker(bG(A) ! bG(k))). The following lemma is basic.

Lemma 5.2. Suppose that � is absolutely bG-irreducible, and that ` does not divide the
order of the Weyl group of bG. Then the functor Def� is pro-represented by a complete
Noetherian local W (k)-algebra R� with residue field k.

In order to be able to relate the deformation ringR� to automorphic forms, we need to in-
troduce integral structures. We therefore writeCG;k for the set of functions f : G(AK) !

W (k) satisfying the following conditions:

1. f is invariant under left translation by G(K).

2. f is smooth.

We write CG;k;cusp for the intersection CG;k \ AG;cusp (taken inside AG). Let U =Q
v G(OKv

).

Proposition 5.3. Suppose that f 2 Z[bGn
]bG . Then each operator Sn;f;
 2 BU �

EndQ`
(AU

G;cusp) leaves invariant the submodule CU
G;k;cusp.
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We write B(U; W (k)) for the W (k)-subalgebra of EndW (k)(C
U
G;k;cusp) generated by

the operators Sn;f;
 for f 2 Z[bGn
]bG . Then B(U; W (k)) is a finite flat W (k)-algebra and

there is a bG-pseudocharacter tU;W (k) of ΓK;¿ valued in B(U; W (k)).
Let m be a maximal ideal of B(U; W (k)). Its residue field is a finite extension of the

finite field k. After possibly enlarging k, we can assume that the following conditions
hold:

• The residue field of m equals k.

• There exists a continuous representation �m : ΓK;¿ ! bG(k) such that tr �m =

tU;W (k) mod m.

Then the ring B(U; W (k))m (localization at the maximal ideal m) is a finite flat local
W (k)-algebra of residue field k, and it comes equipped with a pseudocharacter tU;W (k);m.
A natural question to ask is: under what conditions does this pseudocharacter arise from
a representation �m : ΓK;¿ ! bG(B(U; W (k))m) lifting �m? In other words, under
what conditions does the analogue of Theorem 3.3 hold when we no longer restrict to
field-valued bG-pseudocharacters?

Proposition 5.4. Suppose that �m is absolutely bG-irreducible, and that its centralizer
Cent(bGad

k ; �m) is scheme-theoretically trivial.7 Suppose that ` does not divide the or-
der of the Weyl group of bG. Then there is a unique conjugacy class of liftings [�m] 2

Def�m
(B(U; W (k))m) such that tr �m = tU;W (k);m.

Under the assumptions of Proposition 5.4, we see the ring R�m
is defined, and that

its universal property determines a canonical map R�m
! B(U; W (k))m. The localized

space (CU
G;k;cusp)m of automorphic forms then becomes a module for the deformation ring

R�m
.

We are now in a position to state a provable instance of Principle 5.1.

Theorem 5.5. Let m � B(U; W (k)) be a maximal ideal of residue field k, and suppose
that there exists a continuous, absolutely bG-irreducible representation �m : ΓK;¿ !bG(k) such that tr �m = tU;W (k) mod m. Suppose further that the following conditions
are satisfied:

1. ` > #W , where W is the Weyl group of the split reductive group bG.

2. The centralizer Cent(bGad
k ; �m) is scheme-theoretically trivial.

3. The representation �m is absolutely strongly bG-irreducible.

7Here and elsewhere, bGad
k denotes the adjoint group of bGk , i.e. the quotient of bGk by its centre.
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4. The subgroup �m(ΓK(�`)) � bG(k) is bG-abundant.

Then (CU
G;k;cusp)m is a finite free R�m

-module.

Corollary 5.6. With the assumptions of the theorem, let � : ΓK;¿ ! bG(Q`) be a contin-
uous homomorphism such that � Š �m. Then � is cuspidal automorphic.

Proof. The theorem implies that the mapR�m
! B(U; W (k))m that we have constructed

is an isomorphism. Any representation � as in the statement of the corollary determines
a homomorphism R�m

! Q`. (To show this, we first need to prove that a conjugate
of � takes values in bG(O), where O is a complete Noetherian local W (k)-subalgebra of
Q` of residue field k.) This in turn determines a homomorphism B(U; W (k))m ! Q`,
hence a maximal ideal p � BU with the property that for each n � 1, f 2 Z[bGn

]bG and

 = (
1; : : : ; 
n) 2 Γn

K;¿,

f (�(
1); : : : ; �(
n)) = Sn;f;
 mod p:

This is exactly what it means for � be cuspidal automorphic.

There are two adjectives in the theorem that have yet to be defined: ‘strongly bG-
irreducible’ and ‘bG-abundant’. We remedy this now:

Definition 5.7. LetΩ be an algebraically closed field, and let Γ be a group. We say that a
homomorphism � : Γ ! bG(Ω) is strongly bG-irreducible if for any other homomorphism
� 0 : Γ ! bG(Ω) such that for all 
 2 Γ, �(
)ss and � 0(
)ss are bG(Ω)-conjugate, � 0 isbG-irreducible.

Thus a strongly bG-irreducible representation is bG-irreducible. We do not know an
example of a representation which is bG-irreducible but not strongly bG-irreducible.

Definition 5.8. Let k be a finite field, and let H � bG(k) be a subgroup. We say that H

is bG-abundant if the following conditions are satisfied:

1. The cohomology groups H 0(H;bgk), H 0(H;bg_
k
), H 1(H;bg_

k
) and H 1(H; k) all

vanish. (Herebgk denotes the Lie algebra of bGk , andbg_
k
its dual.)

2. For each regular semisimple element h 2 H , the torus Cent(bGk ; h)ı is split.

3. For each simple k[H ]-submodule W � bg_
k
, there exists a regular semisimple ele-

ment h 2 H such that W h ¤ 0 and Cent(bGk ; h) is connected.
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The roles of these two definitions are as follows: the strong irreducibility of �m al-
lows us to cut down CU

G;k
to its finite rank W (k)-submodule CU

G;k;cusp using only Hecke
operators (and not excursion operators). The bG-abundance of �m(ΓK(�`)) is used in the
construction of sets of Taylor–Wiles places, which are the main input in the proof of The-
orem 5.5.

If ` is sufficiently large, then the group bG(F`) is both strongly bG-irreducible (insidebG(F`)) and bG-abundant (inside bG(k), for a sufficiently large finite extension k/F`). How-
ever, it is not clear how many other families of examples there are! This motivates the
following question:

Question 5.9. Can one prove an analogue of Theorem 5.5 with weaker hypotheses? For
example, can one replace conditions 3. and 4. with the single requirement that �m is
absolutely bG-irreducible and ` is sufficiently large, relative to bG?

To weaken the ‘bG-abundant’ condition is analogous to weakening the ‘bigness’ con-
dition which appeared in the first automorphy lifting theorems for unitary groups proved
in Clozel, Harris, and Taylor [2008]. It seems like an interesting problem to try, in a way
analogous to J. Thorne [2012], to replace this condition with the bG-irreducibility of the
residual representation �m.

6 Coxeter parameters

In order to apply a result like Theorem 5.5, we need to have a good supply of represen-
tations � : ΓK;¿ ! bG(F`) which we know to be residually automorphic (in the sense
of arising from a maximal ideal of the excursion algebra B(U; W (k)) acting on cuspidal
automorphic forms).

Famously, Wiles used the Langlands–Tunnell theorem to prove the residual automor-
phy of odd surjective homomorphisms � : ΓQ ! GL2(F3), in order to be able to use his
automorphy lifting theorems to prove the modularity of elliptic curves. Many recent ap-
plications of automorphy lifting theorems (e.g. to potential automorphy of n-dimensional
Galois representations over number fields, or to the construction of lifts of residual rep-
resentations with prescribed properties, as in Barnet-Lamb, Gee, Geraghty, and Taylor
[2014]) have relied upon the automorphy of n-dimensional Galois representations which
are induced from a character of the Galois group of a cyclic extension of numbers fields
of degree n. The automorphy of such representations was proved by Arthur–Clozel, using
a comparison of twisted trace formulae Arthur and Clozel [1989].

We obtain residually automorphicGalois representations from a different source, namely
the geometric Langlands program. We first describe the class of representations that we



POTENTIAL AUTOMORPHY OF bG-LOCAL SYSTEMS 449

use. We fix a split maximal torus bT � bG, and write W = W (bG; bT ) for the Weyl group
of bG. We assume in this section that bG is simple and simply connected.

Definition 6.1. An element w 2 W is called a Coxeter element if it is conjugate to an
element of the form s1 : : : sr , where R = f˛1; : : : ; ˛rg � Φ(bG; bT ) is any choice of ordered
root basis and s1; : : : ; sr 2 W are the corresponding simple reflections.

It is a fact that the Coxeter elements form a single conjugacy class in W , and therefore
have a common order h, which is called the Coxeter number of bG. They were defined and
studied by Coxeter in the setting of reflection groups. Kostant applied them to the study of
reductive groups Kostant [1959], and his results form the foundation of our understanding
of the following definition:

Definition 6.2. Let Γ be a group, and let Ω be an algebraically closed field. We call
a homomorphism � : Γ ! bG(Ω) a Coxeter homomorphism if it satisfies the following
conditions:

1. There exists a maximal torus T � bGΩ such that �(Γ) � N (bGΩ; T ), and the image
of �(Γ) in W Š N (bGΩ; T )/T is generated by a Coxeter element w. We write �ad

for the composite of � with projection bG(Ω) ! bGad
(Ω), and T ad for the image of

T in bGad
Ω .

2. There exists a prime t � 1 mod h not dividing char Ω or #W and a primitive hth-
root of unity q 2 F�

t such that �ad(Γ)\T ad(Ω) is cyclic of order t , and conjugation
by w acts on the image by the map v 7! vq .8

We recall that if bG = SLn, then W = Sn and the Coxeter elements are the n-cycles. In
this case the Coxeter homomorphisms appear among those homomorphisms Γ ! SLn(Ω)

which are induced from a character of an index n subgroup. However, the above definition
is valid for any simply connected simple bG and has very good properties:

Proposition 6.3. Let � : Γ ! bG(Ω) be a Coxeter homomorphism. Then:

1. � is bG-irreducible.

2. If �0 : Γ ! bG(Ω) is another homomorphism such that for all 
 2 Γ, �(
)ss and
�(
 0)ss are bG(Ω)-conjugate, then � and �0 are themselves bG(Ω)-conjugate. In
particular, � is even strongly bG-irreducible.

3. The image �(Γ) is an bG-abundant subgroup of bG(Ω).
8As the notation suggests, in applications we will take q to be the image in Ft of the cardinality of the field

of scalars in K.
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Now suppose that � : ΓK;¿ ! bG(Q`) is a Coxeter parameter. Then there exists
a degree h cyclic extension K 0/K such that �(ΓK0) is contained in a torus of bG; the
homomorphism �jΓK0 is therefore associated to Eisenstein series on G(AK0). One can
ask whether it is possible to use this to obtain a cuspidal automorphic representation of
G(AK) (or better, a maximal ideal of the excursion algebra BU ) to which � corresponds.
One case in which the answer is affirmative is as follows:

Theorem 6.4. Let � : ΓK;¿ ! bG(Q`) be a Coxeter parameter such that �(ΓK�Fq
) �bT (Q`). Then � is cuspidal automorphic, in the sense of Definition 4.5.

Proof (sketch). Braverman–Gaitsgory construct Braverman and Gaitsgory [2002] the ge-
ometric analogue of Eisenstein series for the group G: in other words, a Hecke eigensheaf
on BunG;Fq

with ‘eigenvalue’ �jΓ
K�Fq

. This Hecke eigensheaf is equipped with a Weil
descent datum, which allows us to associate to it an actual spherical automorphic form
f : G(K)nG(AK) ! Q` whose Hecke eigenvalues agree with those determined by �,
under the Satake isomorphism. Using geometric techniques (see Gaitsgory’s appendix to
Böckle, Harris, Khare, and J. A. Thorne [n.d.]), one can further show that this automor-
phic form is in fact cuspidal. The existence of a maximal ideal in the excursion algebra
BU corresponding to � then follows from the existence of f and the good properties of
Coxeter parameters (in particular, the second part of Proposition 6.3).

To illustrate the method, here is the result we obtain on combining Theorem 6.4 with
our automorphy lifting Theorem 5.5:

Theorem 6.5. Let ` > #W be a prime, and let � : ΓK;¿ ! bG(Q`) be a continuous homo-
morphism such that � is a Coxeter parameter and �(ΓK�Fq

) is contained in a conjugate
of bT (F`). Then � is cuspidal automorphic, in the sense of Definition 4.5.

Here is a question motivated by a potential strengthening of Theorem 6.5:

Question 6.6. Let � : ΓK;¿ ! bG(Q`) be a Coxeter parameter such that �(ΓK�Fq
) �bT (Q`), and let � be the everywhere unramified cuspidal automorphic representation of

G(AK) whose existence is asserted by Theorem 6.4. Can one show that � appears with
multiplicity 1 in the space AG;cusp?

Taking into account the freeness assertion in Theorem 5.5, we see that a positive an-
swer to Question 6.6 would have interesting consequences for the multiplicity of cuspidal
automorphic representations.
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7 Potential automorphy

We can now describe the proof of Theorem 4.6. Let us therefore choose a representation
� : ΓK;¿ ! bG(Q`) of Zariski dense image. We must find a finite Galois extension L/K

such that �jΓL
is cuspidal automorphic. It is easy to reduce to the case where bG is simple

and simply connected (equivalently: the group G is simple and has trivial centre), so we
now assume this.

By Proposition 3.8, we can assume, after replacing � by a conjugate, that there is a
number field E, a system (��)� of continuous homomorphisms �� : ΓK;¿ ! bG(E�) of
Zariski dense image, and an embedding E�0

,! Q` such that � = ��0
. If any one of the

representations �� is automorphic, then they all are. We can therefore forget the original
prime ` and think of the entire system (��)�.

An application of a theorem of Larsen [1995] furnishes us with strong information
about this system of representations:

Theorem 7.1. With notation as above, we can assume (after possibly enlarging E and
replacing each �� by a conjugate), that there exists a set L of rational primes of Dirichlet
density 0 with the following property: for each prime ` 62 L which splits in E and does
not divide q, and for each place �j` of E, ��(ΓK;¿) has image equal to bG(Z`).

It follows that for �j` (` 62 L split in E), the residual representation �� can be taken
to have image equal to bG(F`). It is easy to show that when ` is sufficiently large, such a
residual representation satisfies the requirements of our Theorem 5.5.

We are now on the home straight. Using a theorem of Moret-Bailly and known cases
of de Jong’s conjecture Moret-Bailly [1990] and de Jong [2001], one can construct a finite
Galois extension L/K and (after possibly enlarging E) an auxiliary system of representa-
tions (R� : ΓL;¿ ! bG(E�))� satisfying the following properties:

1. For each prime-to-q place � of Q, R� has Zariski dense image in bG(Q�).

2. There exists a place �1 such that R�1
Š ��1

jΓL;¿ , and both of these representations
have image bG(F`1

), where `1 denotes the residue characteristic of �1.

3. There exists a place �2 such that R�2
is a Coxeter parameter and `2 > #W , where

`2 denotes the residue characteristic of �2.

The argument to prove the automorphy of �jΓL;¿ is now the familiar one. By Theorem 6.5,
R�2

is cuspidal automorphic. Since this property moves in compatible systems for repre-
sentations with Zariski dense image, R�1

is cuspidal automorphic. If `1 is chosen to be
sufficiently large, then we can apply Theorem 5.5 to deduce that ��1

jΓL;¿ is cuspidal au-
tomorphic. Moving now in the compatible system containing ��1

jΓL;¿ , we obtain finally
the automorphy of the original representation �jΓL;¿ , as desired.
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One of the main attractions of our arguments is that they are uniform in the reductive
group G. In particular, they are valid for exceptional groups. Using deformation theory,
it is easy to find examples of global fields K = Fq(X) and continuous representations
� : ΓK;¿ ! bG(Ql) of Zariski dense image. This gives, for example, the following
simple corollary of Theorem 4.6:

Corollary 7.2. Let G be the split simple group over Fq of type E8; then the dual groupbG is the split simple group over Z of type E8. Let ` be a prime not dividing q. Then there
exist infinitely pairs (K; �), where K = Fq(X) is a global field and � : ΓK;¿ ! E8(Q`)

is a representation of Zariski dense image which is cuspidal automorphic, in the sense of
Definition 4.5.

Acknowledgments. I am very grateful to Chandrashekhar Khare, Michael Harris, and
Vincent Lafforgue for their comments on a draft version of this article.
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Abstract

We survey recent results in functional transcendence theory, and give arithmetic
applications to the André-Oort conjecture and other unlikely-intersection problems.

1 Introduction

The purpose of these notes is to give an introduction to the O-minimality approach to
arithmetic geometric questions in the field now referred to as “Unlikely Intersections”, as
well as give a brief survey of recent results in the literature. We emphasize the functional
transcendence results, which are both necessary for many interesting arithmetic applica-
tions, and which we hope are of independent interest. We include some recent results
on variations of hodge structures, especially as we believe these are still in their infancy
and could have fantastic developments in the near future. In §2, we give a survey of the
types of functional transcendence statements that have stemmed from generalizing the
Ax-Schanuel theorem. In §3 we introduce o-minimality and give a sort of users manual of
the main results that have been useful for these sorts of applications. We then sketch the
proofs of some functional transcendence results in §4. §5 is devoted to arithmetic appli-
cations, where we explain the recent developments in the André-Oort conjecture and the
Zilber-Pink conjecture. We give some sketches of proofs, but we only try to convey the
main ideas, rather then give complete arguments.

2 Transcendence Theory

2.1 Classical Results. Classical transcendental number theory is largely concernedwith
the algebraic properties of special values of special functions. We focus first on the case
of exponentiation. There are the following fundamental classical results:
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Theorem 2.1. [Lindemann-Weirstrass] Let x1; : : : ; xn 2 Q be linearly independent over
Q. Then ex1 ; : : : ; exn are algebraically independent over Q.

The above result implies, for example, that ln q is transcendental for every rational
number q. Baker managed to prove a similar (though weaker) result for the more difficult
case of ln:

Theorem 2.2. [Baker [1975]] Let x1; : : : ; xn 2 Q. If ln x1; : : : ; ln xn are linearly inde-
pendent over Q then they are also linearly independent over Q.

In fact Baker proved a quantitative version of the above theorem. Both of the above
results are encapsulated by the following conjecture of Schanuel, which seems to encap-
sulate all reasonable transcendence properties of the exponential function:

Conjecture 2.1. Let x1; : : : ; xn 2 C be linearly independent over Q. Then

tr:deg:QQ(x1; : : : ; xn; e
x1 ; : : : ; exn) � n:

Note that in the case where the xi are all in Q one recovers the Lindemann-Weirstrass
Theorem 2.1, and in the case where exi are all in Q one recovers Baker’s Theorem 2.2.
Schanuel’s conjecture has immediate striking implications. For instance, if one takes
n = 2 and fx1; x2g = f1; �ig then an immediate corollary is that e; � are algebraically
independent over Q.

2.2 Functional Analogue. While Schanuel’s Conjecture 2.1 is still out of reach, one
can get a lot more traction by considering a functional analogue. From a formal perspec-
tive, we replace the pair of fields Q � C by the pair C � C[[t1; : : : ; tm]]. Then one has
the following theorem due to Ax, referred to as the Ax-Schanuel theorem (see Ax [1971]):

Theorem 2.3. Let x1; : : : ; xn 2 C[[t1; : : : ; tm]] have no constant term and be such that
they linearly independent over Q Then

tr:deg:CC(x1; : : : ; xn; e
x1 ; : : : ; exn) � n+ rank

�
@xi

@tj

�
:

Example. Consider n > m and let xi = ti for i � m, and xi to be linearly independent
elements in C(t1; : : : ; tm) over Q for i > m. Then it follows from Theorem 2.3 that exi

are algebraically independent over C(t1; : : : ; tm; e
t1 ; : : : ; etm). It immediately follows

that the set fex ; x 2 C(t1; : : : ; tm)nCg is linearly independent over C(t1; : : : ; tm).
We pause to explain the extra term on the right hand side in Theorem 2.3. For the

moment, suppose that the xi are convergent power series in the tj so that the xican be
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considered as functions in the tj . Then the xi can be thought of as a map from Ex : Dm !

Cn for some small disk D. Now by the implicit function theorem, the dimension of Ex(Dm)

is equal to rank
�

@xi

@tj

�
:. Thus, if xn contributes one to rank

�
@xi

@tj

�
, we can consider xn as a

formal variable over C[[x1; : : : ; xn�1]] and then xn; e
xn are easily seen to be algebraically

independent over all of C[[x1; : : : ; xn�1]].

2.3 Geometric Formulation. Note that the above suggests a geometric reformulation
of the above result. Namely, let U be the image of the map (Ex; e Ex) : Dm ! Cn � (C�)n.
Note that U � Γ where Γ is the graph of the exponentiation map. Then the statement of
Theorem 2.3 can be reinterpreted geometrically as follows:

• tr:deg:CC(x1; : : : ; xn; e
x1 ; : : : ; exn) is the dimension of the Zariski closure of U in

Cn � (C�)n

• rank
�

@xi

@tj

�
is the dimension of U .

• The statement that xi have no constant terms and are are linearly independent in
C(t1; : : : ; tm) over Q, implies that the projection of U to Cn contains the origin
and is not contained in linear subspace defined over Q. Equivalently, the projection
of U to (C�)n is not contained in a proper algebraic subgroup.

We thus have the following geometric reformulation of Ax-Schanuel (See Tsimerman
[2015] for more details):

Theorem 2.4. LetW be an irreducible algebraic variety in Cn � (C�)n, and let U be an
irreducible analytic component ofW \Γ, where Γ is the graph of the exponentiation map.
Assume that the projection of U to (C�)n is not contained in a translate of any proper
algebraic subgroup. Then

dimW = dimU + n:

Even though it may seem that Theorem 2.3 is more general than the above due to the
possibility of the xi being non-convergent power series in the tj , by formulating in terms
differential fields and using the Seidenberg embedding theorem one can see that they are
in fact equivalent. We list also an implication of the above theorem, as we will have use
for it later. As it can be seen as analogous to the classical Lindemann-Weirstrass theorem,
it has been dubbed the Ax-Lindemann-Weirstrass (or often just Ax-Lindemann) theorem
by Pila:

Theorem 2.5. LetW;V be irreducible algebraic varieties in Cn; (C�)n respectively such
that eW � V . Then there exists a translate S of an algebraic subgroup of (C�)n such
that eW � S � V
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To deduce Theorem 2.5 one may apply the conclusion of Theorem 2.4 to the subvariety
W � V of Cn � (C�)n.

2.4 Generalizations to other geometric settings. Theorem 2.4 and Theorem 2.5 are
stated in the context of the exponentiation map, but it is not hard to make formal gener-
alizations to other settings. We describe now a recipe for generalizing to other contexts.
One requires the following objects:

1. Two algebraic varieties bD;X , an open subset D � bD, and a holomorphic map
� : D ! X . By convention, we define an algebraic subvariety of D to be an
analytic component ofD \ V , where V is a subvariety of bD.

2. A collection S of irreducible subvarieties of X called weakly special varieties such
that their pre-image inD contains an irreducible algebraic component.

Given the above data, we may formulate an Ax-Schanuel conjecture as follows:

Conjecture 2.2. (Ax-Schanuel for X ) Let Γ � D � X be the graph of � . Let W � X

be an irreducible algebraic variety, and U an analytic component of W \ Γ. Then if the
projection of U to X does is not contained in any proper weakly special subvariety, we
have

dimU = dimW � dimX:

We proceed to give some concrete examples of this principle.

2.4.1 Abelian and Semi-Abelian Varieties. Let X be a semi-abelian variety, in other
words an extension of an Abelian variety by a torus. Let the dimension of the abelian
part be a and of the toric part be t , and set g = dimX = a + t . Then we may take
D = bD = Cg and write X as D/Λ for a discrete subgroup � � D of rank 2a + t .
Now we may take the weakly special varieties to be the cosets of algebraic subgroups -
which are themselves necessarily semi-abelian subvarieties. Note that this case is a direct
generalization of Theorem 2.4 which we may recover by setting a = 0. This case was
settled by Ax [1972].

2.4.2 Shimura Varieties. Let S be a Shimura variety. We do not give precise defini-
tions in this section, referring instead to surveys such as J. Milne [n.d.] andMoonen [1998]
for more details. However, such varieties are naturally quotients of Symmetric spaces D
by arithmetic groups, and moreover the spaces D can be identified as a quotient of real
lie groupsD Š G(R)/K forG a semisimple lie group defined over Q, andK a maximal
compact subgroup of G. This means that G(R) acts on D, and the weakly special vari-
eties can be characterized as the images of orbitsH (R) �v, whereH � G is a semisimple
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lie subgroup defined over Q such that the orbitH (R) � v is complex analytic. Thus, even
though D and S do not form groups, the machinery of group theory is still very much
present in this setting, though of course the groups are non abelian making this setting
significantly more difficult then the abelian and semi-abelian case.

Example. For a positive integer n, one may take D = Hn; S = Y (1)n and � : D ! S

be the j map, where Y (1) is the (coarse) moduli space of complex elliptic curves and H
is the usual upper-half plane. The weakly special shimura varieties V can be described
very simply as being imposed by one of 2 types of conditions:

• One may impose a co-ordinate of S to be a constant

• One may insist that, for a fixed positive integer N , tow co-ordinates xi ; xj of S
correspond to elliptic curves which are related by a cyclic isogeny of degree N .

The above 2 operations may yield varieties that are not irreducible, so one should also
be allowed to take irreducible components. This yields for a very nice combinatorial
description of weakly pecial subvarieties which becomes significantly more complicated
for other Shimura varieties, but in practise the explicitness of the description is rarely
essential to proofs. In this context, the Theorem 2.5 was proven by Pila [2011] in his
groundbreaking unconditional proof of André-Oort for X(1)n, and the Theorem 2.4 was
proven by Pila and Tsimerman [2016].

The general case of Theorem 2.5 was proven in Klingler, Ullmo, and Yafaev [2016]
after partial progress was done by Ullmo and Yafaev [2014] for compact S , and by Pila
and Tsimerman [2014] for Ag . The general case of Theorem 2.4 was recently announced
byMok, Pila, and Tsimerman [2017]. Onemay also generalize toMixed Shimura Varieties,
where Theorem 2.5 was proven by Gao [2017].

2.4.3 Hodge Structures. There is another generalization one may make, and that is to
the setting of Hodge Structures. This setting is slightly more complicated than what we
have defined so far and it doesn’t exactly fit into our setup, for reasons we will describe.
Nevertheless, it is important for arithmetic reasons that we will mention in later sections.
For general background on Hodge Structures, we refer the reader to Voisin [2002]. We
give a quick definition here.

Definition. An integral hodge structure of weight m and dimension n consists of:

• A free abelian group L of dimension n

• An integer-valued non-degenerate quadratic form Q on L satisfying Q(v;w) =

(�1)nQ(w; v)
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• A Hodge decomposition of complex vector spaces L ˝ C = ˚p+q=nH
p;q such

thatHp;q = H q;p and ip�qQ(v; w̄) is positive definite onHp;q .

The numbers hp;q := dimHp;q are called the Hodge numbers.

If one fixes a weight, dimension, hodge numbers, and isomorphism class of (L;Q)

one obtains a complex analytic space X which parametrizes hodge structures up to iso-
morphism. Moreover, if one further fixes a basis for L, one obtains an open subset D of
a complex Grassmanian manifold, and a holomorphic covering map D ! X with Mon-
odromy G(Z), where G = Aut(L;Q). Moreover, G(R) acts transitively on D(R) with
compact stabilizer, so we obtain a picture quite similar to the one which occurs for Shimura
varieties. Indeed, by including some extra data one may recover all Shimura varieties as
moduli of Hodge structures.

The reason that this setting presents significant additional complication is that for ‘most’
choices of Hodge numbers, Carlson and Toledo [2014] showed thatX cannot be endowed
with the structure of an algebraic variety. In our specific context, this makes formulating
a transcendence conjecture difficult!

To resolve this problem, we note that a primary motivating reason for studying hodge
structures is that for smooth projective varieties Y and a positive integer m, the cohomol-
ogy group Hm(Y;C) can naturally be given a hodge structure, with the integer lattice
coming from Betti cohomology, the Hodge decomposition coming from Dolbeaut Co-
homology, and the quadratic form coming from the cup product. This means that even
though the moduli space X is not algebraic, for any family of smooth algebraic varieties
over a base B such that the fibers have the right Hodge numbers, we get a period map
B ! X . These period maps give us an algebraic structure to work with (namely, that on
B) and so allows us to formulate a version of Theorem 2.4. Such a statement was conjec-
tured by Klingler1 in Klingler [n.d.], and was proven by Bakker and Tsimerman [2017].
The proof follows closely the structure of Mok, Pila, and Tsimerman [2017], with the pri-
mary difference being a new “volume-growth” inequality for moduli of Hodge structures
in Griffiths-Transverse directions.

3 O-minimality

3.1 Definitions and Introduction. In the course of proving Theorem 2.4 as well as
all its generalizations, one naturally deals with functions that are not algebraic. However,
the set of all complex analytic functions can be too unwieldy, so it is natural to look for
an intermediate category of functions in which to work. It turns out that one such theory
which works particularly well for this class of problems is that of o-minimal structures.

1 In fact, Klingler conjectures much more specific results
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This allows us to work with enough functions to be able to talk about the transcendental
covering maps in Theorem 2.4, while still maintaining many of the nice properties that
algebraic functions possess.

For our purposes, a Structure S is a collection of sets Sn � 2Rn , where the elements
of Sn are subsets of Rn, such that the following properties hold:

• Sn is a boolean algebra

• Sn � Sm � Sm+n

• If we let � : Rn ! Rj be co-ordinate subspace projection, and A 2 Sn, then
�(A) 2 Sj .

• The set f(x; x); x 2 Rg is in S2, and the sets f(x; y; x+y); x; y 2 Rg; f(x; y; xy);

x; y;2 Rg are in S3.

We further say that S is o-minimal if S1 consists precisely of finite unions of open
intervals and points. We say that a set Z � Rn is definable in � if Z 2 Sn, and we
say that a function f : Rn ! Rm is definable in S if its graph is.t turns out that o-
minimal structures have a myriad of useful properties. For example, any set definable
in an o-minimal structure has finitely many connected components, has a well-defined
dimension, and is almost everywhere differentiable. For an introduction to the theory, see
van den Dries [1998].

3.2 Examples of o-minimal structures. It follows from the definitions that the small-
est possible structure is the structureRsa which contains all semi-algebraic sets. It follows
from the Tarski-Seidenberg theoremRsa is o-minimal. It is highly non-trivial to prove that
any enlargements are o-minimal.

• Gabrièlov [1968] prove that the structure Ran, which is defined as the smallest
structure containing all subanalytic functions is definable. Recall that a subanalytic
function is a function f : T ! R where T � Rn is a compact ball such that f
extends to an analytic function on an open neighbourhood of T .

• Building on work of Khovanskiĭ [1991], Wilkie [1996] proved that the structure
Rexp , which is defined as the smallest structure containing the graph of the real
exponential function2, is o-minimal.

• The strucure Ran;exp is defined to be the smallest structure containing Ran and
Rexp , and the o-minimality of this structure was shown by van den Dries andMiller

2 The complex exponential function has countable pre-images, and so cannot be o-minimal.
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[1994b]. Note that the structure generated by two o-minimal structures need not be
o-minimal Rolin, Speissegger, and Wilkie [2003], so this is by no means a trivial
theorem. The structure Ran;exp turns out to be large enough to encompass most
functions that are needed for arithmetic applications, and so this is the structure we
will ultimately work in.

3.3 Counting Rational Points in Definable Sets. One very common and useful heuris-
tic in number theory is that sets contain “few” integer/rational points unless they have
some kind of “reason” for doing so. As such, one would expect that Transcendental sub-
varieties contain few such points. However, one must be careful to avoid dealing with
sets that are too unwieldy. For example, the graph of the function sin(�x) contains every
integer point of the x-axis, and is quite transcendental. It turns out that for o-minimal sets
such a thing can’t happen, as was shown by Bombieri and Pila [1989]. To state their
theorem, let us define the height of a rational number x = a/b with gcd(a; b) = 1

to be H (x) = max(jaj; jbj) and the height of a rational point x = (x1; : : : ; xn) to be
H (x) = maxi (H (xi )). For a subset Z � Rn we define the counting function of Z by

N (Z; T ) := #fx 2 Z \ Qn
j H (x) � T g:

Theorem 3.1. Bombieri and Pila [ibid.] Let Z � R2 be a compact real-analytic tran-
scendental curve. Then

N (Z; T ) = T o(1):

In other words, the number of points on Z grows subpolynomially.

The proof of the above theorem uses the determinant method, whereby one uses the ra-
tional points to form a determinant that has a lower bound stemming from arithmetic, and
an upper bound stemming from geometry. One would like to generalize the above theorem
to higher dimensions, but some care is required stemming from the fact that a transcen-
dental surface could easily contain an algebraic curve, or even a line, and thus contain lots
of rational points. As such, we define Zalg to be the union of all semi-algebraic curves
contained in Z. Then Pila and Wilkie [2006] prove the following higher dimensional
generalization:

Theorem 3.2. Pila and Wilkie [ibid.]
Let Z � Rn be definable in an o-minimal structure. Then

N (Z �Zalg ; T ) = T o(1):

In other words, the number of points on Z �Zalg grows subpolynomially.
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One may obtain the same quality bound for counting not only rational points, but al-
gebraic points of a bounded degree over Q. The proof of the above theorem proceeds
roughly as follows: One applies the determinant method to show that the rational points
inZ lie in the intersectionsZ\V ofZ with “few” hypersurfaces V of small degree. One
then wishes to apply the theorem inductively on dimension. The key to doing this is a
parametrization theorem which means that the intersections Z \ V can be parametrized
by finitely many maps with uniformly bounded derivatives as V varies in the family of all
hypersurfaces of a given degree. This is where the o-minimality is crucial to the argument.

3.4 Tame complex geometry. We first say a word about extending the notion of de-
finability to sets that aren’t subsets of Rn. First, if Z is a subset of Cn one may use the
identification Cn Š R2n to talk about the definability ofZ. Moreover, we may talk about
definable manifolds, by insisting on finite open covers that have an isomorphism onto a
definable subset of Rm such that the transition maps are definable. In particular, this gives
every complex algebraic variety the structure of a definable (in any structure) manifold by
taking a finite affine open cover,.

Peterzil and Starchenko have a series of works Peterzil and Starchenko [2010] where
they develop complex geometry in an o-minimal setting3 where they prove tameness of
complex analytic sets that are definable in an o-minimal setting. One particularly robust
and applicable result to the arithmetic setting is the following version of Chows theorem,
which works for any algebraic variety, not just proper varieties!

Theorem 3.3. Peterzil and Starchenko [ibid.] Let V be a complex algebraic variety, and
S � V be a closed, complex-analytic subset, which is definable in an o-minimal structure.
Then S is an algebraic subvariety of V .

Note that complex analytic, closed subvarieties of proper algebraic varieties are defin-
able in Rsa, so Theorem 3.3 has the usual Chow theorem as an immediate consequence.
Note that the above theorem is not stated in the above form in Peterzil and Starchenko
[ibid.], but is easily deducible from those results. The deduction is spelled out in a few
places, for example in Mok, Pila, and Tsimerman [2017].

3.5 Fundamental Domains and Definability of Uniformization Maps. In §1, we in-
troduced the setting where we have transcendental Uniformization maps � : D ! S ,
where S;D are open subsets of complex algebraic varieties. One may hope for the maps
� to be definable in Ran;exp with respect to the natural definable structure onD;S . How-
ever, the inverse images of points under these maps � are countable, discrete sets, and

3In fact, they in the more general setting of a totally-ordered field instead of R
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therefore cannot be definable in any o-minimal structure! Instead, what one does is re-
strict to a fundamental domain F � D. That is, one looks for a definable subset F such
that � j F is an isomorphism onto S , and then asks whether that isomorphism is definable.
Note that this is dependant on the fundamentalddomain that one chooses. Below we give
some relevant examples:

• In the case of the exponential function � : Cn ! C�n, we use the fundamental
domain

F = f(z1; : : : ; zn);=(zi ) 2 [0; 2� ]g:

In the real coordinates z = x + iy the function ez becomes ex cos(y) + iex sin(y).
Now since we are restricting y to be in a bounded interval, cosy; siny restricted to
this interval are definable in Ran and thus � j F is definable in Ran;exp .

• In the case of an abelian variety, or indeed any case where S is compact, one may
take for F any bounded fundamental domain, and � j F will be definable in Ran.

• In the case of the j -function, j : H ! C, we may use the usual fundamental
domain given by F = fz 2 H;Re(z) 2 [�1/2; 1/2); jzj � 1g, and use the Laureny
expansion of j in terms of e2�iz to see that j j F is definable in Ran;exp .

• In the more general case of a Shimura variety � : D ! S , where D Š G(R)/K

and S = D/G(Z), one may use the Iwasawa decomposition G = NAK to make a
Siegel set forG(R), and translate that to a fundamental domain F . It is substantially
more difficult to show that � j F is definable in Ran;exp . It was done for the mod-
uli space Ag of principally polarized abelian varieties by Peterzil and Starchenko
[2013] and in general by Klingler, Ullmo, and Yafaev [2016]. This result was gen-
eralized to the Mixed Shimura case by Gao [2017].

• As mentioned before, the case � : D ! X where D is a period domain and X
parametrizes hodge structures of given hodge numbers is more difficult. Since X
does not typically admit any algebraic structure it does come equipped with a de-
finable structure either. Nevertheless, one may use any definable fundamental do-
main F endow X with a definable Ran;exp-structure. However, if we proceed with
this setup, one wants the following natural property to be satisfied: Given a varia-
tion of hodge structures over an algebraic base B , one would like the period map
 : B ! X to be definable with respect to this structure. In forthcoming work of
the author with Bakker, it is shown that if one uses a definable fundamental domain
F coming from a Siegel set, then the period maps are indeed definable.
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4 Proofs of Functional Transcendence results

We attempt in this section to give a brief idea of how these results are proven. We first
describe the proof of Theorem 2.5.

4.1 Ax-Lindemann Theorems. We restrict ourselves for expository purposes to the
setting of a torus, and briefly explain how to adapt the methods to the setting of a Shimura
variety. So suppose that � : Cn ! C�n is the exponential map, and let V � Cn;W �

C�n be algebraic varieties such that�(V ) � W . We pick our usual definable fundamental
domain F , and we let W 0 = (� j F )�1(W ). Crucially for us W 0 is definable. The key
idea of the proof lies in considering the following set:

I = ft 2 Cn
j (V + t) \ F � W 0:

It is easy to see that I is definable in Ran;exp . Moreover, since ��1(W ) is invariant
under the monodromy group Zn, it follows that I contains all those elements t 2 Zn such
that the V intersects F � t . There must be polynomially many of these elements (in fact,
at least linearly many) and thus, by the Counting Theorem 3.2 we can conclude that I
contains semialgebraic curves. It follows that there is a complex algebraic curve C such
that V + c � W 0 for all c 2 C .

Now we may try to replace V by V \V +C and use an induction argument on dimV �

dimW . This will work unless V is invariant under C . If this is the case for all curves C ,
it would imply that the intersection of V with F + t all ‘look the same’, or in other words
that �(V ) = �(V \ F ). But this implies that �(V ) is definable in Ran;exp , and thus by
the definable chows Theorem 3.3, we see that �(V ) is algebraic. The proof now follows
from momodromy arguments.

To generalize the above to the context of Shimura varieties, one encounters two diffi-
culties:

• One needs an additional argument to show that there are many elements g 2 G(Z)

sich that V intersects g � F . In the general case, one now uses a hyperbolic volume
argument due to Hwang and To [2002], that says that in hyperbolic balls of radius
r , the volume of a complex analytic ball must grow at least exponentially in r . By
contrast, one can show using definability and siegel set arguments that the volume
in any fundamental domain is bounded by a constant. Thus, any curve must pass
through at least cr fundamental domains of distance r away, and then one relates
the distance of a fundamental domain g � F to the height of g.

• Additional care must be taken due to the non-abelian nature of the groups involved.
This is indeed a difficulty, but by setting things up correctly the argument goes
through.
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4.1.1 Ax-Schanuel. One may use a similar setup to the above, but now we only know
that dim(V \W 0) > dimV + dimW 0 � n. Nontheless, we may still define

I = ft 2 Cn
j dim ((V + t) \ F \W 0) = dim(V \W 0)

and conclude that I contains many points. In fact, in this setting the argument can pushed
through (see Tsimerman [2015]). However, in the Shimura setting, due to the extremely
non-abelian nature of the groups involved and the fact that V \ ��1(W ) is not algebraic
either inD, not once its pushedforward toX , the argument seems difficult to push through.
However, there is a brilliant idea ofMok [n.d.] 4 which provides a great help in this context.

Mok realizes that by working in W , one can formulate the condition of the existence
of V algebraically through a differential equation, even though the map � is extremely
transcendental! This means that for a givenW , if one V exists giving an excessively large
dimension, then there must be a whole family of such V . With this extra freedom in hand
to vary V , the argument goes through.

5 Arithmetic applications

We will discuss some problems that typically fall under the ”atypical intersection” um-
brella.

5.1 Langs conjecture. Consider again the setting of the torus X = C�n. The torsion
points - points whose co-ordinates are all roots of unity - are distinguished algebraic points
in X , and it is natural to ask which algebraic subvarieties contain infinitely many torsion
points. In fact, it turns out to be a better (and essentially equivalent question) to ask which
irreducible subvarieties contain a Zariski-dense set of torsion points. It is clear that subtori
do, and in fact so do coset of a subtorus by a torsion point. The converse was conjectured
by Lang [1966] and proven by Raynaud [1983a,b]:

Theorem 5.1. Let V � C�n be an irreducible subvariety containing a Zariski dense set
of torsion points. Then V is a coset of a subtorus of C�n by a torsion point.

Recall that we defined the weakly special subvarieties to be cosets of subtori ofX . The
reason we used that strange terminology, is that we say that a special subvariety of X is
translate of a torus by a torsion point. The above theorem is easily seen to be equivalent to
the following statement: The Zariski closure of an arbitrary union of special subvarieties
is a finite union of special subvarieties.

4In fact, Mok uses this idea in Mok [n.d.] to prove the Ax-Lindemann conjecture for all rank-1 quotients of
hyperbolic space, even non-arithmetic ones!
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The statement of Lang’s conjecture can be generalized to the setting of abelian varieties
almost verbatim, where we replace the word ”subtorus” by ”algebraic subgroup”. The
resulting conjecture is known as the Manin-Mumford conjecture, and was first proven by
Raynaud [1983a,b]. Below we will give a proof of Lang’s conjecture using the ideas we
have developed in the previous section with o-minimality and functional transcendence,
following Pila and Zannier [2008].

5.2 André-Oort conjecture. Let S be a shimura variety, and � : D ! S be its cover-
ing by the corresponding symmetric space. There is a natural Q structure on the variety
S , and there are distingiushed Q points on S called CM points. We call V � S a spe-
cial subvariety if V is a weakly special subvariety which contains at least one CM point,
which will inn fact force V to contain a Zariski-dense set of CM points. If S = Y (1)

is the moduli space of elliptic curves, then the CM points correspond to those complex
elliptic curves E with extra endomorphisms, so that Z ¨ End(E). More generally, if
S = Ag is the moduli space of principally polarized abelian varieties of dimension g,
than the CM points correspond to those Abelian varieties A such that the endomorphism
algebras End(A)˝ Q contain a field of degree 2g over Q. This can be intuitively thought
of as saying that A has “as many symmetries as possible”. Note that it is not immediately
obvious that such abelian varieties are even defined over Q!

The André-Oort conjecture is the natural generalization of Lang’s conjecture to this
setting:

Conjecture 5.1. Let V � S be an irreducible subvariety containing a Zariski dense set
of torsion points. Then V is a special subvariety.

There has been much work on the AO conjecture. It was first proven unconditionally
for Y (1)2 by André, and later proven in generality but conditionally on the generalized
Riemann hypothesis in Ullmo and Yafaev [2014], building on an idea of Edixhoven [2005]
who handle the case of Y (1)2 conditionally. Later, Pila adapted his method with Zannier
to prove the AO conjecture unconditionally for Y (1)n, and it was recently proven for Ag .
The general case remains open

5.3 Crucial Ingredient: Galois Orbits.

5.3.1 Tori. A crucial ingredient in the Pila-Zannier approach to the special point prob-
lems that we have discussed is the ability to prove lower bounds for Galois orbits of special
points. In the setting of Lang’s conjecture, the special points are simply torsion points of
the torus, so in this setting the relevant galois action is the action of Gal(Q/Q) on the
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roots of unity. By Class field theory for Q, we know that this action is transitive on points
of exact order n for each n, so we know precisely how large the Galois orbits are.

5.3.2 Abelian Varieties. In the setting of an Abelian varietyA over Q, it is much more
difficult to get a handle on the action on the torsion points of A. Given a point P of
order n, the lower bound that one needs is [Q(P ) : Q] � nı for some positive integer
ı > 0. There are a few was to proceed here. The Galois action on torsion points of A
gives rise to a morphism �A : Gal(Q/Q) ! Gsp2d (bZ) where d = dimA, and the action
on torsion points can be read off easily from this action. It is conjectured that the image is
open in the bZ points of the Mumford-Tate group. While this is still open, it follows from
work of Serre that that the image contains a power of the center, (bZ�)m, for some positive
integer m. This immediately implies that the orbit of any torsion point is of size at least
j(Z/nZ)�mj � n1�o(1), which is sufficient.

There is also an analytic approach by D. W. Masser [1977] which yields this result in
a form more suitable for studying families of Abelian varieties.

5.3.3 Shimura Varieties. In the setting where X is a Shimura variety and p 2 X is
a CM point, one may use the theory of complex multiplication developed by Shimura,
Taniyama, and others to relate the size of the Galois orbit of p to class groups of number
fields. For example, if X = X(1) and p corresponds to an elliptic curve Ep with endo-
morphism ring the ring of integers in K = Q(

p
D) then the size of the Galois orbit of p

is equal to the class number ofK, which is asymptotic to jDj
1
2+o(1). In general, there are

two naturally associated tori S; T over Q such that the size of the Galois orbit of p is the
image of the class group of S in the class group of T . Class groups of Tori can be defined
naturally just as for number fields (see Shyr [1977]) and the sizes of the class groups satisfy
an asymptotic Brauer-Siegel formula which gives us very precise control. However, the
challenge comes from the fact that these isogenies can kill torsion of low order, and it is
very difficult to obtain unconditional upper bounds on low-order torsion in class groups of
number fields. In particular, it is a conjecture that for a number fieldK of discriminantD,
fixed degree n over Q, and a positive integer m that jCL(K)[m]j = jDjo(1), and yet one
cannot in most cases even beat the trivial bound jDj

1
2+o(1) given by Brauer-Siegel! For

results in this direction see Bhargava, Shankar, Taniguchi, Thorne, Tsimerman, and Zhao
[2017], Ellenberg and Venkatesh [2007]. However, we cannot even show that the class
group of imaginary quadratic fields are not all mostly 5-torsion! If one assumes GRHOne
can show something in this direction by using GRH to produce small split primes, and this
is the primary reason that André-Oort is only known unconditionally under GRH. Never-
theless, one may push these methods to prove AO unconditionally for Ag for g � 6. See
Tsimerman [2012],Ullmo and Yafaev [2015].
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5.3.4 The case of Ag . The required lower bounds were recently established for X =

Ag using methods different from the above in Tsimerman [2018]. As a corollary, one
derives the following result (which seems to be of the same level of difficulty), which was
not preivously known:

Theorem 5.2. For each positive integer g, there are finitely many CM points in Ag(Q).

We briefly describe the proof. Let x be a CM point in Ag . Then x occurs in a finite
collection C of those CM points with the same endomorphism ring and CM type as x. In
the case of elliptic curves g = 1 the set C is a single Galois orbit, but for larger g that
is not usually the case. Moreover, the set C is acted on by the Galois group Gal(Q/Q)

and the orbits all have the same size. So if x is defined over Q, then all the points in C
are defined over Q. Moreover, all the points in C are isogenous. Now one uses a famous
theorem of D. Masser and Wüstholz [1993]:

Theorem 5.3. Let A;B be isogenous abelian varieties over some number field K. Then
the degree of the smallest isogeny N between them satisfies N � max(h(A); [K : Q])cg

where h(A) denotes the Faltings height of A, and cg > 0 is a positive constant depending
only on g.

In other words, if two abelian varieties are isogenous, then there must exist an isogeny
between themwhose degree is not too large. Applying the above theorem to any two points
in C and using our assumption that all the points in C are defined over Q, it follows that
they all have isogenies between them of degree at most h(A)cg . However, there are only
polynomially many isogenies of degree N that one can take, so if h(A) is sufficiently
small one obtains a contradiction.

Now, in general heights of abelian varieties can be quite hard to get a handle on. How-
ever, for CM abelian varieties A, Colmez [1993] has a beautiful conjecture computing the
Faltings height of A in terms of certain L-values at 1 of Artin representations. This con-
jecture combined with standard estimates on L functions implies the desired upper bound
on h(A). While the Colmez conjecture is still open in general, it was recently proven in-
dependently in Andreatta, Goren, Howard, and Madapusi Pera [2018], Yuan and Zhang
[2018] that if one averages over a finite family of CM types, the Colmez conjecture is
true. This finite average has minimal effect from an analytic standpoint, so is enough to
complete the proof.

5.4 Proof of the André-oort conjecture. Once one has the required Galois orbit lower
bounds and Functional Transcendence results at ones disposal, the proofs of the André-
Oort conjecture and the Lang conjecture proceed among essentially identical lines, so we
give them both at once using the language of special varieties. So suppose that� : D ! X
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is our covering map, V � X is an algebraic variety and V contains a Zariski-dense set of
special points. It follows that V is defined over Q, and thus over a number field. For sim-
plicity of exposition we assume that V is defined over Q, though this minimally affects
the proof. Let xi be a sequence of CM points which is Zariski-dense in V . Let F � D

be a standard fundamental domain, and consider the pre-images yi of the xi under � j F .
It turns out that the yi are all defined over number fields of bounded degree over Q. For
example, in the case of Lang’s conjecture, the pre-image under z ! e2�iz of the torsion
points the rational numbers , and if one restricts to a suitable fundamental domain one
obtains the rational numbers between 0 and 1. Moreover, the Galois lower bounds imply
that the heights of these numbers satsify H (yi ) � jGal(Q/Q)xi j

ı for some fixed posi-
tive constant ı. Since V contains all of Gal(Q/Q)xi , it follows that the pe-imageW of V
under � contains a lot of rational points. By the Counting Theorem 3.2 it follows that W
must contain algebraic subvarieties containing all but finitely many of these special points.
By Theorem 2.5 and its generalizations, it follows that these algebraic subvarieties must
be pre-images of special varieties contained in V . We’ve thus succeeded in showing that
all but finitely many special points in V are contained in higher dimensional special sub-
varieties. At this point, an induction argument using to finish the proof. We don’t give the
argument since it requires some deeper analysis using definability in o-minimal structures,
and instead refer the interested reader to Pila and Zannier [2008] and Tsimerman [2015].

5.5 The Zilber-Pink Conjecture. Let us return to the setting of a Torus, and consider
a proper subvariety V � C�n. For any special subvariety (coset of a subtorus by a torsion
point)T , naive dimension theory suggests that the dimension ofV \T is dimV+dimT�n.
Thus, whenever dim(V \ T ) + dimn > dimV + dimT we call V \ T an unlikely
intersection for V . Notice that if T is a point, then V only intersects T if V contains T ,
in which case the intersection will be unlikely. Thus this concept generalizes the special
point problems studied above. Of course, unlikely intersections can be easily constructed.
For example, one may take V to be a subvariety of a subtorus. Then all of V is an unlikely
intersection for V ! More subtly, one may take any codimension � 2 special variety T ,
take a codimension 1 subvariety U � T and then arbitrarily take V to be another variety
containing U as a divisor. However, one has the following conjecture, made by Bombieri-
Masser-Zannier:

Conjecture 5.2. Bombieri, D. Masser, and Zannier [1999] and Zilber [2002]
Let V � C�n be a proper subvariety. Then there are finitely many unlikely intersec-

tions for V which are maximal under inclusion.

Onemay of course easily generalize to the setting of abelian varieties or (mixed) Shimura
varieties, and it is in this general setting that the Zilber-Pink conjecture occurs. One may
generalize the Pila-Zannier method to this setting, but this conjecture is substantially more
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difficult than the corresponding one for special point problems. For one thing, the re-
quired functional transcendence input is the Ax-Schanuel Theorem rather then the easier
Ax-Lindemann theorem. However, this has been established in (essentially) complete gen-
erality so is no longer an obstruction. However, the lower bounds for Galois orbits that
are required seem completely out of reach in general. In the André-Oort conjecture, we
are interested in lower bounds of CM points, for which we have all the understanding pro-
vided by the theory of complex multiplication, and even here the problem is not solved.
For the Zilber-Pink conjecture, one must understand Galois orbits of V \ T , and these
have no discernible special structure.

Nonetheless, there are impressive partial results. In the setting of a Torus, the result is
known if V is a curve by Bombieri, D. Masser, and Zannier [1999]. In the shimura variety
setting, It is proven by Habegger-Pila that if C � Y (1)n is a curve where the degrees of
the n projections C ! Y (1) are all different, then the Zilber-Pink conjecture holds. Their
proof uses the Masswer-Wüstholz theorem in a very clever way to get prove the required
Galois lower bounds. This result was recently partially generalized to certain curves in
Ag by Orr [2017].

5.6 Results on integral points. In recent, as of yet unpublishedwork, Lawrence-Venkatesh
have come up with a new method by which to use transcendence results to prove power-
ful finiteness results concerning integer points on Varieties. There are sometimes called
Shafarevich-type theorems after Shafarevich’s theorem that there do not exist elliptic curves
over SpecZ. Briefly, their idea is as follows. Consider a smooth, projective family
Y ! B over some algebraic variety B/Q, such that some fibral cohomology group
Hn(Yb;C) is non-zero and the corresponding period map  : B ! X = D/Γ is not con-
stant. Then one may use global results on Faltings to show that the Galois representations
�b : Gal(Q/Q) ! Hn(Yb;Qp) occur in finitely many isomorphism classes, as b varies
over the integer points B(Z). The reason one requires integer rather than rational points
is so that one may control how many primes of bad reduction �b has. Now consider a
“p-adic lift” of  , which looks like  ̃ : B(Qp) ! D(Qp).By results of p-adic hodge the-
ory, the finiteness of Galois representations of the �b implies that  ̃(B(Z)) is contained
in an algebraic subvarietyH ofD. Now if B(Z) is infinite, or Zariski-dense, one obtains
a p-adic violation of a version of the Ax-Schanuel Theorem 2.4. In fact, this last part is
not a complication, since one may formally deduce the p-adic Ax-Schanuel theorem from
the complex version proven in Bakker and Tsimerman [2017]

Of course, we are skirting a myriad of complexities, but they can already prove the
Mordell conjecture5 using their methods - for which they do not require the Ax-Schanuel
theorem, so it seems quite possible that this method has the potential to prove much more.

5 The paper in its current form only handles certain cases, but they now claim the full result
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Abstract

In this talk we will speak about recent progress on the sphere packing problem.
The packing problem can be formulated for a wide class of metric spaces equipped
with a measure. An interesting feature of this optimization problem is that a slight
change of parameters (such as the dimension of the space or radius of the spheres) can
dramatically change the properties of optimal configurations. We will focus on those
cases when the solution of the packing problem is particularly simple. Namely, we say
that a packing problem is sharp if its density attains the so-called linear programming
bound. Several such configurations have been known for a long time and we have
recently proved that the E8 lattice sphere packing in R8 and the Leech lattice packing
in R24 are sharp. Moreover, we will discuss common unusual properties of shared by
such configurations and outline possible applications to Fourier analysis.

1 Introduction

The classical sphere packing problem asks for the densest possible configuration of non-
overlapping equal balls in the three dimensional Euclidean space. This natural and even
naive question remained open for several centuries and has driven a lot of research in
geometry, combinatorics and optimization. The complete proof of the sphere packing
problem was given by T. Hales in 1998 Hales [2005].

A similar question can be asked for Euclidean spaces of dimensions other then three
or for spaces with other geometries, such as a sphere, a projective space, or the Hamming
space. The packing problem is not only an exciting mathematical puzzle, it also plays
a role in computer science and signal processing as a mathematical model of the error
correcting codes.

In this paper we will focus on the upper bounds for the sphere packing densities. There
exist different methods for proving such bounds. One conceptually simple and still rather
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powerful approach is the linear programming. We are particularly interested in those pack-
ing problems, which can be completely solved by this method. We will call such arrange-
ments of balls the sharp packings.

The sharp packings have many interesting properties. In particular, the distribution of
pairwise distances between the centers of sharply packed spheres gives rise to summa-
tion and interpolation formulas. In the last section of this paper we will discuss a new
interpolation formula for the Schwartz functions on the real line.

2 Linear programming bounds for sphere packings in metric spaces

Let (M; dist) be a metric space equipped with a measure �. For x 2 M and r > 0 we
denote by B(x; r) the open ball with center x and radius r . Let X be a discrete subset of
M such that dist(x; y) � 2r for any distinct x; y 2 X . Then the set P := [x2X B(x; r)

is a sphere packing in M . We define the density of P as

∆P := sup
x02M

lim sup
R!1

�(P \ B(x0; R))

�(B(x0; R))
:

Our goal is to search for densest possible configurations and to prove upper bounds on the
packing density.

The linear programming is a powerful and simple method to prove upper bounds for
the packing problems. This technique was successfully applied to obtain upper bounds
in a wide range of discrete optimization problems such as error-correcting codes Delsarte
[1972], equal weight quadrature formulasDelsarte, Goethals, and Seidel [1977], and spher-
ical codes Kabatiansky and Levenshtein [1978] and Pfender and Ziegler [2004]. In this
section we explain the idea behind this method, consider several examples, and discuss
the limitations of this approach.

The essence of the linear programming method is the replacement of a complicated
geometrical optimization problem by a simpler convex optimization problem.

We say that a function g : R�0 ! R is geometrically positive (with respect to a metric
space M ) if X

x;y2Y

g(dist(x; y)) � 0

for all finite subsets Y � M .
We can obtain an upper bound for the packing density by solving the following convex

optimization problem. For simplicity we assume that M is compact.

Lemma 2.1. Fix r > 0. Let gr : R�0 ! R be a function and c0 be a positive constant
such that
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(i) gr � c0 is geometrically positive
(ii) gr(t) � 0 for all t 2 [2r; 1). Then any packing of balls of radius r in M has
cardinality at most

gr(0)

c0
:

Proof. Let X � M be a subset such that dist(x; y) � 2r for any pair of distinct points
x; y 2 X . Then condition (i) impliesX

x;y2X

gr(dist(x; y)) =
X

x;y2X

(gr(dist(x; y)) � c0) + jX j
2 c0 � jX j

2 c0:

On the other hand, by condition (ii)X
x;y2X

gr(dist(x; y)) = jX j gr(0) +
X

x;y2X
x¤y

gr(dist(x; y)) � jX j gr(0):

Hence, we arrive at

jX j �
gr(0)

c0
:

Unfortunately, the description of the cone of geometrically positive functions is usually
a very difficult problem. Therefore, we will consider a smaller cone, the cone of so-called
positive-definite functions. A function p : R�0 ! R is positive definite (with respect to
a metric space M ) if X

x;y2Y

wx wy p(dist(x; y)) � 0

for all finite subsets Y � M and all collections of real weights fwygy2Y . For metric
spaces M with a big isometry group the cone of positive definite functions has a simple
description in terms of representation theory.

Theorem 2.2. (Bocher 1941) Let G be a topological group acting continuously on a
topological space M . For every G-invariant positive-definite kernel p : M � M ! C,
there exists a unitary representation V of G and a continuous, G-equivariant map � :

M ! V such that p(x; y) = h�(x); �(y)i for all x; y 2 M .

For example, the following theorem characterizes positive definite functions on the
standard sphere Sd�1 = fx 2 Rd j kxk2 = 1g. Let P d

k
(t) denote the degree k ultras-

pherical (i.e. Gegenbauer) polynomial, normalized with P d
k
(1) = 1. These polynomials

are orthogonal with respect to the measure (1 � t2)(d�3)/2 dt on [�1; 1].
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Theorem 2.3. (Schoenberg [1942]) A function g : [0; 2] ! R is positive definite with
respect to the sphere Sd�1 if and only if

g(s) =

1X
k=0

ckP d
k (1 �

1

2
s2)

where ck � 0.

H. Cohn and N. Elkies have applied the linear programming technique to the sphere
packing problem in Euclidean space Cohn and Elkies [2003]. This problem is rather subtle
since the Euclidean space in non-compact and the Lebesgue measure of the whole space
is not finite.

Let us setup some notations in order to formulate the main result of Cohn and Elkies
[ibid.]. The Fourier transform of an L1 function f : Rd ! C is defined as

F (f )(y) = bf (y) :=

Z
Rd

f (x) e�2�ix�y dx; y 2 Rd

where x � y = 1
2
kxk2 + 1

2
kyk2 �

1
2
kx � yk2 is the standard scalar product in Rd . A

C 1 function f : Rd ! C is called a Schwartz function if it tends to zero as kxk ! 1

faster then any inverse power of kxk, and the same holds for all partial derivatives of f .
The set of all Schwartz functions is called the Schwartz space. The Fourier transform is
an automorphism of this space. We will also need the following wider class of functions.
We say that a function f : Rd ! C is admissible if there is a constant ı > 0 such that
jf (x)j and jbf (x)j are bounded above by a constant times (1 + jxj)�d�ı . The following
theorem is the key result of Cohn and Elkies [ibid.]:

Theorem 2.4 (Cohn and Elkies [ibid.]). Suppose that f : Rd ! R is an admissible
function, r0 2 R>0 and they satisfy:

(2-1) f (x) � 0 for kxk � r0;

(2-2) bf (x) � 0 for all x 2 Rd

and

(2-3) f (0) = bf (0) = 1:

Then the density of d -dimensional sphere packings is bounded above by

�
d
2 rd

0

2d Γ(d
2
+ 1)

=
f (0)bf (0)

� VolBd (0;
r0

2
):
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log∆d

d
1 4 8 12 16 20 24 28 32 36

-5

-10 Cohn-Elkies upper bound
The best known density

Figure 1: Upper and lower bounds for∆d

The sphere packing constant ∆d is the supremum of all densities of sphere packings
in Rd .

Cohn and Elkies have numerically applied Theorem 2.4 to the sphere packing constant
in dimensions from 1 to 36. The numerical results obtained in Cohn and Elkies [ibid.] are
illustrated in Figure 1. The red line represents an upper bound obtained from Theorem 2.4
and the blue line shows the density of the best known configuration in each dimension.

3 Sharp linear programming bounds

A natural question is whether the linear programming bounds can be sharp. As we have
relaxed our original optimization problem, we do not expect sharp bounds in general.
However, we know several examples when the linear programming technique provides
a complete solution to the optimization problem.

A beautiful example is the computation of the kissing number in dimensions 8 and 24.
We recall, that the kissing number K(d ) is the maximal number of “blue” spheres that can
touch a “red” sphere of the same size in d -dimensional Euclidean space. It was proven
by Odlyzko and Sloane [1979] and independently by Levenshtein [1979] that K(8) =

240 and K(24) = 196560. The proof of this result is based on the linear programming
method. Let us consider the kissing problem in dimension 8 in more detail. The kissing
configuration can be described as follows. Consider 112 vectors of type (06; ˙22) that
is, with 2 non-zero coordinates, which are ˙2 and 128 vectors of type (˙18) with an
even number of positive components. All the 122 + 128 = 240 vectors have length
2
p
2. The minimum distance between these vectors also equals 2

p
2. Therefore, they

form a kissing configuration. The only missing step is a construction of a suitable positive
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definite function p8. Consider the following polynomial on [�1; 1]:

p8(t) := (t + 1)2 (t +
1

2
)2 t2 (t �

1

2
):

The coefficients ck of the expansion ofp8 in Gegenbauer polynomials are all non-negative
and p8(1)/c0 = 240.

The dimensions 8 and 24 are also special for the sphere packing problem in the Eu-
clidean space. On the Figure 1 we can see that the blue line representing a lower bound on
the sphere packing constant and the red line representing Cohn-Elkies bound come very
close together at the dimensions 8 and 24. In Cohn and Elkies [2003] Cohn and Elkies
proved the following estimates

Theorem 3.1 (Cohn and Elkies [ibid.]). We have

∆8 � 1:00016∆E8
;

∆24 � 1:019∆Λ24
:

Here∆E8
denotes the density of theE8-lattice packing inR8 and∆Λ24

denotes the density
of the Leech lattice packing in R24.

It is proven in M. S. Viazovska [2017] and Cohn, Kumar, Miller, Radchenko, and M.
Viazovska [2017] that the Cohn-Elkies linear programming bounds are indeed sharp in
these dimensions. The sphere packing problem in dimensions 8 and 24 will be discussed
in more detail in the next section.

At the end of this section, we would like to mention several packing problems for which
the numerical linear programming bounds are extremely close to the known lower bounds,
however the question whether these bounds are sharp is still open. The first example, is
the packing of equal disks in dimension 2. The packing problem itself has been solved
long time ago Thue [1910], Fejes [1943] by a geometric method. The numerical results
of Cohn and Elkies [2003] suggest that the linear programming bound is also sharp in this
case, however the exact solution is not known yet.

There is a numerical evidence that the packing problem can be solved by linear pro-
gramming also for other convex center symmetric bodies in R2. H. Cohn and G. Minton
have numerically studied the packings with translates 2-dimensional of Lp-balls using
linear programming bounds proven in Cohn and Elkies [ibid., Theorem B.1]. Recall, that
for p > 0 a p-ball in Rd is the set of points x = (x1; : : : ; xd ) such that

jx1j
p + : : : + jxd j

p
� 1:

Cohn and Minton conjecture that the resulting bounds are sharp. Thanks to a theorem
proven by L. Fejes Tóth we know that the optimal packing of congruent convex center
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symmetric bodies in R2 is always a lattice packing. An open question is whether this
result can be proven by linear programming.

Finally, interesting numerical results has been obtained for translative packings of Lp-
balls in R3. On Figure 2 we plot the upper and lower bounds for such packings computed
in Dostert [2017]. We know that the classical sphere packing problem in dimension 3 can
not be solved by linear programming. However, for Lp-balls with parameter p in the
interval (1:2; 1:4) the lower and upper bounds come extremely close. So there is a hope
that these bounds are sharp for some values of p.

4 The sphere packing problem in dimensions 8 and 24

In this section we will consider the sphere packing problem in the Euclidean spaces of
dimensions 8 and 24.

It the 8-dimensional Euclidean space there exists a highly structured configuration –
the E8 lattice, which we have already mentioned in Section 3. The E8-lattice Λ8 � R8 is
given by

Λ8 = f(xi ) 2 Z8
[ (Z + 1

2
)8j

P8
i=1 xi � 0 (mod 2)g:

Λ8 is the unique even, unimodular lattice of rank 8. The minimal distance between two
points in Λ8 is

p
2. The E8-lattice sphere packing is the packing of unit balls with centers

at
p
2Λ8:

The following theorem implies that the optimality of the E8-lattice sphere packing can
be proven by the Cohn-Elkies method.

Theorem 4.1. (M. S. Viazovska [2017]) There exists a radial Schwartz function fE8
:

R8 ! R which satisfies:

fE8
(x) � 0 for kxk �

p
2bf E8

(x) � 0 for all x 2 R8

fE8
(0) = bf E8

(0) = 1:

An immediate corollary of Theorems 2.4 and 4.1.

Theorem 4.2. No packing of unit balls in Euclidean space R8 has density greater than
that of the E8 lattice packing. Therefore∆8 = �4

384
� 0:25367:

Also in dimension 24 there exists a lattice with unusually tight structure. The Leech
lattice Λ24 is an even, unimodular lattice of rank 24. The minimal distance between two
points in Λ24 is 2, and it is the only even, unimodular lattice of rank 24 with this property.
The Leech lattice sphere packing is the packing of unit balls with centers at Λ24: The



480 MARYNA VIAZOVSKA

Figure 2: Lower and upper bounds for the density of translative packings of p-balls
in R3 computed in Dostert [2017].
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Figure 3: Plot of the functions fE8
andbf E8

optimality of this packing also has been proved by the Cohn-Elkies linear programming
method.

Theorem 4.3. (Cohn, Kumar, Miller, Radchenko, and M. Viazovska [2017]) There exists
a radial Schwartz function fΛ24

: R24 ! R which satisfies:

fΛ24
(x) � 0 for kxk � 2bf Λ24
(x) � 0 for all x 2 R24

fΛ24
(0) = bf Λ24

(0) = 1:

This result immediately implies

Theorem 4.4. (Cohn, Kumar, Miller, Radchenko, and M. Viazovska [ibid.]) No packing
of unit balls in the Euclidean space R24 has density greater than that of the Leech lattice
packing. Therefore∆24 = �12

12!
� 0:00193:

Remarks:

1. Without loss of generality we may assume that fE8
is radial.

2. By the Poisson summation formula we have

fE8
(0) �

X
`2Λ8

fE8
(`) =

X
`2Λ8

bf E8
(`) � bf E8

(0):

This can happen only if fE8
(
p
2n) = bf E8

(
p
2n) = 0 for all n 2 Z>0.
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5 Fourier interpolation

The idea behind our construction of fE8
and fΛ24

is the hypothesis that a radial Schwartz
function p can be uniquely reconstructed from the values

fp(
p
2n); p0(

p
2n);bp(p2n);bp0(

p
2n)g1

n=0

The proof of this statement is a goal an ongoing project of the author in collaboration with
H. Cohn, A. Kumar, S. D. Miller, and D. Radchenko.

In this section we will present a simpler first degree interpolation formula of this type.

Theorem 5.1. (Radchenko, Viazovska Radchenko and M. Viazovska [2017]) There exists
a collection of Schwartz functions b0; an : R ! R with the property that for any Schwartz
function p : R ! R and any x 2 R we have

p(x) =c0(x)p0(0) +
X
n2Z

an(x)p(sign(n)
p

jnj)(5-1)

+bc0(x)p0(0) +
X
n2Z

ban(x)bp(sign(n)pjnj);

where the right-hand side converges absolutely.

Moreover, we can describe all possible collections of values of a Schwartz function at
the points f˙

p
ng1

n=0.
Denote by s the vector space of all rapidly decaying sequences of real numbers, i.e.,

sequences (xn)n�0 such that for all k > 0 we have nkxn ! 0; n ! 1.
We denote by S the space of Schwartz functions on R. Consider the map Ψ: S !

R2 ˚ s ˚ s given by

Ψ(p) =
�
p0(0);bp0(0); (p(sign(n)

p
jnj))n2Z; (bp(sign(n)pjnj))n2Z

�
:

Theorem 5.2. (Radchenko, Viazovska Radchenko and M. Viazovska [ibid.]) The map Ψ

is an isomorphism between the space of Schwartz functions and the vector space kerL �

R2 ˚ s ˚ s, where L : R2 ˚ s ˚ s ! R2 is the linear map

L : (x0
0; y0

0; (xn)n2Z; (yn)n2Z) 7! X
n2Z

xn2 �
X
n2Z

yn2 ;

2x0
0 +

X
n2Z

sign(n)
r3(jnj) xnp

jnj
� 2iy0

0 �
X
n2Z

i sign(n)
r3(jnj)ynp

jnj

!
:
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Figure 4: Plots of bn(x) := an(x) + an(�x) andbbn for n = 0; 1; 2.

Also Theorem 5.1 allows us to construct an unusual family of discrete measures on the
real line. A cristalline measure on Rd is a tempered distribution � such that � and b� are
both charges with locally finite support. A simplest example of a cristalline measure is
the Dirac comb

�Dirac =
X
n2Z

ın:

Recently, Lev and Olevskii [2015] have proven that crystalline measures with uniformally
discrete support and spectrum (the support of the Fourier transform) can be obtained from
the Dirac comb by dilations, shifts, multiplication on exponentials, and taking linear com-
binations.

Theorem 5.3. (Lev and Olevskii [ibid.]) Let � be a crystalline measure on R with unifor-
mally discrete support and spectrum. Then the support of � is contained in a finite union
of translates of a certain lattice L. Moreover, � is of the form

� =

NX
j=1

Pj

X
�2L+�j

ı�

where �j ; j = 1; : : : ; N are real numbers and Pj ; j = 1; : : : ; N are trigonometric
polynomials.
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The interpolation formula implies that there exists a continuous family of exotic crys-
talline measures

�x := ıx + ı�x �

1X
n=0

bn(x) (ıp
n + ı�

p
n):

Let us briefly explain our strategy for the construction of the interpolating basis an; c0
introduced in Theorem 5.1. We will separately consider the odd and even components of
the Schwartz functions. We set bn(x) = an(x) + an(�x). Then the symmetry implies
bn = b�n.

Let us consider the generating series formed by the functions fbng1
n=0 and their Fourier

transforms. For x 2 R and a complex number � with =(�) > 0 we define

F (x; �) :=

1X
n=0

bn(x) e�in�

eF (x; �) :=

1X
n=0

bbn(x) e�in� :

We will show that these two functions satisfy a functional equation with respect to the
variable � . Indeed, the interpolation formula interpolation formula (5-1) applied to the
Gaussian e�ix2� gives

e�ix2� = F (x; �) +
1

p
�i�

eF (x;
�1

�
):

In Radchenko andM. Viazovska [2017] we solve this functional equation using the theory
of modular integrals. A similar idea also leads to the constuction of functions fE8

and fΛ24

in Theorems 4.1 and 4.3.
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Abstract

We provide an informal discussion of the polynomial method. This is a tool of
general applicability that can be used to exploit the algebraic structure arising in some
problems of arithmetic nature.

1 Introduction

1.1 The polynomial method. This article provides an informal discussion of the poly-
nomial method. For us, this is the idea that when studying a problem with an underlying
algebraic structure, a set S may admit a simpler “characteristic subset” A � S that con-
trols S , in the sense that a polynomial vanishing at A with sufficiently high multiplicity
is forced to vanish at all or most points of S . By using dimension counting arguments in
the spirit of Siegel’s lemma, one may then exploit the simplicity of A to find a polynomial
with suitable characteristics vanishing at most points of S .

This idea has been applied in a wide variety of contexts. Our choice of topics is largely
based on personal taste, but we do try to convey the multitude of areas where it is relevant,
the similarities in how the method is applied in them and some connections that exist
between the different subjects. A variant of the method where the dimension counting
arguments are used to find a polynomial that produces an adequate partition of the given
points, instead of vanishing at them, has proven remarkably useful in recent work and is
also treated in this article. We do not present proofs, but many are discussed. We refer the
reader to Guth [2016c] and Tao [2014] for some further surveys on this circle of ideas.

Part of this article was written while the author was a Clay Research Fellow.
MSC2010: primary 11B30; secondary 52C10, 42B10, 11L07, 14G05, 37A45.
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1.2 Notation. Before we proceed let us summarise the notation that will be used. Given
two quantities X and Y , we will write either X = O(Y ) or X . Y to mean that there
exists some absolute constant C such that the inequality X � C Y holds. If this constant
depends on some other parameter d , we may indicate this using a subscript and write
X = Od (Y ) or X .d Y . If A is a finite set of points, jAj will stand for its cardinality.
We shall write Fq for the finite field with q elements, while the notation F alone is meant
to stand for an arbitrary field. Finally, given a polynomial P 2 F [x1; : : : ; xn], we shall
write Z(P ) = fx 2 Fn : P (x) = 0g for its zero set.

2 Incidence problems

2.1 Incidence geometry and its applications. We shall choose incidence geometry as
our starting point and therefore spend some time motivating this subject. Some of the
questions incidence geometry is concerned with rank among the simplest questions one
can formulate inmathematics, but to define its problems broadlywe consider the following
set-up. Let V be an algebraic variety over a field F , T a finite family of subvarieties of
V and S a finite set of points inside of V . Incidence geometry is then mainly concerned
with how the quantity

I (S; T ) = jf(s; t) 2 S � T : s 2 tgj ;

which counts the number of incidences between S and T , relates to the sizes of S and T .
For example, when the variety V above is equal to Rn and T is just an arbitrary finite

family of lines, we may ask for the maximal number of incidences that can occur between
a set of points and a set of lines. A classical result of Szemerédi and Trotter [1983] gives
in this case the sharp asymptotic bound

I (S; T ) . jS j
2/3

jT j
2/3 + jS j + jT j;

where the implicit constant is uniform among all choices of S and T . If, more generally,
we ask what happens when T is a finite family of algebraic curves of degree at most d ,
then a corresponding bound of the form

I (S; T ) .d jS j
d2+1

2d2+1 jT j
2d2

2d2+1 + jS j + jT j;

was established by Pach and Sharir [1998].
These two results constitute very simple instances of the general context described

before. There is a vast literature dealing with many different cases that may arise, with
T ranging from families of circles to high-dimensional varieties and with F ranging from
a finite field to the complex numbers. While in principle there is no reason why some
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general unifying results could not be established, they certainly seem hard to come by.
Similarly, obtaining sharp asymptotic bounds that avoid extra factors depending on jS j or
jT j tends to be an additional challenge. Even when V = Rn and each element of T is a
hypersurface defined by a single irreducible polynomial of bounded degree this question
is not fully settled.

The simplicity of its questions is arguably one of the things that makes incidence geom-
etry attractive and it is also this simplicity what makes its results find natural applications
in different contexts. To give an example of this, let us discuss a very simple and direct
connection to arithmetic combinatorics. To a finite set of points A in Rn, say, we can
associate the sets

A + A =
˚
a + a0 : a; a0

2 A
	

;

and
A � A =

˚
a � a0 : a; a0

2 A
	

:

It is expected that both sets cannot be small simultaneously Erdős and Szemerédi [1983]
and an estimate of this form was established by Elekes [1997] using incidence geometry.
His idea was to consider the set of all lines of the form y = (x � a)a0, with a; a0 2 A.
Clearly, when x = b+a for some b 2 A, we get that y = a0b 2 A � A. As a consequence,
we see that each of these lines touches jAj points of the grid (A+A)�(A�A). If bothA+A

and A � A were to be small, this would then mean that these lines are highly incident to
each other. So much so in fact, that they would contradict the Szemerédi-Trotter theorem.
Thus we get the desired result.

Incidence bounds in the broader context we have described at the beginning of this
section give rise to more general results concerning the size of

f (A1; : : : ; Am) = ff (a1; : : : ; am) : a1 2 A1; : : : ; am 2 Amg ;

where f is a polynomial and A1; : : : ; Am are finite sets of points (see for example Elekes
and Szabó [2012]). Results of this type can in particular be applied to obtain randomness
extractors, opening the door for incidence geometry to be applied in theoretical computer
science Dvir [2010]. It should also be noted that the above sum-product phenomenon,
as it is known, and the related concept of expansion, are pervasive throughout different
parts of mathematics and have found a number of remarkable applications. See, for exam-
ple, this survey by Helfgott [2015] and Green’s 2014 ICM article Green [2014] for some
discussion.

Sometimes problems can be encapsulated as incidence questions in more subtle ways.
An example is provided by the Erdős distinct distances conjecture Erdős [1946], which
asked for a bound on the minimal number of pairwise distances determined by n distinct
points in the plane. Here Elekes and Sharir [2010] started with the simple observation
that two pairs of points at the same distance determine two segments of the same length
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and so there exists some rigid motion taking one segment to the other. As it happens,
given two points x; y 2 R2, the set of rigid motions that take x to y can essentially be
viewed as a line in R3 under an appropriate parametrisation of most of SE(2) (the special
Euclidean group in two-dimensions). As a consequence, two pairs x1; x2 and y1; y2 at
the same distance correspond to an intersection between the line of motions that send x1

to x2 and the line of motions that send y1 to y2. In paritcular, n points determining few
distances lead to a set of highly incident lines in R3. Continuing this sort of arguments
and exploiting some additional properties of the resulting set of lines, they managed to
reduce Erdős’ conjecture to an incidence question that was subsequently settled by Guth
and Katz [2015].

Finally, the nature of incidence geometry also makes it a good source of toy models for
more difficult problems. One notorious example is given by the following well-known
conjecture in geometric measure theory.

Conjecture 2.1 (Kakeya problem). A set E � Rn containing a unit line segment in every
direction must have Hausdorff dimension equal to n.

A counterexample to this problem would certainly be reminiscent of the existence of a
set of lines being highly incident to each other while satisfying some restricting conditions
regarding their directions. This problem served as a motivation for a large body of work in
incidence geometry and we will now see how it led to the introduction of the polynomial
method in this area.

2.2 Enter the polynomial method. There a number of ways of formulating toy models
for the Kakeya problem in incidence geometry. A particularly straightforward way of
doing so is to formulate the problem over Fq , where the discrete nature of this space
naturally turns it into a question about incidences. The resulting Kakeya problem over
finite fields was answered in the affirmative by Dvir [2009]. Precisely, he established the
following result.

Theorem 2.2 (Kakeya over finite fields). Let K � Fn
q be a set containing a line in every

direction. Then jKj & qn.

This question was originally posed by Wolff [1999] and attracted considerable atten-
tion. Despite the large amount of work that preceded his article, Dvir’s proof is extremely
simple. What distinguishes it is its introduction of the polynomial method as the main tool
to attack the problem. While this tool had barely been used in this or related areas before,
the situation would change dramatically after this result.

The polynomial method is largely concerned with finidng a polynomial with suitable
properties vanishing at most points of a set of interest. To find such a polynomial, an
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important role is played by the following simple observation, usually attributed to Thue
and Siegel, which allows us to bound the degree of a polynomial vanishing on an arbitrary
set.

Lemma 2.3 (Siegel’s lemma). For every set finite S � Fn there exists a non-zero poly-
nomial P 2 F [x1; : : : ; xn], of degree .n jS j1/n, vanishing on S .

The proof is extremely simple, consisting only of a dimension counting argument.
There are so many different polynomials of degree .n jS j1/n that at least two of them,
say P1 and P2, must take the same values on S . Therefore P = P1 � P2 is of the form
we want. The same kind of argument can be used to force some additional properties on
the polynomial P , like having integer coefficients or vanishing to high multiplicity on our
set of points.

To obtain a polynomial of low degree vanishing on a given set S , the polynomial
method combines the above lemma with what might be called the idea of characteristic
subsets (here we are using the notation of M. N. Walsh [2012b]). We informally define
these as follows.

Definition 2.4 (Characteristic subset). A set A � S is said to be a characteristic subset
of S if any polynomial of low complextiy that vanishes with a certain multiplicity on A

must also vanish at all or most points of S .

What exactly does it mean for a polynomial P to have low complexity depends very
much on what is needed in the given problem, though it always implies that the degree
of P should be small. In some cases, we may also require the coefficients to be small or
restricted to the integers, or both. Clearly, if a set S admits a characteristic subset A of
small size, then we can find a polynomial of low degree vanishing at all or most points of
S by applying Siegel’s lemma to A. As we will see during this article, this idea is a central
part of the polynomial method.

Let us now see how it applies to the proof of Theorem 2.2. Dvir’s crucial observation
is that any set K � Fn

q containing a line in every direction must be a characteristic subset
of Fn

q . This is easiest to see looking at the corresponding projective space. If P is a
polynomial of degree strictly less than q vanishing on an affine line in every direction,
by Bezout’s theorem its homogenisation must also contain the hyperplane at infinity in its
zero set and this necessarily implies thatP vanishes at the whole space. As a consequence,
if we could find a nontrivial polynomial of degree less than q that vanishes on K, it would
also have to vanish on Fn

q , which is impossible. Comparing this observation with Siegel’s
lemma, we conclude that it must be jKj &n qn.

2.3 Polynomial partitioning. The idea of characteristic subsets will also play a role
in incidence geometry results over Rn. For example, if we are given a highly incidence
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family of lines T , wemay be able to find a subset of lines T 0 � T such that any polynomial
of low degree P vanishing on all the elements of T 0 must also vanish on most elements of
T . The reason why this may work is that, given the highly incident nature of T , we may be
able to find a small subset T 0 � T such that most elements t 2 T will be incident to many
lines in T 0. As a consequence, a polynomial P vanishing on T 0 will vanish at many points
of such t . If the degree of P is sufficiently small, Bezout’s theorem would then force P

to vanish on all of t as desired. This kind of approach is often called degree-reduction in
this context.

Although arguments like this tend to be useful, it turns out that a substantial addition
to the polynomial method is required in order to make progress on incidence problems
taking place in Rn. Since the original work of Szemerédi and Trotter, a central idea in
incidence geometry has been to partition the space into cells in a way that limits howmany
of these cells the elements of T may intersect. This plays into the intuitive notion that
the varieties being studied in an incidence problem should spread out across space, thus
forbidding them to cluster into a highly incident configuration. As it turns out, polynomials
can be used to obtain such a partition of space in an extremely structured way. Indeed,
the following result was establish by Guth and Katz [2015] when trying to adapt Dvir’s
polynomial method to incidence questions over Euclidean space.

Theorem 2.5 (Polynomial partitioning of Rn). For every finite set S 2 Rn and every
choice of an integer M � 1, there exists some nonzero polynomial P 2 R[x1; : : : ; xn]

of degree .n M such that each connected component of Rn n Z(P ) contains at most
.n

jS j

M n points of S .

By an old result of Petrovskiĭ and Oleĭnik [1949] it is known that if P is a polynomial
in n variables of degree O(M ), then Rn n Z(P ) can have at most O(M n) connected
components. Theorem 2.5 then says that at any level M of our choice and for any set S ,
we can partition the points of S as efficiently as possible among the connected components
of the complement of a polynomial of degree at most O(M ). The generality of such a
statement is quite striking. There is one caveat, however, which is that the result does not
rule out the possibility that some of the points of S actually lie inside of Z(P ). But this
in itself may be an advantage, since we may be able to exploit the additional structure of
having a proper subvariety covering our set of points in order to attack the problem that
we are interested in.

Let us now briefly discuss how a partition of S of the above type can be used to tackle
questions in incidence geometry. For simplicity, let us assume we are studying the inci-
dences of S with a set of lines T and let us apply Theorem 2.5 to S for an adequate choice
of M . Then we obtain a partition by the zero set of some polynomial P of degree O(M )

in such a way that each connected component of Rn n Z(P ) contains very few points of
S . But since a line that is not properly contained in Z(P ) can touch this zero set in at
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most deg(P ) places, it follows that such a line can only intersect deg(P )+1 = O(M ) of
the components of Rn n Z(P ). In other words, each component contains few points and
each line intersects few components. Combining this observation with a trivial incidence
estimate in each component coming from the Cauhcy-Schwarz inequality, this readily pro-
vides a sharp incidence bound upon making an adequate choice of the parameter M .

It then remains to deal with the incidences occurring inside of Z(P ). This points out
why the general context described at the beginning of this section can be relevant even
if one is only interested in estimates over Rn. To obtain sharp estimates in this case, the
study of Z(P ) sometimes requires one to pay attention to more subtle algebraic properties
of the subvarieties involved (see for example Katz’s ICM 2014 article Katz [2014]), but
many times even this can be avoided if one is willing to settle for slightly weaker bounds.

In any case, the fact that the problem is reduced to the study of subvarieties is not capri-
cious. To see this, consider for example the task of estimating the number of incidences
between a set of points and a set of lines in R3. The first part of the argument above that
deals with the incidences occurring inside the cells, when applied in R3, leads to a bound
that improves the one provided by the Szemerédi-Trotter theorem. However, the latter re-
sult is sharp inR2 and so it is clear that this improvement is not possible in general. Indeed,
an example showing that the Szemerédi-Trotter theorem is optimal in R2 can obviously
be replicated inside any plane ofR3. This is a general phenomenon: incidence bounds can
be worse than expected if the elements of T cluster inside lower-dimensional varieties. In
their work, Guth and Katz managed to obtain an improved bound in R3 under the assump-
tion that such a clustering fails to take place. Part of the remarkable effectiveness of the
polynomial method as discussed above is that it provides optimal bounds outside of the
zero set of a certain polynomial and thus singles out the correct obstruction, that is, the
possibility that many incidences are occurring inside lower-dimensional varieties.

3 Number theory

3.1 Stepanov’s method. We will now depart from the incidence geometry questions
discussed in the previous section and see how the polynomial methodmakes an appearance
throughout a range of topics in number theory. We will see how it was recently used in
the study of the distribution of sets in residue classes mod p and to bound the number of
rational points on curves. However, the polynomial method in this context is not new and
was used by Stepanov [1969], and later Bombieri [1974], in the related topic of estimating
the number of Fq-points on a curve. Precisely, they provided an alternative proof of the
following estimate, equivalent to the Riemann Hypothesis for curves over finite fields.

Theorem 3.1 (Hasse-Weil bound). Let C be a nonsingular absolutely irreducible projec-
tive curve of genus g defined over Fq . Then, writing C(q) for the number of Fq-points of
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C, we have the estimate
jC(q) � (q + 1)j � 2g

p
q:

The story of the Riemann Hypothesis for curves over finite fields is well-known. It was
originally conjectured by Artin [1924], with the case of elliptic curves being established
by Hasse [1936]. The general result was famously obtained by Weil [1949] in work that
laid the foundation of modern algebraic geometry. However, an alternative proof that is
more elementary was subsequently found by Stepanov in special cases using what we
would now call the polynomial method. His method was subsequently used by Bombieri
to produce a very simple argument that handles the result in full generality.

Let us now briefly discuss how the proof works. The lower bound on C(q) provided
by Theorem 3.1 can be easily derived from the upper bound by means of a lifting trick, so
we will just discuss how the latter is established. We are interested in an upper bound on
the number of Fq-points lying inside a curve C, or in other words, the number of points
x inside of this curve that are invariant under the Frobenius map Frob(x) = xq . By
looking at the cartesian product C � C, we see that it will suffice to provide an upper
bound for the size of the intersection of two curves in this cartesian product: the curve
C1 = f(x; y) 2 C � C : x = yg and the curve C2 = f(x; y) 2 C � C : Frob(x) = yg.

A naive application of Bezout’s theorem to bound the size of this intersection would
fail to produce the kind of bound we want. On the other hand, Bezout’s theorem does
tell us that given an irreducible curve of bounded degree, a polynomial of low degree
vanishing with high multiplicity on a large subset of this curve must vanish on the whole
curve. Applying this to our problem we conclude that if C1 \ C2 is large, then it must
be a characteristic subset of C2. Thus in order to prove Theorem 3.1 it would suffice
to construct a polynomial of low degree vanishing with high multiplicity on C1, but not
vanishing on C2. This in turn follows from a combination of the Riemann-Roch theorem
and the same kind of dimension counting arguments used in the proof of Siegel’s lemma.

3.2 The inverse sieve problem. One of the main topics in analytic number theory is
the study of the distribution of sets in residue classes mod p. Many times, the goal is to
show that a special set, like the primes, is essentially equidistributed among these classes.
It is then natural to wonder what kind of structure may cause a set to be badly distributed
in residue classes and in particular, whether an inverse theorem may be obtained charac-
terising all sets exhibiting bad behaviour.

As we have just seen, algebraic curves constitute one such example and in general,
so do algebraic sets of higher dimension. That abnormal behaviour should always be
attributable to the presence of algebraic structure was suggested by a number of authors.
The following result established a conjecture of Helfgott and Venkatesh [2009] to this
effect.
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Theorem 3.2 (M. N. Walsh [2014]). Let S � f1; : : : ; N g
d occupy � p� residue classes

for every prime p and some real number 0 � � < d . Then, for every " > 0, there exists
some nonzero P 2 Z[x1; : : : ; xd ] of degree ��;d;" (logN )

�
d�� vanishing on at least

(1 � ")jS j points of S .

The assumption that the set occupies few classes is not prohibitive and can be replaced
by an estimate on its L2-norm mod p. Furthermore, it was shown in M. N. Walsh [2012b]
that the polynomial P can be taken to have degree O(1) as long as the set S satisfies some
regularity assumptions. In fact, these assumptions are automatically met if the set S is not
small, as conjectured in Helfgott and Venkatesh [2009].

These results are essentially sharp and their proof employs the polynomial method. The
argument goes more or less as follows. If S occupies few residue classes mod p for many
primes p, it should be possible to find a very small set A � S that, for many primes p,
contains a representative of many of the classes occupied by S mod p. We claim that
A is then a characteristic subset of S . Indeed, suppose P is a polynomial with small
coefficients and small degree that vanishes on A. By construction of A, we find that to
most elements s 2 S we can associate many primes pi such that s � xi (mod pi ) for
some xi 2 A and so, in particular, P (s) � P (xi ) (mod pi ). The fact that P vanishes on
A then implies that every such pi must divide P (s). But since P has small coefficients
and small degree, jP (s)j is small, and so the only way this can happen is if P (s) = 0.
We have thus shown that A is indeed a characteristic subset of S . The result then follows
from applying Siegel’s lemma to find a polynomial of low degree vanishing on A.

There is an interesting question that remains when considering one dimensional sets
S � f1; : : : ; N g. We know by the large sieve inequality that a set occupying approxi-
mately half of the residue classes mod p, for all primes p, can have size at most O(N 1/2).
On the other hand, the squares in f1; : : : ; N g show that this estimate is sharp. The ques-
tion arises whether every set of comparable size occupying at most half the residue classes
mod p, for every prime p, must be correlated to the set of squares. This question can be
generalised a bit further (seeM. N.Walsh [2012b]). Given the arguments described above,
one would expect that the polynomial method should be useful to make progress on this
problem, although this has not been achieved so far (but see Green and Harper [2014] and
Hanson [2017] for some partial progress by means of different tools).

3.3 The determinant method. The polynomial method has also been used effectively
to bound the number of points S of bounded height that an algebraic variety can have
over Z or Q. As in Stepanov’s method, the problem does not lie in finding an adequate
characteristic subset A for S , since in this context this is generally accomplished by sim-
ply picking a maximal algebraically independent subset of S . The actual difficulty lies
instead in finding an appropriate polynomial vanishing on A. This gives rise to the study
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of a certain system of linear equations and in particular, to estimates on the size of the
determinants associated with this system. As a consequence, this form of the polynomial
method has been known as the determinant method in this context. It dates back to the
work of Bombieri and Pila [1989], with subsequent improvements of this method being
obtained by Heath-Brown [2002] and Salberger [2010], among others.

For the rest of this discussion let us assume for simplicity thatA lies inside a plane curve
C defined by an irreducible polynomial f . The task of finding a polynomial vanishing on
A may seem circular, since after all, we already know that f vanishes on A. The idea is
instead to show that the dimension of the space of polynomials of small degree vanishing
on A is big. Big enough, in fact, as to guarantee the existence of at least one polynomial
g in this space that is not divisible by f . Since S must then lie in C \ Z(g), a bound for
its size readily follows from Bezout’s theorem.

While the Stepanov-Bombieri argument required us at this stage to improve on Siegel’s
lemma bymeans of a dimension counting argument relying on the Riemann-Roch theorem,
the improvement of Siegel’s lemma needed here can be obtained through the following
estimate of Bombieri and Vaaler on the space of solutions of a system of linear equations
over the integers.

Theorem 3.3. Bombieri and Vaaler [1983] Let
Pr

k=1 bmkxk = 0, m = 1; : : : ; s, be a
system of s linearly independent equations in r > s unknowns, with integer coefficients
bmk . Then, there exists a nontrivial integer solution (x1; : : : ; xr) satisfying the bound

(3-1) max
1�i�r

jxi j �

�
D�1

qˇ̌
det (BBT )

ˇ̌� 1
r�s

:

Here B = (bmk) is the s �r matrix of coefficients, BT its transpose, and D is the greatest
common divisor of the determinants of the s � s minors of B .

When trying to find a polynomial of small degree that vanishes on A, the system of
equations we are interested in is the one where the coefficients bmk are given by the values
taken by the monomials of small degree when evaluated at the elements of A. It is the
presence of the factor D�1 in the above statement what provides an improvement over
the classical form of Siegel’s lemma.

We already know that as a consequence of the Hasse-Weil bound, the rows of the re-
sulting matrix of coefficients B will occupy few residue classes mod p for many primes
p, exceptions occurring only when C has a singular reduction mod p. On the other hand,
the discussion of the previous subsection would suggest that a system of linear equations
whose coefficients occupy few residue classes mod p, for many primes p, should be easier
to solve. In a sense, Theorem 3.3 formalises this idea. Indeed, if the rows ofB occupy few
classes modp then we would expect its minors to be divisible by a high power ofp. A con-
crete estimate of this form is established in Salberger’s work, giving rise to a strong lower
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bound on the size of D. This lower bound, when combined with Theorem 3.3, forces A

to be small and as a consequence, the dimension of the space of polynomials vanishing on
A to be large, as desired.

Let us finally remark that it is an interesting feature of the polynomial method that when
the points being studied are already known to lie in the zero set of a polynomial with either
large coefficients or large degree, this can usually be used to obtain stronger estimates. As
noted by Ellenberg and Venkatesh [2005], something like this holds true in this context.
In particular, it can be used to produce an improved lower bound for the left-hand side
of (3-1), by assuming for the sake of contradiction that all solutions are multiples of f .
This in turn gives rise to improved bounds for S when f has a large coefficient and in
particular, manages to compensate a loss that appears in Salberger’s bound in this case.
Combining the ideas we have discussed, a uniform bound of the form Od (N

2/d ) was
obtained in M. N. Walsh [2015] for the number of rational points of height at most N that
an irreducible curve of degree d can have. It is easy to see that this bound is asymptotically
sharp upon consideration of the equation y = xd .

3.4 Exponential sums and Montgomery’s conjecture. We finish this section with a
brief discussion of some connections between the topics studied so far. On the one hand,
the problems treated in the previous section are naturally related with each other, with
such incidence problems ultimately leading to the Kakeya problem over Rn and the more
general Stein’s restriction conjecture in harmonic analysis. As we shall see in Section 4.4,
the polynomial method can be extended to make progress on these problems as well.

On the other hand, we have seen that the number-theoretic topics discussed in this sec-
tion are also quite interconnected. Furthermore, estimates like the large sieve inequality
and the Riemann Hypothesis for curves over finite fields lead into the general area of expo-
nential sums, where some of the most far-reaching conjectures in analytic number theory
have been formulated. An outstanding example is the exponent pairs conjecture Iwaniec
and Kowalski [2004], an open problem that has among its consequences the Lindelöf Hy-
pothesis. This part of mathematics gives us an excuse to join the two lines of enquiry
we have covered so far in this article. In particular, not only the density hypothesis for
the zeros of the Riemann zeta function but also the Kakeya problem would follow from a
positive answer to the following conjecture about exponential sums.

Conjecture 3.4 (Montgomery’s Conjecture Montgomery [1971]). For any real number
r � 1 and any sequence of complex numbers (an)

N
n=1 with janj � 1, the estimate

1

T

Z T

0

ˇ̌̌̌
ˇ NX
n=1

annis

ˇ̌̌̌
ˇ
2r

ds ." N r+";

holds for all T � N r and all " > 0.
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That this implies the Kakeya problem can be seen upon rephrasing the latter as a ques-
tion about the existence of small subsets of Fp containing large arithmetic progressions
with each possible common difference Bourgain [1991]. There is indeed a good amount
of work making progress on the Kakeya problem employing tools from arithmetic combi-
natorics.

While this shows that analytic number theory could be used to make progress on prob-
lems related to the Kakeya problem, the opposite is also true, with progress on questions
related to restriction theory being used recently to yield results in analytic number theory.
Indeed, the l2-decoupling theory started by Bourgain and Demeter [2015], a family of re-
sults in the spirit of the restriction conjecture whose proof relies on the multilinear Kakeya
inequality among other things, has been used to establish Vinogradov’s main conjecture in
analytic number theory Bourgain, Demeter, and Guth [2016]. Previous to this work, the
best result on this problem had been obtained by Wooley [2012] by means of his efficient
congruencing mod p method. Finally, the set of ideas surrounding the decoupling the-
ory was also used by Bourgain to improve the best-known exponent towards the Lindelöf
Hypothesis Bourgain [2017].

It is then fair to ask towhat extent the polynomial method is a tool that finds applications
on a wide variety of contexts and to what extent it reflects underlying phenomenona in
somewhat interconnected families of results.

4 Further topics

4.1 Baker’s theorem. In order to emphasise the recurring features of the polynomial
method, let us briefly discuss one last example of an application that would seem to have
little connection to the topics discussed in the rest of this article, besides its link to arith-
metic. Our choice is Baker’s classical result in transcendental number theory regarding
linear forms in logarithms Baker [1968]. For simplicity, let us discuss the integer case,
where we are seeking uniform lower bounds over expressions of the form

Pm
i=1 bi log ai ,

where the ai are multiplicatively independent integers and the bi are integers not all equal
to zero.

To attack this problem, we will consider the curve C = (at
1; : : : ; at

m), and more gener-
ally, subsets of this curve of the form

CN = f(an
1 ; : : : ; an

m) : n = 1; : : : ; N g ;

for positive integersN . Looking at the correspondingVandermondematrix of coefficients,
the fact that the ai are multiplicatively independent easily implies that no polynomial P

of small degree, relative to N , can vanish at all points of CN .
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A polynomial P evaluated at the curve C = (at
1; : : : ; at

m) may be seen as a function
of the parameter t . With this point of view, we claim that we can find some value N0,
relatively small with respect to N , such that CN0

is a characteristic subset of CN . Indeed,
suppose we are given some polynomial P with integer coefficients and low degree that
vanishes at CN0

with some large multiplicity J with respect to the variable t . Then, C

being an analytic curve, this will force dj

dtj P to take small values in a neighbourhood of
CN0

, as long as j is at least slightly smaller than J . In particular, this will happen at all
points ofCN1

, provided N1 is an integer not much larger thanN0. If J is sufficiently large,
we can then iterate this argument enough times as to guarantee that P itself takes small
values at all points of CN . But since P takes integer values, the only way this can happen
is if P is in fact zero at all points of CN .

Since CN0
is a characteristic subset of CN , we know, by our observation regarding

the Vandermonde matrix, that no polynomial with integer coefficients and low degree can
vanish with highmultiplicity atCN0

. On the other hand, if
Pm

i=1 bi log ai were to be small,
an argument like in the proof of Siegel’s lemma can be used to contradict this fact. Indeed,
for any polynomial P with integer coefficients, a relation of this kind between the log ai

significantly restricts the range of values that the derivatives of P with respect to t can
take at any given point of CN0

. In particular, this allows us to find two polynomials P1,
P2 with integer coefficients and abnormally low degree such that, with respect to t , their
first J derivatives take the same values at CN0

, for some large value of J . The polynomial
P = P1 � P2 then gives us the desired contradiction.

The generality of Baker’s result makes it applicable in a number of different contexts,
thus implicitly extending the range of problems where the polynomial method may have
some relevance. As a curious example, the integer version just discussed was used by
Bourgain, Lindenstrauss, Michel, and Venkatesh [2009] to provide effective proofs of a
family of results relating to Furstenberg’s �2 � 3 conjecture in ergodic theory Fursten-
berg [1967]. These include the well-known Rudolph-Johnson theorem Rudolph [1990]
and Johnson [1992], establishing the conjecture in the positive entropy case, and Fursten-
berg’s topological result, showing that R/Z has no infinite closed subset other than itself
that is invariant under multiplication by a pair of multiplicatively independent integers
Furstenberg [1967]. One may wonder whether proofs that use the polynomial method in
an explicit way may contribute to understand better such applications of Baker’s theorem.

4.2 Structure and randomness. It may be worthwhile to give some brief consideration
to how the polynomial method fits with the general phenomenon of structure-randomness
decompositions that is pervasive throughout analysis. The idea of the latter is that it tends
to be possible to decompose an object of interest into a part that detects the structure of the
problem being studied and a random part that is, in a sense, completely independent from
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this information. In the context of Hilbert spaces, this observation can be formalised by
noting that given a distinguished set Σ of bounded functions, any bounded element of the
Hilbert space may be written in the form

P
j �j �j + g, where the sum of the coefficients

�j is uniformly bounded, �j 2 Σ for every j , and g is essentially orthogonal to Σ, in
the sense that hg; �i is small for every � 2 Σ. We refer the reader to this article Gowers
[2010] of Gowers for an elegant discussion of this and more general decompositions.

The polynomialmethodmay be considered a useful complement to the structure-randomness
approachwhen the arithmetic of the problem gives rise to an underlying algebraic structure.
The characteristic subsets notation used in M. N. Walsh [2012b, 2014] and in the present
article is, in fact, inspired by the concept of characteristic factors that plays the role of
the structured part in several problems in ergodic theory Furstenberg [1967], Furstenberg
and Weiss [1996], and Host and Kra [2005]. In the same way that information about the
behaviour of a polynomial on a set can be deduced from what happens in a characteristic
subset, the behaviour of nonconventional ergodic averages over a set of functions can be
deduced from what happens in the corresponding characteristic factors. This is exactly
what these decompositions seek to accomplish.

Structure-randomness decompositions are a flexible tool that can be substantially re-
fined when a small error term is allowed in the decompositions. This played an important
role in the convergence result of M. N. Walsh [2012a] and we refer again to Gowers’ ar-
ticle Gowers [2010] for a general discussion. As noted by Lovász and Szegedy [2007],
these more general decompositions can be seen as versions of the Szemerédi regularity
lemma Szemerédi [1978]. The regularity lemma was itself the key tool used to obtain
the cell-decomposition in the original proof of the Szemerédi-Trotter theorem and, in this
sense, the polynomial partitioning method of Guth an Katz may be seen as an instance
of these general decomposition results where the algebraic nature of the decomposition is
made more explicit.

4.3 Polynomial partitioning over varieties. In order to apply the polynomial method
efficiently over general varieties some further improvements may be needed. During the
discussion of the determinant method, we observed how the polynomial method could be
made more effective when the points being studied lie in the zero set of some polynomial
with large coefficients. One may similarly wonder whether knowing that the points lie
inside of an algebraic variety of high degree may also lead to improved estimates. Since
it is known that the dimension of the polynomial ring associated with a variety increases
in proportion with its degree Nesterenko [1984], it is logical to suspect that a correspond-
ing improvement may be achieved on the kind of dimension counting arguments that are
ubiquitous in the polynomial method. Indeed, combining this kind of observations with
the type of tools used to prove Theorem 2.5, we can obtain the following result.
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Theorem 4.1 (Polynomial partitioning over varieties M. Walsh [n.d.]). Given any real
algebraic variety V � Rn of dimension d , any set of points S � V and any integer
M � 1, there exists some polynomialP 2 R[x1; : : : ; xn] of degree.d;n M , not vanishing
identically on V , such that each connected component of V n Z(P ) contains at most
.d;n

jS j

M d deg(V )
points of S .

That this should hold was already conjectured in Basu and Sombra [2016]. A more
general sharp estimate was obtained in M. Walsh [n.d.] by including an additional explicit
dependence on the degrees of the various individual polynomials defining the variety V .
Notice that a particular case of the above result is a version of Siegel’s lemma that allows
us to find a polynomial of degree .d;n

jS j1/d

deg(V )1/d that vanishes on S without vanishing
identically on V .

As we saw in Section 2.3, both the nature of incidence geometry and of polynomial
partitioning techniques lead to the consideration of lower-dimensional algebraic varieties,
even for problems that originally take place over Rn. Without proper tools to handle
varieties of high degree, the polynomial partitioning needs to be truncated as to produce
only varieties of low degree, leading to suboptimal bounds. Estimates like Theorem 4.1
may prove useful in providing a unified approach to manage these problems and produce
sharp bounds.

Nevertheless, to make this work, we saw that a second result that is needed is a bound
on how many of the components produced by the above partitioning result can be touched
by a given algebraic variety W . In general, by work of Milnor [1964] and Thom [1965],
we have bounds that give a good dependence in terms of the degree of the partitioning
polynomial, but not in terms of W . Some progress on this issue has been made by Barone
and Basu [2012], who were able to obtain an estimate with a good dependence on the
product of the degrees of the polynomials defining W , with this result being subsequently
applied in incidence geometry Basu and Sombra [2016].

Since in general estimates like Theorem 4.1 can only be expected to yield a saving
proportional to the degree of the variety V itself, it may be necessary to obtain a version of
the result of Barone and Basu that depends only on the degree of W , instead of depending
on the product of the degrees of the polynomials defining it. A step in this direction was
taken in M.Walsh [n.d.] where a bound with a main term of the desired form was obtained.
Nevertheless, the error term in this estimate is not optimal and it remains an interesting
problem to improve it. In fact, it is shown in M. Walsh [ibid.] that a suitable refinement
can indeed be combined with Theorem 4.1 to attain sharp incidence bounds that currently
remain out of reach.

4.4 Restriction estimates. The proof of Theorem 4.1 combines algebraic estimates for
the size of ideals with tools like the polynomial ham-sandwich theorem, the latter being a
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result that lies at the heart of polynomial partitioning results since the original work of Guth
and Katz. The classical ham-sandwich theorem states that given n open sets in Rn, they
can always be simultaneously bisected by a suitable hyperplane. The polynomial ham-
sandwich theorem extends this claim to show that we can always bisect a larger number
of open sets as long as, instead of restricting to hyperplanes, we allow the bisection to be
performed by hypersurfaces of a correspondingly large degree.

This bisecting result can be further put to use to extend the scope of the polynomial
method to the Kakeya conjecture in Euclidean space. This conjecture can be sen as a
question about estimating the minimal possible volume that can be attained by a collection
of tubes pointing in a large number of quantitatively distinct directions. Covering this
union by a family of small cubes and replacing the notion of a polynomial vanishing at
a point by that of a polynomial bisecting a cube, the ideas surrounding the polynomial
method can be extended from the discrete case to this continuous setting.

Recall that to find characteristic subsets we have relied heavily on estimates on the
intersection of algebraic sets. For example, that given a polynomial P not vanishing iden-
tically on a given line, this line can only intersect Z(P ) in at most deg(P ) points. In order
to carry the polynomial method to this new context, we need to find analogues of these
estimates that hold true for tubes. For example, we may observe that if a polynomial P

takes small values at more than C deg(P ) points along a fixed tube, for some sufficiently
large constant C , then it must also take small values at most places that lie between these
points. Similarly, another alternative is to consider the directed volume of a surface, al-
lowing one more or less to conclude that a polynomial P can cut a tube transversally in at
most O(deg(P )) places.

By introducing these ideas, Guth essentially showed in Guth [2016b] that a counterex-
ample to the Kakeya problem in R3 can be approximated by a polynomial of the smallest
possible degree allowed by the Crofton formula, and used this to obtain graininess esti-
mates in the spirit of Katz, Łaba, and Tao [2000]. He also combined these ideas with
slightly more sophisticated tools from algebraic topology, involving cohomology classes
and Lusternik-Schnirelmann theory, to obtain the first proof Guth [2010] of the endpoint
case of the multilinear Kakeya inequality of Bennett, Carbery, and Tao [2006].

It is even possible to extend the polynomial method further to make progress on the
more general restriction conjecture of Stein [1979]. Here, by applying a decomposition
into wave packets, we can translate the problem into a question about overlapping patterns
of tubes and this can be treated in a similar spirit as the incidence geometry questions
that we discussed in Section 2.3. Indeed, the polynomial partitioning method works in
a very similar way, as long as we replace the zero set of the partitioning polynomial by
its neighbourhood, as to be able to bound the number of cells of the resulting partition
that a tube can intersect Guth [2016a]. It should be remarked that this approach helps to
highlight the role played by low degree varieties in hypothetical counterexamples to this
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conjecture. Whether this kind of ideas based on the polynomial method will lead to further
progress on this sort of problems remains an interesting question.
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1 Introduction

We begin with a special case of Pell’s equation

x2
� py2 = 1; x; y 2 Z;

where p � 1mod 4 is a prime number. Let K be the real quadratic field Q[
p

p] and
OK its ring of integers. Then most solutions to Pell’s equation can be extracted from the
group of units in OK , which is known to be the product of f˙1g and an infinite cyclic
group generated by a fundamental unit. In 1830s, Dirichlet systematically constructed
units in OK using special values of trigonometric functions:

�p =

Q
a 6�� mod p sin

a�
pQ

b�� mod p sin
b�
p

; 0 < a; b < p/2;

where � mod p denotes a square residue. Dirichlet also showed that the obstruction for
�p to be a fundamental unit is the class group of K, with the help of an infinite series

L

�
s;

�
�

p

��
=

X
n�1; p−n

�
n

p

�
n�s; s 2 C; Re(s) > 1:

Here
�

�

p

�
denotes the Legendre symbol for quadratic residues. This is now called a Dirich-

let L-series, and it has holomorphic continuation to s 2 C with a simple zero at s = 0.
What Dirichlet discovered can be stated as two formulas for the value at s = 0 of the first
derivative: the first one is in terms of �p ,

(1-1) L0

�
0;

�
�

p

��
= log �p;

and the second one is in terms of the class number hp and the fundamental unit �p > 1,

(1-2) L0

�
0;

�
�

p

��
= hp log �p:

Dirichlet also proved two formulas for an imaginary quadratic field. For simplicity, let
p � 7 mod 8 be a prime. Now the L-series L

�
s;
�

�

p

��
does not vanish at s = 0. His

first formula states

(1-3) L

�
0;

�
�

p

��
=

X
0<a<p/2

�
a

p

�
;
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and the second one is in terms of the class number h�p of Q[
p
�p]

(1-4) L

�
0;

�
�

p

��
= h�p:

A non-trivial corollary is a finite expression for the class number

h�p =
X

0<a<p/2

�
a

p

�
;

i.e., the difference between the number of square residues and of non-square residues in
the interval (0; p/2).

In 1952, Heegner discovered a way to construct rational points (over some number
fields) on elliptic curves using special values of modular functions, in a manner similar to
Dirichlet’s solutions to Pell’s equation. For instance, the elliptic curve

E : y2 = x3
� 1728

is parameterized by modular functions (
2; 
3), where


2(z) =
E4

�8
=

1 + 240
P1

n=1 �3(n)q
n

q1/3
Q1

n=1(1 � qn)8
; 
3(z) =

E6

�12
=

1 � 504
P1

n=1 �5(n)q
n

q1/2
Q1

n=1(1 � qn)12
:

Here as customary, z 2 H is on the upper half plane, and q = e2�iz . Then Heegner’s
strategy is to evaluate (
2; 
3) at z in an auxiliary imaginary quadratic fieldK to construct
points of E with coordinates in an abelian extension of K. The theorem of Gross and Za-
gier [1986] then relates the Néron–Tate heights of Heegner’s points to special values of the
first order derivatives of certain L-functions, providing an analog of Dirichlet’s formula
for a real quadratic field (1-1). In this new context, an analog of Dirichlet’s formula for an
imaginary quadratic field (1-3) is the theorem of Waldspurger [1985] relating toric period
integrals (cf. Section 2.2.1) to special values of L-functions of the same sort as in the work
of Gross and Zagier.

A natural question is to generalize the constructions of Dirichlet and of Heegner to
higher dimensional algebraic varieties, and at the same time to generalize their relation to
appropriate L-values. As a partial answer to this question, in this report we will consider
some special algebraic cycles on Shimura varieties, cf. Section 3.1.1. A class of such
special cycles are the arithmetic diagonal cycles that appear in the arithmetic Gan–Gross–
Prasad conjecture Gan, Gross, and Prasad [2012, §27].

A parallel question is the generalization of the formulas of Dirichlet (1-3) and of Wald-
spurger to automorphic L-functions on a higher rank reductive group G over a global field
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F . In this direction, we will consider automorphic period integrals for a spherical sub-
group H of G, i.e., Z

H(F )nH(A)

�(h) dh;

where � is a function on G(F )nG(A), andA the the ring of adèles ofF . The central object
is the quotient H(F )nH(A) sitting inside G(F )nG(A). This paradigm may be viewed as
a degenerate case of special cycles sitting inside the ambient Shimura variety.

To study the relationship between automorphic periods and L-values, Jacquet invented
the relative trace formula, cf. Jacquet [2005]. In W. Zhang [2012b] we adopted the rel-
ative trace formula approach to study height pairings of special cycles in the arithmetic
Gan–Gross–Prasad conjecture. In this context, we formulated local conjectures (on in-
tersection numbers of the arithmetic diagonal cycle on Rapoport–Zink spaces), namely
the arithmetic fundamental lemma conjecture (cf. W. Zhang [ibid.]), and the arithmetic
transfer conjecture by Rapoport, Smithling and the author (cf. Rapoport, Smithling, and
W. Zhang [2017a] and Rapoport, Smithling, and W. Zhang [2018]). In this report we will
review the approach, the conjectures and the status.

Another natural question is in the direction of higher order derivatives of L-functions
in the Gross–Zagier formula. In Yun and W. Zhang [2017] Yun and the author found a
geometric interpretation of the higher order derivative in the functional field setting, in
terms of special cycles on the moduli stack of Drinfeld Shtukas with multiple number of
modifications, cf. Section 4. To generalize this to the number field case, one is led to the
tantalizing question of finding Shtukas over number fields.

Limited by the length of this report, we will not discuss the analog of the class number
formula (1-2) and (1-4) in our setting. In the context of elliptic curves over Q, this is
the conjectural formula of Birch and Swinnerton–Dyer. When the analytic rank is one
(resp. zero), we have an equivalent statement in terms of the divisibility of Heegner points
(resp. of normalized toric period integrals), thanks to the formula of Gross–Zagier (resp.
of Waldspurger). Much of the equivalent statement has been proved in the past thirty
years. Beyond elliptic curves (or modular forms on GL2), there have been many recent
developments where special cycles play a crucial role in the study of Selmer groups of
Bloch–Kato type. We hope to return to this topic on another occasion.

Acknowledgments. The author thanks B. Gross, M. Rapoport, Y. Sakellaridis, B. Smith-
ling and S. Zhang for helpful comments.

Notation. Let F be a global field (unless otherwise stated), i.e., a number filed or a
function field (of a geometrically connected smooth proper curve X over a finite field
k = Fq). Let A = AF =

Q0

v Fv be the ring of adèles, the restricted direct product
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over all completions Fv of F . The ring of integers in a non-archimedean local field Fv

is denoted by OFv
. For a subset of places S , we let AS =

Q0

v2S Fv . When F is a
number field, we write A = Af � A1, where Af is the ring of the finite adèles and
A1 = F ˝Q R.

For a field extension F 0/F and an algebraic group G over F 0, we denote by RF 0/F G
the Weil restriction of scalars. We denote by Gm the multiplicative group.

2 Automorphic periods and L-values

2.1 Spherical pairs and automorphic periods.

2.1.1 Automorphic quotient. Let G be an algebraic group over F . We define the
automorphic quotient associated to G to be the quotient topological space

(2-1) [G] : = G(F )nG(A):

LetK � G(A) be a subgroup. When F is a function field, we assume thatK is a compact
open subgroup of G(A). WhenF is a number field, we assume thatK is a productKf �K1

where Kf � G(Af ) is a compact open subgroup, and K1 is a suitable subgroup of
G(A1). We then define a quotient

(2-2) [G]K : = G(F )n [G(A)/K] :

WhenF is a function field, this is a discrete set (or naturally as a groupoid). WhenF =

k(X), G = GLn, and K =
Q

v GLn(OFv
), the groupoid [G]K is naturally isomorphic to

the groupoid Bunn(k), the k-points of Bunn (the stack of vector bundles of rank n on X ).

2.1.2 Automorphic period. From now on let G be a reductive group over F . Let
H � G be a subgroup. Let ZG be the center of G and let Z = H\ZG. Let A0(G) be the
space of cuspidal automorphic forms on [G], invariant under the action ofZ(A). Then the
automorphic H -period integral is defined by

PH : A0(G) // C

�
� //

R
Z(A)n[H] �(h) dh:

Remark 2.1. The name “automorphic period” is different from the period in the context
of comparison theorems between various cohomology theories. However, some special
cases of the automorphic period integrals may yield periods in the de Rham–Betti com-
parison theorem. For instance, this happens when the integral can be turned into the form
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R
Z(A)n[H]KH

!� for a closed differential form !� on the real manifold [G]K for suitableK,
and KH = K \ H(A).

Let � be a (unitary throughout the article) cuspidal automorphic representation of
G(A). For simplicity, we assume that there is a unique embedding � ,! A0(G) (in
many applications this is the case). We consider the restriction of PH to � ; this defines an
element in PH;� 2 HomH(A)(�; C).

Definition 2.2 (Jacquet). A cuspidal automorphic representation � is (globally) distin-
guished by H if the linear functional PH;� 2 HomH(A)(�; C) does not vanish, i.e., there
exists some � 2 � such that PH(�) ¤ 0.

It is also natural to consider a twisted version. Let � be a character of
Z(A)H(F )nH(A). We define the automorphic (H; �)-period integral PH;� in a similar
manner,

PH;�(�) =

Z
Z(A)n[H]

�(h)�(h) dh:

If � is distinguished by H, then HomH(A)(�; C) ¤ 0, and in particular,
HomH(Fv)(�v; C) ¤ 0 for every place v. We then say that �v is (locally) distinguished by
H(Fv) if HomH(Fv)(�v; C) ¤ 0. Very often the automorphic period integral PH behaves
nicely only when the pair (H;G) satisfies certain nice properties, such as

(i) the multiplicity-one property dimHomH(Fv)(�v; C) � 1 holds for all v, or the multi-
plicity can be described in a certain nice way, and

(ii) the locally distinguished representations can be characterized in terms of L-parame-
ters.

Jacquet and his school have studied the distinction for many instances (locally and
globally, cf. Jacquet [2005]). A large class of (H;G) called spherical pairs are expected
to have the above nice properties, according to the work of Sakellaridis [2008] and his
joint work with Sakellaridis and Venkatesh [2012].

2.1.3 Spherical pairs. Let (H;G) be over a field F (now arbitrary). The reductive
group G acts on G/H by left multiplication. If F is an algebraically closed field, we say
that the pair (H;G) is spherical if a Borel subgroup B of G has an open dense orbit on
G/H Sakellaridis [2008]. Over a general field F , the pair (H;G) is said to be spherical
if its base change to an algebraic closure of F is spherical. We then call H a spherical
subgroup of G.

Here are some examples.

(i) Whittaker pair (N;G), where G is quasi-split, and N is a maximal nilpotent subgroup.
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(ii) The pair (G;G � G) with the diagonal embedding.

(iii) Symmetric pair (H;G), where H is the fixed point locus of an involution � : G! G.
This constitutes a large class of spherical pairs, including

� the unitary periods of Jacquet andYe (cf. the surveyOffen [2009]), whereG = RF 0/F GLn,
and H is a unitary group attached to a Hermitian space with respect to a quadratic extension
F 0/F . This period is related to the quadratic base change for the general linear group.
� the Flicker–Rallis periods W. Zhang [2014a, §3.2], where G = RF 0/F GLn, and H =

GLn, for quadratic F 0/F . This period is related to the quadratic base change for the
unitary group.
� the linear periods of Friedberg–Jacquet Friedberg and Jacquet [1993], whereH = GLn/2�

GLn/2 embeds in G = GLn by

(a; d ) 7�! diag(a; d ):

(iv) the Rankin–Selberg pair (named after its connection to Rankin–Selberg convolution
L-functions), where G = GLn�1 � GLn, and H = GLn�1 ,! G with the embedding

g 7�! (g; diag(g; 1)):

(There are also spherical subgroups of GLm � GLn when jn � mj > 1 involving non-
reductive subgroups.)

(v) the Gan–Gross–Prasad pairs (SOn�1;SOn�1�SOn) and (Un�1;Un�1�Un); see Sec-
tion 2.2.2. They resemble the Rankin–Selberg pairs. (There are also spherical subgroups
of SOm � SOn and Um � Un when jn �mj > 1 involving non-reductive subgroups).

2.2 The global Gan–Gross–Prasad conjecture and the Ichino–Ikeda refinement.
Let F be a number field for the rest of this section.

2.2.1 Waldspurger formula. Let B be a quaternion algebra over F and let G = B�

(as an F -algebraic group). LetF 0/F be a quadratic extension of number fields and denote
by T the torus RF 0/F Gm. Let F 0 ,! B be an embedding of F -algebras, and T ,! G the
induced embedding ofF -algebraic groups. Then (T;G) is a spherical pair. InWaldspurger
[1985], Waldspurger studied the automorphic period integral PT;� (sometimes called the
toric period), and he proved an exact formula relating the square jPT;�j

2 to a certain central
L-value.

Below we will consider one generalization of Waldspurger’s formula to higher rank
groups, i.e., the global conjectures of Gan–Gross–Prasad and Ichino–Ikeda. For this re-
port, we implicitly assume the endoscopic classification of Arthur for orthogonal and uni-
tary groups.
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2.2.2 The global Gan–Gross–Prasad conjecture. Gan, Gross, and Prasad [2012] pro-
posed a series of precise conjectures regarding the local and global distinction for (H;G)
when G is a classical group (orthogonal, unitary and symplectic), extending the conjec-
tures of Gross and Prasad [1992, 1994] for orthogonal groups.

We recall their global conjectures in orthogonal and Hermitian cases. For simplicity,
we restrict to the case when the spherical subgroup is reductive. Let F be a number field,
and let F 0 = F in the orthogonal case and F 0 a quadratic extension of F in the Hermitian
case. LetWn be a non-degenerate orthogonal space or Hermitian space withF 0-dimension
n. Let Wn�1 � Wn be a non-degenerate subspace of codimension one. Let Gi be SO(Wi )

or U(Wi ) for i = n � 1; n, and ı : Gn�1 ,! Gn the induced embedding. Let

G = Gn�1 � Gn; H = Gn�1;(2-3)

with the “diagonal” embedding ∆ : H ,! G (i.e., the graph of ı). The pair (H;G) is
spherical and we call it the Gan–Gross–Prasad pair.

Let � = �n�1 � �n be a tempered cuspidal automorphic representation of G(A). The
central L-values of certain automorphic L-functions L(s; �; R) show up in their conjec-
ture, where R is a finite dimensional representation of the L-group LG, cf. Gan, Gross,
and Prasad [2012, §22]. We can describe the L-function as the Rankin–Selberg convolu-
tion of suitable automorphic representations on general linear groups. For i 2 fn� 1; ng,
let Πi;F 0 be the endoscopic functoriality transfer of �i from Gi to suitable GLN (AF 0):
in the Hermitian case, this is the base change of �i to GLi (AF 0); and in the orthogonal
case, this is the endoscopic transfer from Gi (A) to GLi (A) (resp. GLi�1(A)) if i is even
(resp. odd). Then the L-function L(s; �; R) can be defined more explicitly as the Rankin–
Selberg convolution L-function L(s;Πn�1;F 0 �Πn;F 0).

We are ready to state the global Gan–Gross–Prasad conjecture Gan, Gross, and Prasad
[ibid., §24].

Conjecture 2.3. Let � be a tempered cuspidal automorphic representation of G(A). The
following statements are equivalent.

(i) The automorphic H-period integral does not vanish on � , i.e., PH(�) ¤ 0 for some
� 2 � .

(ii) The space HomH(A)(�; C) ¤ 0 and the central value L( 1
2
; �; R) ¤ 0.

Remark 2.4. It is known that the pair (H(Fv);G(Fv)) satisfies the multiplicity one prop-
erty by Aizenbud, Gourevitch, Rallis, and Schiffmann [2010] for p-adic local fields, and
by Sun and C.-B. Zhu [2012] for archimedean local fields. The local conjectures of Gan,
Gross, and Prasad Gan, Gross, and Prasad [2012, §17] specify the member �v in a generic
Vogan L-packet (cf. Gan, Gross, and Prasad [ibid., §9-11]) with dimHomH(Fv)(�v; C) =
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1, in terms of local root numbers associated to the L-parameter. Their local conjectures
are mostly proved by Gan, Gross, Prasad, and Waldspurger [2012] and Mœglin and Wald-
spurger [2012] (p-adic orthogonal groups), andBeuzart-Plessis [2015a] andBeuzart-Plessis
[2015b] (unitary groups over p-adic and archimedean local fields). He [2017] gives an
alternative proof for discrete series representations of unitary groups over archimedean
local fields.

We have the following result.

Theorem 2.5. Let G = U(Wn�1) � U(Wn) for Hermitian spaces Wn�1 � Wn over a
quadratic extension F 0 of F . Let � be a tempered cuspidal automorphic representation
of G(A) such that there exist a non-archimedean place v of F split in F 0 where �v is
supercuspidal. Then Conjecture 2.3 holds.

This was proved in W. Zhang [2014b] under a further condition on the archimedean
places, which was later removed by Xue [n.d.]. The local condition above was due to
a simple version of the Jacquet–Rallis relative trace formula in W. Zhang [2014b], cf.
Section 5.2. Chaudouard and Zydor [2016] and Zydor [2015] have made progress towards
the full relative trace formula that should remove the local condition.

Remark 2.6. Ginzburg, Jiang, and Rallis [2004, 2009] have proved the direction
(i) H) (ii) of Conjecture 2.3 for both the orthogonal and Hermitian cases when the group
G is quasi-split and the representation � is (globally) generic (cf. Jiang and L. Zhang
[2015, Theorem 5.7].

2.2.3 Ichino–Ikeda refinement. For many applications, we would like to have a re-
fined version of the Gan–Gross–Prasad conjecture, analogous to the Waldspurger formula
for the toric period PT;� in Section 2.2.1. We recall the refinement of Ichino and Ikeda
[2010] (for orthogonal groups; later their idea was carried out for unitary groups by N.
Harris in Harris [2014]).

Let L(s; �;Ad) be the adjoint L-function (cf. Gan, Gross, and Prasad [2012, §7]). De-
note∆n = L(M _(1)) where M _ is the motive dual to the motive M associated to Gn by
Gross [1997]. It is a product of special values of Artin L-functions. We will be interested
in the following combination of L-functions,

L(s; �) = ∆n

L(s; �; R)

L(1; �;Ad)
:(2-4)

We also write L(s; �v) for the corresponding local factor at a place v.
Let �v be an irreducible tempered unitary representation of G(Fv) with an invari-

ant inner product h�; �iv . Ichino and Ikeda construct a canonical element in the space
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HomH(Fv)(�v; C) ˝ HomH(Fv)(�v; C) by integrating matrix coefficients: for �v; 'v 2

�v ,

ęv(�v; 'v) =

Z
H(Fv)

h�v(h)�v; 'viv dh:(2-5)

Ichino and Ikeda showed that the integral converges absolutely for all (tempered) � . In
fact, the convergence holds for any strongly tempered pair (H;G), cf. Sakellaridis and
Venkatesh [2012]. When �v is unramified and the vectors �v; 'v are fixed by a hyperspe-
cial compact open G(OFv

) such that h�v; 'viv = 1, we have

ęv(�v; 'v) = L(
1

2
; �v) � vol(H(OFv

)):

We normalize the local canonical invariant form:

˛v(�v; 'v) =
1

L( 1
2
; �v)

ęv(�v; 'v):(2-6)

We endow H(A) (resp. G(A)) with their Tamagawa measures and [H] (resp. [G]) with
the quotient measure by the counting measure on H(F ) (resp. G(F )). We choose the
Haar measure dh on H(A) and the measures dhv on H(Fv) such that dh =

Q
v dhv: Let

h�; 'iPet be the Petersson inner product of �; ' 2 � = ˝v�v , and choose the local inner
products h�; �iv such that h�; 'i =

Q
vh�v; 'viv for � = ˝v�v and ' = ˝v'v .

We can now state the Ichino–Ikeda conjecture Ichino and Ikeda [2010, Conj. 1.5 and
2.1] that refines the global Gan–Gross–Prasad Conjecture 2.3.

Conjecture 2.7. Let � be a tempered cuspidal automorphic representation ofG(A). Then
for � = ˝v�v 2 � ,

(2-7)
ˇ̌
PH(�)

ˇ̌2
= 2�ˇ� L(1/2; �)

Y
v

˛v(�v; �v);

where ˇ� is the rank of a finite elementary 2-group associated to the L-parameter of � .

Remark 2.8. If HomH(A)(�; C) = 0, both sides of (2-7) vanish.

Remark 2.9. In the orthogonal case and n = 3, the refined conjecture is exactly the same
as the formula of Waldspurger. When n = 4 the conjecture is proved by Ichino [2008].
Little is known in the higher rank case, cf. the survey Gan [2014].

In the Hermitian case and n = 2, the conjecture follows from Waldspurger’s formula
Harris [2014]. In general, we have the following result, due to the authorW. Zhang [2014a]
and Beuzart-Plessis [2016].
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Theorem 2.10. Let G = U(Wn�1) � U(Wn) for Hermitian spaces Wn�1 � Wn over a
quadratic extension F 0 of F . Let � be a tempered cuspidal automorphic representation
of G(A). Assume that

(i) there exists a non-archimedean place v of F split in F 0 such that �v is supercuspidal,
and

(ii) all archimedean places of F are split in F 0.

Then Conjecture 2.7 holds.

For some ingredients of the proof, see Section 5.2.3.

2.2.4 Reformulation in terms of spherical characters. Let � be a cuspidal automor-
phic representation of G(A). We define the global spherical character I� as the distribu-
tion on G(A)

I�(f ) :=
X

�2OB(�)

PH(�(f )�)PH(�); f 2 C1
c (G(A));(2-8)

where the sum runs over an orthonormal basis OB(�) of � (with respect to the Peters-
son inner product). Note that I� is an eigen-distribution for the spherical Hecke algebra
H S (G) away from a sufficiently large set S (including all bad primes), in the sense that
for all f = fS ˝ f S with f S 2 H S (G) and fS 2 C1

c (G(AS )),

I�(f ) = ��S

�
f S

�
I� (fS ˝ 1KS ) ;(2-9)

where ��S is the “eigen-character” of H S (G) associated to �S .
We define the local spherical character in terms of the local canonical invariant form

˛v in (2-6),

I�v
(fv) :=

X
�v2OB(�v)

˛v(�v(fv)�v; �v); fv 2 C1
c (G(Fv));(2-10)

where the sum runs over an orthonormal basis OB(�v) of �v .
In W. Zhang [2014a, Conj. 1.6] the author stated an alternative version of the Ichino–

Ikeda conjecture in terms of spherical characters.

Conjecture 2.11. Let � be a tempered cuspidal automorphic representation of G(A).
Then for all pure tensors f =

N
v fv 2 C1

c (G(A)),

I�(f ) = 2�ˇ� L(1/2; �)
Y

v

I�v
(fv):
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ByW. Zhang [2014a, Lemma 1.7], this conjecture is equivalent to Conjecture 2.7. This
new formulation is more suitable for the relative trace formula approach, cf. Section 5.2.3.
This also inspires us to state a version of the refined arithmetic Gan–Gross–Prasad conjec-
ture where the Ichino–Ikeda formulation does not seem to apply directly, cf. Section 3.2.3,
Conjecture 3.5.

3 Special cycles and L-derivatives

3.1 Special pairs of Shimura data and special cycles.

3.1.1 . To describe our set-up, we introduce the concept of a special pair of Shimura
data. Let S be the torus RC/RGm over R (i.e., we view C� as an R-group). Recall that
a Shimura datum

�
G; XG

�
consists of a reductive group G over Q, and a G(R)-conjugacy

class XG = fhGg of R-group homomorphisms hG : S! GR (sometimes called Shimura
homomorphisms) satisfying Deligne’s list of axioms Deligne [1971, p. 1.5]. In particular,
XG is a Hermitian symmetric domain.

Definition 3.1. A special pair of Shimura data is a homomorphismDeligne [ibid., p. 1.14]
between two Shimura data

ı :
�
H; XH

�
//
�
G; XG

�
such that

(i) the homomorphism ı : H! G is injective such that the pair (H;G) is spherical, and

(ii) the dimensions of XH and XG (as complex manifolds) satisfy

dimC XH =

�
dimC XG

2

�
:

In particular, we enhance a spherical pair (H;G) to a homomorphism of Shimura data
(H; XH)! (G; XG).

Remark 3.2. It seems an interesting question to enumerate special pairs of Shimura data.
In fact, we may consider the analog of special pairs of Shimura data in the context of local
Shimura data Rapoport and Viehmann [2014]. It seems more realistic to enumerate the
pairs in the local situation.

For a Shimura datum (G; XG)we have a projective system of Shimura varieties fShK(G)g,
indexed by compact open subgroups K � G(Af ), of smooth quasi-projective varieties
(for neat K) defined over a number field E—the reflex field of (G; XG).
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For a special pair of Shimura data (H; XH)! (G; XG), compact open subgroupsKH �

H(Af ) andKG � G(Af ) such thatKH � KG, we have a finite morphism (over the reflex
field of (H; XH))

ıKH;KG : ShKH(H) �! ShKG(G):

The cycle zKH;KG := ıKH;KG;�[ShKH(H)] on ShKG(G) will be called the special cycle (for
the level (KH; KG)). Very often we choose KH = KG \H(Af ) in which case we simply
denote the special cycle by zKG .

Remark 3.3. (i) Note that here our special cycles are different from those appearing in
S. S. Kudla, Rapoport, and Yang [2006] and S. Kudla and Rapoport [2014].

(ii) When dimC XG is even, the special cycles are in themiddle dimension. When dimC XG
is odd, the special cycles are just below the middle dimension, and we will say that they
are in the arithmetic middle dimension (in the sense that, once extending both Shimura
varieties to suitable integral models, we obtain cycles in the middle dimension).

The special cases in the middle dimension are very often related to the study of Tate
cycles and automorphic period integrals, e.g., in the pioneering example of Harder, Lang-
lands, and Rapoport [1986], and many of its generalizations.

Below we focus on the case where the special cycles are in the arithmetic middle di-
mension.

3.1.2 Gross–Zagier pair. In the case of the Gross–Zagier formula Gross and Zagier
[1986], one considers an embedding of an imaginary quadratic field F 0 into Mat2;Q (the
algebra of 2 � 2-matrices), and the induced embedding

H = RF 0/QGm ,! G = GL2;Q:

Note that HR ' C� as R-groups (upon a choice of embedding F 0 ,! C). This defines
hH : S! HR, and its composition with the embedding HR ! GR defines hG : S! GR.
We obtain a special pair (H; XH)! (G; XG), where

dimXG = 1; dimXH = 0:

In the general case, we replace F 0/Q by a CM extension F 0/F of a totally real number
field F , and replace Mat2;Q by a quaternion algebra B over F that is ramified at all but
one archimedean places of F . X. Yuan, S. Zhang, and the author proved Gross–Zagier
formula in this generality in Yuan, S.-W. Zhang, and W. Zhang [2013].
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3.1.3 Gan–Gross–Prasad pair. Let (H;G) be theGan–Gross–Prasad pair in Section 2.2.2,
but viewed as algebraic groups over Q (i.e., the pair (RF /QH;RF /QG)). The groups are
associated to an embedding Wn�1 � Wn of orthogonal or Hermitian spaces (with respect
to F 0/F ). Now we impose the following conditions.

(i) F is a totally real number field, and in the Hermitian case F 0/F is a CM (=totally
imaginary quadratic) extension.

(ii) For an archimedean place ' 2 Hom(F; R), denote by sgn'(W ) the signature of
W ˝F;' R as an orthogonal or Hermitian space over F 0 ˝F;' R. Then there exists a
distinguished real place '0 2 Hom(F; R) such that

sgn'(Wn) =

(
(2; n � 2); ' = '0

(0; n); ' 2 Hom(F; R) n f'0g

in the orthogonal case, and

sgn'(Wn) =

(
(1; n � 1); ' = '0

(0; n); ' 2 Hom(F; R) n f'0g

in the Hermitian case. In addition, the quotient Wn/Wn�1 is negative definite at every
' 2 Hom(F; R) (so the signature of Wn�1 is given by similar formulas).

Then Gan, Gross, and Prasad Gan, Gross, and Prasad [2012, §27] prescribe Shimura data
that enhance the embedding H ,! G to a homomorphism of Shimura data (H; XH) !

(G; XG), where the dimensions are(
dimXG = 2n � 5; dimXH = n � 3; in the orthogonal case,
dimXG = 2n � 3; dimXH = n � 2; in the Hermitian case:

3.2 The arithmetic Gan–Gross–Prasad conjecture.

3.2.1 Height pairings. LetX be a smooth proper variety over a number fieldE, and let
Chi (X) be the group of codimension-i algebraic cycles onX modulo rational equivalence.
We have a cycle class map

cli : Chi (X)Q �! H 2i (X);

where H 2i (X) is the Betti cohomology H �
�
X(C); C

�
: The kernel is the group of coho-

mologically trivial cycles, denoted by Chi (X)0.
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Conditional on some standard conjectures on algebraic cycles, there is a height pairing
defined by Beilinson and Bloch,

(3-1) ( , )BB : Chi (X)Q;0 � Chd+1�i (X)Q;0 �! R; d = dimX:

This is unconditionally defined when i = 1 (the Néron–Tate height), or when X is an
abelian variety Künnemann [2001]. In some situations, cf. Rapoport, Smithling, and W.
Zhang [2017b, §6.1], one can define the height pairing unconditionally in terms of the arith-
metic intersection theory of Arakelov and Gillet–Soulé Gillet and Soulé [1990, §4.2.10].
This is the case when there exists a smooth proper model X of X over OE (this is also
true for Deligne–Mumford (DM) stacks X and X).

3.2.2 The arithmetic Gan–Gross–Prasad conjecture. We consider the special cycle
in the Gan–Gross–Prasad setting Section 3.1.3, which we also call the arithmetic diagonal
cycleRapoport, Smithling, andW. Zhang [2017b]. Wewill state a version of the arithmetic
Gan–Gross–Prasad conjecture assuming some standard conjectures on algebraic cycles
(cf. Rapoport, Smithling, and W. Zhang [ibid., §6]), in particular, that we have the height
pairing (3-1).

For each K � G(Af ), one can construct “Hecke–Kunneth” projectors that project the
total cohomology of the Shimura variety ShK(G) (or its toroidal compactification) to the
odd-degree part (cf. Rapoport, Smithling, andW. Zhang [ibid., §6.2] in theHermitian case;
the same proof works in the orthogonal case). Then we apply this projector to define a
cohomologically trivial cycle zK;0 2 Chn�1

�
ShK(G)

�
0
(with C-coefficient). The classes

fzK;0gK�G(Af ) are independent of the choice of our projectors (cf. Rapoport, Smithling,
and W. Zhang [ibid., Remark 6.11]), and they form a projective system (with respect to
push-forward).

We form the colimit

Chn�1
�
Sh(G)

�
0
:= lim

�!
K�G(Af )

Chn�1
�
ShK(G)

�
0
:

The height pairing with fzK;0gK�G(Af ) defines a linear functional

PSh(H) : Chn�1
�
Sh(G)

�
0

// C :

This is the arithmetic version of the automorphic period integral in Section 2.1.2. The
group G(Af ) acts on the space Chn�1

�
Sh(G)

�
0
. For any representation �f of G(Af ),

let Chn�1
�
Sh(G)

�
0
[�f ] denote the �f -isotypic component of the Chow group

Chn�1
�
Sh(G)

�
0
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We are ready to state the arithmetic Gan–Gross–Prasad conjecture Gan, Gross, and
Prasad [2012, §27], parallel to Conjecture 2.3.

Conjecture 3.4. Let � be a tempered cuspidal automorphic representation of G(A), ap-
pearing in the cohomology H �(Sh(G)). The following statements are equivalent.

(i) The linear functional PSh(H) does not vanish on the �f -isotypic component

Chn�1
�
Sh(G)

�
0
[�f ]:

(ii) The space HomH(Af )(�f ; C) ¤ 0 and the first order derivative L0( 1
2
; �; R) ¤ 0.

In the orthogonal case with n � 4, and when the ambient Shimura variety is a curve
(n = 3), or a product of three curves (n = 4), the conjecture is unconditionally formulated.
The case n = 3 is proved by X. Yuan, S. Zhang, and the author in Yuan, S.-W. Zhang,
and W. Zhang [2013]; in fact we proved a refined version. When n = 4 and in the triple
product case (i.e., the Shimura variety ShK(G) is a product of three curves), X. Yuan, S.
Zhang, and the author formulated a refined version of the above conjecture and proved it
in some special cases, cf. Yuan, S.-W. Zhang, and W. Zhang [n.d.].

3.2.3 Reformulation in terms of spherical characters. In the Hermitian case, Rapo-
port, Smithling, and the author in Rapoport, Smithling, and W. Zhang [2017b] stated a
version of the arithmetic Gan–Gross–Prasad conjecture that does not depend on standard
conjectures on algebraic cycles.

In fact we work with a variant of the Shimura data defined by Gan, Gross, and Prasad
Gan, Gross, and Prasad [2012, §27]. We modify the groups RF /QG and RF /QH defined
previously

ZQ := GU1 =
˚

z 2 RF 0/QGm

ˇ̌
NmF 0/F (z) 2 Gm

	
;eH := G (U1 � U(Wn�1)) =

˚
(z; h) 2 ZQ

� GU(Wn�1)
ˇ̌
NmF 0/F (z) = c(h)

	
;eG := G (U1 � U(Wn�1) � U(Wn))

=
˚
(z; h; g) 2 ZQ

� GU(Wn�1) � GU(Wn)
ˇ̌
NmF 0/F (z) = c(h) = c(g)

	
;

where the symbol c denotes the unitary similitude factor. Then we have

(3-2) eH ∼ // ZQ � RF /QH ; eG ∼ // ZQ � RF /QG :

We then define natural Shimura data
�eH; fheHg� and �eG; fheGg�, cf. Rapoport, Smithling,

and W. Zhang [2017b, §3]. This variant has the nice feature that the Shimira varieties are
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of PEL type, i.e., the canonical models are related to moduli problems of abelian varieties
with polarizations, endomorphisms, and level structures, cf. Rapoport, Smithling, and W.
Zhang [ibid., §4–§5].

For suitable Hermitian spaces and a special level structure KıeG � eG(Af ), we can even
define smooth integral models (over the ring of integers of the reflex field) of the Shimura
variety ShKıeG(eG). For a general CM extensionF 0/F , it is rather involved to state this level
structure Rapoport, Smithling, and W. Zhang [ibid., Remark 6.19] and define the integral
models Rapoport, Smithling, and W. Zhang [ibid., §5]. For simplicity, from now on we
consider a special case, when F = Q and F 0 = F [$ ] is an imaginary quadratic field. We
further assume that the prime 2 is split in F 0. We choose $ 2 F 0 such that ($) � OF 0

is the product of all ramified prime ideals in OF 0 .
We first define an auxiliary moduli functor M(r;s) over SpecOF 0 for r + s = n (sim-

ilar to S. Kudla and Rapoport [2014, §13.1]). For a locally noetherian scheme S over
SpecOF 0 , M(r;s)(S) is the groupoid of triples (A; �; �) where

� (A; �) is an abelian scheme over S , with OF 0 -action � : OF 0 ! End(A) satisfying the
Kottwitz condition of signature (r; s), and

� � : A ! A_ is a polarization whose Rosati involution induces on OF 0 the non-trivial
Galois automorphism of F 0/F , and such that ker(�) is contained in A[�($)] of rank
#(OF 0/($))n (resp. #(OF 0/($))n�1) when n = r + s is even (resp. odd). In partic-
ular, we have ker(�) = A[�($)] if n = r + s is even.

Now we assume that (r; s) = (1; n� 1) or (n� 1; 1). We further impose the wedge condi-
tion and the (refined) spin condition, cf. Rapoport, Smithling, andW. Zhang [2017b, §4.4].
The functor is represented by a Deligne–Mumford stack again denoted by M(r;s). It is
smooth over SpecOF 0 , despite the ramification of the field extension F 0/Q, cf. Rapoport,
Smithling, and W. Zhang [ibid., §4.4]. Then we have an integral model of copies of the
Shimura variety ShKıeG(eG) defined by

MKıeG(eG) = M(0;1) �SpecOF 0 M(1;n�2) �SpecOF 0 M(1;n�1):

(In Rapoport, Smithling, and W. Zhang [ibid., §5.1] we do cut out the desired Shimura
variety with the help of a sign invariant. Here, implicitly we need to replace this space by
its toroidal compactification. )

We now describe the arithmetic diagonal cycle (or rather, its integral model) for the
level KıeH = KıeG \eH(Af ). When n is odd (so n � 1 is even), we define

MKıeH�eH� = M(0;1) �SpecOF 0 M(1;n�2);
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and we can define an embedding explicitly by “taking products” (one sees easily that the
conditions on the kernels of polarizations are satisfied):

(3-3) MKıeH�eH� // MKıeG�eG��
A0; �0; �0; A[; �[; �[

� � //
�
A0; �0; �0; A[; �[; �[; A[ � A0; �[ � �0; �[ � �0

�
:

When n is even, the situation is more subtle; see Rapoport, Smithling, and W. Zhang
[2017b, §4.4].

With the smooth integral model, we have an unconditionally defined height pairing
(3-1) on X = ShKıeG(eG). Now we again apply a suitable Hecke–Kunneth projector to the

cycle zK forK = KıeG, andwe obtain a cohomologically trivial cycle zK;0 2 Ch(ShKıeG(eG))0.
We define

Int(f ) =
�
R(f ) � zK;0; zK;0

�
BB

; f 2 H
�eG; KıeG� ;(3-4)

where R(f ) is the associated Hecke correspondence. Let H ramF 0 (eG) be the spherical
Hecke algebra away from the set ramF 0 of primes ramified in F 0/F .

Parallel to Conjecture 2.11, we can state an alternative version of the arithmetic Gan–
Gross–Prasad conjecture in terms of spherical characters for the special level KıeG.
Conjecture 3.5. There is a decomposition

Int(f ) =
X

�

Int�(f ); for all f 2 H
�eG; KıeG� ;

where the sum runs over all automorphic representations ofeG(A) that appear in the coho-
mology H �(SheG;KG

) and are trivial on ZQ(A), and Int� is an eigen-distribution for the
spherical Hecke algebra H ramF 0 (eG) with eigen-character �� ramF 0 in the sense of (2-9).

If such a representation � is tempered, then

Int�(f ) = 2�ˇ� L0(1/2; �)
Y

v<1

I�v
(fv):

Here the constant ˇ� is the same as in Section 2.2.4, and there is a natural extension of
the local spherical characters I�v

to the triple (eG;eH;eH).
Remark 3.6. Conjecture 3.5 can be viewed as a refined version of the arithmetic Gan–
Gross–Prasad Conjecture 3.4. Other refinements were also given in by the author W.
Zhang [2009] and independently by S. S. Zhang [2010]. Both of them rely on standard
conjectures on height pairings, and hence are conditional.
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4 Shtukas and higher Gross–Zagier formula

Now let F be the function field of a geometrically connected smooth proper curve X over
a finite field k = Fq . We may consider the analog of the special pair of Shimura data (cf.
3.1.1) in the context of Shtukas. Now there is much more freedom since we do not have
the restriction from the archimedean place. One may choose an r-tuple of coweights of G
to define G–Shtukas (with r-modifications), and the resulting moduli space lives over the
r-fold power

X r = X �Speck : : : �Speck X„ ƒ‚ …
r times

:

This feature is completely missing in the number field case, where we only have two
available options:

(i) when r = 0, the automorphic quotient [G]K plays an analogous role, cf. 2.1.1.

(ii) when r = 1, we have Shimura varieties ShKG(G) associated to a Shimura datum
(G; fhGg). These varieties live over SpecE for a number field E.

In Yun andW. Zhang [2017] Yun and the author studied a simplest case, i.e., the special
cycle on the moduli stack of rank two Shtukas with arbitrary number r of modifications.
We connect their intersection numbers to the r-th order derivative of certain L-functions.
We may view the result as an analog of Waldspurger’s formula (for r = 0) and the Gross–
Zagier formula (for r = 1).

4.1 TheHeegner–Drinfeld cycle. Let G = PGL2 and let Bun2 be the stack of rank two
vector bundles on X . The Picard stack PicX acts on Bun2 by tensoring the line bundle.
Then BunG = Bun2/PicX is the moduli stack of G-torsors over X .

Let r be an even integer. Let � 2 f˙gr be an r-tuple of signs such that exactly half of
them are equal to +. Let Hk�

2 be the Hecke stack, i.e., Hk�
2 (S) is the groupoid of data

(E0; � � � ; Er ; x1; � � � ; xr ; f1; � � � ; fr);

where the Ei ’s are vector bundles of rank two over X �S , the xi ’s are S -points of X , each
fi is a minimal upper (i.e., increasing) modification if �i = +, and minimal lower (i.e.,
decreasing) modification if �i = �, and the i -th modification takes place along the graph
of xi : S ! X ,

E0
f1 //___ E1

f2 //___ � � �
fr //___ Er :

The Picard stack PicX acts on Hk�
2 by simultaneously tensoring the line bundle. Define

Hk�
G = Hk�

2 /PicX . Recording Ei defines a projection pi : Hk�
G ! BunG.
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The moduli stack Sht�G of Drinfeld G-Shtukas of type � for the group G is defined by
the cartesian diagram

(4-1) Sht�G

��

// Hk�
G

(p0;pr )

��

BunG
(id;Fr)

// BunG � BunG

:

The stack Sht�G is a Deligne–Mumford stack over X r , and the natural morphism

�
�
G : Sht�G // X r

is smooth of relative dimension r .
Let � : X 0 ! X be a finite étale cover of degree 2 such that X 0 is also geometrically

connected. Denote by F 0 = k(X 0) the function field. Let T = (RF 0/F Gm)/Gm be the
non-split torus associated to the double cover X 0 of X . The stack Sht�T of T-Shtukas is
defined analogously, with the rank two bundles Ei replaced by line bundles Li on X 0, and
the points xi on X 0. Then we have a map

�
�
T : Sht�T // X 0r

which is a torsor under the finite Picard stack PicX 0(k)/PicX (k). In particular, Sht�T is a
proper smooth Deligne–Mumford stack over Spec k.

There is a natural finite morphism of stacks over X r , induced by the natural map �� :

PicX 0 ! Bun2,
Sht�T // Sht�G :

It induces a finite morphism

�� : Sht�T // Sht0�G := Sht�G �Xr X 0r :

This defines a class in the Chow group of proper cycles of dimension r withQ-coefficients,

Z
�
T := ��

� [Sht�T ] 2 Chc;r(Sht0�G )Q:(4-2)

In analogy to the Heegner cycle in the Gross–Zagier formula Gross and Zagier [1986]
and Yuan, S.-W. Zhang, and W. Zhang [2013] in the number field case, we call Z

�
T the

Heegner–Drinfeld cycle in our setting.

Remark 4.1. The construction of the Heegner–Drinfeld cycle extends naturally to higher
rank Shtukas (of rank n over X 0, respectively rank 2n over X ) of type � = (�1; � � � ; �r).
Here �i are coweights of GLn (or GL2n) given by (˙1; 0; � � � ; 0) 2 Zn (or Z2n).
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4.2 Taylor expansion of L-functions. Consider the middle degree cohomology with
compact support

V = H2r
c ((Sht0�G )˝k k; Q`)(r):

This vector space is endowed with the cup product

(�; �) : V � V // Q` :

Let ` be a prime number different from p. Let K =
Q

v G(OFv
), and let HQ`

=

H (G(A); K) be the spherical Hecke algebra withQ`-coefficients. For any maximal ideal
m � HQ`

, we define the generalized eigenspace of V with respect to m by

Vm = [i>0V [mi ]:

We also define a subspace VEis with the help of an Eisenstein ideal, cf Yun and W. Zhang
[2017, §4.1.2]. Then we prove that there is a spectral decomposition, i.e., an orthogonal
decomposition of HQ`

-modules,

(4-3) V = VEis ˚

 M
m

Vm

!
;

where m runs over a finite set of maximal ideals of HQ`
, and each Vm is an HQ`

-module
of finite dimension over Q` supported at the maximal ideal m; see Yun and W. Zhang
[ibid., Thm. 7.16] for a more precise statement.

Let � be an everywhere unramified cuspidal automorphic representation � of G(A).
The standard L-function L(�; s) is a polynomial of degree 4(g � 1) in q�s�1/2, where
g is the genus of X . Let �F 0 be the base change to F 0, and let L(�F 0 ; s) be its standard
L-function. Let L(�;Ad; s) be the adjoint L-function of � and define

(4-4) L(�F 0 ; s) = �(�F 0 ; s)�1/2 L(�F 0 ; s)

L(�;Ad; 1)
;

where the the square root is understood as �(�F 0 ; s)�1/2 = q4(g�1)(s�1/2): In particular,
we have a functional equation:

L(�F 0 ; s) = L(�F 0 ; 1 � s):

We consider the Taylor expansion at the central point s = 1/2:

L(�F 0 ; s) =
X
r�0

L(r)(�F 0 ; 1/2)
(s � 1/2)r

r !
;
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i.e.,

L(r)(�F 0 ; 1/2) =
d r

dsr

ˇ̌̌
s=0

�
�(�F 0 ; s)�1/2 L(�F 0 ; s)

L(�;Ad; 1)

�
:

If r is odd, by the functional equation we have

L(r)(�F 0 ; 1/2) = 0:

Now we fix an isomorphism C ' Q`. Let m = m� be the kernel of the associated
character �� : HQ`

! Q`, and rename Vm in (4-3) as V� . Then our main result in Yun
and W. Zhang [2017] relates the r-th Taylor coefficient to the self-intersection number of
the �-component of the Heegner–Drinfeld cycle �

�
� [Sht�T ].

Theorem 4.2. Let � be an everywhere unramified cuspidal automorphic representation
of G(A). Let [Sht�T ]� 2 V� be the projection of the cycle class of cl

�
�

�
� [Sht�T ]

�
2 V to

the direct summand V� under the decomposition (4-3). Then

1

2(log q)r
j!X jL

(r) (�F 0 ; 1/2) =
�
[Sht�T ]� ; [Sht�T ]�

�
;

where !X is the canonical divisor, and j!X j = q�2g+2.

Remark 4.3. Here we only consider étale double covers X 0/X , and everywhere unrami-
fied � (whence the L-function has nonzero Taylor coefficients in even degrees only). In
Yun and W. Zhang [n.d.], Yun and the author are extending the theorem above to the case
whenX 0/X is ramified at a finite setR and � has Iwahori levels atΣ such thatR\Σ = ¿.

4.3 Comparison with the conjecture of Birch and Swinnerton-Dyer. Let � be as
in Theorem 4.2, and �� the associated local system of rank two over the curve X by the
global Langlands correspondence. Let W 0

� = H 1
�
X 0 � k; ��

�
; a Q`-vector space with

the Frobenius endomorphism Fr. The L-function L(�F 0 ; s) is then given by

L(�F 0 ; s � 1/2) = det
�
1 � q�s Fr

ˇ̌
W 0

�

�
:

In particular, the dimension of the eigenspace W
0Fr=q

� is at most ords=1/2 L(�F 0 ; s) (the
conjectural semi-simplicity of Fr implies an equality). It is expected that, the complex
R�

�
G;!Q` on X r decomposes as a direct sum of HQ`

-modules

R�
�
G;!Q` =

� M
� cuspidal

�K
˝
�

�� � � � �� ��„ ƒ‚ …
r times

��M
“a direct summand”;

such that V� = Vm�
in (4-3) (for m� = ker(��)) corresponds to �K ˝W 0˝r

� : From now
on we assume this decomposition. Then the cohomology class of the Heegner–Drinfeld
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cycle defines an element Z
�
� 2 �K˝W 0˝r

� . One can show that Z
�
� is an eigen-vector for

the operator id˝ Fr˝r with eigenvalue qr . Then Theorem 4.2 shows that this class does
not vanish when r � ords=1/2 L(�F 0 ; s), provided that L(�F 0 ; s) is not a constant.

Conjecture 4.4. Let r = ords=1/2 L(�F 0 ; s). The class Z
�
� belongs to

�K
˝^

r
�
W 0Fr=q

�

�
:

Note that the generalization of the conjecture of Birch and Swinnerton-Dyer to function
fields by Artin and Tate predicts that dimW

0Fr=q
� = ords=1/2 L(�F 0 ; s):

We have a similar conjecture whenX 0/X is ramified at a finite setR and � has Iwahori
levels at Σ such that R \ Σ = ¿, cf. Yun and W. Zhang [ibid.]. In a forthcoming work,
Yun and the author plan to prove that

(i) Let r0 � 0 be the smallest integer r such that Z
�
� ¤ 0 for some � 2 f˙gr . Then

dimW
0Fr=q

� = r0, and the class Z
�
� gives a basis to the line �K ˝^r

�
W

0Fr=q
�

�
.

(ii) ords=1/2 L(�F 0 ; s) = 1 if and only if dimW
0Fr=q

� = 1. In particular, if
ords=1/2 L(�F 0 ; s) = 3, then dimW

0Fr=q
� = 3.

5 Relative trace formula

5.1 An overview of RTF. A natural tool to study automorphic period integrals is the
relative trace formula (RTF) introduced by Jacquet. For the reader’s convenience, we give
a very brief overview of the relative trace formula (cf. the survey articles Jacquet [2005],
Lapid [2006, 2010], and Offen [2009]).

We start with a triple (G;H1;H2) consisting of a reductive group G and two subgroups
H1;H2 defined over F . Known examples suggest that we may further assume that the
pairs (Hi ;G) are spherical (cf. Section 2.1.3), although this is not essential to our informal
discussion here.

To a test function f 2 C1
c (G(A)) we associate an automorphic kernel function,

Kf (x; y) :=
X


2G(F )

f (x�1
y); x; y 2 G(A);

which is invariant under G(F ) for both variables x and y. This defines an integral opera-
tor representing R(f ) for the action R of G(A) on the Hilbert space L2([G]). Therefore
the kernel function has a spectral decomposition, and the contribution of a cuspidal auto-
morphic representation � to the kernel function is given by

(5-1) K�;f (x; y) =
X

'2OB(�)

�
�(f )'

�
(x)'(y);
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where the sum runs over an orthonormal basis OB(�) of � (with respect to the Petersson
inner product).

Then we consider a linear functional on C1
c (G(A)),

(5-2) I(f ) =

Z
[H1]

Z
[H2]

Kf (h1; h2) dh1 dh2:

The spectral contribution (5-1) from an automorphic representation � is the (global) spher-
ical character (relative to (H1;H2)), denoted by I�(f ). Similar to (2-8), this is equal to

I�(f ) =
X

�2OB(�)

PH1
(�(f )�)PH2

(�):

Let H1;2 := H1�H2: Then H1;2 acts on G by (h1; h2) : 
 7! h�1
1 
h2. For certain nice

orbits 
 2 G(F )/H1;2(F ), we can define orbital integrals (relative to H1;2):

Orb(
; f ) := vol([H1;2;
 ])

Z
H1;2(A)/H1;2;
 (A)

f (h�1
1 
h2) dh1 dh2;(5-3)

where H1;2;
 denotes the stabilizer of 
 , and vol stands for “volume”.
The relative trace formula attached to the triple (G;H1;H2) is then the identity between

the spectral expansion and the geometric expansion of I(f ):X
�

I�(f ) + � � � =
X




Orb(
; f ) + � � � ;

where the � � � parts need more care (in fact saying so is oversimplifying). We will use
RTF(G;H1;H2) to stand for the above relative trace formula identity. This is only a very
coarse form, and depending on the triple (G;H1;H2) the identity may need further refine-
ments such as stabilization, as experience with the Arthur–Selberg trace formula suggests.

Remark 5.1. When we take the triple (H � H;∆H;∆H); where ∆H � H � H is the
diagonal embedding of H, the associated relative trace formula is essentially equivalent to
the Arthur–Selberg trace formula associated to H. Therefore the RTF can be viewed as a
generalization of the Arthur–Selberg trace formula.

In application to questions such as the Gan–Gross–Prasad conjecture, we need to com-
pare two RTFs that are close to each other,

RTF(G;H1;H2)  ! RTF(G0;H0
1;H0

2)
:

The comparison allows us to connect the automorphic periods on G to those on G0. There
are many successful examples, although it is a subtle question how to seek comparable
RTFs in general.
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5.2 Jacquet–Rallis RTFs.

5.2.1 . We recall the two RTFs constructed by Jacquet and Rallis [2011] to attack the
Gan–Gross–Prasad conjecture in the Hermitian case (cf. Section 2.2.2).

The first RTF deals with the automorphic H-period integral on G and is associated to
the triple (G;H;H). The second one is associated to the triple (G0;H0

1;H0
2) where

G0 = RF 0/F (GLn�1 � GLn);

and
H0

1 = RF 0/F GLn�1; H0
2 = GLn�1 � GLn;

where (H0
1;G0) is the Rankin–Selberg pair, and (H0

2;G0) the Flicker–Rallis pair, cf. Sec-
tion 2.1.3. Moreover it is necessary to insert a quadratic character of H0

2(A):

� = �n�1;n : (hn�1; hn) 2 H0
2(A) 7�! �n�2

F 0/F (det(hn�1))�
n�1
F 0/F (det(hn));

where �F 0/F : F �nA� ! f˙1g is the quadratic character associated to F 0/F by class
field theory.

For the later application to the arithmetic Gan–Gross–Prasad conjecture, we introduce
(cf. W. Zhang [2012b, §3.1]) the global distribution on G0(A) parameterized by a complex
variable s 2 C,

J(f 0; s) =

Z
[H0

1]

Z
[H0

2]

Kf 0(h1; h2)
ˇ̌
det(h1)

ˇ̌s
�(h2) dh1 dh2; f 0

2 C1
c (G0(A)):

(5-4)

We set

J(f 0) = J(f 0; 0):

Remark 5.2. Due to the presence of the Flicker–Rallis pair (H0
2;G0), the cuspidal part of

the spectral side in RTF(G0;H0
1;H0

2)
only contains those automorphic representations that are

in the image of the quadratic base change from unitary groups. This gives the hope that
the spectral sides of the two RTFs should match.

Remark 5.3. In Gan, Gross, and Prasad [2012], Gan, Gross, and Prasad also made global
conjectures for SOn�SOm andUn�Um when jn�mj > 1. Towards them in the Hermitian
cases, Y. Liu in Liu [2014, 2016] has generalized the construction of Jacquet and Rallis.
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5.2.2 Geometric terms: orbital integrals. In the comparison of geometric sides of
two RTFs, we need to match orbits and orbital integrals. We review the comparison in the
Jacquet–Rallis case.

We call an element 
 2 G(F ) regular semi-simple (relative to the action of H1;2 =

H1�H2) if its orbit under H1;2 is Zariski closed and its stabilizer is of minimal dimension.
The regular semi-simple orbits will be the nice ones for the study of orbital integrals.
For the triples (G;H;H) and (G0;H0

1;H0
2) in the Jacquet–Rallis RTFs, the condition is

equivalent to 
 having Zariski closed orbit and trivial stabilizer. In particular, for such 


the orbital integral (5-3) simplifies. We denote by G(F )rs (resp. G0(F )rs) the set of regular
semi-simple elements in G(F ) (resp. G0(F )). We denote by

�
G(F )rs

�
and

�
G0(F )rs

�
the

respective sets of orbits.
Depending on the pair of Hermitian spaces W := (Wn�1; Wn), we denote the triple

(G;H;H) by (GW ;HW ;HW ). We consider the equivalence relation (Wn�1; Wn) ∼ (W 0
n�1; W 0

n)

if there is a scalar � 2 F � such that we have isometries W 0
n�1 '

�Wn�1 and W 0
n '

�Wn,
where the left superscript changes the Hermitian form by a multiple �. There is a natural
bijection (cf. W. Zhang [2012b, §2], Rapoport, Smithling, and W. Zhang [2017a, §2])a

W

�
GW (F )rs

� ∼
�!

�
G0(F )rs

�
;(5-5)

where the left hand side runs over all pairs W = (Wn�1; Wn) up to equivalence. This
bijection holds for any quadratic extension of fields F 0/F of characteristic not equal to 2.

Now we let F 0/F be a quadratic extension of local fields. For g 2 GW (F )rs and
f 2 C1

c (GW (F )) we introduce the orbital integral

Orb(g; f ) =

Z
H1;2(F )

f (h�1
1 gh2) dh1 dh2:(5-6)

For 
 2 G0(F )rs, f 0 2 C1
c (G0(F )), and s 2 C, we introduce the (weighted) orbital

integral

Orb(
; f 0; s) =

Z
H0

1;2(F )

f (h�1
1 
h2)

ˇ̌
det(h1)

ˇ̌s
�(h2) dh1 dh2:(5-7)

We set

(5-8) Orb(
; f 0) := Orb(
; f 0; 0) and @Orb(
; f 0) :=
d

ds

ˇ̌̌
s=0

Orb(
; f 0; s):

Definition 5.4. (i) We say that g 2 GW (F )rs and 
 2 G0(F )rs match if their orbits corre-
spond to each other under (5-5).
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(ii) Dually, we say that a function f 0 2 C1
c (G0(F )) and a tuple ffW 2 C1

c (GW (F ))g

indexed by W (up to equivalence) are transfers of each other if for each W and each
g 2 GW (F )rs,

Orb(g; fW ) = !(
)Orb(
; f 0)

whenever 
 2 G0(F )rs matches g. Here !(
) is a certain explicit transfer factor W. Zhang
[2014b] and Rapoport, Smithling, and W. Zhang [2018].

(iii) We say that a component fW in the tuple is a transfer of f 0 if the remaining compo-
nents of the tuple are all zero.

In W. Zhang [2014b] we prove the following.

Theorem 5.5. LetF 0/F be a quadratic extension ofp-adic local fields (then there are two
equivalence classes of pairs of Hermitian spaces denoted byW; W [ respectively). Then for
any f 0 2 C1

c (G0(F )) there exists a transfer (f0; f1) 2 C1
c (GW (F )) � C1

c (GW [(F )),
and for any pair (f0; f1) 2 C1

c (GW (F )) � C1
c (GW [(F )) there exists a transfer f 0 2

C1
c (G0(F )).

This was conjectured by Jacquet and Rallis [2011]. For archimedean local fieldsF 0/F ,
an “approximate transfer” is proved by Xue [n.d.].

5.2.3 Spectral terms: spherical characters. We are now back to F being a number
field. For the triple (G;H1;H2) we have defined the global (resp. local) spherical charac-
ters by (2-8) (resp. by (2-10)). For the triple (G0;H0

1;H0
2), we define the global spherical

character associated to a cuspidal automorphic representation Π of G0(A),

JΠ(f
0; s) =

X
�2OB(Π)

PH0
1;s(Π(f )�)PH0

2;�(�); f 0
2 C1

c (G0(A)); s 2 C;

where PH0
1;s is the automorphic period integral PH0

1;�s
for the character �s of H1(A) 2

GLn�1(AF 0) defined by h 7! j det(h)jsF 0 . We set JΠ(f
0) = JΠ(f

0; 0). We expect to
have a global character identity W. Zhang [2014a, Conj. 4.2]:

Conjecture 5.6. Let � be a tempered cuspidal automorphic representation of G(A) such
that HomH(A)(�; C) ¤ 0. Let Π = BC(�) be its base change which we assume is
cuspidal. Then for f 0 2 C1

c (G0(A)) and any transfer f 2 C1
c (G(A)),

I�(f ) = 2�ˇ� JΠ(f
0):

Remark 5.7. In fact here we have ˇ� = 2 due to the cuspidality of Π = BC(�).
Conjecture 5.6 is known when �v is supercuspidal at a place v split in F 0/F , cf. W. Zhang
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[2014b]. In general it should follow from a full spectral decomposition of the Jacquet–
Rallis relative trace formulas, and perhaps along the way one will discover the correct
definition of the global spherical character JΠ(f

0) when Π = BC(�) is not cuspidal.

In W. Zhang [2014a, §3.4], we defined a local spherical character JΠv
(f 0

v ; s) for any
tempered Πv (depending on some auxiliary data). Then, for pure tensors f 0 = ˝vf 0

v , the
global spherical character decomposes naturally as an Euler product for Π = BC(�),

JΠ(f
0; s) = 2�ˇ� L(s + 1/2; �)

Y
v

JΠv
(f 0

v ; s):(5-9)

We set JΠv
(f 0

v) = JΠv
(f 0

v ; 0). We expect to have a local character identity W. Zhang
[ibid., Conj. 4.4]:

Conjecture 5.8. Let �v be a tempered representation of G(Fv) such that
HomH(Fv)(�; C) ¤ 0. LetΠv = BC(�v) be its base change. Then for f 0

v 2 C1
c (G0(Fv))

and any transfer fv 2 C1
c (G(Fv)),

JΠv
(f 0

v) = ��v
I�v

(fv);

where ��v
is an explicit constant.

By a theorem ofHarish-Chandra, the character of an admissible representation of G(Fv)

for any reductive group G over a p-adic local field Fv admits a local expansion around the
identity of G(Fv) as a sum of Fourier transforms of unipotent orbital integrals. We have
a partial analog for the local spherical character JΠv

.

Theorem 5.9. Let v be a non-archimedean place. Let Πv = BC(�v) be the base change
of a tempered representation �v of G(Fv). For any small neighborhood of the identity
element of G0(Fv), there exists an admissible (in the sense of W. Zhang [ibid., §8.1])
function f 0

v 2 C1
c (G0(Fv)) such that

JΠv
(f 0

v) = cΠ �b�reg(f
0

v);

whereb�reg is the Fourier transform of the (relative) regular unipotent orbital integral, cf.
W. Zhang [ibid., §6.3, §8.2], and cΠv

is an explicit constant depending on Πv .

We have the following.

Theorem 5.10. Conjecture 5.8 holds if v is split in F 0/F , or Fv is a p-adic local field.

The case of a split v is rather easy W. Zhang [ibid.]. The case of a supercuspidal
representation �v was proved in W. Zhang [ibid.]. For the general p-adic case, the result
is proved by Beuzart-Plessis in Beuzart-Plessis [2016] using Theorem 5.9, a local relative
trace formula for Lie algebras in W. Zhang [2014b, §4.1], and a group analog in Beuzart-
Plessis [2015b].
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Remark 5.11. IfΠ = BC(�) is cuspidal, then Conjecture 5.6 and Conjecture 5.8 together
imply Conjecture 2.11.

5.3 Arithmetic RTF. In W. Zhang [2012b], the author introduced a relative trace for-
mula approach to the arithmetic Gan–Gross–Prasad conjecture. Let

@J(f 0) =
d

ds

ˇ̌̌
s=0

J(f 0; s);

cf. (5-4). Then the idea is that, in analogy to the usual comparison of two RTFs, we hope to
compare the height pairing Int(f ) in (3-4) and @J(f 0) for f 2 H (eG; KıeG) and ay transfer
f 0 2 C1

c (G0(A)).

Remark 5.12. Here we note that there is no archimedean component in the test function
f on the unitary group side. Implicitly we demand that f 0 = ˝vf 0

v 2 C1
c (G0(A)), where

f 0
1 is aGaussian test function in the sense of Rapoport, Smithling, andW. Zhang [2017b,
§7.3] (equivalently, we complete f by tensoring a distinguished archimedean component
f1 as in W. Zhang [2012b, §3.2, (3.5)]). We also note that, by the isomorphisms (3-2),
the orbits oneG(F )rs are in natural bijection with those on G(F )rs, and all geometric terms
related to G in Section 5.2.2 transport to eG. We will not repeat the definitions.

To be able to work in a greater generality than the case the height pairing (3-1) is
defined, in Rapoport, Smithling, and W. Zhang [2017b], Rapoport, Smithling, and the
author turn to the arithmetic intersection theory ( , )GS of Arakelov and Gillet–Soulé Gillet
and Soulé [1990, §4.2.10] on the arithmetic Chow groupcCh�(X) of a regular proper flat
scheme (or DM stack) X over Spec(OF 0). For certain more general levels KeG � KıeG, we
construct regular integral models MKeG(eG) of ShKeG(eG) (essentially by adding Drinfeld
level structures at split primes to the moduli space MKıeG(eG), cf. Rapoport, Smithling, and
W. Zhang [2017b, §4, §5]). We enhance the arithmetic diagonal cycle to an elementbzK incChn�1(MKeG(eG)), and we extend the actionR of a smaller Hecke algebraH spl(eG; KeG) �
H (eG; KeG) on the Chow group of ShKeG(eG) to an action bR on the arithmetic Chow group.
We define

Int(f ) =
�bR(f )bzK ;bzK

�
GS

; f 2 H spl(eG; KeG):(5-10)

We can then state an arithmetic intersection conjecture for the arithmetic diagonal cycle
on the global integral model MKeG(eG) Rapoport, Smithling, and W. Zhang [ibid., §8.1,
§8.2].
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Conjecture 5.13. Let f 2 H spl(eG; KeG), and let f 0 2 C1
c (G0(A)) be a transfer of f .

Then
Int(f ) = �@J(f 0) � J(f 0

corr);

where f 0
corr 2 C1

c (G0(A)) is a correction function. Furthermore, we may choose f 0 such
that f 0

corr = 0:

Remark 5.14. A deeper understanding of the local spherical character JΠv
(f 0

v ; s) (or
rather, its derivative) in (5-9), together with the spectral decomposition of J(f 0; s), should
allow us to deduce Conjecture 3.5 from Conjecture 5.13. We hope to return to this point
in the future.

The comparison can be localized for a (large) class of test functions f and f 0. Let
f = ˝vfv be a pure tensor such that there is a place u0 of F where fu0

has support in the
regular semisimple locus eG(Fu0

)rs. Then the cycles bR(f )bzK andbzK do not meet in the
generic fiber ShKeG(eG). The arithmetic intersection pairing then localizes as a sum over
all places w of F 0 (note that F = Q)

Int(f ) =
X

w

Intw(f ):

Here for a non-archimedean place w, the local intersection pairing Intw(f ) is defined
through the Euler–Poincaré characteristic of a derived tensor product on MKeG(eG) ˝OF

OF;w , cf. Gillet and Soulé [1990, 4.3.8(iv)].
Similarly, let f 0 = ˝vf 0

v be a pure tensor such that there is a place u0 of F where f 0
u0

has support in the regular semi-simple locus G0(Fu0
)rs. Then we have a decomposition

J(f 0; s) =
X


2[G0(F )rs]

Orb(
; f 0; s);

where each term is a product of local orbital integrals (5-6),

Orb(
; f 0; s) =
Y

v

Orb(
; f 0
v ; s):

The first derivative @J(f 0) then localizes as a sum over places v of F ,

@J(f 0) =
X

v

@Jv(f
0);

where the summand @Jv(f
0) takes the derivative of the local orbital integral (cf. (5-8)) at

the place v,
@Jv(f

0) =
X


2[G0(F )rs]

@Orb(
; f 0
v) �

Y
u¤v

Orb(
; f 0
u):
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It is then natural to expect a place-by-place comparison between

Intv(f ) =
X
wjv

Intw(f ) and @Jv(f
0)

If a place v0 of F splits into two places w0; w0 of F 0 (and under the above regularity
condition on the support of f and of f 0), we have Rapoport, Smithling, and W. Zhang
[2017b, Thm. 1.3]

Intw0
(f ) = Intw0

(f ) = @Jv0
(f 0) = 0:

For a place w0 of F 0 above a non-split place v0 of F = Q, we have a smooth inte-
gral model MKeG(eG)˝OF

OF;w0
when KeG;v0

is a hyperspecial compact open subgroupeG(OF;v0
) (resp. a special parahoric subgroup KıeG;v0

) for inert v0 (resp. ramified v0).
For an inert v0, the comparison between Intv0

(f ) and @Jv0
(f 0) is then reduced to

a local conjecture that we will consider in the next section, the arithmetic fundamental
lemma conjecture. Let W [[v0] be the pair of nearby Hermitian spaces, i.e., the Hermitian
space (with respect to F 0/F ) that is totally negative at archimedean places, and is not
equivalent to W at v0. Let eG[[v0] be the corresponding group, an inner form of eG.
Theorem 5.15. Let f = ˝vfv be a pure tensor such that

(i) fv0
= 1eG(OF;v0 )

, and

(ii) there is a placeu0 ofF wherefu0
has support in the regular semisimple locuseG(Fv0

)rs.

Then

Intv0
(f ) =

X
g2eG[[v0](F )rs

Intv0
(g) �

Y
u¤v0

Orb(g; fu);(5-11)

where the local intersection number Intv0
(g) is defined by (6-2) in the next section.

For F = Q, this is W. Zhang [2012b, Thm. 3.9]. The general case is established in
(the proof of) Rapoport, Smithling, and W. Zhang [2017b, Thm. 8.15].

The expansion (5-11) resembles the geometric side of a usual RTF, and hence we call
the expansion (the geometric side of) an arithmetic RTF.

Finally, for a ramified place v0, the analogous question is reduced to the local arith-
metic transfer conjecture formulated by Rapoport, Smithling and the author in Rapoport,
Smithling, and W. Zhang [2017a] and Rapoport, Smithling, and W. Zhang [2018]. We
have a result similar to Theorem 5.15, Rapoport, Smithling, and W. Zhang [2017b, Thm.
8.15].
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5.4 Geometric RTF (over function fields). In the last part of this section, let us briefly
recall the strategy to prove the higher Gross–Zagier formula in Section 4 over function
fields.

To continue from Section 4, let f be an element in the spherical Hecke algebraH (with
Q-coefficient). Let

Intr(f ) :=
�
R(f ) � ��

� [Sht�T ]; ��
� [Sht�T ]

�
Sht0�

G

be the intersection number of the Heegner–Drinfeld cycle with its translation by a Hecke
correspondence R(f ). Here the right hand side does not depend on � but only on the
number r of modifications of the Shtukas.

Next, consider the triple (G0;H0
1;H0

2) where G0 = G = PGL2 and H0
1 = H0

2 are the
diagonal torus A of PGL2. Similarly to 5-4, we define a distribution by a (regularized)
integral

J(f; s) =

Z
[H0

1]

Z
[H0

2]

Kf (h1; h2) jh1h2j
s �(h2) dh1 dh2;

where, for h = diag(a; d ) 2 A(A), we write
ˇ̌
h
ˇ̌
=
ˇ̌
a/d

ˇ̌
and �(h) = �F 0/F (a/d ): Let

Jr(f ) =
d r

dsr

ˇ̌̌
s=0

J(f; s):

Then Yun and the author proved in Yun andW. Zhang [2017] the following key identity,
which we may call a geometric RTF, in contrast to the arithmetic intersection numbers in
the number field case.

Theorem 5.16. Let f 2 H . Then

(5-12) Ir(f ) = (log q)�rJr(f ):

In this situation of geometric intersection, our proof of the key identity (5-12) is entirely
global, in the sense that we do not reduce the identity to the comparison of local orbital
integrals. In fact, our proof of (5-12) gives a term-by-term identity of the orbital integrals.
This strategy is explained in the forthcoming work of Yun on the function field analog of
the arithmetic fundamental lemma Yun [n.d.(b)].

For a more detailed exposition on the geometric construction related to the proof of
Equation (5-12), see Yun’s survey Yun [n.d.(a)].

6 The arithmetic fundamental lemma conjecture

We now consider the local version of special cycles on Shimura varieties, i.e., (formal)
cycles on Rapoport–Zink formal moduli spaces of p-divisible groups. The theorem of
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Rapoport–Zink on the uniformization of Shimura varieties Rapoport and Zink [1996] re-
lates the local cycles to the global ones, and this allows us to relate the local height of the
global cycles (the semi-global situation in Rapoport, Smithling, and W. Zhang [2017b])
to intersection numbers of local cycles, cf. Theorem 5.15.

6.1 The fundamental lemma of Jacquet and Rallis, and a theorem of Yun. Now let
F be a finite extension ofQp for an odd prime p. LetOF be the ring of integers in F , and
denote by q the number of elements in the residue field of OF . Let F̆ be the completion
of a maximal unramified extension of F . Let F 0/F be an unramified quadratic extension.

Recall from Section 5.2.2 that there are two equivalence classes of pairs of Hermitian
spaces, denoted by W; W [ respectively, such that, for W = (Wn�1; Wn), both Wn�1 and
Wn contain self-dual lattices. We rename the respective groups as G and G[ respectively,
and we rewrite the bijection of orbits (5-5):�

G(F )rs
�
t
�
G[(F )rs

� ∼
�!

�
G0(F )rs

�
:(6-1)

Let G(OF ) be the hyperspecial compact open subgroup of G(F ) defined by a self-dual
lattice.

Theorem 6.1 (Fundamental Lemma (FL)). For a prime p sufficiently large, the charac-
teristic function 1G0(OF0 )

2 C1
c (G0(F )) transfers to the pair of functions (1G(OF ); 0) 2

C1
c (G(F )) � C1

c (G[(F )).

Jacquet and Rallis conjecture that the same is always true for any odd p Jacquet and
Rallis [2011]. Yun proved the equal characteristic analog of their conjecture for p > n;
Gordon deduced the p-adic case for p large (but unspecified), cf. Yun [2011].

6.2 The arithmetic fundamental lemma conjecture. Next, we let Nn be the unitary
Rapoport–Zink formal moduli space over SpfOF̆ parameterizing Hermitian supersingu-
lar formal OF 0 -modules of signature (1; n � 1), cf. S. Kudla and Rapoport [2011] and
Rapoport, Smithling, and W. Zhang [2018]. Let Nn�1;n = Nn�1 �SpfO

F̆
Nn. Then

Nn�1;n admits an action by G[(F ).
There is a natural closed embedding ı : Nn�1 ! Nn (a local analog of the closed

embedding (3-3)). Let
∆: Nn�1 �! Nn�1;n

be the graph morphism of ı. We denote by ∆Nn�1
the image of ∆. For g 2 G[(F )rs, we

consider the intersection product on Nn�1;n of∆Nn�1
with its translate g∆Nn�1

, defined
through the derived tensor product of the structure sheaves,

(6-2) Int(g) := (∆Nn�1
; g �∆Nn�1

)Nn�1;n
:= �

�
Nn�1;n; O∆Nn�1

˝
L Og �∆Nn�1

�
:
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We have defined the derivative of the orbital integral (5-8).

Conjecture 6.2 (Arithmetic Fundamental Lemma (AFL), W. Zhang [2012b]). Let 
 2

G0(F )rs match an element g 2 G[(F )rs. Then

!(
) @Orb
�

; 1G0(OF )

�
= �2 Int(g) � log q:

Remark 6.3. (i) We may interpret the orbital integrals in terms of “counting lattices”, cf.
Rapoport, Terstiege, and W. Zhang [2013, §7].

(ii) See Rapoport, Smithling, and W. Zhang [2018, §4] for some other equivalent formu-
lations of the AFL conjecture.

Theorem 6.4. (i) The AFL Conjecture 6.2 holds when n = 2; 3.

(ii)When p � n
2
+ 1, the AFL Conjecture 6.2 holds for minuscule elements g 2 G[(F )

in the sense of Rapoport, Terstiege, and W. Zhang [2013].

Part (i) was proved in W. Zhang [2012b]; a simplified proof when p � 5 is given by
Mihatsch in Mihatsch [2017]. Part (ii) was proved by Rapoport, Terstiege, and the author
in Rapoport, Terstiege, and W. Zhang [2013]; a simplified proof is given by Li and Zhu
in Li and Y. Zhu [2017]. Mihatsch in Mihatsch [2016] proved more cases of the AFL for
arbitrary n but under restrictive conditions on g.

Remark 6.5. (i) Yun has announced a proof of the function field analog of the AFL con-
jecture Yun [n.d.(a),(b)].

(ii) Let F 0/F be a ramified quadratic extension of p-adic fields. In Rapoport, Smithling,
and W. Zhang [2017a] and Rapoport, Smithling, and W. Zhang [2018], Rapoport, Smith-
ling, and the author propose an arithmetic transfer (AT) conjecture. This conjecture can
be viewed as the counterpart of the existence of transfer (cf. Theorem 5.5) in the arithmetic
context over a p-adic field. We proved the conjecture for n = 2; 3.

(iii) The analogous question on archimedean local fields remains a challenge, involving
Green currents in the complex geometric setting and relative orbital integrals on real Lie
groups.
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RESOLUTION OF SINGULARITIES OF COMPLEX
ALGEBRAIC VARIETIES AND THEIR FAMILIES
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Abstract

We discuss Hironaka’s theorem on resolution of singularities in charactetistic 0 as
well as more recent progress, both on simplifying and improving Hironaka’s method
of proof and on new results and directions on families of varieties, leading to joint
work on toroidal orbifolds with Michael Temkin and Jarosław Włodarczyk.
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1 Introduction

1.1 Varieties and singularities. An affine complex algebraic variety X is the zero set
in Cn of a collection of polynomials fi 2 C[x1; : : : ; xn], and a general complex algebraic
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variety is patched together from such affine varieties much as a differentiable manifold is
patched together from euclidean balls.

But unlike differentiable manifolds, which locally are all the same (given the dimen-
sion), a complex algebraic variety can have an interesting structure locally at a point
p 2 X : the point is regular or simple if the fi form the defining equations of a differ-
entiable submanifold, and otherwise it is singular, hiding a whole world within it. In the
case of one equation, a point p = (a1; : : : ; an) is regular precisely when the defining
equation f1 has a non-vanishing derivative at p, and in general one needs to look at the
Jacobian matrix of the defining equations, just like when studying submanifolds. The set
of regular points X reg � X is always open. The variety X is itself regular if X reg = X .1

1.2 What is resolution of singularities? A look at a few singularities2 quickly reveals
that they are quite beautiful, but complicated - really they are not simple. How can we
understand them? Resolution of singularities provides one approach. For simplicity we
restrict to irreducible varieties, namely those which cannot be written as a union X1 [ X2

of two closed nonempty subvarieties. A resolution of singularities of a variety X is a
surgery operation, a morphism X 0 ! X which takes out the singular points and replaces
them by regular points. Formally:

Definition 1.2.1. A resolution of singularities of an irreducible variety X is a proper mor-
phism f : X 0 ! X , where X 0 is regular and irreducible, and f restricts to an isomor-
phism f �1(X reg)�!X reg .

The irreducibility assumption is not serious — for instance one can resolve each irre-
ducible component separately.

I need to explain the terms. A morphism f : X 0 ! X is a mapping which locally on
affine patches is defined by polynomials of the coordinates. It is an isomorphism if it is
invertible as such. It is proper if it is proper as a mapping of topological spaces in the
usual Euclidean topology: the image of a compact subset is compact. This is a way to say
that we are missing no points: it would be cheating - and useless - to define X 0 to be just
X reg : the idea is to parametrize X in a way that reveals the depths of its singularities -
not to erase them! One way X 0 ! X can be guaranteed to be proper is if it is projective,
namely X 0 embeds as a closed subvariety of X � P n for some n, where P n stands for the
complex projective space.

1.3 Hironaka’s theorem. In 1964 Hironaka published the following, see Hironaka
[1964, Main Theorem 1]:

1I am taking the scheme theoretic approach here: the vanishing locus of f (x) = x2 is singular.
2I cannot improve on these:

https://imaginary.org/gallery/herwig-hauser-classic

https://imaginary.org/gallery/herwig-hauser-classic
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Theorem 1.3.1 (Hironaka). Let X be a complex algebraic variety. Then there is a projec-
tive resolution of singularities X 0 ! X .

Hironaka’s theorem is an end of an era, but also a beginning: in the half century since,
people, including Hironaka, have continued to work with renewed vigor on resolution of
singularities. Why is that?

I see two reasons. One reason can be seen in Grothendieck’s address, Grothendieck
[1971]:

Du point de vue technique, la démonstration du théorème de Hironaka con-
stitue une prouesse peu commune. Le rapporteur avoue n’en avoir pas fait
entièrement le tour. Aboutissement d’années d’efforts concentrés, elle est
sans doute l’une des démonstrations les plus «dures» et les plus monumen-
tales qu’on connaisse en mathématique.

Consider, for instance, that Hironaka developed much of the theory now known as Gröb-
ner bases (at roughly the same time as Buchberger [1965]) for the purpose of resolution
of singularities!

There has been amonumental effort indeed to simplify Hironaka’s proof, and to break it
down to more basic elements, so that the techniques involved come naturally and the ideas
flow without undue effort. I think this has been a resounding success and Grothendieck
himself would have approved of the current versions of the proof - he certainly would no
longer have trouble going through it. In my exposition I attempt to broadly describe the
results of this effort.

A few points in this effort are marked by the following:

• The theory of maximal contact: Giraud [1974] and Aroca, Hironaka, and Vicente
[1977].

• Constructive resolution using an invariant: Villamayor [1989], Bierstone and Mil-
man [1997], and Encinas and Villamayor [1998].

• The optimal version of canonical resolution: Bierstone and Milman [1997].

• Simplification using order of ideal: Encinas and Villamayor [2003].

• Functoriality as a proof technique and guiding principle: Włodarczyk [2005] and
Bierstone and Milman [2008].

• Dissemination to the masses: Cutkosky [2004], Hauser [2006], and Kollár [2007].

The other reason is generalizations and refinements of the resolution theorem. First
and foremost, algebraic geometers want to resolve singularities in positive and mixed
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characteristics, as the implications would be immense. In addition, one is interested in
simplifying families of varieties, simplifying algebraic differential equations, making the
resolution process as effective and as canonical as possible, and preserving structure one
is provided with at the outset. Below I will discuss resolution in families while preserv-
ing toroidal structures, focussing on joint work with Michael Temkin of Jerusalem and
Jarosław Włodarczyk of Purdue.

2 Hironaka’s method: from resolution to order reduction

The purpose of this section is to indicate how Hironaka’s resolution of singularities can
be reduced to an algebraic problem, namely order reduction of an ideal.

2.1 Blowing up. The key tool for Hironaka’s resolution of singularities is an operation
called blowing up of a regular subvariety Z of a regular variety Y , see Hartshorne [1977,
Definition p. 163]

2.1.1 Blowing up a point. A good idea can be gleaned from the special case where
Y = An, affine n-space, and Z is the origin, as explained in Hartshorne [ibid., Example
7.12.1] and depicted on the cover of Shafarevich [2013]. Think about P n�1 as the set of
lines in An through the origin. The blowing up Y 0 ! Y is then given as the incidence
variety

Y 0 = f(x; `) 2 An
� P n�1

j x 2 `g;

with its natural projection to An.
This can be described in equations as follows:

Y 0 = f((x1; : : : ; xn); (Y1 : : : : : Yn)) 2 An
� P n�1

j xi Yj = xj Yi 8i; j g:

Since P n is covered by affine charts, this can further be simplified. For instance on the
chart where Yn ¤ 0 with coordinates y1; : : : ; yn�1, this translates to

f((x1; : : : ; xn); (y1; : : : ; yn�1)) 2 An
� An�1

j xj = xnyj ; 1 � j � n � 1g:

In other words, the coordinates x1; : : : ; xn�1 are redundant and this is just affine space
with coordinates y1; : : : ; yn�1; xn. In terms of coordinates on Y we have yj = xj /xn.

The fibers of Y 0 ! Y are easy to describe: away from the origin x1 = � � � = xn = 0 the
map is invertible, as the line ` is uniquely determined by (x1; : : : ; xn). Over the origin all
possible lines occur, so the fiber is P n�1, naturally identified as the space of lines through
the origin.
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2.1.2 Blowing up a regular subvariety. In general the process is similar: given regular
subvariety Z of Y , then f : Y 0 ! Y replaces each point z 2 Z by the projective space of
normal directions to Z at z. If Z is locally defined by equations x1 = : : : = xk = 0 and
if xk+1; : : : ; xn form coordinates along Z, then Y 0 has local patches, one corresponding
to each xi , with coordinates

x1

xi

; : : : ;
xi�1

xi

; xi ;
xi+1

xi

; : : : ;
xk

xi

; xk+1; : : : ; xn:

Thus the blowing up Y 0 ! Y of a regular subvariety Z of a regular variety Y always
results in a regular variety.

We often say that Z is the center of the blowing up Y 0 ! Y , or that the blowing up
Y 0 ! Y is centered at Z.

2.1.3 TheProj construction. Grothendieck gave amore conceptual construction, which
applies to an arbitrary subscheme Z defined by an ideal sheaf I in an arbitrary scheme Y :

Y 0 = ProjY
1M

k=0

Ik/Ik+1:

The map f �1(Y n Z) ! (Y n Z) is always an isomorphism, so we identify Y n Z

with its preimage.
What the reader may want to take from this is that the blowings up we introduced in

particularly nice cases are part of a flexible array of transformations.
The complementE of Y nZ in Y 0 is called the exceptional locus. It is a Cartier divisor,

a subvariety of codimension 1 locally defined by one equation. If Z is nowhere dense in
Y , then Y 0 ! Y is birational. If moreover Y and Z are regular, then E is regular.

2.1.4 The strict transform. Blowing up serves in the resolution of singularities of a
subvariety X � Y through the strict transform X 0 � Y 0: this is the closure of X n Z in
Y 0. Grothendieck showed that X 0 is the same as the blowing up of X \ Z in X , using the
Proj construction above.

From the point of view of resolution of singularities, the challenge is to make X 0 less
singular than X by an appropriate choice of Z.

Consider for instance the cuspidal plane curve X given by y2 � x3 = 0 in the affine
plane Y = A2 with coordinates x; y. Blowing up the origin and focusing on the chart
with coordinates x; z = y/x, we obtain the equation z2x2 � x3 = 0, which we rewrite
as x2(z2 � x) = 0. The locus x = 0 describes the exceptional line, and X 0 is given by
z2 � x = 0, a regular curve.
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2.2 Embedded resolution. Theorem 1.3.1 is proven by way of the following theorem:

Theorem 2.2.1 (Embedded resolution). Suppose X � Y is a closed subvariety of a reg-
ular variety Y . There is a sequence of blowings up Yn ! Yn�1 ! � � � ! Y0 = Y , with
regular centers Zi � Yi and strict transforms Xi � Yi , such that Zi does not contain any
irreducible component of Xi and such that Xn is regular.

In other words, the final strict transform ofX in a suitably chosen sequence of blowings
up of Y is regular.

In the example of the cuspidal curve X � Y = A2, the single blowing up Y1 ! Y

centered at the origin Z = f(0; 0)g provides an embedded resolution X 0 ! X of X .
If X is embedded inside a regular variety Y , then Theorem 2.2.1 immediately gives a

resolution of singularities Xn ! X . What if X is not embedded? There are a number
of viable approaches, but the best is to strengthen Theorem 2.2.1: one makes the blowing
up procedure independent of re-embedding X and compatible with local patching. This
is what is done in practice. I describe the underlying principles in Sections 3.8 and 3.10
below. The upshot is that “good embedded resolution implies resolution”.

From here on we pursue a good embedded resolution.

2.3 Normal crossings. To go further one needs to describe a desirable property of the
exceptional divisor Ei and its interaction with the center Zi .

Definition 2.3.1. We say that a closed subset E � Y of a regular variety Y is a simple
normal crossings divisor if in its decomposition E = [Ej into irreducible components,
each component Ej is regular, and these components intersect transversally: locally at
a point p 2 E there are local parameters x1; : : : ; xm such that E is the zero locus of a
reduced monomial x1 � � � xk .

We further say that E and a regular subvariety Z have normal crossings if such co-
ordinates can be chosen so that Z = V (xj1 ; : : : ; xjl

) is the zero set of a subset of these
coordinates.

When the set of coordinates xj1 ; : : : ; xjl
is disjoint from x1; : : : ; xk the strata of E

meet Z transversely, but the definition above allows quite a bit more flexibility.
This definition works well with blowing up: If E is a simple normal crossings divisor,

E and Z have normal crossings, f : Y 0 ! Y is the blowing up of the regular center Z

with exceptional divisor EZ , and E 0 = f �1E [ EZ then E 0 is a simple normal crossings
divisor.

2.4 Principalization. Embedded resolution is proven byway of the following algebraic
result:
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Theorem 2.4.1 (Principalization). Let Y be a regular variety and I an ideal sheaf. There
is a sequence of blowings up Yn ! Yn�1 ! � � � ! Y0 = Y , regular subvarieties
Zi � Yi ; i = 0; : : : ; n � 1 and simple normal crossings divisors Ei � Yi ; i = 1; : : : ; n

such that

• fi : Yi+1 ! Yi is the blowing up of Zi for i = 0; : : : ; n � 1,

• Ei and Zi have normal crossings for i = 1; : : : ; n � 1,

• IOYi
vanishes on Zi for i = 0; : : : ; n � 1,

• Ei+1 is the union of f �1
i Ei with the exceptional locus of fi for i = 0; : : : ; n � 1

and such that the resulting ideal sheaf In = IOYn
is an invertible ideal with zero set

V (In) supported in En.

In local coordinates x1; : : : ; xm on Yn as above, this means that In = (xa1

1 � � � x
ak
m ) is

locally principal and monomial, hence the name “principalization”. The condition that Zi

have normal crossings with Ei guarantees that Ei+1 is a simple normal crossings divisor.

2.4.2 Principalization implies embedded resolution. Quoting Kollár [2007, p. 137],
principalization implies embedded resolution seemingly “by accident”: suppose for sim-
plicity that X is irreducible, and let the ideal of X � Y be I. Since In is the ideal of
a divisor supported in the exceptional locus, at some point in the sequence the center Zi

must contain the strict transform Xi of X . Since I vanishes on Zi , it follows that Zi

coincides with Xi at least near Xi . In particular Xi is regular!

2.4.3 Are we working too hard? Principalization seems to require “too much” for
resolution: why should we care about exceptional divisors which lie outside X? Are we
trying too hard?

In the example of the cuspidal curve X � Y = A2 above, the single blowing up Y1 !

Y at the origin does not suffice for principalization: the resulting equation x2(z2 �x) = 0

with exceptional fx = 0g is not monomial. One needs no less that three more blowings
up! I’ll describe just one key affine patch of each:

• Blowing up x = z = 0 one gets, in one affine patch where x = zw, the equation
z3w2(z � w) = 0, strict transform X2 = fz = wg and exceptional fwz = 0g.

• Blowing up z = w = 0 one gets, in one affine patch where z = wv, the equation
v3w6(v � 1) = 0. The exceptional in this patch is fwv = 0g, with one component
(the old fz = 0g) appearing only in the other patch. The strict transform is X3 =

fv = 1g.
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• In the open set fv ¤ 0g we blow up fv = 1g. This actually does nothing, except
turning the function u = v � 1 into a monomial along v = 1, so the equation
v3w6(v � 1) = 0 at these points can be written as (u + 1)3w6u = 0, which in this
patch is equivalent to w6u = 0, a monomial in the exceptional parameters u; w.

The fact that we could blow up fv = 1g means that X3 is regular, giving rather late
evidence that we obtained resolution of singularities for X . These “redundant” steps add
to the sense that this method works “by accident”. It turns out that principalization itself
is quite useful in the study of singularities. Also the fact that it provides the prize of
resolution is seen as sufficient justification. The discussion in Section 6 will put it in the
natural general framework of toroidal structures.

Accident or not, we will continue to pursue principalization.

2.5 Order reduction. Finally, principalization of an ideal is proven by way of order
reduction.

The order ordp(I) of an ideal I at a point p of a regular variety Y is the maximum
integer d such that md

p � I; here mp is the maximal ideal of p. It tells us “how many
times every element of Ip vanishes at p.”

In particular we have ordp(I) � 1 precisely if I vanishes at p.
We write maxord(I) = maxfordp(I)jp 2 Xg. For instance we have maxord(I) = 0

if and only if I is the unit ideal, which vanishes nowhere. Another exceptional case is
maxord(I) = 1 which happens if I vanishes on a whole component of Y . We’ll ignore
that case for now.

Given an integer a, we write V (I; a) for the locus of points p where ordp(I) � a.
A regular closed subvariety Z � Y is said to be (I; a)-admissible if and only if Z �

V (I; a), in other words, the order of I at every point of Z is at least a. Admissibility is
related to blowings up: if maxord(I) = a, and if Y 0 ! Y is the blowing up of an (I; a)-
admissible Z � Y , with exceptional divisor E having ideal IE , then IOY 0 = (IE )a I0,
with maxord(I0) � a.

Order reduction is the following statement:

Theorem 2.5.1 (Order reduction). Let Y be a regular variety, E0 � Y a simple normal
crossings divisor, and I an ideal sheaf, with

maxord(I) = a:

There is a sequence of (I; a)-admissible blowings up Yn ! Yn�1 ! � � � ! Y0 = Y , with
regular centers Zi � Yi having normal crossings with Ei such that IOXn

= InI0
nwith

In an invertible ideal supported on En and such that

maxord(I0
n) < a:
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Order reduction implies principalization simply by induction on the maximal order
maxord(I) = a: once maxord(I0

n) = 0 we have IOXn
= In so only the exceptional part

remains, which is supported on a simple normal crossings divisor by induction.
Hironaka himself used the Hilbert–Samuel function, an invariant much more refined

than the order. It is a surprising phenomenon that resolution becomes easier to explain
when one uses just the order, thus less information, see Encinas and Villamayor [2003].

It remains to prove order reduction.

3 Hironaka’s method: order reduction

3.1 Differential operators. Nothing so far was particularly sensitive to the fact that we
were working over C, or even a field of characteristic 0. That starts changing now.

Since Y is regular, it has a tangent bundle TY . Local sections @ of TY are first order
differential operators @ : OY ! OY . As usual we denote the sheaf of sections of the
tangent bundle with the same symbol TY , hoping the confusion can be overcome.

3.1.1 The characteristic 0 case. In characteristic 0, the sheaf of rings generated over
OY by the operators in TY is the sheaf of differential operators DY . As a sheaf of OY

modules it looks locally like the symmetric algebra Sym�(TY ) = ˚n�0Symn(TY ), but its
ring structure is very different, as DY is non-commutative. Still for any integer a there is
a subsheaf D�a

Y � DY of differential operators of order � a, those sections which can be
written in terms of monomials of order at most a in sections of TY . As a special case, one
always has a splitting D�1

Y = OY ˚ TY , the projection D�1
Y ! OY given by applying

r 7! r(1).

3.1.2 The general case. Things are quite different in characteristic p > 0: one can use
the same definition, but in some sense it is deficient, because these differential operators do
not detect pth powers. There is a natural and sophisticated replacement, which coincides
with DY in characteristic 0, and defined as follows:

On Y � Y consider the diagonal ∆ � Y � Y . It is a closed subvariety, and one
can consider its ideal I∆. The sheaf of principal parts of order a of Y is defined as
P P a

Y = OY �Y /Ia+1
∆ - it is a sheaf of OY -modules via either projection; its fiber at p 2 Y

describes functions on Y up to order a at p. Its dual sheaf is D�a := (P P a
Y )

_, which
in characteristic 0 admits the concrete description given earlier. The natural projection
P P a

Y ! P P a�1
Y gives rise to an inclusion D�a�1

Y � D�a
Y , and one defines in general

DY = [aD�a
Y .

This is nice enough, but the fact that in positive characteristics sections of DY are not
written as polynomials in sections of TY is the source of much trouble.
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3.2 Derivatives and order. Let I be an ideal sheaf on Y and y 2 Y a point. Write
D�a

Y I for the ideal generated by elements r(f ), where r an operator in D�a
Y and f a

section of I. We have the following characterization:

ordy(I) = minfa : (D�aI)y = OY;yg:

In other words, the order of I at y is the minimum order of a differential operator r

such that for some f 2 Iy the element r(f ) does not vanish at y.
We define T (I; a) := D�a�1I. In these terms, the set V (I; a) can be promoted to a

scheme, the zero locus of an ideal: V (I; a) := V (T (I; a)).3
This is not too surprising in characteristic 0 since we all learned calculus, but it may

seem strange in characteristic p > 0. For instance, the order of (xp) is p, since there is
always an operator r of order p such that r(xp) = 1. In characteristic 0 we can write

r =
1

p!

�
@

@x

�p

;

but in characteristic p we have no such expression!

3.3 Induction and maximal contact hypersurfaces. We return to working over C, in
particular in characteristic 0, so we can use the letter p for a point of Y .

Remember that we want to prove order reduction of an ideal I of maximal order a.
Hironaka’s next idea was to use induction on dimension by restricting attention to a hy-
persurface H , in such a way that a suitable order reduction on H results, by blowing up
the same centers, in order reduction of I on Y .

I am not being historically correct here, since Hironaka used invariants much more
refined than order. I depart from history further, and use Giraud’s concept of maximal
contact hypersurfaces, adapted to orders rather than other invariants.

Definition 3.3.1. Let I be an ideal of maximal order a. A maximal contact hypersurface
for (I; a) at p is a hypersurface H regular at p, such that, in some neighborhood Y 0 of
p we have H � V (I; a) = V (T (I; a)), namely H contains the scheme of points where
I has order a.

3.4 Derivatives and existence in characteristic 0. It is not too difficult to show that
in characteristic 0, a maximal contact hypersurface for (I; a) at p exists. Since I has
maximal order a, we have D�a(I) = (1). Consider the ideal T (I; a) = D�a�1(I).
Since we are in characteristic 0, it must contain an antiderivative of 1, so ordp(T (I; a)) �

3This is the right scheme structure, as it satisfies an appropriate universal property.
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1. Any local section x of T (I; a) with order � 1 gives a maximal contact hypersurface
fx = 0g at p.

Here is an example: suppose I = (f ) where

f (x; y) = ya + g1(x)y
a�1 + � � � + ga�1(x)y + ga(x):

Then ord(0;0)(f ) = a exactly when ord0(gi ) � i for all i . In characteristic 0 we may
replace y by y + g1(x)/a, so we may assume g1(x) = 0. In this case @a�1f /@ya�1 =

a! � y, so fy = 0g is a maximal contact hypersurface at (0; 0).
The definition I gave is pointwise. It is easy to see that if H is a maximal contact

hypersurface for (I; a) at p then the same holds at any nearby p0, so the concept is local.
Unfortunately it is also not hard to cook up examples where there is no global maximal
contact hypersurface which works everywhere. We will tackle this problem in Section 3.8
below.

3.4.1 Positive characteristics. Alas, there are fairly simple examples in charactersitic
p > 0 where maximal contact hypersurfaces do not exist, see Narasimhan [1983] and
Hauser [2010]. The whole discussion from here on simply does not work in characteristic
> 0.

3.5 What should we resolve on H? For induction to work we need to decide what
exactly we want to do on the hypersurface H . The example I = (f ) above is instructive:
just restricting I to H does not work!

Assume

f (x; y) = ya + g2(x)y
a�2 + � � � + ga�1(x)y + ga(x);

with ord0(gi ) � i for all i . The restriction of I to the hypersurface H = fy = 0g is
the ideal (ga(x)). Now clearly this ideal does not retain enough information from the
original ideal. This is manifest with the notion of admissibility introduced in Section 2.5,
as (ga(x); a)-admissible centers in H will not always give (I; a)-admissible centers in Y .
For instance it might happen that ga = 0, so every center on H is (ga(x); a)-admissible,
but ga�1 ¤ 0, so not every center on H is (I; a)-admissible on Y !

The collection of elements g2(x); : : : ; ga(x) surely hold all the necessary information.
However each comes with its own requirements: in order to reduce the order of I below
a, we need to reduce the order of at least one of gi (x) below i .

We now generalize this discussion to arbitrary ideals.

3.5.1 Coefficient ideals and the induction scheme. In order to generalize this, we
need to identify an analogue of these “elements” gi (x), and derivatives come to the rescue
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again. Let I be an ideal of maximal order a on a variety Y and H a maximal contact
hypersurface. Then for any i < a the ideals D�i

Y I have maximal order precisely a � i . It
follows that the restricted ideals (D�i

Y I)jH have maximal order� a�i . These restrictions
are the analogues of ga�i (x).

The following is at the technical core of the proof. I am aware of several proofs of this
proposition, but they all seem to go a bit beyond the level of discussion I wish to maintain
here. For reference, see Kollár [2007, Section 3.9].

Proposition 3.5.2. Any sequence of (I; a)-admissible blowings up has centers lying in
H and its successive strict transforms. The resulting sequence of blowings up on H is
((D�i

Y I)jH ; a � i)-admissible for every i < a.
Conversely, every sequence of blowings up onH which is ((D�i

Y I)jH ; a�i)-admissible
for every i < a gives rise, by blowing up the same centers on Y , to a sequence of (I; a)-
admissible blowings up.

Such an admissible sequence on H may be called an order reduction for the collection
((D�i

Y I)jH ; a�i) if it forms an order reduction for at least one of these pairs. It is a formal
consequence of the proposition that an order reduction for (I; a) is the same as an order
reduction for the collection ((D�i

Y I)jH ; a � i); i = 0; : : : ; a:

This may appear as troublesome: we wanted to prove order reduction for one ideal, and
the induction requires us to prove order reduction for a collection of ideals. But there is a
simple trick that allows one to replace this collection of ideals by a single ideal, in such a
way that the notions of order reduction coincide:

Definition 3.5.3. For an ideal I of maximal order a define its coefficient ideal to be the
ideal sum C (I; a) :=

P
(D�i

Y I)a!/(a�i):

Proposition 3.5.4 (Włodarczyk [2005, §3.4]). Order reduction for (C (I; a)jH ; a!) is the
same as order reduction for the collection ((D�i

Y I)jH ; a � i); i = 0; : : : ; a:

We obtain:

Corollary 3.5.5 (Kollár [2007, Corollary 3.85]). A sequence of blowings up is an order
reduction for (I; a) if and only if it is an order reduction for (C (I; a)jH ; a!).

3.6 A trouble of exceptional loci. I have been deliberately ignoring a subtle point. The-
orem 2.5.1 about order reduction takes the additional datum of a divisor E0 � Y . This is
important for principalization, since once we reduce the order of I from a to a � 1 with
exceptional divisor say E0, we want any further centers of blowing up used in further
order reduction of I to have normal crossings with E0.
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For instance, in the example of a cuspidal curve above, the ideal I = x2(z2 � x) is of
the form I2

E I0. The unique maximal contact hypersurface for (I0; 1) is precisely X 0, the
vanishing locus of I0, but since it is tangent to E it does not have normal crossings with
E.

The standard way to treat this is via a trick: one separates the relevant part of the ideal
I0 from the monomial part IE by applying a suitable principalization for an ideal of the
form I˛

E + I0ˇ describing the intersection of their loci. This is somewhat subtle and a bit
disappointing. One feels that monomial ideals should only serve for good, as they are the
goal.

I’ll totally ignore this issue here, referring to Kollár [ibid., Section 3.13]. I have an
excuse: in the procedure described below in my work with Temkin and Włodarczyk, this
is not an issue at all, as monomial ideals become our best friends.

3.7 The problem of gluing. I postponed two important issues. Resolution of singulari-
ties requires good embedded resolution, good principalization, good order reduction: the
process must be compatible with patching of open sets and independent of the embedding.
A related issue is the fact that maximal contact hypersurfaces are not global, so patching
open sets where maximal contact hypersurfaces do not overlap is required!

The classical approach has several ideas involved and has several levels of complexity.
First, one devises a more elaborate resolution invariant, which records behavior of a given
ideal on a sequence of nested maximal contact hypersurfaces. Second, one devises a class
of transformations, called test transformations, which include admissible blowings up,
restrictions to open sets, but also other operations, such as projections from a product.

One shows that ideals with the same invariant admit the same sequences of test trans-
formations. It is a more subtle fact that the opposite is true - the invariant can be read off
the test transformation. Once the dust settles it becomes clear that the order reduction one
produces is independent of choices and is local, hence it can be patched along open sets.
Also, the issue of the choice of embedding for resolution of singularities becomes local,
hence it reduces to a simple principle I call the re-embedding principle in Section 3.10
below.

Some subset of this approach, in particular the fact that invariants can be read from the
class of test transformations, is known as Hironaka’s trick.

I have to admit that I never quite understood this approach until I read Włodarczyk’s
paperWłodarczyk [2005], which uses a completely different approach. After that transfor-
mative event I was able to read Bierstone and Milman [2008], and suddenly the classical
approach was illuminated. I therefore prefer to present Włodarczyk’s approach here, as
perhaps others will experience the same transformation and subsequent illumination.
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3.8 Włodarczyk’s functoriality principle. Already Hironaka was interested in func-
torial properties of resolution of singularities. For instance, if X is a singular variety with
a group G acting, ideally one would want the resolution to be G equivariant. Also if
X0 � X is open, the resolution of X0 should ideally be the restriction of that of X . This
is stated explicitly in Bierstone and Milman [1997, §13].

Włodarczyk’s great idea in Włodarczyk [2005] was that

functoriality is a powerful tool in the very proof of resolution of singularities.

Moreover,

functoriality leads one to discover an order reduction algorithm.

Włodarcyk requires one to take this very seriously. Indeed, for his principle to succeed one
needs to use hidden symmetries, which are revealed only after I is tuned appropriately.

3.8.1 Smooth pullbacks. Let us first define the terms. Let Yn ! � � � ! Y0 = Y be an
order reduction of (I; a) compatible with simple normal crossings divisorE. Let Y 0 ! Y

be a smoothmorphism, what geometers call a submersion, such as an open embedding or a
product with a regular variety. One canwrite I0 = IOY ,E 0 = E�Y Y 0 and Y 0

i = Yi �Y Y 0,
and then automatically Y 0

n ! � � � ! Y 0
0 = Y 0 is an order reduction for (I0; a), compatible

with E 0, the smooth pullback order reduction. Some of the resulting steps might become
trivial, in which case we drop them from the order reduction sequence.

Definition 3.8.2. A functorial order reduction is a rule assigning to an ideal I on a regular
variety Y with simple normal crossings divisor E and integer a such thatmaxord(I) � a,
an order reduction Yn ! � � � ! Y , in such a way that for any smooth morphism Y 0 ! Y ,
the corresponding order reduction Y 0

n ! � � � ! Y 0 is the smooth pullback order reduction
of Yn ! � � � ! Y .

To prove order reduction it suffices to produce functorial order reduction on open
patches, because then they automatically glue together.

What about maximal contact hypersurfaces? Let us say we have produced functorial
order reduction in dimension dim(Y ) � 1 and we wish to prove it for Y . We can choose
a local maximal contact hypersurface H � Y and reduce the order of the coefficient
ideal C (I; a)jH . By Corollary 3.5.5 this results in local order reduction for (I; a), but a
priori this depends on the choice of H . We claim that in fact there is no such dependence,
and that the resulting order reduction is functorial on Y . For this we use (I; a)-special
automorphisms.

3.8.3 Special automorphisms. Let Ym ! � � � ! Y0 be an (I; a)-admissible sequence
with centers Zi � Yi . Recall that this gives in particular a sequence of ideals Ii � OYi



RESOLUTION OF SINGULARITIES OF VARIETIES AND THEIR FAMILIES 555

such thatZi � V (Ii ; a) andIi Oyi+1
= Ia

Ei+1
Ii+1. An automorphism� ofY is special if

it fixes every (I; a)-admissible sequence. This means that � fixes V (I; a), in particular it
fixes Z0, hence it lifts to an automorphism �1 of Y1, which fixes V (I1; a), and inductively
we obtain automorphisms �i of Yi fixing V (Ii ; a).

This is a very strong assumption on an automorphism, but Włodarczyk proved the
following powerful result:

Proposition 3.8.4 (Włodarczyk [ibid.]). Let H1; H2 � Y be two local maximal contact
hypersurfaces at p 2 V (I; a). Then, after replacing Y by an étale neighborhood of p,
there is a special automorphism � of Y fixing p and sending H1 to H2.

In particular, the functorial order reductions for C (I; a)jHi
induce the same order re-

duction for I, which is automatically functorial!
I deliberately did not require the automorphism� to sendIi to itself, whichwouldmake

the statement easier to grasp. Indeed, the following example shows that in general it is
impossible for � to send Ii to itself, and suggests that Proposition 3.8.4 is quite surprising
and should require an ingenious idea.

Consider the ideal (xy) in the affine planeY , withmaximal order 2 attained atV (I; 2) =

(0; 0), the origin. We haveD�2�1I = D�1I = (x; y), and so the linesH1 = fx = 0g and
H2 = fx + y = 0g are both maximal contact hypersurfaces. Clearly any automorphism
of Y sending H1 to H2 must change I, since IjH1

= 0 and IjH2
¤ 0.

In this particular case the coefficient ideal is (x2; xy; y2), and the automorphism (x; y) 7!

(x + y; y) does send H1 to H2 fixing this ideal, so whatever procedure we apply using
H1 - in this case necessarily blowing up the origin - coincides with the process we apply
using H2.

3.8.5 Homogenization. The general case is slightly more subtle than the example: in
general there is no automorphism carrying H1 to H2 fixing the coefficient ideal either.
Searching for a natural replacement which is fixed under a special automorphism, Wło-
darcyk discovered the homogenization H(I; a) described below.4

Definition 3.8.6. Recall the notation T (I; a) = D�a�1
Y I. The homogenization of (I; a)

is the ideal

H(I; a) :=

aX
i=0

Di (I) T (I; a)i :

4A Different variant is used in Kollár [2007]; the treatment in Bravo, Garcia-Escamilla, and Villamayor
U. [2012] in terms of differential Rees algebras provides a natural structure subsuming homogenization and
coefficient ideals.
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Włodarczyk’s idea is that I lacks symmetries because it is not sufficiently tuned. In
contrast, the ideal H(I; a) is tuned to reveal the hidden symmetry �.5

The ideal H(I; a) is designed to contain all terms of Taylor expansions of elements
of I in terms of any variable h in T (I; a). If H1 = fx = 0g, H2 = fx + h = 0g and
x = x1; x2; : : : ; xm are local parameters of Y andp, chosen so that x1+h; x2; : : : ; xm also
form local parameters, then the transformation �(x1; x2; : : : ; xm) = (x1 + h; x2; : : : ; xm)

is a local automorphism of Y formally sending f (x1; x2; : : : ; xm) to

X @i f

@xi
1

hi :

Note that @i f

@xi
1

hi 2 Di (I) T (I; a)i . Thus on formal completions this sends an element of
H(I; a) to an element of H(I; a), and a bit of reflection shows that � is a special auto-
morphism with respect to H(I; a). A standard argument allows to pass from completion
to étale neighborhoods, hence � defines a special automorphism with respect to H(I; a)

on a suitable étale neighborhood.
A simple computation shows:

Proposition 3.8.7. Order reduction for (I; a) is equivalent to order reduction for H(I; a).

Thus � is a special automorphism with respect to (I; a) as well!

3.9 A sketch of the algorithm. Let us summarize how one functorially reduces the
order of a nonzero ideal I of maximal order a > 0 on a regular variety Y .

If dim(Y ) = 0 there is nothing to prove, since I is trivial hence of order 0. We assume
proven order reduction in dimension < dim(Y ).

We cover V (I; a)with open patches U possessing maximal contact hypersurfaces HU .
The coefficient ideal C (I; a)jHU

has order � a!.
If this order is infinite, it means that IjU = Ia

HU
, we simply blow up HU and automat-

ically the order of I is reduced on U .
Otherwise we can inductively reduce the order of this ideal by a functorial sequence

of transformations Hk ! � � � ! H until the order drops below a!. By Corollary 3.5.5
these provide a local order reduction for (I; a)which patches together to a functorial order
reduction by Proposition 3.8.4.

5In Bierstone and Milman [2008], Bierstone and Milman replace (I; a) by its equivalence class with respect
to test transformation. With the “blurred vision” of equivalence classes of ideals, a hidden symmetry is again
revealed. This is related to Hironaka’s approach using the concept of infinitely near points.
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3.10 The re-embedding principle. I still need to explain why a suitable embedded
resolution of singularities implies resolution in general. If X is covered by open subsets
Xi embedded in regular varieties Yi , we want to claim that the resolutions X 0

i ! Xi agree
on intersections Xi \ Xj . Said another way, no matter how Xi \ Xj is embedded, the
resolutions agree6. Since our procedures are functorial for étale maps and Yi are regular,
we may as well assume Yi = Ani . Finally affine spaces differ by iterated projections, so
we are reduced to the following statement, which seems to follow from our procedures
“by accident”, see Kollár [2007, Claim 3.71.2]:

Proposition 3.10.1 (The re-embedding principle). Suppose I is an ideal on a regular
variety Y . Consider the embedding Y � Y1 := Y � A1 sending y 7! (y; 0). Let
I1 = IOY1

+ (z), where z is the coordinate on A1. Then the principalization described
above of I1 on Y1 is obtained by taking the principalization of I on Y and blowing up the
same centers, embedded in Y1 and is transforms.

I would very much like to say that this follows from functoriality, but this is not so
simple (see Kollár’s treatment). Instead, we look under the hood of principalization. To
principalize I1 we need to reduce the order of I1 below 1. The order of I1 is 1, since z

has order 1, and then z defines a maximal contact hypersurface, which is, seemingly by
accident, precisely Y with the coefficient ideal I, so the statement follows for the first
blowing up. The local product structure persists after blowing up, so the statement holds
for the entire order reduction procedure.

4 Toric varieties and toroidal embeddings

To proceed further it is useful to introduce a nice class of variety with “fairly simple”
singularities.

4.1 Toric varieties. A toric variety is a normal variety X with a dense embedding
T = (C�)n ,! X such that the action of T on itself by translations extends to X . Here
normal means that the local rings are integrally closed, a condition which guarantees that
X is regular in codimension 1.

Toric varieties are a simple playing ground for algebraic geometers, as many aspects
of a toric variety can be translated to combinatorics. To a toric variety X one associates a
fanΣX , a collection of rational polyhedral cones in the lattice NT := Hom(C�; T )which
intersect similarly to cells of a CW complex. One makes toric varieties into a category on
which arrows are torus equivariant morphisms which are surjective on the tori. Similarly

6There is a subtle issue of synchronization by codimension I will ignore. See Bierstone, Milman, and Temkin
[2011, §5.3], Temkin [2011, §2.5.10]
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fans form a category: a map of fans Σ1 ! Σ2 is induced by a map of lattices N1 ! N2

with finite cokernel, such that a cone ofΣ1 maps into a cone inΣ2. There is an equivalence
of categories

ftoric varietiesg $ ffansg:

A toric variety X is regular if and only if its fanΣX is regular: every cone is simplicial,
and generators of its edges span a saturated lattice inNT . Toric birational maps correspond
to subdivisions of fans, and so toric resolution of singularities can be done by finding a
regular subdivision, a fairly simple task.

There are great sources to learn the theory. See Kempf, Knudsen, Mumford, and Saint-
Donat [1973], Oda [1988], and Fulton [1993].

4.2 Toroidal embeddings. All toric varieties are rational, so they have a limited chance
to help with resolution of singularities. A toroidal embedding is an open embedding U �

X which locally analytically in the euclidean topology looks like a toric variety: for a
point p 2 X there is a patch Vp � X and a corresponding open set Wp � Y , where
T � Y is a toric variety, and an analytic isomorphism Vp ! Wp carrying Vp \ U onto
Wp \ T .

One can speak of toroidal morphisms X1 ! X2 between toroidal embeddings: these
are those morphisms which locally on the source look like toric morphisms of toric vari-
eties.

As toroidal embeddings look locally like toric varieties their singularities are toric. It
comes as no surprise that toric resolution of singularities extends quite easily to toroidal
embeddings. In fact, one associates to a toroidal embedding U � X a combinatorial
gadget - a rational polyhedral cone complex - in a functorial manner. This is not an equiv-
alence of categories, but it is still true that subdivisions correspond to toroidal birational
morphisms, and the resolution procedure for fans extends to polyhedral cone complexes.

This is developed in Kempf, Knudsen, Mumford, and Saint-Donat [1973].

5 Resolution in families

I briefly recall known results on resolution in families, all relying on de Jong’s alteration
method.

5.1 The alteration theorem. In de Jong [1996], Johan de Jong discovered a method
to replace a variety X by a regular variety X 0 with a morphism X 0 ! X which is not
necessarily birational, but is proper, surjective and generically finite. Such maps he called
alterations, which differ from birational modifications in that the extension of function
fields K(X) � K(X 0) may be nontrivial.
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Theorem 5.1.1 (de Jong [ibid.]). LetX be a variety over a field of arbitrary characteristic
and Z a subvariety. There is an alteration f : X 0 ! X such that X 0 is smooth and f �1Z

a simple normal crossings divisor.

5.1.2 Sketch of proof. Here is the basic idea: assume for simplicity X is projective;
blowing up makes Z into a divisor. One can choose a rational projection X Ü P n�1,
which becomes a morphism after replacing X by a modification, so that the generic fiber
X� over the generic point � 2 P n is a smooth curve, of some genus g, and Z can
be viewed as a collection of k marked points on X� . This corresponds to a morphism
f�g ! Mg;k(X; d ), the Kontsevich space of stable maps, where d is the degree of X�

with respect to some projective embedding. Properness of this moduli space provides
us an alteration B ! P n over which this extends to a family of stable maps Y0 ! X

parametrized by B . Induction on the dimension allows us to assume that B is smooth
and the degeneracy locus of Y0/B is a simple normal crossings divisor. An inspection
of Y0 shows that it has the structure of toroidal embedding, hence admits a combinatorial
resolution of singularities Y ! Y0. The composite morphism Y ! X is the required
alteration.

5.2 Toroidalization. In the introduction, we stated resolution of singularities as the
problem of making points of X simple. If instead we have a family of varieties X ! B

parametrized by a variety B , what should a resolution of singularities of the familymean?
That is, when are the singularities of the family simple?

It is not hard to see that making all the fibers regular is impossible. Since we agree
that toroidal singularities are rather simple, one might consider a toroidal morphism to
represent a family with simple singlarities. Here are two solutions based on this idea:

Theorem 5.2.1 (Altered toroidalization, de Jong [ibid.]). Let X ! B be a dominant
morphism of varieties. There are alterations B1 ! B and X1 ! X �B B1, with regular
toroidal embedding structures UB � B1 and UX � X1, and a toroidal morphism X1 !

B1 making the following diagram commutative.

(1) X1
/ /

��

X

��

B1
// B

See improvement on this in Theorem 5.3.1 below. This is proven in much the same way
as one proves de Jong’s alteration theorem, Theorem 5.1.1. One needs to simply replace
the projection X Ü P n by a relative projection X Ü P d�1 �B , where d is the relative
dimension of X over B .
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In characteristic 0 one can inprove the situation, using modifications instead of alter-
ations:

Theorem 5.2.2 (Toroidalization, Abramovich and Karu [2000, Theorem 2.1]). Let X !

B be a dominant morphism of complex projective varieties. There is a modification B 0 !

B , a modification X 0 ! X , and regular toroidal embedding structures UB � B 0 and
UX � X 0, such that the map X 0 Ü B 0 is a toroidal morphism.

Theorem 5.2.2 is proven using the following addition to de Jong’s method, introduced
in Abramovich and de Jong [1997]: in essence, one brings oneself to a situation as in
equation (1), where the Galois group Gal(K(X1)/K(X)) of the function field extension
acts on the whole diagram. In characteristic 0 it turns out that the singularities of the
quotients X1/G and B1/G can be resolved by toroidal methods - this is a feature of tame
group actions in general. This sketch is only true in essense: in practice theGalois structure
is intertwined with the inductive structure of the proof of Theorem 5.2.1.

Theorems 5.2.1 and 5.2.2 have two major disadvantages: they are by no means functo-
rial, and they necessarily change the general fiber of X ! B even if it is already regular.

5.3 Semistable reduction. We have already pointed out that toroidal embeddings can
be resolved. The same is true to some extent for families as well. This means that the
singularities in Theorems 5.2.1 and 5.2.2 can still be improved.

Let X ! B be a toroidal morphism between toroidal embeddings. Assume X and
B are regular. We say that X ! B is semistable if locally at any point x 2 X there are
distinct monomial variables y1; : : : ; yk onB and x1; : : : ; xm onX such thatX is described
by the following equations:

x1 � � � xl1 = y1;

xl1+1 � � � xl2 = y2;

:::
:::

xlk�1+1 � � � xlk
= yk :

This means that locally X is a product of families of the form x1 � � � xl = y. This is
truly the best one can hope for. A somewhat weaker and more flexible version would
replace yi by monomials mi without common factors.

De Jong actually proved:

Theorem5.3.1 (Altered semistable reduction, de Jong [1996]). LetX ! B be a dominant
morphism of varieties over a field. There are alterations B1 ! B and X1 ! X �B B1,
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and regular toroidal embedding structures UB � B1 and UX � X1, with semistable
morphism X1 ! B1.

In characteristic 0 a somewhat weaker result was proven in Abramovich and Karu
[2000, Theorem 0.3] where the generic fiber is modified but not altered. The strongest
form is given in Karu [2000] for families of surfaces and threefolds:

Theorem5.3.2 (Semistable reduction, Karu [ibid.]). LetX ! B be a dominant morphism
of complex projective varieties with dim(X) � dim(B) � 3. There is an alteration B 0 !

B , a modification X 0 ! X �B B 0, and regular toroidal embedding structures UB � B 0

and UX � X 0, such that the map X 0 Ü B 0 is semistable.

The case of arbitrary relative dimension is conjectured in Abramovich and Karu [2000,
Conjecture 0.2], and reduced to a completely combinatorial problem in
Abramovich and Karu [ibid., Conjecture 8.4]. This remains open.

6 Resolution in toroidal orbifolds

6.1 Towards functorial resolution of families. All the toroidalization and semistable
reduction theorems above suffer from severe non-functoriality, and most importantly they
change the generic fiber even if it is smooth. This is a major drawback in application.
For example, one would like to take a smooth family of varieties over an open base and
compactify it with as simple fibers as possible. One envisions compactifying by closure in
some projective space and applying toroidalization or semistable reduction. The theorems
above do not provide this, as the original family is necessarily changed.

The approach I present here is to start from scratch and use Hironaka’s method instead
of de Jong’s. People have thought of this for a while, notably Cutkosky, see Cutkosky
[2005], though his goals are different.

6.2 Temkin’s functoriality principle. Consider the family X ! B where X is a reg-
ular surface with coordinates x; y and B a curve with coordinate t , and where the map is
given by xy = t . This is a semistable family.

Now take the base change B1 ! B given by s2 = t . The pullback family X1 ! B1 is
given by equation xy = s2, which is semistable in the weaker sense, as s2 is a monomial.
If we are to allow semistable families to be compatible with base change this additional
flexibility is a must. From the point of view of resolution of singularities in families, both
families are good, even though X1 is singular.

An important point in this example is that B1 ! B and X1 ! X are toroidal mor-
phisms. If we are to prove a functorial procedure for resolving singularities in families,
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the procedure must not modify families which are already semistable, so both X ! B

and X1 ! B1 must stay intact.
In Hironaka’s resolution, the best way to ensure that regular varieties stay intact is to

require the resolution to be functorial for smooth morphisms. Indeed if X is regular then
X ! SpecC is a smooth morphism, so the resolution of X must be the pullback of the
resolution of SpecC, which is necessarily trivial.

In the semistable reduction problem, the best way to ensure that a toroidal X ! B

stays intact is to require functoriality for toroidal morphisms. For instance, if already
B = SpecC is just a point and X is toroidal, then the morphism X ! SpecC is toroidal,
so the procedure we produce for X ! SpecC must be the pullback of the procedure we
produce for the identity SpecC ! SpecC, which is necessarily trivial.

Temkin’s functoriality principle is thus:

Toroidal morphisms form the smallest reasonable class of morphisms under
which semistable reduction should be functorial.

And, in view of Włodarczyk’s philosophy,

functoriality for toroidal morphisms should lead one to discover a semistable
reduction procedure.

As a necessary prerequisite, we must produce a resolution procedure, built on Hiron-
aka’s procedure, which is functorial for toroidal morphisms.

6.3 Enter toroidal orbifolds. Having accepted Temkin’s functoriality principle and
agreed that we must produce a resolution procedure, built on Hironaka’s procedure, which
is functorial for toroidal morphisms, there is another surprising conclusion coming our
way.

Temkin’s principle forces us to take a departure from previous algorithms:

1. We can no longer work with a smooth ambient variety Y - we must allow Y to have
toroidal singularities.

2. We cannot use only blowings up of smooth centers as our basic operations. Instead
we use a class of modifications, called Kummer blowings up, which are stable under
toroidal base change. These involve taking roots of monomials, in particular:

3. We can no longer work only with varieties Y - we must allow Y to be a Deligne–
Mumford stack.

In essence, we are using “weighted blowings up on steroids”. The stacks we need are
as follows:
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Definition 6.3.1. A toroidal orbifold (Y; U ) is a Deligne–mumford stack Y with diagonal-
izable inertia with a toroidal embedding U � Y .

Item (3) may be hard to accept but it is absolutely essential for functoriality under
toroidal morphisms.

Consider the affine plane Y , with coordinates x; u, where we endow the plane with a
toroidal structure by declaring U = Y n fu = 0g, so x is a parameter and u is a mono-
mial. Say we want to principalize the ideal I := (x2; u2). Functoriality under smooth
morphisms suggests that we must blow up the ideal (x; u). This indeed works and princi-
palizes I in one step.

Now consider the affine plane Y0, with coordinates x; v, similar to the above, but say
we want to principalize the ideal I0 := (x2; v). Note that we have a toroidal morphism
Y ! Y0 given by u2 = v, and I = I0OY . Temkin’s functoriality tells us that there
should be a center on Y0 whose pullback is (x; u). This center must therefore be defined
by (x;

p
v)!

There is only one way to deal with it, and that is to work systematically in a setup where
one is allowed, when necessary, to take roots of monomials. This is possible precisely
when working with toroidal orbifolds, as indicated above.

6.4 Principalization in toroidal orbifolds. In the joint workAbramovich, Temkin, and
Włodarczyk [2017a] with Temkin and Włodarczyk we prove

Theorem 6.4.1 (Toroidal principalization). Let (Y; U ) be a toroidal orbifold and I an
ideal sheaf. There is a sequence Yn ! Yn�1 ! � � � ! Y0 = Y of Kummer blowings up,
all supported over the vanishing locus V (I), such that IOYn

is an invertible monomial
ideal. The process is functorial for toroidal base change morphisms Y 0 ! Y .

6.5 Logarithmic derivatives and logarithmic orders. Temkin’s functoriality princi-
ple suggests a natural replacement for derivatives.

In the toroidal world, the natural replacement for derivatives is provided by logarith-
mic derivatives: if u is a monomial function on a toroidal Y , then we use the operator
u @

@u
, which sends u to itself, but not @

@u
. One then defines the sheaf D�a

Y;U of logarithmic
differential operators of order � a.

Given an ideal I on a toroidal (Y; U ), one defines its logarithmic order at p 2 Y to be
logordp(I) = minfa : D�a

Y;U (I) = (1)g: This can take the value 1 when the monomial
part M(I) := D1

Y;U I is nontrivial.
Then a miracle happens: using Temkin’s functoriality and logarithmic derivatives, the

broad outlines of principalization described above, as laid out in detail in Włodarczyk
[2005], work in this new context once one has a stable formalism of toroidal orbifolds.
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The formalism is developed in Abramovich, Temkin, and Włodarczyk [2017b] and the
proof of the theorem is written out in Abramovich, Temkin, and Włodarczyk [2017a].

Our next task is to return to work on families of varieties. We hope to report on that in
the near future.
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POSITIVITY AND ALGEBRAIC INTEGRABILITY OF
HOLOMORPHIC FOLIATIONS
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Abstract
The theory of holomorphic foliations has its origins in the study of differential

equations on the complex plane, and has turned into a powerful tool in algebraic ge-
ometry. One of the fundamental problems in the theory is to find conditions that
guarantee that the leaves of a holomorphic foliation are algebraic. These correspond
to algebraic solutions of differential equations. In this paper we discuss algebraic inte-
grability criteria for holomorphic foliations in terms of positivity of its tangent sheaf,
and survey the theory of Fano foliations, developed in a series of papers in collabo-
ration with Stéphane Druel. We end by classifying all possible leaves of del Pezzo
foliations.

1 Introduction

The theory of holomorphic foliations has its origins in the study of differential equations on
the complex plane C2. A central problem in this theory consists in finding conditions that
guarantee the existence of algebraic solutions (Darboux [1878], Painlevé [1894], Poincaré
[1891]). Consider for instance the following algebraic differential equations:

(1-1)
dy

dx
=

y

x
;

(1-2)
dy

dx
= y :

While the solutions to equation (1-1) are algebraic, namely y = cx, the solutions to equa-
tion (1-2) are mostly transcendental, namely y = cex . In both cases, the algebraic differ-
ential equation defines a saturated subsheaf F � TC2 . By saturated we mean that TC2/F

is torsion free. We call this subsheaf a foliation of the plane. Curves that are everywhere
MSC2010: primary 37F75; secondary 14E30, 14M22.
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tangent to F correspond to solutions of the equation, and are called leaves of the folia-
tion. We remark that classically the word foliation refers to the partition of the plane into
leaves. If we extend to P 2 the foliations F � TC2 defined by the equations above, we
obtain the saturated subsheaves OP2(1) � TP2 in (1-1) and OP2 � TP2 in (1-2). As we
shall see, the ampleness of OP2(1) forces the solutions of equation (1-1) to be algebraic.
This is the simplest manifestation of a series of results relating properties of positivity and
algebraicity of holomorphic foliations.

In general, a foliation on a normal variety X is a saturated nonzero coherent subsheaf
F ¨ TX that satisfies the Frobenius integrability condition: F is closed under the Lie
bracket. The Frobenius condition guarantees that a dense open subset of X is covered by
analytic submanifolds whose tangent bundles are restrictions of F . When these submani-
folds are connected and maximal, we say that they are leaves of F . We refer to Section 2
for definitions and generalities about holomorphic foliations on complex varieties, includ-
ing notions of singularity for foliations.

In the last decades, foliations have proved to be a powerful tool in algebraic geometry.
For instance, they play an important role in the proof of Green–Griffiths conjecture for
surfaces of general type with positive Segre class (F. A. Bogomolov [1977], McQuillan
[1998]). In many applications, a key problem is to find conditions that guarantee that a
foliation has algebraic leaves, in which case we say that it is algebraically integrable, and
to describe the structure of these algebraic subvarieties. We briefly mention two important
instances of this.

1.1 (Miyaoka’s criterion of uniruledness). In Miyaoka [1987], Miyaoka proved a remark-
able criterion of uniruledness in terms of numerical properties of the tangent sheaf. Namely,
if X is a non-uniruled normal projective variety, then its cotangent sheafΩ1

X is generically
semi-positive. This last condition means that for a sufficiently general complete intersec-
tion curve C on X , the restriction (Ω1

X )jC is semi-positive. This criterion in one of the
main ingredients in the proof of abundance for threefolds (see Shepherd-Barron [1992]).
Algebraic integrability of foliations plays a key role in Miyaoka’s proof, which involves
reduction to positive characteristic. Namely, if Ω1

X is not generically semi-positive, then,
using Harder–Narasimhan filtrations, one can construct a special foliation on X , whose
restriction to a sufficiently general complete intersection curve C is ample. This foliation
is shown to be algebraically integrable and covered by rational curves.

Miyaoka’s algebraicity criterion has been extensively generalized. We mention Bost’s
arithmetic geometric counterpart (Bost [2001]), Bogomolov and McQuillan’s criterion,
which gives rationally connectedness of general leaves (see F. Bogomolov and McQuillan
[2016] and also Kebekus, Solá Conde, and Toma [2007]), and most recently the extension
by Campana and Paŭn, which considers positivity of the tangent sheaf with respect to
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more general movable curve classes (Campana and Păun [2015]). These criteria will be
further discussed in Section 2.

1.2 (The structure of singular varieties with numerically trivial canonical class). The
Beauville–Bogomolov decomposition theorem asserts that, after étale cover, any compact
Kähler manifold with numerically trivial canonical class is a product of a torus, Calabi–
Yau and irreducible symplectic manifolds (Beauville [1983]). This structure result has
been recently generalized to the singular setting in Druel [2017] and Höring and Peternell
[2017]. Algebraic integrability of foliations plays a key role in the proof of this structure
theorem. Namely, Greb, Kebekus, and Peternell [2016b] gives a decomposition of the
tangent sheaf of a singular complex projective variety X with trivial canonical class into
a direct sum of foliations with strong stability properties. Druel provides in Druel [2017]
an algebraic integrability criterion to show that this decomposition of the tangent sheaf is
induced by a product structure on a quasi-étale cover of X .

A common idea behind the algebraic integrability results for foliations discussed above
is that positivity properties of foliations tend to increase algebraicity properties of the
leaves. In a series of papers in collaboration with Stéphane Druel (Araujo and Druel
[2013], Araujo and Druel [2014], Araujo and Druel [2016], Araujo and Druel [2017]
and Araujo and Druel [2018]), we have investigated foliations with positive anticanonical
class, which we call Fano foliations. For Fano foliations, a rough measure of positivity
is the index. The index �F of a Fano foliation F on a complex projective manifold X is
the largest integer dividing �KF in Pic(X). One special property of Fano foliations is
that their leaves are always covered by rational curves, even when these leaves are not
algebraic. Our works on Fano foliations with high index indicated that the higher is the
index, the closer it is to being algebraically integrable. First of all, we have the following
general bound on the index, in analogy with Kobayachi–Ochiai’s theorem on the index of
Fano manifolds:

Theorem 1.3 (Araujo, Druel, and Kovács [2008, Theorem 1.1]). Let F ¨ TX be a Fano
foliation of rank r on a complex projective manifold X . Then �F 6 r , and equality holds
only if X Š P n.

Foliations on P n attaining the bound of Theorem 1.3 are induced by linear projections
P n Ü P n�r (Déserti and Cerveau [2005, Théorème 3.8]). These results have been
generalized to the singular setting in Araujo and Druel [2014] and Höring [2014].

Next we consider Fano foliations F ¨ TX of rank r on complex projective manifolds
X with index �F = r � 1. In analogy with the theory of Fano manifolds, we call them del
Pezzo foliations. In contrast with the case of maximal index �F = r , there are examples
of del Pezzo foliations on P n with non-algebraic leaves. In fact, del Pezzo foliations on
P n were classified in Loray, Pereira, and Touzet [2013]. They are the following.
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• A foliation induced by a dominant rational map P n Ü P (1n�r ; 2), defined by
n � r linear forms and one quadric form, where P (1n�r ; 2) denotes the weighted
projective space with weights 1; : : : ; 1„ ƒ‚ …

r times

; 2.

• The linear pullback of a foliation C on P n�r+1 induced by a global vector field.

In the second case, if the vector field is general, then the leaves of C are transcendental,
as the solutions to equation (1-2) above illustrates. Hence, the leaves of the del Pezzo
foliation are not algebraic either. The following algebraic integrability result asserts that
these are the only transcendental del Pezzo foliations on complex projective manifolds.

Theorem 1.4 (Araujo and Druel [2013, Theorem 1.1]). Let F be a del Pezzo foliation
on a complex projective manifold X 6Š P n. Then F is algebraically integrable, and its
general leaves are rationally connected.

In the classical setting, del Pezzo manifolds were classified by Fujita in the 1980’s.
Most of them are complete intersections on weighted projective spaces. One may also
expect a classification of del Pezzo foliations. For example, the only del Pezzo folia-
tions on smooth quadric hypersurfaces are those induced by the restriction of linear pro-
jections from the ambient projective space (Araujo and Druel [2016, Proposition 3.18]).
Moreover, quadrics are the only hypersurfaces that admit del Pezzo foliations (Araujo and
Druel [2013, Corollary 4.8.]). We also know examples of del Pezzo foliations on certain
Grassmannians and projective space bundles over projective spaces (Araujo and Druel
[ibid., Sections 4 and 9]). In Section 3 we discuss the classification of del Pezzo folia-
tions, under restrictions on the rank or on the singularities of the foliation. A complete
classification of del Pezzo foliations seems to be a difficult problem. A step in this di-
rection is a classification of all possible leaves of del Pezzo foliations, which is given in
Proposition 3.3.

We remark that codimension 1 Fano foliations of large index on complex projective
spaces have been classically studied. The degree d of a foliation F of rank r on P n

is defined as the degree of the locus of tangency of F with a general linear subspace
P n�r � P n. It satisfies d = r � �F . So Fano foliations of large index on P n are precisely
those with small degree. Codimension 1 foliations on P n of degree 0 and 1were classified
in Jouanolou [1979]. Those of degree 2 were classified in Cerveau and Lins Neto [1996].

Theorem 1.4 is in fact a special case of a more general result that gives a lower bound
for the algebraic rank of a Fano foliation in terms of the index. The algebraic rank ra

F

of a foliation F on an algebraic variety X is the maximum dimension of an algebraic
subvariety through a general point of X that is everywhere tangent to F . A foliation is
said to be purely transcendental if its algebraic rank is 0.
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Theorem 1.5 (Araujo and Druel [2018, Corollary 1.6.]). Let F be a Fano foliation of
index �F on a complex projective manifold X . Then ra

F
> �F , and equality holds if and

only if X Š P n and F is the pullback under a linear projection of a purely transcendental
foliation on P n�ra

F with trivial canonical class.

Fano foliations may also play a distinguished role in the emerging theory of birational
geometry of foliations. Higher dimensional algebraic geometry has had a strong influ-
ence in the study of holomorphic foliations. Techniques from the minimal model program
have been successfully applied to the study of global properties of holomorphic foliations,
leading to the birational classification of foliations by curves on surfaces (Brunella [1999],
Mendes [2000], Brunella [2004]). In higher dimensions, very little is known and difficul-
ties abound: Kawamata–Viehweg vanishing, abundance and resolution of singularities all
fail in general for foliations. Positive results, mostly in dimension 3, include a reduction of
singularities for foliations on threefolds (Cano [2004], McQuillan and Panazzolo [2013])
and a cone theorem for rank 2 foliations on threefolds (Spicer [2017]). We also mention
that there are structure results for foliationswith numerically trivial canonical class (Touzet
[2008], Loray, Pereira, and Touzet [2013], Loray, Pereira, and Touzet [2011], Pereira and
Touzet [2013]).

In the context of birational geometry of foliations, it is important to develop the theory
of foliations on mildly singular varieties. In Section 2 we survey some aspects of the
theory of foliations in this more general setup. In Section 3 discuss the classification of
del Pezzo foliations on projective manifolds.

Notation and conventions. We always work over the field C of complex numbers. Vari-
eties are always assumed to be irreducible. We denote by Xns the nonsingular locus of a
varietyX . Given a sheafF ofOX -modules of generic rank r on a varietyX , we denote by
det(F ) the sheaf (^rF )��. If G is another sheaf of OX -modules on X , then we denote by
F [˝]G the sheaf (F ˝ G )��. When X is a normal variety, we denote by TX the tangent
sheaf (Ω1

X )�.

Acknowledgments. I am deeply grateful to Stéphane Druel for the collaboration
throughout the years and for his comments on earlier versions of this paper. I also thank
Jorge Vitório Pereira for inspiring conversations about holomorphic foliations.

2 Foliations

In this section we define foliations on algebraic varieties, their canonical class and notions
of singularities. We then discuss criteria of algebraic integrability and special properties
of Fano foliations.
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Definition 2.1. A foliation on a normal varietyX is a saturated nonzero coherent subsheaf
F ¨ TX that is closed under the Lie bracket.

The rank r of F is the generic rank of F .
The canonical classKF ofF is anyWeil divisor onX such thatOX (�KF ) ' det(F ).
We say that F is Gorenstein if KF is Cartier.
We say that F is Q-Gorenstein if KF is Q-Cartier.

Definition 2.2. Let F be a Q-Gorenstein foliation of rank r on a normal variety X , and
consider the induced map

� : Ωr
X = ^

r(Ω1
X ) ! ^

r(T �
X ) ! ^

r(F �) ! det(F �) ' OX (KF ):

This is called a Pfaff field of rank r on X (Araujo and Druel [2014, Definition 3.4]). The
singular locus S of F is the closed subscheme of X whose ideal sheaf IS is the image of
the associated map Ωr

X [˝]OX (�KF ) ! OX . On the nonsingular locus Xns of X , Sred
consists of the points at which FjXns is not a subbundle of TXns . When S = ¿, we say that
F is a regular foliation.

An analytic subvariety Y � X is invariant under F if it is not contained in the singular
locus of F , and the restriction �jYns : Ω

r
X jYns

! OX (KF )jYns
factors through the natural

map Ωr
X jYns

! Ωr
Y jYns

.
A maximal invariant subvariety of dimension r is called a leaf of F .

There are several notions of singularities for foliations. The notion of reduced folia-
tions has been used in the birational classification of foliations by curves on surfaces (see
Brunella [2004]). More recently, notions of singularities coming from the minimal model
program have shown very useful when studying birational geometry of foliations. We in-
troduce the notions of canonical and log canonical foliations following McQuillan [2008,
Definition I.1.2]. Terminal and log terminal singularities can be defined analogously.

Definition 2.3. LetF be aQ-Gorenstein foliation on a normal varietyX . Let ' : X̃ ! X

be a projective birational morphism. There is a unique foliation F̃ on X̃ that agrees with
'�F on the open subset of X̃ where ' is an isomorphism, and uniquely defined rational
numbers a(E; X; F )’s such that

K
F̃

= '�KF +
X
E

a(E; X; F )E;

where E runs through all exceptional prime divisors for '. As usual, the discrepancies
a(E; X; F )’s do not depend on the birational morphism ', but only on the valuations
associated to the E’s. We say that F is canonical if a(E; X; F ) > 0 for all E exceptional
over X . We say that F is log canonical if a(E; X; F ) > ��(E) for all E exceptional
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over X , where

�(E) =

�
0 if E is invariant by the foliation,
1 if E is not invariant by the foliation.

If a Gorenstein foliation is regular, then it is canonical (Araujo andDruel [2013, Lemma
3.10]).

Definition 2.4. Let X be a normal projective variety, and F a Q-Gorenstein foliation on
X . We say that F is a Q-Fano foliation if �KF is ample. In this case, the index of F is
the largest positive rational number �F such that �KF ∼Q �F H for a Cartier divisor H

on X .

If F is a Q-Fano foliation of rank r on a normal projective variety X , then, by Höring
[2014, Corollary 1.2], �F 6 r . Moreover, equality holds if and only if X is a generalized
normal cone over a normal projective variety Z, and F is induced by the natural rational
map X Ü Z (see also Araujo, Druel, and Kovács [2008, Theorem 1.1], and Araujo and
Druel [2014, Theorem 4.11]). In Section 3 below we discuss Fano foliations of rank r and
index �F = r � 1. We call these del Pezzo foliations.

Definition 2.5. LetF be a foliation on a normal varietyX . We say thatF is algebraically
integrable if it is induced by a dominant rational map ' : X Ü Y with connected fibers
into a normal variety. This means that, over the smooth locus Xı � X of ', we have
FjXı = TXı/Y .

In the setting of Definition 2.5, the general leaf of F is a general fiber of 'jXı : Xı Ü
Y . The map ' : X Ü Y is unique up to birational equivalence. It is often useful to
take the variety Y to be the normalization of the unique proper subvariety of the Chow
variety of X whose general point parametrizes the closure of a general leaf of F (viewed
as a reduced and irreducible cycle in X ). It comes with a universal cycle and induced
morphisms:

(2-1) Z
� //

�

��

X

'~~}
}
}
}

Y:

HereZ is normal, � : Z ! X is birational and, for a general pointy 2 Y , �
�
��1(y)

�
� X

is the closure of a leaf of F . We refer to the diagram (2-1) as the family of leaves of F .
In our investigations of Q-Gorenstein algebraically integrable foliations, it proved to

be very useful to work with their log leaves, rather than with their leaves.
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Definition 2.6 (Araujo and Druel [2014, Definition 3.11 and Remark 3.12]). Let F be
a Q-Gorenstein algebraically integrable foliation on a normal projective variety X . Let
i : F ! X be the normalization of the closure of a general leaf of F . There is a canoni-
cally defined effectiveQ-divisor∆ onF such thatKF +∆ ∼Q i�KF . IfF is Gorenstein,
then∆ is integral. The pair (F;∆) is called a general log leaf of F . Consider the family
of leaves of F as in diagram (2-1). If y 2 Y is a general point, then F Š Zy = ��1(y).
Over the smooth locus of X , we have Supp(∆) = Exc(�) \ Zy under this identifica-
tion, where Exc(�) denotes the exceptional locus of � : Z ! X (Araujo and Druel [2018,
Lemma 2.12]). In particular, over the smooth locus of X , F n ∆ is smooth.

For a Cartier divisor L on X , we write LjF for the pullback i�L of L.

Proposition 2.7 (Araujo and Druel [ibid., Corollary 2.13]). Let X be a smooth projective
variety, and F ¨ TX an algebraically integrable foliation on X , with general log leaf
(F;∆). Suppose that either �(X) = 1, or F is a Fano foliation. Then ∆ ¤ 0.

The following notion of log canonicity for algebraically integrable foliations is weaker
than the notion introduced in Definition 2.3 (see Araujo and Druel [2013, Proposition
3.11]).

Definition 2.8. Let X be a normal projective variety, F a Q-Gorenstein algebraically
integrable foliation on X , and (F;∆) its general log leaf. We say that F has log canonical
singularities along a general leaf if (F;∆) is log canonical.

The following is a special geometric property of algebraically integrable Q-Fano folia-
tion with log canonical singularities along a general leaf. It implies in particular that there
is a common point in the closure of every general leaf.

Proposition 2.9 (Araujo and Druel [2016, Proposition 3.13]). Let F be an algebraically
integrable Q-Fano foliation on a normal projective variety X , having log canonical sin-
gularities along a general leaf. Then there is a log canonical center of the general log
leaf (F;∆) whose image in X does not vary with the log leaf.

Remark 2.10. The log canonicity assumption in Proposition 2.9 is necessary to guarantee
the existence of a common point in the closure of a general leaf. For instance, consider
the Grassmannian G(1; m) of lines on P m for m > 3, and the rational map G(1; m) Ü
G(1; m � 1) induced by the projection P m Ü P m�1 from a fixed point P 2 P m. It
induces a del Pezzo foliation F of rank 2 on G(1; m) whose general log leaf (F;∆) is
isomorphic to (P 2; 2`), where ` is a line in P 2 (see Araujo and Druel [2013, Example
4.3]). More precisely, F is the P 2 of lines contained in a plane Π Š P 2 of P m that
contains P , and ` is the line consisting of lines on Π through P . This log leaf is not log
canonical, and there is no common point in the closure of a general leaf. Also, Araujo
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and Druel [ibid., Construction 9.10] produces del Pezzo foliations on projective space
bundles over positive dimensional smooth projective varieties, which are contained in the
relative tangent bundle of the fibration. Clearly there is no common point in the closure
of a general leaf. The general log leaf in this case is isomorphic to a cone over (C; 2P ),
where C is a rational normal curve and P 2 C is a point. Again, it is not log canonical.

It is useful to have effective algebraic integrability criteria for foliations. We recall
Bogomolov and McQuillan’s criterion (see also Bost [2001] and Kebekus, Solá Conde,
and Toma [2007]).

Theorem 2.11 (F. Bogomolov and McQuillan [2016, Theorem 0.1]). Let X be a normal
projective variety, and F a foliation on X . Let C � X be a complete curve disjoint from
the singular loci of X and F . Suppose that the restriction FjC is an ample vector bundle
on C . Then the leaf of F through any point of C is an algebraic variety, and the leaf of
F through a general point of C is moreover rationally connected.

This criterion can be applied to describe special properties of Q-Fano foliations. Let
X be a normal projective variety and A any ample line bundle on X . Consider the usual
notions of slope and semi-stability with respect to A for torsion-free sheaves on X . Given
a Q-Fano foliation F of rank r on X , we have �A(F ) = �KF �An�1

r
> 0. Let

(2-2) 0 = F0 � F1 � � � � � Fk = F

be the Harder–Narasimhan filtration ofF with respect toA, with quotientsQi = Ei/Ei�1

satisfying �A(Q1) > �A(Q2) > : : : > �A(Qk). By the Mehta–Ramanathan Theorem,
the Harder–Narasimhan filtration of F with respect to A commutes with restriction to a
general complete intersection curve C . This generality conditions means that C = H1 \

� � �\Hdim(X)�1, where the Hi ’s are general members of linear systems jmi Aj for mi 2 N
sufficiently large. It implies that each Fi is locally free along C . Set s = max

˚
i >

1 j �A(Fi/Fi�1) > 0
	

> 1. From the properties of the Harder–Narasimhan filtrations, it
follows thatFi � TX is a foliation for 1 6 i 6 s. From the slope conditions and properties
of vector bundles on smooth curves (Hartshorne [1971, Theorem 2.4]), it follows that each
restriction (Fi )jC is ample. By Theorem 2.11, for 1 6 i 6 s, Fi � TX is an algebraically
integrable foliation, and the closure of a general leaf is rationally connected. This gives
the following property of Q-Fano foliations.

Corollary 2.12. Let F be a Q-Fano foliation on a normal projective variety X . Then
F contains an algebraically integrable subfoliation whose general leaves are rationally
connected.

Remark 2.13. Let X be a Fano manifold with �(X) = 1 and consider the Harder–
Narasimhan filtration of the tangent bundle TX as in (2-2). Since �(X) = 1, any ample
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line bundle A gives the same notion of stability. A conjecture due to Iskovskikh predicts
that TX is (semi-)stable. If TX is not semi-stable, the first nonzero subsheaf F1 in its
Harder–Narasimhan filtration is called the maximal destabilizing subsheaf of TX . Argu-
ing as before, we see that F1 is an algebraically integrable Fano foliation on X . The slope
inequality �A(F1) > �A(TX ) is equivalent to the index inequality �F1

rank(F1)
> �X

dim(X)
. So

in order to prove Iskovskikh’s conjecture, one must rule out the existence of Fano folia-
tions with large index on X .

More generally, one defines the algebraic rank ra
F

of a foliation F as the maximum
dimension of an algebraic subvariety through a general point of X that is everywhere tan-
gent to F . If F has rank r , then 0 6 ra

F
6 r , and ra

F
= r if and only if F is algebraically

integrable. When ra
F

= 0, we say that the foliation F is purely transcendental. Suppose
that F is not algebraically integrable. Then there exist a normal variety Y , unique up to
birational equivalence, a dominant rational map with connected fibers ' : X Ü Y , and a
purely transcendental foliation G on Y such that F is the pullback of G via '. This means
that FjXı = (d'ı)�1(GjY ı), where Xı � X and Y ı � Y are smooth open subsets over
which ' restricts to a smooth morphism 'ı : Xı ! Y ı.

We end this section by mentioning an algebraic integrability criterion of Campana and
Păun, which generalizes Theorem 2.11. The classical notion of slope-stability with respect
to an ample line bundle has been extended to allow stability conditions given by movable
curve classes on Q-factorial normal projective varieties (Campana and Peternell [2011],
Greb, Kebekus, and Peternell [2016a], Campana and Păun [2015]). In this more general
setting, one still has Harder–Narasimhan filtrations as in (2-2), although the analogous of
the Mehta–Ramanathan Theorem fails in general. Let F be a foliation on a Q-factorial
normal projective varietyX , and suppose that it has positive slope with respect to movable
curve class ˛ 2 N1(X)R. Consider the Harder–Narasimhan filtration of F with respect to
˛ as in (2-2), and set s = max

˚
i > 1 j �˛(Fi/Fi�1) > 0

	
> 1. Then the algebraic inte-

grability criterion of Campana and Păun (Campana and Păun [ibid., Theorem 4.2]) implies
that, for 1 6 i 6 s, Fi � TX is an algebraically integrable foliation, and the closure of a
general leaf is rationally connected. In particular, if F is a purely transcendental foliation,
then KF is pseudo-effective.

3 Classification of del Pezzo foliations

In this section we discuss classification results for del Pezzo foliations on projective man-
ifolds.

Definition 3.1. A del Pezzo foliation is a Fano foliation F of rank r > 2 and index
�F = r � 1.
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In the Introductionwe described all del Pezzo foliations on projective spaces and quadric
hypersurfaces. We have the following classification of codimension 1 del Pezzo foliations
on projective manifolds. See Araujo and Druel [2014, Theorem 1.3] for a more general
statement.

Theorem 3.2. Let F � TX be a codimension 1 del Pezzo foliation on a smooth projective
variety X . Then one of the following holds.

1. X Š P n.

2. X is isomorphic to a quadric hypersurface in P n+1.

3. There is an inclusion of vector bundles K � E on P 1, inducing a relative linear
projection

P (E)

""D
DD

DD
DD

D
' //_______ P (K) ;

q
{{ww
ww
ww
ww

P 1

such that X Š P (E) and F is the pullback via ' of a foliation

q�
�
det

�
E/K

��
,! TP(K) :

Moreover, one of the following holds.

• (E; K) Š
�
OP1(2) ˚ OP1(a)˚2; Op1(a)˚2

�
for some positive integer a.

• (E; K) Š
�
OP1(1)˚2 ˚ OP1(a)˚2; OP1(a)˚2

�
for some positive integer a.

• (E; K) Š
�
OP1(1) ˚ OP1(a) ˚ OP1(b); OP1(a) ˚ OP1(b)

�
for distinct

positive integers a and b.

Theorem 3.2 is the first instance of classification of del Pezzo foliations, when the am-
bient space is smooth and the codimension is 1. The classification problem can move in
different directions. One may be interested in del Pezzo foliations on mildly singular vari-
eties. In this direction, Araujo and Druel [ibid., Theorem 1.3] allows X to be factorial and
canonical. The conclusion is the same as in Theorem 3.2, with the additional possibility of
X being a cone over certain surfaces of Picard rank 1. One may be interested in classifying
codimension 1 Fano foliations of slightly smaller index. Fano foliations F of rank r � 3

and index �F = r � 2 are called Mukai foliations. In Araujo and Druel [2017], we have
classified codimension 1 Mukai foliations on projective manifolds. Finally, one is often
interested in del Pezzo foliations of arbitrary rank. For the rest of this paper, we consider
del Pezzo foliations of arbitrary rank on projective manifolds. Recall from Theorem 1.4
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that, except when the ambient space is P n, del Pezzo foliations are always algebraically
integrable. As a step in the classification problem, we give a classification of all possible
general log leaves of del Pezzo foliations.

Proposition 3.3. LetF be an algebraically integrable del Pezzo foliation of rank r > 2 on
a smooth projective variety X , with general log leaf (F;∆). Let L be an ample divisor on
X such that �KF ∼ (r �1)L. Then

�
F;∆; LjF

�
satisfies one of the following conditions.

1.
�
F; OF (∆); OF (LjF )

�
Š (P r ; OPr (2); OPr (1)).

2. (F;∆) is a cone over (Qm; H ), where Qm is a smooth quadric hypersurface in
P m+1 for some 2 6 m 6 r , H 2

ˇ̌
OQm(1)

ˇ̌
, and LjF is a hyperplane under this

embedding.

3.
�
F; OF (∆); OF (LjF )

�
Š (P 2; OP2(1); OP2(2)).

4.
�
F; OF (LjF )

�
Š (PP1(E); OP(E)(1)), and one of the following holds:

(a) E = OP1(1) ˚ OP1(d ) for some d > 2, and ∆ ∼Z � + f , where � is the
minimal section and f a fiber of P (E) ! P 1.

(b) E = OP1(2) ˚ OP1(d ) for some d > 2, and ∆ is a minimal section.

(c) E = OP1(1) ˚ OP1(1) ˚ OP1(d ) for some d > 1, and ∆ = PP1(OP1(1) ˚

OP1(1)).

5. (F;∆) is a cone over (Cd ; B), where Cd is rational normal curve of degree d in
P d for some d > 2, B 2

ˇ̌
OP1(2)

ˇ̌
, and LjF is a hyperplane under this embedding.

6. (F;∆) is a cone over the pair (4a) above, and LjF is a hyperplane section of the
cone.

Proof. By Proposition 2.7,∆ ¤ 0, and soKF +(r �1)LjF ∼ �∆ is not pseudo-effective.
Let � : F̃ ! F be a resolution of singularities, and set L̃ = ��LjF . Then L̃ is nef and

big. In the language of Andreatta [2013], (F̃ ; L̃) is a quasi-polarized variety. Moreover,
KF̃ +(r � 1)L̃ is not pseudo-effective. As in the proof of Höring [2014, Lemma 2.5], we
run a (KF̃ +(r �1)L̃)-MMP, ' : F̃ Ü F 0. Since KF̃ +(r �1)L̃ is not pseudo-effective,
it ends with a Mori fiber space F 0 ! Z:

(F̃ ; L̃) //___

�

��

(Fi ; Li ) //___ (F 0; L0):

F
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By Andreatta [2013, Proposition 3.6], if (Fi ; Li ) is an r-dimensional terminal Q-factorial
quasi-polarized variety, and R>0[C ] is a (KFi

+(r �1)Li )-negative extremal ray of bira-
tional type, then Li � C = 0. Therefore, ' : F̃ Ü F 0 is an MMP relative to F , and there
exists a morphism �0 : F 0 ! F such that � = �0 ı '. In particular, L0 = (�0)�LjF is nef
and big. Quasi-polarized varieties (F 0; L0) with a Mori fiber space structure induced by a
(KF 0 + (r � 1)L0)-negative extremal ray were classified in Andreatta [ibid., Proposition
3.5]. They are the following:

(a) (P r ; OPr (1)).

(b) (Qr ; OQr (1)), where Qr is a quadric hypersurface in P r+1.

(c) A cone over (P 2; OP2(2)) (where the vertex is allowed to be empty).

(d) (PB(E); OPB (E)(1)), whereE is a nef and big vector bundle of rank r over a smooth
curve B .

In case (a) we have F 0 Š F and∆ 2
ˇ̌
OPr (2)

ˇ̌
.

In case (b) we have F 0 Š F and ∆ 2
ˇ̌
OQr (1)

ˇ̌
. Moreover, since F n ∆ is smooth,

(F;∆) is a cone over (Qm; H ), where Qm is a smooth quadric hypersurface in P m+1 and
H 2

ˇ̌
OQm(1)

ˇ̌
, for some 1 6 m 6 r . When m = 1, F is isomorphic to a cone over a

conic curve, and this case will be covered under case (d) below.

In case (c), we have F 0 Š F , (F;∆) is a cone over the Veronese embedding of (P 2; `)

in P 5. Here ` is a line in P 2 and thus∆ is a cone over a smooth conic. In particular, (F;∆)

is log canonical and ∆ is its only log canonical center. By Proposition 2.9, the image of
∆ does not vary with the log leaf. Suppose that the vertex V of (F;∆) is nonempty.
Then the image of V does not vary with the log leaf either. Therefore any point of X

can be connected to any point in the image of V in X by a rational curve of L-degree
1. This implies that X Š P n. From the classification of del Pezzo foliations on P n, we
see that this is not possible. We conclude that V = ¿ and

�
F; OF (∆); OF (LjF )

�
Š

(P 2; OP2(1); OP2(2)).

We now consider case (d). Denote by g is the genus of B and by f a fiber of the natural
morphism � : F 0 ! B . Write � for a divisor on F 0 such that OP(E)(1) Š OF 0(�), and e

for a divisor on B such that OB(e) Š detE . Then �KF 0 = r� + ��(�e � KB).
We consider the following possibilities:

(d-1) F 0 Š F .

(d-2) �0 : F 0 ! F is the divisorial contraction induced by �.
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(d-3) �0 : F 0 ! F is the small contraction induced by �.

In case (d-1), since F is rationally connected, we must have B Š P 1 and E is an ample
vector bundle on P 1. Write

E = OP1(a1) ˚ � � � ˚ OP1(ar);

with 1 6 a1 6 � � � 6 ar . We have 0 ¤ ∆ 2
ˇ̌
� + (�

P
ai + 2)f

ˇ̌
, and so

1 6 h0
�
P (E); OP(E)(1) ˝ ��OP1(�

X
ai + 2)

�
= h0

�
P 1; E(�

X
ai + 2)

�
:

This implies that (r ; a1; : : : ; ar�1) 2
˚
(2; 1); (2; 2); (3; 1; 1)

	
. When E = OP1(1) ˚

OP1(1), F is a smooth quadric surface, and has already been consider. So we have one of
the possibilities described in (4).

In case (d-2), F is Q-factorial and (�0)�∆ 2
ˇ̌
OP(E)(1) ˝ ��(detE_ ˝ !_

B)
ˇ̌
, and so

1 6 h0
�
P (E); OP(E)(1) ˝ ��(detE_

˝ !_
B)

�
= h0

�
B; E ˝ detE_

˝ !_
B

�
:

ByHartshorne’s theorem (Hartshorne [1971, Theorem 2.4]), E is nef if and only if it has no
quotient with negative slope. So we must have g 2 f0; 1g. Moreover, if g = 1, then detE
is the first nonzero piece of the Harder–Narasimhan filtration of E , and Q = E/ detE
is a vector bundle on B . The only member of

ˇ̌
OP(E)(1) ˝ ��(detE_)

ˇ̌
is precisely the

projectivization of Q. It is the exceptional divisor of �0, which is impossible. So we
conclude that B Š P 1, F is a cone over a rational normal curve of degree d for some
d > 1, and LjF is a hyperplane under this embedding. When d = 1, we have F Š P r .
So we may assume that d > 2. A straightforward computation shows that ∆ is linearly
equivalent to two times a ruling of the cone.

In case (d-3), OF (LjF ) pulls back to OP(E)(1), and ∆ is the image under the small
contraction of a nonzero effective divisor ∆0 2

ˇ̌
OP(E)(1) ˝ ��(detE_ ˝ !_

B)
ˇ̌
. As

before, g 2 f0; 1g. Moreover, if g = 1, then detE is the first nonzero piece of the Harder–
Narasimhan filtration of E , Q = E/ detE is a vector bundle on B , and ∆0 Š P (Q) is
the only member of

ˇ̌
OP(E)(1) ˝ ��(detE_)

ˇ̌
. In particular, (F;∆) is log canonical and

∆ is its only log canonical center. By Proposition 2.9, the image of ∆ does not vary with
the log leaf, and so the image of its singular locus V does not vary with the log leaf either.
Note that V is the image of the exceptional locus of �0. Therefore any point of X can be
connected to any point of V by a rational curve of L-degree 1, and thus X Š P n. From
the classification of del Pezzo foliations on P n, we see that this is not possible. So we
conclude that B Š P 1. As in (d-1), we see that one of the following holds:
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• E = O˚r�2
P1 ˚OP1(1)˚OP1(d ) for some d > 2, r > 2, and∆0 ∼Z � +f , where

� = PP1

�
O˚r�2

P1 ˚ OP1(1)
�
, and f a fiber of PP1(E) ! P 1.

• E = O˚r�2
P1 ˚ OP1(2)˚ OP1(d ) for some d > 2, r > 2, and∆ = PP1

�
O˚r�2

P1 ˚

OP1(2)
�
.

• E = O˚r�3
P1 ˚ OP1(1) ˚ OP1(1) ˚ OP1(d ) for some d > 1, r > 3, and ∆ =

PP1(O˚r�3
P1 ˚ OP1(1) ˚ OP1(1)).

The first case can also be described as a cone over the pair (4a) above, yielding (6).
The latter two cases can be described as cones over the pairs (4b) and (4c) above, re-

spectively. In these cases, (F;∆) is log canonical and ∆ is its only log canonical center.
Moreover, ∆ is a cone with vertex V ¤ ¿ over a conic and a smooth quadric surface,
respectively. By Proposition 2.9, the image of ∆ does not vary with the log leaf, and so
the image of V does not vary with the log leaf either. Therefore any point of X can be
connected to any point in the image of V in X by a rational curve of L-degree 1, and thus
X Š P n. From the classification of del Pezzo foliations on P n, we see that this is not
possible.

We do not know examples of del Pezzo foliations with log leaves of type (3) and (6)
described in Proposition 3.3. When the general log leaf of F is log canonical, Proposi-
tion 2.9 may be used to recover the ambient space X . For example, consider case (1),
when

�
F; OF (∆); OF (LjF )

�
Š (P r ; OPr (2); OPr (1)). If (F;∆) is log canonical, then

Proposition 2.9 yields a common point x 2 X in the closure of a general leaf. Therefore
any point of X can be connected to x by a rational curve of L-degree 1. This implies that
X Š P n. On the other hand, there are del Pezzo foliations with general log leaf of type
(1) and not log canonical (see Remark 2.10).

We end this paper by reviewing a classification of del Pezzo foliations on projective
manifolds under restrictions on the singularities of the foliation F . Namely, we assume
that F has log canonical singularities and is locally free along a general leaf. Recall from
Theorem 1.4 that, if X 6Š P n, then del Pezzo foliations on X are always algebraically
integrable. If we remove the log canonicity assumption, we know more examples of del
Pezzo foliations, as discussed in Remark 2.10. One may be able to remove the locally
freeness assumption using the classification of log leaves in Proposition 3.3.

Theorem 3.4. [Araujo and Druel [2013, 9.1 and Theorems 1.3, 9.2, 9.6] and Araujo and
Druel [2016, Theorem 1.3]] Let F be an algebraically integrable del Pezzo foliation of
rank r on a projective manifold X . Suppose that F has log canonical singularities and is
locally free along a general leaf. Then one of the following holds.

1. r = 2 and �(X) = 1.
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2. X Š P n.

3. X is isomorphic to a quadric hypersurface in P n+1.

4. X Š P 1 � P k , r 2 f2; 3g and F is the pullback via the second projection of a
foliation on P k induced by a linear projection.

5. There is an inclusion of vector bundles K � E on P 1, inducing a relative linear
projection

P (E)

""D
DD

DD
DD

D
' //_______ P (K) ;

q
{{ww
ww
ww
ww

P 1

such that X Š P (E) and F is the pullback via ' of a foliation

q�
�
det

�
E/K

��
,! TP(K) :

Moreover, one of the following holds.

• (E; K) Š
�
OP1(2) ˚ OP1(a)˚m; OP1(a)˚m

�
for some a > 1 and m > 2

(r = 2).
• (E; K) Š

�
OP1(1)˚2 ˚ OP1(a)˚m; OP1(a)˚m

�
for some a > 1 and m > 2

(r = 3).
• E Š OP1(1) ˚ K , where K is an ample vector bundle not isomorphic to

OP1(a)˚m for any integer a (r = 2).

6. There is an inclusion of vector bundles K � E on P k , with k > 2 and E/K Š

OPk (1), inducing a relative linear projection

P (E)

""D
DD

DD
DD

D
' //_______ P (K) ;

q
{{xxx

xx
xx
xx

P k

such thatX Š P (E) andF is the pullback via ' of a foliation q�OPk (1) ,! TP(K)

(r = 2).
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BIRATIONAL GEOMETRY OF ALGEBRAIC VARIETIES
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Abstract

This is a report on some of the main developments in birational geometry in recent
years focusing on theminimal model program, Fano varieties, singularities and related
topics, in characteristic zero.

1 Introduction

It is not a comprehensive survey of all advances in birational geometry, e.g. we will not
touch upon the positive characteristic case which is a very active area of research. We will
work over an algebraically closed field k of characteristic zero. Varieties are all quasi-
projective.

Birational geometry, with the so-called minimal model program at its core, aims to
classify algebraic varieties up to birational isomorphism by identifying “nice” elements
in each birational class and then classifying such elements, e.g study their moduli spaces.
Two varieties are birational if they contain isomorphic open subsets. In dimension one,
a nice element in a birational class is simply a smooth and projective element. In higher
dimension though there are infinitely many such elements in each class, so picking a rep-
resentative is a very challenging problem. Before going any further lets introduce the
canonical divisor.

1.1 Canonical divisor. To understand a varietyX one studies subvarieties and sheaves
on it. Subvarieties of codimension one and their linear combinations, that is, divisors
play a crucial role. Of particular importance is the canonical divisor KX . When X is
smooth this is the divisor (class) whose associated sheaf OX (KX ) is the canonical sheaf
!X := detΩX where ΩX is the sheaf of regular differential forms. When X is only
normal, KX is the closure of the canonical divisor of the smooth locus. In general, the
canonical divisor is the only special non-trivial divisor attached toX . It plays an important

MSC2010: primary 14E30; secondary 14J45, 14B05, 14C20, 14E05, 14E07.
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role in algebraic geometry, e.g. in duality theory and Riemann-Roch formula, and also in
differential and arithmetic geometry. It is a central object in birational geometry.

Example. Assume X = P d . ThenKX ∼ �(d +1)H whereH � P d is a hyperplane.

Example. Assume X � P d is a smooth hypersurface of degree r . Then we have
KX ∼ (�d � 1 + r)H jX whereH � P d is a hyperplane not containing X .

Example. If X is a toric variety, then KX ∼ �Λ where Λ is the sum of the torus-
invariant divisors.

1.2 Varieties with special canonical divisor. LetX be a projective variety with “good”
singularities (by this we mean klt or lc singularities defined below, see Section 2.4).

We say X is

8<: Fano if KX is anti-ample
Calabi-Yau if KX is numerically trivial
canonically polarised if KX is ample

Note that here we consider Calabi-Yau varieties in a weak sense, that is, we do not require
the vanishing hi (X;OX ) = 0 for 0 < i < dimX which is usually assumed in other
contexts. For example, abelian varieties are Calabi-Yau by our definition.

The special varieties just defined are of great importance in algebraic geometry (e.g.
birational geometry, moduli theory, derived categories), differential geometry (e.g. Kähler-
Einstien metrics, stability), arithmetic geometry (e.g. existence and density of rational
points), and mathematical physics (e.g. string theory and mirror symmetry). They behave
much better compared to a randomly chosen variety.

Example. Assume X is a smooth projective curve of genus g. If g = 0, then X ' P 1

which is Fano. If g = 1, then X is an elliptic curve, hence a Calabi-Yau. If g � 2, then
X is canonically polarised.

Example. Assume X � P d is a smooth hypersurface of degree r . If r � d , then X is
Fano. If r = d + 1, then X is Calabi-Yau. If r > d + 1, then X is canonically polarised.

1.3 Minimal model program. Now we give a brief description of the minimal model
program (MMP). Pick a varietyW . Using resolution of singularities we can modifyW so
that it is smooth and projective. However, being smooth and projective is not very special
as in dimension at least two these properties are shared by infinitely many other varieties
in the same birational class. It is then natural to look for a more special representative. One
of the main aims of birational geometry is to show that we can dismantle W birationally
and reconstruct it using canonically polarised, Calabi-Yau, and Fano varieties. To be more
precise we want to establish the following conjecture formulated in its simplest form.
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Conjecture 1.4 (Minimal model and abundance). Each variety W is birational to a pro-
jective variety Y with “good” singularities such that either

• Y is canonically polarised, or

• Y admits a Fano fibration, or

• Y admits a Calabi-Yau fibration.

In particular, even if W is smooth, Y may be singular. In fact singularity theory is an
indispensable part of modern birational geometry.

As the name suggests the conjecture actually consists of two parts, the minimal model
conjecture and the abundance conjecture. The minimal model conjecture essentially says
that we can find Y such thatKY is nef meaningKY intersects every curve non-negatively,
or else there is a KY -negative fibration Y ! Z which means we have a Fano fibration.
The abundance conjecture essentially says that if Y is not canonically polarised and if it
does not admit a Fano fibration, then it admits aKY -trivial fibration Y ! Z which means
we have a Calabi-Yau fibration. The minimal model conjecture holds in dimension � 4

by Mori [1988], Shokurov [1993], Kawamata [1992c], and Shokurov [2003, 2009] in full
generality, and in any dimension for varieties of general type by Birkar, Cascini, Hacon,
and McKernan [2010] while the abundance conjecture is proved in dimension � 3 by
Miyaoka [1988] and Kawamata [1992a], and in any dimension for varieties of general type
by Shokurov [1985] and Kawamata [1984] (also see Birkar [2012] and references therein
for more results). We should also mention that the non-vanishing conjecture which is a
special case of (a suitable reformulation of) the abundance conjecture implies the minimal
model conjecture by Birkar [2010, 2011].

Given a smooth projective W , how can we get to Y ? This is achieved via running the
MMP which is a step by step program making the canonical divisor KW more positive
by successively removing or replacing curves along which KW is not positive. It gives a
(conjecturally finite) sequence of birational transformations

W = W1 Ü W2 Ü � � � Ü Wn = Y

consisting of divisorial contractions, flips, and a last step canonically trivial contraction.
The required contractions and flips exist by Shokurov [1985] and Kawamata [1984] and
Birkar, Cascini, Hacon, and McKernan [2010] and Hacon and McKernan [2010]. An
important ingredient is the finite generation of the k-algebra

R =
M
m�0

H 0(W;mKW )

in its various forms; see Birkar, Cascini, Hacon, and McKernan [2010], Hacon and McK-
ernan [2010], and Shokurov [2003].
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A serious issue with the MMP is that we do not know whether it actually stops at some
step Wn. What is not clear is if the MMP can produce an infinite sequence of flips. In
other words, the minimal model conjecture is reduced to the following.

Conjecture 1.5 (Termination). There is no infinite sequence of flips.

The two-dimensional case of the MMP is classical developed in the early 20th cen-
tury by Castelnuovo, Enriques, etc. The three-dimensional case (in characteristic zero)
was developed in the 70’s-90’s through work of many people notably Iitaka, Iskovskikh,
Kawamata, Kollár, Mori, Reid, Shokurov, Ueno, etc. The higher dimensional case is still
conjectural but a large portion of it has been established since the turn of the century by
many people including Birkar, Cascini, Hacon, McKernan, Shokurov, Xu, etc, involving
many difficult problems of local and global nature.

1.6 Pluricanonical systems, Kodaira dimension and Iitaka fibration. Let W be a
smooth projective variety. The space of sections H 0(W;mKW ), for m 2 Z, and their
associated linear systems jmKW j are of great importance. When W is one-dimensional
the linear system jKW j determines its geometry to a large extent. Indeed the genus g of
W is just h0(W;KW ) which is encoded in jKW j. Moreover, if g � 2, then jKW j is base
point free, and if in additionW is not hyperelliptic, then jKW j defines an embedding ofX
into a projective space of dimension g�1. In higher dimension, however, jKW j often says
little about W . One instead needs to study jmKW j for all m 2 Z in order to investigate
the geometry of W . This leads to the notion of Kodaira dimension �(W ), an important
birational invariant of W . This is defined to be the maximum of the dimension of the
images of W under the maps defined by the linear systems jmKW j for m > 0. It takes
values in f�1; 0; 1; : : : ; dimXg where the case �1 corresponds to the situation when
h0(W;mKW ) = 0 for every m > 0.

Assume �(W ) � 0, that is, h0(W;mKW ) ¤ 0 for some m > 0. When m > 0

is sufficiently divisible, jmKW j defines a rational fibration W Ü X which is called the
Iitaka fibration ofW . This is usually defined up to birational equivalence. The dimension
of X is simply the Kodaira dimension �(W ). It is often possible to translate questions
about W to corresponding questions about X . An old problem is the following:

Conjecture 1.7. Assume �(W ) � 0. Then there exists m 2 N depending only on dimW
such that jmKW j defines the Iitaka fibration.

If W is of general type, i.e. if �(W ) = dimW , then the conjecture is already known
by Hacon and McKernan [2006] and Takayama [2006] (also see Hacon, McKernan, and
Xu [2013, 2014] for more recent and more general results). In this case we can take m
such that jmKW j defines a birational embedding of W into some projective space. Note
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that W is birational to its canonical model X , by Birkar, Cascini, Hacon, and McKernan
[2010], which is a canonically polarised variety and understanding jmKW j is the same as
understanding jmKX j.

Now assume 0 � �(W ) < dimW . Themost general known result is that the conjecture
is true if we have bounds on certain invariants of the general fibres of the Iitaka fibration,
by Birkar and Zhang [2016]. This is done by using a canonical bundle formula for the
Iitaka fibration and translating the conjecture into a question on the base of the fibration.
Very roughly the main result of Birkar and Zhang [ibid.] says that the conjecture holds if
one understands the case �(W ) = 0. Note that in this case, assuming the minimal model
and abundance conjectures, W is birational to a Calabi-Yau variety, and understanding
jmKW j is the same as understanding such systems on the Calabi-Yau variety.

Finally, assume �(W ) = 1. Then all the linear systems jmKW j, form > 0, are empty.
By the minimal model and abundance conjectures,W is birational to a variety Y admitting
a Fano fibration Y ! Z. The general fibres of this fibration are Fano varieties. It is then
natural to focus on Fano varieties F and study the linear systems j � mKF j, for m > 0,
in detail. There has been extensive studies of these systems, especially in low dimension,
but general higher dimensional results are quite recent; see Birkar [2016a,b].

1.8 Fano varieties, and connection with families, singularities, and termination.
Let X be a Fano variety. A difficulty with investigating j � mKX j is that, unlike the
case of varieties of general type, these systems can change dramatically if we change X
birationally. On the other hand, a standard inductive technique to study j � mKX j is to
use the elements of j�mKX j (usually with bad singularities) to create a particular kind of
covering family of subvarieties of X and then use induction by restricting to members of
this family. A difficulty in this approach is that a member of this family is not necessarily
Fano, so it is hard to apply induction, again unlike the case of varieties of general type.
Despite these difficulties there has been lots of progress in recent years.

In general there is m 2 N depending only on dimX such that j �mKX j is non-empty.
Moreover, there is an element of j � mKX j with good singularities by Birkar [2016a,
Theorem 1.1]: this is a special case of boundedness of complements (see Theorem 3.3
below). In addition if we put a bound on the singularities of X , that is, if X is �-lc where
� > 0, then we can choose m so that j �mKX j defines a birational embedding of X into
some projective space by Birkar [ibid.], Theorem 1.2] (see Theorem 3.5 below). In fact
one can go further in this case and show that we can choosem so that�mKX is very ample,
hence j�mKX j defines an embedding ofX into some projective space, and that the set of
such X form a bounded family by Birkar [2016b, Theorem 1.1]: this is the so-called BAB
conjecture (see Theorem 3.7 below). These results are proved along with various other
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results and in conjunction with Shokurov’s theory of complements. We will give ample
explanations in subsequent sections.

So far we have only mentioned global Fano varieties but there are other (relative) Fano
varieties. Assume X has good singularities, f : X ! Z is a surjective projective mor-
phism, and �KX is ample over Z. We call X Fano over Z. If Z is a point, then X is a
usual Fano variety otherwise in general X is not projective. When dimX > dimZ > 0,
then f is a Fano fibration. Such fibrations appear naturally in birational geometry, and in
other contexts, e.g. families and moduli of Fano’s.

Now assume f is birational. A special case is a flipping contraction, one of the corner
stones of the MMP. Existence of flips basically means understanding the linear systems
j � mKX j relatively over Z. Another important special case is when f is the identity
morphism in which case we are just looking at the germ of a point on a variety, hence
we are doing singularity theory. Another connection with singularity theory is that of
singularities of R-linear systems of divisors on varieties, in general, that is the variety may
not be Fano and the divisors may not be related to canonical divisors (see Theorem 4.5
below). This is necessary for the proof of BAB. Therefore, studying Fano varieties in the
relative setting naturally overlaps with other important topics in birational and algebraic
geometry.

There is also connection with the termination conjecture. It is understood that the ter-
mination conjecture is about understanding singularities (see Section 6.5). Moreover, un-
derstanding singularities is essentially about understanding Fano varieties in the relative
birational case. On the other hand, problems about families of Fano varieties fits well in
this theory (see Sections 6.1 and 6.7). It is then no surprise that recent advances on Fano
varieties described above is expected to have a profound impact on further developments
in birational geometry.

2 Preliminaries

In this section we recall some basic notions. We will try to keep technicalities to a mini-
mum throughout the text. Most of what we need can be found in Kollár and Mori [1998]
and Birkar, Cascini, Hacon, and McKernan [2010].

2.1 Contractions. A contraction is a projective morphism f : X ! Z of varieties
such that f�OX = OZ . In particular, f is surjective with connected fibres.

2.2 Hyperstandard sets. Let R be a subset of [0; 1]. We define

Φ(R) =
n
1 �

r

m
j r 2 R; m 2 N

o
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to be the set of hyperstandard multiplicities associated to R. We usually assume 0; 1 2 R

without mention, so Φ(R) includes Φ(f0; 1g).

2.3 Divisors and resolutions. In algebraic geometryWeil divisors usually have integer
coefficients. However, in birational geometry it is standard practice to considerR-divisors.
An R-divisor on a normal variety X is of the formM =

P
aiMi whereMi are distinct

prime divisors and ai 2 R. By�Mi
M wemean the coefficient ai . We sayM is R-Cartier

ifM can be written as an R-linear combination of (not necessarily prime) Cartier divisors.
For two R-divisors M and N , M ∼R N means M � N is an R-linear combination of
principal Cartier divisors (a principal divisor is the divisor of zeros and poles of a rational
function).

If X is equipped with a projective morphism f : X ! Z, an R-Cartier divisorM is
nef overZ ifM �C � 0 for every curve C contracted to a point by f . We sayM is ample
over Z if it is a positive R-linear combination of ample Cartier divisors. We sayM is big
over Z ifM ∼R A+D where A is ample over Z andD � 0.

A log resolution � : W ! X of (X;M ) is a projective birational morphism where
W is smooth, and the union of the excpetional locus of � and the birational transform of
SuppM has simple normal crossing singularities.

2.4 Pairs. An important feature of modern birational geometry is that the main objects
are pairs rather than varieties. Pairs are much better behaved when it comes to induction
and passing from a variety to a birational model.

A pair (X;B) consists of a normal varietyX and anR-divisorB � 0 such thatKX +B

is R-Cartier. If the coefficients of B are � 1, we say B is a boundary.
Let � : W ! X be a log resolution of (X;B). Let

KW + BW := ��(KX + B):

The log discrepancy of a prime divisorD on W with respect to (X;B) is defines as

a(D;X;B) := 1 � �DBW :

We say (X;B) is lc (resp. klt)(resp. �-lc) if every coefficient ofBW is� 1 (resp. < 1)(resp.
� 1 � �). When B = 0 we just say X is lc, etc, instead of (X; 0).

A non-klt place of (X;B) is a prime divisor D on birational models of X such that
a(D;X;B) � 0. A non-klt centre is the image on X of a non-klt place. When (X;B) is
lc, a non-klt centre is also called a lc centre.

If we remove the condition B � 0, the above definitions still make sense but we add
sub to each notion defined, e.g. instead of lc we say sub-lc, etc.
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Example. The simplest kind of pair is a log smooth one, that is, a pair (X;B) where X
is smooth and SuppB has simple normal crossing singularities. In this case (X;B) being
lc (resp. klt) means every coefficient of B is � 1 (resp. < 1).

Example. Let X be the cone over a rational curve of degree n (for a more precise
definition see the example following Theorem 3.7). Then X is klt. But if X is the cone
over an elliptic curve, then X is lc but not klt.

Example. Let X be a klt surface. Let � : W ! X be the minimal resolution. The
exceptional curves are all smooth rational curves and they intersect in a special way. There
is a whose classification of the possible configurations (cf. Kollár andMori [1998, Section
4]). Once we know the configuration and the self-intersections of the exceptional divisors
it is a matter of an easy calculation to determine all the log discrepancies.

2.5 Generalised pairs. These pairs appear mainly when one considers the canonical
bundle formula of a fibration, e.g. see case (2) of Section 5.1. A generalised pair is
roughly speaking a pair together with a birational polarisation, that is, a nef divisor on
some birational model. They play an important role in relation with Conjecture 1.7 by
Birkar and Zhang [2016] and most of the results of Birkar [2016a,b]. For the sake of
simplicity we will try to avoid using these pairs and their subtle properties as much as
possible but for convenience here we recall the definition in the projective case only. For
detailed studies of generalised pairs see Birkar and Zhang [2016] and Birkar [2016a].

A projective generalised (polarised) pair consists of

• a normal projective variety X 0,

• an R-divisor B 0 � 0 on X 0,

• a projective birational morphism � : X ! X 0 from a normal variety, and

• a nef R-Cartier divisorM on X ,

such thatKX 0 +B 0+M 0 is R-Cartier, whereM 0 := ��M . We usually refer to the pair by
saying (X 0; B 0+M 0) is a projective generalised pair with dataX

�
! X 0 andM . However,

we want � andM to be birational data, that is, if we replace X with a higher model, e.g.
a resolution, and replace M with its pullback, then we assume the new data defines the
same generalised pair.

Now we define generalised singularities. Replacing X we can assume � is a log reso-
lution of (X 0; B 0). We can write

KX + B +M = ��(KX 0 + B 0 +M 0)
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for some uniquely determined B . We say (X 0; B 0 +M 0) is generalised lc (resp. gener-
alised klt) if every coefficient of B is � 1 (resp. < 1).

Example. Assume (X 0; B 0 +M 0) is a projective generalised pair with data X
�
! X 0

andM , and assumeM = ��M 0. Then (X 0; B 0 +M 0) is generalised lc (resp. generalised
klt) iff (X 0; B 0) is lc (resp. klt). In other words, in this case M 0 does not contribute to
singularities.

Example. Let X 0 = P 2, and � : X ! X 0 be the blowup of a closed point x0 2 X 0.
Assume H � is a hyperplane. LetM = 3��H � tE where E is the exceptional divisor
of � and t 2 [0; 3] is a real number. Then letting B 0 = 0, (X 0; B 0 +M 0) is a projective
generalised pair with data X

�
! X 0 andM . Note thatM 0 = 0. Now we can determine B

in the formula above. Calculating intersection numbers we findB = (t �1)E. Therefore,
(X 0; B 0 +M 0) is generalised lc (resp. generalised klt) iff t � 2 (resp. t < 2).

3 Fano varieties

3.1 Facets of Fano varieties. Grothendieck insisted on studying varieties (and
schemes) in a relative setting. This philosophy has been very successfully implemented
in birational geometry. This is particularly interesting in the case of Fano varieties, or we
should say relative Fano varieties.

Let (X;B) be a klt pair and f : X ! Z be a surjective projective morphism, and
assume �(KX + B) is ample over Z. We then say (X;B) is Fano over Z. This relative
notion unifies various classes of objects of central importance. There are three distinct
cases.

• Global case: this is whenZ is just a point, hence (X;B) is a Fano pair in the usual
sense.

• Fibration case: this is when dimX > dimZ > 0, that is, f is a genuine fibration
and its general fibres are global Fano pairs.

• Birational case: this is when f is birational. There are several important subcases
here. If f is extremal and contracts one divisor, then f is a divisorial contraction.
If f is extremal and contracts some subvariety but not a divisor, then f is a flipping
contraction. If f is an isomorphism, then (X;B) is just the germ of a klt singularity.

3.2 Complements and anti-pluri-canonical systems. Assume (X;B) is an lc pair
equipped with a projective morphism X ! Z. The theory of complements is essentially
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the study of the systems j � n(KX + B)j where n 2 N, in a relative sense over Z. Ob-
viously this is interesting only when some of these systems are not non-empty, e.g. Fano
case. The theory was introduced by Shokurov [1993]. The theory was further developed
by Shokurov [2000], Y. G. Prokhorov and Shokurov [2001, 2009], and Birkar [2016a,b].

A strong n-complement ofKX +B over a point z 2 Z is of the formKX +B+ where
over some neighbourhood of z we have:

• (X;B+) is lc,

• n(KX + B+) ∼ 0, and

• B+ � B .

From the definition we get

�n(KX + B) ∼ nB+
� nB � 0

over some neighbourhood of z which in particular means the linear system j�n(KX +B)j

is not empty over z, and that it contains a “nice” element. An n-complement (see Birkar
[2016a]) is defined similarly but it is more complicated, so for simplicity we avoid using
it. However, if B = 0, a complement and a strong complement are the same thing.

Theorem 3.3 (Birkar [ibid., Theorems 1.7, 1.8, 1.9]). Let d be a natural number and
R � [0; 1] be a finite set of rational numbers. Then there exists a natural number n
depending only on d and R satisfying the following. Assume (X;B) is a pair andX ! Z

a contraction such that

• (X;B) is lc of dimension d ,

• the coefficients of B are in Φ(R),

• X is Fano type over Z, and

• �(KX + B) is nef over Z.

Then for any point z 2 Z, there is a strong n-complement KX + B+ of KX + B over z.
Moreover, the complement is also an mn-complement for any m 2 N.

Here X of Fano type over Z means (X;G) is Fano over Z for some G. The theorem
was conjectured by Shokurov [2000, Conjecture 1.3], it was proved in dimension 2 by
Shokurov [ibid., Theorem 1.4], (see also Y. G. Prokhorov and Shokurov [2009, Corollary
1.8], and Shokurov [1993] for some cases). Y. G. Prokhorov and Shokurov [2001, 2009]
proved various inductive statements regarding complements including some unconditional
cases in dimension 3.
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Example. When X ! Z is toric morphism and B = 0 we can take n = 1 and B+ to
be the sum of the torus-invariant divisors.

Remark. Assume Z is a point. Assume for simplicity that B = 0 and that �KX is
ample, that is, X is a usual Fano variety. When X is a smooth 3-fold, Šokurov [1979]
proved that j �KX j contains a smooth K3 surface. In particular,KX has a 1-complement.
This is probably where the higher dimensional theory of complements originates.

Remark. Assume X ! Z is birational. Assume again for simplicity that B = 0

and that �KX is ample over Z. When X ! Z is a flipping contraction contracting one
smooth rational curve only, Mori (cf. Kollár and Mori [1992, Theorem 1.7]) showed that
there always exists a 1-complement over each z 2 Z but in the analytic sense, i.e. it exists
over an analytic neighbourhood of z. This is used in Mori’s proof of existence of 3-fold
flips, see Mori [1988].

Remark. AssumeX ! Z is an isomorphism, so we are looking at the germ of a klt sin-
gularity (X;B) around a point x 2 X . For simplicity again assume B = 0. In general the
Cartier index ofKX is not bounded even in dimension 2. The point of complement theory
in this case is that the n-complement KX + B+ has Cartier index n which is bounded.

Remark. When X is a 3-fold with terminal singularities, �KX is ample over Z, and
B = 0, the general elephant conjecture of Reid asks whether a general element of the
linear system j�KX j, relatively overZ, has canonical singularities. This is true in various
cases, e.g. when X is Gorenstein and Z is a point by Reid [n.d.], or when X ! Z is
identity by Reid [1987].

Example. Lets look at the particular case of surfaces in the local case. Assume X is
a surface, X ! Z is the identity, and B = 0. If x 2 X is smooth, then KX is a 1-
complement of itself, that is, we can takeB+ = 0. In the singular case, from classification
of the possible singularities one gets the following, by Shokurov [2000, p. 5.2.3]:

if x 2 X is a type

8̂̂̂̂
<̂
ˆ̂̂:
A singularity, then KX has a 1-complement.
D singularity, then KX has a 2-complement.
E6 singularity, then KX has a 3-complement.
E7 singularity, then KX has a 4-complement.
E8 singularity, then KX has a 6-complement.

3.4 Effective birationality. Let X be a Fano variety. Theorem 3.3 says that j �mKX j

is non-empty containing a nice element for some m > 0 depending only on dimX . If we
bound the singularities of X , we then have a much stronger statement.
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Theorem 3.5 (Birkar [2016a, Theorem 1.2]). Let d be a natural number and � > 0 a real
number. Then there is a natural number m depending only on d and � such that if X is
any �-lc Fano variety of dimension d , then j �mKX j defines a birational map.

Note thatm indeed depends on d as well as � because the theorem implies the volume
vol(�KX ) is bounded from below by 1

md . Without the �-lc assumption, vol(�KX ) can
get arbitrarily small or large; see Hacon, McKernan, and Xu [2014, Example 2.1.1]. In
dimension 2, the theorem is a consequence of BAB proved by V. Alexeev [1994], and in
dimension 3, special cases are proved by Jiang [2015] using different methods. Cascini
and McKernan have independently proved the theorem for canonical singularities, that is
when � = 1, using quite different methods.

It is worth mentioning that the theorem also holds in the relative setting. It follows
immediately from the global case stated above.

3.6 Boundedness of Fano varieties: BAB. It is possible to strengthen Theorem 3.5 so
that j �mKX j defines an actual embedding. This follows from the next result.

Theorem 3.7 (Birkar [2016b, Theorem 1.1]). Let d be a natural number and � a positive
real number. Then the projective varieties X such that

• (X;B) is �-lc of dimension d for some boundary B , and

• �(KX + B) is nef and big,

form a bounded family.

This was known as the Borisov-Alexeev-Borisov or BAB conjecture. Various special
cases of it was considered by many people. It was known in the following cases (by tak-
ing B = 0): surfaces by V. Alexeev [1994], toric varieties by A. A. Borisov and L. A.
Borisov [1992], Fano 3-folds with terminal singularities and Picard number one by Kawa-
mata [1992b], Fano 3-folds with canonical singularities by Kollár, Miyaoka, Mori, and
Takagi [2000], smooth Fano varieties by Kollár, Miyaoka, and Mori [1992], spherical
Fano varieties by V. A. Alexeev and Brion [2004], Fano 3-folds with fixed Cartier index
ofKX by A. Borisov [2001], and more generally, Fano varieties of given dimension with
fixed Cartier index of KX by Hacon, McKernan, and Xu [2014]; in a given dimension,
the Fano varieties X equipped with a boundary∆ such that KX +∆ � 0, (X;∆) is �-lc,
and such that the coefficients of ∆ belong to a DCC set, by Hacon, McKernan, and Xu
[ibid.] (also see Hacon and Xu [2015] and Birkar [2016a, Theorem 1.4]).
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Example. Now we look at an example of a non-bounded family of singular Fano sur-
faces. For n � 2 consider

E � Wn

��

f // Xn

P 1

whereXn is the cone over a rational curve of deg n, f is blowup of the vertex, andE is the
exceptional curve. In other words, Wn is the projective bundle of OP1 ˚ OP1(�n), E is
the section given by the summand OP1(�n), and Xn is obtained from Wn by contracting
E. Then an easy calculation, using E2 = �n, shows that

KWn
+
n � 2

n
E = f �KXn

;

hence Xn is a 2
n
-lc Fano variety with one singular point (the larger is n, the deeper is the

singularity). In particular, since the set of numbers f
n�2

n
j n 2 Ng is not finite, the set

fXn j n 2 Ng is not a bounded family. This example explains the role of the number � in
Theorem 3.7.

Example. In this example we sketch the proof of Theorem 3.7 in dimension two follow-
ing V. Alexeev and Mori [2004]. For simplicity assume B = 0 and that �KX is ample.
There is ∆ � 0 such that (X;∆) is �-lc and KX + ∆ ∼R 0. Let � : W ! X be the
minimal resolution and letKW +∆W be the pullback ofKX +∆. Since (X;∆) is klt, the
exceptional divisors of � are all smooth rational curves. Moreover, by basic properties
of minimal resolutions, ∆W � 0. In particular, (W;∆W ) is an �-lc pair. Now a simple
calculation of intersection numbers shows that �E2 � l for every exceptional curve of
� where l 2 N depends only on �. If the number of exceptional curves of � is bounded,
then the Cartier index of �KX is bounded which in turn implies �nKX is very ample
for some bounded n. In particular, this holds if the Picard number of W is bounded from
above. If in addition vol(�KX ) is bounded, then X belongs to a bounded family. Note
that vol(�KX ) = vol(�KW ).

Running an MMP on KW we get a morphism W ! V where V is either P 2 or a
rational ruled surface (likeWn in the previous example), and the morphism is a sequence
of blowups at smooth points. Let ∆V be the pushdown of ∆W . Then (V;∆V ) is �-lc
and KV + ∆V ∼R 0. It is easy to show that there are finitely many possibilities for V .
In particular, from vol(�KW ) � vol(�KV ), we deduce that vol(�KX ) = vol(�KW ) is
bounded from above. Thus it is enough to prove that the number of blowups inW ! V is
bounded. This number can be bounded by an elementary analysis of possible intersection
numbers in the sequence (see V. Alexeev and Mori [ibid., Section 1] for more details).
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3.8 Birational automorphism groups. An interesting consequence of Theorem 3.7
concerns the Jordan property of birational automorphism groups of rationally connected
varieties. Y. Prokhorov and C. Shramov [2016, Theorem 1.8] proved the next result as-
suming Theorem 3.7.

Corollary 3.9 (Birkar [2016b, Corollary 1.3]). Let d be a natural number. Then there is
a natural number h depending only on d satisfying the following. Let X be a rationally
connected variety of dimension d over k. Then for any finite subgroupG of the birational
automorphism group Bir(X), there is a normal abelian subgroupH ofG of index at most
h. In particular, Bir(X) is Jordan.

Here X rationally connected means that every two general closed points can be joined
by a rational curve. If we takeX = P d in the corollary, then we deduce that the Cremona
group Crd := Bir(P d ) is Jordan, answering a question of Serre [2009, p. 6.1].

4 Singularities of linear systems

4.1 Lc thresholds ofR-linear systems. Let (X;B) be a pair. The log canonical thresh-
old (lc threshold for short) of an R-Cartier R-divisor L � 0 with respect to (X;B) is
defined as

lct(X;B;L) := supft j (X;B + tL) is lcg:

It is a way of measuring the singularities of L taking into account the singularities of
(X;B) as well.

Now let A be an R-Cartier R-divisor. The R-linear system of A is

jAjR = fL � 0 j L ∼R Ag:

We then define the lc threshold of jAjR with respect to (X;B) (also called global lc thresh-
old or ˛-invariant) as

lct(X;B; jAjR) := infflct(X;B;L) j L 2 jAjRg

which coincides with

supft j (X;B + tL) is lc for every L 2 jAjRg:

This is an asymptotic invariant, so not surprisingly it is hard to compute in specific cases
and study in general.

Due to connections with the notion of stability and existence of Kähler-Einsteinmetrics,
lc thresholds of R-linear systems have attracted a lot of attention, particularly, when A is
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ample. An important special case is when X is Fano and A = �KX in which case many
examples have been calculated, e.g. see Cheltsov and K. A. Shramov [2008].

Example. If X = P d , B = 0, and A = �KX , then

lct(X;B; jAjR) =
1

d + 1
:

On the other hand, if X � P d is a smooth hypersurface of degree r � d , B = 0, and
A = �KX , then

lct(X;B; jAjR) =
1

d + 1 � r

by Cheltsov and K. A. Shramov [ibid., Example 1.3].
Another reason for studying the above threshold is connection with boundedness of

Fano varieties. Indeed it plays a central role in the proof of Theorem 3.7.

Theorem 4.2 (Birkar [2016b, Theorem 1.4]). Let d be a natural number and � a positive
real number. Then there is a positive real number t depending only on d; � satisfying the
following. Assume

• (X;B) is a projective �-lc pair of dimension d , and

• A := �(KX + B) is nef and big.

Then
lct(X;B; jAjR) � t:

This was conjectured by Ambro [2016] who proved it in the toric case. It can be derived
from Theorem 3.7 but in reality it is proved before Theorem 3.7 (see next section). Jiang
[2015, 2014] proved it in dimension two.

The lc threshold of an R-linear system jAjR is defined as an infimum of usual lc thresh-
olds. Tian [1990, Question 1] asked whether the infimum is a minimum when A = �KX

and X is Fano. The question was reformulated and generalised to Fano pairs in Cheltsov
and K. A. Shramov [2008, Conjecture 1.12]. The next result gives a positive answer when
the lc threshold is at most 1.

Theorem 4.3 (Birkar [2016b, Theorem 1.5]). Let (X;B) be a projective klt pair such
that A := �(KX + B) is nef and big. Assume that lct(X;B; jAjR) � 1. Then there is
0 � D ∼R A such that

lct(X;B; jAjR) = lct(X;B;D):

Moreover, if B is a Q-boundary, then we can chooseD ∼Q A, hence in particular, the lc
threshold is a rational number.

Shokurov has an unpublished proof of the theorem in dimension two.
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4.4 Lc thresholds of R-linear systems with bounded degree. Next we treat lc thresh-
olds associated with divisors on varieties, in a general setting. To obtain any useful result,
one needs to impose certain boundedness conditions on the invariants of the divisor and
the variety.

Theorem 4.5 (Birkar [2016b, Theorem 1.6]). Let d; r be natural numbers and � a positive
real number. Then there is a positive real number t depending only on d; r; � satisfying
the following. Assume

• (X;B) is a projective �-lc pair of dimension d ,

• A is a very ample divisor on X with Ad � r , and

• A � B is ample.

Then
lct(X;B; jAjR) � t:

This is one of the main ingredients of the proof of Theorem 4.2 but it is also interesting
on its own. We explain briefly some of the assumptions of the theorem. The condition
Ad � r means that X belongs to a bounded family of varieties, actually, if we choose A
general in its linear system, then (X;A) belongs to a bounded family of pairs. We can use
the divisor A to measure how “large” other divisors are on X . Indeed, the ampleness of
A � B roughly speaking says that the “degree” of B is bounded from above, that is,

degA B := Ad�1B < Ad
� r:

Without such boundedness assumptions, one would not find a positive lower bound for
the lc threshold as the next example shows.

Example. Assume (X = P 2; B) is �-lc and S � X is a line. Let L = A = lS where
l 2 N. Then the multiplicity of L at any closed point x 2 L is l , hence the lc threshold
lct(L;X;B) �

1
l
. Thus the larger is l , the smaller is the threshold. Next we illustrate how

the threshold depends on the degree of B . Let T be another line and x be the intersection
point S \ T . Let X1 ! X be the blowup at x, and let x1 be the intersection of the
exceptional divisor E1 and the birational transform S∼. Let X2 ! X1 be the blowup at
x1, and let x2 be the intersection of the new exceptional divisor E2 and S∼. At each step
we blowup the intersection point of S∼ and the newest exceptional divisor.

PutW := Xr . Then the exceptional locus of � : W ! X consists of a chain of curves
all of which are �2-curves except one which is a �1-curve. Then �KW is nef over X , in
fact, it is semi-ample over X . Thus there is 0 � BW ∼R ˛��H � KW for some ˛ > 0

such that (W;BW ) is 1
2
-lc and KW + BW ∼R 0/X . Now let B be the pushdown of BW .
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Then (X;B) is 1
2
-lc. Now let L = S + T . Then the coefficient of Er in ��L is r + 1,

hence
lct(L;X;B) = lct(��L;W;BW ) �

1

r + 1
:

Thus there is no lower bound on the lc threshold if r is arbitrarily large. This does not
contradict Theorem 4.5 because when r � 0, the degree degA B � 0 and A � B cannot
be ample (here A = lS with l fixed).

5 Brief sketch of proofs of main results

In this section we sketch some of the ideas of the proofs of Theorem 3.3, Theorem 3.5,
Theorem 4.5 and Theorem 3.7. We try to remove technicalities as much as possible but
this comes at the expense of being imprecise in various places and not elaborating onmany
of the new ideas.

5.1 Sketch of proof of boundedness of complements. (Theorem 3.3) For simplicity
we look at the global case, that is, when Z is a point. Pick a sufficiently small � 2 (0; 1).
Let Y ! X be the birational morphism which extracts all the prime divisors with log
discrepancy smaller than �. Let KY + BY be the pullback of KX + B . Define ΘY to be
the same as BY except that we replace each coefficient in (1� �; 1) with 1. Run an MMP
on �(KY +ΘY ) and let Y 0 be the resulting model and ΘY 0 be the pushdown of ΘY . We
can run such MMP because Y turns out to be of Fano type, so we can run MMP on any
divisor on Y .

As a consequence of local and global ACC of Hacon, McKernan, and Xu [2014, Theo-
rems 1.1 and 1.5] (in practice we need their generalisations to generalised pairs, see Birkar
and Zhang [2016, Theorems 1.5 and 1.6]), we can show that the MMP does not contract
any component of bΘY c, (Y 0;ΘY 0) is lc, and�(KY 0+ΘY 0) is nef. It is enough to construct
a bounded complement for KY 0 + ΘY 0 . Replacing (X;B) with (Y 0;ΘY 0) and applying
further reductions, we can reduce the problem to one of the following cases:

1. B has a component S with coefficient 1 and �(KX + B) is nef and big, or

2. KX + B � 0 along a fibration f : X ! T , or

3. (X;B) is exceptional.

Here exceptional means that for any choice of 0 � P ∼R �(KX +B) the pair (X;B+

P ) is klt. These cases require very different inductive treatment.
Case (1): First apply divisorial adjunction to defineKS +BS = (KX +B)jS . Further

modification of the setting allows us to ensure that S is Fano type. Moreover, the coef-
ficients of BS happen to be in a set Φ(S) for some fixed finite set S. By induction on
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dimension KS +BS has a strong n-complement for some bounded n. The idea then is to
lift the complement to X using vanishing theorems. In the simplest case when (X;B) is
log smooth and B = S , we look at the exact sequence

H 0(�n(KX + B)) ! H 0(�n(KX + B)jS ) ! H 1(�n(KX + B) � S) = 0

where the vanishing follows from Kawamata-Viehweg vanishing theorem noting that

�n(KX + B) � S = KX � n(KX + B) � (KX + B) = KX � (n+ 1)(KX + B)

Since KS + BS has a strong n-complement, the middle space in the above sequence is
non-trivial which implies the left hand side is also non-trivial by lifting the section cor-
responding to the complement. One then argues that the lifted section gives a strong n-
complement for KX + B .

Case (2): Apply the canonical bundle formula (also called adjunction for fibre spaces,
derived from Kawamata [1998]) to write

KX + B ∼R f
�(KT + BT +MT )

where BT is the discriminant divisor and MT is the moduli divisor. It turns out that the
coefficients of BT happen to be in a set Φ(S) for some fixed finite set S, and that pMT

is integral for some bounded number p 2 N. Now we want to find a complement for
KT + BT +MT and pull it back to X . There is a serious issue here: (T;BT +MT ) is
not a pair in the usual sense but it is a generalised pair. Thus we actually need to prove
Theorem 3.3 (at least in the global case) in the more general setting of generalised pairs.
This makes life a lot more difficult but fortunately everything turns out to work. Once we
have a bounded complement forKT +BT +MT it is straightforward to derive a bounded
complement for KX + B .

Case (3): In this case we use effective birationality. Perhaps after decreasing �, the
exceptionality condition implies that (X;B) is �-lc. For simplicity assume B = 0 and
that X is a Fano variety. Also assume we already have Theorem 3.5. Then there is a
bounded number m 2 N such that j � mKX j defines a birational map. Pick M 2 j �

mKX j and let B+ = 1
m
M . Since X is exceptional, (X;B+) is automatically klt, hence

KX +B+ is a strongm-complement. Although this gives some ideas of how one may get
a bounded complement but in practice we cannot give a complete proof of Theorem 3.5
before proving Theorem 3.3. The two theorems are actually proved together. See Birkar
[2016a, Sections 6 and 7] for more details.

5.2 Sketch of proof of effective birationality. (Theorem 3.5) Letm 2 N be the small-
est number such that j �mKX j defines a birational map, and let n 2 N be a number such
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that vol(�nKX ) > (2d )d . Initially we take n to be the smallest such number but we will
modify it during the proof. We want to show that m is bounded from above. The idea is
first to show that m

n
is bounded from above, and then at the end show that m is bounded.

Applying a standard elementary technique we can create a covering family G of sub-
varieties of X such that if x; y 2 X are any pair of general closed points, then there is
0 � ∆ ∼Q �(n + 1)KX and G 2 G such that (X;∆) is lc at x with the unique non-klt
centre G, and (X;∆) is not klt at y.

Assume dimG = 0 for all G. Then G = fxg is an isolated non-klt centre. Using mul-
tiplier ideals and vanishing theorems we can lift sections from G and show that j � nKX j

defines a birational map after replacing n with a bounded multiple, hence in particular m
n

is bounded from above in this case.
Now lets assume all G have positive dimension. If vol(�mKX jG) is large, then again

using some elementary arguments, we can create a new non-klt centreG0 containing x but
with dimG0 < dimG. Thus we can replace G with G0 and apply induction on dimension
of G. We can then assume vol(�mKX jG) is bounded from above.

Similar to the previous paragraph, we can cut G and decrease its dimension if
vol(�nKX jG) is bounded from below. Showing this lower boundedness is the hard part.
A key point here is that although G is not necessarily a divisor and although the singulari-
ties of (X;∆) away from x maybe quite bad but still there is a kind of adjunction formula,
that is, if F is the normalisation of G, then we can write

(KX +∆)jF ∼R KF +ΘF + PF

whereΘF is a boundary divisor with coefficients in a fixed DCC setΨ depending only on
d , and PF is pseudo-effective. Replacing n with 2n and adding to∆ we can easily make
PF big and effective.

Now we would ideally want to apply induction on d but the difficulty is that F may
not be Fano, in fact, it can be any type of variety. Another issue is that the singularities
of (F;ΘF + PF ) can be pretty bad. To overcome these difficulties we use the fact that
vol(�mKX jG) is bounded from above. From this boundedness one can deduce that there
is a bounded projective log smooth pair (F ;ΣF ) and a birational map F Ü F such
that ΣF is reduced containing the exceptional divisor of F Ü F and the support of the
birational transform of ΘF (and other relevant divisors).

Surprisingly, the worse the singularities of (F;ΘF + PF ) the better because we can
then produce divisors on F with bounded “degree” but with arbitrarily small lc thresholds
which would contradict a baby version of Theorem 4.5. Indeed assume (F;ΘF + PF )

is not klt. A careful study of the above adjunction formula allows to write KF + ΛF :=

KX jF where ΛF � ΘF and (F;ΛF ) is sub-�-lc. Put IF = ΘF + PF � ΛF . Then

IF = KF +ΘF +PF �KF �ΛF ∼R (KX +∆)jF �KX jF = ∆jF ∼R �(n+1)KX jF :
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Moreover, KF + ΛF + IF is ample.
Let � : F 0 ! F and : F 0 ! F be a common resolution. Pull backKF +ΛF +IF to

F 0 and then push it down to F and write it asKF +ΛF + IF . Then the above ampleness
gives

��(KF + ΛF + IF ) �  �(KF + ΛF + IF )

which implies that (F ;ΛF + IF ) is not sub-klt. From this one deduces that (F ;ΓF +

IF ) is not klt where ΓF = (1 � �)ΣF . Finally, one argues that the degree of IF gets
arbitrarily small if vol(�nKX jG) gets arbitrarily small, and this contradicts an easy case
of Theorem 4.5.

If singularities of (F;ΘF +PF ) are good, then we again face some serious difficulties.
Very roughly, in this case, we lift sections from F to X and use this section to modify ∆

so that (F;ΘF + PF ) has bad singularities, hence we reduce the problem to the above
arguments. This shows m

n
is bounded.

Finally, to we still need to bound m. This can be done by arguing that vol(�mKX ) is
bounded from above and use this to showX is birationally bounded, and then work on the
bounded model. See Birkar [2016a, Section 4] for more details.

5.3 Sketch of proof of boundedness of lc thresholds. (Theorem 4.5) Pick 0 � N ∼R

A. Let s be the largest number such that (X;B + sN ) is �0-lc where �0 = �
2
. It is enough

to show s is bounded from below. There is a prime divisor T on birational models of X
with log discrepancy a(T;X;∆) = �0 where ∆ := B + sN . It is enough to show that
the multiplicity of T in ��N is bounded on some resolution � : V ! X on which T is a
divisor. We can assume the image of T on X is a closed point x otherwise we can cut by
hyperplane sections and apply induction on dimension.

There is a birational morphism Y ! X from a normal projective variety which con-
tracts exactly T . A key ingredient here is provided by the theory of complements: using
the fact that �(KY + T ) is ample over X , we can find ΛY such that (Y;ΛY ) is lc near T
and n(KY + ΛY ) ∼ 0/X for some bounded number n 2 N. One can think of KY + ΛY

as a local-global type of complement. The crucial point is that if Λ is the pushdown of
ΛY , then we can make sure degree of Λ is bounded from above, that is, after replacing A
we can assume A� Λ is ample. By construction, the log discrepancy a(T;X;Λ) = 0 and
(X;SuppΛ) is bounded.

Next using resolution of singularities we can modify the setting and then assume that
(X;Λ) is log smooth and Λ is reduced. The advantage of having Λ is that now T can be
obtained by a sequence of blowups which is toroidal with respect to (X;Λ). That is, in
every step we blowup the centre of T which happens to be a stratum of (X;Λ); a stratum
is just a component of the intersection of some of the components of Λ. The first step is
just the blowup of x. One argues that it is enough to bound the number of these blowups.
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By the previous paragraph, we can discard any component of Λ not passing through x,
hence assume Λ = S1+ � � �+Sd where Si are irreducible components. On the other hand,
a careful analysis of Y ! X allows us to further modify the situation so that Supp∆ does
not contain any stratum of (X;Λ) apart from x. This is one of the difficult steps of the
whole proof.

Since (X;Λ) is log smooth and bounded, we can find a surjective finite morphism
X ! P d which maps x to the origin z = (0 : � � � : 0 : 1) and maps Si on Hi where
H1; : : : ;Hd are the coordinate hyperplanes passing through z. Since Supp∆ does not
contain any stratum of (X;Λ) apart from x, it is not hard to reduce the problem to a
similar problem on P d . From now on we assume X = P d and that Si are the coordinate
hyperplanes. The point of this reduction is that now (X;Λ) is not only toroidal but actually
toric, and�(KX+Λ) is very ample. In particular, replacing∆with t∆+(1�t)Λ for some
sufficiently small t > 0 (and replacing �0 accordingly), we can makeKX +∆ anti-ample.
Next by adding to∆ we can assume KX +∆ is numerically trivial.

LetW ! X be the sequence of blowups which obtains T as above. Since the blowups
are toric,W is a toric variety. If Y ! X is the birational morphism contracting T only, as
before, then Y is also a toric variety. Moreover, if KY +∆Y is the pullback of KX +∆,
then (Y;∆Y ) is �0-lc and KY + ∆Y is numerically trivial. Now running MMP on �KY

and using base point freeness gives another toric variety Y 0 which is Fano and �0-lc. By
the toric version of BAB proved by A. A. Borisov and L. A. Borisov [1992], Y 0 belongs
to a bounded family. From this we can produce a klt strong m-complement KY 0 + ΩY 0

for some bounded m 2 N which induces a klt strong m-complement KY + ΩY which in
turn gives a klt strong m-complement KX +Ω.

Finally Ω belongs to a bounded family as its coefficients are in a fixed finite set and its
degree is bounded. This implies that (X;Ω + uΛ) is klt for some u > 0 bounded from
below. Now an easy calculation shows that the multiplicity of T in the pullback of Λ on
W is bounded from above which in turn implies the number of blowups in W ! X is
bounded as required.

5.4 Sketch of proof of BAB. (Theorem 3.7) First applying Hacon and Xu [2015, The-
orem 1, 3] it is enough to show thatKX has a klt strongm-complement for some bounded
numberm 2 N. Running an MMP on �KX and replacingX with the resulting model we
can assume B = 0. By Theorem 3.3, we know that we have an lc strong n-complement
KX +B+. IfX is exceptional, then the complement is klt, so we are done in this case. To
treat the general case the idea is to modify the complement KX + B+ into a klt one. We
will do this using birational boundedness.

We need to show vol(�KX ) is bounded from above. This can be proved using argu-
ments similar to the proof of the effective birationality theorem. Once we have this bound,
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we can show that (X;B+) is log birationally bounded, that is, there exist a bounded log
smooth projective pair (X;ΣX ) and a birational map X Ü X such that ΣX contains the
exceptional divisors of X Ü X and the support of the birational transform of B+.

Next we pull backKX +B+ to a high resolution ofX and push it down toX and denote
it by KX + B+

X
. Then (X;B+

X
) is sub-lc and n(KX + B+

X
) ∼ 0. Now support of B+

X
is

contained in ΣX so we can use the boundedness of (X;ΣX ) to perturb the coefficients of
B+

X
. More precisely, perhaps after replacing n, there is∆X ∼Q B+

X
such that (X;∆X ) is

sub-klt and n(KX +∆X ) ∼ 0. Pulling KX +∆X back to X and denoting it by KX +∆

we get a sub-klt (X;∆) with n(KX +∆) ∼ 0.
Now a serious issue here is that∆ is not necessarily effective. In fact it is by no means

clear that its coefficients are even bounded from below. This is one of the difficult steps of
the proof. However, this boundedness follows directly from Theorem 4.2. The rest of the
argument which modifies∆ to get a klt complement is an easy application of complement
theory.

6 Some related problems and topics

6.1 Fano fibrations. One of the possible outcomes of the MMP is a Mori fibre space
which is an extremal contractionX ! Z whereKX is anti-ample overZ. This is a special
kind of Fano fibration. Fano fibrations and more generally Fano type fibrations appear
naturally in the course of applying induction on uniruled varieties, and in the context of
moduli theory.

Suppose now that f : X ! Z is a Mori fibre space where X is a 3-fold with Q-
factorial terminal singularities. Mori and Prokhorov proved that if Z is a surface, then Z
has canonical singularities by Mori and Y. Prokhorov [2008], and if Z is a curve, then the
coefficients of the fibres of f are bounded from above by 6 by Mori and Y. G. Prokhorov
[2009].

McKernan proposed a generalisation of the first part to higher dimension:

Conjecture 6.2. Assume d 2 N and � 2 R>0. Then there is ı 2 R>0 such that if
f : X ! Z is a Mori fibre space where X is �-lc Q-factorial of dimension d , then Z is
ı-lc.

On the other hand, independently, Shokurov proposed a more general problem which
generalised both parts of Mori and Prokhorov result.

Conjecture 6.3. Assume d 2 N and � 2 R>0. Then there is ı 2 R>0 such that if

• (X;B) is an �-lc pair of dimension d ,

• f : X ! Z is a contraction with dimZ > 0,
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• KX + B ∼R 0/Z, and �KX is big/Z,

then we can write
KX + B ∼R f

�(KZ + BZ +MZ)

such that (Z;BZ +MZ) is ı-lc where BZ andMZ are the discriminant and moduli parts
of adjunction.

McKernan’s conjecture is known in the toric case by V. Alexeev and A. Borisov [2014].
Shokurov’s conjecture is known when dimX�dimZ � 1 by Birkar [2016c], in particular
for surfaces, and open in higher dimension but we have the following general result of
Birkar [ibid.].

Theorem 6.4. Shokurov conjecture holds for those f such that (F; SuppBjF ) belongs to
a bounded family where F is a general fibre of f .

Note that by BAB (more precisely Birkar [2016b, Corollary 1.2]), F automatically
belongs to a bounded family. However, one has little control over SuppBjF and this is the
main difficulty. This issue is similar to the difficulties which appear in the proof of BAB
and related results. It is expected that the methods developed to prove BAB also works to
prove Shokurov’s conjecture but perhaps after some hard work.

6.5 Minimal log discrepancies and termination. The lc threshold plays an important
role in birational geometry. This is clear from the proofs described in Section 5. It is also
related to the termination conjecture (1.5) by Birkar [2007]. Another more subtle invariant
of singularities is theminimal log discrepancy (mld) also defined by Shorkuov. Let (X;B)
be a pair. The mld of (X;B) denoted mld(X;B) is defined to be the minimum of log
discrepancies a(D;X;B) whereD runs over all prime divisors on birational model of X .
The mld is way harder to treat than the lc threshold. Shokurov proposed the following:

Conjecture 6.6 (ACC for mld’s). Assume d 2 N and Φ � [0; 1] is a set of numbers
satisfying the descending chain condition (DCC). Then the set

fmld(X;B) j (X;B) is an lc pair and coefficients of B are in Φg

satisfies the ascending chain condition (ACC).

This is known for surfaces by V. Alexeev [1993] but open in dimension � 3. Its im-
portance is in relation with the termination conjecture and other topics of interest, see
Shokurov [2004] and Birkar and Shokurov [2010]. Shokurov showed that this ACC con-
jecture together with a semi-continuity conjecture about mld’s due to Ambro imply the
termination conjecture by Shokurov [2004]. The expectation is that the ACC conjecture
can be tackled using the theory of complements and the methods described in this text but
again after some hard work.
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6.7 Stable Fano varieties. Existence of specific metrics, e.g. Kähler-Einstein metrics,
on manifolds is a central topic in differential geometry. Unlike canonically polarised and
Calabi-Yau manifolds (see Yau [1978] and references therein), Fano manifolds do not
always admit such metrics. It is now an established fact that a Fano manifold admits
a Kähler-Einstein metric iff it is so-called K-polystable (see Chen, Donaldson, and Sun
[2015] and references therein).

On the other hand, it is well-known that Fano varieties do not behave as well as canon-
ically polarised varieties in the context of moduli theory. For example, the moduli space
would not be separated. A remedy is to consider only stable Fano’s. The first step of
constructing a moduli space is to prove a suitable boundedness result. In the smooth case
this is not an issue by Kollár, Miyaoka, and Mori [1992] but in the singular case bound-
edness is a recent result. Using methods described in Section 5, Jiang [2017] proved such
a result by showing that the set of K-semistable Fano varieties X of fixed dimension and
vol(�KX ) bounded from below forms a bounded family.

6.8 Other topics. There are connections between the advances described in this text
and other topics of interest not discussed above. Here we only mention some works very
briefly. Lehmann, Tanimoto, and Tschinkel [2014] and Lehmann and Tanimoto [2017]
relate boundedness of Fano’s and related invariants to the geometry underlying Manin’s
conjecture on distribution of rational points on Fano varieties. One the other hand, Cerbo
and Svaldi [2016] studied boundedness of Calabi-Yau pairs where boundedness of Fano
varieties appears naturally.
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Abstract
We survey some recent developments in the direction of the Yau-Tian-Donaldson

conjecture, which relates the existence of constant scalar curvature Kähler metrics
to the algebro-geometric notion of K-stability. The emphasis is put on the use of
pluripotential theory and the interpretation of K-stability in terms of non-Archimedean
geometry.
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Introduction

The search for constant curvature metrics is a recurring theme in geometry, the fundamen-
tal uniformization theorem for Riemann surfaces being for instance equivalent to the ex-
istence of a (complete) Hermitian metric with constant curvature on any one-dimensional
complex manifold. On a higher dimensional complex manifold, Kähler metrics are de-
fined as Hermitian metrics locally expressed as the complex Hessian of some (plurisub-
harmonic) function, known as a local potential for the metric. As a result, constant curva-
ture problems for Kähler metrics boil down to scalar PDEs for their potentials, a famous
The author was partially supported by the ANR project GRACK..
MSC2010: primary 58E11; secondary 26E30, 14L24, 32U5.
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instance being Kähler metrics with constant Ricci curvature, known as Kähler-Einstein
metrics, whose local potentials satisfy a complex Monge-Ampère equation. This was in
fact a main motivation for the introduction of Kähler metrics in Kähler [1933], where it
was also noted that the complex Monge-Ampère equation in question can be written as
the Euler-Lagrange equation of a certain functional.

In the present paper, we will more generally consider constant scalar curvature Kähler
metrics (cscK metrics for short) on a compact complex manifold X . Kähler metrics in
a fixed cohomology class of X are parametrized by a space H of (global) Kähler poten-
tials u 2 C1(X), cscK metrics corresponding to solutions in H of a certain fourth-order
nonlinear elliptic PDE. Remarkably, the latter is again the Euler-Lagrange equation of a
functional M on H, discovered by T. Mabuchi. While M is generally not convex on H
as an open convex subset of C1(X), Mabuchi defined a natural Riemannian L2-metric
on H with respect to which M does become convex, opening the way to a variational
approach to the cscK problem. The picture was further clarified by S.K. Donaldson, who
noted that H behaves like an infinite dimensional symmetric space and emphasized the
analogy with the log norm function in Geometric Invariant Theory.

Using this as a guide, one would like to detect the growth properties ofM by looking
at its slope at infinity along certain geodesic rays in H arising from algebro-geometric one-
parameter subgroups, and prove that positivity of these slopes ensures the existence of a
minimizer, which would then be a cscK metric. This is basically the prediction of the Yau-
Tian-Donaldson conjecture, positivity of the algebro-geometric slopes at infinity being
equivalent toK-stability. In the Kähler-Einstein case, this conjecture was famously solved
a few years ago by Chen, S. Donaldson, and Sun [2015a,b,c], thereby completing intensive
research on positively curved Kähler-Einstein metrics with many key contributions by
G.Tian.

The more elementary case of convex functions on (finite dimensional) Riemannian
symmetric spaces (see Section 1.3) and experience from the direct method of the calculus
of variations suggest to try to attack the general case of the conjecture along the following
steps:

1. extendM to a convex functional on a certain metric completion H̄, in which coer-
civity (i.e. linear growth) implies the existence of a minimizer;

2. prove that a minimizer u of M in H̄ is a weak solution to the cscK PDE in some
appropriate sense, and show that ellipticity of this equation implies that u is smooth,
hence a cscK potential;

3. show thatM is either coercive, or bounded above on some geodesic ray in H̄;
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4. approximate any geodesic ray (ut ) in H̄ by algebro-geometric rays (uj;t ) in H, in
such away that (uniform) positivity of the slopes ofM along (uj;t ) forcesM (ut ) !

+1 at infinity.

As of this writing, (1) and (3) are fully understood, as a combination of Chen [2000b],
Darvas [2015], Darvas and Rubinstein [2017], Berman and Berndtsson [2017], Berman,
Boucksom, Eyssidieux, Guedj, and Zeriahi [2011], and Berman, Boucksom, and Jons-
son [2015]. On the other hand, while (2) and (4) are known in the Kähler-Einstein case
Berman, Boucksom, Eyssidieux, Guedj, and Zeriahi [2011] and Berman, Boucksom, and
Jonsson [2015], they remain wide open in general1. The goal of this text is to survey
these developments, as well as the analysis of the algebro-geometric slopes at infinity in
terms of non-Archimedean geometry, building on Kontsevich and Tschinkel [2000] and
Boucksom, Favre, and Jonsson [2016, 2015]. It is organized as follows:

• Section 1 describes the ’baby case’ of convex functions on the space of Hermitian
norms of a fixed vector space, introducing alternative Finsler metrics and the space
of non-Archimedean norms as the cone at infinity;

• Section 2 recalls the basic formalism of Kähler potentials and energy functionals;

• Section 3 reviews the link between the metric geometry of H and pluripotential
theory, and discusses (1), (2) and (3) above;

• Section 4 introduces the non-Archimedean counterparts to Kähler potentials and the
energy functionals, and presents a proof of (4) in the Kähler-Einstein case.

Acknowledgments. My current view of the subject has been framed by collaborations
and countless discussions with many mathematicians. Without attempting to be exhaus-
tive, I would like to thank in particular Bo Berndtsson, Jean-Pierre Demailly, Ruadhaí
Dervan, Dennis Eriksson, Philippe Eyssidieux, Paul Gauduchon, Henri Guenancia, To-
moyuki Hisamoto, Mihai Păun, Valentino Tosatti and David Witt Nyström, and to express
my profound gratitude to Robert Berman, Charles Favre, Vincent Guedj, Mattias Jonsson
and Ahmed Zeriahi for the key role their ideas have been playing in our joint works over
the years.

1 Convex functions on spaces of norms

The complexification G of any compact Lie group K is a reductive complex algebraic
group, giving rise to a Riemannian symmetric space G/K and a conical Tits building.

1A proof of (2) has recently been announced by Chen and Cheng [2017, 2018a,b]
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The latter can be viewed as the asymptotic cone ofG/K, and the growth properties of any
convex, Lipschitz continuous function onG/K are encoded in an induced function on the
building. While this picture is well-known (see for instance Kapovich, Leeb, and Millson
[2009]), it becomes very explicit for the unitary group U (N ), for which G/K ' N is the
space of Hermitian norms on CN . The goal of this section is to discuss this case in ele-
mentary terms, along with alternative Finsler metrics on N, providing a finite dimensional
version of the more sophisticated Kähler geometric setting considered afterwards.

1.1 Finsler geometry on the space of norms. Let V be a complex vector space of
finite dimension N , and denote by N the space of Hermitian norms 
 on V , viewed as
an open subset of the (N 2-dimensional) real vector space Herm(V ) of Hermitian forms
h. The ordered spectrum of h 2 Herm(V ) with respect to 
 2 N defines a point �
 (h) in
theWeyl chamber

C = f� 2 RN
j �1 � � � � � �N g ' RN /SN ;

where the symmetric group SN acts on RN by permuting coordinates.

Lemma 1.1. For each symmetric (i.e. SN -invariant) norm � on RN , we have

� (�
 (h+ h
0)) � � (�
 (h)) + � (�
 (h

0))

for all 
 2 N and h; h0 2 Herm(V ).

Proof. Given �; �0 2 C, one says that � is majorized by �0, written � � �0, if

�1 + � � � + �i � �0
1 + � � � + �0

i

for all i , with equality for i = N . It is a well-known and simple consequence of the Hahn–
Banach theorem that � � �0 iff � is in the convex envelope of the SN -orbit of �0, which
implies �(�) � �(�0) by convexity, homogeneity and SN -invariance of �. The Lemma
now follows from the classical Ky Fan inequality �
 (h+ h

0) � �
 (h) + �
 (h
0).

Thanks to Lemma 1.1, setting jhj�;
 := �(�
 (h)) defines a continuous Finsler norm
j � j� on N, and hence a length metric d� on N, with d�(
; 


0) defined as usual as the
infimum of the lengths

R 1
0 j
̇t j�;
t

dt of all smooth paths (
t )t2[0;1] in N joining 
 to 
 0.
By equivalence of norms in RN , all metrics d� on N are Lipschitz equivalent.

Example 1.2. The metric d2 induced by the `2-norm on RN is the usual Riemannian met-
ric of N identified with the Riemannian symmetric space GL(N;C)/U (N ). In particular,
(N; d2) is a complete CAT(0)-space, a nonpositive curvature condition implying that any
two points of N are joined by a unique (length minimizing) geodesic.



VARIATIONAL AND NON-ARCHIMEDEAN 613

Example 1.3. The metric d1 induced by the `1-norm on RN admits a direct description
as a sup-norm

d1(
; 
 0) = sup
v2V nf0g

ˇ̌
log 
(v) � log 
 0(v)

ˇ̌
;

whose exponential is the best constant C > 0 such that C�1
 � 
 0 � C
 on V .

In order to describe the geometry of (N; d�), introduce for each basis e = (e1; : : : ; eN )

of V the embedding
�e : RN ,! N

that sends � 2 RN to the Hermitian norm for which e is orthogonal and ei has norm e��i .
The image �e(RN ) is thus the set of norms in N that are diagonalized in the given basis e.
Any two 
; 
 0 2 N can be jointly diagonalized in some basis e, i.e. 
 = �e(�); 


0 = �e(�
0)

with �; �0 2 RN . After permutation, the vector �0 �� determines an element �(
; 
 0) 2 C
which only depends on 
; 
 0, and is obtained by applying � log to the spectrum of 
 0 with
respect to 
 . The following result, proved in Boucksom and Eriksson [2018], generalizes
the well-known Riemannian picture for d2.

Theorem 1.4. For each symmetric norm � on RN , the induced Finsler metric d� on N
is given by d�(
; 


0) = � (�(
; 
 0)) for all 
; 
 0 2 N. It is further characterized as the
unique metric on N such that �e : (RN ; �) ,! (N; d�) is an isometric embedding for all
bases e.

1.2 Convergence to non-Archimedean norms. By a geodesic ray (
t )t2R+
in N, we

mean a constant speed Riemannian geodesic ray, i.e. d2(
t ; 
s) is a constant multiple of
jt � sj. Every geodesic ray is of the form 
t = �e(t�) for some basis e and � 2 RN ,
the latter being uniquely determined up to permutation as the spectrum of the Hermitian
form 
̇t with respect to 
t for any value of t . As a result, (
t ) is also a (constant speed)
geodesic ray for all Finsler metrics d�, and indeed satisfies d�(
t ; 
s) = �(�)jt � sj. The
metric d� might admit other geodesic rays in general, but we will not consider these in
what follows.

Two geodesic rays (
t ); (

0
t ) are called asymptotic if 
t and 
 0

t stay at bounded distance
with respect to any of the Lipschitz equivalent metrics d�, i.e. are uniformly equivalent
as norms on V . This defines an equivalence relation on the set of geodesic rays, whose
quotient naturally identifies with a space of non-Archimedean norms.

To see this, pick a geodesic ray 
t = �e(t�). Then 
t (v)
2 =

P
i jvi j

2e�2�i t for each
vector v =

P
i viei in V , from which one easily gets that 
t (v)

1/t converges to

(1-1) ˛

 X
i

viei

!
:= max

vi ¤0
e��i :
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as t ! 1. The function ˛ : V ! R+ so defined satisfies

(i) ˛(v + v0) � maxf˛(v); ˛(v0)g;

(ii) ˛(�v) = ˛(v) for all � 2 C�;

(iii) ˛(v) = 0 () v = 0,

which means that ˛ is an element of the space NNA of non-Archimedean norms on V with
respect to the trivial absolute value j � j0 on the ground field C, i.e. j0j0 = 0 and j� j0 = 1

for � 2 C�. The closed balls of such a norm are linear subspaces of V , and the data of
˛ thus amounts to that of an R-filtration of V , or equivalently a flag of linear subspaces
together with a tuple of real numbers; for this reason, NNA is also known in the literature
as the (conical) flag complex. The space NNA has a natural R�

+-action (t; ˛) 7! ˛t , whose
only fixed point is the trivial norm ˛0 on V .

The existence of a basis ofV compatiblewith a given flag implies that any non-Archimedean
norm ˛ 2 NNA can be diagonalized in some basis e = (ei ), in the sense that it satisfies
Equation (1-1) for some � 2 RN . The image of � in RN /SN is uniquely determined
by ˛, and a complete invariant for the (non-transitive) action of G = GL(V ) on NNA,
inducing an identification

NNA/G ' RN /SN :

The structure of NNA can be analyzed just as that of N by introducing for each basis e the
embedding

�NAe : RN ,! NNA

sending � 2 RN to the non-Archimedean norm (Equation (1-1)). Any two norms can be
jointly diagonalized, i.e. belong to the image of �e for some e, and it is proved in Bouck-
som and Eriksson [2018] that there exists a unique metric dNA

� on NNA for which each
�NAe : (RN ; �) ! (NNA; dNA

� ) is an isometric embedding. It is worth mentioning that the
Lipschitz equivalent metric spaces (NNA; dNA

� ), while complete, are not locally compact
as soon as N > 1.

Example 1.5. Every (algebraic) 1-parameter subgroup � : C� ! GL(V ) defines a non-
Archimedean norm ˛� 2 NNA, characterized by

˛�(v) � r () lim
�!0

�dlog re�(�) � v exists in V:

If e = (ei ) is a basis of eigenvectors for � with �(�) � ei = ��i ei , �i 2 Z, then ˛� =

�e(�). This shows that the lattice points NNA
Z , i.e. the images of ZN by the embeddings

�e , are exactly the norms attached to 1-parameter subgroups, and ultimately leads to an
identification of (NNA; d2)with the (conical) Tits building of the reductive algebraic group
GL(V ).
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Coming back to geodesic rays, one proves that the non-Archimedean norms ˛ =

lim 
1/t
t , ˛0 = lim 
 01/t

t defined by two rays (
t ), (
 0
t ) are equal iff the rays are asymptotic,

and that dNA
� computes the slope at infinity of d�, i.e.

(1-2) dNA
� (˛; ˛0) = lim

t!1

d� (
t ; 

0
t )

t
:

1.3 Slopes at infinity of a convex function. If f : R+ ! R is convex,
(f (t) � f (0))/t is a nondecreasing function of t . The slope at infinity

f 0(1) := lim
t!+1

f (t)

t
2 (�1;+1]

is thus well-defined, and finite if f is Lipschitz continuous. It is characterized as the
supremum of all s 2 R such that f (t) � st + O(1) on R+, and f is bounded above iff
f 0(1) � 0.

A function F : N ! R on the space of Hermitian norms is (geodesically) convex
iff F ı �e : RN ! R is convex for each basis e, and similarly for a function on NNA.
Assume further that F is Lipschitz. Then F (
t ) is convex and Lipschitz continuous on
R+ for each geodesic ray 
 , and the slope at infinity limt!+1 F (
t )/t only depends on
the equivalence class ˛ 2 NNA defined by 
 . As a result, F determines a function

F NA : NNA
! R;

characterized by F (
t )/t ! F NA(˛) for each ray (
t ) asymptotic to ˛ 2 NNA, and this
function is further convex and Lipschitz continuous by Equation (1-2).

Theorem 1.6. Let F : N ! R be a convex, Lipschitz continuous function, and fix a base
point 
0 2 N and a symmetric norm � on RN . The following are equivalent:

(i) F : N ! R is an exhaustion function, i.e. proper and bounded below;

(ii) F is coercive, i.e. F (
) � ı d�(
; 
0) � C for some constants ı; C > 0;

(iii) F NA(˛) > 0 for all nontrivial ˛ 2 NNA;

(iv) there exists ı > 0 such that F NA � ı dNA
� .

These conditions are further satisfied as soon as F admits a unique minimizer.

Proof. Clearly, (ii) implies (i), and (i) implies that F (
t ) is unbounded for any geodesic
ray, hence has a positive slope at infinity, which yields (iii). Let us now prove (iii)H)(ii).
Assuming by contradiction that there exists a sequence 
j in N such that

(1-3) F (
j ) � ıjd�(
j ; 
0) � Cj
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with ıj ! 0 and Cj ! +1, we are going to construct a non-constant geodesic ray (
t )

along which F is bounded above, contradicting the positivity of the slope at infinity along
this ray. By Lipschitz continuity, Equation (1-3) implies Tj := d�(
j ; 
0) ! 1. For
each j , let (
j;t )t2[0;Tj ] be the geodesic segment joining 
0 to 
j , parametrized so that
t = d�(
j;t ; 
0). By Ascoli’s theorem, (
j;t ) converges to a geodesic ray (
t ), uniformly
on compact sets of R+. By convexity of F , we have

F (
j;t ) � F (
0)

t
�
F (
j ) � F (
0)

Tj

;

hence F (
j;t ) � ıj t + F (
0), which yields in the limit the upper bound F (
t ) � F (
0).
At this point, we have thus shown that (i), (ii) and (iii) are equivalent. That (ii)H)(iv)
follows from Equation (1-2), while (iv) clearly implies (iii).

Assume finally that F admits a unique minimizer, which we may take as the base point

0. If F is not coercive, the previous argument yields a nonconstant ray (
t ) such that
F (
t ) � F (
0) = infF , which shows that all 
t are mininizers of F , and hence 
t = 
0
by uniqueness, a contradiction.

2 The constant scalar curvature problem for Kähler metrics

This section recalls the basic formalism of constant curvature Kähler metrics, and intro-
duces the corresponding energy functionals.

2.1 Kähler metrics with constant curvature. Let X be a compact complex manifold,
and denote by n its (complex) dimension. The data of a Hermitian metric on the tangent
bundle TX is equivalent to that of a positive (1; 1)-form !, locally expressed in holomor-
phic coordinates (zj ) as ! =

p
�1

P
ij !ijdzi ^ d z̄j with (!ij ) a smooth family of

positive definite Hermitian matrices. One says that ! is Kähler if it satisfies the following
equivalent conditions:

(i) d! = 0;

(ii) ! admits local potentials, i.e. smooth real valued valued functions u such that ! =
p

�1@@u, or !ij = @2u/@zi@z̄j in local coordinates;

(iii) the Levi-Civita connection r of ! on the tangent bundle TX coincides with the
Chern connection, i.e. the unique Hermitian connection with r0;1 = @.

The Kähler condition thus ensures compatibility between Riemannian and complex Her-
mitian geometry. The (normalized) curvature tensor Θ!(TX ) :=

p
�1
2�

r2 of a Kähler
metric is a (1; 1)-form with values in the Hermitian endomorphisms of TX , whose trace
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with respect to TX coincides with the Ricci curvature Ric(!) in the sense of Riemannian
geometry. In other words, the Ricci tensor of a Kähler metric can be seen as the curva-
ture of the induced metric on the dual of the canonical bundle KX := detT ?

X , the factor
2� being included in the curvature so that the de Rham cohomology class of the closed
(1; 1)-form Ric(!) coincides with the first Chern class

c1(X) := c1(TX ) = �c1(KX ):

In terms of the normalized operator ddc :=
p

�1
2�

@@ and a local function u with ! = ddc u,
we have

Ric(!) = � ddc log det
�

@2u

@zj @z̄k

�
;

which accounts for the ubiquity of the complex Monge-Ampère operator
u 7! det

�
@2u/@zj @z̄k

�
in Kähler geometry. Taking the trace of Ric(!) with respect

to ! yields the scalar curvature

S(!) = n
Ric(!) ^ !n�1

!n
= ∆ log det

�
@2u

@zj @z̄k

�
:

Denote by V :=
R

X
!n = [!]n the volume of !, and observe that the mean value of S(!)

is the cohomological constant

V �1

Z
X

S(!)!n = nV �1

Z
X

Ric(!) ^ !n�1 = �n�

with
� := V �1

�
c1(KX ) � [!]n�1

�
:

As a result, there exists a unique function � 2 C1(X), the Ricci potential of !, such that�
∆� = S(!) + n�R

X
e�!n = 1:

This defines a smooth, positive probability measure �0 := e�!n which we call the Ricci
normalized volume form of !.

To the above three notions of curvature correspond the following three versions of the
constant curvature problem.

(a) Requiring the full curvature tensor of ! to be constant, i.e.

Θ!(TX ) = �
�

n
! ˝ idTX

;
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is a very strong condition which implies uniformization, in the sense that (X;!)
must be isomorphic (after scaling the metric) to the complex projective space (� <
0), a finite quotient of a compact complex torus (� = 0), or a cocompact quotient
of the complex hyperbolic ball (� > 0).

(b) A Kähler-Einstein metric (KE for short) is a Kähler metric ! of constant Ricci cur-
vature, i.e. satisfying Ric(!) = ��!, the Kähler analogue of the Einstein equation.
Passing to cohomology classes yields the necessary proportionality condition

(2-1) c1(KX ) = �[!]

inH 2(X;R), which implies that the canonical bundle has a sign: X is either canon-
ically polarized (� > 0), Calabi-Yau (� = 0) or Fano (� < 0).

(c) Finally, a constant scalar curvature Kähler metric (cscK for short) is a Kähler metric
! with S(!) constant, i.e. S(!) = �n�. Here the sign of � only gives very weak
information on the positivity properties of KX . Note that S(!) is constant iff the
Ricci potential � is harmonic, hence constant by compactness of X .

While a KE metric ! is trivially cscK, it is remarkable that the converse is also true as
soon as the (necessary) cohomological proportionality condition holds, the reason being

(2-2) (2-1) H) Ric(!) = ��! + ddc �:

This follows indeed from the @@-lemma, which states that an exact (p; q)-form on a com-
pact Kähler manifold is @@-exact, hence Equation (2-1) () Ric(!) = ��! + ddc f
for some f 2 C1(X). Taking the trace with respect to ! shows that f � � is harmonic,
hence constant, proving Equation (2-2).

Thanks to the same @@-lemma, one can introduce global potentials for Kähler metrics in
a fixed cohomology class. More precisely, given a Kähler form !, any other Kähler form
in the cohomology class of ! is of the form !u := ! + ddc u with u a Kähler potential,
i.e. an element of the open, convex set of smooth functions

H := fu 2 C1(X) j !u > 0g :

Assuming Equation (2-1), and hence Ric(!) = ��!+ddc �, a simple computation yields

Ric(!u) + �!u = ddc log

 
e�u�0

!n
u

!
;

and !u is thus Kähler-Einstein iff u satisfies the complex Monge-Ampère equation

(2-3) MA(u) := V �1!n
u = c e�u�0

where c > 0 is a normalizing constant ensuring that the right-hand side is a probability
measure.
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2.2 Energy functionals. A fundamental feature of the cscK problem, discovered by
Mabuchi [1986], is that the corresponding (fourth order) PDE S(!u) + n� = 0 for a
potential u can be written as the Euler-Lagrange equation of a functional M : H ! R,
theMabuchi K-energy functional. It is characterized by

d

dt
M (ut ) = �

Z
X

u̇t (S(!ut
) + n�)MA(ut )

for any smooth path (ut ) in H, and normalized byM (0) = 0. Note thatM (u) is invariant
under translation of a constant, hence only depends on the Kähler metric !u. The Chen–
Tian formula forM Chen [2000a] and Tian [2000] yields a decomposition

M =Ment +Mpp;

where the entropy part

Ment(u) :=

Z
X

log
�
MA(u)
�0

�
MA(u) 2 [0;+1)

is the relative entropy of the probability measure MA(u) with respect to the Ricci normal-
ized volume form �0, and the pluripotential partMpp(u) is a linear combination of terms
of the form

R
X
u!

j
u ^ !n�j and

R
X
u Ric(!) ^ !

j
u ^ !n�j �1.

Assume now that the cohomological proportionality condition c1(KX ) = �[!] holds,
so that !u is cscK iff u satisfies the complex Monge-Ampère Equation (2-3). Besides the
K-energyM , another (simpler) functional also has Equation (2-3) as its Euler–Lagrange
equation. Indeed, the complex Monge-Ampère operator MA(u) is the derivative of a
functional E : H ! R, i.e.

d

dt
E(ut ) =

Z
X

u̇t MA(ut )

The functional E, normalized by E(0) = 0, is called the Monge-Ampère energy (with
strong fluctuations in both notation and terminology across the literature), and is explicitly
given by

(2-4) E(u) =
1

n+ 1

nX
j=0

V �1

Z
X

u!j
u ^ !n�j :

It follows that !u is cscK (equivalently, KE) iff u is a critical point of the Ding functional
D : H ! R, defined asD := L �E with

L(u) :=

�
��1 log

�R
X
e�u�0

�
if � ¤ 0R

X
u�0 if � = 0:
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Note that E(u+ c) = E(u) + c and L(u+ c) = L(u) + c for c 2 R, so thatD(u), just
asM (u), is invariant under translation of u by a constant, and hence only depends on the
Kähler form !u.

3 The variational approach

This section first describes theLp-geometry of the space of Kähler potentials, with respect
to which the K-energy becomes convex. This is used to relate the coercivity of M , its
growth along geodesic rays, and the existence of minimizers.

3.1 TheMabuchiL2-metric and weak geodesics. As we saw above, cscKmetrics are
characterized as critical points of theK-energyM : H ! R. In order to set up a variational
approach to the cscK problem, an ideal scenario would thus be that M be convex with
respect to the linear structure of H as an open convex subset of the vector space C1(X),
which would in particular imply that cscK metrics correspond to minimizers ofM .

While convexity in this sense fails in general, Mabuchi realized in Mabuchi [1987] that
M does become convex with respect to a more sophisticated notion of geodesics inH. The
infinite dimensional manifold H is indeed endowed with a natural Riemannian metric,
defined at u 2 H as the L2-scalar product with respect to the volume form MA(u) =

V �1!n
u . Mabuchi computed the Levi-Civita connection and curvature of this L2-metric,

and proved that the (Riemannian) Hessian ofM is everywhere nonnegative, so thatM is
convex along (smooth) geodesics in H.

The existence of a geodesic joining two given points in H thus becomes a pressing
issue, and new light was shed on this problem in Semmes [1992] and S. K. Donaldson
[1999], with the key observation that the equation for geodesics in H can be rewritten as
a complex Monge-Ampère equation. In terms of the one-to-one correspondence between
paths (ut )t2I of functions on X parametrized by a open interval I � R and S1-invariant
functions U on the product X � DI of X with the annulus

DI := f� 2 C j � log j� j 2 I g

given by setting

(3-1) U (x; �) = u� log j� j(x);

a smooth path (ut )t2I in H is a geodesic iff U satisfies the complex Monge-Ampère
equation

(3-2) (! + ddc U )n+1 = 0:
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Finding a geodesic (ut )t2[0;1] joining two given points u0; u1 2 H thus amounts to solv-
ing Equation (3-2) with prescribed boundary data. While uniqueness is a simple matter,
existence is much more delicate (and turns out to fail in general), as vanishing of the right-
hand side makes this nonlinear elliptic equation degenerate. Since the restriction of the
(1; 1)-form ! + ddc U to each slice X � f�g is required to be positive, Equation (3-2)
imposes that ! + ddc U � 0, which means by definition that U is !-psh (for plurisub-
harmonic). Thanks to this observation, geodesics can be approached using pluripotential
theory.

Denote by PSH(X;!) the space of !-psh functions on X , i.e. pointwise limits of de-
creasing sequences in H, by Błocki and Kołodziej [2007]. Following Berndtsson [2015,
§2.2], we define a subgeodesic in PSH(X;!) as a family (ut )t2I of!-psh functions whose
corresponding function U on X � DI is !-psh, a condition which implies in particular
that ut (x) is a convex function of t . A weak geodesic (ut )t2I is a subgeodesic which is
maximal, i.e. for any compact interval [a; b] � I and any subgeodesic (vt )t2(a;b),

lim
t!a

vt � ua and lim
t!b

vt � ub H) vt � ut for t 2 (a; b):

Lemma 3.1. Darvas [2017] Let (ut )t2I be a weak geodesic in PSH(X;!), and pick a
compact interval [a; b] � I . If ub � ua is bounded above, then t 7! supX (ut � ua) is
affine on [a; b].

Proof. After reparametrizing, we assume for ease of notation that a = 0 and b = 1, and set
m := supX (u1 � u0). For t 2 [0; 1], the inequality supX (ut � u0) � tm follows directly
from the convexity of t 7! ut (x). Since vt (x) := u1(x)+(t �1)m is a subgeodesic with
v0 � u0 and v1 � u1, maximality of (ut ) implies vt � ut for t 2 [0; 1], and hence

tm = sup
X

(u1 � u0) + (t � 1)m � sup
X

(ut � u0):

Given u0; u1 2 PSH(X;!), the weak geodesic (ut )t2(0;1) joining them is defined as
the usc upper envelope of the family of all subgeodesics (vt )t2(0;1) such that limt!0 vt �

u0, limt!1 vt � u1 (or ut � �1 if no such subgeodesic exists). When u0; u1 are
bounded, the weak geodesic (ut ) is locally bounded, and a ’balayage’ argument shows
that the corresponding functionU is the unique locally bounded solution to Equation (3-2)
in the sense of Bedford and Taylor [1976], with the prescribed boundary data. Even for
u0; u1 2 H, exemples due to Lempert and Vivas [2013] show that the weak geodesic (ut )

joining them is not C 2 in general, but initial work by Chen [2000b], succesively refined
in Błocki [2012] and Chu, Tosatti, and Weinkove [2017], eventually established that U is
locally C 1;1.
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3.2 Lp-geometry in the space of Kähler potentials. Just as the Riemannian metric
on the space of norms N can be generalized to a Finsler `p-metric for any p 2 [1;1]

(cf. Section 1.1), it was noticed by T. Darvas that the Mabuchi L2-metric on H admits an
immediate generalization to an Lp-Finsler metric, by replacing the L2-norm with the Lp-
norm in the above definition. The associated pseudometric dp on H is defined by letting
dp(u; u

0) be the infimum of the Lp-lengthsZ 1

0

ku̇t kLp(MA(ut ))dt

of all smooth paths (ut )t2[0;1] in H joining u to u0. We trivially have dp � dp0 for p � p0,
but the fact that dp is actually a metric (i.e. separates distinct points) is a nontrivial result in
this infinite dimensional setting, proved in Chen [2000b] for p = 2 and in Darvas [2015]
for d1, and hence for all dp .

The space H is not complete for any of the metrics dp , and the description of the
completion was completely elucidated in Darvas [ibid.] in terms of pluripotential theory,
following an earlier attempt by V. Guedj. The class

E � PSH(X;!)

of!-psh functions uwith full Monge-Ampère mass, introduced by Guedj-Zeriahi in Guedj
and Zeriahi [2007] (see also Boucksom, Eyssidieux, Guedj, and Zeriahi [2010]), may be
described as the largest class of !-psh functions on which the Monge-Ampère operator
u 7! MA(u) is defined and satisfies:

(i) MA(u) is a probability measure that puts no mass on pluripolar sets, i.e. sets of the
form f = �1g with  !-psh;

(ii) the operator is continuous along decreasing sequences.

For p 2 [1;1], the class Ep � E of !-psh functions with finite Lp-energy is defined
as the set of u 2 E that are Lp with respect to MA(u). For domains in Cn, the analogue
of Ep was first introduced by U. Cegrell in his pioneering work Cegrell [1998].

Example 3.2. If X is a Riemann surface, a function u 2 PSH(X;!) belongs to E iff the
measure ! + ddc u puts no mass on polar sets, and u is in E1 iff it satisfies the classical
finite energy condition

R
X
du^ d cu < +1, which means that the gradient of u is in L2.

The following results are due to T. Darvas.

Theorem 3.3. Darvas [2015] The metric dp admits a unique extension to Ep that is con-
tinuous along decreasing sequences, and (Ep; dp) is the completion of (H; dp). Further:
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(i) dp(u; u
0) is Lipschitz equivalent to ku � u0kLp(MA(u)) + ku � u0kLp(MA(u0));

(ii) the weak geodesic (ut )t2[0;1] joining any two u0; u1 2 Ep is contained in Ep , and is
a constant speed geodesic in the metric space (Ep; dp), i.e. dp(ut ; ut 0) = cjt � t 0j

for some constant c.

3.3 Energy functionals on E1. The weakest metric d1 turns out to be the most relevant
one for Kähler geometry, due to its close relationship with the Monge-Ampère energy
E. By Berman, Boucksom, Guedj, and Zeriahi [2013] and Darvas [2015], mixed Monge-
Ampère integrals of the form Z

X

u0 !u1
^ � � � ^ !un

with ui 2 E1 are well-defined, and continuous with respect to the ui in the d1-topology. In
particular, the Monge-Ampère operator is continuous in this topology, and Equation (2-4)
yields a continuous extension of E to E1, which is proved to be convex on subgeodesics,
and affine on weak geodesics.

Lemma 3.4. If u; u0 2 E1 satisfy u � u0, then d1(u; u0) = E(u0) �E(u).

Proof. By monotone regularization, it is enough to prove this for u; u0 2 H. The corre-
sponding weak geodesic (ut )t2[0;1] is then C 1;1, and its L1-length

R 1
t=0

R
X

ju̇t jMA(ut )

computes d1(u; u0). By Lemma 3.1, ut (x) is a nondecreasing function of t , hence u̇t � 0,
which yields

d1(u; u
0) =

Z 1

0

dt

Z
X

u̇t MA(ut ) =

Z 1

0

�
d

dt
E(ut )

�
dt = E(u0) �E(u):

When dealing with translation invariant functionals such as M and D, it is useful to
introduce the translation invariant functional J : E1 ! R+ defined by

J (u) := V �1

Z
X

u!n
�E(u);

which vanishes iff u is constant and satisfies J (u) = d1(u; 0) + O(1) on functions nor-
malized by supu = 0, thanks to Lemma 3.4.

Since the pluripotential partMpp(u) of the Mabuchi K-energy is a linear combination
of integrals of the form

R
X
u!

j
u ^ !n�j and

R
X
u Ric(!) ^ !

j
u ^ !n�j �1, it admits a
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continuous extension Mpp : E1 ! R. As to the entropy part Ment, it extends to a lower
semicontinuous functional

Ment : E1
! [0;+1];

by definingMent(u) to be the relative entropy of MA(u) with respect to �0. Finiteness of
Ment(u) is a subtle condition, which amounts to saying that MA(u) has a density f with
respect to Lebesgue measure such that f logf is integrable.

Theorem 3.5. Berman, Boucksom, Eyssidieux, Guedj, and Zeriahi [2011], Berman and
Berndtsson [2017], Chen, L. Li, and Păun [2016], and Berman, Darvas, and Lu [2017]
The extended functionals satisfy the following properties.

(i) For each C > 0, the set of u 2 E1 with supX u = 0 andMent(u) � C is compact
in the d1-topology.

(ii) jMpp(u)j � AJ (u) + B for some constant A;B > 0.

(iii) The functionalM : E1 ! (�1;+1] is lower semicontinuous and convex on weak
geodesics.

3.4 Variational characterization of cscK metrics. The Mabuchi K-energyM is coer-
cive ifM � ıJ � C on E1 by for some constants ı; C > 0. By Berman, Darvas, and Lu
[2017], it is in fact enough to test this on H. We then have the following basic dichotomy.

Theorem3.6. Darvas andHe [2017], Darvas and Rubinstein [2017], and Berman, Bouck-
som, and Jonsson [2015] If the K-energyM is coercive, then it admits a minimizer in E1.
If not, then for any u 2 H, there exists a unit speed weak geodesic ray (ut )t2[0;+1) in E1

emanating from u, normalized by supX (ut �u) = 0, along whichM (ut ) is nonincreasing.

Proof. Assume thatM is coercive, and let uj 2 E1 be a minimizing sequence, which can
be normalized by supuj = 0 by translation invariance. SinceM (uj ) is bounded above,
J (uj ) is bounded, by coercivity, hence so is jMpp(uj )j � AJ (uj ) + B . As a result,
Ment(uj ) is also bounded, which means that uj stays in a compact subset of E1. After
passing to a subsequence, we may thus assume that uj admits a limit u 2 E1, which is a
minimizer ofM by lower semicontinuity.

Assume now thatM is not coercive, i.e.M (uj ) � ıjJ (uj )�Cj for some sequences
uj 2 E1 with sup(uj �u) = 0, ıj ! 0 andCj ! +1. We then argue as in Theorem 1.6.
SinceMent(uj ) � 0 andMpp(uj ) � �AJ (uj ) � B , (A+ ıj )J (uj ) � Cj � B tends to
1, hence so does

Tj := d1(uj ; u) = J (uj ) +O(1):
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Denote by (uj;t )t2[0;Tj ] theweak geodesic connectingu touj , parametrized so that d1(uj;t ; uj;s) =

jt � sj, and note that supX (uj;t � u) = 0 for all t , by Lemma 3.1. By convexity of M
along (uj;t ), we get

(3-3)
M (uj;t ) �M (u)

t
�
M (uj ) �M (u)

Tj

� ıj :

for j � 1. For each T > 0 fixed, jMpp(uj;t )j � AJ (uj;t ) + B is bounded for t � T ,
hence so is Ment(uj;t ), by Equation (3-3). By Theorem 3.5, the 1-Lipschitz maps t 7!

uj;t thus send each compact subset of R+ to a fixed compact set in E1, and Ascoli’s
theorem shows that (uj;t ) converges uniformly on compact sets of R+ to a ray (ut )t2R+

in E1 (after passing to a subsequence). By local uniform convergence, (ut ) is a weak
geodesic, and satisfies sup(ut � u) = 0 and d1(ut ; us) = jt � sj. Further, M (ut ) �

M (u) by Equation (3-3) and lower semicontinuity, which implies thatM (ut ) decreases,
by convexity.

Using their key convexity result and a perturbation argument, Berman-Berndtsson proved
in Berman and Berndtsson [2017] that cscK metrics in the class [!]minimizeM , and that
the identity component Aut0(X) of the group of holomorphic automorphisms acts tran-
sitively on these metrics. In Berman, Darvas, and Lu [2016], Berman-Darvas-Lu went
further and proved that the existence of one cscK metric !u implies that any other mini-
mizer ofM lies in the Aut0(X)-orbit of u, and hence is smooth. Using this, we have:

Corollary 3.7. Darvas and Rubinstein [2017] and Berman, Darvas, and Lu [2016] If
Aut0(X) is trivial andM admits a minimizer u 2 H, thenM is coercive.

Proof. By Berman, Darvas, and Lu [2016], u is the unique minimizer of M in E1, up
to a constant. Assume by contradiction that M is not coercice, and let (ut ) be the ray
constructed in Theorem 3.6. SinceM (ut ) � M (u) = infM , ut must be equal to u up to
a constant, and hence ut = u by normalization, which contradicts d1(ut ; u) = t .

If a minimizer u ofM lies in H, then u+ tf is in H for all test functions f 2 C1(X)

and 0 < t � 1, henceM (u+ tf ) � M (u), which implies that u is a critical point ofM ,
i.e. !u is cscK. This simple perturbation argument cannot be performed for a minimizer
in E1, which is a major remaining difficulty2 on the analytic side of the cscK problem. In
the Kähler-Einstein case, we have however:

Theorem 3.8. Berman, Boucksom, Guedj, and Zeriahi [2013] and Berman, Boucksom,
Eyssidieux, Guedj, and Zeriahi [2011] If the cohomological proportionality condition,
Equation (2-1) holds, any mimizer of M in E1 lies in H, and hence defines a Kähler-
Einstein metric.

2This difficulty has recently been overcome by Chen and Cheng [2017, 2018a,b].
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Proof. It is not hard to show that a minimizer forM is also a minimizer for the Ding func-
tionalD = L�E, whose critical points inH are solutions of the complexMonge-Ampère
Equation (2-3). Themain step is now to prove that a minimizer u 2 E1 ofD satisfies Equa-
tion (2-3) in the sense of pluripotential theory, for the complexMonge-Ampère arsenal can
then be used to infer ultimately that u is smooth. The projection argument to follow goes
back to Aleksandrov in the setting of real Monge-Ampère equations. Given a test func-
tion f 2 C1(X), the psh envelope P (u + f ) is defined as the largest !-psh function
dominated by u+ f . The functional L makes sense on any function u, !-psh or not, and
satisfies u � v H) L(u) � L(v). We thus get for each t > 0

L(u) �E(u) = D(u) � D(P (u+ tf )) � L(u+ tf ) �E(P (u+ tf )):

The key ingredient is now a differentiability result proved in Berman and Boucksom
[2010], which implies that t 7! E(P (u + tf )) is differentiable at 0, with derivative
equal to

R
X
f MA(u). This yields indeedZ

X

f MA(u) = lim
t!0+

E(P (u+ tf )) �E(u)

t
�

� lim
t!0+

L(u+ tf ) � L(u)

t
=

R
X
f e�u�0R

X
e�u!0

;

which proves, after replacing f with �f , that u is a weak solution of Equation (2-3).

4 Non-Archimedean Kähler geometry and K-stability

In this final section, we turn to the non-Archimedean aspects of the cscK problem. We
reformulateK-stability as a positivity property for the non-Archimedean analogue of theK-
energyM , and explain how uniform K-stability implies coercivity, in the Kähler-Einstein
case.

4.1 Non-Archimedean pluripotential theory. If X is a complex algebraic variety, we
denote by XNA its Berkovich analytification (viewed as a topological space) with respect
to the trivial absolute value j�j0 onC Berkovich [1990]. WhenX = SpecA is affine, with
A a finitely generated C-algebra,XNA is defined as the set of all multiplicative seminorms
j � j : A ! R+ compatible with j � j0, endowed with the topology of pointwise convergence.
In the general case, X can be covered by finitely many affine open sets Xi , and XNA is
defined by gluing together the analytifications XNA

i along their common open subsets
(Xi \Xj )

NA.
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Assume from now on that X is projective, equipped with an ample line bundle L. The
topological space XNA is then compact (Hausdorff), and can be viewed as a compactifi-
cation of the space of real-valued valuations v : C(X)� ! R on the function field of X ,
identifying v with the multiplicative norm j � j = e�v . In particular, the trivial valuation on
C(X) defines a special point 0 2 XNA, fixed under the natural R�

+-action (t; j � j) 7! j � jt .
In this trivially valued setting, (the analytification of) L comes with a canonical trivial

metric. Any section s 2 H 0(X;L) thus defines a continuous function jsj0 : XNA !

[0; 1], the value of � log jsj0 at a valuation v being equal to that of v on the local function
corresponding to s in a trivialization of L at the center of v.

The space HNA of non-Archimedean Kähler potentials (with respect to L) is defined
as the set of continuous functions ' 2 C 0(XNA) of the form

' =
1

k
max

i
flog jsi j0 + �i g

with (si ) a finite set of sections of H 0(kL) without common zeroes and �i 2 R, those
with �i 2 Q forming HNA

Q � HNA. In order to motivate this definition, recall that the
data of a Hermitian norm 
 on H 0(kL) defines a Fubini-Study/Bergman type metric on
L, whose potential with respect to a reference metric j � j0 on L can be written as

FSk(
) :=
1

k
log max

s2H0(kL)nf0g

jsj0


(s)
=

1

2k
log

X
i

jsi j
2
0

for any 
 -orthonormal basis (si ). Similarly, any non-Archimedean norm ˛ onH 0(kL) in
the sense of Section 1.2 admits an orthogonal basis (si ), and we then have

FSNAk (˛) :=
1

k
log max

s2H0(kL)nf0g

jsj0

˛(s)
=

1

k
max

i
flog jsi j0 + �i g:

with �i = � log˛(si ). Denoting respectively by Nk and NNA
k

the spaces of Hermitian
and non-Archimedean norms onH 0(kL), we thus have two natural maps

FSk : Nk ! H; FSNAk : NNA
k ! HNA;

and HNA =
S

k FS
NA
k (NNA

k
) by definition. This is to be compared with the fact thatS

k FSk(Nk) is dense in H, a consequence of the fundamental Bouche–Catlin–Tian–
Zelditch asymptotic expansion of Bergman kernels.

Non-ArchimedeanKähler potentials are closely related to test configurations for (X;L),
i.e. C�-equivariant partial compactifications (X;L) ! C of the product (X;L) � C�,
with L a Q-line bundle.
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Proposition 4.1. Every test configuration (X;L) gives rise in a natural way to a function
'L 2 C 0(XNA), which belongs to HNA

Q if L is ample, and is a difference of functions
in HNA

Q in general. Further, two test configurations (Xi ;Li ), i = 1; 2 yield the same
function on XNA if and only if L1 and L2 coincide after pulling-back to some higher test
configuration.

To define 'L, denote respectively by L0 andLX0 the pullbacks of L andL to the graph
X0 of the canonical C�-equivariant birational map X Ü X � C, and note that

L0 = LX0 +D

for a unique Q-Cartier divisorD supported in the central fiber X0
0. Every valuation v on

X admits a natural C�-invariant (Gauss) extension G(v) to C(X)(t) ' C(X0), which
can be evaluated on D by chosing a local equation for (a Cartier multiple of) D at the
center of G(v), and we set 'L(v) := G(v)(D).

Example 4.2. Every 1-parameter subgroup � : C� ! GL(H 0(kL)) with kL very am-
ple defines a test configuration (X;L), obtained as the closure of the orbit of X ,!

PH 0(kL)�. The Q-line bundle L is ample, and every test configuration (X;L) with L
ample arises this way. By Example 1.5, � also defines a non-Archimedean norm ˛� on
H 0(kL), and we have

'L = FSNAk (˛�):

Combined with Proposition 4.1, this implies that HNA
Q is in one-to-one correspondence

with the set of all normal, ample test configurations.

A more general L-psh function is defined as a usc function ' : XNA ! [�1;+1)

that can be written as the pointwise limit of a decreasing sequence (or net, rather) in HNA,
defining a space PSHNA. These functions are bounded above, and the maximum principle
takes the simple form

sup
XNA

' = '(0);

with 0 2 XNA the trivial valuation. The space PSHNA is endowed with a natural topology
of pointwise convergence on divisorial points, in which functions with sup' = 0 form a
compact set. This is proved in Boucksom and Jonsson [2018], building on previous work
Boucksom, Favre, and Jonsson [2016] dealing with Berkovich spaces over the field C((t))

of formal Laurent series.

Example 4.3. If a is a coherent ideal sheaf on X , setting jaj = maxf 2a jf j defines
a continuous function jaj : XNA ! [0; 1]. Given c > 0, one shows that the function
c log jaj is L-psh if and only if L ˝ ac is nef, in the sense that ��L � cE is nef on the
normalized blow-up � : X 0 ! X of a, with exceptional divisor E.
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4.2 From geodesic rays to non-Archimedean potentials. We assume from now on
that X is a projective manifold equipped with an ample line bundle L, and ! 2 c1(L) is
a Kähler form. Recall that a subgeodesic ray (ut )t2R+

in PSH(X;!) is encoded in the
associated S1-invariant !-psh function

U (x; �) = u� log j� j(x)

on X � D�. We shall say that (ut ) has linear growth if ut � at + b for some constants
a; b 2 R, i.e. U + a log j� j � b, a condition which automatically holds when (ut ) is a
weak geodesic ray emanating from u0 2 H, as a consequence of Lemma 3.1.

To a subgeodesic ray (ut ) with linear growth, we shall associate an L-psh function

U NA : XNA
! [�1;+1);

following a procedure initiated in Boucksom, Favre, and Jonsson [2008]. Imposing

(U + a log j� j)NA = U NA
� a;

we may assume that U is bounded above, and hence extends to an !-psh function on
X � D. Consider first the case where U has analytic singularities, i.e. locally satisfies

U = c logmax
i

jfi j +O(1)

for a fixed constant c > 0 and finitely many holomorphic functions (fi ). The (integrally
closed) ideal sheaf

a := ff 2 OX�D j c log jf j � U +O(1)g

is then coherent, and C�-invariant by S1-invariance of U . We thus have a weight decom-
position a =

Pr
i=0 �

i ai for an increasing sequence of coherent ideal sheaves a0 � a1 �

� � � � ar = OX on X . One further proves that L ˝ ac
i is nef for each i , yielding L-psh

functions c log jai j on XNA by Example 4.3, and hence an L-psh function

U NA = c log jaj := cmax
i

flog jai j � ig:

In the general case, the multiplier ideals J(kU ), k 2 N�, are C�-invariant coherent ideal
sheaves on X � D. They satisfy the fundamental subadditivity property

J ((k + k0)U ) � J(kU ) � J(k0U );

which implies the existence of the pointwise limit

U NA := lim
k!1

1
k
log jJ(kU )j
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onXNA. A variant of Siu’s uniform generation theorem Berman, Boucksom, and Jonsson
[2015, §3.2] further shows the existence of k0 such that p�

X ((k + k0)L) ˝ J(kU ) is
globally generated on X � D for all k, and it follows that U NA is indeed L-psh.

Example 4.4. Pick k � 1, and let 
t = �s(t�) be a geodesic ray inNk associated to a ba-
sis s = (si ) ofH 0(kL) and � 2 RN . The image ut := FSk(
t ) is then a subgeodesic ray
in H with linear growth, and U NA = FSNAk

�
�NAs (�)

�
is the image of the non-Archimedean

norm defined by (
t ). If � is further rational,U has analytic singularities, and blowing-up
X �C along the associated C�-invariant ideal a defines a test configuration (X;L) such
that U NA = 'L.

The function U NA basically captures the Lelong numbers of U , and we have in partic-
ular U NA = 0 iff U has zero Lelong numbers at all points of X � f0g. More specifically,
let X be a normal test configuration forX , pick an irreducible componentE of the central
fiber X0, and set bE := ordE (X0). The normalized C�-invariant valuation b�1

E ordE on
C(X) ' C(X)(�) restricts to a divisorial (or trivial) valuation on C(X), defining a point
xE 2 XNA. By Boucksom, Hisamoto, and Jonsson [2017, Theorem 4.6], every divisorial
point in XNA is of this type, which means that U NA is determined by its values on such
points, and Demailly’s work on multiplier ideals shows that

�bEU
NA(xE ) = lim

k!1

1
k
ordE (J(kU ))

coincides with the generic Lelong number along E of the pull-back of U (cf. Boucksom,
Favre, and Jonsson [2008, Proposition 5.6]).

4.3 Non-Archimedean energy functionals. Ideally, we would like to associate to each
functional F in Section 2.2 a non-Archimedean analogue F NA, in such a way that

(4-1) F NA(U NA) = lim
t!1

F (ut )

t

for all weak geodesic rays (ut ). To get started, a special case of the pioneering work of
A.Chambert-Loir and A.Ducros on forms and currents in Berkovich geometry Chambert-
Loir and Ducros [2012] enables to define a mixed non-Archimedean Monge-Ampère op-
erator

(4-2) ('1; : : : ; 'n) 7! MA('1; : : : ; 'n)

on n-tuples ('i ) in HNA, with values in atomic probability measures on XNA. When the
'i arise from test configurations (Xi ;Li ), we can assume after pulling back that all Xi

are equal to the same X, and we then have

MA('1; : : : ; 'n) =
X
E

bE (L1jE � ::: � LnjE )ıxE
;
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where X0 =
P

E bEE is the irreducible decomposition and the xE 2 XNA are the asso-
ciated divisorial points.

We next introduce the non-Archimedean Monge-Ampère energy ENA : HNA ! R
using the analogue of Equation (2-4). As in the Kähler case, ENA is nondecreasing, hence
extends by monotonicity to PSHNA, which defines a space

E1;NA := fENA > �1g � PSHNA

of L-psh functions ' with finite L1-energy. It is proved in Boucksom, Favre, and Jonsson
[2015] and Boucksom and Jonsson [2018] that the mixed Monge-Ampère operator Equa-
tion (4-2) admits a unique extension to E1;NA with the usual continuity property along
monotonic sequences, and that

J NA(') := sup' �ENA(') 2 [0;+1)

vanishes iff ' 2 E1 is constant.

Example 4.5. A test configuration (X;L) ! C, being a product away from the central
fiber, admits a natural compactification (X̄; L̄) ! P 1. The non-Archimedean Monge-
Ampère energy ENA(') of the corresponding function ' = 'L 2 HNA

Q is then equal to the
self-intersection number

�
c1(L̄)n+1

�
, up to a normalization factor. Alternatively,

ENA(') = lim
k!1

wk

kh0(kL)

with wk 2 Z the weight of the induced C�-action on the determinant line
detH 0(X0; kL0), see for instance Boucksom, Hisamoto, and Jonsson [2017, §7.1].

If (ut ) is a weak geodesic ray in E1, E(ut ) = at + b is affine. Using that U is more
singular than J(kU )1/k , one shows that

(4-3) ENA(U NA) � a = lim
t!1

E(ut )/t;

which implies in particular that U NA belongs to E1;NA. However, this inequality can be
strict in general without further assumptions.

Example 4.6. Let ! be the Fubini-Study metric on X = P 1, normalized to mass 1. A
compact, polar Cantor set K � P 1 carries a natural probability measure without atoms,
and the potential u of this measure with respect to ! is smooth outsideK, has zero Lelong
numbers and does not belong toE. By Ross andWitt Nyström [2014] andDarvas [2017], u
defines a locally bounded weak geodesic ray (ut ) emanating from 0 such thatE(ut ) = at

with a < 0. However, the corresponding !-psh function U on X � D has zero Lelong
numbers, hence U NA = 0 and ENA(U NA) = 0.
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TheMabuchi K-energyM and the Ding functionalD also admit non-Archimedean ana-
loguesMNA andDNA. While the pluripotential partMNA

pp ofMNA is defined in complete
analogy withMpp as a linear combination of mixed Monge-Ampère integrals, the entropy
partMNA

ent as well as LNA turn out to be of a completely different nature, involving the log
discrepancy function

AX : XNA
! [0;+1]:

The latter is the maximal lower semicontinuous extension of the usual log discrepancy on
divisorial valuations, and we then have

MNA
pp (') =

Z
XNA

AX MA(')

and
LNA(') =

�
��1 infXNA(AX + �') if � ¤ 0

supXNA ' = '(0) if � = 0:

where we have set as before � = V �1(KX � Ln�1).

Example 4.7. Boucksom, Hisamoto, and Jonsson [2017] If (X;L) is an ample test con-
figuration, thenMNA(') coincides with the Donaldson-Futaki invariant of (X;L), up to
a nonnegative error term that vanishes precisely when X0 is reduced. Further, (X;L) is
K-semistable iffMNA(') � 0 for all ' 2 HNA

Q , and K-stable iff equality holds only for '
a constant. Following Boucksom, Hisamoto, and Jonsson [2017] and Dervan [2016], we
say that (X;L) is uniformly K-stable ifMNA � ıJ NA on HNA

Q for some ı > 0.

We can now state the following result, which builds in part on previous work by Phong,
Ross, and Sturm [2008] and Berman [2016].

Theorem 4.8. Boucksom, Hisamoto, and Jonsson [2016] and Berman, Boucksom, and
Jonsson [2015] Let (ut ) be any subgeodesic ray in E1, normalized by suput = 0.

(i) If (ut ) has analytic singularities, then Equation (4-1) holds for E andMpp.

(ii) If (ut ) has strongly analytic singularities, then Equation (4-1) holds forMent.

(iii) In the Fano case, Equation (4-1) holds for L.

Here we say that (ut ) (or U ) has strongly analytic singularities if U satisfies near each
point of X � f0g

U = c
2
log

X
i

jfi j
2 mod C1

for a fixed constant c > 0 and finitely many holomorphic functions (fi ).
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4.4 A version of the Yau–Tian–Donaldson conjecture. In its usual formulation, the
Yau–Tian–Donaldson conjecture states that c1(L) contains a cscK metric if and only if
(X;L) is K-(poly)stable. In the following form, it says that M satisfies the analogue of
Theorem 1.6.

Conjecture 4.9. Let (X;L) be a polarized projective manifold, ! 2 c1(L) be a Kähler
form, and assume that Aut0(X;L) = C�. The following are equivalent:

(i) there exists a cscK metric in c1(L);

(ii) M is coercive;

(iii) (X;L) is uniformly K-stable.

The implications (i)H)(ii)H)(iii) were respectively proved in Berman, Darvas, and
Lu [2016] (cf. Corollary 3.7) and Boucksom, Hisamoto, and Jonsson [2016] (cf. Theo-
rem 4.8). By Theorem 3.6, (ii) implies the existence of a minimizer u 2 E1 for M , and
the key obstacle to get (i) is then to establish that u is smooth3. Assume now that (iii)
holds. If (ii) fails, Theorem 3.6 yields a weak geodesic ray (ut ) in E1, emanating from 0

and normalized by suput = 0, E(ut ) = �t , along which M (ut ) decreases, and hence
limM (ut )/t � 0. Two major difficulties arise:

1. While U NA belongs to E1;NA, we cannot prove at the moment of this writing that
(iii) propagates toMNA � ıJ NA on the whole of E1;NA.

2. Even taking (1) for granted, Example 4.6 shows thatMNA(U NA) cannot be expected
to compute exactly the slope at infinity ofM (ut ).

These difficulties can be overcome in the Kähler-Einstein case, by relying on the Ding
functional as well.

Theorem 4.10. Berman, Boucksom, and Jonsson [2015] Conjecture 4.9 holds if the pro-
portionality condition c1(KX ) = �[!] is satisfied.

Sketch of proof. For � � 0, all three conditions in the conjecture are known to be al-
ways satisfied, and we thus focus on the Fano case. Theorem 3.8 completes the proof of
(ii)H)(i), which was anyway proved long before Tian [2000] by using Aubin’s continu-
ity method. Assume (iii), and consider a ray (ut ) as above. In the Fano case, we have
M � D, which shows that D(ut ) = L(ut ) � E(ut ) is bounded above as well. We infer
from Theorem 4.8 that ' := U NA satisfies

LNA(') = lim
t!1

L(ut )

t
� lim

t!1

E(ut )

t
= �1 � ENA('):

3As already mentioned, this has recently been overcome by Chen and Cheng [2017, 2018a,b]
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Relying on the Minimal Model Program along the same lines as C. Li and Xu [2014], one
proves on the other hand that (iii) implies DNA � ıJ NA on HNA, and then on E1;NA as
well. As ' is normalized by sup' = 0, this means

LNA(') � (1 � ı)ENA(') � ı � 1;

a contradiction.
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Abstract
We survey a few results concerning groups of regular or birational transformations

of projective varieties, with an emphasis on open questions concerning these groups
and their dynamical properties.
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1 Introduction

1.1 Algebraic transformations. Let k be a field and d be a positive integer. Consider a
smooth projective varietyXk of dimension d , defined over the field k. Attached toXk are
two groups of algebraic transformations: its group of birational transformations Bir(Xk)

and the subgroup of (biregular) automorphisms Aut(Xk). An element f of Bir(Xk) is
defined by its graph Gf � Xk �Xk; by definition, Gf is an irreducible algebraic subva-
riety of dimension d such that the two projections Gf ! Xk have degree one, and in the
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case of automorphisms, the two projections are isomorphisms (in particular, they do not
contract any algebraic subset of positive dimension onto a point).

For simplicity, unless otherwise specified, we assume that k = C is the field of complex
numbers. We denote by X the variety, with no reference to its field of definition, and by
X(C) its complex points; thus, X(C) is also a compact, complex manifold of dimension
d (and of real dimension 2d ). The group Bir(X) coincides with the group of bimeromor-
phic transformations of X(C), and Aut(X) coincides with the subgroup of holomorphic
diffeomorphisms.

A birational transformation f : X Ü X is a pseudo-automorphism if there exist two
Zariski closed subsets Z and Z0 of codimension � 2 in X such that f induces an iso-
morphism from X n Z to X n Z0. Equivalently, f and its inverse f �1 do not contract
any hypersurface (they are “isomorphisms in codimension 1”). Pseudo-automorphisms
constitute an important subgroup Psaut(X) of Bir(X) that contains Aut(X). As we shall
see, automorphisms are quite rare in dimension � 3; pseudo-automorphisms appear more
frequently, for instance in the study of some special varieties, such as rational varieties
and Calabi-Yau varieties.

1.2 Examples.

1.2.1 Projective spaces. Consider the projective space P d
k of dimension d . Its group of

automorphisms is the group of linear projective transformations PGLd+1(k). Its group of
birational transformations is known as the Cremona group in d variables. In homogeneous
coordinates [x1 : : : : : xd+1], every birational transformation f of P d

k can be written as

(1) f [x1 : : : : : xd+1] = [f1 : : : : : fd+1]

where the fi are homogeneous polynomials in the variables xi , of the same degree, and
without common factor of positive degree. In the affine coordinates Xi = xi/xd+1, it is
defined by rational fractions

(2) Fi (X1; : : : ; Xd ) =
fi (X1; : : : ; Xd ; 1)

fd+1(X1; : : : ; Xd ; 1)
:

When d = 1, Bir(P 1
k ) coincides with the group of automorphisms PGL2(k). When

d � 2, Bir(P d
k ) is much bigger than PGLd+1(k). In dimension 2, it contains all monomial

transformations

(3) (X1; X2) 7! (Xa
1X

b
2 ; X

c
1X

b
2 )

with ad � bc = ˙1, all transformations (X1; X2) 7! (X1; X2 + h(X1)), for every h 2

k(X1), all linear projective transformations, hence all compositions of such maps. When
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k = C, the Hénon map

(4) (X1; X2) 7! (X2; X1 +X
2
2 + c)

provides a transformation of the plane with a rich dynamics (its topological entropy is
equal to log(2) for every parameter c, it has infinitely many periodic points, ...).

1.2.2 Abelian varieties. Next, consider an elliptic curveE = C/Λ, where Λ is a lattice
in C. The product A = Ed is a complex torus of dimension d ; it is also a projective
variety, hence an example of an abelian variety. The group of birational transformations
of A coincides with its group of automorphisms. It contains the group A itself, acting by
translations, as well as the group GLd (Z), acting by linear transformations on A (or more
precisely on its universal cover Cd , preserving the lattice Λd , hence also onA after taking
the quotient by Λd ).

1.2.3 Calabi-Yau varieties. As a third example, fix an integer d � 1, and consider a
smooth hypersurface X in (P 1

C)
d+1 which is defined in the open set Cd+1 of P 1(C)d+1

by a polynomial equation P (x1; : : : ; xd+1) = 0 whose degree is equal to 2 with respect
to each coordinate xj . Geometrically, this means that for every index 1 � i � d + 1, the
projection �i : X ! (P 1

C)
d which forgets the i -th coordinate is a morphism of degree 2.

The involution that permutes the two points in the fibers of �i is a birational involution �i

of X .
When d � 2, these hypersurfaces of degree (2; 2; : : : ; 2) in (P 1

C)
d+1 are examples of

Calabi-Yau varieties: they are simply connected, they support a holomorphic d -form that
does not vanish, and they do not split as the product of two varieties of smaller dimension.
Thus, the involutions �i are pseudo-automorphisms because Bir(X) = Psaut(X) for all
Calabi-Yau varieties, as one sees by pulling back a non-vanishing holomorphic d -form.

In dimension � 2, these pseudo-automorphisms are in fact regular automorphisms. In
dimension 1, X is a curve of genus 1, and the involutions determine a dihedral group,
acting by affine transformations of type z 7! ˙z + a on the elliptic curve. In dimension
d = 2, X is a K3 surface, and the involutions determine a large group of automorphisms
of X : if the equation P is generic, then Aut(X) = Bir(X) is generated by those three
involutions, there are no relations between these involutions (they generate a group iso-
morphic to the free product Z/2Z ?Z/2Z ?Z/2Z), and the composition �1 ı �2 ı �3 has
a rich dynamical behaviour (its topological entropy is log(9 + 4

p
5)).

For d � 3, the involutions �i are pseudo-automorphisms with indeterminacy points.
For a generic choice of the equation P , the involutions �i generate Psaut(X), there are no
relations between the �i , and Aut(X) is trivial (see Cantat and Oguiso [2015]).
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1.3 Plan. Our goal is to review some important facts concerning the group Aut(X), the
algebraic structure of its subgroups, and the dynamical properties of its elements. The
emphasis is on open problems, in which algebraic geometry, group theory, and dynamics
are simultaneously involved.

This article comprises two main parts. The first one concerns groups of automorphisms
of smooth complex projective varieties, and their action on the cohomology of the variety.
The second part concerns the dynamics: we focus on automorphisms with a dynamical
behavior of low complexity because their study has been surprisingly neglected, while it
offers interesting questions at the interface between dynamics and algebraic geometry.

We focus on Aut(X) for simplicity. As Section 1.2.3 shows, it would be better to
work with pseudo-automorphisms, or even with birational transformations. In fact, most
of the questions which are described below could be stated for pseudo-automorphisms of
compact kähler manifolds (see Remark 2.1); and some of them concern birational trans-
formations of projective varieties over an arbitrary field.

2 Groups of automorphisms

2.1 Automorphisms. Let X be a smooth complex projective variety. Its group of au-
tomorphisms is a complex Lie group (for the topology of uniform convergence), whose
Lie algebra is the finite dimensional algebra of regular vector fields on X . But Aut(X)

may have infinitely many components, as shown in Section 1.2.2 by the example of the
abelian variety (C/Λ)d , where Λ � C is a lattice and d � 2.

Consider the action of Aut(X) on the cohomology H�(X ;Z) of X(C); this gives a
linear representation

(5) Aut(X) ! GL(H�(X ;Z)):

The connected component of the identity Aut(X)0 � Aut(X) acts trivially on the co-
homology, and is therefore contained in the kernel of this representation. If an element
f 2 Aut(X) acts trivially on the second cohomology group H 2(X ;Z), it preserves the
cohomology class of a kähler form � on X (resp. the first Chern class of an ample line
bundle L on X ); this means that the volume (resp. degree) of the graph of f is uniformly
bounded on the kernel of the representation (5). Since subvarieties with a fixed volume
(resp. degree) form a bounded family, one can use Douady spaces (or Hilbert Schemes) to
obtain the following fact: the connected component of the identity in Aut(X)0 � Aut(X)

has finite index in the kernel of the linear representation Aut(X) ! GL(H 2(X ;Z)) (see
Grothendieck [1995] and Lieberman [1978] for a proof).
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Thus, the group Aut(X) splits into two basic parts: its neutral component Aut(X)0,
and its discrete image

(6) Aut(X)�
� GL(H�(X ;Z)):

The group of connected components Aut(X)/Aut(X)0 is an extension of Aut(X)� by a
finite group.

Remark 2.1. One may replace H 2(X ;Z) by the subgroup N1(X) generated by coho-
mology classes of algebraic hypersurfaces of X (or more precisely by the Poincaré dual
of their homology classes). The kernel of the representation Aut(X) 7! GL(N1(X)) is,
again, equal to a finite extension of Aut(X)0. Doing so, it is possible to phrase some of the
following questions for varieties which are defined over fields of arbitrary characteristic.

One may also replace Aut(X) by Psaut(X). Indeed, since pseudo-automorphisms
are isomorphisms in codimension 1, the group Psaut(X) acts linearly on N1(X) (and
H 2(X ;Z)whenk = C). Thus, all questions concerning the action of Aut(X) onH 2(X ;Z)
can be stated for the action of Psaut(X) on N1(X) (even when the characteristic of k is
positive).

2.2 The realization problem. Two main problems arise: given a connected algebraic
group G, does there exist a projective variety X such that Aut(X)0 is isomorphic to G as
an algebraic group ? Given a subgroup Γ of GLn(Z), for some n � 2, does there exist a
projective variety X and an isomorphism of groups Γ ' Aut(X)� ? There is also a third,
less interesting problem, which asks which pairs (G;Γ) may be simultaneously realized
as the connected component and the discrete part of Aut(X), for some variety X .

The first problem has been solved by Brion in the following strong sense: any con-
nected algebraic group G over a perfect field is the neutral component of the automor-
phism group scheme of some normal projective variety X ; if the characteristic of the
field is 0, one can moreover assume that X is smooth of dimension dim(X) = 2 dim(G)

(see Brion [2014]; see also Winkelmann [2004] for Kobayashi hyperbolic manifolds).
In the following paragraphs, we focus on the discrete, countable group Aut(X)�.

2.3 Linear groups and their Zariski closure. Not much has been proven yet concern-
ing the description of the groups Aut(X)�. To simplify the exposition, we shall say that
a group Γ is abstractly realizable as a group of automorphisms (in dimension d ) if there
exist a projective variety X (of dimension d ) such that Aut(X) is isomorphic to Γ (as
abstract groups).

Remark 2.2. The group GLn(Z) acts on the abelian variety (C/Λ)n for every lattice
Λ � C. Blowing-up the origin, one gets a new varietyX with Aut(X)0 = fidX g and with
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GLn(Z) ' Aut(X) if Λ is generic. Thus, every subgroup Γ of GLn(Z) acts faithfully on
a projective variety of dimension n whose group of automorphisms is discrete. This does
not say that Γ is abstractly realizable.

Remark 2.3. A necessary condition for a countable group Γ to be realizable is that Γ
admits a linear integral representation Γ ! GLm(Z) with finite kernel. This is not a
sufficient condition: when n � 2, there is a finite, cyclic, and central extension of the
symplectic group Sp2n(Z) that does not act faithfully by birational transformations on
any complex projective variety (see Cantat and Xie [2015]).

Instead of looking at the abstract notion of realizability, one may also add some rigidity
in the definition; this may be done as follows. Say that a group Γ � GLm(Z) is strongly
realizable as a group of automorphisms if there is a smooth complex projective varietyX ,
and a linear algebraic representation

(7) ' : GLm(R) ! GL(H 2(X ;R))

which is defined over Z, such that Aut(X)� coincides with '(Γ). As in Remark 2.1, one
may replace H 2(X ;Z) by N1(X) to define a notion of strong realizability by pseudo-
automorphisms, defined over any field k.

Remark 2.4. The cohomology groupH 2(X ;C) splits into the direct sum of the Dolbeault
groups Hp;q(X ;C) with p + q = 2. This splitting, the intersection form and the cone
of all Kähler classes are Aut(X)�-invariant (see Griffiths and Harris [1978]). Hence, it
would be too much to require ' to be an isomorphism.

There are only countably many distinct groups Aut(X)�. This follows from the fact
that, up to isomorphism, there are only countably many pairwise non-isomorphic exten-
sions of Q which are finitely generated. On the opposite, for every integer n � 4, there
are uncountably many, pairwise non-isomorphic, subgroups of GLn(Z). Thus a counting
argument shows that most subgroups Γ of GLn(Z) are not realizable as groups of automor-
phisms. On the other hand, there are only countably many subgroups of GLn(Z) which
are finitely generated.

Question 2.5. Which subgroups of GLn(Z) are abstractly (resp. strongly) realizable as
groups of automorphisms ? Is every finitely generated subgroup Γ � GLn(Z) abstractly
(resp. strongly) realizable as a group of automorphisms ?

Recently, Lesieutre proved that if k is a field of characteristic 0, or a field which is not
algebraic over its prime field, then there is a smooth, 6-dimensional projective variety X
over k such that Aut(X)0 is trivial and Aut(X)� is not finitely generated (see Lesieutre
[2017] and Dinh and Oguiso [2017] for another example). This shows that it is somewhat
artificial to assume that Γ is finitely generated.
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Remark 2.6. The following problem remains open: does there exist a rational surface S
such that Aut(S) is discrete but not finitely generated ? More precisely, can one find such
an example which is a minimal model for the pair (S;Aut(S)), meaning that if� : S ! S 0

is a birational morphism and � ı Aut(S) ı ��1 � Aut(S 0) then � is an isomorphism ?

In Question 2.5, the dimension of X is not specified; indeed, dim(X) must a priori
be large with respect to n. Changing viewpoint, one may fix the dimension, or fix the
type of variety one considers, and try to find constraints on the subgroups Aut(X)� �

GL(H 2(X ;Z)).

Question 2.7. Fix a dimension d � 2. Define G0(X) as the neutral component of the
Zariski closure of Aut(X)� in GL(H 2(X ;R)). What kind of linear algebraic groups
G0(X) do we obtain in this way, when X runs over all possible Calabi-Yau varieties
of dimension d ?

Again, by Remark 2.1, the group Aut(X) may be replaced by the group Psaut(X) =

Bir(X) and H 2(X ;R) by N1(X) ˝Z R in this question. For a nice example, see Cantat
and Oguiso [2015]. For complex projective K3 surfaces, the groups G0(X) that one gets
are connected components of SO1;m(R) for some m � 19, or abelian groups Rm of rank
m � 18. This comes from Hodge index theorem.

Question 2.5 is stated for Calabi-Yau manifolds because they form one of the most
interesting classes of examples, but it may be stated for other classes, for instance for
rational varieties. And instead of looking at the action of Aut(X) on H 2(X ;R), one
may also consider its action on every Dolbeault subgroup Hp;q(X ;C) (see Cantat and
Dolgachev [2012], Cantat and Zeghib [2012], and Zhang [2013]).

2.4 Real algebraic variation. Consider now a smooth real projective variety XR of
dimension d . Assume that X(R) is non-empty, and fix one of the connected components
S � X(R) (for the euclidean topology); then S is a closed connected manifold of dimen-
sion d . The automorphisms of X which are defined over R form a subgroup Aut(XR) of
Aut(XC). A finite index subgroup Aut(XR;S) of Aut(XR) fixesS , and we get a restriction
morphism

(8) Aut(XR;S) ! Diff1(S)

where Diff1(S) is the group of C1-diffeomorphisms of S . Denoting by Mod(S) the
modular group of S , i.e. the group of connected components of Diff1(S) (see Farb and
Margalit [2012]), one gets a homomorphism

(9) ˛S : Aut(XR;S) ! Mod(S):

What can be said on the image of this homomorphism ?
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The best is to start with surfaces. First, there are explicit examples of automorphisms
f of rational and K3 surfaces for which the mapping class ˛S (f ) is interesting (see Bed-
ford and Kim [2009] and Moncet [2008]). Second, Kollár and Mangolte obtained the
following beautiful result. Fix any smooth real surface XR, which is rational (over R).
Then, consider the subgroup Bir1(XR) of Bir(XR) defined by the following property: f
is in Bir1(XR) if and only if f and its inverse f �1 have no real indeterminacy point
– all its indeterminacy points come in complex conjugate pairs. By restriction to X(R),
each element f of Bir1(XR) provides a diffeomorphism of X(R), and therefore a map-
ping class ˛X(R)(f ) 2 Mod(X(R)). In Kollár and Mangolte [2009] it is proved that this
homomorphism Bir1(XR) ! Mod(X(R)) is surjective.

Question 2.8. Does there exist a real projective K3 surface X such that (i) X(R) is con-
nected and of genus g � 2 and (ii) the image of ˛X(R) : Aut(XR) ! Mod(X(R)) is
surjective ?

I suspect that the answer to this question is negative. Indeed, there may exist a mapping
class  of the closed, orientable surface of genus 2 with the following property: given
any automorphism f of a real K3 surface XR with an f -invariant connected component
S � X(R) of genus 2, ˛S (f ) is not conjugate to  .

2.5 Dynamical degrees. Consider an automorphism f of a smooth complex projective
variety X . The characteristic polynomial �f (t) of

(10) f � : H 2(X ;Z) ! H 2(X ;Z)

is an element of Z[t ]; it is monic, and its constant term is ˙1. Denote by �1(f ) the largest
absolute value of a root of �f (t). The invariance of the Hodge decomposition and of
the Kähler cone implies that �1(f ) is in fact one of the roots of �f (t) and, as such, is an
algebraic integer. This number�1(f ) is called the first dynamical degree of f (subsequent
dynamical degrees are obtained by looking at the action of f on the groups Hp;p(X ;R)
with p > 1). Now, fix the dimension d of the variety, and define the following set of real
integers:

(11) S1(d ) = f�1(f ); f 2 Aut(X) for X smooth, projective, of dimension dg:

In dimension 1, S1(1) = f1g, but in dimension d � 2, S1(d ) is an infinite countable set
of algebraic integers. In dimension 2, the Hodge index theorem shows that S1(2) n f1g

contains only reciprocal quadratic integers and Salem numbers; and its first derive set
is non empty: for example the golden mean is an increasing limit of elements of S1(2)

(see Diller and Favre [2001]). A deeper result says that every strictly decreasing sequence
of elements of S1(2) is finite; in particular, given any ˛ 2 S1(2), there is a real number
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�(˛) > 0 such that ]˛; ˛ + �(˛)[ does not intersect S1(2) (see McMullen [2002a, 2007]
and Blanc and Cantat [2016]). In particular, many Salem numbers are not contained in
S1(2). The only general constraint known on the elements of S1(3) is due to Lo Bianco:
if ˛ 2 S1(3), there are at most 6 distinct moduli j˛i j for the Galois conjugates ˛i of ˛
(whatever the degree of the algebraic integer ˛, see Lo Bianco [2014]).

Question 2.9. Is S1(3) dense in [1;+1[ ? Or, on the contrary, does there exist � > 0

such that S1(3)\]1; 1 + �] is empty ?

In this question, on may replace S1(3) by the set of dynamical degrees of all birational
transformations of projective threefolds; here, by definition, the first dynamical degree of
a birational transformation f 2 Bir(X) is defined by the limit

(12) �1(f ) = lim
n!+1

�
(f n)�(H ) �Hd�1

�1/n

where H is some hyperplane section of X , d is the dimension of X , and the integer
(f n)�(H ) �Hd�1 is the intersection product of the total transform (f n)�(H ) with d � 1

copies of H . This limit exists and does not depend on H (see Dinh and Sibony [2005],
Dang [2017], and Truong [2016], and Section 3.3 below).

3 Dynamics with low complexity

3.1 Entropy. Given a continuous transformation g of a compact metric space M , the
topological entropy htop(g;M ) is a measure of the complexity of the dynamics ofg : M !

M . To define it, fix a scale � > 0 at which you observe the dynamics. Given a period of
observation N 2 Z+, count the maximum number of orbits (x; g(x); : : : ; gN �1(x)) that
are pairwise distinct at scale �, the orbit of x being distinguishable from the orbit of y if
the distance from gk(x) to gk(y) is larger than � for at least one time 0 � k < N . This
number of orbits Orb(N ; �) typically grows exponentially fast with N ; thus, one defines
h(g; �) as the supremum limit of 1

N
log(Orb(N ; �)) and the entropy htop(g;M ) of g as

the limit of h(g; �) as � goes to 0, i.e. as our observations become arbitrarily accurate.
Topological entropies are hard to estimate for continuous or smooth maps of manifolds.

But the topological entropy of an endomorphism f of a smooth complex projective variety
X is equal to the logarithm of the spectral radius of f � : H�(X ;C) ! H�(X ;C) (the
action of f on the cohomology). This wonderful result is due to Gromov and Yomdin
(see Gromov [2003, 1987] and Yomdin [1987], and Dinh and Sibony [2005] for an upper
bound when f is a rational map). For instance, the entropy is invariant under deformation:
if F is an automorphism of a variety X that preserves a fibration � : X ! B with smooth
projective fibers and the fibration is locally trivial topologically, then the automorphisms
induced by F on the fibers of � have the same entropy.



646 SERGE CANTAT

Endomorphisms with positive entropy have been studied in detail, with special focus
on endomorphisms of the projective space P k

C and automorphisms of surfaces. We refer
to Cantat [2014] and Dinh and Sibony [2010a] for survey papers on the subject. Here,
we consider the opposite edge of the spectrum: instead of looking at automorphisms with
chaotic dynamics, we ask for a description of automorphisms with dynamics of low com-
plexity.

3.2 Invariant fibrations. Now consider an automorphism f of a smooth complex pro-
jective variety X with entropy equal to 0. Then, by the Gromov-Yomdin theorem, the
eigenvalues of f � 2 GL(H�(X ;Z)) all have modulus 1, and being algebraic integers,
they must be roots of unity. Changing f in a positive iterate, we may assume that f � is
unipotent: all its eigenvalues are equal to 1.

If f � is the identity, then some further iterate is contained in Aut(X)0 (see Section 2.1).
The dynamics of such an automorphism is well understood. Thus, one may assume that
f � is non-trivial and unipotent; equivalently, the sequence k (f n)� k grows polynomially
quickly with n, as nk for some k � 1.

When dim(X) = 2, Gizatullin proved the following: if f � is unipotent and ¤ Id,
then f preserves a (singular) fibration by curves of genus 1 and the growth of k (f n)� k

is quadratic (see Gizatullin [1980], Diller and Favre [2001], and Cantat [2001]). For
instance, if � : X ! B is a genus 1 fibration of the surface X with two sections, then
the translations along the fibers that map the first section to the second one determine
an algebraic transformation of X : this is often an automorphism such that k (f n)� k

grows quadratically. The following question asks whether Gizatullin’s classification can
be extended to higher dimension.

Question 3.1. Let X be a smooth complex projective variety of dimension 3. Let f be
an automorphism of X , such that the linear transformation f � 2 GL(H�(X ;C)) is non-
trivial and unipotent. Does f permute the fibers of a non-trivial meromorphic fibration
� : X Ü B ?

By “non-trivial meromorphic fibration”, I mean that 0 < dim(B) < dim(X) and
� is a dominant rational map; and f permutes the fibers of � if there is a birational
transformation fB of B such that � ı f = fB ı � .

When f is an automorphism of a smooth complex projective variety of dimension 3 and
f � is a non-trivial unipotent matrix, then k (f �)n k grows like nk with k 2 f2; 4g (see Lo
Bianco [2014]). But beside this general statement, not much is known.

One of the first examples to look at is the case of Calabi-Yau varieties. So, let f be
an automorphism of a Calabi-Yau variety X of dimension 3, with a non-trivial unipotent
action on the cohomology. Consider a kähler form � on X , with cohomology class [�] 2

H 2(X ;R); then n�k(f n)�[�] converges towards an f -invariant nef class. Is this class
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related to an f -invariant fibration on X ? This is a version of the abundance conjecture
(see Lazić, Oguiso, and Peternell [2016]), precisely in a case which is not solved yet, but
with the additional presence of an automorphism.

3.3 Degree growth. If an automorphism satisfies �1(f ) = 1, then an iterate of f � is
unipotent, and k (f n)� k grows polynomially with n. Now, consider a birational transfor-
mation f : X Ü X of a complex projective variety X . Fix a polarization H of X and
define the degree of f with respect to H by the intersection product

(13) degH (f ) = f �(H ) �Hd�1

where d is the dimension of X and f �(H ) is the total transform of H by f �1. Chang-
ing H into another polarization H 0, the notion of degree is only perturbed by a bounded
multiplicative error: there exists a positive constant c such that

(14)
1

c
degH 0(f ) � degH (f ) � c degH 0(f )

for all f 2 Bir(X) (see Dinh and Sibony [2005], Dang [2017], and Truong [2016]). When
X = P d

C andH � P d
C is a hyperplane, then degH (f ) is just the degree of the polynomials

that define f in homogeneous coordinates (see Section 1.2.1). Instead of assuming that
the entropy of f is zero, one may now assume that �1(f ) = 1, i.e. that degH (f n) does
not grow exponentially fast with n.

Question 3.2. LetX be a smooth projective variety of dimension d , together with a polar-
izationH . Let f be a birational transformation ofX with �1(f ) = 1. Does the sequence
degH (f n) grow polynomially ? If not bounded, does this sequence grow at least linearly
?

In other words, can one construct a birational transformation f , say, of P 3
C, such that

the sequence degH (f n) grows like exp(
p
n), or like n2 log(n), or like n1/3 ? This is

already an open problem for polynomial automorphisms of the affine space A3
C. One may

also ask, as in Question 3.1, whether the equality �1(f ) = 1 implies the existence of a
non-trivial invariant fibration. While these questions are fully understood in dimension 2

(see Cantat [2013, 2015], Diller and Favre [2001], and Gizatullin [1980]) almost nothing
is known in higher dimension (see Urech [2017], as well as Déserti [2017] and Lin [2013]
for interesting examples).

This type of question is, in fact, directly related to the algebraic structure of the group
Bir(X). For instance, one says that an element f of Bir(X) is distorted if there exists
a finite set S � Bir(X) such that the n-th iterate f n is a product g1 ı � � � ı g`(n) of
elements gi 2 S with lim inf(`(n)/n) = 0 (see Calegari and Freedman [2006]). Distorted
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elements satisfy �1(f ) = 1. In dimension 2, an element f of Bir(P 2
C) is distorted if and

only if some positive iterate f N is conjugate to an element of Aut(P 2
C). Any progress on

Questions 3.1 and 3.2 would certainly help classify distorted elements in higher dimension.

3.4 Minimal transformations. A continuous transformation g of a compact metric
spaceM is minimal if each of its orbits are dense; equivalently, the only g-invariant closed
subsets are M and the empty set. For an algebraic example, consider a complex torus
A = Ck/Λ, with Λ a cocompact lattice in Ck ; then, every totally irrational translation on
A is minimal. For another example, take k = 2 and Λ = Λ0 � Λ0, with Λ0 a lattice in
C. Choose a point a in C/Λ0 such that each orbit of x 7! x + a is dense in C/Λ0, and
consider the following automorphism of C2/Λ:

(15) f (x; y) = (x + a; y + x) mod (Λ):

Furstenberg shows in Furstenberg [1961] that every orbit of f is dense in the abelian
surface C2/Λ. In fact, Furstenberg proves more: f preserves the Haar measure on the
torus and this is the unique f -invariant probability measure. Thus, there are minimal
automorphisms with no positive iterate in Aut(X)0 (in Furstenberg’s example, the action
of f on the cohomology is non-trivial and unipotent).

A minimal automorphism of a curve is a translation on an elliptic curve. In dimension 2,
one also proves easily that any complex projective surfaceX with aminimal automorphism
is an abelian surface. It would be great to get a similar result in higher dimension:

Question 3.3. Let X be a complex projective variety of dimension 3. Suppose that there
is a minimal automorphism f on X . Is X an abelian variety ?

If f is minimal it does not have any periodic orbit. With the Lefschetz formula and
Gromov-Yomdin theorem, one sees that the entropies of minimal automorphisms of com-
plex projective varieties vanish. Now, if X has dimension 3, the holomorphic Lefschetz
formula says that h1;0(X) > 0 or h3;0(X) > 0. If h1;0(X) > 0, one may use the Al-
banese morphism to reduce the complexity of the dynamics of f (see Cantat [2010]). If
h3;0(X) > 0, there is an f -invariant holomorphic 3-form onX ; since f does not preserve
any strict Zariski closed set (by minimality), this form does not vanish. Thus, the most
interesting case is whenX is a Calabi-Yau variety of dimension 3 with Euler characteristic
equal to 0, and the action of f m on the cohomology is unipotent for some m > 0 (as in
Section 3.2).
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3.5 Fatou components and real algebraic varieties.

3.5.1 Fatou components on K3 surfaces. Consider an automorphism f of a K3 sur-
face X . Assume that the topological entropy of f on the complex surface X(C) is pos-
itive: htop(f ;C) = log(�1(f )) > 0 where �1(f ) is, by the Gromov-Yomdin theorem,
the largest eigenvalue of f on the cohomology of X(C). In that case, f has infinitely
many periodic points, and those points equidistribute toward an f -invariant probability
measure �f (see Cantat [2001, 2014] and Dujardin [2006]). More precisely, denote by
Per(f ;N ) the set of isolated periodic points of f or period N . Then, the sequence of
probability measures

(16)
1

jPer(f ;N )j

X
z2Per(f ;N )

ız

converges toward an f -invariant probability measure�f with interesting dynamical prop-
erties (this is the unique measure of maximal entropy of f ). The same property holds if
one replaces Per(f ;N ) by the set of saddle periodic points of period N , i.e. by points
x 2 X(C) such that f N (x) = x and the differential Df N

x has two eigenvalues ˛ and ˇ
with

(17) j˛j > 1 > jˇj;

indeed, the number of isolated periodic points and of saddle periodic points grow at the
same speed, namely like �1(f )N .

The measure�f is, in general, singular with respect to the Lebesgue measure onX(C).
If �f is absolutely continuous with respect to the Lebesgue measure, then (X; f ) is a
Kummer example: this means that X is a quotient of an abelian surface A and f is
induced by a linear automorphism of A (see Cantat and Dupont [2015]).

But not much is known about the support of the measure�f . There may a priori exist a
region U � X(C) which is f -invariant and on which the dynamics of f is far from being
chaotic. More precisely, define the Fatou set Fat(f ) as follows: x 2 X(C) is in the Fatou
set if there is an open neighborhood V of x such that the sequence of iterates (f m)m2Z
forms a normal family on V, in the sense of Montel. This determines an f -invariant open
subset Fat(f ) � X(C) on which �f vanishes. It is not known yet whether the Fatou
set is always empty for automorphisms of complex projective K3 surfaces with positive
entropy. There are examples of non-empty Fatou sets on non-projective K3 surfaces and
rational surfaces (see McMullen [2002b] and Bedford and Kim [2009]).

Question 3.4. Does there exist a complex projective K3 surfaceX with an automorphism
f : X ! X such that the topological entropy of f is positive and the Fatou set of f is
not empty ?
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While the theory of closed positive currents, the Hodge theory, and the Pesin theory
of smooth dynamical systems may be combined to study the chaotic part of the dynam-
ics from a stochastic viewpoint (see Bedford, Lyubich, and Smillie [1993], Cantat [2001,
2014], De Thélin and Dinh [2012], and Dinh and Sibony [2010b] for instance), not much
is known concerning the topological properties of the dynamics, such as the existence of
non-empty Fatou components or dense orbits. Thus, Question 3.4 is at the borderline of
our knowledge.

3.5.2 Dynamics on real K3 surfaces. Now, add to the hypotheses that X and f are
defined over the field of real numbers R, and X(R) is not empty. Fix a connected compo-
nent S of X(R), and replace f by some positive iterate so that f now preserves S . We
obtain two dynamical systems: the complex dynamics given by f : X(C) ! X(C), and
the real dynamics given by f : S ! S . The topological entropy of f on S is bounded
above by the topological entropy of f on X(C). For rational surfaces, it may happen that
these two numbers are equal (and positive, see Bedford and Kim [2009]); in that case most
periodic points of f are indeed contained in X(R). For K3 surfaces, there is no example
yet with

(18) htop(f ;X(R)) >
1

2
htop(f ;X(C)):

At the opposite edge of the possibilities, there is no known example for which
htop(f ;X(C)) is positive while htop(f ;S) = 0 for some connected component of X(R)
(see Moncet [2012]).

Question 3.5. Does there exist a real projective K3 surface XR with an automorphism
f : XR ! XR such that �1(f ) > 1,X(R) is not empty, and one of the following property
occurs

(1) the entropy of f on X(R) is equal to the entropy of f on X(C) ?

(2) the entropy of f on some component S of X(R) vanishes ?

(3) a connected component S of X(R) is contained in the Fatou set of f ?

Of course, a positive answer to the third of these questions would imply a positive
answer to the second question and to Question 3.4. To obtain a positive answer to the first,
it would be sufficient to find a component S � X(R) which is f invariant and such that
the mapping class ˛S (f ) has a stretching factor equal to �1(f ) on the fundamental group
�1(S) (see Farb and Margalit [2012]); thus, Question 3.5 is also related to Section 2.4.
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RECURSIVE COMBINATORIAL ASPECTS OF
COMPACTIFIED MODULI SPACES

Lඎർංൺ Cൺඉඈඋൺඌඈ

Abstract
In recent years an interesting connection has been established between some mod-

uli spaces of algebro-geometric objects (e.g. algebraic stable curves) and somemoduli
spaces of polyhedral objects (e.g. tropical curves).

In loosewords, this connection expresses the Berkovich skeleton of a given algebro-
geometric moduli space as the moduli space of the skeleta of the objects parametrized
by the given space; it has been proved to hold in two important cases: the moduli
space of stable curves and the moduli space of admissible covers. Partial results are
known in other cases.

This connection relies on the study of the boundary of the algebro-geometric mod-
uli spaces and on its recursive, combinatorial properties, some of which have been
long known and are now viewed from a new perspective.
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1 Introduction

We will describe some results in this area by focusing on the moduli spaces of curves,
line bundles on curves (i.e. Jacobians), and coverings of curves. As we said, it was clear
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for a long time that combinatorial aspects play a significant role in compactifying moduli
spaces. A notable example is the structure of the Néron model of the Jacobian of a curve.
Of course, Néron models are not compact, but they are a first step towards compactifying
Jacobians. We begin the paper by describing Néronmodels, their combinatorial properties,
and the recursive structure of their compactification. Then we turn to moduli spaces of
curves and illustrate the connection introduced at the beginning. We return to compactified
Jacobians in the last section and describe some recent partial results.

2 Compactified Jacobians and Néron models

2.1 Jacobians, Picard schemes and Néron models. Let X be a connected, reduced,
projective curve of genus g over an algebraically closed field k. The set of isomorphism
classes of line bundles of degree 0 on every irreducible component of X is an algebraic
group of dimension g, denoted by JX , and called the Jacobian of X . More exactly, JX is
the moduli space for line bundles of multidegree (0; 0; : : : ; 0) on X .
JX is projective, hence an abelian variety, if X is smooth but not if X is singular (with

exceptions). Constructing compactifications for JX is a classical problem which can be
stated as follows. Let

X ,! X
f

�! SpecR

be a family of curves over the spectrum of a discrete valuation ring R, with X as special
fiber. Assume the generic fiber, XK , to be a nonsingular curve over the quotient field,K,
of R, and let JXK

! SpecK be its Jacobian. The problem is to find “good” models of
JXK

over SpecR, where “good” means: (a) projective, (b) with a moduli interpretation,
(c) such that the special fiber depends only on X and not on the family f . We shall refer
to such models, and to their special fiber, as compactified Jacobians.

We shall begin by looking for models that satisfy (b) and (c) together with the weaker
requirement of being separated, rather than projective.

A natural model of JXK
is the relative Jacobian (a group scheme over R)

(1) JX/R �! SpecR:

This is a separated model for JXK
, but it does not have satisfactory moduli properties.

Indeed, suppose we have a line bundle L over X having relative degree 0 on the fibers of
f . Then we have a moduli morphism �LK

: SpecK ! JXK
whose image corresponds

to the restriction of L to XK . For a model to have good moduli properties we want the
map �LK

to extend to a morphism from SpecR to the model (so that the image of the
special point is determined by the restriction of L to the special fiber). For the relative
Jacobian this requirement easily fails.
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Another natural model is the relative degree-0 Picard scheme

(2) Pic0X/R �! SpecR:

Now, this has a good moduli interpretation, as any moduli map �LK
will certainly extend

to a map �R : SpecR ! Pic0X/R, and �R is itself a moduli map. The problem now is
that the extension �R may fail to be unique, that is, (2) is not a separated morphism, in
general.

We have thus two natural models, one separated with bad moduli properties, the other
with good moduli properties but not separated. Does there exist a compromise with better
behaviour than both of them? An answer to this question comes from the theory of Néron
models.

Our moduli requirement above (i.e. the existence of a unique extension for maps of the
form �LK

) is a special case of the mapping property satisfied by Néron models, whose
existence has been established in Néron [1964]. We state the following special case of
Néron’s famous theorem, using the above notation.

Theorem 2.1.1 (Néron). There exists a smooth and separated group scheme of finite type

N (JXK
) �! SpecR;

whose generic fiber is JXK
, satisfying the following mapping property:

Let YR ! SpecR be smooth, YK its generic fiber, and �K : YK ! JXK
a morphism.

Then �K extends uniquely to a morphism �R : YR ! N (JXK
).

Remark 2.1.2. The Néron model does not commute with ramified base change, therefore
it is a separated model for JXR

with good mapping properties, but not functorial ones.

The relation of the Néron model with the relative Jacobian and the relative Picard
scheme has ben established by Raynaud who proved, in Raynaud [1970], thatN (JXK

) !

SpecR is the maximal separated quotient of Pic0X/R ! SpecR.

2.2 Combinatorics of Néron models. We shall turn to the geometric structure of our
Néron models. We assume from now on that the curve X is nodal, write X = [v2VCv

for its irreducible components, and consider the dual graph, GX , of X :

(3) GX := (V;E = Sing(X); V
h

�! Z)

with h(v) = g(Cv), where g(Cv) is the genus of the normalization, C �
v . The genus of

GX is the same as the arithmetic genus of X , i.e.

g(X) = g(GX ) = b1(GX ) +
X
v2V

h(v):
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It is well known that JX fits into an exact sequence of algebraic groups:

(4) 0 �! (k�)b1(GX )
�! JX �!

Y
v2V

JC �
v

�! 0:

Denote by NX the special fiber of N (JXK
) ! SpecR. We shall state some results

of Raynaud [1970], and Oda and Seshadri [1979], which establish that NX is a disjoint
union of copies of the Jacobian of X indexed by a combinatorial invariant of the curve.

To do that we need some combinatorial preliminaries. Fix an orientation on G = GX

(whose choice is irrelevant), letC0(G;Z) andC1(G;Z) be the standard groups of i -chains,
generated over Z by V if i = 0, and byE if i = 1. Next, let @ : C1(G;Z) ! C0(G;Z) be
the usual boundary (mapping an edge e oriented from u to v to u�v), and ı : C0(G;Z) !

C1(G;Z) the coboundary (mapping a vertex v to
P
e+v �

P
e�

v where the first sum is over
all edges originating from v and the second over all edges ending at v).

Now we can state the following.

Proposition 2.2.1 (Raynaud, Oda-Seshadri). Let X ! SpecR have nodal special fiber
and regular total space. Then the special fiber, NX , of the Néron model N (JXK

) �!

SpecR is a union of copies of JX as follows

(5) NX Š ti2ΦX
(JX )i

where ΦX is the following finite group

ΦG Š
@ıC0(G;Z)

@C1(GZ)
:

In particular, the number of irreducible components ofNX equals the number of spanning
trees of GX .

The last claim follows from Kirchhoff-Trent, or Kirchhoff matrix,Theorem.

2.3 Compactifying Néron models. From now on we apply the notation introduced in
Proposition 2.2.1 and for any connected nodal curveX we denote byNX the special fiber
of the Néron model of the Jacobian associated to a family X ! SpecR with X regular.

If X is a singular curve with b1(GX ) ¤ 0 (i.e. X not of “compact type”), then the
Néron modelN (JXK

) ! SpecR is not projective, as its special fiber is not projective by
the exact sequence (4).

Now, the Picard scheme has goodmoduli properties and the Néronmodel is its maximal
separated quotient. We introduce a terminology to distinguish compactified Jacobians
which also compactify the Néron model.
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A compactified Jacobian P �! SpecR is said to be of Néron type (or a Néron com-
pactified Jacobian) if its special fiber, written PX , contains NX as a dense open subset.
We shall also say that PX is of Néron type.

As we shall see, Néron compactified Jacobians do exist, but there exist also interesting
compactified Jacobians not of Néron type.

The notion originates from Oda and Seshadri [ibid.] and Caporaso [2008], although the
terminology was introduced later, in Caporaso [2012b]. Oda and Seshadri, in Oda and Se-
shadri [1979], treated the case of a fixed singular curveX (rather than a family of curves),
and constructed compactified Jacobians in this less general sense. They nonetheless estab-
lished the link with Néron models and constructed compactified Jacobians whose smooth
locus is isomorphic to NX . This was extended to families of curves later. In Caporaso
[1994] and Caporaso [2008] a class of compactified Jacobians of Néron type was proved
to exist and to form a family over the moduli space of stable curves, Mg . Such families,
denoted by  d : P

d

g �! Mg , are indexed by the integers d such that

(6) (d � g + 1; 2g � 2) = 1:

For any stable curve X the fiber of  d over X , written P d

X , contains NX as a dense open
subset equal to its smooth locus, and it is thus of Néron type.

In a similar vein, in Melo and Viviani [2012] and in Melo, Rapagnetta, and Viviani
[2017] other Néron compactified Jacobians were found among the ones constructed by
Esteves [2001], and called “fine” compactified Jacobians. The word “fine” is quite appro-
priate, as all known Néron compactified Jacobians are as fine a moduli space as they can
be, i.e. they admit a universal (or “Poincaré”) line bundle.

We now show how Néron Jacobians are recursive compactifications of Néron models.
First, for a connected graph G, we introduce the following

C(G) := fS � E(G) : G � S is connectedg;

with partial order given by reverse inclusion. The maximal element of C(G) is ¿, and the
minimal elements are the S � E such that G � S is a spanning tree. Moreover, C(G) is
a graded poset with respect to the rank function S 7! g(G � S):

If G is the dual graph of the curve X then S 2 C(G) is a set of nodes of X . We denote
by X�

S the desingularization of X at S , so that X�
S is a connected nodal curve of genus

g(G � S). Recall that NX�
S
denotes the special fiber of the Néron model of its Jacobian.

The following follows from Caporaso [2008, Thm. 7.9].

Theorem 2.3.1. Let P d

X be a Néron compactified Jacobian. Then

(7) P
d

X =
G

S2C(G)

NS
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with NS Š NX�
S
for every S 2 C(G). Moreover (7) is a graded stratification, i.e. the

following hold.

1. NS \NS 0 ¤ ¿ , NS � NS 0 , S 0 � S:

2. NS is locally closed of pure dimension g(G � S).

3. The following is a rank-function on C(G)

C(G) �! Z; S 7! dimNS :

Remark 2.3.2. The set of strata of minimal dimension in (7) are Néron models of curves
whose dual graph is a spanning tree of GX , hence they are irreducible. By Proposi-
tion 2.2.1, the number of such strata is equal to the number of irreducible components
of P d

X .

If X is not of compact type the strata of (7) are not all connected. Hence one naturally
asks whether the stratification can be refined so as to have connected strata. We will
answer this question later in the paper.

Remark 2.3.3. The theorem exhibits the compactification of the Néron model of X in
terms of the Néron models of partial normalizations ofX . This phenomenon is an instance
of what seems to be a widespread recursive behaviour for compactified moduli spaces.
Namely, to compactify a space (e.g. NX ) one adds at the boundary the analogous spaces
associated to simpler objects (e.g. NX 0 with X 0 a connected partial normalization of X ).
Other examples of this recursive pattern will appear later in the paper.

The concept of “graded stratification” used in the Theorem will appear again, so we
now define it in general.

A graded stratification of an algebraic variety, or a stack,M by a poset P is a partition
M =

F
p2P Mp such that the following hold for every p; p0 2 P .

1. Mp \Mp0 ¤ ¿ , Mp � Mp0 , p0 � p:

2. Mp is equidimensional and locally closed.

3. The map from P to N sending p to dimMp is a rank function on P .

3 Moduli of curves: tropicalization and analytification

3.1 Moduli spaces of algebraic and tropical curves. Let Mg;n be the moduli space
of smooth curves of genus g with nmarked points. Assume 2g� 2+ n > 0 so that Mg;n
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is never empty. It is well known that Mg;n is not projective (unless g = 0; n = 3) and is
compactified by the moduli space of Deligne-Mumford stable curves, Mg;n; see Deligne
and Mumford [1969], Knudsen [1983a,b], and Gieseker [1982].

We will describe in (9) a stratification of Mg;n which is recursive in the sense of Re-
mark 2.3.3, that is, the boundary strata are expressed in terms of simpler moduli spaces
Mg0;n0 . In this case “simpler”means g � g0 and of smaller dimension, i.e. n0 < n+3(g�

g0). These boundary strata will be described in (8).
Let SGg;n be the poset of stable graphs of genus g with n legs, with the following partial

order:
G2 � G1 if G2 = G1/S for some S � E(G1)

whereG1/S is the graph obtained by contracting every edge of S to a vertex. By the very
definition (introduced in Brannetti, Melo, and Viviani [2011]), edge-contraction preserves
g and n, and it is easily seen to preserve stability.

To a stable curve,X , of genus gwith n legs there corresponds a dual graphGX 2 SGg;n.
With respect to what we defined in (3) the only new piece of data are the legs of GX

which correspond to the nmarked points. Recall that the weight, h(v), of a vertex v is the
geometric genus of the corresponding component of X . We denote by deg(v) the degree
(or valency) of v.

For G 2 SGg;n we denote by MG the moduli stack of curves whose dual graph is
isomorphic to G. We have (see Abramovich, Caporaso, and Payne [2015, Prop. 3.4.1])

(8) MG =
h� Y

v2V (G)

Mh(v);deg(v)
�
/Aut(G)

i
:

With this notation and the terminology at the end of Section 2 we state:

Proposition 3.1.1. The following is a graded stratification of Mg;n

(9) Mg;n =
G

G2SGg

MG :

One goal of the above descriptive result (whose proof, in Caporaso [2012a], is not hard
thanks to our consolidated knowledge of Mg ) is to highlight the similarities of Mg;n with
the moduli space of extended (abstract) tropical curves, M trop

g;n, as we are going to show.
First of all, an extended tropical curve is a metric graph, i.e. a graph G whose edges are
assigned a length, ` : E ! R>0 [ f1g. We denote a tropical curve as follows

Γ = (G; `) = (V;E;w; `):

The genus of Γ is the genus of G. The word “extended” refers to the fact that we in-
clude edges of infinite length. In fact, abstract tropical curves are originally defined
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(in Mikhalkin and Zharkov [2008] and Brannetti, Melo, and Viviani [2011]) as compact
spaces, so their edges have finite length. We allow edges of infinite lengths to obtain a
compact moduli space which is the “tropicalization” of the moduli space of stable curves.

An extended tropical curve with n marked points is a metric graph as above with the
addition of a set of legs of the underlying graph.

There is a natural equivalence relation on tropical curves such that in every equivalence
class there is a unique (up to isomorphism) curve whose underlying graph is stable.

Themoduli spaceM trop
g;n parametrizes extended tropical curves of genusgwithnmarked

points up to this equivalence relation. Its first construction is due to Mikhalkin, for g = 0,
and to Brannetti-Melo-Viviani for compact tropical curves in any genus. The following
statement summarises results fromMikhalkin [2007], Brannetti, Melo, and Viviani [2011],
and Caporaso [2012a].

Theorem 3.1.2. The moduli space of extended tropical curves, M trop
g;n, is a compact and

normal topological space of dimension 3g � 3 + n. It admits a graded stratification

(10) M
trop
g;n =

G
G2SG�

g;n

M
trop
G

where M trop
G is the locus of curves having G as underlying graph and SG�

g;n is the poset
dual to SGg;n (i.e. with reverse partial order).

3.2 Skeleta and tropicalizations. Proposition 3.1.1 and Theorem 3.1.2 show thatM trop
g;n

has a graded stratification dual to that of Mg;n. Therefore we ask whether there exists
some deeper relation between Mg;n andM trop

g;n.
A positive answer can be given through the theory of analytifications of algebraic

schemes developed in Berkovich [1990], and through its connections to tropical geom-
etry; see Maclagan and Sturmfels [2015] and Payne [2009]. Let us introduce the space
M

an
g;n, the analytification of Mg;n in the sense of Berkovich. Recall that a point inM an

g;n

corresponds, up to base change, to a stable curve over an algebraically closed fieldK com-
plete with respect to a non-archimedean valuation; asM g;n is projective, this is the same
as a stable curve over the ring of integers of K.

From the general theory (see also Thuillier [2007] and Abramovich, Caporaso, and
Payne [2015]) we have that for every space with a toroidal structure, like the stack Mg;n

(with toroidal structure given by its boundary), one associates the Berkovich skeleton
which is a generalised, extended cone complex onto which the analytification retracts.
We write Σ(Mg;n) for the Berkovich skeleton of Mg;n andM an

g;n

�
�! Σ(Mg;n) for the

retraction.
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The connection between tropical geometry and Berkovich theory originates from the
fact that Berkovich skeleta can be viewed as tropicalizations of algebraic varieties. As we
are going to see, the picture for curves is quite clear, whereas other interesting situations
(some treated later in the present paper) are still open to investigations; we refer to Gubler,
Rabinoff, and Werner [2016], for recent progress for higher dimensional varieties.

Now, tropical curves can be viewed as tropicalizations (or skeleta) of curves over al-
gebraically closed, complete, non-archimedean fields. This is clarified by the following
statement, combining results of Viviani [2013], Tyomkin [2012], and Baker, Payne, and
Rabinoff [2016, 2013] (for the first part) and of Abramovich, Caporaso, and Payne [2015]
(for the second part).

Theorem 3.2.1. There exists a tropicalization map

trop :M
an
g;n ! M

trop
g;n

that sends the class of a stable curve over the (algebraically closed, complete, non-archimedean)
field K to its skeleton.

There is a natural isomorphism, Σ(Mg;n) Š M
trop
g;n, through which the above map

factors as follows
trop :M

an
g;n

�
�! Σ(Mg;n)

Š
�! M

trop
g;n:

We need to define the tropicalization map and explain the word “skeleton”. As we said,
a point inM an

g;n is a class of stable curves, X ! SpecR, where R is the valuation ring of
K; let X be its special fiber. Then the image of this point via the map trop is the tropical
curve (G; `), where G is the dual graph of X and, for every node e 2 E(G), the value
`(e) is determined by the local geometry of X at e as measured by the given valuation.
Such a tropical curve (G; `) is called the skeleton, of the stable curve X ! SpecR or of
the stable curve XK over K.

Concluding in loose words: the skeleton of Mg;n is the moduli space of skeleta of
stable curves.

The structure of the proof of the above theorem is such that it may apply to other situ-
ations. In fact it has been applied by Cavalieri-Markwig-Ranganathan to another remark-
able case, the compactification of the Hurwitz spaces, as we shall now explain.

3.3 Algebraic and tropical admissible covers. Consider the moduli space of admis-
sible covers, H�, which here (as in Cavalieri, Markwig, and Ranganathan [2016]), is the
normal compactification of the classical space of Hurwitz covers H�. We use the sub-
script �” to simplify the notation needed to express the usual discrete invariants. Indeed,
a more precise notation would be H� = Hg;h

�
�

�
for the Hurwitz space parametrizing

degree-d covers of a smooth curve of genus h by a smooth curve of genus g with exactly
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b branch points with ramification profile prescribed by a set of b partitions of d , written
� = (�1; : : : ; �b).

In Cavalieri, Markwig, and Ranganathan [2016] the authors define tropical admissible
covers, construct their moduli space H trop

� and establish an analogue to Theorem 3.2.1.
We shall now outline the procedure and give some details.

The first step is to associate a dual combinatorial entity to the algebro-geometric one.
Indeed, one associates to an admissible cover a map of graphs, which we call the dual
graph cover. The set of all dual graph covers is endowed with a poset structure by means
of edge-contractions (similarly to the poset set of stable graphs). We denote by A� this
poset, as its objects can be viewed as admissible maps of graphs. For any Θ 2 A� we
denote by HΘ the locus in H� of admissible covers whose dual graph map is Θ.

The second step is to enrich the dual combinatorial entity with a tropical, or polyhedral,
structure. In Cavalieri, Markwig, and Ranganathan [ibid.] tropical admissible covers are
defined by metrizing, in a suitable way, dual maps of graphs. The moduli space of tropical
admissible covers is denoted by H trop

� , the bar over H indicates that they are “extended”,
i.e. edge-lengths are allowed to be infinite. ForΘ 2 A� the stratum parametrizing tropical
admissible covers havingΘ as underlying graph map is denoted byH trop

Θ and shown to be
the quotient of an extended real cone.

The third and last step is to use analytification and tropicalization to establish an ex-
plicit link between the algebraic and the tropical moduli space. Indeed, essentially by
construction, we have dual stratifications

H� =
G

Θ2A�

HΘ and H
trop
� =

G
Θ2A�

�

H
trop
Θ :

This duality can be read from the following Theorem.

Theorem 3.3.1 (Cavalieri-Markwig-Ranganathan). There is a tropicalization map trop :

H
an
� ! H

trop
� which factors as follows

trop : H
an
�

�
�! Σ(H�) �! H

trop
� :

The map H
an
�

�
�! Σ(H�) is the retraction of H

an
� onto its Berkovich skeleton, as

described in subSection 3.2. This result is compatible with the analogous one for Mg

through the canonical forgetful maps from H� to the moduli spaces of stable curves; see
Cavalieri, Markwig, and Ranganathan [ibid., Thm. 4].

What about other moduli spaces? Are Theorems 3.2.1 and 3.3.1 part of some general
picture where skeleta of algebraic moduli spaces (e.g. the skeleton of Mg;n) can be de-
scribed as moduli spaces for combinatorial entities (e.g. tropical curves) which are skeleta
of the objects (e.g. stable curves) parametrized by the algebraic moduli spaces? As we
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saw, the first step is to identify a suitable partially ordered set of combinatorial objects to
associate to the algebro-geometric ones.

In the next section we shall look at the theory of compactified Jacobians from this point
of view.

4 Compactified Jacobians

4.1 Compactifying Jacobians over M g . Let us go back to compactify Jacobians of
curves and, with the discussion of the previous section inmind, approach the problem from
the point of view of the moduli theory of stable curves. Consider the universal Jacobian
over the moduli space of smooth curves and look for a compactification of it over Mg

satisfying the requirements we discussed earlier.
For reasons that will be clear later, it is convenient to extend our considerations to

Jacobians of all degree. For a curve X = [v2VCv and any multidegree d 2 ZV we write
Picd (X) for the moduli space of line bundles of multidegree d . Now, JX is identified
with Pic(0;:::;0)(X) and we have non-canonical isomorphisms JX Š Picd (X).

The universal degree-d Jacobian over Mg is a morphism P d
g ! Mg ; whose fiber

over the point parametrizing a smooth curve X is Picd (X). We want to construct a com-
pactification of P d

g over Mg by a projective morphism P
d

g ! Mg such that P
d

g has a
moduli description. We shall refer to such a space as a compactified universal degree-d
Jacobian.

From this perspective there is a natural approach to the problem, namely imitate the
construction of Mg itself. Recall that the moduli scheme, M g , of the stack Mg was
constructed by Gieseker [1982] as the GIT-quotient of the Hilbert scheme of n-canonically
embedded curves (n � 0). The moduli stack Mg is the quotient stack associated to this
quotient.

Now, as the Hilbert scheme of n-canonically embedded curves of genus g has such a
beautiful GIT-quotient, why shouldn’t the Hilbert scheme of all projective curves of degree
d � 0 and genus g have a beautiful GIT-quotient? And why shouldn’t this quotient be
a candidate for a compactification of the universal degree-d Jacobian? Indeed, this is
what happens, and the GIT quotient of this Hilbert scheme is our compactified universal
degree-d Jacobian, P d

g . The corresponding quotient stack is denoted by P
d

g .

Now, as d varies, the spaces P
d

g are not isomorphic to one another, and their fibers
over certain singular curves are not even birational to one another. Again, we see the phe-
nomenon (appearing already in Oda and Seshadri [1979]) that non isomorphic compact-
ifications of the Jacobian of a fixed singular curve exist. In the present case the various
models depend on the degree d .
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As for the basic properties of the spaces P
d

g as d varies, there is a special set of de-
grees, namely those such that (6) holds, such that P d

g is a geometric GIT-quotient and has
good moduli properties, so that its points correspond to geometric objects up to a certain
equivalence relation. Moreover, the natural (projective) morphism  d : P

d

g �! Mg is a
strongly representable map of Deligne-Mumford stacks. As we said in subSection 2.3 in
this case all fibers of  d are Néron compactified Jacobians.

Now, (6) fails if d = g � 1 whereas it holds if d = g. We shall concentrate on
these two cases, interesting for different reasons, and give a combinatorial analysis of the
compactified Jacobian.

4.2 Compactified Jacobians in degreeg�1. Webegin by reviewing an idea of Beauville.
Let us fix g � 2. Among degree-d Jacobians, the case d = g � 1 has been object of spe-
cial interest for its strong connections with the Theta divisor, the Schottky problem, the
Prym varieties; in particular, it has been studied in Beauville [1977].

Let us approach the problem of compactifying the degree (g � 1)-Jacobian of a curve
X with G = (V;E; h) as dual graph. We expect a good compactification to have finitely
many irreducible components and each component to parametrize (at least away from the
boundary) line bundles on X of a fixed multidegree d such that jd j = g � 1. Now the
question is to determine these “special” multidegrees. Consider the identity

g � 1 =
X
v2V

�
h(v) � 1

�
+jEj:

We can interpret the first term (i.e. the summation) as carrying the topological invariants
of X , and the second term, jEj, as carrying the combinatorial ones. Now, while the first
term exhibits the single contribution of each vertex/component, the second does not. Sowe
may ask how to distribute the second term among the various vertices in a combinatorially
meaningful way. A natural solution is to consider an orientation, O , on G, and denote by
tOv the number of edges having v as target. Then

P
v2V t

O
v = jEj: Therefore, if we define

a multidegree dO as follows

dO
v := h(v) � 1 + tOv ;

for every v 2 V , we have jdO
j = g � 1. As there are only finitely many orientations on

a graph, by the above rule we have picked a finite set of special multidegrees of degree
g � 1. More precisely, it may happen that two orientations, O and O 0, give the same
multidedegree; in such a case we say that O and O 0 are equivalent. We denote by O(G)

the set of such equivalence classes of orientations on G. Now, a closer look reveals that
O(G) is still too big for it to parametrize the irreducible components of a compactified
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Jacobian. Indeed, from the discussion in SubSection 2.2 we expect the number of such
components to be at most equal to jΦG j, whereas we have jO(G)j > jΦG j in general (for
example for a 2-cycle, as in the picture below).

So, to compactify the degree-(g � 1) Jacobian we must distinguish a special type of
orientations. These are called totally cyclic orientations, defined as orientations such that
any two vertices in the same connected component ofG lie in a directed cycle. It tuns out
that if two orientations are equivalent, one is totally cyclic if the other one is. The set of
equivalence classes of totally cyclic orientations on G is denoted by O0

(G):

In the picture below we have the four orientations on a 2-cycle. The first two are totally
cyclic and equivalent. The last two are not totally cyclic.

�
��

]] ı �
��

AAı �
��
]] ı �

��
AAı

We shall adopt the convention that the empty orientation on the graph consisting of
only one vertex and no edges is totally cyclic. We notice the following facts.

Remark 4.2.1. (a) O0
(G) is empty if and only if G contains some bridge.

(b) Assume G connected. Then jO
0
(G)j � jΦG j with equality if and only if jV j = 1.

The set of all orientations on the spanning subgraphs of a graphG admits a partial order
as follows. LetOS1

andOS2
be two orientations onG�S1 andG�S2 respectively, where

Si � E(G) for i = 1; 2. We set OS1
� OS2

if G � S1 � G � S2 and if the restriction of
OS2

to G � S1 equals OS1
.

This definition is compatible with the equivalence relation defined above, and hence
the set of all equivalence classes of totally cyclic orientations on G is a poset, which we
shall denote as follows

OP
0
(G) :=

G
S�E(G)

O
0
(G � S):

Finally, we are ready to exhibit a graded stratification of P g�1

X governed by totally
cyclic orientations, by rephrasing some results in Caporaso and Viviani [2010].
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Proposition 4.2.2. Let X be a stable curve of genus g and G its dual graph. Then the
following is a graded stratification

(11) P
g�1

X =
G

OS 2OP
0
(G)

P
OS

X ;

and we have natural isomorphisms for every OS 2 OP
0
(G)

(12) P
OS

X Š PicdOS
(X�

S ):

The isomorphisms (12) exhibit the recursive behaviour described in Remark 2.3.3. In-
deed, PicdOS

(X�
S ) Š JX�

S
and dOS is the multidegree associated to a totally cyclic orien-

tation on G � S . Hence the boundary of the compactified degree-(g � 1) Jacobian of X
is stratified by Jacobians of degree (g(X 0) � 1) of partial normalizations, X 0, of X .

Remark 4.2.3. IfX is reducible and not of compact type then P g�1

X is not of Néron type,
by Remark 4.2.1(b).

A tropical counterpart of the stratification (11) is not known to us.
The compactified Jacobians in degree g � 1 have been proved especially useful in

various situations and in connection with the Theta divisor, whose definition extends to
these compactified Jacobians. Among the applications, we recall that the pair given by
this degree-(g�1) Jacobian and its Theta divisor, (P g�1

X ;ΘX ), is endowed with a natural
group action of JX and, as such, forms a so-called principally polarized stable semi-abelic
pair. These pairs appear as boundary points in the compactification, Amod

g , of the moduli
space of principally polarized abelian varieties constructed in Alexeev [2002]. Moreover,
by Alexeev [2004], they form the image of the compactified Torelli map and we have

Proposition 4.2.4. The extended Torelli morphism � : M g ! A
mod
g mapping a curve X

to (P
g�1

X ;ΘX ) is the moduli map associated to the family  g�1 : P
g�1

g ! M g .

The combinatorial structure of P g�1

X described in Proposition 4.2.2 is heavily used in
Caporaso and Viviani [2010] to study the fibers of � .

4.3 Jacobians in degree g: Néron compactified Jacobians. We now adapt the con-
siderations at the beginning of the previous sections to the case d = g. We have g =P

v2V

�
h(v)�1

�
+jEj+1 and, as before, we want to express the term jEj+1 in a combi-

natorially meaningful way. Modifying what we did earlier, we now consider orientations
having one bioriented edge. More precisely, a 1-orientation on a graph G is the datum
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of a bioriented edge, e, and of an orientation on G � e. For any 1-orientation we have,
of course, jdO

j = g(G): Just as in the previous subsection we restricted to totally cyclic
orientations, now we need to restrict to certain special 1-orientations, namely “rooted” ori-
entations. A 1-orientation with bioriented edge e is said to be rooted (or e-rooted) if for
every vertex v there exists a directed path from e to v.

As before, two 1-orientations O and O 0 such that dO = dO0

are defined to be equiva-
lent, moreover one is rooted if the other one is. We denote byO1

(G) the set of equivalence
classes of rooted 1-orientations on G.

We decree the empty orientation on the graph consisting of only vertex and no edges
to be rooted. Similarly to Remark 4.2.1 we have:

Remark 4.3.1. (a) O1
(G) is not empty if and only if G is connected.

(b) jO
1
(G)j = jΦG j.

In the picture belowwe have all e-rooted orientations on a 4-cycle with fixed bioriented
edge e. They correspond to the four elements in O1

(G).

�

��

oo e //�OO �OO oo
e //�

��

�

��

oo e //�

��

�

��

oo e //�

��
� //� �oo � � //� �oo �

In Theorem 2.3.1 we exhibited a stratification indexed by the poset of connected span-
ning subgraphs, C(G). The strata of that stratification are not connected, we shall now
exhibit a finer stratification with connected strata.

Recall that rooted 1-orientations exist only on connected graphs. The poset of equiva-
lence classes of rooted 1-orientations on all spanning subgraphs ofG is written as follows

(13) OP
1
(G) :=

G
S2C(G)

O
1
(G � S);

with the partial order defined in the previous section.
The following result of Christ [2017] states that P g

X admits a recursive graded stratifi-
cation governed by rooted orientations.
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Theorem 4.3.2 (Christ). Let X be a stable curve of genus g and G its dual graph. Then
P

g

X admits the following graded stratification

(14) P
g

X =
G

OS 2OP
1
(G)

P
OS

X ;

and we have natural isomorphisms for every OS 2 OP
1
(G)

(15) P
OS

X Š PicdOS
(X�

S ):

Remark 4.3.3. Comparing with the stratification of Theorem 2.3.1 we have, using (13),
that (14) is a refinement of (7), with connected strata.

In this case we do have a tropical counterpart. First, consistently with the dual strati-
fications (9) and (10), a tropical counterpart of X is a tropical curve Γ whose underlying
graph is the dual graph of X .

We now assume Γ = (G; `) is compact (i.e. not extended). The tropical curve Γ has a
Picard group Pic(Γ) = tPicd (Γ), and each connected component, Picd (Γ), is isomorphic
to the same b1(G)-dimensional real torus; see Mikhalkin and Zharkov [2008]. In An,
Baker, Kuperberg, and Shokrieh [2014], the authors show that Picg(Γ) has an interesting
polyhedral decomposition indexed by “break divisors” on G. The connection between
break divisors and rooted 1-orientations is established, as a consequence of the results in
An, Baker, Kuperberg, and Shokrieh [ibid.], in Christ [2017], where the following result
is obtained.

Theorem 4.3.4. Let Γ = (G; `) be a compact tropical curve of genus g. Then Picg(Γ)

admits the following graded stratification

(16) Picg(Γ) =
G

OS 2OP
1
(G)�

ΣOS

Γ :

The stratification (16) is a non-trivial rephrasing of the polyhedral decomposition es-
tablished in An, Baker, Kuperberg, and Shokrieh [2014]. Such a rephrasing is needed
to establish the connection with the stratification (14). From An, Baker, Kuperberg, and
Shokrieh [ibid.] it follows that the strata ΣOS

Γ are the interiors of the faces of a polyhedral
decomposition for Picg(Γ).

Presently, we do not know whether the duality between the stratifications (16) and (14)
can be given an interpretation in terms of tropicalization and analytification, similarly to
the cases described in subsections 3.2 and 3.3.

This problem is related to a result of Baker and Rabinoff [2015], which we will state
in our notation. Using Theorem 3.2.1, let XK be a smooth curve, JXK

its Jacobian, and
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let Γ = trop([XK ]), where [XK ] is the point ofM an
g corresponding to XK . Hence Γ is a

compact tropical curve of genus g (compactness follows from XK being smooth). With
this set-up, Baker and Rabinoff [ibid., Thm. 1.3] yields

Theorem 4.3.5 (Baker-Rabinoff). Picg(Γ) Š Σ(J an
XK

).

With this result in mind, a natural approach to the problem mentioned above would be
to study the relation between Σ(J an

XK
) and P g

X .
Finally, consider the universal compactified Jacobian. Results from Christ [2017] in-

dicate that an analogue of Theorem 4.3.2 should hold uniformly over Mg , so that the
universal compactified Jacobian P

g

g can be given a graded stratification compatible with
that of Mg . We expect the same to hold for the universal compactified Jacobian in degree
g � 1, with Proposition 4.2.2 as starting point.
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Abstract

In this survey article, we introduce the development of birational geometry associ-
ated to pluricanonical maps. Especially, we explain various aspects of explicit studies
of threefolds including the key idea of theory of baskets and other applications.

1 Introduction

In the realm of birational geometry, divisors are perhaps the most important objects. Clas-
sically they were used to keep track of the property of zeros and poles and naturally devel-
oped into a convenient tool to study functions with preassigned conditions. Thus one may
study linear systems associated to various interesting divisors. Among all divisors, the
canonical divisor K, together with m-th canonical divisor mK for any m 2 Z, plays the
central role. The behavior of pluricanonical maps 'm or pluricanonical systems jmKj is
intensively studied in the minimal model program (in short, MMP) as well as other “canon-
ical” classification problems. In fact, many very important concepts in algebraic geometry
such as Kodaira dimension, Iitaka fibration, canonical volume, extremal contractions in
minimal model program and so on, are defined on the basis of specific properties of the
canonical divisor K.

More explicitly let V be any nonsingular projective variety of dimension n. For any
m 2 Z, denote by 'm;V them-canonical map of V . The following three types of problems
are in the core of birational geometry:

Question 1.1. For any integer n � 3, find a practical integer rn so that, for all nonsingular
projective n-folds of general type, 'm is birational onto its image for all m � rn.
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The second author was supported by National Natural Science Foundation of China (#11571076, #11231003,
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Question 1.2. For any integers n � 3 and n > � � 0, find integers Mn;� and dn;� such
that, for all nonsingular projective n-folds with Kodaira dimension �, the m-th canonical
map 'm defines an Iitaka fibration for all m � Mn;� and divisible by dn;� .

Question 1.3. For any integer n � 3, find an integer mn so that, for all canonical (termi-
nal) weak Q-Fano n-folds (i.e. �K being Q-Cartier, nef and big), '�m is birational onto
its image for all m � mn.

First we recall some results on the quest of existence for rn, Mn;� and mn.

• For varietiesV of general type, the remarkable theorem, proved separately byHacon
and McKernan [2006], Takayama [2006] and Tsuji [2006], asserts that there is a
constant r̃n depending only on the dimension n (n > 2) such that 'm;V is birational
for all m � r̃n.

• For varieties of intermediate Kodaira dimension, say 0 < �(V ) < n, the effective
Iitaka fibration conjecture predicts that there exists a constant c̃n depending only
on n such that 'm;V defines an Iitaka fibration for all m � c̃n and divisible. The
canonical bundle formula of Fujino and Mori [2000] serves as the fundamental tool
in this situation. The up-to-date result, due to Birkar and Zhang [2016] says that
there exists a uniform number M (n; bF ; ˇF̃ ) so that 'm gives an Iitaka fibration
for all m � M (n; bF ; ˇF̃ ) and divisible. The numbers bF and ˇF̃ are defined
as follows. Let F be the general fiber of Iitaka fibration. The number bF , called
the index of fiber, is the smallest positive integer so that jbKF j ¤ ¿. One has a
covering F̃ ! F by jmKF j. Then ˇF̃ , called the middle Betti number, is defined
as the (n��)-th Betti number of the n�� dimensional variety F̃ . One may refer to
Viehweg and Zhang [2009], G. Todorov and Xu [2009], Pacienza [2009], X. Jiang
[2013], Di Cerbo [2014] and Birkar and Zhang [2016] for more details along this
direction.

• For canonical (resp. terminal) weakQ-Fano threefolds, the boundednesswas proved
by Kawamata [1992] under the condition that the Picard number � = 1 and by Kol-
lár, Miyaoka, Mori, and Takagi [2000] for the general case with � > 1. Recent
breakthrough of Birkar [2016] asserts that even for n � 4 there is a constant m̃n

depending only on n such that '�m;V is birational for all m � m̃n.

It is interesting to study the explicit aspect of pluricanonical maps of projective varieties
in high dimensions. Some recent advances show that r3, m3, and M3;� have realistic
bounds which are very close to being optimal. The purpose of this survey article is to
introduce and to sketch some of the key ideas and techniques developed from those explicit
studies of 3-folds. We expect that such detailed and explicit studies of 3-folds will pave a
solid path toward the understanding of higher dimensional birational geometry.
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Throughout, all varieties are considered over an algebraically closed field k of charac-
teristic zero.

2 Theory of weighted baskets

The understanding of terminal and canonical singularities plays the essential role in the
development of three dimensional geometry. The milestone work of the existence of flips
in dimension three, due to Mori [1988], built on the classification of terminal singularities
and extremal neighborhoods. Moreover, Reid showed that each terminal singularities can
be deformed into cyclic quotient singularities. Hence, the collection of deformed quotient
singularities carries ample information of singularities. This leads to the notion of baskets
of terminal orbifold points. For simplicity, a terminal orbifold point of type 1

r
(1; �1; b)

will be denoted as (b; r)with b � r/2. A basket, which is a collection of terminal orbifold
points, is written as B = fni � (bi ; ri )g where ni denotes the multiplicities.

The subsequent result of singular Riemann-Roch formula (see Reid [1987]) can be
derived by computing the contribution of basket of singularities, say

�(OX (D)) = �(OX ) +
1

12
D(D � KX )(2D � KX ) +

1

12
(D:c2(X))

+
X

P 2B(X)

0@�iP �
r2P � 1

12rP

+

iP �1X
j=1

jbP (rP � jbP )

2rP

1A ;

where c2(X) is defined in the sense of intersection theory, B(X) = f(bP ; rP )g is the
basket data of X and iP is the local index of D such that OX (D) Š OX (iP KX ) near P .

By applying the singular Riemann-Roch formula to D = KX , then one gets

(KX :c2(X)) = �24�(OX ) +
X

P 2BX

�
rP �

1

rP

�
:

This leads to various results. For example, Kawamata and Morrison’s result on the global
index of 3-folds with KX � 0 was then derived (see Section 5).

By taking D = mKX and replacing (KX :c2(X)) with �(OX ) and the contribution of
singularities, we get the following plurigenus formula Reid [ibid.]:

(2-1) �m =
1

12
m(m � 1)(2m � 1)K3 + (1 � 2m)� + l(m);

where � = �(OX ), K3 = K3
X , �m = �(OX (mKX )) and

(2-2) l(m) =
X

P 2BX

m�1X
j=1

jbP (rP � jbP )

2rP

:
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It is clear from the Riemann-Roch formula that the triple (BX ; �2; �) determine �m for
all m � 3. We call the triple B = fB; �2; �g a weighted basket, where B is a basket of
orbifold points, �2 is a non-negative integer and � is an integer. For any m � 3, �m can
be inductively and formally defined by means of (2-1). Note that the rational number K3,
which is also uniquely determined by B, is called the volume of B.

Given a basket
B = f(b1; r1); (b2; r2); : : : ; (bk ; rk)g;

we call the basket

B 0 : = f(b1 + b2; r1 + r2); (b3; r3); : : : ; (bk ; rk)g

a packing of B , written as B < B 0. If b1r2 � b2r1 = 1, then we call B < B 0 a prime
packing.

Then we introduced the “canonical sequence of prime unpackings of a basket” in J. A.
Chen and M. Chen [2010b]:

B(0)(B) < B(5)(B) < ::: < B(n)(B) < ::: < B;

so that B(n) consists of orbifold points (bi ; ri ) with either ri � n or bi = 1. The basket
B(0), called the initial basket, consists of orbifold points of the form (1; ri ). Take an
orbifold point (b; r) for example. Let q = b

r
b
c. Then 1

q
�

b
r

�
1

q+1
. Indeed, let

ˇ := r � qb, then the initial basket of (b; r) is f(b � ˇ) � (1; q); ˇ � (1; q + 1)g.
The packing of baskets naturally induces the packing of weighted baskets, namely we

define
fB; �2; �g < fB 0; �2; �g

if B < B 0. Furthermore, any given weighted basket B has the corresponding “canonical
sequence”:

B(0) < B(5) < ::: < B(n) < ::: < B:

As revealed in J. A. Chen and M. Chen [ibid., Section 3], the intrinsic properties of
the canonical sequence provide many new inequalities among the Euler characteristic and
other characteristics of a given weighted basket B, of which the most interesting one is:

(2-3) 2�5 + 3�6 + �8 + �10 + �12 � � + 10�2 + 4�3 + �7 + �11 + �13 + R;

where R is certain non-negetative combination of all initial baskets with higher indices.
Although the above notions were introduced in a very formal way, it was proved to be

quite effective for various geometric problems, which we will discuss in next sections.
Also, even though the notion of packings was introduced to study the numerical behavior
rather than its geometric meaning at the beginning. The relation appears in divisorial
contractions to points.
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Example 2.1. Let P = 1
9
(2; 7; 1) 2 X Š C3/�9 be a terminal quotient singularity.

Let Y ! X be the weighted blowup with weights 1
9
(2; 7; 1). Then the basket of Y is

BY = f(1; 2); (3; 7)g and the basket of X is f(4; 9)g which is a packing of BY . This is an
example of Kawamata blowup (cf. Kawamata [1996]).

Example 2.2. Let P 2 X Š (xy + z15 + u2 = 0) � C4/�5 (of type 1
5
(3; 2; 1; 5)) be

a cA/5 singularity. Let Y ! X be a weighted blowup with weights 1
5
(3; 7; 1; 5). Then

the basket of Y is f(3; 7); (1; 3)g and the basket of X is f2 � (2; 5)g. They have the same
initial baskets f2 � (1; 2); 2 � (1; 3)g.

3 Pluricanonical maps of threefolds of general type

We consider 3-folds of general type in this section. Since minimal models exist and the
problems are birational in nature, we usuallywork onminimal projective 3-folds of general
type with Q-factorial terminal singularities, unless otherwise stated. Denote by rX the
Cartier index of X . Define the canonical stability index

rs(X) = minft j'm;X is birational for all m � tg:

Clearly r3 = maxfrs(X)j X is a minimal 3-fold of general typeg.

3.1 The case rX = 1.
When X is smooth and minimal, it is Wilson [1980] who first proved that rs(X) � 25.

Then this was improved, chronoligically, by Benveniste [1986] (rs(X) � 9), Matsuki
[1986] (rs(X) � 7) and the second author M. Chen [1998] (rs(X) � 6).

In fact, themethod of Benveniste, Matsuki and the second author can be easily extended
to the situation, when X is Gorenstein and minimal, by using a special partial resolution
due to Reid [1983] and Miyaoka [1987]. Note also that S. Lee [2000] proved the optimal
base point freeness of j4Kj.

Example 3.1. Let X = S � C where S is a minimal surface of general type of (1; 2)-
type and C is a complete curve of genus � 2. Then rs(X) = 5 according to Bombieri
[1973]. Thus, for Gorenstein minimal 3-folds of general type, the best one can expect is
that rs(X) � 5 holds.

Question 1.1 in the case of n = 3 and rX = 1was finally solved in 2007 by the authors
and De-Qi Zhang:

Theorem 3.2. (J. A. Chen, M. Chen, and Zhang [2007, Theorem 1.1]) Let X be a minimal
projective 3-fold of general type with rX = 1. Then 'm;X is a biratioal morphism for every
integer m � 5.
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3.2 Kollár’s method.
The work of Kollár on push-forward of dualizing sheaves provide various important

applications in the study of higher dimensional geometry. One of the them is to reduce the
birationality problem to non-vanishing of plurigenera as in the following theorem:

Theorem 3.3. (Kollár [1986, Corollary 4.8]) Let V be a nonsingular projective 3-fold
of general type with Pk(V ) � 2 for some integer k > 0. Then '11k+5 is birational.

The key contribution of Theorem 3.3 in the process of solving Question 1.1 (n = 3) is
that it reduces to the problem to find an effective integer k so that Pk � 2, which is the
standard task of Riemann-Roch formula.

Kollár’s method of proving Theorem 3.3 is as follows. If one takes a sub-pencil Λ �

jkKV j, modulo a further birational modification if necessary, one gets a surjective mor-
phism f : V �! Γ Š P 1. One has the inclusion O(1) ,! f�!k

V and then, for any
p � 5,

f�!
p

V /Γ ˝ O(1) ,! f�!
(2p+1)k+p

V :

Since the 5-canonical map of the general fiber is birational and by the semi-positivity of
f�!

p

V /Γ, one sees that '11k+5 is birational by simply taking p = 5.
Theorem 3.3 was considerably improved by the second author M. Chen [2004a, Theo-

rem 0.1] that, under the same condition as that of Theorem 3.3, '5k+6 is birational. Some
further optimal results were proved inM. Chen [2003], M. Chen [2004a], M. Chen [2007],
and J. A. Chen and M. Chen [2010a].

3.3 The case of rX � 2.
Turning to the general situation that minimalmodel contains some singularities of index

� 2. Suppose �(OX ) < 0. Reid’s Riemann-Roch formula implies P2(X) � 4. Hence
the question is solvable by Kollár’s theorem. Suppose that Pk � 2 for some k � 12, one
can apply Kollár’s method as well.

It remains to consider �(OX ) � 0 and Pk(X) � 1 for all 2 � k � 12. The key
inequality (2-3) reads:

(3-1) 2P5 + 3P6 + P8 + P10 + P12 � �(OX ) + 10P2 + 4P3 + P7 + P11 + P13;

which directly implies that �(OX ) � 8. This also means that P13 is upper bounded by
7. In practice, one may obtain more precise bounds for both �(OX ) and P13. It turns out
that the 12-th weighted basket B12(X) has only finite possibilities and so does B(X). It
is then possible to answer Question 1.1, which was the main work in the authors’ papers
J. A. Chen and M. Chen [2010b,a, 2015a].

To improve or to reach the possible optimal bound, one needs to study the birational
geometry explicitly. Known useful techniques include some effective method to estimate



ON PLURICANONICAL MAPS OF PROJECTIVE VARIETIES 677

the lower bound ofK3
X and better birationality criterion of 'm;X under the assumption that

Pm0
� 2 for some number m0 > 0, which is a kind of improvement to Kollár’s method.

We briefly describe the technique below. Indeed, if Pm0
� 2, then one has an induced

fibration from a sub-pencil of jm0Kj, say f : X 0 �! Γ, where X 0 is a smooth model of
X and Γ is a smooth complete curve. Denote by � : X 0 �! X the birational morphism.
Pick a general fiber F of f and denote by � : F �! F0 the contraction onto its minimal
model. Naturally one has

m0��(KX ) � pF + Em0
;

for some integer p > 0 and effective Q-divisor Em0
. The key point is to prove the so-

called “canonical restriction inequality” (see M. Chen [2003], M. Chen [2004a], M. Chen
[2007], M. Chen and Zhang [2008], M. Chen and Zuo [2008], and J. A. Chen andM. Chen
[2010a, 2015a] for its development history) as follows:

(3-2) ��(KX )jF �
p

m0 + p
��(KF0

)

moduloQ-linear equivalence. The inequality (3-2) directly gives an effective lower bound
of K3

X and it is crucial as well in proving the birationality of 'm;X .
Here are the main theorems of the authors as the answer to Question 1.1 (n = 3):

Theorem 3.4. (J. A. Chen and M. Chen [2010b,a, 2015a]) Let X be a minimal projective
3-fold of general type. Then

(1) K3
X �

1
1680

;

(2) 'm;X is birational for all m � 61;

(3) P12 � 1 and P24 � 2.

(4) K3
X �

1
420

(optimal) if �(OX ) � 1:

Remark 3.5. The statements are birational in nature. More precisely, 'm are birationally
equivalent on different birational models and the canonical volume Vol(V ) is a birational
invariant, equals toK3

X of aminimalmodelX . Therefore, the above statements can be also
read as: Let V be a nonsingular projective 3-fold of general type. Then Vol(V ) �

1
1680

and 'm;V is birational for all m � 61, etc.

Define the pluricanonical section index ı(X) to be the minimal integer so that Pı � 2.
The author proved the following results:

Theorem 3.6. (J. A. Chen and M. Chen [2010b,a, 2015a]) Let X be a minimal projective
3-fold of general type. Then



678 JUNGKAI A. CHEN AND MENG CHEN

(1) ı(X) � 18;

(2) ı(X) = 18 if and only if B(X) = fB2a; 0; 2g;

(3) ı(X) ¤ 16; 17;

(4) ı(X) = 15 if and only if B(X) belongs to one of the types in J. A. Chen and M.
Chen [2015a, Table F–1];

(5) ı(X) = 14 if and only if B(X) belongs to one of the types in J. A. Chen and M.
Chen [ibid., Table F–2];

(6) ı(X) = 13 if and only if B(X) = fB41; 0; 2g

where

B2a = f4 � (1; 2); (4; 9); (2; 5); (5; 13); 3 � (1; 3); 2 � (1; 4)g and
B41 = f5 � (1; 2); (4; 9); 2 � (3; 8); (1; 3); 2 � (2; 7)g:

Example 3.7. Consider Fletcher’s example, which is a general weighted hypersurfaceX46

of weighted degree 46 in weighted projective space P (4; 5; 6; 7; 23) ( cf. Iano-Fletcher
[2000]). Note that '26 is not birational, �(OX ) = 1 and K3

X = 1
420

. This provides an
example of 3-fold for Theorem 3.4(4).

Recently the second author M. Chen [2016] showed r3 � 57 on the basis of above
classifications. Therefore, 27 � r3 � 57.

For 3-folds with ı = 1, the second author proved the following optimal results:

Theorem 3.8. (M. Chen [2003, 2007]) Let X be a minimal projective 3-fold of general
type with pg(X) � 2. Then

(1) K3
X �

1
3
;

(2) '8;X is birational onto its image.

3.4 On irregular 3-folds of general type. Let X be a minimal projective 3-fold of
general type with q(X) > 0. One may consider the Albanese map of X . A pioneer work
on this topic was due to J. A. Chen and Hacon [2002], who developed the Fourier-Mukai
theory to study irregular varieties and proved the following theorem:

Theorem 3.9. (J. A. Chen and Hacon [2002, 2007]) Let X be a minimal irregular 3-fold
of general type. Then
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(1) jmKX + P j gives a birational map for all m � 7 (resp. m � 5) and for all (resp.
general) P 2 Pic0(X).

(2) when �(!X ) > 0, jmKX + P j gives a birational map for all m � 5 and for all
P 2 Pic0(X).

Theorem 3.9(ii) is clearly optimal. For Theorem 3.9(i), the authors and Jiang proved
the following theorem:

Theorem 3.10. (J. A. Chen, M. Chen, and Zhang [2007]) Let X be a minimal irregular
3-fold of general type. Then '6;X is birational.

Besides, the authors gave the following effective lower bound for K3
X :

Theorem 3.11. (J. A. Chen and M. Chen [2008b, Corollary 1.2]) Let X be a minimal
irregular 3-fold of general type. Then K3

X �
1
22
.

Question 3.12. Are the results in Theorem 3.10 and Theorem 3.11 optimal?

4 The anti-canonical geometry of Q-Fano 3-folds

A normal projective 3-fold X is called a weak Q-Fano 3-fold (resp. Q-Fano 3-fold) if the
anti-canonical divisor �KX is nef and big (resp. ample). A canonical (resp. terminal)
weak Q-Fano 3-fold is a weak Q-Fano 3-fold with at worst canonical (resp. terminal)
singularities.

Weak Q-Fano varieties form a fundamental class in minimal model program and var-
ious aspects of birational geometry. Given a canonical weak Q-Fano 3-fold X , the m-th
anti-canonical map '�m;X (or simply '�m) is the rational map defined by the linear sys-
tem j � mKX j. It is worthwhile to mention that the behavior of '�m;X in not necessarily
birationally invariant, which makes Question 1.3 much harder to work on.

We may always study on a terminal weak Q-Fano 3-fold. Take the weighted basket

B(X) = fBX ; P�1; �(OX )g:

By the duality and the vanishing of higher cohomology, we have �m = �P�(m�1) for all
m � 2. Hence the basket theory introduced in Section 2 has a parallel version in Fano
case. In fact, the basket theory works very well in classifying weak Q-Fano 3-folds with
small invariants.

4.1 Lower bound of the anti-canonical volume.
In 2008, the authors applied the basket theory to prove the following theorem:
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Theorem 4.1. (J. A. Chen and M. Chen [2008a, Theorem 1.1]) Let X be a terminal (or
canonical) weak Q-Fano 3-fold. Then

(1) P�4 > 0 with possibly one exception of a basket of singularities;

(2) P�6 > 0 and P�8 > 1;

(3) �K3
X �

1
330

. Furthermore �K3
X = �

1
330

if and only if the basket of singularities
is f(1; 2); (2; 5); (1; 3); (2; 11)g.

Theorem 4.1.(3) is optimal according to the example of general hypersurface X66 �

P (1; 5; 6; 22; 33) (cf. Iano-Fletcher [2000]).

4.2 The anti-pluricanonical birationality.
The second author started to study the constant for anti-pluricanonical birationality in

M. Chen [2011] in 2011. A practical upper bound for m3 for Q-Fano 3-folds with Picard
number one was proved by the second author and C. Jiang in 2016:

Theorem 4.2 (M. Chen and C. Jiang [2016, Theorem 1.6]). Let X be a terminal Q-Fano
3-fold of Picard number one. Then '�m;X is birational for all m � 39.

Theorem 4.3 (M. Chen and C. Jiang [ibid., Theorem 1.8, Remark 1.9]). Let X be a canon-
ical weak Q-Fano 3-fold. Then '�m;X is birational for all m � 97.

The result in Theorem 4.2 is very close to be optimal according to Fletcher’s example
Iano-Fletcher [2000]. The numerical bound in Theorem 4.3, however, might be far from
optimal. Recently the second author and Jiang had an improvement on this problem:

Theorem 4.4 (M. Chen and C. Jiang [2017, Theorem 1.9]). Let V be a canonical weak
Q-Fano 3-fold. Then there exists a terminal weak Q-Fano 3-fold X birational to V such
that

1. dim'�m(X) > 1 for all m � 37;

2. '�m;X is birational for all m � 52.

Theorem 4.5 (M. Chen and C. Jiang [ibid., Theorem 1.10]). Let V be a canonical weak
Q-Fano 3-fold. Then, for any K-Mori fiber space Y of V ,

1. dim'�m(Y ) > 1 for all m � 37;

2. '�m;Y is birational for all m � 52.
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One notes that an intensive classification using the basket theory developed by the
authors was done in proving Theorem 4.4 and Theorem 4.5.

It is a very interesting question to ask what the optimal value of m3 is, which is crucial
in studying the anti-canonical geometry of weak Q-Fano 3-folds. One only knows 33 �

m3 � 97 so far.

5 Threefolds with Kodaira dimension 0 � � < 3

For varieties of Kodaira dimension 0, the question is then to find a uniform bound Mn;0

such that jmKj ¤ ¿ for all m divisible by Mn;0 and for all n-dimensional varieties with
� = 0. It is well-known that M2;0 = 12.

For threefolds with Kodaira dimension 0, Kawamata proved that 0 � �(OX ) � 4.
Comparing �(OX ) with (KX � c2), one knows the indices of singularities in its minimal
model and hence it follows that a uniform bound M3;0 exists (cf. Kawamata [1986]). By
careful classification of possible singularities, Morrison shows that jmKX j ¤ ¿ if m is
divisible by the Beauville’s number (cf. Morrison [1986])

lcmfmj�(m) � 20g = 25 � 33 � 52 � 7 � 11 � 13 � 17 � 19:

Note that 20 is chosen as b3(A) for any abelian threefoldA. Indeed, by Oguiso’s examples
(cf. Oguiso [1993]), the minimal universal number M3;0 is the Beauville’s number.

For threefolds with � = 2, Ringer shows that 'm is birational to the Iitaka fibration as
long as m � 48 and divisible by 12 (cf. Ringler [2007]). The explicit effective result for
threefolds with � = 1 was obtained by Hsin-Ku Chen very recently. He show that 'm is
birational to the Iitaka fibration as long as m � 96 and divisible by 12 (cf. H.-K. Chen
[2017]) and hence M3;1 � 96 and d3;1 = 12. There exists an example which shows that
M3;1 � 42.

6 Further applications of the theory of baskets and the singular
Riemann-Roch

6.1 Weighted complete intersections.
A weighted projective space is a natural generalization of projective spaces. Together

with complete intersection inside them, weighted projective spaces provide ample exam-
ples. In Iano-Fletcher [2000], Fletcher gave a very detailed account of getting well-formed
weighted complete intersection threefolds, including the classification of:

• canonically embedded codimension 1 and 2 weighted 3-folds with total weights
< 100;
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• weighted complete intersection Q-Fano 3-folds of codimensions 1, 2 with total
weights < 100.

Let X = Xd1;:::;dc
� P (a0; :::; an) be a weighted complete intersection. Let ıj :=

dj � aj+dimX . By modifying Fletcher’s proof, it’s not difficult to verify that quasi-
smoothness implies that ıj � aj �1. Then the following Theorem follows.

Theorem 6.1. (J.-J. Chen, J. A. Chen, and M. Chen [2011, Theorem 1.3]) There is no
quasi-smooth (not an intersection of a linear cone with another subvariety) weighted com-
plete intersection Xd1;:::;dc

� P (a0; :::; an) of codimension c greater than dimX +1+˛,
where ˛ =

P
j dj �

P
i ai .

In order to classify 3-fold weighted complete intersections with at worst terminal sin-
gularities, let �i := #faj jaj = ig, and �i := #fdj jdj = ig. By Theorem 6.1, we haveP

�i � ˛ + A;
P

�i � ˛ + B for some small integers A, B . One can classify tuples
(�1; :::; �6; �2; :::; �6) (resp. (�1; :::; �5; �2; :::; �5)) when ˛ = 1 (resp. ˛ = �1) under
given conditions. It is then possible to classify initial baskets of weighted baskets with
given �i ; �i ’s. For a given weighted basket, one can compute its plurigenera by Reid’s
Riemann-Roch formula. By Reid’s “table method”, which mainly works on Poincaré se-
ries, one can determine all possible weighted complete intersections with given formal
baskets.

There might be infinitely many initial baskets with given �i ; �i ’s since the index of
each individual basket might be arbitrarily large. In the Fano case with ˛ = �1, one can
use the property (�KX � c2) � 0 to obtain the maximal index of basket. In the case of
general type, one can use K3

X > 0 to exclude most of the baskets with large indices. The
details can be found in J.-J. Chen, J. A. Chen, and M. Chen [ibid.].

To summarize, the following statement holds:

Theorem 6.2. (see J.-J. Chen, J. A. Chen, and M. Chen [ibid., Part II]) The lists of three-
fold weighted complete intersections in Fletcher Iano-Fletcher [2000, pp. 15.1, 15.4, 16.6,
16.7, 18.16] are complete.

For higher dimensional weighted complete intersections, one may refer to the interest-
ing paper of Brown and Kasprzyk [2016].

6.2 On quasi-polarized threefolds.
One can also apply the technique of baskets and singular Riemann-Roch to study some

quasi-polarized threefolds (X; L). For example, C. Jiang [2016] proved the following
interesting results:

• Let X be a minimal 3-fold with KX � 0 and L a nef and big Weil divisor. Then
jmLj and jKX + mLj give birational maps for all m � 17.



ON PLURICANONICAL MAPS OF PROJECTIVE VARIETIES 683

• Let X be a minimal Gorenstein 3-fold with KX � 0 and L a nef and big Weil
divisor. Then jKX + mLj gives a birational map for all m � 5.

7 A brief review to explicit birational geometry of higher
dimensional varieties

In dimension 4 or higher, it seems very difficult or hopeless to have desired description of
terminal singularities. Therefore it is hard to study the singular Riemann-Roch formula on
minimal Q-factorial terminal n-folds. In other words, many techniques described above
for 3-folds do not work in higher dimensions.

Even though little is known for dimension 4 or higher. There are some interesting
results that we would like to recall here. Interested readers may find possible paths to
move on.

7.1 Projective varieties with very large canonical volumes.
Apart from considering the number rn, it is also interesting to consider another optimal

constant r+n so that, for all nonsingular projective n-foldsX of general type with pg(X) >

0, 'm;X is birational for all m � r+n . By definition r+n � rn for any n > 0. One has
r+1 = r1 = 3 and r+2 = r2 = 5 according to Bombieri. We start with the review of
Bombieri’s result:

Theorem 7.1. (see Bombieri [1973]) Let S be a minimal surface of general type. Then

(1) when pg(S) � 4, rs(S) � r+1 = 3;

(2) when K2
S � 3, rs(S) � r1 = 3.

The 3-dimensional analogy was realized by the second author and Todorov respec-
tively:

Theorem 7.2. Let X be a minimal projective 3-fold of general type. Then

(1) when pg(X) � 4, rs(X) � r+2 = 5 (see M. Chen [2003, Theorem 1.2 (2)]);

(2) when K3
X > 123, rs(X) � r2 = 5 (see G. T. Todorov [2007] and M. Chen [2012]).

Recently the second author and Jiang proved the following analogy in dimensions 4
and 5:

Theorem 7.3. (M. Chen and Z. Jiang [2017a, Theorem 1.4]) There exists a constant
K(4) > 0 such that for any minimal 4-fold X with K3

X > K(4), rs(X) � r3.
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Theorem 7.4. (M. Chen and Z. Jiang [2017a, Theorem 1.5]) There exist two constants
L(4) > 0 and L(5) > 0. For any minimal n-fold X of general type with pg(X) � L(n)

(n = 4; 5), rs(X) � r+n�1.

It is natural to ask whether such analogy holds in any dimension.

7.2 Pluricanonical maps on varieties of higher Albanese dimensions.
We recall the following interesting theorem on varieties of maximal Albanese dimen-

sions:

Theorem 7.5. (see J. A. Chen and Hacon [2002] and Z. Jiang and Lahoz [2013]) Let X

be a smooth projective variety of maximal Albanese dimension and of general type. Then
'm;X is birational for m � 3.

The result in the above theorem is clearly optimal. In fact there is the following gener-
alization:

Theorem 7.6. (see Z. Jiang and Sun [2015]) Let X be a smooth projective variety of
general type and of Albanese fiber dimension one. Then 'm;X is a birational map for
m � 4.

Question 7.7. Under what condition '3;X is birational for varieties of Albanese fiber
dimension one?

Can one find optimal statement for varieties of Albanese fiber dimensions 2 and 3?

7.3 Geography of varieties of general type.
It is interesting to know how those birational invariants, such as the canonical volume,

pg , �(O) and so on, reflect geometric properties of a given variety. Inequalities among
birational invariants play important roles in the classification theory and many other geo-
metrical problems.

In high dimensions, the famous inequality of Yau [1977, 1978] discloses the optimal
relations between c1 and c2 on canonically polarized varieties, namely:

2(n + 1)

n
jcn�2

1 � c2j � jcn
1 j � 0

holds for any n-dimensional canonically polarized variety. Miyaoka [1987] proved that
3c2 � c21 is pseudo-effective for canonically quasi-polarized (i.e. K being nef and big)
varieties. One notices that Greb, Kebekus, Peternell, and Taji [2015] had an interesting
generalization of the inequality of Yau and Miyaoka.
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For Gorenstein minimal 3-folds of general type, the following inequality was proved
by the authors J. A. Chen and M. Chen [2015b] (see M. Chen [2004b] and Catanese, M.
Chen, and Zhang [2006] for historical context):

K3
�

4

3
pg �

10

3
;

which is sharp thanks to examples of Kobayashi [1992]. Applying a key lemma in J. A.
Chen and M. Chen [2015b], Hu [2013] proved the following optimal inequality:

K3
�

4

3
�(!) � 2:

In a recent work of J. A. Chen and Lai [2017], two series of examples with small “slope”
in arbitrary higher dimensions were constructed.
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MIRROR SYMMETRY AND CLUSTER ALGEBRAS

Pൺඎඅ Hൺർ඄ංඇ඀ ൺඇൽ Sൾൺඇ Kൾൾඅ

Abstract
We explain our proof, joint with Mark Gross and Maxim Kontsevich, of conjec-

tures of Fomin–Zelevinsky and Fock–Goncharov on canonical bases of cluster alge-
bras. We interpret a cluster algebra as the ring of global functions on a non-compact
Calabi–Yau variety obtained from a toric variety by a blow up construction. We de-
scribe a canonical basis of a cluster algebra determined by tropical counts of holomor-
phic discs on the mirror variety, using the algebraic approach to the Strominger–Yau–
Zaslow conjecture due to Gross and Siebert.

1 Introduction

We say a complex variety U is log Calabi–Yau if it admits a smooth projective compact-
ification X with normal crossing boundary1 D such that KX + D = 0, that is, there
is a nowhere zero holomorphic top form Ω on U with simple poles along D. The mir-
ror symmetry phenomenon for compact Calabi–Yau manifolds extends to the case of log
Calabi–Yau varieties, see Auroux [2009] and Section 4. We say U has maximal boundary
if D has a 0-stratum (a point cut out by n = dimC X branches of D) and positive if D is
the support of an ample divisor2 (so in particular U is affine) . The tropical set U trop(R)

of U is the cone over the dual complex ofD; we write U trop(Z) for its integral points.

Conjecture 1-1. Mirror symmetry defines an involution on the set of positive log Calabi–
Yau varieties with maximal boundary. For a mirror pair U and V , there is a basis #q ,
q 2 U trop(Z) of H 0(V;OV ) parametrized by the integral points of the tropical set of U ,
which is canonically determined up to multiplication by scalars �q 2 C�, q 2 U trop(Z).
This paper is based on joint work with Mark Gross and Maxim Kontsevich. The algebraic approach to the

Strominger–Yau–Zaslow conjecture is due to Gross and Siebert. The authors were partially supported by NSF
grants DMS-1601065 (P.H.) and DMS-1561632 (S.K.).
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1More generally, (X; D) has Q-factorial divisorial log terminal singularities (Kollár and Mori [1998], Def-

inition 2.37).
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For example, ifU ' (C�)n is an algebraic torus, then themirror V is the dual algebraic
torus, and the canonical basis is given by the characters of V (up to scalars), which may
be characterized as the units ofH 0(V;OV ). The set of characters of V corresponds under
the duality to the set of 1-parameter subgroups of U , which is identified with U trop(Z).
The heuristic justification for Conjecture 1-1 coming from mirror symmetry is explained
in Section 4.

Cluster algebras were introduced by Fomin and Zelevinsky as a tool to understand the
constructions of canonical bases in representation theory by Lusztig Fomin and Zelevin-
sky [2002]. In Section 2 we review a description of cluster varieties in terms of toric and
birational geometry Gross, Hacking, and Keel [2015a]. Roughly speaking, a cluster vari-
ety is a log Calabi–Yau varietyU which carries a non-degenerate holomorphic 2-form and
is obtained from a toric variety X̄ by blowing up codimension 2 centers in the toric bound-
ary and removing its strict transform. The existence of the 2-form greatly constrains the
possible centers and accounts for the combinatorial description of cluster varieties. The
mutations of cluster theory are given by elementary transformations of P 1-bundles linking
different toric models.

For a cluster variety U , Fock and Goncharov defined a dual cluster variety V by an
explicit combinatorial recipe, and stated the analogue of Conjecture 1-1 in this setting
Fock and Goncharov [2006]. In Section 5 we use an algebraic version of the Strominger–
Yau–Zaslow mirror construction Strominger, Yau, and Zaslow [1996] to explain that if
U is positive then V should be its mirror. (If U is not positive, then we expect that the
mirror of U is an open analytic subset of V and the Fock–Goncharov conjecture is false,
cf. Gross, Hacking, and Keel [2015a].) Under a hypothesis on U related to positivity, our
construction proves Conjecture 1-1 in this case. In particular, the hypothesis is satisfied in
the case of the mirror of the base affine space G/N for G = SLm studied by Fomin and
Zelevinsky, so we obtain canonical bases of representations of G by the Borel–Weil–Bott
theorem.

2 Log Calabi–Yau varieties

Definition 2-1. A log Calabi–Yau pair (X;D) is a smooth complex projective variety X
together with a reduced normal crossing divisor D � X such that KX + D = 0. Thus
there is a nowhere zero holomorphic top form Ω on U = X nD (a holomorphic volume
form) such that Ω has a simple pole along each component ofD, uniquely determined up
to multiplication by a nonzero scalar.

We say a variety U is log Calabi–Yau if there exists a log Calabi–Yau pair (X;D) such
that U = X nD.
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Remark 2-2. Note that ifU is a smooth variety and (X;D) is any normal crossing compact-
ification of U , the subspace H 0(Ωp

X (logD)) � H 0(Ωp
U ) for each p � 0 is independent

of (X;D) Deligne [1971]. In particular, if U is a log Calabi–Yau variety then there is
a holomorphic volume form Ω on U such that Ω has at worst a simple pole along each
boundary divisor of any normal crossing compactification (X;D), uniquely determined
up to a scalar.

Definition 2-3. We say a log Calabi–Yau pair (X;D) hasmaximal boundary if the bound-
ary D has a 0-stratum, that is, a point p 2 D � Y cut out by n = dimC X analytic
branches of the divisorD, so that we have a local analytic isomorphism

(p 2 D � X) ' (0 2 (z1 � � � zn = 0) � Cn):

We say a log Calabi–Yau variety U has maximal boundary if some (equivalently, any de
Fernex, Kollár, and Xu [2012], Proposition 11) log Calabi–Yau compactification (X;D)

of U has maximal boundary.

Definition 2-4. We say a log Calabi–Yau variety U is positive if there exists a log Calabi–
Yau compactification (X;D =

P
Di ) and positive integers ai such that A =

P
aiDi is

ample. In particular, U = X nD is affine.

Example 2-5. The algebraic torus (C�)n is a log Calabi-Yau variety, with holomorphic
volume formΩ = dz1

z1
^� � �^

dzn

zn
. Any toric compactification (X;D) satisfiesKX +D =

0.

Example 2-6 (Non-toric blow up). Let (X;D) be a log Calabi–Yau pair and Z � X

a smooth subvariety of codimension 2 which is contained in a unique component of D
and meets the other components transversely. Let � : X̃ ! X be the blow up of Z and
D̃ � X̃ the strict transform ofD. Then the pair (X̃ ; D̃) is log Calabi–Yau.

Definition 2-7. A toric model of a log Calabi–Yau variety U is a log Calabi–Yau com-
pactification (X;D) ofU together with a birational morphism f : (X;D)! (X̄ ; D̄) such
that (X̄ ; D̄) is a toric variety together with its toric boundary and f is a composition of
non-toric blow ups as in Example 2-6.

Remark 2-8. In the description of a log Calabi–Yau variety U in terms of a toric model
(X;D) ! (X̄ ; D̄), one can replace the projective toric variety X̄ with the toric open
subset X̄ 0 � X̄ given by the union of the big torus T � X̄ and the open T -orbit in each
boundary divisor containing the center of one of the blow ups. Thus the fan Σ0 of X̄ 0 is
the subset of the fan of X̄ consisting of f0g and the rays corresponding to these boundary
divisors. Cf. Gross, Hacking, and Keel [2015a], §3.2.
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Example 2-9. Let X = P 2 and D = Q + L the union of a smooth conic Q and a
line L meeting transversely. We describe a toric model of the log Calabi–Yau surface
U = X nD. First, choose a point p 2 Q \ L and blow up at p. Second, blow up at the
intersection point of the exceptional divisor and the strict transform of Q. Let X̃ ! X

be the composition of the two blow ups and D̃ = ��1D. The strict transform in X̃ of
the tangent line to Q at p is a (�1)-curve E meeting D̃ transversely at a point of the
exceptional divisor of the second blow up. Contracting E yields a toric pair (X̄ ; D̄) with
X̄ ' F2 := P (OP1 ˚ OP1(�2)).

Proposition 2-10. (Gross, Hacking, and Keel [2015b], Proposition 1.3) Let U be a log
Calabi-Yau surface with maximal boundary. Then U has a toric model.

The proof is an exercise in the birational geometry of surfaces.

Example 2-11. We describe an example of a log Calabi–Yau 3-fold with maximal bound-
ary which is irrational. In particular, it does not have a toric model.

Smooth quartic 3-folds are irrational Iskovskih and Manin [1971]. Let X � P 4 be a
smooth quartic 3-fold with hyperplane section

D = (X4
1 +X4

2 +X4
3 +X1X2X3X4 = 0) � P 3:

The surface D has a unique singular point p = (0 : 0 : 0 : 1). The minimal resolution
ofD is obtained by blowing up p and has exceptional locus a triangle of (�3)-curves (in
particular, p 2 D is a cusp singularity).

We describe a sequence of blow ups � : X̃ ! X such that the inverse image ofD is a
normal crossing divisor. First blow up the point p. The inverse imageD1 ofD consists of
two components, the exceptional divisorE ' P 2 and the strict transformD0 ofD (which
is its minimal resolution). The intersection E \D0 is the exceptional locus of D0 ! D,
a triangle of smooth rational curves. Blow up the nodes of the triangle. For each of the
exceptional divisors Ei ' P 2, the strict transforms of E and D meet Ei in a common
line li � Ei . Finally blow up each line li to obtain X̃ .

Define the divisor D̃ � Ỹ to be the union of the strict transforms of D, E, and the
exceptional divisors over the lines li . Then KX̃ + D̃ = 0. The variety Ũ = X̃ n D̃ is an
irrational log Calabi–Yau 3-fold with maximal boundary.

Remark 2-12. On the other hand, if (X;D) is a log Calabi-Yau pair with maximal bound-
ary then X is rationally connected Kollár and Xu [2016], (18).

3 Cluster varieties

3.1 Birational geometric description of cluster varieties.
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Definition 3-1. We say a log Calabi–Yau variety U is a cluster variety if

1. There is a non-degenerate holomorphic 2-form � on U such that for some (equiv-
alently, any Deligne [1971]) normal crossing compactification (X;D) we have
� 2 H 0(Ω2

X (logD)).

2. U has a toric model.

Remark 3-2. It is customary in the theory of cluster algebras to allow the 2-form to be
degenerate. However, the non-degenerate case is the essential one (cf. Section 5.4).

Example 3-3. Every log Calabi–Yau surface with maximal boundary is a cluster variety
by Proposition 2-10.

Suppose U is a cluster variety with 2-form � and toric model f : (X;D) ! (X̄ ; D̄).
Then � = f ��̄ for some �̄ 2 H 0(Ω2

X̄
(log D̄)) byHartogs’ theorem. The sheafΩX̄ (logD)

is freely generated by dz1

z1
, …, dzn

zn
, where z1; : : : ; zn is a basis of characters for the al-

gebraic torus T = X̄ n D ' (C�)n
z1;:::;zn

. See Fulton [1993], Proposition, p. 87. Thus
�̄ = 1

2

P
aij

dzi

zi
^

dzj

zj
for some non-degenerate skewmatrix (aij ). The following lemma

is left as an exercise.

Lemma 3-4. Let (X;D) be a normal crossing pair, Z � X a smooth codimension 2

subvariety contained in a unique component F of D and meeting the remaining compo-
nents transversely, � : X̃ ! X the blow up with center Z, and D̃ the strict transform
of D. Let � 2 H 0(Ω2

X (logD)) be a log 2-form on X . Let DF = (D � F )jF and let
ResF : Ω2

X (logD) ! ΩF (logDF ) be the Poincaré residue map. Then � lifts to a log
2-form on (X̃ ; D̃) if and only if (ResF �)jZ = 0.

Now let Z � F � D̄ be the center of one of the blow ups for the toric model f . We
may choose coordinates on T so that F n D̄F = (z1 = 0) � A1

z1
� (C�)n�1

z2;:::;zn
; then

ResF (�̄) =
P

j >1 a1j
dzj

zj
. Using the lemma, we deduce that

1. ResF (�̄) is proportional to an integral log 1-form, that is

ResF (�̄) = � �
X
j >1

bj

dzj

zj

for some � 2 C� and pairwise coprime bj 2 Z. Equivalently, writing � : T ! C�

for the character
Q
z

bj

j , ResF (�̄) = � d�
�
.

2. Z = F \ (� = �) for some � 2 C�.
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Remark 3-5. Note that, after a change of coordinates, we may assume � = z2. Thus, if
f is a single blow up, then U = X nD decomposes as a product U 0 � (C�)n�2

z3;:::;zn
. In

general U does not globally decompose as a product.

Conversely, any sequence of non-toric blow ups of (X̄ ; D̄; �̄)with the above properties
yields a cluster variety.

3.2 Atlas of tori and elementary transformations. The usual description of a cluster
variety U is as follows: The variety U is the union of a countable collection of open
subsets T˛ (indexed by seeds ˛) which are copies of a fixed algebraic torus T ' (C�)n.
The glueing maps between the open subsets are compositions of mutations, given (for
some choice of coordinates z1; : : : ; zn on T ) by the formula

� : T Ü T 0; (z1; z2; : : : ; zn) 7! (z1(1 + cz2)
�1; z2; z3; : : : ; zn)

for some c 2 C�.
There is the following geometric interpretation. First, note that a toric model

f : (X;D)! (X̄ ; D̄) determines an open inclusion of the torus T = X̄nD̄ inU = XnD

via f �1. This is the origin of the torus charts of a cluster variety: seeds correspond
to toric models. Second, mutations correspond to birational transformations between
toric models given by elementary transformations of P 1-bundles. In the above notation,
let (X̄ ; D̄) be the toric partial compactification of T given by P 1

z1
� (C�)n�1

z2;:::;zn
. Let

Z = (z1 = 0) \ (1 + cz2 = 0), let � : X ! X̄ be the blow up of Z, and D the strict
transform of D̄. Write H = (1 + cz2 = 0) � X̄ and let H 0 � X be its strict transform.
Then H 0 can be blown down, yielding a morphism � 0 : (X;D) ! (X̄ 0; D̄0) to a second
toric pair such that X̄ 0 is also isomorphic to P 1

z1
� (C�)n�1

z2;:::;zn
and � 0 is the blow up of

Z0 = (z1 = 1) \ (1 + cz2 = 0). The birational map (X̄ ; D̄) Ü (X̄ 0; D̄0) is an ele-
mentary transformation of P 1-bundles over (C�)n�1. Writing U = X nD, T = X̄ n D̄,
and T 0 = X̄ 0 n D̄0, we have T [ T 0 = U nW where W ' Z ' Z0 is the intersection of
the exceptional divisors of � and � 0. The mutation � : T Ü T 0 is the restriction of the
birational map X̄ Ü X̄ 0.

Remark 3-6. In general the union of tori in the original definition of a cluster variety
is an open subset of a cluster variety in the sense of Definition 3-1 with complement
of codimension at least 2 provided that the parameters � 2 C� are very general Gross,
Hacking, and Keel [2015a], Theorem 3.9. For simplicity we will always assume that this
is the case.

3.3 Combinatorial data for toric model of a cluster variety. We can give an intrinsic
description of the data for a toric model of a cluster variety as follows. (We use the notation
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of Fulton [1993] for toric varieties.) Let T = X̄ n D̄ be the big torus acting on X̄ . Let
N = H1(T;Z) = Hom(C�; T ) be the lattice of 1-parameter subgroups of T andM =

N � = Hom(T;C�) the dual lattice of characters of T . Then T = N ˝Z C�. We
sometimes use the multiplicative notation zm for characters.

Let U be a cluster variety and f : (X;D) ! (X̄ ; D̄) be a toric model for U . With
notation as in Section 3.1, letZ = F \ (� = �) be the center of one of the blow ups. The
toric boundary divisor F � D̄ corresponds to a primitive vector v 2 N (the generator
of the corresponding ray of the fan of X̄ ). The character � corresponds to a primitive
element m 2 v? � M (primitive because Z is assumed irreducible). The 2-form �̄

lies in H 0(Ω2
X̄
(log D̄)) = ^2MC . The condition ResF (�̄) = � � d�

�
is equivalent to

�̄(v; �) = � �m. The associated mutation is given by

(3-7) � = �(m;v) : T Ü T; ��(zm0

) = zm0

(1 + czm)�hm0;vi

where c = �1/�.

3.4 The tropicalization of a log Calabi–Yau variety.

Definition 3-8. LetU be a log Calabi–Yau variety. We define the tropicalizationU trop(R)

of U as follows. Let (X;D) be a log Calabi–Yau compactification of U . We may assume
(blowing up boundary strata if necessary) thatD is a simple normal crossing divisor, that
is, each componentDi ofD is smooth and each intersectionDi1 \ � � � \Dik is either irre-
ducible or empty. The dual complex ofD is the simplicial complex with vertex set indexed
by components ofD, such that a set of vertices spans a simplex if and only if the intersec-
tion of the corresponding divisors is non-empty. Let U trop(R) be the cone over the dual
complex of D, and U trop(Z) its integral points. One can show using Abramovich, Karu,
Matsuki, and Włodarczyk [2002] that U trop(R) is independent of the choice of (X;D) up
to ZPL-homeomorphism Kontsevich and Soibelman [2006, Sec. 6.6], de Fernex, Kollár,
and Xu [2012], Proposition 11.

The set U trop(Z) has the following intrinsic description: Let Ω be a holomorphic vol-
ume form on U as in Remark 2-2. Then U trop(Z) n f0g is identified with the set of pairs
(�; k) consisting of a divisorial valuation � : C(U )� ! Z such that �(Ω) < 0 and a posi-
tive integer k. Thus roughly speaking U trop(Z) n f0g is the set of all pairs (F; k) where F
is a boundary divisor in some log Calabi-Yau compactification (X;D) of U and k 2 N.

Example 3-9. If U = T = N ˝C� is an algebraic torus then we have an identification
U trop(Z) = N : Given 0 ¤ v 2 N write v = kv0 where k 2 N and v0 2 N is primitive.
Then v0 corresponds to a toric boundary divisor associated to the ray � = R�0 � v

0 in NR,
with associated valuation � : C(T )� ! Z determined by �(zm) = hm; v0i. These are
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the only divisors along which Ω has a pole, by Kollár and Mori [1998], Lemmas 2.29 and
2.45.

If (X;D) is a toric compactification of T then the cone over the dual complex ofD is
identified with the fan Σ of X in U trop(R) = NR.

If f is a nonzero rational function on a log Calabi–Yau variety U , then we have a ZPL
map f trop : U trop(R)! R defined on primitive integral points � = (�; 1) by f trop(�) =

�(f ). If f : U Ü V is a birational map between log Calabi–Yau varieties, then there is
a canonical ZPL identification f trop : U trop(R)!V trop(R) defined by f trop(�) = � ı f �.

Example 3-10. For the mutation (3-7), we have

�trop : NR ! NR; �trop(w) =

(
w if hm;wi � 0

w � hm;wiv if hm;wi < 0:

4 Mirror symmetry

Mirror symmetry is a phenomenon arising in theoretical physicswhich predicts that Calabi–
Yau varieties (together with a choice of Kähler form) come in mirror pairs U and V such
that the symplectic geometry of U is equivalent to the complex geometry of V , and vice
versa.

4.1 The Strominger–Yau–Zaslow conjecture. Recall that a submanifold L of a sym-
plectic manifold (U;!) is Lagrangian if dimRL = 1

2
dimR U and !jL = 0. Let U be

a log Calabi–Yau manifold with holomorphic volume form Ω and Kähler form !. We
say a Lagrangian submanifold L of (U;!) is special Lagrangian if ImΩjL = 0. The
Strominger–Yau–Zaslow conjecture asserts that mirror Calabi-Yau varieties admit dual
special Lagrangian torus fibrations Strominger, Yau, and Zaslow [1996]. More precisely,
there exist continuous maps f : U ! B and g : V ! B with common base B and a
dense open set Bo � B such that

1. The restrictions f o : U o ! Bo and go : V o ! Bo are C1 real n-torus fibrations
such that the fibers are special Lagrangian, and

2. The associated local systems R1f o
� Z and R1go

�Z on Bo are dual.

Example 4-1. Let U = (C�)n
z1;:::;zn

,

Ω =

�
1

2�i

�n
dz1

z1
^ � � � ^

dzn

zn

and ! =
1

2�

i

2

nX
j=1

dzj

zj

^
d z̄j

z̄j
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Then the map f : U ! Rn, f (z1; : : : ; zn) = (log jz1j; : : : ; log jznj) is a special La-
grangian torus fibration. (Topologically f is the quotient by the compact torus (S1)n �

(C�)n.)

Example 4-2. Let U = T = N ˝ C� ' (C�)n and let (X;D) be a smooth projective
toric compactification. Let A be an ample line bundle on X . Let K � T be the compact
torus. Then, using the description ofX as a GIT quotient of affine space, the Kempf–Ness
theorem (Mumford, Fogarty, and Kirwan [1994], Theorem 8.3), and symplectic reduction,
one can construct a K-invariant Kähler form ! on X in class c1(A) 2 H 2(X;R). If � is
the associated moment map, then �mapsX onto the lattice polytope P �MR associated
to (X;A), and is topologically the quotient by K. The restriction of � to T is a special
Lagrangian torus fibration for the Kähler form !jU and holomorphic volume form Ω as
in Example 4-1.

Construction 4-3. If f : (U;!) ! B is a Lagrangian torus fibration, then the locus
Bo � B of smooth fibers inherits an integral affine structure (an atlas of charts with
transition functions of the form x 7! Ax+ b for some A 2 GL(n;Z) and b 2 Rn). This
may be constructed as follows. Fix b0 2 Bo and let W � Bo be a small contractible
neighborhood of b0. For 
 2 H1(f

�1(b0);Z) define y
 : W ! R by y
 (b) =
R
Γ !

where Γ � X is a cylinder fibering over a path from b0 to b in W swept out by a loop
in the class 
 . Applying this construction to a basis of H1(f

�1(b0);Z) ' Zn gives a
system of integral affine coordinates y1; : : : ; yn on W � Bo. In Examples 4-1 and 4-2
this integral affine structure is the restriction of the standard integral affine structure on
Rn.

Example 4-4. Let U , (X;D), etc. be as in Example 4-2 and consider a non-toric blow up
(X̃ ; D̃) of (X;D) as in Example 2-6. Then we can modify the moment map � : X ! P

to obtain a map �̃ : X̃ ! P̃ such that the restriction f : Ũ ! B to the interiorB of P̃ is a
Lagrangian torus fibration with singular fibers Abouzaid, Auroux, and Katzarkov [2016].

Assume first that n = dimC X = 2. Thus we have a smooth point p ofD, � : X̃ ! X

is the blow up of p, and D̃ � X̃ is the strict transform ofD. Let S1 � K be the stabilizer
of the point p 2 X , so that S1 acts on X̃ . Let e � P be the edge of P containing
�(p), and choose integral affine coordinates y1; y2 on MR ' R2 such that p = (0; 0),
e � (y1 = 0), and P � (y1 � 0). Let � > 0 be sufficiently small so that the triangle
T with vertices (0;��/2); (0;+�/2); (�; 0) is contained in P and its intersection with the
boundary of P is contained in the interior of e. Let P̃ be the topological space obtained
by collapsing T � P via the map y1 : T ! [0; �]. Then P̃ is the base of an S1-invariant
map �̃ : (X̃ ; !̃) ! P̃ such that the restriction to the interior B of P̃ is a Lagrangian
torus fibration with a unique singular fiber (a pinched torus) over the image q 2 B of the
point (�; 0) 2 P . The fibration has monodromy around q given by the Dehn twist in the
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vanishing cycle (the class of the S1-orbits). The exceptional (�1)-curve E � X̃ fibers
over the interval I � P̃ given by the image of T � P . The class of the symplectic form
inH 2(X̃ ;R) is [!̃] = ��[!]� �c1(E) = c1(�

�A� �E). The symplectic form !̃ and the
fibration �̃ agree with ! and � over the complement of a tubular neighborhood of I � P̃ .

A similar construction applies in dimension n > 2 Abouzaid, Auroux, and Katzarkov
[2016], §4. (Here we work over the open setX 0 � X given by the complement of the codi-
mension two strata, cf. Remark 2-8.) Applying this construction repeatedly, we can con-
struct a Lagrangian torus fibration on any log Calabi-Yau variety with a toric model. (Note
that the fibration is not special Lagrangian (but cf. Abouzaid, Auroux, and Katzarkov
[ibid.], Remark 4.6).)

4.2 Homological mirror symmetry. The homological mirror symmetry conjecture of
Kontsevich [1995] asserts the following mathematical formulation of mirror symmetry:
For mirror compact Calabi–Yau varieties U and V , the derived Fukaya category F (U )

of U is equivalent to the derived category of coherent sheaves D(V ) on V . Roughly
speaking, the objects of the Fukaya category ofU are Lagrangian submanifoldsL together
with a unitary local system, and themorphisms are given by Lagrangian Floer cohomology.
See Auroux [2014] for an introduction.

If U is a log Calabi–Yau variety then, at least if U is positive (Definition 2-4), the
HMS conjecture is expected to hold with the following adjustments. First, we must allow
non-compact Lagrangian submanifolds with controlled behaviour at infinity. Second, the
definition of the morphisms in the Fukaya category is modified at infinity using a Hamilto-
nian vector field associated to a functionH : U ! R such thatH !1 sufficiently fast
at infinity. The resulting category F (U ) is called the wrapped Fukaya category Auroux
[ibid.], §4.

The HMS and SYZ conjectures are related as follows. SupposeU and V are mirror log
Calabi–Yau varieties with dual Lagrangian torus fibrations f : U ! B and g : V ! B .
Let L = f �1(b) be a smooth fiber of f . The rank 1 unitary local systems r on L are
classified by their holonomy hol(r) 2 Hom(�1(L); U (1)) = L� (the dual torus). It is
expected that the pairs [(L;r)] 2 F (U ) correspond under the equivalence F (U ) ' D(V )

to the skyscraper sheaves Op 2 D(V ) for p 2 g�1(b) ' L�. (More generally, the
equivalence should be given by a real version of the relative Fourier–Mukai transform for
the dual torus fibrations, cf. Kontsevich and Soibelman [2001], §9, Polishchuk [2003],
§6.)

It follows that, to a first approximation, one can regard the mirror V ofU as the moduli
space of pairs [(L;r)] where L is a fiber of f and r is a U (1) local system. We define
local holomorphic coordinates on V as follows (a complexified version of the integral
affine coordinates y
 of Construction 4-3). For L0 = f �1(b0) a smooth fiber, 
 2
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H1(L0;Z), and (L = f �1(b);r) a nearby fiber together with a U (1) local system, let Γ
be a cylinder over a short path from b0 to b with initial fiber Γb0

in class 
 and final fiber
Γb . We define

z
 ([(L;r)]) = exp (�2�y
 (b)) � holr(Γb) = exp
�
�2�

Z
Γ

!

�
� holr(Γb):

Suppose now thatU is a log Calabi–Yau variety, and (X;D) is a log Calabi–Yau compacti-
fication such that! extends to a 2-form onX . The homology groupsH2(X;L = f �1(b))

form a local system over Bo; let T : H2(X;L0) ! H2(X;L) be the local trivialization
given by parallel transport. Then, for ˇ 2 H2(X;L0), we define

zˇ ([(L;r)]) = exp
�
�2�

Z
T (ˇ)

!

�
� holr(@T (ˇ)):

Then zˇ = cz@ˇ where c = exp(�2�
R

ˇ
!) 2 R>0.

We can attempt to define global holomorphic functions #q on V for each q = (F; k) 2

U trop(Z)nf0g as follows Cho and Oh [2006], Auroux [2009]. Let (X;D) be a log Calabi–
Yau compactification of U such that F is a component of the boundaryD and ! extends
toX . LetL be a smooth fiber of f . For ˇ 2 H2(X;L;Z), letNˇ be the (virtual) count of
holomorphic discs h : (D; @D)! (X;L) such that hmeets F with contact order k and is
disjoint from the remaining boundary divisors, and h(@D) passes through a general point
p 2 L. We assume that Nˇ is well defined (independent of the choice of p 2 L). We
define

#(F;k)([(L;r)]) =
X

ˇ2H2(X;L;Z)

Nˇz
ˇ ([(L;r)]):

(Note that the sum may not converge in general.)

Example 4-5. Let U = T = N ˝C� ' (C�)n. Let (X̄ ; D̄) be a toric compactification
and F � D̄ a boundary divisor corresponding to a primitive vector v 2 N . Let g : C� !

T be the associated 1-parameter subgroup of T . Then g extends to amorphism ḡ : C ! X̄

such that ḡ meets F transversely at a single point and is disjoint from the other boundary
divisors. Let h be the restriction of ḡ to the closed unit disc D � C. Let K � T � X̄

be the compact torus. Then h : (D; @D) ! (X̄ ;K) is a holomorphic disc ending on the
fiber K of the moment map and passing through the point e 2 K. It is the unique such
disc and counts with multiplicity 1. The same applies to any choice of fiber and marked
point (because they are permuted simply transitively by T ). Similarly, there is a unique
disc meeting F with contact order k given by the multiple cover h̃(z) = h(zk). See Cho
and Oh [2006, Theorems 5.3 and 6.1].
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The functions #q as defined above are discontinuous in general, because the counts of
holomorphic discs Nˇ ending on an SYZ fiber L = f �1(b) vary discontinuously with
b. This is due to the existence of SYZ fibers which bound holomorphic discs in U . Such
fibers lie over (thickened) real codimension 1walls in the base B . In more detail, suppose
fLtgt2[0;1] are the SYZ fibers over a path crossing a wall in the base. If Lt0 bounds a
holomorphic disc in U , then there may exist a family of holomorphic discs ht inX ending
on Lt for t < t0, such that the limit of ht as t ! t0 is a stable disc given by the union
of two discs ending on Lt0 , one of which is contained in U , and such that this stable disc
does not deform to a holomorphic disc in X ending on Lt for t > t0.

Example 4-6. (Auroux [2009], Example 3.1.2.) Let (X̄ ; D̄) = (C2
z1;z2

; (z1z2 = 0)) with
Kähler form 1

2�
i
2
(dz1^d z̄1+dz2^d z̄2). Let � : X ! X̄ be the blow up of p = (1; 0) 2

X̄ with exceptional curve E, and D � X the strict transform of D̄. As in Example 4-4,
we have a Kähler form ! on X and a map f̄ : X ! B̄ which restricts to a Lagrangian
torus fibration f : U ! B over the interior B of B̄ . Moreover, over the complement of a
small neighborhood N of f̄ (E) the map f̄ agrees with the moment map � : X̄ ! R2

�0,
(z1; z2) 7!

1
2
(jz1j

2; jz2j
2). The map f̄ : X ! B̄ ' R2

�0 is defined by
1
2
j��z1j

2 and �S1 ,
the moment map for the S1 action on (X;!), normalized so that �S1 = 0 on the strict
transform of the z1-axis. (Then on the singular fiber �S1 =

R
E
! = � > 0.)

There is a real codimension 1 wall H in the base B defined by j��z1j = 1. Note that
(��z1 = 1) � U is the union of two copies of A1 meeting in a node: E nE \D and the
strict transform of (z1 = 1). (The node is the singular point of the pinched torus fiber of
f .) These curves are S1-equivariant and map to the wall in the base with fibers the S1-
orbits (which collapse to the singular point at the pinched torus fiber). Thus each smooth
fiber over the wall bounds a holomorphic disc in U contained in one of the two curves.

Now let D1 = (��z1 = 0) � X and consider the associated function #D1
defined by

counting holomorphic discs in X meeting D transversely at a point of D1, ending on an
SYZ fiberL, and passing through amarked pointp 2 L. We assumeL lies over the region
R = B n N where the fibration f agrees with the moment map �. Note that f �1R �

U n E ' Ū . Let �(p) = (�1; �2) 2 Ū = (C�)2z1;z2
, so L = (j��z1j = j�1j; j�

�z2j =

j�2j). If j�1j < 1 then there is a unique disc given by the strict transform of the disc
D ! X̄ = C2, z 7! (�1z; �2). If j�1j > 1 there are two discs, one described as before
and the second given by the strict transform of the disc z 7! (�1z; �2(

�1z�1
�̄1�z

)/( �1�1
�̄1�1

)). See
Cho and Oh [2006, Theorem 5.3]. Writing ˇ1; ˇ0

1 2 H2(X;L) for the classes of the two
discs, observe that ˇ0

1 = ˇ1 + ˛ 2 H2(X;L) where ˛ is the parallel transport of the class
of the disc associated to the portion of the wall meeting R. (More precisely, if fLtgt2[0;1]

are the fibers over a path 
 in R � B crossing the wall at time t0 from j��z1j > 1 to
j��z1j < 1, then the limit of the holomorphic disc in class ˇ0

1 ending on Lt as t ! t0
from below is the union of the holomorphic discs ending on Lt0 in classes ˇ1 and ˛.) We
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thus have

#D1
=

(
zˇ1 if j��z1j < 1

zˇ1 + zˇ 0
1 = zˇ1 � (1 + z˛) if j��z1j > 1:

On the other hand, let D2 be the strict transform of (z2 = 0). Then, with notation as
above, there is a unique disc meeting D transversely at a point of D2, ending on L, and
passing through p 2 L, given by the inverse image of the disc z 7! (�1; �2z) in X̄ = C2.
(For �1 = 1, this is the stable disc given by the union of the strict transform of disc in
X̄ (which is the disc associated to the wall) and the exceptional curve E.) Thus, writing
ˇ2 2 H2(X;L) for the class of this disc, we have #D2

= zˇ2 .

We have defined (using the local holomorphic coordinates z
 , 
 2 H1(L;Z)) a com-
plex structure on the total space of the dual fibration V o ! Bo of the smooth locus of the
SYZ fibration f : U ! B . However it is expected that this does not extend to a complex
structure on a fibration V ! B . Roughly speaking, if V ! B is a topological exten-
sion of the fibration V o ! Bo, and W � V is a neighborhood of a point p 2 V n V o,
there are too few holomorphic functions defined on W \ V o for the complex structure
to extend. For instance, some of the z
 are not well defined due to the monodromy ac-
tion onH1(L;Z). The naive definition of the mirror V o must be corrected to account for
discs ending on SYZ fibers. These glueing corrections are such that the #q define global
holomorphic functions on V o, and can be used to define an extension V o � V .

For instance, in Example 4-6, the corrected mirror V o is an analytic open subset of
V̂ o = (C�)2w1;w2

[(C�)2
w0

1;w0
2
, where the two torus charts correspond to the two connected

components j��z1j < 1 and j��z1j > 1 of the complement of the wall H in the base B ,
the glueing is given by

(w1; w2) 7! (w1(1 + cw2)
�1; w2);

and w1 = w0
1 = zˇ1 and w2 = w0

2 = zˇ2 on the naive mirror (and we have trivialized the
local system H2(X;L) over the the region R � B as above). The parameter c is given
by c = z�E , zE := exp(�2�

R
E
!), so that cw2 = z�Ezˇ2 = z˛ (since ˇ2 = ˛ + [E]

inH2(X;L)). Then #D1
and #D2

are the global functions on V o which restrict to w1 and
w2 in the first chart. In fact, defining V̂ = SpecH 0(OV̂ o), we have an isomorphism

V̂�!(uv = 1 + cw) � A2
u;v �C�

w

given by u 7! w1, v 7! w0
1

�1, w 7! w2, and V̂ o = V̂ n fqg where q 7! (0; 0;�1/c) (cf.
Section 3.2). The mirror V � V̂ equals V o [ fqg, an analytic open subset of the affine
variety V̂ .
Remark 4-7. The point q 2 V should correspond under HMS to the pinched torus fiber of
the SYZ fibration f : U ! B regarded as an immersed Lagrangian S2 (with the trivial
U (1) local system). See Seidel [2013, Lecture 11].
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In general, thewall crossing transformations should take the following form, cf. Abouzaid,
Auroux, and Katzarkov [2016], p. 207. Let fLtgt2[0;1] be the fibers of f : U ! B over a
path crossing a wall in the baseB . Assume for simplicity that all the holomorphic discs in
U bounded by theLt have relative homology class some fixed ˛ 2 H2(U;L). The bound-
aries of these discs sweep out a cycle c 2 Hn�1(L). Then the wall crossing transformation
in the local coordinates z
 , 
 2 H1(L), is given by

z

7! z


� f (z˛)c�


where f (z˛) = 1 + z˛ + � � � 2 Q[[z˛]] is a power series encoding virtual counts of
multiple covers of the discs.

4.3 Symplectic cohomology. Suppose that U is a positive log Calabi–Yau variety with
maximal boundary. Suppose V is HMS mirror to U , so that we have an equivalence
F (U ) ' D(V ) between the wrapped Fukaya category of U and the derived category
of coherent sheaves on V . Symplectic cohomology SH� is a version of Hamiltonian
Floer cohomology for noncompact symplectic manifolds Seidel [2008]. There is a closed-
open string map SH�(U ) ! HH�(F (U )) which is conjectured to be an isomorphism,
cf. Seidel [2002], §4. (Recently, Ganatra–Pardon–Shende and Chantraine–Dimitroglou-
Rizell–Ghiggini–Golovko have announced results which, combined with Ganatra [2012],
would establish this result.) Recall that

HHn(D(V )) ' ˚p+q=nH
p(^qTV )

(the Hochschild–Kostant–Rosenberg isomorphism), in particular,

HH 0(D(V )) ' H 0(OV )

Thus the above conjecture and HMS would yield an isomorphism of C-algebras
SH 0(U ) ' H 0(OV ). In particular, assuming the mirror V is affine, it can be constructed
as V = SpecSH 0(U ).

Conjecturally, SH 0(U ) has a natural basis parametrized byU trop(Z). (This was proved
by Pascaleff in dimension 2Pascaleff [2013]; there is ongoingwork ofGanatra–Pomerleano
on the general case.) We expect that this basis corresponds to the global functions #q ,
q 2 U trop(Z) under the above isomorphism SH 0(U ) ' H 0(OV ) (where we define
#0 = 1). In particular, we expect that the #q , q 2 U trop(Z) form a basis ofH 0(OV ).

4.4 The Fock–Goncharov mirror of a cluster variety. Fock and Goncharov [2006]
defined a candidate for the mirror V of a cluster variety U by a simple combinatorial
recipe which we reproduce in our notation here. We will give a partial justification for the
Fock–Goncharov construction in Section 5.
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Recall that U = X n D is described (up to codimension two) as a union of copies
T˛ , ˛ 2 A of the algebraic torus T = N ˝ C� ' (C�)n with transition maps given by
compositions of mutations

� = �(m;v) : T˛ Ü Tˇ ; ��(zm0

) = zm0

� (1 + czm)�hm0;vi

for some c 2 C�. In addition we have a non-degenerate log 2-form � on U such that
� jT˛

= �̄ 2 ^2MC for each ˛. We assume that the sign of m above has been chosen
according to the convention of §5.3.

The Fock–Goncharov mirror (V; �_) is described as follows. Let T _ = N � ˝C� be
the dual algebraic torus to T = N ˝ C�. We write N_ = H1(T

_;Z) = N � = M and
M_ = (N_)� = N . Then (up to codimension two) V is a union of copies T _

˛ , ˛ 2 A of
T _, with transition maps given by

�_ = �(v;�m) : T
_
˛ Ü T _

ˇ �_�
(zv0

) = zv0

� (1 + c_zv)hv0;mi

for some c_ 2 C�. Let

� : NC !MC; �(v) = �̄(v; �)

be the isomorphism determined by the non-degenerate form �̄ on NC and �̄_ the form on
N_

C =MC given by

�̄_(m1; m2) = �̄(��1(m1); �
�1(m2)):

Then the log 2-form �_ on V is given by �_jT _
˛

= �̄_ 2 ^2M_
C .

Equivalently, given the data N , �̄ 2 ^2MC , mi 2 M , vi 2 N , �i 2 C�, i = 1; : : : ; r

of Section 3.3 determining the cluster variety U = X n D in terms of a toric model
� : (X;D) ! (X̄ ; D̄), the Fock–Goncharov mirror is associated to the data N_ = M ,
�̄_, vi 2M

_, �mi 2 N
_, and some �_

i 2 C�, i = 1; : : : ; r .
Remark 4-8. Recall that, for mirror Calabi–Yau varieties U and V , symplectic deforma-
tions of U correspond to complex deformations of V , and vice versa. In particular, if we
regard U as a symplectic manifold (forgetting the complex structure) and V as a complex
manifold (forgetting the Kähler form), then the parameters �_

i for V are determined by
the class of the symplectic form on U (and the parameters �i for U are irrelevant).
Remark 4-9. The Fock–Goncharovmirror construction is an involution. The isomorphism
betweenU and themirror of themirror ofU is given in the torus charts by themap T ! T ,
t 7! t�1.
Remark 4-10. We expect that the mirror of a log Calabi–Yau variety U with maximal
boundary is of the same type if and only if U is positive. If U is a positive cluster variety,
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we expect that the Fock–Goncharov mirror is the mirror in the sense of SYZ and HMS. For
a general cluster variety U , we expect that the true mirror is an analytic open subset of the
Fock–Goncharov mirror. Cf. the discussion of completion of the mirror via symplectic
inflation in the positive case in Auroux [2009, Sec. 2.2].

Example 4-11. Let X̄ be the smooth projective toric surface given by the complete fan
in R2 with rays generated by (1; 0), (0; 1), (�1; 2), (�1; 1), (�1; 0), (�1;�1), (0;�1),
(1;�1), (2;�1). The toric boundary D̄ � X̄ is a cycle of smooth rational curves with self-
intersection numbers �2;�2;�1;�2;�2;�1;�2;�2;�1. Let � : X ! X̄ be the blow
up of three points in the smooth locus of D̄, one point on each of the (�1)-curves, andD
the strict transform of D̄. Then U = X nD is a cluster variety. The divisor D =

P
Di

is a cycle of nine (�2)-curves; in particular the intersection matrix (Di �Dj ) is negative
semi-definite, and U is not positive. It is expected (cf. Auroux, Katzarkov, and Orlov
[2006], Auroux [2009], §5) that the mirror of U is the log Calabi–Yau surface V = Y nE

where Y = P 2 and E � Y is a smooth elliptic curve. In particular, there does not exist
an open inclusion of an algebraic torus (C�)2 in V , so V is not a cluster variety.

Remark 4-12. In dimension 2, we may assume (multiplying � by a non-zero scalar) that
Z � �̄ = ^2M . Let  : N ! M be the isomorphism given by  (v) = ��̄(v; �). Then
 (vi ) = �mi and �(vi ) = � (vi ) = mi . So if we take �_

i = �i then the isomorphism
 ˝C� : T!T _ extends to an isomorphismU ! V . That is, in dimension two the Fock-
Goncharov mirror V of U is deformation equivalent to U .

Note that 2-torus fibrations are self-dual by Poincaré duality, so SYZ mirrors are dif-
feomorphic in dimension 2. For U a log Calabi–Yau surface with maximal boundary,
the Fock–Goncharov mirror construction is valid if and only if U is positive (cf. Gross,
Hacking, and Keel [2015b], Keating [2015]), and in that case the mirror V is deformation
equivalent to U .

5 Scattering diagrams

Given a cluster variety U together with a choice of toric model, we explain how to build a
scattering diagram in U trop(R). Heuristically, this is the tropicalization of the collection
of walls in the base of the SYZ fibration together with the attached generating functions
encoding counts of holomorphic discs inU ending on SYZ fibers described in Section 4.1.
We use the scattering diagram to construct a canonical topological basis #q , q 2 U trop(Z)

of the algebra of global functions on a formal completion of the Fock–Goncharov mirror
family. We expect that when U is positive this basis is algebraic and defines a canonical
basis of global functions on the Fock–Goncharov mirror. We prove this under certain
hypotheses on U related to positivity.
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5.1 Definitions and algorithmic construction of scattering diagrams. LetA = C[t1; : : : ; tr ]

and m = (t1; : : : ; tr) � A. We write M̂ for the m-adic completion lim
 �

M/mlM of an
A-moduleM .

Let N ' Zn be a free abelian group of rank n, and writeM = N �. Let �̄ 2 ^2MC

be a non-degenerate skew form.

Definition 5-1. A wall is a pair (d; f ) consisting of a codimension 1 rational polyhedral
cone d � NR together with an attached function f 2 1A[N ] satisfying the following
properties. Let m 2 M be a primitive vector (determined up to sign) such that d � m?.
Then there exists a primitive vector v 2 N such that

1. �̄(v; �) = � �m for some � 2 C�,

2. f 21A[zv] �1A[N ], and

3. f � 1 mod mzv1A[zv].

(Note in particular v 2 m? because �̄ is skew-symmetric.)

The cone d is called the support of the wall. The vector �v is called the direction of
the wall. We say a wall (d; f ) is incoming if v 2 d, otherwise, we say it is outgoing. (The
terminology comes from the dimension 2 case, where the support of an outgoing wall is
necessarily the ray R�0 � (�v) in the direction of the wall.)

Crossing a wall (d; f ) defines an associated automorphism � of1A[N ] over Â such that
� � id mod m. Let m 2 M be as in Definition 5-1. Then the automorphism associated
to crossing the wall from (m > 0) to (m < 0) is given by

� : 1A[N ]!1A[N ]; zu
7! zu

� f hu;mi:

A scattering diagram D is a collection of walls such that for all l 2 N, there are
finitely many walls (d; f ) such that f 6� 1 mod ml (so that the associated automorphism
is non-trivial modulo ml ).

The support SuppD of D is the union of the supports of the walls. A joint of D is
an intersection of walls of codimension 2 in NR. The singular locus SingD is the union
of the joints of D and the relative boundaries of the walls of D. A chamber of D is the
closure of an open connected component of NR n SuppD.

If 
 : [0; 1]! NR n SingD is a smooth path such that 
(0); 
(1) 62 Supp(D) and 
 is
transverse to each wall it crosses, it defines an automorphism �D;
 given by composing
wall crossing automorphisms. In more detail, let Dl � D be the finite subset of the
scattering diagram consisting of walls (d; f ) such that f 6� 1 mod ml . Let 0 < t1 <

: : : < tk < 1 be the times at which 
 crosses a wall of Dl , and �i the composition of the
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automorphisms associated to the walls crossed at time ti (note that if two walls lie in the
same hyperplane then the associated automorphisms commute, so �i is well defined). Let
� l

D;

be the automorphism �k ı � � � ı �1 of (A/ml)[N ]. Then �D;
 = lim

 �
� l

D;

.

We say two scattering diagrams D, D0 are equivalent if �D;
 = �D0;
 for all paths 

such that �D;
 and �D0;
 are defined.

A version of the following result was proved in dimension two in Kontsevich and
Soibelman [2006], §10. The general case follows from Gross and Siebert [2011].

Theorem 5-2. (Gross, Hacking, Keel, and Kontsevich [2018], Theorem 1.12) Let Din be
a scattering diagram such that the support of each wall is a hyperplane. Then there is a
scattering diagram D = Scatter(Din) containing Din such that

1. D nDin consists of outgoing walls, and

2. �D;
 = id for all loops 
 such that �D;
 is defined.

Moreover, D is uniquely determined up to equivalence by these properties.

The theorem is proved moduloml for each l 2 N by induction on l . The inductive step
is an explicit algorithmic construction. A self-contained proof in dimension two is given
in Gross, Pandharipande, and Siebert [2010], Theorem 1.4. The basic construction in the
general case is the same, cf. Gross, Hacking, Keel, and Kontsevich [2018], Appendix C.

5.2 Initial scattering diagram for cluster variety. Let (U; �) be a cluster variety.
Recall the combinatorial data from Section 3.3 describing U in terms of a toric model
� : (X;D)! (X̄ ; D̄): Let T = X̄ n D̄ ' (C�)n be the big torus, N = H1(T;Z) ' Zn,
and M = N �. We have �̄ = � jT 2 H 0(Ω2

X̄
(log D̄)) = ^2MC a non-degenerate

skew matrix. We have primitive vectors mi 2 M , vi 2 N , i = 1; : : : ; r such that
�̄(vi ; �) = �imi , some �i 2 C�. The rays R�0 � vi are contained in the fan of X̄ so corre-
spond to components D̄i � D̄. Then � is given by the blow up of the smooth centers

Zi = D̄i \ (zmi = �i ) � X̄

for some �i 2 C�.
For the cluster variety U , we define

Din = f(m
?
i ; 1 + tiz

vi ) j i = 1; : : : ; rg:

The enumerative interpretation is as follows. The strict transform of the divisor (zmi = �i ) �

X̄ in U is swept out by holomorphic discs ending on SYZ fibers L with boundary class
vi 2 H1(L;Z) = N . These are the holomorphic discs corresponding to the i th initial
wall. The two dimensional case is explained in Example 4-6. In dimension n > 2, U is
locally isomorphic to a product U 0 � (C�)n�2 (see Remark 3-5).
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Example 5-3. Let r = 2 and v1; v2 = (1; 0); (0; 1) 2 N = Z2. Then D = Scatter(Din)

consists of the two incoming walls (R � (1; 0); 1 + t1z
(1;0)) and (R � (0; 1); 1 + t2z

(0;1))

and one outgoing wall (R�0(�1;�1); 1 + t1t2z
(1;1)).

Here is the enumerative interpretation of the outgoing wall. The cluster variety U has
toricmodel� : (X;D)! (X̄ ; D̄)where X̄ = P 2 with toric boundary D̄ = D̄1+D̄2+D̄3,
and � is given by blowing up two points p1; p2 in the smooth locus of D̄, with p1 2 D̄1

andp2 2 D̄2. LetC be the strict transform of the line throughp1 andp2. ThenC meetsD
in a single point p. Holomorphic discs associated to the outgoing wall are approximated
by holomorphic discs contained in C n fpg. (One can also give an explicit description
using Cho and Oh [2006] as in Example 4-6.)

Note that in general the walls of the scattering diagram may be dense in some regions
ofNR, and the attached functions are not polynomial. See e.g. Gross, Pandharipande, and
Siebert [2010], Example 1.6 and Remark 5-5 below.

For U = X n D a log Calabi–Yau surface with maximal boundary, Gross, Pandhari-
pande, and Siebert [ibid.] proves an enumerative interpretation of the scattering diagram
in terms of virtual counts of maps f : P 1 ! X meeting the boundaryD in a single point.
A similar interpretation in terms of log Gromov-Witten invariants is expected in general
Gross and Siebert [2016], §2.4.

The following lemma (which will be needed in Section 5.4 below) is left as an exercise.

Lemma 5-4. Let U be a cluster variety with associated combinatorial data vi 2 N ,
mi 2M , i = 1; : : : ; r . Then

Pic(U ) = im(H 2(X;Z)! H 2(U;Z)) = coker((v1; : : : ; vr)
T : M ! Zr)

and �1(U ) = H1(U;Z) = coker((v1; : : : ; vr) : Zr ! N ).

5.3 Reduction to irreducible case and sign convention. For (U; �) a cluster variety
such that H1(U;Q) = 0, there is an étale cover Ũ ! U which decomposes as a product
of cluster varieties (Ui ; �i ), Ui = Xi nDi , such thatH 0(Ω2

Xi
(logDi )) = C � �i for each

i (cf. the Bogomolov decomposition theorem in the compact setting).
We now assume that H 0(Ω2

X (logD)) = C � � . It follows from Section 3.1 that the
subspace H 0(Ω2

X (logD)) � H 0(Ω2
X̄
(log D̄)) = ^2MC is defined over Q. So we may

assume, multiplying by a nonzero scalar, that � 2 ^2M . Then �̄(vi ; �) = �imi for some
�i 2 Q. Note that the blow up description of U = X n D depends on mi through the
center Zi = Di \ (zmi = �i ). So we may assume (replacing mi by �mi and �i by ��1

i

if necessary) that �i > 0.
In this case, it follows from the proof of Theorem 5-2 that for all walls (d; f ) in D =

Scatter(Din) we have d � m? for some nonzero m 2 M such that m =
P
aimi with
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ai � 0 for each i . In particular, if themi are linearly independent thenD has two chambers
given by

C+ = fv 2 NR j hmi ; vi � 0 for all i = 1; : : : ; rg

and C� := �C+.

5.4 Reduction to the case of linearly independent mi : Universal deformation and
universal torsor. We now explain how to reduce to the case that themi 2M are linearly
independent. Assume for simplicity that M is generated by the mi . Equivalently, by
Lemma 5-4, the Fock–Goncharov mirror V of U is simply connected.

The surjection (m1; : : : ; mr) : Zr !M determines a surjective homomorphism' : (C�)r !

T _ and, dually, an injective homomorphism T ,! (C�)r

We have the universal deformation p : U ! S := (C�)r/T of U = p�1([(�i )])

given by varying the parameters �i .
Our assumption implies that PicV = coker(m1; : : : ; mr)

T is torsion-free by
Lemma 5-4. Let L1; : : : ; Ls be a basis of PicV . The universal torsor q : Ṽ ! V

is the fiber product of the C�-bundles L�
i over V . It is a principal bundle with group

Hom(PicV;C�) = ker(').
The 2-form � on U lifts canonically to a relative 2-form �U on U/S (non-degenerate

on each fiber). Equivalently, �U defines a Poisson bracket on U with symplectic leaves
the fibers of p. The 2-form �_ on V pulls back to a degenerate 2-form on Ṽ .

Write NU = Zr with standard basis e1; : : : ; er and MU = N �
U with dual basis

f1; : : : ; fr . We have the inclusion (m1; : : : ; mr)
T : N � NU. The variety (U; �U)

is a (generalized) cluster variety with toric model given by the combinatorial data NU,
�̄U = �̄ 2 ^2MC , vi 2 NU, fi 2MU, i = 1; : : : ; r . The variety (Ṽ ; q��_) is the (gen-
eralized) Fock–Goncharov mirror cluster variety. Cf. Gross, Hacking, and Keel [2015a],
§4.

Roughly speaking, in the terminology of Fock and Goncharov, U is the X-variety for
the given combinatorial data and Ṽ is the A-variety for the Langlands dual data. The
Fomin–Zelevinsky (upper) cluster algebra is the ring of global functionsH 0(Ṽ ;OṼ ).

One can construct the scattering diagram associated to U in (NU)R � NR as before
using the relative 2-form �̄U = �̄ 2 ^2MC . (Condition (1) in Definition 5-1 can be
rewritten �̄_(�m; �) = �_v, where �_ = ��1, that is, the corresponding condition for the
Fock–Goncharov mirror V . In this form it generalizes to the above setting.)

Note that H 0(Ṽ ;OṼ ) = ˚L2PicVH
0(V;L) is the Cox ring of V . The torus

Hom(PicV;C�) acts with weight L 2 PicV on the summand H 0(V;L). Our construc-
tion of a canonical basis of H 0(Ṽ ;OṼ ) is equivariant for the torus action. In particular
we obtain a canonical basis ofH 0(V;OV ) (and alsoH 0(V;L) for each L 2 PicV ). Thus
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we may replace (U; �) and (V; �_) by (U; �U) and (Ṽ ; q��_) and assume that the mi

are linearly independent.

5.5 Mutation invariance of the support of the scattering diagram and cluster com-
plex. The support of the scattering diagram D is invariant under mutation Gross, Hack-
ing, Keel, and Kontsevich [2018, Sec. 1.3]. That is, if � : (X;D) ! (X̄ ; D̄) and
� 0 : (X;D)! (X̄ 0; D̄0) are two toric models for (X;D) related by a mutation � : T Ü
T 0 as in (3-7), andD,D0 are the scattering diagrams associated to� ,� 0 then�trop(SuppD) =

SuppD0. Heuristically, this is so because SuppD is the union of the tropicalizations of all
holomorphic discs in U ending on SYZ fibers, viewed inNR using the ZPL identification
U trop(R) ' NR corresponding to the open inclusion T = X̄ n D̄ � U = X nD of log
Calabi–Yau varieties.

Let� = �(m;v) as in (3-7). Let (mi ; vi ), i = 1; : : : ; r , be the combinatorial data for the
toric model � , with (m; v) = (m1; v1). Recall the explicit formula in Example 3-10 for
�trop. In particular, �trop is linear on the halfspaces H+ = (m � 0) and H� = (m � 0).
Let T+; T� be the linear automorphisms of NR which agree with �trop on H+ and H�.
Then T+ = id and T� is the symplectic transvection

T�(w) = w � hm;wiv = w � ��1
� �̄(v;w)v:

Then the combinatorial data (m0
i ; v

0
i ), i = 1; : : : ; r for � 0 is given by

(m0
i ; v

0
i ) =

8̂<̂
:
(�m1;�v1) if i = 1

((T �
+)

�1(mi ); T+(vi )) if vi 2 H+ and i > 1

((T �
� )�1(mi ); T�(vi )) if vi 2 H� and i > 1:

(The sign reversal v0
1 = �v1 follows from the description of the elementary transformation

in Section 3.2. The signs of them0
i are determined by the sign convention of Section 5.3.)

Using the explicit formula in Example 3-10 for�trop, we see that the chambers�trop(C+)

and C+0 in D0 meet along the codimension 1 face defined by m = 0.
Applying elementary transformations repeatedly, we obtain a simplicial fan ∆+ �

U trop(R) ' NR with maximal cones the positive chambers C+
˛ associated to each torus

chart T˛ , such that two maximal cones meet along a codimension 1 face if and only if
the torus charts are related by a mutation. This is the Fock–Goncharov cluster complex
(the dual graph is the Fomin–Zelevinsky exchange graph). The maximal cones of ∆+

are chambers of the scattering diagram D. Thus the scattering diagram is discrete in the
interior of the support of∆+ in NR.
Remark 5-5. Note that here we are using our assumption that themi are linearly indepen-
dent (see Section 5.4). Without this assumption, the scattering diagram can be everywhere
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dense inNR. For example, this is the case forU = XnD whereX � P 3 is a smooth cubic
surface andD is a triangle of lines on X (equivalently, (X;D) is obtained from X̄ = P 2

together with its toric boundary D̄ by blowing up six general points in the smooth locus of
D̄, two on each line). To see this, first observe that we can construct another toric model of
U of the same combinatorial type as follows. Let D̄1; D̄2; D̄3 be the components of D̄. Let
X̄1 be the blowup of the pointp = D̄1\D̄2 2 X̄ . Then X̄1 is a ruled surface with sections
the exceptional divisor E and the strict transform of D̄3. Let p1; p2 be the two centers of
� : X ! X̄ on D̄3 and let X̄1 Ü X̄2 be the composite of the elementary transformations
with centers p1 and p2. Finally, blow down the strict transform of D̄3 to obtain X̄ 0 ' P 2

with toric boundary D̄0 given by the strict transforms of D̄1, D̄2, and E. Then by con-
struction we have another toric model � 0 : (X 0;D0) ! (X̄ 0; D̄0) of U given by blowing
up two points on each boundary divisor. The rational map T = X̄ n D̄ Ü T 0 = X̄ 0 n D̄0

is a composite of two mutations. Let v1; v2 2 N correspond to the boundary divisors
D̄1; D̄2 of X̄ under the identification U trop(Z) = N given by T � U , then the boundary
divisor E of X̄ 0 correponds to v1 + v2 2 N under this identification. Recall that the
scattering diagram associated to a toric model has an incoming wall associated to each
blow up. The support of the wall contains the ray corresponding to the boundary divisor
containing the center of the blow up. Moreover, the support of the scattering diagram is
invariant under mutation. In particular, it follows that the rays generated by v1, v1 + v2,
and v2 lie in Supp(D). Repeating the above construction one can prove by induction that
every rational ray lies in Supp(D).

In terms of the construction of the versal deformation U of U in Section 5.4, the scat-
tering diagram D for U is the slice of the scattering diagram DU for U by the subspace
(m1; : : : ; mr) : NR ,! Rr . This slice can miss the discrete part of DU so that there are
no chambers in D.

The functions attached to walls of the scattering diagram change in a simple way under
mutation. Each wall of the cluster complex corresponds to a portion of an incoming wall
for some seed (and there are no outgoing walls with support contained in an incoming
wall Gross, Hacking, Keel, and Kontsevich [2018], Remark 1.29). So one can describe
the functions attached to walls of the cluster complex explicitly. One finds that they are
polynomials (in fact of the form 1+czv for c 2 A = C[t1; : : : ; tr ] a monomial and v 2 N ).
So one can define an algebraic family V/Ar

t1;:::;tr
as follows: V is a union of copies of

T _ � Ar indexed by chambers C+ 2 ∆+, with transition maps T _ � Ar Ü T _ � Ar

given by �D;
 for 
 a path in Supp∆+ from the first chamber to the second. One finds
that the restriction of V/Ar to (C�)r is the family of Fock–Goncharov mirrors to U .
Moreover, because the automorphisms are trivial modulo m = (t1; : : : ; tr), the special
fiber V0 equals the torus T _.
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5.6 Broken lines. Wenowdescribe the construction of global functions#q , q 2 U trop(Z)

on the mirror family V/Ar using a tropical analogue of the heuristic construction de-
scribed in Section 4.2.

Definition 5-6. Let v 2 U trop(Z) = N be a nonzero vector andp 2 NR a general point. A
broken line for v with endpointp is a continuous piecewise-linear path 
 : (�1; 0]! NR

together with, for each domain of linearity L � (�1; 0], a monomial cL � z
vL , cL 2 A =

C[t1; : : : ; tr ], vL 2 N , such that

1. There is an initial unbounded domain of linearity with attached monomial 1 � zv .

2. For all L and t 2 L, 
 0(t) = �vL.

3. If 
 is not linear at t 2 (�1; 0] then 
 crosses a wall at time t . Let L and L0 be
the domains of linearity before and after crossing the wall and � the wall crossing
automorphism. Then cL0zvL0 is a monomial term in �(cLz

vL) 21A[N ].

4. 
(0) = p.

We writeM (
) for the final monomial attached to a broken line 
 .

Recall that the Fock–Goncharov mirror V ofU is a union V =
S

C+2∆+ T _
C+ of copies

of the dual torus T _ =M ˝C� indexed by the maximal cones C+ of the cluster complex
∆+. We have the family V ! SpecA = Ar

t1;:::;tr
, V =

S
C+2∆+ T _

C+ � Ar , with fiber
V over the point ti = c_

i = �1/�_
i , and its formal completion V̂ ! Spf Â over 0 2 Ar .

We now define theta functions #v for v 2 U trop(Z) ' N on V̂. We define #0 = 1. Let
v 2 N be a nonzero vector. For p 2 Supp∆+ a general point, we define

#v;p =
X




M (
) 21A[N ];

where the sum is over broken lines 
 for v with endpoint p. For general points p; p0 2

Supp∆+, and 
 a path from p to p0, we have �D;
 (#v;p) = #v;p0 Gross, Hacking, Keel,
and Kontsevich [ibid.], Theorem 3.5, Carl, Pumperla, and Siebert [2010], §4. So, by the
definition of V/Ar , the #v;p for p 2 Supp∆+ general define a global function #v on V̂.

Example 5-7. Consider the scattering diagram D for the data r = 1, v1 = (1; 0) 2 N =

Z2. Write z1 = z(1;0) and z2 = z(0;1). The scattering diagram D = Din consists of the
single wall (R � (1; 0); 1 + tz1). Let v = (0; 1). For p = (a; b) 2 NR = R2, if b > 0

there is a unique broken line for v with endpoint p given by 
(t) = (a; b) � t(0; 1) with
attached monomial z2. If b < 0 there are two broken lines, one described as before and
the second given by 
(t) = (a� b; b)� t(0; 1) for t � b with attached monomial z2 and
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(t) = (a; b) � t(1; 1) for b � t � 0, with attached monomial tz1z2. Thus #v;p = z2
for b > 0 and #v;p = z2 + tz1z2 = z2(1 + tz1) for b < 0. This is the tropical version
of Example 4-6. See Cheung, Gross, Muller, Musiker, Rupel, Stella, and Williams [2017]
for more examples.

Recall that V0 = T _, and note that #v restricts to the character zv on V0 (because
M (
) � 0 mod m for any broken line that bends). So the #v , v 2 U trop(Z) restrict to
a basis of H 0(V0;OV0

). It follows that the #v , v 2 U trop(Z) define a topological basis
of H 0(V̂;OV̂). That is, for every element f 2 H 0(V̂;OV̂) there is a unique expression
f =

P
v2U trop(Z) av#v where av 2 Â for each v and for all l 2 N there are finitely many

av such that av 6� 0 mod ml .
The formal function #v defines a function on V (and so on the fiber V ) if and only

if the local expressions #v;p 2
1A[N ] lie in A[N ], that is, are Laurent polynomials with

coefficients in A. This is not the case in general. However, one can show that if #v;p is a
Laurent polynomial for some p 2 Supp∆+, then the same is true for all p, so that #v lies
inH 0(V;OV) Gross, Hacking, Keel, and Kontsevich [2018], Proposition 7.1.

Example 5-8. Let C+ be a chamber of ∆+ and v 2 C+ \ U trop(Z) an integral point.
Let p 2 C+ be a general point. Then there is a unique broken line for v and p, given by

 : (�1; 0]! NR, 
(t) = p�tv, with attachedmonomial zv . See Gross, Hacking, Keel,
and Kontsevich [ibid., Corollary 3.9]. It follows that #v is a global function on V such
that #vjT _

C+
= zv . In the terminology of Fomin–Zelevinsky, #v is a cluster monomial.

Example 5-9. For cluster algebras of finite type Fomin and Zelevinsky [2003], the cluster
complex has finitely many cones and is a complete fan, that is, Supp∆+ = U trop(R) '

NR. In this case, every theta function is a cluster monomial, and the cluster monomials
form a basis ofH 0(V;OV ).

Cluster algebras of finite type correspond to finite root systems Fomin and Zelevin-
sky [ibid.]. The mirror U of the A2-cluster variety V is described in Example 5-3. Let
#1; : : : ; #5 be the theta functions on V/A2 corresponding to the primitive generators of
the rays of the cluster complex in cyclic order. We identify V with the fiber of V over
(1; 1) 2 A2. The theta function basis ofH 0(V;OV ) is given by the cluster monomials

f#a
i #

b
i+1 j a; b 2 Z�0; i 2 Z/5Zg:

The algebra structure is given by

V = (#i�1#i+1 = #i + 1; i 2 Z/5Z) � A5
#1;:::;#5

:

The closure of V in P 5 is the del Pezzo surface of degree 5 (the blowup of 4 points in P 2 in
general position) with an anti-canonical cycle of 5 (�1)-curves at infinity. In this case, the
mirror V of U is isomorphic to U (since U is rigid this is a special case of Remark 4-12).
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Theorem 5-10. (Gross, Hacking, Keel, and Kontsevich [2018], Proposition 0.7) Let
U trop(R) = NR be the identification associated to some toric model of U . Suppose that
the support of the cluster complex ∆+ is not contained in a half-space in NR under this
identification. Then each #v defines a global function on V, and the #v , v 2 U trop(Z)

define a C-basis ofH 0(V;OV ).

See Gross, Hacking, Keel, and Kontsevich [ibid., Sec. 8], for the relation between the
hypothesis and positivity of U .

Example 5-11. (Gross, Hacking, Keel, and Kontsevich [ibid., Corollary 0.20], Magee
[2017], cf. Goncharov and Shen [2015]). LetG = SLm. LetB � G be a Borel subgroup,
N � B the maximal unipotent subgroup, and H � B a maximal torus. Let F = G/B

be the full flag variety, and F̃ = G/N its universal torsor, a principalH = B/N -bundle
over F . The variety F is called the base affine space. By the Borel–Weil–Bott theorem,

H 0(F̃ ;OF̃ ) = ˚L2PicFH
0(F;L) = ˚�V�;

the direct sum of the irreducible representations of G (where � 2 Lie(H )� denotes a
dominant weight). Cf. Fulton and Harris [1991], p. 392–3.

LetB� � G be the opposite Borel subgroup such thatB\B� = H . Let V � F be the
open subset of flags transverse to the flags with stabilizers B and B�. Let Ṽ � F̃ be its
inverse image. Then Ṽ is identified with the double Bruhat cellGw0;e := Bw0B\B

� �

G where w0 2 W = Sm, w0(i) = m + 1 � i , is the longest element of the Weyl group.
In particular, Ṽ is a cluster variety in the sense of Fomin–Zelevinsky Berenstein, Fomin,
and Zelevinsky [2005]. (From our point of view, there are algebraic tori T1 and T2, an
action of T1 on Ṽ and a T1 invariant fibration Ṽ ! T2, such that the quotients Ṽt/T1
of the fibers are cluster varieties in the sense of Definition 3-1. Thus Ṽ is given by a
combination of the two constructions in Section 5.4.) We remark that the cluster structure
on Ṽ is closely related to the Poisson structure onG associated to the choiceH � B � G
Gekhtman, Shapiro, and Vainshtein [2010, Sec. 1.3], which is the first order term of the
non-commutative deformation ofG to the quantum group Chari and Pressley [1995],§7.3.

One can show using a generalization of Theorem 5-10 that the theta functions give a
canonical basis ofH 0(Ṽ ;OṼ ). The variety F̃ is a partial compactification of Ṽ , such that
F̃ n Ṽ is a union of 2(m � 1) boundary divisors along which the holomorphic volume
form Ω on Ṽ has a pole. Using positivity properties of the theta function basis B of
H 0(Ṽ ;OṼ ), one can further show that the subalgebraH 0(F̃ ;OF̃ ) has basis given by the
subset ofB consisting of theta functions which are regular on F̃ . The set of such functions
is indexed by the integral points of a polyhedral cone in Ũ trop(R) (where Ũ denotes the
Fock–Goncharov mirror of Ṽ ). This polyhedral cone C is given by C = (W trop � 0)

where W : Ũ ! A1 is the regular function given by the sum of the theta functions on
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Ũ corresponding to the boundary divisors of the partial compactification Ṽ � F̃ . (Thus,
according to general principles, F̃ is mirror to the Landau–Ginzburg modelW : Ũ ! A1,
cf. Abouzaid, Auroux, and Katzarkov [2016], §2.2.) For a specific choice of toric model
of Ũ , the cone C is identified with the Gel’fand–Tsetlin cone Goncharov and Shen [2015].

The theta function basis is equivariant for the action of H on F̃ . Thus the theta func-
tions with weight � give a canonical basis of the irreducible representation V�.

Remark 5-12. The construction of theta functions given here appears to depend on the
choice of a toric model of U . However, one can show, using the behavior of the scat-
tering diagram under mutation, that the families V/Ar together with the theta functions
for different toric models are compatible Gross, Hacking, Keel, and Kontsevich [2018],
Theorem 6.8. In the terminology of mirror symmetry, they correspond to different large
complex structure limits of the mirror family.
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ALGEBRAIC SURFACES WITH MINIMAL BETTI NUMBERS
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Abstract
These are algebraic surfaces with the Betti numbers of the complex projective

plane, and are called Q-homology projective planes. Fake projective planes and the
complex projective plane are smooth examples. We describe recent progress in the
study of such surfaces, singular ones and fake projective planes. We also discuss open
questions.

1 Q-homology Projective Planes and Montgomery-Yang problem

A normal projective surface with the Betti numbers of the complex projective plane CP 2

is called a rational homology projective plane or a Q-homology CP 2. When a normal
projective surface S has only rational singularities, S is a Q-homology CP 2 if its second
Betti number b2(S) = 1. This can be seen easily by considering the Albanese fibration
on a resolution of S .

It is known that a Q-homology CP 2 with quotient singularities (and no worse singu-
larities) has at most 5 singular points (cf. Hwang and Keum [2011b, Corollary 3.4]). The
Q-homology projective planes with 5 quotient singularities were classified in Hwang and
Keum [ibid.].

In this section we summarize progress on the Algebraic Montgomery-Yang problem,
which was formulated by J. Kollár.

Conjecture 1.1 (Algebraic Montgomery–Yang Problem Kollár [2008]). Let S be a Q-
homology projective plane with quotient singularities. Assume that S0 := SnSing(S) is
simply connected. Then S has at most 3 singular points.

This is the algebraic version ofMontgomery–Yang ProblemFintushel and Stern [1987],
which was originated from pseudofree circle group actions on higher dimensional sphere.
MSC2010: primary 14J29; secondary 14F05, 14J17, 14J26, 32Q40, 32N15.
Keywords: fake projective planes, ball quotients, Q-homology projective planes, singular 4-manifolds,
Montgomery–Yang problem.
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Pseudofree circle group actions are those that have no points fixed by the entire circle
group but that have isolated circles that are pointwise fixed by finite cyclic subgroups.

• Work over the field C of complex numbers, except a few remarks in positive char-
acteristic and in differentiable case.

Definition 1.2. A normal projective surface S is called a Q-homology CP 2 if it has the
same Betti numbers as CP 2, i.e. (b0; b1; b2; b3; b4) = (1; 0; 1; 0; 1).

Examples 1.3. 1. If S is smooth, then S = CP 2 or a fake projective plane(fpp).

2. If S is singular and has only A1-singularities, then S is isomorphic to the quadric
cone (xy = z2) in CP 3, i.e., the weighted projective plane CP 2(1; 1; 2) (cf. Keum
[2010]).

3. Cubic surfaces with 3A2 in CP 3 (such surfaces can be shown to be isomorphic to
(w3 = xyz)).

4. If S has A2-singularities only, then S has 3A2 or 4A2 and S = CP 2/G or fpp/G,
where G Š Z/3 or (Z/3)2.

5. If S has A1 or A2-singularities only, then S = CP 2(1; 2; 3) or one of the above
(see Keum [2015] for details).

In this section, S has at worst quotient singularities. Then it is easy to see that

• S is a Q-homology CP 2 if and only if b2(S) = 1.

• A minimal resolution of S has pg = q = 0.

1.1 Trichotomy: KS ample, �ample, numerically trivial. Let S a Q-hom CP 2 with
quotient singularities, f : S 0 ! S a minimal resolution. The canonical class KS falls in
one of the three cases.

1. �KS is ample (log del Pezzo surfaces of Picard number 1): their minimal res-
olutions have Kodaira dimension �(S 0) = �1; typical examples are CP 2/G,
CP 2(a; b; c).

2. KS is numerically trivial (log Enriques surfaces of Picard number 1): their minimal
resolutions have Kodaira dimension �(S 0) = �1; 0.
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3. KS is ample: : theirminimal resolutions haveKodaira dimension �(S 0) = �1; 0; 1; 2;
typical examples are fake projective planes and their quotients, suitable contraction
of a suitable blowup of some Enriques surface or CP 2.

The following problem was raised by J. Kollár [2008].

Problem 1.4. Classify all Q-homology projective planes with quotient singularities.

1.2 TheMaximumNumber of Quotient Singularities. Let S be a Q-homology CP 2

with quotient singularities. From the orbifold Bogomolov–Miyaoka–Yau inequality (Sakai
[1980], Miyaoka [1984], and Megyesi [1999]), one can derive that S has at most 5 singu-
lar points (see Hwang and Keum [2011b, Corollary 3.4]). Many examples with 4 or less
singular points were provided (Brenton [1977] and Brenton, Drucker, and Prins [1981]),
but no example with 5 singular points until D. Hwang and the author characterised the
case with 5 singular points.

Theorem 1.5 (Hwang and Keum [2011b]). Let S be a Q-homology projective plane with
quotient singularities. Then S has at most 4 singular points except the following case
which is supported by an example: S has 5 singular points of type 3A1 + 2A3.
In the exceptional case the minimal resolution of S is an Enriques surface.

In fact, our proof assumed the condition that KS is nef to apply the orbifold Bogomo-
lov–Miyaoka–Yau inequality. On the other hand, the case where �KS is ample was dealt
with by Belousov [2008, 2009]. He proved that log del Pezzo surfaces of Picard number
1 with quotient singularities have at most 4 singular points.

Corollary 1.6. The following hold true.

1. Q-cohomology projective planes with quotient singularities have at most 4 singular
points except the case given in the above theorem.

2. Z-homology projective planes with quotient singularities have at most 4 singular
points.

Here, a Q-cohomology projective plane is a normal projective complex surface having
the same Q-cohomology ring with CP 2. A Q-homology projective plane with quotient
singularities is a Q-cohomology projective plane.

The problem of determining the maximum number of singular points on Q-homology
projective planes with quotient singularities is related to the algebraic Montgomery–Yang
problem (Montgomery and Yang [1972] and Kollár [2008]).
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Remark 1.7. (1) EveryZ-cohomologyCP 2 with quotient singularities has at most 1 singu-
lar point, and, if it has, then the singularity must be of type E8 (Bindschadler and Brenton
[1984]).

(2) If a Q-homology projective plane S is allowed to have rational singular points
(quotient singular points are rational, but the converse does not holds), then there is no
bound for the number of singular points. In fact, there are Q-homology projective planes
with an arbitrary number of rational singular points. Such examples can be constructed
by modifying Example 5 from Kollár [2008]: take a minimal ruled surface Fe ! P 1

with negative section E, blow up m distinct fibres into m strings of 3 rational curves
(�2)—(�1)—(�2), then contract the proper transform of E with the m adjacent (�2)-
curves, and also the m remaining (�2)-curves. If e = �E2 is sufficiently larger than m,
then the big singular point is rational and yields a Q-homology CP 2 with m + 1 rational
singular points.

(3) In char 2 there is a rational example of Picard number 1 with sevenA1-singularities.

Theorem 1.8 (The orbifold BMY inequality). Let S be a normal projective surface with
quotient singularities. Assume that KS is nef. Then

K2
S � 3eorb(S):

Theorem 1.9 (The weak oBMY inequality, Keel and McKernan [1999]). Let S be a nor-
mal projective surface with quotient singularities. Assume that �KS is nef. Then

0 � eorb(S):

Here the orbifold Euler characteristic is defined by

eorb(S) := e(S) �
X

p2Sing(S)

�
1 �

1

j�1(Lp)j

�

1.3 Smooth S1-actions on Sm. Let S1 be the circle group. Consider a faithful C1

action of S1 on the m-dimensional sphere Sm

S1 � Diff (Sm):

The identity element 1 2 S1 acts as the identity on Sm. Each diffeomorphism g 2 S1 is
homotopic to the identity on Sm. By Lefschetz Fixed Point Formula,

e(F ix(g)) = e(F ix(1)) = e(Sm):
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If m is even, then e(Sm) = 2 and such an action has fixed points, so is not pseudofree.
Pseudofree circle actions are those that have no points fixed by the entire circle group but
that have isolated circles that are pointwise fixed by finite cyclic subgroups.

Assume m = 2n � 1 odd.

Definition 1.10. A faithful C1-action of S1 on S2n�1

S1 � S2n�1
! S2n�1

is called pseudofree if it is free except for finitely many orbits whose isotropy groups
Z/a1Z; : : : ; Z/akZ have pairwise prime orders.

1.4 Pseudofree S1-actions on S2n�1.

Example 1.11 (Linear action). For a1; :::; an pairwise prime

S1 � S2n�1
! S2n�1

(�; (z1; z2; :::; zn)) 7! (�a1z1; �a2z2; :::; �anzn)

where
S2n�1 = f(z1; z2; :::; zn) : jz1j

2 + jz2j
2 + ::: + jznj

2 = 1g � Cn

S1 = f� : j�j = 1g � C:

In such a linear action

•
S2n�1/S1 Š CP n�1(a1; a2; :::; an);

• The orbit of the i -th coordinate point ei = (0; :::; 0; 1; 0:::; 0) 2 S2n�1 is an excep-
tional orbit iff ai � 2;

• The orbit of a non-coordinate point of S2n�1 is NOT exceptional;

• This action has at most n exceptional orbits;

• The quotient map S2n�1 ! CP n�1(a1; a2; :::; an) is a Seifert fibration.

For Seifert fibrations we recall the following.

1. For n = 2 Seifert [1933] showed that every pseudofree S1-action on S3 is diffeo-
morphic to a diagonal one and hence has at most 2 exceptional orbits.
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2. For n = 4 Montgomery and Yang [1972] showed that given arbitrary collection
of pairwise prime positive integers a1; : : : ; ak , there is a pseudofree S1-action on a
homotopy S7 whose exceptional orbits have exactly those orders.

3. Petrie [1975] generalised the result of Montgomery-Yang for all n � 5.

Conjecture 1.12 (Montgomery–Yang problem, Fintushel and Stern [1987]). A pseudo-
free S1-action on S5 has at most 3 exceptional orbits.

The problem has remained unsolved since its formulation.

• Pseudo-free S1-actions on amanifoldΣ have been studied in terms of the pseudofree
orbifold Σ/S1 (see e.g., Fintushel and Stern [1985, 1987]).

• The orbifold X = S5/S1 is a 4-manifold with isolated singularities whose neigh-
borhoods are cones over lens spaces corresponding to the exceptional orbits of the
S1-action.

• Easy to check that X is simply connected and H2(X; Z) has rank 1 and intersection
matrix (1/a1a2 � � � ak).

• An exceptional orbit with isotropy type Z/a has an equivariant tubular neighbor-
hood which may be identified with C � C � S1 with a S1-action

� � (z; w; u) = (�rz; �sw; �au)

where r and s are relatively prime to a.

The following 1-1 correspondence was known to Montgomery–Yang, Fintushel–Stern,
and revisited by Kollár [2005, 2008].

Theorem 1.13. There is a one-to-one correspondence between:

1. Pseudofree S1-actions on Q-homology 5-spheres Σ with H1(Σ; Z) = 0.

2. Compact differentiable 4-manifolds M with boundary such that

(a) @M =
S
i

Li is a disjoint union of lens spaces Li = S3/Zai
,

(b) the orders ai ’s are pairwise prime,
(c) H1(M; Z) = 0,
(d) H2(M; Z) Š Z.

Furthermore, Σ is diffeomorphic to S5 iff �1(M ) = 1.
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1.5 Algebraic Montgomery-Yang Problem. This is the Montgomery-Yang Problem
when the pseudofree orbifold S5/S1 attains a structure of a normal projective surface.

Conjecture 1.14 (Kollár [2008]). Let S be a Q-homology CP 2 with at worst quotient
singularities. If the smooth part S0 has �1(S

0) = f1g, then S has at most 3 singular
points.

What happens if the condition �1(S
0) = f1g is replaced by the weaker condition

H1(S
0; Z) = 0?

Remark 1.15. If H1(S
0; Z) = 0, then

(1) KS cannot be numerically trivial;
(2) it follows from the oBMY that jSing(S)j � 4:

There are infinitely many examples S with

H1(S
0; Z) = 0; �1(S

0) ¤ f1g; jSing(S)j = 4;

obtained from the classification of surface quotient singularities byBrieskorn [1967/1968].

Example 1.16 (Brieskorn quotients). Let Im � GL(2; C) be the 2m-ary icosahedral
group Im = Z2m:A5,

1 ! Z2m ! Im ! A5 � PSL(2; C):

The action of Im on C2 extends naturally to CP 2. Then

S := CP 2/Im

is a Q-homology CP 2 such that

• �KS ample;

• S has 4 quotient singularities: one non-cyclic singularity of type Im (the image of
the origin O 2 C2) and 3 cyclic singularities of order 2; 3; 5 (on the image of the
line at infinity);

• �1(S
0) = A5, hence H1(S

0; Z) = 0.

1.6 Progress onAlgebraicMontgomery-YangProblem. AlgebraicMontgomery-Yang
problem holds true if S has at least 1 non-cyclic singular point.

Theorem 1.17 (Hwang and Keum [2011a]). Let S be a Q-homology CP 2 with quotient
singular points, not all cyclic, such that �1(S

0) = f1g. Then jSing(S)j � 3.
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More precisely

Theorem 1.18. Let S be a Q-homology CP 2 with 4 or more quotient singular points, not
all cyclic, such that H1(S

0; Z) = 0. Then S is isomorphic to a Brieskorn quotient.

Remark 1.19. In Hwang and Keum [2011a], though the proof was correct, a wrong conclu-
sion was made in the statement (4) of Theorem 3 that the smooth part S0 of such a surface
S is deformation equivalent to the smooth part of a Brieskorn quotient. A corrected state-
ment was given in Hwang and Keum [2009].

More Progress on the Algebraic Montgomery-Yang Problem:

Theorem 1.20 (Hwang andKeum [2013, 2014]). LetS be aQ-homologyCP 2 with cyclic
singularities such that H1(S

0; Z) = 0. If either S is not rational or �KS is ample, then
jSing(S)j � 3.

The Remaining Case of the Algebraic Montgomery-Yang Problem:

S is a Q-homology CP 2 such that

1. S has cyclic singularities only,

2. S is a rational surface with KS ample.

Looking at the adjunction formula

KS 0 = ��KS �
X

Dp;

where S 0 ! S is a resolution, one sees that KS , though ample, is ”smaller than
P

Dp”
so that no positive multiple of KS 0 is effective. Such surfaces were given by

Keel and McKernan [1999];
Kollár [2008]: infinite series of examples with jSing(S)j = 2;
Hwang and Keum [2012]: infinite series of examples with jSing(S)j = 1; 2; 3.
Urzúa and Yáñez [2016]: characterization of Kollár surfaces.

There is no known example with jSing(S)j = 4, even if the condition H1(S
0; Z) = 0 is

removed.

Problem 1.21. Is there a Q-homology projective plane S which is a rational surface with
KS ample and jSing(S)j = 4?
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Another interesting line of research is to obtain surfaces with quotient singularities
with small volume. Alexeev and Liu [2016] has constructed a surface S with log terminal
singularities (quotient singularities) and ample canonical class that has K2

S = 1/48983

and a log canonical pair (S; B) with a nonempty reduced divisor B and ample KS + B

that has (KS + B)2 = 1/462, both examples signifcantly improve known record.

1.7 Cascade structure on rational Q-homology projective planes. A rational Q-
homology CP 2 is obtained by blow-ups and downs from a ”basic surface” which is a
rational minimal surface with certain configuration of curves.
In the case where �KS ample, all basic surfaces have been classified by Hwang [n.d.].

1.8 Gorenstein Q-homology projective planes. These are Q-homology projective
planes with ADE-singular points (i.e., rational double points).

Let R be the singularity type, i.e., the corresponding root sublattice of the cohomology
lattice of S 0, the minimal resolution of S .
Since S is Gorenstein, rank(R) is bounded.

1 + rank(R) = b2(S
0) = 10 � K2

S 0 = 10 � K2
S � 10;

rank(R) � 9

with equality iff KS is numerically trivial iff S 0 is an Enriques surface.

WithD.Hwang andH.Ohashi, we classified all possible singularity types of Gorenstein
Q-homology projective planes. There are 58 types total.

Theorem 1.22 (Hwang, Keum, and Ohashi [2015]). The singularity type R of a Goren-
stein Q-homology CP 2 is one of the following:

(1) KS ˙ample (27 types):
A8, A7, D8, E8, E7, E6, D5, A4, A1;
A7 ˚A1, A5 ˚A2, A5 ˚A1, 2A4, A2 ˚A1, D6 ˚A1, D5 ˚A3, 2D4, E7 ˚A1, E6 ˚A2;
A5 ˚ A2 ˚ A1, 2A3 ˚ A1, A3 ˚ 2A1, 3A2, D6 ˚ 2A1;
2A3 ˚ 2A1, 4A2, D4 ˚ 3A1,

(2) KS numerically trivial (31 types)
A9, D9;
A8 ˚A1, A7 ˚A2, A5 ˚A4, D8 ˚A1, D6 ˚A3, D5 ˚A4, D5 ˚D4, E8 ˚A1, E7 ˚A2,
E6 ˚ A3;
A7 ˚ 2A1, A6 ˚ A2 ˚ A1, A5 ˚ A3 ˚ A1, A5 ˚ 2A2, 2A4 ˚ A1, 3A3, D7 ˚ 2A1,
D6 ˚ A2 ˚ A1, D5 ˚ A3 ˚ A1, 2D4 ˚ A1, E7 ˚ 2A1, E6 ˚ A2 ˚ A1;



726 JONGHAE KEUM (금종해)

A5 ˚A2 ˚2A1, A4 ˚A3 ˚2A1, 2A3 ˚A2 ˚A1, A3 ˚3A2, D6 ˚3A1, D4 ˚A3 ˚2A1;
2A3 ˚ 3A1.

The 27 types with �KS ample were classified by Furushima [1986], Miyanishi and
Zhang [1988], Ye [2002]. Our method uses only lattice theory, different from theirs.

Among the 31 types with KS � 0, 29 types are supported by Enriques surfaces with
finite automorphism group. Enriques surfaces with jAut j < 1 must have finitely many
(�2)-curves, and were classified by Nikulin and Kondō [1986] into 7 families, two fam-
ilies 1-dimensional and five 0-dimensional. Schütt [2015] has constucted explicitly, for
each of the 31 types, the moduli space of such Enriques surfaces, all 1-dimensional.
Remark 1.23. In positive characteristic the case with KS � 0 has been classified by M.
Schütt [2016, 2017], which build on recent deep results of Katsura and Kondō [2018],
Martin [2017], and Katsura, Kondō, and Martin [2017], also on a unpublished work of
Dolgachev-Liedtke.

1.9 The differentiable case. Let M be a smooth, compact 4-manifold whose boundary
components are spherical, that is, lens spaces Li = S3. One can then attach cones to each
boundary component to get a 4-dimensional orbifold S . As in the algebraic case, there
is a minimal resolution f : S 0 ! S , where S 0 is a smooth, compact 4-manifold without
boundary.
To each singular point p 2 S (the vertex of each cone), we assign a uniquely defined class
Dp =

P
(aj Ej ) 2 H 2(S 0; Q) such that

Dp � Ei = 2 + E2
i

for each component Ei of f �1(p). We always assume that S and S 0 satisfy the following
two conditions:

(1) S is a Q-homology CP 2, i.e. H 1(S; Q) = 0 and H 2(S; Q) Š Q.

(2) The intersection form on H 2(S 0; Q) is indefinite, and is negative definite on the
subspace generated by the classes of the exceptional curves of f .

If there is a class KS 0 2 H 2(S 0; Q) satisfying both the Noether formula

K2
S 0 = 10 � b2(S

0)

and the adjunction formula
KS 0 � E + E2 = �2

for each exceptional curve E of f , we call it a formal canonical class of S 0, and the class
KS 0 +

P
Dp 2 H 2(S 0; Q) a formal canonical class of S .
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Theorem 1.24 (Hwang and Keum [2011b] Theorem 8.1). Let M , S , and S 0 be the same
as above satisfying the conditions (1) and (2). Assume that S 0 admits a formal canonical
class KS 0 . Assume further that

K2
S 0 �

X
p2Sing(S)

D2
p � 3eorb(S):

Then M has at most 4 boundary components except the following two cases:
M has 5 boundary components of type 3A1 + 2A3 or 4A1 + D5.

Note that the assumptions in Theorem 1.24 all hold for algebraic Q-homology projec-
tive planes with quotient singularities such that the canonical divisor is nef.

Theorem 1.25 (Hwang and Keum [ibid.] Theorem 8.2). Let M , S , and S 0 be the same
as above satisfying the conditions (1) and (2). Assume that S 0 admits a formal canonical
class KS 0 . Assume further that

0 � eorb(S):

Then M has at most 5 boundary components. The bound is sharp.

The assumptions in Theorem 1.25 all hold for algebraic Q-homology projective planes
with quotient singularities.

1.10 The symplectic case. If S is a symplectic orbifold, then S 0 is a symplectic mani-
fold and the symplectic canonical class KS 0 gives a formal canonical class.

Problem 1.26. Is there a Bogomolov–Miyaoka–Yau type inequality for symplectic 4-
manifolds?
Is there an orbifold Bogomolov–Miyaoka–Yau type inequality for symplectic orbifolds?

The following question is also interesting in view of Sasakian geometry.

Problem 1.27 (Muñoz, Rojo, and Tralle [2016]). There does not exist a Kähler manifold
or a Kähler orbifold with b1 = 0 and b2 � 2 having b2 disjoint complex curves all of
genus g � 1 which generate H2(S; Q).

A ruled surface over a curve of genus g has two disjoint curves, the negative section
and a general section, of genus g, but has b1 ¤ 0 if g � 1.

2 Fake projective planes

A compact complex surface with the same Betti numbers as the complex projective plane
is called a fake projective plane if it is not biholomorphic to the complex projective plane.
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A fake projective plane has ample canonical divisor, so it is a smooth proper (geometrically
connected) surface of general type with geometric genus pg = 0 and self-intersection of
canonical class K2 = 9 (this definition extends to arbitrary characteristic.) The existence
of a fake projective plane was first proved by Mumford [1979] based on the theory of
2-adic uniformization, and later two more examples by Ishida and Kato [1998] 1998) in a
similar method. Keum [2006] gave a construction of a fake projective plane with an order
7 automorphism, which is birational to an order 7 cyclic cover of a Dolgachev surface.
This surface and Mumford fake projective plane belong to the same class, in the sense that
their fundamental groups are both contained in the same maximal arithmetic subgroup of
the isometry group of the complex 2-ball.

Fake projective planes have Chern numbers c21 = 3c2 = 9 and are complex 2-ball
quotients by Aubin [1976] and Yau [1977]. Such ball quotients are strongly rigid by
Mostow’s rigidity theorem (Mostow [1973]), that is, determined by fundamental group up
to holomorphic or anti-holomorphic isomorphism. Fake projective planes come in com-
plex conjugate pairs by Kulikov and Kharlamov [2002] and have been classified as quo-
tients of the two-dimensional complex ball by explicitly written co-compact torsion-free
arithmetic subgroups of PU(2; 1) by Prasad and Yeung [2007, 2010] and Cartwright and
Steger [2010, n.d.]. The arithmeticity of their fundamental groups was proved by Klingler
[2003]. There are exactly 100 fake projective planes total, corresponding to 50 distinct
fundamental groups. Cartwright and Steger also computed the automorphism group of
each fake projective plane X , which is given by Aut(X) Š N (X)/�1(X); where N (X)

is the normalizer of �1(X) in its maximal arithmetic subgroup of PU(2; 1). In particular
Aut(X) Š f1g, Z3, Z2

3 or G21 where Zn is the cyclic group of order n and G21 is the
unique non-abelian group of order 21. Among the 50 pairs exactly 33 admit non-trivial
automorphisms: 3 pairs have Aut Š G21, 3 pairs have Aut Š Z2

3 and 27 pairs have
Aut Š Z3.

For each pair of fake projective planes Cartwright and Steger [n.d.] also computed the
torsion group

H1(X; Z) = Tor(H 2(X; Z)) = Tor(Pic(X))

which is the abelianization of the fundamental group. According to their computation
exactly 29 pairs of fake projective planes have a 3-torsion in H1(X; Z).

In this section we summarize recent progress on these fascinating objects.

2.1 Picard group of a fake projective plane. Since pg(X) = q(X) = 0, the long
exact sequence induced by the exponential sequence gives Pic(X) = H 2(X; Z). By the
universal coefficient theorem, TorH 2(X; Z) = TorH1(X; Z). This implies that

Pic(X) = H 2(X; Z) Š Z � H1(X; Z):
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Two ample line bundles with the same self-intersection number on a fake projective
plane differ by a torsion.

It can be shown (cf. Keum [2017, Lemma 1.5]) that if a fake projective plane X has no
3-torsion in H1(X; Z) (21 pairs of fake projective planes satisfy this property), then the
canonical class KX is divisible by 3 and has a unique cube root, i.e., a unique line bundle
L0 up to isomorphism such that 3L0 � KX .

By a result of Kollár [1995, p. 96] the 3-divisibility ofKX is equivalent to the liftability
of the fundamental group to SU(2; 1). Except 4 pairs of fake projective planes the funda-
mental groups lift to SU(2; 1) (Prasad and Yeung [2010, Section 10.4], Cartwright and
Steger [2010, n.d.]). In the notation of Cartwright and Steger [2010], these exceptional
4 pairs are the 3 pairs in the class (C18; p = 3; f2g), whose automorphism groups are of
order 3, and the one in the class (C18; p = 3; f2I g), whose automorphism group is trivial.
There are fake projective planes with a 3-torsion and with canonical class divisible by 3
Cartwright and Steger [n.d.].

2.2 Quotients of fake projective planes. Let X be a fake projective plane with a non-
trivial group G acting on it. In Keum [2008], all possible structures of the quotient surface
X/G and its minimal resolution were classified:

Theorem 2.1 (Keum [ibid.]). 1. If G = Z3, then X/G is a Q-homology projective

plane with 3 singular points of type
1

3
(1; 2) and its minimal resolution is a minimal

surface of general type with pg = 0 and K2 = 3.

2. If G = Z2
3, then X/G is a Q-homology projective plane with 4 singular points of

type
1

3
(1; 2) and its minimal resolution is a minimal surface of general type with

pg = 0 and K2 = 1.

3. If G = Z7, then X/G is a Q-homology projective plane with 3 singular points

of type
1

7
(1; 5) and its minimal resolution is a (2; 3)- or (2; 4)- or (3; 3)-elliptic

surface.

4. If G = Z7 : Z3 = G21, then X/G is a Q-homology projective plane with 4

singular points, where three of them are of type
1

3
(1; 2) and one of them is of type

1

7
(1; 5), and its minimal resolution is a (2; 3)- or (2; 4)- or (3; 3)-elliptic surface.

A fake projective plane is a nonsingular Q-homology projective plane, hence every
quotient is again a Q-homology projective plane. An (a; b)-elliptic surface is a relatively
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minimal elliptic surface over P 1 with c2 = 12 having two multiple fibres of multiplicity
a and b respectively. It has Kodaira dimension 1 if and only if a � 2; b � 2; a + b � 5.
It is an Enriques surface iff a = b = 2. It is rational iff a = 1 or b = 1. All (a; b)-elliptic
surfaces have pg = q = 0, and by van Kampfen theorem its fundamental group is the
cyclic group Zd (see Dolgachev [2010]), where d is the greatest common divisor of a and
b. A simply connected (a; b)-elliptic surface is called a Dolgachev surface.
Remark 2.2. The possibility of (3; 3)-elliptic surface was further removed by the com-
putation of Cartwright-Steger. In Cartwright and Steger [n.d.] they also computed the
fundamental group of each quotient X/G, which is by the result of Armstrong [1968] iso-
morphic to the quotient group of the augmented fundamental group h�1(X); G0i by the
normal subgroup generated by elements with nonempty fixed locus on the complex 2-ball,
where G0 is a lifting of G onto the ball. According to their computation, �1(X/G) = f1g

or Z2 if G = Z7.

2.3 Vanishing theorem for some fake projective planes. For an ample line bundle M

on a fake projective plane X , M 2 is a square integer. When M 2 � 9, H 0(X; M ) ¤ 0

if and only if M © KX . This follows from the Riemann-Roch and the Kodaira vanish-
ing theorem. When M 2 � 4, H 0(X; M ) may not vanish, though no example of non-
vanishing so far has been known. If it does not vanish, then it gives an effective curve of
small degree. The non-vanishing of H 0(X; M ) is equivalent to the existence of certain
automorphic form on the 2-ball.

Theorem 2.3 (Keum [2017]). Let X be a fake projective plane with Aut(X) Š Z7 : Z3.
Then for every Z7-invariant ample line bundle M with M 2 = 4 we have the vanishing

H 0(X; M ) = 0:

In particular, for each line bundle L with L2 = 1

H 0(X; 2L) = 0:

Remark 2.4. 1. A fake projective plane with Aut(X) Š Z7 : Z3 has only 2-torsions
Cartwright and Steger [n.d.], more precisely

H1(X; Z) = Z3
2; Z4

2; Z6
2:

2. Thus KX of such a surface has a unique cube root L0.

3. For such a surface two ample line bundles with the same self-intersection number
differ by a 2-torsion. If M 2 = m2, then M � mL0 + t for a 2-torsion t , hence
2M � 2mL0 and is invariant under every automorphism.
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4. The above theorem in Keum [2017] was stated only for the case M = 2L, but the
proof used only the invariance of M under the order 7 automorphism.

5. If M = 2L0 + t is invariant under an automorphism iff so is t .

6. By Catanese and Keum [2018] the Z7 action on H1(X; Z) fixes no 2-torsion ele-
ment in the case of H1(X; Z) Š Z3

2; Z6
2; and one in the case of H1(X; Z) Š Z4

2.

Theorem 2.5 (Keum [2017]). Let X be a fake projective plane with Aut(X) Š Z2
3. Then

for every Aut(X)-invariant ample line bundle M with M 2 = 4 we have the vanishing

H 0(X; M ) = 0:

In particular, for the cubic root L0 of KX

H 0(X; 2L0) = 0:

Remark 2.6. 1. A fake projective plane with Aut(X) Š Z2
3 has

H1(X; Z) = Z14; Z7; Z2
2 � Z13:

2. Thus KX of such a surface has a unique cube root L0.

3. For such a surface two ample line bundles with the same self-intersection number
differ by a torsion.

4. The above theorem in Keum [ibid.] was stated only for the case M = 2L0, but the
proof used only the invariance of M under Aut(X) Š Z2

3.

5. If M = 2L0 + t is invariant under an automorphism iff so is t .

6. By Catanese and Keum [2018] no torsion element is Z2
3-invariant in the case of

H1(X; Z) Š Z7; Z2
2 � Z13; and only the unique 2-torsion is Z2

3-invariant in the
case of H1(X; Z) Š Z14.

Both proofs used the structure of the quotients of X given in the previous subsection.
The key idea of proof is that if H 0(X; M ) ¤ 0, then dimH 0(X; 2M ) � 4, contradicting
the Riemann-Roch which yields dimH 0(X; 2M ) = 3.

2.4 Exceptionl collections of line bundles. Let Db(coh(W )) denote the bounded de-
rived category of coherent sheaves on a smooth variety W . It is a triangulated category.
An object E in a triangulated category is called exceptional if Hom(E; E[i ]) = C if
i = 0, and = 0 otherwise. A sequence E1; : : : ; En of exceptional objects is called an
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exceptional sequence if Hom(Ej ; Ek [i ]) = 0 for any j > k, any i . When W is a smooth
surface with pg = q = 0, every line bundle is an exceptional object in Db(coh(W )).

Let X be a fake projective plane and L be an ample line bundle with L2 = 1. The
three line bundles

2L; L; OX

form an exceptional sequence if and only if H j (X; 2L) = H j (X; L) = 0 for all j . Write

Db(coh(X)) = h2L; L; OX ; Ai

where A is the orthogonal complement of the admissible triangulated subcategory gener-
ated by 2L; L; OX . Then the Hochshield homology

HH�(A) = 0:

This can be read off from the Hodge numbers. In fact, the Hochshield homology of X is
the direct sum of Hodge spaces H p;q(X), and its total dimension is the sum of all Hodge
numbers. The latter is equal to the topological Euler number c2(X), as a fake projective
plane has Betti numbers b1(X) = b3(X) = 0.

The Grothendieck group K0(X) has filtration

K0(X) = F 0K0(X) � F 1K0(X) � F 2K0(X)

with
F 0K0(X)/F 1K0(X) Š CH 0(X) Š Z;

F 1K0(X)/F 2K0(X) Š Pic(X);

F 2K0(X) Š CH 2(X):

If the Bloch conjecture holds for X , i.e. if CH 2(X) Š Z, then K0(A) is finite.

Corollary 2.7. Let X be a fake projective plane with Aut(X) Š Z7 : Z3 or Z2
3. Let L0

be the unique cubic root of KX . Then the three line bundles

OX ; �L0; �2L0

form an exceptional collection on X . If t is a Z7- or Z2
3-invariant torsion line bundle,

then the three line bundles
OX ; �(L0 + t); �2L0

form another exceptional collection.
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Such a torsion line bundle t exists for only one pair of fake projective planes in each case
Aut(X) Š Z7 : Z3 or Z2

3 by Catanese and Keum [2018] (see Remark 2.4, Remark 2.6).
This is equivalent to that H i (X; 2L0) = H i (X; L0) = H i (X; L0 + t) = 0 for all i ,

hence follows from Theorem 2.3 and 2.5. Indeed, since L0 is a cubic root of KX , these
vanishings are equivalent to the vanishing H 0(X; 2L0) = H 0(X; 2L0 + t) = 0. This
confirms, for fake projective planes with enough automorphisms, the conjecture raised by
Galkin, Katzarkov, Mellit, and Shinder [2013] that predicts the existence of an exceptional
sequence of length 3 on every fake projective plane. Disjoint from our cases, Fakhruddin
[2015] confirmed the conjecture for the case of three 2-adically uniformized fake projec-
tive planes found by Mumford [1979] and Ishida and Kato [1998].

2.5 Bicanonical map of fake projective planes. By Reider’s theorem Reider [1988]
(see Barth, Hulek, Peters, and Van de Ven [2004] for a slightly refined version) on adjoint
linear systems the bicanonical system j2KX j of a ball quotient X is base point free, thus
it defines a morphism.

If the ball quotient X has �(X) � 2, then K2
X � 9�(X) � 10, and since a ball quotient

cannot contain a curve of geometric genus 0 or 1, the bicanonical map embeds X unless
X contains a smooth genus 2 curve C with C 2 = 0, and CKX = 2.

In the case �(X) = 1, for instance if we have a fake projective plane, we are below
the Reider inequality K2

X � 10, and the question of the very-ampleness of the bicanonical
system is interesting.

Conjecture 2.8. For each fake projective plane its bicanonical map is an embedding into
P 9.

Every fake projective plane X with automorphism group of order 21 cannot contain an
effective curve with self-intersection 1 (Theorem 2.3), as was first proved in Keum [2013]
(see Keum [2017], also Galkin, Katzarkov, Mellit, and Shinder [2015]). Thus by applying
I. Reider’s theorem, one sees that the bicanonical map of such a fake projective plane is
an embedding into P 9 (see also Di Brino and Di Cerbo [2018]).

Including these 3 pairs of fake projective planes, for 10 pairs the conjecture has been
confirmed by Catanese and Keum [2018]. For nine pairs this follows from the vanishing
result of Keum [2013, 2017], Catanese and Keum [2018]. For one pair we do not have the
vanishing theorem, and the surface possesses either none or 3 curves D with D2 = 1. But
even in the latter case we manage to prove the very-ampleness of the bicanonical system.

2.6 Explicit equations of fake projective planes. It has long been of great interest
since Mumford to find equations of a projective model of a fake projective plane.

In a recent joint work Borisov and Keum [2017, 2018] we find equations of a projective
model (the bicanonical image) of a conjugate pair of fake projective planes by studying the
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geometry of the quotient of such surface by an order seven automorphism. The equations
are given explicitly as 84 cubics in 10 variables with coefficients in the field Q[

p
�7].

The complex conjugate equations define the bicanonical image of the complex conjugate
of the surface,

This pair has the most geometric symetries among the 50 pairs, in the sense that it has
the large automorphism group G21 = Z7 : Z3 and the Z7-quotient has a smooth model of
a (2; 4)-elliptic surface which is not simply connected. For several pairs of fake projective
planes including this pair the bicanonical map gives an embedding into the 9-dimensional
projective space.
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Abstract

Let X be an algebraic set in Rn. Real-valued functions, defined on subsets of X ,
that are continuous and admit a rational representation have some remarkable proper-
ties and applications. We discuss recently obtained results on such functions, against
the backdrop of previously developed theories of arc-symmetric sets, arc-analytic
functions, approximation by regular maps, and algebraic vector bundles.

1 Introduction

Our purpose is to report on some new developments in real algebraic geometry, focusing
on functions that have a rational representation. Let us initially consider the simplest case.
A function f : Rn ! R of class Ck , where k is a nonnegative integer, is said to have a
rational representation if there exist two polynomial functions p; q on Rn such that q is
not identically 0 and f = p/q on fq ¤ 0g. A typical example is

(1.1) fk : R2 ! R defined by

fk(x; y) =
x3+k

x2 + y2
for (x; y) ¤ (0; 0) and f (0; 0) = 0:

To the best of our knowledge, Kucharz [2009] was the first paper devoted to the sys-
tematic study of such functions. This line of research was continued by several math-
ematicians Bilski, Kucharz, A. Valette, and G. Valette [2013], Fichou, Huisman, Man-
golte, and Monnier [2016], Fichou, Monnier, and Quarez [2017], Kollár, Kucharz, and

W. Kucharz was partially supported by the National Science Center (Poland) under grant number
2014/15/ST1/00046. K. Kurdyka was partially supported by the ANR project LISA (France).
MSC2010: primary 14P05; secondary 14P99, 26C15, 57R22, 58A07.
Keywords: Real algebraic set, semialgebraic set, regular function, rational function, regulous function,
arc-symmetric set, arc-analytic function, approximation, vector bundle.
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Kurdyka [2018], Kollár and Nowak [2015], Kucharz [2013b, 2014a,b, 2015b, 2016a,b],
Kucharz and Kurdyka [2016a,b, 2017, 2015], Kucharz and Zieliński [2018], Monnier
[2018], Zieliński [2016], frequently with k = 0, where the functions admitting a ratio-
nal representation are only continuous. Let us note that the complex case is quite different.
Any continuous function fromCn intoC that has a rational representation is a polynomial
function.

Henceforthweworkwith real algebraic sets, which is equivalent to the approach adopted
in Bochnak, Coste, and Roy [1998]. By a real algebraic set we mean an algebraic subset
of Rn for some n. One can realize real projective d -space P d (R) as a real algebraic set
using the embedding

(1.2) P d (R) 3 (x0 : � � � : xd ) 7!

 
xixj

x20 + � � � + x2
d

!
2 R(d+1)2 :

Thus any algebraic subset of P d (R) is an algebraic subset of R(d+1)2 . Consequently,
many useful constructions can be performedwithin the class of real algebraic sets, blowing-
up being an important example. One can also view any real algebraic set as the set of real
points V (R) of a quasiprojective variety V defined over R.

Unless explicitly stated otherwise, we always assume that real algebraic sets and their
subsets are endowed with the Euclidean topology, which is induced by the usual metric on
R. For a real algebraic set X , its singular locus Sing(X) is an algebraic, Zariski nowhere
dense subset ofX . We say thatX is smooth if Sing(X) is empty. The following examples
illustrate some phenomena that do not occur in the complex setting.

(1.3) The algebraic curve

C := (x4 � 2x2y � y3 = 0) � R2

is irreducible and Sing(C ) = f(0; 0)g. Actually, C is an analytic submanifold of
R2.

(1.4) The algebraic curve
C := (x3 � x2 � y2 = 0) � R2

is irreducible and Sing(C ) = f(0; 0)g. It has two connected components, the sin-
gleton f(0; 0)g and the unbounded branch C n f(0; 0)g.

(1.5) The algebraic curve

C := (x2(x2 � 1)(x2 � 4) + y2 = 0) � R2

is irreducible and Sing(C ) = f(0; 0)g. It has three connected components, the
singleton f(0; 0)g and two ovals.
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(1.6) The Cartan umbrella

S := (x3 � z(x2 + y2) = 0) � R3

is an irreducible algebraic surface with Sing(S) = (z-axis). The surface S is con-
nected and S n Sing(S) is not dense in S . Furthermore, S is not coherent when
regarded as an analytic subset of R3.

It will be convenient to consider regular functions in a more general setting than usual.
Let X � Rn be an algebraic set and let f : W ! R be a function defined on some
subset W of X . We say that f is regular at a point x 2 W if there exist two polynomial
functions p; q on Rn such that q(x) ¤ 0 and f = p/q on W \ fq ¤ 0g. We say that
f is a regular function if it is regular at each point of W . For any algebraic set Y � Rp ,
a map ' = ('1; : : : ; 'p) : W ! Y is regular if all the components 'i : W ! R are
regular functions. These notions are independent of the algebraic embeddings X � Rn

and Y � Rp .
Any rational function R on X determines a regular function R : X n Pole(R) ! R,

where Pole(R) stands for the polar set of R.

Contents. In Section 2 we recall briefly main facts about arc-symmetric sets and arc-
analytic functions. These notions, introduced 30 years ago by the second-named author,
describe some rigidity phenomena (of an analytic type) of real algebraic sets. They form
a background for the subsequent sections in which we present recent developments in the
context of rational functions.

Section 3 contains presentation of new results on the geometry defined by regulous
functions, that is, continuous functions which admit a strong version of rational represen-
tation.

In Section 4 we recall some theorems on approximation of continuousmaps with values
in spheres by regular maps and give new results in which approximating maps are allowed
to be regulous.

In Section 5 we discuss topological, algebraic and regulous vector bundles. Regulous
vector bundles have many desirable properties of algebraic vector bundles but are more
flexible.

2 Arc-symmetric sets and arc-analytic functions

Arc-symmetric sets and arc-analytic functions were introduced in Kurdyka [1988]. They
were further investigated and applied in Adamus and Seyedinejad [2017], Bierstone and
Milman [1990], Bierstone, Milman, and Parusiński [1991], Fichou [2005], Koike and
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Parusiński [2003], Kucharz [2005], Kurdyka [1991, 1994, 1999], Kurdyka and Parusiński
[2007, 2012], Kurdyka and Rusek [1988], McCrory and Parusiński [2003], Parusiński
[1994, 2001, 2004], Parusiński and Păunescu [2017].

2.1 Arc-symmetric sets. We say that a subset E � Rn is arc-symmetric if for every
analytic arc 
 : (�1; 1) ! Rn with 
((�1; 0)) � E, we have 
((�1; 1)) � E. We are
mostly interested in semialgebraic arc-symmetric sets.

Recall that a topological space is called Noetherian if every descending chain of its
closed subsets is stationary. In particular, Rn with the Zariski topology is a Noetherian
topological space. In Kurdyka [1988], the following is proved.

Theorem 2.1. The semialgebraic arc-symmetric subsets of Rn are precisely the closed
sets of a certain Noetherian topology on Rn.

FollowingKurdyka [ibid.], we call this topology onRn theAR topology. Thus a subset
of Rn is AR-closed if and only if it is semialgebraic and arc-symmetric. It follows from
the curve selection lemma that each AR-closed subset of Rn is closed (in the Euclidean
topology), cf. Kurdyka [ibid.]. Clearly, any connected component of anAR-closed subset
ofRn is alsoAR-closed. Furthermore, any irreducible analytic component of an algebraic
subset of Rn is AR-closed. However, an AR-closed set need not be analytic at every
point.

Example 2.2. The set

E = f(x; y; z) 2 R3 : x3 � z(x2 + y2) = 0; x2 + y2
¤ 0g [ f(0; 0; 0)g

(the “cloth” of the Cartan umbrella (1.6)) is AR-closed, but it is not analytic at the origin
of R3.

Given a semialgebraic subset E � Rn, we say that a point x 2 E is regular in di-
mension d if for some open neighborhood Ux � Rn of x, the intersection E \ Ux is a
d -dimensional analytic submanifold of Ux . We let Regd (E) denote the locus of regular
points of E in dimension d . The dimension of E, written dimE, is the maximum d with
Regd (E) nonempty. If V is the Zariski closure of E in Rn, then dimE = dimV , cf.
Bochnak, Coste, and Roy [1998].

By a resolution of singularities of a real algebraic setX we mean a proper regular map
� : X̃ ! X where X̃ is a smooth real algebraic set and � is birational.

The following is the key result of Kurdyka [1988].

Theorem 2.3. Let X � Rn be a d -dimensional real algebraic set and let E � Rn be an
AR-closed irreducible subset with E � X and dimE = d . If � : X̃ ! X is a resolution
of singularities of X , then there exists a unique connected component Ẽ of X̃ such that
�(Ẽ) is the closure (in the Euclidean topology) of Regd (E).
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This is illustrated by an example below.

Example 2.4. The real cubic C := (x3 � x � y2 = 0) � R2 is smooth and irreducible.
It has two connected components, C1 which is compact and C2 which is noncompact.
Consider the cone X := (x3 � xz2 � y2z = 0) � R3 over C . Note that X is irreducible
and Sing(X) = f(0; 0; 0)g. Clearly,

� : X̃ := C � R ! X; (x; y; z) 7! (xz; yz; z)

is a resolution of singularities of X . The connected components C1 � R and C2 � R of X̃
correspond via � to the AR-irreducible components of X .

The notion of arc-symmetric set turns out to be related to a notion introduced by Nash
in his celebrated paper Nash [1952]. We adapt his definition to the case of AR-closed
sets.

Definition 2.5. Let E be an AR-closed subset of Rn. We say that a subset S � E is a
(Nash) sheet of E if the following conditions are satisfied:

(i) for any two points x0; x1 in S there exists an analytic arc 
 : [0; 1] ! Rn with

(0) = x0, 
(1) = x1, and 
([0; 1]) � S ;

(ii) S is maximal in the class of subsets satisfying the condition (i);

(iii) the interior of S in X is nonempty.

The following result of Kurdyka [1988] gives a positive and precise answer to Nash’s
conjecture on sheets of an algebraic set Nash [1952].

Theorem 2.6. Let X be an algebraic subset or more generally an AR-closed subset of
Rn. Then:

(i) There are finitely many sheets in X .

(ii) Each sheet in X is semialgebraic and closed (in the Euclidean topology).

(iii) X is the union of its sheets.

The proof of this theorem is based on Theorem 2.3 and the notion of immersed compo-
nent of an AR-closed set. An immersed component of X is an AR-irreducible subset of
X with nonempty interior inX . In general,X may have more immersed components than
AR-irreducible components. For instance, the Whitney umbrella (xy2 � z2 = 0) � R3

is AR-irreducible, but it has two immersed components.
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Compact AR-closed sets share with compact real algebraic sets all known local and
global topological properties. In particular, each compact AR-closed set carries the mod
2 fundamental class. It is conjectured that any compactAR-closed set is semialgebraically
homeomorphic to a real algebraic set.

Recall that a Nash manifold X � Rn is an analytic submanifold which is a semialge-
braic set. Building on Thom’s representability theorem Thom [1954] and Theorem 2.3,
the following was established in Kucharz [2005].

Theorem 2.7. Let X � Rn be a compact Nash manifold, and d an integer satisfying
0 � d � dimX . Then each homology class in Hd (X ;Z/2) can be represented by an
AR-closed subset of Rn, contained in X .

Now we recall a result of Kurdyka and Rusek [1988] which was motivated by the
problem of surjectivity of injective selfmaps.

Theorem 2.8. Let X � Rn be an AR-closed subset of dimension d , with 0 � d � n� 1.
Then the homotopy group �n�d�1(R

n nX) is nontrivial.

As demonstrated in Kurdyka and Rusek [ibid.], Theorem 2.8 implies the following
result of Białynicki-Birula and Rosenlicht [1962].

Theorem 2.9. Any injective polynomial map from Rn into itself is surjective.

One should mention that Theorem 2.9, with n = 2, was established earlier by Newman
[1960]. Ax [1969] proved that any injective regular map of a complex algebraic variety
into itself is surjective. Ax’s proof is based on the Lefschetz principle and a reduction
to the finite field case. By extending the idea of Białynicki-Birula and Rosenlicht [1962],
Borel [1969] gave a topological proof of Ax’s theorem that works also for injective regular
maps of a smooth real algebraic set into itself. Finally, combining Borel’s argument with
the geometry of AR-closed sets, the second-named author proved in Kurdyka [1999] the
following.

Theorem 2.10. Let X be a real algebraic set (possibly singular) and let f : X ! X be
an injective regular map. Then f is surjective.

In fact, there is a more general version of Theorem 2.10 due to Parusiński [2004], cf.
also Kurdyka and Parusiński [2007].

2.2 Arc-analytic maps. Let X � Rn and Y � Rp be some subsets. A map f : X !

Y is said to be arc-analytic if for every analytic arc 
 : (�1; 1) ! Rn with 
((�1; 1)) �

X , the composite f ı 
 : (�1; 1) ! Rp is an analytic map. We are mostly interested in
the case where X and Y are AR-closed, and f is semialgebraic.
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The function fk : R2 ! R in (1.1) is arc-analytic and of class Ck , but it is not of class
Ck+1. The following fact is recorded in Kurdyka [1988].

Proposition 2.11. Let X � Rn and Y � Rp be AR-closed subsets, and let f : X ! Y

be a semialgebraic arc-analytic map. Then:

(i) The graph of f is an AR-closed subset of Rn � Rp .

(ii) If Z � Y is an AR-closed set, then so is f �1(Z).

(iii) f is continuous (in the Euclidean topology).

Arc-analytic functions do not have nice properties without some additional assump-
tions. For instance, an arc-analytic function onRn need not be subanalytic Kurdyka [1991]
or continuous Bierstone, Milman, and Parusiński [1991], and even for n = 2 it may have
a nondiscrete singular set Kurdyka [1994].

In complex algebraic geometry, the image of an algebraic set by a proper regular map
is again an algebraic set. This is trivially false in the real case; consider R ! R, x 7! x2.
There is also a more interesting example. Let

X := (x � y2
� 1 = 0) � R2 and Y := (x3 � x2 � y2 = 0) � R2:

Then f : X ! Y , (x; y) 7! (x; xy) is an injective, proper regular map. However, f (X)

is not an algebraic set. Therefore the following embedding theorem of Kurdyka [1988] is
of interest.

Theorem 2.12. LetX � Rn be an AR-closed subset and let f : X ! Rp be a semialge-
braic arc-analytic map that is injective and proper. Then f (X) � Rp is an AR-closed
subset.

Given an AR-closed subset X � Rn, we denote by Aa(X) the ring of semialgebraic
arc-analytic functions on X . According to Kurdyka [ibid.], the ring Aa(X) is not Noethe-
rian if dimX � 2. However, any ascending chain of prime ideals of Aa(X) is station-
ary. Furthermore, by Kurdyka [ibid.], there exists a function f 2 Aa(Rn) such that
X � f �1(0) and dim(f �1(0)nX) < dimX . This latter result has been recently strength-
ened by Adamus and Seyedinejad [2017], who proved that actuallyX = f �1(0) for some
f 2 Aa(Rn). This enabled them to obtain the Nullstellensatz for the ring Aa(X), gener-
alizing thereby the weak Nullstellensatz of Kurdyka [1988].

2.3 Blow-Nash and blow-analytic functions. Let X be a smooth real algebraic set. A
Nash function on X is an analytic function which is semialgebraic. A function on X is
said to be blow-Nash if it becomes a Nash function after composing with a finite sequence
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of blowups with smooth nowhere dense centers. It was conjectured by K. Kurdyka (1987)
that a function is blow-Nash if and only if it is arc-analytic and semialgebraic. The first
proof of this conjecture was published by Bierstone and Milman [1990]. They developed
techniques which later turned out to be useful in their approach to the resolution of sin-
gularities Bierstone and Milman [1997]. There is also a second proof due to Parusiński
[1994]. It is based on the rectilinearization theorem for subanalytic functions Parusiński
[ibid.], which is a prototype of the preparation theorem for subanalytic functions, cf. for
example Parusiński [2001].

Less is known on arc-analytic functions which are subanalytic. Any such function is
continuous and can be made analytic after composing with finitely many local blowups
with smooth centers, cf. Bierstone and Milman [1990] and Parusiński [1994]. It is not
known whether one can use global blowups, that is, whether arc-analytic subanalytic func-
tions coincide with blow-analytic functions of T. C. Kuo [1985], cf. also Fukui, Koike,
and T.-C. Kuo [1998]. In Kurdyka and Parusiński [2012] it is proved that the locus of
nonanalyticity of an arc-analytic subanalytic function is arc-symmetric and subanalytic.
Another result of Kurdyka and Parusiński [ibid.] asserts that in the blow-Nash case, the
centers of blowups can be chosen in the locus of nonanalyticity.

2.4 Some applications. Recently arc-symmetric sets were used in the construction of
new invariants in the singularity theory. These invariants include the virtual Betti num-
bers of real algebraic sets McCrory and Parusiński [2003] and arc-symmetric sets Fichou
[2005]. Other invariants, analogous to the zeta function of Denef and Loeser, proved to be
useful in the classification of germs of functions with respect to blow-analytic and blow-
Nash equivalence, cf. Koike and Parusiński [2003] and Fukui, Koike, and T.-C. Kuo
[1998]. Arc-analytic homeomorphisms were recently used in Parusiński and Păunescu
[2017] to construct nice trivializations in the stratification theory.

3 Regulous functions

3.1 Functions regular on smooth algebraic arcs. All results presented in this subsec-
tion come from our joint paper Kollár, Kucharz, and Kurdyka [2018].

Let X be a real algebraic set. A subset A � X is called a smooth algebraic arc if its
Zariski closure C is an irreducible algebraic curve, A � C n Sing(C ), and A is homeo-
morphic to R.

An open subset U � X is said to be smooth if it is contained in X n Sing(X).

Theorem 3.1. Let X be a real algebraic set and let f : U ! R be a function defined on
a connected smooth open subset U � X . Assume that the restriction of f is regular on
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each smooth algebraic arc contained in U . Then there exists a rational function R on X
such that P := U \ Pole(R) has codimension at least 2 and f jU nP = RjU nP .

There are two main steps in the proof of Theorem 3.1. Assuming that f is a semi-
algebraic function (so U is a semialgebraic set), one first obtains a local variant of the
assertion by means of Bertini’s theorem, and then extends it along smooth algebraic arcs.
The general case is reduced to the semialgebraic one via some subtle Hartogs-like results
on analytic functions due to Błocki [1992] and Siciak [1990].

A function regular on smooth algebraic arcs need not be continuous.

Example 3.2. The function f : R2 ! R defined by

f (x; y) =
x8 + y(x2 � y3)2

x10 + (x2 � y3)2
for (x; y) ¤ (0; 0) and f (0; 0) = 0

is regular on each smooth algebraic arc in R2, but it is not locally bounded on the curve
x2 � y3 = 0.

Let X = X1 � � � � � Xn be the product of real algebraic sets and let �i : X ! Xi be
the projection on the i th factor. A subset K � X is said to be parallel to the i th factor of
X if �j (K) consists of one point for each j ¤ i .

Theorem 3.3. Let X = X1 � � � � � Xn be the product of real algebraic sets and let
f : U ! R be a function defined on a connected smooth open subset U � X . Assume
that the restriction of f is regular on each smooth algebraic arc contained in U and
parallel to one of the factors of X . Then there exists a rational function R on X such that
P := U \ Pole(R) has codimension at least 2 and f jU nP = RjU nP .

Theorem 3.3, for n = 1, coincides with Theorem 3.1. The general case is proved by
induction on n, but a detailed argument is fairly long.

As a direct consequence, we get the following.

Corollary 3.4. Let f : U ! R be a function defined on a connected open subsetU � Rn.
Assume that the restriction of f is regular on each open interval contained in U and
parallel to one of the coordinate axes. Then there exists a rational function R on Rn such
that P := U \ Pole(R) has codimension at least 2 and f jU nP = RjU nP .

Results similar to Corollary 3.4 have been known earlier, but they were obtained under
the restrictive assumption that f is an analytic function on U , cf. Bochner and Martin
[1948].

3.2 Introducing regulous functions. Let X be a real algebraic set, f : W ! R a
function defined on some subset W � X , and Y the Zariski closure of W in X .
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Definition 3.5. A rational function R on Y is said to be a rational representation of f if
there exists a Zariski open dense subset Y 0 � Y nPole(R) such that f jW \Y 0 = RjW \Y 0 .

While the definition makes sense for an arbitrary subsetW , it is sensible only ifW con-
tains a sufficiently large portion of Y . The key examples of interest are open subsets and
semialgebraic subsets, with W = X being the most important case.

One readily checks that the following conditions are equivalent:

(3.6) For every algebraic subset Z � X the restriction f jW \Z has a rational representa-
tion.

(3.7) There exists a sequence of algebraic subsets

X = X0 � X1 � � � � � Xm+1 = ¿

such that the restriction of f is regular on W \ (Xi nXi+1) for i = 0; : : : ; m.

(3.8) There exists a finite stratification S of X , with Zariski locally closed strata, such
that the restriction of f is regular on W \ S for every S 2 S.

Definition 3.9. We say that f is a regulous function if it is continuous and the equivalent
conditions (3.6), (3.7), (3.8) are satisfied.

In some papers, regulous functions are called hereditarily rational Kollár, Kucharz,
and Kurdyka [2018] and Kollár and Nowak [2015] or stratified-regular Kucharz [2015b],
Kucharz and Kurdyka [2016b, 2015], and Zieliński [2016]. The short name “regulous”,
derived from “regular” and “continuous”, was introduced in Fichou, Huisman, Mangolte,
and Monnier [2016]. A continuous function that has a rational representation is often
called simply a continuous rational functionKollár, Kucharz, and Kurdyka [2018], Kollár
and Nowak [2015], Kucharz [2009, 2013b, 2014b,a, 2016a], and Kucharz and Kurdyka
[2016a, 2017].

Evidently, any regulous function is continuous and has a rational representation. The
converse holds in an important special case.

Proposition 3.10. Let X be a real algebraic set and letW � X be a smooth open subset.
For a function f : W ! R, the following conditions are equivalent:

(a) f is regulous.

(b) f is continuous and has a rational representation.

The nontrivial implication (b))(a) is proved in Kollár and Nowak [2015]. Suppose
that (b) holds, and let R be a rational representation of f . Since f is continuous and W
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is smooth, one gets f jW nP = RjW nP , where P = W \ Pole(R). Furthermore, it is not
hard to see that P has codimension at least 2. Finally, condition (3.6) can be verified by
induction on codimZ.

As demonstrated in Kollár and Nowak [ibid.] and recalled below, the smoothness as-
sumption in Proposition 3.10 cannot be dropped.

Example 3.11. Consider the algebraic surface

S := (x3 � (1 + z2)y3 = 0) � R3

and the function f : S ! R defined by f (x; y; z) = (1 + z2)1/3. Note that Sing(S) =
z-axis and f (x; y; z) = x/y on S n (z-axis). In particular, f is continuous and has a
rational representation. However, f is not regulous since f jz-axis does not have a rational
representation. It is also interesting that S is an analytic submanifold of R3.

The main result of Kollár and Nowak [ibid.] can be stated as follows.

Theorem 3.12. Let X be a smooth real algebraic set and let f : W ! R be a function
defined on an algebraic subset W � X . Then the following conditions are equivalent:

(a) f is regulous.

(b) f = f̃ jW , where f̃ : X ! R is a continuous function that has a rational represen-
tation.

The proof of (a))(b) by induction on dimW is tricky. Roughly speaking, one first
finds a function on X that extends f and has a rational representation. However, such
an extension may not be continuous and has to be corrected. This is achieved by ana-
lyzing liftings of functions to the blowup of X at a suitably chosen ideal. The argument
relies on a version of the Łojasiewicz inequality given in Bochnak, Coste, and Roy [1998,
Theorem 2.6.6].

The implication (b))(a) follows from Proposition 3.10.
As it was noted on various occasions (see for example Kucharz [2009, p. 528] or Fi-

chou, Huisman, Mangolte, and Monnier [2016, Théorème 3.11]), Hironaka’s theorem on
resolution of indeterminacy points Hironaka [1964] implies immediately the following.

Proposition 3.13. Let X be a smooth real algebraic set. For a function f : X ! R, the
following conditions are equivalent:

(a) f is continuous and has a rational representation.

(b) There exists a regular map � : X 0 ! X , which is the composite of a finite sequence
of blowups with smooth Zariski nowhere dense centers, such that the function f ı

� : X 0 ! R is regular.



748 WOJCIECH KUCHARZ AND KRZYSZTOF KURDYKA

Fefferman and Kollár [2013] study the following problem. Consider a linear equation

f1y1 + � � � + fryr = g;

where g and the fi are regular (or polynomial) functions on Rn. Assume that it admits a
solution where the yi are continuous functions on Rn. Then, according to Fefferman and
Kollár [ibid., Section 2], it has also a continuous semialgebraic solution. One could hope
to prove that it has a regulous solution. This is indeed the case for n = 2 Kucharz and
Kurdyka [2017, Corollary 1.7], but fails for any n � 3 Kollár and Nowak [2015, Exam-
ple 6]. It would be interesting to decide which linear equations have regulous solutions.
Of course, the problem can be considered in a more general setting, replacingRn by a real
algebraic set.

3.3 Curve-regulous and arc-regulous functions. All results discussed in this subsec-
tion come from our joint paper Kollár, Kucharz, and Kurdyka [2018], where it is proved
that regulous functions can be characterized by restrictions to algebraic curves or algebraic
arcs.

Definition 3.14. Let X be a real algebraic set and let f : W ! R be a function defined
on some subset W � X .

We say that f is regulous on algebraic curves or curve-regulous for short if for ev-
ery irreducible algebraic curve C � X the restriction f jW \C is regulous (equivalently,
f jW \C is continuous and has a rational representation).

Furthermore, we say that f is regulous on algebraic arcs or arc-regulous for short if for
every irreducible algebraic curve C � X and every point x 2 W \C there exists an open
neighborhood Ux � W of x such that the restriction f jUx\C is regulous (equivalently,
f jUx\C is continuous and has a rational representation).

Obviously, any curve-regulous function is arc-regulous. The converse does not hold
for a rather obvious reason. For instance, consider the hyperbola H � R2 defined by
xy � 1 = 0. Any function on H that is constant on each connected component of H is
arc-regulous, but it must be constant to be regulous.

In Kollár, Kucharz, and Kurdyka [ibid.], curve-regulous (resp. arc-regulous) functions
are called curve-rational (resp. arc-rational).

Our main result on curve-regulous functions is the following.

Theorem 3.15. LetX be a real algebraic set and letW � X be a subset that is either open
or semialgebraic. For a function f : W ! R, the following conditions are equivalent:

(a) f is regulous.

(b) f is curve-regulous.
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The corresponding result for arc-regulous functions takes the following form.

Theorem 3.16. LetX be a real algebraic set and letW � X be a connected smooth open
subset. For a function f : W ! R, the following conditions are equivalent:

(a) f is regulous.

(b) f is arc-regulous.

The crucial ingredient in the proofs of Theorems 3.15 and 3.16 is Theorem 3.1. In both
cases, only the implication (b))(a) is not obvious. It is essential that testing curves and
arcs are allowed to have singularities.

Themain properties of arc-regulous functions on semialgebraic sets can be summarized
as follows.

Theorem 3.17. Let X be a real algebraic set and let f : W ! R be an arc-regulous
function defined on a semialgebraic subset W � X . Then f is continuous and there
exists a sequence of semialgebraic sets

W = W0 � W1 � � � � � Wm+1 = ¿;

which are closed in W , such that the restriction of f is a regular function on each con-
nected component of Wi n Wi+1 for i = 0; : : : ; m. In particular, f is a semialgebraic
function.

We also establish a connection between arc-regulous functions and, discussed in Sec-
tion 2, arc-analytic functions.

Theorem 3.18. Let X be a real algebraic set and let f : W ! R be an arc-regulous
function defined on an open subsetW � X . Then f is continuous and arc-analytic.

In Kollár, Kucharz, and Kurdyka [ibid.] there are several other related results.

3.4 Constructible topology and k-regulous functions. We consider regulous func-
tions of class Ck .

Definition 3.19. Let X be a smooth real algebraic set and let f : U ! R be a function
defined on an open subset U � X .

We say that f is a k-regulous function, where k is a nonnegative integer, if it is of
class Ck and regulous; or equivalently, by Proposition 3.10, if it is of class Ck and has a
rational representation.
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The set Rk(U ) of all k-regulous functions on U forms a ring. An example of a k-
regulous function on R2 is provided by (1.1).

A function on U which is of class C1 and regulous is actually regular, cf. Kucharz
[2009]. Therefore one gains no new insight by considering such functions.

All results discussed in the remainder of this subsection come from the paper of Fichou,
Huisman, Mangolte, and Monnier [2016], where they are stated for functions defined on
Rn. The ring Rk(Rn) is not Noetherian if n � 2. Nevertheless it has some remarkable
properties.

Given a collection F of real-valued functions on Rn, we set

Z(F ) := fx 2 Rn : f (x) = 0 for all f 2 F g

and write Z(f ) for Z(F ) if F = ff g.
The following is a variant of the classical Nullstellensatz for the ring Rk(Rn).

Theorem 3.20. Let I be an ideal of the ring Rk(Rn). If a function f in Rk(Rn) vanishes
on Z(I ), then f m belongs to I for some positive integer m.

Recall that the Nullstellensatz for the ring of polynomial or regular functions on Rn

requires an entirely different formulation, cf. Bochnak, Coste, and Roy [1998].
The subsets of Rn of the form Z(I ) for some ideal I of Rk(Rn) can be characterized

in terms of constructible sets. A subset of Rn is said to be constructible if it belongs to the
Boolean algebra generated by the algebraic subsets of Rn; or equivalently if it is a finite
union of Zariski locally closed subsets of Rn.

Theorem 3.21. For a subset E � Rn, the following conditions are equivalent:

(a) E = Z(I ) for some ideal I of Rk(Rn).

(b) E = Z(f ) for some function f in Rk(Rn).

(c) E is closed and constructible.

Theorem 3.21 can be illustrated as follows.

Example 3.22. Consider the Cartan umbrella S � R3 defined in (1.6), and let E be
the closure of S n (z-axis). It is clear that E is a closed constructible set. Moreover,
E = Z(f ), where f : R3 ! R is the regulous function defined by

f (x; y; z) = z �
x3

x2 + y2
on R3

n (z-axis) and f (x; y; z) = z on the z-axis.

The collection of all closed constructible subsets of Rn forms the family of closed
subsets for a Noetherian topology on Rn, called the constructible topology. Any subset
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of Rn which is constructible-closed is actually AR-closed. The converse does not hold if
n � 2.

In what follows we consider Rn endowed with the constructible topology. The assign-
ment Rk : U 7! Rk(U ), where U runs through the open subsets of Rn, is a sheaf of rings
on Rn, and (Rn;Rk) is a locally ringed space. Sheaves of Rk-modules on Rn are called
k-regulous sheaves.

It follows from Theorem 3.20 that the ringed space (Rn;Rk) carries essentially the
same information as the affine scheme Spec(Rk(Rn)). In particular, Cartan’s theorems A
and B are available for k-regulous sheaves.

Theorem 3.23. For any quasi-coherent k-regulous sheaf F on Rn, the following hold:

(A) F is generated by global sections.

(B) H i (Rn; F ) = 0 for i � 1.

As is well-known, Cartan’s theorems A and B fail for coherent algebraic sheaves on
Rn.

Let V � Rn be a constructible-closed subset. The sheaf JV � Rk of ideals of k-
regulous functions vanishing on V is a quasi-coherent k-regulous sheaf on Rn, and the
quotient sheafRk/JV has support V . Endow V with the induced (constructible) topology,
and letRk

V be the restriction of the sheafRk
V /JV toV . The locally ringed space (V;Rk

V ) is
called a closed k-regulous subvariety of (Rn;Rk). One can consider k-regulous sheaves
on V , which are just sheaves of Rk

V -modules. By a standard argument, Theorem 3.23
implies that Cartan’s theorems A and B hold also for quasi-coherent k-regulous sheaves
on V .

An affine k-regulous variety is a locally ringed space isomorphic to a closed k-regulous
subvariety ofRn for some n. An abstract k-regulous variety can be defined in the standard
way. The geometry of k-regulous varieties is to be developed.

4 Homotopy and approximation

In this section we discuss some homotopy and approximation results in the framework of
real algebraic geometry, focusing on maps with values in the unit p-sphere

Sp = (u20 + � � � + up
p � 1 = 0) � Rp+1:

Approximation of continuous maps means approximation in the compact-open topology.

4.1 Approximation by regular maps. The theory of regular maps between real alge-
braic sets was developed by J. Bochnak and the first-named author Bochnak and Kucharz
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[1987a,b, 1988, 1989b, 1991b, 1993, 1999, 2007] who joined forces with R. Silhol work-
ing on Bochnak, Kucharz, and Silhol [1997]. Regular maps are studied also in Ghiloni
[2006, 2007], Joglar-Prieto and Mangolte [2004], Kucharz [2010, 2013a, 2015a], Loday
[1973], Ozan [1995], Peng and Tang [1999], Turiel [2007], and Wood [1968]. We make
no attempt to survey this theory, but give instead a sample of results that motivated later
work described in the next subsection.

Problem 4.1. Let X be a compact real algebraic set. For a continuous map

f : X ! Sp;

consider the following questions:

(i) Is f homotopic to a regular map?

(ii) Can f be approximated by regular maps?

It is expected that questions (i) and (ii) are equivalent, however, the proof is available
only for special values of p, cf. Bochnak and Kucharz [1987a].

Theorem 4.2. Let X be a compact real algebraic set. For a continuous map

f : X ! Sp;

where p 2 f1; 2; 4g, the following conditions are equivalent:

(a) f is homotopic to a regular map.

(b) f can be approximated by regular maps.

Basic topological properties of regular maps between unit spheres still remain mysteri-
ous.

Conjecture 4.3. For any pair (n; p) of positive integers, the following assertions hold:

(i) Each continuous map from Sn into Sp is homotopic to a regular map.

(ii) Each continuous map from Sn into Sp can be approximated by regular maps.

Conjecture 4.3 (i) is known to be true in several cases Bochnak, Coste, and Roy [1998],
Bochnak and Kucharz [1987a,b], Peng and Tang [1999], Turiel [2007], and Wood [1968];
for example if n = p or (n; p) = (2q + 14; 2q + 1) with q � 7.

Conjecture 4.3 (ii) holds if either n < p (trivial) or p 2 f1; 2; 4g Bochnak and Kucharz
[1987a]. Nothing is known for other pairs (n; p).

However, a complete solution to Problem 4.1 is known in several cases. The simplest
one, noted in Bochnak and Kucharz [ibid.], is the following.
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Proposition 4.4. LetX be a compact smooth real algebraic curve. Then each continuous
map from X into S1 can be approximated by regular maps.

Going beyond curves is a lot harder. Nevertheless, it can happen also in higher dimen-
sion that the behavior of regular maps is determined entirely by the topology of the real
algebraic sets involved.

Consider a compact C1 manifoldM . A smooth real algebraic set diffeomorphic toM
is called an algebraic model ofM . By theNash–Tognoli theoremNash [1952] and Tognoli
[1973], M has algebraic models. Actually, according to Bochnak and Kucharz [1991a],
there exists an uncountable family of pairwise birationally nonequivalent algebraic models
ofM , provided that dimM � 1. If dimM � 2, the existence of algebraic models ofM
follows easily from the well-known classification of such manifolds. As X runs through
the class of all algebraic models ofM , the topological properties of regular maps from X
into Sp may vary; this phenomenon is extensively investigated in Bochnak and Kucharz
[1987b, 1988, 1989b, 1990, 1993] and Kucharz [2010].

A detailed study of regular maps into S1 is contained in Bochnak and Kucharz [1989b]
where in particular the following result is proved.

Theorem 4.5. LetM be a compact C1 manifold. Then there exists an algebraic model
X ofM such that each continuous map from X into S1 can be approximated by regular
maps.

For simplicity, we state the next result of Bochnak and Kucharz [ibid.] only for surfaces.

Theorem 4.6. LetM be a connected, compactC1 surface. Then the following conditions
are equivalent:

(a) For any algebraic model X of M , each continuous map from X into S1 can be
approximated by regular maps.

(b) M is homeomorphic to the unit 2-sphere or the real projective plane or the Klein
bottle.

In Bochnak and Kucharz [1987b], one finds the following.

Theorem 4.7. Let M be a compact C1 manifold of dimension p. Then there exists an
algebraic model X ofM such that each continuous map from X into Sp is homotopic to
a regular map.

Theorem 4.7, for p = 1, is of course weaker than Proposition 4.4. The cases p = 2

and p = 4 are of particular interest in view of Theorem 4.2.
Numerous results on algebraic models and regular maps into even-dimensional spheres

are included in Bochnak and Kucharz [1988, 1990, 1993] and Kucharz [2010]. The fol-
lowing comes from Bochnak and Kucharz [1988].
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Theorem 4.8. LetM be a connected, compactC1 surface. Then the following conditions
are equivalent:

(a) For any algebraic model X of M , each continuous map from X into S2 can be
approximated by regular maps.

(b) M is nonorientable of odd genus.

The true complexity of Problem 4.1 becomes apparent for surfaces of other types.
Consider smooth cubic curves in P 2(R). Each such cubic is either connected or has

two connected components, and its Zariski closure in P 2(C) is also smooth. If C1 and C2

are smooth cubic curves in P 2(R), then C1 � C2 can be oriented in such a way that for
each regular map ' : C1 �C2 ! S2, the topological degree deg('jA) of the restriction of
' to a connected component A of C1 �C2 does not depend on the choice of A. Moreover,
the set

DegR(C1; C2) := fm 2 Z : m = deg( jA) for some regular map  : C1 � C2 ! S2
g

is a subgroup of Z. These assertions are proved in Bochnak and Kucharz [1993, Theo-
rem 3.1]. Define b(C1; C2) to be the unique nonnegative integer satisfying

DegR(C1; C2) = b(C1; C2)Z:

According to Hopf’s theorem and Theorem 4.2, a continuous map f : C1 � C2 ! S2 is
homotopic to a regular map (or equivalently can be approximated by regular maps) if and
only if for every connected component A of C1 � C2, one has deg(f jA) = b(C1; C2)r

for some integer r independent of A. Thus, in this context, Problem 4.1 is reduced to the
computation of the numerical invariant b(C1; C2).

For any real number ˛ in R� := R n f0g, set

�˛ =
1

2
(1 + ˛

p
�1) if ˛ > 0 and �˛ = ˛

p
�1 if ˛ < 0:

The lattice Λ˛ := Z+Z�˛ in C is stable under complex conjugation. Hence the numbers

g2(�˛) = 60
X

!

!�4; g3(�˛) = 140
X

!

!�6

(summation over ! 2 Λ˛ n f0g) are real and

D˛ := f(x : y : z) 2 P 2(R) : y2z = 4x3 � g2(�˛)xz
2

� g3(�˛)zg

is a smooth cubic curve in P 2(R). Each smooth cubic curve in P 2(R) is biregularly
isomorphic to exactly one cubic D˛ . Thus R� can be regarded as a moduli space of
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smooth cubic curves in P 2(R). For ˛ > 0 (resp. ˛ < 0) the cubicD˛ is connected (resp.
has two connected components).

The invariant b(D˛1
;D˛2

) is explicitly computed in Bochnak and Kucharz [ibid.] for
all pairs (˛1; ˛2). In particular, it can take any nonnegative integer value. We recall only
two cases.

First we deal with generic pairs (˛1; ˛2).

Theorem 4.9. For (˛1; ˛2) in R� � R�, the following conditions are equivalent:

(a) Each regular map fromD˛1
�D˛2

into S2 is null homotopic.

(b) b(D˛1
;D˛2

) = 0.

(c) The product ˛1˛2 is an irrational number.

From the viewpoint of approximation, the following case is of greatest interest.

Theorem 4.10. For (˛1; ˛2) in R� � R�, the following conditions are equivalent:

(a) Each continuous map from D˛1
� D˛2

into S2 can be approximated by regular
maps.

(b) ˛1 > 0, ˛2 > 0, and b(D˛1
;D˛2

) = 1.

(c) ˛i = (pi/qi )
p
d for i = 1; 2, where pi ; qi ; d are positive integers, pi and qi are

relatively prime, d is square free, d � 3 (mod 4), p1p2q1q2 � 1 (mod 2), and
p1p2d is divisible by q1q2.

Theorems 4.9 and 4.10 show that a small perturbation of (˛1; ˛2) can drastically change
topological properties of regular maps from D˛1

� D˛2
into S2. Thus, in general, one

cannot hope to find a comprehensive solution to Problem 4.1, even for X smooth with
dimX = p. It is therefore desirable to introduce maps which have good features of
regular maps but are more flexible.

4.2 Approximation by regulous maps. Let X and Y � Rq be smooth real algebraic
sets, and let k be a nonnegative integer. A map f = (f1; : : : ; fq) : X ! Y is said to be
k-regulous if its components fi : X ! R are k-regulous functions; 0-regulous maps are
called regulous.

If f is a regulous map, we denote by P (f ) the smallest algebraic subset of X such
that f jXnP (f ) : X n P (f ) ! Y is a regular map. Obviously, P (f ) is Zariski nowhere
dense in X . We say that f is nice if f (P (f )) ¤ Y .

We state the next result for C1 maps. This is convenient since such maps have regular
values by Sard’s theorem.
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Theorem 4.11. Let X be a compact smooth real algebraic set, f : X ! Sp a C1 map
with p � 1, and y 2 Sp a regular value of f . Assume that the C1 submanifold f �1(y)

of X is isotopic to a smooth Zariski locally closed subset of X . Then:

(i) f is homotopic to a nice k-regulous map, where k is an arbitrary nonnegative
integer.

(ii) f can be approximated by nice regulous maps.

Theorem 4.11 is due to the first-named author. Part (i) is a simplified version of
Kucharz [2009, Theorem 2.4]. The proof is based on the Pontryagin construction (framed
cobordism), Łojasiewicz inequality, and Hironaka’s resolution of singularities. In turn
(ii) follows from Kucharz [2014a, Theorem 1.2] since, by Kucharz [1985, Theorem 2.1],
f �1(y) can be approximated by smooth Zariski locally closed subsets of X .

Theorem 4.11 provides information also on continuous maps since they can be approx-
imated by C1 maps.

According to Akbulut and King [1992, Theorem A], any compact C1 submanifold of
Rn (resp. Sn) is isotopic to a smooth Zariski locally closed subset of Rn (resp. Sn). In
particular, Theorem 4.11 yields the following.

Corollary 4.12. Let (n; p) be a pair of positive integers. Then:

(i) Each continuous map fromSn intoSp is homotopic to a nice k-regulous map, where
k is an arbitrary nonnegative integer.

(ii) Each continuous map from Sn into Sp can be approximated by nice regulous maps.

With notation as in Theorem 4.11 we have dimf �1(y) = dimX � p. Hence we get
immediately the following.

Corollary 4.13. Let X be a compact smooth real algebraic set of dimension p. Then:

(i) Each continuous map fromX into Sp is homotopic to a nice k-regulous map, where
k is an arbitrary nonnegative integer.

(ii) Each continuous map from X into Sp can be approximated by nice regulous maps.

Comparing Theorems 4.8, 4.9 and 4.10 with Corollary 4.13 we see that k-regulous
maps are indeed more flexible than regular ones. However, for each integer p � 1 there
exist a compact smooth real algebraic set Y and a continuous map g : Y ! Sp such that
dimY = p + 1 and g is not homotopic to any regulous map, cf. Kucharz and Kurdyka
[2016b, Theorem 7.9]. In particular, Theorem 4.11 does not holdwithout some assumption
on the C1 submanifold f �1(y) � X . It would be very useful to formulate an appropriate
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assumption in terms of bordism. This is related to a certain conjecture, which has nothing
to do with regulous maps and originates from the celebrated paper of Nash [1952] and
the subsequent developments due to Tognoli [1973], Akbulut and King [1992], and other
mathematicians.

For a real algebraic set X , a bordism class in the unoriented bordism group N�(X) is
said to be algebraic if it can be represented by a regular map from a compact smooth real
algebraic set into X .

Conjecture 4.14. For any smooth real algebraic set X , the following holds: If M is a
compact C1 submanifold of X and the unoriented bordism class of the inclusion map
M ,! X is algebraic, then M is "-isotopic to a smooth Zariski locally closed subset of
X .

Here “"-isotopic” means isotopic via a C1 isotopy that can be chosen arbitrarily close,
in the C1 topology, to the inclusion map. A slightly weaker assertion than the one in
Conjecture 4.14 is known to be true: If the unoriented bordism class of the inclusion map
M ,! X is algebraic, then the C1 submanifold M � f0g of X � R is "-isotopic to a
smooth Zariski locally closed subset of X � R, cf. Akbulut and King [ibid., Theorem F].

Remark 4.15. Let X be a compact smooth real algebraic set and let f : X ! Sp be a
continuous map. According to Kucharz and Kurdyka [2016a, Proposition 1.4], if Conjec-
ture 4.14 holds, then the following conditions are equivalent:

(a) f is homotopic to a nice regulous map.

(b) f can be approximated by nice regulous maps.

Using a method independent of Conjecture 4.14, the first-named author proved in
Kucharz [2016a] the following weaker result.

Theorem 4.16. Let X be a compact smooth real algebraic set and let p be an integer
satisfying dimX +3 � 2p. For a continuous map f : X ! Sp , the following conditions
are equivalent:

(a) f is homotopic to a nice regulous map.

(b) f can be approximated by nice regulous maps.

Other results on topological properties of regulous maps can be found in Kucharz
[2013b, 2014b, 2016a], Kucharz and Kurdyka [2016b], and Zieliński [2016].

5 Vector bundles

Let F stand forR,C orH (the quaternions). We consider only left F -vector spaces. When
convenient, F will be identified with Rd(F), where d (F) = dimR F .
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5.1 Algebraic versus topological vector bundles. Let X be a real algebraic set. For
any nonnegative integer n, let

"n
X (F) = (X � Fn; p;X)

denote the product F -vector bundle of rank n on X , where X � Fn is regarded as a real
algebraic set and p : X � Fn ! X is the canonical projection.

An algebraic F -vector bundle on X is an algebraic F -vector subbundle of "n
X (F) for

some n (cf. Bochnak, Coste, and Roy [1998] for various characterizations of algebraic
F -vector bundles). The category of algebraic F -vector bundles on X is equivalent to the
category of finitely generated projective leftR(X;F)-modules, whereR(X;F) is the ring
of F -valued regular functions on X .

Any algebraic F -vector bundle on X can be regarded also as a topological F -vector
bundle. A topological F -vector bundle is said to admit an algebraic structure if it is
topologically isomorphic to an algebraic F -vector bundle.

Problem 5.1. Which topological F -vector bundles on X admit an algebraic structure?

It is convenient to bring into play the reduced Grothendieck group K̃F (X) of topolog-
ical F -vector bundles on X . Since X has the homotopy type of a compact polyhedron
Bochnak, Coste, and Roy [ibid.], the Abelian group K̃F (X) is finitely generated Atiyah
and Hirzebruch [1961] and Dyer [1969]. We let K̃F -alg(X) denote the subgroup of K̃F (X)

generated by the classes of all topological F -vector bundles on X that admit an algebraic
structure.

IfX is compact, then Problem 5.1 is equivalent to providing a description of K̃F -alg(X).
More precisely, the following holds.

Theorem 5.2. Let X be a compact real algebraic set. Then:

(i) Two algebraic F -vector bundles on X are algebraically isomorphic if and only if
they are topologically isomorphic.

(ii) A topological F -vector bundle on X admits an algebraic structure if and only if its
class in K̃F (X) belongs to K̃F -alg(X).

Theorem 5.2 follows from Swan [1977, Theorem 2.2], and a geometric proof is given
in Bochnak, Coste, and Roy [1998]. Note that K̃F -alg(X) = 0 if and only if each algebraic
F -vector bundle on X is algebraically stably trivial. In turn, K̃F -alg(X) = K̃F (X) if and
only if each topological F -vector bundle on X admits an algebraic structure.

According to Fossum [1969] and Swan [1977], we have the following.

Theorem 5.3. For the unit n-sphere Sn, the equality K̃F -alg(Sn) = K̃F (Sn) holds.
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Benedetti and Tognoli [1980] proved that algebraization of topological vector bundles
on a compact C1 manifold is always possible.

Theorem 5.4. LetM be a compact C1 manifold. Then there exists an algebraic model
X ofM such that K̃F -alg(X) = K̃F (X) for F = R, F = C and F = H.

The groups K̃F -alg(�) have been extensively investigated by Bochnak and Kucharz
[1989a, 1990, 1992] andBochnak, Buchner, andKucharz [1989]. Inmany cases, K̃F -alg(�)

are “small” subgroups of K̃F (�). The following is a simplified version of Bochnak, Buch-
ner, and Kucharz [ibid., Theorem 7.1].

Theorem 5.5. LetM be a compactC1 submanifold ofRn+1, with dimM = n � 1. Then
M is "-isotopic to a smooth algebraic subset X of Rn+1 such that the group K̃F -alg(X) is
finite for F = R, F = C and F = H.

The conclusion of Theorem 5.5 can be strengthened in some cases.

Example 5.6. Recall that K̃F (S4d ) = Z for every positive integer d , cf. Husemoller
[1975]. Hence, by Theorem 5.5, S4d is "-isotopic in R4d+1 to a smooth algebraic subset
Σ4d such that

K̃F -alg(Σ
4d ) = 0 and K̃F (Σ

4d ) = Z

for F = R, F = C and F = H.

One readily sees that each topologicalR-vector bundle on a smooth real algebraic curve
admits an algebraic structure. Next we discuss some results on vector bundles on a product
of real algebraic curves.

Example 5.7. Let X = C1 � � � � �Cn, where C1; : : : ; Cn are connected, compact smooth
real algebraic curves. Then K̃R-alg(X) = K̃R(X) if n = 2 or n = 3. This assertion is a
special case of Bochnak and Kucharz [1989a, Theorem 1.6].

In Example 5.7, one cannot take n � 4.

Example 5.8. LetT n := S1�� � ��S1 be the n-fold product of S1. According to Bochnak
and Kucharz [1987b], K̃C-alg(T n) = 0. Furthermore, by Kucharz and Kurdyka [2016b,
Example 1.11], we have K̃R-alg(T n) ¤ K̃R(T n) and K̃H-alg(T n) ¤ K̃H(T n) for n � 4.

Let K be a subfield of F , where K (as F ) stands for R, C or H. Any F -vector bundle
� can be regarded as a K-vector bundle, which is indicated by �K.

Example 5.9. Let � be a nontrivial topological C-line bundle on T 2. By Example 5.7,
the R-vector bundle �R on T 2 admits an algebraic structure. However, in view of Exam-
ple 5.8, � does not admit an algebraic structure. The r th tensor power �˝r is a nontrivial
C-line bundle, hence it does not admit an algebraic structure.
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The next two theorems come from Bochnak and Kucharz [1992]. We use smooth real
cubic curvesD˛ � P 2(R), with ˛ 2 R�, introduced in Section 4.1.

Theorem 5.10. Let X = D˛ � � � � � D˛ be the n-fold product of D˛ , where ˛ is in R�

and n � 2. Then the following conditions are equivalent:

(a) K̃C-alg(X) = 0.

(b) The number ˛2 is irrational.

In this context, the equality K̃C-alg(�) = K̃C(�) is characterized as follows.

Theorem 5.11. Let X = D˛1
� � � � �D˛n

, where ˛1; : : : ; ˛n are in R� and n � 2. Then
the following conditions are equivalent:

(a) K̃C-alg(X) = K̃C(X).

(b) ˛i > 0 for all i , and b(D˛i
;D˛j

) = 1 for i ¤ j .

The pairs (˛i ; ˛j ) with b(D˛i
;D˛j

) = 1 are explicitly described in Theorem 4.10.
In the next subsection we deal with vector bundles of a new type, which occupy an

intermediate position between algebraic and topological vector bundles.

5.2 Regulous versus topological vector bundles. Let X be a real algebraic set. As
in (3.8), by a stratification of X we mean a finite collection S of pairwise disjoint Zariski
locally closed subsets whose union is X . An S-algebraic F -vector bundle on X is a topo-
logical F -vector subbundle of "n

X (F), for some n, such that the restriction �jS of � to
each stratum S 2 S is an algebraic F -vector subbundle of "n

S (F). If � and � are S-
algebraic F -vector bundles onX , then an S-algebraic morphism ' : � ! � is a morphism
of topological F -vector bundles which induces a morphism of algebraic F -vector bundles
'S : �jS ! �jS for each stratum S 2 S.

Definition 5.12. A regulous F -vector bundle on X is an S-algebraic F -vector bundle for
some stratification S ofX . If � and � are regulous F -vector bundles onX , then a regulous
morphism ' : � ! � is an S-algebraic morphism for some stratification S of X such that
both � and � are S-algebraic F -vector bundles.

In our joint paper Kucharz and Kurdyka [2016b], we introduced and investigated reg-
ulous (= stratified-algebraic) vector bundles. The main focus of Kucharz and Kurdyka
[ibid.] and the subsequent papers Kucharz [2015b, 2016b], Kucharz and Kurdyka [2015],
Kucharz and Zieliński [2018] is on comparison of algebraic, regulous, and topological
vector bundles.
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Regulous F -vector bundles on X (together with regulous morphisms) form a category,
which is equivalent to the category of finitely generated projective leftR0(X;F)-modules,
whereR0(X;F) is the ring ofF -valued regulous functions onX , cf. Kucharz andKurdyka
[2016b, Theorem 3.9].

A topological F -vector bundle onX is said to admit a regulous structure if it is topolog-
ically isomorphic to a regulous F -vector bundle. We let K̃F-reg(X) denote the subgroup
of K̃F (X) generated by the classes of all topological F -vector bundles on X that admit a
regulous structure.

We have the following counterpart of Theorem 5.2, cf. Kucharz and Kurdyka [ibid.].

Theorem 5.13. Let X be a compact real algebraic set. Then:

(i) Two regulous F -vector bundles on X are regulously isomorphic if and only if they
are topologically isomorphic.

(ii) A topological F -vector bundle on X admits a regulous structure if and only if its
class in K̃F (X) belongs to K̃F -reg(X).

Hence K̃F -reg(X) = K̃F (X) if and only if each topological F -vector bundle on X
admits a regulous structure.

The following result of Kucharz and Kurdyka [ibid.] should be compared with Theo-
rem 5.3 and Example 5.6.

Theorem 5.14. LetX be a compact real algebraic set that is homotopically equivalent to
the unit n-sphere Sn. Then K̃F -reg(X) = K̃F (X).

In contrast to Example 5.8 and Theorems 5.10 and 5.11, we proved in Kucharz and
Kurdyka [ibid.] the following.

Theorem 5.15. Let X = X1 � � � � �Xn, where Xi is a compact real algebraic set that is
homotopically equivalent to the unit di -sphere Sdi for 1 � i � n. Then

2K̃R(X) � K̃R-reg(X); K̃C-reg(X) = K̃C(X) and K̃H-reg(X) = K̃H(X):

It is possible that K̃R-reg(X) = K̃R(X) in Theorem 5.15, but no proof is available even
for X = T n with n � 4.

Our next result comes from Kucharz and Kurdyka [2015].

Theorem 5.16. LetX be a compact real algebraic set that is homotopically equivalent to
Sd1 � � � � � Sdn . Then the quotient group K̃F (X)/K̃F -reg(X) is finite.

If n � 5, then there exists an algebraic model X of T n with K̃F (X)/K̃F -reg(X) ¤ 0

for F = R, F = C and F = H, cf. Kucharz and Kurdyka [2016b, Example 7.10].
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For any real algebraic setX , we let K̃(crk)
F (X) denote the subgroup of K̃F (X) generated

by the classes of all topological F -vector bundles of constant rank. Define ΓF (X) to be
the quotient group

ΓF (X) := K̃
(crk)
F (X)/(K̃F -reg(X) \ K̃

(crk)
F (X))

(cf. Kucharz and Kurdyka [2015] for an equivalent description). Evidently, ΓF (X) =

K̃F (X)/K̃F -reg(X) if X is connected. Note, however, that for the real algebraic curve C
of (1.5), one has ΓR(C ) = 0, while the group K̃R(C )/K̃R-reg(C ) is infinite.

Conjecture 5.17. For any compact real algebraic set X , the group ΓF (X) is finite.

In Kucharz and Kurdyka [ibid.], we proved that Conjecture 5.17 holds in low dimen-
sions.

Theorem 5.18. IfX is a compact real algebraic set of dimension at most 8, then the group
ΓF (X) is finite.

For C-line bundles, the following is expected.

Conjecture 5.19. For any compact real algebraic set X and any topological C-line bun-
dle � on X , the C-line bundle �˝2 admits a regulous structure.

According to Kucharz [2015b], Conjecture 4.14 implies Conjecture 5.19. If dimX � 8,
then for some positive integer r , the C-line bundle �˝r admits a regulous structure, cf.
Kucharz and Kurdyka [2015]. This should be compared with Example 5.9.

The key role in the proofs of the results presented in this subsection plays the following
theorem of Kucharz and Kurdyka [2016b].

Theorem 5.20. Let X be a compact real algebraic set. A topological F -vector bundle �
on X admits a regulous structure if and only if the R-vector bundle �R admits a regulous
structure.

By Example 5.9, one cannot substitute “algebraic” for “regulous” in Theorem 5.20.
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PAIRS OF INVARIANTS OF SURFACE SINGULARITIES
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Abstract
We discuss several invariants of complex normal surface singularities with a spe-

cial emphasis on the comparison of analytic–topological pairs of invariants. Addition-
ally we also list several open problems related with them.

1 Introduction

Singularity theory aims to study the singular points of algebraic/analytic varieties. It was
born together with the classical algebraic geometry, but step by step became an inde-
pendent discipline within algebraic and complex geometry. Furthermore, it also created
formidable connections with other fields, like topology or differential equations. By cru-
cial classification projects in mainstreammathematics (e.g. the Mori program in algebraic
geometry targeting classification of varieties, or developments in low-dimensional topol-
ogy) singularities theory became even more a central area.

In both local and global case the study of surfaces became central. In the global case,
after the ‘classical’ classification of Enriques and the Italian school, a ‘modern’ classifica-
tion was provided by Kodaira in 60’s based on sheaves, cohomologies and characteristic
classes with special emphasis on the relationships of the analytic structures with invariants
of the underlying smooth 4–manifolds: e.g. Hodge or Riemann–Roch–Hirzebruch formu-
las. Crucial open questions were formulated targeting this type of ties: e.g. the purely
topological characterization of rational surfaces (as an addendum of Castelnuovo’s crite-
rion) or of K3 surfaces (asked by Kodaira). The appearance of Donaldson and Seiberg–
Witten theories gave a powerful impetus of such comparison results, and generated a series
of new open questions. These were inherited by local singularity theory too. The lack of
The author was partially supported by NKFIH Grant 112735.
MSC2010: primary 14B05; secondary 14J17, 32S25, 57M27, 57R57, 32S45.
Keywords: normal surface singularities, rational singularities, elliptic singularities, Q–homology spheres,
geometric genus, link of singularities, divisorial filtration, Poincaré series, Seiberg–Witten invariants of
3–manifolds, Casson Invariant Conjecture, Seiberg–Witten Invariant Conjecture, Heegaard–Floer
homology, graded roots, surgery 3-manifolds, unicuspidal rational projective plane curves.
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classification results in 3 and 4 dimensional topology put even more in the highlight the
possible analytic/algebraic connections.

This is the guiding principle of the present manuscript too: what are the ties between
analytic and topological structures of a local complex normal surface singularity.

It is always exciting to understand such bridges between topology and rigid analytic/algebraic
geometry. In this note by the style of the presentation we even try to emphasize more the
existing parallel pairs of invariants, theorems and constructions from both sides. Though
the presented list definitely is not exhaustive, it supports rather well the philosophical con-
viction that any result in the analytic part must have a topological counterpart, and vice
versa.

The guiding pair is P (t) $ Z(t), where P (t) is the multivariable Poincaré series
associated with the divisorial filtration given by the irreducible curves of a resolution,
whileZ(t) is a combinatorial ‘zeta’ function read from the corresponding resolution graph.

2 Normal surface singularities. Analytic Invariants

2.1 Definitions, notations. Let (X; o) be a complex normal surface singularity. Let
� : eX ! X be a good resolution with dual graph Γ whose vertices are denoted by V.
Set E := ��1(o). Let M be the link of (X; o), and we will assume that M is a rational
homology sphere. This happens if and only if Γ is a tree and all the irreducible exceptional
curves fEvgv2V have genus 0.

Set L := H2(eX; Z). It is freely generated by the classes of the irreducible exceptional
curves. If L0 denotes H 2(eX; Z), then the intersection form ( ; ) on L provides an embed-
ding L ,! L0 with factor the first homology group H of the link. (In fact, L0 is the dual
lattice of (L; ( ; )).) Moreover, ( ; ) extends to L0. L0 is freely generated by the duals E�

v ,
where (E�

v ; Ew) = �1 for v = w and = 0 else.
Effective classes l =

P
rvEv 2 L0 with all rv 2 Q�0 are denoted by L0

�0 and L�0 :=

L0
�0 \ L. Denote by S0 the (Lipman’s) anti-nef cone fl 0 2 L0 : (l 0; Ev) � 0 for all vg.

It is generated over Z�0 by the base-elements E�
v . Since all the entries of E�

v are strict
positive, S0 is a sub-cone of L0

�0, and for any fixed a 2 L0 the set fl 0 2 S0 : l 0 � ag is
finite. Set C := f

P
l 0
vEv 2 L0; 0 � l 0

v < 1g. For any l 0 2 L0 write its class in H by [l 0],
and or any h 2 H let rh 2 L0 be its unique representative in C. Denote by � : H ! bH
the isomorphism [l 0] 7! e2�i(l 0;�) of H with its Pontrjagin dual bH .

Denote byK 2 L0 the canonical class satisfying (K+Ev; Ev) = �2 for all v 2 V. We
set �(l 0) = �(l 0; l 0 + K)/2; by Riemann-Roch theorem �(l) = �(Ol) for any l 2 L>0.

Most of the analytic geometry of eX is described by its line bundles and their cohomol-
ogy groups. E.g., the geometric genus of (X; o) is pg := h1(eX; OeX ). In this note we
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mostly target the following numerical invariants (below L 2 Pic(eX) and l 2 L>0):

(2.1.1) (a) dim H 0(L) /H 0(L(�l)) and (b) dimH 1(L):

Their behaviour for arbitrary line bundles is rather complicated, however for natural
line bundles we have several (sometimes even topological) descriptions/characterizations.
These line bundles are provided by the splitting of the cohomological exponential exact
sequence Némethi [n.d.(b), §3]:

0 ! H 1(eX; OeX ) ! Pic(eX)
c1

�! L0
! 0:

The first Chern class c1 has an obvious section on the subgroup L, namely l 7! OeX (l).
This section has a unique extension O(�) to L0. We call a line bundle natural if it is in the
image of this section.

One can recover these bundles via coverings as follows. Let c : (Y; o) ! (X; o) be
the universal abelian covering of (X; o), �Y : eY ! Y the normalized pullback of � by
c, andec : eY ! eX the morphism which covers c. Then the action of H on (Y; o) lifts toeY and one has an H–eigensheaf decomposition (Némethi [ibid., (3.7)] or Okuma [2008,
(3.5)]):

(2.1.2) ec�OeY =
M
l 02C

O(�l 0) (O(�l 0) being the �([l 0])-eigenspace ofec�OeY ):
Note that the geometric genus of Y is h1(eY ; OeY ), hence, by Equation (2.1.2),
fh1(eX; OeX (�rh))gh2H are the dimensions of the H–eigenspaces; we call them equiv-
ariant geometric genera of (X; o).

2.2 Series associated with the divisorial filtration. For those natural line bundles
which appear in Equation (2.1.2), the dimensions from Equation (2.1.1)(a) can be orga-
nized in a generating function. Indeed, once a resolution � is fixed, OY;o inherits the
divisorial multi-filtration (cf. Némethi [2008b, (4.1.1)]):

(2.2.1) F (l 0) := ff 2 OY;o j div(f ı �Y ) � ec�(l 0)g:

Let h(l 0) be the dimension of the �([l 0])-eigenspace of OY;o/F (l 0). Then, one defines the
equivariant divisorial Hilbert series by

(2.2.2) H(t) =
X

l 02L0

h(l 0)t
l 0
1

1 � � � t
l 0
s

s =
X

l 02L0

h(l 0)tl 0

2 Z[[L0]] (l 0 =
X

i

l 0
i Ei ):

Notice that the terms of the sum reflect the H -eigenspace decomposition too: h(l 0)tl 0

contributes to the �([l 0])-eigenspace. For example,
P

l2L h(l)tl corresponds to the H -
invariants, hence it is the Hilbert series of OX;o associated with the ��1(o)-divisorial



770 ANDRÁS NÉMETHI

multi-filtration (considered and intensively studied, see e.g. Cutkosky, Herzog, andReguera
[2004] and the citations therein, or Campillo, Delgado, and Gusein-Zade [2004]).

The ‘graded version’ associated with the Hilbert series is defined (cf. Campillo, Del-
gado, and Gusein-Zade [2004] and Guseĭn-Zade, Delgado, and Kampil’o [2008]) as

(2.2.3) P (t) = �H(t) �
Y

v

(1 � t�1
v ) 2 Z[[L0]]:

Although the multiplication by
Q

v(1 � t�1
v ) in Z[[L0]] is not injective, hence apparently

P contains less information then H, they, in fact, determine each other as we will see in
Equation (2.4.2).

If we write the series P (t) as
P

l 0 p(l 0)tl 0 , then

(2.2.4) p(l 0) =
X
I�V

(�1)jI j+1 dim
H 0(eX; O(�l 0))

H 0(eX; O(�l 0 � EI ))

and P is supported in the cone S0.

2.3 Quasipolynomials and the periodic constants associated with series. The fol-
lowing definitions are motivated by properties of Hilbert–Samuel functions and also by
Ehrhart theory and the properties of its qusipolynomials. The periodic constant of one–
variable series was introduced in Némethi and Okuma [2009], Okuma [2008], and Braun
and Némethi [2010], the multivariable generalization is treated in László and Némethi
[2014].

LetS(t) =
P

l�0 cl t
l 2 Z[[t ]] be a formal power series with one variable. Assume that

for some p 2 Z>0 the counting functionQ(p)(n) :=
Ppn�1

l=0
cl is a polynomialQ(p) in n.

Then the constant term Q(p)(0) is independent of p and it is called the periodic constant
pc(S) of the series S . E.g., if S(t) is a finite polynomial, then pc(S) exists and it equals
S(1). If the coefficients of S(t) are given by a Hilbert function l 7! c(l), which admits
a Hilbert polynomial H (l) with c(l) = H (l) for l � 0, then S reg(t) =

P
l�0 H (l)t l

has zero periodic constant and pc(S) = pc(S � S reg) + pc(S reg) = (S � S reg)(1),
measuring the difference between the Hilbert function and Hilbert polynomial.

For the multivariable case we consider a (negative) definite lattice L = ZhEviv , its
dual lattice L0, and a series S(t) 2 Z[[L0]], S(t) =

P
l 02L0 s(l 0)tl 0 . We decompose S as

S =
P

h2H Sh, where Sh(t) =
P

[l 0]=h s(l 0)tl 0 , and we consider the following ‘counting
function of the coefficients’

(2.3.1) Qh : L0
h := fx 2 L0 : [x] = hg ! Z; Qh(x) =

X
l 0�x; [l 0]=h

s(l 0):
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Assume that there exist a real cone K � L0 ˝ R whose affine closure is top–dimensional,
l 0
� 2 K, a sublattice eL � L of finite index, and a quasipolynomial Qh(l) (l 2 eL) such
that Qh(l + rh) = Qh(l) for any l + rh 2 (l 0

� + K) \ (eL + rh). Then we say that the
counting function Qh (or just Sh(t)) admits a quasipolynomial in K, namely Qh(l), and
also an (equivariant, multivariable) periodic constant associated with K, which is defined
by

(2.3.2) pcK(Sh(t)) := Qh(0):

The definition does not depend on the choice of the sublattice eL, which corresponds to
the choice of p in the one–variable case. This is responsible for the name ‘periodic’ in the
definition. The definition is independent of the choice of l 0

� as well.
By general theory of multivariable Ehrhart-type quasipolynomials, for a nicely defined

series one can construct a conical chamber decomposition of the space L0 ˝ R, such that
each cone satisfies the above definition (hence provides a periodic constant), for details
see László and Némethi [ibid.] or Szenes and Vergne [2003]. However, it turns out, that
in all our situations the whole S0

R (the real Lipman cone) will be a unique chamber.

2.4 The quasipolynomial of P . Let P and H be the series defined in SubSection 2.2.

Theorem 2.4.1. For any l 0 2 L0 one has

(2.4.2) h(l 0) =
X

a2L; a 6�0

p(l 0 + a):

Furthermore, there exists a constant const[�l 0], depending only on the class of [�l 0] 2 H ,
such that

(2.4.3) � h1(eX; O(�l 0)) =
X

a2L; a�0

p(l 0 + a) + const[�l 0] +
(K + 2l 0)2 + jVj

8
:

By taking l 0 = rh one can identify const[�l 0] with the equivariant geometric genus, that
is �h1(eX; O(�rh)) = const�h + ((K + 2rh)

2 + jVj)/8. In particular, the coefficients
of the series P (t) determine the invariants Equation (2.1.1)((a)-(b)) for all natural line
bundles.

Write l 0 = l + rh for l 2 L. Note that if l 2 L�0, then in Equation (2.4.3) the
sum will not appear (check the support of P ). On the other hand, if in Equation (2.4.3)
l 0 2 �K + S0 then by the vanishing of h1(O(�l 0)) we get that

P
a2L; a�0 p(l 0 + a) is the

multivariable quadratic function �(l)� (rh; l)+h1(eX; O(�rh)). This quadratic function
is the quasipolynomial of P in K = S0

R, and its periodic constant is h1(eX; O(�rh)).
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2.5 Reductions of P . Let U be a nonempty subset of V, and fix h 2 H as well. One
can introduce the reduction of the series Ph to the variables ftvgv2U in two different ways.
First, we can consider the multivariable divisorial filtration induced by the exceptional
divisors fEvgv2U, define the Hilbert series HU

h
and P U

h
in variables ftvgv2U and asso-

ciated with �(h)–eigendecomposition similarly as Hh and Ph was defined in Section 2.2.
The second possibility is to reduced the variables in the original Ph. The point is that the
two constructions have the same output: P U

h
= Ph(t)jtv=1 for all v 62 U. In this article we

mostly discuss the case U = fvg for a certain vertex v, however all the discussions can
be extended for arbitrary U.

2.6 Surgery formulae for h1(eX; L). Let (X; o) and � : eX ! X as above. We fix a
vertex v 2 V. Let [j 2JΓj be the connected components of the graph obtained from Γ

by deleting v and its adjacent edges. Let X 0 be the space obtained from eX by contracting
all irreducible exceptional curves except Ev to normal points. It has jJ j normal singular
points foj gj , the images of the connected components of E �Ev . Let Xj be a small Stein
neighbourhood of oj in X 0, eXj = ��1(Xj ) its pre-image via the contraction � : eX ! X 0,
and �(E) = E 0 � X 0. We denote the local singularities by (Xj ; oj ).

We say that the Assumption (C) is satisfied if nE 0 � X 0 is a Cartier divisor for certain
n > 0.

Theorem 2.6.1. Okuma [2008] Set U = fvg and fix h 2 H . Under the Assumption (C)

h1(eX; OeX (�rh)) = pc(P fvg

h
(tv)) +

X
j

h1(eXj ; OeX (�rh)jeXj
):

E.g., this applied for OeX gives pg(X; o) = pc(P fvg

h
(tv)) +

P
j pg(Xj ; oj ). In gen-

eral, OeX (�rh)jeXj
is not a natural line bundle on eXj , however e.g. for splice quotient

singularities it is the line bundle associated with the cohomology restriction of �rh (for
details see Section 3.3). Hence, Theorem 2.6.1 provides an ideal inductive procedure for
the computation of the cohomology of natural line bundles.

3 Topological invariants. The series Z(t)

3.1 The seriesZ(t). Themultivariable topological series is the Taylor expansionZ(t) =P
l 0 z(l 0)tl 0

2 Z[[L0]] at the origin of the rational function

(3.1.1) f (t) =
Y
v2V

(1 � tE�
v )ıv�2:
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It is supported in S0. Similarly as P , it decomposes as Z(t) =
P

h2H Zh(t). In fact,

(3.1.2) Zh(t) :=
1

jH j
�

X
�2bH �(h)�1

�
Y
v2V

(1 � �([E�
v ])t

E�
v )

ıv�2
:

3.2 Seiberg–Witten invariants of the linkM . Lete�can be the canonical spinc–structure
on eX identified by c1(e�can) = �K, and let �can 2 Spinc(M ) be its restriction to M ,
called the canonical spinc–structure on M . Spinc(M ) is an H–torsor with action de-
noted by �.

We denote by sw� (M ) 2 Q the Seiberg–Witten invariant of M indexed by the spinc–
structures � 2 Spinc(M ) (cf. Lim [2000] and Nicolaescu [2004]). We will use the sign
convention of Braun and Némethi [2010] and Némethi [2011].

In the last years several combinatorial expressions were established for the Seiberg–
Witten invariants. For rational homology spheres, Nicolaescu [2004] showed that sw(M )

is equal to the Reidemeister–Turaev torsion normalized by the Casson–Walker invariant.
In the case when M is a negative definite plumbed rational homology sphere, combina-
torial formula for Casson–Walker invariant in terms of the plumbing graph can be found
in Lescop [1996], and the Reidemeister–Turaev torsion is determined by Némethi and
Nicolaescu [2002] using Dedekind–Fourier sums. A different combinatorial formula of
fsw� (M )g� was proved in Némethi [2011] using qualitative properties of the coefficients
of the series Z(t).

Theorem 3.2.1. Némethi [ibid.] The counting function of Zh(t) in the cone S 0
R admits

the (quasi)polynomial

(3.2.2) Qh(l) = �
(K + 2rh + 2l)2 + jVj

8
� sw�h��can

(M );

whose periodic constant is

(3.2.3) pcS 0
R(Zh(t)) = Qh(0) = �sw�h��can

(M ) �
(K + 2rh)

2 + jVj

8
:

The right hand side of Equation (3.2.3) with opposite sign is called the rh–normalized
Seiberg–Witten invariant of M .

3.3 Surgery formulae for the normalized Seiberg–Witten invariants. Surgery for-
mulae for a certain 3–manifold invariant, in general, compare the invariant of M with the
invariants of different surgery modifications of M . In the case of plumbed 3–manifolds,
one compares the invariants associated with 3–manifolds obtained by different modifica-
tions of the graph. The ‘standard’ topological surgery formulae for the Seiberg–Witten
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invariant (induced by exact triangles of certain cohomology theories, cf. Ozsváth and Sz-
abó [2004a], Greene [2013], and Némethi [2011]) compare the invariants of three such
3–manifolds (see also Section 5.1 here). Furthermore, in these approaches, one cannot
separate a certain fixed spinc structure, the theory mixes always several of them. (See
also Turaev [2001].) The next formula is different: it compares the Seiberg–Witten invari-
ant of two 3–manifolds via the periodic constant of a series, and they split according to
the spinc–structures.

Let us fix v 2 V and consider the notations of Section 2.6. For each j 2 J we consider
the inclusion operator �j : L(Γj ) ! L(Γ), Ev(Γj ) 7! Ev(Γ); let ��j : L0(Γ) ! L0(Γj )

be its dual (the cohomological restriction defined by ��j (E
�
v (Γ)) = E�

v (Γj ) if v 2 V(Γj ),
and = 0 otherwise).

Next, consider an arbitrary spinc–structure e� on eX . Since Spinc(eX) is an L0–torsor,
there is a unique l 0 2 L0 such that e� = l 0 � e�can. Its restriction to Spinc(M ) is � =

[l 0] � �can. We write e�j the restriction of e� to each eXj . Since the canonical spinc–
structure of eX restricts to the canonical spinc–structure e�can;j of eXj , e� = l 0 � e�can

restricts to e�j := ��j (l
0) � e�can;j 2 Spinc(eXj ), whose restriction to the boundary Mj =

M (Xj ; oj ) = @eXj is �j = [��j (l
0)] � �can;j .

Theorem 3.3.1. Braun and Némethi [2010] Fix U = fvg and h 2 H . Extend h��can 2

Spinc(M ) as e� := rh � e�can 2 Spinc(eX) and consider the corresponding restrictions.
Then

sw�h��can
(M ) +

(K + 2rh)
2 + jVj

8
=

=
X

j

�
sw�[��

j
(rh)]��can;j

(Mj ) +
(K(Γj ) + 2��j (rh))

2 + jV(Γj ))j

8

�
� pc(Zfvg

h
(tv)):

For a generalization to an arbitrary U and to an arbitrary extension e� := l 0 � e�can see
László, Nagy, and Némethi [n.d.].

4 Topological invariants. The lattice cohomology of M

The spinc–structures of M can also be indexed as follows. Set Char = fk 2 L0 :

(k + x; x) 2 2Z for all x 2 Lg, the set of characteristic elements of eX . Then L acts on
Char by l � k = k + 2l , and the set of orbits [k] = k + 2L is an H torsor identified with
Spinc(M ).

For any k 2 Char one also defines �k : L0 ! Q by �k(l
0) := �(l 0; l 0 + k)/2. We

write � for �K .
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The Seiberg–Witten invariant is the (normalized) Euler-characteristic of the Seiberg–
Witten monopole Floer homology of Kronheimer–Mrowka, or equivalently, of the Hee-
gaard–Floer homology of Ozsváth and Szabó. These theories had an extreme influence on
the modern mathematics, solving (or disproving) a long list of old conjectures (e.g. Thom
Conjecture, or conjectures regarding classification of 4-manifolds, or famous old prob-
lems in knot theory); see the long list of distinguished articles of Kronheimer–Mrowka
or Ozsváth–Szabó. In Ozsváth and Szabó [2003b] Ozsváth and Szabó provided a com-
putation of the Heegaard–Floer homology for some special plumbed 3-manifolds. This
computation resonated incredibly with the theory of computation sequences used in Artin–
Laufer program (see e.g. Laufer [1977] and Némethi [1999a,b]). These two facts influ-
enced considerably the definition of the lattice cohomology.

4.1 Short review of Heegaard–Floer homology HF +(M ). We assume that M is
an oriented rational homology 3–sphere, and we restrict ourselves to the +–theory of
Ozsváth and Szabó. The Heegaard–Floer homology HF +(M ) is a Z[U ]–module with a
Q–grading compatiblewith theZ[U ]–action, where deg(U ) = �2. Additionally,HF +(M )

has another Z2–grading; HF +(M )even, respectively HF +(M )odd denote the graded
parts. Moreover, HF +(M ) has a natural direct sum decomposition of Z[U ]–modules
(compatible with all the gradings): HF +(M ) = ˚� HF +(M; �) indexed by the spinc–
structures � of M . For any � one has

HF +(M; �) = T +
d(M;�)

˚ HF +
red

(M; �);

a graded Z[U ]–module isomorphism, where T +
r denotes Z[U �1] as a Z[U ]–module, in

which the degree of 1 is r ; and HF +
red

(M; �) has finite Z–rank and an induced Z2–
grading. One also considers

�(HF +(M; �)) := rankZ HF +
red;even

(M; �) � rankZ HF +
red;odd

(M; �):

Then via �(HF +(M; �)) � d (M; �)/2 one gets the Seiberg–Witten invariant of (M; �).
By changing the orientation one has�(HF +(M; �)) = ��(HF +(�M; �)) and d (M; �) =

�d (�M; �).

4.2 Lattice cohomology of M . Now we review some facts from the lattice cohomol-
ogy theory, introduced by the author in Némethi [2008a]. The construction captures the
structure of lattice points inside of some real ellipsoids. L˝R has a natural cellular decom-
position into cubes. The set of zero–dimensional cubes is provided by the lattice points L.
Any l 2 L and subset I � V of cardinality q defines a q–dimensional cube (l; I ), which
has its vertices in the lattice points (l +

P
i2I 0 Ej )I 0 , where I 0 runs over all subsets of I .
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Next, we fix k 2 Char, we set �k(l) = �(l; l + k)/2 and mk := minl2L �k(l). Finally,
for any fixed integer n � mk we denote by Sn the union of all q–cubes in the real ellipsoid
fl 2 L ˝ R : �k(l) � ng. Then one defines

Hp(Γ; k) := ˚n�mk
H p(Sn; Z):

For each fixed p, the module Hp is in a natural way Z– (in fact, 2Z)–graded: H p(Sn; Z)

consists of the 2n–homogeneous elements. Also, it is a Z[U ]–module; the U –action is
induced by the restriction H p(Sn+1; Z) ! H p(Sn; Z). Moreover, there is an augmenta-
tion decomposition

H0(Γ; k) = (˚n�mk
Z) ˚ (˚n�mk

eH 0(Sn; Z)) = T +
2mk

˚ H0
red

(Γ; k):

This moduleH�(Γ; k) is independent of the choice of the resolution (or plumbing) graphΓ
(hence depends only on the 3-manifold M ), and it depends only on the class [k] = k+2L

(i.e. only on the corresponding spinc–structure) up to a shift in grading. In order to fix
one module in each class we take one k0 2 [k] with mk0 = 0, and we set H�(Γ; [k]) :=

H(Γ; k0) (which is independent of the choice). For any rational number r we denoted
by H�(Γ; [k])[r ] the module isomorphic to H�(Γ; [k]), but whose grading is shifted by r .
(The (d + r)–homogeneous part of H�(Γ; [k])[r ] is isomorphic with the d–homogeneous
part of H�(Γ; [k]).) It is also convenient to redefine Hp

red
:= Hp for p � 1; this is

motivated by the fact that H�
red

= ˚p�0Hp

red
has finite Z–rank.

5 The relations of the lattice cohomology with other invariants

5.1 Exact sequence. Let us fix a vertex v0, we consider the graphs Γ n v0 and Γ+
v0
,

where the first one is obtained from Γ by deleting the vertex v0 and adjacent edges, while
the second one is obtained from Γ by increasing the decoration of the vertex v0 by 1.
We will assume that Γ+

v0
is still negative definite. Then there exists an exact sequence of

Z[U ]–modules of the following type:

� � � �! Hq(Γ+
v0
) �! Hq(Γ) �! Hq(Γ n v0) �! Hq+1(Γ+

v0
) �! � � �

The first 3 terms of the exact sequence (i.e. the H0–part) appeared in Ozsváth and Sz-
abó [2003b] and Némethi [2005], the exact sequence over Z2–coefficients was proved
in Greene [2013], the general case in Némethi [2011]. For more properties see Némethi
[ibid.].

5.2 Rational singularities. By definition, (X; o) is rational if pg(X; o) = 0. This is an
analytic property, however, Artin replaced the vanishing of pg by a topological criterion
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formulated in terms of �: (X; o) is rational if and only if �(l) > 0 for any l 2 L>0 (in-
dependently of the resolution) Artin [1962, 1966]. For a different, the so–called ‘Laufer’s
rationality criterion’, see Laufer [1972]. Any connected negative definite graph with this
property is called rational graph. The set of rational graphs include e.g. all the graphs
with the following property: if ev and ıv denote the Euler decoration and the valency of
a vertex, then one requires �ev � ıv for any v 2 V. Hence, if we decrease sufficiently
the Euler decorations of any graph we get a rational graph. The class of rational graphs is
closed while taking subgraphs and decreasing the Euler numbers.

Rationality in terms of the lattice cohomology is characterized as follows:

Theorem 5.2.1. Némethi [2005] The following facts are equivalent:
(a) Γ is rational;
(b) H0(Γ; K) = T +

0 ;
(c) H0(Γ; K) = T +

m for some m 2 Z; or equivalently, H0
red

(Γ; K) = 0;
(d) H�

red
(Γ; k) = 0 for all k 2 Char.

Moreover, if Γ is rational then min�kr
= 0.

5.3 (Weakly) elliptic singularities. A normal surface singularity (X; o) is called ellip-
tic, if (one of its) resolution graph is elliptic. A graph Γ is elliptic if minl>0 �(l) = 0 (cf.
Wagreich [1970] and Laufer [1977], see also Némethi [1999b]).

The set of elliptic singularities includes all the singularities with pg = 1, and all the
Gorenstein singularities withpg = 2. But an elliptic singularity might have arbitrary large
pg .

Ellipticity in terms of the lattice cohomology is characterized as follows:

Theorem 5.3.1. The following facts are equivalent:
(a) Γ is elliptic;
(b) H0(Γ; K) = T +

0 ˚
�

T0(1)
�˚` for some ` � 1. Here T0(1) is a free Z–module of

rank one with trivial U –action and concentrated at degree 0. The integer ` above can be
identified with the length of the elliptic sequence. In particular, if the graph Γ is minimally
elliptic then ` = 1.

5.4 ‘Bad’ vertices, AR graphs. We fix an integer n � 0. We say that a negative
definite graph has at most n ‘bad’ vertices if we can find n vertices fvkg1�k�n, such
that by decreasing their Euler decorations we get a rational graph (this fact makes sense
because of Section 5.2). In general, the choice of the bad vertices is not unique. A graph
with at most one bad vertex is called almost rational, or AR, cf. Némethi [2005, 2008a].
Here are some AR graphs:

1) All rational and elliptic graphs are AR.
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2) Any star-shaped graph is AR (modify the central vertex).
3) The rational surgery 3–manifolds S3

�p/q
(K) (K algebraic knot, p/q > 0) are AR.

4) The class of AR graphs is closed while taking subgraphs and decreasing the Euler
numbers.

Theorem 5.4.1. Némethi [2011] If Γ has at most n bad vertices then Hq

red
(Γ) = 0 for

q � n. In particular, if Γ is AR then H0(Γ) is the only nonzero module.
If Γ has at most n � 2 bad vertices fvkg1�k�n such that Γn v1 has at most (n � 2) bad

vertices then Hq

red
(Γ) = 0 for q � n � 1.

See Némethi [2005, (8.2)(5.b)] for a graph Γ with 2 bad vertices fv1; v2g such that
Γ n v1 has only rational components.

5.5 Relation with Heegaard–Floer theory. In Némethi [2008a] the author formulated
the following

Conjecture 5.5.1. For any plumbed rational homology sphere associated with a con-
nected negative definite graph Γ, and for any k 2 Char, one has

d (M; [k]) = max
k02[k]

(k0)2 + jVj

4
=

k2 + jVj

4
� 2 � min�k :

Furthermore,

HF +
red;even

(�M; [k]) =
M

p even

Hp

red
(Γ; [k])[�d ]; and

HF +
red;odd

(�M; [k]) =
M

p odd

Hp

red
(Γ; [k])[�d ]:

Both parts of the Conjecture were verified for almost rational graphs in Némethi [ibid.],
for two bad vertices in Ozsváth, Stipsicz, and Szabó [2014], see Némethi [2008a, p. 8.4]
too. Otherwise, the Conjecture is still open.

Note that (conjecturally) H� has a richer structure: its p–filtration H� = ˚p Hp

collapses at the level of HF + to a Z2 odd/even filtration.

5.6 Relation with Seiberg–Witten invariant. For any k 2 Char the (normalized) Eu-
ler characteristic of the lattice cohomology is defined as

eu(H�(Γ; k)) := �min�k +
X

p

(�1)p rankHp

red
(Γ; k):
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Then, it turns out that the (normalized) Euler characteristic of the lattice cohomology
equals the (normalized) Seiberg–Witten invariant Némethi [2011] (this fact supports Con-
jecture 5.5.1 too):

�sw[k](M ) �
k2 + jVj

8
= �min�k +

X
p

(�1)p rankHp

red
(Γ; k):

5.7 Relation with L–spaces. By Section 5.2 Γ is rational if and only if H�
red

(Γ) = 0.
On the other hand, following Ozsváth and Szabó, M is an L–space by definition if and
only if HF +

red
= 0. Their equivalence is predicted by Conjecture 5.5.1; in fact this ‘tip of

the iceberg’ statement was proved in Némethi [2017]:

Theorem 5.7.1. The following facts are equivalent:
(i) (X; o) is a rational singularity (or, Γ is a rational graph),
(ii) the link M is an L–space.

(i) ) (i i) follows from lattice cohomology theory Némethi [2005, 2008a], while
(i i) ) (i) uses partly the following equivalence (i i) , (i i i), where (i i i) means that
�1(M ) is not a left–orderable group. The equivalence (i i) , (i i i)was proved in Hansel-
man, J. Rasmussen, S. D. Rasmussen, and Watson [n.d.] for any graph–manifolds. For ar-
bitrary 3–manifolds was conjectured by Boyer, Gordon, and Watson [2013], for different
developments and other references see Hanselman, J. Rasmussen, S. D. Rasmussen, and
Watson [n.d.] and Némethi [2017].

Problem 5.7.2. Characterize elliptic singularities by a certain property of �1(M ).

5.8 Reductions. In the lattice cohomology computations it is convenient to take a spe-
cial representative k for the spinc–structure [k]. Indeed, if sh 2 L0 is the minimal rep-
resentative of h 2 H in S0, and we take kr := K + 2sh as representative for [k], and
we define the weighted cubes with the weight function �kr

, then one has the following
‘homotopical identity’: H p(Sn; Z) = H p(Sn \ L�0; Z), where Sn \ L�0 denotes the
subset of Sn consisting of cubes with all vertices inL�0. Hence, with the natural notations
(after notational modification H�(L; k) = H�(Γ; k)) we have

Theorem 5.8.1. László and Némethi [2015] H�(L; �kr
) = H�(L�0; �kr

).

This can be reduced even further. Fix kr as above, that is kr = K + 2sh for some h,
and rewrite sh as s[k]. Assume that V � V is a set of bad vertices. Set also V� := V n V.
Let L be the free Z–submodule of L spanned by the (base elements of) V, and let L�0

be its first quadrant. Next we introduce a special weight function for the points of L�0

(which, in general, is not a Riemann–Roch type formula, it is not even quadratic).
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For any i = (iv1
; : : :) 2 L�0 we define the element x(i) 2 L by the following universal

property:
(i) the coefficient of Ev in x(i) is iv for any v 2 V,
(ii) (x(i) + s[k]; Ev) � for every v 2 V�,
(iii) x(i) is minimal with the properties (i)-(ii).
The definition is motivated by the theory of generalized computation sequences used

in singularity theory Laufer [1972, 1977] and Némethi [1999a,b].
Set wkr

(i) := �kr
(x(i)), the weight function of L�0. Using this weight function, one

defines the weight of any cube of L�0 as the maximum of the weights of the vertices of
the cube, and one also repeats the definition of Sn and of the lattice cohomology similarly
as above.

Theorem 5.8.2. Reduction Theorem. László and Némethi [2015] H�(L�0; �kr
) =

H�(L�0; wkr
).

In particular, if Γ is AR (and Hp = 0 for any p > 0 by Theorem 5.4.1) H0(Γ; [k]) for
any spinc–structure [k] is determined by the sequence of integers f�(i)gi2Z�0

, �(i) :=

�kr
(x(i)), where i is the coordinate of the bad vertex v. This was intensively used in

concrete computations. The star–shaped graphs are AR, their �–functions are described
in terms of Seifert invariants in Némethi [2005].

If K � S3 is an algebraic knot (that is, one of its representative can be cut out by
an isolated irreducible plane curve singularity germ fK), then the surgery 3–manifold
S3

�p/q
(K) for p/q 2 Q>0 is a plumbed 3–manifold associated with a negative definite

AR graph. For their �–function see Némethi [2007]. This can be determined in terms of
the semigroup of fK.

More generally, if fKi g
N
i=1 are algebraic knots then the graph of S3

�p/q
(#i K) and the

reduced weights together with the lattice cohomology in terms of the semigroups are de-
termined in Némethi and Román [2012].

Theorem 3.2.1 has its ‘reduction’ as well. Indeed, one defines the reduction ZV of
the series Z(t) to the variables ftvgv2V (similarly as in Sections 2.5 and 3.3, by taking
tv = 1 for any v 62 V), and László and Némethi [2015] proves for it the analogue of
Theorem 3.2.1. In particular, the Seiberg–Witten invariants can also be recovered as the
periodic constants of the reduces series.

5.9 Ehrhart theory. In László and Némethi [2014] the Seiberg–Witten invariant (of a
negative definite plumbed 3–manifold) is identified with the third coefficient of certain
equivariant Ehrhart polynomial.



PAIRS OF INVARIANTS OF SURFACE SINGULARITIES 781

5.10 Z(t) and eu in terms of weighted cubes. Above in the definition of the lattice
cohomology we used for each spinc–structure a different weighted lattice. This can be
unified in a common weighted lattice Némethi [2011] and Ozsváth, Stipsicz, and Szabó
[2014]. Here we follow Némethi [2011]. The set of p–cubes consists of pairs (k; I ),
where k 2 Char and I � V, jI j = p. This pair can be identified with a cube in L ˝ R
with vertices fk+2EI 0)I 0�I . One defines the weight function induced by the intersection
form w : Char ! Q by w(k) := �(k2 + jVj)/8, which extends to a weight–function of
the q–cubes via w((k; I )) = maxI 0�I f w(k+2EI 0) g. (The correspondence between the
two languages, for any fixed [k], is realized by k = K + 2s[k] + 2l $ l and a universal
constant shift in the weights.) The point is that in this language of weighted cubes the
topological series Z(t) can also be expressed Némethi [ibid.] as:

(5.10.1) Z(t) =
X

k2Char

X
I�V

(�1)jI j+1 w((k; I )) � t
1
2 (k�K):

Note that Char = K + 2L0 � L0, hence (k � K)/2 runs over L0 when k runs over Char.
The normalized Seiberg–Witten invariant, or the normalized Euler characteristic of the

lattice cohomology can also be determined directly by a weighted cube counting (this is
really the analogue how Euler defined the classical Euler characteristic via alternating sum
of p–cells/cubes). Since we have infinitely many cubes in L ˝ R, we need to consider a
‘truncation’.

Let us fix the class [k]. For any two k1; k2 2 [k] � Char with k1 � k2 let R(k1; k2)

denote the rectangle fx 2 L ˝ R : k1 � x � k2g. Then we can consider the set of cubes
(k; I )with k 2 [k] and situated with all vertices in R(k1; k2) and the corresponding lattice
cohomology H�(R(k1; k2); w).

Theorem 5.10.2. For ‘good’ choices of k1; k2 (with k1 � 0 and k2 � 0), and with
the abridgment R = R(k1; k2), one has the isomorphism of Z[U ]–modules H�(Γ; kr) =

H�(R; w). Furthermore,

eu(H�(Γ; kr)) = �min(wjR) +
X

p

(�1)p rankZ Hp

red
(R; w)

=
X

(k;I )�R

(�1)jI j+1w((k; I )):

Note thatZ(t) determines the intersection form ( ; ) of the latticeL, hence the lattice co-
homology as well (note also the direct ‘periodic constant formula’ for the Seiberg–Witten
invariant).

Problem 5.10.3. Find a universal construction, which assigns to any series S(t) a graded
Z[U ]–module, such that it applied to Z(t) we recover H�.
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5.11 The fundamental group of M . In fact, the same question can be asked for the
fundamental group of M . Note that �1(M ) determines M in a unique way (except for
lens spaces, a case which can be disregarded, since they have trivial H�

red
).

Problem 5.11.1. Find a universal construction, which assigns to any group a gradedZ[U ]–
module, such that it applied to �1(M ) we recover H�.

5.12 Another surgery formula forH�. Recall the surgery formulae 3.3.1 valid for the
Seiberg–Witten invariant involving the periodic constant as a ‘correction term’.

Problem 5.12.1. Find its analogue at the level ofH�. (This is related with Problem 5.10.3
too).

5.13 Path lattice cohomology. Consider the situation of Section 4.2 with fixed Γ, and
k = K and weight function � = �K . Furthermore, consider a sequence 
 := fxi g

t
i=0 so

that x0 = 0, xi+1 = xi + Ev(i) for certain v(i) 2 V for each 0 � i < t , and x(t) 2

�K + S0. Then for the union of 0–cubes marked by the points fxi gi and segments (1–
cubes) of type [xi ; xi+1]we can repeat the definition of the lattice cohomology (associated
with �k), and we get a graded Z[U ]–module H�(
; K). In fact, only H0 is nonzero, and
H0(
; K) = T +

2mini f�(xi )g
˚ H0

red
(
; K). This is called the path–cohomology associated

with the ‘path’ 
 and �. Similarly as in Section 5.6, we consider its normalized Euler
characteristic

eu(H0(
; K)) := �min
i

f�(xi )g + rankZ H0
red (
; K):

One shows that

eu(H0(
; K)) =

t�1X
i=0

maxf�(xi ); �(xi+1)g � �(xi+1) =

t�1X
i=0

maxf(xi ; Ev(i)) � 1; 0g:

It is convenient to introdce the following notation as well (cf. Section 5.6):

eu(H0(Γ; K)) := �min� + rankH0
red (Γ; K):

It turns out (cf. Némethi and Sigurdsson [2016]) that

min



eu(H0(
; K)) � eu(H0(Γ; K)):

5.14 Graded roots. For eachΓ and k 2 Char, the author in Némethi [2005] constructed
a graded root, from which one recovers by a natural procedure H0(Γ; k). This is tree
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whose vertices are Z–graded, the weight n–vertices correspond to the connected compo-
nents of Sn, and the edges of the tree to the possible inclusions of the components of Sn to
the components of Sn+1 (this at the H0(Γ; k) level is codified in the U –action). For AR

graphs it contains all the lattice cohomology (hence Heegaard–Floer) information, but it
codifies completely the inclusions of the Sn–components (a fact, which from theU –action
cannot be recovered).

There is a parallel characterization of rational and elliptic graphs in terms of graded
roots too.

5.15 Classification of singularities. The ‘Artin-Laufer program’ starts the classifica-
tion of singularities with the class of rational and elliptic singularities — it identifies topo-
logically the families, and then (under certain analytic conditions in the elliptic case, e.g.
Gorenstein property) determines certain analytic invariants (multiplicity, Hilbert function)
by uniform formulae for each family.

In order to continue this program, we first have to identify subfamilies for which one
can show that they share ‘common properties’. We propose to identify these subfamilies
by graded roots, or by the (slightly weaker) Z[U ]–module H0(Γ; K) (or, we can even
consider the whole H�(Γ; K)) Némethi [2007].

Though we know all the possible topological types (namely, the singularity resolution
graphs are exactly the connected negative definite graphs), it is not clear at all what graded
tree might appear as a graded root associated with a resolution graph.

Problem 5.15.1. Classify all the possible graded roots associated with all (Γ; K) of nor-
mal surface singularities. Is there any hidden structure property carried by the Z[U ]–
modules H�(Γ; k) associated with topological type of singularities? It is possible to de-
scribe all the possible modules produced in this way?

6 Analytic – topological connections. The Seiberg–Witten Invariant
Conjecture

In this section we treat a set of possible properties connecting the analytic invariants with
the topological ones, namely, the equivariant geometric genera with the Seiberg–Witten
invariants of the link. When they are valid they provide a topological description of the
equivariant geometric genera. The identities are generalizations of the statement of the
Casson Invariant Conjecture of Neumann and Wahl to the case of normal surface singu-
larities with rational homology sphere links.

Conjecture 6.0.1. Seiberg–Witten Invariant Conjecture/Coincidence.
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We say that (X; o) satisfy the equivariant SWIC if for any h 2 H the following identity
holds

(6.0.2) h1(eX; O(�rh)) = �sw�h��can
(M ) �

(K + 2rh)
2 + jVj

8
:

Its validity automatically extends to arbitrary natural line bundles as follows:

(6.0.3) h1(eX; O(l 0)) = �sw[l 0]��can
(M ) �

(K � 2l 0)2 + jVj

8
:

We say that (X; o) satisfies the SWIC if the above identity holds for h = 0, that is, if

(6.0.4) pg(X; o) = �sw�can
(M ) �

K2 + jVj

8
:

The identity SWIC was formulated as a conjecture in Némethi and Nicolaescu [2002],
while the equivariant case in Némethi [2007]: the expectation was that it holds for any Q–
Gorenstein singularity. Nowwe know that this is not true for this large class of singularities
(see Luengo-Velasco, Melle-Hernández, andNémethi [2005]), although it is valid for large
number of smaller families of singularities. But even in the case of those families when
it fails, it still indicates interesting ‘virtual’ properties. The limits of the validity of the
properties are not clarified at this moment. Having in mind the existence of cases when
the identity does not hold, one might say that it is not totally justified the name SWI
‘Conjecture’, although this was its name in the literature in the last ten years. Hence, the
reader might read the abbreviation SWIC as SWI ‘Coincidence’ too.

Example 6.0.5. CIC of Neumann and Wahl [1990] Assume that (X; o) is Gorenstein
and it admits a smoothing with smooth nearby Milnor fiber F . Then the signature of F

satisfies �(F ) + 8pg + K2 + jVj = 0, hence the SWIC for h = 0 reads as �(F )/8 =

sw�can
(M ). (In this case, usually, �(F )/8 is not an integer.) Additionally, if (X; o) is

a complete intersection with integral homology sphere link, then sw�can
(M ) equals the

Casson invariant �(M ) of M , hence the above identity reads as �(F )/8 = �(M ). This
is the Casson Invariant Conjecture of Neumann and Wahl, predicted for any complete
intersection with integral homology sphere link Neumann and Wahl [ibid.].

The CIC was solved for weighted homogeneous singularities and hypersurface suspen-
sion singularities ((X; o) = ff (x; y)+zN = 0g) in Neumann andWahl [ibid.], for splice
singularities (which includes the weighted homogeneous case as well) in Némethi and
Okuma [2009]. The general case is still open.

6.1 Regarding the validity of SWIC. We have the following statement:
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Theorem 6.1.1. The equivariant SWIC was verified in the following cases: rational sin-
gularities Némethi and Nicolaescu [2002], weighted homogeneous singularities Némethi
and Nicolaescu [2002, 2004], splice quotient singularities Némethi and Okuma [2008].

Additionally, the SWIC (for h = 0) was verified for suspensions ff (x; y) + zN =

0g with f irreducible Némethi and Nicolaescu [2005], for hypersurface Newton non–
degenerate singularities Sigurdsson [2016] and superisolated singularities with one cusp
Fernández de Bobadilla, Luengo-Velasco, Melle-Hernández, and Némethi [2006, 2007]
and Borodzik and Livingston [2014]. Since the identity of the SWIC is stable with respect
to equisingular deformations, the SWIC remains valid for such deformations of any of the
above cases.

Recall that (X; o) is a hypersurface superisolated singularity if

(X; o) = ff (x1; x2; x3) = 0g

where f is a hypersurface singularity with isolated singularity and the homogeneous terms
fd + fd+1 + � � � of f satisfy the following properties: C := ffd = 0g is reduced and
it defines in CP 2 an irreducible rational cuspidal curve C ; furthermore, the intersection
ffd+1 = 0g \ Singffd = 0g in CP 2 is empty. The restriction regarding fd implies that
the link of (X; o) is a rational homology sphere. One shows that the minimal good graph
of (X; o) has � bad vertices, where � is the number of cusps of C .

In all cases pg = d (d �1)(d �2)/6, hence it depends only on d , however the Seiberg–
Witten invariant (and the plumbing graph too) depend essentially on the type of cusps of
C (see Section 6.4 below).

For superisolated singularities in certain cases when C is not unicuspidal the SWIC
(h = 0 case) is not true Luengo-Velasco, Melle-Hernández, and Némethi [2005].

6.2 The path lattice cohomology bound of pg . The failure of the SWIC in the case of
superisolated singularities motivated a parallel deeper study of these germs. Surprisingly,
in this case a rather natural universal bound of pg will become equality.

Consider the set of paths P, 
 := fxi g
t
i=0 so that x0 = 0, xi+1 = xi + Ev(i) for

certain v(i) 2 V for each 0 � i < t , and x(t) 2 �K+S0. (If Γ is numerically Gorenstein
we can even take x(t) = �K.) Then, considering the cohomology exact sequences 0 !

OEv(i)
(�xi ) ! Oxi+1

! Oxi
! 0, we obtain that pg � eu(H0(
; K)). Therefore,

(6.2.1) pg � min

2P

eu(H0(
; K)):

This inequality is in the spirit of computational sequences initiated by Laufer and used
intensively in Laufer [1972, 1977], Némethi [1999a], and László and Némethi [2015].
From this point of view, this relation, in some sense, is evenmore natural then that required
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by the SWIC. Note that in Equation (6.2.1) equality holds if and only if all the cohomology
exact sequence (along a path which minimalizes the right hand side) split. The point is
that this happens for certain key families.

Theorem 6.2.2 (Némethi and Sigurdsson [2016]). The identity

pg = min

2P

eu(H0(
); K)

holds in the following cases:
(a) if pg = eu(H0(Γ; K)) (this happens e.g. if Hq(Γ; K) = 0 for q � 1 and (X; o)

satisfies the SWIC). In particular, pg = min
2P eu(H0(
); K) holds for all weighted
homogeneous and minimally elliptic singularities.

(b) rational and Gorenstein elliptic singularities;
(c) for superisolated singularities (with arbitrary number of cusps);
(d) for hypersurface singularities with non-degenerate Newton principal part.
Again, since the identity is stable with respect to equisingular deformations, it remains

valid for such deformations of any of the above cases.

The next example shows that in the case of superisolated singularities the non-vanishing
of Hq(M ) (1 � q < �) obstructs the validity of the SWIC.

Example 6.2.3. Némethi and Sigurdsson [ibid.] Assume that (X; o) is a superisolated
singularity with C of degree d = 5 and two cusps, both with one Puiseux pair: (3; 4) and
(2; 7) respectively. The graph Γ is

t t t t tt t
�2 �1 �31 �1 �3

�4 �2

t t t�2 �2 �2

We set k = K. One shows that min� = �5, rankZ(H0
red

) = 5, rankZ(H1) = 2.
Hence eu(H�) = 8. Since for the superisolated germ with d = 5 one has pg = 10, using
Section 5.6 we get that the SWIC is not valid. On the other hand, min
 eu(H0(
; K)) =

10 as well, hence pg = min
 eu(H0(
; K)), as it is predicted by the above theorem.
If we take any other analytic structure supported by Γ, by Equation (6.2.1) pg � 10

still holds.
This graph (that is, topological type) supports another natural analytic structure as well,

namely a splice quotient analytic type (compare with Section 7.2): it is the Z5–factor of
the complete intersection fz3

1 + z4
2 + z5

3z4 = z7
3 + z2

4 + z4
1z2 = 0g � (C4; 0) by the

diagonal action (˛2; ˛4; ˛; ˛) (˛5 = 1). By Theorem 6.1.1 it satisfies the SWIC, hence
pg = 8.
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In particular, in their choices of the topological characterization of their geometric
genus, some analytic structures prefer eu(H�(Γ; K)), some of them the extremal

min



eu(H0(
; K))

(and there might exists even other choices, as parts/versions of the lattice cohomology).
From this point of view the abridgement SWIC might also mean ‘SWI Choice’.

6.3 What is the optimal topological lower/upper bounds of pg? We are guided by
the following key question: If one fixes a topological type (say, a minimal good resolution
graph) and varies the possible analytic structures supported on this fixed topological type,
then what are the possible values of the geometric genus pg? A more concrete version is
formulated as follows:

Problem 6.3.1. Associate combinatorially a concrete integer MAX(Γ) to any resolution
graph Γ, such that for any analytic type supported by Γ one has pg � MAX(Γ), and
furthermore, for certain analytic structure one has equality.

Obviously, one can ask for the symmetric MIN(Γ) as well. But for the optimal lower
bound we know the answer. A possible candidate is the ‘artihmetical genus’ pa(X; o) =

1�min� Wagreich [1970]. Indeed, for any analytic structure, whenever pg > 0, one also
has 1 � min� � pg Wagreich [ibid., p. 425].

The inequality looks not very sharp, however we have the following statement:

Theorem 6.3.2. For any non–rational topological type pg = 1 � min� for the generic
analytic structure. (In particular, for non–rational graphsMIN(Γ) is exactly 1 � min�.)

This was proved for elliptic singularities in Laufer [1977], the general case in Némethi
and Nagy [n.d.].

A possible upper bound for pg , hence a candidate for MAX(Γ), is min
2P eu(H0(
)),
cf. Equation (6.2.1).

However, for the next graph, pg � min
2P eu(H0(
)) is not sharp. Indeed

min

2P

eu(H0(
)) = 4

while for any analytic typepg � 3Némethi and Okuma [2017]. (For any Gorenstein struc-
ture one has pg = 3, nevertheless, pg = 3 can be realized by non–Gorenstein structure
as well.)

s s s s ss s
�3 �1 �13 �1 �3

�2 �2
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6.4 Superisolated singularities revisited. Assume that the superisolated germ f is
associated with the projective rational cuspidal curve C , as in Section 6.1. Here two main
parts of the algebraic/analytic geometry meat: the classification of projective plane curves
with the theory of local singularities. One of the aims of the classification of projective
plane curves is to list the set of local topological types of plane curve singularities which
can be realized as singularities of a degree d projective cuspidal curve. The strategy is
to impose restrictions, obstructions for such realizations from the theory of singularities
applied for the corresponding superisolated singularities. E.g., if fKi � S3g�

i=1 are the
local algebraic knots of the plane curve singularities f(C; pi )g

�
i=1 of C , and deg(C ) = d ,

then the link of the superisolated germ (X; o) is M = S2
�d

(#i Ki ). Furthermore, if �i

is the Milnor number of (Ki � S3), then by the genus formula and the rationality of C

implies
P

i �i = (d �1)(d �2), hence d is uniquely determined by the local knot–types.
The question whether we can impose any other restriction on M from the existence of C .

In the next presentation we follow Bodnár and Némethi [2016] and Fernández de
Bobadilla, Luengo-Velasco, Melle-Hernández, and Némethi [2006, 2007]. Let us intro-
duce the following notations. For each (C; pi ) (or Ki � S3) let∆i denote the Alexander
polynomial (normalized as ∆i (1) = 1) and Γi � Z�0 the semigroup of (C; pi ). Re-
call that ∆i (t) = (1 � t) �

P
k2Γi

tk Guseĭn-Zade, Delgado, and Kampil’o [1999], and
#fZ�0 n Γi g = ıi = �i/2 (the so-called delta–invariant, or genus of (C; pi )), and write
ı :=

P
i ıi = (d � 1)(d � 2)/2.

Furthermore, consider the product of Alexander polynomials:

∆(t) := ∆1(t)∆2(t) � � �∆�(t):

There is a unique polynomial Q for which ∆(t) = 1 + ı(t � 1) + (t � 1)2Q(t). Write
Q(t) =

P2ı�2
j=0 qj tj . For � = 1 one shows

(6.4.1) Q(t) =
X
s 62Γ1

(1 + t + � � � + t s�1); hence qj = #fs 62 Γ1 : s > j g (if � = 1):

Next, set the rational function

(6.4.2) R(t) :=
1

d

X
�d=1

∆(�t1/d )

(1 � �t1/d )2
�

1 � td

(1 � t)3
:

In Fernández de Bobadilla, Luengo-Velasco, Melle-Hernández, and Némethi [2006, (2.4)]
is proved that R(t) is a symmetric polynomial (R(t) = td�3R(1/t)), and

(6.4.3) R(t) =

d�3X
j=0

�
q(d�3�j )d �

(j + 1)(j + 2)

2

�
td�3�j :
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In fact, if we reduce the variables of Z(t) and P (t) to the variable t corresponding to
U := fC g � V then R(t) = ZU

h=0
(t) � P U

h=0
(t), hence, by surgery formulae 2.6.1 and

3.3.1 we get that

(6.4.4) R(1) = �sw�can
(M ) � (K2 + jVj)/8 � pg(X; o):

Hence the vanishing ofR(1) is equivalent with the SWIC for (X; o). Moreover, in Fernán-
dez de Bobadilla, Luengo-Velasco, Melle-Hernández, and Némethi [ibid.] is also proved
that for � = 1 all the coefficients ofR(t) are nonnegative, hence (R(1) � 0) , (R(1) =

0) , all coefficients of R(t) are zero. On the other hand, by Theorem 6.1.1, for � = 1

one has R(1) = 0 indeed. This implies the vanishing of all coefficients of R(t); hence
Equations (6.4.1) and (6.4.3) combined provide the strong semigroup distribution prop-
erty of Γ1, which must be satisfied by any collection of local knot types and degree d

whenever the data is realized by a curve C .
In Fernández de Bobadilla, Luengo-Velasco, Melle-Hernández, and Némethi [ibid.]

we conjectured that for any rational cuspidal plane curve C � CP 2 of degree d with
arbitrary number of cusps all the coefficients of R(t) are non–positive. In Bodnár and
Némethi [2016] is proved that this is indeed true for any � � 2, but it fails, in general,
for � � 3. The corrected conjecture, as formulated in Bodnár and Némethi [ibid.] is the
following:

Conjecture 6.4.5. Bodnár and Némethi [ibid.] For any superisolated germ

R(1) � 0; that is, pg � �sw�can
(M ) � (K2 + jVj)/8:

In Bodnár and Némethi [ibid.] this conjecture is proved for � � 2 and verified for all
‘known’ rational cuspidal curves with � � 3. The next reformulation of this conjecture in
terms of the lattice cohomology emphasize once again the differences and resemblances
between eu(H�(Γ; K)) and eu(H0(Γ; K)).

Conjecture 6.4.6. Bodnár and Némethi [ibid.] For the link M = S3
�d

(#i Ki ) of a su-
perisolated surface singularity corresponding to a rational cuspidal projective plane curve
of degree d we have:

eu(H�(M; K)) � eu(H0(M; K)):

In fact, eu(H0(M; K)) = d (d � 1)(d � 2)/6 by Borodzik and Livingston [2014] and
Bodnár and Némethi [2016]. From this reformulation it is clear its validity for � � 2,
however a conceptual argument for its validity for � � 3 is still missing.
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6.5 Coverings. Let (X; o) be a normal surface singularitywith rational homology sphere
link, and let (Y; o) be its universal abelian covering, cf. Section 2.1. Then, from Equa-
tion (2.1.2) automatically one has the analytic identity

(6.5.1) pg(Y; o) =
X
h2H

h1(eX; OeX (�rh));

that is, the sum of the equivariant geometric genera of (X; o) equals the geometric genus
of (Y; o).

Let M and N be the links of (X; o) and (Y; o) respectively. Then N is the regular
universal abelian covering of M (associated with the representation �1(M ) ! H ). Let
Γ(M ) and Γ(N ) be the corresponding negative definite resolution/plumbing graphs as
well. In the next discussion we also assume that N is a rational homology sphere too.

Having in mind the equivariant SWIC identities for (X; o) and the SWIC for (Y; o),
following Bodnár and Némethi [2017] we say that M and its universal abelian covering
N satisfy the ‘covering additivity property’ (CAP) if

sw�can
(N ) +

K(Γ(N ))2 + jV(Γ(N ))j

8
=

=
X
h2H

sw�h��can
(M ) +

(K(Γ(M )) + 2rh)
2 + jV(Γ(N ))j

8
:

Clearly, if (X; o) satisfies the equivariant SWIC and (Y; o) the SWIC, then (CAP) for M

and its universal abelian covering N holds. However, since (CAP) is a totally topological
identity, we might ask its validity for any singularity link M (whose universal abelian
covering N is a rational homology sphere), independently of the existence of any nice
analytic structure, or independently of singularity theory.

The point is that the property (CAP) in general is not true Bodnár and Némethi [ibid.].
But, what is really surprising is that (CAP) is true for the surgery 3–manifolds M =

S3
�p/q

(#i Ki ), even though (some of) these 3–manifolds appear as the links of superiso-
lated singularities, and the superisolated singularities are the basic couterexamples for
SWIC.

Theorem 6.5.2. Bodnár and Némethi [ibid.] Let M = S3
�p/q

(K) be a manifold obtained
by a negative rational Dehn surgery of S3 along a connected sum of algebraic knots
K = K1# : : : #K� (p; q > 0, gcd(p; q) = 1). Assume that N , the universal abelian
covering of M , is a rational homology sphere. Then (CAP) holds.

Both statements Equation (6.5.1) and Theorem 6.5.2 remain valid for any abelian cov-
ering.

Problem 6.5.3. Characterize those 3–manifoldsM (or, singularity links) for which (CAP)
holds.
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6.6 Newton non–degenerate germs revisited. Note that for a hypersurface Newton
non–degenerate isolated singularity (X; o), with rational homology sphere link, both iden-
tities are true: pg = eu(H�(Γ; K)) by Theorem 6.1.1, and

pg = min

2P

eu(H0(
; K))

by Theorem 6.2.2. In particular, the link of such a singularity satisfy a very strong topo-
logical restiction: eu(H�(Γ; K)) = min
2P eu(H0(
; K)). Though we know that such
3–manifolds are rather special (for the algorithm which determines the plumbing graph
from the Newton diagram see Oka [1987, 1997], or Braun and Némethi [2010]), still, this
topological identity is a mystery for us. (Maybe it is worth to mention that in this case, pg

also equals the lattice points of (Z>0)
3 below the Newton diagram.)

Finally, we end this section with the following

Problem 6.6.1. Find the Heegaard–Floer theoretical interpretation of

min

2P

eu(H0(
; K))

7 Analytic – topological connections. P (t) versus Z(t)

7.1 The P (t) = Z(t) identity. Recall that by Section 2.4 the periodic constant of Ph

is the equivarint geometric genus h1(eX; O(�rh)), while by Theorem 3.2.1 the periodic
constant of Zh is the opposite of the rh–normalized Seiberg–Witten invariant. Hence the
equivariant SWIC says that the periodic constants of Ph and Zh are equal. Hence, it is
natural to ask for the validity of an even stronger identity, namely for P (t) = Z(t). If this
identity holds, then it provides a topological characterisation of the multivariable Hilbert
function of the divisorial filtration. For some simple singularities, e.g. for cyclic quotient
singularities one can compute directly both sides, and their equality follows visibly.

Theorem 7.1.1. The equality P (t) = Z(t) is true in the following cases: (a) rational sin-
gularities Campillo, Delgado, and Gusein-Zade [2004] and Guseĭn-Zade, Delgado, and
Kampil’o [2008] (for a different proof see Némethi [2008b]); (b) minimally elliptic sin-
gularities Némethi [ibid.]; (c) splice quotient singularities Némethi [2012] (this includes
e.g. the weighted homogeneous case as well).

Even the ‘reduced identity’ P U = ZU, for some subset U � V, can be interesting,
even if U contains only one element v. In the splice quotient case P fvg = Zfvg for certain
nodes was proved and used in Okuma [2008]. In the weighted homogeneous case, when
the minimal good graph is star–shaped and v is the central vertex, then P fvg

h=0
coincides also

with the Poincaré series of the Z�0–graded algebra of the singular point (grading induced
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by the C�–action). For this series Pinkham provided a topological expression in terms of
the Seifert invariants of the Seifert 3–manifold link Pinkham [1977], which coincides with
Z

fvg

h=0
(see e.g. Némethi and Nicolaescu [2004]). In the case of suspension singularities

the difference P fC g

h=0
� Z

fC g

h=0
is captured by the polynomial R, see Section 6.4.

We note also that the identity Ph = Zh is much stronger than SWIC for h: one can
construct examples when Ph 6= Zh but the SWIC holds. On the other hand, in any situ-
ation when the SWIC fails, the identity P = Z also fails (e.g. for certain superisolated
singularities, see also Némethi [2008b]).

7.2 A closer look at splice quotient singularities. Splice quotient singularities were
introduced by Neumann and Wahl [2005b,a]. From any fixed graph Γ (whose plumbed
manifold is a rational homology sphere and which has some additional special arithmeti-
cal properties, see below) one constructs a family of singularities with common equisin-
gularity type, such that any member admits a distinguished resolution, whose dual graph
is exactly Γ. The construction suggests that the analytic properties of the singularities
constructed in this way are strongly linked with a fixed resolution and with its graph Γ.
(Hence, the expectation is that certain analytic invariants might be computable from Γ.)

In present, there are three different approaches how one can introduce and study splice
quotient singularities; each of them is based on a different geometric property. They are:
(a) the ‘original’ construction of Neumann–Wahl, (b) the ‘modified’ version by Okuma
[2008], and (c) considering singularities satisfying the ‘end–curve condition’. It turns out
that all these approaches are equivalent.

In the first two cases we start with a topological type (that is, with Γ), which satisfies
certain restrictions, and we endow it with an analytic structure, the ‘splice quotient’ ana-
lytic type. In the third case we start with an analytic structure, which satisfies a certain
analytic property.

The construction of Neumann andWahl [2005a] imposes two combinatorial restriction
on Γ, the semigroup and congruence conditions. The congruence condition is empty if
det( ; ) = 1. Using the first condition one writes the equations of a complete intersection
(Y; o). The equations depend only on the splice diagram associated with the graph, in
particular they are called ‘splice diagram equations’. Then one defines an action of H on
this complete intersection, free off o, (here the congruence condition is needed), and sets
(X; o) = (Y; o)/G. It turns out that (X; o) has a resolution with dual graph Γ and (Y; o)

is the universal abelian covering of (X; o).
Okuma replaces the semigroup and congruence conditions by themonomial conditions,

otherwise the construction and the output is the same. Singularities constructed in this way
(either Neumann–Wahl version or Okuma version) are called splice quotient singularities.
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The third approach defines a family of singularities with a special analytic property,
with the end curve condition. This requires the existence of a resolution which has the
following property: For each exceptional irreducible component Ev , which corresponds
to an end–vertex of Γ, there exists an analytic function whose reduced strict transform
is irreducible, it intersects the exceptional curve only along Ev , and this intersection is
transversal. These are called ‘end curve functions’.

Theorem 7.2.1. (I) (Topological part) Fix a graph Γ. The following facts are equivalent:
(a) There exists a splice quotient singularity with resolution graph Γ,
(b) Γ satisfies the semigroup and congruence conditions;
(c) Γ satisfies the monomial condition.
(II) (Analytic part) Fix a normal surface singularity (X; o). The following facts are

equivalent:
(a) (X; o) is splice quotient (in the sense of Neumann–Wahl or Okuma);
(b) (X; o) satisfies the end curve condition;
(c) P (t) = Z(t).

(I) follows from Neumann andWahl [ibid.], the equivalence (I )(b) , (c)was proved
in Neumann and Wahl [ibid., §13]). Regarding (II ), the fact that splice quotient singu-
larities satisfy the ‘end curve condition’ follows basically from the construction of the
singularities: some powers of the coordinate functions of (Y; o) are ‘end curve function’.
The converse is the subject of the ‘End Curve Theorem’ Neumann and Wahl [2010] and
Okuma [2010]. Part (b) ) (c) was proved in Némethi [2012], part (c) ) (b) follows
from definitions.

Example 7.2.2. The end curve condition is satisfied in the following cases: (a) rational
singularities, where � is an arbitrary resolution; (b) minimally elliptic singularities, and �

is a minimal resolution; (c) weighted homogeneous singularities, where � is the minimal
good resolution.

As we already said, we do not know the ‘limits’ of the SWIC, but the stronger version
P (t) = Z(t) occurs exactly when (X; o) is splice quotient (provided that M is a rational
homology sphere). In this case the analytic P make the topological choice Z.

Problem 7.2.3. Find other topological candidates for P (t)—or, transformed into a ques-
tion: what other topological choices might have P (t) when we vary the analytic structure
of (X; o) ?

What is the ‘multivariable series lift’ of min
2P eu(H0(
; K)) ? What is Ph=0(t) for
hypersurface superisolated or Newton non–degenerate germs ? (In the last cases it can
even happen that Ph=0(t) is not constant along the equisingular strata, then find P for
some ‘normal form’.) Describe/characterize the universal abelian covers of hypersurface
superisolated or Newton non–degenerate singularities.
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7.3 The analytic semigroup of (X; o). In Section 2.1 we introduced the ‘topological
semigroup’ S0 determined from the lattice L0. Its analytic counterpart is defined as

S0
an;h = f rh + divE (s); where s 2 H 0(OeX (�rh))g

for any h 2 H , and S0
an = [hS0

an;h
. One shows that S0

an � S0, and P (t) is supported in
S0

an, while Z(t) is supported in S0. In both cases, usually the supports are much smaller
then the corresponding semigroups. However, both semigroups conceptually guide im-
portant geometric properties of the analytic/topological type of (X; o). For rational or
minimally elliptic singularities S0

an = S0, however the computation of S0
an usually is ex-

tremely hard.

Problem 7.3.1. Find efficient methods for the computation of S0
an. Describe S0

an for
certain key families of singularities.

7.4 Linear subspace arrangements, as ‘lifts’ of the series P (t) and Z(t). Fix (X; o),
a resolution � and the filtration fF (l 0)gl 02L0 as in Section 2.2. For any l 0 2 L0, the linear
space

(F (l 0)/F (l 0 + E))�([l 0]) = H 0(OeX (�l 0))/H 0(OeX (�l 0
� E))

naturally embeds into
T (l 0) := H 0(OE (�l 0)):

Let its image be denoted by A(l 0). Furthermore, for every v 2 V, consider the linear
subspace Tv(l

0) of T (l 0) given by

Tv(l
0) := H 0(OE�Ev

(�l 0
� Ev)) = ker (H 0(OE (�l 0)) ! H 0(OEv

(�l 0)) ) � T (l 0):

Then the imageAv(l
0) ofH 0(OeX (�l 0�Ev)/H 0(OeX (�l 0�E)) inT (l 0) satisfiesAv(l

0) =

A(l 0) \ Tv(l
0).

The point is that one can show that the vector space T (l 0) and the linear subspace
arrangement fTv(l

0)gv in T (l 0) depends only on the resolution graph.

Definition 7.4.1. The (finite dimensional) arrangement of linear subspaces Atop(l
0) =

fTv(l
0)gv in T (l 0) is called the ‘topological arrangement’ at l 0 2 L0. The arrangement of

linear subspaces Aan(l
0) = fAv(l

0) = Tv(l
0) \ A(l 0)gv in A(l 0) is called the ‘analytic

arrangement’ at l 0 2 L0. The corresponding projectivized arrangement complements will
be denoted by P (T (l 0) n [vTv(l

0)) and P (A(l 0) n [vAv(l
0)) respectively.

If l 0 62 S0 then there exists v such that (Ev; l 0) > 0, that is h0(OEv
(�l 0)) = 0, proving

that Tv(l
0) = T (l 0). Hence Av(l

0) = A(l 0) too. In particular, both arrangement comple-
ments are empty. In fact, if l 0 62 S0

an, then by similar argument, the analytic arrangement
complement is empty too.
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The connection with the series P (t) and Z(t) is given by the following topological
Euler characteristic formulae associated with all the linear subspace arrangements for all
l 0.

Theorem 7.4.2.

P (t) =
X

l 02S0
an

�top(P (A(l 0) n [vAv(l
0)) ) � tl 0

;

Z(t) =
X
l 02S0

�top(P (T (l 0) n [vTv(l
0)) ) � tl 0

:

For proof see Némethi [n.d.(a)], the analytic case (in the language of fF (l 0)gl 0 ) already
appeared in Campillo, Delgado, and Gusein-Zade [2004] and Guseĭn-Zade, Delgado, and
Kampil’o [2008].

The corresponding dimensions of the linear subspaces in Aan(l
0) are as follows. For

any l 0 2 L0 and I � V one has dim A(l 0) = h(l 0 + E) � h(l 0); dim \v2I Av(l
0) =

h(l 0 + E) � h(l 0 + EI ). Thus, the analytic arrangement is rather sensitive to the mod-
ification of the analytic structure, and in general, does not coincide with the topologi-
cal arrangement. The corresponding dimensions in the topological case are computed in
Némethi [n.d.(a)], they are slightly more technical. Examples show that �top(P (A(l 0) n

[vAv(l
0))) = �top(P (T (l 0) n [vTv(l

0))) can happen even if A(l 0) 6= T (l 0).

7.4.3. Note that the analytic subspace arrangement Aan(l
0), naturally determined by the

divisorial filtration, exists even without its embedding into T (l 0). On the other hand, if
one wishes to find its topological analogue, its embedding into the topological T (l 0) is the
most natural possibility, that is, the choice of Atop(l

0) is the most natural universal object,
which might include all the possible analytic arrangements indexed by different analytic
structures.

In this way, (A(l 0); fAv(l
0)gv) � (T (l 0); fTv(l

0)gv) looks a perfect pairing. This im-
mediately induces (by taking the Euler characteristic of the corresponding spaces) the two
series Z(t) and P (t). Though these two series looked artificially paired at the beginning,
now, after Theorem 7.4.2, this fact is totally motivated and justified. Furthermore, taking
the periodic constants of the seriesZ andP , we get that the pairing predicted by the SWIC
is indeed very natural and totally justified.

In particular, these steps provide a totally conceptual explanation for the appearance of
the Seiberg–Witten invariant in the theory of complex surface singularities.

7.4.4. Extensions. The above picture allows to extend the series P (t) andZ(t) to capture
some additional information from the corresponding Hodge or Grothendieck ring struc-
tures as well. In the analytic case the extension of P (t) to the series

P
l 02S0 [P (A(l 0) n
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[vAv(l
0))] � tl 0 with coefficients in the Grothendieck ring was already considered e.g. in

Campillo, Delgado, and Gusein-Zade [2007]. Once we have the topological arrangement
in hand, we can also introduce the following series with coefficients in the Grothendieck
ring

(7.4.5) Z(L; t) =
X
l 02S0

[P (T (l 0) n [vTv(l
0))] � tl 0

:

It is remarkable that this series has a closed expression in terms of lattice too. Indeed, if
E denotes the set of edges of Γ, then (see Némethi [n.d.(a)])

(7.4.6) Z(L; t) =
Q

(u;v)2E (1 � tE�
u � tE�

v + LtE�
u+E�

v )Q
v2V (1 � tE�

v )(1 � LtE�
v )

:
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D-MODULES IN BIRATIONAL GEOMETRY

Mංඁඇൾൺ Pඈඉൺ

Abstract

It is well known that numerical quantities arising from the theory of D-modules
are related to invariants of singularities in birational geometry. This paper surveys
a deeper relationship between the two areas, where the numerical connections are
enhanced to sheaf theoretic constructions facilitated by the theory of mixed Hodge
modules. The emphasis is placed on the recent theory of Hodge ideals.

1 Introduction

Ad hoc arguments based on differentiating rational functions or sections of line bundles
abound in complex and birational geometry. To pick just a couple of examples, topics
where such arguments have made a deep impact are the study of adjoint linear series on
smooth projective varieties, see for instance Demailly’s work on effective very ampleness
Demailly [1993] and its more algebraic incarnation in Ein, Lazarsfeld, and Nakamaye
[1996], and the study of hyperbolicity, see for instance Siu’s survey Siu [2004] and the
references therein.

A systematic approach, as well as an enlargement of the class of objects to which differ-
entiation techniques apply, is provided by the theory of D-modules, which has however
only recently begun to have a stronger impact in birational geometry. The new develop-
ments are mainly due to a better understanding ofMorihiko Saito’s theory of mixed Hodge
modules Saito [1988], Saito [1990], and hence to deeper connections with Hodge theory
and coherent sheaf theory. Placing problems in this context automatically brings in impor-
tant tools such as vanishing theorems, perverse sheaves, or the V -filtration, in a unified
way.

Connections between invariants arising from log resolutions of singularities and invari-
ants arising from the theory of D-modules go back a while however. A well-known such

The author was partially supported by the NSF grant DMS-1700819.
MSC2010: primary 14F10; secondary 14J17, 32S25, 14F17, 14F18, 14C30.
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instance is the fact that the log canonical threshold of a function f on (say) Cn coin-
cides with the negative of the largest root of the Bernstein-Sato polynomial bf (s); see
e.g. Yano [1983], Kollár [1997]. Numerical data on log resolutions plays a role towards
the study of other roots of the Bernstein-Sato polynomial Kashiwara [1976/77], Lichtin
[1989], though our understanding of these is far less thorough. Going one step further, a
direct relationship between the multiplier ideals of a hypersurface in a smooth variety X

and the V -filtration it induces on OX was established in Budur and Saito [2005].
After reviewing some of this material, in this paper I focus on one direction of further

development, worked out jointly with Mustaţă Mustaţǎ and Popa [2016a], Mustaţǎ and
Popa [2016b], Mustaţǎ and Popa [2018a], Mustaţǎ and Popa [2018b] as well as by Saito
in Saito [2016], namely the theory of what we callHodge ideals. This is a way of thinking
about the Hodge filtration (in the sense of mixed Hodge modules) on the sheaf of functions
with arbitrary poles along a hypersurface, or twists thereof, and is closely related to both
the singularities of the hypersurface and the Hodge theory of its complement. There are
two key approaches that have proved useful towards understanding Hodge ideals:

1. A birational study in terms of log resolutions, modeled on the algebraic theory of
multiplier ideals, which Hodge ideals generalize, Mustaţǎ and Popa [2016a], Mus-
taţǎ and Popa [2018a].

2. A comparisonwith the (microlocal)V -filtration, using its interactionwith theHodge
filtration in the case of mixed Hodge modules, Saito [2016], Mustaţǎ and Popa
[2018b].

Hodge ideals are indexed by the non-negative integers; at the 0-th step, they essentially
coincide with multiplier ideals. Beyond the material presented in this paper, by analogy it
will be interesting to develop a theory of Hodge ideals associated to ideal sheaves (perhaps
leading to asymptotic constructions as well), to attempt an alternative analytic approach,
and to establish connections with constructions in positive characteristic generalizing test
ideals.

There are other ways in which filtered D-modules underlying Hodge modules have
been used in recent years in complex and birational geometry, for instance in the study
of generic vanishing theorems, holomorphic forms, topological invariants, families of va-
rieties and hyperbolicity; see e.g. Dimca, Maisonobe, and Saito [2011], Schnell [2012],
Popa and Schnell [2013], Wang [2016], Popa and Schnell [2014], Popa and Schnell [2017],
Pareschi, Popa, and Schnell [2017], Wei [2017]. The bulk of the recent survey Popa
[2016b] treats part of this body of work, so I have decided not to discuss it here again.
In any event, the reader is advised to use Popa [ibid.] as a companion to this article, as in-
troductory material on D-modules and Hodge modules together with a guide to technical
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literature can be found there (especially in Ch. B, C). Much of that will not be repeated
here, for space reasons.

Acknowledgments. Most of the material in this paper describes joint work with Mircea
Mustaţă, and many ideas are due to him. Special thanks are due to Christian Schnell, who
helped my understanding of Hodge modules through numerous discussions and collabora-
tions. I am also indebted to Morihiko Saito, whose work and ideas bear a deep influence
on the topics discussed here. Finally, I thank Yajnaseni Dutta, Mircea Mustaţă, Lei Wu
and Mingyi Zhang for comments on a first draft.

2 V -filtration, Bernstein-Sato polynomial, and birational invariants

One of the main tools in the theory of mixed Hodge modules is the V -filtration along a
hypersurface, and its interaction with the Hodge filtration. Important references regard-
ing the V -filtration include Kashiwara [1983], Malgrange [1983], Sabbah [1987], Saito
[1988], Saito [1994].

First, let’s recall the graph construction. Let D be an effective divisor on X , given
(locally, in coordinates x1; : : : ; xn) by f = 0 with f 2 OX , and whose support is Z.
Consider the embedding of X given by the graph of f , namely:

if = (id; f ) : X ,! X � C = Y; x !
�
x; f (x)

�
:

On C we consider the coordinate t , and a vector field @t such that [@t ; t ] = 1.
Let (M ; F ) be a filtered left DX -module. We denote

(Mf ; F ) := if +(M ; F ) = (M ; F ) ˝C (C[@t ]; F );

where the last equality (which means the filtration is the convolution filtration) is the def-
inition of push-forward for filtered D-modules via a closed embedding. More precisely,
we have

• Mf = M ˝C C[@t ], with action ofDY = DX [t; @t ] given by: OX acts by functions
on M , and

@xi
� (g ˝ @i

t ) = @xi
g ˝ t i

� (@xi
f )g ˝ @i+1

t ;

t � (g ˝ @i
t ) = fg ˝ @i

t � ig ˝ @i�1
t ; and @t � (g ˝ @i

t ) = g ˝ @i+1
t :

• FpMf =
Lp

i=0 Fp�iM ˝ @i
t for all p 2 Z.
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One of the key technical tools in the study of D-modules is the V -filtration. The Z-
indexed version always exists and is unique whenMf is a regular holonomicDY -module,
due to work of Kashiwara [1983] and Malgrange [1983]. Assuming in addition that the
local monodromy along f is quasi-unipotent, a condition of Hodge-theoretic origin sat-
isfied by all the objects appearing here, one can also consider the following Q-indexed
version; cf. Saito [1988, p. 3.1.1].

Definition 2.1 (Rational V -filtration). A rational V -filtration of Mf is a decreasing fil-
tration V ˛Mf with ˛ 2 Q satisfying the following properties:
� The filtration is exhaustive, i.e.

S
˛ V ˛Mf = Mf , and each V ˛Mf is a coherent

OY [@xi
; @t t ]-submodule of Mf .

� t � V ˛Mf � V ˛+1Mf and @t � V ˛Mf � V ˛�1Mf for all ˛ 2 Q.
� t � V ˛Mf = V ˛+1Mf for ˛ > 0.
� The action of @t t � ˛ on gr˛V Mf is nilpotent for each ˛. (One defines grV˛ Mf as
V ˛Mf /V >˛Mf , where V >˛Mf = [ˇ>˛V ˇ Mf .)

We will consider other D-modules later on, but for the moment let’s focus on the case
M = OX , with the trivial filtration FkOX = OX for k � 0, and FkOX = 0 for k < 0.
It is standard to denote Bf := (OX )f . Via the natural inclusion of OX in Bf , for ˛ 2 Q
one defines

V ˛OX := V ˛Bf \ OX ;

a decreasing sequence of coherent ideal sheaves on X . A first instance of the connections
we focus on here is the following result of Budur-Saito:

Theorem 2.2 (Budur and Saito [2005, Theorem 0.1]). If D is an effective divisor on X ,
then for every ˛ 2 Q one has

V ˛OX = J
�
(˛ � �)D

�
;

the multiplier ideal of the Q-divisor (˛ � �)D, where 0 < � � 1 is a rational number.

Multiplier ideal sheaves are ubiquitous objects in birational geometry, encoding local
numerical invariants of singularities, and satisfying Kodaira-type vanishing theorems in
the global setting; see Lazarsfeld [2004, Ch. 9]. If f : Y ! X is a log resolution of the
pair (X; D), and c 2 Q, then by definition the multiplier ideal of cD is

J(cD) = f�OY

�
KY /X � [cf �D]

�
:

Let me take the opportunity to also introduce the following notation, to be used repeatedly.
Denote Z = Dred, and define integers ai , bi and ci by the expressions

f �Z = Z̃ + a1F1 + � � � + amFm
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and
KY /X = b1F1 + � � � + bmFm + cm+1Fm+1 + � � � + cnFn;

where Fj are the components of the exceptional locus and ai ¤ 0. We denote

(2.3) 
 = min
1�i�m

bi + 1

ai

:

Recall that the Bernstein-Sato polynomial of f is the unique monic polynomial bf (s)

of minimal degree, in the variable s, such that there existsP 2 DX [s] satisfying the formal
identity

bf (s)f
s = Pf s+1:

See for instance Kashiwara [1976/77], Sabbah [1987], Saito [1994], while a nice survey
can be found in Granger [2010]. It can be shown that bf (s) is independent of the choice
of f such that D = div(f ) locally, and so one also has a function bD(s) which is glob-
ally well defined; however, to keep a unique simple notation, in the statements below all
information about the pair (X; D) related to bf (s) should be understood locally in this
sense.

The roots of the Bernstein-Sato polynomial are interesting invariants of the singulari-
ties of f , and a number of important facts regarding them have been established in the
literature. Here are some of the most significant; a posteriori, many of these facts also
follow from Theorem 2.2 and the connection between the Bernstein-Sato polynomial and
the V -filtration.

1. The roots of bf (s) are negative rational numbers; see Kashiwara [1976/77].

2. More precisely, in the notation above, all the roots of bf (s) are of the form �
bi+`

ai

for some i � 0 and ` � 1; see Lichtin [1989, Theorem 5].

3. The negative ˛f of the largest root of bf (s) is the log canonical threshold of (X; D);
Kollár [1997, Theorem 10.6], see also Yano [1983], Lichtin [1989].

4. Moreover, all jumping numbers of the pair (X; D) (see Lazarsfeld [2004, p. 9.3.22])
in the interval (0; 1] can be found among the roots of bf (s); see Ein, Lazarsfeld,
Smith, and Varolin [2004].

For instance, it is well known that ˛f can be characterized in terms of the V -filtration
as

˛f = max fˇ 2 Q j V ˇ OX = OX g;

see for instance Saito [2016, (1.2.5)], while the log canonical threshold has a similar char-
acterization in terms of the triviality of J

�
(ˇ � �)D).
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Assuming that f is not invertible, it is not hard to see that �1 is always a root of bf (s).
The polynomial

b̃f (s) =
bf (s)

s + 1

is the reduced Bernstein-Sato polynomial of f . Inspired by (3) above and a connection
with the microlocal V -filtration Saito [1994] (cf also Section 9), Saito introduced:

Definition 2.4. The microlocal log canonical threshold ˜̨f is the negative of the largest
root of the reduced Bernstein-Sato polynomial b̃f (s).

In particular, if ˜̨f � 1, then it coincides with the log canonical threshold. In other
words, ˜̨f provides a new interesting invariant preciselywhen the pair (X; D) is log canon-
ical. It is already known to be related to standard types of singularities:

Theorem 2.5. Assume that D is reduced. Then

1. Saito [1993, Theorem 0.4] D has rational singularities if and only if ˜̨f > 1.

2. Saito [2009, Theorem 0.5] D has Du Bois singularities if and only if ˜̨f � 1.1

Example 2.6. If f is a weighted homogeneous polynomial such that xi has weight wi ,
the convention being that if f is a sum of monomials x

m1

1 � � � x
mn
n then

P
mi wi = 1, we

have ˜̨f =
Pn

i=1 wi ; see e.g. Saito [ibid., p. 4.1.5].

It is well known that the log canonical threshold of the pair (X; D) can be computed
in terms of discrepancies; in fact, using the notation in (2:3), given any log resolution one
has

˛f = minf1; 
g:

Similar precise formulas are not known for other roots of the Bernstein-Sato polynomial.
Lichtin asked the following regarding the microlocal log canonical threshold.

Question 2.7. Lichtin [1989, Remark 2, p.303] Is it true that 
 = ˜̨f ?

When ˜̨f � 1, this is indeed the case by the discussion above. As noted by Kollár
Kollár [1997, Remark 10.8], the question otherwise has a negative answer, simply due to
the fact that in general the quantity on the right hand side depends on the choice of log
resolution. One of the outcomes of the results surveyed in this paper will be however the
inequality 
 � ˜̨f ; see Theorem 9.10. It would be interesting to find similar results for
other roots of b̃f (s).

1An equivalent statement can be found in Kovács and Schwede [2011, Corollary 6.6], where it is shown that
D is Du Bois if and only if the pair (X; D) is log canonical.
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3 Hodge filtration on localizations

I will now start focusing on the Hodge filtration. Saito’s theory of mixed Hodge modules
produces useful filtered D-modules of geometric and Hodge theoretic origin on complex
varieties, which extend the notion of a variation of Hodge structure when singularities (of
fibers of morphisms, of hypersurfaces, of ambient varieties, etc.) are involved; see for
instance the examples in Popa [2016b, §2]. Usually the D-module itself is quite compli-
cated, but here we deal with one of the simplest ones.

Namely, if X is smooth complex variety of dimension n, and D is a reduced effective
divisor on X , we consider the left DX -module

OX (�D) =
[
k�0

OX (kD)

of functions with arbitrary poles along D. Locally, if D = div(f ), then OX (�D) is
simply the localization OX [f �1], on which differential operators act by the quotient rule.
This DX -module underlies the extension of the trivial Hodge module across D, i.e. the
mixed Hodge module j�QH

U [n], where U = X X D and j : U ,! X is the inclusion
map. A main feature of D-modules underlying mixed Hodge modules is that they come
endowed with a (Hodge) filtration, in this case FkOX (�D) with k � 0, better behaved
than those on arbitrary filtered D-modules; besides the fundamental Saito [1988], Saito
[1990], see also Schnell [2014] for an introductory survey, and Sabbah and Schnell [2016]
for details.

While the D-module OX (�D) is easy to understand, the Hodge filtration can be ex-
tremely complicated to describe. This is intimately linked to understanding the singulari-
ties of D and the Deligne Hodge filtration on the singular cohomology H �(U; C). Saito
[1993], Saito [2009] studied FkOX (�D) with the help of the V -filtration, and established
the following results:

Theorem 3.1. The following hold:

1. Saito [1993, Proposition 0.9 and Theorem 0.11] The Hodge filtration is contained
in the pole order filtration, namely

FkOX (�D) � OX

�
(k + 1)D

�
for all k � 0;

and equality holds if k � ˜̨f � 1.

2. Saito [2009, Theorem 0.4] F0OX (�D) = OX (D) ˝OX
V 1OX .2

2This is in fact proved in loc. cit. with eV 1OX , the microlocal V -filtration on OX (see Section 9), instead
of V 1OX , but it can be shown that the two coincide for V 1.
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Item (1) in the theorem leads to defining for each k � 0 a coherent sheaf of ideals
Ik(D) by the formula

FkOX (�D) = OX

�
(k + 1)D

�
˝ Ik(D):

We call these the Hodge ideals of the divisor D; they, and especially their extensions to
Q-divisors, play the leading role in this note.

4 Review of Hodge ideals for reduced divisors

The papers Mustaţǎ and Popa [2016a] and Mustaţǎ and Popa [2016b] are devoted to the
study of Hodge ideals of reduced divisors, using both properties coming from the theory of
mixed Hodge modules, and an alternative approach based on log resolutions and methods
from birational geometry.

The theory is essentially complete in this case, and I will only briefly review it in this
section (see also Popa [2016b, Ch. F] for a more extensive survey) and in Section 9, where
the relationship with the microlocal V -filtration Saito [2016] is explained. The rest of the
paper discusses the more general case of Q-divisors, where a complete treatment is only
beginning to take shape.

One may loosely summarize the main properties and results as follows:

Theorem 4.1 (Mustaţǎ and Popa [2016a], Mustaţǎ and Popa [2016b]). Given a reduced
effective divisor D on a smooth complex variety X , the sequence of Hodge ideals Ik(D),
with k � 0, satisfies:
(i) I0(D) is the multiplier ideal J

�
(1 � �)D

�
,3 so in particular I0(D) = OX if and only

if the pair (X; D) is log canonical. Moreover, there are inclusions

� � � Ik(D) � � � � � I1(D) � I0(D):

(ii)WhenD has simple normal crossings, in a neighborhoodwhere it is given by x1 � � � xr =

0, Ik(D) is generated by fx
a1

1 � � � x
ar
r j 0 � ai � k;

P
i ai = k(r � 1)g.

(iii) D is smooth if and only if Ik(D) = OX for all k; cf. also Corollary 6.5 below.
(iv) If Ik(D) = OX for some k � 1 (() I1(D) = OX ), then D is normal with rational
singularities. More precisely, I1(D) � Adj(D), the adjoint ideal of D.4
(v) There are non-triviality criteria for Ik(D) at a point x 2 D in terms of the multiplicity
of D at x; cf. e.g. Theorem 6.4 below.
(vi) On smooth projective varieties, Ik(D) satisfy a vanishing theorem extending Nadel
Vanishing for multiplier ideals (a special case of Theorem 7.1 below).

3Note that this follows already by combining Theorem 3.1(2) and Theorem 2.2 above.
4Recall that D is normal with rational singularities if and only if Adj(D) = OX , see Lazarsfeld [2004,

Proposition 9.3.48].
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(vii) If H is a smooth divisor in X such that DjH is reduced, then Ik(D) satisfy

Ik(DjH ) � Ik(D) � OH ;

with equality when H is general.
(viii) If D1 and D2 are reduced divisors such that D1 +D2 is also reduced, Ik satisfy the
subadditivity property

Ik(D1 + D2) � Ik(D1) � Ik(D2):

(ix) If X ! T is a smooth family with a section s : T ! X , and D is a relative divisor
on X such that the restriction Dt = DjXt

to each fiber is reduced, then

ft 2 T j Ik(Dt ) � m
q

s(t)g

is an open subset of T , for each q � 1.
(x) Ik(D) determine Deligne’s Hodge filtration on the singular cohomology H �(U; C),
where U = X X D, via a Hodge-to-de Rham type spectral sequence.

Note that, in view of item (i), a number of these properties are inspired by well-known
properties of multiplier ideals (see Lazarsfeld [2004, Ch. 9]), though often the proofs be-
come substantially more involved. However (i i) and (x) simply follow from standard
results, via general properties of the Hodge filtration.

Another line of results proved in Mustaţǎ and Popa [2016a] and Mustaţǎ, Olano, and
Popa [2017] regards the complexity of the Hodge filtration. According to Saito [2009],
one says that the filtration on a D-module (M ; F�) is generated at level k if

F`DX � FkM = Fk+`M for all ` � 0:

The smallest integer k with this property is called the generating level. In the case of
M = OX (�D) with the Hodge filtration, this can be reinterpreted as saying that

(4.2) OX

�
(k + ` + 1)D

�
˝ Ik+`(D) = F`DX �

�
OX

�
(k + 1)D

�
˝ Ik(D)

�
;

so all higher Hodge ideals are determined by Ik(D). Thus this invariant is important for
concrete calculations; see e.g. Remark 9.8 below.

Theorem 4.3. Assume that X has dimension n. Then:

1. Mustaţǎ and Popa [2016a, Theorem B] The Hodge filtration on OX (�D) is gener-
ated at level n � 2, and this bound is optimal in general.

2. Mustaţǎ, Olano, and Popa [2017, Theorem E] If D has only isolated rational sin-
gularities and n � 3, then the Hodge filtration on OX (�D) is generated at level
n � 3.
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We conjecture in Mustaţǎ, Olano, and Popa [2017] that (2) should hold for arbitrary
divisors with rational singularities. Its converse is known not to hold in general. When
D has an isolated quasihomogeneous singularity, a stronger bound was given by Saito in
Saito [2009, Theorem 0.7]: the generating level of F�OX (�D) is [n � ˜̨f � 1], where ˜̨f

is the microlocal log canonical threshold defined in Section 2; cf. also Theorem 2.5(1).

Example 4.4. (1) If D is a reduced divisor on a surface, then the Hodge filtration is
generated at level 0, so the multiplier ideal I0(D) determines all other Ik(D) via formula
(4:2) for k = 0. See Popa [2016b, Example 13.1] for concrete calculations.

(2) If D = (f = 0) � X = C3 is a du Val surface singularity, then I0(D) = OX , and
since D has rational singularities, the Hodge filtration is again generated at level 0. Thus
for all k � 1we have Ik(D) = f k+1 �

�
FkDX �

1
f

�
. If however D is an elliptic singularity,

then the Hodge filtration is typically not generated at level 0 any more, but only at level 1.
See for instance the elliptic cone calculation in Remark 9.8.

Some first applications. The use of Hodge ideals in geometric applications is still in
its early days. There are however a number of basic consequences that can already be
deduced using the results above:
� Effective bounds for the degrees of hypersurfaces on which isolated singular points
on a reduced hypersurface D in P n of fixed degree d impose independent conditions, in
the style of a classical a result of Severi for nodal surfaces in P 3; see Mustaţǎ and Popa
[2016a, §27]. As an example, the isolated singular points on D of multiplicity m � 2

impose independent conditions on hypersurfaces of degree ([ n
m
] + 1)d � n � 1.

� Solution to a conjecture on the multiplicities of points on theta divisors with isolated
singularities on principally polarized abelian varieties, improving in this case well-known
results of Kollár and others; see Mustaţǎ and Popa [ibid., §29]. For instance, one shows
that every point on such a theta divisor has multiplicity at most g+1

2
, where g is the di-

mension of the abelian variety.
� Effective bound for how far the Hodge filtration coincides with the pole order filtration
on the cohomology H �(U; C) of the complement U = X X D, in the style of results
of Deligne, Dimca, Saito and others. For instance, if D is a divisor with only ordinary
singularities of multiplicity m � 2 in an n-dimensional X , then

FpH �(U; C) = PpH �(U; C) for all p �

h n

m

i
� n � 1:

(The two filtrations on H �(U; C) start in degree �n.) See Mustaţǎ and Popa [ibid., Theo-
rem D].

Space constraints do not allow me to explain all of this carefully. I will however focus
in detail on the second item, and in fact on an extension to pluri-theta divisors in Section 8,
in order to see the machinery in action.
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5 Hodge ideals for arbitrary Q-divisors

The case of arbitrary Q-divisors is treated in Mustaţǎ and Popa [2018a]. It requires a
somewhat more technical setting, where the D-modules we consider are only direct sum-
mands of D-modules underlying mixed Hodge modules. The initial setup can be seen
as a D-module analogue of eigensheaf decompositions in the theory of cyclic covering
constructions, see e.g. Esnault and Viehweg [1992, §3].

Let D be an effective Q-divisor on X , with support Z. We denote U = X X Z and let
j : U ,! X be the inclusion map. Locally we can assume that D = ˛ � div(h) for some
nonzero h 2 OX (X) and ˛ 2 Q>0. We denote ˇ = 1 � ˛.

To this data one associates by a well-known construction the left DX -module
M (hˇ ) := OX (�Z)hˇ , a rank 1 free OX (�Z)-module with generator the symbol hˇ ,
on which a derivation D of OX acts via the rule

D(whˇ ) :=

�
D(w) + w

ˇ � D(h)

h

�
hˇ :

The case ˇ = 0 is the localization OX (�Z) considered in Section 3.
This DX -module does not necessarily itself underlie a Hodge module. It is however a

filtered direct summand of one such, via the following construction. Let ` be an integer
such that `ˇ 2 Z, and consider the finite étale map

p : V = Spec OU [y]/(y`
� h`ˇ ) �! U:

Consider also the cover

q : W = Spec OX [z]/(z`
� h`ˇ ) �! X;

and a log-resolution ' : Y ! W of the pair (W; q�Z) that is an isomorphism over V

and is equivariant with respect to the natural Z/`Z action. This all fits in a commutative
diagram

Y

V W

U X;

'

g

p q

j

where the bottom square is Cartesian. Denote by E the support of g�1(Z).
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Lemma 5.1. Mustaţǎ and Popa [2018a] There is an isomorphism of filtered left DX -
modules

g+

�
OY (�E); F�

�
' j+p+(OV ; F�) '

`�1M
i=0

�
M (hiˇ ); F�

�
;

where the filtration on the left hand side is given by the pushforward of the Hodge filtration
in Section 3 (cf. also Theorem 4.1(iii)), while on each summand on the right hand side we
consider the induced filtration.

For the notation in the lemma, recall that for any proper morphism of smooth varieties
f : X ! Y there is a filtered direct image functor

f+ : Db
�
FM(DX )

�
�! Db

�
FM(DY )

�
between the bounded derived categories of filtered D-modules; see Saito [1990, §2.3].

Thus in this theory, the basic (local) object associated to an effective Q-divisor D as
above is the filtered DX -module�

M (hˇ ); F�

�
; with FkM (hˇ ) ¤ 0 () k � 0;

and for most practical purposes this has the same properties as a filtered D-module under-
lying a mixed Hodge module.

One can show by a direct calculation that when the support Z is smooth, itself given
by the equation h, then

FkM (hˇ ) = OX

�
(k + 1 � [ˇ])Z

�
hˇ

� OX

�
(k + 1)Z

�
hˇ ; for all k � 0:

Using this and standard reduction arguments, it follows that in general (even when Z is
not necessarily defined by h), if H = div(h) so that D = ˛H , we have

FkM (hˇ ) � OX

�
kZ + H

�
hˇ ; for all k � 0:

This allows us to formulate the following:

Definition 5.2. For each k � 0, the k-th Hodge ideal associated to the Q-divisor D is
defined by

FkM (hˇ ) = Ik(D) ˝OX
OX

�
kZ + H

�
hˇ :

It is standard to check that the definition of these ideals is independent of the choice of ˛

and h, and therefore makes sense globally on X . The reduced case described in Section 3
and Section 4 corresponds to the value ˇ = 0.



D-MODULES IN BIRATIONAL GEOMETRY 811

Assumption. From now on, for simplicity we assume that dDe = Z (for instance, D =

˛Z with 0 < ˛ � 1). This makes the statements more compact, while the general situation
can be reduced to this case by noting that we always have

Ik(D) ' Ik(B) ˝OX
OX (Z � dDe);

with B = Z + D � dDe.

In the rest of this section I will briefly explain the approach to the study of Hodge ideals
based on log resolutions, originating in Mustaţǎ and Popa [2016a] in the reduced case, and
completed in Mustaţǎ and Popa [2018a] in the general case. In Section 9 I will discuss the
connection with the microlocal V -filtration discovered by Saito [2016], and its extension
to the twisted case in Mustaţǎ and Popa [2018b].

Let f : Y ! X be a log resolution of the pair (X; D) that is an isomorphism over
U = X X Z, and denote g = h ı f 2 OY (Y ). One has a filtered isomorphism�

M (hˇ ); F�

�
' f+

�
M (gˇ ); F�

�
:

We use the notation G = f �D and E = Supp(G), the latter being a simple normal
crossing divisor. It turns out that there exists a complex on Y :

C �

(gˇ ;dGe)
: 0 ! OY (�dGe) ˝OY

DY ! OY (�dGe) ˝OY
Ω1

Y (logE) ˝OY
DY

! : : : ! OY (�dGe) ˝OY
!Y (E) ˝OY

DY ! 0;

which is placed in degrees �n; : : : ; 0, and such that if x1; : : : ; xn are local coordinates, its
differential is given by

� ˝ Q ! d� ˝ Q +

nX
i=1

(dxi ^ �) ˝ @i Q + (1 � ˇ)
�
dlog(g) ^ �

�
˝ Q:

Moreover, this complex has a natural filtration given, for k � 0, by subcomplexes

Fk�nC �

(gˇ ;dGe)
:= 0 ! OY (�dGe) ˝ Fk�nDY !

! OY (�dGe)˝Ω1
Y (logE)˝Fk�n+1DY ! � � � ! OY (�dGe)˝!Y (E)˝FkDY ! 0:

The key point shown in loc. cit. is that the that there is a filtered quasi-isomorphism

(5.3)
�
C �

gˇ ;dGe)
; F�) '

�
Mr(g

ˇ ); F�

�
;

where
Mr(g

ˇ ) := M (gˇ ) ˝OY
!Y ' hˇ !Y (�E)
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is the filtered rightDY -module associated toM (gˇ ). In other words, the filtered complex
on the left computes the Hodge filtration on Mr(g

ˇ ), hence the Hodge ideals for the
simple normal crossings divisor E.

Given this fact, one can use (C �

(gˇ ;dGe)
; F�) as a concrete representative for comput-

ing the filtered D-module pushforward of
�
Mr(g

ˇ ); F�

�
, hence for computing the ideals

Ik(D). If we denote as customary by

DY !X = OY ˝f �1OX
f �1DX

the transfer D-module (isomorphic to f �DX as an OY -module), the result is:

Theorem 5.4. Mustaţǎ and Popa [2018a] With the above notation, the following hold:

1. For every p ¤ 0 and every k 2 Z, we have

Rpf�

�
C �

(gˇ ;dGe)
˝DY

DY !X

�
= 0 and Rpf�Fk

�
C �

(gˇ ;dGe)
˝DY

DY !X

�
= 0:

2. For every k 2 Z, the natural inclusion induces an injective map

R0f�Fk

�
C �

(gˇ ;dGe)
˝DY

DY !X

�
,! R0f�

�
C �

(gˇ ;dGe)
˝DY

DY !X

�
:

3. We have a canonical isomorphism

R0f�

�
C �

(gˇ ;dGe)
˝DY

DY !X

�
' Mr(h

ˇ )

that, using (2), induces for every k 2 Z an isomorphism

R0f�Fk�n

�
C �

(gˇ ;dGe)
˝DY

DY !X

�
' hˇ !X

�
kZ + H

�
˝OX

Ik(D):

Example 5.5 (I0(D) is a multiplier ideal). The lowest term in the filtration on the complex
above reduces to the sheaf

F�nC �

(gˇ ;dGe)
= !Y (E � df �De)

in degree 0. Thus

I0(D) = f�OY

�
KY /X + E � df �De

�
= f�OY

�
KY /X � [(1 � �)f �D]

�
:

This is by definition the multiplier ideal associated to the Q-divisor (1 � �)D with 0 <

� � 1. Consequently (see Lazarsfeld [2004, p. 9.3.9]):

I0(D) = OX () (X; D) is log canonical:
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Remark 5.6 (Local vanishing). In view of Theorem 5.4(3) and Example 5.5, the statement
in Theorem 5.4(1) can be seen as a generalization of Local Vanishing for multiplier ideals
Lazarsfeld [ibid., Theorem 9.4.1].

Given the equivalence between the triviality of I0(D) and log canonicity, it is natural
to introduce the following:

Definition 5.7. We say that the pair (X; D) is k-log canonical if

I0(D) = � � � = Ik(D) = OX :

Under our running assumption on D, Corollary 9.5 below implies that this is in fact equiv-
alent to simply asking that Ik(D) = OX .

Example 5.8. Let Z have an ordinary singularity of multiplicity m, i.e. an isolated singu-
lar point whose projectivized tangent cone is smooth (for example the cone over a smooth
hypersurface of degree m in P n�1). If D = ˛Z with 0 < ˛ � 1, then (X; D) is k-log
canonical if and only if k � [ n

m
� ˛]. See Corollary 9.9, noting that ˜̨f = n

m
according

to Saito [2009]; cf. also Mustaţǎ and Popa [2016a, Theorem D and Example 20.13].

Example 5.9. Irreducible theta divisors on principally polarized abelian varieties are 0-
log canonical, but may sometimes not be 1-log canonical; see Mustaţǎ and Popa [ibid.,
Remark 29.3(2)]. Generic determinantal hypersurfaces are 1-log canonical, but they are
not 2-log canonical; see Mustaţǎ and Popa [ibid., Example 20.14]. Both have rational
singularities; compare with Theorem 4.1(iv).

The generation level of the Hodge filtration on M (hˇ ) is not well understood at the
moment; for instance, depending on the value of ˛, examples inMustaţǎ and Popa [2018a]
show that on surfaces it can be either 0 or 1. It is natural to ask what is the analogue
of Theorem 4.3, but also, concretely, whether the analogue of Saito’s result discussed
immediately after it holds:

Question 5.10. If D = ˛Z, with Z reduced and having an isolated quasi-homogeneous
singularity, is the generation level of the Hodge filtration onM (hˇ ) equal to [n� ˜̨f �˛]?

6 (Non)triviality criteria

The applications of the theory of multiplier ideals rely crucially on effective criteria for
understanding whether they are trivial or not at a given point. The most basic are as
follows; if D is an effective Q-divisor, then:

1. If multx(D) � n = dimX , then J(D)x ¤ OX;x ; see Lazarsfeld [2004, Proposi-
tion 9.3.2].
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2. If multx(D) < 1, then J(D)x = OX;x ; see Lazarsfeld [2004, Proposition 9.5.13].

The first is quite standard, while the second is a slightly more delicate application of in-
version of adjunction.

Multiplier ideals also satisfy a birational transformation formula. If f : Y ! X is any
proper birational map, then

J(D) ' f�

�
OY (KY /X ) ˝OY

J(f �D)
�
:

See Lazarsfeld [ibid., Theorem 9.2.33]. Such a compact statement is not available for
higher Hodge ideals; however, using Theorem 5.4, one can show a partial analogue.

Theorem 6.1. Mustaţǎ and Popa [2016a, Theorem 18.1], Mustaţǎ and Popa [2018a] Let
f : Y ! X be a projective morphism, with Y smooth. Let Z = Dred, E = (f �D)red,
and denote TY /X = Coker(TY ! f �TX ). Then:

1. There is an inclusion

f�

�
Ik(f

�D) ˝OY
OY (KY /X + k(E � f �Z))

�
� Ik(D):

2. If J is a coherent ideal on X such that J � TY /X = 0, then

J k
� Ik(D) � f�

�
Ik(f

�D) ˝OY
OY (KY /X + k(E � f �Z))

�
:

The first statement leads quite quickly to the following triviality criterion, in terms of
the coefficients of exceptional divisors on a fixed log resolution.

Corollary 6.2. Assume that D = ˛Z (with 0 < ˛ � 1) and for f : Y ! X a log
resolution of the pair (X; D), define 
 as in (2:3). If


 � k + ˛;

then Ik(D) = OX .

This is a key ingredient in bounding the microlocal log canonical threshold of D in
terms discrepancies; see Theorem 9.10 below.

On the other hand, the second statement in Theorem 6.1 leads to nontriviality criteria
that, just as in the case of multiplier ideals, are useful when combined with global state-
ments like the vanishing theorem explained in the next section.

Corollary 6.3. If x 2 X is such that multxZ = a and multxD = b, and if q is a non-
negative integer such that

b + ka > q + r + 2k � 1;

then Ik(D) � m
q
x . In particular, this happens if multW D > q+r+2k�1

k+1
.
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At least for the moment, one can obtain somewhat stronger statements in the reduced
case; the following collects some of the results in Mustaţǎ and Popa [2016a]. The proofs
are more involved, (1) relying for instance on a deformation to ordinary singularities ar-
gument using Theorem 4.1(ix), combined with explicit calculations in that case.

Theorem 6.4. If x 2 D is a point on a reduced divisor, with m = multx(D), then:

1. Ik(D) � m
q
x if q = minfm � 1; (k + 1)m � ng; see Mustaţǎ and Popa [ibid.,

Theorem E].

2. Ik(D) � m
q
x if m � 2 + q+n�2

k+1
; see Mustaţǎ and Popa [ibid., Corollary 19.4].

As an example, for k = 1 the criterion in (1) can be rephrased as

m � max
�
q + 1;

n + q

2

�
H) I1(D) � mq

x :

It also implies that if x 2 D is a singular point, then

Ik(D) � mx ; for all k �
n � 1

2
:

In particular one obtains a smoothness criterion in terms of the Hodge filtration:

Corollary 6.5. Mustaţǎ and Popa [ibid., Theorem A] The divisor D is smooth ()

Ik(D) = OX for all k () Ik(D) = OX for some k �
n�1
2

.

7 Global setting and vanishing theorem

While the locally defined ideals in Definition 5.2 glue together into a global object, this
is not usually the case with the D-modules M (hˇ ). There is however a setting in which
this can be done.

Namely, assume that D = 1
`
H , where H is an integral divisor and ` is a positive

integer, and that there is a line bundle M such that OX (H ) ' M ˝`. (This of course
always holds when D is integral.) Let s 2 Γ(X; M ˝`) be a section whose zero-locus is
H . Recall that U = X X Z, and j : U ,! X is the inclusion. Since s does not vanish on
U , we may consider the section s�1 2 Γ(U; (M �1)˝`). Let

p : V = Spec
�
OX ˚ M ˚ : : : ˚ M ˝(`�1)

�
�! U

be the étale cyclic cover corresponding to s�1. The filtered DX -module

(M ; F�) = j+p+(OV ; F�)
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underlies a mixed Hodge module, and the obvious �`-action onM induces an eigenspace
decomposition

(M ; F�) =

`�1M
i=0

(Mi ; F�);

where Mi is the eigenspace corresponding to the map � ! �i , and on each Mi we
consider the induced filtration.

On open subsets W on which M is trivialized we have isomorphisms of filtered DW -
modules

Mi ' M (s
�i/`

jW
) for 0 � i � ` � 1;

which glue to a global isomorphism

Mi ' M ˝i
˝OX

OX (�Z) = j�j �M ˝i :

Twisting in order to globalize the M (hˇ ) picture, with ˇ = 1 �
1
`
, we obtain global

coherent ideals given by

FkMi ' M ˝i (�H ) ˝OX
Ik (i/` � H ) ˝OX

OX

�
kZ + H

�
;

and the Hodge ideals Ik(D) are defined by the case i = 1.
In this global setting, there is a vanishing theorem for Hodge ideals that in the case

k = 0 is nothing else but the celebrated Nadel vanishing theorem for multiplier ideals.
This was shown in Mustaţǎ and Popa [2016a, Theorem F] in the reduced case, and in
Mustaţǎ and Popa [2018a] in general. Recall that here we are assuming dDe = Z, the
support of D, for simplicity.

Theorem 7.1. Assume that X is a smooth projective variety of dimension n, and D is a Q-
divisor as at the beginning of this section. Let L a line bundle on X such that L+Z � D

is ample. For some k � 0, assume that the pair (X; D) is (k � 1)-log-canonical, i.e.
I0(D) = � � � = Ik�1(D) = OX . Then we have:

1. If k � n, and L(pZ) is ample for all 1 � p � k, then

H i
�
X; !X ˝ L((k + 1)Z) ˝ Ik(D)

�
= 0

for all i � 2. Moreover,

H 1
�
X; !X ˝ L((k + 1)Z) ˝ Ik(D)

�
= 0

holds if H j
�
X;Ωn�j

X ˝ L((k � j + 1)Z)
�
= 0 for all 1 � j � k.
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2. If k � n + 1 and L((k + 1)Z) is ample, then

H i
�
X; !X ˝ L((k + 1)Z) ˝ Ik(D)

�
= 0 for all i > 0:

3. If D+pZ is ample for 0 � p � k�1, then (1) and (2) also hold with L = M (�Z).

Themain ingredient in the proof is Saito’s Kodaira-type vanishing theorem Saito [1990,
§2.g] for mixed Hodge modules, stating that if (M ; F�) is the filtered D-module underly-
ing a mixed Hodge module on a projective variety X , then

Hi
�
X; grFk DR(M ; F�) ˝ L

�
= 0 for all i > 0;

where L is any ample line bundle, and grF
k
DR(M ; F�) denotes for each k the associated

graded of the induced filtration on the de Rham complex of M . See Schnell [2016], Popa
[2016a] for more on this theorem, and also Popa [2016b, §3] for a guide to interesting
generalizations. In (3), this is replaced by Artin vanishing (on affine varieties) for the
perverse sheaf associated to M via the Riemann-Hilbert correspondence.

Remark 7.2. When X has cotangent bundle with special properties, for instance when it
is an abelian variety or P n (or more generally a homogeneous space), the hypotheses on
(k �1)-log canonicity and borderline Nakano-type vanishing are not needed, so vanishing
holds in a completely arbitrary setting; see for instance Mustaţǎ and Popa [2016a, §25,
§28]. Similarly, stronger vanishing holds on toric varieties Dutta [2018].

It will be important to address the following natural problem for non-reduced divisors:

Question 7.3. Does vanishing for Q-divisors hold without the global assumption on the
existence of `-th roots of OX (H ) at the beginning of the section?

8 Example of application: pluri-theta divisors on abelian varieties

The goal here is to see explicitly how the combination of local nontriviality criteria and
global vanishing for Hodge ideals can be put to use towards concrete applications. I will
focus on one example: divisors in pluri-theta linear series on principally polarized abelian
varieties. The result below is new, extending (and also marginally improving) part of
Mustaţǎ and Popa [2016a, Theorem I], though the general idea is quite similar.

Let (A;Θ) be a principally polarized abelian variety of dimension g. Let D 2 jnΘj

for some n � 1, whose support Z has only isolated singularities.

Theorem 8.1. Under the hypotheses above, if �(Θ) denotes the Seshadri constant of Θ,
and x 2 D, we have:
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1. multxD � n2g!�(Θ) + ng!.

2. If A is general in the sense that �(A) = 1, or if n = 1, thenmultxD � n2�(Θ)+ n.

Recall that the definition of the Seshadri constant easily implies that �(Θ) � g
p

g!;
see Lazarsfeld [2004, Proposition 5.1.9]. Before proving the theorem, let’s introduce the
notation s(`; x) for the largest integer s such that the linear system j`Θj separates s-jets
at x, i.e. such that the restriction map

H 0
�
A; OA(`Θ)

�
�! H 0

�
A; OA(`Θ) ˝ OA/ms+1

x

�
is surjective. A basic fact is that

(8.2)
s(`; x)

`
� �(Θ; x);

the Seshadri constant ofΘ at x, and that �(Θ; x) is the limit of these quotients as ` ! 1;
see Lazarsfeld [ibid., Theorem 5.1.17] and its proof. Since A is homogeneous, �(Θ; x)

does not actually depend on x, so it is denoted �(Θ).

Proof of Theorem 8.1. We prove (1), and at the end indicate the necessary modification
needed to deduce (2). Write D =

P
ai Zi , with Zi prime divisors, so that Z =

P
Zi .

Since effective divisors on abelian varieties are nef, for each i we have

(8.3) ai Zi � Θg�1
� H � Θg�1 = n � g!

and since Θ is ample it follows that ai � n � g!. Thus D � ng!Z, so if m = multx(D),
then

multx(Z) � d
m

ng!
e:

Since x is fixed, for simplicity we denote s` = s(`; x). I claim that

(8.4)
m

ng!
� d

m

ng!
e �

(sn(k+1) + g + k + 1)

k + 1
; for all k � 1:

Assuming the opposite inequality for some k, by Theorem 6.4(2) we have

Ik(Z) � m
sn(k+1)+2
x :

Now according to the vanishing inMustaţǎ and Popa [2016a, Theorem 28.2], a refinement
on abelian varieties of the statement of Theorem 7.1 (cf. Remark 7.2), we have:

H 1
�
A; OA((k + 1)Z) ˝ ˛ ˝ Ik(Z)

�
= 0
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for every ˛ 2 Pic0(A).5 Again using the fact that effective divisors on an abelian varieties
are nef, we can write

(k + 1)D = (k + 1)Z + N;

where N is a nef divisor on A. On the other hand, nef line bundles on abelian varieties
are special examples of what are called GV -sheaves (a condition involving the Fourier-
Mukai transform, see e.g. Pareschi and Popa [2011, §2]), as they are topologically trivial
twists of pullbacks of ample line bundles, so we conclude using Pareschi and Popa [ibid.,
Proposition 3.1]6 that we have

H 1
�
A; OA(n(k + 1)Θ) ˝ ˛ ˝ Ik(Z)

�
= 0 for all ˛ 2 Pic0(A):

Going back to the inclusion Ik(Z) � m
sn(k+1)+2
x , since Z has only isolated singulari-

ties, the quotient m
sn(k+1)+2
x /Ik(Z) is supported in dimension 0. We obtain

H 1
�
A; OA(n(k + 1)Θ) ˝ ˛ ˝ m

sn(k+1)+2

x

�
= 0

for every ˛ 2 Pic0(A). But the collection of line bundles OA(n(k + 1)Θ) ˝ ˛ is, as ˛

varies in Pic0(X), the same as the collection of line bundles t�
a OA(n(k+1)Θ) as a varies

in X , where ta denotes translation by a. Therefore the vanishing above is equivalent to
the statement that jn(k + 1)Θj separates (sn(k+1) + 1)-jets, which gives a contradiction
and proves (8.4).

Finally, since sn(k+1) � n(k + 1)�(Θ) by (8:2), we deduce that

m �
ng!(n(k + 1)�(Θ) + g + k + 1)

k + 1
; for all k � 1:

Letting k ! 1, we obtain the inequality in the statement.
For the statement in (2), note that under the extra assumptions, each component Zi

satisfiesZi �Θg�1 � g!. Thus (8:3) implies the stronger bound ai � n, hence multx(Z) �
m
n
. We can therefore eliminate the term g! from all the formulas, while the rest of the

argument is completely identical.

9 V -filtration and microlocal log-canonical threshold

In this final section I turn to the connection between Hodge ideals and the V -filtration,
first noted in Saito [2016]. For a Q-divisor D on X , defined locally as D = ˛ � div(f ),

5Even though Z itself might not be ample, its complement A X Z is affine, so the proof in loc. cit. works
unchanged.

6The local freeness condition in the statement in loc. cit. is not needed in its proof.
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just as in Section 5 we assume for simplicity that Z = div(f ) is the reduced structure on
D, and that 0 < ˛ � 1. The corresponding statements for arbitrary D can be found in
Mustaţǎ and Popa [2018b].

We return to the notation introduced in Section 2. Recall that for a DX -module M , we
denote by Mf its pushforward via the graph of f . In line with Saito [1993] and Saito
[2016], I will use the notation

Bf := (OX )f ; Bf (�Z) := (OX (�Z))f ; and Bˇ

f
(�Z) := (OX (�Z)f ˇ )f :

One can use the V -filtration on Bf in order to define some interesting ideals on X

associated to D.

Definition 9.1. For each k � 0, we define

Ĩk(D) := fv 2 OX j 9 v0; v1; : : : ; vk = v 2 OX such that
kX

i=0

vi ˝ @i
t 2 V ˛Bf g � OX :

Since 0 < ˛ � 1, this is just another way of writing the filtration eV �OX induced on OX

by Saito’s microlocal V -filtration Saito [1994], Saito [2016]. In the notation of loc. cit.,
we have

(9.2) Ĩk(D) = eV k+˛OX :

When D = Z is a reduced divisor (i.e. ˛ = 1), a comparison theorem between Hodge
ideals and these “microlocal” ideals was established recently by Saito.

Theorem 9.3. Saito [ibid., Theorem 1] If D is reduced, then for every k � 0 we have

Ik(D) = Ĩk(D) mod f:

The statement means that the equality happens only in the quotient OD . For k = 0

it holds without modding out by f , by Theorem 2.2. However, for higher k it does not
necessarily hold in OX ; see Remark 9.8.

Its extension to arbitrary Q-divisors is established in Mustaţǎ and Popa [2018b], as a
consequence of a statement which is more explicit, in the sense of completely computing
Hodge ideals in terms of the V -filtration, even in the reduced case. For i � 0, we denote

Qi (X) =

i�1Y
j=0

(X + j ) 2 Z[X ]:
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Theorem 9.4. Mustaţǎ and Popa [ibid.] If D is a Q-divisor as above, then for every
k � 0 we have

Ik(D) =

8<: pX
j=0

Qj (˛)f
p�j vj j

pX
j=0

vj ˝ @
j
t ı 2 V ˛Bf

9=; :

In particular, we have
Ik(D) = Ĩk(D) mod f:

One of the key technical points in Mustaţǎ and Popa [ibid.] is a description of the V -
filtration on Bˇ

f
(�Z) in terms of that on Bf (�Z), based on Sabbah’s computation of

the V -filtration in terms of the Bernstein-Sato polynomials of individual elements in the
D-module Sabbah [1987].

Theorem 9.4 has consequences regarding the basic behavior of Hodge ideals that, sur-
prisingly, at the moment are not known by other means. Recall for instance the chain of
inclusions in Theorem 4.1(i); this seems unlikely to hold in the general Q-divisor case,
but the following is nevertheless true, given (9:2).

Corollary 9.5. For each k � 1 we have

Ik(D) + (f ) � Ik�1(D) + (f ):

Stronger statements hold for the first nontrivial ideal, as it is not hard to see that the
k-log-canonicity of a divisor D (see Definition 5.7) implies that (f ) � Ik+1(D).

Corollary 9.6. If (X; D) is (p � 1)-log canonical, then

Ĩp(D) � Ip(D) = Ĩp(D) + (f )

and also
Ip+1(D) � Ip(D):

In particular, we always have I1(D) � I0(D).

Another important consequence regards the behavior of the Hodge ideals Ik(˛Z)when
˛ varies. In the case of I0, it is well known that they get smaller as ˛ increases, and that
there is a discrete set of values of ˛ (called jumping coefficients) where there the ideal
actually changes; see Lazarsfeld [2004, Lemma 9.3.21]. This is not the case for higher k;
for the cusp Z = (x2 + y3 = 0) and 5/6 < ˛ � 1, one can see that

I2(˛Z) = (x3; x2y2; xy3; y4
� (2˛ + 1)x2y);

and thus we obtain incomparable ideals. However, Theorem 9.4 implies that the picture
does becomes similar to that for multiplier ideals if one considers the images in OD .
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Corollary 9.7. Given any k, there exists a finite set of rational numbers 0 = c0 < c1 <

� � � < cs < cs+1 = 1 such that for each 0 � i � s and each ˛ 2 (ci ; ci+1] we have

Ik(˛Z) mod f = Ik(ci+1Z) mod f = constant

and such that
Ik(ci+1Z) mod f � Ik(ci Z) mod f:

In fact, for a fixed k, the set of ci is contained in the set of jumping coefficients for the
V -filtration on Bf in the interval (k; k + 1].

Remark 9.8 (Calculations). There are also significant computational consequences; in-
deed, in Saito [2016, §2.2-2.4], Saito fully computes themicrolocalV -filtration for weighted-
homogeneous isolated singularities. For example, in the case of diagonal hypersurfaces
f = x

a1

1 + � � � + x
an
n (which was previously obtained in Maxim, Saito, and Schuermann

[2016, Example 2.6] using a Thom-Sebastiani type theorem), eV ˛ is generated by mono-
mials of the form x

�1

1 � � � x
�n
n satisfying

nX
i=1

1

ai

�
�i + 1 +

�
�i

ai � 1

��
� ˛:

Saito also shows in loc. cit. that I1(D) = Ĩ1(D) in the reduced homogeneous case,
though this typically fails for k � 2. Consider as an example the elliptic cone D =

(x3 + y3 + z3 = 0) � A3. The pair is log canonical, hence I0(D) = OX . Moreover, it
follows from the above that

I1(D) = Ĩ1(D) = (x2; y2; z2; xyz):

Theorem 4.3(1) implies that from this one can compute all other Ik(D). The calculations
in Saito [2016] show however that the element �2x4 + xy3 + xz3 belongs to I2(D), but
not to Ĩ2(D). Many concrete calculations of Hodge ideals can also be performed based
on the results in Saito [2009]; see also the upcoming Zhang [2018] for generalizations to
Q-divisors.

Microlocal log canonical threshold. Part of the usefulness of the results above stems
from the connection between the (microlocal) V -filtration and the Bernstein-Sato polyno-
mial of f and its roots; cf. Section 9. Most importantly for us here, and by analogy with
the description of the log canonical threshold in terms of V �OX , one has

˜̨f = max f
 2 Q j eV 
OX = OX g;

see for instance Saito [2016, (1.3.8)]. Therefore Theorem 9.4 immediately implies the
following formula for the log canonicity index of D, obtained first in Saito [ibid.] when
˛ = 1; recall that we are assuming D = ˛Z with 0 < ˛ � 1.
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Corollary 9.9. Let

p0 := min fp j Ip(D) ¤ OX g = max fp j (X; D) is (p � 1)�log canonicalg:

Then p0 = [˜̨f � ˛ + 1].

Corollary 9.9 can be combined with the information in Corollary 6.2, coming from the
birational description of Hodge ideals, in order to obtain the inequality


 < [˜̨f � ˛] + ˛ + 1; for all 0 < ˛ � 1:

Going back to Question 2.7 and the subsequent comments, optimizing as ˛ varies we
obtain the following partial positive answer to Lichtin’s question:

Theorem 9.10. Mustaţǎ and Popa [2018b] We have 
 � ˜̨f .

One can also use the methods explained here in order to give bounds on ˜̨f , the first
of which is a result of Saito [1994]:

Corollary 9.11. Let n = dimX . Then:

1. ˜̨f � [n/2].

2. If Z has only singular points of multiplicity at most m, whose projectivized tangent
cone satisfies dimSing

�
P (CxD)

�
� r , then [˜̨f ] �

n�r�1
m

.

Indeed, if this weren’t the case in (1), then by Corollary 9.9 for ˛ = 1 we would have
Ik(Z) = OX for some k �

n�1
2

. But then Corollary 6.5 implies that Z is smooth, a
contradiction. For (2) one uses the bound for Ik(Z) = OX in Mustaţǎ and Popa [2016b,
Corollary D], based on Theorem 4.1(vii).

This bound in (1) is optimal, since by Example 2.6 for a quadric f = x2
1 + � � � + x2

n

one has ˜̨f = n/2. Saito shows in fact in Saito [1994, Theorem 0.4] that all the negatives
of the roots of b̃f (s) are contained in the interval [˜̨f ; n � ˜̨f ]. Alternatively, one can see
this result, together with Theorem 9.3, as recovering Corollary 6.5.
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INTERACTION BETWEEN SINGULARITY THEORY AND THE
MINIMAL MODEL PROGRAM

Cඁൾඇඒൺඇ඀ Xඎ (许晨阳)

Abstract

We survey some recent topics on singularities, with a focus on their connection
to the minimal model program. This includes the construction and properties of dual
complexes, the proof of the ACC conjecture for log canonical thresholds and the re-
cent progress on the ‘local stability theory’ of an arbitrary Kawamata log terminal
singularity.

1 Introduction

Through out this paper, we will consider algebraic singularities in characteristic 0. It is
well known that even if we are mostly interested in smooth varieties, for many different
reasons, we have to deal with singular varieties. For the minimal model program (MMP)
(also known as Mori’s program), the reason is straightforward, mildly singular varieties
are built into the MMP process, and there is no good way to avoid them (see e.g. Kollár
and Mori [1998]). In fact, the development of the MMP has been intertwined with the
progress of our understanding of the corresponding singularity theory, in particular for the
classes of singularities preserved by an MMP sequence. This is one of the main reasons
why when the theory was started around four decades ago, people spent a lot of time to
classify these singularities. However, once we move beyond dimension three, an explicit
characterisation of these singularities is often too complicated, and we have to search for
a more intrinsic and qualitative method. It turns out that MMP theory itself provides
many new tools for the study of singularities. In this note, we will survey some recent
progress along these lines. More precisely, we will discuss the construction and properties
of dual complexes, the proof of the ACC conjecture for log canonical thresholds, and
the recently developed concept of ‘local stability theory’ of an arbitrary Kawamata log
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terminal singularity. We hope these different aspects will give the reader an insight to the
modern philosophy of studying singularities from the MMP viewpoint.

In the rest of the introduction, we will give a very short account on some of the main
ideas. Given a singularity x 2 X in characteristic 0, the first birational model that one
probably thinks of is a smooth one given by Hironaka’s theorem on resolution of singulari-
ties. However, started from dimension three, there are often too many possible resolutions
and examples clearly suggest that in a general case, an ‘optimal resolution’ does not exist.
By the philosophy of MMP, we should run a sequence of relative MMP, which allows
us to start from a general birational model over x 2 X , e.g., an arbitrary resolution, and
produce a sequence of relative birational models. The output of this MMP is a birational
model, which usually is mildly singular but still equipped with many desirable properties.
Furthermore, since during the MMP process, each step is a simple surgery like a diviso-
rial contraction or a flip, we can keep track of many properties of the models and use this
information to answer questions. As an example, in Section 2, we will consider the con-
struction of a CW-complex as a topological invariant for an isolated singularity x 2 X

with KX being Q-Cartier, namely the dual complex of a minimal resolution denoted by
DMR(x 2 X).

A possibly more profound principle is that there is a local-to-global analogue between
different types of singularities and the building blocks of varieties. More precisely, the
MMP can be considered as a process to transform and decompose an arbitrary projective
variety into three types, which respectively have positive (Fano), zero (Calabi-Yau) or neg-
ative (KSBA) first Chern class. These three classes are naturally viewed as building blocks
for higher dimensional varieties. As a local counterpart, we consider normal singularities
whose canonical class is Q-Cartier. There is a closely related trichotomy: the minimal
log discrepancy is larger, equal or smaller than 0. In fact, guided by the local to global
principle, we are able to discover striking new results on singularities. In Section 3, we
will focus on the proof of Shokurov’s ACC conjecture on log canonical thresholds, which
is achieved via an intensive interplay between local and global geometry. In Section 4, we
will investigate in a new perspective on Kawamata log terminal (klt) singularities which
are precisely the singularities with positive log discrepancies and form the local analog
of Fano varieties. We will explain some deep insights on klt singularities inspired by ad-
vances in the study of Fano varieties. More precisely, for Fano varieties, we have the
notion of K-(semi,poly)stability which has a differential geometry origin, as it is expected
to characterise the existence of a Kähler-Einstein metric. For klt singularities, the local
to global principle leads us to discover a (conjectural) stability theory, packaged in the
Stable Degeneration Conjecture 4.4, which can be considered as a local analogue to the
K-stability for Fano varieties.
Reference: Giving a comprehensive account of the relation between the singularity theory
and the MMP is far beyond the scope of this note. The singularity theory in the MMP is
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extensively discussed in the bookKollár [2013b]. Ever since Kollár’s bookwas published,
many different aspects of singularity theory have significantly evolved, and important new
results have been established.

Acknowledgments. I want to thank my coauthors, especially Christopher Hacon, János
Kollár, Chi Li and James McKernan for many discussions and joint works on the math-
ematical materials surveyed in this note. I am grateful to Christopher Hacon and János
Kollár for long lists of valuable comments.

2 Dual complex

There are many standard references in the subject of MMP, see e.g. Kollár and Mori
[1998]. Here we recall some basic definitions. Given a normal variety X and a Q-divisor
∆ whose coefficients along prime components are contained in Q \ [0; 1], we call (X;∆)

a Q-Cartier log pair if KX +∆ is Q-Cartier, e.g. there is some positive integer N such
that N (KX +∆) is Cartier. For a divisorial valuation E whose centre on X is non-empty,
we can assume there is a birational model f : Y ! X , such that E is a divisor on Y .
Then we can define the discrepancy a(E; X;∆) for a Q-Cartier log pair (X;∆) to be the
multiplicity of

KY /X + f �∆ = KY � f �(KX +∆)

along E. This is a rational number of the form p
N

for some integer p. For many questions,
it is more natural to look at the log discrepancy A(E; X;∆) = a(E; X;∆) + 1, which
is also denoted by AX;∆(E) in the literature. We say that (X;∆) is log canonical (resp.
Kawamata log terminal (klt)) if A(E; X;∆) � 0 (resp. A(E; X;∆) > 0) for all divisorial
valuations E whose centre CenterX (E) on X is non-empty. There is another important
class called divisorial log terminal (dlt) sitting in between: a log pair (X;∆) is dlt if there
is a smooth open locus U � X , such that ∆U =defn ∆jU is a reduced divisor satisfying
(U;∆U ) is simple normal crossing, and any divisor E with the centre CenterX (E) �

X n U satisfies A(E; X;∆) > 0. The main property for the discrepancy function is
that a(E; X;∆) monotonically increases under a MMP sequence, which implies that the
MMP will preserve the classes of singularities defined above (cf. Kollár and Mori [ibid.,
pp. 3.42–3.44]).

We call a projective variety X to be a Q-Fano variety if X only has klt singularities
and �KX is ample. Similarly, a projective pair (X;∆) is called a log Fano pair if (X;∆)

is klt and �KX � ∆ is ample.

2.1 Dual complex as PL-homeomorphism invariant. For a simple normal crossing
variety E, it is natural to consider how the components intersect with each other. This
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combinatorial data is captured by the dual complex D(E) (see Definition 2.1). A typical
example one can keep in mind is the dual graph D(E) for a resolution (Y; E) ! X of
a normal surface singularity, where the exceptional curve E is assumed to be of simple
normal crossings. This invariant is indispensable for the study of surface singularities
(see e.g. Mumford [1961]). Nevertheless, the concept of dual complex can be defined in
a more general context.

Definition 2.1 (Dual Complex). Let E =
S

i2I Ei be a pure dimensional scheme with
irreducible components Ei . Assume that

1. each Ei is normal and

2. for every J � I , if \i2J Ei is nonempty, then every connected component of
\i2J Ei is irreducible and has codimension jJ j � 1 in E.

Note that assumption (2) implies the following.

3. For every j 2 J , every irreducible component of \i2J Ei is contained in a unique
irreducible component of \i2J nfj gEi .

The dual complex D(E) ofE is the regular cell complex obtained as follows. The vertices
are the irreducible components of E and to each irreducible component of W � \i2J Ei

we associate a cell of dimension jJ j�1. This cell is usually denoted by vW . The attaching
map is given by condition (3). Note that D(E) is a simplicial complex iff \i2J Ei is
irreducible (or empty) for every J � I .

Fixed a dlt pair (X;∆), the reduced part E =defn ∆=1 of ∆ satisfies the assumptions
in Definition 2.1 (see e.g. Kollár [2013b, Section 4.2]), thus we can define D(X;∆) =defn
D(E). Clearly, by the definition of U in the definition of dlt singularity (X;∆), we can
pick any such U , then D(X;∆) = D(∆jU ). Furthermore, if two dlt pairs (X;∆) and
(X 0;∆0) are crepant birationally equivalent, i.e., the pull backs of KX + ∆ and KX 0 +

∆0 to a common model are the same, then applying the weak factorisation theorem to
log resolutions of (X;∆) and (X 0;∆0) and carefully tracking the dual complex given by
divisors with log discrepancy 0 on each birational model, we can show that D(X;∆) and
D(X 0;∆0) are PL-homeomorphic (see de Fernex, Kollár, and Xu [2017, p. 11]).

Given a sequence of MMP

(X1;∆1) Ü (X2;∆2) Ü � � � Ü (Xk ;∆k);

as the log discrepancies of (Xi ;∆i ) monotonically increase, we have

D(X1;∆1) � D(X2;∆2) � � � � � D(Xk ;∆k):
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Remark 2.2. Although part of the MMP, including the abundance conjecture, remains
to be conjectural, all the MMP results we need in this note are already proved in Birkar,
Cascini, Hacon, and McKernan [2010] and its extensions, e.g. Hacon and Xu [2013].

We know the following technical but useful criterion.

Lemma2.3 (de Fernex, Kollár, andXu [2017, p. 19]). If for a step (Xi ;∆i ) Ü (Xi+1;∆i+1)

of an MMP sequence, the extremal ray Ri satisfies that Ri � Di > 0 for a component Di

of ∆=1
i , then D(Xi ;∆i ) � D(Xi+1;∆i+1) is a homotopy equivalence.

Nowwe can apply this to various geometric situations. We first consider the application
to the study of a singularity x 2 X � CN . It has been known for long time (see Milnor
[1968]) that all local topological information of x 2 X is encoded in the link defined as

Link(x 2 X) =defn X \ B�(x)

for a sufficiently small radius �. Following the strategy of studying surfaces (as in e.g.
Mumford [1961]), we pick a log resolution Y ! (x 2 X) and let E =defn f �1(x)) (in
particular, E is simple normal crossing). Then Link(x 2 X) is a tubular neighbourhood
of E and D(E) contains some key information of this tubular structure.

Example 2.4. Consider the well known classification of rational double points (or Du Val
singularities) on surface:

1. Type An: x2 + y2 + zn+1 = 0:

2. Type Dn: x2 + zy2 + zn�1 = 0 (n � 4).

3. Type E6: x2 + y3 + z4 = 0.

4. Type E7: x2 + y(y2 + z3) = 0

5. Type E8: x2 + y3 + z5 = 0.

Then the minimal resolution Y with the exceptional locus E forms a log resolution, and
D(E) is the graph underlying the corresponding Dynkin diagram.

Using the weak factorisation theorem Abramovich, Karu, Matsuki, and Włodarczyk
[2002], one shows that the homotopy class of D(E) is a well-defined homotopy invariant
DR(x 2 X) which does not depend on the choice of the log resolution (Y; E) (see e.g.
Payne [2013]). The strategy in our previous discussion then can be used to show the
following result.

Theorem 2.5. For an isolated normal singularity x 2 X with KX being Q-Cartier, we
can define a canonical PL-homeomorphism invariant DMR(x 2 X) which has the ho-
motopy class of DR(x 2 X).
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Proof. First we take a log resolution (Y; E) ! X which is isomorphic outside X n fxg,
then run a relative MMP of (Y; E) over X . The output (Xdlt;∆dlt) is called a dlt modifi-
cation of x 2 X . Then we define a regular complex

DMR(x 2 X) =defn D(∆dlt):

Since different dlt modifications are crepant birationally equivalent to each other, we know
DMR(x 2 X) gives a well defined PL-homeomorphism class by the discussion before.
Furthermore, we can deduce from Lemma 2.3 that for all the birational models appearing
in steps of the relative MMP, including the last one (Xdlt;∆dlt), the dual complexes have
the same homotopy type. Then it implies DMR(x 2 X) is homotopy equivalent to
DR(x 2 X).

The regular complex DMR(x 2 X) can be considered as a geometric realisation of
the weight 0 part of the Hodge theoretic invariant attached to x 2 X . An interesting
corollary to Theorem 2.5 is that if we consider a klt singularity x 2 X , then DR(x 2 X)

is contractible, as in the special case of Example 2.4.

Another natural context in which the dual complex appears is for the motivic zeta func-
tion using the log resolution formula (cf. Denef and Loeser [2001, Section 3]). The tech-
niques developed here can be used to show that the only possible maximal order pole
of the motivic zeta function is the negative of the log canonical threshold, which was a
conjecture by Veys (see Nicaise and Xu [2016a]).

2.2 Dual complex of log Calabi-Yau pairs. Similar ideas can be applied when we con-
sider the setting of a proper degeneration Y ! C of projective varieties over a smooth
pointed curve (C; 0). Here we consider the dual complex D(Y red

0 ) where Y red
0 is the re-

duced fiber over 0 and assume (Y; Y red
0 ) is a dlt pair.

For subjects like mirror symmetry, the degeneration of Calabi-Yau varieties is of par-
ticular interests. From a birational geometry view, if we consider a family � : Y ! C ,
and assume a general fiber has KYt

∼Q 0, then after running an MMP over C (cf. Fujino
[2011]), we end up with a model Y which satisfies KY + Y red

0 ∼Q 0. Then for such mod-
els with this extra condition, any two of them are crepant birationally equivalent which
implies D(Y red

0 ) is well defined up to PL-homeomorphism.
Indeed in this case, the topological invariant D(Y red

0 ) is first defined by Kontsevich-
Soibelman as the ‘essential skeleton’ of the Berkovich theoretic non-archimedean an-
alytification Y an (see Kontsevich and Soibelman [2001], Mustaţă and Nicaise [2015],
and Nicaise and Xu [2016b]), and it plays an important role in the study of the algebro-
geometric version of the SYZ conjecture (cf. Strominger, Yau, and Zaslow [1996], Kont-
sevich and Soibelman [2001], and Gross and Siebert [2011] etc.). The same argument
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for proving Theorem 2.5 can be used to show the essential skeleton D(Y red
0 ) is homotopy

equivalent to Y an (see Nicaise and Xu [2016b]).

To understand D(Y red
0 ), we first need to describe its local structure, i.e., for a prime

component X � Y0, to understand the link of the corresponding vertex vX in D(Y red
0 ). It

is given by D(∆=1) where ∆ is defined by formula

(KY + Y red
0 )jX = KX +∆ ∼Q 0:

Our goal is to show under suitable conditions, the dual complex coming from a (log)
Calabi-Yau variety is close to simple objects like a sphere or a disc. In fact, we can show
the following.

Theorem 2.6 (Kollár and Xu [2016]). Let (X;∆) be a projective dlt pair which satisfies
KX +∆ ∼Q 0. Assume dim(D(∆=1)) > 1, then the following holds.

1. H i (D(∆=1); Q) = 0 for 1 � i � dim(D(∆=1; Q)).

2. D(∆=1) is a pseudo-manifold with boundary (Kollár and Kovács [2010]).

3. There is a natural surjection �1(X
sm) � �1(D(∆=1)).

4. The profinite completion �̂1(D(∆=1)) is finite.

Proof. We sketch the proof under the extra assumption that dim(D(∆=1)) is maximal, i.e.
equal to n � 1. Then (1) is easily obtained using Hodge theory. We need to apply MMP
theory to show (2) and (3). Here we explain the argument for (3). A carefully chosen
MMP process (see Kollár and Xu [2016, Section 6]) allows us to change the model from
X to a birational model X 0, with the property that if we define the effective Q-divisor∆0

on X 0 to be the one such that (X;∆) and (X 0;∆0) are crepant birationally equivalent, then
the support of ∆0 contains an ample divisor. From this we conclude that

�1(X
0sm) � �1(∆

0=1) � �1(D(∆=1));

where the first surjection follows from the (singular version of) Lefschetz Hyperplane
Theorem. We also have �1(X

sm) ! �1(X
0sm) by tracking the MMP process, which con-

cludes (3). Finally, (4) follows from Xu [2014]. (We note here that we indeed expect
�1(D(∆=1)) is finite, but to apply the above argument, we need �1(X

sm) for the under-
lying variety X of a log Fano pair. For now, we only know its pro-finite completion is
finite.)

A remaining challenging question is to understand the torsion cohomological group
H i (D(∆=1); Z) for a dlt log Calabi-Yau pair (X;∆).
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3 ACC of log canonical thresholds

Given a holomorphic function f with f (0) = 0, the complex singular index

c(f ) = supfc j
1

jf jc
is locally L2-integrable at 0g

introduced by Arnold is a fundamental invariant, which appears in many contexts (see
Arnol’d, Guseı̆n-Zade, and Varchenko [1985, II. Chap. 13]). In a more general setting,
in birational geometry, this invariant is interpreted as the log canonical threshold of an
effective Q-divisor D with respect to a log pair (X;∆)

lct(X;∆;D) = maxft j (X;∆+ tD) is log canonicalg:

Using a log resolution, it is not hard to show that when X is the local germ 0 2 Cn,∆ = 0

and D = (f ), lct(X ;D) = c(f ).

Example 3.1. Let X = Cn, f = x
m1

1 + � � � + x
mn
n , then by Kollár [1997, p. 8.15]

lct(Cn; f ) = minf1;

nX
i=1

1

mi

g:

For a fixed n, all such numbers form an infinite set which satisfies the ascending chain
condition.

See Kollár [ibid., Section 8-10] for a wonderful survey, including relations with other
branches of mathematics.

We define the following set.

Definition 3.2. Fix the dimension n and two sets of positive numbers I and J , we denote
by LCTn(I; J ) the set consisting of all numbers lct(X;∆;D) such that dim(X) = n, the
coefficients of ∆ are in I and the coefficients of D are in J .

Our main contribution to the study of log canonical thresholds is showing the following
theorem.

Theorem 3.3 (Hacon, McKernan, and Xu [2014, Theorem 1.1], ACC Conjecture for log
canonical thresholds). If I and J satisfy the descending chain condition (DCC), then
LCTn(I; J ) satisfies the ascending chain condition (ACC).

In such a generality, this was conjectured in Shokurov [1992], although in a lot of
earlier works, questions of a similar flavour already appeared. For X = Cn (or even
more generally for bounded singularities) and D = (f ), this was solved by de Fernex,
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Ein, and Mustaţă [2010] using a different approach. In fact, while our proof is via global
geometry, the argument in de Fernex, Ein, and Mustaţă [ibid.] uses a more local method.

To understand our strategy, we start with a well-known construction: Given a log canon-
ical pair (X;∆) with a prime divisor E over X with the log discrepancy
A(E; X;∆) = 0, if X admits a boundary ∆0 such that (X;∆0) is klt, then applying the
MMPwe can construct a model f : Y ! X such that Ex(f ) is equal to the divisor E (see
Birkar, Cascini, Hacon, and McKernan [2010, p. 1.4.3]). Denote by ∆Y = E + f �1

� ∆

and restrict KY + ∆Y to a general fiber F of f : E ! f (E). Since E has coefficient
one in ∆Y , the adjunction formula says there is a boundary∆F such that

KF +∆F = (KY +∆Y )jF = f �(KX +∆) ∼Q 0:

In other words, using themodel Y constructed by anMMP technique, from a lc pair (X;∆)

which is not klt along a subvariety f (E), we obtain a log Calabi-Yau pair (F;∆F ) of
smaller dimensional.

We note that even in the case ∆Y = E, since Y could be singular along codimension
2 points on E, it is not always the case that ∆E = 0. Nevertheless, if the coefficients of
∆ are in a set I � [0; 1], then the coefficients of∆F are always in the set

D(I ) =defn f
n � 1 + a

n
j n 2 N; a =

jX
i=1

ai where ai 2 I g \ [0; 1]

(see e.g. Kollár [2013b, p. 3.45]). In particular, if I satisfies the DCC, then D(I ) satisfies
the DCC. This is why we work with such a general setting of coefficients as it works better
with the induction.

Moreover, if there is a sequence of pairs (Xi ;∆i ) and strictly increasing log canonical
thresholds ti with respect to the divisors Di , then the above construction will produce a
sequence of log Calabi-Yau varieties (Fi ;∆Fi

) corresponding to (Xi ;∆i + ti Di ) with
the property that the restriction of f �1

� (∆i + ti Di ) on Fi yields components of∆Fi
with

strictly increasing coefficients as i ! 1. Therefore, to get a contradiction, it suffices to
prove the following global version of the ACC conjecture.

Theorem 3.4 (Hacon, McKernan, and Xu [2014, Theorem 1.5]). Fix n and a DCC set
I , then there exists a finite set I0 � I such that for any projective n-dimensional log
canonical Calabi-Yau pair (X;∆), i.e. KX+∆ ∼Q 0, with the coefficients of∆ contained
in I , it indeeds holds that the coefficients of∆ are in I0.

We note that Theorem 3.4 in dimension n � 1 implies Theorem 3.3 in dimension n.
More crucially, Theorem 3.4 changes the problem from a local setting to a global one and
we have many new tools to study it. In particular, as we will explain below, Theorem 3.4
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relates to the boundedness results on log general type pairs. This is a central topic in the
study of such pairs, especially for the construction of the compact moduli space of KSBA
stable pairs, which is the higher dimensional analogue of the moduli space of marked
stable curves Mg;n (see e.g. Kollár [2013a] and Hacon, McKernan, and Xu [2016]).

Since I satisfies the DCC, if such a finite set I0 does not exist, we can construct an
infinite sequences (Xi ;∆i ) of log canonical Calabi-Yau pairs of dimension at most n, such
that after reordering, if we write∆i =

Pk
j=1 a

j
i ∆

j
i , fa

j
i g1

i=1 monotonically increases for
any fixed 1 � j � k and strictly increases for at least one. Furthermore, after running
an MMP, we can reduce to the case that the underlying variety Xi is a Fano variety with
the Picard number �(Xi ) = 1. Then if we push up the coefficients of ∆i to get a new
boundary

∆0
i =defn

kX
j=1

aj
1∆j

i where aj
1 = lim

i
a

j
i ;

KXi
+∆0

i is ample. By enlarging I , we can start with the assumption that all accumulation
points of I are also contained I . In particular, the coefficients a

j
1 2 I . Moreover, recall

that by induction on the dimension, we can assume Theorem 3.4 holds for dimension n�1,
which implies Theorem 3.3 in dimension n. Thus for i sufficiently large, (Xi ;∆

0
i ) is also

log canonical. Then we immediately get a contradiction to the second part of (2) in the
following theorem.

Theorem 3.5 (Hacon, McKernan, and Xu [2014, Theorem 1.3]). Fix dimension n and a
DCC set I � [0; 1]. Let Dn(I ) be the set of all pairs

f(X;∆) j dim(X) = n; (X;∆) is lc and the coefficients of∆ are in I g;

and Dı
n(I ) � Dn(I ) the subset of pairs with KX + ∆ being big. Then the following

holds.

1. The set Voln(I ) = fvol(KX +∆)j (X;∆) 2 Dn(I )g satisfies DCC.

2. There exists a positive integer N = N (n; I ) depending on n and I such that the
linear system jN (KX + ∆)j induces a birational map for any (X;∆) 2 Dı

n(I ).
Moreover, there exists ı > 0 depending only on n and I , such that if (X;∆) 2

Dı
n(I ), then KX + (1 � ı)∆ is big.

The part (1) was a conjecture ofAlexeev-Kollár (cf. Kollár [1994] andAlexeev [1994]).
As already mentioned, it is the key in the proof of the boundedness of the moduli space
of KSBA stable pairs with fixed numerical invariants. See Hacon, McKernan, and Xu
[2016] for a survey on this topic and related literature.
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During the proof of Theorem 3.5, we have to treat (1) and (2) simultaneously. Such a
strategy was first initiated in Tsuji [2007], and carried out by Hacon andMcKernan [2006]
and Takayama [2006] for X with canonical singularities and ∆ = 0. It started with the
simple observation that for smooth varieties of general type, birationally boundedness
implies boundedness (after the MMP is settled). In Hacon, McKernan, and Xu [2013], we
prove a log version of this, which says that log birational boundedness essentially implies
Theorem 3.5. This is significantly harder, and we use ideas from Alexeev [1994] which
established the two dimensional case of Theorem 3.5. After this, it remains to show that
all pairs in Dı

n(I ) with the volume bounded from above by an arbitrarily fixed constant is
always log birationally bounded, which is done in Hacon, McKernan, and Xu [2014]. One
key ingredient is to produce appropriate boundaries on the log canonical centres such that
the classical techniques of inductively cutting log canonical centres initiated in Angehrn
and Siu [1995] can be followed here.

Addressing the proof for the ACC of the log canonical thresholds in this circle of global
questions is a crucial idea in our solution to it. In fact, in the pioneering work McKernan
and Prokhorov [2004], an attempt was already made to establish a connection between
the ACC of log canonical thresholds and a global question on boundedness but for the
set of KX -negative varieties, i.e. Fano varieties. More precisely, it has been shown in
McKernan and Prokhorov [ibid.] that the ACC conjecture of log canonical thresholds is
implied by Borisov-Alexeev-Borisov (BAB) conjecture which is about the bounededness
of Fano varieties with a uniform positive lower bound on log discrepancies. More recently,
the BAB conjecture is proved in Birkar [2016].

In Hacon, McKernan, and Xu [2014], under a suitable condition on I and assuming
that J = fNg, we show that the accumulation points of LCTn(I ) =defn LCTn(I; N) are
contained in LCTn�1(I ), confirming the Accumulation Conjecture due to Kollár.

It attracts considerable interests to find out the effective bound for the constants appear-
ing in Theorem 3.3 and Theorem 3.5. So far it is only successful for low dimension. For
instance when I = 0, Theorem 3.3 implies that there exists an optimal ın < 1 such that
LCTn =defn LCT(f0g) � [0; ın] [ f1g, and (ın; 1) is called the n-dimensional gap. It is
known ı2 = 5

6
, but ı3 is unknown. In Kollár [1997, p. 8.16], it is asked whether

ın = 1 �
1

an

where a1 = 2, ai = a1 � � � ai�1+1:

Our approach in general only gives the existence of ın.

Remark 3.6 (ACC Conjecture on minimal log discrepancy). There is another deep con-
jecture about ACC properties of singularities due to Shokurov, which seems to be still far
open.
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ACC Conjecture of mld: Given a log canonical singularity x 2 (X;∆), we can define

mldX;∆(x) = minfAX;∆(E) j CenterE (X) = fxg g:

If we fix a finite set I , and it is conjectured that the set

MLDn(I ) = fmldX;∆(x)j dim(X) = n; coefficients of ∆ are in Ig

satisfies the ACC.

However, compared to the log canonical thresholds, what kind of global questions con-
nect to this conjecture still remains to be in a myth. For instance, it is not clear which
special geometric structure is carried by a divisor attaining the minimal log discrepancy.

4 Klt singularities and K-stability

In this section, our discussion will focus on klt singularities. When klt singularities were
first introduced, they appeared to be just a technical tool to prove results in the MMP.
However, it has become more and more clear that the klt singularities form a very interest-
ing class of singularities, which naturally appears in many context besides the MMP such
as constructing Kähler-Einstein metrics of Fano varieties etc..

In particular, philosophically, it has been clear that there is an analogy between klt
singularities and Fano varieties. Traditionally, people often prove some properties for an
arbitrary Fano variety, then figure out what they imply for the cone singularity over a
Fano variety, and finally generalise the statements to any klt singularity. Only after the
corresponding MMP results are established (e.g. Birkar, Cascini, Hacon, and McKernan
[2010]), such analogy can be carried out in a more concrete manner by really attaching
suitable global objects, e.g. Fano varieties, to the singularities. The first construction was
the plt blow up (cf. e.g. Xu [2014]) which for a given klt singularity x 2 (X;∆), one
constructs a birational model f : Y ! X such that f is isomorphic outside x, f �1(x) is
an irreducible divisor S , and (Y; S +f �1

� ∆) is plt. We can also assume �S is ample over
X , and then (S;∆S ) is a log Fano pair, where

KS +∆S =defn (KY + S + f �1
� ∆)jS :

The divisor S in this construction is called a Kollár component. It was used to show
some local topological properties of x 2 X including DR(x 2 X) is contractible (de
Fernex, Kollár, and Xu [2017]), and the pro-finite completion �̂ loc

1 (x 2 X) of the local
fundamental group

� loc
1 (x 2 X) =defn �1(Link(x 2 X))
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is finite (Xu [2014] and Z. Tian and Xu [2016]). However, given a klt singularity, usually
there could be many Kollár components over it. Only until the circle of ideas of local
stability were introduced in Li [2015b], a more canonical picture, though some parts still
remain conjectural, becomes clear. In what follows we give a survey on this topic.

Definition 4.1 (Valuations). Let R be an n-dimensional regular local domain essentially
of finite type over a ground field k of characteristic zero. Then a (real) valuation v of
K = Frac(R) is any map v : K� ! R which satisfies the following properties for all a; b

in K�:

1. v(ab) = v(a) + v(b),

2. v(a + b) � min(v(a); v(b)), with equality if v(a) ¤ v(b).

Let (X; x) = (Spec(R); m), we denote the space of valuations

ValX;x = freal valuations v of K with v(f ) > 0 for any f 2 mg:

It has a natural topology (see Jonsson and Mustaţă [2012, Section 4.1]).
If (X;∆) is klt, following Jonsson and Mustaţă [ibid., Section 5], we can define the

function of log discrepancy AX;∆(v) on ValX;x extending the log discrepancy of divi-
sorial valuations defined in Section 2, and we denote by Val=1

X;x � ValX;x the subset
consisting of all valuations with log discrepancy equal to 1. Similar to the global defini-
tion of volumes, we can also define a local volume of a valuation for v 2 ValX;x (see Ein,
Lazarsfeld, and Smith [2003])

vol(v) = lim
length(R/ak)

kn/n!
;

where ak = ff 2 Rj v(f ) � kg.

Definition 4.2 (Li [2015b]). For any valuation v 2 ValX;x , we define the normalised
volume cvolX;∆(v) = (AX;∆(v))

n � vol(v), and the volume of the klt singularity x 2

(X;∆) to be vol(x; X;∆) = infv2ValX;x
cvol(v). By abuse of notation, wewill often denote

vol(x; X;∆) by vol(x; X) if the context is clear.

It is easy to see that cvol(v) = cvol(�v) for any � > 0, so that we can only consider the
function cvol on Val=1

X;x . In Li [ibid.], it was shown that vol(x; X) > 0. In Liu [2016], a
different characterisation is given:

(1) vol(x; X) = inf
m�primary a

mult(a) � lct(X;∆; a)n:
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See Lazarsfeld [2004, p. 9.3.14] for the definition of the log canonical threshold of a klt
pair (X;∆)with respect to an ideal a. Then in Blum [2016], using an argument combining
estimates on asymptotic invariants and the generic limiting construction, it is show that
there always exists a valuation v such that vol(x; X) = cvol(v), i.e., the infimum is indeed
a minimum, confirming a conjecture in Li [2015b]. Therefore the main questions left are
two-fold.

Question 4.3. For a klt singularity x 2 (X;∆),

I. Characterise the geometric properties of the minimiser v.

II. Compute the volume vol(x; X).

In what follows below, we will discuss these two questions in different sections.

4.1 Geometry of the minimiser. In the recent birational geometry study of Fano va-
rieties, it has become clear that the interplay between the ideas from higher dimensional
geometry and the ideas from the complex geometry, centred around the study of Kähler-
Einstein metrics, will lead to deep results. The common ground is the notion of K-(semi,
poly)stability and their cousin definitions (see e.g. Odaka [2013], Li and Xu [2014], and
Fujita [2015] etc.). An example is the construction of a proper moduli scheme parametris-
ing the smoothable K-polystable Fano varieties (see e.g. Li, Wang, and Xu [2014]). Al-
though to establish a moduli space of Fano varieties is certainly a natural question to alge-
braic geometers, without a condition like K-stability with a differential geometry origin,
such a functor does not behave well (e.g. the functor of smooth family Fano manifolds is
not seperated.). Moreover the arguments used in the current construction of moduli spaces
of K-polystable Fano varieties heavily depend on the results proved using analytic tools
as in Chen, Donaldson, and Sun [2015] and G. Tian [2015].

Our main motivation to consider v is to establish a ‘local K-stability’ theory for klt
singularities, guided by the local-to-global philosophy mentioned in the introduction. In
particular, we propose the following conjecture for all klt singularities.

Conjecture 4.4 (Stable Degeneration Conjecture, Li [2015b] and Li and Xu [2017]).
Given any arbitrary klt singularity x 2 (X = Spec(R);∆). There is a unique minimiser
v up to rescaling. Furthermore, v is quasi-monomial, with a finitely generated associated
graded ring R0 =defn grv(R), and the induced degeneration

(X0 = Spec(R0);∆0; �v)

is a K-semistable Fano cone singularity. (See below for the definitions.)
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For the definition of quasi-monomial valuations, see Jonsson and Mustaţă [2012, Sec-
tion 3]. It is shown that they are the same as Abhyankar valuations (Ein, Lazarsfeld, and
Smith [2003, p. 2.8]). From an arbitrary quasi-monomial valuation v 2 ValX;x , there is
a standard process to degenerate Spec(R) to the associated graded ring Spec(R0) over
a complicated (e.g. non-Noetherian) base (see Teissier [2003]). However, when R0 is
finitely generated, the degeneration can be understood in a much simpler way: we can
embed Spec(R) into an affine space CN of sufficiently large dimension, such that there
exists a C�-action on CN with a suitable weight (�1; :::; �N ) satisfying that Spec(R0)

is the degeneration of Spec(R) under this one-parameter C�-action (see e.g. Li and Xu
[2017]).

The following example which predates our study is a prototype from the context of
constructing Sasaki-Einstein metrics in Sasaki geometry.

Example 4.5 (Fano cone singularity). Assume that X = SpecC(R) is a normal affine
variety. Denote by T a complex torus (C�)r which acts on X faithfully. Let N =

Hom(C�; T ) Š Z˚r be the co-weight lattice and M = N � the weight lattice. We have a
weight space decomposition

R =
M
˛2Γ

R˛ where Γ = f˛ 2 M j R˛ ¤ 0g:

We assume R(0) = C which means there is a unique fixed point o contained in the closure
of each orbit. Denote by �_ � MR the convex cone generated by Γ, which is called the
weight cone (or the moment cone). We define the Reeb cone

t+R := f � 2 NR j h˛; �i > 0 for any ˛ 2 Γg:

Then for any vector � 2 t+R on X we can associate a natural valuation v� , which is given
by

v�(f ) = minfh˛; �i j f˛ ¤ 0 if we write f =
X

f˛g:

IfX have klt singularities, we call (X; �) a Fano cone singularity for the following reason:
for any � 2 NQ \ t+R , then it generates a C�-action on X , and the quotient will be a log
Fano pair as we assume X is klt.

For isolated Fano cone singularities, minimising the normalised volume cvol among
all valuations of the form v� (� 2 t+R) was initiated in the work Martelli, Sparks, and
Yau [2008], where cvol is defined analytically. It is shown there that the existence of a
Sasaki-Einstein metric along �0 implies v�0 is a minimiser among all � 2 t+R . Moreover,
it is proved that cvol is strictly convex on t+R , which is an evidence for the claim of the
uniqueness in Conjecture 4.4.



840 CHENYANG XU (许晨阳)

Later, in Collins and Székelyhidi [2015], following G. Tian [1997] and Donaldson
[2001], the K-(semi)polystability was formulated for Fano cone singularities. It was a
straightforward calculation from the definition to show that if (X; �0) is K-semistable,
then v�0 is a minimiser among all valuations of the form v� for � 2 t+R . However, it takes
significant more work in Li and Xu [2017] to show that if (X; �0) is K-semistable, then
v�0 is a minimiser in the much larger space ValX;x and unique among all quasi-monomial
valuations up to rescaling (see Step 3 and 6 in the sketch of the proofs of Theorem 4.6 and
Theorem 4.7 below).

For a normal singularity x 2 (X = Spec(R);∆) with a quasi-monomial valuation
v 2 ValX;x of rational rank r , we assume that its associated graded ring R0 is finitely
generated. By the grading, Spec(R0) admits a torus T Š (C�)r -action, thus we can put
it in (a log generalisation of) the setting of Example 4.5 as follows. Let Φ be the valuative
semigroup of v, then it generates a group Φg Š Zr which is isomorphic to the weight
lattice M = N �. Under this isomorphism the weight cone is generated by ˛ 2 Φ. Since
the embedding �v : Φ

g ! R restricts to �+v : Φ ! R+, it yields a vector in the Reeb
cone t+R � NR, denoted by �v . Let ∆0 be the natural divisorial degeneration of ∆ on
X0 = Spec(R0). We call such a valuation v 2 Valx;X to be K-semistable, if (X0;∆0; �v)

is a K-semistable Fano cone. In particular, we require (X0;∆0) to be klt. Since a K-
semistable valuation is always a minimiser (see Theorem 4.7), Conjecture 4.4 predicts
that for any klt singularity x 2 (X;∆), the minimiser of cvol is precisely the same as the
notion of a K-semistable valuation.

We have established various parts of Conjecture 4.4. First we consider the case that the
minimiser is a divisorial valuation.

Theorem 4.6 (Li and Xu [2016, Theorem 1.2]). Let x 2 (X;∆) be a klt singularity. If
a divisorial valuation ordS 2 ValX:x minimises the function cvolX;∆, then S is a Kollár
component over x, and the induced log Fano pair (S;∆S ) is K-semistable. Furthermore,cvol(ordS ) < cvol(ordE ) for any divisor E ¤ S centred on x.

Conversely, if S is a Kollár component centred on x such that the induced log Fano
pair (S;∆S ) is K-semistable, then ordS minimises cvolX;∆.

An immediate consequence is that, if instead of searching general Kollár components,
we only look for the semi-stable ones, then if one exists, it is unique. In general, Conjecture 4.4
predicts that if we choose a sequence of rational vectors vi 2 t+Q that converge to v, then
the quotient of X0 by the C�-action along vi induces a Kollár component Si centred on
x 2 (X;∆) which satisfies ci � ordSi

! �v after a suitable rescaling (cf. Li [2015a] and
Li and Xu [2017]). In Li and Xu [2016], we confirm that any minimiser is always a limit
of a sequence of Kollár components with a suitable rescaling.
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In general, a quasi-monomial valuation with higher rational rank could appear as the
minimiser (cf. Blum [2016]). In this case, we can also prove the following result.

Theorem 4.7 (Li and Xu [2017, Theorem 1.1]). Let x 2 (X;∆) be a klt singularity. Let
v be a quasi-monomial valuation in ValX;x that minimises cvol(X;∆) and has a finitely
generated associated graded ring grv(R). Then the following properties hold:

(a) The degeneration
�
X0 =defn Spec

�
grv(R)

�
;∆0; �v

�
is a K-semistable Fano cone,

i.e. v is a K-semistable valuation;

(b) Let v0 be another quasi-monomial valuation in ValX;x that minimises cvol(X;∆).
Then v0 is a rescaling of v.

Conversely, any quasi-monomial valuation that satisfies (a) above is a minimiser.

Sketch of ideas in the Proofs of Theorem 4.6 and Theorem 4.7. The proof consists of a few
steps, involving different techniques.

Step 1: In this step, we illustrate how Kollár components come into the picture. From
each ideal a, we can take a dlt modification of

f : (Y;∆Y ) ! (X;∆+ lct(X;∆; a) � a);

where ∆Y = f �1
� ∆+ Ex(f ) and for any component Ei � Ex(f ) we have

AX;∆(E) = lct(X;∆; a) � multE f �a:

There is a natural inclusion D(∆Y ) � Val=1
X;x , and using a similar argument as in Li and

Xu [2014], we can show that there exists a Kollár component S whose rescaling in Val=1
X;x

contained in D(∆Y ) satisfies thatcvol(ordS ) = volloc(�AX;∆(S) � S) � volloc(�KY � ∆Y ) � mult(a) � lctn(X;∆; a):

Then (1) implies that

vol(x; X) = inffcvol(ordS )j S is a Kollár componentg:

We can also show that if a minimiser is a divisor then it is indeed a Kollár component (this
is proved independently in Blum [2016]).

Moreover, if x 2 (X;∆) admits a torus group T -action, then by degenerating to the
initial ideals, as the colengths are preserved and the log canonical thresholds may only
decrease, the right hand side of (1) can be replaced by all T -equivariant ideals. Moreover,
equivariant MMP allows us to make all the above data Y and S T -equivariant.
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Step 2: In this step, we show that if a minimiser v is quasi-monomial such that R0 =

grv(R) is finitely generated, then the degeneration pair (X0 =defn Spec(R0); D0) is klt.
After Step 1, this is easy in the case of Theorem 4.6, as the Kollár component is klt. To
treat the higher rank case in Theorem 4.7, we verify two ingredients: first we show that a
rescaling of ordSi

for the approximating sequence of Si in Step 1 can be all chosen in the
dual complex of a fixedmodel considered as a subspace of Val=1

X;x ; then we show as grv(R)

is finitely generated, for any i sufficiently large, grv(R) Š grordSi
(R). This immediately

implies that (X0; D0) is the same as the corresponding cone C (S0;∆S0
) over the Kollár

component S0, and then we conclude it is klt as before.

Step 3: To proceed we need to establish properties of a general log Fano cone (X0;∆0; �v)

and show that the corresponding valuation v is a minimiser if and only if (X0;∆0; �v) is
K-semistable. First assume (X0;∆0; �v) is K-semistable, then by Step 1, it suffices to
show that for any T -equivariant Kollár component S , cvol(ordS ) � cvol(v). In fact, for
any such S , it induces a special degeneration of (X0;∆0; �v) to (Y;∆Y ; �Y ) admitting a
((C�)r � C�)-action and a new rational vector �S 2 N ˚ Z corresponding to the C�-
action on the special fiber induced by the degeneration. Then an observation going back
to Martelli, Sparks, and Yau [2008] says that

d cvol(�Y + t � �S )

dt
= Fut(Y;∆Y ; �Y ; �S ) � 0:

Here the generalised Futaki invariant Fut(Y;∆Y ; �Y ; �S ) is defined in Collins and Székely-
hidi [2015, p. 2.2], and then the last inequality comes from the K-semistability assumption.
It is also first observed in Martelli, Sparks, and Yau [2008] that the normalised volume
function cvol is convex on the space of valuations f�v j v 2 t+Rg: Thus by restricting the
function on the ray �Y + t � �S (t � 0) and applying the convexity, we conclude that

cvolX0
(ordS ) = lim

t!1

cvolY (�Y + t � �S ) � cvolY (�Y ) = cvolX0
(�v):

Reversing the argument, one can show that if v is aminimiser of cvol for a log Fano cone sin-
gularity (X0;∆0; �v), then for any special degeneration with the same notation as above,
we have Fut(Y;∆Y ; �Y ; �S ) � 0.

Step 4: An consequence of Step 3 is that for a valuation v on X such that the degeneration
(X0;∆0; �v) is K-semistable, since the degeneration to the initial ideal argument implies
that vol(x; X) � vol(o; X0), thencvolX (v) = cvolX0

(�v) = vol(o; X0)

is equal to vol(x; X).
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Step 5: Then we proceed to show that if a log Fano cone (X0;∆0; �v) comes from a
degeneration of a minimiser as in Step 2, then it is K-semistable. If not, by Step 3, we
can find a degeneration (Y;∆Y ; �Y ) induced by an equivariant Kollár component S withcvolY (ordS ) < cvolY (�Y ) = cvolX0

(�v). Then arguments similar to Anderson [2013, Sec-
tion 5] show we can construct a degeneration of (X;∆) to (Y;∆Y ) and a family of valua-
tions vt 2 ValX;x for t 2 [0; �] (for some 0 < � � 1), with the property thatcvolX (vt ) = cvolY (�Y + t � �S ) < cvolY (�Y ) = cvolX0

(�v) = cvolX (v);

where for the second inequality, we use again the fact that cvolY (�Y + t � �S ) is a convex
function. But this is a contradiction.

Step 6: Now we turn to the uniqueness. In this step, we show this for a K-semistable Fano
cone singularity (X0;∆0; �v). In fact, for any T -equivariant valuation �, we can connect
�v and � by a path �t such that �0 = �v and �1 = �. A Newton-Okounkov body type
construction (similar to Kaveh and Khovanskii [2014]) can interpret the volumes cvol(�t )

to be the volumes of the regionsAt contained in the convex coneC cut out by a hyperplane
Ht passing through a given vector inside C. Then we conclude by the fact in the convex
geometry which says that such a function f (t) = vol(At ) is strictly convex. Thus it has
a unique minimiser, which is �v by Step 3.

Step 7: The last step is to prove the uniqueness in general, under the assumption that it ad-
mits a degeneration (X0;∆0; �v) given by a K-semistable minimiser v. For another quasi-
monomial minimiser v0 of rank r 0, by a combination of the Diophantine approximation and
an MMP construction including the application of ACC of log canonical thresholds (see
Section 3), we can obtain a model f : Z ! X which extracts r 0 divisors Ei (i = 1; :::; r 0)
such that (Z;∆Z =defn

P
Ei + f �1

� ∆) is log canonical. Moreover, the quasi-monomial
valuation v0 can be computed at the generic point of a component of the intersection of Ei ,
along which (Z;∆Z) is toroidal. Then with the help of the MMP, a careful analysis can
show Z ! X degenerates to a birational morphism Z0 ! X0. Moreover, there exists a
quasi-monomial valuation w computed on Y0 which can be considered as a degeneration
of v0 with cvolX0

(w) = cvolX (v0) = cvolX (v) = cvolX0
(�v):

Thus w = �v by Step 5 after a rescaling. Since w(in(f )) � v0(f ) and vol(w) = vol(v0),
we may argue this implies �v(in(f )) = v0(f ). Therefore, v0 is uniquely determined by
�v .

Weaker than Theorem 4.6, in Theorem 4.7 we can not show the finite generation of
grv(R), thus we have to post it as an assumption. This is due to the fact that unlike in
the divisorial case where the construction of Kollár component provides a satisfying bi-
rational model to understand ordS , for a quasi-monomial valuation of higher rank, the
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auxiliary models (see Step 1 and 6 in the above proof) we construct are less canonical.
Moreover, compared to the statement in Conjecture 4.4, it remains wide open to verify
that the minimiser is always quasi-monomial.

One of the main applications of Theorem 4.6 and Theorem 4.7 is to address Donaldson–
Sun’s conjecture in Donaldson and Sun [2017] on the algebraicity of the construction of
the metric tangent cone, which can be considered as a local analogue of Donaldson and
Sun [2014], G. Tian [2013], and Li, Wang, and Xu [2014]. More precisely, it was proved
that the Gromov-Hausdorff limit of a sequence of Kähler-Einstein metric Fano varieties
is a Fano variety X1 with klt singularities (see Donaldson and Sun [2014] and G. Tian
[2013]). And to understand the metric structure near a singularity x 2 X1, we need to
understand its metric tangent cone C (cf. Cheeger, Colding, and G. Tian [2002]). In the
work Donaldson and Sun [2017], a description of C was given by a two-step degeneration
process: first there is a valuation v on ValX1;x whose associated graded ring induces a
degeneration of x 2 X1 to o 2 M ; then there is a degeneration of Fano cone from
o 2 M to o0 2 C . In Donaldson-Sun’s definitions of M and C , they used the local metric
structure around x 2 X1. However, they conjectured that both M and C only depend
on the underlying algebraic structure of the germ x 2 X1. Built on the previous works
of Li [2015a], Li and Liu [2016], and Li and Xu [2016], we answer the first part of their
conjecture affirmatively, which says M is determined by the algebraic structure of the
germ x 2 X1. We achieve this by showing that v is a K-semistable valuation in ValX;x

and such a K-semistable valuation is unique up to rescaling.

Theorem 4.8 (Li and Xu [2017]). The valuation v is the unique minimiser (up to scaling)
of cvol in all quasi-monomial valuations in ValX1;x .

Proof. From the results proved in Donaldson and Sun [2017], we can verify that o 2

(W; �v) is a K-semistable Fano cone singularity, which exactly means v is a K-semistable
valuation. Thus v is a minimiser of cvol by the last statement of Theorem 4.7. Then up to
rescaling, v is the unique quasi-monomial minimiser again by Theorem 4.7.

We expect that the tools we developed, especially those on equivariant K-stability, are
enough to solve the second part of Donaldson-Sun’s conjecture, i.e. to confirm the metric
tangent cone C only depends on the algebraic structure of x 2 X1.

4.2 The volume of a klt singularity. As vol(x; X) carries deep information on the
singularity x 2 X , calculating this number consists an important part of the theory. It also
has applications to global questions. We discuss some related results and questions in this
section.
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In general, it could be difficult to compute vol(x; X). Even for the smooth point
x 2 Cn, knowing vol(x; Cn) (which is, not surprisingly, equal to nn) involves highly
nontrivial arguments. An illuminating example is the following.

Example 4.9 (Li [2015a], Li and Liu [2016], and Li and Xu [2016]). A Q-Fano variety
is K-semistable if and only if for the cone C = C (X; �rKX ), the canonical valuation v

obtained by blowing up the vertex o is a minimiser.

On one hand, this means that finding out the minimiser is in general at least as hard
as testing the K-semistablity of (one dimensional lower) Fano varieties, which has been
known to be a challenging question; on the other hand, this sheds new light on the question
of testing K-stability. For example, using properties of degenerating ideals to their initials,
we can prove that for a klt Fano variety X with a torus group T -action, to test the K-
semistability of X it suffices to test on T -equivariant special test configurations (see Li
and Xu [2016]).

The Stable Degeneration Conjecture 4.4 implies many properties of vol(x; X). The
first one we want to discuss is a finite degree multiplication formula.

Conjecture 4.10. If � : x1 2 (X1;∆1) ! x2 2 (X2;∆2) is a finite dominant morphism
between klt singularities such that ��(KX2

+∆2) = KX1
+∆1, then

deg(�) � vol(x2; X2) = vol(x1; X1):

This can be easily reduced to the case that the finite covering X1 ! X2 is Galois, and
we denote the Galois group by G. Then it suffices to show that the minimiser of X1 is G-
equivariant, which is implied by the uniqueness claim in Conjecture 4.4. Conjecture 4.10
is verified in Li and Xu [2017] for x 2 X1 where X1 is a Gromov-Hausdorff limit of
Kähler-Einstein Fano manifolds. Since any point will have its volume less or equal to
nn (see Liu and Xu [2017, Appendix]), Conjecture 4.10 implies that for a klt singularity
x 2 (X;∆),

vol(x; X) � nn/j�̂ loc
1 (x; X)j;(2)

where the finiteness of �̂ loc
1 (x; X) is proved in Xu [2014].

Combining Conjecture 4.4 with the well known speculation that K-semistable is a
Zariski open condition, we also have the following conjecture.

Conjecture 4.11. Given a klt pair (X;∆), then the function vol(x; X) is a constructible
function, i.e. we can stratify X into constructible sets X = ti Si , such that for any i ,
vol(x; X) takes a constant value for all x 2 Si .
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A degeneration argument in Liu [2017] implies that the volume function should be
lower semi-continuous. A special case we know is that the volume of any n-dimensional
klt non-smooth point is always less than nn (see Liu and Xu [2017, Appendix]).

Finally, we discuss some applications of the volume of singularities to K-stability of
Fano varieties. A useful formula connecting local and global geometries is the following.

Theorem 4.12 (Fujita [2015] and Liu [2016]). If X is a K-semistable Q-Fano variety,
then for any point x 2 X , we have

vol(x; X) � (
n + 1

n
)n(�KX )n:(3)

So if we can bound the type of klt singularities from the lower bound of their volumes,
then we can restrict the type of singularities appearing on a K-semistable Q-Fano vari-
ety with a given volume. In particular, this applies to the Gromov-Hausdorff limit X1

of a sequence of Kähler-Einstein Fano manifolds Xi (with a large volume of �KXi
). If

the restriction is sufficiently effective, then X1 would appear in an explicit simple ambi-
ent space on which we can carry out the orbital geometry calculation to identify X1 by
showing all other possible limits are K-unstable.

For instance, by revisiting the classification results of three dimensional singularities,
we show that vol(x; X) � 16 if x 2 X is singular and the equality holds if and only if
x 2 X is a rational double point (see Liu and Xu [2017]). As a consequence, we could
solve the question on the existence of Kähler-Einstein metrics for cubic threefolds.

Corollary 4.13 (Liu and Xu [ibid.]). GIT polystable (resp. semistable) cubic threefolds
are K-polystable (resp. K-semistable). In particular, all GIT polystable cubic threefolds,
including every smooth one, admit Kähler-Einstein metrics.
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Abstract

We discuss several results pertaining to the Hodge and cycle theories of locally
symmetric spaces. The unity behind these results is motivated by a vague but fruitful
analogy between locally symmetric spaces and projective varieties.

1 Introduction

Locally symmetric spaces are complete Riemannian manifolds locally modeled on cer-
tain homogeneous spaces. Their holonomy groups are typically smaller than SOn – the
holonomy group of a generic Riemannian manifold – and there are invariant tensors on
the tangent space that are preserved by parallel transport. It was first observed by Chern
[1957] that Hodge theory can be used to promote these local algebraic structures to struc-
tures that exist on the cohomology groups of locally symmetric spaces. This is very similar
to what happens for compact Kähler manifolds. In fact the analogy between locally sym-
metric spaces and Kähler manifolds – or rather complex projective varieties – is a fruitful
one in many aspects. In this report we shall discuss several instances of this analogy. We
don’t give proofs, we only state recent results that illustrate various items of the following
dictionary.

Projective varieties V � Pn Locally symmetric spaces ΓnS

Complexity degree volume
Hodge theory Hodge-Lefschetz decomposition Matsushima’s fomula and (g; K)-cohomology
Cycles Algebraic cycles Modular cycles

(Intersections of) Hyperplane sections Sums of Hecke translates of modular cycles
Kodaira vanishing Theorem Vanishing theorems using spinors

Cohomology Lefschetz hyperplane Theorem Automorphic Lefschetz’ properties
Hodge Conjecture Hodge type theorems

MSC2010: primary 11F75; secondary 14C30, 14G35, 57T25, 11F70, 22E40.
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The following result (see Theorem 8 below), jointly obtained with Millson and Moeglin,
shows that the right side of the above dictionary may eventually shed some light on the
left (more classical) side.

Theorem. On a projective unitary Shimura variety uniformized by the complex n-ball,
any Hodge (r; r)-class with r 2 [0; n]n]n

3
; 2n

3
[ is algebraic.

Context. There has been a great deal of work on the cohomology of locally symmetric
spaces. This involves methods from geometry, analysis and number theory. We note in
particular that related topics have been discussed Harris [2014], Venkataramana [2010],
and Speh [2006] in the last three ICMs. Indeed, Harris [2014] contains an overview of
the program for analyzing cohomology of Shimura varieties developed by Langlands and
Kottwitz. It aims at attaching Galois representations to the corresponding cohomology
classes. Our point of view is closer to Venkataramana [2010] and Speh [2006] that discuss
conjectures that naturally fit into the above dictionnary. The latter has been very much
influenced by former works of Oda, Venkataramana, Harris-Li discussed in Venkatara-
mana [2010]. We also have borrowed some expository ideas from §3 of Venkatesh Takagi
lectures Venkatesh [2017].

2 Locally symmetric spaces

2.1 Symmetric spaces. A symmetric space is a Riemannian manifold whose group
of symmetries contains an inversion symmetry about every point. We will be mainly
concerned with symmetric spaces of non-compact type. Such a space S is associated to
a connected center-free semi-simple Lie group G without compact factor. As a manifold
S is the quotient G/K of G by a maximal compact subgroup K � G; it is known that
all such K are conjugate inside G. One may easily verify that G preserves a Riemannian
metric on S . Unless otherwise specified our symmetric spaces S will always be assumed
to be of non-compact types.

For example, if G = PSL2(R), we can take K = PSO2, and the associated symmetric
space S = G/K can be identified with the Poincaré upper-half plane H2 = fz 2 C :

Im(z) > 0g and the action of G is by fractional linear transformations; it preserves the
standard hyperbolic metric jdzj2/Im(z)2.

If G = PSL2(C), we can take K = PSU2, and the associated symmetric space S can
be identified with the three-dimensional hyperbolic space H3.

We shall be particularly concernedwith caseswhereG is either a unitary group PU(p; q)

or an orthogonal group SO0(p; q). Thanks to special isomorphisms between low dimen-
sional Lie groups the symmetric spaces associated to PU(1; 1) and SO0(2; 1) are both
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isometric to the Poincaré upper-half plane H2 and the symmetric space associated to
SO0(3; 1) is isometric to the three-dimensional hyperbolic space H3.

Another important case to consider is that of G = PSLn(R). Then we can take
K = PSOn, and the symmetric space S can be identified with the space of positive def-
inite, symmetric, real valued n � n matrices A with det(A) = 1, with metric given by
trace(A�1dA)2.

2.2 Locally symmetric spaces. Locally symmetric spaces are complete Riemannian
manifolds locally modeled on some symmetric space S with changes of charts given by
restrictions of elements of G. It is known that all such manifolds are isometric to quotients
ΓnS of S by some discrete torsion-free subgroup Γ � G. One may measure the complex-
ity of a locally symmetric space by considering its volume, or equivalently the volume of
a fundamental domain for the action of Γ on S . We shall be only concerned with locally
symmetric spaces of finite volume; the group Γ is then a lattice in G – in many cases we
shall even restrict to compact locally symmetric spaces.

By a general theorem of Borel, any symmetric space S admits a compact manifold quo-
tient (S -manifold) ΓnS . In Borel’s construction Γ is a congruence arithmetic group. For
our purpose let us define these groups as those obtained by taking a semi-simple algebraic
Q-group H � SLN , and taking

(2-1) fh 2 H(Q) : h has integral entriesg:

Each such group is contained in an ambient Lie group, namely the real points of H. If
H(R) is isogeneous to G � (compact) the projection on the first factor maps the discrete
subgroup (2-1) onto a lattice Γ in G. If the compact factor inH(R) is non-trivial then Γ is
necessarily co-compact in G. Finally, replacing the discrete group (2-1) by its intersection
with the kernel of a reduction mod ` map SLN (Z) ! SLN (Z/`Z), one can obtain a
torsion-free lattice Γ. We refer to the corresponding locally symmetric spaces ΓnS as
congruence arithmetic.

2.3 Examples. Locally symmetric spaces play a central role in geometry. Here are
some important examples:

Shimura varieties. These appear in algebraic geometry as moduli spaces of certain types
of Hodge structures. E.g. for all g the moduli space Kg of genus g quasi-polarized K3
surfaces identifies with a locally symmetric space associated toG = SO0(2; 19). Shimura
varieties themselves are quasi-projective varieties. They play an important role in number
theory through Langlands’ program.
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Complex ball quotients. By Yau’s solution to the Calabi conjecture, complex algebraic
surfaces whose Chern numbers satisfy c21 = 3c2 are quotients of the unit ball in C2 by a
torsion-free co-compact lattice in PU(2; 1). Most famously, this includes the classification
of fake projective planes by Klingler [2003], Prasad and Yeung [2009] and Cartwright and
Steger [2010]. Picard [1881], Deligne andMostow [1986] and Thurston [1998] give many
examples of ball quotients coming from natural moduli problems. Congruence arithmetic
ball quotients are particular Shimura varieties.

Hyperbolic manifolds. In dimension 3, according to Thurston’s geometrization conjec-
ture, proved by Perelman, a ‘generic’ manifold is hyperbolic. More generally, Gromov
theory of ı-hyperbolic groups suggest that negative curvature is ‘quite generic.’ However,
at least in dimension � 5, all known (to the author) constructions of closed manifolds that
can carry a negatively curved metric are essentially obtained by rather simple surgeries
on locally symmetric manifolds. These spaces therefore form a fundamental family of
examples in geometry and more generally play a crucial role in geometric group theory.

Teichmüller spaces of flat unimodular metrics on tori Rn/Zn. These are locally sym-
metric spaces associated to PSLn(R). Their cohomology groups are very tightly bound
to algebraic K-theory. In particular this viewpoint quite naturally leads to the famous
regulator of Borel.

2.4 Notation. We have already defined K � G and the associated Riemannian sym-
metric space S = G/K. Let g be the complexified Lie algebra of G and let Gc be a
compact form of G. Let Sc = Gc/K be the compact dual of S . Let � be the Cartan
involution of G fixing K and let g = p ˚ k be the associated Cartan decomposition. We
normalize the Riemannian metric on Sc such that multiplication by i in p becomes an
isometry TeKS ! TeKSc .

From now on ΓnS will denote a finite volume locally symmetric S -manifold. In gen-
eral we try to reserve n for its real dimension, or complex dimension if S is Hermitian.

We denote by bk(M ) the Betti numbers of a manifold M .

3 Hodge theory

For simplicity, in this section, we will assume that all the locally symmetric spaces ΓnS

we consider are compact. This excludes some of the important examples mentioned above.
However modified versions of the discussion below still apply and we will abusively ignore
this issue in the rest of this document.
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Being a compact manifold, the quotient ΓnS satisfies Poincaré duality. But, as men-
tioned in the Introduction, the Riemannian manifold ΓnS in general has a much smaller
holonomy group than SOn, and one can show that this forces ΓnS to satisfy many more
constraints, see (3-5) and (3-6). These constraints can be understood in terms of coho-
mological representations, i.e. unitary representations � of G such that the relative Lie
algebra cohomology H �(g; K;�) is non-zero (see Section 3.2 below).

Since the general setup of (g; K)-cohomology is rather forbidding we will discuss in
more detail two special examples. But first, let us emphasize the analogy with projective
manifolds, or rather here with Kähler manifolds.

3.1 Comparison with Kähler manifolds. Hodge theory gives a way to study the co-
homology of a closed Riemannian manifold M . Indeed, each class in H �(M; C) has a
canonical ‘harmonic’ representative: a differential form ! that represents this class and
is of minimal L2 norm. Equivalently the form ! is annihilated by the Hodge-Laplace
operator∆. One gets

(3-1) harmonic k-forms on M„ ƒ‚ …
:=Hk(M )

'
�! H k(M; C):

Suppose furthermore that M is an n-dimensional complex Kähler manifold. Then, its
holonomy group is contained in the unitary group Un � SO2n and there is an action of C�

on each tangent space that is preserved by parallel transport. This yields an action of C�

on differential forms with complex coefficients. A crucial aspect of the theory of Kähler
manifolds is that this action preserves harmonic forms. It then follows from Hodge theory
that C� acts on the cohomology groups and this gives rise to the Hodge decomposition.

3.2 Matsushima’s formula. Let us now come back to the case of a compact locally
symmetric manifold ΓnS .

Because the cotangent bundle T �(ΓnS) is isomorphic to the bundle ΓnG �K p� !

ΓnG/K, which is associated to the principalK-bundleK ! ΓnG ! ΓnS and the adjoint
representation of K in p�, the space of differential k-forms on ΓnS can be identified with
HomK(^kp; C 1(ΓnG)). The corresponding complex computes the (g; K)-cohomology
of C 1(ΓnG) – the subspace of smooth vectors in the right (quasi-)regular representation
of G in L2(ΓnG). One similarly defines the (g; K)-cohomology groups H �(g; K;�)

of any unitarizable (g; K)-module (�; V�). By a theorem of Harish-Chandra, the set of
equivalence classes of irreducible unitarizable (g; K)-modules is naturally identified with
the set of equivalence classes of irreducible unitary representations of G. In the following,
we will abusively use the same notation to denote an irreducible unitary representation
and its associated (g; K)-module of smooth vectors.
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The decomposition of ^�p� into irreducible K-modules induces a decomposition of
the exterior algebra ^�T �(ΓnS) = ΓnG �K ^�(p�). This decomposition commutes with
the action of the Hodge-Laplace operator, giving birth to a decomposition of the cohomol-
ogy H �(ΓnS; C) which refines the Hodge decomposition if S is Hermitian symmetric
and gives an analogous decomposition of the cohomology in the case S is not Hermitian.
In both cases we will call this decomposition of H �(ΓnS; C) the generalized Hodge de-
composition; it is better understood in terms of cohomological representations through
Matsushima’s formula:

(3-2) H �(ΓnS; C) =
M

�

m(�;Γ)H �(g; K;�):

Here the (finite) sum is over (classes of) irreducible unitary representations of G such
that H �(g; K;�) ¤ 0 and m(�;Γ) is the (finite) multiplicity with which � occurs in the
quasi-regular representation L2(ΓnG).

Cohomological representations of G are classified in terms of the � -stable parabolic
subalgebras q � g. Let q = l ˚ u be the � -stable Levi decomposition of q. We have
u = u \ k ˚ u \ p. Put R = dim(u \ p). The line ^R(u \ p) generates an irreducible
representation V (q) of K in ^Rp.

The classification of unitary irreducible cohomological representations of G associates
to each � -stable parabolic subalgebras q � g a cohomological representation Aq charac-
terized by the property that the only irreducible K-representation common to ^�p and Aq

is the representation V (q). Moreover, every cohomological representation is an Aq, see
Vogan and Zuckerman [1984].

Each H �(g; K;Aq) identifies with the cohomology – with degree shifted by R – of the
compact symmetric space associated to a subgroupL � Gc with complexified Lie algebra
l. In particular, the component corresponding to the trivial representation of G in (3-2) is
isomorphic to H �(Sc ; C). In the Hermitian case we recover Hirzebruch proportionality
principle.

If ! belongs to H R(ΓnS; C) and, under the Matsushima decomposition (3-2), lies
in the component corresponding to some Aq with R = dim(u \ p), by analogy with
the notion of primitive class in the Hodge-Lefschetz decomposition, we refer to ! as a
strongly primitive class of type Aq.

3.3 Two families of examples.

3.3.1 Compact quotients of the symmetric space associated to PU(p; q). Then the
holonomy group is contained in Up �Uq and Sc is the complex Grassmannian Grp(Cp+q)
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of p-planes in Cp+q . We first consider the decomposition of ^�p� into irreducible K-
modules. The symmetric space S being of Hermitian type, the exterior algebra ^�p de-
composes as:

(3-3) ^
� p = ^

�p0
˝ ^

�p00

where p0 and p00 respectively denote the holomorphic and anti-holomorphic tangent spaces.
In the case q = 1 – then S is the complex ball of dimension p – it is an exercise to check
that the decomposition of (3-3) into irreducible modules recovers the usual Lefschetz de-
composition. But, in general, the decomposition is much finer, and it is hard to write
down the full decomposition of (3-3) into irreducible modules. Indeed: as a representa-
tion of GLp(C)�GLq(C) the space p0 is isomorphic to V+ ˝ V �

� where V+ = Cp (resp.
V� = Cq) is the standard representation of GLp(C) (resp. GLq(C)) and the decomposi-
tion of ^�p0 is already quite complicated (see Fulton [1997, Equation (19), p. 121]):

(3-4) ^
R (V+ ˝ V �

� ) Š
M
�`R

S�(V+) ˝ S��(V�)
�:

Here we sum over all partitions of R (equivalently Young diagrams of size j�j = R) and
�� is the conjugate partition (or transposed Young diagram).

However, the classification of cohomological representations we just alluded to implies
that very few of the irreducible submodules of ^�p� can occur as refined Hodge types of
non-trivial cohomology classes. This is very analogous to the Kodaira vanishing theorem.
The proof indeed makes a crucial use of a ‘Dirac inequality’ due to Parthasarathy, see
Borel andWallach [2000, Lemma II.6.11 and §II.7]. The vanishing theorem thus obtained
generalizes a celebrated result of Matsushima [1962].

TheK-typesV (q) that can occur are determined by admissible pairs of partitions (�; �)

i.e. partitions � and� as in (3-4) and such that if � (resp. �) is on the top left (resp. bottom
right) corner of the rectangle p � q as pictured below (with p = 4, q = 7, � = (6; 6; 2; 0)

and � = (5; 2; 1; 0)), the complementary boxes form a disjoint union of rectangles p1 �

q1 [ : : : [ pr � qr (in the example below 1 � 2 [ 1 � 3 [ 1 � 1), see Bergeron [2009,
Lemme 6].

� � � � � �

� � � � � � �

� � � �

� � � � �

We denote by V (�; �) the corresponding K-type. In particular the K-module V (�) :=

V (�; 0) is isomorphic to S�(V+) ˝ S��(V�)
�. In general V (�; �) is isomorphic to the

Cartan product of V (�) and V (�)�. The first degree where such a K-type can occur in
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the cohomology is R = j�j + j�j. More precisely, it contributes to the cohomology of
bi-degree (j�j; j�j) in the Hodge-Lefschetz decomposition and we have:

H �(g; K;Aq) Š H ��R(Grp1
(Cp1+q1) � : : : � Grpr

(Cpr+qr ); C):

Matsushima’s formula (3-2) then strongly refines the Hodge-Lefschetz decomposition of
compact quotients ΓnS .

Example. Take p = 2 and q = 2. Compact quotients ΓnS are 4-dimensional complex
manifolds. Their Betti numbers satisfy the relation bk = b8�k because of Poincaré duality.
They moreover decompose as sums bk =

P
p+q=k hp;q of Hodge numbers that satisfy

hp;q = hq;p . But more is true: the vector (b0; : : : ; b8) of Betti numbers of a compact
quotient ΓnS is actually of the form

(3-5)

0BBBBBBBBB@

1
0
1
0
2
0
1
0
1

1CCCCCCCCCA
+ 2h2;0

0BBBBBBBBB@

0
0
1
0
1
0
1
0
0

1CCCCCCCCCA
+ (h1;1

� 1)

0BBBBBBBBB@

0
0
1
0
2
0
1
0
0

1CCCCCCCCCA
+ 2(h3;0 + h2;1)

0BBBBBBBBB@

0
0
0
1
0
1
0
0
0

1CCCCCCCCCA
+ k

0BBBBBBBBB@

0
0
0
0
1
0
0
0
0

1CCCCCCCCCA
for some integer k � 0. The first vector indeed corresponds to the component of the
trivial representation in Matsushima’s formula. The second term corresponds to the com-
ponents of the cohomological representations Aq with R = 2 that contribute either to the
holomorphic or anti-holomorphic cohomology. Their associated pairs of partitions (�; �)

are
� � �

� � �

�

�

The third term corresponds to the components of the (unique) cohomological representa-
tion Aq with R = 2 that contributes to the cohomology of bi-degree (1; 1). Its associated
pair of partitions (�; �) is

�

�

And so on...

3.3.2 Compact quotients of the symmetric space associated to SO0(p; q). Even though
these are not Hermitian in general, Matshushima’s formula still makes sense. Considera-
tions, similar to those in the unitary case, show that cohomological representations ofG are
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essentially1 parametrized by partitions � = (�1; : : : ; �p), with q � �1 � : : : � �p � 0,
such that the pair (�; �) is admissible.

Example. Take p = 5 and q = 4. Compact quotients ΓnS are 20-dimensional real man-
ifolds. Their Betti numbers satisfy the relation bk = b20�k because of Poincaré duality.
But more is true: the Betti numbers of a compact quotientΓnS actually verify the relations

(3-6) b1 = b2 = b3 = 0; b8 � 2b6 and b10 � 3b6:

Hyperbolic manifolds of dimension n correspond to p = n and q = 1. Then Mat-
sushima’s formula essentially gives no restrictions on the Betti numbers.2

Among the family of symmetric spaces associated to SO0(p; q), the ones where q = 2

are – up to exchanging the roles of p and q – the only Hermitian spaces; these are of
complex dimension n = p. In these cases, K � On � O2 acts on p = Cn ˝ (C2)�

through the standard representation of On on Cn and the standard representation of O2 on
C2. Denote by C+ and C� the C-span of the vectors e1 + ie2 and e1 � ie2 in C2. The
two lines C+ and C� are left stable by O2. This yields a decomposition p = p+ ˚ p�

which corresponds to the decomposition given by the natural complex structure on p0. For
each non-negative integer k the K-representation ^kp = ^k(p+ ˚ p�) decomposes as
the sum:

^
kp =

M
r+s=k

^
rp+

˝ ^
sp�:

The K-representations ^rp+ ˝ ^sp� are not irreducible in general: there is at least a
further splitting given by the Lefschetz decomposition:

^
rp+

˝ ^
sp� =

min(r;s)M
`=0

�r�`;s�`:

One can check that for 2(r+s) < n eachK-representation �r;s is irreducible. Moreover in
the range 2(r + s) < n only those with r = s can occur as a K-type V (q) associated to a
cohomological representation. One canmoreover check that each �r;r is irreducible as long
as r < n; it is isomorphic to some V (q) and corresponds to the partition � = (2r ; 0n�r).3
Let us denote by Ar;r the corresponding cohomological representation. We have:

H i;j (g; K;Ar;r) =

8<: C if r � i = j � n � r; 2i ¤ n

C + C if 2i = 2j = n

0 otherwise:
1This is completely true only if both p and q are odd.
2To be precise it gives no restriction at all if n is odd and one recovers that bn/2 is even if n is even.
3When 2(r + s) � n the partitions (2r ; 1s ; 0n�r�s) also correspond to cohomological representations.
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In the particular case where n is even and (r; r) = (0; 0) – so that A0;0 is the trivial
representation – we haveH �(g; K;A0;0) = H �(Sc ; C), where Sc = SO(n+2)/SO(n)�
SO(2) is the complex quadric. The space H �(Sc ; C) has a basis f1; c1; c21 ; : : : ; cn�1

1 ; eg,
where c1 is the Chern class of the complexification of the line bundle arising from the
standard representation of SO(2), i.e. the Kähler form on Sc , and where e is the Euler
class of the vector bundle arising from the standard representation of SO(n).

4 Betti numbers of locally symmetric manifolds

One may wonder:

what are the Betti numbers of a random locally symmetric space ?

A classical theorem of Gromov (see Ballmann, Gromov, and Schroeder [1985]) bounds
from above the Betti numbers of a locally symmetric space by a constant (depending only
of the dimension) times its volume. It is therefore natural to investigate the growth of
the Betti numbers as the volume tends to infinity. The analogous question for complex
hypersurfaces in P n+1 is classical.

4.1 Comparison with projective hypersurfaces. The fundamental projective invari-
ant of an n-dimensional algebraic variety V � P N is its degree d which is also equal to
the volume – with respect to the standard Kähler form on P N – divided by n!.

In case V � P n+1 is an hypersurface, by standard arguments involving Lefschetz Hy-
perplane Theorem and Poincaré duality (see e.g. Gayet and Welschinger [2014, Lemma
3]), we have bk(V ) = bk(P

n) for k ¤ n. On the other hand, the Euler-Poincaré charac-
teristic of V is equal to

�(V ) = hcn(TV ); [V ]i =
1

d

�
(1 � d )n+2

� 1
�
+ n + 2:

It follows that the growth of the Betti numbers of V with respect to the degree d is given
by

(4-1) bk(V ) =

�
O(1) if k ¤ n

(�1)n�(V ) + O(1) = d n+1 + O(d n) if k = n:

4.2 Asymptotics of Betti numbers of locally symmetric manifolds. It is not obvious
at all that large volume locally symmetric S -manifolds should have related topological
behavior. However, one consequence of Abert, Bergeron, Biringer, Gelander, Nikolov,
Raimbault, and Samet [2017] and Abert, Bergeron, Biringer, and Gelander [n.d.] is the
following theorem that is analogous to (4-1).
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Theorem 1. Suppose that G has property (T) and rank at least two. The growth of the
Betti numbers of locally symmetric S -manifolds is given by

bk(ΓnS) =

(
o (vol(ΓnS)) if k ¤

1
2
dimS

�(Sc)
vol(Sc)

vol(ΓnS) + o (vol(ΓnS)) if k = 1
2
dimS:

Example. Let n � 3 and let (Γm) be a sequence of distinct torsion-free lattices in SLn(R).
Then for all k, we have bk(Γm) = o(vol(ΓmnSLn(R))) as m ! +1.

Hyperbolic spaces have a rank one group of isometries and it is not hard to construct ex-
amples of large volume hyperbolic manifolds with very different topologies, see e.g. Berg-
eron [2017] for many examples. This allows in particular to construct counter-examples to
the conclusion of Theorem 1. However recent works of Fraczyk [2016] and Fraczyk and
Raimbault [n.d.] imply that this conclusion holds for congruence arithmetic hyperbolic
manifolds. More generally they prove:

Theorem 2. Let S be arbitrary. The growth of the Betti numbers of congruence arithmetic
S -manifolds is given by

bk(ΓnS) =

(
o (vol(ΓnS)) if k ¤

1
2
dimS

�(Sc)
vol(Sc)

vol(ΓnS) + o (vol(ΓnS)) if k = 1
2
dimS:

Outside the middle degree it is hard to guess what should be the ‘true’ growth rate of the
Betti numbers. For congruence arithmetic real hyperbolic manifolds ΓnHn, associated to
a fixed rational group H (see Section 2.2), it was suggested by Gromov (see Sarnak and
Xue [1991]) that

(4-2) bk(ΓnHn) �H;" vol(ΓnHn)
2k

n�1+":

Cossutta and Marshall [2013] suggest – and actually prove in a quite general situation –
that the best exponent is in fact 2j /n as long as k ¤ (n ˙ 1)/2. See Marshall [2014] for
similar results on other classes of symmetric spaces.

Remark. In a way that is quite similar to Bismut’s proof of Demailly’s asymptotic
Morse inequalities (see Bismut [1987] and Demailly [1985]) for projective varieties, the
existence of an upper bound sublinear in the volume is related (see e.g. the influential
Sarnak and Xue [1991]) to the existence of a spectral gap for the Hodge-Laplace operator
acting on differential k-forms with k ¤ (n ˙ 1)/2:

Theorem 3. Let k be different from (n˙1)/2. There exists a positive constant " = "(n; k)

such that for any congruence arithmetic real hyperbolic manifolds ΓnHn, the first non-
zero eigenvalue of the Hodge-Laplace operator of ΓnHn acting on differentiable k-forms
is bounded below by ".
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This was conjectured in Bergeron and Clozel [2005] and proved in Bergeron and Clozel
[2013].

When k = (n ˙ 1)/2 there is no spectral gap – the corresponding cohomological
representation of G is ‘tempered’ – and we do not know what to expect for the growth of
bk(ΓnHn). However for particular sequences of Γ’s, Calegari and Emerton [2009] were
able to prove an upper bound sublinear in the volume, see also Bergeron, Linnell, Lück,
and Sauer [2014].

4.3 Explicit computations. Matsuhima’s formula and the classification of cohomolog-
ical representations imply many restrictions on the Betti numbers (e.g. in small degree
some vanishing results or equality with the corresponding Betti numbers of Sc). Apart
from these restrictions, explicit computations of the Betti numbers of a fixed locally sym-
metric space ΓnS in terms of the algebraic data defining Γ is usually a challenge. Very
few cases are known. One of the first results of this type is the computation, by J.-S. Li
[1996], of the dimension of the L2-cohomology space of degree g of certain congruence
arithmetic quotients of the Siegel upper half space of genus g.

The proof is divided into two parts. First, relying on previous works of Howe, Jian-
Shu Li proves that the cohomology is generated by certain theta series. Then he computes
the dimension of the space generated by these theta series. More recently in Bergeron,
Millson, and Moeglin [2017] and Bergeron, Z. Li, Millson, and Moeglin [2017] we were
able to prove that a large part of the cohomology of certain locally symmetric spaces
associated to SO0(n; 2) is generated by certain theta series. Using previous computations
by Bruinier [2002] of dimensions of the spaces generated by these theta series we get
explicit expressions for certain Betti numbers. We prove in particular:

Theorem 4. The rank of the Picard group of the moduli space Kg , defined in Section 2.3,
is

31g + 24

24
�

1

4
˛g �

1

6
ˇg �

g�1X
k=0

�
k2

4g � 4

�
� ]

�
k j

k2

4g � 4
2 Z; 0 � k � g � 1

�
where

˛g =

(
0; if g is even;�
2g�2
2g�3

�
otherwise;

ˇg =

8<:
�

g�1
4g�5

�
� 1; if g � 1 mod 3;�

g�1
4g�5

�
+

�
g�1
3

�
otherwise;

and
�

a
b

�
is Jacobi symbol.

5 Cycle theory

Let M be a (closed) manifold. So far, we have computed the cohomology of M using
smooth differential forms. We could aswell have used currents. The resulting cohomology
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groups H k(M; C) are the same (and similarly for the groups occurring in the Hodge-
Lefschetz or Matsushima decompositions). If Z is a closed orientable submanifold of real
co-dimension k, it is an integral cycle and, by Poincaré duality, it defines a class cl(Z) in
H k(M; C). The integration current on Z is closed of degree k and represents the image
of cl(Z) in H k(M; C).

By a classical theorem of Thom, any class in the rational cohomology groupsH k(M; Q)

is a rational multiple of the cycle class cl(Z) of a (maybe disconnected) co-dimension k

closed submanifold. When M is locally symmetric, it is natural to ask if one can restrict
our choices of closed submanifold, e.g. to certain locally symmetric subspaces associated
to subgroups H � G.

5.1 Comparison with projective varieties. In case M is a projective non-singular al-
gebraic variety V � P N over C, it is natural to restrict to closed analytic subspaces
Z � V , or equivalenly, by Chow’s theorem, to algebraic cycles. Let p be the complex co-
dimension of Z in V . Two analytic subvarieties of complementary dimension meeting in
isolated points have a non-negative local intersection number. Since we can find a linear
subspace P N �p in P N meeting V in isolated points, it follows that the cycle class cl(Z)

is non-zero in H 2p(V; C). Now the integration current on Z is closed of type (p; p).
The class cl(Z) in H 2p(V; C) is hence of type (p; p). Rational (p; p)-classes are called
Hodge classes. They form the group Hdgp(V; Q) = H 2p(V; Q)\ H p;p(V ), and Hodge
posed the famous:

Hodge Conjecture. On a projective non-singular algebraic variety over C, any Hodge
class is a rational linear combination of cycle classes cl(Z) of algebraic cycles.

Hodge also proposed a further conjecture, characterizing the subspace of H �(V; Q)

spanned by the images of cohomology classes with support in a suitable closed analytic
subspace of complex codimension k. Grothendieck observed that this further conjecture
is false, and gave a corrected version of it in Grothendieck [1969].

5.2 Modular and symmetric cycle classes. Let us come back to locally symmetric
manifolds ΓnS . To any connected center-free semi-simple closed subgroup H � G cor-
responds an embedding of the symmetric space SH associated to H into S . If Γ \ H

is a lattice, the inclusion SH ,! S induces an immersion of real analytic varieties (Γ \

H )nSH ! ΓnS whose associated cycle class in H �(ΓnS; C)we denote by CΓ
H . We will

refer to these classes as modular classes. When ΓnS is non-compact, CΓ
H is sometimes

compactified to give a cycle on a natural compactification of ΓnS but we won’t discuss
these issues here.
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Examples. 1. When S is the real hyperbolic n-space Hn, the modular classes in ΓnHn

are the cycle classes of totally geodesic immersed submanifold of finite volume.
2. In complex ball quotients, cycle classes of finite volume quotients of sub-balls give

examples of modular classes. These are the only modular classes that are cycle classes of
algebraic cycles but there might be other modular classes: to the inclusion SO0(n; 1) �

PU(n; 1) corresponds a totally real geodesic embedding of the real hyperbolic n-space
into the complex n-ball that may projects onto a non-zero modular classes.

3. The moduli space Kg of genus g quasi-polarized K3 surfaces – that identifies with
a locally symmetric space associated to G = SO0(2; 19) – can have arbitrarily large Pi-
card group (see Theorem 4) and, more generally, many classes of cycles in their Chow
groups. In particular there are many cycles coming from Noether-Lefschetz theory: the
locus parametrizing the K3 surfaces with Picard number strictly greater than some positive
integer r � 19 = dimC Kg is indeed a countable union of subvarieties of co-dimension r .
The cycle classes of the irreducible components of this locus are modular classes associ-
ated to subgroups H � G isomorphic to SO0(2; 19 � r). As in the case of ball quotients
there are also non-algebraic modular classes.

There are a number of results on modular classes, but our current knowledge never-
theless appears to be quite poor: a large part of the literature on modular classes is only
concerned in establishing the non-vanishing of these classes. As in the case of analytic
subspaces of projective varieties, this has been addressed using the intersection numbers
of these cycles, see e.g. Millson [1976], Millson and Raghunathan [1980], and Kudla
and Millson [1990]. This has also been addressed using tools coming from representation
theory, see especially Tong and Wang [1989] and J.-S. Li [1992]. This non-vanishing
question is usually too hard to study for a given manifold; one simplifies the problem by
‘stabilizing’ it, that is to say by considering towers of finite coverings rather than a single
manifold. Let us say that a modular class CΓ

H is virtually non-zero if there exists a finite
index subgroup Γ0 � Γ such that the modular class CΓ0

H is non-zero in H �(Γ0nS; C).
The following conjecture – see Bergeron [2006] for more details (in particular with

respect to non-compact quotients ΓnS ) – provides a quite general answer to the question
of the virtual non-vanishing of modular classes. To our knowledge this conjecture encom-
passes all known results. It has been (or can be) checked in most classical situations (see
especially Bergeron [2006], Bergeron [2008], and Bergeron and Clozel [2013, 2017]). To
formulate it, let us first distinguish some particular modular symbols. Say that a closed
subgroup H � G is a symmetric subgroup of G if there exists an involution � of G such
that H = G� is the connected component of the identity in the group of fixed points of
� . We will refer to the corresponding modular classes CΓ

H as symmetric modular classes.
All the modular classes from the examples above are symmetric.
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Conjecture 5. Assume for simplicity thatΓnS is compact. A symmetric modular classCΓ
H

is virtually non-zero in the strongly primitive part of the cohomology of degree dimS �

dimSH if and only if rankC(G/H ) = rankC(K/(K \ H )).

5.3 Hodge types of modular classes. Keeping in mind the analogy with projective
varieties, the next step is to determine on which Hodge types of the cohomology of ΓnS

modular classes can project non-trivially. Up to now it seems to have been addressed only
in few particular cases. As explained in his 2002 ICM talk Kobayashi [2002], jointly with
Oda, Kobayashi has devised a sufficient criterion for a modular class to be annihilated by
a �-component in Matsushima’s decomposition (3-2). Their proof is based on a theory of
discrete branching laws for unitary representations of G. The most interesting cases they
can deal with are compact quotients of the symmetric space S = SO0(2n; 2)/SO2n �

SO2. If ΓnS is a compact S -manifold, the contribution of the trivial representation of
G to Matsushima’s formula (3-2) yields a natural injective map of cohomology groups
H �(Sc ; C) � H �(ΓnS; C); in particular we shall see the Euler class e 2 H n;n(Sc ; C),
defined in Section 3.3.2, as an element in H n;n(ΓnS; C). Kobayashi and Oda then prove:

Theorem6. TheHodge (n; n)-type component of amodular classCΓ
H withH Š SO0(2n; 1)

is proportional to the Euler class e.

These modular classes are cycle classes of totally real, totally geodesic submanifolds of
real dimension 2n into ΓnS which is a Kähler manifold of complex dimension 2n. In case
n = 1 the space S is a product H2 � H2 and the cycles derived from H are obtained by
‘partial complex conjugation’ of algebraic cycles with respect to the complex conjugation
on the second factor of S . Then Theorem 6 is equivalent to the well-known fact that the
cycle class of a closed analytic (complex) co-dimension 1 subspace in a compact algebraic
surface over C has no Hodge (2; 0) + (0; 2)-type components.

Beside the representation theoretic method of Kobayashi and Oda, a classical work of
Kudla and Millson [1990] suggests another approach. Kudla and Millson indeed provide
explicit dual forms to some natural modular classes in locally symmetric spaces associated
to classical groups. From this, one can derive serious restrictions on the possible Hodge
types to which these modular classes can contribute. Let’s describe the two main families
of examples.

5.3.1 Quotients of the symmetric space associated to PU(p; q). Let notations be as in
Section 3.3.1. Let cq 2 H q;q(Sc ; C) be the top Chern class of the q-dimensional vector
bundle over Sc = Up+q/Up � Uq associated to the standard representation of Uq , i.e.
the q-th power of the Kähler form of Sc . Here again if ΓnS is a compact S -manifold,
the contribution of the trivial representation of G to Matsushima’s formula (3-2) yields
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a natural injective map of cohomology groups H �(Sc ; C) � H �(ΓnS; C) and we shall
see the Chern class cq 2 H q;q(Sc ; C) as an element in H q;q(ΓnS; C). Wedging with cq

corresponds to applying the q-th power of the Lefschetz operator associated to the Kähler
form on ΓnS , and we define the subset SH �(ΓnS; C) of special cohomology classes in
H �(ΓnS; C) by

(5-1) SH �(ΓnS; C) =

pM
a;b=0

min(p�a;p�b)M
k=0

ck
q H a�q;b�q(ΓnS; C);

where H a�q;b�q(ΓnS; C) denotes the generalized Hodge subspace of the cohomology
corresponding to the pair of partitions (�; �) with � an a by q rectangle and � a b by q

rectangle. As with the usual Hodge-Lefschetz decomposition, we have:

SH �(ΓnS; C) =

pM
a;b=0

SH aq;bq(ΓnS; C)

where the (usual) primitive part of the subspace SH aq;bq(ΓnS; C) is exactly
H a�q;b�q(ΓnS; C).

Now the proof of Bergeron, Millson, and Moeglin [2016, Theorem 8.2] implies the
following:

Proposition 7. Let r be a non-negative integer with r � p and let CΓ
H be a modular

class in H 2rq(ΓnS; C) with H Š PU(p � r; q). Then CΓ
H is an algebraic class and it is

contained in SHdgr(ΓnS; Q) := SH rq;rq(ΓnS; C) \ H 2rq(ΓnS; Q).

5.3.2 Quotients of the symmetric space associated to SO0(p; q). Similarly and with
notations as in Section 3.3.2, any modular class CΓ

H , with H isomorphic to a smaller
orthogonal group fixing a positive subspace, is contained in

(5-2) SH �(ΓnS; C) = ˚
[p/2]
r=0 ˚

p�2r

k=0
ek

q H r�q(ΓnS; C):

Here eq is zero if q is odd and is the Euler class arising from the standard representation
of SOq if q is even. We then write SHdgr(ΓnS; Q) = SH rq(ΓnS; C) \ H rq(ΓnS; Q).

Examples 1. If q = 1 the space S is the p-dimensional hyperbolic real space and the
subspace SH �(ΓnS; C) is in fact equal to the full cohomology group H �(ΓnS; C).

2. If q = 2 the space is Hermitian and we have:

SH �(ΓnS; C) = ˚
p
r=0H r;r(ΓnS; C):

Beware that in this case the Euler class e2 is the class of the Kähler form that we denoted
c1 in Section 3.3.2.
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5.4 Hodge type theorems. Modular cycle classes belong to a subspace
SHdg�(ΓnS; Q) of the full cohomology group H �(ΓnS; C). Everything is therefore in
place to raise a question analogous to the Hodge Conjecture:

Do modular cycle classes span the subspace SHdg�(ΓnS; Q)?

We shall see that it is too much to hope for in general, but surprisingly enough this is close
to be true in several interesting cases. Let us again consider our twomain families of exam-
ples. Both cases are dealt with in joint works with Millson and Moeglin. The proofs rely
heavily on Arthur’s classification Arthur [2013] of automorphic representations of classi-
cal groups which depends on the stabilization of the trace formula for disconnected groups
discussed in Waldspurger’s 2014 ICM talk Waldspurger [2014] and recently obtained by
Mœglin and Waldspurger [n.d.].

5.4.1 A Hodge type theorem for quotients of the symmetric space associated to
PU(p; q). Even in the simple case where p = 2 and q = 1 – so that S is the complex
2-ball – it was proved by Blasius and Rogawski [2000] that there exist compact quotients
ΓnS such that the space of Hodge (1; 1)-classes is not spanned by modular classes. How-
ever, vaguely stated, the main result of Bergeron, Millson, and Moeglin [2016] asserts
that for congruence arithmetic quotients ΓnS (with arbitrary p and q’s) the special coho-
mology SH n(ΓnS; C) is generated, for n small enough, by cup products of three types of
classes:

• classes in SH q;q(ΓnS; C);

• holomorphic and anti-holomorphic special cohomology classes, i.e. classes inSH �;0(ΓnS; C)

and SH 0;�(ΓnS; C);

• modular cycle classes of Section 5.3.1.

5.4.2 A Hodge type theorem for quotients of the symmetric space associated to
SO0(p; q). In that case, vaguely stated, themain result of Bergeron,Millson, andMoeglin
[2017] states that as long as r is less than 1

2
p and 1

3
(p + q � 1), the ‘primitive’ subspace

H r�q(ΓnS; C) of SH rq(ΓnS; C), in the decomposition (5-2), is spanned by projections
of modular cycle classes.

5.5 Applications.

5.5.1 . The most striking consequences of the above mentioned ‘Hodge type theorems’
concern the cases where S is a complex ball or a real hyperbolic space. Indeed, in these
cases SH �(ΓnS; C) = H �(ΓnS; C) and we obtain the two following theorems.
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We first have to define more precisely the congruence arithmetic locally symmetric
space we deal with: let E be either a totally real number field or a totally imaginary
quadratic extension of a totally real number field. In both cases we denote by F the max-
imal totally real subfield of E. Now let V be a E-vector space of dimension n + 1 � 3

and let h : V � V ! E be a Hermitian form with respect to the conjugaison of E/F ,
such that h is of signature (n; 1) at one real place of F and definite at the others. LetH be
the semi-simple algebraic Q-group obtained from the algebraic F -group SU(h) by restric-
tion of scalars. To any congruence subgroup in H(Q) we attach a congruence arithmetic
quotient ΓnS where S is the real hyperbolic n-space, if E = F , and the complex n-ball,
otherwise.

Theorem 8. Suppose that ΓnS is a closed complex n-ball quotient and let
r 2 [0; n]n]n

3
; 2n

3
[. Then every Hodge class in H 2r(ΓnS; Q) is algebraic.

Remarks. 1. Beware that here modular cycle classes do not span, even in co-dimension 1.
One has to consider arbitrary (1; 1)-classes.

2. In small degree one can even confirm Hodge’s generalized conjecture in its original
formulation (with Q coefficients).

Theorem 9. Suppose that ΓnS is a real hyperbolic n-manifold. Then, for all r < n/3,
the Q-vector space H r(ΓnS; Q) is spanned by classes of totally geodesic cycles.

Remarks. 1. In Bergeron, Millson, and Moeglin [2017] we provide strong evidence that
Theorem 9 should not hold above the degree n/3.

2. When n is even, all congruence arithmetic real hyperbolic n-manifolds are of the
simple type described above. However, when n is odd, there are other types of congruence
arithmetic real hyperbolic n-manifolds. These do not contain totally geodesic immersed
co-dimension 1 submanifolds. Still, they may have a non-zero first Betti number. Theo-
rem 9 therefore cannot hold for general (congruence arithmetic) hyperbolic manifolds.

5.5.2 . When G = SO0(n; 2) the space S is Hermitian and our general ‘Hodge type
theorem’ again specializes into new cases of the Hodge conjecture. Let us emphasize
the even more special case of the moduli spaces Kg (in which cases we have n = 19): a
theorem of Oguiso [2009] indeed implies that any curve onKg meets some of the Noether-
Lefschetz (NL) divisors described in Example (3) of Section 5.2. So it is natural to ask
whether the Picard group PicQ(Kg) of Kg with rational coefficients is spanned by NL-
divisors. This was conjectured to be true by Maulik and Pandharipande, see ‘Noether-
Lefschetz Conjecture’ Maulik and Pandharipande [2013, Conjecture 3]. More generally,
one can extend this question to higher NL-loci on Kg . In Bergeron, Z. Li, Millson, and
Moeglin [2017], we prove:
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Theorem 10. For all g � 2 and all r � 4, the cohomology groupH 2r(Kg ; Q) is spanned
by NL-cyles of codimension r . In particular (taking r = 1), PicQ(Kg) Š H 2(Kg ; Q) and
the Noether-Lefschetz Conjecture holds on Kg for all g � 2.

Remark. Before Bergeron, Millson, and Moeglin [2017], He and Hoffman [2012] consid-
ered another interesting special case of our general ‘Hodge type theorem,’ that of smooth
Siegel modular threefolds Y where p = 3 and q = 2. They prove that Pic(Y ) ˝ C Š

H 1;1(Y ) is generated by Humbert surfaces.

6 Automorphic Lefschetz properties

Almost 40 years ago Oda [1981] proved that the Albanese variety of a congruence arith-
metic complex ball quotient is spanned by the Hecke translates of the Jacobian of a fixed
Shimura curve. This implies a version of the Lefschetz Theorem on the injection of the
cohomology to Shimura curves that can arguably be considered as the starting point of the
analogy between locally symmetric spaces and projective varieties that we are discussing
here. Since Oda’s pioneering work, a number of criteria have been developed to deter-
mine if some Hecke translate of a given cohomology class on a locally symmetric space
restricts non-trivially to a given locally symmetric subspace. Venkataramana’s ICM 2010
talk Venkataramana [2010] was devoted to this subject. We shall therefore insist on results
obtained since then.

6.1 Comparison with projective varieties. Let V � P N be a projective non-singular
algebraic variety and V \ H a hyperplane section of V . Then we have the

Lefschetz Hyperplane Theorem. The restriction map

(6-1) H i (V; Q) ! H i (V \ H; Q)

is an isomorphism for i � n � 2 and injective for i = n � 1.

This theorem in fact contains two quite different statements:

1. the map (6-1) is injective for i < n,

2. the map Hi (V \ H; Q) ! Hi (V; Q) is injective for i � n.

6.2 Restriction to special cycles. The Lefschetz Hyperplane Theorem applies to com-
pact quotients ΓnS of Hermitian symmetric spaces but modular classes are not ample.
However, one may consider all the translates of these modular classes under Hecke oper-
ators and ask for a weaker Lefschetz property for the collection of these Hecke translates.
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And a large number of such ‘weak Lefschetz properties’ indeed hold even when the sym-
metric spaceS is not Hermitian, see e.g. Bergeron [2006]. Since the general results require
a rather forbidding amount of notation we restrict our discussion to the special situation
of Section 5.5.1.

In this situation, to any non-degenerate, indefinite, subspace W � V defined over
E we attach a special cycle ΓW nSW ! ΓnS . It is of real dimension m[E : F ]. The
following theorem is our analogue of the first part of Lefschetz Hyperplane Theorem.

Theorem 11. For every m < n, there exist (m + 1)-dimensional subspaces W1; : : : ; Ws

in V such that the restriction map

(6-2) H i (ΓnS; Q) !
M

j

H i (ΓWj
nSWj

; Q)

is injective for all i < 1
2
m[E : F ] and for i = 1

2
m[E : F ] if ΓnS is closed.

The theorem can be reformulated using Hecke correspondences: to any F -rational
element g of the isometry group of h we may associate a finite correspondence (Γ \

g�1Γg)nS � ΓnS where the first projection is the covering projection and the sec-
ond projection is induced by the multiplication by g. Write C �

g : H �(ΓnS; Q) !

H �(ΓnS; Q) for the induced endomorphism. Theorem 11 then says that if ˛ is a non-zero
class in H i (ΓnS; Q) of degree i < 1

2
dimR SW , then there exists a g such that C �

g (˛)

pulls back non-trivially to ΓW nSW .
For compact ball quotients, the theorem is due to Oda [1981] in degree i = 1, and

to Venkataramana [2001] – confirming a conjecture of Harris and J.-S. Li [1998] – for
all degrees. The essential point (in the case n = m + 1) is that a linear combination
of the divisors ΓWi

nSWi
! ΓnS gives a particular ample class, the hyperplane class in

the canonical projective embedding of ΓnS . The Lefschetz property then follows from
the hard Lefschetz theorem. For non-compact ball quotients, one can combine Venkatara-
mana’s idea with the study of compactifications, see Nair [2017]. It may appear quite
surprising that the theorem holds for real hyperbolic manifolds. This is again a topolog-
ical consequence of the spectral gap Theorem 3. This approach gives a unified proof of
Theorem 11, see Bergeron and Clozel [2013, 2017].

6.3 Another type of Lefschetz property. As for the second part of Lefschetz Hyper-
plane Theorem, let us mention the following homotopical analogue of it, see Bergeron,
Haglund, and Wise [2011].

Theorem 12. A closed arithmetic hyperbolic manifold ΓnHn virtually retracts onto any
of its co-dimension 1 modular cycle.
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In other words: if ΛnHn�1 ! ΓnHn is a totally geodesic immersion and if we write
� : Λ ! Γ for the corresponding (injective) morphism, there exists a finite index subgroup
Γ0 � Γ and a morphism r : Γ0 ! Λ such that �(Λ) is contained in Γ0 and r ı � : Λ ! Λ is
the identity map. In particular the induced map

Hi (ΛnHn�1; Q) ! Hi (Γ
0
nHn; Q)

is injective for all i � 0.
The proof of Theorem 12 is very specific to arithmetic hyperbolic manifolds that con-

tain co-dimension 1 modular cycles; it uses that the group Γ may be ‘cubulated’ (in the
sense of Wise [2014]). It is a very interesting open question to decide which lattices of
SO0(n; 1) can be cubulated, but it is known that lattices in all other real simple Lie groups
cannot. Of course, this does not prevent Theorem 12 to hold for other locally symmetric
spaces, but to my knowledge no other examples are known to (homotopically) retract onto
a locally symmetric proper subspace except for a small finite number of beautiful exam-
ples, due to Deraux [2011], of complex 2-ball and 3-ball quotients that retract onto one of
their totally geodesic submanifolds.

However, thanks to spectral gap properties as in Theorem 3, the homological conse-
quences of Theorem 12 are more tractable in general, see Bergeron [2006]. In the special
situation of Section 5.5.1 one can for example prove the following analogue of the second
aspect of Lefschetz Hyperplane Theorem, see Bergeron and Clozel [2013].

Theorem 13. Suppose that ΓnS is closed. Let W be a subspace of V . There exists a finite
index subgroup Γ0 � Γ such that the natural map

(6-3) Hi (Γ
0
W nSW ; Q) ! Hi (Γ

0
nS; Q)

is injective for all i �
1
2
dimR S .

6.4 Some refined analogieswith specific projective varieties: Abelian varieties. The-
orem 9 is an analogue, in constant negative curvature, of the classical fact that cycle classes
of totally geodesic flat sub-tori span the cohomology groups of flat tori. In fact if A is an
Abelian variety, in most interesting cohomology theories H �(A) is an exterior algebra on
H 1(A). In particular, ifA is sufficiently general, the algebra of Hodge classes is generated
in degree 1 and the Hodge conjecture follows.

Quite surprisingly, in small degrees, the cohomology rings of congruence arithmetic
locally symmetricmanifolds enjoy structural properties very analogous to those of Abelian
varieties. Here again we discuss only the special situation of Section 5.5.1. Suppose
furthermore that ΓnS is closed and write Hdg�(ΓnS; Q) = H �(ΓnS; Q) if E = F , i.e.
if S is a real hyperbolic space Hn. First, the proofs of Theorems 8 and 9 imply:
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Theorem 14. The natural morphism of algebras

(6-4) ^
� Hdg1(ΓnS; Q) ! Hdg�(ΓnS; Q)

is onto in degree < n/3.

As opposed to what happens with Abelian varieties, the map (6-4) is not injective in
general (already when ΓnS is a real hyperbolic surface). The next theorem – see Bergeron
and Clozel [2013, 2017] – nevertheless shows that it is injective ‘up to Hecke correspon-
dences.’

Theorem 15. Let ˛ and ˇ two cohomology classes in H �(ΓnS; Q) of respective degrees
k and ` with k+` �

1
2
dimR S . Then, there exists some rational element g of the isometry

group of h such that
C �

g (˛) ^ ˇ ¤ 0 in H k+`(M; Q):

For complex ball quotients Theorem 15 is due to Venkataramana [2001]. Parthasarathy
[1982], Clozel [1992, 1993] andVenkataramana [2010] have general results of this type for
other Hermitian spaces, see also Bergeron [2004]. In Bergeron [2006] we consider more
general non Hermitian locally symmetric spaces. Here again the key input is a spectral
gap theorem.

7 Periods

Algebraic varieties admit a panoply of cohomology theories, related over C by compar-
ison isomorphisms. These give rise to different structures on the cohomology groups.
Comparing two such structures leads in particular to the rich theory of periods.

When dealing with general locally symmetric manifolds we don’t have all these co-
homology theories at our disposal anymore. However, using the canonical Riemannian
structure on S , we can extract some numerical invariants from the cohomology, which we
call ‘period matrices.’

7.1 Comparison with projective varieties. If V is a smooth projective variety defined
over Q, the vector space H k(V; C) has a natural Q-structure H k

dR(X/Q): choose a cover
of V by Zariski affine open sets defined over Q and use algebraic differential forms with
coefficients in Q. A comparison theorem, due to Grothendieck, gives a natural isomor-
phism H k

dR(X/Q) ˝ C Š H k(V; C).
One calls periods the matrix coefficients of the comparison isomorphism

H k
dR(X/Q) ˝ C

Š
�! H k(V; Q) ˝ C
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between algebraic de Rham cohomology and singular cohomology after choosingQ-bases
in both groups. In general these two different Q-structures are transcendent with respect
to each other and periods are fundamental numerical invariants, see e.g. Kontsevich and
Zagier [2001].

7.2 Period matrices of locally symmetric spaces. Let us come back to locally sym-
metric manifolds ΓnS . Through the isomorphism (3-1), the Riemannian structure on S

induces a positive definite quadratic form on each cohomology group H j (ΓnS; Z) mod-
ulo torsion. Letting b = bj (ΓnS), we encode the above data into a matrix

M =

�Z

k

!`

�
1�k;`�b

2 GLb(R)

where the 
k 2 Hj (ΓnS; Z) project to a basis for Hj (ΓnS; Z) modulo torsion and the
!`’s are an orthonormal basis for the space of harmonic j -forms on ΓnS . The matrixM is
well-defined up to multiplication on the left by GLb(Z) and on the right by an orthogonal
matrix.

As an element of GLb(Z)nGLb(R)/Ob , the matrix M is characterized by its determi-
nant and its image in the locally symmetric space that parametrizes the space of flat b-
dimensional tori of unit volume. In analogy with the classical Schottky problem, it would
be interesting to analyse the locus of the latter as Γ varies. Let us restrict our attention to
the apparently simpler question of bounding the determinant.

7.3 Regulators. Following Bergeron and Venkatesh [2013] and Bergeron, Şengün, and
Venkatesh [2016] we call ‘degree j regulator’ the determinant of the degree j period
matrix of ΓnS ; we denote it by Rj (ΓnS).

Note that jR0(ΓnS)j = 1/
p
vol(ΓnS), jRn(ΓnS)j =

p
vol(ΓnS), and by Poincaré

duality, we have jRj (ΓnS)Rn�j (ΓnS)j = 1: We propose the following:

Conjecture 16. Fix S and j . The growth of the degree j regulators of congruence arith-
metic of S -manifolds is given by

log jRj (ΓnS)j = o(vol(ΓnS)):

In the next paragraph we relate Conjecture 16 to the geometric complexity of cycles
needed to generate Hj (ΓnS; R). ‘Hodge type theorems’ like Theorem 9 suggest that the
conjecture could be tractable when j is far enough from the middle degree. In general one
can think of Conjecture 16 as an attempt to shed little light on the mysterious cycle theory
of locally symmetric spaces near the middle degree.
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7.4 Back to cycles. Our reason to believe in Conjecture 16 is that, roughly speaking, we
expect homology classes on congruence arithmetic manifolds to be represented by cycles
of low complexity. In our general situation, these cycles are not algebraic at all but one
may still hope that their topological complexity reflects the arithmetic complexity of their
(Langlands-)associated varieties.

In Bergeron, Şengün, and Venkatesh [2016] we formulate and study the following pre-
cise conjecture in a simple interesting case, namely, that of congruence arithmetic hyper-
bolic 3-manifolds.

Conjecture 17. There is an absolute constant C such that, for any congruence arith-
metic hyperbolic 3-manifold ΓnH3, there exist immersed surfaces Si of genus less that
vol(ΓnH3)C such that the [Si ]’s span H2(ΓnH3; R).

To relate Conjecture 17 with R2(ΓnH3), we study the relationship between two norms
on the second homology group: the purely topological Gromov-Thurston norm and the
more geometric ‘harmonic’ norm. RefiningBergeron, Şengün, andVenkatesh [ibid., Propo-
sition 4.1] Brock and Dunfield [2017] show that these two norms are roughly proportional
with explicit constants depending only on the volume and injectivity radius4 of ΓnH3.
Now, assuming Conjecture 17, each [Sj ] has Gromov-Thurston norm – and therefore
harmonic norm – which is bounded by a polynomial in vol(ΓnH3). Thus Hadamard’s
inequality shows that jR2(ΓnH3)j � vol(ΓnH3)Cb1(ΓnH3).

Remarks. 1. Conjectures 16 and 17 are false if the manifolds are not assumed to be con-
gruence arithmetic: Brock and Dunfield [ibid., Theorem 1.5] indeed construct a sequence
of closed hyperbolic 3-manifolds Mn (whose injectivity radii stay bouded away from 0)
with

vol(Mn) ! 1; b1(Mn) = 1 and lim sup
n

log jR2(Mn)j

vol(Mn)
> 0:

2. Underwell believed number theoretic assumptions, in Bergeron, Şengün, andVenkatesh
[2016] we notably verify Conjecture 17 when ΓnH3 is a congruence cover of a Bianchi
manifold with 1-dimensional cuspidal cohomology associated to a non-CM elliptic curve.
In that case the proof indeed relate the complexity of the H2-cycle to the height of the as-
sociated elliptic curve (i.e., the minimal size of A; B so that its equation can be expressed
as y2 = x3 + Ax + B). That this might be a general phenomenon was also suggested in
Calegari and Venkatesh [2012].

4which is expected to be uniformly bounded away from 0 on arithmetic manifolds
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8 Some regrets

Many other interesting questions could (should?) have been discussed in this survey. Hy-
perbolic 3-manifolds form a particularly rich and interesting family of locally symmetric
manifolds. However: Matsushima’s formula gives no restriction on their cohomology
and most of these manifolds do not contain totally geodesic immersed submanifolds. It
may therefore appear that hyperbolic 3-manifolds are not really connectedwith our general
story. This is not quite true: Agol [2013, 2014] proof of the celebrated ‘Virtual Haken Con-
jecture’ suggests considering ‘almost geodesic’ cycles rather than just geodesic ones. We
haven’t addressed the rich relation between the cohomology of locally symmetric spaces
and number theory. Let us simply say that our original motivation for Conjectures 16
and 17 came from the study of torsion homology and its relation with Galois representa-
tions Scholze [2014]. Finally Venkatesh’s program Venkatesh [2017] suggests fascinating
relations between the period matrices of Section 7.2 and periods (in the usual sense) of
automorphic forms.

Acknowledgments. I would like to thankMiklosAbert, TsachikGelander, Laurent Clozel,
Étienne Ghys, Frédéric Haglund, Zhiyuan Li, John Millson, Colette Moeglin, Peter Sar-
nak, T.N. Venkataramana, Akshay Venkatesh, Claire Voisin and Dani Wise for many very
helpful conversations over the years on the material related to this survey.

References

Miklos Abert, Nicolas Bergeron, Ian Biringer, and Tsachik Gelander (n.d.). “Non-uniform-
ly discrete IRS and normallized Betti convergence”. To appear (cit. on p. 858).

Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolov, Jean
Raimbault, and Iddo Samet (2017). “On the growth of L2-invariants for sequences of
lattices in Lie groups”. Ann. of Math. (2) 185.3, pp. 711–790. MR: 3664810 (cit. on
p. 858).

Ian Agol (2013). “The virtual Haken conjecture”. Doc. Math. 18. With an appendix by
Agol, Daniel Groves, and JasonManning, pp. 1045–1087.MR: 3104553 (cit. on p. 873).

– (2014). “Virtual properties of 3-manifolds”. In:Proceedings of the International Congress
of Mathematicians, Seoul, Vol. I. Kyung Moon SA Co. Ltd., pp. 141–170 (cit. on
p. 873).

James Arthur (2013). The endoscopic classification of representations. Vol. 61. Ameri-
canMathematical Society ColloquiumPublications. Orthogonal and symplectic groups.
American Mathematical Society, Providence, RI, pp. xviii+590. MR: 3135650 (cit. on
p. 865).

http://dx.doi.org/10.4007/annals.2017.185.3.1
http://dx.doi.org/10.4007/annals.2017.185.3.1
http://www.ams.org/mathscinet-getitem?mr=MR3664810
http://www.ams.org/mathscinet-getitem?mr=MR3104553
http://dx.doi.org/10.1090/coll/061
http://www.ams.org/mathscinet-getitem?mr=MR3135650


874 NICOLAS BERGERON

Werner Ballmann, Mikhael Gromov, and Viktor Schroeder (1985). Manifolds of nonposi-
tive curvature. Vol. 61. Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA,
pp. vi+263. MR: 823981 (cit. on p. 858).

N. Bergeron (2008). “Représentations cohomologiques isolées, applications cohomologi-
ques”. J. Inst. Math. Jussieu 7.2, pp. 205–246. MR: 2400721 (cit. on p. 862).

– (2009). “Restriction de la cohomologie d’une variété de Shimura à ses sous-variétés”.
Transform. Groups 14.1, pp. 41–86. MR: 2480852 (cit. on p. 855).

Nicolas Bergeron (2004). “Produits dans la cohomologie des variétés de Shimura: quel-
ques calculs”. C. R. Math. Acad. Sci. Paris 339.11, pp. 751–756. MR: 2110376 (cit. on
p. 870).

– (2006). “Propriétés de Lefschetz automorphes pour les groupes unitaires et orthogo-
naux”. Mém. Soc. Math. Fr. (N.S.) 106, pp. vi+125. MR: 2296755 (cit. on pp. 862,
868–870).

– (2017). “Variétés en expansion (d’après M. Gromov, L. Guth, : : :)”. Séminaire Bour-
baki. 69 ème année, Exp. No. 1132, vii–viii, 115–150 (cit. on p. 859).

Nicolas Bergeron and Laurent Clozel (2005). “Spectre automorphe des variétés hyper-
boliques et applications topologiques”. Astérisque 303, pp. xx+218. MR: 2245761 (cit.
on p. 860).

– (2013). “Quelques conséquences des travaux d’Arthur pour le spectre et la topologie
des variétés hyperboliques”. Invent. Math. 192.3, pp. 505–532. MR: 3049928 (cit. on
pp. 860, 862, 868–870).

– (2017). “Sur le spectre et la topologie des variétés hyperboliques de congruence: les
cas complexe et quaternionien”. Math. Ann. 368.3-4, pp. 1333–1358. MR: 3673656
(cit. on pp. 862, 868, 870).

Nicolas Bergeron, Frédéric Haglund, and Daniel T. Wise (2011). “Hyperplane sections
in arithmetic hyperbolic manifolds”. J. Lond. Math. Soc. (2) 83.2, pp. 431–448. MR:
2776645 (cit. on p. 868).

Nicolas Bergeron, Zhiyuan Li, John J. Millson, and Colette Moeglin (2017). “The Noe-
ther–Lefschetz conjecture and generalizations”. Invent. Math. 208.2, pp. 501–552. MR:
3639598 (cit. on pp. 860, 866).

Nicolas Bergeron, Peter Linnell,Wolfgang Lück, andRoman Sauer (2014). “On the growth
of Betti numbers in p-adic analytic towers”.Groups Geom. Dyn. 8.2, pp. 311–329. MR:
3231217 (cit. on p. 860).

Nicolas Bergeron, John J. Millson, and Colette Moeglin (2016). “The Hodge conjecture
and arithmetic quotients of complex balls”.ActaMath. 216.1, pp. 1–125.MR: 3508219
(cit. on pp. 864, 865).

– (2017). “Hodge Type Theorems for Arithmetic Manifolds Associated to Orthogonal
Groups”. Int. Math. Res. Not. IMRN 15, pp. 4495–4624. MR: 3685109 (cit. on pp. 860,
865–867).

http://dx.doi.org/10.1007/978-1-4684-9159-3
http://dx.doi.org/10.1007/978-1-4684-9159-3
http://www.ams.org/mathscinet-getitem?mr=MR823981
http://dx.doi.org/10.1017/S1474748007000187
http://dx.doi.org/10.1017/S1474748007000187
http://www.ams.org/mathscinet-getitem?mr=MR2400721
http://dx.doi.org/10.1007/s00031-008-9047-4
http://www.ams.org/mathscinet-getitem?mr=MR2480852
http://dx.doi.org/10.1016/j.crma.2004.09.033
http://dx.doi.org/10.1016/j.crma.2004.09.033
http://www.ams.org/mathscinet-getitem?mr=MR2110376
http://www.ams.org/mathscinet-getitem?mr=MR2296755
http://www.ams.org/mathscinet-getitem?mr=MR2245761
http://dx.doi.org/10.1007/s00222-012-0415-2
http://dx.doi.org/10.1007/s00222-012-0415-2
http://www.ams.org/mathscinet-getitem?mr=MR3049928
http://dx.doi.org/10.1007/s00208-016-1492-0
http://dx.doi.org/10.1007/s00208-016-1492-0
http://www.ams.org/mathscinet-getitem?mr=MR3673656
http://dx.doi.org/10.1112/jlms/jdq082
http://dx.doi.org/10.1112/jlms/jdq082
http://www.ams.org/mathscinet-getitem?mr=MR2776645
http://dx.doi.org/10.1007/s00222-016-0695-z
http://dx.doi.org/10.1007/s00222-016-0695-z
http://www.ams.org/mathscinet-getitem?mr=MR3639598
http://dx.doi.org/10.4171/GGD/227
http://dx.doi.org/10.4171/GGD/227
http://www.ams.org/mathscinet-getitem?mr=MR3231217
http://dx.doi.org/10.1007/s11511-016-0136-2
http://dx.doi.org/10.1007/s11511-016-0136-2
http://www.ams.org/mathscinet-getitem?mr=MR3508219
http://dx.doi.org/10.1093/imrn/rnw067
http://dx.doi.org/10.1093/imrn/rnw067
http://www.ams.org/mathscinet-getitem?mr=MR3685109


HODGE THEORY OF LOCALLY SYMMETRIC SPACES 875

Nicolas Bergeron, Mehmet Haluk Şengün, and Akshay Venkatesh (2016). “Torsion ho-
mology growth and cycle complexity of arithmetic manifolds”. Duke Math. J. 165.9,
pp. 1629–1693. MR: 3513571 (cit. on pp. 871, 872).

Nicolas Bergeron and Akshay Venkatesh (2013). “The asymptotic growth of torsion ho-
mology for arithmetic groups”. J. Inst. Math. Jussieu 12.2, pp. 391–447. MR: 3028790
(cit. on p. 871).

Jean-Michel Bismut (1987). “Demailly’s asymptotic Morse inequalities: a heat equation
proof”. J. Funct. Anal. 72.2, pp. 263–278. MR: 886814 (cit. on p. 859).

Don Blasius and Jonathan Rogawski (2000). “Cohomology of congruence subgroups of
SU(2; 1)p and Hodge cycles on some special complex hyperbolic surfaces”. In: Reg-
ulators in analysis, geometry and number theory. Vol. 171. Progr. Math. Birkhäuser
Boston, Boston, MA, pp. 1–15. MR: 1724885 (cit. on p. 865).

A. Borel and N. Wallach (2000). Continuous cohomology, discrete subgroups, and rep-
resentations of reductive groups. Second. Vol. 67. Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, pp. xviii+260. MR: 1721403
(cit. on p. 855).

Jeffrey F. Brock andNathanM.Dunfield (2017). “Norms on the cohomology of hyperbolic
3-manifolds”. Invent. Math. 210.2, pp. 531–558. MR: 3714511 (cit. on p. 872).

Jan Hendrik Bruinier (2002). “On the rank of Picard groups of modular varieties attached
to orthogonal groups”. Compositio Math. 133.1, pp. 49–63. MR: 1918289 (cit. on
p. 860).

F. Calegari andA. Venkatesh (Dec. 2012). “A torsion Jacquet–Langlands correspondence”.
arXiv: 1212.3847 (cit. on p. 872).

Frank Calegari and Matthew Emerton (2009). “Bounds for multiplicities of unitary rep-
resentations of cohomological type in spaces of cusp forms”. Ann. of Math. (2) 170.3,
pp. 1437–1446. MR: 2600878 (cit. on p. 860).

Donald I. Cartwright and Tim Steger (2010). “Enumeration of the 50 fake projective
planes”.C. R. Math. Acad. Sci. Paris 348.1-2, pp. 11–13. MR: 2586735 (cit. on p. 852).

Shiing-shen Chern (1957). “On a generalization of Kähler geometry”. In: Algebraic geom-
etry and topology. A symposium in honor of S. Lefschetz. Princeton University Press,
Princeton, N. J., pp. 103–121. MR: 0087172 (cit. on p. 849).

L. Clozel (1992). “Produits dans la cohomologie holomorphe des variétés de Shimura”. J.
Reine Angew. Math. 430, pp. 69–83. MR: 1172908 (cit. on p. 870).

– (1993). “Produits dans la cohomologie holomorphe des variétés de Shimura. II. Calculs
et applications”. J. Reine Angew. Math. 444, pp. 1–15. MR: 1241791 (cit. on p. 870).

Mathieu Cossutta and Simon Marshall (2013). “Theta lifting and cohomology growth in
p-adic towers”. Int. Math. Res. Not. IMRN 11, pp. 2601–2623. MR: 3065089 (cit. on
p. 859).

http://dx.doi.org/10.1215/00127094-3450429
http://dx.doi.org/10.1215/00127094-3450429
http://www.ams.org/mathscinet-getitem?mr=MR3513571
http://dx.doi.org/10.1017/S1474748012000667
http://dx.doi.org/10.1017/S1474748012000667
http://www.ams.org/mathscinet-getitem?mr=MR3028790
http://dx.doi.org/10.1016/0022-1236(87)90089-9
http://dx.doi.org/10.1016/0022-1236(87)90089-9
http://www.ams.org/mathscinet-getitem?mr=MR886814
http://www.ams.org/mathscinet-getitem?mr=MR1724885
http://dx.doi.org/10.1090/surv/067
http://dx.doi.org/10.1090/surv/067
http://www.ams.org/mathscinet-getitem?mr=MR1721403
https://doi.org/10.1007/s00222-017-0735-3
https://doi.org/10.1007/s00222-017-0735-3
http://www.ams.org/mathscinet-getitem?mr=MR3714511
http://dx.doi.org/10.1023/A:1016357029843
http://dx.doi.org/10.1023/A:1016357029843
http://www.ams.org/mathscinet-getitem?mr=MR1918289
http://arxiv.org/abs/1212.3847
http://arxiv.org/abs/1212.3847
http://dx.doi.org/10.4007/annals.2009.170.1437
http://dx.doi.org/10.4007/annals.2009.170.1437
http://www.ams.org/mathscinet-getitem?mr=MR2600878
http://dx.doi.org/10.1016/j.crma.2009.11.016
http://dx.doi.org/10.1016/j.crma.2009.11.016
http://www.ams.org/mathscinet-getitem?mr=MR2586735
http://www.ams.org/mathscinet-getitem?mr=MR0087172
http://dx.doi.org/10.1515/crll.1992.430.69
http://www.ams.org/mathscinet-getitem?mr=MR1172908
http://dx.doi.org/10.1515/crll.1993.444.1
http://dx.doi.org/10.1515/crll.1993.444.1
http://www.ams.org/mathscinet-getitem?mr=MR1241791
http://dx.doi.org/10.1093/imrn/rns139
http://dx.doi.org/10.1093/imrn/rns139
http://www.ams.org/mathscinet-getitem?mr=MR3065089


876 NICOLAS BERGERON

P. Deligne and G. D. Mostow (1986). “Monodromy of hypergeometric functions and non-
lattice integral monodromy”. Inst. Hautes Études Sci. Publ. Math. 63, pp. 5–89. MR:
849651 (cit. on p. 852).

Jean-Pierre Demailly (1985). “Champs magnétiques et inégalités de Morse pour la d 00-
cohomologie”. Ann. Inst. Fourier (Grenoble) 35.4, pp. 189–229. MR: 812325 (cit. on
p. 859).

Martin Deraux (2011). “Forgetful maps between Deligne-Mostow ball quotients”. Geom.
Dedicata 150, pp. 377–389. MR: 2753711 (cit. on p. 869).

M. Fraczyk (Dec. 2016). “Strong Limit Multiplicity for arithmetic hyperbolic surfaces and
3-manifolds”. arXiv: 1612.05354 (cit. on p. 859).

M. Fraczyk and J. Raimbault (n.d.). “Convergence of arithmetic locally symmetric spaces”.
To appear (cit. on p. 859).

William Fulton (1997). Young tableaux. Vol. 35. London Mathematical Society Student
Texts. With applications to representation theory and geometry. Cambridge University
Press, Cambridge, pp. x+260. MR: 1464693 (cit. on p. 855).

Damien Gayet and Jean-Yves Welschinger (2014). “What is the total Betti number of a
random real hypersurface?” J. Reine Angew. Math. 689, pp. 137–168. MR: 3187930
(cit. on p. 858).

A. Grothendieck (1969). “Hodge’s general conjecture is false for trivial reasons”. Topology
8, pp. 299–303. MR: 0252404 (cit. on p. 861).

Michael Harris (2014). “AutomorphicGalois representations and the cohomology of Shimura
varieties”. In: Proceedings of the International Congress of Mathematicians, Seoul, Vol.
II. Kyung Moon SA Co. Ltd., pp. 367–389 (cit. on p. 850).

Michael Harris and Jian-Shu Li (1998). “A Lefschetz property for subvarieties of Shimura
varieties”. J. Algebraic Geom. 7.1, pp. 77–122. MR: 1620690 (cit. on p. 868).

Hongyu He and Jerome William Hoffman (2012). “Picard groups of Siegel modular 3-
folds and � -liftings”. J. Lie Theory 22.3, pp. 769–801. MR: 3012154 (cit. on p. 867).

Bruno Klingler (2003). “Sur la rigidité de certains groupes fondamentaux, l’arithméticité
des réseaux hyperboliques complexes, et les “faux plans projectifs””. Invent. Math.
153.1, pp. 105–143. MR: 1990668 (cit. on p. 852).

Toshiyuki Kobayashi (2002). “Branching problems of unitary representations”. In: Pro-
ceedings of the International Congress ofMathematicians, Vol. II (Beijing, 2002). Higher
Ed. Press, Beijing, pp. 615–627. MR: 1957069 (cit. on p. 863).

Maxim Kontsevich and Don Zagier (2001). “Periods”. In: Mathematics unlimited—2001
and beyond. Springer, Berlin, pp. 771–808. MR: 1852188 (cit. on p. 871).

Stephen S. Kudla and John J. Millson (1990). “Intersection numbers of cycles on lo-
cally symmetric spaces and Fourier coefficients of holomorphic modular forms in sev-
eral complex variables”. Inst. Hautes Études Sci. Publ. Math. 71, pp. 121–172. MR:
1079646 (cit. on pp. 862, 863).

http://www.numdam.org/item?id=PMIHES_1986__63__5_0
http://www.numdam.org/item?id=PMIHES_1986__63__5_0
http://www.ams.org/mathscinet-getitem?mr=MR849651
http://www.numdam.org/item?id=AIF_1985__35_4_189_0
http://www.numdam.org/item?id=AIF_1985__35_4_189_0
http://www.ams.org/mathscinet-getitem?mr=MR812325
http://dx.doi.org/10.1007/s10711-010-9511-x
http://www.ams.org/mathscinet-getitem?mr=MR2753711
http://arxiv.org/abs/1612.05354
http://arxiv.org/abs/1612.05354
http://arxiv.org/abs/1612.05354
http://www.ams.org/mathscinet-getitem?mr=MR1464693
http://dx.doi.org/10.1515/crelle-2012-0062
http://dx.doi.org/10.1515/crelle-2012-0062
http://www.ams.org/mathscinet-getitem?mr=MR3187930
http://dx.doi.org/10.1016/0040-9383(69)90016-0
http://www.ams.org/mathscinet-getitem?mr=MR0252404
http://www.ams.org/mathscinet-getitem?mr=MR1620690
http://www.ams.org/mathscinet-getitem?mr=MR3012154
http://dx.doi.org/10.1007/s00222-002-0283-2
http://dx.doi.org/10.1007/s00222-002-0283-2
http://www.ams.org/mathscinet-getitem?mr=MR1990668
http://www.ams.org/mathscinet-getitem?mr=MR1957069
http://www.ams.org/mathscinet-getitem?mr=MR1852188
http://www.numdam.org/item?id=PMIHES_1990__71__121_0
http://www.numdam.org/item?id=PMIHES_1990__71__121_0
http://www.numdam.org/item?id=PMIHES_1990__71__121_0
http://www.ams.org/mathscinet-getitem?mr=MR1079646


HODGE THEORY OF LOCALLY SYMMETRIC SPACES 877

Jian-Shu Li (1992). “Nonvanishing theorems for the cohomology of certain arithmetic
quotients”. J. Reine Angew. Math. 428, pp. 177–217. MR: 1166512 (cit. on p. 862).

– (1996). “On the dimensions of spaces of Siegel modular forms of weight one”. Geom.
Funct. Anal. 6.3, pp. 512–555. MR: 1392328 (cit. on p. 860).

Simon Marshall (2014). “Endoscopy and cohomology growth on U (3)”. Compos. Math.
150.6, pp. 903–910. MR: 3223876 (cit. on p. 859).

YozôMatsushima (1962). “On Betti numbers of compact, locally sysmmetric Riemannian
manifolds”. Osaka Math. J. 14, pp. 1–20. MR: 0141138 (cit. on p. 855).

Davesh Maulik and Rahul Pandharipande (2013). “Gromov-Witten theory and Noether-
Lefschetz theory”. In: A celebration of algebraic geometry. Vol. 18. Clay Math. Proc.
Amer. Math. Soc., Providence, RI, pp. 469–507. MR: 3114953 (cit. on p. 866).

John J. Millson (1976). “On the first Betti number of a constant negatively curved mani-
fold”. Ann. of Math. (2) 104.2, pp. 235–247. MR: 0422501 (cit. on p. 862).

John J. Millson and M. S. Raghunathan (1980). “Geometric construction of cohomology
for arithmetic groups. I”. In: Geometry and analysis. Indian Acad. Sci., Bangalore,
pp. 103–123. MR: 592256 (cit. on p. 862).

C. Mœglin and J.-L. Waldspurger (n.d.). Stabilisation de la formule des traces tordue.
available at https : / / webusers . imj - prg . fr / ~colette . moeglin/ (cit. on
p. 865).

Arvind N. Nair (2017). “Lefschetz properties for noncompact arithmetic ball quotients II”.
Manuscripta Math. 152.3-4, pp. 443–457. MR: 3608300 (cit. on p. 868).

Takayuki Oda (1981). “A note on the Albanese variety of an arithmetic quotient of the
complex hyperball”. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28.3, 481–486 (1982). MR:
656032 (cit. on pp. 867, 868).

Keiji Oguiso (2009). “Picard number of the generic fiber of an abelian fibered hyperkähler
manifold”. Math. Ann. 344.4, pp. 929–937. MR: 2507632 (cit. on p. 866).

R. Parthasarathy (1982). “Holomorphic forms in ΓnG/K and Chern classes”. Topology
21.2, pp. 157–178. MR: 641998 (cit. on p. 870).

Émile Picard (1881). “Sur une extension aux fonctions de deux variables du problème de
Riemann relatif aux fonctions hypergéométriques”. Ann. Sci. École Norm. Sup. (2) 10,
pp. 305–322. MR: 1508705 (cit. on p. 852).

Gopal Prasad and Sai-Kee Yeung (2009). “Arithmetic fake projective spaces and arith-
metic fake Grassmannians”. Amer. J. Math. 131.2, pp. 379–407. MR: 2503987 (cit. on
p. 852).

Peter Sarnak and Xiao Xi Xue (1991). “Bounds for multiplicities of automorphic repre-
sentations”. Duke Math. J. 64.1, pp. 207–227. MR: 1131400 (cit. on p. 859).

Peter Scholze (2014). “Perfectoid spaces and their applications”. In: Proceedings of the
International Congress of Mathematicians, Seoul, Vol. II. Kyung Moon SA Co. Ltd.,
pp. 461–486 (cit. on p. 873).

http://dx.doi.org/10.1515/crll.1992.428.177
http://dx.doi.org/10.1515/crll.1992.428.177
http://www.ams.org/mathscinet-getitem?mr=MR1166512
http://dx.doi.org/10.1007/BF02249262
http://www.ams.org/mathscinet-getitem?mr=MR1392328
http://dx.doi.org/10.1112/S0010437X13007720
http://www.ams.org/mathscinet-getitem?mr=MR3223876
http://www.ams.org/mathscinet-getitem?mr=MR0141138
http://www.ams.org/mathscinet-getitem?mr=MR3114953
http://dx.doi.org/10.2307/1971046
http://dx.doi.org/10.2307/1971046
http://www.ams.org/mathscinet-getitem?mr=MR0422501
http://www.ams.org/mathscinet-getitem?mr=MR592256
https://webusers.imj-prg.fr/~colette.moeglin/
http://dx.doi.org/10.1007/s00229-016-0868-5
http://www.ams.org/mathscinet-getitem?mr=MR3608300
http://www.ams.org/mathscinet-getitem?mr=MR656032
http://dx.doi.org/10.1007/s00208-009-0335-7
http://dx.doi.org/10.1007/s00208-009-0335-7
http://www.ams.org/mathscinet-getitem?mr=MR2507632
http://dx.doi.org/10.1016/0040-9383(82)90003-9
http://www.ams.org/mathscinet-getitem?mr=MR641998
http://www.numdam.org/item?id=ASENS_1881_2_10__305_0
http://www.numdam.org/item?id=ASENS_1881_2_10__305_0
http://www.ams.org/mathscinet-getitem?mr=MR1508705
http://dx.doi.org/10.1353/ajm.0.0043
http://dx.doi.org/10.1353/ajm.0.0043
http://www.ams.org/mathscinet-getitem?mr=MR2503987
http://dx.doi.org/10.1215/S0012-7094-91-06410-0
http://dx.doi.org/10.1215/S0012-7094-91-06410-0
http://www.ams.org/mathscinet-getitem?mr=MR1131400


878 NICOLAS BERGERON

Birgit Speh (2006). “Representation theory and the cohomology of arithmetic groups”. In:
International Congress of Mathematicians. Vol. II. Eur. Math. Soc., Zürich, pp. 1327–
1335. MR: 2275647 (cit. on p. 850).

William P. Thurston (1998). “Shapes of polyhedra and triangulations of the sphere”. In:
The Epstein birthday schrift. Vol. 1. Geom. Topol. Monogr. Geom. Topol. Publ., Coven-
try, pp. 511–549. MR: 1668340 (cit. on p. 852).

Y. L. Tong and S. P. Wang (1989). “Geometric realization of discrete series for semisimple
symmetric spaces”. Invent. Math. 96.2, pp. 425–458. MR: 989703 (cit. on p. 862).

T. N. Venkataramana (2001). “Cohomology of compact locally symmetric spaces”. Com-
positio Math. 125.2, pp. 221–253. MR: 1815394 (cit. on pp. 868, 870).

– (2010). “Cohomology of arithmetic groups and representations”. In: Proceedings of the
International Congress of Mathematicians. Volume III. Hindustan Book Agency, New
Delhi, pp. 1366–1375. MR: 2827845 (cit. on pp. 850, 867, 870).

Akshay Venkatesh (2017). “Cohomology of arithmetic groups and periods of automorphic
forms”. Jpn. J. Math. 12.1, pp. 1–32. MR: 3619577 (cit. on pp. 850, 873).

DavidA. Vogan Jr. andGregg J. Zuckerman (1984). “Unitary representations with nonzero
cohomology”. Compositio Math. 53.1, pp. 51–90. MR: 762307 (cit. on p. 854).

J.-L. Waldspurger (2014). “Stabilisation de la partie géométrique de la formule des traces
tordue”. In: Proceedings of the International Congress of Mathematicians, Seoul, Vol.
II. Kyung Moon SA Co. Ltd., pp. 487–504 (cit. on p. 865).

Daniel T. Wise (2014). “The cubical route to understanding groups”. In: Proceedings of
the International Congress of Mathematicians, Seoul, Vol. II. KyungMoon SACo. Ltd.,
pp. 1075–1099 (cit. on p. 869).

Received 2017-11-12.

Nංർඈඅൺඌ Bൾඋ඀ൾඋඈඇ
Sඈඋൻඈඇඇൾ Uඇංඏൾඋඌංඍඣ
Iඇඌඍංඍඎඍ ൽൾ Mൺඍඁඣආൺඍංඊඎൾඌ ൽൾ Jඎඌඌංൾඎ–Pൺඋංඌ Rංඏൾ Gൺඎർඁൾ
CNRS, Uඇංඏ Pൺඋංඌ Dංൽൾඋඈඍ
Pൺඋංඌ
nicolas.bergeron@imj-prg.fr

http://www.ams.org/mathscinet-getitem?mr=MR2275647
https://doi.org/10.2140/gtm.1998.1.511
http://www.ams.org/mathscinet-getitem?mr=MR1668340
http://dx.doi.org/10.1007/BF01393969
http://dx.doi.org/10.1007/BF01393969
http://www.ams.org/mathscinet-getitem?mr=MR989703
http://dx.doi.org/10.1023/A:1002600432171
http://www.ams.org/mathscinet-getitem?mr=MR1815394
http://www.ams.org/mathscinet-getitem?mr=MR2827845
http://dx.doi.org/10.1007/s11537-016-1488-2
http://dx.doi.org/10.1007/s11537-016-1488-2
http://www.ams.org/mathscinet-getitem?mr=MR3619577
http://www.numdam.org/item?id=CM_1984__53_1_51_0
http://www.numdam.org/item?id=CM_1984__53_1_51_0
http://www.ams.org/mathscinet-getitem?mr=MR762307
mailto:nicolas.bergeron@imj-prg.fr


Pඋඈർ. Iඇඍ. Cඈඇ඀. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 2 (877–902)

COMPLEX BRUNN–MINKOWSKI THEORY AND POSITIVITY
OF VECTOR BUNDLES

Bඈ Bൾඋඇൽඍඌඌඈඇ

Abstract
This is a survey of results on positivity of vector bundles, inspired by the Brunn-

Minkowski and Prékopa theorems. Applications to complex analysis, Kähler geome-
try and algebraic geometry are also discussed.

1 Introduction

The classical Brunn-Minkowski theorem is an inequality for the volumes of convex sets.
It can be formulated as a statement about how the volumes of the vertical n-dimensional
sections of a convex body in Rn+m vary with the section; more precisely it says that
the n:th root of the volumes define a concave function on Rm. The theorem has many
applications, and it has also been generalized in many different directions (see e. g. the
survey, Gardner [2002]).

One important generalization is Prékopa’s theorem, Prékopa [1973], which can be seen
as a version of the Brunn-Minkowski theorem for convex functions instead of convex sets.
Let �(x; t) be a convex function on Rnx � Rmt , satisfying some mild extra conditions. We
define a new function on Rm by

e��̃(t) =

Z
Rn

e��(t;x)dx:

Then Prékopas theorem says that �̃ is also convex. Measures of the type

e��dx;

where � is convex, are called log concave , and in this terminology Prékopa’s theorem
says that the marginals, or push forwards, of log concave measures are log concave. If we
Partially supported by grants from Vetenskapsrådet.
MSC2010: primary 32L05; secondary 14D06.
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admit convex functions that attain the value 1, the Brunn-Minkowski theorem is a direct
consequence of Prékopa’s theorem, corresponding to the case when � is the indicator
function of a convex body, i.e. the function which is zero on the convex body and infinity
outside. (Properly speaking we get a version of the Brunn-Minkowski theorem with n:th
roots replaced by logarithms. This is the ’multiplicative version’ of the Brunn-Minkowski
theorem, and is easily seen to be equivalent to the ’additive version’.)

Among the many different proofs of Prékopa’s theorem, the one that is relevant to us
here is the proof of Brascamp and Lieb [1976]. It goes by first proving the Brascamp-Lieb
inequality, which is a Poincaré inequality for the d -operator (on functions). In the case
when n = 1 (which is really the main case) it says the following: Let u be a smooth
function on R, satisfying Z

R
ue��(x)dx = 0;

where � is a smooth function, which is strictly convex in the sense that �00 > 0. ThenZ
R

juj
2e��dx �

Z
R

ju0j2

�00
e��dx:

From this, Prékopa’s theorem (and therefore also the Brunn-Minkowski theorem) follows
just by differentiating �̃ twice, and applying the Brascamp-Lieb inequality to estimate the
result. Actually, the two results are ‘equivalent’ in the sense that the Brascamp-Lieb theo-
rem follows from Prékopa’s theorem too. (See Cordero-Erausquin and Klartag [2012],
which also gives a nice complement to the oversimplified historical picture described
above.)

Now we observe that the Brascamp-Lieb inequality is the real variable version of Hör-
mander’sL2-estimate for the @̄-operator, Hörmander [1965], Demailly [1997]. (This point
of view was probably first stated clearly in Cordero-Erausquin [2005].) To describe the
simplest case of Hörmander’s estimate we let � be a smooth strictly subharmonic function
in C. Then we let u be a smooth function on C, satisfyingZ

C
uh̄e��d� = 0;

for all holomorphic functionsh satisfying the appropriateL2-condition (d� denotes Lebesgue
measure). Note that this is a direct counterpart to the condition on u in the real case. Then
u was assumed to be orthogonal to all constant functions, i.e. all functions in the kernel
of d , whereas in the complex case u is assumed to be orthogonal to all functions in the
kernel of @̄. The conclusion of Hörmander’s estimate is now thatZ

C
juj

2e��d� �

Z
C

j@̄uj2

∆�
d�;
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which clearly is very similar to the conclusion of the Brascamp-Lieb inequality. The con-
dition that u is orthogonal to all holomorphic functions, means that u is the L2-minimal
solution to a @̄-equation, and this is how Hörmander’s theorem is mostly thought of; as an
estimate for solutions to the @̄-equation. (There is also an even more important existence
part of Hörmander’s theorem, but that plays no role here.) In the same way, the Brascamp-
Lieb theorem is anL2-estimate for the d -equation, and it can be obtained as a special case
of Hörmander’s theorem, when the functions involved do not depend on the imaginary
part of z.

Given the importance of Prékopa’s theorem in convex geometry, it now becomes a
natural question if there are any analogous consequences of Hörmander’s theorem in the
complex setting, that generalize the real theory. This is the subject of the work that we
will now describe.

The most naive generalization would be that letting � be plurisubharmonic (i.e. sub-
harmonic on each complex line) in Cn � Cm, and defining �̃ as we did in the real case,
we get a plurisubharmonic function. This is however in general not the case as shown by
a pertinent example of Kiselman [1978],

�((t; z) := jz � t̄ j2 � jt j2 = jzj2 � 2Re zt

(in C2). It turns out that instead we should think of the volume of a (convex) domain
as the squared L2-norm of the function 1, and the integrals of e�� as squared weigthed
L2-norms. Then it becomes natural to considerL2-norms of holomorphic functions in the
complex case, i.e. to look at norms

khj
2
t :=

Z
Cn

jh(z)j2e��(t;z)d�(z);

or similar expressions where we integrate over slices of pseudoconvex domains in Cn

instead of the total space. Let A2
t be the (Bergman) space of holomorphic functions with

finite norm. Then we get a family of Hilbert spaces, indexed by t , i.e. a vector bundle, or at
least a ‘vector bundle like’ object (the bundles obtained are in general not locally trivial).
The theorems that we are going to discuss amount to saying that the curvature of these
bundles is positive, or at least non negative, under natural assumptions. If, intuitively, we
think of the curvature as (the negative of) the Hessian of the (logarithm of) the metric,
this can be seen as a counterpart to the Brunn-Minkowski-Prékopa theorem. One can also
recover Prékopa’s theorem as a special case, see Section 2.

Let us add one remark on the relation of positive curvature to convexity in the real
setting. A convex function on Rn is the same thing as a plurisubharmonic function on Cn

that does not depend on the imaginary part of z. But, it is not the case that

� log khtk
2
t ;
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is plurisubharmonic in t if ht is a holomorphic section of a holomorphic hermitian vector
bundle of positive curvature. This does however hold if the rank of the vector bundle is
1, so that we have a line bundle, if we also assume that ht ¤ 0 for all t . This is precisely
the situation in the real setting: The bundle of constants has rank 1 and the ‘section’ 1 is
never zero, and that is why we get simpler statements in the real setting. If we imagine a
vector valued Brunn-Minkowski theory (see Raufi [n.d.]) we would get a situation similar
to the complex case since

� log
NX
1

e��j

is in general not convex for convex �j , except when N = 1.
Looking at the complex situation, it is clear that the restriction to linear sections of

a domain in Euclidean space is not as natural as in the real case. The general picture
involves two complex manifoldsX and Y of dimensions n+m andm respectively, and a
holomorphic surjective map p : X ! Y between them. This corresponds to the previous
situation whenX = Cn�Cm, Y = U � Cm and p is the linear projection from Cn�Cm

to Cm. The role of the linear sections is played by the fibersXy = p�1(y) of the map. To
get enough holomorphic objects to apply the theory to, we will also replace holomorphic
functions by holomorphic sections of a line bundle, L, over X , and the plurisubharmonic
function � now corresponds to a hermitian metric of non negative curvature on L. We
then have almost all the ingredients for the complex theory, but one item remains to sort
out: How do we define L2-norms over the fibers?

For a general complex manifold, like the fibers of the map p, there is of course no
substitute for Lebesgue measure. The way out is to consider, instead of sections of L,
(n; 0)-forms on the fibers with values in L. Such forms with values in L have natural
L2-norms, defined by wedge product and the metric on L. The bundle metric we get is

kuk
2
y = cn

Z
Xy

u ^ ūe�� :

Again, in our model situation of Euclidean space, this corresponds to integration with
respect to Lebesgue measure. With this list of translations we obtain a counterpart to
Prékopa’s theorem in the complex setting, under natural convexity assumptions on X .

As it turns out, the nicest situation is when the map is proper, so that the fibers are com-
pact, and also a submersion, so that the fibers are manifolds. In this case, and assuming
also that the line bundle is trivial, the theorem was already known. Indeed it is a part of
Griffiths’ monumental theory of variations of Hodge structures, Griffiths and Tu [1984],
Fujita [1978]. Griffiths’ point of view however was rather different. He considered the
vector bundle that we are discussing, with fibersHn;0(Xy), as a subbundle of the Hodge
bundle with fibers Hn

dRh
(Xy), with connection induced by the Gauss-Manin connection
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on the Hodge bundle. It seems difficult to generalize this approach completely to the
twisted case, when L is nontrivial, since e.g. there is no twisted counterpart to the Hodge
bundle (see however Kawamata [1998]). It is also interesting to notice the different roles
played by holomorphic forms: Griffiths was interested in holomorphic forms per se be-
cause of their relation to the period map. Here the forms are forced upon us in order to
define L2-norms.

In the next section we will give more precise formulations of the basic results. After
that we will turn to applications; toL2-extension problems for holomorphic functions, the
(Mabuchi) space of Kähler metrics in a fixed cohomology class, variations of complex
strucures, and finally positivity of direct image bundles in algebraic geometry.

Acknowledgments. The work described here has been influenced by discussions with
many people. In particular I owe a great debt to Robert Berman, Sebastien Boucksom,
Dario Cordero-Erausquin, Bo’az Klartag, Mihai Paun, Yanir Rubinstein and Xu Wang.

2 The basic results

We begin with non proper maps, and start by looking at the simplest case. We let Ω be a
domain in Cn and U a domain in Cm. We then let X = Ω�U and let p : X ! U be the
linear projection on the second factor. We will assume that Ω is pseudoconvex (meaning
that it has a smooth strictly plurisubharmonic exhaustion function). Let � = �(z; t) be
plurisubharmonic and smooth up to the boundary. Let

A2(Ω; �) = fu 2 H (Ω);

Z
Ω

juj
2e��(�;t) < 1g;

be the corresponding Bergman space of holomorphic functions, equipped with the norm

kuk
2
t =

Z
Ω

juj
2e��(�;t):

Since � is bounded, all the Bergman spaces are the same as linear spaces, but their norms
vary with t . We therefore get a trivial vector bundleE = A2�U overU with a non trivial
Hermitian metric. We define its complex structure by saying that a section t ! h(t; �) is
holomorphic if h is holomorphic on Ω � U .

Theorem 2.1. (Berndtsson [2009]) The bundle (E; k � kt ) has non negative (Chern) cur-
vature in the sense of Nakano.

There are two main notions of positivity for Hermitian vector bundles; positivity in
the sense of Griffiths and in the sense of Nakano. Positivity in the sense of Griffiths is
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defined in terms of the curvature tensor in the following way. Recall that the curvature is
a (1; 1)-form, Θ, with values in the space of endomorphisms of E. Then, if ut 2 Et ,

hΘut ; ut it

is a scalar valued (1; 1)-form. Positivity in the sense of Griffiths means that it is a positive
form for any ut . For the definition of positivity in the sense of Nakano, which is a stronger
notion, we refer to Demailly [1997] or Berndtsson [2009]. We should also point out that
we are here in the somewhat non standard situation of infinite rank bundles; this is also
discussed in Berndtsson [ibid.].

We first discuss the proof very briefly. Let F be the bundle (L2(Ω; �); k � kt ), whose
fibers are general L2-functions, not necessarily holomorphic. It is also a trivial bundle,
and we define a section t ! ut to be holomorphic if the dependence on t is holomorphic.
Then E is a subbundle of F . It is easy to see that the curvature of F is the (1; 1)-formPm

1 �tj ;t̄kdtj ^ d t̄k , where the coefficients should be interpreted as the endomorphisms

ut ! �tj ;t̄kut :

Then it is immediately clear that F has non negative curvature as soon as � is plurisub-
harmonic in t for z fixed. By general principles (Demailly [1997]), the curvature of the
subbundle E is given by

hΘEut ; ut it = hΘF ut ; ut it � k�E?�F utk
2
t :

Here �F is the connection form for the Chern connection of F , and �E? is the orthogo-
nal projection on the orthogonal complement of E in F . The important thing to notice is
now that, since �E?�F ut lies in the orthogonal complement of the space of holomorphic
functions, it is the L2-minimal solution of some @̄-equation, and we can apply Hörman-
der’s estimate (for pseudoconvex domains in Cn). This allows us to control the second,
negative, term by the first, positive, one, and that gives the theorem.

It is well known that positivity in the sense of Griffiths, is equivalent to negativity of
the dual bundle, E�. On the other hand, negativity in the sense of Griffiths, is equivalent
to saying that

log kvtkt

is plurisubharmonic for any holomorphic section of E�.
This leads to a more concrete reformulation of the first theorem. For t in U , let t ! �t

be a family of complex measures on Ω. Assume there is a compact subset, K, of Ω, such
that all �t are supported on K. Then

ut !

Z
Ω

utd�t =: �t (ut )

defines a secion of the dual bundle E� and it gets a norm inherited from the norm on Et .
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Corollary 2.2. Assume that the section �t is holomorphic in the sense that

t ! �t (h(t; �)

is holomorphic for any h holomorphic on X . Then

log k�tkt

is plurisubharmonic.

But this statement makes sense in a much more general situation.

Theorem 2.3. LetD be a pseudoconvex domain in Cn � Cm, and denote byDt = fz 2

Cn; (z; t) 2 Dg its vertical slices. Let�t be a family of measures onDt that are all locally
supported in a compact subset ofD, and depend on t in a holomorphic way so that

t ! �t (h(t; �))

is holomorphic in t if h is holomorphic inD. Then

log k�tkt

is plurisubharmonic in t .

This way we have implicitly defined positivity of curvature for the ’bundle of Bergman
spaces’ A2(Dt ; �), even though this is not properly speaking a vector bundle, since it is
not locally trivial. Here we also note that Theorem 2.3 and Corollary 2.2 imply Prékopa’s
theorem: TakeD = (C�)n (where C� = C n f0g), and define � by taking averages over
the n-dimensional real torus

�(h) =

Z
T n

h(ei�1z1; ::e
i�nzn)d�

(it does not depend on z). Computing the norm of � as a functional on A2(D; e��(t;�)),
where � only depends on jzj j, we recover Prékopa’s theorem.

One main case of Theorem 2.3 is when the measures �t are all Dirac delta functions.

Theorem 2.4. (Berndtsson [2006]) LetD be a pseudoconvex domain in Cn�Cm and let
� be plurisubharmonic inD. For each t in the projection ofD toCm letBt (z) = Bt (z; z)

be the diagonal Bergman kernel for A2(Dt ; �). Then logBt (z) is plurisubharmonic in
D.

This theoremwas obtained earlier when n = 1 and � = 0 byMaitani and Yamaguchi in
Maitani and Yamaguchi [2004]. It is a consequence of the previous result. Let t ! f (t)
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be a holomorphic map such that f (t) 2 Dt , and let �t be a Dirac mass at f (t). It
is immediate that t ! �t (h) = h(t; f (t)) is holomorphic if h is holomorphic on the
product space. Moreover,

k�tk
2
t = Bt (f (t));

so by the theorem, logBt (f (t)) is plurisubharmonic for any such map. This means that
Bt (z) is plurisubharmonic inD.

The proof of Theorem 2.3 uses the corollary, applied to a sequence of weights that
tend to infinity outside of D. It is given in detail in Berndtsson [2006] for the situation
of Bergman kernels, but the same proof gives the more general result too. See also Wang
[2017] for a detailed analysis of a curvature operator defined in the setting of Theorem 2.3
(under one extra assumption) and conditions for when the curvature vanishes.

We next turn to general surjective holomorphic maps between complex manifolds, and
there we will restrict to the case of proper maps, to fix ideas. LetX be a complex manifold
of dimension n + m and U a complex manifold of dimension m. Since our results are
mostly local we can here think ofU as a domain inCm. Let p : X ! U be a holomorphic
and surjective map. We say that p is smooth if its differential is surjective at every point.
Then the fibers Xt = p�1(t) are smooth manifolds, and when the map is proper they are
also compact. Let L ! X be a holomorphic line bundle over X , equipped with a an
Hermitian metric e�� .

For t in the base, U , we let

Et = Hn;0(Xt ; L);

be the space of holomorphicL-valued (n; 0)-forms onXt . We can also think of this space
as

Et = H 0(Xt ; KXt
+ L);

the space of holomorphic sections over Xt of the canonical bundle of Xt twisted with the
bundle L. Equivalently

Et = H 0(Xt ; KX/U + L);

is the space of holomorphic sections over Xt of the relative canonical bundle KX/U

twisted with L. (The relative canonical bundle, defined as KX/U = KX � KU , is a
line bundle over the total space X that restricts to KXt

on every fiber Xt .) Let

E = [t2U ftg �Et :

It turns out that, when the metric on L has semipositive curvature, so that i@@̄� � 0, then
E is a holomorphic vector bundle over U . A section ut ofE is defined to be holomorphic
if

ut ^ dt
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is a holomorphic (n+m; 0) -form onX , where (t1; :::tm) are holomorphic coordinates on
U and dt = dt1 ^ :::dtm. Finally, the L2-norm

kutk
2
t := cn

Z
Xt

ut ^ ūte
�� ;

defines an Hermitian structure on E. We are then in a situation analogous to the one in
Theorem 2.1, with the advantage that we now get a bona fide vector bundle of finite rank.

Theorem2.5. (Berndtsson [2009]) Assume that the curvature ofL is nonnegative (i@@̄� �

0) and that the total space is Kähler. Then E is a holomorphic vector bundle with non-
negative curvature in the sense of Nakano (and hence also in the sense of Griffiths).

Notice that what corresponds to pseudoconvexity here is the assumption thatX is Käh-
ler, so somewhat curiously the Kähler assumption appears as a convexity condition. If we
look at the global picture and assume that X is even projective this is rather natural, since
we may then remove a divisor fromX and get a total space that is Stein, hence pseudocon-
vex. Since a divisor is removable for L2-holomorphic forms, it appears that projectivity
is related to (pseudo)convexity for these problems, but as it turns out, Kähler is enough.

When the fibration is trivial, so that X = Z � U , the theorem can be proved in much
the same way as Theorem 2.1, at least when the curvature of e�� is strictly positive on
fibers. The proof in the general case is based on the formalism of pushforwards of currents.
We write the norm squared of a holomorphic section as the pushforward of a form on the
total space under p, compute i@@̄kutk2t using this formalism, and can then identify the
curvature.

Theorem 2.5 can be developed in two different ways, by either adding more, or as-
suming less, assumptions. Let us first assume that the curvature form of the metric on
L, i@@̄� restricts to a strictly positive form on each fiber. Then we have a Kähler metric
!t := i@@̄�jXt

on each fiber, and thus an associated Laplace operator, 2t = @̄@̄� + @̄�@̄

on L-valued forms on each fiber. We can then give an ’explicit’ formula for the curvature.
To formulate the result we also assume that the base dimension m = 1; the general case
follows by restricting to lines or curves in the base. We then define a (1; 1)-form

C (�) = c(�)idt ^ d t̄ ;

by
(i@@̄�)n+1/(n+ 1)! = C (�) ^ (i@@̄�)n/n!

(we will come back to this form later in sections 4 and 5).

Theorem 2.6. (Berndtsson [2011]) Assume that !t = i@@̄�jXt > 0 on each fiber Xt .
Then the curvature, Θ of (E; k � kt ) is given by

hΘ@/@t;@/@t̄ ut ; ut it = cn

Z
Xt

c(�)ut ^ ūte
�� + h(1 +2t )

�1�� [ ut ; �� [ ut it
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(where we define ��[ below).

To define �� , we first have to define the notion of ’horizontal lift’ of a vector field,
@/@t on the base, as introduced by Schumacher [2012], generalizing the earlier notion of
’harmonic lift’ of Siu [1986]. A vector field on the total space X is said to be vertical, if
it maps to zero under p. It is horizontal if it is orthogonal to all vertical fields under the
(possibly degenerate, possible indefinite) metric i@@̄�. As shown in Schumacher [2012],
any vector field on the base U has a unique horizontal lift. In our case, the vector field on
the base is @/@t , and there is a unique horisontal field V� (depending on i@@̄�) which maps
to @/@t under p. Taking @̄V� and restricting to fibers we get �� ; it is a @̄-closed (0; 1)-form
on each fiber, with values in T 1;0(Xt ). The cohomology class of �� inH 0;1(Xt ; T

1;0(Xt ))

is the Kodaira-Spencer class, but here it is important to look at this particular representative
of the class. The cup product �� [ut is obtained by contracting with the vector part of ��
and wedging with the form part.

From the formula we see that if i@@̄� � 0 and the curvature is zero, then c(�) = 0 and
�� is zero on each fiber. These two conditions imply that the horizontal lift of @/@t is a
holomorphic field, whose flow maps fibers to fibers. In fact, we have

Corollary 2.7. Assume that i@@̄� � 0, i@@̄� > 0 on fibers and that the curvature Θ

vanishes. Then there is a holomorphic vector field V onX whose flow lifts toL, such that
its flow maps fibers of p to fibers and is an isometry on L. In particular, the flow maps
!t to !t 0 .

In general terms, this means that the curvature can only vanish if the fibration
p : X ! U is trivial, holomorphically and metrically. This is proved under the as-
sumption that the curvature of L is strictly positive on each fiber, and it does not hold in
general without this assumtion (see Berndtsson [2011]).

It is also interesting to compare again to Prékopa’s theorem. There, if the function �̃ is
not strictly convex but linear (and if we assume that m = 1), then � must have the form

�(t; x) =  (x + tv) + ct;

where  is a convex function on Rn, v is a vector in Rn and c is a constant, Dubuc [1977].
Thus, the variation of � with respect to t comes from the flow of a constant vector field
applied to a fixed function  , ’lifted’ to the line bundle Rn � R by adding ct . This is
similar to what happens in the complex setting, except that there we get a holomorphic
vector field instead.

We next discuss versions of Theorem 2.5 in the more general setting when the metric
on the line bundle L is allowed to be singular, and the map p is no longer assumed to be
smooth (in the sense described above) but only surjective. On the other hand, we now
assume that X is projective and that p : X ! Y , where Y is a compact manifold.
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By Sard’s theorem, p is smooth outside of p�1(Y1), where Y1 is a proper analytic
subvariety of Y , and there we can define theL2-metric as before. There is a counterpart of
the Bergman kernel here. It is first defined for a 2 p�1(Y1) as the norm of the evaluation
functional at a on Ep(a),

B(a) = sup ju(a)j2/kuk
2
p(a);

where the supremum is taken over all sections u inH 0(Xp(a); KX/Y +L) that are square
integrable with respect to the metric e�� (if there are no nontrivial such section, we let
B(a) = 0). This definition however depends on the trivialization of KX/Y + L chosen
near a, so the Bergman kernel is not a function but defines a metric on KX/Y + L – the
Bergman kernel metric B�1 = e� logB .

Theorem 2.8. (Berndtsson and Păun [2008])If the singular metric e�� has semipositive
curvature (i.e. i@@̄� � 0 in the sense of currents), and the Bergman kernel metric is not
identically equal to 0, it defines a singular metric of semipositive curvature on p�1(Y1).
Moreover, this metric extends to a singular metric on KX/Y + L over all of X .

Briefly, if L is pseudoeffective, i.e. has a singular metric of nonnegative curvature,
KX/Y + L is also pseudoeffective, provided that it has a non trivial L2-section over at
least one fiber.

This result can be seen as a counterpart to Theorem 2.3 in this setting. Themore difficult
problem of counterparts of Theorem 2.5 is discussed in the last section.

3 The Suita conjecture and L2-extension

LetD be a (say smoothly) bounded domain in C and suppose 0 2 D. The Bergman space
ofD is

A2(D) = fh 2 H (D); khk
2 :=

Z
D

jhj
2d� < 1g;

and the Bergman kernel at 0 is

B(0) = sup
khk�1

jh(0)j2:

To state Suita’s conjecture we also need the Green’s functionG(z)which is a subharmonic
function inD, vanishing at the boundary, with a logarithmic pole at 0;

G(z) = log jzj2 � v(z);

where v is harmonic and chosen so thatG vanishes at the boundary. By definition, v(0) :=
cD(0) = cD is the Robin constant of D at 0. Suita’s conjecture, which was proved in
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Błocki [2013], Guan and Zhou [2015], says that

B(0) �
e�cD

�
:

When D is a disk with center 0 it is clear that equality holds, and it was proved in Guan
and Zhou [ibid.] that equality holds only then. In Błocki [2015], Błocki gave a much
simpler proof of the conjecture, based on variations of domains and the ’tensor power
trick’. In connection with this, László Lempert proposed an even simpler proof, using
(pluri)subharmonic variation of Bergman kernels from Maitani and Yamaguchi [2004],
Berndtsson [2006], that we shall now describe (see Błocki [2015], Berndtsson and Lem-
pert [2016]).

Let for t � 0,
Dt = fz 2 D;G(z) < tg;

and Bt (0) be the Bergman kernel forDt . Since

D := f(�; z) 2 C �D;G(z) � Re � < 0g

is a pseudoconvex domain in C2, and Dt = D� , the vertical slice of D, if t = Re � , it
follows from Maitani and Yamaguchi [2004], Berndtsson [2006] (cf Theorem 2.4) that
logBt (0) is convex. When t approaches �1, Dt is very close to a disk centered at the
origin with radius e(t+cD)/2, so

Bt ∼
e�t�cD

�
:

In particular, the function
k(t) := logBt (0) + t

is convex and bounded on the negative half axis. Therefore, it must be increasing. Hence

B(0) = ek(0) � lim
t!�1

ek(t) =
e�cD

�
;

which proves Suita’s conjecture.
It is clear that similar proofs work in higher dimensions and also for weighted

Bergman spaces with a plurisubharmonic weight function. The main new observation
in Berndtsson and Lempert [2016] is that the same technique can be used to give a proof
of the Ohsawa-Takegoshi extension theorem, Ohsawa and Takegoshi [1987].

We first recall a simple version of this important result. We letD be a bounded pseudo-
convex domain in Cn and � a plurisubharmonic function inD. Let V be a linear subspace
of Cn of codimension m which intersects D. The Ohsawa-Takegoshi theorem says that
in this situation (and actually under much more general conditions), for any holomorphic
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function f on V \ D, there is a holomorphic function F in D, such that f = F on V
and Z

D

jF j
2e��d�n � C

Z
V\D

jf j
2e��d�n�m;

where C is a constant depending only on the diameter of D. What makes this theorem
so powerful is that even though there is no assumption of strict plurisubharmonicity or
smoothness, we get an estimate with an absolute constant. Note that, when V is just a
point, we get the existence of a function F in D with good L2-estimates and prescribed
value at the origin; this is equivalent to an estimate for the Bergman kernel.

Just as in Suita’s conjecture, one can now ask for optimal estimates. Such estimates
were given in Błocki [2013] and more generally by Guan and Zhou [2015]. We shall now
see that results of this type also follow from Theorem 2.3. We also point out that, con-
versely, Guan and Zhou show that results along the line of Theorem 2.3 and Theorem 2.5
follow from sharp versions of the Ohsawa-Takegoshi extension theorem, so in very gen-
eral terms the two types of results are perhaps ’equivalent’.

Write for z in Cn, z = (z1; :::zm; zm+1; :::zn) = (z0; z00), and say that V is defined by
the equation z0 = 0. Let

G(z) = log jz0
j
2;

and let
Dt = fz 2 D;G(z) < tg:

We may assume that jz0j � 1 in D. For each t 2 (�1; 0) we let Ft be the extension
of f to Dt of minimal norm. Such a minimal element exists by general Hilberts space
theory. The following result is not explicitly stated in Berndtsson and Lempert [2016], but
implicitly contained there.

Proposition 3.1.
e�mt

kFtk
2
t = e�mt

Z
Dt

jFt j
2e��d�

is a decreasing function of t .

It follows that
kF0k

2
� lim
t!�1

e�mt
kFtk

2
t :

It is not hard to see that the last limit equals (with �m the volume of the m-dimensional
unit ball)

�m

Z
V\D

jf j
2e�d�n�m;

at least when � is smooth in a neighbourhood of the closure ofD. This gives the sharp ex-
tension theorem in this setting, and the general case is obtained by the usual approximation
procedures.
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Proposition 3.1 can be proved much like the Suita conjecture, but using the general
Theorem 2.3 instead of plurisubharmonic variation of Bergman kernels. First note that
since any function f on V \ D extends to D, the space of holomorphic functions on
V \D can be identified with the quotient space H (D)/J (V ), or H (Dt )/J (V ), where
J (V ) is the subspace of functions that vanish on V . The quantity that we want to estimate,
kFtkt , is the norm of f in A2(Dt )/J (V ). The space of measures with compact support
in V \ D is dense in the dual of H (Dt )/J (V ). We first prove a dual estimate on such
measures:

k�k
2
t e
mt

is increasing, with

k�k
2
t = sup

F

j
R
Fd�j2R

Dt
jF j2e��d�

:

This is proved in almost exactly the same way as in the Suita case, when V is a point, and
Proposition 3.1 follows.

4 The space of Kähler metrics

In this section we will look at fibrations with X = Z �U where Z is a compact complex
manifold, U is a domain in C and p : X ! U is the projecion on the second factor. We
also assume given a complex line bundle,L overZ. Pulling it back toX by the projection
on the first factor we get a line bundle overX , that we denote by the same letter, sometimes
writing L ! X or L ! Z, to make the meaning clear. Mostly we assume that L ! Z

is positive, in the sense that it has some smooth metric of positive curvature, but we don’t
fix any metric – instead we will use this set up to study the spaceML of positively curved
metrics on L.

Here all the fibers Xt = Z are the same and the line bundles LjXt
are also the same.

A metric on L ! X can be interpreted as a complex curve of metrics on L, parametrized
by � in U . Of particular interest for us is the case when U = f� 2 C; 0 < Re � < 1g is
a strip and � only depends on the real part of � ; then we can interpret � as a real curve in
ML.

The space ML was introduced by Mabuchi [1987]. It is an open subset of an affine
space modeled on C1(Z), therefore the tangent space ofML at any point � is naturally
identified with C1(Z). Mabuchi defined a Riemannian structure onML by

k�k
2
� :=

Z
Z

j�j
2!n� ;

for � 2 C1(Z), with !� := i@@̄�, see also Semmes [1988] and S. K. Donaldson [1999].
As proved in these papers, a curve inML, i.e. a metric on L depending only on t = Re �
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is a geodesic for the Riemannian metric if and only if i@@̄� � 0 on X , and it satisfies the
homogenous complex Monge-Ampère equation

(i@@̄�)n+1 = 0:

In our terminology in Section 2, this means that c(�) = 0, and in general, c(�) can
be interpreted as the geodesic curvature of the curve. Since honest geodesics are scarce,
see Lempert and Vivas [2013], Darvas and Lempert [2012], Ross and Nyström [2015],
Ross and Nyström [n.d.] for problems encountered in solving the homogenous complex
Monge-Ampère equation involved, we will also use ’generalized geodesics’. These are
metrics on L as above that are only assumed to be locally bounded, such that i@@̄� � 0

and (i@@̄�)n+1 = 0 in the sense of pluipotential theory (Bedford and Taylor [1976]). It
is easy to see (Berndtsson [2011]) that any two metrics in ML can be connected with
a generalized geodesic in this sense, and by a famous result of Chen [2000b], Janeczko
[1996], the geodesic has in fact higher regularity, so that @@̄� is a current with bounded
coefficients. We will say that such geodesics are of class C (1;1). There is by now an
extensive theory on these matters, for which we refer to Mabuchi [1987], Semmes [1988],
S. K. Donaldson [1999], Phong and Sturm [2009] and S. K. Donaldson [2005].

We first consider the case when L = �KZ is the anticanonical bundle of Z. The
positivity of L then means that Z is a Fano manifold. The fibers of the vector bundle E,
defined in Section 2,

E� = H 0(X� ; KX�
+ L) = H 0(Z;C)

are then just the space of constant functions on Z (so E is a line bundle). A metric e��

on L ! Z can be identified with a volume form on Z that we also denote e�� , and with
this somewhat abusive notation we have for the element ’1’ inH 0(Z;C),

k1k
2
� =

Z
Z

e�� :

We are therefore in the situation described in the introduction whenE is a line bundle with
a nonvanishing section. Therefore we get a Prékopa type theorem for Fano manifolds.

Theorem 4.1. (Berndtsson [2015]) Let e�� be a locally bounded metric on L ! Z �U ,
where L ! Z is the anticanonical bundle of Z. Assume that U is a strip and that �
depends only on the real part of � 2 U . Suppose also that i@@̄� � 0 in the sense of
currents. Let

�̃(t) = � log
Z
Z

e��(t;�):

Then �̃ is a convex function of t . If �̃ is linear, then there is a holomorphic vector field V
on U , which is a lift of @/@� on U , whose flow maps fibers X� to fibers and i@@̄�jX�

to
i@@̄�jX�

.
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When � is smooth the first part of the theorem follows immediately from Theorem 2.5,
and the general case is easily obtained by approximation. The second part is clearly of the
same vein as Corollary 2.7, but it does not follow directly from there because of the lack
of smoothness and strict positivity.

The main interest of this result lies in its connection with Kähler-Einstein metrics. To
explain this we also need to introduce the Monge-Ampère energy, E(�), of a metric. This
is a real valued function onML, which can be defined (up to a constant) by the property
that for any curve t ! �t 2 ML,

d

dt
E(�t ) =

1

Vol(L)

Z
Z

�̇t!
n
�t
/n!;

where �̇ = d�/dt and the volume of the line bundle is

Vol(L) :=

Z
Z

!n�/n!

(it does not depend on the metric). One then defines the Ding functional, Ding [1988], as

D(�) := log
Z
Z

e�� + E(�):

The critical points of the Ding functional are the metrics that satisfy

e�� = C!n� :

This means precisely that the Ricci curvature of the Kähler metric !� equals !� , i.e. that
!� is a Kähler-Einstein metric (of positive curvature). It is well known that the Monge-
Ampère energy is linear along (even generalized) geodesics, so the Ding functional is
linear along a geodesic precisely when its first term

t ! log
Z
Z

e��t

is linear. As noted by Berman [n.d.], this gives a proof of the Bando-Mabuchi uniqueness
theorem (Bando and Mabuchi [1987]), for Kähler-Einstein metrics on Fano manifolds. In-
deed, suppose e��0 and e��1 are metrics on the anticanonical bundle ofZ, and that i@@̄�0
and i@@̄�1 are both Kähler-Einstein. Connect them by a generalized geodesic. Since both
endpoints are critical points for the Ding functional, and the Ding functional is concave
along the geodesic, it must in fact be linear. Then Theorem 4.1 implies that !�0 and !�1
are connected via the flow of a holomorphic vector field, i.e. an element in the identity
component of the automorphism group. This is the Bando-Mabuchi theorem.
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As also noted byBerman [n.d.], similar arguments prove a variant of theMoser-Trudinger-
Onofri inequality (Moser [1970/71], Onofri [1982]) for Kähler-Einstein Fano manifolds
(the original case of the theorem was for Z equal to the Riemann sphere). The (variant
of) the theorem says, in our terminology, that Kähler-Einstein metrics are global maxima
for the Ding functional on the space of all positively curved metrics, which is clear from
the concavity, since Kähler-Einstein metrics are critical points. The original version of
the theorem, for the Riemann sphere, deals with metrics that are not necessarily positively
curved, but as shown by Berman, this follows in one dimension from the positively curved
case by an elegant trick.

The formalism described here can easily be generalized. We fix a metric e� on a
pseudoeffective R-line bundle L0 and study metrics e�� on an R-line bundle L00, such
that L0 + L00 = L = �KZ . With this we define the twisted Ding functional

D (�) := log
Z
Z

e��� + E(�);

where Vol(L) is replaced by Vol(L00) in the definition of E. The critical points of D 
satisfy

e��� = C!n� :

Hence the Ricci curvature of !� satisfies

Ric(!�) = !� + i@@̄ ;

so !� is a ’twisted Kähler-Einstein metric’. It is clear that if  is assumed to be bounded,
the same argument as before gives uniqueness modulo automorphisms, but actually the
argument can be generalized to when i@@̄ = ˇ[∆] is a multiple of a current defined
by a divisor in Z. This leads to a uniqueness theorem for Kähler-Einstein metrics with
conical singularities, introduced by S. K. Donaldson [2012], as a tool for the solution
of the Yau-Tian-Donaldson conjecture, see Chen, S. Donaldson, and S. Sun [2014] and
subsequent papers. In these papers it was also shown that this generalized version of
Theorem 4.1 can be used to prove reductivity of the group of automorphisms of the pair
(Z;∆). Furthermore, the theorem was generalized to ’log-Fano’ manifolds, that arise
naturally in this context, in Eyssidieux, Guedj, and Zeriahi [2009]. In this context, see
also Berman [2016] for applications to the converse direction of the Yau-Tian-Donaldson
conjecture.

So far we have discussed only the case when L is the anticanonical bundle of Z, and
the resulting convexity preperties of the Ding functional, but it turns out that the formalism
is also useful in connection with other functionals in Kähler geometry. A case in point is
the Mabuchi K-energy, Mabuchi [1986], M. The K-energy of a metric e�� on a positive
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line bundle L can be defined (again up to a constant) by

d

dt
M(�t ) =

Z
Z

�̇(S� � Ŝ�)!
n
�/n!;

where t ! �t is any smooth curve inML, S� is the scalar curvature of the Kähler metric
!� , and Ŝ� is the average of S� over Z. The raison d’être of M is that its critical points
are precisely (the potentials of) the metrics of constant scalar curvature. It was proved
by Mabuchi [1986], that M is convex along smooth geodesics, but, again, in applications
there is a need to consider also generalized geodesics. It was proved by Chen [2000a],
that the K-energy can be defined along any generalized geodesic of class C (1;1), which is
crucial since any two points in the space can be connected by such geodesics. (For this, he
rewrites the definition of M since the original definition involves four derivatives of �.)
Chen also conjectured that M would be convex along any generalized geodesic of class
C (1;1). This was proved in a joint paper with Berman and Berndtsson [2017].

Theorem 4.2. The Mabuchi K-energy is convex along any generalized geodesic of class
C (1;1).

(An alternative proof was later given in Chen, Li, and Păuni [2016].) Using this we
proved the uniqueness of metrics of constant scalar curvature up to flows of holomorphic
vector fields:

Theorem 4.3. Let Z be a compact manifold and L ! Z a positive line bundle. Let !0

and !1 be two Kähler metrics on of constant scalar curvature in c1[L]. Then there is a
holomorphic vector field on Z, with time 1 flow F , such that F �(!1) = !0.

Uniqueness was proved earlier, in case Z has discrete automorphism group in S. K.
Donaldson [2001]. Our result is in fact more general; it treats not only metrics of constant
scalar curvature, but general ’extremal metrics’, and does not assume that the cohomology
class of the metrics is integral. For this, and a discussion of previous work, we refer to
Berman and Berndtsson [2017].

5 Variation of complex structure

In this section we will mainly consider families of canonically polarized manifolds. We
assume that p : X ! U is a smooth proper fibration, thatU is a domain in C, and that the
fibers Xt have positive canonical bundle. In this setting, X is automatically Kähler, since
we may find a smooth metric e� onKX/U which is positively curved on fibers, and take
a Kähler form as i@@̄ + p�(!) where ! is sufficiently positive on the base. Hence the
results from Section 2 apply.
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By the Aubin-Yau theorem, S. T. Yau [1978], Aubin [1982], each fiber has a unique
Kähler-Einstein metric (now with Ricci curvature equal to -1). This metric can be written

! = i@@̄�;

where e�� is a metric on the canonical bundle. Then e� is a metric on the anticanonical
bundle, which as in the previous section can be identified with a volume form, and the
metric is unique if we normalize so that

e� = (!�)
n/n!:

Applying this to each fiberXt we get a metric on the relative canonical bundleKX/U that
we also denote by e�� . An important theorem of Schumacher [2012] implies that i@@̄� is
semipositively curved not only along the fibers, but on the total space:

Theorem 5.1. If e�� is the normalized Kähler-Einstein potential described above, and
c(�) is defined as in Section 2, then

2c(�) + c(�) = j�� j
2

on each fiber. As a consequence, c(�) is semipositive and strictly positive on each fiber
where �� does not vanish identically.

Here 2 = @̄�@̄ is the Laplace operator on functions on a fiber, for the Kähler metric
!� jXt

, and �� , as defined as in Section 2 turns out to be the harmonic representative of the
Kodaira-Spencer class. The non negativity part of the statement follows immediately from
the differential equation, since 2c(�) � 0 at a minimum point, and the strict positivity
part is also a well known property of elliptic equations. Since i@@̄� > 0 along the fibers,
the positivity of c(�) implies that i@@̄� is positive on the total space.

This result can be seen as an analog of Theorem 2.8, whenL is trivial or a power of the
relative canonical bundle. Indeed, that theorem says the Bergman kernel defines a semi-
positive metric on the relative canonical bundle, at least if it is not identically zero. Tsuji
[2010], independently proved the semipositivity part of Theorem 5.1, using Theorem 2.8
and iteration:

Theorem 5.2. Let X be a family of canonically polarized manifolds. For any sufficiently
positive line bundle (L; e� ) onX , let e�s( ) be the Bergman kernel metric onKX/U+L.
Define iteratively a sequence of metrics hm = e�sm( ) on mKX/U + L in this way.
Then an appropriate renormalization of h1/mm tends to the metric onKX/U defined by the
Kähler-Einstein potentials.
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Since all the metrics in the iteration have semipositive curvature by Theorem 2.8, this
gives a different proof of the semipositivity part of Theorem 5.1. Tsuji also applied these
arguments to situations when we assume much less positivity along the fibers.

Both Schumacher’s theorem and Theorem 2.8 give some positivity of KX/Y under as-
sumptions of fiberwise positivity. Schumacher’s theorem was generalized by Paun [n.d.],
to twisted relative canonical bundles, and even to general adjoint classes, not necessarily
integral. He also applied this result to solve a long standing conjecture about the surjec-
tivity of the Albanese map for compact Kähler manifolds with nef anticanonical bundle.

Theorem 5.3. Let p : X ! Y be a holomorphic surjective map between compact Kähler
manifolds. Let ˇ be a semipositive closed (1; 1)-form on on X and assume that the co-
homology class c1[KX/Y ] + [ˇ] contains a (1; 1)-form Ω which is strictly positive on all
fibers Xy , for y outside a proper analytic subset, Y0, of Y . Then c1[KX/Y ] + ˇ contains
a closed semipositive current, which is smooth outside p�1(Y0).

Let us now consider the particular case of a fibration p : X ! U where the fibers are
Riemann surfaces of a certain genus g � 2. If we choose L = KX/U , our vector bundle
E with fibers

Et = H 1;0(Xt ; KX/Y ) = H 0(Xt ; 2KX/U )

is the dual of the bundle with fibers

E�
t = H 0;1(Xt ; T

1;0(Xt ));

which is the space of infinitesimal deformations of the complex structure onXt . Any pos-
itively curved metric on E therefore induces a negatively curved metric on the space of
deformations (along U ). In particular, taking the L2-metric on E, defined by the metric
on KX/U given by the Kähler-Einstein potentials, e�� , we get the Weil-Peterson metric
on U . By Schumacher’s theorem, e�� is (semi)positively curved on X , so we get the
classical fact that the Weil-Peterson metric has seminegative curvature, and negative cur-
vature where the Kodaira-Spencer class does not vanish, Ahlfors [1961/1962], Royden
[1975], Wolpert [1986]. Moreover, from Theorem 2.6, we get an explicit formula for the
curvature. Using Schumacher’s theorem again (now the differential equation for c(�)),
we can rewrite the formula so that it coincides with the formula found by Wolpert [ibid.],
see Berndtsson [2011]. The same argument works whenU has higher dimension, and then
Theorem 2.5 shows that the Weil-Peterson metric has dual Nakano-negative curvature, cf
Liu, X. Sun, and S.-T. Yau [2009]. This is stronger than negative bisectional curvature,
which corresponds to Griffiths negativity.

The case of families of higher dimensional canonically polarized manifolds is signifi-
cantly more complicated. We are then primarily interested in vector bundles H1;n�1 with
fibers

H 1;n�1(Xt ; KX/U )
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and their positivity properties. The reason for this is that the dual ofH 1;n�1(Xt ; KX/U ) =

Hn;n�1(Xt ; (T
�)1;0(Xt )) is H 0;1(Xt ; T

1;0), the space of infinitesimal deformations of
the complex structure on Xt . The Kodaira-Spencer map sends the tangent bundle of U
into this space, and therefore any metric on H1;n�1 induces a metric on the base. The
Weil-Peterson metric on the base (which can be obtained this way) was first studied by
Siu [1986], who found an explicit formula for its curvature. This was generalized by
Schumacher [2012], who found a curvature formula for the bundle H1;n�1 and also for
the other higher direct image bundlesHp;q , with p+q = n. Both Siu’s and Schumacher’s
formulas contain terms that give an apparent positive contribution to the curvature of the
Weil-Peterson metric, but as shown in Schumacher [ibid.] and To and Yeung [2015], the
metrics on all the higher direct images bundles can be combined to give a Finsler metric of
strictly negative sectional curvature that can partly substitute for the Weil-Peterson metric.

All these works focus on the relative canonical bundle and the metric on it given by
the Kähler-Einstein potential, and in the case of one dimensional fibers they are special
cases Theorem 2.6. The generalization to general line bundlesLwith metrics of fiberwise
positive curvature was obtained in Naumann [n.d.] and Berndtsson, Paun, andWang [n.d.].
In Berndtsson, Paun, and Wang [ibid.], the formalism was also extended to families of
Calabi-Yau manifolds (where related results have also been announced by To and Yeung).
Finally, we also mention that, building on work by Lu [2001], Wang [n.d.], has found
a different approach to these problems, which so far works for Calabi-Yau families and
then produces a Hermitian version of the Weil-Peterson metric, with negative bisectional
curvature. The main idea is to embed the tangent bundle of U , not in the dual of H1;n�1

as above, but in the endomorphism bundle of the sum of all the Hp;q .

6 Positivity of direct image sheaves

We shall finally discuss extensions of Theorem 2.5 under less restrictive assumptions. Let
p : X ! Y be a surjective holomorphic map between two projective varieties, and let
L ! X be a holomorphic line bundle equipped with a singular metric e�� with semi-
positive curvature current i@@̄� � 0. The ’multiplier ideal sheaf’ I(�) is the sheaf of
holomorphic functions on X that are square integrable against e�� . The first problem is
that under these general circumstances we no longer get a vector bundle on the base. The
role of the vector bundle E is instead played by the (zeroth) direct image sheaf,

E := p�((KX/Y + L) ˝ I(�)):

E is a sheaf over Y whose sections over an open set U in the base are the sections of
(KX/Y +L)˝ I(�) over p�1(U ). By a classical theorem of Grauert, E is coherent and it
is also torsion free. The consequence of this that we will use is that it is locally free outside
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of a subvariety, Y0, of Y of codimension at least two. This means that outside of Y0, E
is the sheaf of sections of a vector bundle E. In the setting of Theorem 2.5, Y0 is empty
and E coincides with the sheaf of sections of E as defined there. In general, let Y1 be a
proper subvariety of Y such that p is a submersion outside p�1(Y1). We can now define a
L2-metric on E over p�1(Y n (Y0 [Y1)) as we did when e�� was assumed to be smooth.
The new feature that appears is that this is now a singular metric. For singular metrics
on a vector bundle it seems impossible to define positivity and negativity in terms of a
curvature current (cf Raufi [2015]), but we can circumvent this problem in a way similar
to what we did in Theorem 2.3: We say that a singular metric is negatively curved if the
logarithm of the norm of any holomorphic section is plurisubharmonic, and it is positively
curved if the dual is negative (cf Berndtsson and Păun [2008]).

Paun and Takayama extended the notion of singular metrics on vector bundles to the
setting of coherent, torsion free sheaves. The definition is simply that a singular metric on
such a sheaf is a singular metric on the vector bundle defined by the sheaf outside of Y0.
Since negativity (and positivity) of the curvature is defined in terms of plurisubharmonic
functions, and since plurisubharmonic functions extend over varieties of codimension at
least 2, it turns out that this is a useful definition. Given all this, we have the following
theorem of Păun and Takayama [n.d.], and Hacon, Popa, and Schnell [n.d.], which seems
to be the most general theorem on (metric) positivity of direct images.

Theorem 6.1. The L2-metric on E = p�((KX/Y + L) ˝ I(�)) over the complement
of Y0 [ Y1 extends to a (singular) metric of nonnegative curvature on the coherent and
torsion free sheaf E .

(Paun and Takayama proved this when I(�) is trivial on a generic fiber.) The next
theorem is also due to Paun and Takayama:

Theorem 6.2. Any coherent torsion free sheaf which has a (singular) metric of nonnega-
tive curvature is weakly positive in the sense of Viehweg [1995]. Hence, by Theorem 6.1,

E := p�((KX/Y + L) ˝ I(�))

is weakly positive.

In very general terms, the notion of ’positivity’ in algebraic geometry, is often given
in terms of the existence of certain holomorphic or algebraic objects. Thus, e. g. the
positivity of a line bundle means that a high power of it has enough sections to give an em-
bedding into projective space. Similarily, Viehweg’s weak positivity of a sheaf F means
that certain associated sheaves are generated by global sections. From the analytic point
of view, the existence of such sections should be a consequence of the metric positivity of
curvature, and the previous theorem gives a very general version of this. We will not go
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into more details on these matters or give the exact definition of positivity in the sense of
Viehweg – it would require another article (and another author.)

Instead we end by a major application of these results, due to Cao and Păun [2017].

Theorem 6.3. Let p : X ! A be a surjective holomorphic map, where X is smooth
projective and A is an Abelian variety. Then we have the inequality for the Kodaira di-
mensions of X and a generic fiber, F ,

�(X) � �(F ):

This proves the case of the famous ’Itaka conjecture’, �(X) � �(F ) + �(Y ), when Y
is an Abelian variety (and hence has Kodaira dimension zero). For a simplification of the
proof and a generalization of the result we refer to Hacon, Popa, and Schnell [n.d.], which
is also a beautiful survey of the field.
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Abstract

We give an overview of the theory of Cannon-Thurston maps which forms one of
the links between the complex analytic and hyperbolic geometric study of Kleinian
groups. We also briefly sketch connections to hyperbolic subgroups of hyperbolic
groups and end with some open questions.

1 Kleinian groups and limit sets

The Lie group PSL2(C) can be viewed from three different points of view:

1. As a Lie group or a matrix group (group-theoretic).

2. As the isometry group of hyperbolic 3-space H3–the upper half space f(x; y; z) :

z > 0g equipped with the metric ds2 = dx2+dy2+dz2

z2 , or equivalently the open
ball f(x; y; z) : (x2 + y2 + z2) = r2 < 1g equipped with the metric ds2 =
4(dx2+dy2+dz2)

(1�r2)2
(geometric).

3. As the group of Möbius transformations of the Riemann sphere Ĉ (complex dy-
namic/analytic).

A finitely generated discrete subgroup Γ � PSL2(C) is called a Kleinian group. De-
pending on how we decide to look at PSL2(C), the group Γ can accordingly be thought
of as a discrete subgroup of a Lie group, as the fundamental group of the complete hyper-
bolic 3-manifold H3/Γ, or in terms of its action by holomorphic automorphisms of Ĉ. If
Γ is not virtually abelian, it is called non-elementary. Henceforth, unless explicitly stated
otherwise, we shall assume that all Kleinian groups in this article are non-elementary. If
Γ can be conjugated by an element ofPSL2(C) to be contained in PSL2(R) it is referred

Research partly supported by a DST JC Bose Fellowship.
MSC2010: primary 57M50; secondary 30F40, 20F65, 20F67.
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to as a Fuchsian group1. If Γ is abstractly isomorphic to �1(S), the fundamental group of
a closed surface S , we shall refer to it as a surface Kleinian group.

In the 1960’s Ahlfors and Bers studied deformations of Fuchsian surface groups in
PSL2(C), giving rise to the theory of quasi-Fuchsian groups. Their techniques were
largely complex analytic in nature. In the 1970’s and 80’s, the field was revolutionized by
Thurston, who brought in a rich and varied set of techniques from three-dimensional hyper-
bolic geometry. A conjectural picture of the deep relationships between the analytic and
geometric points of view was outlined by Thurston in his visionary paper Thurston [1982].
Perhaps the most well-known problem (predating Thurston) in this line of study was the
Ahlfors’ measure zero conjecture, resolved in the last decade by Brock-Canary-Minsky
Brock, Canary, and Y. N. Minsky [2012]. Another (more topological) well-known prob-
lem that also predates Thurston asks if limit sets of Kleinian groups are locally connected.
This is the specific problem that will concern us here. We need to fix some terminol-
ogy and notation first. Identify the Riemann sphere Ĉ with the sphere at infinity S2 of
H3. Thus, S2 encodes the ‘ideal’ boundary of H3, consisting of asymptote classes of
geodesics. By adjoining S2 to H3, we obtain the closed 3-ball D3. The topology on S2

is the usual one induced by the round metric given by the angle subtended at the origin
0 2 D3. The geodesics turn out to be semicircles meeting the boundary S2 at right angles.

Definition 1.1. The limit set ΛΓ of the Kleinian group Γ is the collection of accumulation
points of a Γ-orbit Γ � z for some (any) z 2 Ĉ.

The limit set ΛΓ is independent of z and may be regarded as the locus of chaotic dy-
namics of Γ on Ĉ. For non-elementary Γ and any z 2 ΛΓ, Γ � z is dense in ΛΓ. Hence
ΛΓ is the smallest closed non-empty Γ�invariant subset of Ĉ. If we take z 2 H3 instead,
then the collection of accumulation points of any Γ-orbit Γ � z � D3 is also ΛΓ.

Definition 1.2. The complement of the limit set ĈnΛΓ is called the domain of discontinuity
ΩΓ of Γ.

The Kleinian group Γ acts freely and properly discontinuously on ΩΓ and ΩΓ/Γ is a
(possibly disconnected) Riemann surface.

1.1 Fuchsian and Quasi-Fuchsian Groups. We first give an explicit example of a
Fuchsian group.
An example of a Fuchsian group: Consider the standard identification space description
of the genus two orientable surfaceΣ2 as an octagon with edge labels a1, b1, a�1

1 , b�1
1 , a2,

b2; a
�1
2 ; b�1

2 . A hyperbolic metric onΣ2 is one where each point has a small neighborhood
isometric to a small disk in H2. By the Poincaré polygon theorem, it suffices to find a

1Both Fuchsian and Kleinian groups were discovered by Poincaré.
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regular hyperbolic octagon (with all sides equal and all angles equal) with each interior
angle equal to 2�

8
. Now, the infinitesimal regular octagon at the tangent space to the origin

has interior angles equal to 3�
4
. Also the ideal regular octagon in H2 has all interior angles

zero. See figure below.

By the Intermediate Value Theorem, there exists an intermediate regular octagon with
all interior angles equal to �

4
. The group G that results from side-pairing transformations

corresponds to a Fuchsian group, or equivalently, a discrete faithful representation � of
�1(Σ2) into PSL2(R). Equivalently we may regard � as a representation of �1(Σ2) into
PSL2(C) with image that can be conjugated to lie in PSL2(R). Alternately, �(�1(Σ2))

preserves a totally geodesic plane in H3. The limit set of G = �(�1(Σ2)) is then a round
circle.

Quasi-Fuchsian groups: If we require the limit set to be only topologically a circle, i.e.
a Jordan curve, then we obtain a more general class of Kleinian groups:

Definition 1.3. Let � : �1(S) ! PSL2(C) be a discrete faithful representation such that
the limit set ofG = �(�1(S)) is a Jordan curve in S2. ThenG is said to be quasi-Fuchsian.
The collection of conjugacy classes of quasi-Fuchsian with the complex analytic structure
inherited from PSL2(C) is denoted asQF (S).

The domain of discontinuity Ω of a quasi-Fuchsian G consists of two open invariant
topological disksΩ1;Ω2 in Ĉ. Hence the quotientΩ/G is the disjoint unionΩ1/GtΩ2/G

and we have a map � : QF (S) ! Teich(S) � Teich(S), where Teich(S) denotes the
Teichmüller space of S–the space of marked hyperbolic (or complex) structures on S . The
Bers simultaneous Uniformization Theorem asserts:

Theorem 1.4. � : QF (S) ! Teich(S) � Teich(S) is bi-holomorphic.
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Thus, given any two conformal structures T1; T2 on a surface, there is a unique discrete
quasi-Fuchsian G (up to conjugacy) whose limit set ΛG is topologically a circle, and the
quotient of whose domain of discontinuity is T1 t T2. See figure below Kabaya [2016],
where the inside and the outside of the Jordan curve correspond to Ω1;Ω2.

1.2 Degenerate groups and the Ending Lamination Theorem. Quasi-Fuchsian were
studied by Ahlfors and Bers analytically as deformations of Fuchsian groups. Thurston
[1980] introduced a new set of geometric techniques in the study.

Definition 1.5. The convex hull CHG of ΛG is the smallest non-empty closed convex
subset of H3 invariant under G.

LetM = H3/G. The quotient of CHG by G is called the convex core CC (M ) ofM .

The convex hull CHG can be constructed by joining all distinct pairs of points on ΛG

by bi-infinite geodesics, iterating this construction and finally taking the closure. It can
also be described as the closure of the union of all ideal tetrahedra, whose vertices lie in
ΛG . The convex core CC (M ) is homeomorphic to S � [0; 1].

The distance between the boundary components S �f0g and S �f1g in the convex core
CC (M ), measured with respect to the hyperbolic metric, is a crude geometric measure
of the complexity of the quasi Fuchsian group G. We shall call it the thickness tG of
CC (M ), or of the quasi Fuchsian groupG. (We note here parenthetically that the notions
of convex hull CHG and convex core CC (M ) go through for any Kleinian group G and
the associated complete hyperbolic manifold H3/G.) For quasi-Fuchsian groups, we ask:

Question 1.6. What happens as thickness tends to infinity?

To address this question more precisely we need to introduce a topology on the space
of representations.



CANNON–THURSTON MAPS 907

Definition 1.7. A sequence of representations �n : �1(S) ! PSL2(C) is said to con-
verge algebraically to �1 : �1(S) ! PSL2(C) if for all g 2 �1(S), �n(g) ! �1(g)

in PSL2(C). The collection of conjugacy classes of discrete faithful representations of
�1(S) into PSL2(C) equipped with the algebraic topology is denoted as AH (S).

It is not even clear a priori that, as tG tends to infinity, limits exist inAH (S). However,
Thurston’s Double Limit Theorem Thurston [1986], M. Kapovich [2001], and Otal [2001]
guarantees that if we have a sequence Gn with thickness tGn

tending to infinity, subse-
quential limits (in the space of discrete faithful representations with a suitable topology,
see Definition 5.7) do in fact exist.

Geodesic Laminations:

Definition 1.8. A geodesic lamination on a hyperbolic surface is a foliation of a closed
subset with geodesics, i.e. it is a closed set given as a disjoint union of geodesics (closed
or bi-infinite).

A geodesic lamination on a surface may further be equipped with a transverse (non-
negative) measure to obtain a measured lamination. The space of measured (geodesic)
laminations on S is then a positive cone in a vector space and is denoted as ML(S). It
can be projectivized to obtain the space of projectivized measured laminations PML(S).
It was shown by Thurston Fathi, Laudenbach, and Poenaru [1979] that PML(S) is home-
omorphic to a sphere and can be adjoined to Teich(S) compactifying it to a closed ball.

Definition 1.9. Thurston [1980, Definition 8.8.1] A pleated surface in a hyperbolic three-
manifold N is a complete hyperbolic surface S of finite area, together with an isometric
map f : S ! N such that every x 2 S is in the interior of some geodesic segment (in
S ) which is mapped by f to a geodesic segment (in N ). Also, f must take every cusp
(corresponding to a maximal parabolic subgroup) of S to a cusp of N

The pleating locus of the pleated surface f : S ! M is the set 
 � S consisting of
those points in the pleated surface which are in the interior of unique geodesic segments
mapped to geodesic segments.

Proposition 1.10. Thurston [ibid., Proposition 8.8.2] The pleating locus 
 is a geodesic
lamination on S . The map f is totally geodesic in the complement of 
 .

Thurston further shows Thurston [ibid., Ch. 8] that the boundary components of the
convex core CC (M ) are pleated surfaces.

As thickness (Question 1.6) tends to infinity, the convex core may converge (up to ex-
tracting subsequences) to one of two kinds of convex manifolds CC (M1) (see schematic
diagram below):
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1. CC (M1) is homeomorphic to S�[0;1). Here S�f0g is the single boundary com-
ponent of the convex core CC (M1). Such a manifold is called simply degenerate
and the corresponding Kleinian group a simply degenerate surface Kleinian group.
In this case the limit set ΛG is a dendrite (topologically a tree) and the domain of
discontinuity ΩΓ is homeomorphic to an open disk with ΩΓ/G a Riemann surface
homeomorphic to S � f0g. The end ofM1 facing ΩΓ/G is called a geometrically
finite end.

2. CC (M1) is homeomorphic to S � (�1;1). Such a manifold is called dou-
bly degenerate and the corresponding Kleinian group a doubly degenerate surface
Kleinian group. In this case the limit set ΛG is all of S2 and the domain of discon-
tinuity ΩΓ is empty.

The ends (one for simply degenerate and two for doubly degenerate) of CC (M1) are
called the degenerate end(s) ofM . Thurston [1980] and Bonahon [1986] show that any
such degenerate end E is geometrically tame, i.e. there is a sequence of simple closed
curves f�ng on S such that their geodesic realizations in CC (M1) exit E as n tends to
1. Further Thurston [1980, Ch. 9], the limit of any such exiting sequence (in PML(S);
the topology on PML(S) is quite close to the Hausdorff topology on S ) is a unique lami-
nation � called the ending lamination of E. Thus a doubly degenerate manifold has two
ending laminations, one for each degenerate end, while a simply degenerate manifold has
a geometrically finite end corresponding to a Riemann surface ΩΓ/G(2 Teich(S)) at
infinity and a degenerate end corresponding to an ending lamination.

These two pieces of information–Riemann surfaces at infinity and ending laminations–
give the end-invariants ofM . The ending lamination for a geometrically infinite end does
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not depend on the reference hyperbolic structure on S . It may be regarded as a purely
topological piece of data associated to such an end.

We may thus think of the ending lamination as the analog, in the case of geometrically
infinite ends, of the conformal structure at infinity for a geometrically infinite end.

The Ending Lamination Theorem of Brock-Canary-Minsky then takes the place of the
Bers’ simultaneous uniformization theorem and asserts:

Theorem 1.11. Y. Minsky [2010] and Brock, Canary, and Y. N. Minsky [2012] Let M
be a simply or doubly degenerate manifold. ThenM is determined up to isometry by its
end-invariants.

Thus, the Ending Lamination Theorem justifies the following and may be considered
an analog of Mostow Rigidity for infinite covolume Kleinian groups.

Slogan 1.12. Topology implies Geometry.

In order to complete the picture of the Ahlfors-Bers theory to study degenerate surface
Kleinian groupsG in terms of the dynamics ofG on the Riemann sphere Ĉ, the following
issue remains to be addressed:

Question 1.13. Can the data of the ending lamination(s) be extracted from the dynamics
of G on Ĉ?

In more informal terms,

Question 1.14. Is the geometric object ”at infinity” of the quotient manifold H3/Γ (i.e.
the ending lamination) determined by the dynamics of Γ at infinity (i.e. the action of Γ on
S2)?

Wewill make these questions precise below. The attempt tomakeQuestion 1.13 precise
brings us to the following.

2 Cannon-Thurston maps

2.1 The main theorem for closed surface Kleinian groups. In Thurston [1982, Prob-
lem 14], Thurston raised the following question, which is at the heart of the work we
discuss here:

Question 2.1. Suppose Γ has the property that (H3 [ ΩΓ)/Γ is compact. Then is it true
that the limit set of any other Kleinian group Γ0 isomorphic to Γ is the continuous image
of the limit set of Γ, by a continuous map taking the fixed points of an(y) element 
 to the
fixed points of the corresponding element 
 0?



910 MAHAN MJ

A special case of Question 2.1 was answered affirmatively in seminal work of Cannon
and Thurston [1985, 2007]:

Theorem 2.2. Cannon and Thurston [2007] Let M be a closed hyperbolic 3-manifold
fibering over the circle with fiber Σ. Let eΣ and fM denote the universal covers of F
and M respectively. After identifying eΣ (resp. fM ) with H2 (resp. H3), we obtain the
compactification D2 = H2 [ S1 (resp. D3 = H3 [ S2) by attaching the circle S1

(resp. the sphere S2) at infinity. Let i : Σ ! M denote the inclusion map of the fiber
andei : eΣ ! fM the lift to the universal cover. Thenei extends to a continuous map
î : D2 ! D3.

An amazing implication of Theorem 2.2 is that eΣ is an embedded disk in (the ball
model) of H3 such that its boundary on the sphere S2 is space-filling! See the following
diagram by Thurston Thurston [1982, Figure 10] that illustrates ‘a pattern of identification
of a circle, here represented as the equator, whose quotient is topologically a sphere. This
defines, topologically a sphere-filling curve.’

A version of Question 2.1 was raised by Cannon and Thurston in the context of closed
surface Kleinian groups:

Question 2.3. Cannon and Thurston [2007, Section 6] Suppose that a closed surface
group �1(S) acts freely and properly discontinuously on H3 by isometries such that the
quotient manifold has no accidental parabolics (here this just means that the image of
�1(S) in PSL2(C) has no parabolics). Does the inclusion ĩ : eS ! H3 extend continu-
ously to the boundary?

Continuous boundary extensions as in Question 2.3, if they exist, are called Cannon-
Thurston maps. Question 2.3 is intimately related to a much older question c.f. Abikoff
[1976] asking if limit sets are locally connected:

Question 2.4. Let Γ be a finitely generated Kleinian group such that the limit set ΛΓ is
connected. Is ΛΓ locally connected?
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It is shown in Cannon and Thurston [2007] that for simply degenerate surface Kleinian
groups, Questions 2.3 and 2.4 are equivalent, via the Caratheodory extension Theorem.

The following Theorem of Mj [2014a] Mj [2014b] answers questions 2.3 and 2.4 affir-
matively:

Theorem 2.5. Let �(�1(S)) = G � PSL2(C) be a simply or doubly degenerate (closed)
surface Kleinian group. Let M = H3/G and i : S ! M be an embedding inducing a
homotopy equivalence. Letei : eS ! H3 denote a lift of i between universal covers. Let
D2;D3 denote the compactifications. Then a Cannon-Thurston map î : D2 ! D3 exists.

Let @i : S1 ! S2 denote the restriction of î to the ideal boundaries. Then for p ¤ q,
@i(p) = @i(q) if and only if p; q are the ideal end-points of a leaf of an ending lamination
or ideal end-points of a complementary ideal polygon of an ending lamination.

The second part of Theorem 2.5 shows that the data of the ending lamination can be
recovered from the Cannon-Thurston map and so we have an affirmative answer to Ques-
tion 1.13. In conjunction with the Ending Lamination Theorem 1.11, this establishes the
slogan:

Slogan 2.6. Dynamics on the limit set determines geometry in the interior.

A number of authors have contributed to the resolution of the above questions. Initially
it was believed Abikoff [1976] that Question 2.4 had a negative answer for simply degen-
erate Kleinian groups. Floyd [1980] proved the corresponding theorem for geometrically
finite Kleinian groups. Then in the early 80’s Cannon and Thurston [1985] proved The-
orem 2.2. This was extended by Y. N. Minsky [1994], Klarreich [1999], Alperin, Dicks,
and Porti [1999], B. H. Bowditch [2013] and B. H. Bowditch [2007], McMullen [2001],
Miyachi [2002] and the author 1998; 2010; 2009-2010; 2016 for various special cases.
The general surface group case was accomplished in Mj [2014a] and the general Kleinian
group case in Mj [2017a].

2.2 Geometric Group Theory. We now turn to a generalization of Question 2.3 to a
far more general context. After the introduction of hyperbolic metric spaces by Gromov
[1987], Question 2.3 was extended by the author Mitra [1997b], Bestvina [2004], and
Mitra [1998c] to the context of a hyperbolic groupH acting freely and properly discontin-
uously by isometries on a hyperbolic metric space X . Any hyperbolic X has a (Gromov)
boundary @X given by asymptote-classes of geodesics. Adjoining @X to X we get the
Gromov compactification bX .

There is a natural map i : ΓH ! X , sending vertices of ΓH to theH�orbit of a point
x 2 X , and connecting images of adjacent vertices by geodesic segments inX . LetbΓH , bX
denote the Gromov compactification of ΓH , X respectively. The analog of Question 2.3
is the following:
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Question 2.7. Does i : ΓH ! X extend continuously to a map î : bΓH ! bX?

Continuous extensions as in Question 2.7 are also referred to asCannon-Thurston maps
and make sense when ΓH is replaced by an arbitrary hyperbolic metric space Y . A simple
and basic criterion for the existence of Cannon-Thurston maps was established in Mitra
[1998a,b]:

Lemma2.8. Let i : (Y; y) ! (X; x) be a propermap between (based)Gromov-hyperbolic
spaces. A continuous extension (also called a Cannon-Thurston map) î : bY ! bX exists
if and only if the following holds:
There exists a non-negative proper function M : N ! N, such that if � = [a; b]Y is a
geodesic lying outside anN -ball around y, then any geodesic segment [i(a); i(b)]X inX
joining i(a); i(b) lies outside theM (N )-ball around x = i(y).

In the generality above Question 2.7 turns out to have a negative answer. An explicit
counterexample to Question 2.7 was recently found by Baker and T. R. Riley [2013] in
the context of small cancellation theory. The counterexample uses Lemma 2.8 to rule
out the existence of Cannon-Thurston maps. Further, Matsuda and Oguni [2014] further
developed Baker and Riley’s counterexample to show that given a(ny) non-elementary
hyperbolic group H , there exists hyperbolic group G such that H � G and there is no
Cannon-Thurston map for the inclusion. We shall furnish positive answers to Question 2.7
in a number of special cases in Section 6.

3 Closed 3-manifolds

3.1 3-manifolds fibering over the circle. We start by giving a sketch of the proof of
Theorem 2.2, The proof is coarse-geometric in nature and follows Mitra [1998a,b]. We
recall a couple of basic Lemmata we shall be needing from Mitra [1998b]. The follow-
ing says that nearest point projection onto a geodesic in a hyperbolic space is coarsely
Lipschitz.

Lemma 3.1. Let (X; d ) be a ı-hyperbolic metric space. Then there exists a constant
C � 1 such that the following holds:
Let � � X be a geodesic segment and let Π : X ! � be a nearest point projection. Then
d (Π(x);Π(y)) � Cd (x; y) for all x; y 2 X .

The next Lemma says that nearest point projections and quasi-isometries almost com-
mute.

Lemma 3.2. Let (X; d ) be a ı-hyperbolic metric space. Given (K; �), there existsC such
that the following holds:
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Let � = [a; b] be a geodesic segment in X . Let p 2 X be arbitrary and let q be a nearest
point projection of p onto �. Let � be a (K; �)�quasi-isometry from X to itself and let
Φ(�) = [�(a); �(b)] be a geodesic segment in X joining �(a); �(b). Let r be a nearest
point projection of �(p) onto Φ(�). Then d (r; �(q)) � C .

Sketch of Proof: The proof of Lemma 3.2 follows from the fact that a geodesic tripod T
(built from [a; b] and [p; q]) is quasiconvex in hyperbolic space and that a quasi-isometric
image �(T ) of T lies close to a geodesic tripod T 0 built from [�(a); �(b)] and [�(p); r ].
Hence the image �(q) of the centroid q of T lies close to the centroid r of T 0. 2

3.2 The key tool: hyperbolic ladder. The key idea behind the proof of Theorem 2.2
and its generalizations in Mitra [1998a,b] is the construction of a hyperbolic ladder L� �fM for any geodesic in eΣ. The universal cover fM fibers over R with fibers eΣ. Since the
context is geometric group theory, we discretize this as follows. Replace eΣ and fM by
quasi-isometric models in the form of Cayley graphs Γ�1(Σ) and Γ�1(M ) respectively. Let
us denote Γ�1(Σ) by Y and Γ�1(M ) byX . The projection of fM to the base R is discretized
accordingly giving a model that can be thought of as (and is quasi-isometric to) a tree T
of spaces, where

1. T is the simplicial tree underlying R with vertices at Z.

2. All the vertex and edge spaces are (intrinsically) isometric to Y .

3. The edge space to vertex space inclusions are qi-embeddings.

We summarize this by saying that X is a tree T of spaces satisfying the qi-embedded
condition Bestvina and Feighn [1992].

Given a geodesic segment [a; b] = � = �0 � Y , we now sketch the promised con-
struction of the ladder L� � X containing �. Index the vertices by n 2 Z. Since the edge-
to-vertex space inclusions are quasi-isometries, this induces a quasi-isometry �n from the
vertex space Yn to the vertex space Yn+1 for n � 0. A similar quasi-isometry ��n exists
from Y�n to the vertex space Y�(n+1). These quasi-isometries are defined on the vertex
sets of Yn, n 2 Z. �n induces a map Φn from geodesic segments in Yn to geodesic seg-
ments in Yn+1 for n � 0 by sending a geodesic in Yn joining a; b to a geodesic in Yn+1

joining �n(a); �n(b). Similarly, for n � 0. Inductively define:

• �j+1 = Φj (�j ) for j � 0,

• ��j �1 = Φ�j (��j ) for j � 0,

• L� =
S

j �j .
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L� turns out to be quasiconvex in X . To prove this, we construct a coarsely Lipschitz
retraction Π� :

S
j Yj ! L� as follows.

On Yj define �j (y) to be a nearest-point projection of y onto �j and define

Π�(y) = �j (y); for y 2 Yj :

The following theorem asserts that Π� is coarsely Lipschitz.

Theorem 3.3. Mitra [1998a,b] and Mj [2010] There exists C � 1 such that for any
geodesic � � Y ,

dX (Π�(x);Π�(y)) � CdX (x; y)

for x; y 2
S

i Yi .

Sketch of Proof:
The proof requires only the hyperbolicity of Y , but not that of X . It suffices to show that
for dX (x; y) = 1, dX (Π�(x);Π�(y)) � C . Thus x; y may be thought of as

1. either lying in the same Yj . This case follows directly from Lemma 3.1.

2. or lying vertically one just above the other. Then (up to a bounded amount of error),
we can assume without loss of generality, that y = �j (x). This case now follows
from Lemma 3.2.

Since a coarse Lipschitz retract of a hyperbolic metric space is quasiconvex, we imme-
diately have:

Corollary 3.4. If (X; dX ) is hyperbolic, there exists C � 1 such that for any �, L� is
C�quasiconvex.

Note here that we have not used any feature of Y except its hyperbolicity. In particular,
we do not need the specific condition that Y = eΣ. We are now in a position to prove a
generalization of Theorem 2.2.

Theorem 3.5. Mj [2010] Let (X; d ) be a hyperbolic tree (T ) of hyperbolic metric spaces
satisfying the qi-embedded condition, where T is R or [0;1) with vertex and edge sets
Yj as above, j 2 Z. Assume (as above) that the edge-to-vertex inclusions are quasi-
isometries. For i : Y0 ! X there is a Cannon-Thurston map î : bY0 ! bX .

Proof. Fix a basepoint y0 2 Y0. By Lemma 2.8 and quasiconvexity of L� (Corollary 3.4),
it suffices to show that for allM � 0 there exists N � 0 such that if a geodesic segment
� lies outside the N -ball about y0 2 Y0, then L� lies outside theM -ball around y0 2 X .
Equivalently, we need a proper functionM (N ) : N ! N.
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Since Y0 is properly embedded in X , there exists a proper function g : N ! N such
that � lies outside the g(N )-ball about y0 2 X .

Let p be any point on L�. Then p = pj 2 Yj for some j . Assume without loss of
generality that j � 0. It is not hard to see that there exists C0, depending only on X ,
such that for any such pj , there exists pj �1 2 Yj �1 with d (pj ; pj �1) � C0. It follows
inductively that there exists y 2 � = �0 such that dX (y; p) � C0j . Hence, by the
triangle inequality, dX (y0; p) � g(N ) � C0j .

Next, looking at the ‘vertical direction’, dX (y0; p) � j and hence

dX (y0; p) � max(g(N ) � C0j ; j ) �
g(N )

A+ 1
:

Defining M (N ) = g(N )
A+1

, we see that M (N ) is a proper function of N and we are
done.

3.3 Quasiconvexity. The structure of Cannon-Thurston maps in Section 3.1 can be
used to establish quasiconvexity of certain subgroups of �1(M ). Let H � �1(Σ) be a
finitely generated infinite index subgroup of the fiber group. Then, due to the LERF prop-
erty for surface subgroups, a Theorem of Scott P. Scott [1978], there is a finite sheeted
cover whereH is geometric, i.e. it is carried by a proper embedded subsurface of (a finite
sheeted cover of) Σ. But such a proper subsurface cannot carry a leaf of the stable or
unstable foliations Fs or Fu. This gives us the following Theorem of Scott and Swarup:

Theorem 3.6. G. P. Scott and Swarup [1990] LetM be a closed hyperbolic 3-manifold
fibering over the circle with fiber Σ. LetH � �1(Σ) be a finitely generated infinite index
subgroup of the fiber group in �1(M ). ThenH is quasiconvex in �1(M ).

Theorem 3.6 has been generalized considerably to the context of convex cocompact
subgroups of the mapping class group and Out(Fn) by a number of authors Dowdall,
Kent, and C. J. Leininger [2014], Dowdall, I. Kapovich, and Taylor [2016], Dowdall and
Taylor [2018, 2017], and Mj and Rafi [2015].

4 Kleinian surface groups: Model Geometries

In this section we shall describe a sequence of models for degenerate ends of 3-manifolds
following Y. N. Minsky [2001, 1994] and Mj [2010, 2009-2010, 2016] and Y. Minsky
[2010], Brock, Canary, and Y. N. Minsky [2012], and Mj [2014a] and indicate how to gen-
eralize the ladder construction of Section 3.2 incorporating electric geometry Farb [1998].
LetX be a hyperbolic metric space, e.g.H3. LetHX be a collection of disjoint convex sub-
sets. Roughly speaking, electrification equips each element of HX with the zero metric,
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while preserving themetric onXn(
S

H2HX
H ). The resulting electrified spaceE(X;HX )

is still Gromov hyperbolic under extremely mild conditions and hyperbolic geodesics in
X can be recovered from electric geodesics in the electrified space E(X;HX ). This will
allow us to establish the existence of Cannon-Thurston maps. We shall focus on closed
surfaces and follow the summary in Lecuire and Mj [2016] for the exposition.

The topology of each building block is simple: it is homeomorphic to S � [0; 1], where
S is a closed surface of genus greater than one. Geometrically, the top and bottom bound-
ary components in the first three model geometries are uniformly bi-Lipschitz to a fixed
hyperbolic structure on S . Assume therefore that S is equipped with such a fixed hyper-
bolic structure. We do so henceforth. The different types of geometries of the blocks make
for different model geometries of ends.

Definition 4.1. A modelEm is said to be built up of blocks of some prescribed geometries
glued end to end, if

1. Em is homeomorphic to S � [0;1)

2. There exists L � 1 such that S � [i; i + 1] is L�bi-Lipschitz to a block of one of
the three prescribed geometries: bounded, i-bounded or amalgamated (see below).

S � [i; i + 1] will be called the (i + 1)th block of the model Em.
The thickness of the (i + 1)th block is the length of the shortest path between S � fig

and S � fi + 1g in S � [i; i + 1](� Em).

4.1 Bounded geometry. Y. N. Minsky [2001, 1994] calls an end E of a hyperbolic 3-
manifold to be of bounded geometry if there are no arbitrarily short closed geodesics in
E.

Definition 4.2. Let B0 = S � [0; 1] be given the product metric. If B is L�bi-Lipschitz
homeomorphic to B0, it is called an L�thick block.

An end E is said to have a model of bounded geometry if there exists L such that E is
bi-Lipschitz homeomorphic to a model manifold Em consisting of gluing L�thick blocks
end-to-end.

It follows from work of of Minsky Y. N. Minsky [1993] that ifE is of bounded geome-
try, it has a model of bounded geometry. The existence of Cannon-Thurston maps in this
setup is then a replica of the proof of Theorem 3.5.

4.2 i-bounded Geometry.

Definition 4.3. Mj [2009-2010] An end E of a hyperbolic 3-manifoldM has i-bounded
geometry if the boundary torus of every Margulis tube in E has bounded diameter.
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We give an alternate description. Fix a closed hyperbolic surface S . Let C be a finite
collection of (not necessarily disjoint) simple closed geodesics on S . Let N�(�i ) denote
an � neighborhood of �i , �i 2 C; were � is small enough to ensure that lifts of N�(�i ) toeS are disjoint.

Definition 4.4. Let I = [0; 3]. Equip S � I with the product metric. Let Bc = (S � I �

[jN�(�j ) � [1; 2]), equipped with the induced path-metric. Here f�j g is a subcollection
of C consisting of disjoint curves. Perform Dehn filling on some (1; n) curve on each
resultant torus component of the boundary of Bc (the integers n are quite arbitrary and
may vary: we omit subscripts for expository ease). We call n the twist coefficient. Foliate
the relevant torus boundary component of Bc by translates of (1; n) curves. Glue in a
solid torus Θ, which we refer to as a Margulis tube, with a hyperbolic metric foliated by
totally geodesic disks bounding the (1; n) curves.

The resulting copy of S � I thus obtained, equipped with the above metric is called a
thin block.

Definition 4.5. Amodel manifoldEm of i-bounded geometry is built out of gluingL�thick
and thin blocks end-to-end (for some L) (see schematic diagram below where the black
squares indicate Margulis tubes and the horizontal rectangles indicate the blocks).

It follows from work in Mj [ibid.] that

Proposition 4.6. An end E of a hyperbolic 3-manifoldM has i-bounded geometry if and
only if it is bi-Lipschitz homeomorphic to a model manifold Em of i-bounded geometry.

We give a brief indication of the construction of L� and the proof of the existence
of Cannon-Thurston maps in this case. First electrify all the Margulis tubes, i.e. equip
them with a zero metric (see Farb [1998] for details on relative hyperbolicity and electric
geometry). This ensures that in the resulting electric geometry, each block is of bounded
geometry. More precisely, there is a (metric) product structure on S � [0; 3] such that each
fxg � [0; 3] has uniformly bounded length in the electric metric.
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Further, since the curves in C are electrified in a block, Dehn twists are isometries from
S � f1g to S � f2g in a thin block. This allows the construction of L� to go through as
before and ensures that it is quasiconvex in the resulting electric metric.

Finally given an electric geodesic lying outside large balls modulo Margulis tubes one
can recover a genuine hyperbolic geodesic tracking it outside Margulis tubes. A relative
version of the criterion of Lemma 2.8 can now be used to prove the existence of Cannon-
Thurston maps.

4.3 Amalgamation Geometry. Again, as in Definition 4.4, start with a fixed closed
hyperbolic surface S , a collection of simple closed curves C and set I = [0; 3]. Perform
Dehn surgeries on the Margulis tubes corresponding to C as before. LetK = S � [1; 2] �

S� [0; 3] and letKc = (S�I �[iN�(�i )� [1; 2]). Instead of fixing the product metric on
the complement Kc of Margulis tubes in K, allow these complementary components to
have arbitrary geometry subject only to the restriction that the geometries of S�f1; 2g are
fixed. Equip S � [0; 1] and S � [2; 3] with the product metrics. The resulting block is said
to be a block of amalgamation geometry. After lifting to the universal cover, complements
of Margulis tubes in the lifts eS � [1; 2] are termed amalgamation components.

Definition 4.7. An end E of a hyperbolic 3-manifoldM has amalgamated geometry if

1. it is bi-Lipschitz homeomorphic to amodel manifoldEm consisting of gluingL�thick
and amalgamation geometry blocks end-to-end (for some L).

2. Amalgamation components are (uniformly) quasiconvex in eEm.

To construct the ladder L� we electrify amalgamation components as well as Margulis
tubes. This ensures that in the electric metric,

1. Each amalgamation block has bounded geometry

2. The mapping class element taking S � f1g to S � f2g induces an isometry of the
electrified metrics.

Quasiconvexity of L� in the electric metric now follows as before. To recover the data
of hyperbolic geodesics from quasigeodesics lying close to L�, we use (uniform) quasi-
convexity of amalgamation components and existence of Cannon-Thurston maps follows.

4.4 Split Geometry. We need now to relax the assumption that the boundary compo-
nents of model blocks are of (uniformly) bounded geometry. Roughly speaking, split
geometry is a generalization of amalgamation geometry where

1. A Margulis tube is allowed to travel through a uniformly bounded number of con-
tiguous blocks and split them.
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2. The complementary pieces, now called split components, are quasiconvex in a some-
what weaker sense (see Definition 4.8 below).

Each split component is allowed to contain Margulis tubes, called hanging tubes that
do not go all the way across from the top to the bottom, i.e. they do not split bothΣs

i ;Σ
s
i+1.

A split component Bs � B = S � I is topologically a product S s � I for some,
necessarily connected S s(� S). However, the upper and lower boundaries of Bs need
only be be split subsurfaces of S s to allow for hanging tubes starting or ending (but not
both) within the split block.

Split Block with hanging tubes

An end E of a hyperbolic 3-manifold M has weak split geometry if it is bi-Lipschitz
homeomorphic to a model manifold Em consisting of gluing L�thick and split blocks as
above end-to-end (for someL). Electrifying split components as in Section 4.3, we obtain
a new electric metric called the graph metric dG on E.

Definition 4.8. Amodel of weak split geometry is said to be of split geometry if the convex
hull of each split component has uniformly bounded dG�diameter.

5 Cannon-Thurston Maps for Kleinian groups and Applications

5.1 Cannon-Thurston maps for degenerate manifolds. Let M be a hyperbolic 3-
manifold homotopy equivalent to a closed hyperbolic surfaceS . Once we establish thatM
has split geometry, the proof proceeds as in Section 4.3 by electrifying split components,
constructing a hyperbolic ladder L� and finally recovering a hyperbolic geodesic from an
electric one. We shall therefore dwell in this subsection on showing that any degenerate
end has split geometry. We shall do this under two simplifying assumptions, directing the
reader to Mj [2014a] (especially the Introduction) for a more detailed road-map.

We borrow extensively from the hierarchy and model manifold terminology and tech-
nology of Masur and Y. N. Minsky [2000] and Y. Minsky [2010]. The model manifold
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of Y. Minsky [2010] and Brock, Canary, and Y. N. Minsky [2012] furnishes a resolu-
tion, or equivalently, a sequence fPmg of pants decompositions of S exiting E and hence
a hierarchy path. Let �m denote the simple multicurve on S constituting Pm. The Pm

in turn furnish split level surfaces fSmg exiting E: a split level surface Sm is a collec-
tion of (nearly) totally geodesic embeddings of the pairs of pants comprising Pm. Next,
corresponding to the hierarchy path f�mg, there is a tight geodesic in C(S) consisting of
the bottom geodesic f�i g of the hierarchy. We proceed to extract a subsequence of the
resolution �m using the bottom geodesic f�i g under two key simplifying assumptions:

1. For all i , the length of exactly one curve in �i is sufficiently small, less than the
Margulis constant in particular. Call it �i for convenience.

2. Let Si correspond to the first occurrence of the vertex �i in the resolution �m. As-
sume further that the Si ’s are actually split surfaces and not just split level surfaces,
i.e. they all have injectivity radius uniformly bounded below,

It follows that theMargulis tube �i splits bothSi andSi+1 and that the tubeTi is trapped
entirely between Si and Si+1. The product region Bi between Si and Si+1 is therefore a
split block for all i and Ti splits it. The model manifold thus obtained is one of weak split
geometry. In a sense, this is a case of ‘pure split geometry’, where all blocks have a split
geometry structure (no thick blocks). To prove that the model is indeed of split geometry,
it remains to establish the quasiconvexity condition of Definition 4.8.

Let K be a split component and eK an elevation to eE. Let v be a boundary short curve
for the split component and let Tv be the Margulis tube corresponding to v abutting K.
Denote the hyperbolic convex hull by CH (eK) and pass back to a quotient in M . A
crucial observation that is needed here is the fact that any pleated surface has bounded
dG�diameter. This is because thin parts of pleated surfaces lie inside Margulis tubes that
get electrified in the graph metric. It therefore suffices to show that any point in CH (K)

lies close to a pleated surface passing near the fixed tube Tv . This last condition follows
from the Brock-Bromberg drilling theorem Brock and Bromberg [2004] and the fact that
the convex core of a quasi-Fuchsian group is filled by pleated surfaces Fan [1997]. This
completes our sketch of a proof of the following main theorem of Mj [2014a]:
Theorem 2.5: Let � : �1(S) ! PSL2(C) be a simply or doubly degenerate (closed)
surface Kleinian group. Then a Cannon-Thurston map exists.

It follows that the limit set of �(�1(S)) is a continuous image of S1 and is therefore
locally connected. As a first application of Theorem 2.5, we shall use the following Theo-
rem of Anderson and Maskit [1996] to prove that connected limit sets of Kleinian groups
without parabolics are locally connected.
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Theorem 5.1. Anderson and Maskit [ibid.] Let Γ be an analytically finite Kleinian group
with connected limit set. Then the limit set Λ(Γ) is locally connected if and only if ev-
ery simply degenerate surface subgroup of Γ without accidental parabolics has locally
connected limit set.

Combining the remark after Theorem 2.5 with Theorem 5.1, we immediately have the
following affirmative answer to Question 2.4.

Theorem 5.2. Let Γ be a finitely generated Kleinian group without parabolics and with
a connected limit set Λ. Then Λ is locally connected.

Theorem 2.5 can be extended to punctured surfaces Mj [2014a] and this allows Theo-
rem 5.2 to be generalized to arbitrary finitely generated Kleinian groups.

5.2 Finitely generated Kleinian groups. In Mj [2014b], we show that the point preim-
ages of the Cannon-Thurston map for a simply or doubly degenerate surface Kleinian
group given by Theorem 2.5 corresponds to end-points of leaves of ending laminations.
In particular, the ending lamination corresponding to a degenerate end can be recovered
from the Cannon-Thurston map. This was extended further in Das and Mj [2016] and Mj
[2017a] to obtain the following general version for finitely generated Kleinian groups.

Theorem 5.3. Mj [ibid.] Let G be a finitely generated Kleinian group. Let i : ΓG ! H3

be the natural identification of a Cayley graph ofG with the orbit of a point inH3. Further
suppose that each degenerate end ofH3/G can be equippedwith aMinskymodel Y.Minsky
[2010].2 Then i extends continuously to a Cannon-Thurston map î : cΓG ! D3, wherecΓG denotes the (relative) hyperbolic compactification of ΓG .

Let @i denote the restriction of î to the boundary @ΓG of ΓG . LetE be a degenerate end
of N h = H3/G and eE a lift of E to fN h and letMgf be an augmented Scott core of N h.
Then the ending laminationLE for the endE lifts to a lamination on eMgf \eE. Each such
lift L of the ending lamination of a degenerate end defines a relation RL on the (Gromov)
boundary @ eMgf (or equivalently, the relative hyperbolic boundary @rΓG of ΓG), given by
aRLb iff a; b are end-points of a leaf of L. Let fRi g be the entire collection of relations
on @ eMgf obtained this way. Let R be the transitive closure of the union

S
i Ri . Then

@i(a) = @i(b) iff aRb.

2This hypothesis is satisfied for all ends without parabolics as well as for ends incompressible away from
cusps - see Y. Minsky [2010] and Brock, Canary, and Y. N. Minsky [2012] and Mj [2017a, Appendix]. That
the hypothesis is satisfied in general would follow from unpublished work of B. H. Bowditch [2016] and B.
Bowditch [2005].



922 MAHAN MJ

5.3 Primitive Stable Representations. In Y. N. Minsky [2013] Minsky introduced an
open subset of the PSL2(C) character variety for a free group, properly containing the
Schottky representations, on which the action of the outer automorphism group is properly
discontinuous. He called these primitive stable representations. Let Fn be a free group
of rank n. An element of Fn is primitive if it is an element of a free generating set. Let
P = � � �www � � � be the set of bi-infinite words with w cyclically reduced primitive. A
representation � : Fn ! PSL2(C) is primitive stable if all elements of P are mapped to
uniform quasigeodesics in H3.

Minsky conjectured that primitive stable representations are characterized by the fea-
ture that every component of the ending lamination is blocking.

Using Theorem 5.3, Jeon and Kim [2010], and Jeon, Kim, Ohshika, and Lecuire [2014]
resolved this conjecture. We briefly sketch their argument for a degenerate free Kleinian
group without parabolics.

Let fD1; � � � ;Dng = D be a finite set of essential disks on a handlebodyH cuttingH
into a 3-ball. A free generating set of Fn is dual to D. For a lamination L, theWhitehead
graphW h(Λ;D) is defined as follows. Cut @H along @D to obtain a sphere with 2n holes,
labeled by D˙

i . The vertices of W h(L;D) are the boundary circles of @H , with an edge
whenever two circles are joined by an arc of L n D. For the ending lamination LE of a
degenerate free group without parabolics,W h(LE ;∆) is connected and has no cutpoints.

Let �E be the associated representation. If � is not primitive stable, then there exists a
sequence of primitive cyclically reduced elements wn such that �(w�

n) is not an n� quasi-
geodesic. After passing to a subsequence, wn and hence w�

n converges to a bi-infinite
geodesic w1 in the Cayley graph with two distinct end points w+; w� in the Gromov
boundary of Fn. The Cannon-Thurston map identifies w+; w�. Hence by Theorem 5.3
they are either the end points of a leaf of LE or ideal end-points of a complementary
ideal polygon of LE . It follows therefore that W h(w1;D) is connected and has no cut-
points. Since wn’s converge to w1, W h(wn;D) is connected and has no cutpoints for
large enough n. A Lemma due to Whitehead says that ifW h(wn;D) is connected and has
no cutpoints, then wn cannot be primitive, a contradiction.

5.4 Discreteness of Commensurators. In C. Leininger, Long, and Reid [2011] and Mj
[2011], Theorems 2.5 and 5.3 are used to prove that commensurators of finitely generated,
infinite covolume, Zariski dense Kleinian groups are discrete. The basic fact that goes into
the proof is that commensurators preserve the structure of point pre-images of Cannon-
Thurston maps. The point pre-image structure is known from Theorem 5.3.

5.5 Radial and horospherical limit sets.
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Definition 5.4. A point � 2 S2 is a radial or conical limit point of Kleinian group Γ, if for
any base-point o 2 fM and any geodesic 
� ending at � , there exist C � 0 and infinitely
many translates g:o 2 NC (
�), g 2 Γ.

A point � 2 S2 is a horospherical limit point of Kleinian group Γ, if for any base-point
o 2 fM and any horoball B� based at �, there exist infinitely many translates g:o 2 B� ,
g 2 Γ.

The collection of radial (resp. horospherical) limit points of Γ is called the radial (resp.
horospherical) limit set of Γ and is denoted by Λr (resp. Λh).

The multiple limit set Λm consists of those point of S2 that have more than one pre-
image under the Cannon-Thurston map.

Several authors M. Kapovich [1995], Gerasimov [2012], and Jeon, I. Kapovich, C.
Leininger, and Ohshika [2016] worked on the relationship between Λm and Λr . They
concluded that the conical limit set is strictly contained in the set of injective points of the
Cannon-Thurston map, i.e. Λr � Λc

m, but the inclusion is proper.
In Lecuire and Mj [2016], we showed:

Theorem 5.5. Λc
m = Λh.

5.6 Motions of limit sets. We discuss the following question in this section, which
paraphrases the second part of of Thurston [1982, Problem 14]. A detailed survey appears
in Mj [2017b].

Question 5.6. Let Gn be a sequence of Kleinian groups converging to a Kleinian group
G. Does the corresponding dynamics of Gn on the Riemann sphere S2 converge to the
dynamics of G on S2?

TomakeQuestion 5.6 precise, we need tomake sense of ‘convergence’ both for Kleinian
groups and for their dynamics on S2. There are three different notions of convergence for
Kleinian groups.

Definition 5.7. Let �i : H ! PSL2(C) be a sequence of Kleinian groups. We say that
that �i converges to �1 algebraically if for all h 2 H , �i (h) ! �1(h).

Let �j : H ! PSL2(C) be a sequence of discrete, faithful representations of a finitely
generated, torsion-free, nonabelian group H . If f�j (H )g converges as a sequence of
closed subsets of PSL2(C) to a torsion-free, nonabelian Kleinian group Γ, Γ is called
the geometric limit of the sequence.
Gi (= �i (H )) converges strongly to G(= �1(H )) if the convergence is both geomet-

ric and algebraic.

Question 5.6 then splits into the following three questions.
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Question 5.8. 1. If Gn ! G geometrically, then do the corresponding limit sets con-
verge in the Hausdorff topology on S2?

2. If Gn ! G strongly then do the corresponding Cannon-Thurston maps converge
uniformly?

3. If Gn ! G algebraically then do the corresponding Cannon-Thurston maps con-
verge pointwise?

We give the answers straight off and then proceed to elaborate.

Answers 5.9. 1. The answer to Question 5.8 (1) is Yes.

2. The answer to Question 5.8 (2) is Yes.

3. The answer to Question 5.8 (3) is No, in general.

The most general answer to Question 5.8 (1) is due to R. A. Evans [2000], R. Evans
[2004]:

Theorem 5.10. R. A. Evans [2000], R. Evans [2004] Let �n : H ! Gn be a sequence
of weakly type-preserving isomorphisms from a geometrically finite groupH to Kleinian
groups Gn with limit sets Λn, such that �n converges algebraically to �1 : H ! Ga

1

and geometrically to Gg
1. Let Λa and Λg denote the limit sets of Ga

1 and Gg
1. Then

Λn ! Λg in the Hausdorff metric. Further, the sequence converges strongly if and only
Λn ! Λa in the Hausdorff metric.

The answer to Question 5.8 (2) is due to the author and Series Mj and Series [2017] in
the case that H = �1(S) for a closed surface S of genus greater than one. This can be
generalized to arbitrary finitely generated Kleinian groups as in Mj [2017b]:

Theorem 5.11. LetH be a fixed group and �n(H ) = Γn be a sequence of geometrically
finite Kleinian groups converging strongly to a Kleinian group Γ. LetMn andM1 be the
corresponding hyperbolic manifolds. Let K be a fixed complex with fundamental group
H .

Consider embeddings �n : K ! Mn; n = 1; � � � ;1 such that the maps �n are ho-
motopic to each other by uniformly bounded homotopies (in the geometric limit). Then
Cannon-Thurston maps for e�n exist and converge uniformly to the Cannon-Thurston map
fore�1.

Finally we turn to Question 5.8 (3), which turns out to be the subtlest. In Mj and Series
[2013] we showed that the answer to Question 5.8 (3) is ‘Yes’ if the geometric limit is
geometrically finite. We illustrate this with a concrete example due to Kerckhoff and
Thurston Kerckhoff and Thurston [1990]
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Theorem 5.12. Fix a closed hyperbolic surface S and a simple closed geodesic � on it.
Let twi denote the automorphism of S given by an i -fold Dehn twist along � . Let Gi be
the quasi-Fuchsian group given by the simultaneous uniformization of (S; twi (S)). Let
G1 denote the geometric limit of theGi ’s. Let Si� denote the lower boundary component
of the convex core of Gi , i = 1; � � � ;1 (including 1). Let �i : S ! Si� be such
that if 0 2 H2 = eS denotes the origin of H2 then e�i (0) lies in a uniformly bounded
neighborhood of 0 2 H3 = fMi . We also assume (using the fact thatM1 is a geometric
limit ofMi ’s) that Si�’s converge geometrically to S1�. Then the Cannon-Thurston maps
for e�i converge pointwise, but not uniformly, on @H2 to the Cannon-Thurston map fore�1.

However, if the geometric limit is geometrically infinite, then the answer to Ques-
tion 5.8 (3) may be negative. We illustrate this with certain examples of geometric limits
constructed by Brock in Brock [2001].

Theorem 5.13. Mj and Series [2017] Fix a closed hyperbolic surface S and a separating
simple closed geodesic � on it, cutting S up into two pieces S� and S+. Let � denote an
automorphism of S such that �jS�

is the identity and �jS+
=  is a pseudo-Anosov of

S+ fixing the boundary. Let Gi be the quasi-Fuchsian group given by the simultaneous
uniformization of (S; �i (S)). Let G1 denote the geometric limit of the Gi ’s. Let Si0

denote the lower boundary component of the convex core of Gi , i = 1; � � � ;1 (including
1). Let �i : S ! Si0 be such that if 0 2 H2 = eS denotes the origin of H2 then e�i (0)

lies in a uniformly bounded neighborhood of 0 2 H3 = fMi . We also assume (using the
fact thatM1 is a geometric limit ofMi ’s) that Si0’s converge geometrically to S10.

Let Σ be a complete hyperbolic structure on S+ such that � is homotopic to a cusp
on Σ. Let L consist of pairs (��; �) of ideal endpoints (on S1

1) of stable leaves � of the
stable lamination of  acting on eΣ. Also let @eH denote the collection of ideal basepoints
of horodisks given by lifts (contained in eΣ) of the cusp in Σ corresponding to � . Let

Ξ = f� : There exists �� such that (��; �) 2 L; �� 2 @eHg:

Let @�i , i = 1 � � � ;1 denote the Cannon-Thurston maps for e�i . Then

1. @�i (�) does not converge to @�1(�) for � 2 Ξ.

2. @�i (�) converges to @�1(�) for � … Ξ.

In Mj and Ohshika [2017], we identify the exact criteria that lead to the discontinuity
phenomenon of Theorem 5.13.

6 Gromov-Hyperbolic groups

6.1 Applications and Generalizations.
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6.1.1 Normal subgroups and trees. The ladder construction of Section 3.2 has been
generalized considerably. We work in the context of an exact sequence 1 ! N ! G !

Q ! 1, with N hyperbolic and G finitely presented. We observe that for the proof of
Theorem 3.5 to go through it suffices to have a qi-section ofQ intoG to provide a ‘coarse
transversal’ to flow. Such a qi-section was shown to exist by Mosher [1996]. We then
obtain the following.

Theorem 6.1. Mitra [1998a] Let G be a hyperbolic group and let H be a hyperbolic
normal subgroup that is normal in G. Then the inclusion of Cayley graphs i : ΓH ! ΓG

gives a Cannon-Thurston map î : bΓH ! cΓG .

The ladder construction can also be generalized to the general framework of a tree of
hyperbolic metric spaces.

Theorem 6.2. Mitra [1998b] Let (X; d ) be a tree (T ) of hyperbolic metric spaces satisfy-
ing the qi-embedded condition (i.e. edge space to vertex space inclusions are qi-embeddings).
Let v be a vertex of T and (Xv; dv) be the vertex space corresponding to v. If X is hy-
perbolic then the inclusion i : Xv ! X gives a Cannon-Thurston map î : cXv ! bX .

Theorem 6.1 was generalized by the author and Sardar to a purely coarse geometric
context, where no group action is present. The relevant notion is that of a metric bundle
for which we refer the reader to Mj and Sardar [2012]. Roughly speaking, the data of a
metric bundle consists of vertex and edge spaces as in the case of a tree of spaces, with
two notable changes:

1. The base T is replaced by an arbitrary graph B .

2. All edge-space to vertex space maps are quasi-isometries rather than just quasi-
isometric embeddings.

With these modifications in place we have the following generalizations of Mosher’s
qi-section Lemma Mosher [1996] and Theorem 6.1:

Theorem 6.3. Mj and Sardar [2012] Suppose p : X ! B is a metric graph bundle
satisfying the following:

1. B is a Gromov hyperbolic graph.

2. Each fiber Fb , for b a vertex of B is ı-hyperbolic (for some ı > 0) with respect to
the path metric induced from X .

3. The barycenter maps @3Fb ! Fb , b 2 B , sending a triple of distinct points on the
boundary @Fb to their centroid, are (uniformly, independent of b) coarsely surjec-
tive.
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4. X is hyperbolic.

Then there is a qi-section B ! X . The inclusion map ib : Fb ! X gives a Cannon-
Thurston map î : cFb ! bX .

6.2 Point pre-images: Laminations. In Section 3.1, it was pointed out that the Cannon-
Thurston map î identifies p; q 2 S1 if and only if p; q are end-points of a leaf or ideal
end-points of a complementary ideal polygon of the stable or unstable lamination.

In Mitra [1997a] an algebraic theory of ending laminations was developed based on
Thurston’s theory Thurston [1980]. The theory was developed in the context of a normal
hyperbolic subgroup of a hyperbolic groupG and used to give an explicit structure for the
Cannon-Thurston map in Theorem 6.1.

Definition 6.4. Bestvina, Feighn, and Handel [1997], Coulbois, Hilion, and Lustig [2007,
2008a,b], I. Kapovich and Lustig [2010, 2015], and Mitra [1997a] An algebraic lamina-
tion for a hyperbolic groupH is anH -invariant, flip invariant, closed subsetL � @2H =

(@H�@H n∆)/ ∼, where (x; y) ∼ (y; x) denotes the flip and∆ the diagonal in @H�@H .

Let
1 ! H ! G ! Q ! 1

be an exact sequence of finitely presented groups with H , G hyperbolic. It follows by
work of Mosher [1996] that Q is hyperbolic. In Mitra [1997a], we construct algebraic
ending laminations naturally parametrized by points in the boundary @Q. We describe the
construction now.

Every element g 2 G gives an automorphism of H sending h to g�1hg for all h 2

H . Let �g : V(ΓH ) ! V(ΓH ) be the resulting bijection of the vertex set V(ΓH ) of
ΓH . This induces a map Φg sending an edge [a; b] � ΓH to a geodesic segment joining
�g(a); �g(b).

For some (any) z 2 @ΓQ we shall describe an algebraic ending lamination Λz . Fix
such a z and let

1. [1; z) � ΓQ be a geodesic ray starting at 1 and converging to z 2 @ΓQ.

2. � : Q ! G be a qi section.

3. zn be the vertex on [1; z) such that dQ(1; zn) = n.

4. gn = �(zn).

For h 2 H , let Sh
n be the H–invariant collection of all free homotopy representatives

(or equivalently, shortest representatives in the same conjugacy class) of �g�1
n

(h) in ΓH .
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Identifying equivalent geodesics in Sh
n one obtains a subset Sh

n of unordered pairs of points
inbΓH . The intersection with @2H of the union of all subsequential limits (in the Hausdorff
topology) of fSh

ng is denoted by Λh
z .

Definition 6.5. The set of algebraic ending laminations corresponding to z 2 @ΓQ is
given by

ΛEL(z) =
[

h2H
Λh

z :

Definition 6.6. The set Λ of all algebraic ending laminations is defined by

ΛEL =
[

z2@ΓQ

ΛEL(z):

The following was shown in Mitra [1997a]:

Theorem 6.7. The Cannon-Thurston map î of Theorem 6.1 identifies the end-points of
leaves of ΛEL. Conversely, if î(p) = î(q) for p ¤ q 2 @ΓH , then some bi-infinite
geodesic having p; q as its end-points is a leaf of ΛEL.

6.2.1 Finite-to-one. The classical Cannon-Thurston map of Theorem 2.2 is finite-to-
one. Swarup asked (cf. Bestvina’s Geometric Group Theory problem list Bestvina [2004,
Prolem 1.20]) if the Cannon-Thurstonmaps of Theorem 6.1 are also finite-to-one. Kapovich
and Lustig answered this in the affirmative in the following case.

Theorem 6.8. I. Kapovich and Lustig [2015] Let � 2 Out(FN ) be a fully irreducible
hyperbolic automorphism. LetG� = FN Ì� Z be the associated mapping torus group. Let
@i denote the Cannon-Thurston map of Theorem 6.1 in this case. Then for every z 2 @G� ,
the cardinality of (@i)�1(z) is at most 2N .

Bestvina, Feighn, and Handel [1997] define a closely related set ΛBFH of algebraic
laminations in the case covered by Theorem 6.8 using train-track representatives of free
group automorphisms. Any algebraic lamination L defines a relation RL on @FN by
aRLb if (a; b) 2 L. The transitive closure of L will be called its diagonal closure. In
I. Kapovich and Lustig [2015], Kapovich and Lustig further show that in the case covered
by Theorem 6.8, ΛEL precisely equals the diagonal closure of ΛBFH .

6.3 Relative hyperbolicity. The notion of a Cannon-Thurston map can be extended to
the context of relative hyperbolicity. This was done in Mj and Pal [2011]. Let X and
Y be relatively hyperbolic spaces, hyperbolic relative to the collections HX and HY of
‘horosphere-like sets’ respectively. Let us denote the horoballifications of X and Y with
respect to HX and HY by G(X;HX ); G(Y;HY ) respectively (see B. H. Bowditch [2012]
for details). The horoballification of an H in HX or HY is denoted as Hh. Note that
G(X;HX ); G(Y;HY ) are hyperbolic. The electrificationswill be denoted asE(X;HX );E(Y;HY ).
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Definition 6.9. A map i : Y ! X is strictly type-preserving if

1. for allHY 2 HY there existsHX 2 HX such that i(HY ) � HX , and

2. images of distinct horospheres-like sets in Y lie in distinct horosphere-like sets in
X .

Let i : Y ! X be a strictly type-preserving proper embedding. Then i induces a
proper embedding ih : G(Y;HY ) ! G(X;HX ).

Definition 6.10. A Cannon-Thurston map exists for a strictly type-preserving inclusion
i : Y ! X of relatively hyperbolic spaces if a Cannon-Thurston map exists for the
induced map ih : G(Y;HY ) ! G(X;HX ).

Lemma 2.8 generalizes to the following.

Lemma 6.11. A Cannon-Thurston map for i : Y ! X exists if and only if there exists a
non-negative proper functionM : N ! N such that the following holds:
Fix a base-point y0 2 Y . Let �̂ in E(Y;HY ) be an electric geodesic segment starting and
ending outside horospheres. If �b = �̂n

S
K2HY

K lies outsideBN (y0) � Y , then for any
electric quasigeodesic ˆ̌ joining the end points of î(�̂) in E(X;HX ), ˇb = ˆ̌n

S
H2HX

H

lies outside BM (N )(i(y0)) � X .

Theorem 6.2 then generalizes to:

Theorem 6.12. Mj and Pal [2011] Let P : X ! T be a tree of relatively hyperbolic
spaces satisfying the qi-embedded condition. Assume that

1. the inclusion maps of edge-spaces into vertex spaces are strictly type-preserving

2. the induced tree of electrified (coned-off) spaces continues to satisfy the qi-embed-
ded condition

3. X is strongly hyperbolic relative to the familyC ofmaximal cone-subtrees of horosphere-
like sets.

Then aCannon-Thurstonmap exists for the inclusion of relatively hyperbolic spaces i : Xv !

X , where (Xv; dXv
) is the relatively hyperbolic vertex space corresponding to v.

6.4 Problems. The above survey is conditioned and limited by the author’s bias on
the one hand and space considerations on the other. In particular we have omitted the
important work on quasigeodesic foliations by Calegari [2006, 2000], Fenley [2012], and
Frankel [2015] and the topology of ending lamination spaces by Gabai and others Gabai
[2014, 2009], C. J. Leininger, Mj, and Schleimer [2011], and Hensel and Przytycki [2011]
as this would be beyond the scope of the present article. A more detailed survey appears
in Papadopoulos [2007]. We end with some open problems.
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6.4.1 Higher dimensional Kleinian groups. As a test-case we propose:

Question 6.13. Let S be a closed surface of genus greater than one and let Γ = �1(S)

act freely, properly discontinuously by isometries onHn, n > 3 (or more generally a rank
one symmetric space). Does a Cannon-Thurston map exist in general?

Can the small cancellation group of Baker-Riley in Baker and T. R. Riley [2013] act ge-
ometrically on a rank one symmetric space thus giving a negative answer to Question 6.13
with surface group replaced by free group? Work of Wise [2009] and Wise [2004] guar-
antees linearity of such small cancellation groups.

The critical problem in trying to answer Question 6.13 is the absence of new examples
in higher dimensions. It would be good to find new examples or prove that they do not
exist. A version of a question due to M. Kapovich [2008] makes this more precise and
indicates our current state of knowledge/ignorance:

Question 6.14. Let S be a closed surface of genus greater than one and let Γ be a discrete
subgroup of SO(n; 1) (or more generally a rank one Lie group)) abstractly isomorphic
to �1(S)) acting by isometries on Hn, n > 3 (more generally the associated symmetric
space) such that

1. orbits are not quasiconvex,

2. no element of Γ is a parabolic.

Does � factor through a representation to a simply or doubly degenerate (3-dimensional)
Kleinian group followed by a deformation of SO(3; 1) in SO(n; 1)?

A closely related folklore question asks:

Question 6.15. Can a closed higher dimensional n > 3 rank one manifold fiber? In
particular over the circle?

It is known, from the Chern-Gauss-Bonnet theorem that a 2n dimensional rank one
manifold cannot fiber over the circle. Unpublished work of M. Kapovich [1998] shows
that a complex hyperbolic 4-manifold cannot fiber over a 2-manifold.

6.4.2 Surface groups in higher rank. A topic of considerable current interest is higher
dimensional Teichmüller theory and Anosov representations of surface groups Labourie
[2006], M. Kapovich, Leeb, and Porti [2017], and Guéritaud, Guichard, Kassel, andWien-
hard [2017]. Kapovich, Leeb and Porti give an equivalent definition of Anosov representa-
tions in purely coarse geometric terms as representations that are asymptotic embeddings.
It will take us too far afield to define these notions precisely here. What we will say how-
ever is that if � : �1(S) ! G is a discrete faithful representation into a semi-simple Lie
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group G and G/P = B is the Furstenberg boundary, then the Anosov property implies that
an orbit �(�1(S)):o ‘extends’ to a �(�1(S))�equivariant embedding of @Γ�1(S)(= S1)

into B. Thus the boundary map∆ : S1 ! B maybe thought of as a higher rank Cannon-
Thurston map. For the representation to be Anosov,∆ is thus an embedding M. Kapovich,
Leeb, and Porti [2017].

Question 6.16. What class of representations do we get if we require only that ∆ is con-
tinuous?

Question 6.16 is basically asking for a ‘nice’ characterization of representations that
admit a higher rank Cannon-Thurston map. The core problem in addressing it again boils
down to finding some rich class of examples. Question 6.14 has a natural generalization
to this context where we replace SO(n; 1) by G.

6.4.3 Geometric group theory. As we have seen in Section 6.1, normal hyperbolic
subgroups and trees of spaces provide examples where there is a positive answer to Ques-
tion 2.7. Some sporadic new examples have also been found, e.g. hydra groups Baker and
T. Riley [2012]. However no systematic theory exists. In the light of the counterexam-
ple in Baker and T. R. Riley [2013], the general answer to Question 2.7 is negative. Are
there necessary and/or sufficient conditions beyond Lemma 2.8 to guarantee existence of
Cannon-Thurston maps?

As illustrated in Mitra [1998b] and Baker and T. Riley [2012], distortion of subgroups
Gromov [1993] is irrelevant. Distortion captures the relationship between
dH (1; h) with dG(1; h). On the other hand Cannon-Thurston maps capture the corre-
sponding relationship between dH (1; [h1; h2]H ) with dG(1; [h1; h2]G), i.e. existence of
Cannon-Thurston maps is equivalent to a proper embedding of ‘pairs of points’ (coding
geodesic segments). The function associated with such a proper embedding is closely re-
lated to the modulus of continuity of the Cannon-Thurston map Baker and T. Riley [2012].

Acknowledgments. I would like to thank Benson Farb and Thomas Koberda for several
helpful comments on an earlier draft.
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GROUPS ACTING ACYLINDRICALLY ON HYPERBOLIC
SPACES

Dൾඇංඌ V. Oඌංඇ

Abstract

The goal of this article is to survey some recent developments in the study of
groups acting on hyperbolic spaces. We focus on the class of acylindrically hyperbolic
groups; it is broad enough to include many examples of interest, yet a significant part
of the theory of hyperbolic and relatively hyperbolic groups can be generalized in this
context. In particular, we discuss group theoretic Dehn filling and small cancellation
theory in acylindrically hyperbolic groups. Many results discussed here rely on the
new generalization of relative hyperbolicity based on the notion of a hyperbolically
embedded subgroup.

1 Introduction

Suppose that a group G acts by isometries on a metric space S . If the action is sufficiently
“nice”, many properties of G can be revealed by studying the geometric structure of G-
orbits in S . This approach works especially well if S satisfies certain negative curvature
condition.

Systematic research in this direction began in late 1980s when Gromov [1987] intro-
duced the notion of an abstract hyperbolic metric space. Groups acting properly and co-
compactly on hyperbolic spaces are called word hyperbolic. More generally, replacing
properness with its relative analogue modulo a fixed collection of subgroups leads to the
notion of a relatively hyperbolic group. The study of hyperbolic and relatively hyperbolic
groups was initiated by Gromov [ibid.] and since then it has been one of the most active
areas of research in geometric group theory.

A further generalization, the class of acylindrically hyperbolic groups, was suggested
by Osin [2016] and received considerable attention in the past few years. It includes many
examples of interest: non-elementary hyperbolic and relatively hyperbolic groups, all but
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finitely many mapping class groups of punctured closed surfaces, Out(Fn) for n � 2,
most 3-manifold groups, groups of deficiency at least 2, and the Cremona group of bira-
tional transformations of the complex projective plane, just to name a few. On the other
hand, the property of being acylindrically hyperbolic is strong enough to allow one to
apply powerful geometric techniques.

A significant part of the theory of relatively hyperbolic groups can be generalized to
acylindrically hyperbolic groups using the notion of a hyperbolically embedded collection
of subgroups introduced byDahmani, Guirardel, andOsin [2017]. In particular, this notion
provides a suitable framework for developing a group theoretic version of Thurston’s the-
ory of hyperbolic Dehn filling in 3-manifolds. Group theoretic Dehn filling was originally
studied in the context of relatively hyperbolic groups by Groves and Manning [2008] and
Osin [2007]. Recently it was used to obtain several deep results (most notably, it was em-
ployed in the proof of the virtual Haken conjecture by Agol [2013]). Yet another powerful
tool is small cancellation theory, which can be used to prove various embedding theorems
and to construct groups with unusual properties, see Hull [2016] and Osin [2010].

The main purpose of this paper is to survey the recent progress in the study of acylindri-
cally hyperbolic groups and their hyperbolically embedded subgroups. In the next section
we briefly discuss equivalent definitions, main examples, and basic properties of acylin-
drically hyperbolic groups. Hyperbolically embedded subgroups are discussed in Section
3. Section 4 is devoted to group theoretic Dehn filling. An informal discussion of small
cancellation theory and a survey of some application is given in Section 5.

2 Acylindrically hyperbolic groups

2.1. Hyperbolic spaces and group actions. We begin by recalling basic definitions and
general results about groups acting on hyperbolic spaces. Our main reference is Gromov
[1987]; additional details can be found in Bridson and Haefliger [1999] and Ghys and de
la Harpe [1990]. All group actions on metric spaces discussed in this paper are assumed
to be isometric by default.

Definition 2.1. A metric space S is hyperbolic if it is geodesic and there exists ı � 0

such that for any geodesic triangle ∆ in S , every side of ∆ is contained in the union of
the ı-neighborhoods of the other two sides.

Example 2.2. Every bounded space S is hyperbolic with ı = diam(S). Every tree is
hyperbolic with ı = 0. Hn is hyperbolic for every n 2 N. On the other hand, Rn is not
hyperbolic for n � 2.

Given a hyperbolic space S , we denote by @S itsGromov boundary. We do not assume
that the space is proper and therefore the boundary is defined as the set of equivalence
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classes of sequences of points convergent at infinity; for details we refer to Gromov [1987,
Section 1.8]. The union bS = S [ @S is a completely metrizable Hausdorff topological
space containing S as a dense subset.
Example 2.3. The Gromov boundary of a bounded space is empty. @(Hn) = Sn�1. The
boundary of an n-regular tree is the Cantor set if n � 3 and consists of two points if n = 2.

Let G be a group acting (isometrically) on a hyperbolic space S . This action extends
to an action on bS by homeomorphisms. We denote by Λ(G) the limit set of G, that is, the
set of accumulation points of a G-orbit on @S . Thus

Λ(G) = Gs \ @S;

where s 2 S and Gs is the closure of the corresponding orbit. In fact, this definition is
independent of the choice of s 2 S . Given an element g 2 G, we denote Λ(hgi) simply
by Λ(g) and call it the limit set of g.

Similarly to the classification of elements of PSL(2; R) = IsomH2, we have the
following classification of isometries of abstract hyperbolic spaces.

Definition 2.4. An element g 2 G is called elliptic ifΛ(g) = ¿ (equivalently, all orbits of
hgi are bounded), parabolic if jΛ(g)j = 1; and loxodromic if jΛ(g)j = 2. Equivalently,
an element g 2 G is loxodromic if the map Z ! S defined by n 7! gns is a quasi-
isometric embedding for every s 2 S ; in turn, this is equivalent to the existence of c > 0

such that dS (s; gns) � cjnj for all n 2 Z. Two loxodromic elements g; h 2 G are called
independent if Λ(g) \ Λ(h) = ¿.

We recall the standard classification of groups acting on hyperbolic spaces, which goes
back to Gromov [ibid., Section 8.2].

Theorem 2.5 (Gromov). For every group G acting on a hyperbolic space S , exactly one
of the following conditions holds.

1) jΛ(G)j = 0. Equivalently, G has bounded orbits. In this case the action of G is
called elliptic.

2) jΛ(G)j = 1. Equivalently, G has unbounded orbits and contains no loxodromic
elements. In this case the action of G is called parabolic.

3) jΛ(G)j = 2. Equivalently,G contains loxodromic elements and any two loxodromic
elements have the same limit points. In this case the action of G is called lineal.

4) jΛ(G)j = 1. Then G always contains loxodromic elements. In turn, this case
breaks into two subcases.
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a) G fixes a point � 2 @S . In this case � is the common limit point of all loxo-
dromic elements of G. Such an action is called quasi-parabolic.

b) G has no fixed points on @S . Equivalently, G contains independent loxo-
dromic elements. In this case the action is said to be of general type.

Definition 2.6. The action of G is called elementary in cases 1)–3) and non-elementary
in case 4).

An action of a group G on a metric space S is called (metrically) proper if the set
fg 2 G j dS (s; gs) � rg is finite for all s 2 S and r 2 R+. Further, the action of G

is cobounded if there exists a bounded subset B � S such that S =
S

g2G gB . Finally,
the action is geometric if it is proper and cobounded. (We work in the category of metric
spaces here, so compactness gets replaced by boundedness.)

For geometric actions, we have the following, see Gromov [1987].

Theorem 2.7 (Gromov). Let G be a group acting geometrically on a hyperbolic space.
Then exactly one of the following three conditions hold.

(a) G acts elliptically. In this case G is finite.

(b) G acts lineally. In this case G is virtually cyclic.

(c) The action of G is of general type.

To every groupG generated by a setX one can associate a natural metric space, namely
the Cayley graph Γ(G; X), on which G acts geometrically. The vertex set of Γ(G; X) is
G itself and two elements g; h are connected by an edge if g = hx for some x 2 X˙1.
This graph is endowed with the combinatorial metric induced by identification of edges
with [0; 1].

Definition 2.8. A group G is hyperbolic if it admits a geometric action on a hyperbolic
space.

Equivalently, a group G generated by a finite set X is hyperbolic if the Cayley graph
Γ(G; X) is a hyperbolic metric space. The equivalence of these two definitions follows
from the well-known Svarc-Milnor Lemma and quasi-isometry invariance of hyperbolic-
ity of geodesic spaces, see Bridson and Haefliger [1999] and Gromov [1987] for details.

2.2. Equivalent definitions of acylindrical hyperbolicity. Recall that the action of a
group G on a metric space S is acylindrical if for every " > 0 there exist R; N > 0 such
that for every two points x; y with d(x; y) � R, there are at most N elements g 2 G

satisfying
d(x; gx) � " and d(y; gy) � ":
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The notion of acylindricity goes back to paper Sela [1997], where it was considered for
groups acting on trees. In the context of general metric spaces, the above definition is due
to Bowditch [2008]. Informally, one can think of this condition as a kind of properness of
the action on S � S minus a “thick diagonal”.

Example 2.9. (a) If S is a bounded space, then every action G Õ S is acylindrical.
Indeed it suffices to take R > diam(S).

(b) It is easy to see that every geometric action is acylindrical. On the other hand, proper
actions need not be acylindrical in general.

We begin with a classification of groups acting acylindrically on hyperbolic spaces.
The following theorem is proved by Osin [2016] and should be compared to compared to
Theorems 2.5 and 2.7.

Theorem 2.10. Let G be a group acting acylindrically on a hyperbolic space. Then ex-
actly one of the following three conditions holds.

(a) G acts elliptically, i.e., G has bounded orbits.

(b) G acts lineally. In this case G is virtually cyclic.

(c) The action of G is of general type.

Compared to the general classification of groups acting on hyperbolic spaces, Theo-
rem 2.10 rules out parabolic and quasi-parabolic actions and characterizes groups acting
lineally. On the other hand, compared to Theorem 2.7, finiteness of elliptic groups is
lacking. This part of Theorem 2.10 cannot be improved, see Example 2.9 (a).

Applying the theorem to cyclic groups, we obtain the following result first proved by
Bowditch [2008].

Corollary 2.11. Every element of a group acting acylindrically on a hyperbolic space is
either elliptic or loxodromic.

Definition 2.12. We call a groupG acylindrically hyperbolic if it admits a non-elementary
acylindrical action on a hyperbolic space. By Theorem 2.10, this is equivalent to the
requirement thatG is not virtually cyclic and admits an acylindrical action on a hyperbolic
space with unbounded orbits.

Unfortunately, Definition 2.12 is hard to verify in practice. Instead, one often first
proves that the group satisfies a seemingly weaker condition, which turns out to be equiva-
lent to acylindrical hyperbolicity. To formulate this condition we need a notion introduced
by Bestvina and Fujiwara [2002].
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Definition 2.13. Let G be a group acting on a hyperbolic space S , g an element of G.
One says that g satisfies the weak proper discontinuity condition (or g is aWPD element)
if for every " > 0 and every s 2 S , there exists M 2 N such that

(1)
ˇ̌̌
fa 2 G j dS (s; as) < "; d(gM s; agM s) < "g

ˇ̌̌
< 1:

Obviously this condition holds for any g 2 G if the action of G is proper and for every
loxodromic g 2 G if G acts on S acylindrically.

Theorem 2.14 (Osin [2016, Theorem 1.2]). For any group G, the following conditions
are equivalent.

(a) G is acylindrically hyperbolic.

(b) G is not virtually cyclic and admits an action on a hyperbolic space such that at
least one element of G is loxodromic and satisfies the WPD condition.

(c) There exists a generating set X of G such that the corresponding Cayley graph
Γ(G; X) is hyperbolic, j@Γ(G; X)j > 2, and the natural action of G on Γ(G; X) is
acylindrical.

Part (c) of this theorem is especially useful for studying properties of acylindrically
hyperbolic groups since it allows to pass from a (possibly non-cobounded) action of G on
a general hyperbolic space to the more familiar action on the Cayley graph. It was recently
proved by Balasubramanya [2017] that one can ensure even a stronger condition, namely
that Γ(G; X) is quasi-isometric to a tree.

2.3. Examples. Obviously every geometric action is acylindrical. In particular, this
applies to the action of any finitely generated group on its Cayley graph with respect to
a finite generating set. Thus every hyperbolic group is virtually cyclic or acylindrically
hyperbolic. More generally, non-virtually-cyclic relatively hyperbolic groups with proper
peripheral subgroups are acylindrically hyperbolic. In the latter case the action on the
relative Cayley graph is non-elementary and acylindrical, see Osin [2016]. Below we
discuss some less obvious examples.

(a) Mapping class groups. The mapping class group MCG(Σg;p) of a closed surface
of genus g with p punctures is acylindrically hyperbolic unless g = 0 and p � 3 (in these
exceptional cases, MCG(Σg;p) is finite). For (g; p) 2 f(0; 4); (1; 0); (1; 1)g this follows
from the fact that MCG(Σg;p) is non-elementary hyperbolic. For all other values of
(g; p) this follows from hyperbolicity of the curve complex C(Σg;p) of Σg;p first proved
by Masur and Minsky [1999] and acylindricity of the action of MCG(Σg;p) on C(Σg;p),
which is due to Bowditch [2008].
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(b) Out(Fn). Let n � 2 and let Fn be the free group of rank n. Bestvina and Feighn
[2010] proved that for every fully irreducible automorphism f 2 Out(Fn) there exists a
hyperbolic graph such thatOut(Fn) acts on it and the action of f satisfies the weak proper
discontinuity condition. Thus Out(Fn) is acylindrically hyperbolic by Theorem 2.14.

(c) Groups acting on CAT (0) spaces. Sisto [2011] showed that if a group G acts
properly on a proper CAT (0) space and contains a rank one element, then G is either vir-
tually cyclic or acylindrically hyperbolic. Together with the work of Caprace and Sageev
[2011], this implies the following alternative for right angled Artin groups: every right an-
gled Artin group is either cyclic, decomposes as a direct product of two non-trivial groups,
or acylindrically hyperbolic. An alternative proof of the later result was found by Kim and
Koberda [2014]. A similar theorem holds for graph products of groups and, even more
generally, subgroups of graph products, see Minasyan and Osin [2015]. For a survey of
examples of acylindrically hyperbolic groups arising from actions on CAT (0) cubical
complexes we refer to Genevois [2017].

(d) Fundamental groups of graphs of groups. The following theorem was proved by
Minasyan and Osin [2015].

Theorem 2.15. Let G be a group acting minimally on a simplicial tree T . Suppose that
G does not fix any point of @T and there exist vertices u; v of T such that the pointwise
stabilizer of fu; vg is finite. Then G is either virtually cyclic or acylindrically hyperbolic.

If G is the fundamental group of a graph of groups G, then one can apply Theorem 2.15
to the action of G on the associated Bass-Serre tree. In this case the minimality of the
action and the absence of fixed points on @T can be recognized from the local structure
of G. We mention here two particular cases. We say that a subgroup C of a group G is
weakly malnormal if there exists g 2 G such that jC g \ C j < 1.

Corollary 2.16. Let G split as a free product of groups A and B with an amalgamated
subgroup C . Suppose A ¤ C ¤ B and C is weakly malnormal in G. Then G is either
virtually cyclic or acylindrically hyperbolic.

Note that the virtually cyclic case cannot be excluded from this corollary. Indeed it
realizes if C is finite and has index 2 in both factors.

Corollary 2.17. Let G be an HNN-extension of a group A with associated subgroups
C and D. Suppose that C ¤ A ¤ D and C is weakly malnormal in G. Then G is
acylindrically hyperbolic.

These results were used by Minasyan and Osin [ibid.] to prove acylindrical hyperbolic-
ity of a number of groups. E.g., it implies that for every field k, the automorphism group
Aut k[x; y] of the polynomial algebra k[x; y] is acylindrically hyperbolic. Some other
applications are discussed below.
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(e) 3-manifold groups. Minasyan and Osin [2015] (see also Minasyan and Osin [2017])
proved that for every compact orientable irreducible 3-manifoldM , the fundamental group
�1(M ) is either virtually polycyclic, or acylindrically hyperbolic, or M is Seifert fibered.
In the latter case, �1(M ) contains a normal subgroup N Š Z such that �1(M )/N is
acylindrically hyperbolic.

(f) Groups of deficiency at least 2. In Osin [2015], the author proved that every group
which admits a finite presentation with at least 2 more generators than relations is acylin-
drically hyperbolic. (The original proof contained a gap which is fixed in Minasyan and
Osin [2017].) Interestingly, the proof essentially uses results about `2-Betti numbers of
groups.

(g) Miscellaneous examples. Other examples include central quotients of Artin-Tits
groups of spherical type (see Calvez and Wiest [2017] ) and of F C type with underlying
Coxeter graph of diameter at least 3 (see Chatterji and Martin [2016]), small cancellation
groups, including infinitely presented ones, (see Gruber and Sisto [2014]), orthogonal
forms of Kac–Moody groups over arbitrary fields (see Caprace and Hume [2015]), the
Cremona group (seeDahmani, Guirardel, andOsin [2017] and references therein; themain
contribution towards this result is due to Cantat and Lamy [2013]), and non-elementary
convergence groups (see Sun [2017]).

2.4. Some algebraic and analytic properties. Our next goal is to survey some algebraic
and analytic properties of acylindrically hyperbolic groups.

(a) Finite radical. Every acylindrically hyperbolic group G contains a unique maximal
finite normal subgroup denoted K(G) and called the finite radical of G, see Dahmani,
Guirardel, and Osin [2017]. It also coincides with the amenable radical ofG. In particular,
G has no infinite amenable normal subgroups.

(b) SQ-univerality. Recall that a group G is SQ-universal if every countable group
can be embedded into a quotient of G. Informally, this property can be considered as an
indication of algebraic “largeness” of G. Dahmani, Guirardel, and Osin [ibid.] proved the
following result by using group theoretic Dehn filling.

Theorem 2.18. Every acylindrically hyperbolic group is SQ-universal.

One consequence of this, also obtained by Dahmani, Guirardel, and Osin [ibid.], is that
every subgroup of the mapping class group MCG(Σ) of a punctured closed surface Σ

is either virtually abelian or SQ-universal. It is easy to show using cardinality arguments
that every finitely generated SQ-universal group has uncountably many non-isomorphic
quotients. This observation allows one to reprove various (well-known) non-embedding
theorems for higher rank lattices in mapping class groups since these lattices have count-
ably many normal subgroups by the Margulis normal subgroup theorem. For instance, we
immediately obtain that every homomorphism from an irreducible lattice in a connected
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semisimple Lie group of R-rank at least 2 with finite center to MCG(Σ) has finite image
(compare to the main result of Farb and Masur [1998]).

(c)Mixed identities. A group G satisfies a mixed identity w = 1 for some w 2 G � Fn,
where Fn denotes the free group of rank n, if every homomorphism G � Fn ! G that is
identical on G sends w to 1. A mixed identity w = 1 is non-trivial if w ¤ 1 as an element
of G � Fn. We say that G is mixed identity free (or MIF for brevity) if it does not satisfy
any non-trivial mixed identity.

The property of beingMIF is much stronger than being identity free and imposes strong
restrictions on the algebraic structure ofG. For example, ifG has a non-trivial center, then
it satisfies the non-trivial mixed identity [a; x] = 1, where a 2 Z(G)nf1g. Similarly, it is
easy to show (see Hull and Osin [2016b]) that a MIF group has no finite normal subgroups,
is directly indecomposable, has infinite girth, etc. By constructing highly transitive per-
mutation representations of acylindrically hyperbolic groups, Hull and the author proved
that every acylindrically hyperbolic group with trivial finite radical is MIF.

(d) Quasi-cocycles and bounded cohomology. The following theorem was proved in
several papers under various assumptions (see Bestvina, Bromberg, and Fujiwara [2016],
Bestvina and Fujiwara [2002], Hamenstädt [2008], and Hull and Osin [2013] and refer-
ences therein), which later turned out to be equivalent to acylindrical hyperbolicity.

Theorem 2.19. Suppose that a group G is acylindrically hyperbolic. Let V = R or
V = `p(G) for some p 2 [1;+1). Then the kernel of the natural map H 2

b
(G; V ) !

H 2(G; V ) is infinite dimensional. In particular, dimH 2
b
(G; V ) = 1.

This result opens the door for Monod and Shalom [2006] rigidity theory for group
actions on spaces with measure. It also implies that acylindrically hyperbolic groups are
not boundedly generated, i.e., are not products of finitely many cyclic subgroups.

(e) Stability properties. It is not difficult to show that the class of acylindrically hy-
perbolic groups is stable under taking extensions with finite kernel and quotients modulo
finite normal subgroups. It is also stable under taking finite index subgroups and, more
generally, s-normal subgroups Osin [2016]. Recall that a subgroup N of a group G is
s-normal if g�1Ng \ N is infinite for all g 2 G.

On the other hand, it is not known if acylindrical hyperbolicity is stable under finite
extensions (see Minasyan and Osin [2017]). More generally, we propose the following.

Question 2.20. (a) Is acylindrical hyperbolicity of finitely generated groups a quasi-
isometry invariant?

(b) Is acylindrical hyperbolicity a measure equivalence invariant?

The last question is partially motivated by the fact that the propertyH 2
b
(G; `2(G)) ¤ 0

enjoyed by all acylyndrically hyperbolic groups by Theorem 2.19 is ameasure equivalence
invariant. For details we refer to Monod and Shalom [2006].



946 DENIS V. OSIN

3 Hyperbolically embedded subgroups

3.1. Definition and basic examples. Hyperbolically embedded collections of subgroups
were introduced by Dahmani, Guirardel, and Osin [2017] as generalizations of peripheral
subgroups of relatively hyperbolic groups. To simplify our exposition we restrict here to
the case of a single subgroup; the general case only differs by notation.

Let G be a group, H a subgroup of G. Suppose that X is a relative generating set of
G with respect to H , i.e., G = hX [ H i. We denote by Γ(G; X t H ) the Cayley graph
of G whose edges are labeled by letters from the alphabet X t H . That is, two vertices
f; g 2 G are connected by an edge going from f to g and labeled by a 2 X t H iff
fa = g in G. Disjointness of the union in this definition means that if a letter h 2 H and
a letter x 2 X represent the same element a 2 G, then for every g 2 G, the Cayley graph
Γ(G; X t H ) will have two edges connecting g and ga: one labelled by h and the other
labelled by x.

We naturally think of the Cayley graph ΓH = Γ(H; H ) of H with respect to the
generating set H as a (complete) subgraph of Γ(G; X t H ).

Definition 3.1. Let G be a group, H � G, and X a (possibly infinite) subset of G. We
say that H is hyperbolically embedded in G with respect to X (we write H ,!h (G; X))
if G = hX [ H i and the following conditions hold.

(a) The Cayley graph Γ(G; X t H ) is hyperbolic.

(b) For every n 2 N, there are only finitely many elements h 2 H such that the vertices
h and 1 can be connected in Γ(G; X t H ) by a path of length at most n that avoids
edges of ΓH .

Further we say that H is hyperbolically embedded in G and write H ,!h G if H ,!h

(G; X) for some X � G.

Note that for any group G we have G ,!h G. Indeed we can take X = ¿ in this case.
Further, if H is a finite subgroup of a group G, then H ,!h G. Indeed H ,!h (G; X) for
X = G. These cases are referred to as degenerate. We consider two additional examples
borrowed from Dahmani, Guirardel, and Osin [ibid.].

Example 3.2. (a) Let G = H � Z, X = fxg, where x is a generator of Z. Then
Γ(G; X t H ) is quasi-isometric to a line and hence it is hyperbolic. However,
every two elements h1; h2 2 H can be connected by a path of length at most 3
in Γ(G; X t H ) that avoids edges of ΓH (see Figure 1). Thus H 6,!h (G; X)

whenever H is infinite.
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Figure 1: Cayley graphs Γ(G; X t H ) for G = H � Z and G = H � Z.

(b) Let G = H � Z, X = fxg, where x is a generator of Z. In this case Γ(G; X t H )

is quasi-isometric to a tree and no path connecting h1; h2 2 H and avoiding edges
of ΓH exists unless h1 = h2. Thus H ,!h (G; X).

It is worth noting that a version of the argument from Example 3.2 (a) can be used to
show that every hyperbolically embedded subgroup H ,!h G is almost malnormal, i.e.,
satisfies jg�1Hg \ H j < 1 for all g 2 G.

The following result is proved by Dahmani, Guirardel, and Osin [ibid.] and can be
regarded as a definition of relatively hyperbolic groups.

Theorem 3.3. Let G be a group, H a subgroup of G. Then G is hyperbolic relative to H

if and only if H ,!h (G; X) for some finite subset X � G.

3.2. Hyperbolically embedded subgroups in acylindrically hyperbolic groups. It
turns out that acylindrical hyperbolicity of a group can be characterized by the existence
of hyperbolically embedded subgroups. More precisely, we have the following.

Theorem 3.4 (Osin [2016]). A group G is acylindrically hyperbolic if and only if it con-
tains non-degenerate hyperbolically embedded subgroups.

Moreover, in every acylindrically hyperbolic group one can find hyperbolically em-
bedded subgroups of certain special types. We mention two results of this sort proved by
Dahmani, Guirardel, and Osin [2017]. The first one plays an important role in applications
of group theoretic Dehn filling and small cancellation theory discussed below.
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Theorem 3.5. Let G be a group acting on a hyperbolic space and let g 2 G be a loxo-
dromic WPD element. Then g is contained in a unique maximal virtually cyclic subgroup
E(g) of G and E(g) ,!h G.

Recall that K(G) denotes the final radical of an acylindrically hyperbolic group G and
Fn denotes the free group of rank n.

Theorem 3.6. Let G be an acylindrically hyperbolic group. Then for every n 2 N, there
exists a subgroup H ,!h G isomorphic to Fn � K(G).

The latter theorem is especially useful in conjunction with various “extension” results
proved by Abbott, Hume, and Osin [2017], Frigerio, Pozzetti, and Sisto [2015], and Hull
and Osin [2013]. Roughly speaking, these results claim that various things (e.g., group
actions on metric spaces or quasi-cocycles) can be “extended” from a hyperbolically em-
bedded subgroup to the whole group.

4 Group theoretic Dehn filling

4.1. Dehn surgery in 3-manifolds. Dehn surgery on a 3-dimensional manifold consists
of cutting of a solid torus from the manifold, which may be thought of as “drilling” along
an embedded knot, and then gluing it back in a different way. The study of these “ele-
mentary transformations” of 3-manifolds is partially motivated by the Lickorish-Wallace
theorem, which states that every closed orientable connected 3-manifold can be obtained
by performing finitely many surgeries on the 3-dimensional sphere.

The second part of the surgery, called Dehn filling, can be formalized as follows. Let
M be a compact orientable 3-manifold with toric boundary. Topologically distinct ways
to attach a solid torus to @M are parameterized by free homotopy classes of unoriented
essential simple closed curves in @M , called slopes. For a slope s, the corresponding Dehn
filling M (s) of M is the manifold obtained from M by attaching a solid torus D2 � S1 to
@M so that the meridian @D2 goes to a simple closed curve of the slope s.

The following fundamental theorem is due to Thurston [1982, Theorem 1.6].

Theorem 4.1 (Thurston’s hyperbolic Dehn surgery theorem). Let M be a compact ori-
entable 3-manifold with toric boundary. Suppose that M n @M admits a complete finite
volume hyperbolic structure. Then M (s) is hyperbolic for all but finitely many slopes s.

4.2. Filling in hyperbolically embedded subgroups. Dehn filling can be generalized in
the context of abstract group theory as follows. Let G be a group and let H be a subgroup
of G. One can think of G and H as the analogues of �1(M ) and �1(@M ), respectively.
Associated to any � 2 H , is the quotient group G/hhsii, where hhsii denotes the normal
closure of s in G.
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If G = �1(M ) and H = �1(@M ) Š Z ˚ Z, where M is as in Thurston’s theorem,
then H is indeed a subgroup of G and for every slope s, which we think of as an element
of H , we have

(2) �1(M (s)) = �1(M )/hhsii

by the Seifert-van Kampen theorem. ThusG/hhsii is the algebraic counterpart of the filling
M (s).

It turns out that the analogue of Thurston’s theorem holds if we start with a pair H � G

such thatH is hyperbolically embedded inG. The vocabulary translating geometric terms
to algebraic ones can be summarized as follows (we abbreviate “complete finite volume”
as CFV).

3-MANIFOLDS GROUPS

a compact orientable
3-manifold M

a group G

@M H � G

M n @M admits a finite volume
hyperbolic structure H is hyperbolically embedded in G

a slope s an element h 2 H

M (s) G/hhhii

In these settings, the analogue of Thurston’s theorem was proved by
Dahmani, Guirardel, and Osin [2017]. Note that instead of considering single elements
of H , we allow normal subgroups generated by arbitrary sets of elements. A number of
additional properties can be added to the main statements (a)–(c); we mention just one of
them, which is necessary for the applications considered in the next section.

Theorem 4.2. Let G be a group, H a subgroup of G. Suppose that H ,!h (G; X) for
some X � G. Then there exists a finite subset F of nontrivial elements of H such that for
every subgroup N � H that does not contain elements of F , the following hold.

(a) IfG is acylindrically hyperbolic, then so isG/hhN ii, where hhN ii denotes the normal
closure of N in G.

(b) The natural map from H/N to G/hhN ii is injective (equivalently, H \ hhN ii = N ).
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(c) H/N ,!h (G/hhN ii; X), where X is the natural image of X in G/hhN ii.

(d) hhN ii is the free product of conjugates of N in G and every element of hhN ii is either
conjugate to an element of N or acts loxodromically on Γ(G; X t H ).

Note that if H ,!h G is non-degenerate, then G is always acylindrically hyperbolic.
However the theorem holds (trivially) for degenerate hyperbolically embedded subgroups
as well.

Combining this theorem with Theorem 3.3 and some basic properties of relatively hy-
perbolic groups, we obtain the following result, which was first proved by Osin [2007].
It was also independently proved by Groves and Manning [2008] under the additional
assumptions that the group G is torsion free and finitely generated.

Corollary 4.3. Suppose that a groupG is hyperbolic relative to a subgroupH ¤ G. Then
for any subgroup N � H avoiding a fixed finite set of nontrivial elements, the natural
map from H/N to G/hhN ii is injective and G/hhN ii is hyperbolic relative to H/N . In
particular, if H/N is hyperbolic, then so is G/hhN ii; if, in addition, G is non-virtually-
cyclic, then so is G/hhN ii.

Under the assumptions of Thurston’s theorem, we have H = �1(@M ) = Z ˚ Z.
Slopes in @M correspond to non-trivial primitive elements s 2 H ; for every such s, we
have H/hsi Š Z. Applying Corollary 4.3 to N = hsi � H , we obtain that G/hhN ii is
not virtually cyclic and hyperbolic. Modulo the geometrization conjecture this algebraic
statement is equivalent to hyperbolicity ofM (s). Thus parts (a)–(c) of Theorem 4.2 indeed
provide a group theoretic generalization of Thurston’s theorem.

4.3. Applications. It is not feasible to discuss all applications of group theoretic Dehn
surgery in a short survey. Here we list some of the results which make use of Theorem 4.2
or its relatively hyperbolic analogue, Corollary 4.3, and provide references for further
reading. Then we pick one application and discuss it in more detail.

(a) The virtual Haken conjecture. Group theoretic Dehn filling in relatively hyperbolic
groups, along with Wise’s machinery of virtually special groups, was used in Agol’s proof
of the virtual Haken conjecture Agol [2013]. Additional results on Dehn filling necessary
for the proof were obtained by Agol, Groves, and Manning in the appendix to Agol [ibid.].
One piece of Wise’s work used by Agol [ibid.] is the malnormal special quotient theorem;
Agol, Groves, and Manning [2016] also found an alternative proof of this result based on
Dehn filling technique.
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(b)The isomorphism problem for relatively hyperbolic groups. Dahmani and Guirardel
[2015] and Dahmani and Touikan [2013] used Dehn filling to solve the isomorphism prob-
lem for relatively hyperbolic groups with residually finite parabolic subgroups under cer-
tain additional assumptions. The main idea is to apply (an elaborated version of) Corol-
lary 4.3 to finite index normal subgroups in parabolic groups. This yields an approxima-
tion of relatively hyperbolic groups by hyperbolic ones, which in turn allows the authors
make use of the solution of the isomorphism problem for hyperbolic groups obtained by
Dahmani and Guirardel [2011].

(c) Residual finiteness of outer automorphism groups. Minasyan and Osin [2010] used
Dehn filling in relatively hyperbolic groups to prove that Out(G) is residually finite for
every residually finite group G with infinitely many ends; in general, this result fails for
one ended groups. This result was recently generalized to conjugacy separable acylin-
drically hyperbolic groups by Antolin, Minasyan, and Sisto. In particular, they proved
residual finiteness of mapping class groups of certain Haken 3-manifolds. Acylindrical
hyperbolicity of 3-manifold groups plays a crucial role in the proof.

(d) Primeness of von Neumann algebras. Chifan, Kida, and Pant [2016] used Dehn
filling to prove primeness of vonNeumann algebras of certain relatively hyperbolic groups.
This means that these von Neumann algebras cannot be decomposed as a tensor product
of diffuse von Neumann algebras.

(e) Farell-Jones conjecture for relatively hyperbolic groups. Bartels [2017] proved that
the class of groups satisfying the Farell-Jones conjecture is stable under relative hyperbol-
icity. In the particular case when peripheral subgroups are residually finite, an alternative
proof based on Dehn filling was found by Antolín, Coulon, and Gandini [2015].

(f) SQ-universality of acylindrically hyperbolic groups. One simple application of The-
orem 4.2 is the proof of Theorem 2.18. It follows easily from SQ-universality of free
groups of rank 2, Theorem 3.6, and part (b) of Theorem 4.2. For details, see Dahmani,
Guirardel, and Osin [2017].

4.4. Purely pseudo-Anosov subgroups of mapping class groups. We illustrate The-
orem 4.2 by considering an application to mapping class groups. Recall that a subgroup
of a mapping class group is called purely pseudo-Anosov, if all its non-trivial elements
are pseudo-Anosov. The following question is Problem 2.12(A) in Kirby’s list: Does the
mapping class group of any closed orientable surface of genus g � 1 contain a non-trivial
purely pseudo-Anosov normal subgroup? It was asked in the early 1980s and is often at-
tributed to Penner, Long, and McCarthy. It is also recorded by Ivanov [2006, Problems
3], and Farb [2006] refers to it as a “well known open question”.

The abundance of finitely generated non-normal purely pseudo-Anosov free subgroups
of mapping class groups is well known, and follows from an easy ping-pong argument.
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However, this method does not allow one to construct normal subgroups, which are usually
infinitely generated. For a surface of genus 2 the question was answered by Whittlesey
[2000] who proposed an example based on Brunnian braids. Unfortunately the methods
of Whittlesey [ibid.] do not generalize even to closed surfaces of higher genus.

Another question was probably first asked by Ivanov (see Ivanov [2006, Problem 11]):
Is the normal closure of a certain nontrivial power of a pseudo-Anosov element ofMCG(Sg)

free? Farb [2006, Problem 2.9] also described this problem as a “basic test question” for
understanding normal subgroups of mapping class groups.

The next theorem answers both questions positively in more general settings.

Theorem 4.4 (Theorem 2.30, Dahmani, Guirardel, and Osin [2017]). Let G be a group
acting on a hyperbolic space S , g 2 G a WPD loxodromic element. Then there exists
n 2 N such that the normal closure hhgnii in G is free and purely loxodromic, i.e., every
nontrivial element of hhgnii acts loxodromically on S .

This result can be viewed as a generalization of a theorem by Delzant [1996] stating
that for a hyperbolic group G and every element of infinite order g 2 G, there exists
n 2 N such that hhgnii is free (see also Chaynikov [2011] for a clarification of certain
aspects of Delzant’s proof).

The idea of the proof is the following. By Theorem 3.5, g is contained in the maximal
virtually cyclic subgroup E(g) which is hyperbolically embedded in G. Since hgi has
finite index in E(g), we have hgni � E(g). Passing to a multiple of n if necessary, we
can ensure that hgni avoids any finite collection of non-trivial elements. Thus we can
apply Theorem 4.2 to H = E(g) and N = hgni. Since hgni Š Z, part (d) of the theorem
implies that hhgnii is free. That hhgnii is purely loxodromic also follows from part (d) and
some additional arguments relating Γ(G; X t H ) to S .

Applying Theorem 4.4 to mapping class groups acting on the curve complexes, we
obtain the following.

Corollary 4.5. Let Σ be a possibly punctured closed orientable surface. Then for any
pseudo-Anosov element a 2 MCG(Σ), there exists n 2 N such that the normal closure
of an is free and purely pseudo-Anosov.

5 Small cancellation theory and its applications

5.1. Generalizing classical small cancellation. The classical small cancellation theory
deals with presentations

F (X)/hhRii = hX j Ri;

where F (X) is the free group with basis X , and common subwords of distinct relators
are “small” in a certain precise sense. This property allows one to control cancellation
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in products of conjugates of relators in R (and their inverses); in turn, this leads to nice
structural results for the normal closure hhRii and the group F (X)/hhRii.

More generally, one can replace the free group F (X) with a group G0 enjoying some
hyperbolic properties and add new relations to a presentation of G0. If these new rela-
tions satisfy a suitable version of small cancellation, many results of the classical small
cancellation theory can be reproved in these settings. On the other hand, the small cancel-
lation assumptions are usually general enough to allow one to create interesting relations
between elements.

The idea of generalizing classical small cancellation to groups acting on hyperbolic
spaces is due to Gromov [1987], although some underlying ideas go back to the work of
Olshanskii [1982, 1980]. In the case of hyperbolic groups, it was formalized by Delzant
[1996], Olshanskii [1993], and others. Olshanskii’s approach was generalized to relatively
hyperbolic groups by Osin [2010] and further generalized to acylindrically hyperbolic
groups by Hull [2016]. These generalizations employ isoperimetric characterizations of
relatively hyperbolic groups and hyperbolically embedded subgroups obtained in Dah-
mani, Guirardel, and Osin [2017] and Osin [2006] and follow closely the classical theory.
Yet another approach is based on Gromov’s rotating families (see Coulon [2016] and ref-
erences therein.)

Unfortunately, the ideas involved in this work are too technical for a short survey paper
and we do not discuss them here. Instead we discuss few (indeed very few) applications of
small cancellation theory in relatively hyperbolic groups to proving embedding theorems
and studying conjugacy growth of groups.

5.2. Embedding theorems and conjugacy growth of groups. In 1949, Higman, B. H.
Neumann, and H. Neumann [1949] proved that any countable group G can be embedded
into a countable group B such that every two elements of the same order are conjugate
in B . The group B constructed by Higman, B. H. Neumann, and H. Neumann [ibid.] is
a union of infinite number of subsequent HNN–extensions and thus it is never finitely
generated. Osin [2010] used small cancellation theory in relatively hyperbolic groups to
prove the following stronger result. For a group G, let �(G) denote the set of finite orders
of elements of G.

Theorem 5.1. Any countable group G can be embedded into a finitely generated group
C such that any two elements of the same order are conjugate in C and �(G) = �(C ).

We explain the idea of the proof in the particular case when C is torsion free. Let
G0 = C � F (x; y), where F (x; y) is the free group with basis fx; yg. Given any non-
trivial lement g 2 G0, one first considers the HNN-extension

H = hG0; t j t�1gt = xi:
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Obviously x and g are conjugate in H . Then imposing an additional relation t = w(x; y),
wherew(x; y) is a suitable small cancellation word in the alphabet fx; yg, one ensures that
this conjugation happens in a certain quotient group G1 of G0. Small cancellation theory
is then used to show that the restriction of the natural homomorphism G0 ! G1 to C

is injective and the image of F (x; y) in G1 is still “large enough”. Here “large enough”
means that the image ofF (x; y) inG1 is non-elementary with respect to some acylindrical
action of G1 on a hyperbolic space. This allows us to iterate the process. Repeating it for
all non-trivial elements we obtain a group with 2 conjugacy classes which is generated by
2 elements (the images of x and y) and contains C .

Applying the theorem to the group G = Z, we obtain the following.

Corollary 5.2. There exists a torsion free finitely generated group with 2 conjugacy
classes.

The existence of a finitely generated group with 2 conjugacy classes other than Z/2Z
was a long standing open problem, sometimes attributed to Maltsev. It is easy to see that
such groups do not exist among finite (and residually finite) groups. It is also observed by
Osin [2010] that such a group cannot be constructed as a limit of hyperbolic groups; this
justifies the use of small cancellation theory in the more general settings.

Given a group G generated by a finite set X , the associated conjugacy growth function
of G, denoted by �G;X , is defined as follows: �G;X (n) is the number of conjugacy classes
of elements that can be represented by words of length at most n is the alphabet X [ X�1.
Given f; g : N ! N, we write f ∼ g if there exists C 2 N such that f (n) � g(C n)

and g(n) � f (C n) for all n 2 N. Obviously∼ is an equivalence relation and �G;X (n) is
independent of the choice of X up to this equivalence.

The conjugacy growth function was introduced by Babenko [1988] in order to study
geodesic growth of Riemannian manifolds. For more details and a survey of some recent
results about conjugacy growth we refer to Hull and Osin [2016a]. Based on ideas from the
paper Osin [2010], Hull and the author also obtained a complete description of functions
that occur as conjugacy growth functions of finitely generated groups. It is worth noting
that such a description for the usual growth function seems to be out of reach at this time.

Theorem5.3. LetG be a group generated by a finite setX , and let f denote the conjugacy
growth function of G with respect to X . Then the following conditions hold.

(a) f is non-decreasing.

(b) There exists a � 1 such that f (n) � an for every n 2 N.

Conversely, suppose that a function f : N ! N satisfies the above conditions (a) and (b).
Then there exists an group G generated by a finite set X such that �G;X ∼ f .
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Of course, the non-trivial part of the theorem is the fact that every function satisfying
(a) and (b) realizes as the conjugacy growth function.

Yet another result proved by Hull and Osin [2016a] is the following.

Theorem 5.4. There exists a finitely generated group G and a finite index subgroup H �

G such that H has 2 conjugacy classes while G is of exponential conjugacy growth.

In particular, unlike the usual growth function, conjugacy growth of a group is not a
quasi-isometry invariant.

Readers interested in other applications of small cancellation technique to groups with
hyperbolically embedded subgroups are referred to Hull [2016] and Minasyan and Osin
[2018]; for a slightly different approach employing rotating families see Gromov’s paper
Gromov [2003], Coulon’s survey Coulon [2016], and references therein.
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Abstract
We survey some recent developments in the quest for global surfaces of section for

Reeb flows in dimension three usingmethods from Symplectic Topology. We focus on
applications to geometry, including existence of closed geodesics and sharp systolic
inequalities. Applications to topology and celestial mechanics are also presented.

1 Introduction

The idea of a global surface of section goes back to Poincaré and the planar circular re-
stricted three-body problem.

Definition 1.1. Let �t be a smooth flow on a smooth closed 3-manifoldM . An embedded
surface Σ ,! M is a global surface of section for �t if:

(i) Each component of @Σ is a periodic orbit of �t .

(ii) �t is transverse to Σ n @Σ.

(iii) For every p 2 M n @Σ there exist t+ > 0 and t� < 0 such that �t+(p) and �t�(p)
belong to Σ n @Σ.

Every p 2 Σ n @Σ has a first return time �(p) = infft > 0 j �t (p) 2 Σg and the
dynamics of the flow are encoded in the first return map

(1)  : Σ n @Σ ! Σ n @Σ;  (p) = ��(p)(p):

In Poincaré [1912] Poincaré described annulus-like global surfaces of section for the
planar circular restricted three-body problem (PCR3BP) for certain values of the Jacobi
MSC2010: primary 37JXX; secondary 53DXX.
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constant andmass ratio. Poincaré’s global sectionsmotivated his celebrated last geometric
theorem. The associated first return map preserves an area form, extends up to boundary,
and satisfies a twist condition in the range of parameters considered. The exciting dis-
covery made by Poincaré was that the twist condition implies the existence of infinitely
many periodic points, i.e., infinitely many periodic orbits for the PCR3BP. In one stroke
Poincaré gave a strong push towards a qualitative point of view for studying differential
equations, and stated a fixed point theorem intimately connected to the Arnold conjectures
and the foundations of Floer Theory.

The recent success of Floer theory and othermethods fromSymplectic Geometry prompted
Hofer to coin the term Symplectic Dynamics Bramham and Hofer [2012]. In this note we
are concerned with the success of these methods to study Reeb flows in dimension three,
with an eye towards applications to geometry.

Our first goal is to discuss existence results for global sections. This will be done
in Section 2. After stating Birkhoff’s theorem, we focus on Hofer’s theory of pseudo-
holomorphic curves Hofer [1993]. We survey some published and also some unpublished
results, without giving proofs.

Section 3 is devoted to some applications to systolic geometry that were obtained in
collaboration with Abbondandolo and Bramham. We will explain how global surfaces of
section open the door for symplectic methods in the study of sharp systolic inequalities.
We focus on Riemannian two-spheres and on a special case of a conjecture of Viterbo.
In Section 4 we present the planar circular restricted three-body problem in more detail.
A conjecture due to Birkhoff on the existence of disk-like global surfaces of section for
retrograde orbits is discussed.

We intend to convince the reader that there are many positive results for global sections
in large classes of flows. However, there are situations where it might be hard to decide
whether they exist or not. In sections 5 and 6 we discuss results designed to handle some
of these situations. In Section 5 we present deep results of Hofer, Wysocki, and Zehn-
der [2003] concerning the existence of transverse foliations, and its use in the study of
Hamiltonian dynamics near critical levels. In Section 6 we present a Poincaré-Birkhoff
theorem for tight Reeb flows on S3 proved in Hryniewicz, Momin, and Salomão [2015].
It concerns Reeb flows with a pair of closed orbits exactly as those in the boundary of
Poincaré’s annulus, i.e. forming a Hopf link.

The appendix A discusses a new proof of the existence of infinitely many closed
geodesics on any Riemannian two-sphere, which is alternative to the classical arguments
of Bangert [1993] and Franks [1992]. It relies on the work of Hingston [1993].
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2 Existence results for global surfaces of section

Poincaré constructed his annulus map for a specific family of systems close to integrable1.
One of the first statements for a large family of systems which can be quite far from
integrable is due to Birkhoff.

Theorem 2.1 (Birkhoff [1966]). Let 
 be a simple closed geodesic of a positively curved
Riemannian two-sphere. Consider the set A
 of unit vectors along 
 pointing towards
one of the hemispheres determined by 
 . Then A
 is a global surface of section for the
geodesic flow.

In other words, every geodesic ray not contained in 
 visits both hemispheres infinitely
often. We call the embedded annulus A
 the Birkhoff annulus. The family of geodesic
flows on positively curved two-spheres is large, making the above statement quite useful.
The proof heavily relies on Riemannian geometry and sheds little light on the general
existence problem.

A very general theory to attack the existence problem of global surfaces of section ex-
ists, and nowadays goes by the name of Schwartzman-Fried-Sullivan theory, see Ghys
[2009] or the original works Fried [1982], Schwartzman [1957], and Sullivan [1976]. It
produces beautiful theorems with strong conclusions for general flows in dimension three,
or even in higher dimensions. The drawback is that these conclusions often require hy-
potheses which are hard to check, limiting the range of applications. This should not be a
surprise because the set of all flows on a 3-manifold is just too wild.

Hofer’s pseudo-holomoprhic curve theory deals with the more restrictive class of Reeb
flows. However, the results obtained require more reasonable hypotheses which one can
often check, as we intend to demonstrate in the next paragraphs. Sometimes results apply
automatically for classes of Reeb flows that are large enough to provide applications in
topology and geometry. Consider R4 with coordinates (x1; y1; x2; y2) and its standard
symplectic form !0 =

P2
j=1 dxj ^ dyj . Here are two examples of such unconditional

theorems.

Theorem 2.2 (Hofer, Wysocki, and Zehnder [1998]). The Hamiltonian flow on a smooth,
compact and strictly convex energy level in (R4; !0) admits a disk-like global surface of
section.

We see Theorem 2.2 as one of the pinnacles of Symplectic Dynamics, it is the guiding
application of this theory to the study of global surfaces of section. All results to be dis-
cussed in this section are proved using the methods from Hofer, Wysocki, and Zehnder
[ibid.].

1Angular momentum is preserved in the rotating Kepler problem.
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Theorem 2.3 (Hryniewicz [2012, 2014]). A periodic orbit of the Hamiltonian flow on a
smooth, compact and strictly convex energy level in (R4; !0) bounds a disk-like global
surface of section if, and only if, it is unknotted and has self-linking number �1.

To explain the connection between the above statements and Reeb flows, and to de-
scribe further results of this theory, we need first to review basic notions. A contact form
� on a 3-manifoldM is a 1-form such that �^d� defines a volume form. Its Reeb vector
field R� is implicitly defined by

(2) d�(R�; �) = 0; �(R�) = 1:

The distribution � = ker� is a contact structure, the pair (M; �) is a contact manifold.
More precisely, these are the co-orientable contact manifolds since � orients TM/� . We
only work here with co-orientable contact structures. By a Reeb flow on (M; �) we mean
one associated to a contact form � onM such that � = ker�. Contact manifolds are the
main objects of study in contact topology. Our interest here is shifted towards dynamics.

A knot is called transverse if at every point its tangent space is transverse to the contact
structure. A transverse knot with a Seifert surface has a self-linking number, which is
invariant under transverse isotopies. It is defined as follows: choose a non-vanishing
section of the contact structure along the Seifert surface, then use this section to push the
knot off from itself, and finally count intersections with the Seifert surface. The vector
bundle (�; d�) is symplectic and has a first Chern class c1(�) 2 H 2(M ;Z). If c1(�)
vanishes onH2(M ;Z) then the self-linking number does not depend on the Seifert surface.
The book Geiges [2008] by Geiges is a nice reference for these concepts.

Finally, we describe the Conley-Zehnder index in low-dimensions following Hofer,
Wysocki, and Zehnder [2003]. Let 
 be a periodic trajectory of the flow �t of the Reeb
vector field R�, and let T > 0 be a period of 
 . Since (�t )�� = �, we get a path of
d�-symplectic linear maps d�t : �
(0) ! �
(t). The orbit 
 is called degenerate in period
T if 1 is an eigenvalue of d�T : �
(0) ! �
(0), otherwise it is called non-degenerate in
period T . The contact form � is called non-degenerate when every periodic trajectory is
non-degenerate in every period. When T is the primitive period we may simply call 

degenerate or non-degenerate accordingly.

Since T is a period, we get a well-defined map 
 : R/TZ ! M still denoted by

 without fear of ambiguity. Choose a symplectic trivialization Φ of 
��. Then the
linearized flow d�t : �
(0) ! �
(t) gets represented as a path of symplectic matrices
M : R ! Sp(2) satisfying M (0) = I , M (t + T ) = M (t)M (T ) 8t . For every
non-zero u 2 R2 we write M (t)u = (r(t) cos �(t); r(t) sin �(t)) in polar coordinates,
for some continuous lift of argument � : R ! R, and define the rotation function
∆M : R2 n f(0; 0)g ! R by ∆M (u) = �(T )��(0)

2�
. The image of ∆M is a compact
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interval of length strictly less than 1/2. The rotation interval JM is defined as the image
of ∆M .

Consider the following function �̃(J ) defined on closed intervals J of length less than
1/2. If @J \ Z = ¿ then set �̃(J ) = 2k when k 2 J , or �̃(J ) = 2k + 1 when
J � (k; k + 1). If @J \ Z ¤ ¿ then set �̃(J ) = lim�!0+ �̃(J � �). The Conley-
Zehnder index can be finally defined as CZΦ(
; T ) = �̃(JM ). We omit the period when
it is taken to be the primitive period. If c1(�) vanishes on spheres and 
 : R/TZ ! M is
contractible then we write CZdisk for the index computed with a trivialization that extends
to a capping disk.

The Conley-Zehnder index is an extremely important tool. It is related to Fredholm
indices of solutions of many of the elliptic equations from Symplectic Topology, in par-
ticular to dimensions of moduli spaces of holomorphic curves.

Definition 2.4 (Hofer, Wysocki and Zehnder). A contact form � on a 3-manifold M is
dynamically convex if c1(ker�) vanishes on spheres and contractible periodic Reeb orbits

 : R/TZ ! M satisfy CZdisk(
; T ) � 3.

The terminology is justified as follows. The standard contact structure �0 on the unit
sphere S3 � R4 is defined as the kernel of �0 = 1

2

P2
j=1 xjdyj �yjdxj restricted to S3.

More generally, �0 restricts to a contact form on any smooth, compact hypersurface S in
(R4; !0) that is (strictly) star-shaped with respect to the origin. The associated Reeb flow
reparametrizes the Hamiltonian flow on S for any Hamiltonian realizing S as a regular
energy level. Moreover, it is smoothly conjugated to a Reeb flow on (S3; �0). Conversely,
every Reeb flow on (S3; �0) is smoothly conjugated to the Reeb flow of �0 restricted to
some S . When S is strictly convex we get dynamical convexity in view of

Theorem 2.5 (Hofer, Wysocki, and Zehnder [1998]). The Hamiltonian flow on a smooth,
compact and strictly convex energy level in (R4; !0) is smoothly conjugated to a dynami-
cally convex Reeb flow on (S3; �0).

A Reeb flow will be called dynamically convex when it is induced by a dynamically
convex contact form. The next result and Theorem 2.5 together imply Theorem 2.3.

Theorem 2.6 (Hryniewicz [2012, 2014]). Let 
 be a periodic orbit of a dynamically con-
vex Reeb flow on (S3; �0). Then 
 bounds a disk-like global surface of section if, and only
if, it is unknotted and has self-linking number �1. Moreover, such an orbit binds an open
book decomposition whose pages are disk-like global surfaces of section.

These statements are powered by a non-trivial input.

Theorem 2.7 (Hofer, Wysocki, and Zehnder [1996b]). Any Reeb flow on (S3; �0) has an
unknotted periodic orbit with self-linking number �1.
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Putting together theorems 2.6 and 2.7 we obtain a more general version of Theorem 2.2.

Theorem 2.8 (Hofer, Wysocki, and Zehnder [1998]). Any dynamically convex Reeb flow
on (S3; �0) admits a disk-like global surface of section.

Global sections open the door for tools in two-dimensional dynamics. Here is a strong
application in this direction taken from Hofer, Wysocki, and Zehnder [ibid.]. The return
map of the disk obtained from Theorem 2.8 preserves an area form with finite total area.
Brouwer’s translation theorem provides a periodic orbit simply linked to the boundary of
the disk. If the fixed point corresponding to this orbit is removed then we end up with a
return map on the open annulus. Results of John Franks [1992] complete the proof of the
following statement.

Corollary 2.9 (Hofer, Wysocki, and Zehnder [1998]). Dynamically convex Reeb flows on
(S3; �0) admit either two or infinitely many periodic orbits.

To push Theorem 2.6 beyond dynamical convexity one needs to introduce linking as-
sumptions with certain periodic orbits. This is aligned to Schwartzman-Fried-Sullivan
theory where one makes linking assumptions with invariant measures.

Theorem 2.10 (Hryniewicz, Licata, and Salomão [2015] and Hryniewicz and Salomão
[2011]). A periodic orbit 
 of a Reeb flow on (S3; �0) binds an open book decomposition
whose pages are disk-like global surfaces of section if it matches the following conditions:

(a) 
 is unknotted, has self-linking number �1 and satisfies CZdisk(
) � 3.

(b) 
 is linked to all periodic orbits 
 0 : R/TZ ! S3n
 such that eitherCZdisk(
 0; T ) =

2, or CZdisk(
 0; T ) = 1 and 
 0 is degenerate in period T .

Conversely, if 
 is non-degenerate (in its primitive period) then these assumptions are
necessary for 
 to bound a disk-like global surface of section.

After all these results on the 3-sphere we would like to discuss more general Reeb
flows. Can we recover and generalize Birkhoff’s Theorem 2.1? To make a statement in
this direction we need to recall a few concepts.

The notion of fibered link has a contact topological analogue. If � is a contact form
and L is a transverse link then the right notion of fibered is that L binds an open book
decomposition satisfying

(i) d� is an area form on each page, and

(ii) the boundary orientation induced on L by the pages oriented by d� coincides with
the orientation induced on L by �.
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Such an open book is said to support the contact structure � = ker�. We may call them
Giroux open books because of their fundamental role in the classification of contact struc-
tures due to Giroux [2002]. An open book decomposition is said to be planar if pages
have no genus. A contact structure orients the underlying 3-manifold by � ^ d�, where
� is any defining contact form. A global surface of section will be called positive if the
orientation induced on it by the flow and the ambient orientation turns out to orient its
boundary along the flow.

Theorem 2.11. Let (M; �) be a closed, connected contact 3-manifold. Let the linkL � M

bind a planar Giroux open book decomposition Θ of M . Denote by f 2 H2(M;L;Z)

the class of a page of Θ, and by 
1; : : : ; 
n the components of L. Let the contact form �
define � and realize L as periodic Reeb orbits, and consider the following assertions:

(i) L bounds a positive genus zero global surface of section for the �-Reeb flow repre-
senting the class f .

(ii) L binds a planar Giroux open book whose pages are global surfaces of section for
the �-Reeb flow and represent the class f .

(iii) The following hold:

(a) CZΘ(
k) > 0 for all k.

(b) Every periodic�-Reeb orbit inM nL has non-zero intersection number with f .

Then (iii) ) (ii) ) (i). Moreover, (i) ) (iii) provided a certain C1-generic condition
holds.

In (iii-a) CZΘ(
k) is the Conley-Zehnder index of 
k in its primitive period computed
with a trivialization aligned to the normal of a page of Θ. The genericity needed for (i)
) (iii) is implied by non-degeneracy of the contact form. Theorem 2.11 is fruit of joint
work with Kris Wysocki and will be proved in Hryniewicz, Salomão, and Wysocki [n.d.].
It heavily relies on Siefring’s intersection theory Siefring [2011].

As a first test note that Birkhoff’s Theorem 2.1 follows as a consequence. Indeed, the
unit sphere bundle of S2 has a contact form induced by pulling back the tautological 1-
from on T �S2 via Legendre transform. Reeb flow is geodesic flow. A simple closed
geodesic lifts to two closed Reeb orbits, which form a link that binds a supporting open
book. Pages are annuli that are isotopic to the Birkhoff annulus. Positivity of the curva-
ture and the Gauss-Bonnet theorem imply that (iii-a) and (iii-b) hold. Birkhoff’s theorem
follows.

Theorem 2.11 has applications to Celestial Mechanics. The following statement is the
abstract result needed for these applications. The standard primitive �0 of!0 is symmetric
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by the antipodal map. Identifying antipodal points we obtain RP 3 = S3/f˙1g. The
restriction of �0 to S3 descends to a contact form on RP 3 defining its standard contact
structure, still denoted �0. The Hopf linkel0 = f(x1; y1; x2; y2) 2 S3

j x1 = y1 = 0 or x2 = y2 = 0g

is antipodal symmetric and descends to a transverse link l0 on RP 3. Any transverse link
in (RP 3; �0) transversely isotopic to l0 will be called a Hopf link. Any transverse knot in
(RP 3; �0) transversely isotopic to a component of l0 will be called a Hopf fiber.

Theorem 2.12 (Hryniewicz and Salomão [2016], Hryniewicz, Salomão, and Wysocki
[n.d.]). Consider an arbitrary dynamically convex Reeb flow on (RP 3; �0). Any periodic
orbit which is a Hopf fiber binds an open book decomposition whose pages are rational
disk-like global surfaces of section. Any pair of periodic orbits forming a Hopf link binds
an open book decomposition whose pages are annulus-like global surfaces of section.

These techniques have applications to existence of elliptic periodic orbits. A periodic
orbit is elliptic if all Floquet multipliers lie in the unit circle.

Theorem 2.13 (Hryniewicz and Salomão [2016]). Any Reeb flow on (RP 3; �0) which is
sufficiently C1-close to a dynamically convex Reeb flow admits an elliptic periodic orbit.
This orbit binds a rational open book decomposition whose pages are disk-like global
surfaces of section. Its double cover has Conley-Zehnder index equal to 3.

When combinedwith a result of Harris and Paternain [2008] relating pinched flag curva-
tures to dynamical convexity, Theorem 2.13 refines the main result from
Rademacher [2007].

Corollary 2.14. Consider a Finsler metric on the two-sphere with reversibility r . If all
flag curvatures lie in (r2/(r + 1)2; 1] then there exists an elliptic closed geodesic. More-
over, its velocity vector defines a periodic orbit of the geodesic flow that bounds a rational
disk-like global surface of section. A fixed point of the return map gives a second closed
geodesic.

We end this section with a topological application. We look for characterizations of
contact 3-manifolds in terms of Reeb dynamics, motivated by early fundamental results
of Hofer, Wysocki, and Zehnder [1995a, 1999a].

Identify R4 ' C2 by (x1; y1; x2; y2) ' (z1 = x1 + iy1; z2 = x2 + iy2) and
fix relatively prime integers p � q � 1. The action of Z/pZ generated by the map
(z1; z2) 7! (ei2�/pz1; e

i2�q/pz2) is free on S3, and the lens space L(p; q) is defined as
its orbit space. The 1-form �0 = 1

2

P2
j=1 xjdyj � yjdxj is invariant and descends to a
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contact form on L(p; q). The induced contact structure is called standard, we still denote
it by �0 with no fear of ambiguity.

A knot K on a closed 3-manifoldM is p-unknotted if there is an immersion u : D !

M such that ujDn@D defines a proper embedding D n@D ! M nK, and uj@D defines a p-
coveringmap @D ! K. Themapu is called ap-disk forK. TheHopf fiberS1�0 � S3 is
Z/pZ invariant and descends to the simplest example of a p-unknotted knot in L(p; q).
The case p = 2 has the following geometric meaning: if we identify L(2; 1) with the
unit tangent bundle of the round two-sphere then the velocity vector of a great circle is
2-unknotted.

In the presence of a contact structure a transverse p-unknotted knot has a rational self
linking number. In the examples given above the knots are transverse and their rational
self-linking numbers are equal to �1/p. These notions play a role in the following dy-
namical characterization of standard lens spaces.

Theorem 2.15 (Hofer, Wysocki, and Zehnder [1995a, 1999a] and Hryniewicz, Licata, and
Salomão [2015]). Let (M; �) be a closed connected contact 3-manifold, and let p � 1 be
an integer. Then (M; �) is contactomorphic to some (L(p; q); �0) if, and only if, it carries
a dynamically convex Reeb flow with a p-unknotted self-linking number �1/p periodic
orbit.

This is a special case of more general statements where linking assumptions with cer-
tain periodic orbits are used. The existence of a p-unknotted self-linking number �1/p

periodic orbit implies that (M; �) = (L(p; q); �0)#(M 0; � 0) for some contact 3-manifold
(M 0; � 0). Dynamical convexity forces (M 0; � 0) = (S3; �0).

Using that (L(2; 1); �0) is contactomorphic to the unit sphere bundle of any Finsler met-
ric on S2 we get a geometric application. Consider the set I of immersions S1 ! S2 with
no positive self-tangencies. Two immersions are declared equivalent if they are homotopic
through immersions in I. This defines an equivalence relation ∼ and an element of I/ ∼
will be called a weak flat knot type. This notion is related to Arnold’s J+-theory of plane
curves. Note that a closed geodesic on a Finsler two-sphere has a well-defined weak flat
knot type. Let k8 be the weak flat knot type of a curve with precisely one self-intersection
which is transverse. Clearly there are curves representing k8 with an arbitrarily large num-
ber of self-intersections.

Theorem 2.16 (Hryniewicz and Salomão [2013]). If a Finsler two-sphere with reversibil-
ity r has flag curvatures in (r2/(r + 1)2; 1] then no closed geodesic represents k8.

This statement follows from Theorem 2.15. In fact, the pinching of the curvature forces
dynamical convexity (Harris and Paternain [2008]), and the velocity vector of a closed
geodesic of type k8 is unknotted with self-linking number �1 in the unit sphere bundle.
Since RP 3 is not the 3-sphere we conclude that such a closed geodesic does not exist.
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3 Global surfaces of section applied to systolic geometry

Our first goal in this section is to explain how Birkhoff’s annulus-like global surfaces
of section (Theorem 2.1) allow for the possibility that symplectic and Riemannian meth-
ods be combined to get sharp systolic inequalities on the two-sphere. Our second goal is
to describe how disk-like global surfaces of section can be used to prove a special case
of Viterbo’s conjecture Viterbo [2000]. The results described here were obtained in col-
laboration with Alberto Abbondandolo and Barney Bramham Abbondandolo, Bramham,
Hryniewicz, and Salomão [2017a, 2018, 2017b,c].

The 1-systole sys1(X; g) of a closed non-simply connectedRiemannianmanifold (X; g)
is defined as the length of the shortest non-contractible loop. Systolic geometry has its ori-
gins in the following results.

Theorem 3.1 (Löwner). The inequality (sys1)2/Area � 2/
p
3 holds for every Rieman-

nian metric on the two-torus. Equality is achieved precisely for the flat torus defined by
an hexagonal lattice.

Theorem 3.2 (Pu). The inequality (sys1)2/Area � �/2 holds for every Riemannian met-
ric on RP 2. Equality is achieved precisely for the round geometry.

Systolic geometry is a huge and active field, it developed quite a lot since the results
of Löwner and Pu. We emphasize Gromov’s celebrated paper Gromov [1983].

To include simply connected manifolds one considers the length `min(X; g) of the short-
est non-constant closed geodesic of a closed Riemannian manifold (X; g). The systolic
ratio is defined by

(3) �sys(X; g) =
(`min(X; g))

n

Vol(X; g)
(n = dimX)

The systolic ratio of two-spheres is far from being well understood. An important
statement is due to Croke.

Theorem 3.3 (Croke [1988]). The function g 7! �sys(S
2; g) is bounded among all Rie-

mannian metrics on S2.

In view of Pu’s inequality it is tempting to hope that a round two-sphere (S2; g0)maxi-
mizes the systolic ratio. Its value is �sys(S2; g0) = � . However, the Calabi-Croke sphere
shows that the supremum of �sys(S2; g) is at least 2

p
3 > � . This is a singular metric con-

structed by glueing two equilateral triangles along their sides to form a “flat” two-sphere.
It can be approximated by smooth positively curved metrics with systolic ratio close to
2
p
3.
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Question 1. What is the value of sup(S2;g) �sys(S
2; g)? Are there restrictions on the kinds

of geometry that approximate this supremum?

It has been conjectured that the answer to Question 1 is 2
p
3. In Balacheff [2010]

Balacheff shows that the Calabi-Croke sphere can be seen as some kind of local maximum
if non-smooth metrics with a certain type of singular behavior are included.

A Zoll metric is one such that all geodesic rays are closed and have the same length. It
is interesting that all Zoll metrics on S2 have conjugated geodesic flows, and have systolic
ratio equal to � .

It becomes a natural problem that of understanding the geometry of the function �sys
near (S2; g0). This problem was considered by Babenko and studied by Balacheff. In Bal-
acheff [2006] Balacheff shows that (S2; g0) can be seen as a critical point of �sys and
conjectured that it is a local maximum. We will refer to this conjecture as the Babenko-
Balacheff conjecture.

Contact geometry is a natural set-up to study systolic inequalities. This point of view
was advertised and used by Álvarez Paiva and Balacheff [2014]. Let ˛ be a contact form
on a closed manifold M of dimension 2n � 1 oriented by ˛ ^ (d˛)n�1. We denote by
Tmin(M;˛) the minimal period among closed orbits of the Reeb flow. Existence of closed
orbits is taken for granted. The contact volume of (M;˛) is defined as

Vol(M;˛) :=
Z
M

˛ ^ (d˛)n�1

and the systolic ratio of (M;˛) as

�sys(M;˛) :=
Tmin(M;˛)

n

Vol(M;˛)

Note that �sys(M;˛) is invariant under re-scalings of ˛.
To see the connection to systolic geometry, consider a Riemannian n-manifold (X; g).

The pull-back of the tautological form on T �X by Legendre transform restricts to a contact
form ˛g on the unit sphere bundle T 1X . Since the Reeb flow of ˛g is the geodesic flow of
g, we get Tmin(T 1X; ˛g) = `min(X; g). It turns out that Vol(X; g) and Vol(T 1X; ˛g) are
proportional by a constant depending only on n. Hence
�sys(T

1X; ˛g) = Cn �sys(X; g) for every Riemannian metric g on X , where Cn depends
only on n.

A Zoll contact form is one such that all Reeb trajectories are periodic and have the same
period. These are usually called regular in the literature, but we prefer the term Zoll in
view of the above connection to the Riemannian case.
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A convex body in R2n is a compact convex set with non-empty interior. In Viterbo
[2000] Viterbo conjectured that

(4)
c(K)n

n!Vol(K)
� 1

holds for every convex body K � R2n and every symplectic capacity c, where Vol(K)

denotes euclidean volume. We end by discussing a special case of the conjecture. Let
K be a convex body in (R2n; !0) with smooth and strictly convex boundary, with the
origin in its interior. Denote by � : @K ! R2n the inclusion map, and by �0 the stan-
dard Liouville form �0 = 1

2

Pn
j=1 xjdyj � yjdxj . Then ���0 is a contact form on @K.

In Hofer and Zehnder [1994] it is claimed that the Hofer-Zehnder capacity of K is equal
to Tmin(@K; ���0). In this case (4) is restated as

(5) �sys(@K; �
��0) � 1

which is supposed to be an equality if, and only if, ���0 is Zoll.
Having described our problems, we move on to state some results. Recall that for

ı 2 (0; 1], a positively curved closed Riemannian manifold is said to be ı-pinched if the
minimal and maximal valuesKmin; Kmax of the sectional curvatures satisfyKmin/Kmax �

ı. On a positively curved two-sphere we write `max for the length of the longest closed
geodesic without self-intersections. Note that `max is finite.

Theorem 3.4 (Abbondandolo, Bramham, Hryniewicz, and Salomão [2017a]). If (S2; g)

is ı-pinched for some ı > (4 +
p
7)/8 = 0:8307::: then `min(S2; g)2 � �Area(S2; g) �

`max(S
2; g)2. Moreover, any of these inequalities is an equality if, and only if, the metric

is Zoll.

This first inequality confirms the Babenko-Balacheff conjecture on an explicit and
somewhat large C 2-neighborhood of the round geometry. It seems that the upper bound
involving `max was not known before.

We discuss some related problems before explaining the role of global surfaces of sec-
tion in the proof of Theorem 3.4. The pinching constant ı seems to be a helpful parameter.
For instance, one could consider the non-increasing bounded (Theorem 3.3) function

� : (0; 1] ! R �(ı) = supf�sys(S
2; g) j (S2; g) is ı-pinchedg

to study the positively curved case.

Question 2. Is it true that �(1/4) = �? What does the graph of �(ı) look like?

The Calabi-Croke sphere shows that limı!0+ �(ı) � 2
p
3. Theorem 3.4 implies that

�(ı) = � for all ı > (4 +
p
7)/8. One must try to understand among which metrics
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does the round metric maximize systolic ratio. Assuming positive curvature it might be
reasonable to expect that inffı j �(ı) = �g � 1/4.

If curvature assumptions are dropped then the situation might be much harder. What
about symmetry assumptions? Here is a result in this direction that answers a question by
Álvarez-Paiva and Balacheff.

Theorem 3.5. Inequality �sys � � holds for every sphere of revolution, with equality
precise when the metric is Zoll.

Global surfaces of section show up in the proofs of theorems 3.4 and 3.5 to connect sys-
tolic inequalities to a quantitative fixed point theorem for symplectic maps of the annulus.
We outline the proof to make this point precise.

Let (S2; g) be ı-pinched. If ı > 1/4 then `min is only realized by simple closed
geodesics. Let 
 be a closed geodesic of length `min. By Theorem 2.1 the Birkhoff annu-
lus A
 is a global surface of section. Let � be the 1-form on A
 given by restricting the
contact form ˛g . Then d� is an area form on the interior ofA
 , and vanishes on @A
 . The
total d�-area of A
 is 2`min.

The first return map and the first return time � are defined on the interior ofA
 , but it
turns out that they extend smoothly to A
 . Moreover,  preserves boundary components.
Santaló’s formula reads

(6) 2�Area(S2; g) =

Z
T 1S2

˛g ^ d˛g =

Z
A


� d�

Since  preserves the 2-form d�, it follows that  �� � � is closed.
We now need to consider lifts of  to the universal covering of A
 . If  admits a lift

in the kernel of the FLUX homomorphism then  �� � � is exact. The unique primitive
� of  �� � � satisfying

�(p) =

Z  (p)

p

� 8p 2 @A


is called the action of  . Here the integral is taken along the boundary according to the
lift with zero FLUX. The Calabi invariant is defined as

CAL( ) =
1R

A

d�

Z
A


� d� =
1

2`min

Z
A


� d�

Of course, we need to worry about whether  admits a lift of zero FLUX, but this follows
from reversibility of the geodesic flow.

It is a very general fact that � is also a primitive of  �� � �. Toponogov’s theorem
proves that if ı > 1/4 then

(7) � = � + `min
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Combining (7) with (6) we finally get

(8) 2�Area(S2; g) = 2(`min)
2 + 2`minCAL( )

Equations (7) and (8) should be seen as some kind of dictionary between geometry and
dynamics: action corresponds to length, Calabi invariant corresponds to area.

We are now in position to make the link to the quantitative fixed point theorem and
conclude the argument. Roughly speaking, the theorem states:

If  admits a generating function (of a specific kind), CAL( ) � 0 and  ¤ id , then
there exists a fixed point p0 satisfying �(p0) < 0.

Arguing indirectly, suppose that either �Area < (`min)
2, or �Area = (`min)

2 and
g is not Zoll. It follows from (8) and a little more work that either CAL( ) < 0, or
CAL( ) = 0 and  is not the identity. Toponogov’s theorem comes into play again to
show that  admits the required generating function provided ı > (4 +

p
7)/8. The

fixed point theorem applies to give a fixed point of negative action. By (7) this fixed point
corresponds to a closed geodesic of length strictly smaller than `min. This contradiction
finishes the proof.

The above argument reveals how global surfaces of section can serve as bridge between
systolic geometry and symplectic dynamics. The same strategy proves a special case of
Viterbo’s conjecture in dimension 4.

Theorem 3.6 (Abbondandolo, Bramham, Hryniewicz, and Salomão [2018]). There exists
a C 3-neighborhood U of the space of Zoll contact forms on S3 such that ˛ 2 U )

�sys(S
3; ˛) � 1 with equality if, only if, ˛ is Zoll.

The proof again strongly relies on global surfaces of sections. Namely, if a contact
form is C 3-close to the standard contact form �0 then its Reeb flow admits a disk-like
global surface of section whose first return map extends up to the boundary and is C 1-
close to the identity. We have a dictionary between maps and flows just as in the proof of
Theorem 3.4: contact volume corresponds to Calabi invariant, return time corresponds to
action. The quantitative fixed point theorem applies to give the desired conclusion.

One could see the constants in sharp systolic inequalities for Riemannian surfaces as
invariants. Similarly, one could hope to construct contact invariants from sharp systolic
inequalities for contact forms. The following statement shows that this is not possible in
dimension three: systolic inequalities are not purely contact topological phenomena. For
example, inequalities such as (5) must depend on the convexity assumption.

Theorem 3.7 (Abbondandolo, Bramham, Hryniewicz, and Salomão [2018, 2017b]). For
every co-orientable contact 3-manifold (M; �) and every c > 0 there exists a contact form
˛ onM satisfying � = ker˛ and �sys(M;˛) > c.
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Hofer, Wysocki, and Zehnder [1999a, 1998] introduced the notion of dynamically con-
vex contact forms, see Section 2 for a detailed discussion. It plays a crucial role in the
construction of global surfaces of section (theorems 2.6, 2.8). Dynamical convexity is
automatically satisfied on the boundary of a smooth convex body with strictly convex
boundary. It becomes relevant to decide whether (5) holds for dynamically convex con-
tact forms on S3.

Theorem 3.8 (Abbondandolo, Bramham, Hryniewicz, and Salomão [2017c]). Given any
� > 0 there is a dynamically convex contact form ˛ on S3 such that �sys(S3; ˛) > 2 � �.

A narrow connection between high systolic ratios and negativity of Conley-Zehnder
indices is quantified in Abbondandolo, Bramham, Hryniewicz, and Salomão [ibid.].

Observe that Theorem 3.8 implies that either Viterbo’s conjecture is not true, or there
exists a dynamically convex contact form on S3 whose Reeb flow is not conjugated to the
Reeb flow on a strictly convex hypersurface of (R4; !0). Unfortunately we can not decide
which alternative holds. It also proves that there are smooth compact star-shaped domains
U in (R4; !0) with the following property: the value c(U ) of any capacity realized as the
action of some closed characteristic on @U is strictly larger than the Gromov width of U .

Global surfaces of section continue to play essential role in the proofs of Theorem 3.7
and Theorem 3.8. Both start by constructing global sections for certain Reeb flows with
well-controlled return maps. Then the Reeb flows are modified by carefully changing the
return maps in order to make the systolic ratio increase.

4 The planar circular restricted three-body problem

The three-body problem is that of understanding the motion of three massive particles
which attract each other according to Newton’s law of gravitation. Some simplifying as-
sumptions turn this problem into a two-degree-of-freedom Hamiltonian system:

• The three particles move in a fixed plane.

• The mass of the third body (satellite) is neglected and so the first two particles
(primaries) move according to the two-body problem.

• The primaries move on circular trajectories about their center of mass.

In inertial coordinates where the center of mass of the primaries rests at the origin one
gets z1 = r1e

i!t and z2 = �r2e
i!t for some !, where r1; r2 > 0 satisfym1r1�m2r2 = 0

and (r1 + r2)3!2 = m1 +m2. It is harmless to assume that ! = r1 + r2 = m1 +m2 = 1

which makes the mass ratio � := m1 = r2 2 (0; 1) the unique parameter of the system.
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In rotating (non-inertial) coordinates the position q(t) 2 C of the satellite relative to
the second primary is given by z3(t) = (q(t) � �)eit , from where it follows that

(9) q̈ + 2i q̇ � (q � �) = ��
q � 1

jq � 1j3
� (1 � �)

q

jqj3
:

As is well known, if we set p = q̇ + i(q � �) and consider

(10) H�(q; p) =
1

2
jpj

2 + hq � �; ipi �
�

jq � 1j
�

1 � �

jqj
;

then (9) becomes Hamilton’s equations

(11) q̇ = rpH�; ṗ = �rqH�:

The function H� has five critical points. A sublevel set below its lowest critical value
defines three Hill regions in the configuration plane, two of which are bounded while the
third is a neighborhood of 1. Each bounded Hill region is topologically a punctured disk
and contains a primary, namely, one of them is a punctured neighborhood of the origin
and the other is a punctured neighborhood of 1. The boundaries of the Hill regions are
called ovals of zero velocity, since there we have (q��) = �ip , q̇ = 0. From now on
we restrict to subcritical cases, i.e. energy levelsH� = �c where �c is below the lowest
critical value ofH�. We focus on the bounded Hill region near the origin.

Following Poincaré, mathematicians first tried to understand the limiting behavior as
� ! 0+ or as � ! 1�. The limit as � ! 0+ is in some ways better behaved than
the limit � ! 1�, but sometimes it is just the other way around. In the limit � = 0 the
system describes the so-called rotating Kepler problem, where all mass is concentrated at
the origin. The boundary of the bounded Hill region about the origin converges to a circle
of definite radius. As � ! 1� the bounded Hill region about the origin collapses, and we
face a somewhat more singular situation.

Definition 4.1. A retrograde orbit is a periodic orbit t 7! (q(t); p(t)) such that q(t) is
in the Hill region about the origin, and describes a curve without self-intersections with
winding number �1 around the origin. Analogously, a direct orbit is a periodic orbit
t 7! (q(t); p(t)) such that q(t) is in the Hill region about the origin, and describes a
curve without self-intersections with winding number +1 around the origin.

The difficulty in finding direct orbits led Birkhoff to consider the following strategy
in Birkhoff [1914, section 19]. Firstly one should try to find a disk-like global surface of
section bounded by a (doubly covered) retrograde orbit. For this to make sense collision
orbits need to be regularized. Secondly, due to preservation of an area form with finite
total area, one can apply Brouwer’s translation theorem to the first return map and find
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a fixed point that should correspond to a direct orbit. Two main difficulties are: (1) for
an arbitrary mass ratio it is hard to find global surfaces of section, and (2) it might be
hard to check that the fixed point corresponds to a direct orbit. The following is extracted
from Birkhoff [ibid., section 19]:

“This state of affairs seems to me to make it probable that the restricted problem of
three bodies admit of reduction to the transformation of a discoid into itself as long as
there is a closed oval of zero velocity about J, and that in consequence there always exists
at least one direct periodic orbit of simple type.”

More recently this has been called a conjecture, which perhaps should be read as fol-
lowing: For any value of � and any subcritical energy value, there must be a way of
finding a disk-like global surface of section in order to understand the movement of the
satellite inside the Hill region about the origin. To implement the strategy of Birkhoff
this disk should be spanned by the retrograde orbit, in particular fixed points could be
good candidates for direct orbits. Again, all this only makes sense if collision orbits are
regularized.

Note that the smallest critical value of H� converges to �
3
2
both when � ! 0+ or

� ! 1�. Here is a good point to state and discuss our result concerning Birkhoff’s
conjecture.

Theorem 4.2. For every c > 3
2
there exists � > 0 such that the following holds.

(a) If 1 � � < � and collisions are regularized via Levi-Civita regularization, then
the double cover of every retrograde orbit inside the Hill region about the origin
bounds a disk-like global surface of section. Moreover, if we quotient by antipodal
symmetry then this disk descends to a rational disk-like global surface of section.

(b) If � < � and collisions are regularized via Moser regularization, then every retro-
grade orbit inside the Hill region about the origin bounds a rational disk-like global
surface of section.

Results of Albers, Fish, Frauenfelder, Hofer and van Koert from Albers, Fish, Frauen-
felder, Hofer, and van Koert [2012] imply that if 1 � � is small enough then Levi-Civita
regularization lifts the Hamiltonian flow on the corresponding component ofH�1

� (�c) to
the characteristic flow on a strictly convex hypersurface eΣ�;c , up to time reparametriza-
tion. Moreover, eΣ�;c is antipodal symmetric and each state is represented twice as a pair
of antipodal points. Results from Hofer, Wysocki, and Zehnder [1998] apply and give
disk-like global surfaces of section in eΣ�;c . Statement (a) above says that there is such a
global section in eΣ�;c spanned by the lift of every doubly covered retrograde orbit, and
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that it descends to a global section in the quotient Σ�;c = eΣ�;c/f˙1g. If � = 0 then
Moser regularization applies to the rotating Kepler problem to compactify the Hamilto-
nian flow on H�1

� (�c) to the characteristic flow on a fiberwise starshaped hypersurface
Σ�;c inside TS2, up to time reparametrization. A proof of this statement can be found in
the paper Albers, Frauenfelder, van Koert, and Paternain [2012] where the contact-type
property of energy levels of the PCR3BP is studied. Again we have Σ�;c ' RP 3. State-
ment (b) above says that every retrograde orbit bounds a rational disk-like global surface
of section in Σ�;c . A proof in this case would rely on the dynamical convexity obtained
in Albers, Fish, Frauenfelder, and van Koert [2013] for � = 0. Hence, for � close to
0 or 1 we can always apply Theorem 2.13 and obtain a pair of periodic orbits which are
2-unknotted and have self-linking number �1/2. These orbits are transversely isotopic to
(a quotient of) a Hopf link. Theorem 2.12 can also be applied and an annulus-like global
surface of section is obtained.

We end with a sketch of proof of (a) in Theorem 4.2. Fix c > 3/2. The component
Σ̇�;c � H�1

� (�c) which projects to the Hill region surrounding 0 2 C contains collision
orbits. These orbits are regularized with the aid of Levi-Civita coordinates (v; u) 2 C �C
given by q = 2v2 and p = �

u
v̄
, which are symplectic up to a constant factor. The

regularized Hamiltonian is

(12)
K�;c(v; u) := jvj

2(H�(p; q) + c)

=
1

2
juj

2 + 2jvj
2

hu; ivi � �=(uv) �
1 � �

2
� �

jvj2

j2v2 � 1j
+ cjvj

2;

and there is a two-to-one correspondence between a centrally symmetric sphere-like com-
ponent eΣ�;c � K�1

�;c(0) and Σ̇�;c , up to collisions.
Now we consider the re-scaled coordinates v = v̂

p
1 � � and u = û

p
1 � �; with

Hamiltonian

(13)
K̂�;c(v̂; û) :=

1

1 � �
K�;c(v; u)

=
1

2
jûj

2 + 2(1 � �)jv̂j
2

hû; i v̂i � �=(ûv̂) �
1

2
� �

jv̂j2

j2(1 � �)v̂2 � 1j
+ cjv̂j

2:

The component eΣ�;c � K�1
�;c(0) gets re-scaled and we denote it by Σ̂�;c � K̂�1

�;c(0).
Taking � ! 1� we see from (13) that Σ̂�;c converges in the C1 topology to a hyper-

surface satisfying

(14)
1

2
jûj

2
� =(ûv̂) + (c � 1)jv̂j

2 =
1

2
:
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In order to have a better picture of the hypersurface in (14), we denote, for simplicity,
v̂ = v̂1 + i v̂2 and û = û1 + i û2. Then (14) is equivalent to

(15) (û1 � v̂2)
2 + (û2 � v̂1)

2 + 2

�
c �

3

2

�
(v̂21 + v̂

2
2) = 1:

Taking new coordinates (w = w1 + iw2; z = z1 + iz2) 2 C � C with w1 = û1 � v̂2,
w2 = û2 � v̂1 and z = v̂

p
2c � 3, which are symplectic up to a constant factor, we see

that (15) is equivalent to w2
1 + w

2
2 + z

2
1 + z22 = 1:

We conclude that the regularized Hamiltonian flow on Σ̂�;c converges smoothly to the
standard Reeb flow on (S3; �0) as � ! 1� up to reparametrizations. Its orbits are the
Hopf fibers. Since the projection of the retrograde orbit winds once around 0 2 C in
q-coordinates, it is doubly covered by a simple closed orbit P�;c � eΣ�;c , which in z-
coordinates winds once around 0 2 C. Hence, P�;c converges smoothly to a Hopf fiber
in (w; z) and, in particular, it is unknotted and has self-linking number�1. The dynamical
convexity of the Hamiltonian flow on Σ̂�;c and Theorem 2.6 imply that it is the boundary
of a disk-like global surface of section. In view of Theorem 2.12, we may assume that this
global section descends to a rational disk-like global section on Σ�;c = eΣ�;c/f˙1g.

5 Transverse foliations

We discuss the idea of transverse foliations adapted to a 3-dimensional flow based on
the concepts introduced by Hofer, Wysocki and Zehnder in Hofer, Wysocki, and Zehnder
[2003]. This generalizes the notion of open books and global sections.

Definition 5.1. Let �t be a smooth flow on an oriented closed 3-manifoldM . A transverse
foliation for �t is formed by:

(i) A finite set P of primitive periodic orbits of �t , called binding orbits.

(ii) A smooth foliation of M n [P2PP by properly embedded surfaces. Every leaf Σ̇
is transverse to �t , has an orientation induced by �t and M , and there exists a
compact embedded surface Σ ,! M so that Σ̇ = Σ n @Σ and @Σ is a union of
components of [P2PP . An end z of Σ̇ is called a puncture. To each puncture z
there is an associated componentPz 2 P of @Σ called the asymptotic limit of Σ̇ at z.
A puncture z of Σ̇ is called positive if the orientation on Pz induced by Σ̇ coincides
with the orientation induced by �t . Otherwise z is called negative.

The following theorem is a seminal result on the existence of transverse foliations for
Reeb flows on the tight 3-sphere. It is based on pseudo-holomorphic curve theory in
symplectic cobordisms.
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Theorem5.2 (Hofer,Wysocki, and Zehnder [2003]). Let�t be a nondegenerate Reeb flow
on (S3; �0). Then �t admits a transverse foliation. The binding orbits have self-linking
number �1 and their Conley–Zehnder indices are 1, 2 or 3. Every leaf Σ̇ is a punctured
sphere and has precisely one positive puncture. One of the following conditions holds:

• The asymptotic limit of Σ̇ at its positive puncture has Conley-Zehnder index 3 and
the asymptotic limit of Σ̇ at any negative puncture has Conley-Zehnder index 1 or
2. There exists at most one negative puncture whose asymptotic limit has Conley-
Zehnder index 2.

• The asymptotic limit of Σ̇ at its positive puncture has Conley-Zehnder index 2 and
the asymptotic limit of Σ̇ at any negative puncture has Conley-Zehnder index 1.

The open books with disk-like pages constructed in Hofer, Wysocki, and Zehnder
[1995a, 1999a, 1998], Hryniewicz [2012, 2014], Hryniewicz, Licata, and Salomão [2015],
and Hryniewicz and Salomão [2011] for Reeb flows on (S3; �0) are particular cases of
transverse foliations with a single binding orbit. The main obstruction for the existence of
such an open book with a prescribed binding orbit P is the presence of closed orbits with
Conley-Zehnder index 2 which are unlinked to P . One particular transverse foliation of
interest which deals with such situations is the so called 3-2-3 foliation.

Definition 5.3. A 3-2-3 foliation for a Reeb flow �t on (S3; �0) is a transverse foliation
for �t with precisely three binding orbits P3, P2 and P 0

3. They are unknotted, mutually
unlinked and their respective Conley-Zehnder indices are 3; 2 and 3. The leaves are punc-
tured spheres and consist of

• A pair of planes U1 and U2, both asymptotic to P2 at their positive punctures.

• A cylinder V asymptotic to P3 at its positive puncture and to P2 at its negative
puncture; a cylinder V 0 asymptotic to P 0

3 at its positive puncture and to P2 at its
negative puncture.

• A one parameter family of planes asymptotic to P3 at their positive punctures; a
one parameter family of planes asymptotic to P 0

3 at their positive punctures.

The 3-2-3 foliations are the natural objects to consider if one studies Hamiltonian dy-
namics near certain critical energy levels.

Take a HamiltonianH on R4 which has a critical point p 2 H�1(0) with Morse index
1 and of saddle-center type. Its center manifold is foliated by the so called Lyapunoff
orbits P2;E � H�1(E); E > 0 small. Each one of them is unknotted, hyperbolic inside
its energy level and has Conley-Zehnder index 2.

Assume that for every E < 0 the energy levelH�1(E) contains two sphere-like com-
ponents SE and S 0

E which develop a common singularity at p as E ! 0�. This means



GLOBAL SURFACES OF SECTION FOR REEB FLOWS 979

that SE converges in the Hausdorff topology to S0 � H�1(0) as E ! 0�, where S0 is
homeomorphic to the 3-sphere and contains p as its unique singularity. The analog holds
for S 0

E . Therefore, S0 \ S 0
0 = fpg and, for E > 0 small,H�1(E) contains a sphere-like

componentWE close to S0 [ S 0
0. We observe thatWE contains the Lyapunoff orbit P2;E

and is in correspondence with the connected sum of SE and S 0
E .

Definition 5.4. We say that S0 is strictly convex if S0 bounds a convex domain in R4 and
all the sectional curvatures of S0 n fpg are positive. We say that S 0

0 is strictly convex if
analogous conditions hold.

The following theorem is inspired by results in Hofer, Wysocki, and Zehnder [2003].

Theorem 5.5 (de Paulo and Salomão [2018, n.d.]). IfH is real analytic and both S0 and
S 0
0 are strictly convex then, for every E > 0 small, the Hamiltonian flow on the sphere-

like componentWE � H�1(E) admits a 3-2-3 foliation. The Lyapunoff orbit P2;E is one
of the binding orbits and there exist infinitely many periodic orbits and infinitely many
homoclinics to P2;E in WE .

One difficulty in proving Theorem 5.5 is that there are no non-degeneracy assumptions
of any kind. A criterium for checking strict convexity of the subsets S0 and S 0

0 is found
in Salomão [2003].

The notion of 3-2-3 foliation is naturally extended to Reeb flows on connected sums
RP 3#RP 3. In this case the binding orbits P3 and P 0

3 are non-contractible and the fam-
ilies of planes are asymptotic to their respective double covers. The existence of 3-2-3
foliations for Reeb flows on RP 3#RP 3 is still an object of study and it is conjectured that
they exist for some Hamiltonians in celestial mechanics such as the Euler’s problem of
two centers in the plane and the planar circular restricted three body problem for energies
slightly above the first Lagrange value.

A more general theory of transverse foliations for Reeb flows still needs to be devel-
oped. If one wishes to use holomorphic curves then one step is implemented by Fish and
Siefring [2013], who showed persistence under connected sums. Transverse foliations on
mapping tori of disk-maps were constructed by Bramham [2015a,b] to study questions
about rigidity of pseudo-rotations.

6 A Poincaré-Birkhoff theorem for tight Reeb flows on S3

Poincaré’s last geometric theorem is nowadays known as the Poincaré-Birkhoff theorem.
In its simplest form it is a statement about fixed points of area-preserving annulus homeo-
morphisms f : R/Z� [0; 1] ! R/Z� [0; 1] preserving orientation and boundary compo-
nents. Themap f can be lifted to the universal coveringR�[0; 1]. Let us denote projection
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onto the first coordinate by p : R � [0; 1] ! R. Then f is said to satisfy a twist condition
on the boundary if it admits a lift to the universal covering F : R � [0; 1] ! R � [0; 1]

such that the rotation numbers

lim
n!1

p ı F n(x; 0)

n
lim
n!1

p ı F n(x; 1)

n

differ. We call the open interval I bounded by these numbers the twist interval.

Theorem 6.1 (Poincaré-Birkhoff Birkhoff [1913] and Poincaré [1912]). If I \ Z ¤ ¿
then f has at least two fixed points.

Poincaré [1912] found annulus-like global surfaces of section for the PCR3BP for en-
ergies below the lowest critical value of the Hamiltonian, and when the mass is almost all
concentrated in the primary around which the satellite moves. The boundary orbits form a
Hopf link in the three-sphere. For generic values of the parameters, the Poincaré-Birkhoff
theorem applies to the associated return map and proves the existence of infinitely many
periodic orbits.

One also finds such pair of orbits for the Hamiltonian flow on a smooth, compact and
strictly convex energy level inside (R4; !0). In fact, the fundamental result of Hofer,
Wysocki, and Zehnder [1998] provides an unknotted periodic orbit P0 that bounds a disk-
like global surface of section. Brouwer’s translation theorem yields a second periodic
orbit P1 simply linked to P0, but much more can be said. The orbit P0 is the binding of
an open book decomposition whose pages are disk-like global surfaces of section. It turns
out that the following statement follows: the flow is smoothly conjugated to a Reeb flow
on (S3; �0) in such a way that P0 [ P1 corresponds to a link transversely isotopic to the
standard Hopf linkel0 = f(x1; y1; x2; y2) 2 S3

j x1 = y1 = 0 or x2 = y2 = 0g

If the fixed point corresponding toP1 is removed from the disk-like global section spanned
byP0, then we obtain a diffeomorphism of the open annulus that preserves a standard area-
form and can be continuously extended to the boundary. It is interesting to study the twist
condition for this map. We need to consider the transverse rotation numbers �0 and �1 of
P0 and P1 with respect to Seifert surfaces (disks). In terms of Conley-Zehnder indices,
these can be read as follows:

(16) 1 + �0 = lim
n!1

CZ(P n0 )
2n

1 + �1 = lim
n!1

CZ(P n1 )
2n

Here CZ(P ni ) denotes the Conley-Zehnder index of the n-iterated orbit Pi computed with
respect to a global trivialization of �0. The open book singles out a lift of the map to
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the strip such that the rotation numbers on the boundary are precisely 1/�0 and �1. The
Poincaré-Birkhoff theorem proves the following non-trivial statement: If �1 ¤ 1/�0 then
there are infinitely many periodic orbits in the complement of P0 [ P1. These orbits are
distinguished by their homotopy classes in the complement of P0 [ P1.

Onemotivation for the main result of this section is to study the possibility of extending
the above discussion to situations where neither P0 nor P1 bound global sections. Before
the statement we need some notation. The termHopf linkwill be referred to any transverse
link in (S3; �0) that is transversely isotopic to the standard Hopf linkel0. Given non-zero
vectors u; v 2 R2 in the complement of the third quadrant, we write u > v (or v < u) if
the argument of u is larger than that of v in the counter-clockwise sense.

Theorem6.2 (Hryniewicz,Momin, and Salomão [2015]). Consider a Reeb flow on (S3; �0)

that admits a pair of periodic orbits P0; P1 forming a Hopf link. Denote by �0; �1 their
transverse rotation numbers computed with respect to Seifert surfaces. If (p; q) is a pair
of relatively prime integers satisfying

(�0; 1) < (p; q) < (1; �1) or (1; �1) < (p; q) < (�0; 1)

then there is a periodic orbit P � S3 n (P0 [ P1) such that p = link(P;P0) and q =

link(P;P1).

The main tools in the proof are the contact homology theory introduced by Momin
[2011] and the intersection theory of punctured holomorphic curves in dimension four
developed by Siefring [2011].

Another source of motivation for Theorem 6.2 is a result due to Angenent [2005] which
we now recall. It concerns geodesic flows on Riemannian two-spheres. Let g be a Rie-
mannian metric on S2, and let 
 : R ! S2 be a closed geodesic of lengthL parametrized
with unit speed. In particular 
(t) is L-periodic. Jacobi fields along 
 are characterized
by the second order ODE y00(t) = �K(
(t))y(t) where K denotes the Gaussian curva-
ture. Given a (non-trivial) solution y(t) we can write y0(t) + iy(t) = r(t)ei�(t) in polar
coordinates. The Poincaré inverse rotation number of 
 is defined as

(17) �(
) =
L

2�
lim

t!+1

�(t)

t

The special case of the results from Angenent [ibid.] that we would like to emphasize
concerns the case when 
 is simple, that is, 
 j[0;L) is injective. Denote by n(t) a normal
vector along 
(t). Given relatively prime integers p, q ¤ 0 and � > 0 small, a (p; q)-
satellite about 
 is the equivalence class of the immersion ˛� : R/Z ! S2

(18) ˛�(t) = exp
(qtL) (� sin(2�pt) n(qtL)) :
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Two immersions are equivalent if they are homotopic through immersions, but self-tangencies
and tangencies with 
 are not allowed.

Theorem 6.3 (Angenent [2005]). If a rational number p0/q0 strictly between �(
) and 1
is written in lowest terms then there exists a closed geodesic which is a (p0; q0)-satellite
about 
 .

Let us explain the connection between theorems 6.2 and 6.3. The unit tangent bundle
T 1S2 = fv 2 TS2 j g(v; v) = 1g admits a contact form �g whose Reeb flow coincides
with the geodesic flow. It is given by the restriction to T 1S2 of the pull-back of the
tautological 1-form on T �S2 by the associated Legendre transform. TheL-periodic orbits

̇(t) and �
̇(�t) form a link l
 on T 1S2 transverse to the contact structure ker�g . There
exists a double cover S3 ! T 1S2 that pulls back the Reeb flow of �g to a Reeb flow
on (S3; �0). Moreover, it pulls back the link l
 to a Hopf link consisting of periodic
orbits P0 [ P1 just like in the statement of Theorem 6.2. Note that �(
) ¤ 1 forces the
vectors (�0 = 2�(
) � 1; 1) and (1; �1 = 2�(
) � 1) to span a non-empty sector. Then
Theorem 6.2 captures the contractible (p0; q0)-satellites of Theorem 6.3 up to homotopy,
and a refinement for Reeb flows on the standard RP 3 (Hryniewicz, Momin, and Salomão
[2015, Theorem 1.9]) captures all the (p0; q0)-satellites of Theorem 6.3 up to homotopy.
Of course, we do not hope to capture geodesics up to equivalence of satellites because
Theorem 6.2 deals with more general flows than those dealt by Theorem 6.3. For instance,
it handles non-reversible Finsler geodesic flows with a pair of closed geodesics homotopic
to a pair of embedded loops through immersions without positive tangencies. In particular,
it covers reversible Finsler metrics with a simple closed geodesic.

Finally, a pair of closed Reeb orbits forming a Hopf link is not known to exist in general
for a Reeb flow on (S3; �0). Each of its components is unknotted, transverse to �0 and has
self-linking number�1; we refer to such a closed curve as a Hopf fiber. The existence of at
least one closed Reeb orbit on (S3; �0) which is a Hopf fiber is proved in Hofer, Wysocki,
and Zehnder [1996b]; this is a difficult result. If P is a nondegenerate closed orbit which
bounds a disk-like global surface of section then P is a Hopf fiber and its rotation number
is > 1. Moreover, a fixed point of the first return map, assured by Brouwer’s translation
theorem, determines a closed orbit P 0 which forms a Hopf link with P . One may ask
whether every closed orbit which is a Hopf fiber and has rotation number > 1 admits
another closed orbit forming together a Hopf link. In that direction we have the following
result which may be seen as a version of Brouwer’s translation theorem for Reeb flows on
(S3; �0).

Theorem 6.4 (Hryniewicz, Momin, and Salomão [n.d.]). Assume that a Reeb flow on
(S3; �0) admits a closed Reeb orbit P which is a Hopf fiber. If the transverse rotation
number �(P ) belongs to (1;+1) n

˚
1 + 1

k
: k 2 N

	
then there exists a closed orbit P 0

simply linked to P .
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The closed orbit P 0 in Theorem 6.4 is not even known to be unknotted.

A Closed geodesics on a Riemannian two-sphere

The purpose of this appendix is to describe the steps of a new proof of the existence of
infinitely many closed geodesics on any Riemannian two-sphere. The argument is based
on a combination of Angenent’s theorem (Theorem 6.3) and the work of Hingston [1993],
it serves as an alternative to the classical proof that combines results of Victor Bangert
and John Franks. We recommend Oancea [2015] for an account of the closed geodesic
problem on Riemannian manifolds.

Theorem A.1 (Bangert [1993] and Franks [1992]). Every Riemannian metric on S2 ad-
mits infinitely many closed geodesics.

We start with a remark from Hingston [1993]. The space of embedded loops in the two-
sphere carries a 3-dimensional homology classmodulo short loops. One can useGrayson’s
curve shortening flow to run a min-max argument over this class and obtain a special
simple closed geodesic 
�. The crucial fact here is that Grayson’s curve shortening flow
preserves the property of being embedded. The sum of the Morse index and the nullity of

� is larger than or equal to 3, in particular �(
�) � 1.

If �(
�) = 1 (Hingston’s non-rotating case) then 
� is a very special critical point of the
energy functional. The growth of Morse indices under iterations of 
� follows a specific
pattern. Index plus nullity of 
� is equal to 3, and if 
� is isolated then its local homology
is non-trivial in degree 3. If every iterate of 
� is isolated then the analysis of Hingston
[ibid.] shows that there are infinitely many closed geodesics. If some iterate 
� is not
isolated then already there are infinitely many closed geodesics. Hence we are left with
the case �(
�) > 1, which is covered by Theorem 6.3. Theorem A.1 is proved. The case
�(
�) > 1 is handled independently by Theorem 6.2.

The work of Hingston [ibid.] triggered many developments, including a proof of the
Conley conjecture for standard symplectic tori in Hingston [2009]. In Ginzburg [2010]
used Floer homology and Hingston’s methods to prove the Conley conjecture for aespher-
ical symplectic manifolds.
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STABILITY CONDITIONS IN SYMPLECTIC TOPOLOGY
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Abstract

We discuss potential (largely speculative) applications of Bridgeland’s theory of
stability conditions to symplectic mapping class groups.

1 Introduction

A symplectic manifold (X;!) which is closed or convex at infinity has a Fukaya category
F(X;!), which packages the algebraic information held by moduli spaces of holomorphic
discs inX with Lagrangian boundary conditions Seidel [2008] and Fukaya, Oh, Ohta, and
Ono [2009]. The associated category of perfect modulesD�F(X;!) = F(X;!)perf is a
triangulated category, linear over the Novikov fieldΛ. The category isZ-gradedwhenever
2c1(X) = 0.

Any Z-graded triangulated category C has an associated complex manifold Stab(C)
of stability conditions Bridgeland [2007], which carries an action of the group Auteq(C)
of triangulated autoequivalences of C. Computation of the space of stability conditions
remains challenging, but a number of instructive examples are now available, and it is
reasonable to wonder what the theory of stability conditions might say about symplec-
tic topology. One direction in which one can hope for non-trivial applications concerns
global structural features of the symplectic mapping class group. The existing theory will
need substantial development for this to bear fruit, so a survey risks being quixotic, but
it provides a vantage-point from which to interpret some recent activity Bridgeland and
Smith [2015], Smith [2015], and Sheridan and Smith [2017b].
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2 Mapping class groups

2.1 Surfaces. Consider a closed oriented surface Σg of genus g. The mapping class
group Γg = �0Diff(Σg) has been the focus of an enormous amount of attention, from
many viewpoints. Here are a few of its salient features, see Farb and Margalit [2012],
Calegari [2009], and Morita [2007] for detailed references.

1. Γg is finitely presented. The action on homology defines a natural surjection Γg !

Sp2g(Z) with kernel the Torelli group Ig ; the latter is torsion-free, infinitely gener-
ated when g = 2, finitely generated (but not known to be finitely presented) when
g > 2.

2. Γg has finite rational cohomological dimension. It has finitely many conjugacy
classes of finite subgroups; is generated by finitely many torsion elements; satis-
fies the Tits alternative; and is residually finite, in particular contains no non-trivial
divisible element.

3. There is a dynamical classification of mapping classes: given simple closed curves
˛; ˇ onΣ, the geometric intersection numbers �(˛; �n(ˇ)) are either periodic, grow
linearly or grow exponentially. A random walk on the mapping class group will
almost surely end on the last case. Γg has non-trivial quasi-morphisms (and scl),
hence does not obey a law.

Here scl denotes stable commutator length. Recall that a group G obeys a law if there
is a word w in a free group F for which every homomorphism F ! G sends w 7! id.
(Abelian, nilpotent and solvable groups obey laws; groups with non-vanishing scl do not.)
It is worth pointing out that plenty of elementary things remain unknown: must a subgroup
of Ig generated by two elements be commutative or free?

Broadly speaking, the above results might be divided into three categories: results (fi-
nite presentability, non-existence of non-trivial divisible elements, etc) which underscore
the similarities between the mapping class group and arithmetic groups; results of a gen-
eral group-theoretic or finiteness nature, in the vein of geometric group theory; and results
(scl , behaviour of random walks) of a more dynamical flavour, in some cases connecting
via geometric intersection numbers rather directly to Floer theory. These three directions
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suggest broad classes of question one might ask about the (symplectic) mapping class
groups of higher-dimensional manifolds.

Much of what we know about Γg comes from the fact that, although not a hyperbolic
group when g > 1 (it contains free abelian subgroups of rank 2g � 1 > 1), it acts on
geometrically meaningful spaces which are non-positively-curved in a suitable sense: Te-
ichmüller space, on the one hand, and the complex of curves on another (the latter is ı-
hyperbolic Masur and Minsky [1999]). Indeed, Γg can be characterised via these actions,
as the isometry group of the former for the Teichmüller metric (when g > 2; for g = 2

one should quotient by the hyperelliptic involution) Royden [1970], or as the simplicial
isometry group of the latter Ivanov [1997].

2.2 Higher-dimensional smooth manifolds. There is no simply-connected manifold
of dimension > 3 for which the homotopy type of the diffeomorphism group Diff(M ) is
known completely. Nonetheless, there are many broad structural results concerning diffeo-
morphism groups and mapping class groups in high dimensions. Deep results in surgery
theory Sullivan [1977] imply that if M is a simply-connected manifold of dimension at
least five, then �0Diff(M ) is commensurable with an arithmetic group, hence is finitely
presented and contains no non-trivial divisible elements. The arithmetic group arises from
automorphisms of the Sullivan minimal model; the forgetful map from �0Diff(M ) to the
group of tangential self-homotopy equivalences of M has finite kernel up to conjugacy
Browder [1967]. Arithmetic groups cannot contain non-trivial divisible elements. Indeed,
their eigenvalues, in a fixed matrix representation, are algebraic integers of bounded de-
gree. Therefore a divisible subgroup is composed of unipotent elements, and has Zariski
closure a unipotent subgroup; but commutative unipotent groups only have free abelian
arithmetic subgroups Kambayashi, Miyanishi, and Takeuchi [1974]. (Note that general
finitely presented groups can contain non-trivial divisible elements: indeed, every finitely
presented group is a subgroup of some finitely presented groupG whose commutator sub-
group [G;G] has only divisible elements and with G/[G;G] Š Z, cf. Baumslag and
Miller [1988].) The same conclusions, in particular finite presentability, also apply to the
Torelli group.

Away from the simply connected case, much less is known. For n > 6, the mapping
class group �0Diff(T n) has a split subgroup (Z/2)1 arising from the Whitehead group
Wh2 of the fundamental group Hatcher [1978] and Hsiang and Sharpe [1976], so finite
generation can fail. (This is in fact a phenomenon about homeomorphisms, rather distinct
from questions of exotic smooth structures.) The group of homotopy self-equivalences
hAut(M ) when �1(M ) is general also seems mysterious: can hAut(M ), or �0Diff(M ),
ever contain a divisible group, for instance the rationals, as a subgroup? Given the lack
of complete computations, nothing seems to be known about the realisability problem, i.e.
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which groups occur as smooth mapping class groups: is there anM for which �0Diff(M )

is a rank 2 free group?

2.3 Symplectic manifolds. Fix a symplectic 2n-manifold (X;!), closed or convex
at infinity. Let Symp(X;!) denote the group of diffeomorphisms of X preserving !,
equipped with the C1-topology.

1. If H 1(X ;R) = 0 then the connected component of the identity Symp0(X) =

Symp(X;!)\Diff0(X) is exactly the subgroupHam(X) ofHamiltonian symplecto-
morphisms, and the symplectic mapping class group is the quotient
�0Symp(X) = Symp(X;!)/Ham(X).

2. If H 1(X ;R) ¤ 0 then there is a flux homomorphism (defined on the universal
cover)

Φ : ASymp(X;!) ! H 1(X ;R)

whose kernel is the universal cover of the Hamiltonian group. The image Γ of
Φ viewed as a homomorphism on �1Symp(X;!) is a discrete group Ono [2006],
and Symp0(X)/Ham(X) Š H 1(X ;R)/Γ. Symp0(X;!) carries a foliation by
copies of Ham(X), whose leaf space is locally isomorphic to H 1(X ;R). Since
Floer theory is Hamiltonian invariant, it is sometimes useful to equip Symp(X;!)
with the weaker “Hamiltonian topology”, in which (by definition) only isotopies
along the leaves are continuous.

There is a forgetful map

q : �0Symp(X;!) ! �0Diff(X)

which is typically neither injective nor surjective. For non-injectivity, one has Seidel’s
results on squared Dehn twists and their inheritors Seidel [1999] and Tonkonog [2015]:
if L � X is a Lagrangian sphere, there is an associated twist �L, which has finite order
smoothly if n = dimR(L) is even, but typically has infinite order symplectically, for
instance for smooth hypersurfaces of degree> 2 in projective space. If n = 2, the smooth
finiteness can be seen rather explicitly. The cotangent bundle T �S2 = fx2 + y2 + z2 =

1g � C3 is an affine quadric; the Dehn twist �L in the zero-section L is the monodromy
of the Lefschetz degeneration fx2 +y2 + z2 = tg of that quadric around the unit circle in
the t -plane; that family base-changes to give a family with a 3-fold node fx2+y2+ z2 =

t2g; and the node admits a small resolution, so the base-change family has trivial smooth
monodromy and �2L = id in (compactly supported) C1.

For non-surjectivity, a diffeomorphism cannot be isotopic to a symplectic diffeomor-
phism unless it preserves [!] and ci (X) 2 H 2i (X ;Z), and furthermore permutes the
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classes with non-trivial Gromov-Witten invariants Ruan [1993]. There are also diffeomor-
phisms acting trivially on cohomology which do not preserve the homotopy class of any
almost complex structure Randal-Williams [2015], so q is not onto the Torelli subgroup
for many projective hypersurfaces.

There should be further, less homotopy-theoretic constraints on Torelli symplectomor-
phisms. A diffeomorphism � : X ! X induces an automorphism of the A1-algebra
H�(X ;C) (where the A1-structure is the classical one on cohomology) which may have
non-trivial higher-order terms even when the linear action is trivial. If X is Fano, its
quantum cohomology

(2-1) QH�(X ;C) Š ˚�QH
�(X ;�) � 2 Spec(�c1(X))

splits into generalised eigenspaces for quantum product by c1(X), and the higher-order
terms of any symplectomorphism should preserve this decomposition, i.e. be compatible
with the quantum-corrected A1-structure, a non-linear constraint.

2.4 Monodromy. If X admits a Kähler metric g with positive-dimensional isometry
group K � Isom(X; g), then the map K ! Symp(X;!) is often rather interesting, at
least for higher homotopy groups. Gromov [1985] proved that PU (3) ' Symp(P 2)

and inferred that the group of compactly supported symplectomorphisms Sympct (C2) is
contractible; for n > 2 we don’t know anything about �0Sympct (Cn; !st). It follows that
fully computing �0Symp(X;!) will not be feasible in essentially any higher-dimensional
case, and replacing it with an algebraic avatar makes sense.

The most obvious source of information regarding �0Symp(X;!) comes from alge-
braic geometry: if X is a smooth projective variety and varies in a moduli space M (of
complex structures, or complete intersections, with fixed polarisation), parallel transport
yields a map

(2-2) � : �1(M) ! �0Symp(X;!);

most known constructions of non-trivial symplectic mapping classes arise this way. Even
in simple cases, classical topology struggles to say much about (2-2). Let p be a degree
m polynomial with distinct roots. Let X be the Milnor fibre fx2 + y2 +p(z) = 0g � C3

of the Am�1-singularity C2/(Z/m). Parallel transport for the family over configuration
space varying p, and simultaneous resolution of 3-fold nodes, now yields a diagram

(2-3) Brm
�

//

��

�0Sympct (X)

��

Symm
�

// �0Diffct (X)
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but � is actually injective Khovanov and Seidel [2002]. For Milnor fibres of most singu-
larities, the kernel

�0Sympct (X;!) ! �0Diffct (X)

is large Keating [2014]. In another direction, let Md;n = Zd;n/P GLn+2(C) denote the
moduli space of degree d hypersurfaces in Pn+1, with Zd;n � H 0(Pn+1;O(d )) the
discriminant complement. Tommasi [2014] proved that H̃�(Md;n;Q) = 0 for d > 3 and
� < (d + 1)/2, so the natural map Md;n ! BDiff(Xd;n) cannot be probed using the
rather rich cohomology of the image Galatius and O. Randal-Williams [2017]. It seems
unclear when (2-2) induces an interesting map on rational cohomology.

Whilst (the possible failure of) injectivity of � can be probed using Floer-theoretic meth-
ods, these seem much less well-adapted to understanding the possible surjectivity of �; for
questions of finite generation, or residual finiteness, one needsmaps out of�0Symp(X;!),
i.e. one needs to have it act on something. Whilst one can formally write down analogues
of the complex of curves, the lack of classification results for Lagrangian submanifolds
makes it hard to extract useful information. Spaces of stability conditions on the Fukaya
category emerge as another contender, simply because they have been effective in some
situations on the other side of the mirror.

Obviously, since�0Symp(X;!) acts on spaces associated to the Fukaya category through
the action of the quotient Auteq(F(X;!))/h[2]i (dividing by twice the shift functor), one
can only hope to extract information about the latter; this is somewhat similar to first steps
in surgery theory, in which one obtains information about �0Diff(M ) from the quotient
group hAut(M ) of homotopy self-equivalences on the one-hand, as probed by surgery
theory and L-theory, and separately (and with separate techniques) from pseudo-isotopy
theory and algebraic K-theory. In classical surgery theory, BDiff(M ) is more accessi-
ble to study (e.g. cohomologically) than �0Diff(M ), and working at the space level is
crucial for many applications. One can upgrade autoequivalences of an A1-category
to a simplicial space, but there are no compelling computations, and we will not pur-
sue that direction. We should at least mention the Seidel representation Seidel [1997]
�1Ham(X;!) ! QH�(X)� (to the group of invertibles) as indication that the higher
homotopy groups may carry interesting information away from the Calabi-Yau setting;
when c1(X) = 0 the situation is less clear-cut.

We will say that a symplectic manifold (X;!) is homologically mirror to an algebraic
variety Xı over Λ if there is a Λ-linear equivalenceD�F(X;!) ' Db(Xı). The follow-
ing result, whilst narrow in scope, gives a first indication that knowing that something is
a homological mirror might sometimes be leveraged to extract new information.

Proposition 2.1. Let (X;!) be a K3 surface which is homologically mirror to an alge-
braic K3 surfaceXı. Then a symplectomorphism f ofX which preserves the Lagrangian
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isotopy class of each Lagrangian sphere inX acts onD�F(X) with finite order. If f acts
onD�F(X) non-trivially then it acts onH�(X ;C) non-trivially.

Proof. An autoequivalence of Db(Xı) acting trivially on the set of spherical objects in
Db(Xı) arises from a transcendental automorphism of Xı, cf. Huybrechts [2012, Ap-
pendix A]. The group of such is a finite cyclic group Huybrechts [2016a, Ch.3 Corollary
3.4] acting faithfully on cohomology. Finally, all spherical objects inD�F(X) are quasi-
isomorphic to Lagrangian sphere vanishing cycles Sheridan and Smith [2017b] (the proof
given in op. cit., relying on constraining lattice self-embeddings via discriminant consid-
erations, can be generalised away from the case when Xı has Picard rank one).

One could view this as a weak version of the fact that Γg acts faithfully on the complex
of curves. Note that for a double plane X ! P 2 branched over a sextic one expects that
every Lagrangian sphere arises from a degeneration of the branch locus, and the covering
involution reverses orientation but preserves its (unoriented) Lagrangian isotopy class,
suggesting the conclusion may be optimal.

3 Stability conditions

3.1 Definitions. Let C be a proper, i.e. cohomologically finite, triangulated category,
linear over a field k. We will assume that the numerical Grothendieck group K(C), i.e.
the quotient of the Grothendieck groupK0(C) by the kernel of the Euler form, is free and
of finite rank d . The space of (locally finite numerical) stability conditions will then be a
d -dimensional complex manifold.

A stability condition � = (Z;P ) on C consists of a group homomorphismZ : K(C) !

C called the central charge, and full additive subcategories P (�) � C of � -semistable
objects of phase � for each � 2 R, which together satisfy a collection of axioms, the most
important being:

(a) if E 2 P (�) then Z(E) 2 R>0 � ei�� � C;

(b) for each nonzero objectE 2 C there is a finite sequence of real numbers �1 > �2 >
� � � > �k and a collection of triangles

0 E0
// E1

//

����
��
��
�

E2
//

����
��
��
�

: : : // Ek�1
// Ek

����
��
��
�

E

A1

]];
;
;
;

A2

]];
;
;
;

Ak

__@
@
@
@

with Aj 2 P (�j ) for all j .
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We will always furthermore impose the “support property”: for a norm k � k onK(C)˝ R
there is a constant C > 0 such that k
k < C � jZ(
)j for all 
 2 K(C) represented by
� -semistable objects in C. (This in particular means all our stability conditions are “full”,
cf. Bayer and Macrı̀ [2011, Proposition B.4].) The semistable objectsAj appearing in the
filtration of axiom (b) are unique up to isomorphism, and are called the semistable factors
of E. We set

�+(E) = �1; ��(E) = �k ; m(E) =
X
i

jZ(Ai )j 2 R>0:

A simple object E of P (�) is said to be stable of phase � and mass jZ(E)j. Let Stab(C)
denote the set of all stability conditions on C. It carries a natural topology, induced by the
metric
(3-1)

d (�1; �2) = sup
0¤E2C

�
j��
�2
(E) � ��

�1
(E)j; j�+

�2
(E) � �+

�1
(E)j;

ˇ̌̌̌
log

m�2(E)

m�1(E)

ˇ̌̌̌�
2 [0;1]:

Theorem 3.1 (Bridgeland [2007]). The space Stab(C) has the structure of a complex
manifold, such that the forgetful map � : Stab(C) �! HomZ(K(C);C) taking a stability
condition to its central charge is a local isomorphism.

The group of triangulated autoequivalences Auteq(C) acts on Stab(C) by holomor-
phic automorphisms which preserve the metric. There is a commuting (continuous, non-
holomorphic) action of the universal cover of the group GL+(2;R), not changing the sub-
categoriesP , but acting by post-composition on the central charge viewed as amap toC =

R2 (and correspondingly adjusting the �-labelling of P ). A subgroup C � fGL+(2;R)

acts freely, by

C 3 t : (Z;P ) 7! (Z0;P 0); Z0(E) = e�i�t
�Z(E); P 0(�) = P (� + Re(t)):

For any integer n, the action of the shift [n] coincides with the action of n 2 C. Of partic-
ular relevance is the quotient Stab(C)/h[2]i, on which the fGL+(2;R)-action descends to
a GL+(2;R)-action; in the symplectic setting, this will amount to focussing attention on
symplectomorphisms rather than graded symplectomorphisms. We will write Stab(F(X))

for Stab(D�F(X;!)).

Remark 3.2. If a power of the shift functor of C is isomorphic to the identity, Stab(C) = ¿,
so Stab(F(X)) is only non-trivial when 2c1(X) = 0. Phantom subcategories of derived
categories of coherent sheaves Gorchinskiy and Orlov [2013] have trivial K-theory so
also cannot admit any stability condition.

The definition was motivated by ideas in string theory which in turn connect closely
to symplectic topology: if (X;!) is a symplectic manifold with c1(X) = 0, there is
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conjecturally an injection from the Teichmüller space MX (J;Ω) of marked pairs (J;Ω)
comprising a compatible integrable complex structure J and J -holomorphic volume form
Ω 2 Ωn;0(X ;J ) into Stab(F(X)). In this scenario, given (J;Ω), then Z(L) =

R
L
Ω, the

categories P (�) contain the special Lagrangians of phase �, and the Harder-Narasimhan
filtration should be the output of some version of mean curvature flow with surgeries at
finite-time singularities, cf. Joyce [2015].

An important point is that even if one can build a map MX (J;Ω) ! Stab(F(X)),
simply for dimension reasons it often can’t be onto an open subset; one expects it to have
image a complicated transcendental submanifold of high codimension. There is rarely
a predicted geometric interpretation of the “general” stability condition. (Completeness
of (3-1) was proven in Woolf [2012]; contrast with the Weil-Petersson metric on moduli
spaces of Calabi-Yau’s, which frequently has the boundary at finite distance Wang [1997]
and is incomplete.) More positively, since the vanishing cycle of any nodal degeneration
can be realised by a special Lagrangian Hein and Sun [2017], one expects any Lagrangian
sphere which is such a vanishing cycle to be stable for some stability condition, and to
define an “end” to the space of stability conditions, where the mass of this stable object
tends to zero. Thus one might hope that the global topology of Stab(F(X))/Auteq(F(X))

carries information about Lagrangian spheres.

3.2 Properties. Stab(C) is a complex manifold. But it inherits additional structure: it is
modelled on a fixed vector space such that the transition maps between charts are locally
the identity, and it has a global étale map to HomZ(K(C);C) Š Cd .

Fix a connected component Stab�(C) of Stab(C). Let Auteq�(C) denote the quotient of
the subgroup of Auteq(C)which preserves Stab�(C) by the subgroup of “negligible” autoe-
quivalences, i.e. those which act trivially on Stab�(C). Negligible autoequivalences can
exist, for instance coming from automorphisms of projective surfaces which act trivially
on the algebraic cohomology (these need not be trivial on the transcendental cohomology).

Lemma 3.3. Stab�(C) has a well-defined integral affine structure and a canonical mea-
sure. The quotient Q = Stab�(C)/Auteq�(C) is a complex orbifold, with 2ci (Q) = 0 for i
odd.

Proof. The affine structure comes from the integral lattice in K(C). The measure is ob-
tained from Lebesgue measure in HomZ(K(C);C), normalised so that the quotient torus
HomZ(K(C);C/(Z ˚ iZ)) has volume one. We claim that, having killed the generic
stabiliser, Auteq�(C) acts with finite stabilisers. The argument is due to Bridgeland, and
applies to the space of stability conditions satisfying the support condition whenever the
central charge is required to factor through a finite rank lattice N (see also Huybrechts
[2016b]). Given any stability condition � and R 2 R>0, there are only finitely many
classes n 2 N which are represented by a � -semistable object E with jZ� (E)j < R. For
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R � 0 sufficiently large, these classes will span the lattice (fix a set of objects of Cwhose
classes give a basis ofN , and consider the classes represented by the semistable factors in
the HN-filtrations of those objects). Any autoequivalence � fixing � must permute this fi-
nite set, so some fixed power �k fixes all these elements pointwise. Then �k acts trivially
on HomZ(N;C), hence by Theorem 3.1 on a neighbourhood of � 2 Stab�(C), and hence
acts trivially globally (since it’s a holomorphic automorphism). This shows that for any
� 2 Stab�(C), the stabiliser of � acts faithfully on a finite set. The proof also shows that
the stabiliser of a point � 2 Stab�(C) injects into GL(d ;Z) via the action on the central
charge, so the torsion orders of stabilisers are bounded only in terms of d .

To deduce that the quotient is an orbifold, it remains to see that the action of Auteq�(C)
is properly discontinuous, so admits slices. Bridgeland [2007, Lemma 6.4] proves that
if two stability conditions �; � have the same central charge, then they co-incide or are
at distance d (�; �) > 1. Therefore, if the action was not properly discontinuous, there
would be a stability condition � and an infinite sequence of elements in GL(d;Z) which
failed to displace a small ball around Z� . This easily yields a contradiction. Since au-
toequivalences act on HomZ(K(C);C) via the complexifications of integral linear maps,
they preserve the real and imaginary subbundles of the tangent bundle. Thus, Stab�(C) has
holomorphically trivial tangent bundle, and the tangent bundle of Stab�(C)/Auteq�(C) is
the complexification of a real bundle, so the odd Chern classes of the quotient orbifold are
2-torsion.

The diagonal group diag(et ; e�t ) � SL(2;R) acts on Stab(C) by expanding and con-
tracting the real and imaginary directions in HomZ(K(C);C), which are tangent to smooth
Lagrangian subbundles of the tangent bundle (for the flat Kähler form on Cd ), somewhat
reminiscent of an Anosov flow. If this flow on Stab(C) was the geodesic flow of a com-
plete Riemannian metric, then classical results (non-existence of conjugate points) would
imply that Stab(C) was aK(�; 1). Despite the naivety of such reasoning, in known cases,
the connected components of Stab(C) are contractible, or diffeomorphic to spaces inde-
pendently conjectured to be contractible in the literature Allcock [2013], Kontsevich and
Zorich [1997], and Qiu and Woolf [2014].

Corollary 3.4. If Stab�(C) is contractible, Auteq�(C) has finite rational cohomological
dimension.

Proof. This is true for any discrete group Γ acting on a contractible finite-dimensional
manifoldQ with finite stabilisers, provided the action admits slices. (To prove the result,
apply the Leray-Hirsch theorem to the projection (Q � EΓ) ! Q �Γ EΓ, and note that
the stalks of the pushforward of the constant sheaf Q vanish.) The existence of slices for
the action follows from proper discontinuity.
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If a finitely generated countable group G has an embedding G � G ,! G (e.g. the
finitely presented “Thompson’s group F ”) then it has infinite rational cohomological di-
mension Gandini [2012], so the contractibility hypothesis already excludes some “reason-
able” countable groups from being autoequivalence groups.

It is tempting to believe contractibility holds, when it does, for some intrinsic geomet-
ric reason, e.g. that the canonical metric (3-1) is non-positively curved, making Stab(C)
a complete CAT(0) space. (If the phases of � -semistable objects are dense in S1, then
the GL+(2;R)-orbit of � is free, and the metric on the quotient GL+(2;R)/C is the stan-
dard hyperbolic metric on the upper half-plane up to scale Woolf [2012].) This would be
of dynamical relevance. Groups acting on weakly hyperbolic spaces with rank one ele-
ments (which typically exist) admit infinite-dimensional families of quasimorphisms, for
instance the “counting” quasimorphisms of Epstein and Fujiwara [1997], see also Cale-
gari [2009]. On the other hand, Malyutin [2011] shows that if Φ : G ! R3 is defined
by a triple of unbounded quasimorphisms, and if S � G has bounded Φ-image, then S is
transient, meaning that a random walk on G (defined with respect to any non-degenerate
probability measure, i.e. one whose support generatesG as a semigroup) will visit S only
finitely many times almost surely. A prototypical example is that the reducible or peri-
odic surface diffeomorphisms – those for which �(˛; �n(ˇ)) is not exponential for all ˛; ˇ
in (Section 2.1, (3)) – are transient in Γg , and random mapping classes of surfaces are
pseudo-Anosov.

Corollary 3.5. If Stab�(C) is complete CAT(0) andAuteq�(C) acts with rank one elements,
then scl of the kth element of a random walk tends to infinity as k tends to infinity almost
surely.

One can analogously look for quantitative “unbounded generation” results. Borel and
Harish-Chandra [1962] proved the isometry group of an arithmetic lattice acts on ele-
ments of fixed square with finitely many orbits. Suppose this homological statement lifts,
and that C has only finitely many conjugacy classes of spherical object under autoequiva-
lence. Quasimorphisms can be averaged to be homogeneous, hence constant on conjugacy
classes, so then all spherical twists have uniformly bounded image under any Φ as above.
If S � G is transient andN � G is finite, then (S [S�1 [N )k is transient for any fixed
k. For C = F(X) we have noted that one hopes a Lagrangian sphere defines an end to
(a component meeting MX (J;Ω) of) Stab(F(X)) corresponding to a nodal degeneration.
Suppose that there is a partial compactification of Q = Stab�(F(X))/Auteq�(X), or of
MX (J;Ω), with an irreducible primitive analytic divisorD parametrizing nodal degener-
ations of X . A choice of a closed oriented surface S transverse toD at one point exhibits,
via the usual presentation for �1(S), the corresponding spherical twist as a product of
commutators, and hence all conjugate spherical twists as products of the same number of
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commutators. Then Corollary 3.5 would imply that, for any fixed k, a random element of
Auteq�(F(X)) would almost surely not be a product of fewer than k spherical twists.

This raises the question: how does one find Floer-theoretic conditions for sets of
symplectomorphisms to lie in a bounded set under the image of a quasimorphism on
�0Symp(X)?

3.3 Classification of objects. Consider some concrete computations. Since the space
of stability conditions is expected to be contractible, the object of interest is the orbifold
covering map

(3-2) � : Stab�(C) ! Stab�(C)/Auteq�(C) = Q:

• (X;!) is (T 2; !st). Then Q is a C�-bundle over h/SL(2;Z), and Auteq(F(X)) is
an extension of SL(2;Z) by Z˚X �X_ (acting by shift, translation and tensoring
by flat bundles); Bridgeland [2007] and Polishchuk and Zaslow [1998].

• (X;!) is fx2 + y2 + zk = 1g � (C3; !C3) and we consider the compact Fukaya
category. Then Q = Confk(C) parametrises polynomials with k distinct roots, cf.
the monodromy discussion of (2-3); Auteq(F(X))/[2] = Brk is the braid group
Thomas [2006] and Ishii, Ueda, and Uehara [2010].

• (X;!) is (Σ;M ), a surface with non-empty boundary containing a non-empty set of
boundary marked pointsM � @Σ, and we consider the partially wrapped1 Fukaya
category F(Σ;M ) stopped atM Sylvan [2015], whose objects include arcs ending
on @ΣnM . Then Q is a space of marked flat structures (meromorphic quadratic dif-
ferentials) on Σ, up to diffeomorphism Haiden, Katzarkov, and Kontsevich [2017].

The computation of Stab(C), when feasible, often goes hand-in-hand with a classification
for some class of objects of the category C, which is of independent interest. (Whilst the
objects of F(X) are a priori geometric, the objects of F(X)perf are not, and a concrete
interpretation of an arbitrary perfect module is rarely available.) In the cases above, one
uses:

• Atiyah’s classification of bundles on elliptic curves, which implies that a twisted
complex on objects in F(T 2) is again quasi-represented by a simple closed curve
with local system;

• Ishii-Uehara’s proof Ishii and Uehara [2005] that all spherical objects in TwF(Xp)

are in the braid group orbit of a fixed Lagrangian sphere;
1The compact Fukaya category F is proper but not smooth; the wrapped category W is smooth but not

proper; the partially wrapped category, which depends on additional data – here, the setM – has both properties.
It determinesW as a localization, and (conjecturally, in nice cases) F as a subcategory of compact objects ofW.



STABILITY CONDITIONS IN SYMPLECTIC TOPOLOGY 999

• Haiden-Katzarkov-Kontsevich’s proof that every indecomposable twisted complex
of objects of F(Σ;M ) is represented by an immersed curve with local system.

By appealing to either sheaf-theoretic properties of wrapped categories Lee [2015] or
equivariant arguments Seidel [2012], one can deduce from the last example above that
on a closed surface Σg , every spherical object is geometric, i.e. quasi-isomorphic to an
immersed curve with local system. It is tempting to speculate that, starting from that point,
one can recover the complex of curves and hence the classical mapping class group from
the derived Fukaya categoryD�F(Σg).

3.4 Measure and growth. Recall that Stab�(C) has a canonical measure d� inherited
from Lebesgue measure in HomZ(K(C);C). Since autoequivalences act linearly and inte-
grally on K(C), the measure is Auteq�(C)-invariant, so descends to the quotient orbifold.
This will essentially always have infinitemeasure, since there is a freeR-action on Stab(C),
rescaling the central charge.

Hypothesis 3.6. There is a submanifold Stab=1;�(C) which is a slice to the R-action,
which is invariant under the universal cover of SL(2;R), and for which

Stab=1;�(C)/Auteq�(C)

has finite measure.

Existence of a slice is usually not difficult, but the finite measure hypothesis is probably
much more severe. Let S be a Riemann surface and � 2 H 0(2KS ) a quadratic differential
with distinct zeroes. There is a local CY Kähler threefold

(3-3) Y� = f(q1; q2; q3) 2 KS ˚KS ˚KS j q21 + q22 + q23 = �g

which depends up to deformation only on the genus g(S). The space of stability conditions
modulo autoequivalences onF(Y�) is conjecturally themoduli spaceM(S; �) of quadratic
differentials with simple zeroes, and the normalisation

R
S
� ^ �̄ = 1 to surfaces of flat

area 1 defines a slice to the R-action. This has finite measure by deep results of Veech
[1993]. For a K3 surface Xı, Z(E) = (Ω; ch(E)) for a period vector Ω 2 N(Xı) ˝ C,
where N(Xı) is the extended Neron-Severi group H 0 ˚ Pic ˚ H 4, and the condition
(Ω; Ω̄) = 1 defines a slice.

Given Hypothesis 3.6, one can play the following game (a well-known trope in the
flat surfaces community; we follow Zorich [2006]). Fix a stability condition � ; the sup-
port property means that the central charges Z(E) of � -semistable objects are discrete
in C. For a compactly supported function f 2 Cct (R2) we can then define f̂ (�) =P
Z(E) f (Z(E)), summing over central charges represented by semistableE. A stronger
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version of Hypothesis 3.6 asks that the function � 7! f̂ (�) be d�-integrable, yielding a
linear function

f 7!

Z
Stab=1;�(C)/Auteq�(C)

f̂ d�

which is SL2(R)-invariant. The only such functionals on Cct (R2) are given by the total
area and the value at zero; the latter is irrelevant here since Z(E) ¤ 0 for any semistable
E, so one finds that

For every f 2 Cct (R
2);

Z
Stab=1;�(C)/Auteq�(C)

f̂ d� = �(C)

Z
R2

f dxdy

where �(C) is an invariant of the category and the choice of component / slice. Taking f to
be the indicator function of a disc of increasing radius R, one sees that �(C) measures the
growth rate ofK-theory classes represented by semi-stable objects as their mass increases.
ForM(S; �) above, �(C) is a Siegel-Veech number, and controls the quadratic growth rate
of special Lagrangian 3-spheres by volume in the 3-fold (3-3) (in that case, the special
Lagrangian 3-sphere representative of the homology class is expected to be unique).

4 Three more extended examples

4.1 K3 surfaces. Let Y be an algebraic K3 surface of Picard rank � > 1. Bridgeland
[2008] has given a conjectural description of a distinguished component of Stab(Db(Y ))

as the universal cover of a period domain. Recall N(Y ) = H 0(Y ) ˚ Pic(Y ) ˚H 4(Y ),
which carries the Mukai pairing h(a; b; c); (a0; b0; c0)i = ac0 + ca0 � b � b0. Let

Ω = fu 2 N(Y ) ˝ C jRe(u); Im(u) span a positive definite 2�planeg:

Fix one of the two connected components of Ω, and remove the locally finite union of
hyperplanes ı? indexed by �2-vectors ı 2 N(Y ) (with its Mukai form), to obtain a pe-
riod domain P+

0 (Y ). Then Bridgeland [ibid.] constructs a connected component Stab� �

Stab(Db(Y )) and proves that there is a Galois covering

Stab� ! P+
0 (Y )

which identifies the Torelli autoequivalence group with the group of deck transformations.
Bridgeland conjectures that Stab� is simply-connected and Auteq-invariant, which would
yield the exact sequence

1 ! �1(P
+
0 (Y )) ! AuteqCY (Db(Y )) ! Aut+(H�(Y )) ! 1
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where the Calabi-Yau autoequivalences AuteqCY are those acting trivially on the Hochs-
child homology group HH2(Y ), and the final term is the index two subgroup of the full
Hodge isometry group of automorphisms preserving the orientation of a maximal positive
definite subspace. The generators of the first term would be mapped to squared spherical
twists. Separately, a conjecture of Allcock [2013] on Coxeter arrangements would imply
that, if Bridgeland’s conjecture holds, then Stab�(Db(Y )) is indeed a CAT(0) space, in
particular contractible. When �(Y ) = 1, both conjectures are known, which yields a
complete determination of both that component of the space of stability conditions and
the autoequivalence group.

Proposition 4.1. Let (X;!) be a Kähler K3 surface which is homologically mirror to an
algebraic K3 surface Y of Picard rank one. (Minimality of the Picard rank on the mirror
corresponds to an irrationality hypothesis on the Kähler form ! on X .) Let GF(X) =

Auteq(D�F(X;!)).

1. GF(X) is finitely presented.

2. The Torelli subgroup is infinitely generated and torsion-free.

3. GF(X) contains no divisible elements.

4. GF(X) cannot obey a law.

Sketch comments. The first three statements are essentially immediate from Bayer and
Bridgeland [2017]; in fact the categorical Torelli group in the (mirror to a) Picard rank
one case is a countably generated free group. scl for free products of cyclic groups was
computed in Walker [2013], e.g. there are examples for which GF(X) = Z/p � Z, and
for Z/p � Z with generators a; b of the factors, scl([a; b]) = 1/2 � 1/p; as remarked
previously, non-vanishing of scl rules out laws. See Sheridan and Smith [2017b] for
related ideas and details.

Proofs of the Bridgeland and Allcock conjectures would eliminate the Picard rank one
hypothesis. Results for GF(X) do not immediately yield results for the symplectic map-
ping class group �0Symp(X;!), but these can sometimes be extracted with more care.
Let (X;!) be the mirror quartic, a crepant resolution of f

P3
j=0 x

4
j + �

Q
j xj = 0g/Γ

for Γ Š (Z/4)˚2, equipped with an “irrational” toric Kähler form (one induced from its
embedding into a toric resolution of [P 3/Γ] such that the areas of the resolution curves
and of a hyperplane section are rationally independent). Then (see Sheridan and Smith
[ibid.]):

Theorem 4.2 (Sheridan, Smith). For the mirror quartic with an irrational toric Kähler
form, the group ker(�0Symp(X) ! �0Diff(X)) is infinitely generated.
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The map � of (3-2) is (modulo GL(2;R)) the universal cover of the orbifold
h/Γ0(2)

+, where Γ0(2)
+ = Z/2 � Z/4, and AuteqCY (F(X))/[2] = Z � Z/4 where

again the CY autoequivalencs are those acting trivially on HH2(F(X)), cf. Bayer and
Bridgeland [2017] and Sheridan and Smith [2017b]. One infers the Dehn twist �L in a
Lagrangian sphere L � X admits no non-trivial root in �0Symp(X) (being a smooth in-
volution, it is its own (2p + 1)-st root in �0Diff(X), for any p > 1); �0Symp(X) is not
generated by torsion elements (which all map to the same factor in the abelianization of
Auteq(F(X))), in contrast to Γg , etc.

Remark 4.3. It is interesting to compare the proof in Bayer and Bridgeland [2017] with
the cartoon description of stability conditions in terms of special Lagrangians given at
the end of Section 3.1. For a Picard rank one K3 surface Xı, the central charge is given
by Z(E) = hΩ; ch(E)i for a vector Ω 2 N(Xı) ˝ C Š C3 whose real and imaginary
parts span a positive definite two-plane. There is a unique negative definite vector � 2

N(Xı)˝R orthogonal to fRe(Ω); Im(Ω)g. FixE = Ox the skyscraper sheaf of a point,
and a stability condition � for which the largest and smallest semistable factors A˙ of E
have phases �+ > �� respectively. Then Bayer and Bridgeland [ibid.] studies the flow
on Stab(Xı) defined by

dΩ/dt = �:� � = i exp(i�/2(�+ + ��))

which locally pushes A˙ towards one another, decreasing �+ � ��. They prove such
flows can be patched together and eventually contract Stab(Xı) to the geometric cham-
ber whereE is semistable. Translating back to theA-side, the cartoon is now that instead
of mean curvature flow, one fixes the Lagrangian torus, and flows in the space of holo-
morphic volume forms to try to make it special.

4.2 Quiver threefolds. Let (Q;W ) be a quiver with potential. This determines a 3-
dimensional Calabi-Yau category C(Q;W ) Ginzburg [2006]. If (Q;W ) has no loops,
there is a “mutation” operation which yields another (Q0;W 0) and a (pair of) derived
equivalence(s) C(Q;W ) ' C(Q0;W 0). In a number of interesting cases, these categories
are related to Fukaya categories of threefolds:

1. The zero-potential on the two-cycle quiver (arrows labelled e; f ) is realised within
the compact Fukaya category of the affine quartic fx2 + y2 + (zt)2 = 1g � C4,
which is a plumbing of two 3-spheres along a circle (plumbed so the Lagrange
surgery is an S1 � S2), see Evans, Smith, and Wemyss [n.d.].

2. The potential (ef )2 on the same quiver is realised by the compact Fukaya category
of the complement of a smooth hyperplane section in the variety of complete flags
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in C3, which is again a plumbing of two 3-spheres along a circle (plumbed so the
Lagrange surgery is an S3); potentials (ef )p on the two-cycle quiver, for prime
p > 2, may arise in characteristic p from the corresponding plumbings where the
surgery is a Lens space L(p; 1), see Evans, Smith, and Wemyss [ibid.].

3. The potential associated Labardini-Fragoso [2009] to an ideal triangulation of a
marked bordered surface (S;M ) is realised by the Fukaya category of a threefold
which is a conic fibration over S with special fibres at M Smith [2015] (this is a
cousin of the space from (3-3), whereM = ¿).

The category C(Q;W ) has a distinguished heart, equivalent to the category of nilpotent
representations of the Jacobi algebra Jac(Q;W ), with d simple objects up to isomorphism
ifQ has d vertices. This implies that a large subset U � Stab(C(Q;W )) with non-empty
open interior is a union of cells h

d (where h is the union of the upper half-plane and the
negative real axis excluding zero), indexed by t -structures having hearts with finite length,
glued together along their boundaries by the combinatorics of tilting (quiver mutation).
This provides one of the most direct routes to (partial) computations of spaces of stability
conditions. Often, the image of U under the natural circle action on Stab(C)/h[2]i covers
a path-component.

Let � be a meromorphic quadratic differential on a surface S with at least one pole of
order > 2, with p double poles, and distinct zeroes. LetM � S be the set of poles. There
is a threefold Y� ! S , a variant of that from (3-3), now with empty fibres over poles of
order > 2 and reducible fibres (singular at infinity) over double poles; a choice of com-
ponent of each reducible fibre defines a class � 2 H 2(Y� ;Z/2). Let F(Y� ; �) denote the
subcategory of the �-sign-twisted Fukaya category split-generated by Lagrangian spheres.
Then (see Bridgeland and Smith [2015] and Smith [2015]):

Theorem 4.4 (Bridgeland, Smith). There is an equivalence F(Y� ; �) ' C(Q;W ) for
(Q;W ) the quiver with potential associated to any ideal triangulation of (S;M ). More-
over,

(4-1) 1 ! Sph(S;M ) ! Auteq(C(Q;W )) ! Γ˙(S;M ) ! 1

where Γ˙ is an extension of the mapping class group Γ(S;M ) by (Z/2)p .

The first factor in (4-1) acts through spherical twists and admits a natural representation
to �0Sympct (Y�) whilst the quotient factor acts via non-compactly-supported elements
of �0Symp(Y�). In particular, the natural map Sph(S;M ) ! �0Sympct (Y�) is actually
split. Stable objects in Y� are all given by special Lagrangian 3-spheres or S1 � S2’s,
corresponding to open and closed saddle connections in the flat metric on (S; �).
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There are 3-folds Y�; associated to a pair (�; ) 2 H 0(K˚2
S ) ˚ H 0(K˚3

S ), fibred
over S by A2-Milnor fibres rather than A1-Milnor fibres: given line bundles L1; L2 over
S with KS = L1L2,

Y�; = f(x; y; z) 2 L3
1 ˚ L3

2 ˚ L1L2 j xy = z3 + � � z +  g:

In this case the conjectural embedding of a moduli space of pairs (�; ) into
Stab(F(Y�; )) cannot be onto an open set for dimension reasons (cf. Section 3.1). The
DT-counting invariants for semistable objects in K-theory class d
 can have exponential
growth in d Galakhov, Longhi, Mainiero, Moore, and Neitzke [2013] and have interesting
algebraic generating functions Mainiero [2016]. The 3-fold Y�; now contains a special
Lagrangian submanifold L Š (S1 � S2)#(S1 � S2), obtained from surgery of two 3-
spheres lying over tripods which meet at three end-points, and the wild representation
theory of �1(L)may be responsible for the exponential growth of stable objects (flat bun-
dles over L) on the symplectic side. It would be interesting to know if (3.6) is related to
polynomial growth of DT-invariants.

4.3 Cubic four-folds. The derived category of a cubic four-fold Y � P 5 admits a
semi-orthogonal decomposition, the interesting piece of which is a CY2-category AY in-
troduced by Kuznetsov [2010]. These categories are of symplectic nature, cf. Huybrechts
[2017, Proposition 2.17] and Sheridan and Smith [2017a]. Let E be the (Fermat) elliptic
curve with a non-trivial Z/3-action, generated by �, andX be the K3 surface which is the
crepant resolution of (E �E)/h(�; ��1)i. (This is sometimes called the “most algebraic”
K3 surface; it has Picard rank 20 and, amongst such K3’s, has smallest possible discrimi-
nant.) Then for certain toric Kähler forms ! on X which are “irrational” (again meaning
the areas of the resolution curves and a hyperplane section are linearly independent over
Q), there is an equivalence Sheridan [2017] and Sheridan and Smith [2017a] (strictly, this
requires incorporating certain immersed Lagrangian tori into F(X;!))

D�F(X;!) ' AYd(!)
� Db(Yd(!))

where the valuations of the coefficients in the equation defining the cubic Y over Λ are
determined by the choice of Kähler form. For sufficiently general Y , the space of stability
conditions has been computed by Bayer, Lahoz, Macrì, and Stellari [2017], following
a direct computation of autoequivalences due to Huybrechts [2017], and one finds (cf.
Sheridan and Smith [2017a, n.d.]):

Theorem 4.5 (Sheridan, Smith). For the most algebraic K3 surface X with an irrational
toric Kähler form, the map � : �0Symp(X;!) �! Auteq(F(X;!))/[2] has image Z/3.
If Z(X;!) = ker(�) then �0Symp(X;!) = Z(X;!) Ì Z/3.
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The image of � is generated by the obvious residual diagonal action on E � E, which
lifts to X . Theorem 4.5 reduces the task of understanding the symplectic mapping class
group of (X;!) to that of understanding what Floer theory doesn’t see, which is about
as far as we could hope to come (one can draw similar conclusions in the setting of The-
orem 4.2, see Sheridan and Smith [2017b]). More concretely, for such irrational Kähler
forms one learns thatHF (�) can take only one of three possibilties for any symplectomor-
phism �, and any � has trivial Floer-theoretic entropy, etc. From the Künneth theorem,
this has consequences for fixed points of symplectomorphisms of X � T 2, say, which
– in the same vein as the Arnol’d conjecture – go beyond information extractable from
smooth topology (stabilising by taking product with T 2 serves to kill information from
the Lefschetz theorem).

It is interesting to imagine turning around the direction of mirror symmetry in this case.
Naively, one would predict some relation between the categories

(4-2) D�F(Y ; 0) and Db(X) = D(E �E)Z/3

where F(Y ; 0) is the nilpotent summand of the Fukaya category (corresponding in (2-1)
to the zero-eigenvalue). It seems far from obvious that these should be equivalent, and
the actual relation, if any, might be more subtle. Nonetheless, although F(Y ) is not Z-
graded as Y is Fano, the summand F(Y ; 0) is expected to admit a Z-grading, whence one
could talk about stability conditions. Let M3;d denote the moduli space of cubic d -folds.
These are well-studied spaces (and are famously CAT(0) for d = 2; 3 Allcock, Carlson,
and Toledo [2002, 2011]). Starting from the lattice-theoretic co-incidence H 2(X ;Z) �

Pic(X)? = �A2 = hh2i? � H 4(Y ;Z), where h2 2 H 4(Y ;Z) is the class defined by a
hyperplane, results of Laza [2010] yield an embedding (also observed by R. Potter)

M3;4 �! AuteqCY (X)nStab�(Db(X))/eGL+(2;R)

onto the complement of an explicit divisor ∆ (associated to the locally finite hyperplane
arrangement defined by classes of square �6, or equivalently the complement in the pe-
riod domain of the divisors associated to classes of square �2 and �6). Bridgeland’s con-
jecture and some concrete relation in (4-2) might then give insight into the monodromy
homomorphism

�1(M3;4) �! �0Symp(Y ) �! Auteq(D�F(Y ; 0)):

In this way, one could hope to use stability conditions on K3 surfaces to attack classical
problems related to the symplectic monodromy of hypersurfaces.

4.4 Clusters. Semantic sensitivities notwithstanding, we end with a digression. It may
be useful to point out where much of the activity in the subject is concentrated. If (Q;W )



1006 IVAN SMITH

satisfies suitable non-degeneracy assumptions, one can associate to (Q;W ) two spaces:
Stab(C(Q;W )) and the cluster variety X(Q;W ). The first is glued together out of cham-
bers h

d indexed by the vertices of the tilting tree, and the second is glued from birational
maps of algebraic tori (C�)d indexed by the same data. It is believed that there is a (com-
plicated, transcendental) complex Lagrangian submanifoldB � Stab(C) and an algebraic
integrable system (with compact complex torus fibres) T ! B for which T and X are
diffeomorphic, naturally equipped with different complex structures belonging to a single
hyperkähler family Gaiotto, Moore, and Neitzke [2013] and Neitzke [2014]. The explicit
diffeomorphism should be obtained from a Riemann-Hilbert problem, whose definition
and solution involves the moduli stacks of stable objects and their Donaldson-Thomas
theory Bridgeland [2016].

A genus d Lagrangian surface Σd � X4 in a symplectic four-manifold defines a chart
(C�)d in a tentative mirror to X , and one can use the complexity of cluster atlases to
prove existence theorems for infinite families of Lagrangian surfaces Shende, Treumann,
and Williams [2016]. This is a striking connection back to symplectic topology, but one
that it seems hard to formulate on the space of stability conditions directly.
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Abstract

We report some recent progress on studying degenerations and moduli spaces of
canonical metrics in Kähler geometry, and the connection with algebraic geometry,
with a particular emphasis on the case of Kähler–Einstein metrics.

1 Introduction

One of the most intriguing features in Kähler geometry is the interaction between differ-
ential geometric and algebro-geometric aspects of the theory. In complex dimension one,
the classical uniformization theorem provides a unique conformal metric of constant cur-
vature �1 on any compact Riemann surface of genus bigger than 1. This analytic result
turns out to be deeply connected to the algebraic fact that any such Riemann surface can
be embedded in projective space as a stable algebraic curve in the sense of geometric in-
variant theory. It is also well-known that the moduli space of smooth algebraic curves
of genus bigger than 1 can be compactified by adding certain singular curves with nodes,
locally defined by the equation xy = 0, which gives rise to the Deligne–Mumford com-
pactification. This is compatible with the differential geometric compactification using
hyperbolic metrics, in the sense that whenever a node forms, locally the corresponding
metric splits into the union of two hyperbolic cusps with infinite diameter. Intuitively,
one can view the latter as a canonical differential geometric object associated to a nodal
singularity.

On higher dimensional Kähler manifolds, a natural generalization of constant curvature
metrics is the notion of a canonical Kähler metric, which is governed by some elliptic
partial differential equation. In this article we will mainly focus on Calabi’s extremal
Kähler metrics. Let X be a compact Kähler manifold of dimension n, and let H be a
Partially supported by NSF grant DMS-1708420, the Alfred P. Sloan Fellowship, and a Simons Foundation

grant (488633).
MSC2010: primary 53C55; secondary 53C21, 53C44, 14J10, 14J45.
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Kähler class on X , i.e. the space of Kähler metrics on X in a given de Rham cohomology
class (which we shall denote by [H] 2 H 2(X ;R)). For example, any ample line bundle
L gives rise to a Kähler class with [H] = 2�c1(L). If we fix one Kähler metric ! 2 H,
then any other Kähler metric in H is of the form ! + i@@� for some smooth function �.

A Kähler metric ! is called extremal if it is the critical point of the Calabi functional
Ca(!) =

R
X

S(!)2!n on H, where S(!) denotes the scalar curvature function of !.
Equivalently, by calculating the Euler–Lagrange equation, this means that the gradient
vector fieldr!S(!) is holomorphic. A special case is when the vector field vanishes, then
! is a constant scalar curvature Kähler metric. If moreover the first Chern class c1(X) is
proportional to [H], say 2�c1(X) = �[H], then this further reduces to theKähler–Einstein
equation Ric(!) = �!.

There are several well-known fundamental questions that aim to build connections be-
tween the analytic theory of these metrics and algebraic geometry.

(1). Existence: When does (X; H) contain an extremal Kähler metric?

To find an extremal Kähler metric amounts to solving a difficult non-linear elliptic
PDE. The famous Yau–Tian–Donaldson conjecture states that the solvability of this PDE
is equivalent to K-stability of (X; H). K-stability is a complex/algebro-geometric no-
tion; roughly speaking, it is tested by the positivity of certain numerical invariant, the
Donaldson–Futaki invariant, associated to C� equivariant flat degenerations of (X; H).
It is analogous to the Hilbert–Mumford criterion for stability in geometric invariant theory.

The Yau–Tian–Donaldson conjecture extends the Calabi conjecture on the existence
of Kähler–Einstein metrics. In this special case we have a positive answer.

Theorem1.1. LetX be a compact Kählermanifold andH be aKähler class with 2�c1(X) =

�[H].

• (Yau [1978]) If � = 0, then there is a unique Kähler metric ! 2 H with Ric(!) =

0. This ! is usually referred to as a Calabi–Yau metric.

• (Yau [ibid.], Aubin [1976]) If � < 0 (in which case X is of general type), then there
is a unique Kähler metric ! 2 H with Ric(!) = ��!.

• If � > 0 (in which case X is a Fano manifold), then there is a Kähler metric ! 2 H
with Ric(!) = �! if and only if X is K-stable. The “only if” direction is due to
various authors in different generality including Tian [1997], Stoppa [2009], and
R. J. Berman [2016], and the “if” direction is due to Chen–Donaldson–Sun (c.f.
Chen, Donaldson, and Sun [2015a,b,c]), and later other proofs can be found in
Datar and Székelyhidi [2016], Chen, Sun, and B. Wang [2015], and R. Berman,
Boucksom, and Jonsson [2015].
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(2). Compactification of moduli space and singularities

It is known (c.f. Chen and Tian [2008] and R. J. Berman and Berndtsson [2017]) that
extremal metric in a Kähler class H, if exists, is unique up to holomorphic transforma-
tions of X , so it canonically represents the complex geometry of (X; H). Locally one
can deform either the Kähler class H or the complex structure on X , and the correspond-
ing deformation theory of extremal Kähler metrics has been well-studied (c.f. LeBrun
and Simanca [1994]). Globally to compactify the moduli space one needs to know how to
take limits and what is the structure of the limits, especially near the singularities. This has
interesting connection with the compactification from the algebro-geometric viewpoint,
and is also intimately related to the existence question in (1).

(3). Optimal degenerations

There are two important geometric evolution equations, namely, theKähler–Ricci flow,
and the Calabi flow, that try to evolve an arbitrary Kähler metric towards a canonical
metric. When (X; H) is K-stable, then one expects the flow to exist for all time and
converge to a canonical metric; when (X; H) is not K-stable, then one expects the flow to
generate a degeneration to some canonical geometric object associated to (X; H), which
is optimal in suitable sense.

We refer the readers to the article Donaldson [2018] in this proceeding for an overview
on the existence question, and related discussion on K-stability. In this article we will re-
port progress towards (2) and (3), mostly focusing on the case of Kähler–Einstein metrics.

Acknowledgments. I would like to thank Xiuxiong Chen, Simon Donaldson, Weiyong
He, Hans-Joachim Hein, Chi Li, Yuji Odaka, Cristiano Spotti, Jingzhou Sun, Bing Wang,
Yuanqi Wang, and Chengjian Yao for various fruitful discussions and collaborations on
Kähler geometry. I am also grateful to Hans-Joachim Hein, Yuji Odaka, and Cristiano
Spotti for helpful comments.

2 Gromov–Hausdorff limits

We consider a sequence of compact Kähler manifolds (Xi ; !i ) of dimension n. Through-
out this section we will impose the following hypothesis

• [!i ] = 2�c1(Li ) for some ample line bundle Li over Xi .
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• jRic(!i )j � Λ for some fixed Λ > 0.

• The diameter of (Xi ; !i ) is uniformly bounded above by D > 0.

These ensure the sequence of metrics to satisfy a volume non-collapsing condition, i.e.
there exists � > 0 such that for all i and all p 2 Xi , Vol(B(p; r)) � �r2n for all
r 2 (0; 1].

By the convergence theory of Riemannian manifolds one can pass to a subsequence and
extract aGromov–Hausdorff limit X1, which is a compact length space. This seems to be
a very rough process at first sight but the important fact is that it is an intrinsic limit, which
does not require a choice of coordinate systems on Xi . By the work of Cheeger, Colding,
and Tian [2002], we know X1 can be written as the union of the regular part R, which is a
smooth open manifold endowed with a C 1;˛ Kähler structure (J1; !1), and the singular
set S, which has Hausdorff codimension at least 4. In the case when n = 2 it has been
known by Anderson [1989], Bando, Kasue, and Nakajima [1989], and Tian [1990b] that
X1 has only isolated orbifold singularities. By possibly passing to a further subsequence,
we may assume the Chern connection on Li converges modulo gauge transformations to
the Chern connection of a hermitian holomorphic line bundle LR on R. The following
result establishes a basic connection with algebraic geometry

Theorem 2.1 (Donaldson and Sun [2014]). (1) X1 is naturally homeomorphic to a nor-
mal projective variety in such a way that the algebraic singularities are a subset of
the metric singularities, and, by passing to subsequence the convergence of Xi to X1

can be realized in a fixed Hilbert scheme.

(2) If furthermore we assume !i is Kähler–Einstein, then the two singular sets are equal,
and the algebraic singularities of X1 are log terminal in the sense of minimal model
program. Moreover, !1 extends to a global Kähler current that satisfies a singular
Kähler–Einstein equation in the sense of pluripotential theory, c.f. Eyssidieux, Guedj,
and Zeriahi [2009].

Remark 2.2. • The projective algebraic structure on X1 is intrinsically determined
by (R; LR). Namely, denote by � : R ! X1 the natural inclusion map, and we can
define OX1

:= ��OR and L1 := ��LR. Then the precise meaning of (1) is that
(X1; OX1

) is a normal complex analytic space and L1 is an ample Q-line bundle
on X1. Moreover, by passing to a subsequence, (Xi ; Li ) and (X1; L1) can be fit
into a flat family.

• In the Kähler–Einstein case with � = 1, the line bundle Li is given by K�1
Xi

, and
the diameter bound is automatically satisfied by Bonnet–Myers’s theorem. In this
case X1 is a smoothable Q-Fano variety. Theorem 2.1 thus provides a topological
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compactification of the moduli space of Kähler–Einstein Fano manifolds in each
dimension, by adding all the possible Gromov–Hausdorff limits.

A key ingredient in the proof of Theorem 2.1 is to obtain the partial C 0 estimate,
conjectured by G. Tian in ICM 1990 (c.f. Tian [1990a]). Recall, in general that if (X; L)

is a polarized Kähler manifold and ! is a Kähler metric in 2�c1(L), then ! determines a
hermitian metric j � j on L, unique up to constant multiple. For all k we have an induced
L2 norm k�k on H 0(X; Lk) (defined with respect to the volume form of k!). To compare
these we define the density of state function (or the Bergman function)

�X;!;k(x) = sup
s2H0(X;Lk);s¤0

js(x)j2

ksk2
:

By the Kodaira embedding theorem this is a positive function for k sufficiently large. It
is easy to see for each x 2 X , the supremum is achieved on a unique one dimension
subspace Cx � H 0(X; Lk), and �X;!;k is a smooth function on X . Moreover, we have a
C 1 asymptotic expansion (c.f. Zelditch [1998])

(2-1) �X;!;k = 1 +
S(!)

2
k�1 + � � � :

Its importance can be seen as follows

• Denote Nk = dimH 0(X; Lk), and choose an L2 orthonormal basis fs1; � � � ; sNk
g

of H 0(X; Lk), then there is an alternative expression

�X;!;k(x) =

NkX
i=1

jsi (x)j
2:

So we get Nk =
R

X
�X;!;k(k!)n/n!, and (2-1) can be viewed as a local version of

the Riemann–Roch formula.

• Using an orthonormal basis of H 0(X; Lk), for k large we get an embedding �k :

X ! P Nk�1, unique up to unitary transformations. Then we have

(2-2) ��k!k = k! + i@@ log �k :

So by (2-1) we know k�1��
k
!k converges smoothly to ! as k tends to infinity. This

is the Kähler quantization picture, which is essential in studying the relationship
between constant scalar curvature Kähler metrics and algebraic stability (c.f. Don-
aldson [2001]).
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Theorem 2.3 (Donaldson and Sun [2014]). Under the hypothesis in the beginning of this
section, there are k0 and �0 > 0 that depend only on n, Λ and D, such that �Xi ;!i ;k0

� �0
for all i .

Remark 2.4. (1). When n = 2 this is proved by Tian [1990b], using the fact that in this
case the Gromov–Hausdorff limit is an orbifold; for general n this is conjectured by Tian
[1990a]. Indeed Tian’s original conjecture is stated under more general assumptions, and
there has been substantial progress on this, see for example Theorem 1.9 in Chen and B.
Wang [2014].

(2). One may ask if there is a uniform asymptotic behavior of the density of state
function as k tends to infinity. In general the expansion (2-1) can not hold uniformly
independent of i , but a weaker statement is plausible, see Conjecture 5.15 in Donaldson
and Sun [2014].

(3). It follows from Theorem 2.3 and (2-2) that the embedding map �k0
has a uniform

Lipschitz bound for all i , hence one can pass to limit and obtain a Lipschitz map from
the Gromov–Hausdorff limit X1 to a fixed projective space. This is the starting point to
prove Theorem 2.1.

The proof of Theorem 2.3 is based on Hörmander’s construction of holomorphic sec-
tions on definite powers of Li with control. The idea is to first find holomorphic sections
of Gaussian type in a local model, then graft them to the manifolds Xi to get approxi-
mately holomorphic sections, and finally correct these to genuine holomorphic sections
by solving a @ equation. The solvability of @ equation with uniform estimates only uses
one global geometric assumption, namely the lower bound of Ricci curvature of !i .

Here we briefly describe the notion of model Gaussian sections. Suppose first we are
at a smooth point x 2 Xi for some fixed i . If we dilate the metric !i to k!i based at
x, then as k tends to infinity we get in the limit the standard flat metric on Cn. The
dilation has the effect of replacing the line bundle Li by Lk

i and it is also important to
notice that the corresponding limit line bundle is the trivial holomorphic bundle on Cn

endowed with the non-trivial hermitian metric e�jzj2/2 whose curvature is exactly the flat
metric. The obvious trivial section is then naturally a Gaussian section. Using this one can
construct for k large a holomorphic section of Lk

i over Xi , whose L2 norm has a definite
upper bound and its pointwise norm at x has a definite positive lower bound. This implies
�Xi ;!i ;k(x) � � > 0. The difficulty in the proof of Theorem 2.3 is then to obtain uniform
estimate on both k and �, which is not a priori clear since it is conceivable that when
the metric !i starts to form singularities the region where the Gaussian model behaves
well for a fixed k shrinks to one point. For this purpose we use the Gromov–Hausdorff
limit X1 and consider a sequence of points xi 2 Xi that tend to a point x1 2 X1.
If x1 is a smooth point then previous argument goes through with little change to yield
�Xi ;!i ;k(xi ) � � > 0 for k and � independent of i . If x1 is singular, then we can dilate
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the metric on X1 based at x1. By passing to a subsequence we can obtain a pointed
Gromov–Hausdorff limit, called a tangent cone. It is a metric cone C (Y ) over a compact
length space Y , which in particular admits a dilation action.

By Cheeger, Colding, and Tian [2002] we also know that C (Y ) is a C 1;˛ Kähler man-
ifold outside a closed subset of Hausdorff codimension at least 4 which is invariant under
dilation. On this smooth part, being a metric cone implies that the metric can be written
as g = 1

2
Hess(r2), where r is the distance to the cone vertex. Now the crucial point in

our Kähler setting is that the Kähler form can correspondingly be written as ! = 1
2
i@@r2,

so in particular it is the curvature of the trivial holomorphic bundle with hermitian metric
e�r2/2. This is exactly the generalization of the above local model on Cn. Thus we also
have the candidate Gaussian section in this case, but there are various technical difficulties
that had to be overcome in Donaldson and Sun [2014], mainly due to the appearance of
singularities on the tangent cones C (Y ). One point to notice is that the proof does not
require the tangent cone at x1 to be unique, even though this turns out to be true and we
will discuss more in the next section.

We mention that the extension of Theorem 2.1 and 2.3 to the case of Kähler–Einstein
metrics with cone singularities plays a key role in the proof of the Yau–Tian–Donaldson
conjecture for Fanomanifolds (c.f. Chen, Donaldson, and Sun [2015a,b,c]). There are also
other applications to the study of Gromov–Hausdorff limits of Kähler–Einstein metrics
in the Calabi–Yau and general type case, c.f. Rong and Zhang [2011], Tosatti [2015],
and Song [2017]. In both cases the diameter bound (hence the volume non-collapsing
condition) is not automatically satisfied, and is essentially equivalent to the algebraic limit
having at worst log terminal singularities.

There are a few interesting directions that require further development:

(1). Prove a local version of Theorem 2.1. Namely, let X1 be a Gromov–Hausdorff
limit of a sequence of (incomplete) Kähler manifolds (Xi ; !i ) with diameter 1, uniformly
bounded Ricci curvature, and satisfying a uniform volume non-collapsing condition, can
we prove X1 is naturally a complex analytic space?

Notice in general one can not expect to fitXi andX1 into a flat family in the absence of
the line bundles, since one can imagine certain holomorphic cycles being contracted under
the limit process. The answer to the above questionwill have applications in understanding
convergence of Calabi–Yau metrics when Kähler class becomes degenerate, see Collins
and Tosatti [2015]. In a related but different context, G. Liu [2016] studied the case when
the Ricci curvature bound is replaced by a lower bound on the bisectional curvature, and
used it to make substantial progress towards Yau’s uniformization conjecture for complete
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Kähler manifolds with non-negative bisectional curvature. Most generally, one would
expect that in the above question to draw the complex-analytic consequence the most
crucial assumption is a uniform lower bound on Ricci curvature, and the upper bound on
Ricci curvature is more related to the regularity of the limit metrics.

(2). In general collapsing is un-avoidable. Can we describe the complex/ algebro-
geometric meaning of the Gromov–Hausdorff limits?

Collapsing with uniformly bounded Riemannian sectional curvature has been studied
extensively in the context of Riemannian geometry through the work of Cheeger–Fukaya–
Gromov and others. In general one expects a structure of fibrations (in the generalized
sense). Even in this case the above question is not well-understood. In general with only
Ricci curvature bound there has been very few results on the regularity of the limit space
itself (see Cheeger and Tian [2006] for results when n = 2).

Ultimately one would like to understand the case of constant scalar curvature or ex-
tremal Kähler metrics, where we are currently lacking the analogous foundations of the
Cheeger–Colding theory which depends on comparison geometry of Ricci curvature, and
so far we only have results in the non-collapsed case, see for example Tian and Viaclovsky
[2008], Chen and Weber [2011].

3 Singularities

In this section we focus on finer structure of the Gromov–Hausdorff convergence studied
in Theorem 2.1, and restrict to the case when (Xi ; !i ) is Kähler–Einstein. It is a folklore
picture that when singularities occur certain non-compact Ricci-flat spaces must bubble
off. To be more precise, suppose p 2 X1 is a singular point, and pi 2 Xi is a se-
quence of points that converge to p. Take any sequence of integers ki ! 1 and consider
the rescaled spaces (Xi ; L

ki

i ; ki !i ; pi ), then by passing to subsequence, we always get a
pointed Gromov–Hausdorff limit (Z; p1), which is a non-compact metric space.

Theorem 3.1 (Donaldson and Sun [2017]). Any such limit Z is naturally a normal affine
algebraic variety which admits a singular Ricci-flat Kähler metric.

To explain the meaning of this, similar to Remark 2.2, we know the complex-analytic
structure on Z is determined by the regular part of Z (in the sense of Cheeger, Colding,
and Tian [2002]). To understand intrinsically the affine structure, we denote by R(Z) the
ring of holomorphic functions on Z that grow at most polynomially fast at infinity, then it
is proved in Donaldson and Sun [2017] that R(Z) is finitely generated and Spec(R(Z))

is complex-analytically isomorphic to Z.
In dimension two, Z is an ALE Ricci-flat space possibly with orbifold singularities. In

higher dimensions, by the volume non-collapsing condition we know Z is asymptotically
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conical. There has been extensive study on these spaces in the case when the tangent cone
at infinity is smooth, see for example van Coevering [2011], Conlon and Hein [2015], C.
Li [2015].

Let B be the set of all bubbles at p, i.e. the set of pointed Gromov–Hausdorff lim-
its of (Xi ; ki !i ; pi ) with pi ! p and ki ! 1. It is an interesting question to find
complex/algebro-geometric characterization of this set, which potentially forms a bubble
tree structure at p. For each Z 2 B, the Bishop–Gromov volume comparison defines an
invariant v(Z), namely, the asymptotic volume ratio of Z

v(Z) = lim
r!1

Vol(B(p1; r))r�2n

A special element in B is a metric tangent cone C (Y ) at p, which has the smallest
asymptotic volume ratio among all the bubbles at p. The metric cone structure imposes
an extra dilation symmetry on C (Y ), and this has the corresponding algebro-geometric
meaning

Theorem 3.2 (Donaldson and Sun [2017]). A tangent cone C (Y ) is naturally a normal
affine algebraic cone.

This requires some explanation. Let R(C (Y )) be the affine coordinate ring of C (Y ).
On the regular part ofC (Y ), we have aReeb vector field � = Jr@r which is a holomorphic
Killing vector field. It generates holomorphic isometric action of a compact torus T on
C (Y ). This action induces a weight space decomposition of R(C (Y )), which can be
written as

R(C (Y )) =
M
�2H

R�(C (Y )):

Here R�(C (Y )) is the space of homogeneous holomorphic functions f on C (Y ) satisfy-
ing L�f = i�f (i.e. homogeneous of degree �), and the holomorphic spectrum H is the
set of all � 2 R�0 such that R�(C (Y )) ¤ 0. In general we know H is contained in the
set of algebraic numbers, but not necessarily a subset of Q. This positive R-grading on
R(C (Y )) is the precise meaning for C (Y ) to be an affine algebraic cone in Theorem 3.2.

Theorem 3.3 (Donaldson and Sun [ibid.]). Given any p 2 X1, there is a unique metric
tangent cone at p, as an affine algebraic cone endowed with a singular Ricci-flat Kähler
metric.

One step in the proof is to show that the holomorphic spectrum H is a priori unique.
The crucial observation is that the set of all possible tangent cones at p form a connected
and compact set under the pointed Gromov–Hausdorff topology, and H consists of only
algebraic numbers so must be rigid under continuous deformations. The latter uses the
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volume minimization principle of Martelli, Sparks, and Yau [2008] in Sasaki geometry.
Recall that C (Y ) being Ricci-flat is equivalent to Y being Sasaki–Einstein possibly with
singularities. Consider the open convex cone C in Lie(T ) consisting of elements � which
also induce positive gradings on R(C (Y )). Then by Martelli, Sparks, and Yau [ibid.] we
know � is the unique critical point of the (suitably normalized) volume function on C,
which is a convex rational function with rational coefficients (noticing there is a natural
rational structure in Lie(T )). This fact leads to the algebraicity of H.

To describe the relationship between the local algebraic singularity of X1 at p and
the tangent cone C (Y ), we define a degree function on Op , the local ring of germs of
holomorphic functions at p, by setting

d (f ) = lim
r!0

supB(p;r) log jf j

log r

By Donaldson and Sun [2014], for all nonzero f , d (f ) is always well-defined and it
belongs to H. Indeed d defines a valuation on Op . So we can define a graded ring
associated to this

Rp =
M
�2H

ff 2 Opjd (f ) � �g/ff 2 Opjd (f ) > �g:

Theorem 3.4 (Donaldson and Sun [2017]). • Rp is finitely generated and
Spec(Rp) defines a normal affine algebraic cone W , which can be realized as a
weighted tangent cone of (X1; p) under a local complex analytic embedding into
some affine space.

• There is an equivariant degeneration from W to C (Y ) as affine algebraic cones.

Remark 3.5. The finite generation of Rp and the fact that W is normal put on very strong
constraint on the valuation d . The proof depends on Theorem 3.2 and a three-circle type
argument that relates elements in Op and R(C (Y )). In the context of Theorem 3.1 there
is a similar result relating Z and its tangent cone at infinity.

This situation is analogous to the Harder–Narasimhan–Seshadri filtration for unstable
holomorphic vector bundles. It also suggests a local notion of stability for algebraic sin-
gularities, since using the extension of the Yau–Tian–Donaldson conjecture to affine alge-
braic cones by Collins and Székelyhidi [2012], one can view C (Y ) as a K-stable algebraic
cone and W as a K-semistable algebraic cone.

One interesting point is that W is only an algebraic variety but does not support a nat-
ural metric structure. In Donaldson and Sun [2017] we conjectured that W and C (Y ) are
both invariants of Op and there should a purely algebro-geometric way of characterizing
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W . C. Li [2015] made this conjecture more precise by giving an algebro-geometric inter-
pretation of the volume of an affine cone, and formulating a corresponding conjecture that
the valuation d should be the unique one that minimizes volume. This brings interesting
connections with earlier work on asymptotic invariants and K-stability in algebraic geom-
etry. It is an extension of the Martelli–Sparks–Yau volume minimization principle. There
is much progress in this direction, see Blum [2016], C. Li and Y. Liu [2016], and C. Li
and Xu [2017].

One of the motivation for studying metric tangent cones is related to precise under-
standing of the metric behavior of a singular Kähler–Einstein metric. The following re-
sult, which uses the result of Fujita [2015] and C. Li and Y. Liu [2016], gives the first
examples of compact Ricci-flat spaces with isolated conical singularities.

Theorem 3.6 (Hein and Sun [2017]). Let (X; L) be a Q-Gorenstein smoothable pro-
jective Calabi–Yau variety with isolated canonical singularities, each locally complex-
analytically isomorphic to a strongly regular affine algebraic cone which admits a Ricci-
flat Kähler cone metric, then there is a unique singular Calabi–Yau metric ! 2 2�c1(L)

which is smooth away from the singular locus of X , and at each singularity is asymptotic
to the Ricci-flat Kähler cone metric at a polynomial rate.

Remark 3.7. • The notion of strong regularity is a technical assumption which is
equivalent to that the affine algebraic cone coincides with its Zariski tangent cone
at the vertex.

• An important special case is when the singularities of X are ordinary double points,
in which case the Ricci-flat Kähler cone metric can be explicitly written down, and
Theorem 3.6 also implies the existence of special lagrangian vanishing spheres on
a generic smoothing of X .

The above general strategy has other applications, one is to the study of the asymptotic
behavior of geometric flows, as we shall describe in Section 5, and the other is to the study
of singularities of Hermitian-Yang–Mills connections (c.f. Chen and Sun [2017]).

4 Moduli spaces

Theorem 2.1 gives a Gromov–Hausdorff compactification of the moduli space of Kähler–
Einstein Fano manifolds in each fixed dimension, as a topological space. By Theorem 1.1
this is the same as a compactification of the moduli space of K-stable Fano manifolds, so
it is natural to ask for algebro-geometric meaning of this moduli space itself; furthermore
one would like to characterize them explicitly since there are many concrete examples of
families of smooth Fano manifolds. Understanding this would also lead to new examples
of K-stable Fano varieties, including singular ones.
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In dimension two, there are only four families of Fano manifolds with non-trivial mod-
uli. They are del Pezzo surfaces of anti-canonical degree d 2 f1; 2; 3; 4g, i.e. the blown-
ups of CP 2 at 9 � d points in very general position. Let Md be the Gromov–Hausdorff
compactification of moduli space of Kähler–Einstein metrics on del Pezzo surfaces of
degree d .

Theorem 4.1 (Odaka, Spotti, and Sun [2016]). Each Md is naturally homeomorphic to
an explicitly constructed moduli space Malg

d
of certain del Pezzo surfaces with orbifold

singularities.

The construction of Malg

d
depends on the classical geometry of del Pezzo surfaces,

whose moduli is closely related to geometric invariant theory.

• Objects in Malg
3 are GIT stable1 cubics in P 3. These were classified by Hilbert.

• Objects inMalg
4 are GIT stable complete intersections of two quadrics inP 4. These

were classified byMabuchi andMukai [1993], who also proved Theorem 4.1 in this
case, with a more involved argument.

• Objects in Malg
2 are either double covers of P 2 branched along a GIT stable quartic

curve, or double covers of the weighted projective plane P (1; 1; 4) branched along
a curve of the form z2 = f8(x; y) for a GIT stable octic in 2 variables. This moduli
was constructed by Mukai [1995].

• Objects inMalg
1 are more complicated to describe, but a generic element is a double

cover of P (1; 1; 2) branched along a sextic curve that is GIT stable in a suitable
sense (even though the automorphism group of P (1; 1; 2) is not reductive). Malg

1

is a certain birational modification of this GIT moduli space.

We briefly describe the general strategy in the proof, which also applies in higher di-
mensions (see Theorem 4.2). For a more detailed survey see Spotti [n.d.].

• ShowMd is non-empty. This can be achieved by studying a special element in each
family, for example through computation of ˛-invariant (see Tian and Yau [1987]),
or alternatively Arezzo, Ghigi, and Pirola [2006], or by a glueing construction.

• Rough classification of Gromov–Hasudorff limits. The Bishop–Gromov volume
comparison yields that at any singularity of the form C2/Γ, we have jΓj < 12/d .
For larger d we get stronger control on Γ hence the corresponding Md is simpler.
Using this one can estimate the Gorenstein index of the Gromov–Hausdorff limits,

1The stability in this article means polystablity in the usual literature.
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and then understand their anti-canonical geometry. This is related to the explicit
determination of the smallest number k0 in Theorem 2.3.
By R. J. Berman [2016] all the objects X in Md are K-stable, and a crucial ingredi-
ent in Odaka, Spotti, and Sun [2016] is that one can often compare K-stability with
GIT stability. This implies X is also GIT stable in appropriate sense, and suggests
that Md is closely related to GIT moduli.

• Construction of Malg

d
so that the natural map from Md to Malg

d
is a homeomor-

phism. The key point is to make sure Malg

d
is Hausdorff and the map is well-

defined, i.e. any possible Gromov–Hausdorff limit in Md is included in Malg

d
.

In general one can start with a natural GIT moduli space, and perform birational
modifications that are suggested by the previous step. For example when d = 2,
the natural GIT moduli of quartic curves contains a point that corresponds to a re-
ducible surface, which we know can not be in Md ; this motivates one to blow-up
the point and the exceptional divisor turns out to correspond to a different GIT as
described above.

Theorem 4.2. • Spotti and Sun [2017]: For all n, the Gromov–Hausdorff compacti-
fication of the moduli space of Kähler–Einstein metrics on complete intersection of
two quadrics in P n+2 is naturally homeomorphic to the GIT moduli space.

• Y. Liu and Xu [2017]: The Gromov–Hausdorff compactification of the moduli space
of Kähler–Einstein metrics on cubics in P 4 is naturally homeomorphic to the GIT
moduli space.

Amajor step is to prove the Gromov–Hausdorff limit has a well-defined canonical line
bundle, i.e., is Gorenstein, and has large divisibility. This relies on the following deep
theorem of K. Fujita proved via K-stability, and the later generalization by Y. Liu [2016]
to give an improvement of the Bishop–Gromov volume comparison.

Theorem 4.3. • Fujita [2015]: Let X be a Kähler–Einstein Fano manifold in dimen-
sion n, then (�KX )n � (n+1)n, and equality holds if and only if X is isomorphic
to P n.

It is very likely that similar results to Theorem 4.2 can be established for most families
of Fano threefolds, and some classes of higher dimensional Fano manifolds with large
anti-canonical volume. There is a related conjecture on a local analogue of Theorem 4.3.
For more on this see Spotti and Sun [2017].

Now we move on to discuss general abstract results in higher dimension concerning
moduli space of Kähler–Einstein/K-stable manifolds. As applications of Chen, Donald-
son, and Sun [2015a,b,c] we have



1024 SONG SUN (孙崧)

• Odaka [2012a] and Donaldson [2015]: The moduli space of K-stable Fano mani-
folds with discrete automorphism group is Zariski open.

• Spotti, Sun, andYao [2016]: A smoothableQ-Fano variety admits a singular Kähler–
Einstein metric if and only if it is K-stable.

• C. Li, X.Wang, andXu [2014] andOdaka [2015]: TheGromov–Hausdorff compact-
ification of moduli space of Kähler–Einstein Fano manifolds in a fixed dimension
is naturally a proper separated algebraic space.

We remark that one important technical aspect is still open, namely, the projectivity of
the moduli space. There is a well-defined CM line bundle on the moduli space. Over the
locus parametrizing smooth Fano manifolds it admits a natural Wei–Peterson metric of
positive curvature, and this locus has been shown to be quasi-projective C. Li, X. Wang,
and Xu [2015].

There is also recent progress in the general type case. Here we already have a com-
pactification using minimal model program, namely, the KSBA moduli space, where the
boundary consists of varieties with semi-log-canonical singularities (in one dimension it
is the same as being nodal). Odaka [2013, 2012b] proved that these are exactly the ones
which are K-stable, and R. J. Berman and Guenancia [2014] established the existence of
a unique singular Kähler–Einstein metric in a suitable weak sense. It is further shown
by Song [2017] that under a KSBA degeneration, the Kähler–Einstein metric on smooth
fibers converges in the pointed Gromov–Hausdorff sense to the metric completion of the
log terminal locus on the central fiber. So far the proof uses deep results in algebraic
geometry but one certainly hopes for a more differential-geometric theory in the future.

5 Optimal degenerations

Let (X; L; !) be a polarized Kähler manifold with [!] = 2�c1(L). In this section we
focus on two natural geometric flows emanating from !. We first consider the Ricci flow

(5-1)
@

@t
!(t) = !(t) � Ric(!(t))

and restrict to the case when X is Fano and L = K�1
X . This case is immediately related

to the Yau–Tian–Donaldson conjecture; the general case is also interesting and is related
to the analytic minimal model program, but is beyond the scope of this article.

Clearly a fixed point of (5-1) is exactly a Kähler–Einstein metric. There are also self-
similar solutions to (5-1), i.e., solutions !(t) that evolve by holomorphic transformations
of X . These correspond to Ricci solitons, which are governed by the equation Ric(!) =

! + LV !, where V is a holomorphic vector field on X .
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It is well-known that in our case a smooth solution !(t) exists for all time t > 0 with
[!(t)] = 2�c1(K

�1
X ). A folklore conjecture, usually referred to as the Hamilton–Tian

conjecture, states that as t ! 1 by passing to subsequence one should obtain Gromov–
Hausdorff limits which are Ricci solitons off a singular set of small size. This is now
confirmed by Chen and B. Wang [2014].

Theorem 5.1 (Chen and B. Wang [ibid.]). As t ! 1, by passing to a subsequence
(X; !(t)) converges in the Gromov–Hausdorff sense to a Q-Fano variety endowed with a
singular Kähler–Ricci soliton metric (X1; V1; !1).

This can be viewed as a generalization of the Cheeger–Colding theory and the results
in Section 2 to the parabolic case. The proof makes use of the deep results of Perelman.
In connecting with algebraic geometry we have

Theorem 5.2 (Chen, Sun, and B. Wang [2015]). • As t ! 1, there is a uniqueGromov–
Hausdorff limit (X1; V1; !1).

• IfX is K-stable, thenX1 is isomorphic toX , V1 = 0, and!1 is a smooth Kähler–
Einstein metric on X1.

• If X is K-unstable, then the flow !(t) defines a unique degeneration of X to a
Q-Fano variety X̄ with a holomorphic vector field V̄ , and there is an equivariant
degeneration from (X̄ ; V̄ ) to (X1; V1).

The second item gives an alternative proof of the Yau–Tian–Donaldson conjecture for
Fano manifolds. The third item requires slightly more explanation. The flow!(t) induces
a family of L2 norms k � kt on H 0(X; K�k

X ) for all k, and yields a notion of degree of a
section s 2 H 0(X; Lk) by setting

d (s) = lim
t!1

1

t
log kskt :

The main point in Chen, Sun, and B. Wang [ibid.] is that this is well-defined and gives a
filtration of the homogeneous coordinate ring of (X; L); moreover, the associated graded
ring defines a normal projective variety X̄ , and the grading determines a holomorphic
vector field V̄ . So (X̄ ; V̄ ) is canonically determined by the flow !(t), hence by the initial
metric !.

It is conjectured in Chen, Sun, and B. Wang [ibid.] that when X is K-unstable, both
(X̄ ; V̄ ) and (X1; V1; !1) are invariants of X itself, i.e. are independent of the initial
metric !, and (X̄ ; V̄ ) defines a unique optimal degeneration of X . By W. He [2016],
R. J. Berman and Nystrom [2014], and Dervan and Székelyhidi [2016] we know a par-
tial answer to this, and it seems possible to eventually obtain a purely algebro-geometric
characterization.
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Now we turn to discuss the Calabi flow, starting from an initial metric ! with [!] =

2�c1(L). The equation takes the form

(5-2)
@

@t
!(t) = �∆@Ric(!(t))(= �i@@S(!(t)))

A fixed point is a Kähler metric with constant scalar curvature, and a self-similar solu-
tion is an extremal Kähler metric. From the viewpoint of the infinite dimensional moment
map picture of Fujiki–Donaldson, the Calabi flow has an interesting geometric meaning,
at least on a formal level. First it is the negative gradient flow of a geodesically con-
vex functional (the Mabuchi functional) on the Kähler class H, so it decreases a natural
distance function on H (c.f. Calabi and Chen [2002]). If we transform it to a flow of
integrable almost complex structures compatible with a fixed symplectic form then it is
also the negative gradient flow of the Calabi functional.

A main difficulty in the study of Calabi flow (c.f. Chen and W. Y. He [2008]) arises
from the fact it is a fourth order geometric evolution equation and the usual technique of
maximum principle does not apply directly. There has been little progress on the problem
of general long time existence. If we put aside all the analytic difficulties, then we do have
a picture on the asymptotic behavior of the flow, analogous to Theorem 5.2.

Theorem 5.3 (Chen, Sun, and B. Wang [2015]). Let !(t)(t 2 [0; 1)) be a smooth so-
lution of the Calabi flow in the class 2�c1(L), and assume the Riemannian curvature of
!(t) and the diameter are uniformly bounded for all t . Then

• There is a unique Gromov–Hausdorff limit (X1; L1; V1; !1), where !1 is a
smooth extremal Kähler metric on a smooth projective variety X1 with [!1] =

2�c1(L1), and V1 = rS(!1) is a holomorphic vector field.

• If (X; L) is K-stable, then (X1; L1) is isomorphic to (X; L), V1 = 0, and !1 is
a constant scalar curvature Kähler metric on X .

• If (X; L) is K-unstable, then it gives rise to an optimal degeneration of (X; L) to
(X̄ ; L̄; V̄ ), which minimizes the normalized Donaldson–Futaki invariant, and there
is an equivariant degeneration from (X̄ ; L̄; V̄ ) to (X1; L1; V1).

There is also a generalized statement for extremal Kähler metrics Chen, Sun, and B.
Wang [ibid.]. Notice in general we should not expect the Calabi flow to satisfy the strong
geometric hypothesis in Theorem 5.3. First, the curvature may blow up and singularities
can form, similar to the case of Ricci flow; second, the diameter can go to infinity (c.f.
Székelyhidi [2009]) and collapsing may happen. The second issue is related to the folklore
expectation that one may need to strengthen the notion of K-stability to certain uniform
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K-stability in the statement of Yau–Tian–Donaldson conjecture. Nevertheless we expect
Theorem 5.3 will lead to existence results of extremal Kähler metrics in concrete cases.

There are also recent progress on analytic study of the asymptotic behavior on the
Calabi flow, related to the conjectural picture described by Donaldson [2004]. On one
hand, in complex dimension two, H. Li, B.Wang, and Zheng [2015] proved that, assuming
the existence of a constant scalar curvature Kähler metric !0 in the class 2�c1(L), if
a Calabi flow !(t) in 2�c1(L) exists for t 2 [0; 1), then as t ! 1 the flow must
converge to !0, modulo holomorphic transformations of X . On the other hand, R. J.
Berman, Darvas, and Lu [2017] proved a dichotomy for the behavior of weak solution
to the Calabi flow in the sense of Streets [2014], to the effect that it either diverges to
infinity with respect to a natural distance on H, or it converges to a weak minimizer of the
Mabuchi functional in a suitable sense. Finally, in Chen and Sun [2014] Calabi flow on
a small complex structure deformation of a constant scalar curvature Kähler manifold is
studied, which also leads to a generalized uniqueness result.
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Abstract

Riemann surfaces are of fundamental importance in many areas of mathematics
and theoretical physics. The study of the moduli space of Riemann surfaces of a fixed
topological type is intimately related to the study of the Teichmüller space of that
surface, together with the action of the mapping class group. Classical Teichmüller
theory has many facets and involves the interplay of various methods from geometry,
analysis, dynamics and algebraic geometry. In recent years, higher Teichmüller theory
emerged as a new field in mathematics. It builds as well on a combination of methods
from different areas of mathematics. The goal of my talk is to invite the reader to get
to know and to get involved into higher Teichmüller theory by describing some of its
many facets.

1 Introduction

Riemann surfaces are of fundamental importance in many areas of mathematics and theo-
retical physics. The study of the moduli space of Riemann surfaces of a fixed topological
type is intimately related to the study of the Teichmüller space of that surface, together
with the action of the mapping class group. Classical Teichmüller theory has many facets
and involves the interplay of various methods from geometry, analysis, dynamics and al-
gebraic geometry. In recent years, higher Teichmüller theory emerged as a new field in
mathematics. It builds as well on a combination of methods from different areas of math-
ematics. The goal of this article is to invite the reader to get to know and to get involved
into higher Teichmüller theory by describing some of its many facets. Along the way we
point to open questions, and formulate some conjectures and task for the future. We will
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not be able to discuss every aspect of higher Teichmüller theory, and will be very brief
on most of them. In particular we will not touch upon universal or infinite higher Teich-
müller spaces Labourie [2007a] and N. Hitchin [2016], or algebraic structures developed
in Labourie [2017b] and Sun [2017a,b].

Higher Teichmüller theory is concerned with the study of representations of fundamen-
tal groups of oriented surface S of negative Euler characteristic into simple real Lie groups
G of higher rank. The diversity of the methods involved is due partly to the one-to-one
correspondence between representations, flat bundles, and Higgs bundles given by non-
abelian Hodge theory Simpson [1991], which was established in work of Donaldson [1987,
1985], N. J. Hitchin [1987], Corlette [1988], and Simpson [1992].

We will introduce higher Teichmüller spaces below as special subsets of the represen-
tation variety Hom(�1(S); G))/G, namely as connected components consisting entirely
of discrete and faithful representations. This is however a definition which only arose a
posteriori. The first family of higher Teichmüller spaces, the Hitchin components, has
been introduced by N. J. Hitchin [1992] using the theory of Higgs bundles. That they are
higher Teichmüller spaces in the sense of our definition was in general only proven ten
years later by Labourie [2006] and independently Fock and Goncharov [2006] through
the study of the space of positive decorated local systems or positive representations. The
second family of higher Teichmüller spaces, the spaces of maximal representations, was
defined completely independently as the level set of a characteristic number on the rep-
resentation variety, and its property of being a higher Teichmüller space in the sense of
our definition was shown by Burger, Iozzi, and Wienhard [2003], motivated by previous
work of W. M. Goldman [1988] in the context of classical Teichmüller space. The results
of N. J. Hitchin [1992], Labourie [2006], Fock and Goncharov [2006] and Burger, Iozzi,
and Wienhard [2003] arose completely independently, from different points of view and
using very different methods. Only when comparing them it become apparent that the
three spaces, Hitchin components, spaces of positive representations, and spaces of maxi-
mal representations, have many similarities and provide examples of a new phenomenon.
Now we consider them as two families of what we call higher Teichmüller spaces. As the
reader will see, we are still exploring the similarities and differences of these two families.
It is interesting to note that the interplay between geometric and dynamical methods for
representations of finitely generated groups and the more analytic and algebro-geometric
methods from the theory of Higgs bundles are at the heart of several recent advances in
our understanding of higher Teichmüller spaces.

Many questions in higher Teichmüller theory are motivated by the things we know
about classical Teichmüller space, its properties and interesting geometric and dynamical
structures it carries. However, there are also several new features that only arise for higher
Teichmüller spaces and are not present in classical Teichmüller theory, see for example
Section 4, Section 10 and Section 12. Higher Teichmüller theory is a very young and
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active field of mathematics. It is shaped by young mathematicians. There are still many
open questions and unchartered territory to explore. We therefore hope that many young
(and older) mathematicians will accept this invitation and contribute to the field in the
future.

2 Classical Teichmüller space

Let S be a closed connected oriented topological surface of negative Euler characteristic
�(S) = 2 � 2g < 0, where g is the genus of S . The Teichmüller space T (S) of S

is the space of marked conformal classes of Riemannian metrics on S . It has been well
studied using the theory of quasi-conformal maps as well as methods from hyperbolic
geometry. By the uniformization theorem, there is a unique hyperbolic, i.e. constant
curvature �1, metric in each conformal class. This identifies T (S) with the moduli space
of marked hyperbolic structures. A marked hyperbolic structure is a pair (X; fX ), where
X is a hyperbolic surface and fX : S ! X is an orientation preserving homeomorphism.
Two marked hyperbolic structures (X; fX ) and (Y; fY ) are equivalent if there exists an
isometry g : X ! Y such that g ı fX is isotopic to fY . The mapping class group of S

acts naturally on T (S) by changing the marking. This action is properly discontinuous,
and the quotient of T (S) by this action is the moduli space M(S) of Riemann surfaces
of topological type given by S . Teichmüller space is homeomorphic to R6g�6 and the
universal cover of M(S).

Higher Teichmüller theory builds on an algebraic realization of Teichmüller space. The
universal cover X̃ of the hyperbolic surface X naturally identifies with the hyperbolic
plane H2, and the fundamental group �1(X) acts as group of deck transformations by
isometries on X̃ Š H2. Thus, upon fixing a base point, the marking induces a group
homomorphism (fX )� : �1(S) ! �1(X) < Isom+(H2) Š PSL(2;R), which is called
the holonomy. Associating to a marked hyperbolic structure its holonomy gives a well
defined injective map

hol : T (S) ! Hom(�1(S);PSL(2;R))/PSL(2;R):

The representation variety Hom(�1(S);PSL(2;R))/PSL(2;R) is the space of all group
homomorphisms of �1(S) into PSL(2;R), up to conjugation by PSL(2;R). It carries a
natural topology (induced from the topology of PSL(2;R)). Teichmüller spce T (S) is a
connected component of the representation variety Hom(�1(S);PSL(2;R))/PSL(2;R).
It is one of the two connected components, which consist entirely of discrete and faithful
representations of �1(S) into PSL(2;R). The other such component is T (S), where S is
the surface with the opposite orientation.
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Remark 1. From this point of, as set of discrete and faithful representation, T (S)was first
studied by Fricke. Historically it would thus be more appropriate to call it Fricke space
and the generalizations higher Fricke spaces, but it seems hard to change a name that is
well established.

Classical Teichmüller space hasmany interesting properties and carries additional struc-
ture. It is a Kähler manifold which admits several Riemannian and non-Riemannian met-
rics, has nice explicit parametrizations, and carries interesting flows and dynamical sys-
tems. We will not be able to recall most of these interesting properties, but will come back
to a few of them in the sequel.

3 What is higher Teichmüller theory?

We might interpret what higher Teichmüller theory is in a narrow or a broader sense. In a
very broad sense it is the study of classes of representations of finitely generated groups
into Lie groups of higher rank with particularly nice geometric and dynamical behaviour.
In the narrow sense one could characterize it as the study of higher Teichmüller spaces
as we define them below. In this article we restrict most of our discussion to this narrow
interpretation. In the broad sense it is touched upon also in the contributions of Kassel
[n.d.] and Potrie [n.d.].

Teichmüller space is a connected component of the representation variety
Hom(�1(S);PSL(2;R))/PSL(2;R) - this is where higher Teichmüller theory takes it
starting point. Instead of focussing on group homomorphisms of �1(S) into PSL(2;R),
we replace PSL(2;R) by a simple Lie group G of higher rank (this is what the higher
refers to), such as PSL(n;R), n � 3 or Sp(2n;R), n � 2, and consider the representation
variety Hom(�1(S); G)/G. We make the following definition:

Definition 2. A higher Teichmüller space is a subset of Hom(�1(S); G)/G, which is a
union of connected components that consist entirely of discrete and faithful representa-
tions.

Note that as soon as G is not locally isomorphic to PSL(2;R), the group �1(S) is not
isomorphic to a lattice in G. Therefore the set of discrete and faithful representations is
only a closed subset of Hom(�1(S); G)/G. It is thus not clear that higher Teichmüller
spaces exist at all, and in fact they will only exist for special families of Lie groups G. In
particular, when G is a simply connected complex Lie group, the representation variety
Hom(�1(S); G)/G is irreducible as an algebraic variety, and hence connected, and there
cannot be any connected component consisting entirely of discrete and faithful represen-
tations. There are two known families of higher Teichmüller spaces, Hitchin components
and spaces of maximal representations. They have been discovered from very different
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points of view and by very different methods. It then became clear that they share many
properties, in particular the property requested in Definition 2. We describe a common
underlying characterization, which also suggests the existence of two further families of
higher Teichmüller spaces in Section 7.

Hitchin components TH (S; G) are defined when G is a split real simple Lie group, the
space of maximal representations Tmax(S; G) is defined when G is a non-compact simple
Lie group of Hermitian type. In the case when G = PSL(2;R), the Hitchin component
and the space ofmaximal representations agree and coincide with Teichmüller space T (S).
For other groups G not locally isomorphic to PSL(2;R), which are at the same time split
and of Hermitian type, i.e. Sp(2n;R) or SO(2; 3), there is a proper inclusion TH (S; G) �

Tmax(S; G).
Remark 3. We assume that S is a closed surface.There is a related theory for surfaces
with punctures or boundary components. However, in this case the corresponding subset
of the representation variety is not a union of connected components. We comment on the
situation for surfaces with punctures in Section 7.

We shortly review the definitions of Hitchin components and maximal representations.
For more details and further properties we refer the reader to the survey Burger, Iozzi, and
Wienhard [2014].

3.1 Hitchin components. Hitchin components are defined when G is a split real sim-
ple Lie group. Any split real simple Lie group G contains a three-dimensional principal
subgroup, i.e. an embedding �p : SL(2;R) ! G, which is unique up to conjugation. For
the classical Lie groups SL(n;R), Sp(2n;R), and SO(n; n+1) this is just the irreducible
representation of SL(2;R) in the appropriate dimension. Precomposing �p with a discrete
embedding of �1(S) into SL(2;R) we obtain a representation �p : �1(S) ! G, which
we call a principal Fuchsian representation.

Definition 4. The Hitchin component TH (S; G) is the connected component of
Hom(�1(S); G)/G containing a principal Fuchsian representation �p : �1(S) ! G.

Remark 5. Note that we are a bit sloppy in our terminology, e.g. when G = PSL(3;R)
there are 2 connected components in Hom(�1(S);PSL(3;R))/PSL(3;R) which consists
of discrete and faithful representation which preserve the orientation. We refer to each of
them as the Hitchin component.

Hitchin showed, using methods from the theory of Higgs bundle that the Hitchin com-
ponent is homeomorphic to a vector space of dimension dim(G)(2g �2). He conjectured
that these components are geometrically significant and parametrize geometric structures.
This was supported by one example. W. M. Goldman [1990] had investigated the spaces
of convex real projective structures on S and shown that it is isomorphic to R16g�16
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and that the holonomy of a convex real projective structure is in the Hitchin component.
Soon afterwards Choi and W. M. Goldman [1993] proved that in fact TH (S;PSL(3;R))
parametrizes the space of convex real projective structures on S . It took another ten years
before further progress wasmade, when Labourie [2006] introducedmethods from dynam-
ical systems to the study of representations in the Hitchin component and showed that for
G = PSL(n;R);PSp(2n;R), and PO(n; n+1) representations in the Hitchin component
are discrete and faithful. That representations in any Hitchin component are discrete and
faithful follows from work of Fock and Goncharov [2006]. They investigated the space
of positive representations in Hom(�1(S); G)/G, when G is a split real simple Lie group,
and showed that it coincides with the Hitchin component (see Section 7).

3.2 Maximal representations. Maximal representations are defined when the simple
Lie group G is of Hermitian type. They are singled out by a characteristic number, the
Toledo number, which for G = PSL(2;R) is just the Euler number. W. M. Gold-
man [1988] showed that the Euler number distinguishes the connected components of
Hom(�1(S);PSL(2;R))/PSL(2;R), and that Teichmüller space corresponds to the con-
nected component formed by representation of Euler number 2g � 2, which is the max-
imal value it can attain. In general, the Toledo number is bounded in terms of the Eu-
ler characteristic of S and the real rank of G, and constant on connected components
of Hom(�1(S); G)/G. The space of maximal representations Tmax(S; G) is the set of
all representations for which the Toledo number assumes it maximal possible value. It
is a union of connected components. Using methods from bounded cohomology, it was
proven in Burger, Iozzi, and Wienhard [2003] that any maximal representation is faithful
with discrete image.

Remark 6. There are two types of Hermitian Lie groups, those of tube type and those not
of tube-type. Maximal representations into Lie groups that are not of tube type satisfy a
rigidity theorem Toledo [1989], Hernàndez [1991], Burger, Iozzi, and Wienhard [2003],
S. B. Bradlow, Garcı́a-Prada, and Gothen [2003], and S. B. Bradlow, Garcı́a-Prada, and
Gothen [2006]: The image of a maximal representation is always contained in the sta-
bilizer in G of a maximal subsymmetric space of tube type. This reduces the study of
maximal representation essentially to the case when G is of tube type.

3.3 Anosov representations. Anosov representation are homomorphisms of finitely
generated hyperbolic groups Γ into arbitrary reductive Lie groups G with special dynam-
ical properties. They have been introduced by Labourie [2006] to investigate represen-
tations in the Hitchin component, and extended to hyperbolic groups in Guichard and
Wienhard [2012]. The set of Anosov representations is an open subset of Hom(Γ; G)/G,
but in general not a union of connected components of Hom(Γ; G)/G. Representations
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in the Hitchin component and maximal representations were the first examples of Anosov
representations Labourie [2006], Burger, Iozzi, Labourie, andWienhard [2005], Guichard
and Wienhard [2012], and Burger, Iozzi, and Wienhard [n.d.]. We refer to Kassel’s con-
tribution Kassel [n.d.] for the definition, more details and more references on Anosov
representations.

The following key properties of Hitchin representations and maximal representations
follow from them being Anosov representations (with respect to certain parabolic sub-
groups).

1. Every representation in the Hitchin component and every maximal representation
is discrete and faithful.

2. Let � : �1(S) ! G be a Hitchin representation, then there exists a �-equivariant
continuous boundary map � : S1 ! G/B into the generalized flag variety G/B ,
where B is the Borel subgroup of G. The map sends distinct points in S1 to trans-
verse points in G/B .

3. Let � : �1(S) ! G be a maximal representation, then there exists a �-equivariant
continuous boundary map � : S1 ! G/S into the generalized flag variety G/S ,
where S is a maximal parabolic subgroup of G which fixes a point in the Shilov
boundary of the symmetric space X = G/K. The map sends distinct points in S1

to transverse points in G/S .

4 Topology of the representation variety

For a connected Lie group G the obstruction to lifting a representation �1(S) ! G to the
universal cover of G defines a characteristic invariant in H2(S; �1(G)) Š �1(G). For
compact simple Lie groups Atiyah and Bott [1983] and complex simple Lie groups W. M.
Goldman [1988] and J. Li [1993] the connected components of Hom(�1(S); G)/G are
in one to one correspondence with elements in �1(G). This does not hold anymore for
real simple Lie groups in general. Of course, characteristic invariants in H2(S; �1(G))

still distinguish some of the connected components, but they are not sufficient to distin-
guish all of them. N. J. Hitchin [1992] determined the number of connected components
of Hom(�1(S);PSL(n;R))/PSL(n;R), and showed that Hitchin components have the
same characteristic invariants as other components. The space of maximal representations,
which is defined using characteristic invariants, in fact decomposes itself into several con-
nected components, which hence cannot be distinguished by any characteristic invariant
Gothen [2001] and S. B. Bradlow, Garcı́a-Prada, and Gothen [2006].

A precise count of the number of connected components for several classical groups,
and in particular for the connected components of the space of maximal representations
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has been given using the Morse theoretic methods on the moduli space of Higgs bundles
Hitchin introduced A. G. Oliveira [2011], Garcı́a-Prada and A. G. Oliveira [2014], S. B.
Bradlow, Garcı́a-Prada, and Gothen [2015], Gothen [2001], S. B. Bradlow, Garcı́a-Prada,
and Gothen [2006], Garcı́a-Prada and Mundet i Riera [2004], and Garcı́a-Prada, Gothen,
and Mundet i Riera [2013]. The situation is particularly interesting for G = Sp(4;R)
(and similarly for the locally isomorphic group SOı(2; 3)) as there are 2g � 4 connected
components in which all representations are Zariski dense Guichard and Wienhard [2010]
and S. B. Bradlow, Garcı́a-Prada, and Gothen [2012]. Maximal representations in these
components cannot be obtained by deforming an appropriate Fuchsian representation � :

�1(S) ! SL(2;R) ! Sp(4;R). An explicit construction of representations in these ex-
ceptional components is given in Guichard and Wienhard [2010]. Any maximal represen-
tations into Sp(2n;R) with n � 3 on the other hand can be deformed either to a principal
Fuchsian representation (if it is in a Hitchin component) or to a (twisted) diagonal Fuch-
sian representation � : �1(S) ! SL(2;R) � O(n) < Sp(2n;R). In order to distinguish
the connected components in the space of maximal representations, additional invariants
are necessary. Such additional invariants have been defined on the one hand using meth-
ods from the theory of Higgs bundles Gothen [2001], S. B. Bradlow, Garcı́a-Prada, and
Gothen [2006], Collier [2017], Baraglia and Schaposnik [2017], and Aparicio-Arroyo, S.
Bradlow, Collier, Garcı́a-Prada, Gothen, and A. Oliveira [2018] and on the other hand
using the Anosov property of representations Guichard and Wienhard [2010].

We shortly describe the additional invariants arising from the Anosov property. If a
representations is Anosov with respect to a parabolic subgroup P < G, then the pull-
back of the associated flat G-bundle to T 1S admits a reduction of the structure group
to L, where L is the Levi subgroup of P . The characteristic invariants of this L-bundle
provide additional invariants of the representation. These additional invariants can be used
in particular to further distinguish connected components consisting entirely of Anosov
representation. Note that representations can be Anosov with respect to different parabolic
subgroups - each such parabolic subgroup gives rise to additional invariants. For the case
of maximal representations into Sp(2n;R) it is shown in Guichard and Wienhard [ibid.]
that these additional invariants in fact distinguish all connected components.

Conjecture 7. Let G be a simple Lie group of higher rank. The connected components of
Hom(�1(S); G)/G can be distinguished by characteristic invariants and by additional
invariants associated to unions of connected components consisting entirely of Anosov
representations.

Note that, since Anosov representations are discrete and injective, any connected com-
ponent consisting entirely of Anosov representations also provides an example of a higher
Teichmüller space. Thus Conjecture 7 implies in particular the following
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Conjecture 8. There are connected components of Hom(�1(S); G)/G which are not dis-
tinguished by characteristic invariants, if and only if there exist higher Teichmüller spaces
in Hom(�1(S); G)/G

Combining Conjecture 8 with Conjecture 19 gives a precise list of groups (see Theo-
rem 17) for which we expect additional connected components to exist. A particularly
interesting case is SO(p; q), p ¤ q. Here additional components and additional invari-
ants have recently been found via Higgs bundle methods Collier [2017], Baraglia and
Schaposnik [2017], and Aparicio-Arroyo, S. Bradlow, Collier, Garcı́a-Prada, Gothen, and
A. Oliveira [2018].

5 Geometric Structures

Classical Teichmüller space T (S) is not just a space of representations, but in fact a space
of geometric structures: every representation is the holonomy of a hyperbolic structure on
S . For higher Teichmüller spaces, such a geometric interpretation is less obvious. The
quotient of the symmetric space Y associated to G by �(�1(S)) is of infinite volume. In
order to find geometric structures on compact manifolds associated, other constructions
are needed.

For any representation � : �1(S) ! G in the Hitchin component or in the space of
maximal representation, there is t a domain of discontinuity in a generalized flag variety
X = G/Q, on which � acts cocompactly. The quotient is a compact manifold M with
a locally homogeneous (G; X)-structure. This relies on the the construction of domains
of discontinuity for Anosov representations given by Guichard and Wienhard [2012] and
generalized by Kapovich, Leeb, and Porti [2018]. We do not describe this construction
here in detail, but refer the reader to Kassel [n.d.], where locally homogeneous (G; X)-
structures, Anosov representations and the construction of domains of discontinuity are
discussed in more detail.

The construction of the domains of discontinuity, together with some topological con-
siderations, allows one to deduce the general statement

Theorem 9. Guichard and Wienhard [2012] For every split real simple Lie group G

there exists a generalized flag variety X and a compact manifold M such that TH (S; G)

parametrizes a connected component of the deformation space of (G; X)-structures on
M . For every Lie group of Hermitian type G there exists a generalized flag variety X

and a compact manifold M such that for every connected component C of Tmax(S; G)

the following holds: A Galois cover of C parametrizes a connected component of the
deformation space of (G; X)-structures on M .
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In particular, any Hitchin representation or maximal representation is essentially the
holonomy of a (G; X)-structures on a compact manifold. It is however quite hard to get
an explicit description of the deformation space of (G; X)-structures they parametrize.
First it is nontrivial to determine the topology of the quotient manifold, and second it is
rather difficult to give a synthetic description of the geometric properties which ensure
that the holonomy representation of a (G; X) structure lies in the Hitchin component or in
the space of maximal representations. In three cases we such a synthetic description: the
Hitchin component for TH (S;PSL(3;R)), the Hitchin component TH (S; PSL(4;R)) and
TH (S;PSp(4;R)), the space of maximal representations Tmax(S; SOı(2; n)).

Theorem 10. Choi and W. M. Goldman [1993] A representation � : �1(S) ! PSL(3;R)
is in Hitchin component TH (S; PSL(3;R)) if and only if it is the holonomy representation
of a convex real projective structures on S

A convex real projective structure on S is a realization of S as the quotient of a convex
domain Ω � RP2 by a group Γ < PSL(3;R) of projective linear transformation preserv-
ing Ω. One aspect which makes this case very special is that the group PSL(3;R) acts
as transformation group on the two-dimensional homogeneous space RP2. The subgroup
�(�1(S)) preserves a convex domain Ω and acts cocompactly on it. The quotient is a sur-
face homeomorphic to S . For more general simple Lie groups of higher rank, there is no
two-dimensional generalized flag variety on which they act, and so the quotient manifold
M is higher dimensional.

Theorem 11. Guichard and Wienhard [2008] The Hitchin component TH (S;PSL(4;R))
parametrizes the space of properly convex foliated projective structures on the unit tangent
bundle ofS . TheHitchin component TH (S;PSp(4;R)) parametrizes the space of properly
convex foliated projective contact structures on the unit tangent bundle of S .

Theorem 12. Collier, Tholozan, and Toulisse [2017] The space of maximal representa-
tions Tmax(S;SOı(2; n)) parametrizes the space of fibered photon structures onO(n)/O(n�

2) bundles over S .

Conjecture 13 (Guichard-Wienhard). Let � : �1(S) ! G be a representation in a higher
Teichmüller space, then there exists a generalized flag varietyX and compact fiber bundle
M ! S , such that � : �1(M ) ! �1(S) ! G, where �1(M ) ! �1(S) is induced by
the bundle map and �1(S) ! G is given by �, is the holonomy of a locally homogeneous
(G; X)-structure on M .

In fact, we expect, that for any cocompact domain of discontintuity which is constructed
through a balanced thickening in the sense of Kapovich, Leeb, and Porti [2018], the quo-
tient manifold is homeomorphic to a compact fiber bundle M over S . A related conjec-
ture has been made by Dumas and Sanders [2017b, Conjecture 1.1] for deformations of
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Hitchin representations in the complexification of G. They proved the conjecture in the
case of PSL(3;C). Guichard and Wienhard [2011a] determine the topology of the quo-
tient manifold for maximal representations and Hitchin representations into the symplec-
tic group, Alessandrini and Q. Li [2018] prove the conjecture for Hitchin representations
into PSL(n;R), and their deformations into PSL(n;C), and Alessandrini, Maloni, and
Wienhard [n.d.] analyze the topology of quotient manifold for complex deformations of
symplectic Hitchin representations.

It is very interesting to note that the recent advantages Alessandrini and Q. Li [2018]
and Collier, Tholozan, and Toulisse [2017] on understanding the topology of the quotient
manifolds rely on a finer analysis and description of the Higgs bundle associated to special
representations in the Hitchin component or in the space of maximal representations. That
the explicit description of the Higgs bundles can be used to endow the domain of disconti-
nuity naturally with the structure of a fiber bundle was first described by Baraglia [2010]
for TH (S; PSL(4;R)), where he recovered the projective structures on the unit tangent
bundle from Theorem 11.

6 Relation to the moduli space of Riemann surfaces

The outer automorphism group fo �1(S) is isomorphic to the mapping class group of S .
It acts naturally on Hom(�1(S); G)/G. This action is properly discontinuous on higher
Teichmüller spaces - in fact more generally on the set of Anosov representations Labourie
[2008], Wienhard [2006], and Guichard and Wienhard [2012]. It is natural to ask about
the relation between the quotient of higher Teichmüller spaces by this action and the mod-
uli space of Riemann surfaces M(S). For Hitchin components Labourie made a very
precise conjecture, based on Hitchin’s parametrization of the Hitchin component. We
state the parametrization and Labourie’s conjecture for G = PSL(n;R) to simplify no-
tation. Hitchin introduced the Hitchin component in N. J. Hitchin [1992] using methods
from the theory of Higgs bundles. This requires the choice of a conformal structure on
S . N. J. Hitchin [ibid.] showed, using methods from the theory of Higgs bundles, that the
Hitchin component is homeomorphic to a vector space. Namely, it is homeomorphic to
the space of holomorphic differentials on S with respect to a chosen conformal structure,
i.e. TH (S; PSL(n;R)) Š

Pn
i=2 H 0(S; Ki ) This parametrization depends on the choice

of a conformal structure and is not invariant under the mapping class group.

Conjecture 14. Labourie [2008] The quotient of TH (S; PSL(n;R)) by the mapping class
group is a holomorphic vector bundle over M(S), with fiber equal toPn

i=3 H 0(S; Ki ).
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This conjecture has been proven by Labourie [2007b] and Loftin [2001] for G =

PSL(3;R) and by Labourie [2017a], using Higgs bundle methods, for all split real Lie
groups of rank 2. It is open in all other cases.

For maximal representations we expect similarly to get a mapping class group invariant
projection from Tmax(S; G) to T (S), see Alessandrini and Collier [2017, Conjecture 10].
For G = SO(2; n) such a projection is constructed in Collier, Tholozan, and Toulisse
[2017]. For G of rank 2 Alessandrini and Collier [2017] construct a mapping class group
invariant complex structure on Tmax(S; G). ForG = Sp(4;R) they show that the quotient
of Tmax(S; G) by the mapping class group is a holomorphic vector bundle over M(S),
and describe in detail the fiber over a point, which is rather complicated since the space
of maximal representations has nontrivial topology and singular points.

7 Positivity

Hitchin components and maximal representation were introduced and studied by very dif-
ferent methods. It turns out that they do not only share many properties, but also admit
a common characterization in terms of positive structures on flag varieties. Only the flag
varieties and notions of positivity in question are different for Hitchin components and
maximal representations.

For Hitchin components we consider full flag varieties and Lusztig’s total positivity
Lusztig [1994]. For maximal representations the flag variety in question is the Shilov
boundary of the symmetric space of G and positivity is given by the Maslov cocycle. In
order to keep the description simple, we illustrate both notions in examples. We consider
G = SL(n;R) for Hitchin components, and G = Sp(2n;R) for maximal representations.

The relevant flag variety for TH (S; SL(n;R)) is the full flag variety

F (Rn) := fF = (F1; F2; � � � ; Fn�1) j Fi � Rn; dim(Fi ) = i; Fi � Fi+1g:

Two flags F; F 0 are said to be transverse if Fi \ F 0
n�i = f0g. We fix the standard basis

(e1; � � � ; en) of Rn. Let F 2 F be the flag with Fi = span(e1; � � � ; ei ), and E 2 F the
flag with Ei = span(en; � � � ; en�i+1).

Any flag T transverse to F , is the image of E under a unique unipotent matrix uT .
The triple of flags (E; T; F ) is said to be positive if and only if uT is a totally positive
unipotent matrix. Note that a unipotent (here lower triangular) matrix is totally positive if
and only of every minor is positive, except those that have to be zero by the condition that
the matrix is unipotent. Any two transverse flags (F1; F2) can be mapped to (E; F ) by an
element of SL(n;R) and we can extend the notion of positivity to any triple of pairwise
transverse flags.
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Theorem 15. Fock and Goncharov [2006], Labourie [2006], and Guichard [2008] Let
� : �1(S) ! SL(n;R) be a representation. Then � 2 TH (S;SL(n;R)) if and only if
there exists a continuous �-equivariant map � : S1 ! F (Rn) which sends positive triples
in S1 to positive triples in F (Rn).

To describe the analogous characterization of maximal representations into Sp(2n;R)
we consider R2n with the standard symplectic form ! and let fe1; � � � ; en; f1; � � � fng be a
symplectic basis. Then

L(R2n) := fL � R2n
j dimL = n; !jL�L = 0g

is the space of Lagrangian subspaces, and two Lagrangians L and L0 are transverse if
L \ L0 = f0g.

Fix LE = span(e1; � � � ; en) and LF = span(f1; � � � ; fn). Any Lagrangian LT 2 L

transverse to LF is the image of LE under an element vT =

�
Idn 0

MT Idn

�
2 V , where

MT is a symmetric matrix.
The triple of Lagrangians (LE ; LT ; LF ) is said to be positive if and only if MT 2

Pos(n;R) � Sym(n;R) is positive definite. This is equivalent to the Maslov cocycle of
(LE ; LT ; LF ) being n, which is the maximal value it can attain. The symplectic group
Sp(2n;R) acts transitively on the space of pairs of transverse Lagrangians and we can
extend the notion of positivity to any triple of pairwise transverse Lagrangian.

Theorem 16. Burger, Iozzi, and Wienhard [2003] Let � : �1(S) ! Sp(2n;R be a rep-
resentation. Then � 2 Tmax(S; Sp(2n;R)) if and only if there exists a continuous �-
equivariant map � : S1 ! L(R2n) which sends positive triples in S1 to positive triples
in L(R2n.

In Guichard and Wienhard [2011c,b] we introduce the notion of Θ-positivity. It gener-
alizes Lusztig’s total positivity, which is only defined for split real Lie groups, to arbitrary
simple Lie groups. There are four families of Lie groups admitting aΘ-positive structure:

Theorem 17. Guichard andWienhard [2011c, Theorem 4.3.] A simple Lie groupG admits
a Θ-positive structure if and only if:

1. G is a split real form.

2. G is of Hermitian type of tube type.

3. G is locally isomorphic to SO(p; q), p ¤ q,.

4. G is a real form of F4; E6; E7; E8, whose restricted root system is of type F4.
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Θ refers to a subset of the simple roots. If G admits a Θ-positive structure, then there
is positive semigroup U >

Θ � UΘ < PΘ with which we can define the notion of positivity
for a triple of pairwise transverse points in the generalized flag variety G/PΘ as above.
Here PΘ is the parabolic group associated to the subset of simple roots Θ, and UΘ is its
unipotent radical.

Definition 18. A representation � : �1(S) ! G is said to be Θ-positive if there exists
a continuous �-equivariant map � : S1 ! G/PΘ which sends positive triples in S1 to
positive triples in G/PΘ.

Conjecture 19 (Guichard-Labourie-Wienhard). The set of Θ-positive representations � :

�1(Σg) ! G is open and closed in Hom(�1(S); G)/G. In particular, Θ-positive repre-
sentations form higher Teichmüller spaces.

For more details on Θ-positivity and Θ-positive representations we refer the reader to
Guichard andWienhard [2011c] and the upcoming papers Guichard andWienhard [2011b]
and Guichard, Labourie, and Wienhard [2011], in which Conjecture 13 will be partly ad-
dressed. In particular we prove that Θ-positive representations are PΘ-Anosov and form
an open subset of Hom(�1(S); G)/G, and a closed set, at least in the subset of irreducible
representations.

The existence of a Θ-positive structure provides a satisfying answer on when and why
higher Teichmüller spaces exist, and we expect that the families of Lie groups listed
in Theorem 17 are the only simple Lie groups for which higher Teichmüller spaces in
Hom(�1(S); G)/G exist. A particular interesting case is the family of Θ-positive repre-
sentations for G = SO(p; q). Here the connected components have recently been deter-
mined with Higgs bundle methods, and several of them containΘ-positive representations
Collier [2017] and Aparicio-Arroyo, S. Bradlow, Collier, Garcı́a-Prada, Gothen, and A.
Oliveira [2018].

8 Coordinates and Cluster structures

Teichmüller space carries several nice sets of coordinates. The best known are Fenchel-
Nielsen coordinates, which encode a hyperbolic structure by the length of and the twist
around a set of 3g�3 disjoint simple closed non-homotopic curves which give a decompo-
sition of S into a union of 2g�2 pair of pants. W.M. Goldman [1990] introduced Fenchel-
Nielsen type coordinates on the Hitchin component TH (S; PSL(3;R). Here, there are two
length and two twist coordinates associated to the curves of a pants decomposition, and in
addition two coordinates which associated to each of the pairs of pants. This a new feature
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arises because a convex real projective structure on a pair of pants is not uniquely deter-
mined by the holonomies around the boundary. For maximal representations, Fenchel-
Nielsen type coordinates were constructed in Strubel [2015].

It is often easier to describe coordinates in the situation when the surface is not closed,
but has at least one puncture. In this case one can consider decorated flat bundles (or dec-
orated representations), which is a flat bundle or a representation together with additional
information around the puncture. Fixing an ideal triangulation, i.e. a triangulation where
all the vertices are punctures, this additional information can be used to define coordinates.
Examples of this are Thurston shear coordinates or Penner coordinates for decorated Teich-
müller space. In the context of higher Teichmüller spaces, for decorated representations
into split real Lie groups Fock and Goncharov [2006] introduced two sets of coordinates,
so calledX- coordinates, which generalize Thurston shear coordinates, andA-coordinates,
which generalize Penner coordinates. They show that when performing a flip of the tri-
angulation (changing the diagonal in a quadrilateral formed by two adjacent triangles),
the change of coordinates is given by a positive rational function. As a consequence, the
set of decorated representations where all coordinates are positive, is independent of the
triangulation. In fact, Fock and Goncharov prove that this set of positive representations
is precisely the set of positive representations in the sense of Section 7, where the notion
of positivity stems from Lusztig’s positivity. In the case when G = PSL(n;R), the Fock-
Goncharov coordinates admit a particularly nice geometric description based on triple
ratios and cross ratios. In particular there is a close relation between the coordinates and
cluster structures, which received a lot of attention. The change of coordinates associated
to a flip of the triangulations is given by a sequence of cluster mutations. This has since
been generalized to other classical groups in Le [n.d.(b)], see also Le [n.d.(a)] and Gon-
charov and Shen [2018] for general split real Lie groups. Related coordinates have been
defined by Gaiotto, Moore and Neitzke, using the theory of spectral networks Gaiotto,
Moore, and Neitzke [2013, 2014]. For an interpretation of the Weil-Petersson form in
terms of cluster algebras see Gekhtman, Shapiro, and Vainshtein [2005].

Inspired by Fock-Goncharov coordinates for surfaces with punctures, Bonahon and
Dreyer defined coordinates on the Hitchin component TH (S;PSL(n;R)) and showed that
TH (S;PSL(n;R)) is real analytically homeomorphic to the interior of a convex polygon
of dimension (n2 � 1)(2g � 2) Bonahon and Dreyer [2014, 2017]. These coordinates
are associated to a maximal lamination of the surface S and generalize Thurston’s shear
coordinates of closed surfaces. A special case for such a maximal lamination is an ideal tri-
angulation of S which is subordinate to a pair of pants decomposition, i.e. the lamination
consists of 3g �3 disjoint simple closed non-homotopic curves which give a pair of pants
decomposition, and three curves in each pair of pants, that cut the pair of pants into two
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ideal triangles. In this case, Zhang [2015a] provided a reparametrization of the Bonahon-
Dreyer coordinates, which give a genuine generalization of Fenchel-Nielsen type coordi-
nates for the Hitchin component TH (S; PSL(n;R)), see also Bonahon and Kim [2016]
for a direct comparision with Goldman coordinates when n = 3.

In forthcoming work Alessandrini, Guichard, Rogozinnikov, and Wienhard [2017] we
introduce X-type and A-type coordinates for decorated maximal representations of the
fundamental group of a punctured surface into the symplectic group Sp(2n;R). These
coordinates have the feature of behaving like the coordinates for G = PSL(2;R) but
with values in the space of positive definite symmetric matrices Pos(n;R). In particular,
even though they are noncommutative, they exhibit a cluster structure. This structure
is similar to the noncommutative cluster structure considered by Berenstein and Retakh
[2015], except for a difference in some signs.

It would be interesting to develop similar coordinates for Θ-positive representations,
in particular for those into SO(p; q), and to investigate their properties. The properties of
theΘ-positive structure suggests that in this case the cluster-like structure would combine
noncommutative and commutative aspects.

Task 20. Develop X-type and A-type coordinates for decorated Θ-positive representa-
tions into SO(p; q). Analyze their cluster-like structures.

9 Symplectic geometry and dynamics

For any reductive Lie group, the representation variety of a closed surface
Hom(�1(S); G)/G is a symplectic manifold W. M. Goldman [1984]. On Teichmüller
space this symplectic structure interacts nicely with Fenchel-Nielsen coordinates. The
length and twist coordinates give global Darboux coordinates: the length coordinate as-
sociated to a simple closed curve in a pair of pants decomposition is symplectically dual
to the twist coordinate associated to this curve, and the symplectic form can be expressed
by Wolpert’s formula as ! =

P3g�3
i=1 dli ^ d�i , where li is the length coordinate and

�i is the twist coordinate Wolpert [1983]. The twist flows associated to a simple closed
curve c on S is the flow given by cutting S along c and continuously twisting around this
curve before gluing the surface back together. It is the Hamiltonian flow associated to the
length coordinate defined by c. The twist flows associated to the 3g � 3 simple closed
curves in a pants decomposition on S commute. This gives Teichmüller space the struc-
ture of a complete integrable system. For more general reductive groups, the Hamilitonian
flows associated to length functions on Hom(�1(S); G)/G have been studied by W. M.
Goldman [1986].

In Sun and Zhang [2017] provide a new approach to compute the Goldman symplec-
tic form on TH (S;PSL(n;R)). This, in conjunction with a companion article by Sun,
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Wienhard, and Zhang [2017], gives rise to several nice statements. Given maximal lam-
ination with finitely many leaves (and some additional topological data) we construct in
Sun, Wienhard, and Zhang [ibid.] new families of flows on TH (S; PSL(n;R)). These
flows give a trivialization of the Hitchin component, which is shown to be symplectic in
Sun and Zhang [2017]. Consequently the flows are all Hamiltonian flows and provide
TH (S;PSL(n;R) the structure of a completely integrable system.

Task 21. Themapping class groupMod(S) acts naturally on the space of maximal lamina-
tions and the additional topological data, so that the symplectic trivializations of TH (S; PSL(n;R))
induce representations �n : Mod(S) ! Sp(R(n2�1)(2g�2)). Analyze these representa-
tions.

A special situation arises when the maximal lamination is an ideal triangulation subor-
dinate to a pants decomposition. In this situation we slightly modify the Bonahon-Dreyer
coordinates, to get global Darboux coordinates on TH (S;PSL(n;R)) which consist of
(3g � 3)(n � 1) length coordinates, (3g � 3)(n � 1) twist coordinates associated to the
simple closed curves in the pants decomposition, and 2�

(n�1)(n�2)
2

coordinates for each
pair of pants. The twist flows are the Hamiltonian flows associated to the length functions,
and for each pair of pants we introduce (n�1)(n�2)

2
new flows, whichwe call eruption flows.

Their Hamiltonian functions are rather complicated. Nevertheless, the twist flows and the
eruption flows pairwise commute, providing a half dimensional subspace of commuting
flows. In the case of PSL(3;R) the eruption flow has been defined inWienhard and Zhang
[2018], where it admits a very geometric description.

Classical Teichmüller space does not only admit twist flows, but carries several natu-
ral flows, for example earthquake flows, which extend twist flows, geodesic flows with
respect to the Weil-Petersson metric or the Teichmüller metric or, and even an SL(2;R)-
action. None of this has yet been explored for higher Teichmüller spaces. A new approach
for lifting Teichmüller dynamics to representation varieties for general Lie group G has
recently been described by Forni and W. Goldman [2017].

10 Geodesic flows and entropy

Representations in higher Teichmüller space, and more generally Anosov representations,
are strongly linked to dynamics on the surface S . Any such representation gives rise to a
Hölder reparametrization of the geodesic flow on S and the representation can essentially
be reconstructed from the periods of this reparametrized geodesic flow. This dynami-
cal point of view has been first observed by Labourie [2006] and applied by Sambarino
[2014a] and has been key in several interesting developments.

Using the thermodynamical formalism Bridgeman, Canary, Labourie, and Sambarino
[2015] define the pressure metric on the Hitchin component TH (S;PSL(n;R)) and more
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generally spaces of Anosov representations. The pressure metric restricts to a multiple
of the Weil-Petersson metric on the subset of principal Fuchsian representations. In the
case of PSL(3;R)metrics on the space of convex real projective structures have also been
constructed in Darvishzadeh and W. M. Goldman [1996] and Q. Li [2016].

Other important quantities that have been investigated using this dynamical viewpoint
are the critical exponent and the topological entropy of Hitchin representations, which
are related to counting orbit points on the symmetric space Sambarino [2015, 2014b] and
Pollicott and Sharp [2014]. Here completely new features arise that are not present in clas-
sical Teichmüller space. On Teichmüller space both quantities are constant, but on Hitchin
components these functions vary and provide information about the geometry of the rep-
resentations. There are sequences of representations along which the entropy goes to zero
Zhang [2015b,a]. The entropy is in fact bounded above. Tholozan for n = 3 Tholozan
[2017], and Potrie and Sambarino in general, establish an entropy rigidity theorem: A
representation saturates the upper bound for the entropy if and only if it is a principal
Fuchsian representation Sambarino [2016] and Potrie and Sambarino [2017]. This has
consequences for the volume of the minimal surface in the symmetric space associated
to the representation. A key aspect in the work of Potrie and Sambarino has been the
regularity of the map � : S1 ! G/B of a Hitchin representation.

For maximal representations which are not in the Hitchin component much less is
known. One obstacle is the missing regularity of the boundary map � : S1 ! G/S ,
which has rectifiable image, but is in general not smooth. Glorieux and Monclair [n.d.]
study the entropy of Anti-de-Sitter Quasi-Fuchsian representations �1(S) ! SO(2; n),
some of their methods methods might also be useful to investigate maximal representa-
tion �1(S) ! SO(2; n).

Task 22. Investigate the topological entropy of maximal representations. Find and char-
acterize sequences along which the entropy goes to zero. Find bounds for the topological
entropy and geometrically characterize the representations that saturate these bounds.

A lot of the geometry of Teichmüller space can be recovered from geodesic currents
associated to the representations and from their intersection Bonahon [1988]. Recently
Martone and Zhang [n.d.] have associated geodesic currents to positively ratioed repre-
sentations, a class that includes Hitchin representations and maximal representations but
should include also Θ-positive representations. Bridgeman, Canary, Labourie, and Sam-
barino [2018] define the Liouville current for a Hitchin representation which they use to
construct the Liouville pressure metric. From the intersection of the geodesic currents
one can recover the periods of the reparametrization of the geodesic flow and the periods
of crossratios associated to the representation Labourie [2008] and Hartnick and Strubel
[2012]. These geodesic currents and the corresponding crossratio functions also play an
important role for the next topic we discuss.
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11 Compactifications

Classical Teichmüller space admits various non-homeomorphic compactifications. One
such compactification is themarked length spectrum compactification. Themarked length
spectrum of a representation � : �1(S) ! PSL(2;R) associates to any conjugacy class
in [
 ] in �1(S) the translation length of the element �(
) in H2. It is a basic result that
for Teichmüller space the map Φ : T (S) ! P(RC) provides an embedding. The closure
of Φ(T (S)) is the marked length spectrum compactification. It is homeomorphic to the
Thurston compactification of T (S) by the space of projectivized measured laminations.
This compactification has been reconstructed using geodesic currents by Bonahon [1988].

The marked length spectrum compactification has been generalized to compactifica-
tions of spaces of representations of finitely generated groups into reductive Lie groups
by Parreau [2012], where the translation length in H2 is replaced by the vector valued
translation length in the symmetric space associated to G. This can be applied to Hitchin
components and spaces of maximal representations to provide marked length spectrum
compactifications. The investigation of the fine structure of these compactifications has
just begun. A key ingredient are generalizations of the Collar Lemma from hyperbolic ge-
ometry to Hitchin representations Lee and Zhang [2017] and to maximal representations
Burger and M. B. Pozzetti [2017]. See also Labourie and McShane [2009], Vlamis and
Yarmola [2017], and Fanoni and B. Pozzetti [n.d.] for generalizations of cross-ratio iden-
tities in the context of higher Teichmüller spaces. Burger, Iozzi, Parreau, and B. Pozzetti
[2017] establish a new decomposition theorem for geodesic currents, which will play a
crucial role in their program to understand the marked length spectrum compactification
of maximal representations.

Compactifications of the space of positive representations (when S has punctures) have
been constructed using explicit parametrizations and the theory of tropicalizations Fock
and Goncharov [2006], Alessandrini [2008], and Le [2016].

In all these constructions it is a challenge to give a geometric interpretation of points
in the boundary of the compactification. The most natural is in terms of actions on R-
buildings Parreau [2012], Le [2016], and Burger and M. B. Pozzetti [2017]. This nat-
urally generalizes the description of boundary points of Teichmüller space by actions on
R-trees. However, Thurston’s compactification gives an interpretation of boundary points
by measured laminations on S . It would be interesting to get a description of boundary
points of Hitchin components or spaces of maximal representations in terms of geometric
objects on S that generalize measured laminations, and to relate the compactifications to
degenerations of the geometric structures associated to Hitchin components and maximal
representations in low dimensions (see Section 5). For convex real projective structures
such an interpretation of boundary points in terms of a mixed structure consisting of a
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measured lamination and a HEX-metric has been announced by Cooper, Delp, D. Long,
and Thistlethwaite [n.d.].

12 Arithmetics

Discrete Zariski dense subgroups of semisimple Lie groups have been studied for a long
time. In recent years there has been a revived interest from number theory in discrete
Zariski dense subgroups, which are contained in arithmetic lattices without being lattices
themselves. Such groups have been coined thin groups Sarnak [2014]. Hitchin represen-
tations and maximal representations, and more generally Anosov representations, provide
many examples of discrete Zariski dense subgroups of higher rank Lie groups which are
not lattices. They are not necessarily contained in (arithmetic) lattices. However, there are
many Hitchin representations and maximal representations that are even integral, i.e. up
to conjugation contained in the integral points of the group G. This is a new feature that
arises for higher Teichmüller spaces and is not present in classical Teichmüller space. The
group PSL(2;Z) is a non-uniform lattice in PSL(2;R), consequently there is no discrete
embedding of the fundamental group �1(S) of a closed oriented surface into PSL(2;R)
which takes values in the integer points PSL(2;Z).

For n = 3 the first examples of integral Hitchin representations were given by Vinberg
and Kac [1967], infinite families were constructed by Long, Reid, and Thistlethwaite with
an explicit description using triangle groups.

Theorem 23. D. D. Long, Reid, and Thistlethwaite [2011] Let Γ = ha; b j a3 = b3 =

(ab)4 = 1i be the (3,3,4) triangle group. There is an explicit polynomial map � : R !

Hom(Γ;PSL(3;R)) whose image lies in the Hitchin component. For all t 2 Z, the image
of �(t) give a Zariski-dense subgroup of PSL(3;Z). The representations �(t), t 2 Z are
pairwise not conjugate in PGL(3;R).

Since Γ contains subgroups of finite index which are isomorphic to the fundamental
group �1(S) of a closed oriented surface S , Theorem 23 gives rise to infinitely many, non
conjugate integral representations in TH (�1(S);PSL(n;R)). The representations lie on
different mapping class group orbits.

In unpublished work with Burger and Labourie we use bending to show the following

Theorem 24. For n � 5 and odd there are infinitely many pairwise non conjugate integral
representations in the Hitchin component TH (�1(S);PSL(n;R)). These representations
lie on different mapping class group orbits.

Task 25. Develop tools to count integral representations in TH (�1(S);PSL(n;R)) mod-
ulo the action of the mapping class group. Investigate the counting functions and their
asymptotics.



AN INVITATION TO HIGHER TEICHMÜLLER THEORY 1051

A first step to start counting is to find appropriate height functions on
TH (�1(S);PSL(n;R)) such that there are only finitely many integral representations of
finite height. A height function, inspired by Thurston’s asymmetric metric on Teichmüller
space has been proposed by Burger and Labourie.

For more general constructions of surface subgroups in lattices of Lie groups, following
the construction of Kahn and Markovic surface subgroups in three-manifold groups Kahn
and Markovic [2012] we refer to work of Hamenstädt and Kahn [2017], and forthcoming
work of Labourie, Kahn, andMozes [2017]. Examples of integral maximal representations
are constructed in Toledo [1987].

13 Complex Analytic Theory

In classical Teichmüller theory complex analytic methods and the theory of quasi-confor-
mal mappings play a crucial role. These aspects are so far largely absent from higher
Teichmüller theory. Dumas and Sanders started exploring the complex analytic aspects of
discrete subgroups of complex Lie groups of higher rank in Dumas and Sanders [2017b].
They investigate in particular deformations of Hitchin representations and maximal repre-
sentations in the complexifications ofG, and establish important properties of the complex
compact manifoldsM that arise as quotients of domains of discontinuity of these represen-
tations (see Section 5). In a forthcoming paper Dumas and Sanders [2017a] the complex
deformation theory of these representations will be investigated further.

14 Higher dimensional higher Teichmüller spaces

Fundamental groups of surfaces are not the only finitely generated groups for which there
are special connected components in the representation variety Hom(�1(S); G)/G, which
consist entirely of discrete and faithful representations. This phenomenon also arises for
fundamental groups of higher dimensional manifolds, and even for more general finitely
generated hyperbolic groups. The main examples are convex divisible representations,
which have been introduced and studied by Benoist in a series of papers, starting with
Benoist [2004]. They are generalizations of convex real projective structures on surfaces,
and exist in any dimension.

Let N be a compact hyperbolic manifold of dimension n and �1(N ) its fundamental
group. A representation � : �1(N ) ! PGL(n + 1;R) is convex divisible if there exists
a strictly �(�1(N ))- invariant convex domain in RPn, on which �(�1(N )) acts cocom-
pactly.
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Theorem 26. Benoist [2005] The set of convex divisible representations is a union of
connected components ofHom(�1(N );PGL(n+1;R))/PGL(n+1;R) consisting entirely
of discrete and faithful representations.

Barbot [2015] showed that a similar phenomenon arise for representations
� : �1(N ) ! SO(2; n) that are Anti-de-Sitter Quasi-Fuchsian representation. In fact
these are precisely Anosov representations of �1(N ) into SO(2; n) with respect to the
parabolic subgroup that stabilizes an isotropic line Barbot and Mérigot [2012].

Theorem 27 (Barbot [2015]). The set of Quasi Fuchsian AdS representations in
Hom(�1(N );SO(2; n))/SO(2; n) is a connected component consisting entirely of discrete
and faithful representations.

In view of Definition 2 we might call these connected components of the representation
variety Hom(�1(N ); G)/G containing only discrete and faithful representations higher
dimensional higher Teichmüller spaces.

When N is of dimension two, the notion ofΘ-positivity gives us a conjectural criterion
why and when higher Teichmüller spaces exist. It would be interesting to find a unifying
principle behind the existence of such special connected components inHom(�1(N ); G)/G.

Task 28. Find the underlying principle for the existence of connected components of the
representation variety Hom(�1(N ); G)/G which consist entirely of discrete and faithful
representations.

A first test case could be to analyze deformations of the representation �0 : �1(N ) !

SO(1; n) ! SO(k; n), or more generally deformations of representations �0 : �1(N ) !

SO(1; n) ! G, where the centralizer of SO(1; n) in G is compact and contained in the
maximal compact subgroup of the Levi group of a parabolic subgroup containing the
parabolic subgroup defined by SO(1; n). We expect all such deformations to be discrete
and faithful.
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K -THEORY AND ACTIONS ON EUCLIDEAN RETRACTS
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Abstract

This note surveys axiomatic results for the Farrell-Jones Conjecture in terms of
actions on Euclidean retracts and applications of these to GLn(Z), relative hyperbolic
groups and mapping class groups.

Introduction

Motivated by surgery theoryHsiang [1984]made a number of influential conjectures about
the K-theory of integral group rings Z[G] for torsion free groups G. These conjectures
often have direct implications for the classification theory of manifolds of dimension � 5.
A good example is the following. An h-cobordism is a compact manifold W that has
two boundary componentsM0 andM1 such that both inclusionsMi ! W are homotopy
equivalences. The Whitehead group Wh(G) is the quotient ofK1(Z[G]) by the subgroup
generated by the canonical units ˙g, g 2 G. Associated to an h-cobordism is an in-
variant, the Whitehead torsion, in Wh(G), where G is the fundamental group of W . A
consequence of the s-cobordism theorem is that for dimW � 6, an h-cobordism W is
trivial (i.e., isomorphic to a productM0�[0; 1]) iff its Whitehead torsion vanishes. Hsiang
conjectured that forG torsion free Wh(G) = 0, and thus that in many cases h-cobordisms
are products.

The Borel conjecture asserts that closed aspherical manifolds are topologically rigid,
i.e., that any homotopy equivalence to another closed manifold is homotopic to a homeo-
morphism. The last step in proofs of instances of this conjecture via surgery theory uses a
vanishing result forWh(G) to conclude that an h-cobordism is a product and that therefore
the two boundary components are homeomorphic.

Farrell and Jones [1986] pioneered amethod of using the geodesic flow on non-positively
curved manifolds to study these conjectures. This created a beautiful connection between

The work has been supported by the SFB 878 in Münster.
MSC2010: primary 18F25; secondary 19G24, 20F67, 20F65.
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K-theory and dynamics that led Farrell and Jones [1993b], among many other results, to a
proof of the Borel Conjecture for closed Riemannian manifolds of non-positive curvature
of dimension � 5. Moreover, Farrell and Jones [1993a] formulated (and proved many
instances of) a conjecture about the structure of the algebraic K-theory (and L-theory)
of group rings, even in the presence of torsion in the group. Roughly, the Farrell-Jones
Conjecture states that the main building blocks for the K-theory of Z[G] is the K-theory
of Z[V ] where V varies over the family of virtually cyclic subgroups of G. It implies a
number of other conjectures, among them Hsiang’s conjectures, the Borel Conjecture in
dimension � 5, the Novikov Conjecture on the homotopy invariant of higher signatures,
Kaplansky’s conjecture about idempotents in group rings, see Lück [2010] for a summary
of these and other applications.

My goal in this note is twofold. The first goal is to explain a condition formulated in
terms of existence of certain actions of G on Euclidean retracts that implies the Farrell-
Jones Conjecture for G. This condition was developed in A. Bartels and Lück [2012c]
and A. Bartels, Lück, and Reich [2008b] where the connection between K-theory and
dynamics has been extended beyond the context of Riemannian manifolds to prove the
Farrell-Jones Conjecture for hyperbolic and CAT(0)-groups. The second goal is to outline
how this condition has been used in joint work with Lück, Reich and Rüping and with
Bestvina to prove the Farrell-Jones Conjecture for GLn(Z) and mapping class groups. A
common difficulty for both families of groups is that their natural proper actions (on the
associated symmetric space, respectively on Teichmüller space) is not cocompact. In both
cases the solution depends on a good understanding of the action away from cocompact
subsets and an induction on a complexity of the groups. As a preparation for mapping
class groups we also discuss relatively hyperbolic groups.

The Farrell-Jones Conjecture has a prominent relative, the Baum-Connes Conjecture
for topologicalK-theory of groupC �-algebras Baum andConnes [2000] andBaum, Connes,
and Higson [1994]. The two conjectures are formally very similar, but methods of proofs
are different. In particular, the conditions discussed in Section 2 are not known to imply
the Baum-Conjecture. The classes of groups for which the two conjectures are known
differ. For example, by work of Kammeyer, Lück, and Rüping [2016] all lattice in Lie
groups satisfy the Farrell-Jones Conjecture; despite Lafforgue [2002] positive results for
many property T groups, the Baum-Connes Conjecture is still a challenge for SL3(Z).
Wegner [2015] proved the Farrell-Jones Conjecture for all solvable groups, but the case
of amenable (or just elementary amenable) groups is open; in contrast Higson and Kas-
parov [2001] proved the Baum-Connes Conjecture for all a-T-menable groups, a class of
groups that contains all amenable groups. On the other hand, hyperbolic groups satisfy
both conjectures. See Mineyev and Yu [2002] and Lafforgue [2012] for the Baum-Connes
Conjecture and, as mentioned above, A. Bartels and Lück [2012c] and A. Bartels, Lück,
and Reich [2008b] for the Farrell-Jones Conjecture. For a more comprehensive summary
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of the current status of the Farrell-Jones Conjecture the reader is directed to Lück [2017]
and Reich and Varisco [2017].

Acknowledgments. It is a pleasure to thank my teachers, coauthors, and students for the
many things they taught me.

1 The Formulation of the Farrell-Jones Conjecture

Classifying spaces for families. A family F of subgroups of a group G is a non-empty
collection of subgroups that is closed under conjugation and subgroups. Examples are the
family Fin of finite subgroups and the family VCyc of virtually cyclic subgroups (i.e., of
subgroups containing a cyclic subgroup as a subgroup of finite index). For any family of
subgroups of G there exists a G-CW -complex EFG with the following property: if E
is any other G-CW -complex such that all isotropy groups of E belong to F , then there
is a up to G-homotopy unique G-map E ! EFG. This space is not unique, but it is
unique up to G-homotopy equivalence. Informally one may think about EFG as a space
that encodes the group G relative to all subgroups from F . Often there are interesting
geometric models for this space, in particular for F = Fin. More information about this
space can be found for example in Lück [2005]. An easy way to construct EFG is as the
infinite join �1

i=0(
`
F 2F G/F ). If F is closed under supergroups of finite index (i.e., if

F 2 F is a subgroup of finite index in F 0, then also F 0 2 F ), then the full simplicial
complex on

`
F 2F G/F is also a model for EFG; we will denote this model later by

∆F (G).

The formulation of the conjecture. The original formulation of the Farrell and Jones
[1993a] used homology with coefficients in stratified and twisted Ω-spectra. Here we use
the equivalent Hambleton and Pedersen [2004] formulation developed by Davis and Lück
[1998]. Given a ring R, Davis-Lück construct a homology theory X 7! HG

� (X ;KR) for
G-spaces with the property thatHG

� (G/H ;KR) Š K�(R[H ]).
Let F be a family of subgroups of the group G. Consider the projection map EFG !

G/G to the one-point G-space G/G. It induces the F -assembly map

˛GF : HG
� (EF ;KR) ! HG

� (G/G;KR) Š K�(R[G]):

Conjecture 1.1 (Farrell-Jones Conjecture). For any groupG and any ringR the assembly
map ˛GVCyc is an isomorphism.

This version of the conjecture has been stated in A. Bartels, Farrell, Jones, and Reich
[2004]. The original formulation of Farrell and Jones [1993a] considered only the integral
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group ring Z[G]. Moreover, Farrell and Jones wrote that they regard this and related
conjectures only as estimates which best fit the know data at this time. However, the
conjecture is still open and does still fit with all known data today.

Transitivity principle. Informally one can view the statement that the assembly map
˛GF is an isomorphism for a group G and a ring R as the statement that K�(R[G]) can
be assembled from K�(R[F ]) for all F 2 F (and group homology). If V is a family of
subgroups of G that contains all subgroups from F , then one can apply this slogan in two
steps, for G relative to V and for each V 2 V relative to the F 2 F with F � V . The
implementation of this is the following transitivity principle.

Theorem 1.2 (Farrell and Jones [1993a] and Lück and Reich [2005]). For V 2 V set
FV := fF j F 2 F ; F � V g. Assume that for all V 2 V the assembly map ˛VFV

is an
isomorphism. Then ˛GF is an isomorphism iff ˛GV is an isomorphism.

Twisted coefficients. Often it is beneficial to study more flexible generalizations of Con-
jecture 1.1. Such a generalization is the Fibred Isomorphism Conjecture of Farrell and
Jones [1993a]. An alternative is the Farrell-Jones Conjecture with coefficients in additive
categories A. Bartels and Reich [2007], here one allows additive categories with an action
of a groupG instead of just a ring as coefficients. This version of the conjecture applies in
particular to twisted group rings. These generalizations of the Conjecture have better inher-
itance properties. Two of these inheritance property are stability under directed colimits
of groups, and stability under taking subgroups. For a summary of the inheritance proper-
ties see Reich and Varisco [2017, Thm. 27(2)]. Often proofs of cases of the Farrell-Jones
Conjecture use these inheritance properties in inductions or to reduce to special cases. We
will mean by the statement thatG satisfies the Farrell-Jones Conjecture relative to F , that
the assembly map ˛GF is bijective for all additive categories A with G-action. However,
this as a technical point that can be safely ignored for the purpose of this note.

Other theories. The Farrell-Jones Conjecture forK-theory discussed so far has an analog
inL-theory, as it appears in surgery theory. For some of the applications mentioned before
this is crucial. For example, the Borel Conjecture for a closed aspherical manifoldM of
dimensions � 5 holds if the fundamental group ofM satisfies both theK-andL-theoretic
Farrell-Jones Conjecture. However, proofs of the Farrell-Jones Conjecture in K- and L-
theory are by now very parallel. Recently, the techniques for the Farrell-Jones Conjecture
inK- and L-theory have been extended to also cover Waldhausen’s A-theory Enkelmann,
Lück, Pieper, Ullmann, and Winges [2016], Kasprowski, Ullmann, Wegner, and Winges
[2018], and Ullmann and Winges [2015]. In particular, the conditions we will discuss in
Section 2 are now known to imply the Farrell-Jones Conjecture in all three theories.
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2 Actions on compact spaces

Amenable actions and exact groups.

Definition 2.1 (Almost invariant maps). LetX ,E beG-spaces whereE is equipped with
a G-invariant metric d . We will say that a sequence of maps fn : X ! E is almost
G-equivariant if for any g 2 G

sup
x2X

d (fn(gx); gfn(x)) ! 0 as n ! 1:

For a discrete groupG we equip the space Prob(G) of probability measures onG with
the metric it inherits as subspace of l1(G). This metric generates the topology of point-
wise convergence on Prob(G). We recall the following definition.

Definition 2.2. An action of a group G on a compact space X is said to be amenable if
there exists a sequence of almost equivariant maps X ! Prob(G).

A group is amenable iff its action on the one point space is amenable. Groups that
admit an amenable action on a compact Hausdorff space are said to be exact or boundary
amenable. The class of exact groups contains all amenable groups, hyperbolic groupsAdams
[1994], and all linear groups Guentner, Higson, and Weinberger [2005]. Other prominent
groups that are known to be exact are mapping class groups Hamenstädt [2009] and Kida
[2008] and the group of outer automorphisms of free groups Bestvina, Guirardel, and Hor-
bez [2017]. The Baum-Connes assembly map is split injective for all exact groups Higson
[2000] and Yu [2000]. This implies the Novikov conjecture for exact groups. This is an
analytic result for the Novikov conjecture, in the sense that it has no known proof that
avoids the Baum-Connes Conjecture. There is no corresponding injectivity result for as-
semblymaps in algebraicK-theory. For a survey about amenable actions and exact groups
see Ozawa [2006].

Finite asymptotic dimension. Results for assembly maps in algebraic K-theory and L-
theory often depend on a finite dimensional setting; the space of probability measures
has to be replaced with a finite dimensional space. We write ∆(G) for the full simplicial
complex with vertex set G and ∆(N )(G) for its N -skeleton. The space ∆(G) can be
viewed as the space of probability measures on G with finite support. We equip ∆(G)

with the l1-metric; this is the metric it inherits from Prob(G).

Definition 2.3 (N -amenable action). We will say that an action of a group G on a com-
pact space X is N -amenable if there exists a sequence of almost equivariant maps X !

∆(N )(G).
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The natural action of a countable groupG on its Stone-Čech compactification ˇG isN -
amenable iff the asymptotic dimension ofG is at mostN Guentner, Willett, and Yu [2017,
Thm. 6.5]. This condition (for any N ) also implies exactness and therefore the Novikov
conjecture Higson and Roe [2000]. For groupsG of finite asymptotic dimension for which
in addition the classifying space BG can be realized as a finite CW -complex, there is an
alternative argument for the Novikov Conjecture Yu [1998] that has been translated to
integral injectivity results for assembly maps in algebraic K-theory and L-theory A. C.
Bartels [2003] and Carlsson and Goldfarb [2004]. These injectivity results have seen far
reaching generalizations to groups of finite decomposition complexity Guentner, Tessera,
and Yu [2012], Kasprowski [2015], and Ramras, Tessera, and Yu [2014].

N -F -amenable actions. Constructions of transfer maps in algebraic K-theory and L-
theory often depend on actions on spaces that are much nicer than ˇG. A good class of
spaces to use for the Farrell-Jones Conjecture are Euclidean retracts, i.e., compact spaces
that can be embedded as a retract in some Rn. Brouwer’s fixed point theorem implies that
for an action of a group on an Euclidean retract any cyclic subgroup will have a fixed point.
It is not difficult to check that this obstructs the existence of almost equivariant maps to
∆(N ) (assuming G contains an element of infinite order). Let F be a family of subgroups
ofG that is closed under taking supergroups of finite index. Let S :=

`
F 2F G/F be the

set of all left cosets to members of F . Let∆F (G) be the full simplicial complex on S and
∆

(N )

F (G) be its N -skeleton. We equip∆F (G) with the l1-metric.

Definition 2.4 (N -F -amenable action). We will say that an action of G on a compact
space X is N -F -amenable if there exists a sequence of almost equivariant maps X !

∆
(N )

F (G). If an action is N -F -amenable for some N 2 N, then we say that it is finitely
F -amenable.

Remark 2.5. LetX be aG-CW -complexwith isotropy groups in F and of dimension� N .
As∆F (G) is a model for EFG we obtain a cellular G-map f : X ! ∆

(N )

F (G); this map
is also continuous for the l1-metric. In particular, the constant sequence fn � f is almost
equivariant. Therefore one can viewN -F -amenability forG-spaces as a relaxation of the
property of being a G-CW -complex with isotropy in F and of dimension � N .

This relaxation is necessary to obtain compact examples and reasonably small F : If a
G-CW -complex is compact, then it has only finitely many cells. In particular, for each
cell the isotropy group has finite index in G, so F would have to contain subgroups of
finite index in G.

Theorem 2.6 (A. Bartels and Lück [2012c] and A. Bartels, Lück, and Reich [2008b]).
Suppose that G admits a finitely F -amenable action on a Euclidean retract. Then G
satisfies the Farrell-Jones Conjecture relative to F .
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Remark 2.7. The proof of Theorem 2.6 depends onmethods from controlled topology/algebra
that have a long history. An introduction to controlled algebra is given in Pedersen [2000];
an introduction to the proof of Theorem 2.6 can be found in A. Bartels [2016]. Here we
only sketch a very special case, where these methods are not needed.

Assume that the Euclidean retract is a G-CW -complex X . As pointed out in Re-
mark 2.5 this forces F to contain subgroups of finite index in G. As X is contractible,
the cellular chain complex of X provides a finite resolution C� over Z[G] of the trivial
G-module Z. Note that in each degree Ck =

L
Z[G/Fi ] is a finite sum of permutation

modules with Fi 2 F and Fi of finite index inG. For a finitely generated projectiveR[G]-
module P we obtain a finite resolution C�˝ZP of P . Each module in the resolution is
a finite sum of modules of the form Z[G/F ]˝ZP with F 2 F and of finite index in G.
Here Z[G/F ]˝ZP is equipped with the diagonalG-action and can be identified with the
R[G]-module obtained by first restricting P to an R[F ]-module and then inducing back
up from R[F ] to R[G]. In particular,

�
Z[G/F ]˝ZP

�
2 K0(R[G]) is in the image of the

assembly map relative to the family F . It follows that [P ] =
P
k(�1)k [Ck˝ZP ] is also

in the image. Therefore the assembly map H0(EFG;KR) ! K0(R[G]) is surjective.
(This argument did not use that F is closed under supergroups of finite index.)

Example 2.8. LetG be a hyperbolic group. Its Rips complex can be compactified to a Eu-
clidean retract Bestvina andMess [1991]. The natural action ofG on this compactification
is finitely VCyc-amenable A. Bartels, Lück, and Reich [2008a].

To obtain further examples of finitely F -amenable actions on Euclidean retracts, it is
helpful to replaceVCycwith a larger family of subgroups F . Groups that act acylindrically
hyperbolic on a tree admit finitely F -amenable actions on Euclidean retracts where F is
the family of subgroups that is generated by the virtually cyclic subgroups and the isotropy
groups for the original action on the tree Knopf [2017]. Relative hyperbolic groups and
mapping class groups are discussed in Section 4.

Remark 2.9. A natural question is which groups admit finitely VCyc-amenable actions
on Euclidean retracts. A necessary condition for an action to be finitely VCyc-amenable
is that all isotropy groups of the action are virtually cyclic. Therefore, a related question
is which groups admit actions on Euclidean retracts such that all isotropy groups are vir-
tually cyclic. The only groups admitting such actions that I am aware of are hyperbolic
groups. In fact, I do not even know whether or not the group Z2 admits an action on a
Euclidean retract (or on a disk) such that all isotropy groups are virtually cyclic. There
are actions of Z2 on disks without a global fixed point. This is a consequence of Oliver’s
analysis of actions of finite groups on disks Oliver [1975]. On the other hand, there are
finitely generated groups for which all actions on Euclidean retracts have a global fixed
point Arzhantseva, Bridson, Januszkiewicz, Leary, Minasyan, and Świ tkowski [2009].
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Homotopy actions. There is a generalization of Theorem 2.6 using homotopy actions. In
order to be applicable to higherK-theory these actions need to be homotopy coherent. The
passage from strict actions to homotopy actions is already visible in the work of Farrell-
Jones where it corresponds to the passage from the asymptotic transfer used for negatively
curved manifolds Farrell and Jones [1986] to the focal transfer used for non-positively
curved manifolds Farrell and Jones [1993b].

Definition 2.10 (Vogt [1973] andWegner [2012]). A homotopy coherent action of a group
G on a space X is a continuous map

Γ:

1a
j=0

((G�[0; 1])j�G�X) ! X

such that

Γ(gk ; tk ; : : : ; t1; g0; x) =

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

Γ(gk ; : : : ; gj ;Γ(gj�1; : : : ; x)) tj = 0

Γ(gk ; : : : ; gjgj�1; : : : ; x) tj = 1

Γ(gk ; : : : ; t2; g1; x) g0 = e; 0 < k

Γ(gk ; : : : ; tj+1tj ; : : : ; g0; x) gj = e; 1 � j < k

Γ(gk�1; : : : ; t1; g0; x) gk = e; 0 < k

x g0 = e; k = 0

Here Γ(g;�) : X ! X should be thought of the action of g on X , the map
Γ(g;�; h;�) : [0; 1]�X ! X is a homotopy from Γ(g;�) ı Γ(h;�) to Γ(gh;�) and
the remaining data in Γ encodes higher coherences.

In order to obtain sequences of almost equivariant maps for homotopy actions it is
useful to also allow the homotopy action to vary.

Definition 2.11 (N -F -amenability for homotopy coherent actions). A sequence of ho-
motopy coherent actions (Γn; Xn) of a group G is said to be N -F -amenable if there
exists a sequence of continuous maps fn : Xn ! ∆

(N )

F (G) such that for all k and all
gk ; : : : ; g0 2 G

sup
x2X;tk ;:::;t12[0;1]

d (fn(Γ(gk ; tk ; : : : ; t1; g0; x); gk � � �g0fn(x)) ! 0 as n ! 1:

Theorem 2.12 (A. Bartels and Lück [2012c] and Wegner [2012]). Suppose thatG admits
a sequence of homotopy coherent actions on Euclidean retracts of uniformly bounded
dimension that is finitely F -amenable. Then G satisfies the Farrell-Jones Conjecture rel-
ative to F .
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Remark 2.13. Groups satisfying the assumptions of Theorem 2.12 are said to be homotopy
transfer reducible in Enkelmann, Lück, Pieper, Ullmann, andWinges [2016]. The original
formulations of Theorems 2.6 and 2.12 were not in terms of almost equivariant maps, but
in terms of certain open covers of G�X .

We recall here the formulation used for actions. (The formulation for homotopy actions
is more cumbersome.) A subsetU of aG-space is said to be an F -subset if there is F 2 F
such that gU = U for all g 2 F and U \ gU = ¿ for all g 2 G n F . A collection U
of subsets is said to be G-invariant if gU 2 U for all g 2 G, U 2 U. If no point is
contained in more thanN +1members of U, then U is said to be of order (or dimension)
� N . A G-invariant cover by open F -subsets is said to be an F -cover.

For a compactG-spaceX we equip nowG�X with the diagonalG-action. For S � G

finite an F -cover of G�X is said to be S -wide (in the G-direction) if

8 (g; x) 2 G�X 9U 2 U such that gS�fxg � U:

Then the action of G on X is N -F -amenable iff for any S � G finite there exists an
S -wide F -cover U for G�X of dimension at most N Guentner, Willett, and Yu [2017,
Prop. 4.5]. A translation from covers to maps is also used in A. Bartels and Lück [2012c],
A. Bartels, Lück, and Reich [2008b], andWegner [2012]. From the point of view of covers
(and because of the connection to the asymptotic dimension) it is natural to think of theN
in N -F -amenable as a kind of dimension for the action of G on X , see Guentner, Willett,
and Yu [2017] and Sawicki [2017].

A further difference between the formulations used above and in the references given is
that the conditions on the topology ofX are formulated differently, but certainly Euclidean
retracts satisfy the condition from A. Bartels and Lück [2012c].
Example 2.14. Theorem 2.12 applies to CAT(0)-groups where F = VCyc is the fam-
ily of virtually cyclic subgroups A. Bartels and Lück [2012b] and Wegner [2012]. An
application of Theorem 2.12 to GLn(Z) will be discussed in Section 4.
Remark 2.15 (The Farrell-Hsiangmethod). There are interesting groups for which one can
deduce the Farrell-Jones Conjecture using Theorems 2.6 (or 2.12) and inheritance proper-
ties. However, it is not clear that these methods can account for all that is currently known.
A third method, going back to work of Farrell and Hsiang [1978], combines induction re-
sults for finite groups Dress [1975] and Swan [1960] with controlled topology/algebra.
An axiomatization of this method is given in A. Bartels and Lück [2012a]. In important
part of the proof of the Farrell-Jones Conjecture for solvable groups Wegner [2015] is a
combination of this method with Theorem 2.12.
Remark 2.16 (Trace methods). TheK-theory Novikov Conjecture concerns injectivity of
assembly maps in algebraic K-theory, i.e., lower bounds for the algebraic K-theory of
group rings. For the integral group ring of groups, that are only required to satisfy a mild
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homological finiteness assumption, trace methods have been used by Bökstedt, Hsiang,
and Madsen [1993] and Lück, Reich, Rognes, and Varisco [2017] to obtain rational injec-
tivity results. The latter result in particular yields interesting lower bounds for Whitehead
groups. For the group ring over the ring of Schatten class operators Yu [2017] proved ra-
tional injectivity of the Farrell-Jones assembly map for all groups. This is the only result
I am aware of for the Farrell-Jones Conjecture that applies to all groups!

3 Flow spaces

The construction of almost equivariant maps often uses the dynamic of a flow associated
to the situation.

Definition 3.1. A flow space for a group G is a metric space FS equipped with a flow Φ

and an isometric G-action where the flow and the G-action commute. For ˛ > 0, ı > 0,
c; c0 2 FS we write

dfol(c; c
0) < (˛; ı)

to mean that there is t 2 [�˛; ˛] such that d (Φt (c); c0) < ı.

Example 3.2. Let G be the fundamental group of a Riemannian manifold M . Then the
sphere bundle SM̃ equipped with the geodesic flow is a flow space for the fundamental
group ofM . For manifolds of negative or non-positive curvature this flow space is at the
heart of the connection between K-theory and dynamics used to great effect by Farrell-
Jones.

This example has generalizations to hyperbolic groups and CAT(0)-groups. For hyper-
bolic groups Mineyev’s symmetric join is a flow space Mineyev [2005]. Alternatively, it
is possible to use a coarse flow space for hyperbolic groups, see Remark 3.7 below. For
groups acting on a CAT(0)-space a flow space has been constructed in A. Bartels and
Lück [2012b]. It consists of all parametrized geodesics in the CAT(0)-space (technically
all generalized geodesics) and the flow acts by shifting the parametrization.

Almost equivariant maps often arise as compositions

X
'
�! FS

 
�! ∆

(N )

F (G);

where the first map is almost equivariant in an (˛; ı)-sense, and the second map is G-
equivariant and contracts (˛; ı)-distances to "-distances. The following Lemma summa-
rizes this strategy.

Lemma 3.3. Let X be a G-space, where G is a countable group. Let N 2 N. Assume
that there exists a flow space FS satisfying the following two conditions.
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(A) For any finite subset S of G there is ˛ > 0 such that for any ı > 0 there is a
continuous map ' : X ! FS such that for x 2 X , g 2 S we have

dfol('(gx); g'(x)) < (˛; ı):

(B) For any ˛ > 0, " > 0 there are ı > 0 and a continuousG-map  : FS ! ∆
(N )

F (G)

such that
dfol(c; c

0) < (˛; ı) H) d ( (c);  (c0)) < "

holds for all c; c0 2 FS.

Then the action of G on X is N -F -amenable.

Proof. Let S � G be finite and " > 0. We need to construct a map f : X ! ∆
(N )

F (G) for
which d (f (gx); gf (x)) < " for all x 2 X , g 2 S . Let ˛ be as in (A) with respect to S .
Choose now ı > 0 and a G-map  : FS ! ∆

(N )

F (G) as in (B). Next choose ' : X ! FS
as in (A) with respect to this ı > 0. Then f :=  ı ' has the required property.

Remark 3.4 (On the constructions of'). Maps' : X ! FS as in condition (A) in Lemma 3.3
can in negatively or non-positively curved situations often be constructed using dynamic
properties of the flow. We briefly illustrate this in a case already considered by Farrell
and Jones.

Let G be the fundamental group of a closed Riemannian manifold of strict negative
sectional curvatureM . Let M̃ be its universal cover and S1 the sphere at infinity for M̃ .
The action of G on M̃ extends to S1. For each x 2 M̃ there is a canonical identification
between the unit tangent vectors at x and S1: every unit tangent vector v at x determines
a geodesic ray c starting in x, the corresponding point � 2 S1 is c(1). One say that
v points to � . The geodesic flow Φt on SM̃ has the following property. Suppose that
v and v0 are unit tangent vectors at x and x0 pointing to the same point in S1. Then
dfol(Φt (v);Φt (v

0)) < (˛; ıt ) where ˛ depends only on d (x; x0) and ıt ! 0 uniformly
in v; v0 (still depending on d (x; x0)). This statement uses strict negative curvature. (For
closed manifolds of non-positive sectional curvature the vector v0 has to be chosen more
carefully depending on v and t ; this necessitates the use of the focal transfer Farrell and
Jones [1993b] respectively the use of homotopy coherent actions.)

This contracting property of the geodesic flow can be translated into the construction
of maps as in (A). Fix a point x0 2 M̃ . Define '0 : S1 ! SM̃ by sending � to the
unit tangent vector at x0 pointing to �. For t � 0 define 't (�) := Φt ('0(�)). Using the
contracting property of the geodesic flow is not difficult to check that for any g 2 G there
is ˛ > 0 (roughly ˛ = d (gx0; x0)) such that for any ı > 0 there is t0 satisfying

8t � t0; 8� 2 S1 dfol('t (g�); g't (�)) < (˛; ı):
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Remark 3.5. Of course the space S1 used in Remark 3.4 is not contractible and therefore
not a Euclidean retract. But the compactification M̃ [ S1 of M̃ is a disk, in particular
a Euclidean retract. As M̃ has the homotopy type of a free G-CW -complex, there is
even a G-equivariant map M̃ ! ∆(d)(G) where d is the dimension ofM . In particular,
the action of G on M̃ is d -amenable. It is not difficult to combine the two statements
to deduce that the action of G on M̃ [ S1 is finitely F -amenable. This is best done
via the translation to open covers of G�(M̃ [ S1) discussed in Remark 2.13, see for
example Sawicki [2017].

An important point in the formulation of condition (B) is the presence of ı > 0 uniform
over FS. If the action of G on FS is cocompact, then a version of the Lebesgue Lemma
guarantees the existence of some uniform ı > 0, i.e., it suffices to construct  : FS !

∆
(N )

F (G) such that d ( (c);  (Φt (c)) < " for all t 2 [�˛; ˛], c 2 FS.

Remark 3.6 (Long thin covers of FS). Maps ' as in condition (B) of Lemma 3.3 are best
constructed as maps associated to long thin covers of the flow space. These long thin
covers are an alternative to the long thin cell structures employed by Farrell and Jones
[1986].

An open cover U of FS is said to be an ˛-long cover for FS if for each c 2 FS there is
U 2 U such that

Φ[�˛;˛](c) � U:

It is said to be ˛-long and ı-thick if for each c 2 FS there is U 2 U containing the ı-
neighborhood ofΦ[�˛;˛](c). The construction of mapsFS ! ∆

(N )

F (G) as in condition (B)
of Lemma 3.3 amounts to finding for given ˛ an F -cover U of FS of dimension at most
N that is ˛-long and ı-thick for some ı > 0 (depending on ˛). For cocompact flow
spaces such covers can be constructed in relatively great generality A. Bartels, Lück, and
Reich [2008a] and Kasprowski and Rüping [2017]. Cocompactness is used to guarantee
ı-thickness. For not cocompact flow spaces on can still find ˛-long covers, but without a
uniform thickness, they do not provide the maps needed in (B).

Remark 3.7 (Coarse flow space). We outline the construction of the coarse flow space
from A. Bartels [2017] for a hyperbolic group G. Let Γ be a Cayley graph for G. The
vertex set of Γ is G. Adding the Gromov boundary to G we obtain the compact space
G = G [ @G. Assume that Γ is ı-hyperbolic. The coarse flow space CF consists of
all triples (��; v; �+) with �˙ 2 G and v 2 G such that there is some geodesic from
�� to �+ in Γ that passes v within distance � ı. Informally, v coarsely belongs to a
geodesic from �� to �+. The coarse flow space is the disjoint union of its coarse flow
lines CF��;�+ := f��g�Γ�f�+g \CF. The coarse flow lines are are quasi-isometric to R
(with uniform constants depending on ı).
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There are versions of the long thin covers from Remark 3.6 for CF. For ˛ > 0 these are
VCyc-covers U of bounded dimension that are ˛-long in the direction of the coarse flow
lines: for (��; v; �+) 2 CF there is U 2 U such that f��g�B˛(v)�f�+g \CF��;�+ � U .

There is also a coarse version of the map 't from Remark 3.4. To define it, fix a base
point v0 2 G. For t 2 N, 't sends � 2 @G to (v0; v; �) where d (v0; v) = t and v belongs
to a geodesic from v0 to � . It is convenient to extend 't to a map G�@G ! CF, with
't (g; �) := (gv0; v; �) where now d (v0; v) = t and v belongs to a geodesic from gv0
to �. Of course v is only coarsely well defined. Nevertheless, 't can be used to pull long
thin covers for CF back to G�@G. For S � G finite there are then t > 0 and ˛ > 0

such that this yields S -wide covers for G�@G. The proof of this last statement uses a
compactness argument and it is important at this point that Γ is locally finite and that G
acts cocompactly on Γ.

4 Covers at infinity

The Farrell-Jones Conjecture for GLn(Z). The group GLn(Z) is not a CAT(0)-group,
but it has a proper isometric action on aCAT(0)-space, the symmetric spaceX := GLn(R)/O(n).
Fix a base point x0 2 X . For R � 0 let BR be the closed ball of radius R around x0.
This ball is a retract of X (via the radial projection along geodesics to x0) and inherits a
homotopy coherent action ΓR from the action of GLn(Z) on X . Let F be the family of
subgroups generated by the virtually cyclic and the proper parabolic subgroups of GLn(Z).
The key step in the proof of the Farrell-Jones Conjecture for GLn(Z) in A. Bartels, Lück,
Reich, and Rüping [2014] is, in the language of Section 2, the following.

Theorem4.1. The sequence of homotopy coherent actions (BR;ΓR) is finitely F -amenable.

In particular GLn(Z) satisfies the Farrell-Jones Conjecture relative to F by Theorem 2.12.
Using the transitivity principle 1.2 the Farrell-Jones Conjecture for GLn(Z) can then be
proven by induction on n. The induction step uses inheritance properties of the Conjecture
and that virtually poly-cyclic groups satisfy the Conjecture.

The verification of Theorem 4.1 follows the general strategy of Lemma 3.3 (in a variant
for homotopy coherent actions). The additional difficulty in verifying assumption (B) is
that, as the action of GLn(Z) on the symmetric space is not cocompact, the action on the
flow space is not cocompact either. The general results reviewed in Section 3 can still be
used to construct for any ˛ > 0 an ˛-long cover U for the flow space. However it is not
clear that the resulting cover is ı-thick, for a ı > 0 uniformly over FS. The remedy for this
short-coming is a second collection of open subsets ofFS. Its construction starts with an F -
cover for X at 1, meaning here, away from cocompact subsets. Points in the symmetric
space can be viewed as inner products on Rn and moving towards 1 corresponds to
degeneration of inner products along direct summands W � Zn � Rn. This in turn
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can be used to define horoballs in the symmetric space, one for each W , forming the
desired cover Grayson [1984]. For each W the corresponding horoball is invariant for
the parabolic subgroup fg 2 GLn(Z) j gW = W g, more precisely, the horoballs are
F -subsets, but not VCyc-subsets. The precise properties of the cover at 1 are as follows.

Lemma 4.2 (A. Bartels, Lück, Reich, and Rüping [2014] and Grayson [1984]). For any
˛ > 0 there exists a collectionU1 of open F -subsets ofX of order� n that is of Lebesgue
number � ˛ at 1, i.e., there is K � X compact such that for any x 2 X n GLn(Z) �K

there is U 2 U1 containing the ˛-ball B˛(x) in X around x.

This cover can be pulled back to the flow space where it provides a cover at 1 for
the flow space that is both (roughly) ˛-long and ˛-thick at 1. Then one is left with a
cocompact subset of the flow space where the cover U constructed first is ˛-long and
ı-thick.

This argument forGLn(Z) has been generalized toGLn(F (t)) for finite fields F , and
GLn(Z[S�1]), for S a finite set of primes Rüping [2016] using suitable generalizations
of the above covers at 1. In this case the parabolic subgroups are slightly bigger, in
particular the induction step (on n) here uses that the Farrell-Jones Conjecture holds for
all solvable groups. Using inheritance properties and building on these results the Farrell-
Jones Conjecture has been verified for all subgroups of GLn(Q) Rüping [ibid.] and all
lattices in virtually connected Lie groups Kammeyer, Lück, and Rüping [2016].

Relatively hyperbolic groups. We use Bowditch’s characterization of relatively hyper-
bolic groups Bowditch [2012]. A graph is fine if there are only finitely many embedded
loops of a given length containing a given edge. Let P be a collection of subgroups of
the countable group G. Then G is hyperbolic relative to P if G admits a cocompact ac-
tion on a fine hyperbolic graph Γ such that all edge stabilizers are finite and all vertex
stabilizers belong to P . The subgroups from P are said to be peripheral or parabolic. The
requirement that Γ is fine encodes Farb’s Bounded Coset Penetration property Farb [1998].
Bowditch assigned a compact boundary∆ to G as follows. As a set∆ is the union of the
Gromov boundary @Γ with the set of all vertices of infinite valency in Γ. The topology is
the observer topology; a sequence xn converges in this topology to x if given any finite set
S of vertices (not including x), for almost all n there is a geodesic from xn to x that misses
S . (For general hyperbolic graphs this topology is not Hausdorff, but for fine hyperbolic
graphs it is.)

The main result from A. Bartels [2017] is that if G is hyperbolic relative to P , then G
satisfies the Farrell-Jones Conjecture relative to the family of subgroups F generated by
VCyc and P (P needs to be closed under index two supergroups here for this to include
the L-theoretic version of the Farrell-Jones Conjecture). This result is obtained as an
application of Theorem 2.6. The key step is the following.
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Theorem 4.3 (A. Bartels [ibid.]). The action of G on ∆ is finitely F -amenable.

This is a direct consequence of Propositions 4.4 and 4.5 below, using the characteriza-
tion of N -F -amenability from Remark 2.13 by the existence of S -wide covers of G�∆.

To outline the construction of these covers and to prepare for the mapping class group
we introduce some notation. Pick a G-invariant proper metric on the set E of edges of Γ;
this is possible as G and E are countable and the action of G on E has finite stabilizers.
For each vertex v of Γ with infinite valency let Ev be the set of edges incident to v. Write
dv for the restriction of the metric to Ev . For � 2 ∆, � ¤ v we define its projection �v(�)
to Ev as the set of all edges of Γ that are appear as initial edges of geodesics from v to �.
This is a finite subset of Ev (this depends again of fineness of Γ). Fix a vertex v0 of finite
valence as a base point. For g 2 G, � 2 ∆ define their projection distance at v by

d�v (g; �) := dv(�v(gv0); �v(�)):

For � = v, set d�v (g; v) := 1. (For relative hyperbolic groups a related quantity is often
called an angle; the terminology here is chosen to align better with the case of the mapping
class group.) If we vary g (in a finite set) and � (in an open neighborhood) then for fixed
v the projection distance d�v (g; �) varies by a bounded amount. Useful is the following
attraction property for projection distances: there is Θ0 such that if d�v (g; �) � Θ0, then
any geodesic from gv0 to � in Γ passes through v. Conversely, if some geodesic from gv0
to � misses v, then d�v (g; �) < Θ0

0 for some uniform Θ0
0.

Projection distances are used to control the failure of Γ to be locally finite. In particular,
provided all projection distances are bounded by a constantΘ, a variation of the argument
for hyperbolic groups (using a coarse flow space), can be adapted to provide S -long covers
for the Θ-small part of G�∆. The following is a precise statement.

Proposition 4.4. There is N (depending only on G and ∆) such that for any Θ > 0 and
any S � G finite there exists a collection U of openVCyc-subsets ofG�∆ that is S -wide
on the Θ-small part, i.e., if (g; �) 2 G�∆ satisfies d�v (g; �) � Θ for all vertices v, then
there is U 2 U with gS�f�g � U .

To deal with large projection distances an explicit construction can be used (similar to
the case of GLn(Z)). For (g; �) 2 G�∆ let

VΘ(g; �) := fv j d�v (g; �) � Θg:

As a consequence of the attraction property, for sufficiently largeΘ, the set VΘ(g; �) con-
sists of vertices that belong to any geodesic from gv0 to �. In particular, it can be linearly
ordered by distance from gv0.

For a fixed vertex v and Θ > 0 define W (v;Θ) � G�∆ as the (interior of the) set
of all pairs (g; �) for which v is minimal in VΘ(g; �), i.e., v is the vertex closest to gv0
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for which d�v (g; �) � Θ. Then W(Θ) := fW (v;Θ) j v 2 V g is a collection of pairwise
disjoint open P -subsets of G�∆.

Proposition 4.5. Let S � G be finite. Then there are � 00 � � 0 � � � 0 such that
W(�) [ W(� 0) is a G-invariant collection of open P -subsets of order � 1 that is S -
long on the � 00-large part of G�∆: if d�v (g; �) � � 00 for some vertex v, then there is
W 2 W(�) [ W(� 0) such that gS�f�g � W .

A difficulty in working with the W(v;Θ) is that it is for fixedΘ not possible to control
exactly how VΘ(g; �) varies with g and � . In particular whether or not a vertex v is
minimal in VΘ(g; �) can change under small variation in g or �. A consequence of the
attraction property that is useful for the proof of Proposition 4.5 is the following: suppose
there are vertices v0 and v1 with d�vi

(g; �) > Θ0 � Θ, then the segment between v0 and v1
in the linear order of VΘ(g; �) is unchanged under suitable variations of (g; �) depending
on Θ0.
Remark 4.6. Amotivating example of relatively hyperbolic groups are fundamental groups
G of complete Riemannian manifoldsM of pinched negative sectional curvature and fi-
nite volume. These are hyperbolic relative to their virtually finitely generated nilpotent
subgroups Bowditch [2012] and Farb [1998]. In this case we can work with the sphere
at 1 of the universal cover M̃ of M . The splitting of G�S1 into a Θ-small part and a
Θ-large part can be thought of as follows. Fix a base point x0 2 M̃ . Instead of a number
Θ we choose a cocompact subset G �K of M̃ . The small part of G�∆ consists then of all
pairs (g; �) for which the geodesic ray from gx0 to � is contained inX ; the large part is the
complement. Under this translation the cover from Proposition 4.5 can again be thought
of as a cover at 1 for M̃ . Moreover, the vertices of infinite valency in Γ correspond to
horoballs in M̃ , and projection distances to time geodesic rays spend in horoballs.

Note that the action of G on the graph Γ in the definition of relative hyperbolicity we
used is cocompact, but Γ is not a proper metric space. Conversely, in the above example
the action of G on M̃ is no longer cocompact, but now M̃ is a proper metric space. A
similar trade off (cocompact action on non proper space versus non-cocompact action on
proper space) is possible for all relatively hyperbolic groups Groves and Manning [2008],
assuming the parabolic subgroups are finitely generated.

The mapping class group. Let Σ be a closed orientable surface of genus g with a finite
set P of p marked points. We will assume 6g + 2p � 6 > 0. The mapping class group
Mod(Σ) of Σ is the group of components of the group of orientation preserving home-
omorphisms of Σ that leave P invariant. Teichmüller space T is the space of marked
complete hyperbolic structures of finite area on Σ n P . The mapping class group acts on
Teichmüller space by changing the marking. Thurston defined an equivariant compactifi-
cation of Teichmüller space T , see Fathi, Laudenbach, and Poénaru [2012]. As a space T
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is a closed disk, in particular it is an Euclidean retract. The boundary of the compactifica-
tion PMF := T n T is the space of projective measured foliations on Σ. The key step in
the proof of the Farrell-Jones Conjecture for Mod(Σ) is the following.

Theorem 4.7 (A. Bartels and Bestvina [2016]). Let F be the family of subgroups of
Mod(Σ) that virtually fix a point in PMF . The action of Mod(Σ) on PMF is finitely
F -amenable.

From this it follows quickly that the action on T is finitely F -amenable as well, and
applying Theorem 2.6 we obtain the Farrell-Jones Conjecture for Mod(Σ) relative to F .
Up to passing to finite index subgroups, the groups in F are central extensions of products
of mapping class groups of smaller complexity. Using the transitivity principle and inher-
itance properties one then obtains the Farrell-Jones Conjecture for Mod(Σ) by induction
on the complexity of Σ. The only additional input in this case is that the Farrell-Jones
Conjecture holds for finitely generated free abelian groups.

The proof of Theorem 4.7 uses the characterization ofN -F -amenability fromRemark 2.13
and provides suitable covers for Mod(Σ)�PMF . Similar to the relative hyperbolic case
the construction of these covers is done by splitting Mod(Σ)�PMF into two parts. Here
it is natural to refer to these parts as the thick part and the thin part. (The thick part corre-
sponds to the Θ-small part in the relative hyperbolic case.)

Teichmüller space has a natural filtration by cocompact subsets. For " > 0 the "-thick
part T�" � T consist of all marked hyperbolic structures such that all closed geodesics
have length � ". The action of Mod(Σ) on T�" is cocompact Mumford [1971]. Fix a base
point x0 2 T . Given a pair (g; �) 2 Mod(Σ)�PMF there is a unique Teichmüller ray cg;
that starts at g(x0) and is “pointing towards �” (technically, the vertical foliation of the
quadratic differential is �). The "-thick part of Mod(Σ)�PMF is defined as the set of all
pairs (g; �) for which the Teichmüller ray cg;� stays in T�".

An important tool in covering both the thick and the thin part is the complex of curves
C(Σ). A celebrated result of Mazur-Minsky is that C(Σ) is hyperbolic H. A. Masur and
Minsky [1999]. Klarreich [1999] studied a coarse projection map � : T ! C(Σ) and
identified the Gromov boundary @C(Σ) of the curve complex. In particular, the projection
map has an extension � : PMF ! C(Σ) [ @C(Σ). (On the preimage of the Gromov
boundary this extension is a continuous map; on the complement it is still only a coarse
map.)

Teichmüller space is not hyperbolic, but its thick part T�" has a number of hyper-
bolic properties: The Masur criterion H. Masur [1992] implies that for (g; �) in the thick
part, cg;�(t) ! � as t ! 1. Moreover, the restriction of Klarreichs projection map
� : PMF ! C(Σ) [ @C(Σ) to the space of all such � is injective. A result of Minsky
[1996] is that geodesics c that stay in T�" are contracting. This is a property they share
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with geodesics in hyperbolic spaces: the nearest point projection T ! c maps balls dis-
joint from c to uniformly bounded subsets. Teichmüller geodesics in the thick part T�"

project to quasi-geodesics in the curve complex with constants depending only on ". All
these properties eventually allow for the construction of suitable covers of any thick part
using a coarse flow space and methods from the hyperbolic case. A precise statement is
the following.

Proposition 4.8. There is d such that for any " > 0 and any S � Mod(Σ) finite there
exists a Mod(Σ)-invariant collection U of F -subsets of Mod(Σ)�PMF of order � d

such for any (g; �) for which cg;� stays in T�" there is U 2 U with gS�f�g � U .

The action of the mapping class group on the curve complex C(Σ) does not exhibit
the mapping class group as a relative hyperbolic group in the sense discussed before; the
1-skeleton of C(Σ) is not fine. Nevertheless, there is an important replacement for the
projections to links used in the relatively hyperbolic case, the subsurface projections of
H. A. Masur and Minsky [2000]. In this case the projections are not to links in the curve
complex, but to curve complexes C(Y ) of subsurfaces Y of Σ. (On the other hand, often
links in the curve complex are exactly curve complexes of subsurfaces.) The theory is
however much more sophisticated than in the relatively hyperbolic case. Projections are
not always defined; sometimes the projection is to points in the boundary of C(Y ) and
the projection distance is 1. Bestvina, Bromberg, and Fujiwara [2015] used subsurface
projections to prove that the mapping class group has finite asymptotic dimension. In
their work the subsurfaces ofΣ are organized in a finite numberN of familiesY such that
two subsurfaces in the same family will always intersect in an interesting way. This has
the effect that the projections for subsurfaces in the same family interact in a controlled
way with each other. Each family Y of subsurfaces is organized in Bestvina, Bromberg,
and Fujiwara [ibid.] in an associated simplicial complex, called the projection complex.
The vertices of the projection complex are the subsurfaces from Y. A perturbation of the
projection distances can thought of as being measured along geodesics in the projection
complex and now behaves very similar as in the relative hyperbolic case, in particular the
attraction property is satisfied in each projection complex. This allows the application
of a variant of the construction from Proposition 4.5 for each projection complex that
eventually yield the following.

Proposition 4.9. Let Y be any of the finitely many families of subsurfaces. For any
S � G finite there exists Θ > 0 and a Mod(Σ)-invariant collection U of F -subsets
of Mod(Σ)�PMF of order � 1 such for any (g; �) for which there is Y 2 Y with
d�Y (g; �) � Θ there is U 2 U with gS�f�g � U .

The final piece, needed to combine Propositions 4.8 and 4.9 to a proof of Theorem 4.7,
is a consequence of Rafi’s analysis of short curves inΣ along Teichmüller rays Rafi [2005]:
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for any " > 0 there is Θ such that if some curve of Σ is "-short on cg;� (i.e., if cg;� is not
contained in T�") then there is a subsurface Y such that d�Y (g; �) � Θ.
Remark 4.10. Farrell and Jones [1998] proved topological rigidity results for fundamen-
tal groups of non-positively curved manifolds that are in addition A-regular. The latter
condition bounds the curvature tensor and its covariant derivatives over the manifold. All
torsion free discrete subgroups of GLn(R) are fundamental groups of suchmanifolds. Sim-
ilar to the examples discussed in this section a key difficulty in Farrell and Jones [ibid.]
is that the action of the fundamental group G of the manifold on the universal cover is
not cocompact. The general strategy employed by Farrell-Jones seems however different,
in particular, it does not involve an induction over some kind of complexity of G. The
only groups that are considered in an intermediate step are polycyclic groups, and the ar-
gument directly reduces from G to these and then uses computations of K-and L-theory
for polycyclic groups.

This raises the following question: Can the family of subgroups in Theorem 4.1 be re-
placed with the family of virtually polycyclic subgroups? Recall that the cover constructed
for the flow space at 1 is both ˛-long and ˛-thick, while only ı-thickness is needed. So
it is plausible that there exist thinner covers at 1 that work for the family of virtually
polycyclic subgroups.

For the mapping class group the family from Theorem 4.7 can not be chosen to be
significantly smaller; all isotropy groups for the action have to appear in the family. But
one might ask, whether there exist N -F -amenable actions (or N -F -amenable sequences
of homotopy coherent actions) of mapping class groups on Euclidean retracts, where F is
smaller than the family used in Theorem 4.7.
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Abstract
Knot contact homology studies symplectic and contact geometric properties of

conormals of knots in 3-manifolds using holomorphic curve techniques. It has con-
nections to both mathematical and physical theories. On the mathematical side, we
review the theory, show that it gives a complete knot invariant, and discuss its connec-
tions to Fukaya categories, string topology, and micro-local sheaves. On the physical
side, we describe the connection between the augmentation variety of knot contact
homology and Gromov–Witten disk potentials, and discuss the corresponding higher
genus relation that quantizes the augmentation variety.

1 Introduction

If M is an oriented 3-manifold then its 6-dimensional cotangent bundle T �M with the
closed non-degenerate 2-form ! = �d� , where � = pdq is the Liouville or action 1-
form, is a symplectic manifold. As a symplectic manifold, T �M satisfies the Calabi–Yau
condition, c1(T

�M ) = 0, and is thus a natural ambient space for the topological string
theory of physics and its mathematical counterpart, Gromov–Witten theory.

If K � M is a knot then its Lagrangian conormal LK � T �M of covectors along
K that annihilate the tangent vector of K is a Lagrangian submanifold (i.e., !jLK

= 0)
diffeomorphic to S1 �R2. Lagrangian submanifolds provide natural boundary conditions
for open string theory or open Gromov–Witten theory, that counts holomorphic curves
with boundary on the Lagrangian.

Herewewill approach theGromov–Witten theory ofLK from geometric data at infinity.
At infinity, the pair (T �M; LK) has ideal contact boundary (ST �M;ΛK), the unit sphere
cotangent bundle ST �M with the contact form ˛ = � jST �M and ΛK the Legendrian
conormal (˛jΛK

= 0) ΛK = LK \ ST �M . In what follows we will restrict attention to
the most basic cases of knots in 3-space or the 3-sphere, M = R3 or M = S3.
The author is supported by the Knut and Alice Wallenberg Foundation and by the Swedish Research Council.
MSC2010: primary 53D42; secondary 53D37, 53D45, 57R17, 57M25.
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1.1 Mathematical aspects of knot contact homology. There is a variety of holomor-
phic curve theories, all interconnected, that can be applied to distinguish objects up to
deformation in contact and symplectic geometry. Knot contact homology belongs to a
framework of such theories called Symplectic Field Theory (SFT) Eliashberg, Givental,
and Hofer [2000]. More precisely, it is the most basic version of SFT, the Chekanov–
Eliashberg dg-algebra CE(ΛK), of the Legendrian conormal torus ΛK � ST �R3 of a
knot K � R3. The study of knot contact homology was initiated by Eliashberg, see
Eliashberg [2007], around 2000 and developed from a combinatorial perspective by Ng
[2008, 2011] and with holomorphic curve techniques in Ekholm, J. B. Etnyre, Ng, and
M. G. Sullivan [2013] and Ekholm, J. Etnyre, Ng, and M. Sullivan [2013].

Our first result states that the contact deformation class of ΛK encodes the isotopy
class of K. Let p 2 R3 be a point not on K and let Λp � ST �R3 denote the Legendrian
conormal sphere ofp. We consider certain filtered quotients ofCE(ΛK[Λp), calledRKp ,
RpK , and RKK , together with a product operation m : RKp ˝ RpK ! RKK , borrowed
from wrapped Floer cohomology.

Theorem 1.1. Ekholm, Ng, and Shende [2017a, Theorem 1.1] Two knots K; J � R3 are
isotopic if and only if the triples (RKp; RpK ; RKK) and (RJp; RpJ ; RJJ ), with the prod-
uct m, are quasi-isomorphic. It follows in particular that ΛK and ΛJ are (parameterized)
Legendrian isotopic if and only if K and J are isotopic.

A version of this theorem was first proved by Shende [2016] using micro-local sheaves
and was reproved using holomorphic disks in Ekholm, Ng, and Shende [2017a]. We point
out that the Legendrian conormal tori of any two knots are smoothly isotopic when consid-
ered as ordinary submanifolds of ST �R3. Theorem 1.1 and its relations to string topology,
Floer cohomology, and micro-local sheaves are discussed in Section 3.

1.2 Physical aspects of knot contact homology. We start from Witten’s relation be-
tween Chern–Simons gauge theory and open topological string Witten [1995] together
with Ooguri–Vafa’s study of largeN duality for conormals of knots Ooguri andVafa [2000,
2002]. Let M be a closed 3-manifold. Witten identified the partition function of U (N )

Chern–Simons gauge theory on M with the partition function of open topological string
on T �M with N branes on the Lagrangian zero-section M . In Chern–Simons theory, the
n-colored HOMFLY-PT polynomial of a knot K � M equals the expectation value of the
holonomy around the knot of the U (N )-connection in the nth symmetric representation.
The generating function of n-colored HOMFLY-PT polynomials correspond on the string
side to the partition function of open string theory in T �M with N branes on M and one
brane on the conormal LK of the knot.
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For M = S3, large N duality says that the open string in T �S3 with N -branes on S3

is equivalent to the closed string, or Gromov–Witten theory, in the non-compact Calabi–
Yau manifold X which is the total space of the bundle O(�1)˚2 ! CP 1 (the resolved
conifold), provided area(CP 1) = Ngs , where gs is the string coupling, or genus, param-
eter. As smooth manifolds, X � CP 1 and T �S3 � S3 are diffeomorphic. As symplectic
manifolds they are closely related, in particular both are asymptotic to [0; 1) � ST �S3

at infinity.
IfK � S3 is a knot then after a non-exact shift, see Koshkin [2007], LK � T �S3�S3,

and we can view LK as a Lagrangian submanifold in X . This leads to the following
relation between the colored HOMFLY-PT polynomial and open topological string or open
Gromov–Witten theory in X . Let C�;r;n be the count of (generalized) holomorphic curves
in X with boundary on LK , of Euler characteristic �, in relative homology class rt + nx,
where t is the class of [CP 1] 2 H2(X; LK) and x 2 H2(X; LK) maps to the generator
of H1(LK) under the connecting homomorphism. If

FK(ex ; gs; Q) =
X
n;r;�

Cn;r;� g��
s Qrenx ;

then
ΨK(x) := eFK(x) =

X
HK;n(q; Q)enx ; q = egs ; Q = qN ;

where HK;n denotes the n-colored HOMFLY-PT polynomial of K.
The colored HOMFLY-PT polynomial is q-holonomic Garoufalidis, Lauda, and Le

[2016], which in our language can be expressed as follows. Let ex̂ denote the opera-
tor which is multiplication by ex and ep̂ = egs

@
@x . Then there is a polynomial ÂK =

ÂK(ex̂ ; ep̂) such that ÂKΨK = 0.
We viewQ as a parameter and think of it as fixed. Then from the short-wave asymptotic

expansion of the wave function ΨK ,

ΨK(x) = eFK = exp
�
g�1

s W 0
K(x) + W 1

K(x) + gj �1
s W

j
K(x) + : : :

�
;

we find that p =
@W 0

K

@x
parameterizes the algebraic curve fAK(ex ; ep) = 0g, where the

polynomial AK is the classical limit gs ! 0 of the operator polynomial ÂK . In terms
of Gromov–Witten theory, WK(x) = W 0

K(x) can be interpreted as the disk potential, the
count of holomorhic disks (� = 1 curves) in X with boundary on LK .

In Aganagic and Vafa [2012] it was observed (in computed examples) that the polyno-
mial AK agreed with the augmentation polynomial AugK of knot contact homology. To
describe that polynomial, we consider a version AK of CE(ΛK) with coefficients in the
group algebra of the second relative homologyC[H2(ST �S3;ΛK)] � C[e˙x ; e˙p; Q˙1],
where x and p map to the longitude and meridian generators of H1(ΛK), and Q = et for
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t = [ST �
p S3], the class of the fiber sphere. If C is considered as a dg-algebra in degree

0 then the augmentation variety VK is the closure of the set in the space of coefficients
where there is a chain map into C:

VK = closure
�˚
(ex ; ep; Q) : there exists a chain map � : AK ! C

	�
;

and the augmentation polynomialAugK is its defining polynomial. We have the following
result that connects knot contact homology and Gromov–Witten theory at the level of the
disk.

Theorem 1.2. Aganagic, Ekholm, Ng, and Vafa [2014, Theorem 6.6 and Remark 6.7] If
WK(x) is the Gromov–Witten disk potential of LK � X then p = @WK

@x
parameterizes a

branch of the augmentation variety VK .

The augmentation polynomial AugK of a knot K is obtained by elimination theory
from explicit polynomial equations. Theorem 1.2 thus leads to a rather effective indirect
calculation of the Gromov–Witten disk potential. It is explained in Section 4.

In Section 5 we discuss the higher genus counterpart of Theorem 1.2. We sketch the
construction of a higher genus generalization of knot contact homology that we call Leg-
endrian SFT. In this theory, the operators ex̂ and ep̂ have natural enumerative geometrical
interpretations. Furthermore, in analogy with the calculation of the augmentation polyno-
mial, elimination theory in the non-commutative setting should give the operator polyno-
mial bAugK(ex̂ ; ep̂) such that bAugKΨK = 0, and thus determine the recursion relation for
the colored HOMFLY-PT.
Remark 1.3. Theorem 1.2 and other results about open Gromov–Witten theory presented
here should be considered established from the physics point of view. From a more strict
mathematical perspective, they are not rigorously proved and should be considered as
conjectures.

Acknowledgments. I am much indebted to my coauthors, Aganagic, Cieliebak, Etnyre,
Latchev, Lekili, Ng, Shende, Sullivan, and Vafa, of the papers on which this note is based.

2 Knot contact homology and Chekanov–Eliashberg dg-algebras

In this section we introduce Chekanov–Eliashberg dg-algebras in the cases we use them.

2.1 Background notions. Let M be an orientable 3-manifold and consider the unit
cotangent bundle ST �M with the contact 1-form ˛ which is the restriction of the action
form pdq. The hyperplane field � = ker(˛) is the contact structure determined by ˛ and
d˛ gives a symplectic form on � . The first Chern-class of � vanishes, c1(�) = 0.
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Let Λ � ST �M be a Legendrian submanifold, ˛jΛ = 0. Then the tangent spaces of Λ
are Lagrangian subspaces of �. Since c1(�) = 0 there is a Maslov class in H 1(Λ;Z) that
measures the total rotation of TΛ in �. Here we will consider only Legendrian submani-
folds with vanishing Maslov class.

The Reeb vector field R of ˛ is characterized by d˛(�; R) = 0 and ˛(R) = 1. Flow
segments ofR that begin and end onΛ are calledReeb chords. The Reeb flow onST �M is
the lift of the geodesic flow onM . Consequently, ifK � M is a knot (or any submanifold)
then Reeb chords of ΛK correspond to geodesics connecting K to itself and perpendicular
to K at its endpoints.

2.2 Coefficients in chains on the based loop space. Let M = R3, K � R3 be a knot
and p 2 R3 �K a point. Let Λ0 = Λp , Λ1 = ΛK , and Λ = Λ0 [Λ1. The algebra CE(Λ)

is generated by the Reeb chords of Λ and homotopy classes of loops in Λ. We define the
coefficient ring kΛ as the algebra over C generated by idempotents ej corresponding to
Λj so that ei ej = ıij ei , i; j 2 f0; 1g, where ıij is the Kronecker delta.

Note that Λ0 is a sphere and Λ1 is a torus. Fix generators � and � of �1(Λ1) (corre-
sponding to the longitude and the meridian of K) and think of them as generators of the
group algebra C[�1(Λ1)] � C[�˙1; �˙1]. We let CE(Λ) be the algebra over kΛ gener-
ated by Reeb chords c, and the homotopy classes � and �. The generators � and � satisfy
the relations in the group algebra and the following additional relations hold:

cej =

(
c if c starts on Λj ;

0 otherwise;
ekc =

(
c if c ends on Λk ;

0 otherwise;
ej �k = �kej = ıjk�k ; ej �k = �kej = ıjk�k :

The grading of � and � is j�j = j�j = 0 and Reeb chords are graded by the Conley–
Zehnder index, which in the case of knot contact homology equals the Morse index of the
underlying binormal geodesic, see Ekholm, J. B. Etnyre, Ng, and M. G. Sullivan [2013].
We can thus think of elements of CE(Λ) as finite linear combinations of composable
monomials c of the form

c = 
0c1
1c2
2 : : : 
m�1cm
m;

where 
j is a homotopy class of loops in Λ and cj+1 is a Reeb chord, and composable
means that c starts at the component of 
j and ends at the component of 
j �1. We then
have the decomposition

CE(Λ) =
M
i;j

CE(Λ)i;j ;
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where CE(Λ)i;j is generated by monomials which start on Λj and ends on Λi . The prod-
uct of two monomials is given by concatenation if the result is composable and zero oth-
erwise.

The differential is defined to be 0 on ei and on elements of Z[�1(Λ1)] and is given by
a holomorphic disk count on Reeb chord generators that we describe next. Fix a complex
structure J on the symplectization R � ST �R3, with symplectic form d (et ˛), t 2 R,
that is invariant under the R-translation and maps � to itself. If c is a Reeb chord then
R � c is a holomorphic strip with boundary on the Lagrangian submanifold R � Λ. Fix
a base point in each component of Λ and fix for each Reeb chord endpoint a reference
path connecting it to the base point. Consider a Reeb chord a and a composable word b
of homotopy classes and Reeb chords of the form

b = 
0b1
1b2
2 : : : 
m�1bm
m;

where 
0 lies in the component where a ends and 
m in the component where a starts. We
let M(a;b) denote the moduli space of holomorphic disks

u : (D; @D) ! (R � ST �R3; R � Λ); du + J ı du ı i = 0;

with one positive and m negative boundary punctures, which are asymptotic to the Reeb
chord strip R � a at positive infinity at the positive puncture and to the Reeb chord strip
R � bj at negative infinty at the j th negative puncture and such that the closed off path
between punctures j and j +1 lies in homotopy class 
j , where puncture 0 andm+1 both
refer to the positive puncture, see Figure 1. The dimension of the moduli space M(a;b)
equals jaj � jbj.

We define

(1) @a =
X

a�jbj=1

jM(a;b)jb;

where jM(a;b)j denotes the algebraic number of R-families of disks in M(a;b) and
extend to monomials by Leibniz rule. For the count in (1) to make sense we need the
solutions to be transversely cut out. Since disks with one positive puncture cannot be
multiple covers, transversality is relatively straightforward. Furthermore, the sum is finite
by the SFT version of Gromov compactness.

The basic result for Chekanov–Elisahberg algebras is then the following.

Lemma 2.1. The map @ is a differential, @ ı @ = 0 and the quasi-isomorphism class
of CE(Λ) is invariant under Legnedrian isotopies of Λ. Furthermore, the differential
respects the decomposition CE(Λ) =

L
i;j CE(Λ)i;j which thus descends to homology.
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b1 b2 b3


0


1 
2


3

a

Figure 1: A disk contributing 
0b1
1b2
2b3
3 to @a.

Remark 2.2. For general contact manifolds, CE(Λ) is an algebra over the so called orbit
contact homology algebra. In the cases under study, ST �R3 and ST �S3, the orbit contact
homology algebra is trivial in degree 0 and can be neglected.
Remark 2.3. For general Legendrian submanifolds Λ, the version of CE(Λ) considered
here is more complicated. The group ring generators for torus components are replaced
by chains on the based loop space of the corresponding components and moduli spaces of
all dimensions contribute to the differential, see Ekholm and Lekili [2017].

Sketch of proof. If a is a Reeb chord then @(@a) counts two level curves joined at Reeb
chords. By gluing and SFT compactness such configurations constitute the boundary of
an oriented 1-manifold and hence cancel algebraically. The invariance property can be
proved in a similar way by looking at the boundary of the moduli space of holomorphic
disks in Lagrangian cobordisms associated to Legendrian isotopies. See e.g. Ekholm, J.
Etnyre, and M. Sullivan [2007] for details.

2.3 Coefficients in relative homology. Our second version of the Chekanov–Eliash-
berg dg-algebra of the conormal ΛK � ST �S3 of a knot K � S3 is denoted AK . The
algebra AK is generated by Reeb chords graded as before. Its coefficient ring is the group
algebra C[H2(ST �S3;ΛK)] and group algebra elements commute with Reeb chords. To
define the differential we fix for each Reeb chord a disk filling the reference paths. Cap-
ping off punctured disks in the moduli space M(a;b) with these disks we get a relative
homology class and define the differential on Reeb chord generators of AK as

da =
X

jaj�jcj=1

jM(a; c)jc:
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Here c = eAc1 : : : cm, where cj are the Reeb chords at the negative punctures of the
disks in the moduli space and A 2 H2(ST �S3; ΛK) is the relative homology class of the
capped off disks. That d is a differential and the quasi-isomorphism invariance of AK

under Legendrian isotopies follow as before.

2.4 Knot contact homology in basic examples. We calculate the knot contact homol-
ogy dg-algebras (in the lowest degrees) for the unknot and the trefoil knot. For general
formulas we refer to Ekholm, J. B. Etnyre, Ng, and M. G. Sullivan [2013] and Ekholm,
J. Etnyre, Ng, and M. Sullivan [2013]. The expressions give the differential in AK . for
the differential in CE(ΛK), set Q = 1, ex = �, and ep = �.

2.4.1 The unknot. Representing the unkot as a round circle in the plane we find that
it has an S1-Bott family of binormal geodesics and correspondingly an S1-Bott family
of Reeb chords. After small perturbation this gives two Reeb chords c and e of degrees
jcj = 1 and jej = 2. The differential can be computed usingMorse flow trees, see Ekholm
[2007] and Ekholm, J. B. Etnyre, Ng, and M. G. Sullivan [2013]. The result is

(2) de = 0; dc = 1 � ex
� ep

� Qexep:

2.4.2 The trefoil knot. Represent the trefoil knot as a 2-strand braid around the unkot.
If the trefoil T lies sufficiently close to the unkot U , then its conormal torus ΛT lies in
a small neighborhood N (ΛU ) of the unknot conormal, which can be identified with the
neighborhood the zero section in its 1-jet space J 1(ΛU ). The projection ΛT ! ΛU is a
2-fold cover and holomorphic disks with boundary on R�ΛT correspond to holomorphic
disks on ΛU with flow trees attached, where the flow trees are determined by ΛT �

J 1(ΛU ), see Ekholm, J. B. Etnyre, Ng, and M. G. Sullivan [2013]. This leads to the
following description of AT in degrees � 1. The Reeb chords are:

degree 1: b12; b21; c11; c12; c21; c22; degree 0: a12; a21;

with differentials

dc11 = exep
� ex

� (2Q � ep)a12 � Qa2
12a21; dc12 = Q � ep + epa12 + Qa12a21;

dc21 = Q � ep
� exepa21 + Qa12a21; dc22 = ep

� 1 � Qa21 + epa12a21;

db12 = e�xa12 � a21; db21 = a21 � exa12:
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3 A complete knot invariant

In this section we discuss the completeness of knot contact homology as a knot invariant
and describe its relations of to string topology, wrapped Floer cohomology, and micro-
local sheaves.

3.1 Filtered quotients and a product. We use notation as in Section 2.2, Λ = Λp [

ΛK = Λ0[Λ1, and considerCE(Λ). The group ringZ[�1(ΛK)] is a subalgebra ofCE(Λ)

generated by the longitude and meridian generators �˙1 and �˙1. Other generators are
Reeb chords that correspond to binormal geodesics. If 
 is a geodesic we write c for the
corresponding Reeb chord. The grading of Reeb chords with endpoints on the same con-
nected component is well-defined, while the grading for mixed chords connecting distinct
components are defined only up to an over all shift specified by a cetrain reference path
connecting the two components. Let ind(
) denote the Morse index of the geodesic 
 .

Lemma 3.1. Ekholm, Ng, and Shende [2017a, Proposition 2.3] There is a choice of refer-
ence path so that the grading in CE(Λ) of a Reeb chord c corresponding to the geodesic

 is as follows: if c connects ΛK to ΛK or Λp to ΛK then jcj = ind(
), and if c connects
ΛK to Λp then jcj = ind(
) + 1.

Consider the filtration on CE(Λ) by the number of mixed Reeb chords, and the corre-
sponding filtered quotients:

CE(Λ)1;1 = F 0
11 � F 2

11 � F 4
11 � : : : ; CE

(2k)
11 = F 2k

11 /F 2k+2
11 ;

CE(Λ)i;j = F 1
ij � F 3

ij � F 5
ij � : : : ; CE

(2k+1)
ij = F 2k+1

ij /F 2k+3
ij ; for i ¤ j;

where F r denotes the subalgebra generated by monomials with at least r mixed Reeb
chords. The differential respects this filtration. Lemma 3.1 shows thatCE(Λ) is supported
in non-negative degrees and that monomials of lowest degree d (i; j ) 2 f0; 1g inCE(Λ)i;j

contain the minimal possible number s(i; j ) 2 f0; 1g of mixed Reeb chords. We then find
that Hd(i;j ) (CE(Λ)i;j ) = Hd(i;j )(CE

(s(i;j ))
ij ). We call

(RKp; RpK ; RKK) := (H0(CE(Λ)10); H1(CE(Λ)01); H0(CE(Λ)1;1))

the knot contact homology triple of K. The concatenation product in CE(Λ) turns RKp

and RpK into left and right modules, respectively, and RKK into a left-right module over
Z[�˙1; �˙1].

We next consider a product for the knot contact homology triple that is closely related
to the product in wrapped Floer cohomology. As the differential, it is defined in terms of
moduli spaces of holomorphic disk but for the product there are two positive punctures
rather than one.
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Let a and b be Reeb chords connecting Λp to ΛK and vice versa. Let c be a monomial
in CE(ΛK). Define M(a; b; c) as the moduli space of holomorphic disks u : D ! R �

T �R3 with two positive punctures asymptotic to a and b, such that the boundary arc
between them maps to R�Λp , and such that the remaining punctured arc in the boundary
maps to ΛK with homotopy class and negative punctures according to c. We then have

dim(M(a; b; c)) = jaj + jbj � jcj:

Define
m0(a; b) =

X
jcj=jaj+jbj�1

jM(a; b; c)jc

and use this to define the chain level product m : CE(Λ)
(1)
10 ˝ CE(Λ)

(1)
01 ! CE(Λ)

(0)
11 as

m(aa; bb) = am0(a; b)b:

Proposition 3.2. Ekholm, Ng, and Shende [2017a, Proposition 2.13] The product m de-
scends to homology and gives a product m : RKp ˝ RpK ! RKK . The knot contact
homology triple as modules over Z[�1(ΛK)] and with the product m is invariant under
Legendrian isotopy.

3.2 String topology and the cord algebra. In this section we define a topological
model for knot contact homology in low degrees that one can think of as the string topol-
ogy of a certain singular space. Our treatment will be brief and we refer to Cieliebak,
Ekholm, Latschev, and Ng [2017] and Ekholm, Ng, and Shende [2017a] for full details.

Let K � R3 be a knot and p 2 R3 � K a point with Lagrangian conormals LK and
Lp . Let Σ be the union Σ = R3 [ LK [ Lp � T �R3. Pick an almost complex structure
J compatible with the metric along the zero section. Fix base points xK 2 LK � R3 and
xp 2 Lp � R3.

We consider broken strings which are paths s : [a; b] ! Σ that connect base points,
c(a); c(b) 2 fxp; xKg and that admit a subdivision a < t1 < � � � < tm < b such that
sj[ti ;ti+1] is a C k-map into one of the irreducible components of Σ and such that the left
and right derivatives at switches (i.e., points where c switches irreducible components)
are related by ċ(tj �) = J ċ(tj+).

For ` > 0, let Σ` denote the space of strings with ` switches at p and with the C k-
topology for some k > 0. Write Σ` = ΣKK

`
[ ΣKp

`
[ ΣpK

`
[ Σpp

`
, where ΣKK

`
denotes

strings that start and end at xK , etc. For d > 0, let

Cd (Σ`) = Cd (Σ
KK
` ) ˚ Cd (Σ

Kp

`
) ˚ Cd (Σ

pK

`
) ˚ Cd (Σ

pp

`
)

denote singular d -chains of Σ` in general position with respect to K. We introduce two
string topology operations associated to K, ı

Q
K ; ıN

K : Ck(Σ`) ! Ck�1(Σ`+1): If � is a
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generic d -simplex then ı
Q
K (�) is the chain parameterized by the locus in � of strings with

components in S3 that intersect K at interior points. The operation splits the curve at such
intersection and inserts a spike in LK , see Cieliebak, Ekholm, Latschev, and Ng [2017].
The operation ı

Q
K is defined similarly exchanging the role of R3 and LK . There are also

similar operations ı
Q
p ; ıN

p : Ck(Σ`) ! Ck�2(Σ`+1) at p that will play less of a role here.
Let @ denote the singular differential on C�(Σ`) and let Cm =

L
k+`/2=m Ck(Σ`).

We introduce a Pontryagin product which concatenates strings at p. We write Rst
KK , Rst

Kp ,
and Rst

pK for the degree 0 homology of the corresponding summands of C�.

Proposition 3.3. Cieliebak, Ekholm, Latschev, and Ng [2017] and Ekholm, Ng, and
Shende [2017a] The map d = @ + ı

Q
K + ıN

K + ı
Q
p + ıN

p is a differential on C�. The
homology of d in degree 0 is the cokernel of @ + ı

Q
K + ıN

K : C1 ! C0 (where ı
Q
p and ıN

p

vanishes for degree reasons) and is as follows:

Rst
KK � R̂ + R(1 � �); Rst

Kp � R; Rst
pK � R(1 � �);

where R = Z[�1(R3 � K)] and R̂ = Z[�1(ΛK)].

We next consider a geometric chain map of algebras Φ: CE(Λ) ! C�, where the
multiplication on C� is given by chain level concatenation of broken strings. The map
is defined as follows on generators. If a is a Reeb chord let M(a; Σ) denote the moduli
space of holomorphic disks in T �S3 with boundary on Σ and Lagrangian intersection
punctures at K. The evaluation map gives a chain of broken strings for each u 2 M(a; Σ).
Let [M(a; Σ)] denote the chain of broken strings carried by the moduli space and define
Φ(a) = [M(a; Σ)].

Proposition 3.4. Ekholm, Ng, and Shende [2017a] The map Φ is a chain map. It induces
an isomorphism

(RKp; RpK ; RKK) !

�
Rst

Kp; Rst
pK ; Rst

KK

�
that intertwines the product m and the Pontryagin product at p.

Proof of Theorem 1.1. Propositions 3.3 and 3.4 imply that the knot contact homology
triple knows the group ring of the knot group and the action of � and �. Properties of left-
orderable groups together with Waldhausen’s theorem then give the result, see Ekholm,
Ng, and Shende [ibid.] for details.

3.3 Partially wrapped Floer cohomology and Legendrian surgery. The knot contact
homology of the previous section can also be interpreted, via Legendrian surgery, in terms
of partially wrapped Floer cohomology that in turn is connected to the micro-local sheaves
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used by Shende [2016] to prove the completness result in Theorem 1.1. We give a very
brief discussion and refer to Ekholm, Ng, and Shende [2017b, Section 6] for more details.

To a knot K � R3 we associate a Liouville sector WK with Lagrangian skeleton L =

R3 [ LK , this roughly means that L is a Lagrangian subvariety and that WK is a regular
neighborhood of L, see Sylvan [2016] and Ganatra, Pardon, and Shende [2017]. More
precisely, WK is obtained by attaching the cotangent bundle T �[0; 1) � ΛK to T �R3

along ΛK � ST �R3. We let CK denote the cotangent fiber at q 2 [0; 1) � ΛK and Cp

the cotangent fiber at p 2 R3. Such handle attachments were considered in Ekholm and
Lekili [2017] where it was shown that there exists a natural surgery quasi-isomorphism
Φ: CE(ΛK) ! C W �(CK), where C W � denotes wrapped Floer cohomology. There are
directly analogous quasi-isomorphisms

CE
(1)
01 ! C W �(CK ; Cp); CE

(1)
10 ! C W �(Cp; CK); CE

(0)
11 ! C W �(Cp; Cp);

under which the product m corresponds to the usual triangle product m2 on C W �.
In Shende [2016], the conormal torus ΛK of a knot K � R3 was studied via the cat-

egory of sheaves microsupported in L. This sheaf category can also be described as the
category of modules over the wrapped Fukaya category of WK which is generated by the
two cotangent fibers CK and Cp . The knot contact homology triple with m then have a
natural interpretation as calculating morphisms in a category equivalent to that studied in
Shende [ibid.].

4 Augmentations and the Gromov–Witten disk potential

LetK � S3 be a knot and letLK denote its conormal Lagrangian. ShiftingLK along the 1-
form dual to its unit tangent vector we get a non-exact Lagrangian that is disjoint from the 0-
section. We identify the complement of the 0-section in T �S3 with the complement of the
0-section in the resolved conifold X . Under this identification, LK becomes a uniformly
tame Lagrangian, see Koshkin [2007], which is asymptotic to R � ΛK � R � ST �S3

at infinity. The first condition implies that LK can be used as boundary condition for
holomorphic curves and the second that at infinity, holomorphic curves on (X; LK) can
be identified with the R-invariant holmorphic curves of (R � ST �S3; R � ΛK).

Since c1(X) = 0 and the Maslov class of LK vanishes, the formal dimension of any
holomorphic curve in X with boundary on LK equals 0. Fixing a perturbation scheme
one then gets a 0-dimensional moduli space of curves. Naively, the open Gromov–Witten
invariant of LK would be the count of these rigid curves. Simple examples however show
that such a count is not invariant under deformations, contradicting what topological string
theory predicts.
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To resolve this problem on the Gromov–Witten side, we count more involved configu-
rations of curves that we call generalized curves. In this section we consider the simpler
case of disks and then in Section 5 the case of general holomorphic curves. The problems
of open Gromov–Witten theory in this setting was studied from the mathematical perspec-
tive also by Iacovino [2009a,b]. From the physical perspective, the appearance of more
complicated configurations then bare holomorphic curves seems related to boundary terms
in the path integral localized on the moduli space of holomorphic curves with boundary
which, unlike in the case of closed curves, has essential codimension one boundary strata.

4.1 Augmentations of non-exact Lagrangians and disk potentials. Wewill construct
augmentations induced by the non-exact Lagrangian filling LK � X . In order to explain
how this works we first consider the case of the exact filling LK � T �S3. The ex-
act case is a standard ingredient in the study of Chekanov–Eliashberg dg-algebras, see
e.g. Ekholm, Honda, and Kálmán [2016]. Consider the algebra AK with coefficients in
C[e˙x ; e˙p; Q˙1]. Here we set ep = 1 since p bounds in LK and Q = 1 since the
cotangent fiber sphere bounds in ST �S3. If a is a Reeb chord of ΛK , we let Mn(a) de-
note the moduli space of holomorphic disks with positive puncture at a and boundary on
LK that lies in the homology class nx. Then dim(Mn(a)) = jaj and we define the map
�0 : AK ! C[e˙x ] on degree 0 Reeb chords a as

�0(a) =
X

n

jMn(a)je
nx :

Lemma 4.1. The map �0 : AK jQ=1;ep=1 ! C[e˙x ] is a chain map, �0 ı d = 0.

Proof. Configurations contributing to �0 ı d are two level broken disks that are in one to
one correspondence with the boundary of the oriented 1-manifolds Mn(c), jcj = 1.

We next consider the case of the non-exact Lagrangian filling LK � X . In this case,
Q = et , where t = [CP 1] 2 H2(X) and we look for a chain map AK ! C[e˙x ; Q˙1].
If a is a Reeb chord, then let Mr;n(a) denote the moduli space of holomorphic disks in X

with boundary on LK in relative homology class rt + nx.
Consider first the naive generalization of the exact case and define

�0(a) =
X
r;n

jMr;n(a)jQ
renx :

We look at the boundary of 1-dimensional moduli spaces Mr;n(c), jcj = 1. Unlike in the
exact case, two level broken curves do not account for the whole boundary of Mr;n(c)

and consequently the chain map equation does not hold. The reason is that there are non-
constant holomorphic disks without positive punctures on LK and a 1-dimensional family
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of disks can split off non-trivial such disks under so called boundary bubbling. Together
with two level disks, disks with boundary bubbles account for the whole boundary of the
moduli spacce.

The problem of boundary bubbling is well-known in Floer cohomology and was dealt
with there using themethod of bounding cochains introduced by Fukaya, Oh, Ohta, Fukaya,
Oh, Ohta, and Ono [2009]. We implement this method in the current set up by introducing
non-compact bounding chains (with boundary at infinity) as follows. We use a perturba-
tion scheme to make rigid disks transversely cut out energy level by energy level. For each
transverse disk u we also fix a bounding chain �u, i.e., �u is a non-compact 2-chain in LK

that interpolates between the boundary @u and a multiple of a fixed curve � in ΛK in the
longitude homology class x 2 H1(ΛK) at infinity. This allows us to define the Gromov–
Witten disk potential as a sum over finite trees Γ, where there is a rigid disk uv at each
vertex v 2 Γ and for every edge connecting vertices v and v0 there is an intersection point
between @uv and �v0 weighted by ˙

1
2
, according to the intersection number. We call such

a tree a generalized disk and define the Gromov–Witten disk potential WK(x; Q) as the
generating function of generalized disks.

Figure 2: Bounding chains turn boundary breaking into interior points in moduli
spaces: the disk family continues as a family of disks with the bounding chain in-
serted.

We then define M0
r;n(a) as the moduli space of holomorphic disks with positive punc-

ture at a and with insertion of bounding chains of generalized disks along its boundary
such that the total homology class of the union of all disks in the configuration lies in the
class rt + nx. Let � : AK ! C[e˙x ; Q˙1] be the map

�(a) =
X
r;n

jM0
r;n(a)jQ

renx :
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Proposition 4.2. If

(3) p =
@WK

@x

then � is a chain map, � ı d = 0. Consequently, (3) parameterizes a branch of the
augmentation variety and Theorem 1.2 follows.

Proof. The bounding chains are used to remove boundary bubbling from the boundary of
the moduli space, see Figure 2. As a consequence the boundary of the moduli space of
disks with one positive puncture and with insertions of generalized disks correspond to
two level disks with insertions. It remains to count the disks at infinity with insertions.
At infinity all bounding chains are multiples of the longitude generator x. A bounding
chain going n-times around x can be inserted nm times in a curve that goes m times
around p. It follows that the substitution ep = e

@WK
@x corresponds to counting disks with

insertions.

Corollary 4.3. The Gromov–Witten disk potential WK is an analytic function.

Proof. The defining equation of the augmentation variety can be found from the knot
contact homology differential by elimination theory. It is therefore an algebraic variety
and the Gromov–Witten disk potential in (3) is an analytic function.

4.2 Augmentation varieties in basic examples. We calculate the augmentation variety
from the formulas in Section 2.4.

4.2.1 The unknot. The augmentation polynomial for the unknot U is determined di-
rectly by (2): the algebra admits an augmentation exactly when dc = 0 and

AugU = 1 � ex
� ep + Qexep:

4.2.2 The trefoil. We need to find the locus where the right hand sides in Section 2.4.2
has common roots. The augmentation polynomial is found as:

AugT =(exe2p + Q2)a12(e
p(dc21) � Q(dc22))

� (exe2p + Q2)(Q(dc21) + exepd (c22))

+ ex(e2p
� Q)(ep(dc21) � Q(dc22))

+ ex(e2p
� Q)(exe2p + Q2)(db12)

= e2x(e4p
� e3p) + ex(e4p

� e3pQ + 2e2p(Q2
� Q) � epQ2 + Q2)

� (epQ3
� Q4):
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5 Legendrian SFT and open Gromov–Witten theory

This section concerns the higher genus counterpart of the results in Section 4.

5.1 Additional geometric data for Legendrian SFT of knot conormals. We outline
a definition of relevant parts of Legendrian SFT (including the open Gromov–Witten po-
tential), for the Lagrangian conormal LK of a knot K � S3 in the resolved conifold,
LK � X . As in the case of holomorphic disks, see Section 4, the main point of the con-
struction is to overcome boundary bubbling. In the disk case there is a 1-dimensional disk
that interacts through boundary splitting/crossing with rigid disks. Since the moving disk
is distinguished from the rigid disks, it is sufficient to use bounding chains for the rigid
disks only.

In the case of higher genus curves there is no such separation. A 1-dimensional curve
can boundary split on its own. To deal with this, we introduce additional geometric data
that defines what might be thought of as dynamical bounding chains. We give a brief
description here and refer to Ekholm and Ng [n.d.] for more details. The construction was
inspired by self linking of real algebraic links (Viro’s encomplexed writhe, Viro [2001])
as described in Ekholm [2002].

5.1.1 An auxiliary Morse function. Consider a Morse function f : LK ! R without
maximum and with the following properties. The critical points of f lie on K and are:
a minimum �0 and an index 1 critical point �1. Flow lines of rf connecting �0 to �1
lie in K and outside a small neighborhood of K, rf is the radial vector field along the
fiber disks in LK � K � R2. Note that the unstable manifold W u(�1) of �1 is a disk that
intersects ΛK in the meridian cycle p.

5.1.2 A 4-chain with boundary twice LK . Start with a 3-chain ΓK � ST �S3 with
the following properties: @ΓK = 2 � ΛK , near the boundary ΓK agrees with the union
of small length � > 0 flow lines of ˙R starting on ΛK , and ΓK � @ΓK is disjoint from
ΛK , see Ekholm and Ng [n.d.]. Identify

�
[0; 1) � ST �S3; [0; 1) � ΛK

�
with (X; LK)�

(X̄ ; L̄K), where (X̄ ; L̄K) is compact, and let C 1
K = [0; 1) � ΓK .

Consider the vector field v(q) = rf (q)
jrf (q)j

, q 2 LK � f�0; �1g and let G be the closure
of the length � > 0 half rays of ˙J v(q) starting at q 2 LK in L̄K and G0 its boundary
component that does not intersect LK . A straightforward homology calculation shows
that there exists a 4-chain C 0

K in X � LK with boundary @C 0
K = G0 [ @C 1

K . Define
CK = C 1

K � [0; 1)[ C 0
K [ G. Then CK is a 4-chain with regular boundary along 2 � LK

and inward normal ˙J rf . Furthermore, CK intersects LK only along its boundary and
is otherwise disjoint from it. We remark that in order to achieve necessary transversality,
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we also need to perturb the Morse function and the chain slightly near the Reeb chord
endpoints in order to avoid intersections with trivial strips, see Ekholm and Ng [ibid.].

5.2 Bounding chains for holomorphic curves. We next associate a bounding chain to
each holomorphic curve u : (Σ; @Σ) ! (X; LK) in general position with respect to rf

and CK . Consider first the case without punctures. The boundary u(@Σ) is a collection
of closed curves contained in a compact subset of LK . By general position, u(@Σ) does
not intersect the stable manifold of �1. Define � 0

u as the union of all flow lines of rf

that starts on u(@Σ). Since f has no index 2 critical points and since rf is vertical
outside a compact, � 0

u \(fT g�ΛK) is a closed curve, independent of T for all sufficiently
large T > 0. Let @1� 0

u � ΛK denote this curve and assume that its homology class is
nx + mp 2 H1(ΛK). Define the bounding chain �u of u as

(4) �u = � 0
u � m � W u(�1):

Then �u has boundary @�u = @u and boundary at infinity @1�u in the class nx + 0p.
Consider next the general case when u : (Σ; @Σ) ! (X; LK) has punctures at Reeb

chords c1; : : : ; cm. Let ıj denote the capping disk of cj and let X̄T = X̄ [ ([0; T ] �

ST �S3). Fix a sufficiently large T > 0 and replace u(@Σ) in the construction of � 0
u

above by the boundary of the chain (u(Σ) \ X̄T ) [
Sm

j=1 ıj and then proceed as there.
This means that we cap off the holomorphic curve by adding capping disks and construct
a bounding chains of this capped disk.

5.3 Generalized holomorphic curves and the SFT-potential. The SFT counterpart of
the chain map equation for augmentations is derived from 1-dimensional moduli spaces
of generalized holomorphic curves. The moduli spaces are stratified and the key point
of our construction is to patch the 1-dimensional strata in such a way that all boundary
phenomena in the compact part of (X; LK) cancel out, leaving only splitting at Reeb
chords and intersections with bounding chains at infinity. We start by describing the curves
in the 1-dimensional strata.

As in the disk case we assume we have a perturbation scheme for transversality. Again
the perturbation is inductively constructed, we first perturb near the simplest curves (low-
est energy and highest Euler characteristic) and then continue inductively in the hierarchy
of curves, making all holomorphic curves transversely cut out and transverse with respect
to the Morse data fixed. We also need transversality with respect to CK that we explain
next. A holomorphic curve u in general position has tangent vector along the boundary
everywhere linearly independent of rf . Let the shifting vector field � along @u be a vec-
tor field that together with the tangent vector of @u and rf gives a positively oriented
triple. Let @u� denote @u shifted slightly along �. By construction @u� is disjoint from
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a neighborhood of the boundary of �u. Let uJ � denote u shifted slightly along an exten-
sion of J � supported near the boundary of u. We chose the perturbation so that uJ � is
transverse to CK .

With such perturbation scheme constructed we define generalized holomorphic curves
to consist of the following data.

• A finite oriented graph Γ with vertex set VΓ and edge set EΓ.

• To each v 2 VΓ is associated a (generic) holomorphic curve uv with boundary on
LK (and possibly with positive punctures).

• To each edge e 2 EΓ that has its endpoints at distinct vertices, @e = v+ � v�,
v+ ¤ v�, is associated an intersection point of the boundary curve @uv� and the
bounding chain �uv+ .

• To each edge e 2 EΓ which has its endpoints at the same vertex v0, @e = v0 �v0 =

0, is associated either an intersection point in @u
v0
� \ �uv0 or an intersection point

in u
v0

J � \ CK .

We call such a configuration a generalized holomorphic curve over Γ and denote it Γu,
where u = fuvgv2VΓ

lists the curves at the vertices.
Remark 5.1. Several edges of a generalized holomorphic curve may have the same inter-
section point associated to them.

We define the Euler characteristic of a generalized holomorphic curve Γu as

�(Γu) =
X

v2VΓ

�(uv) � #EΓ;

where #EΓ denotes the number of edges of Γ, and the dimension of the moduli space
containing Γu as

dim(Γu) =
X

v2VΓ

dim(uv);

where dim(uv) is the formal dimension of uv .
In particular, if dim(Γu) = 0 then uv is rigid for all v 2 VΓ and if dim(Γu) = 1 then

dim(uv) = 1 for exactly one v 2 VΓ and uv is rigid for all other v 2 VΓ. The relative
homology class represented by Γu is the sum of the homology classes of the curves uv at
its vertices, v 2 VΓ.

We define the SFT-potential to be the generating function of generalized rigid curves
over graphs Γ as just described:

FK =
X

m;k;c+
Fm;k;�;c+ g

��+`(c+)
s emxQk c+;
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where Fm;k;�;c+ counts the algebraic number of generalized curves Γu in homology class
mx + kt 2 H2(X; LK) with �(Γu) = � and with positive punctures according to the
Reeb chord word c+. A generalized curve Γu contributes to this sum by the product of
the weights of the curves at its vertices (the count coming from the perturbation scheme)
times ˙

1
2
for each edge where the sign is determined by the intersection number.

Remark 5.2. For computational purposes we note that we can rewrite the sum for FK in
a simpler way. Instead of the complicated oriented graphs with many edges considered
above, we look at unoriented graphswith at most one edge connecting every pair of distinct
vertices and no edge connecting a vertex to itself. We call such graphs simple graphs.
We map complicated graphs to simple graphs by collapsing edges to the basic edge and
removing self-edges. Then the contribution from all graphs lying over a simple graph is
given the product of weights at the vertices times the product of elke gs , where the linking
coefficient of an edge e connecting vertices corresponding to the curves u and u0 is the
intersection number �u � @u0 = @u � �u0 , and e

1
2 slkv gs , where the linking coefficient slkv

of a vertex v is the sum of intersection numbers @u� � �u +uJ � � CK , where u is the curve
at v.

5.4 Compactification of 1-dimensional moduli spaces. The generalized holomorphic
curves that we defined in Section 5.3 constitute the open strata of the 1-dimensionalmoduli.
More precisely, the generalized curve Γu has a generic curve of dimension one at exactly
one vertex. Except for the usual holomorphic degenerations in 1-parameter families, there
are new boundary phenomena arising from the 1-dimensional curve becoming non-generic
relative rf and CK . More precisely we have the following description of the boundary
of 1-dimensional starta of generalized holomorphic curves (we write uv for the curve at
vertex v 2 Γu).

Lemma 5.3. Ekholm and Ng [n.d.] Generic degenerations of the holomorphic curves uv

at the vertices v 2 VΓ are as follows (see Figure 3):

(1) Splitting at Reeb chords.

(2) Hyperbolic boundary splitting.

(3) Elliptic boundary splitting.

Generic degenerations with respect to rf , CK , and capping paths are as follows:

(4) Crossing the stable manifold of �1: the boundary of the curve intersects the stable
manifold of �1.

(5) Boundary crossing: a point in the boundary mapping to a bounding chain moves
out across the boundary of a bounding chain.
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(6) Interior crossing: An interior marked point mapping toCK moves across the bound-
ary LK of CK .

(7) Boundary kink: The boundary of a curve becomes tangent to rf at one point.

(8) Interior kink: A marked point mapping to CK moves to the boundary in the holo-
morphic curve.

(9) The leading Fourier coefficient at a positive puncture vanishes.

Figure 3: Degenerations in Lemma 5.3. Top row: (1); (2); (3), middle (4) (the dot
is �1), (5); (6), bottom (7); (8) together, and (9) (gray dot represents uJ � \ CK ).

Proposition 5.4. Boundaries of 1-dimensional strata of generalized holomorphic curves
cancel out according to the following.

(i) The moduli space of generalized holomorphic curves does not change under degen-
erations (4) and (9).

(i i) Boundary splitting (2) cancel with boundary crossing (5).

(i i i) Elliptic splitting (3) cancel with interior crossing (6).

(iv) Boundary kinks (7) cancel interior kinks (8).
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Proof. Consider (i). For (4), observe that as the boundary crosses the stable manifold
of �1, the change in flow image is compensated by the change in the number of unstable
manifold added. The invariance under (9) follows from a straightforward calculation us-
ing Fourier expansion near the Reeb chord: an intersection with the capping disk boundary
turns into an intersection with CK .

Consider (iv). A calculation in a local model for a generic tangency with rf shows
that the self intersection of the boundary turns into an intersection with CK . (This uses
that the normal vector field of CK is ˙J rf .)

Consider (i i i). Unlike (i) and (iv) this involves gluing holomorphic curves and there-
fore, as we will see, the details of the perturbation scheme (which also has further appli-
cations, see Ekholm and Shende [n.d.]).

At the hyperbolic boundary splitting we find a holomorphic curve with a double point
that can be resolved in two ways, u+ and u�. Consider the two moduli spaces correspond-
ing tom insertions at the corresponding intersection points between @u+ and �u�

and @u�

and �u+
.

To obtain transversality at this singular curve for curves of any Euler characteristic we
must separate the intersection points with the bounding chain. To this end, we use a per-
turbation scheme with multiple bounding chains that time-orders the boundary crossings.
Each, now distinct, crossing can then be treated as a usual gluing. Consider gluing at m in-
tersection points as @u� crosses �u+

. This gives a curve of Euler characteristic decreased
by m and orientation sign �m, � = ˙1. Furthermore, at the gluing, the ordering permuta-
tion acts on the gluing strips and each intersection point is weighted by 1

2
. (The reason for

the factor 1
2
is that we count intersections between boundaries and bounding chains twice,

for distinct curves both @u \ �v and @v \ �u contribute.) This gives a moduli space of
additional weight

�m 1

2mm!
gm

s :

The only difference between these configurations and those associated with the opposite
crossing is the orientation sign. Hence the other gluing when @u+ crosses �u�

gives the
weight

(�1)m�m 1

2mm!
gm

s :

Noting that the original moduli space is oriented towards the crossing for one config-
uration and away from it for the other we find that the two gluings cancel if m is even
and give a new curve of Euler characteristic decreased by m and of weight 2

2mm!
if m is

odd. Counting ends of moduli spaces we find that the curves resulting from gluing at the
crossing count with a factor

(5) e
1
2 gs � e� 1

2 gs ;
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which cancels the change in linking number.
Cancellation (i i i) follows from a gluing argument analogous to (i i): The curvewith an

interior point mapping toLK can be resolved in twoways, one curve u+ that intersectsCK

at a point in the direction+J rf and one u� that intersects CK at a point in the direction
�J rf . A constant disk at the intersection point can be glued to the family of curves at
the intersection with LK . As in the hyperbolic case we separate the intersections and time
order them to get transversality at any Euler characteristic. We then apply usual gluing
and note that the intersection sign is part of the orientation data for the gluing problem, the
calculation of weights is exactly as in the hyperbolic case above. (This time the 1

2
-factors

comes from the boundary of CK being twice LK , @CK = 2[LK ].) We find again that
glued configurations corresponds to multiplication by

e
1
2 gs � e� 1

2 gs ;

and cancels the difference in counts between u+
J � � CK and u�

J � � CK .

5.5 The SFT equation. We letHK denote the count of generalized holomorphic curves
Γu, in R � ST �S3, rigid up to R-translation. Such a generalized curve lies over a graph
that has a main vertex corresponding to a curve of dimension 1, at all other vertices there
are trivial Reeb chord strips. Consider such a generalized holomorphic curveΓu. We write
c+(u) and c�(u) for the monomials of positive and negative punctures of Γu, write w(u)
for the weight of Γu, m(u)x + n(u)p + l(u)t for its homology class, and �(u) for the
Euler characteristic of the generalized curve of Γu. Define the SFT-Hamiltonian

HK =
X

dim(Γu)=1

w(u) g
��(u)+`(c+(u))
s em(u)x+n(u)p+l(u)t c+(u) @c�(u);

where the sum ranges over all generalized holomorphic curves. As above this formula can
be simplified to a sum over simpler graphs with more elaborate weights on edges.

Lemma 5.5. Consider a curve u at infinity in class mx + np + kt . The count of the
corresponding generalized curves with insertion along @u equals

e�FK emxQkengs
@

@x eFK :

Proof. Contributions from bounding chains of curves inserted r times along np corre-
sponds to multiplication by

nr 1

r !
g�r

s

X
r1+���+rj =r

@r1FK

@xr1
: : :

@rjFK

@xrj
;

where a factor @sFK

@xs corresponds to attaching the bounding chain of a curve s times.
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Theorem 5.6. IfK is a knot andLK � X its conormal Lagrangian then the SFT equation

(6) e�FK HK jp=gs
@

@x
eFK = 0

holds.

Proof. Lemma 5.3, Proposition 5.4, and Lemma 5.5 show that the terms in left hand side
of (6) counts the ends of a compact oriented 1-dimensional moduli space.

Remark 5.7. We point out that Lemma 5.5 gives an enumerative geometrical meaning to
the standard quantization scheme p = gs

@
@x

by counting insertions of bounding chains.
See Ekholm [2014, Section 3.3] for a related path integral argument.

5.6 Framing and Gromov–Witten invariants. Lemma 5.3 and Proposition 5.4 imply
that the open Gromov–Witten potential ofLK is invariant under deformation. Recall from
Section 1.2 that dualities between string and gauge theories imply that

ΨK(x; Q) = eFK(x;Q) =
X

m

Hm(egs ; Q)emx ;

where Hm is the m-colored HOMFLY-PT polynomial. It is well-known that the colored
HOMFLY-PT polynomial depends on framing. We derive this dependence here using our
definition of generalized holomorphic curves. Assume that ΨK above is defined for a
framing (x; p) of ΛK . Then other framings are given by (x0; p0) = (x + rp; p) where r

is an integer. Let Ψr
K(x0; Q) denote the wave function defined using the framing (x0; p0).

Theorem 5.8. If ΨK(x; Q) is as above then

Ψr
K(x0; Q) =

X
m

Hm(egs ; Q) em2rgs emx0

:

Proof. Note first that the actual holomorphic curves are independent of the framing. The
change thus comes from the bounding chains: the boundaries at infinity @1�u must be
corrected to lie in multiples of the new preferred class x0. Thus, for a curve that goes m

times around the generator of H1(LK), we must correct the bounding chain adapted to
x by adding mrW u(�1). Under such a change, the linking number in LK in this class
changes by m2r .

5.7 Quantization of the augmentation variety in basic examples.
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5.7.1 The unknot. Using Morse flow trees it is easy to see that there are no higher
genus curves with boundary on ΛU . As with the augmentation polynomial, there are
no additional operators to eliminate for the unknot and HU gives the operator equation
directly:

bAugU = 1 � ex̂
� ep̂

� Qex̂ep̂;

which agrees with the the recursion relation for the colored HOMFLY-PT, see e.g.
Aganagic and Vafa [2012].

5.7.2 The trefoil. It can be shown Ekholm and Ng [n.d.] that there are no higher genus
curves with boundary on ΛT . The SFT Hamiltonian can again be computed from disks
with flow lines attached. If c is a chord with jcj = 1, we write H (c) for the part of the
Hamiltonian HT with a positive puncture at c and leave out c from the notation. Then
relevant parts of the Hamiltonian are:

H (b12) = e�x̂@a12
� @a21

+ O(a)

H (c11) = ex̂ep̂
� e�gs ex̂

� ((1 + e�gs )Q � ep̂)@a12
� Q@2a12

@a21
+ O(a)

H (c21) = Q � ep̂ + ex̂ep̂@a21
+ Q@a12

@a21
+ (e�gs � 1)ex̂a12

+ (e�gs � 1)Qa12@a12
+ O(a2)

H (c22) = ep̂
� 1 � Q@a21

+ ep̂@a12
@a21

+ (egs � 1)Qa12

+ (egs � 1)ep̂a12@a12
+ O(a2);

where O(a) represents order in the variables a = (a12; a21). The factors (egs �1) in front
of disks with additional positive punctures comes from the perturbation scheme and are
related to the gluing analysis in the proof of Proposition 5.4, see Ekholm and Ng [ibid.].
In close analogy with the calculation at the classical level, the operators @a12

and @a21
can

be eliminated and we get an operator equation which after change of framing to make x

correspond to the longitude of T , i.e., 0-framing, becomes

bAugT = egs Q3e3p̂(Q � e�3gs e2p̂)(Q � e�gs ep̂) � 1

+ e�5gs/2(Q � e�2gs e2p̂)
�
(e2gs e2p̂ + e3gs e2p̂

� e3gs ep̂ + e4gs )Q2

�(egs e3p̂ + e3gs e2p̂ + egs e2p̂)Q + e4p̂
�

� ex̂

+ (Q � e�gs e2p̂)(ep̂
� egs ) � e2x̂ ;

in agreement with the recursion relation of the colored HOMFLY-PT in Garoufalidis,
Lauda, and Le [2016].
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CONSTRUCTING GROUP ACTIONS ON QUASI-TREES

Kඈඃං Fඎඃංඐൺඋൺ (藤原 耕二)

Abstract
A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a gen-

eral construction of many actions of groups on quasi-trees. The groups we can handle
include non-elementary hyperbolic groups, CAT(0) groups with rank 1 elements, map-
ping class groups and the outer automorphism groups of free groups. As an applica-
tion, we show that mapping class groups act on finite products of Gromov-hyperbolic
spaces so that orbit maps are quasi-isometric embeddings. It implies that mapping
class groups have finite asymptotic dimension.

1 Introduction

1.1 Overview. Group actions are useful in the study of infinite (discrete) groups. One
example is the theory of groups acting on simplicial trees by automorphisms, called Bass-
Serre theory, Serre [1980]. Serre observed that SL(2; Z) properly and co-compactly acts
on an infinite simplicial tree, which is embedded in the upper half plane. On the other
hand he proved that if SL(3; Z) acts on any simplicial tree by automorphisms then there
is a fixed point. Using the theory, he obtained a geometric proof of the theorem by Ihara
saying that every torsion-free discrete subgroup of SL(2; Qp) is free.

A central idea in Geometric group theory is to use hyperbolicity (in the sense of Gro-
mov) of a space to prove algebraic properties of a group that acts on it. A tree is a most
elementary example of a hyperbolic space. This method created the theory of hyperbolic
groups, Gromov [1987]. Another example is an approach by Masur-Minsky to the map-
ping class group of a surface using the hyperbolicity of the curve complex of the surface.
We will rely on their theory for our application.

This note is a survey of the work by Bestvina, Bromberg, and Fujiwara [2015], which
uses quasi-trees to study groups. A quasi-tree is a geodesic metric space that is quasi-
isometric to (ie, “looks like”, see the precise definition later) a simplicial tree. A quasi-tree
I would like to thank my parents. This work is supported by KAKENHI (23244005, 15H05739).
MSC2010: 20F65.
Keywords: quasi-trees, projection complex, mapping class groups, hyperbolic groups, asymptotic dimension.
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is always hyperbolic in the sense of Gromov. There are many advantages in this approach.
One is that quasi-trees are more flexible than trees, so that there are in fact more groups
that act on quasi-trees than on trees. Since quasi-trees are hyperbolic, many techniques and
results that are obtained for groups acting on hyperbolic spaces apply, but moreover, we
sometimes obtain stronger conclusions since quasi-trees are special and easier to handle.

Also, we introduce new methods to produce quasi-trees, called projection complex,
equipped with an isometric group action by a given group. For that we only need to check
a small set of axioms, which are satisfied by many examples (see Examples 4.3), including
hyperbolic groups, mapping class groups and the outer automorphism group Out(Fn) of
a free group Fn of rank n, and are able to produce many actions that are sometimes hidden
at a first glance. We also construct closely related space called quasi-tree of metric spaces.
Using those constructions we prove new theorems and also recover some known ones.

1.2 Intuitive description of the main construction. To explain the idea by an exam-
ple, consider a discrete group Γ of isometries of hyperbolic n-space Hn and let 
 2 Γ be
an element with an axis (ie, a 
 -invariant geodesic that 
 acts on by a translation) ` � Hn.
Denote by Y the set of all Γ-translates of `, i.e. the set of axes of conjugates of 
 . Now
we will construct a quasi-tree Q with a G-action from the disjoint union of the translates
of ` by joining pairs of translates by edges following a certain rule. We want: the result-
ing space Q is connected; Q looks like a tree, so Q should not contain larger and larger
embedded circles (then Q is not a quasi-tree); so that we put edges as few as possible
just enough to make Q to be connected; the connecting rule is G-equivariant to have a G

action on Q. Intuitively, the rule we will use is simple. For elements (ie, lines) A; B 2 Y
we do not want to join them when there is another element C that is “between A and B”
(then we would rather join A and C , and also C and B). So, we join A and B by an edge
only when there is no element C between A and B .

But how do we define that “C is between A and B”? When A; C 2 Y, A ¤ C , denote
by �C (A) � C the image of A under the nearest point projection �C : Hn ! C . We call
this set the projection of A to C and we observe:

(P0) The diameter diam�C (A) is uniformly bounded by some constant � � 0, indepen-
dently of A; C 2 Y.

This is a consequence of discreteness of G, because a line in Hn will have a big projection
to another line only if the two lines have long segments with small Hausdorff distance
between them, so that there is a uniform upper bound unless they coincide, since G is
discrete. When B ¤ A ¤ C we define a “distance” by

d �
C (A; B) = diam(�C (A) [ �C (B)):
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Now fix a constant K >> � . We say C is between A and B if d �
C (A; B) � K. (In fact

we slightly perturb the distance functions d �
C at once in advance.) Now the rule is that if

there is no such C 2 Y then we join A and B by an edge connecting �A(B) and �B(A),
which are small (imagine � is small) sets by (P0). The resulting space, C(Y), turns out to
be a quasi-tree.

One may think this example is special since each A is a line. Of course, C(Y) would
not be a quasi-tree if A 2 Y were not a quasi-tree since A is embedded in C(Y). By
collapsing each A to a point in C(Y) we obtain a new space P (Y) (then the geometry
of A becomes irrelevant), which is again a quasi-tree. Our discovery is that if we start
with a given abstract data: a set Y and maps(projections) between any two elements in Y
satisfying a small set of “Axioms”, and construct a space P (Y) by the rule we explained,
P (Y) is always a quasi-tree. It does not matter howwe obtain the data as long as it satisfies
the axioms.

The technical difficulty in the construction is to perturb the distance functions d �
A by

a bounded amount as we said (see Section 2.1 for details). Without this perturbation the
resulting space may contain larger and larger loops and is not a quasi-tree even if the
initial data satisfies the axioms (see Bestvina, Bromberg, and Fujiwara [2015] for a counter
example).

1.3 Axioms for quasi-tree of metric spaces and projection complex. We continue
with the example, and explain the Axioms behind the construction. First, the distance
function d �

Y is always symmetric and satisfies the triangle inequality (nothing to do with
discreteness of G):

(P3) d �
Y (X; Z) = d �

Y (Z; X);

(P4) d �
Y (X; Z) + d �

Y (Z; W ) � d �
Y (X; W ),

but in general we have d �
A (B; B) > 0, so this is a pseudo-distance function (we frequently

drop “pseudo”) . We observe further, again sinceΓ is discrete, for a perhaps larger constant
� :

(P1) For any triple A; B; C 2 Y of distinct elements, at most one of the following three
numbers is greater than � :

d �
A (B; C ); d �

B (A; C ); d �
C (A; B):

(P2) For any A; B 2 Y the following set is finite:

fC 2 Y j d �
C (A; B) > �g:
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�C (A) �C (B)

A

B

C

�A(B); �A(C ) �B(A); �B(C )

Figure 1: Axiom (P1). The bold line is the shortest segment between A and B in
Hn. Note that C and this segment stay close for a long time, therefore d�

C
(A; B) is

large, while d�
A
(B; C ) and d�

B
(A; C ) are small. (Figure from Bestvina, Bromberg,

and Fujiwara [2015])

For an even more basic example where (P0)-(P2) hold with � = 0, consider the Cayley
tree (Cayley graph) of the free group F2 = ha; bi and for Y take the F2-orbit of the axis
of a.

We can show that (P0), (P1) and (P2) are sufficient Axioms for the space we construct
to be a quasi-tree. We start with a collection of metric spacesY and a collection of subsets
�A(B) � A for A ¤ B with d �

A satisfying (P0)-(P2). Note that (P3) and (P4) always
hold for d �

A . Then we construct a space by putting edges between (disjoint union of) the
metric spaces in Y following our rule. Here is a summary theorem. (1) applies to the Hn

example. In a way we “reconstruct” the ambient space with the group action from Y. But
the punch line is that we do not have to start with an ambient space and its subspaces in
the theorem.

Theorem 1.1. Bestvina, Bromberg, and Fujiwara [2015] Suppose Y is a collection of
geodesic metric spaces and for every A; B 2 Y with A ¤ B we are given a subset
�A(B) � A such that (P0)-(P2) hold for the distance functions d �

A for a constant � .
Then there is a geodesic metric space C(Y) that contains isometrically embedded, to-

tally geodesic, pairwise disjoint copies of each A 2 Y such that for all A ¤ B the nearest
point projection of B to A in C(Y) is a uniformly bounded set uniformly close to �A(B)

such that
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(1) The construction is equivariant, namely, if a groupG acts isometrically on the disjoint
union of the spaces in Y preserving projections, i.e., g(�A(B)) = �gA(gB) for any
A; B 2 Y and g 2 G, then the group action extends to C(Y).

(2) The quotient C(Y)/Y obtained by collapsing the embedded copies of each Y 2 Y to
a point is a quasi-tree.

Some explanations are in order. A subset Y � X is totally geodesic if any geodesic
in X joining two points in Y is contained in Y. The space C(Y) is called a quasi-tree of
metric spaces. Its construction will depend on the choice of a sufficiently large parameter
K >> � , and it would be more precise to denote the space by CK(Y). If K < K 0 there is
a natural Lipschitz map CK(Y) ! CK0(Y) which is in general not a quasi-isometry, and
in fact unbounded sets may map to bounded sets.

The spaceC(Y)/Y is called the projection complex, denoted byP (Y) = PK(Y), which
depends on K. We can think of the quasi-tree of metric spaces C(Y) as being obtained
from P (Y), which is a quasi-tree by (2), by blowing up vertices to corresponding metric
spaces. This explains the terminology.

Many properties that hold uniformly for the spaces in Y carry over to C(Y). For exam-
ple (there will be the item (iii) later):

Theorem 1.2. Bestvina, Bromberg, and Fujiwara [ibid.]. Let C(Y) be the quasi-tree of
metric spaces Y constructed in Theorem 1.1.

(i) If each X 2 Y is isometric to R then C(Y) is a quasi-tree; more generally, if all
X 2 Y are quasi-trees with a uniform bottleneck constant then C(Y) is a quasi-tree.

(ii) If each X 2 Y is ı-hyperbolic with the same ı, then C(Y) is hyperbolic.

Here, a geodesic metric space X satisfies the bottleneck property if there exists∆ � 0

such that for any two points x; y 2 X the midpoint z of a geodesic between x and y

satisfies the property such that any path from x to y intersects the∆-ball centered at z. The
constant∆ is called the bottleneck constant. Manning [2005] showed thatX satisfying the
bottleneck property is equivalent to X being a quasi-tree. Note that (i) in particular says
that the space C(Y) obtained from an orbit of axes in Hn as in the example is a quasi-tree
and not (quasi-isometric to) Hn.

1.4 Asymptotic dimension. We give another example of a property that descends from
spaces in Y to C(Y). The notion of asymptotic dimension was introduced by Gromov
Gromov [1993] as a large-scale analog of the covering dimension.
Definition 1.3 (Asymptotic dimension). Ametric spaceX has asymptotic dimension asdim(X) �

n if for every R > 0 there is a covering of X by uniformly bounded sets such that every
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metric R-ball intersects at most n+1 of the sets in the cover. More generally, a collection
of metric spaces has asdim at most n uniformly if for every R there are covers of each
space as above whose elements are uniformly bounded over the whole collection.

In Theorem 1.2 we also have:

(iii) If the collection Y has asdim � n uniformly, then asdim(C(Y)) � n + 1.

As an application we have:

Theorem 1.4. Bestvina, Bromberg, and Fujiwara [2015]. Let Σ be a closed orientable
surface, possibly with punctures, and MCG(Σ) its mapping class group. Then
asdim(MCG(Σ)) < 1.

The Coarse Baum-Connes conjecture (for torsion free subgroups of finite index) and
therefore the Novikov conjecture for MCG(Σ) follows from Theorem 1.4 by a work of
Yu [1998], cf. Roe [2003]. Various other statements that imply the Novikov conjecture for
MCG(Σ) were known earlier (see Kida [2008], Hamenstädt [2009], and J. A. Behrstock
and Minsky [2008]).

1.5 Some basic notions. We collect some standard definitions we use.
Let X; Y be two metric spaces. We often denote the distance between x; y by jx � yj.

A map f : X ! Y is a (K; L)-quasi-isometric embedding if for all points x; y 2 X ,

jx � yj

K
� L � jf (x) � f (y)j � Kjx � yj + L:

If it additionally satisfies that for all point y 2 Y there exists x 2 X such that jy �

f (x)j � L, then we say f is a quasi-isometry, and X and Y are quasi-isometric. In
those definitions, only the existence of constants K; L is important, and we sometimes
omit them. Quasi-isometry is an equivalence relation among metric spaces.

Suppose a group G acts on a metric space X by isometries. We say the action is co-
compact/co-bounded if the quotient is compact/bounded. We say the action is proper (or,
properly discontinuous) if for any R > 0 and x 2 X the number of elements g 2 G with
jx � gxj � R is finitely many.

Let G be a finitely generated group and S a finite set of generators. We assume that
if s 2 S then s�1 2 S . We form a graph as follows: there is a vertex for each element
g 2 G. We join two vertices g; h 2 G if there is s 2 S with h = gs. The graph is called a
Cayley graph of G, denoted by Cay(G; S). Since S generates G, the graph Cay(G; S) is
connected. G acts on the graph by automorphisms from the left: An element g 2 G sends
a vertex h 2 G to a vertex gh 2 G. By declaring each edge has length 1, Cay(G; S)

becomes a geodesic space. The action by G is proper and co-compact. The distance
between the identity and g 2 G is denoted by jgj and called the word norm of g.
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Let∆(a; b; c) be a geodesic triangle in the hyperbolic plane H2, where the three sides
a; b; c are geodesics. Gauss-Bonnet theorem says that the area of ∆ is at most � . It then
follows that each side is contained in the 2-neighborhood of the union of the other two
sides. Gromov turned this uniform thinness of geodesic triangles into a definition. A
geodesic metric space X is ı-hyperbolic for a constant ı if all geodesic triangle in X is
ı-thin, namely, each side is contained in the ı-neighborhood of the union of the other two.
We often suppress ı and say X is hyperbolic. The hyperbolic spaces Hn are hyperbolic,
trees are hyperbolic, but the Euclidean plane is not hyperbolic. A finitely generated group
is a (word) hyperbolic group if it acts on a hyperbolic space properly and co-compactly
by isometries, equivalently, if its Cayley graph is hyperbolic. If G contains Z2 then it
is not hyperbolic. Another important class of spaces is of CAT(0) spaces (or Hadamard
spaces), which are, roughly speaking, complete, simply connected, and “non-positively
curved” geodesic spaces. See for example Ballmann [1995]. This class is a good source
of examples.

The translation length �(g) of an isometry g : X ! X of a metric space X is

�(g) := lim
k!1

dX (x; gk(x))

k
:

The limit exists and is independent of x 2 X . We say the isometry is hyperbolic if �(g) >

0.
We organize the rest of this note as follows: in Section 2 we define projection complex

and quasi-tree of metric spaces from the beginning, which is independent from Section 1
(so that there is an overlap). In Section 3 we discuss application to mapping class groups.
In Section 4 we give many examples that satisfy the axioms, and also discuss other appli-
cations.

Acknowledgments. I would like to thankMladenBestvina andKenneth Bromberg. Most
of the work presented here is from a long collaboration with them. I am grateful to Bestv-
ina for reading a draft and giving useful suggestions.

2 Definition of projection complex and quasi-tree of metric spaces

We start over and will give a precise setting and conditions for our construction, Bestv-
ina, Bromberg, and Fujiwara [2015]. To define the projection complex, we do not really
need the projections �A(B) as in the example on Hn; we only need the pseudo-distances
d �

C (A; B).
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2.1 Projection complex axioms. Let Y be a set, and assume that for each Y 2 Y we
have a function

d �
Y : (Y n fY g) � (Y n fY g) �! [0; 1):

Let � � 0 be a constant. Assume the following (PC1) - (PC4) are satisfied (they are same
as (P1)-(P4) except for the order). We call them projection complex axioms.

(PC 1) d �
Y (X; Z) = d �

Y (Z; X) for all distinct X; Y; Z;

(PC 2) d �
Y (X; Z)+d �

Y (Z; W ) � d �
Y (X; W ) for all distinctX; Y; Z; W (triangle inequal-

ity);

(PC 3) minfd �
Y (X; Z); d �

Z (X; Y )g � � for all distinct X; Y; Z;

(PC 4) for all X; Z 2 Y, #fY jd �
Y (X; Z) > �g is finite.

As an analog of (P0), uniform boundedness of the projections �Y (Z), we could require
(PC0), but this will not be used to define a projection complex.

(PC 0) d �
Y (Z; Z) � � for all distinct Y; Z.

Before we define the projection complex, there is one technical difficulty we have to
deal with. Given distance functions that satisfy (PC1) - (PC4), we modify them by a
bounded amount for our purpose. This modification is a key to define an order on a set
YK(X; Z) we define later.

For X; Z 2 Y with X ¤ Z let H(X; Z) be the set of pairs (X 0; Z0) 2 Y � Y with
X 0 ¤ Z0 such that one of the following four holds:

• both d �
X (X 0; Z0); d �

Z (X 0; Z0) > 2� ;

• X = X 0 and d �
Z (X; Z0) > 2� ;

• Z = Z0 and d �
X (X 0; Z) > 2� ;

• (X 0; Z0) = (X; Z):

We then define the modified distance functions

dY : (YnfY g) � (YnfY g) ! [0; 1)

by dY (X; Z) = 0 if Y is contained in a pair in H(X; Z), and otherwise,

dY (X; Z) = inf
(X 0;Z0)2H(X;Z)

d �
Y (X 0; Z0):
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For example, if d �
Y (W; Z) > 2� , then (W; Z) 2 H(Y; Z) and dW (Y; Z) = 0. Note that

it is clear from the definition that dY (X; Z) � d �
Y (X; Z) and therefore (PC3) and (PC4)

still hold for dY with the same constant. (PC1) is trivial, but we have to modify (PC2),
the triangle inequality.

One can prove that the modification is bounded, namely, for distinct X; Y; Z,

d �
Y (X; Z) � 2� � dY (X; Z) � d �

Y (X; Z):

It then follows from (PC2) that

(PC 2’) dY (X; Z) + dY (Z; W ) + 4� � dY (X; W ) (modified triangle inequality)

For a constant K � � and distinct Y; Z we define a set, which is finite by (PC 4), as
follows:

YK(X; Z) = fY 2 YjdY (X; Z) > Kg:

We say an element Y inYK(X; Z) is between X; Z. We are ready to define the projection
complex.
Definition 2.1 (Projection complex). For a constantK > 0, the projection complex PK(Y)
is the following graph. The vertex set of PK(Y) is Y. Two distinct vertices X and Z are
connected with an edge (of length 1) if YK(X; Z) is empty. Denote the distance function
for this graph by d ( ; ).

Note that for different values ofK the spacesPK(Y) are not necessarily quasi-isometric
to each other (the vertex sets are the same, but for larger K there are more edges).

Here is the first main theorem.

Theorem 2.2. Bestvina, Bromberg, and Fujiwara [2015, Theorem 3.16] Suppose func-
tions d �

Y ; Y 2 Y satisfy (PC1)- (PC4). Modify them to dY . If K is sufficiently large
compared to � , then the projection complex PK(Y) is a quasi-tree.

We make some comments on the proof. Suppose K is large. We first show that for
X; Z, the subset YK(X; Z) � Y gives a path between them in PK(Y). In particular it
implies

d (X; Z) � jYK(X; Z)j + 1:

In fact this path is a quasi-geodesic (ie, a quasi-isometric embedding of a segment) be-
tween the two points. This is the part where the modification to dY plays a role (without
a modification the theorem is not true). Using the distances dY , we put a total order on
YK(X; Z)[fX; Zg with X least and Z greatest: Y < W if dW (X; Y ) < � . It takes some
work to show this is well defined and gives a total order on the set YK(X; Z) [ fX; Zg.
We then show this set form a path in PK(Y) in this order. Recall the Hn example from
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the introduction. For axes X; Z, let � be the shortest geodesic between them in Hn. Then
the set YK(X; Z) is roughly the collections of axes in Y that stay close to � at least for
distance K (cf. Figure 1). Because of (P 0), there is a bounded overlap between any two
of them, so that there is an obvious order on YK(X; Z) in this picture.

There is also a lower bound of d (X; Z). For a sufficiently large K 0 compared to K

(roughly 5K is enough), if Y 2 YK0(X; Z) then every geodesic from X to Z in PK(Y)
contains Y . This implies

d (X; Z) � jYK0(X; Z)j + 1:

One can say that if X and Z has a “large projection” (ie, � K 0) to Y , then every geodesic
from X to Z has to pass Y .

2.2 Quasi-tree of metric spaces. To define a quasi-tree of metric spaces we need that
each Y 2 Y is a metric space. Here is the precise setup. LetY = f(Y; �Y )g be a collection
of metric spaces and for each distinct Y; Z 2 Y assume that we have sets �Y (Z) � Y and
�Z(Y ) � Z. The �Y are called projection maps. Fix a constant � > 0. Assume that for
any X 6= Y ,

(P 0) diam(�X (Y )) � �:

For any X 6= Y 6= Z, set

d �
Y (X; Z) = diam(�Y (X) [ �Y (Z));

where diam is �Y -diameter. Then d �
Y satisfy (PC1) and (PC2) trivially. Notice that (P0)

implies (PC0). We assume that they also satisfy (PC3) and (PC4). Families of metric
spaces with projection maps satisfying (PC0), (PC3) and (PC4) occur naturally in many
contexts, see Examples 4.3.
Definition 2.3 (Quasi-tree of metric space). For K > 0, we build the quasi-tree of metric
spaces, CK(Y), by taking the union of the metric spaces inYwith an edge of lengthL > 0

(L depends onK) connecting every pair of points in�Y (X) and�X (Y ) if dPK(Y)(X; Y ) =

1.
In other words, if YK(X; Y ) is empty, we put edges between the sets �X (Y ) � X

and �Y (X) � Y . CK(Y) is a metric space. For example if each Y is a path metric
space (which is the case in our applications), then CK(Y) is path connected and there is
an obvious metric on it. We denote the metric by dCK(Y).

To equip a group action on CK(Y), consider a metric � (that is possibly infinite) on
the disjoint union of elements of Y by setting �(x0; x1) = �X (x0; x1) if x0; x1 2 X , for
some X 2 Y; and �(x0; x1) = 1 if x0 and x1 are in different spaces in Y. Assume
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that the group G acts isometrically on Y with this metric and that the projections �X are
G-invariant, i.e. �gX (gY ) = g(�X (Y )). Then G naturally acts on CK(Y) by isometries.
This occurs in most examples.

2.3 Distance formula. In PK(Y) we gave upper and lower bounds of d (X; Z) using
YK(X; Z) and YK0(X; Z). There are similar formula in CK(Y) as follows. The projec-
tion �Y (X) is defined for X 2 YnfY g, but since Y is a metric space in the current setting
we extend the projection to each point x 2 X by �Y (x) = �Y (X). Also, for a point
y 2 Y , we set �Y (y) = fyg. The projection �Y is now defined on CK(Y), except for the
edges.
Remark 2.4. Since CK(Y) is a metric space we can also define �Y (x) using the nearest
point projection. Then the Hausdorff distance between the sets we obtain in Y by the two
different definitions is bounded. It is a part of Theorem 1.1.

As before, we then set dY (x; z) = diam(�Y (x) [ �Y (z)) for x; z 2 CK(Y). We also
define

YJ (x; z) = fY 2 YjdY (x; z) > J g:

It is possible for X or Z, where x 2 X and z 2 Z, to be in YJ (x; z). Here is a distance
formula in CK(Y).

Theorem 2.5. Bestvina, Bromberg, and Fujiwara [2015, Theorem 4.13] Let K 0 > K be
sufficiently large. Then for x 2 X; z 2 Z we have

1

2

X
W 2YK0 (x;z)

dW (x; z) � dCK(Y)(x; z) � 6K + 4
X

W 2YK(x;z)

dW (x; z):

Some explanation is in order. In a way the lower bound is harder to get. Recall that if
W 2 YK0(X; Z) then every geodesic 
 from X to Z in PK(Y) has to visit the vertex W .
In CK(Y) the vertex W is replaced by the metric spaceW , so one changes 
 to a path 
 0 in
CK(Y) by replacing the vertex W by a geodesic in W joining the subsets �W (x); �W (z).
Since the distance between those two sets is roughly dW (x; z), after those replacement
the length of the path 
 0 is roughly bounded below by

P
W 2YK0 (x;z) dW (x; z), which ap-

pears in the lower bound. The above formula is an analogy of theMasur-Minsky distance
formula for a mapping class group (see Theorem 3.6).

3 Application to mapping class groups of surfaces

The family of mapping class groups of surfaces is an interesting object to study in Geo-
metric group theory. We discuss applications of our construction to mapping class groups.
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We recommend a book Farb and Margalit [2012] for a general reference of the theory of
mapping class groups and a survey Minsky [2006] for the Masur-Minsky theory.

3.1 Definitions. Let Σ = Σg;b be an orientable compact surface with genus g and
b boundary components. The group of orientation preserving homeomorphisms of an
oriented surface Σ to itself, taken modulo isotopy, is called the mapping class group of Σ,
denoted byMCG(Σ). MCG(Σ) is a finitely presented group. An essential simple closed
curve inΣ is an embedded circle inΣ that is homotopically non-trivial and not homotopic
into the boundary (non-peripheral). We may just say simple closed curves. A mapping
class, ie, an element in MCG(Σ), that preserves a system of disjoint essential simple
closed curves on Σ is called reducible. For example Dehn twists are reducible. Thurston
classified the nontrivial conjugacy classes in MCG(Σ) as reducible, finite-order, and
pseudo-Anosov. A pseudo-Anosovmapping class does not preserve any finite set of closed
curves, but instead preserves a pair of measured geodesic laminations.

For example,MCG(Σ0;0) is trivial. ForΣ1;0;Σ1;1,MCG(Σ) is isomorphic toSL(2; Z),
and MCG(Σ0;4) maps to PSL(2; Z) with the kernel (Z/2Z)2. In particular they are hy-
perbolic groups. But MCG(Σ) is not word-hyperbolic if g � 2 since it contains Z2

generated by commuting Dehn twists. One natural metric space MCG(Σ) acts on by
isometries is the Teichmüller space. The Teichmüller space for Σg;0; g > 0 is diffeomor-
phic to the Euclidean space of dimension 6g � 6, with the Teichmüller metric. The action
by MCG(Σ) is proper but not co-compact. There are a lot of negative curvature aspects
on a Teichmuller space (cf. Minsky [1996]), but it is not ı-hyperbolic.

3.1.1 Curve graph. We recall another object whichMCG(Σ) acts on, and is useful for
our approach. Let C0(Σ) be the set of homotopy classes of essential simple closed curves
and properly embedded simple arcs on Σ (when @Σ is not empty) that are essential (not
homotopic into @Σ). We then define the curve graph, C(Σ), to be the 1-complex obtained
by attaching an edge to a pair of disjoint closed curves or arcs in C0(Σ).
Remark 3.1. The graph we have constructed is often called the curve and arc graph,
Masur and Minsky [2000]. The usual curve graph, whose vertices are only curves, is
quasi-isometric to the curve and arc graph and so we will use the less cumbersome name
of curve graph.

C(Σ) is connected, and MCG(Σ) naturally acts on C(Σ) by automorphisms since
homeomorphisms preserve disjointness, and the quotient is finite. The action is far from
proper, but the homomorphism MCG(Σ) ! Aut(C(Σ)) has at most finite kernel, and
the index of the image is finite in Aut(C(Σ)), (Ivanov, Luo, Korkmaz).

Masur and Minsky [1999], Masur and Minsky [2000] studies the geometry of a curve
complex, and their work has a significant impact on the study of hyperbolic 3-manifolds
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andmapping class groups. The following result is the first important theorem (cf. Bestvina
and Fujiwara [2007] for a non-orientable Σ). More recently, it is proved that ı is uniform
for all Σ, Hensel, Przytycki, and Webb [2015].

Theorem 3.2. C(Σ) is a ı-hyperbolic space, and g 2 MCG(Σ) is a hyperbolic isometry
on C(Σ) if and only if g is a pseudo-Anosov element.

Moreover, for a given surface Σ, there is a uniform positive lower bound on the trans-
lation length of a pseudo-Anosov element.

3.2 Applications. We explain a setting for us to apply projection complex to the study
of MCG(Σ). A set Y we take is very different from the Hn example in the introduction.
Y is not a collection of subsets in some hyperbolic space, say, the curve graph of Σ, but
it will be a certain collection of (isotopy classes of) essential subsurfaces Y � Σ. A
subsurface is essential if it is �1-injective and non-peripheral. To define a quasi-tree of
metric spaces, we also need a metric space for each Y (here, we distinguish Y and the
metric space associated to it). For that we take the curve complex C(Y ) for each Y . We
use subsurface projection to define projections between two subsurfaces in Y, then apply
our method after checking the axioms.

3.2.1 Subsurface projection. We say two essential subsurfaces overlap if @Y \ @Z ¤

¿ (this means that the intersection is nonempty even after any isotopy). Following Masur
and Minsky [2000], if Y and Z overlap, we define the subsurface projection �Y (Z) �

C(Y ) by taking the intersection of @Z with Y and identifying homotopic curves and arcs.
Also, when ˇ is a simple closed curve that cannot be isotoped to be disjoint from Y , we
similarly define a projection �Y (ˇ) � C(Y ).

Also, we will need the curve graph for an essential simple closed curve 
 . The def-
inition has a somewhat different flavor and we do not recall a definition here. C(
) is
quasi-isometric to Z, and the Dehn twist along 
 , which leaves 
 invariant, acts by a hy-
perbolic isometry. We will call 
 a subsurface too. When a curve 
 and the boundary of a
subsurface Y intersect, we already defined �Y (
) but we will also need �
 (Y ) � C(
).
More generally Y can be a curve. See for example Bestvina, Bromberg, and Fujiwara
[2015, §5.1] for the precise definition of C(
) and the projection.

Now we want to check that the projection complex axioms are satisfied.

Theorem 3.3. LetY be a collection of essential subsurfaces inΣ such that any two distinct
subsurfaces intersect. For distinct X; Y; Z 2 Y define d �

Y (X; Z) = diam(�Y (X) [

�Y (Z)), where the diameter is measured in C(Y ). Then fd �
Y g satisfy (P0)-(P2) for some

constant �(Σ), which depends only on Σ.
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Thus for every such family Y we obtain the projection complex PK(Y) for a large K,
and the quasi-tree of curve complexes CK(Y) for fC(Y ); Y 2 Yg. We make comments on
verifying the axioms (P0)-(P2) in this setting. Axiom (P0) follows easily from definitions.
Axiom (P1) was established by J. A. Behrstock [2006]. We sometimes refer to Axiom (P1)
in general as Behrstock’s inequality. Axiom (P2) is by Masur-Minsky (a consequence of
the Theorem 4.6 and Lemma 4.2 in Masur and Minsky [2000]). A central idea in Masur
and Minsky [ibid.] is the notion of a hierarchy and this is used in the original verification
of (P1) and (P2). This is a powerful tool but it is complicated to define and difficult to
use. Leininger gave a very simple, hierarchy free proof of (P1) (see Mangahas [2010,
2013]) and also (P2) has a direct, hierarchy free proof (Bestvina, Bromberg, and Fujiwara
[2015]).

3.2.2 Embedding MCG. Having Theorem 3.3, we now use Theorem 1.1 to embed
the mapping class group in a finite product of quasi-trees of curve complexes. To use
Theorem 3.3, we group the essential subsurfaces in Σ into finitely many subcollections
Y1;Y2; � � � ;Yk , such that any X; Y in each family overlap, hence the projection �X (Y )

is defined. The subcollections are the orbits of a certain subgroup S in MCG(Σ), given
in the following lemma.

Lemma 3.4 (Color preserving subgroup). Bestvina, Bromberg, and Fujiwara [ibid.].
There is a coloring � : C0(Σ) ! F of the set of simple closed curves on Σ with a fi-
nite set F of colors so that if a; b span an edge then �(a) ¤ �(b). Moreover, there is a
finite index subgroup S of the mapping class group MCG(Σ) (where Σ is closed) such
that every element of S preserves the colors.

We call this subgroup the color preserving subgroup. Note that there are only finitely
many S-orbits of subsurfaces of Σ and any two subsurfaces in each S-oribit overlap. Hav-
ing Theorem 3.3, for each orbit Yi we apply our construction to fC(Y )jY 2 Yi g and ob-
tain CK(Yi ) for a large enough constant K. Everything (for example projection �X (Y ))
is done equivariantly in the construction, so that we have an equivariant orbit map

Φ : MCG(Σ) ! CK(Y1) � CK(Y2) � � � � � CK(Yk);

sending g 2 MCG(Σ) to g(o), where o is an arbitrary base point in the product. Note
that an element in S preserves each factor, while other elements permute the factors. The
choice of a base point will not be important for our purpose. We put the `1-metric on the
product.

Since MCG(Σ) is finitely generated, the map Φ is a Lipschitz map. Moreover, by
some compactness argument regarding the set of curves on Σ, one can show Φ is a coarse
embedding. A map between two metric spaces f : X ! Y is a coarse embedding if there
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are constants A; B and a function Φ : [0; 1) ! [0; 1) with Φ(t) ! 1 as t ! 1 such
that

Φ(jx � x0
j) � jf (x) � f (x0)j � A jx � x0

j + B:

Moreover, it turns out that Φ is a quasi-isometric (QI) embedding. As each factor is hy-
perbolic by Theorem 1.2 (ii), we have the following theorem:

Theorem 3.5. Bestvina, Bromberg, and Fujiwara [ibid.]. MCG(Σ) equivariantly quasi-
isometrically embeds in a finite product of hyperbolic spaces.

The argument to show that Φ is a QI-embedding is by reinterpreting the remarkable
Masur-Minsky distance formula (Theorem 6.12 in Masur and Minsky [2000]). To state it,
let ˛ be a finite binding collection of simple closed curves inΣ, ie, every essential curve in
Σ intersects at least one curve in ˛. For x; M , the number [x]M is defined as x if x > M

and as 0 if x � M . Fix a finite generating set of MCG(Σ), and let jgj be the word norm.

Theorem 3.6 (Masur-Minsky distance formula). Suppose M is sufficiently large. Then
there exist K; L such that for any g 2 MCG(Σ),

1

K
jgj � L �

X
Y

[dC(Y )(�Y (˛); �Y (g(˛)))]M � Kjgj + L;

where the sum is over all essential subsurfaces Y in Σ.

After arranging K 0 = M , notice that the sum in the middle of the above theorem ap-
pears in the left hand side (to be precise, we add them over allYi ’s) of the distance formula
in a quasi-tree of metric spaces (Theorem 2.5) with x = �Y (˛); z = �Y (g(˛)). Combing
those two estimates we obtain a desired estimate to show that Φ is a QI-embedding.

The following result follows easily from the definition of asymptotic cones (see J. Behr-
stock, Druţu, and Sapir [2011b,a]) and Theorem 3.5 since the asymptotic cone of a hyper-
bolic space is an R-tree.

Theorem 3.7 (Behrstock-Druţu-Sapir). Every asymptotic cone of MCG(Σ) embeds by
a bi-Lipschitz map in a finite product of R-trees.

In fact they prove more including some information on the geometry of the image of
the embedding, but their theorem does not imply Theorem 3.5. They use the notion of
tree-graded space introduced in Druţu and Sapir [2005].

3.2.3 Asymptotic dimension. We discuss a further application to asymptotic dimen-
sion, which we stated as Theorem 1.4. We recall a few basic properties. Let X; Y be
metric spaces. If X � Y, with a metric on Y restricted to X, then asdim(X) � asdim(Y).
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We have Product Formula: asdim(X � Y) � asdim(X) + asdim(Y): It is straightforward
from the definition that the asymptotic dimension is not only a quasi-isometric invariant
but is also a coarse invariant. In particular asdim(X) � asdim(Y) if there exists a coarse
embedding f : X ! Y (Roe [2003]).

It is a theorem of Bell and Fujiwara [2008] that each curve complex has finite asymp-
totic dimension. Thus from Theorems 1.2 (iii) and 3.5 we obtain the following theorem,
which motivated the work Bestvina, Bromberg, and Fujiwara [2015]:

Theorem 3.8. (Theorem 1.4) Let Σ be a closed orientable surface, possibly with punc-
tures. Then asdim(MCG(Σ)) < 1.

The exact value of asdim(MCG(Σ)) is unknown. Webb Webb [2015] found explicit
bounds on the asymptotic dimension of curve complexes, which was improved to a lin-
ear bound by Bestvina and Bromberg [n.d.] by a different method. As a consequence,
asdim(MCG(Σ)) is bounded by an exponential function in the complexity of the surface,
�(Σg;b) = 3g + b.

We can also prove:

Theorem 3.9. Bestvina, Bromberg, and Fujiwara [2015]. The Teichmüller space of Σ,
with either the Teichmüller metric or the Weil-Petersson metric, has finite asymptotic di-
mension.

3.2.4 Dehn twists as hyperbolic isometry. When X is a quasi-tree, an isometry with
unbounded orbits is always hyperbolic, Manning [2006]. The following theorem uses the
observation that the MCG(Σ)-orbit of a curve ˛ in a surface Σ of even genus that sepa-
rates Σ into subsurfaces of equal genus consists of pairwise intersecting curves. We then
form a quasi-tree of metric spaces for the collection of those curves, viewed as subsur-
faces as we explained (and their curve complexes), where the Dehn twist along ˛ will be
hyperbolic with an axis C(˛).

Theorem 3.10. Bestvina, Bromberg, and Fujiwara [2015]. The mapping class groups in
even genus can act on quasi-trees with at least one Dehn twist having unbounded orbits.

In the case of odd genus one has to pass to the color preserving subgroup S. In any
case, it follows that for each Dehn twist g, the word norm jgnj has linear growth on n in
MCG(Σ) (not only in S). Thus we recover the theorem by Farb, Lubotzky, and Minsky
[2001] (the other types of elements are easy):

Theorem 3.11. For each element g of infinite order in MCG(Σ), the word norm jgnj

has linear growth.
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3.2.5 Promoting actions to CAT(0) spaces or trees. Theorem 3.10 provides a sharp
contrast to a result of Bridson [2010], who showed that in semi-simple actions of mapping
class groups (of genus > 2) on complete CAT(0) spaces Dehn twists are always ellip-
tic. A group action is semi-simple if each element has either a bounded orbit or positive
translation length.

By a thickening of a metric space X we mean a quasi-isometric embedding X ! Y .
When X is a graph with edges of length 1 and d � 1, there is a particular thickening
X ! Pd (X) called the Rips complex of X . The space Pd (X) is a simplicial complex
with the same vertex set as X and with simplices consisting of finite collections of vertices
with pairwise distance at most d . The Dehn twists that are hyperbolic in Theorem 3.10
stay hyperbolic in any thickning of the quasi-tree. Now by the theorem of Bridson, a
thickning is never CAT(0). This give the following theorem:

Theorem 3.12. Bestvina, Bromberg, and Fujiwara [2015]. There is an isometric action
of a group on a graph X which is a quasi-tree such that no equivariant thickening admits
an equivariant CAT (0) metric. In particular, for no d � 1, the Rips complex Pd (X)

admits an equivariant CAT (0) metric.

We make some comments on the background. It is a long-standing open question
whether every hyperbolic group acts co-compactly and properly by isometries on a CAT(0)
space. One approach is to consider the Rips complex Pd (X) for the Cayley graph X of
the group and large d . Theorem 3.12 is not a counterexample to this approach since our
X is not locally finite, but it does point out difficulties. Note that in light of Mosher,
Sageev, and Whyte [2003] the quasi-trees that arise in our construction are necessarily
locally infinite, since otherwise we would be able to promote our group actions on quasi-
trees to group actions on simplicial trees without fixed points, which is not possible for
certain groups, for example, non-elementary hyperbolic groups that have property (T), eg,
uniform lattices in Sp(n; 1).

3.2.6 Uniform uniform exponential growth ofMCG(Σ). We discuss applications to
the exponential growth of groups. Let Γ be a group and S a finite set in Γ. Assume that
1 2 S and S = S�1. Set

h(S) := lim
n!1

1

n
log jSn

j:

Let Γ be a finitely generated group. Set h(Γ) = infS fh(S)jhSi = Γg; where S runs over
all finite generating subsets. If h(Γ) > 0 we say Γ has uniform exponential growth, of
growth rate h(Γ).

Using quasi-trees of metric spaces, Breuillard and Fujiwara [n.d.] recovers the follow-
ing theorem by Mangahas, Mangahas [2010]:
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Theorem 3.13 (UUEG of MCG). Let Σ be a compact oriented surface possibly with
punctures. Then there exists a constant N (Σ) such that for any finite set S � MCG(Σ)

with S = S�1, either hSi is virtually abelian or SN contains g; h that produces a free
semi-group. In particular: h(S) �

1
N
log 2:

It follows that for each surface Σ there is a constant c(Σ) > 0 such that for any finite
set S in MCG(Σ), h(S) � c(Σ) unless hSi is virtually abelian. We say MCG(Σ) has
“uniform uniform exponential growth” (UUEG). The proof of Theorem 3.13 in Breuillard
and Fujiwara [n.d.] applies a standard “Ping-Pong” argument to the actions of the color
preserving subgroup S on the CK(Yi )’s. A key property of those actions is that any non-
trivial element of infinite order in S is hyperbolic for at least one of the actions. Mangahas’
proof is different and does not use our complexes. Also she provesmore, thatg; h produces
a free group of rank-two, maybe for a larger constant N (Σ).

3.2.7 Stable commutator length. Let G be a group, and [G; G] its commutator sub-
group. For an element g 2 [G; G], let cl(g) = clG(g) denote the commutator length of
g, the least number of commutators whose product is equal to g. We define cl(g) = 1 for
an element g not in [G; G]. For g 2 G, the stable commutator length, scl(g) = sclG(g),
is defined by

scl(g) = lim inf
n!1

cl(gn)

n
� 1:

It is clear that scl(gn) = n scl(g) and scl(hgh�1) = scl(g). We recommend a monograph
Calegari [2009] as a reference on scl.

One theme in the subject is to classify elements g in a given group for which scl(g) >

0. To verify scl(g) > 0 for an element g, the notion of quasi-morphisms is useful. A
function H : G ! R is a quasi-morphism if

∆(H ) := sup
x;y2G

jH (xy) � H (x) � H (y)j < 1:

∆(H ) is called the defect of H . It is a simple exercise to show that if there exists a quasi-
morphism f : G ! R which is unbounded on the powers of g, then scl(g) > 0. Also,
the converse holds by so called Bavard duality. For example, Brooks [1981] showed that
in free groups G, scl(g) > 0 for every nontrivial element g by constructing a quasi-
morphism f : G ! R which is unbounded on the powers of g.

On the other hand, it is straightforward from the definition that in the following situa-
tions cl(gn) is bounded and therefore scl(g) = 0:

(a) g has finite order,

(b) more generally, g is achiral, i.e. gk is conjugate to g�k for some k ¤ 0.
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For example, Epstein and Fujiwara [1997], generalizing the Brooks construction of quasi-
morphisms, proved that in hyperbolic groups G the above obstruction (b) is the only one,
namely, if g is chiral (i.e. not achiral) then scl(g) > 0. They use the hyperbolicity of the
Cayley graph of G to construct a suitable quasi-morphism for g.

There are three more conditions one can directly check from the definition for cl(gn)

being bounded and therefore scl(g) = 0, cf. Bestvina, Bromberg, and Fujiwara [2016b]:

(c) g = g1g�1
2 such that g1g2 = g2g1, and g1 is conjugate to g2,

(d) more generally, g is expressed as a commuting product g = g1 � � � gp such that g
ni

i

are all conjugate for some ni ¤ 0 and that
P

i
1
ni

= 0;

(e) g = g1 � � � gp is a commuting product and cl(gn
i ) are bounded for all i .

Now, we are interested in the question to decide when scl(g) = 0 for g 2 MCG(Σ).
Some partial answers were known. Using 4-manifold invariants, Endo and Kotschick
[2001] and Korkmaz [2004] prove that scl(g) > 0 if g is a Dehn twist. Endo and
Kotschick [2007] also note the obstruction (c): in MCG(Σ) for example this occurs if
g1; g2 are Dehn twists in disjoint curves in the same MCG(Σ)-orbit. By contrast, Cale-
gari and Fujiwara [2010] prove that if g is pseudo-Anosov and chiral then scl(g) > 0,
ie, (b) is the only obstruction among pseudo-Anosov elements. They use Theorem 3.2 to
construct a suitable quasi-morphism for g.

We state our result in the following vague form. See the precise statement in Bestvina,
Bromberg, and Fujiwara [2016b]. It covers all cases in a unified way and in particular we
recover the result on Dehn-twists.

Theorem 3.14. Let G < MCG(Σ) be a subgroup of finite index and g 2 G. Then there
is a characterization of elements g with sclG(g) > 0 in terms of the “Nielsen-Thurston
form” of g.

The new and more complicated case is on a reducible element g. By Nielsen-Thurston
form, a power of such g is written as a commuting product of powers of Dehn twists
and pseudo-Anosov maps on disjoint subsurfaces on Σ, after removing a system of g-
invariant curves. We argue that either cl(gn) is bounded applying (a)-(e) to the Nielsen-
Thurston form of g, or else we can construct a suitable quasi-morphism on S \ G to show
scl(g) > 0. A key point is g is hyperbolic on one of the CK(Yi )’s. Also we prove
the following theorem. The Torelli subgroup is the kernel of the action of MCG(Σ) on
H1(Σ; Z). It has infinite index as a subgroup.

Theorem 3.15. If G = T is the Torelli subgroup in MCG(Σ) and 1 6= g 2 G then
sclG(g) > 0.
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4 Other applications

4.1 Contracting geodesics and WPD. In the introduction we explained how we build
a quasi-tree from a discrete group G of isometries of Hn, and extracted the axioms we
need. The axioms are satisfied since Hn is hyperbolic and G is discrete. We can relax the
assumptions keeping the axioms satisfied.

Let X be a geodesic space, and Y � X a subset. For a constant B > 0 we say that Y is
B-contracting if the nearest point projection (this is a coarse map, ie, the image of a point
may contain more than one point) to Y of any metric ball disjoint from Y has diameter
bounded by B . See Bestvina and Fujiwara [2009]. For example if X is ı-hyperbolic and
Y is a geodesic, then Y is 10ı-contracting. Let 
 be a hyperbolic isometry of X , and let
O be the 
 -orbit of a point x in X . We say 
 is rank 1 if O is B-contracting for some
B . This notion does not depend on the choice of x, and also, one can take an axis of 
 ,
if it exists, instead of an orbit O for an equivalent definition, Bestvina, Bromberg, and
Fujiwara [n.d.]. Any hyperbolic isometry on a hyperbolic space is rank 1.

Assume that a group Γ acts by isometries on a geodesic metric space X , and 
 2 Γ

acts hyperbolically. We say 
 is a WPD element if for all D > 0 and x 2 X there exists
M > 0 such that the set

fg 2 Γ j d (x; g(x)) � D; d (f M (x); gf M (x)) � Dg

is finite. Bestvina and the author Bestvina and Fujiwara [2002] introduced this notion and
proved that every pseudo-Anosov element in MCG(Σ) is WPD on C(Σ), in view of an
application to computing the second bounded cohomology of a subgroup A, H 2

b
(A; R), in

MCG(Σ). Note that if the action of G on X is proper, then any hyperbolic isometry is
WPD. WPD stands for weak proper discontinuous. There is even a weaker notion, called
WWPD, introduced in Bestvina, Bromberg, and Fujiwara [2015]. This notion is needed to
prove Theorem 3.14. Delzant [2016] found an application of WWPD and the projection
complex to Kähler groups. Handel and Mosher [n.d.] found an application of WWPD to
computing the second bounded cohomology of subgroups in Out(Fn).

The Hn example in the introduction is a special case of the following theorem.

Theorem 4.1. Bestvina, Bromberg, and Fujiwara [2015], Bestvina, Bromberg, and Fuji-
wara [n.d.]. Let Γ act on a geodesic metric space X such that some 
 2 Γ is a hyperbolic
WPD element. Assume the 
 -orbit of some point, O , is B-contracting for some B (ie, 
 is
rank 1). Then the collection of parallel classes of Γ-translates of the orbit O with nearest
point projections satisfies (P0)-(P2) and thus Γ acts on a quasi-tree, Q. In addition, in
this action 
 is a hyperbolic WPD element.

Some explanation is in order. We say that two orbits are parallel if their Hausdorff
distance is finite. The quasi-tree Q in the theorem is a quasi-tree of metric spaces for the
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Γ-translates of O , each of which is quasi-isometric to a line. We do not assume that X

is hyperbolic nor CAT(0). The main part of the proof consists of verifying (P0)-(P2) and
applying Theorem 1.1 in this situation.

Remark 4.2. If an infinite geodesic 
 bounds a Euclidean half plane, then clearly 
 is not
B-contracting for any B . This condition, the flat half plane condition, was important in
the study of CAT (0)-space X , see Ballmann [1995]. If X is a locally compact CAT (0)-
space and 
 is an axis of a hyperbolic isometry g then 
 being B-contracting for some
B is equivalent to that 
 does not bound a flat half plane, Bestvina and Fujiwara [2009].
See also Charney and Sultan [2015] for a recent development. The flat half plane condi-
tions and the notion of rank 1 are first defined in the study of Riemannian manifolds of
nonpositive sectional curvature.

Examples 4.3. The following examples all satisfy Theorem 4.1. One considers the trans-
lates of an axis, or more generally the orbit of a point, of a hyperbolic WPD element,

 .

(1) As a generalization of discrete subgroups in Hn, Γ is a group of isometries of a ı-
hyperbolic space X that contains a hyperbolic, WPD element, 
 . For example, in
the action of a hyperbolic group on its Cayley graph, any element of infinite order
is hyperbolic and WPD. The class of hyperbolic groups contains many groups with
Kazhdan’s property (T) and therefore every isometric action on a simplicial tree has
a fixed point (cf. de la Harpe and Valette [1989]). For the action of MCG(Σ) on the
curve complex, every pseudo-Anosov element is hyperbolic and WPD Bestvina and
Fujiwara [2002].

(2) Let G be the fundamental group of a rank-1 manifold M , ie, M is a complete Rie-
mannian manifold of non-positive curvature of finite volume such that the universal
cover X of M is not a Riemannian product nor a symmetric space of non-compact
type of rank at least two. Then G properly acts on X and by the Rank rigidity theorem
Ballmann [1985], G contains a hyperbolic isometry 
 which is rank-1.

(3) Γ is a discrete group of isometries (i.e. the group action is proper) of a CAT (0)-
space that contains a hyperbolic rank-1 element 
 . Also, pseudo-Anosov mapping
classes are rank 1 elements in the action of MCG(Σ) on the Weil-Petersson com-
pletion of Teichmüller space, which is CAT(0). Those elements are WPD although
the action of MCG(Σ) is not properly discontinuous. See Bestvina and Fujiwara
[2009]. There are classifications of rank 1 elements in Coxeter groups Caprace and
Fujiwara [2010], right angled Artin groups J. Behrstock and Charney [2012] and cube
complexes Caprace and Sageev [2011].
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(4) Γ isMCG(Σ) acting on Teichmüller spacewith Teichmüllermetric, and 
 is a pseudo-
Anosov mapping class. By Minsky [1996] the axis of 
 is B-contracting. It is WPD
since the action is properly discontinuous.

(5) Γ = Out(Fn) acting on Culler-Vogtmann’s Outer space C Vn Culler and Vogtmann
[1986], equipped with the Lipschitz metric (not symmetric, see Algom-Kfir and Bestv-
ina [2012]). The action is properly discontinuous. C Vn is not ı-hyperbolic. See for
example Vogtmann [2006] for more information on Out(Fn) and Outer space. As
an analogue of a pseudo-Anosov element in a mapping class group, an element f of
Out(Fn) is fully irreducible if there are no conjugacy classes of proper free factors
of Fn which are f -periodic. Such elements are hyperbolic with axes in C Vn, see
Bestvina [2011], which are B-contracting (Algom-Kfir [2011]) .

(6) The Cremona group, G, of all birational transformations of the projective plane P 2
k
,

where k is an algebraically closed field. G acts on a hyperbolic space, and it contains
a hyperbolic WPD element, which was shown by Cantat and Lamy [2013]. It then
follows that Cremona groups are not simple. We explain this implication in the next
section.

4.2 Acylindrically hyperbolic groups and hyperbolically embedded subgroups. Dah-
mani, Guirardel, and Osin [2017] introduced the notion of hyperbolically embedded sub-
groups, a generalization of the concept of a relatively hyperbolic group (see their paper
for the precise definition). They proved

Theorem 4.4. If G is not virtually cyclic and acts on a hyperbolic space X such that G

contains 
 that is hyperbolic and WPD, then G contains a proper infinite hyperbolically
embedded subgroup H .

Here, we can takeH to be virtually cyclic containing h
i. They use projection complex
as a key tool in the argument. They further proved that for a sufficiently large N , 
N

normally generates a free subgroup (of maybe infinite rank) whose non-trivial elements
are all hyperbolic onX . In particularG is not simple. This is the implicationwementioned
in Examples 4.3 (6), and it applies to groups G in Examples 4.3 by Theorem 4.1. Also,
by this method, they produce a free normal subgroup in MCG(Σ), unless it is virtually
cyclic, whose non-trivial elements are all pseudo-Anosov.

An isometric group action is acylindrical if for every D > 0 there exist R; N > 0 such
that d (x; y) � R implies that the set

fg 2 G j d (x; g(x)) � D; d (y; g(y)) � Dg

has cardinality at most N . Notice that this property implies WPD for any hyperbolic el-
ement. If a group action is proper and co-compact then it is acylindrical. Sela [1997]
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introduced the acylindricity of a group action on simplicial trees, then Bowditch [2008]
formulated this definition for hyperbolic spaces and proved that the action of MCG(Σ)

on C(Σ) is acylindrical. Based on this definition, Osin [2016] develops a theory of acylin-
drically hyperbolic groups: these are groups that admit a non-elementary acylindrical
isometric action on a hyperbolic space. Here, an action of G on a hyperbolic spce X is
non-elementary if the limit set of the G-orbit of a point in X contains at least three points.
He proved the following theorem.

Theorem4.5. Osin [ibid.] Let a groupΓ, which is not virtually cyclic, act on a ı-hyperbolic
metric space X such that 
 2 Γ is a hyperbolic WPD element. Then Γ is an acylindrically
hyperbolic group. Thus all groups in Examples 4.3 are acylindrically hyperbolic.

We make comments on his argument. By Theorem 4.4, G contains a hyperbolically
embedded subgroup H . To construct a hyperbolic space for G to act on acylindrically, he
uses an idea similar to projection complex with Y to be translates of an orbit of H . It has
been improved in Balasubramanya [n.d.] so that the hyperbolic space in Theorem 4.5 can
be taken to be a quasi-tree. In Bestvina, Bromberg, Fujiwara, and Sisto [n.d.] we recover
this improvement by a different axiomatic construction: we start with Y, the translates of
an orbit of 
 in X , which satisfies (PC0) -(PC4), then slightly change the definition of the
projection �X (Y ). For this new projection, the resulting projection complex by the usual
definition is a quasi-tree, acted by G acylindrically.

4.3 Actions on CAT(0) square complex. Recall that Burger and Mozes [2000] con-
structed an example of a simple group, which acts freely and co-compactly on the product
of two trees. Thus the quotient is a finite non-positively curved square complex with
finitely-presented, infinite simple fundamental group. A square complex Z, built from
unit Euclidean squares, is non-positively curved if the universal cover is CAT(0). Caprace
and Delzant pointed out the following curious corollary of Theorem 4.1, which can be
thought of a converse of the Burger-Mozes theorem.

Corollary 4.6 (see Bestvina, Bromberg, and Fujiwara [2015]). Suppose Z is a finite non-
positively curved square complex with no free edges whose fundamental group is simple.
Then the universal cover Z̃ is isometric to the product of two trees.

They argue that by the Ballmann-Brin Rank Rigidity Theorem Ballmann and Brin
[1995, Th C] (see also Caprace and Sageev [2011]) the universal cover Z̃ is either the
product of two trees or the deck group contains a rank 1 element. But in the latter case,
by Theorem 4.1, �1(Z) acts on a quasi-tree and contains a hyperbolic WPD element 
 .
Also, �1(Z) is non virtually cyclic since it is simple and torsion-free. Now aswe explained
�1(Z) is not simple, impossible.
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4.4 Bounded cohomology and QFA. Manning [2005] gave a construction of an action
of a groupG on a quasi-tree startingwith a quasi-morphismG ! R but it is not clear when
such actions are non-elementary (i.e. have unbounded orbits and do not fix an end nor a
pair of ends). Groups G in Examples 4.3 have isometric actions on quasi-trees, and if G

is non-elementary (ie, not virtually cyclic), then the action is non elementary. Conversely,
if one has actions of a group G on a quasi-tree (with a hyperbolic WPD element), one can
use such actions to give unified constructions of quasi-morphisms on G (cf. Epstein and
Fujiwara [1997], Fujiwara [2000], Fujiwara [1998], Bestvina and Fujiwara [2002]), and
even quasi-cocycles with coefficients in unitary representations in “uniformly convex”
Banach spaces, for example, the regular representation on `2(G), which is of particular
importance (see Monod [2006]). As a consequence, we prove

Theorem 4.7. Bestvina, Bromberg, and Fujiwara [2016a] Let G be an acylindrically hy-
perbolic group with no non-trivial finite normal subgroup, and � a unitary representation
ofG in a uniformly convex Banach space, then the second bounded cohomologyH 2

b
(G; �)

is infinite dimensional.

By contrast, there are many groups that do not admit nontrivial (namely, orbits are
unbounded) actions on a quasi-tree. A group G satisfies QFA if every action on a quasi-
tree has bounded orbits. For example, SLn(Z), n � 3 satisfies QFA, Manning [2006].
More recently, Haettel [n.d.] proves that if G is a lattice in (a product of) a higher rank
semi-simple Lie group with finite center, then G satisfies QFA. He even proved that an
action on any hyperbolic space X by such G has either a bounded orbit in X or has a fixed
point in the ideal boundary of X .

4.5 Out(Fn). A version of Theorem 3.5 for Out(Fn) is known. There are several
analogs of the curve graph C(Σ), for example the complex of free factors and the complex
of free splittings. Both have been shown to be hyperbolic, the former in Bestvina and
Feighn [2014a] and the latter in Handel and Mosher [2013]. The analog of subsurface
projectionswas defined byBestvina-Feighn in Bestvina and Feighn [2014b] and they show
using the projection complex technique:

Theorem 4.8. Bestvina and Feighn [ibid.] Out(Fn) acts isometrically on a finite product
of hyperbolic spaces so that every element of “exponential growth” acts with positive
translation length.

It is unknown if Out(Fn) acts on a finite product of hyperbolic spaces that gives a
QI-embedding. While a finite product of hyperbolic spaces satisfies a quadratic isoperi-
metric inequality, it is known that the isoperimetric inequality of Out(Fn) is exponential
(cf. Bridson and Vogtmann [1995]), but that is not an obstruction for QI-embeddings be-
cause we do not require that an embedding is (quasi-)convex. Theorem 1.4 (finiteness of
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asymptotic dimension) is unknown for Out(Fn), but recently Bestvina-Guirardel-Horbez
proved thatOut(Fn) is boundary amenable, therefore satisfies the Novikov conjecture on
higher signatures Bestvina, Guirardel, and Horbez [n.d.].

4.6 Farrell-Jones conjecture for MCG. Bartels and Bestvina [n.d.] prove the Farrell-
Jones Conjecture for mapping class groups:

Theorem 4.9 (Bestvina-Bartels). The mapping class group Mod (Σ) of any oriented sur-
face Σ of finite type satisfies the Farrell-Jones Conjecture.

The main step of the proof is the verification of a regularity condition, called finite
F -amenability (see Bartels and Bestvina [ibid.] for a precise definition). Using subsur-
face projections byMasur-Minsky, combined with the projection complex technique, they
prove the action of MCG(Σ) on the space P MF of projective measured foliations on Σ
is finitely F -amenable, for a certain family F of subgroups in MCG(Σ). Theorem 4.9
is then a consequence of the axiomatic results of Lück, Reich and Bartels for the Farrell-
Jones Conjecture (cf. Bartels and Lück [2012]) and an induction on the complexity of the
surface.

MCG(Σ) has finite asymptotic dimension (Theorem 1.4). As we said this implies the
integral Novikov conjecture, i.e., the integral injectivity of the assembly maps in algebraic
K-theory and L-theory relative to the family of finite subgroups. This is related to the
Farrell-Jones conjecture (see Bartels and Bestvina [n.d.]).
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Abstract

We describe recent links between two topics: geometric structures on manifolds in
the sense of Ehresmann and Thurston, and dynamics “at infinity” for representations
of discrete groups into Lie groups.

1 Introduction

The goal of this survey is to report on recent results relating geometric structures on man-
ifolds to dynamical aspects of representations of discrete groups into Lie groups, thus
linking geometric topology to group theory and dynamics.

1.1 Geometric structures. The first topic of this survey is geometric structures onman-
ifolds. Here is a concrete example as illustration (see Figure 1).

Example 1.1. Consider a two-dimensional torus T .
(1) We can view T as the quotient of the Euclidean planeX = R2 by Γ = Z2, which is

a discrete subgroup of the isometry groupG=O(2)ËR2 ofX (acting by linear isometries
and translations). Viewing T this way provides it with a Riemannian metric and a notion
of parallel lines, length, angles, etc. We say T is endowed with a Euclidean (or flat)
structure, or a (G;X)-structure with (G;X) = (O(2) Ë R2;R2).

(2) Here is a slightly more involved way to view T : we can see it as the quotient of
the affine plane X = R2 by the group Γ generated by the translation of vector ( 10 ) and
the affine transformation with linear part ( 1 1

0 1 ) and translational part ( 01 ). This group Γ is
now a discrete subgroup of the affine groupG = GL(2;R)ËR2. Viewing T this way still
provides it with a notion of parallel lines and even of geodesic, but no longer with a notion
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of length or angle or speed of geodesic. We say T is endowed with an affine structure, or
a (G;X)-structure with (G;X) = (GL(2;R) Ë R2;R2).

(3) There are many ways to endow T with an affine structure. Here is a different one:
we can view T as the quotient of the open subset U = R2Xf0g ofX = R2 by the discrete
subgroup Γ ofG = GL(2;R)Ë R2 generated by the homothety ( 2 0

0 2 ). This still makes T
“locally look like” X = R2, but now the image in T of an affine geodesic of X pointing
towards the origin is incomplete (it circles around in T with shorter and shorter period and
disappears in a finite amount of time).

Figure 1: Tilings of X = R2 showing the three Γ-actions in Example 1.1

As in Example 1.1, a key idea underlying a large part of modern geometry is the ex-
istence of model geometries which various manifolds may locally carry. By definition,
a model geometry is a pair (G;X) where X is a manifold (model space) and G a Lie
group acting transitively on X (group of symmetries). In Example 1.1 we encountered
(G;X) = (O(n) Ë Rn;Rn) and (G;X) = (GL(n;R) Ë Rn;Rn), corresponding respec-
tively to Euclidean geometry and affine geometry. Another important example isX = Hn

(the n-dimensional real hyperbolic space) and G = PO(n; 1) = O(n; 1)/f˙I g (its group
of isometries), corresponding to hyperbolic geometry. (For n = 2 we can see X as the
upper half-plane andG, up to index two, as PSL(2;R) acting by homographies.) We refer
to Table 1 for more examples.

The idea that a manifold M locally carries the geometry (G;X) is formalized by the
notion of a (G;X)-structure on M : by definition, this is a maximal atlas of coordinate
charts on M with values in X such that the transition maps are given by elements of G
(see Figure 2). Note that this is quite similar to a manifold structure on M , but we now
require the charts to take values inX rather thanRn, and the transition maps to be given by
elements of G rather than diffeomorphisms of Rn. Although general (G;X)-structures
may display pathological behavior (see Goldman [2018b]), in this survey we will restrict
to the two “simple” types of (G;X)-structures appearing in Example 1.1, to which we
shall give names to facilitate the discussion:

• Type C (“complete”): (G;X)-structures that identifyM with a quotient of X by a
discrete subgroup Γ of G acting properly discontinuously;
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g2G
X

M

Figure 2: Charts defining a (G;X)-structure onM

• Type U (“incomplete but still uniformizable”): (G;X)-structures that identifyM
with a quotient of some proper open subset U of X by a discrete subgroup Γ of G
acting properly discontinuously.

SettingV = X orU as appropriate, we then have coveringsfM ' eV ! V ! ΓnV ' M

(where e denotes universal covers). The charts on M are obtained by taking preimages
in V � X of open subsets ofM . Moreover, the basic theory of covering groups gives a
natural group homomorphism hol : �1(M ) ! G with image Γ and kernel �1(V), called
the holonomy.

In this survey, we use the phrase geometric structures for (G;X)-structures. We shall
not detail the rich historical aspects of geometric structures here; instead, we refer to the
excellent surveys of Goldman [2010, 2018a,b]. Let us just mention that the notion of
model geometry has its origins in ideas of Lie and Klein, formulated in Klein’s 1872
Erlangen program. Influenced by these ideas and those of Poincaré, Cartan and others,
Ehresmann [1937] initiated a general study of geometric structures in the 1930s. Later,
geometric structures were greatly promoted by the revolutionary work of Thurston [1980].

1.2 Classifying geometric structures. The fundamental problem in the theory of geo-
metric structures is their classification, namely:

Problem A. Given a manifoldM ,
(1) Describe which model geometries (G;X) the manifoldM may locally carry;
(2) For a fixed model (G;X), describe all possible (G;X)-structures onM .

We refer to Goldman [2010] for a detailed survey of Problem A with a focus on dimen-
sions two and three, and to Kobayashi and Yoshino [2005] for a special case.

Problem A.(1) asks how the global topology of M determines the geometries that it
may locally carry. This has been the object of deep results, among which:

• the classical uniformization theorem: a closed Riemann surface may carry a Eu-
clidean, a spherical, or a hyperbolic structure, depending on its genus;

• Thurston’s hyperbolization theorem: a large class of 3-dimensional manifolds, de-
fined in purely topological terms, may carry a hyperbolic structure;
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• more generally, Thurston’s geometrization program (now Perelman’s theorem): any
closed orientable 3-dimensional manifold may be decomposed into pieces, each ad-
mitting one of eight model geometries (see Bonahon [2002]).

Problem A.(2) asks to describe the deformation space of (G;X)-structures onM . In
the simple setting of Example 1.1, this space is already quite rich (see Baues [2014]). For
hyperbolic structures on a closed Riemann surface of genus � 2 (Example 2.1), Prob-
lem A.(2) gives rise to the fundamental and wide-ranging Teichmüller theory.

1.3 Representations of discrete groups. The second topic of this survey is representa-
tions (i.e. group homomorphisms) of discrete groups (i.e. countable groups) to Lie groupsG,
and their dynamics “at infinity”. We again start with an example.

Example 1.2. Let Γ = �1(S) where S is a closed orientable Riemann surface of genus
� 2. By the uniformization theorem, S carries a complete (“type C”) hyperbolic structure,
which yields a holonomy representation Γ ! PSL(2;R) as in Section 1.1. Embedding
PSL(2;R) into G = PSL(2;C), we obtain a representation � : Γ ! G, called Fuchsian,
and an associated action of Γ on the hyperbolic space X = H3 and on its boundary
at infinity @1H3 = bC (the Riemann sphere). The limit set of �(Γ) in bC is the set of
accumulation points of �(Γ)-orbits of X ; it is a circle in the sphere bC. Deforming �
slightly yields a new representation �0 : Γ ! G, called quasi-Fuchsian, which is still
faithful, with discrete image, and whose limit set in bC is still a topological circle (now
“wiggly”, see Figure 3). The action of �0(Γ) is chaotic on the limit set (e.g. all orbits are
dense) and properly discontinuous on its complement.

Example 1.2 plays a central role in the theory of Kleinian groups and in Thurston’s
geometrization program; it was extensively studied by Ahlfors, Beardon, Bers, Marden,
Maskit, Minsky, Sullivan, Thurston, and many others.

In this survey we report on various generalizations of Example 1.2, for representations
of discrete groups Γ to semisimple Lie groups G which are faithful (or with finite ker-
nel) and whose images are discrete subgroups of G. While in Example 1.2 the group
G = PSL(2;C) has real rank one (meaning that its Riemannian symmetric space H3 has
no flat regions beyond geodesics), we also wish to consider the case thatG has higher real
rank, e.g. G = PGL(d;R) with d � 3. In general, semisimple groups G tend to have
very different behavior depending on whether their real rank is one or higher; for instance,
the lattices ofG (i.e. the discrete subgroups of finite covolume for the Haar measure) may
display some forms of flexibility in real rank one, but exhibit strong rigidity phenomena
in higher real rank. Beyond lattices, the landscape of discrete subgroups of G is some-
what understood in real rank one (at least several important classes of discrete subgroups
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Figure 3: The limit set of a quasi-Fuchsian group in @1H3 ' C [ f1g

have been identified for their good geometric, topological, and dynamical properties, see
Section 3.1), but it remains very mysterious in higher real rank. We shall explain some
recent attempts at understanding it better.

One interesting aspect is that, even when G has higher real rank, discrete subgroups
of G of infinite covolume may be nonrigid and in fact admit large deformation spaces.
In particular, as part of higher Teichmüller theory, there has recently been an active and
successful effort to find large deformation spaces of faithful and discrete representations
of surface groups �1(S) into higher-rank semisimple G which share some of the rich
features of the Teichmüller space of S (see Sections 4.3 and 5, Burger, Iozzi, andWienhard
[2014] and Wienhard [2018]). Such features also include dynamics “at infinity” as in
Example 1.2, which are encompassed by a notion of Anosov representation (Labourie
[2006]), see Section 4.

1.4 Flag varieties and boundary maps. Let us be a bit more precise. Given a repre-
sentation � : Γ ! G, by dynamics “at infinity” we mean the dynamics of the action of Γ
via � on some flag varietiesG/P (whereP is a parabolic subgroup), seen as “boundaries”
of G or of its Riemannian symmetric space G/K. In Example 1.2 we considered a rank-
one situation where G = PSL(2;C) and G/P = @1H3 = bC. A typical higher-rank
situation that we have in mind is G = PGL(d;R) with d � 3 and G/P = Gri (Rd ) (the
Grassmannian of i -planes in Rd ) for some 1 � i � d � 1.

In the work of Mostow, Margulis, Furstenberg, and others, rigidity results have of-
ten relied on the construction of Γ-equivariant measurable maps from or to G/P . More
recently, in the context of higher Teichmüller theory (see Burger, Iozzi, and Wienhard
[2010b], Fock and Goncharov [2006], Labourie [2006]), it has proved important to study



1138 FANNY KASSEL

continuous equivariant boundary maps which embed the boundary @1Γ of a Gromov hy-
perbolic group Γ (i.e. the visual boundary of the Cayley graph of Γ) into G/P . Such
boundary maps � : @1Γ ! G/P define a closed invariant subset �(@1Γ) of G/P , the
limit set, on which the dynamics of the action by Γ accurately reflect the intrinsic chaotic
dynamics of Γ on @1Γ. These boundary maps may be used to transfer the Anosov prop-
erty of the intrinsic geodesic flow ofΓ into some uniform contraction/expansion properties
for a flow on a natural flat bundle associated to � and G/P (see Section 4). They may
also define some open subsets U ofG/P on which the action of Γ is properly discontinu-
ous, by removing an “extended limit set” L�(Γ) � �(@1Γ) (see Sections 3, 5 and 6); this
generalizes the domains of discontinuity in the Riemann sphere of Example 1.2.

For finitely generated groups Γ that are not Gromov hyperbolic, one can still define a
boundary @1Γ in several natural settings, e.g. as the visual boundary of some geodesic
metric space on which Γ acts geometrically, and the approach considered in this survey
can then be summarized by the following general problem.

Problem B. Given a discrete group Γ with a boundary @1Γ, and a Lie group G with a
boundary G/P , identify large (e.g. open in Hom(Γ; G)) classes of faithful and discrete
representations � : Γ ! G for which there exist continuous �-equivariant boundary maps
� : @1Γ ! G/P . Describe the dynamics of Γ on G/P via �.

1.5 Goal of the paper. We survey recent results on (G;X)-structures (Problem A) and
on representations of discrete groups (Problem B), making links between the two top-
ics. In one direction, we observe that various types of (G;X)-structures have holonomy
representations that are interesting for Problem B. In the other direction, starting with rep-
resentations that are interesting for Problem B (Anosov representations), we survey recent
constructions of associated (G;X)-structures. These results tend to indicate some deep in-
teractions between the geometry of (G;X)-manifolds and the dynamics of their holonomy
representations, which largely remain to be explored. We hope that they will continue to
stimulate the development of rich theories in the future.

Organization of the paper. In Section 2 we briefly review the notion of a holonomy
representation. In Section 3 we describe three important families of (G;X)-structures for
which boundary maps into flag varieties naturally appear. In Section 4 we define Anosov
representations and give examples and characterizations. In Section 5 we summarize re-
cent constructions of geometric structures associated to Anosov representations. In Sec-
tion 6 we discuss a situation in which the links between geometric structures and Anosov
representations are particularly tight, in the context of convex projective geometry. In
Section 7 we examine an instance of (G;X)-structures for a nonreductive Lie group G,
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corresponding to affine manifolds and giving rise to affine Anosov representations. We
conclude with a few remarks.
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2 Holonomy representations

Let G be a real Lie group acting transitively, faithfully, analytically on a manifold X ,
as in Table 1. In Section 1.1 we defined holonomy representations for certain types of
(G;X)-structures. We now give a short review of the notion in general.

Type of geometry X G H

Real projective P n(R) PGL(n+ 1;R) stab. of line of Rn+1

Affine Rn Aff(Rn) = GL(n;R)ËRn GL(n;R)
Euclidean Rn Isom(Rn) = O(n) Ë Rn O(n)

Real hyperbolic Hn Isom(Hn) = PO(n; 1) O(n)
Spherical Sn Isom(Sn) = O(n+ 1) O(n)

Complex projective P n(C) PGL(n+ 1;C) stab. of line of Cn+1

Table 1: Some examples of model geometries (G;X), where X ' G/H

Let M be a (G;X)-manifold, i.e. a manifold endowed with a (G;X)-structure. Fix
a basepoint m 2 M and a chart ' : U ! X with m 2 U. We can lift any loop
onM starting at m to a path on X starting at '(m), using successive charts ofM which
coincide on their intersections; the last chart in this analytic continuation process coincides,
on an open set, with g � ' for some unique g 2 G; we set hol(
) := g where 
 2

�1(M;m) is the homotopy class of the loop (see Figure 4). This defines a representation
hol : �1(M ) ! G called the holonomy (see Goldman [2010, 2018b] for details); it
is unique modulo conjugation by G. This coincides with the notion from Section 1.1;
in particular, if M ' ΓnV with V open in X and Γ discrete in G, and if V is simply
connected, then hol : �1(M ) ! Γ is just the natural identification of �1(M ) with Γ.
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Figure 4: Construction of a holonomy representation

The deformation space Def(G;X)(M ) of (G;X)-structures onM is the quotient of the
set of (G;X)-structures by the group of diffeomorphisms of M homotopic to the iden-
tity, acting by precomposition of the charts. It has a natural topology, see Baues [2014,
§ 3]. The holonomy defines a map from Def(G;X)(M ) to the space Hom(Γ; G)/G of rep-
resentations of Γ to G modulo conjugation by G. This map may be injective in some
cases, as in Example 2.1 below, but in general it is not. However, when M is closed,
the so-called Ehresmann–Thurston principle (see Thurston [1980]) states that the map is
continuous, open, with discrete fibers; in particular, the set of holonomy representations
of (G;X)-structures onM is then stable under small deformations.

Example 2.1. Let (G;X) = (PO(2; 1);H2)where PO(2; 1) ' PGL(2;R) is the isometry
group of the real hyperbolic plane H2. Let M = S be a closed orientable connected
surface of genus g � 2. All (G;X)-structures on S are complete. The deformation
space Def(G;X)(S) is the Teichmüller space Teich(S) of S . The holonomy defines a
homeomorphism between Teich(S) ' R6g�6 and the space of Fuchsian (i.e. faithful and
discrete) representations from �1(S) to G modulo conjugation by G.

3 Examples of (G;X)-structures and their holonomy
representations

In this section we introduce three important families of (G;X)-structures, which have
been much studied in the past few decades. We observe some structural stability for their
holonomy representations, and the existence of continuous equivariant boundary maps
together with expansion/contraction properties “at infinity”. These phenomena will be
captured by the notion of an Anosov representation in Section 4.

3.1 Convex cocompact locally symmetric structures in rank one. Let G be a real
semisimple Lie group of real rank one with Riemannian symmetric space X = G/K

(i.e. K is a maximal compact subgroup of G), e.g. (G;X) = (PO(n; 1);Hn) for n � 2.
Convex cocompact groups are an important class of discrete subgroups Γ of G which
generalize the uniform lattices. They are special cases of geometrically finite groups, for
which no cusps appear; see Bowditch [1993, 1998] for a general theory.
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By definition, a discrete subgroup Γ of G is convex cocompact if it preserves and acts
with compact quotient on some nonempty convex subsetC ofX = G/K; equivalently, the
complete (G;X)-manifold (or orbifold) ΓnX has a compact convex subset (namely ΓnC)
containing all the topology. Such a group Γ is always finitely generated. A representation
� : Γ ! G is called convex cocompact if its kernel is finite and its image is a convex
cocompact subgroup of G.

For instance, in Example 1.2 the quasi-Fuchsian representations are exactly the convex
cocompact representations from �1(S) to G = PSL(2;C); modulo conjugation, they are
parametrized by Teich(S)�Teich(S) (Bers [1960]). Another classical example of convex
cocompact groups in rank-one G is Schottky groups, namely free groups defined by the
so-called ping pong dynamics of their generators in @1X .

Here @1X denotes the visual boundary of X , yielding the standard compactification
X = X t@1X ofX ; forX = Hn we can seeX in projective space as in Example 3.2.(1)
below. The G-action on X extends continuously to X , and @1X identifies with G/P

where P is a minimal parabolic subgroup of G.
For a convex cocompact representation � : Γ ! G, the existence of a cocompact

invariant convex set C implies (by the Švarc–Milnor lemma or “fundamental observation
of geometric group theory”) that � is a quasi-isometric embedding. This means that the
points of any �(Γ)-orbit in X = G/K go to infinity at linear speed for the word length
function j � j : Γ ! N: for any x0 2 X there exist C;C 0 > 0 such that dG/K(x0; �(
) �

x0) � C j
 j � C 0 for all 
 2 Γ. (This property does not depend on the choice of finite
generating subset of Γ defining j � j.) A consequence “at infinity” is that any �-orbital map
Γ ! X extends to a �-equivariant embedding � : @1Γ ! @1X ' G/P , where @1Γ is
the boundary of the Gromov hyperbolic group Γ. The image of � is the limit set Λ�(Γ) of
�(Γ) in @1X . The dynamics on @1X ' G/P are decomposed as in Example 1.2: the
action of �(Γ) is “chaotic” on Λ�(Γ) (e.g. all orbits are dense if Γ is nonelementary), and
properly discontinuous, with compact quotient, on the complementΩ�(Γ) = @1XXΛ�(Γ).

Further dynamical properties were described by Sullivan [1979, 1985]: for instance,
the action of �(Γ) on @1X ' G/P is expanding at each point z 2 Λ�(Γ), i.e. there exist

 2 Γ and C > 1 such that �(
) multiplies all distances by � C on a neighborhood of
z in @1X (for some fixed auxiliary metric on @1X ). This implies that the group �(Γ) is
structurally stable, i.e. there is a neighborhood of the natural inclusion in Hom(�(Γ); G)

consisting entirely of faithful representations. In fact, � admits a neighborhood consisting
entirely of convex cocompact representations, by a variant of the Ehresmann–Thurston
principle. For G = SL(2;C), a structurally stable subgroup of G is either locally rigid or
convex cocompact (Sullivan [1985]).



1142 FANNY KASSEL

3.2 Convex projective structures: divisible convex sets. Let G be the projective lin-
ear group PGL(d;R) and X the projective space P (Rd ), for d � 2. Recall that a subset
of X = P (Rd ) is said to be convex if it is contained and convex in some affine chart,
properly convex if its closure is convex, and strictly convex if it is properly convex and its
boundary in X does not contain any nontrivial segment.

Remark 3.1. Any properly convex open subset Ω of X = P (Rd ) admits a well-behaved
(complete, proper, Finsler) metric dΩ, the Hilbert metric, which is invariant under the
subgroup of G = PGL(d;R) preserving Ω (see e.g. Benoist [2008]). In particular, any
discrete subgroup of G preserving Ω acts properly discontinuously on Ω.

By definition, a convex projective structure on a manifold M is a (G;X)-structure
obtained by identifyingM with ΓnΩ for some properly convex open subset Ω of X and
some discrete subgroupΓ ofG. WhenM is closed, i.e. whenΓ acts with compact quotient,
we say that Γ divides Ω. Such divisible convex sets Ω are the objects of a rich theory, see
Benoist [ibid.]. The following classical examples are called symmetric.

Examples 3.2. (1) For d = n+1 � 3, let h�; �in;1 be a symmetric bilinear form of signature
(n; 1) on Rd , and let Ω = f[v] 2 P (Rd ) j hv; vin;1 < 0g be the projective model of the
real hyperbolic space Hn. It is a strictly convex open subset ofX = P (Rd ) (an ellipsoid),
and any uniform lattice Γ of PO(n; 1) � G = PGL(d;R) divides Ω.

(2) For d = n(n + 1)/2, let us see Rd as the space Sym(n;R) of symmetric n � n

real matrices, and let Ω � P (Rd ) be the image of the set of positive definite ones. The
set Ω is a properly convex open subset of X = P (Rd ); it is strictly convex if and only if
n = 2. The group GL(n;R) acts on Sym(n;R) by g � s := gsgt , which induces an action
of PGL(n;R) on Ω. This action is transitive and the stabilizer of a point is PO(n), hence
Ω identifies with the Riemannian symmetric space PGL(n;R)/PO(n). In particular, any
uniform latticeΓ of PGL(n;R) dividesΩ. (A similar construction works over the complex
numbers, the quaternions, or the octonions: see Benoist [ibid.].)

Many nonsymmetric strictly convex examples were also constructed since the 1960s
by various techniques; see Benoist [2008] and Choi, G.-S. Lee, and Marquis [2016b]
for references. Remarkably, there exist irreducible divisible convex sets Ω � P (Rd )

which are not symmetric and not strictly convex: the first examples were built by Benoist
[2006] for 4 � d � 7. Ballas, Danciger, and G.-S. Lee [2018] generalized Benoist’s
construction for d = 4 to show that large families of nonhyperbolic closed 3-manifolds
admit convex projective structures. Choi, G.-S. Lee, and Marquis [2016a] recently built
nonstrictly convex examples of a different flavor for 5 � d � 7.

For strictly convex Ω, dynamics “at infinity” are relatively well understood: if Γ di-
videsΩ, thenΓ is Gromov hyperbolic (Benoist [2004]) and, by cocompactness, any orbital
map Γ ! Ω extends continuously to an equivariant homeomorphism � from the boundary
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@1Γ of Γ to the boundary of Ω in X . This is similar to Section 3.1, except that now X

itself is a flag variety G/P (see Table 1). The image of the boundary map � is again a
limit set ΛΓ on which the action of Γ is “chaotic”, but ΛΓ is now part of a larger “extended
limit set” LΓ, namely the union of all projective hyperplanes tangent to Ω at points of ΛΓ.
The space X ' G/P is the disjoint union of LΓ and Ω. The dynamics of Γ on X are
further understood by considering the geodesic flow on Ω � X , defined using the Hilbert
metric of Remark 3.1; for Ω = Hn as in Example 3.2.(1), this is the usual geodesic flow.
Benoist [ibid.] proved that the induced flow on ΓnΩ is Anosov and topologically mixing;
see Crampon [2014] for further properties.

For nonstrictly convex Ω, the situation is less understood. Groups Γ dividing Ω are
never Gromov hyperbolic (Benoist [2004]); for d = 4 they are relatively hyperbolic
(Benoist [2006]), but in general theymight not be (e.g. ifΩ is symmetric), and it is not obvi-
ous what type of boundary @1Γ (defined independently of Ω) might be most useful in the
context of Problem B. The geodesic flow on ΓnΩ is not Anosov, but Bray [2017] proved
it is still topologically mixing for d = 4. Much of the dynamics remains to be explored.

ByKoszul [1968], discrete subgroups ofG dividingΩ are structurally stable; moreover,
for a closed manifold M with fundamental group Γ = �1(M ), the set Homconv

M (Γ; G)

of holonomy representations of convex (G;X)-structures on M is open in Hom(Γ; G).
This set is also closed in Hom(Γ; G) as soon as Γ does not contain an infinite normal
abelian subgroup, by Choi and Goldman [2005] (for d = 3) and Benoist [2005] (in
general). For d = 3, when M is a closed surface of genus g � 2, Goldman [1990]
showed that Homconv

M (Γ; G)/G is homeomorphic toR16g�16, via an explicit parametrization
generalizing classical (Fenchel–Nielsen) coordinates on Teichmüller space.

3.3 AdS quasi-Fuchsian representations. We now discuss the Lorentzian counter-
parts of Example 1.2, which have been studied by Witten [1988] and others as simple
models for (2 + 1)-dimensional gravity. Let M = S � (0; 1) be as in Example 1.2. In-
stead of taking (G;X) = (PO(3; 1);H3), we now take G = PO(2; 2) and

X = AdS3 =
˚
[v] 2 P (R4) j hv; vi2;2 < 0

	
:

In other words, we change the signature of the quadratic form definingX from (3; 1) (as in
Example 3.2.(1)) to (2; 2). This changes the natural G-invariant metric from Riemannian
to Lorentzian, and the topology of X from a ball to a solid torus. The space X = AdS3 is
called the anti-de Sitter 3-space.

The manifoldM = S �(0; 1) does not admit (G;X)-structures of type C (terminology
of Section 1.1), but it admits some of type U, called globally hyperbolic maximal Cauchy-
compact (GHMC). In general, a Lorentzian manifold is called globally hyperbolic if it
satisfies the intuitive property that “when moving towards the future one does not come
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back to the past”; more precisely, there is a spacelike hypersurface (Cauchy hypersurface)
meeting each inextendible causal curve exactly once. Here we also require that the Cauchy
surface be compact and thatM be maximal (i.e. not isometrically embeddable into a larger
globally hyperbolic Lorentzian 3-manifold).

To describe the GHMC (G;X)-structures onM , it is convenient to consider a different
model for AdS3, which leads to beautiful links with 2-dimensional hyperbolic geometry.
Namely, we view R4 as the space M2(R) of real 2 � 2 matrices, and the quadratic form
h�; �i2;2 as minus the determinant. This induces an identification of X = AdS3 with G =

PSL(2;R) sending [v] 2 X to
�

1
jhv;vij

( v1+v4 v2+v3
v2�v3 �v1+v4

)
�

2 G, and a corresponding group
isomorphism from the identity component G0 = PO(2; 2)0 of G acting on X = AdS3,
to G � G acting on G by right and left multiplication: (g1; g2) � g = g2gg

�1
1 . It also

induces an identification of the boundary @X � P (R4) with the projectivization of the set
of rank-one matrices, hence with P 1(R) � P 1(R) (by taking the kernel and the image);
the action of G0 on @X corresponds to the natural action of G �G on P 1(R) � P 1(R).

X = AdS3

Ω

Λ
C

Figure 5: The sets Λ, Ω, C for an AdS quasi-Fuchsian representation

With these identifications, Mess [2007] proved that all GHMC (G;X)-structures on
M = S�(0; 1) are obtained as follows. Let (�L; �R) be a pair of Fuchsian representations
from Γ = �1(M ) ' �1(S) to G = PSL(2;R). The group (�L; �R)(Γ) � G � G � G

preserves a topological circleΛ in @X , namely the graph of the homeomorphism of P 1(R)

conjugating the action of �L to that of �R. For any z 2 Λ, the orthogonal z? of z for
h�; �i2;2 is a projective hyperplane tangent to X at z. The complement Ω in P (R4) of
the union of all z? for z 2 Λ is a convex open subset of P (R4) contained in X (see
Figure 5) which admits a Γ-invariant Cauchy surface. The action of Γ on Ω via (�L; �R)

is properly discontinuous and the convex hull C of Λ in Ω (called the convex core) has
compact quotient by Γ. The quotient (�L; �R)(Γ)nΩ is diffeomorphic toM = S � (0; 1),
and this yields a GHMC (G;X)-structure onM .

Such (G;X)-structures, or their holonomy representations � = (�L; �R) : Γ !

G � G � G, are often called AdS quasi-Fuchsian, by analogy with Example 1.2. Their
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deformation space is parametrized by Teich(S) � Teich(S), via (�L; �R) (Mess [ibid.]).
Their geometry, especially the geometry of the convex core and the way it determines
(�L; �R), is the object of active current research (see Bonsante and Schlenker [2012]
and Barbot, Bonsante, Danciger, Goldman, Guéritaud, Kassel, Krasnov, Schlenker, and
Zeghib [2012]). Generalizations have recently been worked out in several directions (see
Bonsante, Krasnov, and Schlenker [2011], Barbot and Mérigot [2012], Barbot [2015] and
Section 6.2).

As in Section 3.1, the compactness of the convex core of an AdS quasi-Fuchsian mani-
fold implies that any orbital map Γ ! Ω extends “at infinity” to an equivariant embedding
� : @1Γ ! @X with image Λ. Here @X is still a flag variety G/P , where P is the sta-
bilizer in G = PO(2; 2) of an isotropic line of R4 for h�; �i2;2. Although G has higher
rank, the rank-one dynamics of Section 3.1 still appear through the product structure of
G0 ' G �G acting on @X ' P 1(R) � P 1(R) ' @1H2 � @1H2.

4 Anosov representations

In this section we define and discuss Anosov representations. These are representations
of Gromov hyperbolic groups to Lie groups G with strong dynamical properties, defined
using continuous equivariant boundary maps. They were introduced by Labourie [2006]
and further investigated by Guichard and Wienhard [2012]. They play an important role
in higher Teichmüller theory and in the study of Problem B. As we shall see in Section 4.5,
most representations that appeared in Section 3 were in fact Anosov.

4.1 The definition. Let Γ be a Gromov hyperbolic group with boundary @1Γ (e.g. Γ
a surface group and @1Γ a circle, or Γ a nonabelian free group and @1Γ a Cantor set).
The notion of an Anosov representation of Γ to a reductive Lie group G depends on the
choice of a parabolic subgroup P ofG up to conjugacy, i.e. on the choice of a flag variety
G/P (see Section 1.4). Here, for simplicity, we restrict to G = PGL(d;R). We choose
an integer i 2 [1; d � 1] and denote by Pi the stabilizer in G of an i -plane of Rd , so that
G/Pi identifies with the Grassmannian Gri (Rd ).

By definition, a representation � : Γ ! PGL(d;R) is Pi -Anosov if there exist two
continuous �-equivariant maps �i : @1Γ ! Gri (Rd ) and �d�i : @1Γ ! Grd�i (R

d )

which are transverse (i.e. �i (�) + �d�i (�
0) = Rd for all � ¤ �0 in @1Γ) and satisfy a

uniform contraction/expansion condition analogous to the one defining Anosov flows.
Let us state this condition in the original case considered by Labourie [2006], where

Γ = �1(M ) for some closed negatively curved manifoldM . We denote by fM the univer-
sal cover ofM , by T 1 the unit tangent bundle, and by ('t )t2R the geodesic flow on either



1146 FANNY KASSEL

T 1(M ) or T 1(fM ). Let
E� = Γn(T 1(fM ) � Rd )

be the natural flat vector bundle over T 1(M ) = ΓnT 1(fM ) associated to �, where Γ acts
on T 1(fM )�Rd by 
 �(x̃; v) = (
 �x̃; �(
) �v). The geodesic flow ('t )t2R on T 1(M ) lifts
to a flow ( t )t2R on E�, given by  t � [(x̃; v)] = [('t � x̃; v)]. For each x̃ 2 T 1(fM ), the
transversality of the boundary maps induces a decomposition Rd = �i (x̃

+) ˚ �d�i (x̃
�),

where x̃˙ = limt!˙1 't � x̃ are the forward and backward endpoints of the geodesic
defined by x̃, and this defines a decomposition of the vector bundleE� into the direct sum
of two subbundles E�

i = f[(x̃; v)] j v 2 �i (x̃
+)g and E�

d�i
= f[(x̃; v)] j v 2 �d�i (x̃

�)g.
This decomposition is invariant under the flow ( t ). By definition, the representation �
is Pi -Anosov if the following condition is satisfied.

Condition 4.1. The flow ( t )t2R uniformly contracts E�
i with respect to E�

d�i
, i.e. there

exist C;C 0 > 0 such that for any t � 0, any x 2 T 1(M ), and any nonzero wi 2 E
�
i (x)

and wd�i 2 E
�

d�i
(x),

k t � wi k't �x

k t � wd�i k't �x

� e�C t+C 0 kwi kx

kwd�i kx

;

where (k � kx)x2T 1(M ) is any fixed continuous family of norms on the fibers E�(x).

See Bridgeman, Canary, Labourie, and Sambarino [2015] for an interpretation in terms
of metric Anosov flows (or Smale flows).

Condition 4.1 implies in particular that the boundary maps �i , �d�i are dynamics-
preserving, in the sense that the image of the attracting fixed point in @1Γ of any infinite-
order element 
 2 Γ is an attracting fixed point in Gri (Rd ) or Grd�i (R

d ) of �(
). By
density of such fixed points in @1Γ and by continuity, it follows that �i and �d�i are
unique, compatible (i.e. �min(i;d�i)(�) � �max(i;d�i)(�) for all � 2 @1Γ), and injective
(using transversality). Since @1Γ is compact, they are homeomorphisms onto their im-
age.

We note that Pi -Anosov is equivalent to Pd�i -Anosov, as the integers i and d � i play
a similar role in the definition (up to reversing the flow, which switches contraction and
expansion). In particular, we may restrict to Pi -Anosov for 1 � i � d/2.

Guichard andWienhard [2012] observed that an analogue of Condition 4.1 can actually
be defined for anyGromov hyperbolic groupΓ. The idea is to replace T 1(fM ) by @1Γ(2)�

R where @1Γ(2) is the space of pairs of distinct points in the Gromov boundary @1Γ of Γ,
and the flow 't by translation by t along the R factor. The work of Gromov [1987] (see
alsoMathéus [1991], Champetier [1994], Mineyev [2005]) yields an appropriate extension
of the Γ-action on @1Γ(2) to @1Γ(2)�R, which is properly discontinuous and cocompact.
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This leads to a notion of an Anosov representation for any Gromov hyperbolic group Γ,
see Guichard and Wienhard [2012].

4.2 Important properties and examples. A fundamental observation motivating the
study of Anosov representations is the following: if G is a semisimple Lie group of real
rank one, then a representation � : Γ ! G is Anosov if and only if it is convex cocompact
in the sense of Section 3.1.

Moreover, many important properties of convex cocompact representations to rank-one
Lie groups generalize to Anosov representations. For instance, Anosov representations � :

Γ ! G are quasi-isometric embeddings, see Labourie [2006] and Guichard andWienhard
[2012]; in particular, they have finite kernel and discrete image. Also by Labourie [2006]
and Guichard and Wienhard [2012], any Anosov subgroup (i.e. the image of any Anosov
representation � : Γ ! G) is structurally stable; moreover, � admits a neighborhood
in Hom(Γ; G) consisting entirely of Anosov representations. This is due to the uniform
hyperbolicity nature of the Anosov condition.

Kapovich, Leeb, and Porti, in a series of papers (see Kapovich, Leeb, and Porti [2016,
2017], Kapovich and Leeb [2017] and Guichard [2017]), have developed a detailed anal-
ogy between Anosov representations to higher-rank semisimple Lie groups and convex
cocompact representations to rank-one simple groups, from the point of view of dynamics
(e.g. extending the expansion property at the limit set of Section 3.1 and other classical
characterizations) and topology (e.g. compactifications).

Here are some classical examples of Anosov representations in higher real rank.

Examples 4.2. Let Γ = �1(S) where S is a closed orientable surface of genus � 2.
(1) (Labourie [2006]) For d � 2, let �d : PSL(2;R) ! G = PGL(d;R) be the irre-

ducible representation (unique up to conjugation by G). For any Fuchsian representation
�0 : Γ ! PSL(2;R), the composition �d ı�0 : Γ ! G isPi -Anosov for all 1 � i � d�1.
Moreover, any representation in the connected component of �d ı�0 in Hom(Γ; G) is still
Pi -Anosov for all 1 � i � d � 1. These representations were first studied by Hitchin
[1992] and are now known as Hitchin representations.

(2) (Burger, Iozzi, Labourie, and Wienhard [2005] and Burger, Iozzi, and Wienhard
[2010a]) If a representation ofΓ toG = PSp(2n;R) � PGL(2n;R) (resp.G = PO(2; q) �

PGL(2 + q;R)) is maximal, then it is Pn-Anosov (resp. P1-Anosov).
(3) (Barbot [2010] for d = 3) Let d � 2. Any Fuchsian representation Γ ! SL(2;R),

composed with the standard embedding SL(2;R) ,! SL(d;R) (given by the direct sum
of the standard action on R2 and the trivial action on Rd�2), defines a P1-Anosov repre-
sentation Γ ! G = PSL(d;R).

In (2), we say that � : Γ ! G is maximal if it maximizes a topological invariant, the
Toledo number T (�), defined for any simple Lie groupG of Hermitian type. IfX = G/K
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is the Riemannian symmetric space of G, then the imaginary part of the G-invariant Her-
mitian form onX defines a real 2-form!X , and by definition T (�) = 1

2�

R
S
f �!X where

f : eS ! X is any �-equivariant smoothmap. ForG = PSL(2;R), this coincides with the
Euler number of �. In general, T (�) takes discrete values and jT (�)j � rankR(G) j�(S)j

where �(S) is the Euler characteristic of S (see Burger, Iozzi, and Wienhard [2014]).
While (1) and (3) provide Anosov representations in two of the three connected com-

ponents of Hom(Γ;PSL(3;R)) for Γ = �1(S), it is currently not known whether Anosov
representations appear in the third component.

See Benoist [1996], Guichard andWienhard [2012], Kapovich, Leeb, and Porti [2014a],
Canary, M. Lee, Sambarino, and Stover [2017], Burelle and Treib [2018] for higher-rank
Anosov generalizations of Schottky groups.

4.3 Higher Teichmüller spaces of Anosov representations. Anosov representations
play an important role in higher Teichmüller theory, a currently very active theory whose
goal is to find deformation spaces of faithful and discrete representations of discrete groups
Γ into higher-rank semisimple Lie groups G which share some of the remarkable proper-
ties of Teichmüller space. Although various groups Γ may be considered, the founda-
tional case is when Γ = �1(S) for some closed connected surface S of genus � 2 (see
Burger, Iozzi, and Wienhard [2014] and Wienhard [2018]); then one can use rich features
of Riemann surfaces, explicit topological considerations, and powerful techniques based
on Higgs bundles as in the pioneering work of Hitchin [1992].

Strikingly similar properties to Teich(S) have been found for two types of higher Te-
ichmüller spaces: the space of Hitchin representations of Γ into a real split simple Lie
group G such as PGL(d;R), modulo conjugation by G; and the space of maximal rep-
resentations of Γ into a simple Lie group G of Hermitian type such as PSp(2n;R) or
PO(2; q), modulo conjugation by G. Both these spaces are unions of connected compo-
nents of Hom(Γ; G)/G, consisting entirely of Anosov representations (see Examples 4.2).
Similarities of these spaces to Teich(S) include:

(1) the proper discontinuity of the action of themapping class groupMod(S) (Wienhard
[2006], Labourie [2008]);

(2) for Hitchin components: the topology of Rdim(G) j�(S)j (Hitchin [1992]);

(3) good systems of coordinates generalizing those on Teich(S) (Goldman [1990], Fock
and Goncharov [2006], Bonahon and Dreyer [2014], Strubel [2015], Zhang [2015]);

(4) an analytic Mod(S)-invariant Riemannian metric, the pressure metric (Bridgeman,
Canary, Labourie, and Sambarino [2015] and Pollicott and Sharp [2017]);



GEOMETRIC STRUCTURES AND REPRESENTATIONS 1149

(5) versions of the collar lemma for associated locally symmetric spaces (G.-S. Lee and
Zhang [2017], Burger and Pozzetti [2017]).

Other higher Teichmüller spaces of Anosov representations of �1(S) are also being ex-
plored, see Guichard and Wienhard [2016]. We refer to Section 5 for geometric structures
associated to such spaces.

4.4 Characterizations. Various characterizations of Anosov representations have been
developed in the past few years, by Labourie [2006], Guichard and Wienhard [2012],
Kapovich, Leeb, and Porti [2014a,b], Kapovich and Leeb [2017], Guéritaud, Guichard,
Kassel, and Wienhard [2017a], and others. Here are some characterizations that do not
involve any flow. They hold for any reductive Lie group G, but for simplicity we state
them for G = PGL(d;R). For 1 � i � d and g 2 GL(d;R), we denote by �i (g) (resp.
�i (g)) the logarithm of the i -th singular value (resp. eigenvalue) of g.

Theorem 4.3. For a Gromov hyperbolic group Γ, a representation � : Γ ! G =

PGL(d;R), and an integer 1 � i � d/2, the following are equivalent:

(1) � is Pi -Anosov (or equivalently Pd�i -Anosov, see Section 4.1);

(2) there exist continuous, �-equivariant, transverse, dynamics-preserving boundary
maps �i : @1Γ ! Gri (Rd ) and �d�i : @1Γ ! Grd�i (R

d ), and
(�i � �i+1)(�(
)) ! +1 as j
 j ! +1;

(3) there exist continuous, �-equivariant, transverse, dynamics-preserving boundary
maps �i : @1Γ ! Gri (Rd ) and �d�i : @1Γ ! Grd�i (R

d ), and
(�i � �i+1)(�(
)) ! +1 as `Γ(
) ! +1;

(4) there exist C;C 0 > 0 such that (�i � �i+1)(�(
)) � C j
 j � C 0 for all 
 2 Γ;

(5) there exist C;C 0 > 0 such that (�i � �i+1)(�(
)) � C `Γ(
) � C 0 for all 
 2 Γ.

Here we denote by j � j : Γ ! N the word length with respect to some fixed finite
generating subset of Γ, and by `Γ : Γ ! N the translation length in the Cayley graph
of Γ for that subset, i.e. `Γ(
) = minˇ2Γ jˇ
ˇ�1j. In a Gromov hyperbolic group Γ the
translation length `Γ(
) is known to differ only by at most a uniform additive constant
from the stable length j
 j1 = limn!+1 j
nj/n, and so we may replace `Γ(
) by j
 j1

in Conditions (3) and (5).
The equivalence (1) , (2) is proved in Guéritaud, Guichard, Kassel, and Wienhard

[ibid.] and Kapovich, Leeb, and Porti [2014b], the equivalence (2) , (3) in Guéritaud,
Guichard, Kassel, and Wienhard [2017a], the equivalence (1) , (4) in Kapovich, Leeb,
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and Porti [2014a] and Bochi, Potrie, and Sambarino [2018], and the equivalence (4) , (5)
in Kassel and Potrie [2018].

Condition (4) is a refinement of the condition of being a quasi-isometric embedding,
which forG = PGL(d;R) is equivalent to the existence ofC;C 0 > 0 such that

pP
k(�k � �k+1)2(�(
)) �

C j
 j �C 0 for all 
 2 Γ. We refer to Guéritaud, Guichard, Kassel, and Wienhard [2017a]
(CLI condition) and Kapovich, Leeb, and Porti [2014a] (Morse condition) for further re-
finements satisfied byAnosov representations.

By Kapovich, Leeb, and Porti [ibid.] and Bochi, Potrie, and Sambarino [2018], if Γ is
any finitely generated group, then the existence of a representation � : Γ ! PGL(d;R)

satisfying Condition (4) implies that Γ is Gromov hyperbolic. The analogue for (5) is
more subtle: e.g. the Baumslag–Solitar group BS(1; 2), which is not Gromov hyperbolic,
still admits a faithful representation into PSL(2;R) satisfying Condition (5) for the stable
length j � j1, see Kassel and Potrie [2018].

The original proof of (1), (4) byKapovich, Leeb, and Porti [2014a] uses the geometry
of higher-rank Riemannian symmetric spaces and asymptotic cones. The alternative proof
given by Bochi, Potrie, and Sambarino [2018] is based on an interpretation of (1) and (4) in
terms of partially hyperbolic dynamics, and more specifically of dominated splittings for
locally constant linear cocycles over certain subshifts. Pursuing this point of view further,
it is shown in Kassel and Potrie [2018] that the equivalence (4) , (5) of Theorem 4.3
implies the equivalence between nonuniform hyperbolicity (i.e. all invariant measures are
hyperbolic) and uniform hyperbolicity for a certain cocycle naturally associated with �
on the space of biinfinite geodesics of Γ. In general in smooth dynamics, nonuniform
hyperbolicity does not imply uniform hyperbolicity.

4.5 Revisiting the examples of Section 3. The boundary maps and dynamics “at in-
finity” that appeared in the examples of Section 3 are explained for the most part by the
notion of an Anosov representation:

• convex cocompact representations to rank-one simple Lie groups as in Section 3.1
are all Anosov (see Section 4.2);

• if S is a closed orientable connected surface of genus � 2, then by Goldman [1990]
and Choi and Goldman [2005] the holonomy representations of convex projective
structures on S as in Section 3.2 are exactly the Hitchin representations of �1(S)

into PSL(3;R); they are all P1-Anosov (Example 4.2.(1));

• for general d � 3, the work of Benoist [2004] shows that if Γ is a discrete subgroup
of PGL(d;R) dividing a strictly convex open subset Ω of P (Rd ), then Γ is Gromov
hyperbolic and the inclusion Γ ,! PGL(d;R) is P1-Anosov;
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• The work of Mess [2007] implies that a representation � : �1(S) ! PO(2; 2) �

PGL(4;R) is AdS quasi-Fuchsian if and only if it is P1-Anosov.

5 Geometric structures for Anosov representations

We just saw in Section 4.5 that various (G;X)-structures described in Section 3 give rise
(via the holonomy) to Anosov representations; these (G;X)-structures are of type C or
type U (terminology of Section 1.1). In this section, we study the converse direction.
Namely, given an Anosov representation � : Γ ! G, we wish to find:

• homogeneous spaces X = G/H on which Γ acts properly discontinuously via �;
this will yield (G;X)-manifolds (or orbifolds)M = �(Γ)nX of type C;

• proper open subsets U (domains of discontinuity) of homogeneous spaces X =

G/H onwhichΓ acts properly discontinuously via �; this will yield (G;X)-manifolds
(or orbifolds)M = �(Γ)nU of type U.

We discuss type U in Sections 5.1 and 5.2 and type C in Section 5.3. One motivation is to
give a geometric meaning to the higher Teichmüller spaces of Section 4.3.

5.1 Cocompact domains of discontinuity. Domains of discontinuity with compact
quotient have been constructed in several settings in the past ten years.

Barbot [2010] constructed such domains in the space X of flags of R3, for the Anosov
representations to G = PSL(3;R) of Example 4.2.(3) and their small deformations.

Guichard and Wienhard [2012] developed a more general construction of cocompact
domains of discontinuity in flag varietiesX for Anosov representations to semisimple Lie
groups G. Here is one of their main results. For p � q � i � 1, we denote by F p;q

i the
closed subspace of the Grassmannian Gri (Rp+q) consisting of i -planes that are totally
isotropic for the standard symmetric bilinear form h�; �ip;q of signature (p; q).

Theorem 5.1 (Guichard and Wienhard [ibid.]). Let G = PO(p; q) with p � q and X =

F p;q
q . For any P1-Anosov representation � : Γ ! G � PGL(Rp+q) with boundary

map �1 : @1Γ ! F p;q
1 � P (Rp+q), the group �(Γ) acts properly discontinuously with

compact quotient on U� := X X L�, where

L� :=
[

�2@1Γ

˚
W 2 X = F p;q

q j �1(�) 2 W
	
:

We have U� ¤ ¿ as soon as dim(@1Γ) < p� 1. The homeomorphism type of �(Γ)nU�

is constant as � varies continuously among P1-Anosov representations of Γ to G.
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For q = 1, we recover the familiar picture of Section 3.1: the set L� is the limit set
Λ�(Γ) � @1Hp , and U� is the domain of discontinuity Ω�(Γ) = @1Hp X Λ�(Γ).

For q = 2, Theorem 5.1 fits into the theory of Lorentzian Kleinian groups acting on
the Einstein universe X = Einp = F p;2

1 , as developed by Frances [2005].
Guichard and Wienhard [2012] used Theorem 5.1 to describe domains of discontinuity

for various families of Anosov representations to other semisimple Lie groups G. Indeed,
they proved that an Anosov representation � : Γ ! G can always be composed with a
representation of G to some PO(p; q) so as to become P1-Anosov in PO(p; q).

Kapovich, Leeb, and Porti [2018] developed a more systematic approach to the con-
struction of domains of discontinuity in flag varieties. They provided sufficient conditions
(expressed in terms of a notion of balanced ideal in the Weyl group for the Bruhat order)
on triples (G;P;Q) consisting of a semisimple Lie groupG and two parabolic subgroups
P and Q, so that P -Anosov representations to G admit cocompact domains of disconti-
nuity in G/Q. These domains are obtained by removing an explicit “extended limit set”
L� as in Theorem 5.1. The approach of Kapovich–Leeb–Porti is intrinsic: it does not rely
on an embedding of G into some PO(p; q).

5.2 Geometric structures for Hitchin and maximal representations. Let Γ = �1(S)

where S is a closed orientable surface of genus � 2. Recall (Examples 4.2) that Hitchin
representations from Γ toG = PSL(d;R) are Pi -Anosov for all 1 � i � d � 1; maximal
representations from Γ to G = PO(2; q) � PGL(2 + q;R) are P1-Anosov.

For G = PSL(2;R) ' PO(2; 1)0, Hitchin representations and maximal representa-
tions of Γ to G both coincide with the Fuchsian representations; they are the holonomy
representations of hyperbolic structures on S (Example 2.1). In the setting of higher Te-
ichmüller theory (see Section 4.3), one could hope that Hitchin or maximal representa-
tions of Γ to higher-rank Lie groups G might also parametrize certain geometric struc-
tures on a manifold related to S . We saw in Section 4.5 that this is indeed the case for
G = PSL(3;R): Hitchin representations of Γ to PSL(3;R) parametrize the convex pro-
jective structures on S (Goldman [1990], Choi and Goldman [2005]). In an attempt to gen-
eralize this picture, we now outline constructions of domains of discontinuity for Hitchin
representations to PSL(d;R) with d > 3, and maximal representations to PO(2; q) with
q > 1. By classical considerations of cohomological dimension, such domains cannot
be both cocompact and contractible; in Sections 5.2.2 and 5.2.3 below, we will prefer to
forgo compactness to favor the nice geometry of convex domains.

5.2.1 Hitchin representations for even d = 2n. Let (G;X) = (PSL(2n;R);

P (R2n)). Hitchin representations into G do not preserve any properly convex open set Ω
in X (see Danciger, Guéritaud, and Kassel [2017], Zimmer [2017]). However, Guichard
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and Wienhard [2008, 2012] associated to them nonconvex (G;X)-structures on a closed
manifold: if � : Γ ! G is Hitchin with boundary map �n : @1Γ ! Grn(R2n), then
U = X X

S
�2@1Γ �n(�) is a cocompact domain of discontinuity for �. For n = 2 the

quotient has two connected components which both fiber in circles over S ; considering
one of them, the Hitchin representations parametrize projective structures on T 1(S) with
a natural foliation by 2-dimensional convex sets (Guichard and Wienhard [2008]). For
3 � n � 63, Alessandrini and Li [2018] recently used Higgs bundle techniques to de-
scribe a fibration of �(Γ)nU over S with fiber O(n)/O(n � 2).

5.2.2 Hitchin representations for odd d = 2n+ 1. Hitchin representations into G =

PSL(2n+ 1;R) give rise to (G;X)-manifolds for at least two choices of X .
One choice for X is the space of partial flags (V1 � V2n) of R2n+1 with V1 a line and

V2n a hyperplane: Guichard and Wienhard [2012] again constructed explicit cocompact
domains of discontinuity in X in this setting.

Another choice is X = P (R2n+1): Hitchin representations in odd dimension are the
holonomies of convex projective manifolds, which are noncompact for n > 1.

Theorem 5.2 (Danciger, Guéritaud, and Kassel [2017], Zimmer [2017]). For any Hitchin
representation � : Γ ! PSL(2n+ 1;R), there is a �(Γ)-invariant properly convex open
subset Ω of P (R2n+1) and a nonempty closed convex subset C of Ω which has compact
quotient by �(Γ).

More precisely, if � has boundary maps �1 : @1Γ ! Gr1(R2n+1) = P (R2n+1) and
�2n : @1Γ ! Gr2n(R2n+1), we may take Ω = P (R2n+1) X

S
�2@1Γ �2n(�) and C to

be the convex hull of �1(@1Γ) in Ω. The group �(Γ) acts properly discontinuously on Ω

(Remark 3.1), and so �(Γ)nΩ is a convex projective manifold, with a compact convex
core �(Γ)nC. In other words, �(Γ) is convex cocompact in P (R2n+1), see Section 6.

5.2.3 Maximal representations. Maximal representations intoG = PO(2; q) give rise
to (G;X)-manifolds for at least two choices of X .

One choice is X = F 2;q
2 (also known as the space of photons in the Einstein universe

Einq): Theorem 5.1 provides cocompact domains of discontinuity for � in X . Collier,
Tholozan, and Toulisse [2017] recently studied the geometry of the associated quotient
(G;X)-manifolds, and showed that they fiber over S with fiber O(q)/O(q � 2).

Another choice is X = P (R2+q): by Danciger, Guéritaud, and Kassel [2018a], max-
imal representations � : Γ ! G are the holonomy representations of convex projective
manifolds �(Γ)nΩ, which are noncompact for q > 1 but still convex cocompact as in Sec-
tion 5.2.2. In fact Ω can be taken inside H2;q�1 = f[v] 2 P (R2+q) j hv; vi2;q < 0g (see
also Collier, Tholozan, and Toulisse [2017]), which is a pseudo-Riemannian analogue of
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the real hyperbolic space in signature (2; q � 1), and �(Γ) is H2;q�1-convex cocompact
in the sense of Section 6.2 below.

5.3 Proper actions on full homogeneous spaces. In Sections 5.1 and 5.2, we mainly
considered compact homogeneous spacesX = G/H (flag varieties); these spaces cannot
admit proper actions by infinite discrete groups, but we saw that sometimes they can con-
tain domains of discontinuity U ¨ X , yielding (G;X)-manifolds of type U (terminology
of Section 1.1).

We now consider noncompact homogeneous spaces X = G/H . Then Anosov repre-
sentations � : Γ ! G may give proper actions of Γ on the whole of X = G/H , yielding
(G;X)-manifolds �(Γ)nX of type C.WhenH is compact, this is not very interesting since
all faithful and discrete representations to G give proper actions on X . However, when
H is noncompact, it may be remarkably difficult in general to find such representations
giving proper actions on X , which led to a rich literature (see Kobayashi and Yoshino
[2005] and Kassel [2009, Intro]).

One construction for proper actions on X was initiated by Guichard and Wienhard
[2012] and developed further in Guéritaud, Guichard, Kassel, and Wienhard [2017b].
Starting from an Anosov representation � : Γ ! G, the idea is to embed G into some
larger semisimple Lie group G0 so that X = G/H identifies with a G-orbit in some flag
variety F 0 ofG0, and then to find a cocompact domain of discontinuity U � X for � in F 0

by using a variant of Theorem 5.1. The action of �(Γ) onX is then properly discontinuous,
and �(Γ)n(U \X) provides a compactification of �(Γ)nX , which in many cases can be
shown to be well-behaved. Here is one of the applications of this construction given in
Guéritaud, Guichard, Kassel, and Wienhard [ibid.].

Example 5.3. Let G = PO(p; q) and H = O(p; q � 1) where p > q � 1. For any
Pq-Anosov representation � : Γ ! G � PGL(p + q;R), the group �(Γ) acts properly
discontinuously on X = Hp;q�1 = f[v] 2 P (Rp+q) j hv; vip;q < 0g ' G/H , and for
torsion-free Γ the complete (G;X)-manifold �(Γ)nX is topologically tame.

By topologically tame we mean homeomorphic to the interior of a compact mani-
fold with boundary. For other compactifications of quotients of homogeneous spaces by
Anosov representations, yielding topological tameness, see Guichard, Kassel, and Wien-
hard [2015], Kapovich and Leeb [2015], and Kapovich, Leeb, and Porti [2018].

Another construction of complete (G;X)-manifolds for Anosov representations to re-
ductive Lie groups G was given in Guéritaud, Guichard, Kassel, and Wienhard [2017a],
based on a properness criterion of Benoist [1996] and Kobayashi [1996]. For simplic-
ity we discuss it for G = PGL(d;R). As in Section 4.4, let �i (g) be the logarithm of
the i -th singular value of a matrix g 2 GL(d;R); this defines a map � = (�1; : : : ; �d ) :

PGL(d;R) ! Rd/R(1; : : : ; 1) ' Rd�1. The properness criterion of Benoist andKobayashi
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states that for two closed subgroups H;Γ of G = PGL(d;R), the action of Γ on G/H

is properly discontinuous if and only if the set �(Γ) “drifts away at infinity from �(H )”,
in the sense that for any R > 0 we have dRd�1(�(
); �(H )) � R for all but finitely
many 
 2 Γ. If Γ is the image of an Anosov representation, then we can apply the impli-
cation (1) ) (2) of Theorem 4.3 to see that the properness criterion is satisfied for many
examples ofH .

Example 5.4. For i = 1 (resp. n), the image of any Pi -Anosov representation to G =

PSL(2n;R) acts properly discontinuously onX = G/H forH = SL(n;C) (resp. SO(n+
1; n � 1)).

6 Convex cocompact projective structures

In Sections 3 and 4.5we started from (G;X)-structures to produceAnosov representations,
and in Section 5we started fromAnosov representations to produce (G;X)-structures. We
now discuss a situation, in the setting of convex projective geometry, in which the links
between (G;X)-structures and Anosov representations are particularly tight and go in
both directions, yielding a better understanding of both sides. In Section 6.4 we will also
encounter generalizations of Anosov representations, for finitely generated groups that are
not necessarily Gromov hyperbolic.

6.1 Convex cocompactness in higher real rank. The results presented here are part
of a quest to generalize the notion of rank-one convex cocompactness of Section 3.1 to
higher real rank.

The most natural generalization, in the setting of Riemannian symmetric spaces, turns
out to be rather restrictive: Kleiner and Leeb [2006] and Quint [2005] proved that ifG is a
real simple Lie group of real rank � 2 andK a maximal compact subgroup ofG, then any
Zariski-dense discrete subgroup of G acting with compact quotient on some nonempty
convex subset of G/K is a uniform lattice in G.

Meanwhile, we have seen in Section 4.2 that Anosov representations to higher-rank
semisimple Lie groupsG have strong dynamical properties which nicely generalize those
of rank-one convex cocompact representations (see Kapovich, Leeb, and Porti [2016,
2017], Kapovich and Leeb [2017] and Guichard [2017]). However, in general Anosov
representations to G do not act with compact quotient on any nonempty convex subset
of G/K, and it is not clear that Anosov representations should come with any geometric
notion of convexity at all (see e.g. Section 5.2.1).

In this section, we shall see that Anosov representations in fact do come with convex
structures. We shall introduce several generalizations of convex cocompactness to higher
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real rank (which we glimpsed in Sections 5.2.2 and 5.2.3) and relate them to Anosov
representations.

6.2 Convex cocompactness in pseudo-Riemannian hyperbolic spaces. We start with
a generalization of the hyperbolic quasi-Fuchsian manifolds of Example 1.2 or the AdS
quasi-Fuchsianmanifolds of Section 3.3, where we replace the real hyperbolic spaceH3 or
its Lorentzian analogue AdS3 by their general pseudo-Riemannian analogue in signature
(p; q � 1) for p; q � 1, namely

X = Hp;q�1 =
˚
[v] 2 P (Rp+q) j hv; vip;q < 0

	
:

The symmetric bilinear form h�; �ip;q of signature (p; q) induces a pseudo-Riemannian
structure of signature (p; q � 1) on X , with isometry group G = PO(p; q) and constant
negative sectional curvature (see e.g. Danciger, Guéritaud, andKassel [2018a, § 2.1]). The
following is not our original definition, but an equivalent one from Danciger, Guéritaud,
and Kassel [2017, Th. 1.25].

Definition 6.1. A discrete subgroup Γ of G = PO(p; q) is Hp;q�1-convex cocompact
if it preserves a properly convex open subset Ω of X = Hp;q�1 � P (Rp+q) and if it
acts with compact quotient on some closed convex subset C of Ω with nonempty interior,
whose ideal boundary @iC := C X C = C \ @X does not contain any nontrivial projective
segment. A representation � : Γ ! G is Hp;q�1-convex cocompact if its kernel is finite
and its image is an Hp;q�1-convex cocompact subgroup of G.

Here C is the closure of C in P (Rp+q) and @X the boundary of X = Hp;q�1 in
P (Rp+q). For Γ;Ω;C as in Definition 6.1, the quotient ΓnΩ is a (G;X)-manifold (or
orbifold) (see Remark 3.1), which we shall call convex cocompact; the subset ΓnC is
compact, convex, and contains all the topology, as in Sections 3.1 and 3.3.

There is a rich world of examples of convex cocompact (G;X)-manifolds, including
direct generalizations of the quasi-Fuchsian manifolds of Sections 3.1 and 3.3 (see Barbot
and Mérigot [2012] and Danciger, Guéritaud, and Kassel [2018a, 2017]) but also more
exotic examples where the fundamental group is not necessarily realizable as a discrete
subgroup of PO(p; 1) (see Danciger, Guéritaud, and Kassel [2018a] and G.-S. Lee and
Marquis [2018]).

The following result provides links with Anosov representations.

Theorem 6.2 (Danciger, Guéritaud, and Kassel [2018a, 2017]). For p; q � 1, let Γ be an
infinite discrete group and � : Γ ! G = PO(p; q) � PGL(p + q;R) a representation.

(1) If � is Hp;q�1-convex cocompact, then Γ is Gromov hyperbolic and � is P1-Anosov.
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(2) Conversely, if Γ is Gromov hyperbolic, if � is P1-Anosov, and if �(Γ) preserves a
properly convex open subset of P (Rp+q), then � is Hp;q�1-convex cocompact or
Hq;p�1-convex cocompact.

(3) If Γ is Gromov hyperbolic with connected boundary @1Γ and if � is P1-Anosov,
then � is Hp;q�1-convex cocompact or Hq;p�1-convex cocompact.

In (2)–(3), the phrase “Hq;p�1-convex cocompact” is understood after identifying PO(p; q)
with PO(q; p) and P (Rp;q)X Hp;q�1 with Hq;p�1 under multiplication of h�; �ip;q by �1.
The case that q = 2 and Γ is isomorphic to a uniform lattice of PO(p; 1) is due to Barbot
and Mérigot [2012].

The links between Hp;q�1-convex cocompactness and Anosov representations in The-
orem 6.2 have several applications.

Applications to (G;X)-structures, see Danciger, Guéritaud, and Kassel [2018a, 2017].
� Hp;q�1-convex cocompactness is stable under small deformations, because beingAnosov
is; thus the set of holonomy representations of convex cocompact (G;X)-structures on a
given manifoldM is open in Hom(�1(M ); G).
� Examples of convex cocompact (G;X)-manifolds can be obtained using classical fami-
lies of Anosov representations: e.g. Hitchin representations into PO(n+1; n) areHn+1;n�1-
convex cocompact for odd n and Hn;n-convex cocompact for even n, and Hitchin repre-
sentations into PO(n+1; n+1) are Hn+1;n-convex cocompact. Maximal representations
into PO(2; q) are H2;q�1-convex cocompact, see Section 5.2.3.

Applications to Anosov representations:
� New examples of Anosov representations can be constructed from convex cocompact
(G;X)-manifolds: e.g. this approach is used in Danciger, Guéritaud, and Kassel [2018a]
to prove that any Gromov hyperbolic right-angled Coxeter group in d generators admits
P1-Anosov representations to PGL(d;R). This provides a large new class of hyperbolic
groups admitting Anosov representations; these groups can have arbitrary large cohomo-
logical dimension, and exotic boundaries (see Dani [2017] for references). (Until now
most known examples of Anosov representations were for surface groups or free groups.)
� For q = 2 and Γ a uniform lattice of PO(p; 1)0, Barbot [2015] used convex cocompact
(G;X)-structures to prove that the connected component T of Hom(Γ;PO(p; 2)) con-
taining the natural inclusion Γ ,! PO(p; 1)0 ,! PO(p; 2) consists entirely of Anosov
representations. This is interesting in the framework of Section 4.3.

6.3 Strong projective convex cocompactness. We now consider a broader notion of
convex cocompactness, not involving any quadratic form. Let d � 2.

Definition 6.3. A discrete subgroup Γ of G = PGL(d;R) is strongly P (Rd )-convex co-
compact if it preserves a strictly convex open subset Ω of X = P (Rd ) with C 1 boundary
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and if it acts with compact quotient on some nonempty closed convex subset C of Ω. A
representation � : Γ ! G is strongly P (Rd )-convex cocompact if its kernel is finite and
its image is a strongly P (Rd )-convex cocompact subgroup of G.

The action of Γ onΩ in Definition 6.3 is a special case of a class of geometrically finite
actions introduced by Crampon and Marquis [2014]. We use the adverb “strongly” to
emphasize the strong regularity assumptions made on Ω. In Definition 6.3 we say that the
quotient ΓnΩ is a strongly convex cocompact projective manifold (or orbifold); the subset
ΓnC is again compact, convex, and contains all the topology.

Strongly P (Rd )-convex cocompact representations include Hp;q�1-convex cocom-
pact representations as in Section 6.2 (see Danciger, Guéritaud, and Kassel [2018a]), and
the natural inclusion of groups dividing strictly convex open subsets of P (Rd ) as in Sec-
tion 3.2. The following result generalizes Theorem 6.2, and improves on earlier results of
Benoist [2004] and Crampon and Marquis [2014].

Theorem6.4 (Danciger, Guéritaud, andKassel [2017]). LetΓ be an infinite discrete group
and � : Γ ! G = PGL(d;R) a representation such that �(Γ) preserves a nonempty
properly convex open subset ofX = P (Rd ). Then � is stronglyP (Rd )-convex cocompact
if and only if Γ is Gromov hyperbolic and � is P1-Anosov.

Another generalization of Theorem 6.2 was independently obtained by Zimmer [2017]:
it is similar to Theorem 6.4, but involves a slightly different notion of convex cocompact-
ness and assumes �(Γ) to act irreducibly on P (Rd ).

Applications of Theorem 6.4 include:
� Examples of strongly convex cocompact projective manifolds using classical Anosov
representations (e.g. Hitchin representations into PSL(2n+ 1;R) as in Section 5.2.2).
� In certain cases, a better understanding of the set of Anosov representations of a Gro-
mov hyperbolic group Γ inside a given connected component of Hom(Γ; G): e.g. for an
irreducible hyperbolic right-angled Coxeter group Γ on k generators, it is proved in Dan-
ciger, Guéritaud, and Kassel [2018c], using Theorem 6.4 and the work of Vinberg [1971],
that P1-Anosov representations form the full interior of the space of faithful and discrete
representations of Γ as a reflection group in G = PGL(d;R) when d � k.

For a Gromov hyperbolic group Γ and a P1-Anosov representation � : Γ ! G =

PGL(d;R), the group �(Γ) does not always preserve a properly convex open subset of
X = P (Rd ): see Section 5.2.1. However, as observed by Zimmer [2017], � can always
be composed with the embedding � : G ,! PGL(V ) described in Example 3.2.(2), for
V = Sym(d;R) ' Rd(d+1); then � ı �(Γ) preserves a properly convex open subset in
P (V ). The composition �ı� : Γ ! PGL(V ) is stillP1-Anosov byGuichard andWienhard
[2012], and it is strongly P (V )-convex cocompact by Theorem 6.4. More generally, using
Guichard and Wienhard [ibid.], any Anosov representation to any semisimple Lie group
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can always be composed with an embedding into some PGL(V ) so as to become strongly
P (V )-convex cocompact.

6.4 Projective convex cocompactness in general. We now introduce an even broader
notion of convex cocompactness, where we remove the strong regularity assumptions onΩ
in Definition 6.3. This yields a large class of convex projective manifolds, whose funda-
mental groups are not necessarily Gromov hyperbolic. Their holonomy representations
are generalizations of Anosov representations, sharing some of their desirable properties
(Theorem 6.7). This shows that Anosov representations are not the only way to success-
fully generalize rank-one convex cocompactness to higher real rank.

Definition 6.5 (Danciger, Guéritaud, and Kassel [2017]). A discrete subgroup Γ of G =

PGL(d;R) is P (Rd )-convex cocompact if it preserves a properly convex open subset Ω
ofX = P (Rd ) and if it acts with compact quotient on some “large enough” closed convex
subset C of Ω. A representation � : Γ ! G is P (Rd )-convex cocompact if its kernel is
finite and its image is a P (Rd )-convex cocompact subgroup of G.

In Definition 6.5, by “C large enough” we mean that all accumulation points of all
Γ-orbits of Ω are contained in the boundary of C in X = P (Rd ). If we did not impose
this (even if we asked C to have nonempty interior), then the notion of P (Rd )-convex
cocompactness would not be stable under small deformations: see Danciger, Guéritaud,
and Kassel [2017, 2018b]. In Definition 6.5 we call ΓnΩ a convex cocompact projective
manifold (or orbifold).

The class of P (Rd )-convex cocompact representations includes all strongly P (Rd )-
convex cocompact representations as in Section 6.3, hence all Hp;q�1-convex cocompact
representations as in Section 6.2. In fact, the following holds.

Proposition 6.6 (Danciger, Guéritaud, and Kassel [2017]). Let Γ be an infinite discrete
group. A representation � : Γ ! G = PGL(d;R) is strongly P (Rd )-convex cocompact
(Definition 6.3) if and only if it is P (Rd )-convex cocompact (Definition 6.5) and Γ is
Gromov hyperbolic.

This generalizes a result of Benoist [2004] on divisible convex sets. Together with
Theorem 6.4, Proposition 6.6 shows that P (Rd )-convex cocompact representations are
generalizations of Anosov representations, to a larger class of finitely generated groups
Γ which are not necessarily Gromov hyperbolic. These representations still enjoy the
following good properties.

Theorem6.7 (Danciger, Guéritaud, andKassel [2017]). LetΓ be an infinite discrete group
and � : Γ ! G = PGL(d;R) a P (Rd )-convex cocompact representation. Then

(1) � is a quasi-isometric embedding;
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(2) there is a neighborhood of � in Hom(Γ; G) consisting entirely of P (Rd )-convex
cocompact representations;

(3) � is P ((Rd )�)-convex cocompact;

(4) � induces a P (RD)-convex cocompact representation for any D � d (by lifting
� to a representation to SL˙(d;R) and composing it with the natural inclusion
SL˙(d;R) ,! SL˙(D;R)).

In order to prove (2), we show that the representations of Theorem 6.7 are exactly the
holonomy representations of compact convex projective manifolds with strictly convex
boundary; this allows to apply the deformation theory of Cooper, Long, and Tillmann
[2018].

Groups that are P (Rd )-convex cocompact but not strongly P (Rd )-convex cocompact
include all groups dividing a properly convex, but not strictly convex, open subset of
X = P (Rd ) as in Section 3.2, as well as their small deformations in PGL(D;R) for
D � d (Theorem 6.7.(2)–(4)). Such nontrivial deformations exist: e.g. for d = 4 we can
always bend along tori or Klein bottle subgroups, see Benoist [2006]. There seems to be
a rich world of examples beyond this, which is just starting to be unveiled, see Danciger,
Guéritaud, and Kassel [2017, 2018b,c]. It would be interesting to understand the precise
nature of the corresponding abstract groups Γ, and how the dynamics of P (Rd )-convex
cocompact representations generalize that of Anosov representations.

7 Complete affine structures

In Sections 3 to 6 we always considered semisimple, or more generally reductive, Lie
groupsG. We now discuss links between (G;X)-structures and representations of discrete
groups into G in an important case where G is not reductive: namely G is the group
Aff(Rd ) = GL(d;R)Ë Rd of invertible affine transformations of X = Rd . We shall see
in Section 7.3 that for d = 3 the holonomy representations of certain complete (i.e. type C
in Section 1.1) (G;X)-structures are characterized by a uniform contraction condition,
which is also an affine Anosov condition; we shall briefly mention partial extensions to
d > 3, which are currently being explored.

7.1 Brief overview: understanding complete affinemanifolds. Let (G;X) = (Aff(Rd );Rd ).
This section is centered around complete affine manifolds, i.e. (G;X)-manifolds of the
formM = �(Γ)nX where Γ ' �1(M ) is a discrete group and � : Γ ! G a faithful rep-
resentation through which Γ acts properly discontinuously and freely on X = Rd . The
study of such representations has a rich history through the interpretation of their images as
affine crystallographic groups, i.e. symmetry groups of affine tilings of Rd , possibly with
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noncompact tiles; see Abels [2001] for a detailed survey. The compact and noncompact
cases are quite different.

For a compact complete affine manifoldM , Auslander [1964] conjectured that �1(M )

must always be virtually (i.e. up to finite index) polycyclic. This extends a classical the-
orem of Bieberbach on affine Euclidean isometries. The conjecture is proved for d � 6

(Fried and Goldman [1983], Abels, Margulis, and Soifer [2012]), but remains wide open
for d � 7, despite partial results (see Abels [2001]).

In contrast, in answer to a question of Milnor [1977], there exist noncompact complete
affine manifoldsM for which �1(M ) is not virtually polycyclic. The first examples were
constructed by Margulis [1984] for d = 3, with �1(M ) a nonabelian free group. In these
examples the holonomy representation takes values in O(2; 1)ËR3 (this is always the case
for d = 3 when �1(M ) is not virtually polycyclic, see Fried and Goldman [1983]), hence
M inherits a flat Lorentzian structure. Such manifolds are called Margulis spacetimes.
They have a rich geometry and have been much studied since the 1990s, most prominently
by Charette, Drumm, Goldman, Labourie, and Margulis. In particular, the questions of
the topological tameness of Margulis spacetimes and of the existence of nice fundamental
domains in X = R3 (bounded by piecewise linear objects called crooked planes) have
received much attention: see e.g. Drumm [1992], Drumm and Goldman [1999], Charette,
Drumm, and Goldman [2016], Choi and Goldman [2017], Danciger, Guéritaud, and Kas-
sel [2016a,b]. See also Goldman, Labourie, and Margulis [2009], Abels, Margulis, and
Soifer [2012], and Smilga [2016] for higher-dimensional analoguesM with �1(M ) a free
group.

Following Danciger, Guéritaud, and Kassel [2016a,b] (see also Schlenker [2016]), a
convenient point of view for understanding Margulis spacetimes is to regard them as “in-
finitesimal analogues” of complete AdS manifolds. In order to describe this point of view,
we first briefly discuss the AdS case.

7.2 Complete AdS manifolds. As in Section 3.3, let (G;X) = (PO(2; 2);AdS3), and
view X as the group G = PSL(2;R) and the identity component G0 of G as G � G

acting on X ' G by right and left multiplication. We consider (G;X)-manifolds of the
formM = �(Γ)nX where Γ ' �1(M ) is an infinite discrete group and � = (�L; �R) :

Γ ! G � G � G a faithful representation through which Γ acts properly discontinu-
ously and freely on X . Not all faithful and discrete � = (�L; �R) yield properly dis-
continuous actions on X : e.g. if �L = �R, then � has a global fixed point, precluding
properness. However, the following properness criteria hold. We denote by �(g) :=

infx2H2 dH2(x; g � x) � 0 the translation length of g 2 G in H2.

Theorem 7.1 (Kassel [2009], Guéritaud, Guichard, Kassel, and Wienhard [2017a]). Let
G = PO(2; 2) and G = PSL(2;R). Consider a discrete group Γ and a representation



1162 FANNY KASSEL

� = (�L; �R) : Γ ! G�G � G with �L convex cocompact. The following are equivalent,
up to switching �L and �R in both (2) and (3):

(1) the action of Γ on X = AdS3 ' G via � is properly discontinuous;

(2) there exists C < 1 such that �(�R(
)) � C�(�L(
)) for all 
 2 Γ;

(3) there is a (�L; �R)-equivariant Lipschitz map f : H2 ! H2 with Lip(f ) < 1;

(4) Γ is Gromov hyperbolic and � : Γ ! G � PGL(4;R) is P2-Anosov.

The equivalences (1) , (2) , (3), proved in Kassel [2009], have been generalized
in Guéritaud and Kassel [2017] to G = PO(n; 1) for any n � 2, allowing �L to be
geometrically finite instead of convex cocompact. These equivalences state that � =

(�L; �R) acts properly discontinuously on X = AdS3 ' G if and only if, up to switching
the two factors, �L is faithful and discrete and �R is “uniformly contracting” with respect
to �L. The equivariant map f in (3) provides an explicit fibration in circles of �(Γ)nX
over the hyperbolic surface �L(Γ)nH2, see Guéritaud and Kassel [ibid.]. We refer to
Salein [2000], Guéritaud and Kassel [2017], Guéritaud, Kassel, and Wolff [2015], Deroin
and Tholozan [2016], Danciger, Guéritaud, and Kassel [2018d], Lakeland and Leininger
[2017] for many examples, to Tholozan [2017] for a classification in the compact AdS
case, and to Kassel [2009] and Guéritaud and Kassel [2017] for links with the asymmetric
metric on Teichmüller space introduced by Thurston [1986].

The equivalences (1) , (2) , (4), proved in Guéritaud, Guichard, Kassel, and Wien-
hard [2017a], generalize toG = PO(n; 1), PU(n; 1), or Sp(n; 1); the Anosov condition is
then expressed in PGL(2n+2;K)where K is R, C, or the quaternions. As an application,
the set of holonomy representations of complete (G�G; G)-structures on a compact mani-
foldM is open in the set of holonomy representations of all possible (G�G; G)-structures
onM . By Tholozan [2015], it is also closed, which gives evidence for an open conjecture
stating that all (G�G; G)-structures onM should be complete (i.e. obtained as quotients
of eG).
7.3 Complete affine manifolds. We now go back to (G;X) = (Aff(Rd );Rd ), loo-
king for characterizations of holonomy representations of complete affine manifolds, i.e.
representations to G yielding properly discontinuous actions on X .

We first note that any representation from a group Γ to the nonreductive Lie group
G = GL(d;R) Ë Rd is of the form � = (�L; u) where �L : Γ ! GL(d;R) (linear
part) is a representation to GL(d;R) and u : Γ ! Rd (translational part) a �L-cocycle,
meaning u(
1
2) = u(
1) + �L(
1) � u(
2) for all 
1; 
2 2 Γ.

We focus on the case d = 3 and �L with values in O(2; 1). Let us briefly indicate
how, following Danciger, Guéritaud, and Kassel [2016a,b], the Margulis spacetimes of
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Section 7.1 are “infinitesimal versions” of the complete AdS manifolds of Section 7.2.
Let G = O(2; 1)0 ' PSL(2;R) be the group of orientation-preserving isometries of H2.
Its Lie algebra g ' R3 is the set of “infinitesimal isometries” of H2, i.e. Killing vector
fields on H2. Here are some properness criteria.

Theorem 7.2 (Goldman, Labourie, and Margulis [2009], Danciger, Guéritaud, and Kassel
[2016a]). Let G = Aff(R3) and G = O(2; 1)0 ' PSL(2;R). Consider a discrete group
Γ and a representation � = (�L; u) : Γ ! G Ë g � G with �L convex cocompact. The
following are equivalent, up to replacing u by �u in both (2) and (3):

(1) the action of Γ on X = R3 ' g via � = (�L; u) is properly discontinuous;

(2) there exists c < 0 such that d
dt

jt=0 �(e
u(
)�L(
)) � c �(�L(
)) for all 
 2 Γ;

(3) there is a (�L; u)-equivariant vector field Y on H2 with “lipschitz” constant< 0.

The equivalence (1), (2) is a reinterpretation, based onGoldman andMargulis [2000],
of a celebrated result of Goldman, Labourie, andMargulis [2009]. The equivalence (1), (3)
is proved in Danciger, Guéritaud, and Kassel [2016a].

These equivalences are “infinitesimal versions” of the equivalences (1) , (2) , (3)
of Theorem 7.1. Indeed, as explained in Danciger, Guéritaud, and Kassel [ibid.], we can
see the �L-cocycle u : Γ ! g as an “infinitesimal deformation” of the holonomy repre-
sentation �L of the hyperbolic surface (or orbifold) S = �L(Γ)nH2; Condition (2) states
that closed geodesics on S get uniformly shorter under this infinitesimal deformation. We
can see a (�L; u)-equivariant vector field Y on H2 as an “infinitesimal deformation” of
the developing map of the hyperbolic surface S ; Condition (3), which involves an uncon-
ventional notion of “lipschitz” constant, states that any two points of H2 get uniformly
closer compared to their initial distance. Thus Theorem 7.2 states that � = (�L; u) acts
properly discontinuously on X = R3 ' g if and only if the infinitesimal deformation u,
up to replacing it by �u, is “uniformly contracting”.

The vector field Y in (3) provides an explicit fibration in lines of the Margulis space-
time �(Γ)nX over the hyperbolic surface S , and this can be used to define a geometric
transition from complete AdS manifolds to Margulis spacetimes, see Danciger, Guéritaud,
and Kassel [ibid.].

In Theorem 7.1, the “uniform contraction” characterizing properness was in fact an
Anosov condition, encoding strong dynamics on a certain flag variety. It is natural to
expect that something similar should hold in the setting of Theorem 7.2. For this, a notion
of affine Anosov representation to O(2; 1)Ë R3 was recently introduced by Ghosh [2017]
and extended to O(n+1; n)ËRd � Aff(Rd ) = G for any d = 2n+1 � 3 by Ghosh and
Treib [2017]; the definition is somewhat analogous to Section 4.1 but uses affine bundles
and their sections. By Ghosh [2017] and Ghosh and Treib [2017], given a Pn-Anosov
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representation �L : Γ ! O(n + 1; n) and a �L-cocycle u : Γ ! Rd , the action of Γ on
X = Rd via � = (�L; u) is properly discontinuous if and only if � is affine Anosov.

Theorem 7.2 was recently generalized in Danciger, Guéritaud, and Kassel [2018d] as
follows: for G = O(p; q) with p; q � 1, consider a discrete group Γ, a faithful and
discrete representation �L : Γ ! G, and a �L-cocycle u : Γ ! g; then the action of
Γ on g via � = (�L; u) : Γ ! Aff(g) is properly discontinuous as soon as u satisfies
a uniform contraction property in the pseudo-Riemannian hyperbolic space Hp;q�1 of
Section 6.2. This allowed for the construction of the first examples of irreducible complete
affine manifolds M such that �1(M ) is neither virtually polycyclic nor virtually free:
�1(M ) can in fact be any irreducible right-angled Coxeter group. It would be interesting
to understand the links with a notion of affine Anosov representation in this setting.

8 Concluding remarks

By investigating the links between the geometry of (G;X)-structures on manifolds and
the dynamics of their holonomy representations, we have discussed only a small part of a
very active area of research.

We have described partial answers to Problem A for several types of model geometries
(G;X). However, Problem A is still wide open in many contexts. As an illustration, let us
mention two major open conjectures on closed affine manifolds (in addition to the Auslan-
der conjecture of Section 7.1): the Chern conjecture states that if a closed d -manifoldM
admits an (Aff(Rd );Rd )-structure, then its Euler characteristic must be zero; the Markus
conjecture states that an (Aff(Rd );Rd )-structure onM is complete if and only if its holon-
omy representation takes values in SL(d;R) Ë Rd . See Klingler [2017] and references
therein for recent progress on this.

We have seen that Anosov representations from Gromov hyperbolic groups to semi-
simple Lie groups provide a large class of representations answering Problem B. However,
not much is known beyond them. One further class, generalizing Anosov representations
to finitely generated groups Γ which are not necessarily Gromov hyperbolic, is the class
of P (Rd )-convex cocompact representations to PGL(d;R) of Section 6.4; it would be
interesting to understand this class better in the framework of Problem B, see Section 6.4
and Danciger, Guéritaud, and Kassel [2017, Appendix]. As another generalization of
Anosov representations, it is natural to look for a class of representations of relatively
hyperbolic groups to higher-rank semisimple Lie groups which would bear similarities to
geometrically finite representations to rank-one groups, with cusps allowed: see Kapovich
and Leeb [2017, § 5] for a conjectural picture. Partial work in this direction has been done
in the convex projective setting, see Crampon and Marquis [2014].

To conclude, here are two open questions which we find particularly interesting.
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Structural stability. Sullivan [1985] proved that a structurally stable, nonrigid subgroup
of G = PSL(2;C) is always Gromov hyperbolic and convex cocompact in G. It is nat-
ural to ask if this may be extended to subgroups of higher-rank semisimple Lie groups
G such as PGL(d;R) for d � 3, for instance with “convex cocompact” replaced by
“Anosov”. In Section 6.4 we saw that there exist nonrigid, structurally stable subgroups
of G = PGL(d;R) which are not Gromov hyperbolic, namely groups that are P (Rd )-
convex cocompact but not strongly P (Rd )-convex cocompact (Definitions 6.3 and 6.5).
However, does a Gromov hyperbolic, nonrigid, structurally stable, discrete subgroup ofG
always satisfy some Anosov property?

Abstract groups admitting Anosov representations. Which linear hyperbolic groups
admit Anosov representations to some semisimple Lie group? Classical examples include
surface groups, free groups, and more generally rank-one convex cocompact groups, see
Section 4.2. By Danciger, Guéritaud, and Kassel [2018a], all Gromov hyperbolic right-
angled Coxeter groups (and all groups commensurable to them) admit Anosov representa-
tions, see Section 6.2. On the other hand, if a hyperbolic group admits an Anosov represen-
tation, then its Gromov flow (see Section 4.1) must satisfy strong dynamical properties,
which may provide an obstruction: see Bridgeman, Canary, Labourie, and Sambarino
[2015, end of § 1]. It would be interesting to have further concrete examples of groups
admitting or not admitting Anosov representations.
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SPATIAL REFINEMENTS AND KHOVANOV HOMOLOGY
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Abstract
We review the construction and context of a stable homotopy refinement of Kho-

vanov homology.

1 Introduction

While studying critical points and geodesics, Morse [1925, 1930, 1996] introduced what
is now calledMorse theory—using functions for which the second derivative test does not
fail (Morse functions) to decomposemanifolds into simpler pieces. The finite-dimensional
case was further developed by many authors (see Bott [1980] for a survey of the his-
tory), and an infinite-dimensional analogue introduced by Palais and Smale [1964], Palais
[1963], and Smale [1964]. In both cases, a Morse function f on M leads to a chain
complex C�(f ) generated by the critical points of f . This chain complex satisfies the
fundamental theorem of Morse homology: its homology H�(f ) is isomorphic to the sin-
gular homology of M . This is both a feature and a drawback: it means that one can use
information about the topology of M to deduce the existence of critical points of f , but
also implies thatC�(f ) does not see the smooth topology ofM . (SeeMilnor [1963, 1965]
for an elegant account of the subject’s foundations and some of its applications.)

Much later, Floer [1988c,a,b] introduced some new examples of infinite-dimensional,
Morse-like theories. Unlike Palais-Smale’s Morse theory, in which the descending man-
ifolds of critical points are finite-dimensional, in Floer’s setting both ascending and de-
scending manifolds are infinite-dimensional. Also unlike Palais-Smale’s setting, Floer’s
homology groups are not isomorphic to singular homology of the ambient space (though
the singular homology acts on them). Indeed, most Floer (co)homology theories seem to
have no intrinsic cup product operation, and so are unlikely to be the homology of any
natural space.
RL was supported by NSF DMS-1642067. SS was supported by NSF DMS-1643401.
MSC2010: primary 57M25; secondary 55P42.
Keywords: Framed flow categories, Cohen-Jones-Segal construction, Khovanov stable homotopy type,
Burnside category.
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Cohen, J. Jones, and Segal [1995] proposed that although Floer homology is not the
homology of a space, it could be the homology of some associated spectrum (or pro-
spectrum), and outlined a construction, under restrictive hypotheses, of such an object.
While they suggest that these spectramight be determined by the ambient, infinite-dimensional
manifold together with its polarization (a structure which seems ubiquitous in Floer the-
ory), their construction builds a CW complex cell-by-cell, using the moduli spaces appear-
ing in Floer theory. (We review their construction in Section 2.4. Steps towards describing
Floer homology in terms of a polarized manifold have been taken by Lipyanskiy [n.d.].)
Although the Cohen-Jones-Segal approach has been stymied by analytic difficulties, it
has inspired other constructions of stable homotopy refinements of various Floer homolo-
gies and related invariants; see Furuta [2001], Bauer and Furuta [2004], Bauer [2004],
Manolescu [2003], Kronheimer andManolescu [n.d.], Douglas [n.d.], Cohen [2010, 2009],
Kragh [n.d., 2013], Abouzaid and Kragh [2016], Khandhawit [2015a,b], Sasahira [n.d.],
and Khandhawit, Lin, and Sasahira [n.d.].

From the beginning, Floer homologies have been used to define invariants of objects
in low-dimensional topology—3-manifolds, knots, and so on. In a slightly different direc-
tion, Khovanov [2000] defined another knot invariant, which he calls sl2 homology and ev-
eryone else callsKhovanov homology, whose graded Euler characteristic is the Jones poly-
nomial from V. Jones [1985]. (See Bar-Natan [2002] for a friendly introduction.) While it
looks formally similar to Floer-type invariants, Khovanov homology is defined combina-
torially. No obvious infinite-dimensional manifold or functional is present. Still, Seidel
and Smith [2006] (inspired by earlier work of Khovanov and Seidel [2002] and others)
gave a conjectural reformulation of Khovanov homology via Floer homology. Over Q,
the isomorphism between Seidel-Smith’s and Khovanov’s invariants was recently proved
by Abouzaid and Smith [n.d.]. Manolescu [2007] gave an extension of the reformulation
to sln homology constructed by Khovanov and Rozansky [2008].

Inspired by this history, Lipshitz and Sarkar [2014a,c,b] gave a combinatorial definition
of a spectrum refining Khovanov homology, and studied some of its properties. This
circle of ideas was further developed in Lipshitz, Ng, and Sarkar [2015] and in Lawson,
Lipshitz, and Sarkar [n.d.(a),(b)], and extended in many directions by other authors (see
Section 3.3). Another approach to a homotopy refinement was given by Everitt and Turner
[2014], though it turns out their invariant is determined byKhovanov homology, cf. Everitt,
Lipshitz, Sarkar, and Turner [2016]. Inspired by a different line of inquiry, Hu, D. Kriz,
and I. Kriz [2016] also gave a construction of a Khovanov stable homotopy type. Lawson,
Lipshitz, and Sarkar [n.d.(a)] show that the two constructions give homotopy equivalent
spectra, perhaps suggesting some kind of uniqueness.

Most of this note is an outline of a construction of a Khovanov homotopy type, fol-
lowing Lawson, Lipshitz, and Sarkar [ibid.] and Hu, D. Kriz, and I. Kriz [2016], with an
emphasis on the general question of stable homotopy refinements of chain complexes. In
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the last two sections, we briefly outline some of the structure and uses of the homotopy
type (Section 3.3) and some questions and speculation (Section 3.4). Another exposition
of some of this material can be found in Lawson, Lipshitz, and Sarkar [2017].

Acknowledgments. We are deeply grateful to our collaborator Tyler Lawson, whose
contributions and perspective permeate the account below. We also thank Mohammed
Abouzaid, Ciprian Manolescu, and John Pardon for comments on a draft of this article.

2 Spatial refinements

The spatial refinement problem can be summarized as follows.
Start with a chain complex C� with a distinguished, finite basis, arising in some inter-

esting setting. Incorporating more information from the setting, construct a based CW
complex (or spectrum) whose reduced cellular chain complex, after a shift, is isomorphic
to C� with cells corresponding to the given basis.

A result of Carlsson [1981] implies that there is no universal solution to the spatial
refinement problem, i.e., no functor S from chain complexes (supported in large gradings,
say) to CW complexes so that the composition of S and the reduced cellular chain complex
functor is the identity (cf. Prasma et al. [n.d.]). Specifically, forG = Z/2�Z/2 he defines
a module P over Z[G] so that there is no G-equivariant Moore space M (P; n) for any
n. If C� is a free resolution of P over Z[G] then S(C�) would be such a Moore space, a
contradiction.

Thus, spatially refining C� requires context-specific work. This section gives general
frameworks for such spatial refinements, and the next section has an interesting example
of one.

2.1 Linear and cubical diagrams. LetC� be a freely and finitely generated chain com-
plex with a given basis. After shifting wemay assumeC� is supported in gradings 0; : : : ; n.
Let [n+1] be the category with objects 0; 1; : : : ; n and a unique morphism i ! j if i � j .
Let B(Z) denote the category of finitely generated free abelian groups, with objects finite
sets and HomB(Z)(S; T ) the set of linear maps ZhSi ! ZhT i or, equivalently, T � S

matrices of integers. Then C� may be viewed as a functor F from [n + 1] to B(Z) sub-
ject to the condition that F sends any length two arrow (that is, a morphism i ! j with
i � j = 2) to the zero map. Given such a functor F : [n + 1] ! B(Z), that is, a linear
diagram

(2-1) ZhF (n)i ! ZhF (n � 1)i ! � � � ! ZhF (1)i ! ZhF (0)i
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with every composition the zero map, we obtain a chain complex C� by shifting the grad-
ings, Ci = ZhF (i)i[i ], and letting @i = F (i ! i � 1). This construction is functo-
rial. That is, if B(Z)

[n+1]
� denotes the full subcategory of the functor category B(Z)[n+1]

generated by those functors which send every length two arrow to the zero map, and if
Kom denotes the category of chain complexes, then the above construction is a functor
ch : B(Z)

[n+1]
� ! Kom. Indeed, it would be reasonable to call an element of B(Z)

[n+1]
�

a chain complex in B(Z).
A linear diagram F 2 B(Z)

[n+1]
� may also be viewed as a cubical diagram G : [2]n !

B(Z) by setting

(2-2) G(v) =

8̂<̂
:

F (i) if v = (0; : : : ; 0„ ƒ‚ …
n�i

; 1; : : : ; 1„ ƒ‚ …
i

)

¿ otherwise.

On morphisms, G is either zero or induced from F , as appropriate. Conversely, a cubi-
cal diagram G 2 B(Z)[2]

n gives a linear diagram F 2 B(Z)
[n+1]
� by setting F (i) =`

jvj=i G(v), where jvj denotes the number of 1’s in v. The component of F (i + 1 ! i)

from ZhG(u)i � ZhF (i + 1)i to ZhG(v)i � ZhF (i)i is

(2-3)

(
(�1)u1+���+uk�1G(u ! v) if u � v =bek , the kth unit vector,
0 if u � v is not a unit vector.

These give functors B(Z)
[n+1]
� B(Z)[2]

n
˛

ˇ
with ˇ ı ˛ = Id.

The compositionchıˇ : B(Z)[2]
n

! Kom is the totalization Tot, and may be viewed
as an iterated mapping cone. Up to chain homotopy equivalence, one can also construct
Tot using homotopy colimits. Define a category [2]+ by adjoining a single object � to
[2] and a single morphism 1 ! �; let [2]n+ = ([2]+)

n. Given G 2 B(Z)[2]
n , by treating

abelian groups as chain complexes supported in homological grading zero, we get an as-
sociated cubical diagram A : [2]n ! Kom. Extend A to a diagram A+ : [2]n+ ! Kom by
setting

(2-4) A+(v) =

(
A(v) if v 2 [2]n

0 otherwise.

Then the totalization of G is the homotopy colimit of A+. (See Segal [1974], Bousfield
and Kan [1972], and Vogt [1973].)
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2.2 Spatial refinements of diagrams of abelian groups. As a next step, given a finitely
generated chain complex represented by a functor F : [n + 1] ! B(Z) we wish to con-
struct a based cell complex with cells in dimensions N; : : : ; N +n whose reduced cellular
complex—with distinguished basis given by the cells—is isomorphic to the given complex
shifted up by N .

Let T (SN ) be the category with objects finite sets and morphisms HomT (SN )(S; T )

the set of all based maps
W

S SN !
W

T SN between wedges of N -dimensional spheres;
applying reduced N th homology to the morphisms produces a functor, also denoted eH N ,
from T (SN ) to B(Z). A strict N -dimensional spatial lift of F is a functor P : [n+1] !

T (SN ) satisfying eH N ı P = F and P is the constant map on any length two arrow in
[n + 1], i.e., a strict chain complex in T (SN ) lifting F . Just as morphisms in B(Z) are
matrices, if we replace SN by the sphere spectrum S, we may view a morphism in T (S)
as a matrix of maps S ! S by viewing

W
S S as a coproduct and

W
T S as a product.

Given such a linear diagram P , we can construct a based cell complex by taking map-
ping cones and suspending sequentially, cf. Cohen, J. Jones, and Segal [1995, §5]. If CW
denotes the category of based cell complexes, then P induces a diagram X : [n + 1] !

CW,

(2-5) X(n)
fn

�! X(n � 1)
fn�1
�! � � �

f2
�! X(1)

f1
�! X(0)

with every composition the constant map. Since f1 ı f2 is the constant map, there is an
induced map g1 : ΣX(2) ! Cone(f1) from the reduced suspension to the reduced cone.
Then we get a diagram Y : [n] ! CW,

(2-6) Y (n � 1) = ΣX(n)
Σfn
�! � � �

Σf3
�! Y (1) = ΣX(2)

g1
�! Y (0) = Cone(fn):

Take the mapping cone of g1 and suspend to get a diagram Z : [n � 1] ! CW and so on.
The reduced cellular chain complex of the final CW complex is the original chain complex,
shifted up byN . This construction is also functorial: if T (SN )

[n+1]
� is the full subcategory

generated by the functors which send every length two arrow to the constant map, then the
construction is a functor T (SN )

[n+1]
� ! CW. The construction can also be carried out

in a single step. Construct a category [n+1]+ by adjoining a single object � and a unique
morphism i ! � for all i ¤ 0. Extend X : [n + 1] ! CW to X+ : [n + 1]+ ! CW by
sending � to a point and take the homotopy colimit of X+.

A linear diagram P 2 T (SN )
[n+1]
� produces a cubical diagram Q : [2]n ! T (SN ) by

the analogue of Equation (2-2). There is a totalization functor Tot : T (SN )[2]
n

! CW
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extending the functor T (SN )
[n+1]
� ! CW so that

(2-7)
T (SN )

[n+1]
�

B(Z)
[n+1]
�

CW

Kom:

T (SN )[2]
n

B(Z)[2]
n

eC cell
� [�N ]

commutes. The totalization functor is defined as an iterated mapping cone or as a homo-
topy colimit of an extension of Q analogous to Equation (2-4).

2.3 Lax spatial refinements. Instead of working with strict functors as in the previous
section, sometimes is it more convenient to work with lax functors. A lax or homotopy
coherent or (1; 1) functor F : C ! Top is a diagram that commutes up to homotopies
which are specified, and the homotopies themselves commute up to higher homotopies
which are also specified, and so on; for details see Vogt [1973], Cordier [1982], and Lurie
[2009a]. More precisely, F consists of based topological spaces F (x) for x 2 C , and
higher homotopy maps F (fn; : : : ; f1) : [0; 1]n�1 �F (x0) ! F (xn) for composable mor-

phisms x0
f1

�! � � �
fn

�! xn with certain boundary conditions and restrictions involving
basepoints and identity morphisms; the case n = 1 is maps corresponding to the arrows
in the diagram, n = 2 is homotopies corresponding to pairs of composable arrows, etc.
A strict functor may be viewed as a lax functor. Let hTopC denote the category of lax
functors C ! Top, with morphisms given by lax functors C � [2] ! Top. (There are
also higher morphisms corresponding to lax functors C � [n] ! Top.)

There is a notion of a lax functor to T (SN ) induced from the notion of lax functors to
Top. Let hT (SN )

[n+1]

� be the subcategory of hT (SN )
[n+1] consisting of those objects

(respectively, morphisms) F such that F
�
x0

f1
�! � � �

fn
�! xn

�
is the constant map to the

basepoint for any string of morphisms in [n + 1] (respectively, [n + 1] � [2]) with some
fi of length � 2 in [n + 1] (respectively, [n + 1] � f0; 1g). We call such functors chain
complexes in T (SN ). (In Cohen-Jones-Segal’s language, chain complexes in T (SN ) are
functors Jn

0 ! T�.)
If one starts with a chain complex F 2 B(Z)

[n+1]
� and wishes to refine it to a based cell

complex, instead of constructing a strict N -dimensional spatial lift in T (SN )
[n+1]
� , it is

enough to construct a lax N -dimensional spatial lift, that is, a functor
P 2 hT (SN )

[n+1]

� with eH N ı P = F . Such a P produces a cell complex by adjoin-
ing a basepoint to get a lax diagram [n + 1]+ ! CW and then taking homotopy colimits.
Alternatively, we may convert P to a lax cubical diagram Q 2 hT (SN )

[2]n and proceed
as before. The iterated mapping cone construction becomes intricate since the associated
diagram X : [2]n ! CW is lax. So, extend to a lax diagram X+ : [2]n+ ! CW as before
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and then take its homotopy colimit. This generalization to the lax set-up remains functorial
and the analogue of Diagram (2-7) still commutes.

2.4 Framed flow categories. Cohen, J. Jones, and Segal [1995] first proposed lax spa-
tial refinements of diagrams F : [n + 1] ! B(Z) via framed flow categories, using the
Pontryagin-Thom construction. A framed flow category is an abstraction of the gradient
flows of a Morse-Smale function. Concretely, a framed flow category C consists of:

1. A finite set of objects Ob(C) and a grading gr : Ob(C) ! Z. After translating, we
may assume the gradings lie in [0; n].

2. For x; y 2 C with gr(x) � gr(y) � 1 = k, a morphism set M(x; y) which is a k-
dimensional hki-manifold. A hki-manifold M is a smooth manifold with corners so
that each codimension-c corner point lies in exactly c facets (closure of a codimension-
1 component), equipped with a decomposition of its boundary @M = [k

i=1@i M so
that each @i M is a multifacet of M (union of disjoint facets), and @i M \ @j M is a
multifacet of @i M and @j M , cf. Jänich [1968] and Laures [2000].

3. An associative compositionmapM(y; z)�M(x; y) ,! @gr(y)�gr(z)M(x; z) � M(x; z).
Setting

(2-8) M(i; j ) =
a
x;y

gr(x)=i;gr(y)=j

M(x; y);

the composition is required to induce an isomorphism of hi � j � 2i-manifolds

(2-9) @j �kM(i; k) Š M(j; k) � M(i; j ):

4. Neat embeddings �i;j : M(i; j ) ,! [0; 1)i�j �1�(�1; 1)D(i�j ) for some large D 2 N,
namely, smooth embeddings satisfying

(2-10) ��1
i;k([0; 1)j �k�1

� f0g � [0; 1)i�j �1
� (�1; 1)D(i�k)) = @j �kM(i; k)

and certain orthogonality conditions near boundaries. These embeddings are required
to be coherent with respect to composition. The space of such collections of neat em-
beddings is (D � 2)-connected.

5. Framings of the normal bundles of �i;j , also coherent with respect to composition,
which give extensions �i;j : M(i; j ) � [�1; 1]D(i�j ) ,! [0; 1)i�j �1 � (�1; 1)D(i�j ).

A framed flow category produces a lax linear diagram P 2 hT (SN )
[n+1]

� with N =

nD. On objects, set P (i) = fx 2 C j gr(x) = ig: On morphisms, define the map
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(�1;1) (�1;1) (�1;1)
�
a

�
b

�
c

�
d

[0;1)

(�1;1)

(�1;1)
[0;1)

(�1;1)

(�1;1)

�

ba

�

ca
�

db

�

dc

J
I

[0;1)

[0;1)

(�1;1)3

�

�

Ja

dI

B

Figure 2.1: A framed flow category C . Ob(C) = fx; y; z; wg in gradings
3; 2; 1; 0, respectively. The 0-dimensional morphism spaces are: M(x; y) = fag,
M(y; z) = fb; cg, and M(z; w) = fdg, each embedded in (�1; 1). The 1-
dimensional morphism spaces are: M(x; z) = I (resp. M(y; w) = J ) an interval,
embedded in [0; 1) � (�1; 1)2, with endpoints fba; cag (resp. fdb; dcg) embedded
in f0g � (�1; 1)2 by the product embedding. The 2-dimensional morphism space
is a disk B , embedded in [0; 1)2 � (�1; 1)3; it is a h2i-manifold with boundary
decomposed as a union of two arcs, @1B = dI � f0g � [0; 1) � (�1; 1)3 and
@2B = Ja � [0; 1) � f0g � (�1; 1)3. Coherent framings of all the normal bundles
are represented by the tubular neighborhoods �i;j . In the last subfigure, (�1; 1)3 is
drawn as an interval by projecting to the middle (�1; 1).

associated to the sequence m0 ! m1 ! � � � ! mk to be the constant map unless all
the arrows are length one. To a sequence of length one arrows, i ! i � 1 ! � � � ! j ,
associate a map

[0; 1]i�j �1
�

_
x2P (i)

SN = [0; 1]i�j �1
�

a
x2P (i)

[�1; 1]nD/@

!
_

y2P (j )

SN =
a

y2P (j )

[�1; 1]nD/@
(2-11)

using �i;j and the Pontryagin-Thom construction.
We can then apply the totalization functor to P to get a cell complex with cells in di-

mensions N; N + 1; : : : ; N + n. As Cohen, J. Jones, and Segal [1995] sketch, for a flow
category coming from a generic gradient flow of a Morse function, the cell complex pro-
duced by the totalization functor is the N th reduced suspension of the Morse cell complex
built from the unstable disks of the critical points.

Much of the above data can also be reformulated in the language of S -modules from
Pardon [n.d., §4.3]. Let S [n+1] be the (non-symmetric) multicategory with objects pairs
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(j; i) of integers with 0 � j � i � n, unique multimorphisms (i0; i1); (i1; i2); : : : ;

(ik�1; ik) ! (i0; ik)when k � 1, and no other multimorphisms (cf. shape multicategories
from Lawson, Lipshitz, and Sarkar [n.d.(b)]). Let Top be the multicategory of based
topological spaces whose multimorphismsX1; : : : ; Xk ! Y are mapsX1^� � �^Xk ! Y .
An S -module is a multifunctor S [n + 1] ! Top.

Given C , define S -modules S; J by setting S(j; i) = _y2P (j )S
D(i�j ) and J(j; i) =

(_x2P (i)S
D(i�j ))^ J(i; j ) where J is the category with objects integers and morphisms

J(i; j ) the one-point compactification of [0; 1)i�j �1 if i � j (which is a point if i = j )
and composition J(j; k)^J(i; j ) ! J(i; k) induced by the inclusion map [0; 1)j �k�1 �

f0g � [0; 1)i�j �1 ,! @[0; 1)i�k�1, cf. Cohen, J. Jones, and Segal [1995, §5]. On a multi-
morphism (i0; i1); : : : ; (ik�1; ik) ! (i0; ik), S sends the (y0; : : : ; yk�1) 2 P (i0) � � � � �

P (ik�1) summand SD(i1�i0) ^ � � � ^ SD(ik�ik�1) homeomorphically to the y0 summand
SD(ik�i0), and J sends the (x1; : : : ; xk) 2 P (i1)�� � ��P (ik) summand (SD(i1�i0)^� � �^

SD(ik�ik�1)) ^ (J(i1; i0) ^ � � � ^ J(ik ; ik�1)) to the xk summand SD(ik�i0) ^ J(ik ; i0),
homeomorphically on the first factor, and using the composition in J on the second factor.
Given a neat embedding ofC , we can define another S -moduleN by settingN(j; i) = ��i;j ,
the Thom space of the normal bundle of �i;j , if i > j . (When i = j , N(j; j ) is a point.)
Onmultimorphisms,N is induced from the inclusion maps im(�i1;i0)�� � ��im(�ik ;ik�1

) !

im(�ik ;i0). The Pontryagin-Thom collapse map is a natural transformation—an S -module
map—from J toN, which sends the x 2 P (i) summand of J(j; i) to the Thom-space sum-
mand [y2P (j )�

�
x;y in N(j; i). A framing of C produces another S -module map N ! S

which sends the summand ��x;y in N(j; i) to the y summand of S(j; i). Composing we get
an S -module map J ! S, which is precisely the data needed to recover a lax diagram in
hT (SN )

[n+1]

� .
Finally, as popularized by Abouzaid, note that since the (smooth) framings of �i;j were

only used to construct maps ��i;j ! _y2P (j )S
D(i�j ), a weaker structure on the flow

category—namely, coherent trivializations of the Thom spaces ��i;j as spherical fibrations—
might suffice.

2.5 Speculative digression: matrices of framed cobordisms. Perhaps it would be
tidy to reformulate the notion of stably framed flow categories as chain complexes in
some category B(Cob) equipped with a functor B(Cob) ! T (S). It is clear how such
a definition would start. Objects in B(Cob) should be finite sets. By the Pontryagin-
Thom construction, a map S ! S is determined by a framed 0-manifold; therefore, a
morphism in B(Cob) should be a matrix of framed 0-manifolds. To account for the
homotopies in T (S), B(Cob) should have higher morphisms. For instance, given two
(T � S)-matrices A; B of framed 0-manifolds, a 2-morphism from A to B should be a
(T � S)-matrix of framed 1-dimensional cobordisms. Given two such (T � S)-matrices
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M; N of framed 1-dimensional cobordisms, a 3-morphism from M to N should be a
(T � S)-matrix of framed 2-dimensional cobordisms with corners, and so on. That is, the
target category Cob seems to be the extended cobordism category, an (1; 1)-category
studied, for instance, by Lurie [2009b].

Since matrix multiplication requires only addition and multiplication, the construction
B(C) makes sense for any rig or symmetric bimonoidal category C and, presumably, for
a rig (1; 1)-category, for some suitable definition; and perhaps the framed cobordism
category Cob is an example of a rig (1; 1)-category. Maybe the Pontryagin-Thom
construction gives a functor B(Cob) ! T (S), and that a stably framed flow category is
just a functor [n + 1] ! B(Cob).

Rather than pursuing this, wewill focus on a tiny piece ofCob, in which all 0-manifolds
are framed positively, all 1-dimensional cobordisms are trivially-framed intervals and,
more generally, all higher cobordisms are trivially-framed disks. In this case, all of the in-
formation is contained in the objects, 1-morphisms, and 2-morphisms, and this tiny piece
equals B(Sets) with Sets being viewed as a rig category via disjoint union and Cartesian
product.

2.6 The cube and the Burnside category. The Burnside category B (associated to
the trivial group) is the following weak 2-category. The objects are finite sets. The 1-
morphisms Hom(S; T ) are T � S matrices of finite sets; composition is matrix multipli-
cation, using the disjoint union and product of sets in place of + and � of real numbers.
The 2-morphisms are matrices of entrywise bijections between matrices of sets.

(The category B is denoted S2 by Hu, D. Kriz, and I. Kriz [2016], and is an example
of what they call a ?-category. The realization procedure below is a concrete analogue of
the Elmendorf andMandell [2006] infinite loop space machine; see also Lawson, Lipshitz,
and Sarkar [n.d.(a), §8].)

There is an abelianization functor Ab : B ! B(Z) which is the identity on objects
and sends a morphism (At;s)s2S;t2T to the matrix (#At;s)s2S;t2T 2 ZT �S . We are given
a diagram G 2 B(Z)[2]

n which we wish to lift to a diagram Q 2 hT (SN )
[2]n . As we

will see, it suffices to lift G to a diagram D : [2]n ! B.
Since B is a weak 2-category, we should first clarify what we mean by a diagram in

B. A strictly unital lax 2-functor—henceforth just called a lax functor—D : [2]n ! B

consists of the following data:

1. A finite set F (x) 2 B for each v 2 [2]n.

2. An F (v) � F (u)-matrix of finite sets F (u ! v) 2 HomB(F (u); F (v)) for each
u > v 2 [2]n.
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3. A 2-isomorphism Fu;v;w : F (v ! w) ı1 F (u ! v) ! F (u ! w) for each u > v >

w 2 [2]n so that for each u > v > w > z, Fu;w;z ı2 (Id ı1Fu;v;w) = (Fv;w;z ı1 Id) ı2

Fu;v;z , where ıi denotes composition of i -morphisms (i = 1; 2).

Next we turn such a lax diagram D : [2]n ! B into a lax diagram Q 2 hT (SN )
[2]n ,

N � n + 1, satisfying eH N ı Q = Ab ı D. Associate a box Bx = [�1; 1]N to each
x 2 D(v), v 2 [2]n. For each u > v, let D(u ! v) = (Ay;x)x2D(u);y2D(v) and let
E(u ! v) be the space of embeddings �u;v = f�u;v;xgx2D(u) where

(2-12) �u;v;x :
a

y

Ay;x � By ,! Bx

whose restriction to each copy of By is a sub-box inclusion, i.e., composition of a transla-
tion and dilation. The space E(A) is (N � 2)-connected.

For any such data �u;v , a collapse map and a fold map give a box map

(2-13) b�u;v :
_

x2D(u)

SN =
a

x2D(u)

Bx/@ !
a

x2D(u)
y2D(v)
a2Ay;x

By/@ !
a

y2D(v)

By/@ =
_

y2D(v)

SN :

Given u > v > w and data �u;v , �v;w , the compositionb�v;w ıb�u;v is also a box map
corresponding to some induced embedding data.

The construction of the lax diagram Q 2 hT (SN )
[2]n is inductive. On objects, Q

agrees with D. For (non-identity) morphisms u ! v, choose a box map Q(u ! v) =b�u;v :
W

x2D(u) SN !
W

y2D(v) SN refining D(u ! v). Staying in the space of box
maps, the required homotopies exist and are unique up to homotopy because each E(A)

is N � 2 � n � 1 connected, and there are no sequences of composable morphisms of
length > n � 1. (See Lawson, Lipshitz, and Sarkar [ibid.] for details.)

The above construction closely follows the Pontryagin-Thomprocedure fromSection 2.4.
Indeed, functors from the cube to the Burnside category correspond to certain kinds of
flow categories (cubical ones), and the realizations in terms of box maps and cubical flow
categories agree.

3 Khovanov homology

3.1 The Khovanov cube. Khovanov homology was defined by Khovanov [2000] us-
ing the Frobenius algebra V = H �(S2). Let x� 2 H 0(S2) and x+ 2 H 2(S2) be the
positive generators. (Our labeling is opposite Khovanov’s convention, as the maps in our
cube go from 1 to 0.) Via the equivalence of Frobenius algebras and (1 + 1)-dimensional
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topological field theories (cf. Abrams [1996]), we can reinterpret V as a functor from the
(1 + 1)-dimensional bordism category Cob1+1 to B(Z) that assigns fx+; x�g to circle,
and hence

Q
�0(C )fx+; x�g to a one-manifold C . For x 2 V (C ), let kxk+ (respectively,

kxk�) denote the number of circles in C labeled x+ (respectively, x�) by x. For a cobor-
dism Σ: C1 ! C0, the map V (Σ): ZhV (C1)i = ˝�0(C1)Zhx+; x�i ! ZhV (C0)i =

˝�0(C0)Zhx+; x�i is the tensor product of the maps induced by the connected compo-
nents of Σ; and if Σ: C1 ! C0 is a connected, genus-g cobordism, then the (y; x)-entry
of the matrix representing the map, x 2 V (C1), y 2 V (C0), is

(3-1)

8̂<̂
:
1 if g = 0, kxk+ + kyk� = 1,
2 if g = 1, kxk+ = kyk� = 0,
0 otherwise

(cf. Bar-Natan [2005] and Hu, D. Kriz, and I. Kriz [2016]).
Now, given a link diagram L with n crossings numbered c1; : : : ; cn, Khovanov [2000]

constructs a cubical diagram GKh = V ı L 2 B(Z)[2]
n where L : [2]n ! Cob1+1 is

the cube of resolutions (extending Kauffman [1987]) defined as follows. For v 2 [2]n,
let L(v) be the complete resolution of the link diagram L formed by resolving the i th

crossing ci by the 0-resolution if vi = 0 and by the 1-resolution if vi = 1. For
a morphism u ! v, L(u ! v) is the cobordism which is an elementary saddle from the
1-resolution to the 0-resolution near crossings ci for each i with ui > vi , and is a product
cobordism elsewhere.

The dual of the resulting total complex, shifted by n�, the number of negatives cross-
ings in L, is usually called the Khovanov complex

(3-2) C�
Kh(L) = Dual(Tot(GKh))[n�];

and its cohomology Kh�(L) the Khovanov homology, which is a link invariant. There is
an internal grading, the quantum grading, that comes from placing the two symbols x+

and x� in two different quantum gradings, and the entire complex decomposes along this
grading, so Khovanov homology inherits a second grading Khi (L) = ˚jKhi;j (L), and
its quantum-graded Euler characteristic

(3-3)
X
i;j

(�1)i qj rank(Khi;j (L))

recovers the unnormalized Jones polynomial of L. The quantum grading persists in the
space-level refinement but, for brevity, we suppress it.

3.2 The stable homotopy type. Following Section 2.6, to give a space-level refinement
of Khovanov homology it suffices to lift GKh to a lax functor [2]n ! B.
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Hu, D. Kriz, and I. Kriz [2016, §3.2] shows that the TQFT V : Cob1+1
! B(Z) does

not lift to a functor Cob1+1
! B. However, we may instead work with the embedded

cobordism category Cob1+1
e , which is a weak 2-category whose objects are closed 1-

manifolds embedded in S2, morphisms are compact cobordisms embedded in S2 � [0; 1],
and 2-morphisms are isotopy classes of isotopies in S2 � [0; 1] rel boundary. The cube
L : [2]n ! Cob1+1 factors through a functor Le : [2]

n ! Cob1+1
e . (This functor Le

is lax, similar to what we had for functors to the Burnside category except without strict
unitarity.) So it remains to lift V to a (lax) functor Ve : Cob1+1

e ! B

(3-4) [2]n

Cob1+1

Cob1+1
e

B(Z)

B.

L

Le

V

Ve

On an embedded one-manifold C , we must set

(3-5) Ve(C ) =
Y

�0(C )

fx+; x�g:

For an embedded cobordism Σ: C1 ! C0 with Ci embedded in S2 � fig, the matrix
Ve(Σ) is a tensor product over the connected components of Σ, i.e., if Σ = qm

j=1

�
Σj :

C1;j ! C0;j

�
and (yj ; xj ) 2 Ve(C0;j )� Ve(C1;j ), then the (Πm

j=1yj ;Πm
j=1xj ) entry of

Ve(Σ) equals

(3-6) Ve(Σ1)y1;x1 � � � � � Ve(Σm)ym;xm :

And finally, if Σ: C1 ! C0 is a connected genus-g cobordism, then for x 2 Ve(C1) and
y 2 Ve(C0), the (y; x)-entry of Ve(Σ) must be a

(3-7)

8̂<̂
:
1-element set if g = 0, kxk+ + kyk� = 1,
2-element set if g = 1, kxk+ = kyk� = 0,
¿ otherwise.

One-element sets do not have any non-trivial automorphisms, so we may set all the one-
element sets to fptg. The two-element sets must be chosen carefully: they have to behave
naturally under isotopy of cobordisms (the 2-morphisms in Cob1+1

e ) and must admit
natural isomorphisms Ve(Σ ı Σ0) Š Ve(Σ) ı Ve(Σ

0) when composing cobordisms Σ0 :

C2 ! C1 and Σ: C1 ! C0.
Decompose S2 � [0; 1] as a union of two compact 3-manifolds glued along Σ, A [Σ B .

Set Ve(Σ) to be the (cardinality two) set of unordered bases f˛; ˇg for ker(H 1(Σ) !



1184 ROBERT LIPSHITZ AND SUCHARIT SARKAR

H 1(@Σ)) Š Z2 so that ˛ (respectively, ˇ) is the restriction of a generator of
ker(H 1(A) ! H 1(A\(S2 �f0; 1g))) Š Z (respectively, ker(H 1(B) ! H 1(B \(S2 �

f0; 1g))) Š Z), and so that, if we orient Σ as the boundary of A then h˛ [ ˇ; [Σ]i = 1 (or
equivalently, if we orient Σ as the boundary of B then hˇ [ ˛; [Σ]i = 1). This assignment
is clearly natural.

Given cobordisms Σ0 : C2 ! C1 and Σ: C1 ! C0, we need to construct a natural 2-
isomorphism Ve(Σ)ıVe(Σ

0) ! Ve(ΣıΣ0). The only non-trivial case is whenΣ andΣ0 are
genus-0 cobordisms gluing to form a connected, genus-1 cobordism. In that case, letting
x 2 Ve(C2) (respectively, y 2 Ve(C0)) denote the generator that labels all circles of C2

by x� (respectively, all circles of C0 by x+), we need to construct a bijection between the
(y; x)-entry My;x of Ve(Σ)ıVe(Σ

0) and the (y; x)-entry Ny;x of Ve(ΣıΣ0). Consider an
element Z of My;x ; Z specifies an element z 2 V (C1). There is a unique circle C in C1

that is non-separating in Σ ıΣ0 and is labeled x+ by z. Choose an orientation o of Σ ıΣ0,
orient C as the boundary ofΣ, and let [C ] denote the image of C in H1(ΣıΣ0; @(ΣıΣ0)).
Assign to Z the unique basis in Ny;x that contains the Poincaré dual of [C ]. It is easy to
check that this map is well-defined, independent of the choice of o, natural, and a bijection.

This concludes the definition of the functor Ve : Cob1+1
e ! B. The spatial lift QKh 2

hT (SN )
[2]n is then induced from the composition Ve ı Le : [2]

n ! B. Totalization
produces a cell complex Tot(QKh) with

(3-8) eC �
cell(Tot(QKh))[N + n�] = C�

Kh(L):

We define the Khovanov spectrum XKh(L) to be the formal (N + n�)
th desuspension of

Tot(QKh). The stable homotopy type ofXKh(L) is a link invariant; see Lipshitz and Sarkar
[2014a], Hu, D. Kriz, and I. Kriz [2016], and Lawson, Lipshitz, and Sarkar [n.d.(a)]. The
spectrum decomposes as a wedge sum over quantum gradings, XKh(L) =

W
j Xj

Kh(L).
There is also a reduced version of the Khovanov stable homotopy type, eXKh(L), refining
the reduced Khovanov chain complex.

3.3 Properties and applications. In order to apply the Khovanov homotopy type to
knot theory, one needs to extract some concrete information from it beyond Khovanov
homology. Doing so, one encounters three difficulties:
.. 1. The number of vertices of the Khovanov cube is 2n, where n is the number of cross-

ings of L, so the number of cells in the CW complex XKh(L) grows at least that
fast. So, direct computation must be by computer, and for relatively low crossing
number links.

.. 2. For low crossing number links, Khi;j (L) is supported near the diagonal 2i � j =

�(L), so each Xj
Kh(L) has nontrivial homology only in a small number of adjacent
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gradings, and these Khi;j (L) have no p-torsion for p > 2. If X is a spectrum so
that eH i (X) is nontrivial only for i 2 fk; k + 1g then the homotopy type of X is
determined by eH �(X), while if eH �(X) is nontrivial in only three adjacent gradings
and has no p-torsion (p > 2) then the homotopy type of X is determined by eH �(X)

and the Steenrod operations Sq1 and Sq2 (see Baues [1995, Theorems 11.2, 11.7]).
.. 3. There are no known formulas for most algebro-topological invariants of a CW com-

plex. (The situation is a bit better for simplicial complexes.)

Lipshitz and Sarkar [2014c] found an explicit formula for the operation
Sq2 : Khi;j (L;F2) ! Khi+2;j (L;F2). The operation Sq1 is the Bockstein, and hence
easy to compute. Using these, one can determine the spectra Xj

Kh(L) for all prime links
up to 11 crossings. All these spectra are wedge sums of (de)suspensions of 6 basic pieces
(cf. .. 2), and all possible basic pieces except CP 2 occur (see . 1). The first knot for
which Xi;j

Kh (K) is not a Moore space is also the first non-alternating knot: T (3; 4). Ex-
tending these computations:

Theorem 1 (Seed [n.d.]). There are pairs of knots with isomorphic Khovanov cohomolo-
gies but non-homotopy equivalent Khovanov spectra.

The first such pair is 11n
70 and 13n

2566. D. Jones, Lobb, and Schütz [n.d.(b)] introduced
moves and simplifications allowing them to give a by-hand computation of Sq2 for T (3; 4)

and some other knots.

Theorem 2 (Lawson, Lipshitz, and Sarkar [n.d.(a)]). Given links L, L0, XKh(L q L0) '

XKh(L) ^ XKh(L
0) and, if L and L0 are based, eXKh(L#L0) ' eXKh(L) ^ eXKh(L

0)

and XKh(L#L0) ' XKh(L) ^XKh(U ) XKh(L
0). Finally, if m(L) is the mirror of L then

XKh(m(L)) is the Spanier-Whitehead dual to XKh(L).

Corollary 3.1. For any integer k there is a knot K so that the operation Sqk : Kh�;�(K)

! Kh�+k;�(K) is nontrivial. (Compare . 3.)

Proof. Choose a knot K0 so that in some quantum grading, fKh(K0) has 2-torsion butfKh(K0;F2) has vanishing Sqi for i > 1. (For instance, K0 = 13n
3663 works, Shu-

makovitch [2014].) Let K =

k‚ …„ ƒ
K0# � � � #K0. By the Cartan formula, Sqk(˛) ¤ 0 for

some ˛ 2 fKh(K;F2). The short exact sequence

0 ! fKh(K;F2) ! Kh(K;F2) ! fKh(K;F2) ! 0

from Rasmussen [2005, §4.3] is induced by a cofiber sequence of Khovanov spectra from
Lipshitz and Sarkar [2014a, §8], so if ˇ 2 Kh(K;F2) is any preimage of ˛ then by natu-
rality, Sqk(ˇ) ¤ 0, as well.
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Plamenevskaya [2006] defined an invariant of links L in S3 transverse to the standard
contact structure, as an element of the Khovanov homology of L.

Theorem 3 (Lipshitz, Ng, and Sarkar [2015]). Given a transverse link L in S3 there is a
well-defined cohomotopy class of XKh(L) lifting Plamenevskaya’s invariant.

While Lipshitz, Ng, and Sarkar [ibid.] show that Plamenevskaya’s class is known to be
invariant under flypes, the homotopical refinement is not presently known to be. It remains
open whether either invariant is effective (i.e., stronger than the self-linking number).

The Steenrod squares onKhovanov homologywas used by Lipshitz and Sarkar [2014b]
to tweak the concordance invariant and slice-genus bound s by Rasmussen [2010] to give
potentially new concordance invariants and slice genus bounds. In the simplest case, Sq2,
these concordance invariants are, indeed, different fromRasmussen’s invariants. They can
be used to give some new results on the 4-ball genus for certain families of knots, see Law-
son, Lipshitz, and Sarkar [n.d.(a)]. More striking, Feller, Lewark, and Lobb [n.d.] used
these operations to resolve whether certain knots are squeezed, i.e., occur in a minimal-
genus cobordism between positive and negative torus knots.

In a different direction, the Khovanov homotopy type admits a number of extensions.
Lobb, Orson, and Schütz [2017] and, independently, Willis [n.d.] proved that the Kho-
vanov homotopy type stabilizes under adding twists, and used this to extend it to a col-
ored Khovanov stable homotopy type; further stabilization results were proved by Willis
[ibid.] and Islambouli and Willis [n.d.]. D. Jones, Lobb, and Schütz [n.d.(a)] proposed
a homotopical refinement of the sln Khovanov-Rozansky homology for a large class of
knots and there is also work in progress in this direction by Hu, I. Kriz, and Somberg
[n.d.]. Sarkar, Scaduto, and Stoffregen [n.d.] gave a homotopical refinement of the odd
Khovanov homology of Ozsváth, Rasmussen, and Szabó [2013].

The construction of the functor Ve is natural enough that it was used by Lawson, Lip-
shitz, and Sarkar [n.d.(b)] to give a space-level refinement of the arc algebras and tangle
invariants from Khovanov [2002]. In the refinement, the arc algebras are replaced by
ring spectra (or, if one prefers, spectral categories), and the tangle invariants by module
spectra.

3.4 Speculation. We conclude with some open questions:

. 1. Does CP 2 occur as a wedge summand of the Khovanov spectrum associated to
some link? (Cf. Section 3.3.) More generally, are there non-obvious restrictions on
the spectra which occur in the Khovanov homotopy types?

. 2. Is the obstruction to amphichirality coming from the Khovanov spectrum stronger
than the obstruction coming from Khovanov homology? Presumably the answer is
“yes,” but verifying this might require interesting new computational techniques.
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. 3. Are there prime knots with arbitrarily high Steenrod squares? Other power opera-
tions? Again, we expect that the answer is “yes.”

. 4. How can one compute Steenrod operations, or stable homotopy invariants beyond
homology, from a flow category? (Compare Lipshitz and Sarkar [2014c].)

. 5. Is the refined Plamenevskaya invariant from Lipshitz, Ng, and Sarkar [2015] effec-
tive? Alternatively, is it invariant under negative flypes / SZ moves?

. 6. Is there a well-defined homotopy class of maps of Khovanov spectra associated to
an isotopy class of link cobordisms Σ � [0; 1] � R3? Given such a cobordism Σ in
general position with respect to projection to [0; 1], there is an associated map, but it
is not known if this map is an isotopy invariant. More generally, one could hope to
associate an (1; 1)-functor from a quasicategory of links and embedded cobordisms
to a quasicategory of spectra, allowing one to study families of cobordisms. If not,
this is a sense in which Khovanov homotopy, or perhaps homology, is unnatural.
Applications of these cobordism maps would also be interesting (cf. Swann [2010]).

. 7. If analytic difficulties are resolved, applying the Cohen-Jones-Segal construction to
the symplectic Khovanov homology of Seidel and Smith [2006] should also give a
Khovanov spectrum. Is that symplectic Khovanov spectrum homotopy equivalent
to the combinatorial Khovanov spectrum? (Cf. Abouzaid and Smith [n.d.].)

. 8. The (symplectic) Khovanov complex admits, in some sense, an O(2)-action, cf.
Manolescu [2006], Seidel and Smith [2010], Hendricks, Lipshitz, and Sarkar [n.d.],
and Sarkar, Seed, and Szabó [2017]. Does the Khovanov stable homotopy type?

. 9. Is there a homotopical refinement of the Lee [2005] or Bar-Natan [2005] deforma-
tion of Khovanov homology? Perhaps no genuine spectrum exists, but one can hope
to find a lift of the theory to a module over ku or ko or another ring spectrum (cf. Co-
hen [2009]). Exactly how far one can lift the complex might be predicted by the
polarization class of a partial compactification of the symplectic Khovanov setting
from Seidel and Smith [2006].

. 10. Can one make the discussion in Section 2.5 precise? Are there other rig (or 1-rig)
categories, beyond Sets, useful in refining chain complexes in categorification or
Floer theory to get modules over appropriate ring spectra?

. 11. Is there an intrinsic, diagram-free description of XKh(K) or, for that matter, for Kho-
vanov homology or the Jones polynomial?
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Abstract
The study of triangulations on manifolds is closely related to understanding the

three-dimensional homology cobordism group. We review here what is known about
this group, with an emphasis on the local equivalence methods coming from Pin(2)-
equivariant Seiberg-Witten Floer spectra and involutive Heegaard Floer homology.

1 Triangulations of manifolds

A triangulation of a topological space X is a homeomorphism f : jKj ! X , where jKj

is the geometric realization of a simplicial complex K. If X is a smooth manifold, we
say that the triangulation is smooth if its restriction to every closed simplex of jKj is a
smooth embedding. By the work of Cairns [1935] and Whitehead [1940], every smooth
manifold admits a smooth triangulation. Furthermore, this triangulation is unique, up to
pre-compositions with piecewise linear (PL) homeomorphisms.

The question of classifying triangulations for topological manifolds is much more dif-
ficult. Research in this direction was inspired by the following two conjectures.

Hauptvermutung (Steinitz [1908], Tietze [1908]): Any two triangulations of a space X
admit a common refinement (i.e., another triangulation that is a subdivision of both).

Triangulation Conjecture (based on a remark by Kneser [1926]): Any topological mani-
fold admits a triangulation.

Both of these conjectures turned out to be false. The Hauptvermutung was disproved
by Milnor [1961], who used Reidemeister torsion to distinguish two triangulations of a
space X that is not a manifold. Counterexamples on manifolds came out of the work of
Kirby and Siebenmann [1977]. (For a nice survey of the mathematics surrounding the
The author was supported by NSF grant number DMS-1708320.
MSC2010: primary 57R58; secondary 57Q15, 57M27.
Keywords: manifold, gauge theory, Seiberg-Witten, Heegaard Floer.
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Hauptvermutung, see Ranicki [1996].) With regard to the triangulation conjecture, coun-
terexamples were shown to exist in dimension 4 by Casson (cf. Akbulut and McCarthy
[1990]), and in all dimensions � 5 by Manolescu [2016].

When studying triangulations on manifolds, a natural condition that one can impose
is that the link of every vertex is PL homeomorphic to a sphere. Such triangulations are
called combinatorial, and (up to subdivision) they are equivalent to PL structures on the
manifold.

In dimensions � 3, every topological manifold admits a unique smooth and a unique
PL structure; cf. Radó [1925] and Moise [1952]. In dimensions � 5, PL structures on
topological manifolds were classified in the 1960’s. Specifically, building on work of
Sullivan [1996] and Casson [1996], Kirby and Siebenmann [1977] proved the following:

• A topological manifoldM of dimension d � 5 admits a PL structure if and only if
a certain obstruction class∆(M ) 2 H 4(M ;Z/2) vanishes;

• For every d � 5, there exists a d -dimensional manifoldM such that ∆(M ) ¤ 0,
that is, one without a PL structure;

• If ∆(M ) = 0 for a d -dimensional manifoldM with d � 5, then the PL structures
on M are classified by elements of H 3(M ;Z/2). (This shows the failure of the
Hauptvermutung for manifolds.)

Finally, in dimension four, PL structures are the same as smooth structures, and the classifi-
cation of smooth structures is an open problem—although much progress has been made
using gauge theory, starting with the work of Donaldson [1983]. Note that Freedman
[1982] constructed non-smoothable topological four-manifolds, such as the E8-manifold.

We can also ask about arbitrary triangulations of topological manifolds, not necessarily
combinatorial. It is not at all obvious that non-combinatorial triangulations of manifolds
exist, but they do.
Example 1.1. Start with a triangulation of a non-trivial homology sphereM d with�1(M ) ¤

1; such homology spheres exist in dimensions d � 3. Take two cones on each simplex, to
obtain a triangulation of the suspension ΣM . Repeat the procedure, to get a triangulation
of the double suspension Σ2M . By the double suspension theorem of Edwards [2006]
and Cannon [1979], the space Σ2M is homeomorphic to Sd+2. However, the link of
one of the final cone points is ΣM , which is not even a manifold. Thus, Sd+2 admits a
non-combinatorial triangulation.
Remark 1.2. One can show that any triangulation of a manifold of dimension � 4 is
combinatorial.

In general, if we triangulate a d -dimensional manifold, the link of a k-dimensional
simplex has the homology of the (d � k � 1)-dimensional sphere. (However, the link
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may not be a manifold, as in the example above.) In the 1970’s, Galewski and Stern
[1980] and Matumoto [1978] developed the theory of triangulations of high-dimensional
manifolds by considering homology cobordism relations between the links of simplices.
Their theory involves the n-dimensional homology cobordism group Θn

Z, which we now
proceed to define.

Let us first define a d -dimensional combinatorial homology manifoldM to be a simpli-
cial complex such that the links of k-dimensional simplices have the homology of Sd�k�1.
We can extend this definition to combinatorial homology manifoldsM with boundary, by
requiring the links of simplices on the boundary to have the homology of a disk (and so
that @M is a combinatorial homology manifold). We let

Θn
Z = fY n oriented combinatorial homology manifolds;H�(Y ) Š H�(S

n)g/ ∼

where the equivalence relation is given by Y0 ∼ Y1 () there exists a compact, oriented,
combinatorial homology manifold W n+1 with @W = (�Y0) [ Y1 and
H�(W;Yi ;Z) = 0: If Y0 ∼ Y1, we say that Y0 and Y1 are homology cobordant. Sum-
mation in Θn

Z is given by connected sum, the standard sphere Sn gives the zero element,
and �[Y ] is the class of Y with the orientation reversed. This turns Θn

Z into an Abelian
group.

It follows from the work of Kervaire [1969] thatΘn
Z = 0 for n ¤ 3. On the other hand,

the three-dimensional homology cobordism group Θ3
Z is nontrivial. To study Θ3

Z, note
that in dimension three, every homology sphere is a manifold. Also, a four-dimensional
homology cobordism can be replaced by a PL one, between the same homology spheres,
cf. Martin [1973, Theorem A]. Furthermore, in dimensions three and four, the smooth
and PL categories are equivalent. This shows that we can define Θ3

Z in terms of smooth
homology spheres and smooth cobordisms.

The easiest way to see that Θ3
Z ¤ 0 is to consider the Rokhlin homomorphism

(1) � : Θ3
Z ! Z/2; �(Y ) = �(W )/8 (mod 2);

where W is any compact, smooth, spin 4-manifold with boundary Y , and �(W ) denotes
the signature of W . For example, the Poincaré sphere P bounds the negative definite
plumbing �E8 of signature �8, and therefore has �(P ) = 1: This implies that P is not
homology cobordant to S3, and hence Θ3

Z ¤ 0.
Let us introduce the exact sequence:

(2) 0 �! ker(�) �! Θ3
Z

�
�! Z/2 �! 0:

We are now ready to state the results of Galewski and Stern [1980], Galewski and
Stern [1979] and Matumoto [1978] about triangulations of high-dimensional manifolds.
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They mostly parallel those of Kirby-Siebenmann on combinatorial triangulations. One
difference is that, when studying arbitrary triangulations, the natural equivalence relation
to consider is concordance: Two triangulations of the same manifold M are concordant
if there exists a triangulation onM � [0; 1] that restricts to the two triangulations on the
boundariesM � f0g andM � f1g.

• A d -dimensional manifoldM (for d � 5) is triangulable if and only if ı(∆(M )) =

0 2 H 5(M ; ker(�)): Here, ∆(M ) 2 H 4(M ;Z/2) is the Kirby-Siebenmann ob-
struction to the existence of PL structures, and ı : H 4(M ;Z/2) ! H 5(M ; ker(�))
is the Bockstein homomorphism coming from the exact sequence (2).

• There exist non-triangulable manifolds in dimensions � 5 if and only if the exact
sequence (2) does not split. (In Manolescu [2016], the author proved that it does
not split.)

• If they exist, triangulations on a manifoldM of dimension � 5 are classified (up to
concordance) by elements inH 4(M ; ker(�)).

The above results provide an impetus for further studying the groupΘ3
Z, together with

the Rokhlin homomorphism.

2 The homology cobordism group

SinceΘ3
Z can be defined in terms smooth four-dimensional cobordisms, it is not surprising

that the tools used to better understand it came from gauge theory. Indeed, beyond the
existence of the Rokhlin epimorphism, the first progress was made by Fintushel and Stern
[1985], using Yang-Mills theory:

Theorem 2.1 (Fintushel and Stern [ibid.]). The group Θ3
Z is infinite. For example, it

contains a Z subgroup, generated by the Poincaré sphere Σ(2; 3; 5).

Their proof involved associating to a Seifert fibered homology sphere Σ(a1; : : : ; ak) a
numerical invariant R(a1; : : : ; ak), the expected dimension of a certain moduli space of
self-dual connections. By combining these methods with Taubes’ work on end-periodic
four-manifolds (cf. Taubes [1987]), one obtains a stronger result:

Theorem 2.2 (Fintushel and Stern [1990], Furuta [1990]). The group Θ3
Z contains a Z1

subgroup. For example, the classes [Σ(2; 3; 6k � 1)]; k � 1; are linearly independent in
Θ3

Z.

When Y is a homology three-sphere, the Yang-Mills equations on R � Y were used
by Floer [1988] to construct his celebrated instanton homology. From the equivariant
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structure on instanton homology, Frøyshov [2002] defined a homomorphism

h : Θ3
Z ! Z;

with the property that h(Σ(2; 3; 5)) = 1 (and therefore h is surjective). This implies the
following:

Theorem 2.3 (Frøyshov [ibid.]). The group Θ3
Z has a Z summand, generated by the

Poincaré sphere P = Σ(2; 3; 5).

Since then, further progress on homology cobordism was made using Seiberg-Witten
theory and its symplectic-geometric replacement, Heegaard Floer homology. These will
be discussed in Sections 3 and 4, respectively.

In spite of this progress, the following structural questions about Θ3
Z remain unan-

swered:

Questions: Does Θ3
Z have any torsion? Does it have a Z1 summand? Is it in fact Z1?

We remark that the existence of a Z1 summand could be established by constructing
an epimorphism Θ3

Z ! Z1. In the context of knot concordance, a result of this type was
proved by Hom [2015]: Using knot Floer homology, she showed the existence of a Z1

summand in the smooth knot concordance group generated by topologically slice knots.

3 Seiberg-Witten theory

The Seiberg-Witten equations, introduced in Seiberg andWitten [1994] andWitten [1994]
are a prominent tool for studying smooth four-manifolds. They form a system of nonlinear
partial differential equations with a U (1) gauge symmetry; the system is elliptic modulo
the gauge action. In dimension three, the information coming from these equations can
be packaged into an invariant called Seiberg-Witten Floer homology (or monopole Floer
homology). This was defined in full generality, for all three-manifolds, by Kronheimer and
Mrowka [2007] in their book. For rational homology spheres, alternate constructions were
given in Marcolli and B.-L. Wang [2001], Manolescu [2003], Frøyshov [2010]. Lidman
and Manolescu [2016] showed that the definitions in Manolescu [2003] and Kronheimer
and Mrowka [2007] are equivalent.

In many settings, the Seiberg-Witten equations can be used as a replacement for the
Yang-Mills equations. For example, from the S1-equivariant structure on Seiberg-Witten
Floer homology one can extract an epimorphism

ı : Θ3
Z ! Z;
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and give a new proof of Theorem 2.3; see Frøyshov [2010] and Kronheimer and Mrowka
[2007]. It is not known whether ı coincides with the invariant h coming from instanton
homology. Note that Frøyshov [2010] and Kronheimer and Mrowka [2007] use the same
notation h for the invariant coming from Seiberg-Witten theory; to prevent confusion with
the instanton one, we write ı here. We use the normalization that ı(P ) = 1 for the
Poincaré sphere P .

The construction of Seiberg-Witten Floer homology inManolescu [2003] actually gives
a refined invariant: an S1-equivariant Floer stable homotopy type, SWF, which can be
associated to rational homology spheres equipped with spinc structures. The definition
of SWF was recently generalized to all three-manifolds (in an “unfolded” version) by
Khandhawit, J. Lin, and Sasahira [2016].

When the spinc structure comes from a spin structure, the S1 symmetry of the Seiberg-
Witten equations (given by constant gauge transformations) can be expanded to a symme-
try by the group Pin(2), where

Pin(2) = S1
[ jS1

� C ˚ jC = H:

As observed in Manolescu [2016], this turns SWF into a Pin(2)-equivariant stable homo-
topy type, and allows us to define a Pin(2)-equivariant Seiberg-Witten Floer homology.
By imitating the construction of the Frøyshov invariant ı in this setting, we obtain three
new maps

(3) ˛; ˇ; 
 : Θ3
Z

// Z:

These are not homomorphisms (we use the dotted arrow to indicate that), but on the other
hand they are related to the Rokhlin homomorphism from (1):

˛ � ˇ � 
 � � (mod 2):

Under orientation reversal, the three invariants behave as follows:

˛(�Y ) = �
(Y ); ˇ(�Y ) = �ˇ(Y ):

The properties of ˇ suffice to prove the following.

Theorem3.1 (Manolescu [ibid.]). There are no 2-torsion elements [Y ] 2 Θ3
Z with�(Y ) =

1. Hence, the short exact sequence (2) does not split and, as a consequence of the work
of Galewski and Stern [1980] and Matumoto [1978], non-triangulable manifolds exist in
every dimension � 5.

Indeed, if Y were a homology sphere with 2[Y ] = 0 2 Θ3
Z, then Y would be homology

cobordant to �Y , which would imply that

ˇ(Y ) = ˇ(�Y ) = �ˇ(Y ) ) ˇ(Y ) = 0 ) �(Y ) = 0:
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An alternate construction of Pin(2)-equivariant Seiberg-Witten Floer homology, in the
spirit of Kronheimer and Mrowka [2007] and applicable to all three-manifolds, was given
by F. Lin [2014]. In particular, this gives an alternate proof of Theorem 3.1. Lin’s theory
was further developed in F. Lin [2015], F. Lin [2016a], F. Lin [2016b], Dai [2016].

The invariants ˛; ˇ; 
 were computed for Seifert fibered spaces by Stoffregen [2015b]
and by F. Lin [2015]. One application of their calculations is the following result (a proof
of which was also announced earlier by Frøyshov, using instanton homology).

Theorem 3.2 (Frøyshov [n.d.], Stoffregen [2015b], F. Lin [2015]). There exist homology
spheres that are not homology cobordant to any Seifert fibered space.

This should be contrasted with a result of Myers [1983], which says that every element
of Θ3

Z can be represented by a hyperbolic three-manifold.
In Stoffregen [2015a], Stoffregen studied the behavior of the invariants ˛; ˇ; 
 under

taking connected sums, and used it to give a new proof of the infinite generation of Θ3
Z.

He found a subgroup Z1 � Θ3
Z generated by the Brieskorn spheres Σ(p; 2p�1; 2p+1)

for p � 3 odd. (Compare Theorem 2.2.)
In fact, the information in ˛; ˇ; 
; ı, and much more, can be obtained from a stronger

invariant, a class in the local equivalence group LE defined by Stoffregen [2015b]. To
define LE, we first define a space of type SWF to be a pointed finite Pin(2)-CW complex
X such that

• The S1-fixed point set XS1 is Pin(2)-homotopy equivalent to (R̃s)+, where R̃ is
the one-dimensional representation of Pin(2) on which S1 acts trivially and j acts
by �1;

• The action of Pin(2) on X �XS1 is free.

The definition ismodeled on the properties of the Seiberg-Witten Floer spectra SWF(Y )
for homology spheres Y . Any SWF(Y ) is the formal (de)suspension of a space of type
SWF. The condition on the fixed point set comes from the fact that there is a unique re-
ducible solution to the Seiberg-Witten equations on Y .

The elements of LE are equivalence classes [X ], where X is a formal (de)suspension
of a space of type SWF, and the equivalence relation (called local equivalence) is given
by: X1 ∼ X2 () there exist Pin(2)-equivariant stable maps

� : X1 ! X2;  : X2 ! X1;

which are both Pin(2)-equivalences on the S1-fixed point sets. This relation is motivated
by the fact that if Y1 and Y1 are homology cobordant, then the induced cobordism maps on
Seiberg-Witten Floer spectra give a local equivalence between SWF(Y1) and SWF(Y2).
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We can turn LE into an Abelian group, with addition given by smash product, the
inverse given by taking the Spanier-Whitehead dual, and the zero element being [S0]. We
obtain a group homomorphism

Θ3
Z ! LE; [Y ] ! [SWF(Y )]:

The class [SWF(Y )] 2 LE encapsulates all known information from Seiberg-Witten
theory that is invariant under homology cobordism. The group LE is still quite compli-
cated, but there is a simpler version, called the chain local equivalence group CLE, which
involves chain complexes rather than stable homotopy types. The elements of CLE are
modeled on the cellular chain complexes1 C CW

� (SWF(Y );F)with coefficients in the field
F = Z/2, viewed as modules over

C CW
� (Pin(2);F) Š F [s; j ]/(sj = j 3s; s2 = 0; j 4 = 1):

and divided by an equivalence relation (called chain local equivalence), similar to the one
used in the definition of LE. We have a natural homomorphism

LE ! CLE; [X ] ! [C CW
� (X ;F)]:

To construct interesting maps fromΘ3
Z to Z, one strategy is to factor them through the

groups LE or CLE. Indeed, the Frøyshov homomorphism ı can be obtained this way, by
passing from chain complexes to the S1-equvariant Borel cohomology, which is a module
over

H�
S1(pt ;F) = H�(CP 1;F) = F [U ]; deg(U ) = 2:

Given the structure of the S1-fixed point set of SWF(Y ), one can show that
H�

S1(SWF(Y );F) is the direct sum of an infinite tower F [U ] and an F [U ]-torsion part.
The invariant ı(Y ) is set to be 1/2 the minimal grading in the F [U ] tower. The resulting
homomorphism ı factors as

Θ3
Z

// LE // CLE
ı / / Z;

Here, by a slight abuse of notation, we also used ı to denote the final map from CLE to
Z.

The maps ˛; ˇ; 
 from (3) are constructed similarly to ı, but using the
Pin(2)-equivariant Borel cohomologyH�

Pin(2)(SWF(Y );F). This is a module over

H�
Pin(2)(pt ;F) = H�(B Pin(2);F) = F [q; v]/(q3); deg(q) = 1; deg(v) = 4:

1When applied to SWF, all our chain complexes and homology theories are reduced, but we drop the usual
tilde from notation for simplicity.
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In this case, if we just consider the F [v]-module structure, we find three infinite towers
of the form F [v], and ˛; ˇ; 
 are the minimal degrees of elements in this towers, suitably
renormalized. We can write

Θ3
Z

// LE // CLE
˛;ˇ;


// Z:

Two other numerical invariants ı; ı̄ : CLE // Z can be obtained by considering the
Z/4-equivariant Borel cohomology, where Z/4 is the subgroup

Z/4 = f1;�1; j;�j g � Pin(2) = C ˚ jC:

As shown by Stoffregen [2016], if one considers the Borel homology for other sub-
groups G � Pin(2), one does not get any information beyond that in ˛; ˇ; 
; ı; ı and ı̄.

However, one can consider other equivariant generalized cohomology theories. For
example, there are invariants �i ; i 2 f0; 1g coming from Pin(2)-equivariant K-theory
(cf. Manolescu [2014] and Furuta and Li [2013]), and �oi ; i = 0; : : : ; 7; from Pin(2)-
equivariant KO-theory (cf. J. Lin [2015]). These factor through LE, albeit not through
CLE, and have applications to the study of intersection forms of spin four-manifolds with
boundary.

In summary, we have a diagram

(4) Θ3
Z

// LE

�i ;�oi

��

// CLE
ı //

ı;ı̄

��

˛;ˇ;


$$

Z;

Z Z Z

Recall that CLE was defined using chain complexes with coefficients in F = Z/2.
One could also take coefficients in other fields, say Q or Z/p for odd primes p. From
the corresponding S1-equivariant Borel cohomology (with coefficients in a field of char-
acteristic p) one gets homomorphisms

ıp : LE ! Z:

These are different onLE, but it is not knownwhether they are different when pre-composed
with the map Θ3

Z ! LE. For every homology sphere for which computations are avail-
able, the values of ıp are the same for all p.

On the other hand, Stoffregen [2015b] showed that the information in chain local equiv-
alence (for specific Seifert fibered homology spheres) goes beyond that in the numerical
invariants from (4). In fact, using chain local equivalence, he defined an invariant of ho-
mology cobordism that takes the form of an Abelian group, called the connected Seiberg-
Witten Floer homology.
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Open problem: Describe the structure of the groups LE and CLE, and use it to under-
stand more about Θ3

Z.
In particular, it would be interesting to construct more homomorphisms from LE and

CLE to Z, which could perhaps be used to produce new Z summands in Θ3
Z. Of special

interest is to construct a lift of the Rokhlin homomorphism to Z, as a homomorphism
(rather than just as a map of sets, as is the case with ˛; ˇ; 
 ). The existence of such a lift
would show that Θ3

Z has no torsion with � = 1, thus strengthening Theorem 3.1. In turn,
one can show that this would give a simpler criterion for a high-dimensional manifold to
be triangulable: the Galewski-Stern-Matumoto class ı(∆(M )) 2 H 5(M ; ker(�)) could
be replaced with an equivalent obstruction inH 5(M ;Z).

4 Heegaard Floer homology and its involutive refinement

In a series of papers, Ozsváth and Szabó [2004b], Ozsváth and Szabó [2004a], Ozsváth
and Szabó [2006], Ozsváth and Szabó [2003] developed Heegaard Floer homology: To
every three-manifold Y and spinc structure s, they associated invariantscHF(Y; s); HF+(Y; s); HF�(Y; s); HF1(Y; s):

These are defined by choosing a pointed Heegaard diagram

H = (Σ;˛;ˇ; z)

consisting of theHeegaard surfaceΣ of genusg, two sets of attaching curves˛ = f˛1; : : : ; ˛gg,
ˇ = fˇ1; : : : ; ˇgg, and a basepoint z 2 Σ, away from the attaching curves. The attaching
curves describe two handlebodies, which put together should give the three-manifold Y .
One then considers the Lagrangians

T˛ = ˛1 � � � � � ˛g ; Tˇ = ˇ1 � � � � � ˇg

inside the symmetric product Symg(Σ). The different flavors (b;+;�;1) of Heegaard
Floer homology are versions of the Lagrangian Floer homology HF(T˛;Tˇ ).

The construction of Heegaard Floer homology was inspired by Seiberg-Witten theory:
the symmetric product is related to moduli spaces of vortices on Σ. In fact, it has been re-
cently established Kutluhan, Lee, and Taubes [2010], Colin, Ghiggini, and Honda [2012],
and Taubes [2010] that Heegaard Floer homology is isomorphic to the monopole Floer ho-
mology from Kronheimer and Mrowka [2007]. In view of Lidman and Manolescu [2016],
we obtain a relation to the different homologies applied to the Seiberg-Witten Floer spec-
trum SWF (for rational homology spheres). For example, we havecHF Š H�(SWF); HF+

Š HS1

� (SWF):
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Heegaard Floer homology has had numerous applications to low dimensional topology,
and is easier to compute than Seiberg-Witten Floer homology. In fact, it was shown to
be algorithmically computable; cf. Sarkar and J. Wang [2010], Lipshitz, Ozsváth, and
Thurston [2014], and Manolescu, Ozsváth, and Thurston [2009].

With regard to homology cobordism, in Ozsváth and Szabó [2003] Ozsváth and Szabó
defined the correction terms d (Y; s), which are analogues of the Frøyshov invariant ı,
and give rise to a homomorphism

d : Θ3
Z ! Z:

With the usual normalization in Heegaard Floer theory, we have d = 2ı.
One could also ask about recovering Pin(2)-equivariant Seiberg-Witten Floer homol-

ogy and the invariants ˛; ˇ; 
 using Heegaard Floer homology. For technical reasons
(related to higher order naturality), this seems currently out of reach. However, Hendricks
and Manolescu [2017] developed involutive Heegaard Floer homology, as an analogue of
Z/4-equivariant Seiberg-Witten Floer homology, for the subgroup Z/4 = hj i � Pin(2).
We start by considering the conjugation symmetry on Heegaard Floer complexes CFı

(ı 2 fb;+;�;1g), coming from interchanging the alpha and beta curves, and reversing
the orientation of the Heegaard diagram. When s is self-conjugate (i.e., comes from a spin
structure), the conjugation symmetry gives rise to an automorphism

� : CFı(Y; s) ! CFı(Y; s);

which is a homotopy involution, that is, �2 ∼ id. We then define the corresponding invo-
lutive Heegaard Floer homology as the homology of the mapping cone of 1 + �:

HFIı(Y; s) = H�(Cone(CFı(Y )
(1+�)

�����! CFı(Y ))):

While the usual Heegaard Floer homologies are modules over H�
S1(pt) Š F [U ]; the

involutive versions are modules over H�
Z/4(pt) Š F [Q;U ]/(Q2), with deg(U ) = �2,

deg(Q) = �1.

Conjecture 4.1. For every rational homology sphere Y with a self-conjugate spinc struc-
ture s, we have an isomorphism of F [Q;U ]/(Q2)-modules

HFI+(Y; s) Š H
Z/4
� (SWF(Y; s);F):

From involutive Heegaard Floer homology one can extract invariants d (Y; s); d̄ (Y; s),
which are the analogues of (twice) the invariants ı; ı̄ coming from H�

Z/4(SWF). We get
maps

d; d̄ : Θ3
Z

// Z:
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Involutive Heegaard Floer homology has been computed for various classes of three-
manifolds, such as large surgeries on alternating knots (cf. Hendricks and Manolescu
[2017]) and the Seifert fibered rational homology spheres Σ(a1; : : : ; ak) (or, more gen-
erally, almost-rational plumbings); see Dai and Manolescu [2017]. There is also a con-
nected sum formula for involutive Heegaard Floer homology by Hendricks, Manolescu,
and Zemke [2016], and a related connected sum formula for the involutive invariants of
knots by Zemke [2017]. The latter had applications to the study of rational cuspidal curves;
see Borodzik and Hom [2016].

The calculations of d and d̄ for the above classes of manifolds (and their connected
sums) give more constraints on which 3-manifolds are homology cobordant to each other;
see Hendricks and Manolescu [2017], Hendricks, Manolescu, and Zemke [2016], Dai and
Stoffregen [2017] for several examples. Furthermore, by imitating Stoffregen’s arguments
from Stoffregen [2015b], Dai and Manolescu [2017] used HFI to give a new proof that
Θ3

Z has a Z1 subgroup.
The chain local equivalence group CLE admits an analogue in the involutive context,

denoted I , whose definition is quite simple. Specifically, we define an �-complex to be a
pair (C; �), consisting of

• a Z-graded, finitely generated, free chain complex C over the ring F [U ] (deg U =

�2), such that there is a graded isomorphism U�1H�(C ) Š F [U;U�1];

• a grading-preserving chain homomorphism � : C ! C , such that �2 ∼ id.

We say that two �-complexes (C; �) and (C 0; �0) are locally equivalent if there exist (grading-
preserving) homomorphisms

F : C ! C 0; G : C 0
! C

such that
F ı � ' �0 ı F; G ı �0 ' � ıG;

and F and G induce isomorphisms on U�1H�.
The elements of I are the local equivalence classes of �-complexes, and the multiplica-

tion in I is given by

(C; �) � (C 0; �0) := (C ˝F [U ] C
0; �˝ �0):

As shown in Hendricks, Manolescu, and Zemke [2016], there is a homomorphism

Θ3
Z ! I ; [Y ] ! [(CF�(Y ); �)];

and the maps d; d ; d̄ factor through I .
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Furthermore, Hendricks, Hom, and Lidman [2018] extract from I a new invariant of
homology cobordism, the connected Heegaard Floer homology, which is a summand of
Heegaard Floer homology.
Open problem: What is I as an Abelian group? Can we use it to say more about Θ3

Z?

5 Variations

So far, we only studied homology cobordisms between integer homology spheres. How-
ever, one can define homology cobordisms between two arbitrary three-manifolds Y0 and
Y1, by imposing the same conditions on the cobordism,H�(W;Yi ;Z) = 0, i = 0; 1:Note
that, if Y0 is homology cobordant to Y1, then they necessarily have the same homology.
The invariants d; d ; d̄ ; ˛; ˇ; 
 admit extensions suitable for studying the existence of ho-
mology cobordisms between non-homology spheres; see for example Ozsváth and Szabó
[2003, Section 4.2].

We could also weaken the definition of homology cobordism by using homology with
coefficients in an Abelian group A different from Z. One gets an A-homology cobordism
group Θ3

A, whose elements are A-homology spheres, modulo the relation of A-homology
cobordism. Observe, for example, that there are natural maps

Θ3
Z ! Θ3

Z/n ! Θ3
Q:

Fintushel and Stern [1984] showed that the homology sphere Σ(2; 3; 7) bounds a rational
ball, whereas it cannot bound an integer homology ball, because �(Σ(2; 3; 7)) = 1. This
implies that the map Θ3

Z ! Θ3
Q is not injective. It is also not surjective, and in fact its

cokernel is infinitely generated; cf. Kim and Livingston [2014]. In a different direction,
Lisca [2007] gave a complete description of the subgroup ofΘ3

Q generated by lens spaces.
One can also construct other versions of homology cobordism by equipping the three-

manifolds with spinc structures, or self-conjugate spinc structures. Ozsváth and Szabó did
the former in Ozsváth and Szabó [2003], where they defined a spinc homology cobordism
group �c , and showed that their correction term gives rise to a homomorphism

d : �c
! Q:

The other invariants ˛; ˇ; 
; d ; d̄ can be similarly extended to maps from a self-conjugate
spinc homology cobordism group (or, more simply, a spin homology cobordism group) to
Q. Moreover, on a Z/2-homology sphere there is a unique self-conjugate spinc-structure,
which we can use to produce maps

d; d ; d̄ ; ˛; ˇ; 
 : Θ3
Z/2

// Q:
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Finally, let us mention that homology cobordism is closely related to knot concor-
dance. Indeed, a concordance between two knots K0; K1 � S3 gives rise to a homol-
ogy cobordism between the surgeries S3

m(K0) and S3
m(K1), for any integer m. It also

gives a Q-homology cobordism between the pn-fold cyclic branched covers Σpn(K0)

and Σpn(K1), for any prime p and n � 1. Thus, one can get knot concordance invariants
from homology cobordism invariants, by applying them to surgeries or branched covers.
See Ozsváth and Szabó [2003], Manolescu and Owens [2007], Jabuka [2012], and Hen-
dricks and Manolescu [2017] for examples of this. For a survey of the knot concordance
invariants coming from Heegaard Floer homology, we refer to Hom [2017].

Acknowledgments. I would like to thank Jennifer Hom, Charles Livingston, Robert Lip-
shitz, Andrew Ranicki, Sucharit Sarkar, Matt Stoffregen and Ian Zemke for comments on
a previous version of this paper.
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Abstract
We survey recent work on profinite rigidity of residually finite groups.

1 Introduction

It is an old and natural idea to try to distinguish finitely presented groups via their finite
quotients, and recently, there has been renewed interest, especially in the light of recent
progress in 3-manifold topology, in the question of when the set of finite quotients of
a finitely generated residually finite group determines the group up to isomorphism. In
more sophisticated terminology, one wants to develop a complete understanding of the
circumstances in which finitely generated residually finite groups have isomorphic profi-
nite completions. Motivated by this, say that a residually finite group Γ is profinitely
rigid, if whenever b∆ ŠbΓ, then∆ Š Γ (see Section 2.2 for definitions and background
on profinite completions).

It is the purpose of this article to survey some recent work and progress on profinite
rigidity, which is, in part, motivated by Remeslennikov’s question (see Question 4.1) on
the profinite rigidity of a free group. The perspective taken is that of a low-dimensional
topologist, and takes advantage of the recent advances in our understanding of hyper-
bolic 3-manifolds and their fundamental groups through the pioneering work of Agol
[2013] and Wise [2009].

Standing assumption: Throughout the paper all discrete groups considered will be
finitely generated and residually finite.
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2 Preliminaries

We begin by providing some background discussion on profinite groups and profinite
completions of discrete groups. We refer the reader to Ribes and Zalesskii [2000] for a
more detailed account of the topics covered here.

2.1 Profinite groups. A directed set is a partially ordered set I such that for every
i; j 2 I there exists k 2 I such that k � i and k � j . An inverse system is a family of
sets fXigfi2I g, where I is a directed set, and a family of maps �ij : Xi ! Xj whenever
i � j , such that:

• �i i = idXi
;

• �ij �jk = �ik , whenever i � j � k.

Denoting this system by (Xi ; �ij ; I ), the inverse limit of the inverse system (Xi ; �ij ; I )

is the set

lim
 �

Xi = f(xi ) 2
Y
i2I

Xi j�ij (xi ) = xj ; whenever i � j g:

If (Xi ; �ij ; I ) is an inverse system of non-empty compact, Hausdorff, totally discon-
nected topological spaces (resp. topological groups) over the directed set I , then lim

 �
Xi

is a non-empty, compact, Hausdorff, totally disconnected topological space (resp. topo-
logical group).

In addition, if (Xi ; �ij ; I ) is an inverse system, a subset J � I is defined to be
cofinal, if for each i 2 I , there exists j 2 J with j � i . If J is cofinal we may form
an inverse system (Xj ; �j ; J ) obtained by omitting those i 2 I n J . The inverse limit
lim
 �

Xj can be identified with the image of lim
 �

Xi under the projection map
Q

i2I Xi

onto
Q

j 2J Xj .

2.2 Profinite completion. Let Γ be a finitely generated group (not necessarily resid-
ually finite for this discussion), and let N denote the collection of all finite index normal
subgroups of Γ. Note that N is non-empty as Γ 2 N, and we can make N into directed
set by declaring that

for M; N 2 N; M � N whenever M contains N:

In this case, there are natural epimorphisms �NM : Γ/N ! Γ/M , and the inverse limit
of the inverse system (Γ/N; �NM ; N) is denoted bΓ and defined to be to the profinite
completion of Γ.

Note that there is a natural map � : Γ!bΓ defined by

g 7! (gN ) 2 lim
 �

Γ/N;

and it is easy to see that � is injective if and only if Γ is residually finite.
An alternative, perhaps more concrete way of viewing the profinite completion is

as follows. If, for each N 2 N, we equip each Γ/N with the discrete topology, then
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Q
fΓ/N : N 2 Ng is a compact space and bΓ can be identified with j (Γ) where j :

Γ!
Q
fΓ/N : N 2 Ng is the map g 7! (gN ).

2.3 Profinite Topology. It will also be convenient to recall the profinite topology on
a discrete groupΓ, its subgroups and the correspondence between the subgroup structure
of Γ andbΓ.

The profinite topology on Γ is the topology on Γ in which a base for the open sets is
the set of all cosets of normal subgroups of finite index in Γ.

Now given a tower T of finite index normal subgroups of Γ:

Γ > N1 > N2 > : : : ::::: > Nk > : : :

with \Nk = 1, this can be used to define an inverse system and thereby determines
a completion of bΓT (in which Γ will inject). If the inverse system determined by T is
cofinal (recall Section 2.1) then the natural homomorphismbΓ!bΓT is an isomorphism.
That is to say T determines the full profinite topology of Γ.

The following is important in connecting the discrete and profinite worlds (see Ribes
and Zalesskii [ibid., p. 3.2.2], where here we use Nikolov and Segal [2007] to replace
“open” by “finite index”).

Notation. Given a subset X of a profinite group G, we write X to denote the closure
of X in G.

Proposition 2.1. If Γ is a finitely generated residually finite group, then there is a one-
to-one correspondence between the setX of subgroups ofΓ that are open in the profinite
topology on Γ, and the set Y of all finite index subgroups ofbΓ.

Identifying Γ with its image in the completion, this correspondence is given by:

• For H 2 X, H 7! H .

• For Y 2 Y, Y 7! Y \ Γ.

If H; K 2 X and K < H then [H : K] = [H : K]. Moreover, K GH if and only if
K GH , and H/K Š H/K.

Thus Γ andbΓ have the same finite quotients. The key result to formalize the precise
connection between the collection of finite quotients ofΓ and those ofbΓ is the following.
This is basically proved in Dixon, Formanek, Poland, and Ribes [1982] (see also Ribes
and Zalesskii [2000, pp. 88-89]), the mild difference here, is that we employ Nikolov
and Segal [2007] to replace topological isomorphism with isomorphism. To state this
we introduce the following notation:

C(Γ) = fQ : Q is a finite quotient of Γg

Theorem 2.2. Suppose that Γ1 and Γ2 are finitely generated abstract groups. ThenbΓ1

andbΓ2 are isomorphic if and only if C(Γ1) = C(Γ2).
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Given this, we make the following definition—this definition is taken, by analogy
with the theory of quadratic forms over Z, where two integral quadratic forms can be
locally equivalent (i.e. at all places of Q), but not globally equivalent over Z.

Definition 2.3. The genus of a finitely generated residually finite group Γ is: G(Γ) =

f∆ : b∆ ŠbΓg.
In addition, if P is a class of groups, then we define GP (Γ) = f∆ 2 G(Γ) : ∆ 2 P g.

For convenience we restate the definition of profinite rigidity.

Definition 2.4. Let Γ be a finitely generated group. Say that Γ is profinitely rigid if
G(Γ) = fΓg.

For convenience we often say that Γ is profinitely flexible if it is not profinitely rigid.
In addition when Γ = �1(M ) where M is a compact 3-manifold we occasionally

abuse notation and refer to M as being profinitely rigid or flexible.

The basic questions we are interested in are the following (and also within classes of
groups P ).

Question 2.5. Which finitely generated (resp. finitely presented) groupsΓ are profinitely
rigid (resp. profinitely flexible)?

Question 2.6. How large can jG(Γ)j be for finitely generated (resp. finitely presented)
groups?

Question 2.7. What group theoretic properties are shared by (resp. are different for)
groups in the same genus?

These questions (and ones where the class of groups is restricted) provide the moti-
vation and focus of this article, with particular attention paid to Question 2.5.

2.4 Inducing the full profinite topology. Let Γ be a finitely generated residually
finite group and H < Γ. The profinite topology on Γ determines some pro-topology on
H and therefore some completion of H . To understand what happens in certain cases
that will be of interest to us, we recall the following. Since we are assuming that Γ is
residually finite, H injects into bΓ and determines a subgroup H � bΓ. Hence there is a
natural epimorphism bH ! H . This need not be injective. For this to be injective (i.e.
the full profinite topology is induced on H ) it is easy to see that the following needs to
hold:

(*) For every subgroup H1 of finite index in H , there exists a finite index subgroup
Γ1 < Γ such that Γ1 \H < H1.

A important case where the full profinite topology is induced is when the ambient group
Γ is LERF, the definition of which we recall here. Suppose that Γ is a group and H a
subgroup of Γ, then Γ is called H -separable if for every g 2 GXH , there is a subgroup
K of finite index in Γ such that H � K but g … K; equivalently, the intersection of all
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finite index subgroups in Γ containing H is precisely H . The group Γ is called LERF
(or subgroup separable) if it is H -separable for every finitely-generated subgroup H ,
or equivalently, if every finitely-generated subgroup is a closed subset in the profinite
topology.

Lemma 2.8. Let Γ be a finitely-generated group, and H a finitely-generated subgroup
of Γ. Suppose that Γ is H1-separable for every finite index subgroup H1 in H . Then
the profinite topology on Γ induces the full profinite topology on H ; that is, the natural
map bH ! H is an isomorphism.

Proof. Since Γ is H1 separable, the intersection of all subgroups of finite index in Γ

containing H1 is H1 itself. From this it easily follows that there exists Γ1 < Γ of finite
index, so that Γ1 \H = H1. The lemma follows from (*) above. tu

Immediately from this we deduce.

Corollary 2.9. Let Γ be a finitely generated group that is LERF. Then if H < Γ is
finitely generated then the profinite topology on Γ induces the full profinite topology on
H ; that is, the natural map bH ! H is an isomorphism.

3 Two simple examples

We provide two elementary examples that already indicate a level of complexity in try-
ing to understand profinite rigidity and lack thereof. In addition, some consequences of
these results and techniques will be helpful in what follows.

Proposition 3.1. Let Γ be a finitely generated Abelian group, then G(Γ) = fΓg.

Proof. Suppose first that ∆ 2 G(Γ) and ∆ is non-abelian. We may therefore find a
commutator c = [a; b] 2 ∆ that is non-trivial. Since ∆ is residually finite there is a
homomorphism � : ∆ ! Q, with Q finite and �(c) ¤ 1. However, ∆ 2 G(Γ), so Q

is abelian and therefore �(c) = 1, a contradiction.
Thus ∆ is Abelian, so we can assume that Γ Š Zr ˚ T1 and ∆ Š Zs ˚ T2, where

Ti (i = 1; 2) are finite Abelian groups. It is easy to see that r = s, for if r > s say, we
can choose a large prime p such that p does not divide jT1jjT2j, and construct a finite
quotient (Z/pZ)r that cannot be a quotient of∆.

In addition if T1 is not isomorphic to T2, then some invariant factor appears in T1

say, but not in T2. One can then construct a finite abelian group that is a quotient of T1

(and hence Γ1) but not of Γ2. tu

Remark 3.2. The proof of Proposition 3.1 also proves the following. Let Γ be a finitely
generated group, and suppose that ∆ 2 G(Γ). Then Γab Š ∆ab. In particular b1(Γ) =

b1(∆).

Somewhat surprisingly, moving only slightly beyond abelian groups (indeed Z) to
groups that are virtually Z, the situation is dramatically different. The following result
is due to Baumslag [1974].
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Theorem 3.3. There exists non-isomorphic meta-cyclic groups Γ1 and Γ2 for whichbΓ1 Š bΓ2. Both of these groups are virtually Z and defined as extensions of a fixed
finite cyclic group F by Z.

A more precise form of what Baumslag actually proves in Baumslag [1974] is the
following:

Let F be a finite cyclic group with an automorphism of order n, where n is different
from 1, 2, 3, 4 and 6. Then there are at least two non-isomorphic cyclic extensions of
F , say Γ1 and Γ2 withbΓ1 ŠbΓ2.

A beautiful, and useful observation, that is used in the proof that the constructed groups
Γ1 and Γ2 lie in the same genus is the following that goes back to Hirshon Hirshon
[1977]: Suppose that A and B are groups with A � Z Š B � Z, then bA Š bB .

Remark 3.4. Moving frommeta-cyclic to meta-abelian provides even more striking ex-
amples of profinite flexibility. Pickel [1974] constructs finitely presented meta-abelian
groups Γ for which G(Γ) is infinite.

4 Profinite rigidity and flexibility in low-dimensions

In connection with Question 2.5 perhaps the most basic case is the following that goes
back to Noskov, Remeslennikov, and Romankov [1979, Question 15] and remains open:

Question 4.1. Let Fn be the free group of rank n � 2. Is Fn profinitely rigid?

The group Fn arises in many guises in low-dimensional topology and affords several
natural ways to generalize. In the light of this, natural generalizations of Question 4.1
are the following (which remain open):

Question 4.2. Let Σg be a closed orientable surface of genus g � 2. Is �1(Σg)

profinitely rigid?

As we will discuss in more detail below, profinite rigidity in the setting of 3-manifold
groups is different, however, one generalization that we will focus on below is the fol-
lowing question:

Question 4.3. Let M be a complete orientable hyperbolic 3-manifold of finite volume.
Is �1(M ) profinitely rigid?

In this section we describe some recent progress on Questions 4.1, 4.2 and 4.3, as
well as other directions that generalize Question 4.1. However, we begin by recalling
some necessary background from the geometry and topology of 3-manifolds.

4.1 Some 3-manifold topology. For the purposes of this subsection, M will always
be a compact connected orientable 3-manifold whose boundary is either empty, or con-
sists of a disjoint union of incompressible tori. The Geometrization Conjecture of
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Thurston was established by Perelman (see Morgan and Tian [2014] for a detailed ac-
count) and we state what is needed here in a convenient form. We refer the reader
to Bonahon [2002] or Thurston [1997] for background on geometric structures on 3-
manifolds.

Recall that M is irreducible if every embedded 2-sphere in M bounds a 3-ball, and if
M is prime (i.e. does not decompose as a non-trivial connect sum), thenM is irreducible
or is covered by S2 � S1, in which case M admits a geometric structure modeled on
S2 �R.

Theorem 4.4. Let M be an irreducible 3-manifold.

1. If �1(M ) is finite, then M is covered by S3.

2. If �1(M ) is infinite, then M is either:

(i) hyperbolic and so arises as H3/Γ where Γ < PSL(2; C) is a discrete torsion-
free subgroup of finite co-volume, or;

(ii) a Seifert fibered space and has a geometry modeled on E3, H2 �R, NIL orfSL2, or;

(iii) a SOLV manifold, or;

(iv) a manifold that admits a collection of essential tori that decomposes M into
pieces that are Seifert fibered spaces with incompressible torus boundary, or have
interior admitting a finite volume hyperbolic structure. In this case, we will say
that M has a non-trivial JSJ decomposition.

An important well-known consequence of geometrization for us is the following
corollary.

Corollary 4.5. Let M be compact 3-manifold, then �1(M ) is residually finite.

A manifold M that admits a geometric structure modeled on E3, S2 � R, H2 � R,
NIL or SOLV all virtually fiber. That is to say, given M admitting such a structure
then there is a finite cover Mf ! M with Mf constructed as the mapping torus of a
surface homeomorphism f : Σg ! Σg , where g = 0 in the case of S2 � R, g = 1

in the case of E3, NIL or SOLV and g > 1 when the geometry is H2 � R. If M

is a compact Seifert fibered space with incompressible torus boundary, then M also
virtually fibers. On the other hand, it is known (see Gabai [1986]) that closed manifolds
admitting a geometric structure modeled on fSL2 do not virtually fiber.

Regarding virtual fibering of hyperbolic manifolds, a major breakthrough came with
Agol’s work in Agol [2008], which, taken together with work of Agol [2013] and Wise
[2009] (see also Groves and Manning [2017]) leads to the following.

Theorem 4.6 (Virtual fibering). Let M be a finite volume hyperbolic 3-manifold. Then
M has a finite cover that fibers over the circle.

For manifolds with a non-trivial JSJ decomposition, it was known previously that
there were graph manifolds (i.e. all pieces in the decomposition are Seifert fibered
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spaces) that do not virtually fiber Neumann [1997], whilst more recently it was shown
in Przytycki and Wise [2018] that mixed 3-manifolds (i.e. those in Theorem 4.4 2(iv)
that have a decomposition containing a hyperbolic piece) are all virtually fibered.

4.2 Profinite completions of 3-manifold groups after Agol andWise. The remark-
able work of Agol [2013] and Wise [2009] has had significant implications on our un-
derstanding of the profinite completion of the fundamental groups of finite volume hy-
perbolic 3-manifolds. We refer the reader to the excellent book Aschenbrenner, Friedl,
and Wilton [2015] for a detailed discussion of the many consequences of Agol [2013]
and Wise [2009] for 3-manifold groups. One such concerns LERF (recall Section 2.4).
The following result summarizes work of Scott [1978] for Seifert fibered spaces, Agol
[2013] and Wise [2009] in the hyperbolic setting, and Sun [2016] who showed that
non-geometric irreducible 3-manifolds had non-LERF fundamental group

Theorem 4.7. Let M be an irreducible 3-manifold (as in Section 4.1). Then �1(M ) is
LERF if and only if M is geometric (i.e covered by Theorem 4.4 1, 2(i), (ii), (iii)).

Lemma 2.8 together with Theorem 4.7 yields the following consequence.

Corollary 4.8. Let M be a finite volume hyperbolic 3-manifold and H < �1(M ) a
finitely generated subgroup. Then the full profinite topology on H is induced by the
profinite topology of �1(M ). In particular the closure of H in 2�1(M ) is isomorphic tobH .

We now turn to goodness in the sense of Serre [1997]. Let G be a profinite group, M
a discrete G-module (i.e. an abelian group M equipped with the discrete topology on
whichG acts continuously) and letC n(G; M ) be the set of all continousmapsGn !M .
One defines the coboundary operator d : C n(G; M ) ! C n+1(G; M ) in the usual
way thereby defining a complex C �(G; M ) whose cohomology groups H q(G;M ) are
called the continuous cohomology groups of G with coefficients in M .

Now let Γ be a finitely generated group. Following Serre [ibid.], we say that a group
Γ is good if for all q � 0 and for every finite Γ-module M , the homomorphism of
cohomology groups

H q(bΓ;M )! H q(Γ;M )

induced by the natural map Γ ! bΓ is an isomorphism between the cohomology of Γ
and the continuous cohomology ofbΓ.
Example 4.9. Finitely generated free groups are good.

In general goodness is hard to establish, however, one can establish goodness for a
groupΓ that is LERF (indeed a weaker version of separability is all that is needed) and in
addition has a ”well-controlled splitting of the group” as a graph of groups Grunewald,
Jaikin-Zapirain, and Zalesskii [2008]; for example that coming from the virtual special
technology Wise [2009]. In addition, a useful criterion for goodness is provided by the
next lemma due to Serre [1997, Chapter 1, Section 2.6].
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Lemma 4.10. The group Γ is good if there is a short exact sequence

1! N ! Γ! H ! 1;

such thatH andN are good,N is finitely-generated, and the cohomology groupH q(N; M )

is finite for every q and every finite Γ-module M .

Coupled with Theorem 4.6 (the virtual fibering theorem) and commensurability in-
variance of goodness Grunewald, Jaikin-Zapirain, and Zalesskii [2008], this proves that
the fundamental groups of all finite volume hyperbolic 3-manifolds are good. Indeed,
more is true using Agol [2013] and Wise [2009] (as noticed by Cavendish [2012], see
also Reid [2015]):

Theorem 4.11. Let M be a compact 3-manifold, then �1(M ) is good.

Several notable consequences of this are recorded below.

Corollary 4.12. LetM be a closed irreducible orientable 3-manifold, andN a compact
3-manifold with 2�1(M ) Š2�1(N ). Then:

1. 2�1(M ) is torsion-free.

2. N is closed, orientable and can have no summand that has finite fundamental
group.

Proof. Let Γ = �1(M ) and ∆ = �1(N ). Since cd(Γ) = 3, H 3(Γ; Fp) ¤ 0 for every
prime p, and H q(Γ; M ) = 0 for every Γ-module M and every q > 3. By goodness,
these transfer to the profinite setting in the context of finite modules. It follows from
standard results about the cohomology of finite groups, that goodness forces 2�1(M ) to
be torsion-free. Hence∆ is also torsion-free, and so N cannot have a summand that has
finite fundamental group.

In addition, N must be closed, since H 3(Γ; F2) ¤ 0 implies H 3(bΓ; F2) ¤ 0, and
if N is not closed we have, H 3(∆; F2) = H 3(b∆; F2) = 0. Orientability follows in a
similar fashion using H 3(Γ; Fp) ¤ 0 for p ¤ 2. tu

Remark 4.13. In Lubotzky [1993], it is shown that there are torsion-free subgroups
Γ < SL(n; Z) (n � 3) of finite index, for which bΓ contains torsion of all possible
orders. It follows that SL(n; Z) is not good for n � 3).

4.3 Profinite flexibility of 3-manifold groups. Wenowdescribe some recent progress
on identifying 3-manifold groups by their profinite completions restricted to the class
of 3-manifold groups. To that end let

M = f�1(M ) : M is a compact 3-manifoldg:

Wenote that unlike in the previous subsectionM need not be prime, can be non-orientable,
may have boundary other than tori and this boundary may be compressible. By capping
off 2-sphere boundary components with 3-balls, we can exclude S2 boundary compo-
nents (andRP 2 boundary components). Also note that included inM are the fundamen-
tal groups of non-compact finite volume hyperbolic 3-manifolds where such a manifold
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is viewed as the interior of a compact 3-manifold with boundary consisting of tori or
Klein bottles.

Example 4.14 (Profinitely flexible Seifert fibered spaces). We record a construction of
Hempel [2014] that provides examples of closed Seifert fibered spaces M1 and M2 that
are not homeomorphic but 2�1(M1) Š 2�1(M2). This builds on the idea of Baumslag
mentioned in Section 3.

Let f : S ! S be a periodic, orientation-preserving homeomorphism of a closed
orientable surface S of genus at least 2, and let k be relatively prime to the order of f .
Let Mf (resp. Mf k ) denote the mapping torus of f (resp. f k), and let Γf = �1(Mf )

(resp. Γf k = �1(Mf k )).
Hempel shows thatbΓf Š

bΓf k by proving that Γf �Z Š Γf k �Z (c.f. the example
of Baumslag in Section 3). The proof is elementary group theory, but Hempel also
notes that, interestingly, the isomorphism Γf �Z Š Γf k �Z follows from Kwasik and
Rosicki [2004] where it is shown that (in the notation above) Mf � S1 ŠMf k � S1.

Of course some additional work is needed to prove that the groups are not isomorphic,
but in fact typically this is the case as Hempel describes in Hempel [2014]. Note that
these examples admit a geometric structure modeled on H2 �R.

More recently it was shown by Wilkes [2017] that the construction of Hempel is the
only occasion in which profinite rigidity fails in the closed case (there are also results
in the bounded case). More precisely:

Theorem 4.15 (Wilkes). Let M be a closed Seifert fibered space with infinite funda-
mental group. Then GM(�1(M )) = f�1(M )g unless M is as in Example 4.14 and the
failure is precisely given by the construction in Example 4.14. In this case, GM(�1(M ))

is finite.

The proof of this relies on some beautiful work of Wilton and Zalesskii [2017a] that
remarkably detects geometric structure from finite quotients. We discuss this in more
detail below in Section 4.4. but first give some other examples of profinite flexibility
in the setting of closed 3-manifolds.

Example 4.16 (Profinitely flexible torus bundles). Profinite flexibility for the funda-
mental groups of torus bundles admitting a SOLV geometry was studied in detail in
Funar [2013]. These torus bundles arise as the mapping torus of a self-homeomorphism

f : T 2 ! T 2 which can be identified with an element of
�

a b

c d

�
2 SL(2; Z) with

ja + d j > 2. In Funar [ibid.] it is shown that for any m � 2 there exist m torus bun-
dles admitting SOLV geometry whose fundamental groups have isomorphic profinite
completions but are pairwise non-isomorphic.

A particular pair of examples of such torus bundles are give by the mapping tori of
the following homeomorphisms:

f1 =

�
188 275

121 177

�
and f1 =

�
188 11

3025 177

�
:

The methods of proof are very different from that used in Example 4.14. In particular
it does not use the ideas in Baumslag’s examples in Section 3, using instead, number
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theoretic techniques arising in understanding ”local conjugacy” of matrices in SL(2; Z).
Briefly, the fundamental groups of torus bundles Mf and Mg have isomorphic profi-
nite completions if and only if the cyclic subgroups < f >; < g >� SL(2; Z) are
locally conjugate, namely their images modulo m are conjugate in GL(2; Z/mZ), for
any positive integer m (see Funar [ibid.]).

Interestingly, as described in Funar [ibid.] the issue of profinite flexibility in this case
is related to problems arising from understanding quantum TQFT invariants of the torus
bundles.

Example 4.17 (Profinitely flexible 3-manifolds with non-trivial JSJ decomposition).
The fundamental groups of the manifolds occurring in Theorem 4.4 2(iv) were inves-
tigated in Wilkes [2016]. We will not go into this in any detail here, other than to say
that it is shown in Wilkes [ibid.] that there are non-homeomorphic closed graph mani-
folds whose fundamental groups have isomorphic profinite completions, and that graph
manifolds can be distinguished from mixed 3-manifolds by the profinite completion of
their fundamental groups. In addition it is shown that if M is a graph manifold that is
profinitely flexible, then jGM(�1(M ))j <1.

4.4 Profinite completions of 3-manifold groups and geometric structures. We
now turn to the work of Wilton and Zalesskii [2017a,b] that describes a beautiful con-
nection between the existence of a particular geometric structure on a 3-manifold and
the profinite completion of its fundamental group. We begin with a mild strengthening
of Wilton and Zalesskii [2017a, Theorem 8.4]

Theorem 4.18 (Wilton-Zalesskii). Let M be a closed orientable 3-manifold with infi-
nite fundamental group admitting one of Thurston’s eight geometries and let N 2 M
with �1(N ) 2 GM(�1(M )). Then N is closed and admits the same geometric structure.

Proof. This is proved in Wilton and Zalesskii [ibid., Theorem 8.4] with N assumed
to be closed, orientable and irreducible. However, the version stated in Theorem 4.18
quickly reduces to this. Briefly, by Theorem 4.11 �1(M ) is good, so immediately we
have N is closed and orientable by Corollary 4.12.

Furthermore, 2�1(M ) is torsion-free by Corollary 4.12 and so if N is not prime, the
summands must all have torsion-free fundamental group. However, in this case we
can use the fact that the first L2-betti number b

(2)
1 is a profinite invariant by Bridson,

Conder, and Reid [2016], and this, together with the work of Lott and Lück [1995]
shows that aspherical geometric 3-manifolds have b

(2)
1 = 0, whilst manifolds that are

not prime and have torsion-free fundamental group have b
(2)
1 ¤ 0. Note that their

theorem is stated only for orientable manifolds but this is not a serious problem because,
by Lück approximation Lück [1994], if X is a non-orientable compact 3-manifold with
infinite fundamental group and Y ! X is its orientable double cover, then b

(2)
1 (Y ) =

2 b
(2)
1 (X). We can now use Wilton and Zalesskii [2017a] to complete the proof. tu

Given Theorem 4.18, Theorem 4.15, is reduced to the consideration of Seifert fiber
spaces. However, the proof still entails some significant work using Bridson, Conder,
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and Reid [2016] as well as the delicate issue of recovering the euler number of the Seifert
fibration from the profinite completion.

In the context of hyperbolic manifolds, a corollary of Theorem 4.18 that is worth
recording is.

Corollary 4.19. Let M be a closed orientable hyperbolic 3-manifold and N 2M with
�1(N ) 2 GM(�1(M )), then N is closed orientable and hyperbolic.

More recentlyWilton and Zalesskii [2017b] have established a cusped version of this
result, namely.

Theorem4.20. LetM be a finite volume non-compact orientable hyperbolic 3-manifold
and N 2 M with �1(N ) 2 GM(�1(M )), then N is a finite volume non-compact ori-
entable hyperbolic 3-manifold.

The proofs of Theorems 4.18 and 4.20 also use the work of Agol andWise, as well as
crucially using ”nice” actions of profinite groups on profinite trees which are transferred
from the discrete setting using LERF and other parts of the virtual special technology
of Wise [2009] (see Wilton and Zalesskii [2017a] and Wilton and Zalesskii [2017b] for
details).

Actually what is really at the heart of Corollary 4.19 is a profinite analogue of the
Hyperbolization Theorem, which asserts thatM is hyperbolic if and only if �1(M ) does
not contain a copy of Z˚ Z. The main part of the proof of Corollary 4.19 is to show
that if M is a closed hyperbolic 3-manifold, then 2�1(M ) does not contain a subgroup
isomorphic to bZ˚bZ.

Remark 4.21. Onemight wonder about the extent to which the full profinite completion
of the fundamental group of a hyperbolic 3-manifold is actually needed to distinguish
the fundamental group. With that in mind, it is easy to give infinitely many examples
of links L � S3 (so-called homology boundary links) with hyperbolic complement for
which �1(S

3 n L) all have the same pro-p completion (namely the free pro-p group
of rank 2) for all primes p, see Bridson and Reid [2015a, Section 8.4] for an explicit
example.

4.5 Profinite rigidity amongst 3-manifold groups. We now turn to the issue of
profinite rigidity. Given the discussion in Section 4.3 about the failure of profinite rigid-
ity (even amongst 3-manifold groups) for Seifert fibered spaces, torus bundles admitting
SOLV geometry, andmanifolds admitting a non-trivial JSJ decomposition, the case that
needs to be understood is that of finite volume hyperbolic 3-manifolds. We focus on this
case in the remainder of this section. We first deal with the case of GM(�1(M )), where
M is a finite volume hyperbolic 3-manifold. In the light of Theorem 4.6, a natural class
of hyperbolic 3-manifolds to attempt to establish rigidity for are hyperbolic 3-manifolds
that fiber over the circle, since, as we now explain, this can be used to help organize an
approach to profinite rigidity of the fundamental groups of hyperbolic 3-manifolds.

Proposition 4.22. Suppose that for any orientable finite volume hyperbolic 3-manifold
M that fibers over the circle we have GM(�1(M )) = f�1(M )g. Then if N is a finite
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volume hyperbolic 3-manifold and Y a compact 3-manifold with �1(Y ) 2 GM(�1(N )),
then Y is commensurable to N .

Proof. Note that from Corollary 4.19 and Theorem 4.20, Y is a finite volume hyper-
bolic 3-manifold. By Theorem 4.6, we can pass to finite covers Nf and Yf of N and
Y respectively, that are both fibered, and with 2�1(Nf ) Š 2�1(Yf ). By the ”rigidity
hypothesis” of Proposition 4.22, it follows that �1(Nf ) Š �1(Yf ), and so N and Y

share a common finite sheeted cover Nf Š Yf . tu

Thus, it is natural to focus on the case of surface bundles. The following rigidity
result is proved in Bridson, Reid, andWilton [2017] (see also Bridson and Reid [2015b]
and Boileau and Friedl [2015] for the the case of the figure-eight knot complement).
This is the first family of hyperbolic 3-manifolds that fiber over the circle for which the
rigidity required in Proposition 4.22 has been carried to completion. An approach to
handle other fibered hyperbolic 3-manifolds is described in Bridson, Reid, and Wilton
[2017].

Theorem 4.23. Let M be a once-punctured torus bundle over the circle (hyperbolic or
otherwise). Then GM(�1(M )) = f�1(M )g.

Some ideas in the proof: We only discuss the hyperbolic case, and refer the reader
to Bridson, Reid, and Wilton [ibid.] for the remaining (simpler) cases. In this case
b1(M ) = 1. From Theorem 4.20 we can assume that if N is a compact 3-manifold
with �1(N ) 2 GM(�1(M )), then N is a cusped hyperbolic 3-manifold with b1(N ) = 1

(recall Remark 3.2). The proof can be broken down into two main steps as follows:

Step 1: Prove that N is fibered with fiber a once-punctured torus.

Step 2: Since M is a once-punctured torus bundle, given Step 1, a simple analysis gives
finitely many possibilities for N . Distinguish these finitely many.

We will make no further comment on Step 2 and refer the reader to Bridson, Reid, and
Wilton [ibid.]. The proof of Step 1 follows Bridson and Reid [2015b] and we briefly
comment on this (a different proof of this is given in Boileau and Friedl [2015]). The
main difficulty is in establishing that N is fibered. Once this is done, the fact that the
fiber is a once-punctured torus follows routinely.

Note that in Bridson and Reid [2015b] the cases that N is hyperbolic or not hy-
perbolic were treated separately (since Theorem 4.20 was unavailable at the time of
writing). As noted above, using Theorem 4.20 we can now reduce to the case that N

is hyperbolic. Regardless of this development, we still need to follow the argument of
Bridson and Reid [ibid.] to complete the proof. The key point is that if N is not fibered,
then using B. Freedman and M. H. Freedman [1998] we can build a surface subgroup
H < K = kerf�1(N ) ! Zg (this homomorphism is unique since b1(N ) = 1). By
Corollaries 4.8 and 2.9 we deduce that bH Š H < K < 2�1(N ). Now by uniqueness
of the homomorphism �1(M )! Z, which has kernel a free group F of rank 2, we getbH < K Š bF . However, using cohomological dimension in the context of profinite
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groups (see Serre [1997]) we get a contradiction: the cohomological dimension of bH is
2 and it is 1 for bF . tu

Since Bridson, Reid, and Wilton [2017] was written, the fact that fibering is a profi-
nite invariant has been established by Jaikin-Zapirain [n.d.] without the restriction on
b1(M ). The proof of this uses very different methods to those outlined above.

Theorem 4.24 (Jaikin-Zapirain). Let M be a compact irreducible 3-manifold and let
Γ = �1(M ).

1. If bΓ is isomorphic to the profinite completion of free-by-cyclic group, then M

has non-empty boundary consisting of a disjoint union of incompressible tori and
Klein bottles, and fibers over the circle with fiber a compact surface with non-
empty boundary.

2. IfbΓ is isomorphic to the profinite completion of the fundamental group of a closed
3-manifold that fibers over the circle, then M is a surface bundle over the circle
with fiber a closed surface.

One can distill from the cohomological dimension argument used at the end of the
proof of Theorem 4.23 the following useful proposition.

Proposition 4.25. Let Γ be a finitely generated residually finite group that contains a
subgroup H Š �1(Σg) for some g � 1 and for which H Š bH in bΓ. Then Γ … G(Fn)

for any n � 2.

Remark 4.26. It is worth remarking that bF n contains a subgroup isomorphic to some
�1(Σg) which is dense in bF n (see Breuillard, Gelander, Souto, and Storm [2006]).

4.6 A profinitely rigidKleinian group. At present it still remains open as to whether
there is any finite volume hyperbolic 3-manifold M = H3/Γ with G(Γ) = fΓg. How-
ever in recent work Bridson, McReynolds, Reid, and Spitler [n.d.] if we allow Γ to be a
Kleinian group (i.e. a discrete subgroup of PSL(2; C)) containing torsion then this can
be done. As far as we can tell, this seems to be first example (indeed we give two) of
a group ”similar to a free group” that can be proved to be profinitely rigid, and can be
viewed as providing the first real evidence towards answering Question 4.3 (and 4.1)
in the affirmative. Namely we prove the following theorem in Bridson, McReynolds,
Reid, and Spitler [ibid.] (where !2 + ! + 1 = 0).

Theorem4.27. TheKleinian groupsPGL(2; Z[!]) andPSL(2; Z[!]) are profinitely rigid.

The case of PGL(2; Z[!]) follows from that of PSL(2; Z[!]), and we so we limit our-
selves to briefly indicating the strategy of the proof of Theorem 4.27 for PSL(2; Z[!]).

There are three key steps in the proof which we summarize below.

Theorem 4.28 (Representation Rigidity). Let � : Γ ! PSL(2; C) denote the identity
homomorphism, and c = � the complex conjugate representation. Then if � : Γ !

PSL(2; C) is a representation with infinite image, � = � or c.
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Using Theorem 4.28 we are able to get some control on PSL(2; C) representations
of a finitely generated residually finite group with profinite completion isomorphic tobΓ, and to that end we prove:
Theorem 4.29. Let∆ be a finitely generated residually finite group with b∆ ŠbΓ. Then
∆ admits an epimorphism to a group L < Γ which is Zariski dense in PSL(2; C).

Finally, we make use of Theorem 4.29, in tandem with an understanding of the topol-
ogy and deformations of orbifolds H3/G for subgroups G < Γ. Briefly, in the notation
of Theorem 4.29, the case of L having infinite index can be ruled out using Teichmüller
theory to construct explicit finite quotients of L and hence ∆ that cannot be finite quo-
tients of Γ. To rule out the finite index case wemake use of information about low-index
subgroups of Γ, together with the construction of L, and 3-manifold topology to show
that L contains the fundamental group of a once-punctured torus bundle over the circle
of index 12. We can then invoke Bridson, Reid, and Wilton [2017] to yield the desired
conclusion that∆ Š Γ. tu

5 Virtually free groups, Fuchsian groups and Limit groups

We now turn from the world of 3-manifold groups to other classes of groups closely
related to free groups; virtually free groups (i.e. contains a free subgroup of finite index),
Fuchsian groups which are discrete subgroups of PSL(2; R) and limit groups which we
define below. All three classes of these groups contain the class of free groups amongst
them. As already noted even groups that are virtually Z can fail to be profinitely rigid.
In Grunewald and Zalesskii [2011] this is extended to give examples of virtually non-
abelian free groups in the same genus, as well as providing cases where they show that
certain virtually free groups are the only groups in the genus when restricted to virtually
free groups.

5.1 Some restricted genus results. Regarding Fuchsian groups, the following is
proved in Bridson, Conder, and Reid [2016].

Theorem 5.1. Let L denote the collection of lattices in connected Lie groups and let Γ
be a finitely generated Fuchsian group. Then GL(Γ) = fΓg.

Using the profinite invariance of b
(2)
1 Bridson, Conder, and Reid [ibid.], it turns out

that the hard case of Theorem 5.1 is ruling out non-isomorphic Fuchsian having isomor-
phic profinite completions. The main part of the proof of this step is to rule out ”fake
torsion” in the profinite completion, and uses the technology of profinite group actions
on profinite trees (see Bridson, Conder, and Reid [ibid.] for details).

By a limit group we mean a finitely-generated group Γ that is fully residually free;
i.e. a finitely generated group in which every finite subset can be mapped injectively
into a free group by a group homomorphism. In connection with Question 4.1, Wilton
[2017] recently proved the following:
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Theorem 5.2. Let Γ be a limit group that is not a free group, and let F be a free group.
ThenbΓ is not isomorphic to bF .

The key point in the proof of Theorem 5.2 (and indeed the main point of Wilton
[2017]) is to construct a surface subgroup in a non-free limit group. One can then follow
an argument in Bridson, Conder, and Reid [2016] that usesWilton [2008] (which proves
LERF for limit groups) and Proposition 4.25 to complete the proof.

5.2 Profinite genus of free groups and one-ended hyperbolic groups. We close
this section with a discussion of possible groups in the genus for free groups. As noted
above, Theorem 5.2 uses the existence of surface subgroups to show that non-free limit
groups do not lie in the same genus as a free group. The next result from Bridson,
Conder, and Reid [2016] takes up this theme, and connects to two well-known open
problems about word hyperbolic groups, namely:

(A) Does every 1-ended word-hyperbolic group contain a surface subgroup?

(B) Is every word-hyperbolic group residually finite?

The first question, due toGromov, wasmotivated by the case of hyperbolic 3-manifolds,
and in this special case the question was settled by Kahn and Markovic [2012]. Indeed,
given Kahn and Markovic [ibid.], a natural strengthening of (A) above is to ask:

(A0) Does every 1-ended word-hyperbolic group contain a quasi-convex surface sub-
group?

Theorem 5.3. Suppose that every 1-ended word-hyperbolic group is residually finite
and contains a quasi-convex surface subgroup. Then there exists no 1-ended word-
hyperbolic group Γ and free group F such thatbΓ Š bF .

Proof. Assume the contrary, and let Γ be a counter-example, withbΓ Š bF for some free
group F . Let H be a quasi-convex surface subgroup of Γ. Note that the finite-index
subgroups of H are also quasi-convex in Γ. Under the assumption that all 1-ended
hyperbolic groups are residually finite, it is proved inAgol, Groves, andManning [2009]
thatH and all its subgroups of finite indexmust be separable inΓ. Hence by Lemma 2.8,
the natural map bH ! H < bΓ Š bF is an isomorphism, and can use Proposition 4.25 to
complete the proof. tu

Corollary 5.4. Suppose that there exists a 1-ended word hyperbolic group Γ withbΓ ŠbF for some free group F . Then either there exists a word-hyperbolic group that is not
residually finite, or there exists a word-hyperbolic group that does not contain a quasi-
convex surface subgroup.

6 Profinite rigidity and flexibility in other settings

Although our attention has been on groups arising from low-dimensional geometry and
topology we think it worthwhile to include a (far from complete) survey of profinite
rigidity and flexibility for other classes of finitely generated or finitely presented groups.
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6.1 Nilpotent and polycyclic groups. As is already evident from Baumslag’s exam-
ples of meta-cyclic groups in Section 3, the case of nilpotent groups already shows some
degree of subtlety. The case of nilpotent groups more generally is well understood due
to work of Pickel [1971]. We will not discuss this in any detail, other than to say that,
in Pickel [ibid.] it is shown that for a finitely generated nilpotent group Γ, G(Γ) consists
of a finite number of isomorphism classes of nilpotent groups, and moreover, examples
where the genus can be made arbitrarily large are known (see for example Segal [1983]
Chapter 11). Examples of profinitely rigid nilpotent groups of class 2 are constructed
in Grunewald and Scharlau [1979].

Similar results are also known for polycyclic groups andwe refer the reader toGrunewald
and Segal [1978] and Segal [1983]. Note that in the case of nilpotent groups it is straight-
forward to prove that any finitely generated residually finite group in the same genus as
a nilpotent group is nilpotent. The same holds for polycyclic groups (see Sabbagh and
Wilson [1991]), but this is a good deal harder.

These results should be compared with the examples of the meta-abelian groups
(which are solvable) of Pickel given in Remark 3.4 where the genus is infinite.

6.2 Lattices in semi-simple Lie groups. LetΓ be a lattice in a semi-simple Lie group,
for example, in what follows we shall take Γ = SL(n;Rk) where Rk denotes the ring
of integers in a number field k. A natural, obvious class of finite quotients of Γ, are
those of the form SL(n;Rk/I) where I � Rk is an ideal. Let Γ(I ) denote the ker-
nel of the reduction homomorphism Γ ! SL(n;Rk/I). By Strong Approximation for
SLn (see Platonov and Rapinchuk [1994] Chapter 7.4 for example) these reduction ho-
momorphisms are surjective for all I . A congruence subgroup of Γ is any subgroup
∆ < Γ such that Γ(I ) < ∆ for some I . A group Γ is said to have the Congruence Sub-
group Property (abbreviated to CSP) if every subgroup of finite index is a congruence
subgroup.

Thus, if Γ has CSP, then C(Γ) is known precisely, and in effect, to determine C(Γ)
is reduced to number theory. Expanding on this, since Rk is a Dedekind domain, any
ideal I factorizes into powers of prime ideals. If I =

Q
P ai

i , then it is known that
SL(n;Rk/I) =

Q
SL(n;Rk/P ai

i ). Thus the finite groups that arise as quotients of
SL(n;Rk) are determined by those of the form SL(n;Rk/P ai

i ). Hence we are reduced to
understanding how a rational prime p behaves in the extension k/Q. This idea, coupled
with the work of Serre [1970] which has shed considerable light on when Γ has CSP
allows construction of non-isomorphic lattices in the same genus. We refer the reader
to Aka [2012b], Aka [2012a] and Reid [2015] for further details.

6.3 Grothendieck’s Problem. Aparticular case of when discrete groups groups have
isomorphic profinite completions is the following (which goes back to Grothendieck
[1970]).

Let Γ be a residually finite group and let u : P ,! Γ be the inclusion of a subgroup
P . Then (Γ; P ) is called aGrothendieck Pair if the induced homomorphismbu : bP !bΓ
is an isomorphism but u is not.
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We say that Γ is Grothendieck Rigid if no proper finitely generated subgroup u :

P ! Γ gives a Grothendieck Pair.
Grothendieck [1970] asked about the existence of Grothendieck Pairs of finitely pre-

sented groups and the first such pairs were constructed by Bridson and Grunewald
[2004]. The analogous problem for finitely generated groups had been settled earlier
by Platonov and Tavgen [1990] (see also Bass and Lubotzky [2000]). Using differ-
ent methods, Pyber [2004] gave a construction of continuously many finitely generated
groups Γ˛ with subgroups H˛ for which (Γ˛; H˛) are Grothendieck Pairs.

The constructions of Platonov and Tavgen [1990] and Bridson andGrunewald [2004]
rely on versions of the following result (see also Bridson [2010]). We remind the reader
that the fibre product P < Γ � Γ associated to an epimorphism of groups p : Γ ! Q

is the subgroup P = f(x; y) j p(x) = p(y)g.

Proposition 6.1. Let 1! N ! Γ! Q! 1 be a short exact sequence of groups with
Γ finitely generated and let P be the associated fibre product. Suppose that Q ¤ 1 is
finitely presented, has no proper subgroups of finite index, and H2(Q; Z) = 0. Then

1. (Γ � Γ; P ) is a Grothendieck Pair;

2. if N is finitely generated then (Γ; N ) is a Grothendieck Pair.

More recently in Bridson [2016], examples of Grothendieck Pairs were constructed
so as to provide the first examples of finitely-presented residually finite groups Γ that
contain an infinite sequence of non-isomorphic finitely presented subgroups Pn so that
(Γ; Pn) are Grothendieck Pairs. In particular, this provides examples of finitely pre-
sented groups Γ for which G(Γ) is infinite. These examples are non-solvable in contrast
to those of Pickel in Remark 3.4

Note that if a H is a subgroup of a group Γ and Γ is H -separable then it is easy to
see that (Γ; H ) cannot be a Grothendieck Pair (since H is not dense in the profinite
topology). This was noticed in Platonov and Tavgen [1990] to observe that free groups
and Fuchsian groups were Grothendieck Rigid. For 3-manifolds Grothendieck Rigidity
was shown in Long and Reid [2011] for the fundamental groups of closed geometric 3-
manifolds and finite volume hyperbolic 3-manifolds without appealing to LERF in the
hyperbolic case. In Cavendish [2012] and Reid [2015] this was extended to the funda-
mental groups of all closed irreducible 3-manifolds (as a consequence of Theorem 4.11).
This program has been completed by Boileau and Friedl [2017] who proved:

Theorem 6.2. The fundamental group of any compact, connected, irreducible, ori-
entable 3-manifold with empty or toroidal boundary is Grothendieck Rigid.

7 Final remarks and further questions

As should be clear from this article, the questions posed in Section 4 remain stubbornly
open, and even questions about the nature of GM(�1(M )) for M a finite volume hyper-
bolic 3-manifold seem hard to resolve. Never the less, these open problems can be used
as platforms for other, perhaps more approachable problems. We discuss a few, other
problems for other classes of groups can be found in Reid [2015].
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Question 7.1. Let Γ denote the fundamental group of the figure-eight knot complement.
It is well-known that Γ has index 12 in the group PSL(2; Z[!]) of Theorem 4.27. Is Γ is
profinitely rigid?

As noted in Section 4.5, it was shown in Bridson and Reid [2015b] and Boileau and
Friedl [2015] that GM(Γ) = fΓg.

Question 7.2. Let MW denote the Weeks manifold. This is the smallest volume hyper-
bolic 3-manifold Gabai, Meyerhoff, andMilley [2009]. Is GM(�1(MW ) = f�1(MW )g?

Indeed, one might wonder whether the techniques of Bridson, McReynolds, Reid,
and Spitler [n.d.] (as described in Theorem 4.27) can be brought to bear in this example
since �1(MW ) exhibits a certain amount of representation rigidity.

Question 7.3. In Section 4.5 it was pointed out that recently Jaikin-Zapirain [n.d.]
showed that being fibered is a profinite invariant. Given this, a natural question is:

Is the Thurston norm ball a profinite invariant? That is to say, if M is a closed hy-
perbolic 3-manifold and N a closed hyperbolic 3-manifold with �1(N ) 2 GM(�1(M ))

are the Thurston norm balls isomorphic?
Some progress on this is given in Boileau and Friedl [2015] under an additional con-

dition on the isomorphsim between profinite completions. However, it seems unlikely
that this condition will hold in general.

Question 7.4. Is the volume a profinite invariant? That is to say, ifM is a finite volume
hyperbolic 3-manifold and N a finite volume hyperbolic 3-manifold with �1(N ) 2

GM(�1(M )) does vol(M ) = vol(N )?

It follows fromwell-known properties of the set of volumes of hyperbolic 3-manifolds
Thurston [1979] that if Question 7.4 has a positive answer then jGM(�1(M ))j is finite.

There does appear to be some conjectural evidence to support a positive answer. Briefly,
it is conjectured (roughly) that if fΓng is a cofinal sequence of subgroups of finite index
in �1(M ) (as above), then:

log jTor(H1(Γn; Z))j

[�1(M ) : Γn]
!

1

6�
vol(M ) as n!1:

Note that Tor(H1(Γn; Z)) is visible in the profinite completions bΓn and so if the
above conjecture is true, this would allow one to deduce �1(N ) 2 GM(�1(M )) implies
vol(M ) = vol(N ).
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Abstract

The evenness conjecture for the equivariant unitary bordism groups states that
these bordism groups are free modules over the unitary bordism ring in even dimen-
sional generators. In this paper we review the cases on which the conjecture is known
to hold and we highlight the properties that permit to prove the conjecture in these
cases.

Introduction

The G-equivariant unitary bordism groups for G a compact Lie group are the bordism
groups of G-equivariant tangentially stable almost complex manifolds, also known as G-
equivariant unitarymanifolds. These are closedG-manifoldsM for which a stable tangent
bundle TM ˚Rk , where Rk denotes the trivial bundle Rk �M with trivial G-action, can
be endowed with the structure of a G-equivariant complex bundle. Two tangentially sta-
ble almost complex G-structures are identified if after stabilization with further G-trivial
C summands the structures become G-homotopic through complex G-structures. Being
unitary is inherited to the fixed points sets. Whenever H is a closed subgroup of G the
fixed points M H are also tangentially stable almost complex, and moreover a NH -tubular
neighborhood around M H in M possesses a complex NH structure May [1996, §XVIII,
Prop. 3.2].

For a cofibration of G-spaces Y ! X , the geometric G-equivariant unitary bordism
groups ΩG

n (X; Y ) are the G-bordism classes of G-equivariant n-dimensional manifolds
with map (M n; @M n) ! (X; Y ).
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matics, by COLCIENCIAS through the Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la
Innovación and by the Alexander Von Humboldt Foundation.
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The G-equivariant unitary bordism groups of a pointΩG
� become a ring under the carte-

sian product ofmanifolds with the diagonalG-action, and therefore amodule of the unitary
bordism ring Ω� whenever we consider a unitary manifold as a trivial G-manifold. Mil-
nor [1960] and Novikov [1960], using Thom’s remarkable calculation of the unoriented
bordism groups Thom [1954], showed that the unitary bordism ring is a polinomial ring
Ω� = Z[x2i : i � 1] with one generator in each even degree. In this work we will be
interested in the Ω�-module structure of the equivariant unitary bordism groups ΩG

� .
Explicit calculations carried out by Landweber [1972] in the cyclic case and by Stong

[1970] in the abelian p-group case permitted them to conclude that in these cases the
equivariant unitary bordism groupΩG

� is a freeΩ�-module in even dimensional generators.
Ossa [1972] generalized this result to any finite abelian group and Löffler [1974] and
Comezaña in May [1996, §XXVIII, Thm. 5.1] showed that this also holds whenever G

is a compact abelian Lie group. Explicit calculations done for the Diehadral groups D2p

with p prime by Ángel, Gómez, and B. Uribe [n.d.] for groups of order pq with p and
q different primes by Lazarov [1972] and for metacyclic groups by Rowlett [1980] show
that for these groups this phenomenon also occurs. We believe that this property should
hold in the G-equivariant unitary bordism groups for any compact Lie group G, in the
same way that the coefficients for G-equivariant K-theory are trivial in odd degrees and a
free module over the integers in even degrees.

The theme of this work is the

Evenness conjecture for the equivariant unitary bordism groups

which states that the G-equivariant unitary bordism group is a free Ω�-modules in even
dimensional generators whenever G is a compact Lie group. Rowlett explicitly mentions
this conjecture in his work of 1980 Rowlett [ibid.] and later Comezaña in his work of 1996
May [1996, §XXVIII.5]. We also believe that this conjecture holds in general and we do
hope that this paper will help spreading it to the mathematical community for its eventual
proof.

In this work we survey the original proofs of the known cases of the evenness conjec-
ture for finite groups. We start in Section 1 with the definition of the equivariant unitary
bordism groups for pairs of families and the long exact sequence associated to them. In
Section 2 we review the decomposition of equivariant complex vector bundles restricted
to fixed point sets done by Ángel, Gómez, and B. Uribe [n.d.] and how this decomposition
allows to write the equivariant unitary bordism groups of adjacent pair of families as the
bordism groups of equivariant classifying spaces. In Section 3 we review the proofs of
the evenness conjecture for done by Landweber [1972] for cyclic groups, by Stong [1970]
for abelian p-groups and by Ossa [1972] for general finite abelian groups. In Section 4
we review the proof of the evenness conjecture for metacyclic groups done by Rowlett
[1980] and we finish with in Section 5 with some conclusions.
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1 Equivariant unitary bordism for families of subgroups

To study the equivariant bordism groups Conner and Floyd introduced the study of bordism
groups of manifolds with prescribed isotropy groups Conner and Floyd [1966, §5]. A
family of subgroups F of G is a set of subgroups of G which is closed under taking
subgroups and under conjugation. The classifying space for the family EF is a G-space
which is terminal in the category of F -numerableG-spaces tomDieck [1987, §1, Thm 6.6]
and characterized by the following properties on fixed point sets: EF H ' � if H 2 F
and EF H = ¿ if H … F . This classifying space may be constructed in such a way that
whenever F 0 � F , the induced map EF 0 ! EF is a G-cofibration.

The equivariant unitary bordism groups for pairs of families may be defined as follows

ΩG
� [F ; F 0](X; A) := ΩG

� (X � EF ; X � EF 0
[ A � EF 0);

see tom Dieck [1972, p. 310], or alternatively they may be defined in a geometric way is
in Stong [1970, §2].

A (F ; F 0) free geometric unitary bordism element of (X; A) is an equivalence class of
4-tuples (M; M0; M1; f ), where:

• M is an n-dimensional G-manifold endowed with tangentially stable almost G

structure which is moreover F -free, i.e. such that all isotropy groups Gm = fg 2

Gjgm = mg for m 2 M belong to F , and such that f : M ! X is G-equivariant;
and

• M0; M1 are compact submanifolds of the boundary of M , with @M = M0 [ M1,
M0 \ M1 = @M0 = @M1 having tangentially stable almost complex structure
induced from M , both G-invariant, such that f (M1) � A and M0 if F 0-free, i.e.
all isotropy groups of M0 belong to F 0.

Two four tuples (M; M0; M1; f ) and (M 0; M 0
0; M 0

1; f ) are equivalent if there is a 5-
tuple (V; V +; V0; V1; F ) where

• V is a F -free manifold and F : V ! X is a G-equivariant map;

• The boundary of V is the union ofM ,M 0 and V + withM \V + = @M ,M 0\V + =

@M 0,M \M 0 = ¿, V +\(M [M 0) = @V +, withV inducing the tangentially stable
almost complex G-structure on M and the opposite one on M 0; V + is G-invariant
and F restricts to f in M and to f 0 on M 0; and

• V + is the union of the G-invariant submanifolds V0, V1 with intersection a subman-
ifold V � in their boundaries, such that @Vi = Mi [ V � [ M 0

i , Mi \ V � = @Mi ,
M 0

i \ V � = @M 0
i with V0 is F 0-free and F (V1) � A.
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Definition 1.1. The set of equivalence classes of (F ; F 0)-free geometric unitary bordism
elements of (X; A), consisting of clases (M; M0; M1; f ) where the dimension of M is n,
and under the operation of disjoint union, forms an abelian group denoted by

ΩG
n fF ; F 0

g(X; A):

Call these groups the geometric G-equivariant unitary bordism groups of the pair (X; A)

restricted to the pair of families F 0 � F .

Note that if N is a tangentially stable almost complex closed manifold, we can define
N �(M; M0; M1; f ) = (N �M; N �M0; N �M1; f ı�M ) thus makingΩG

n fF ; F 0g(X; A)

a module over the unitary bordism ring Ω�.
The covariant functorΩG

� fF ; F 0g defines aG-equivariant homology theory Stong [1970,
Prop. 2.1], the boundary map on A

ı : ΩG
n fF ; F 0

g(X; A) ! ΩG
n�1fF ; F 0

g(A; ¿)

(M; M0; M1; f ) 7! (M1; @M1; ¿; f jM1
)

defines the long exact sequence in homology for pairs

� � �ΩG
n fF ; F 0

g(X; A)
ı

! ΩG
n�1fF ; F 0

g(A; ¿) ! ΩG
n�1fF ; F 0

g(X; ¿) ! � � � ;

and for families F 00 � F 0 � F , choosing the boundary which is F 0-free

@ : ΩG
n fF ; F 0

g(X; A) ! ΩG
n�1fF 0; F 00

g(X; A)

(M; M0; M1; f ) 7! (M0; ¿; @M0; f jM0
)

one obtains by Stong [ibid., Prop. 2.2] the long exact sequence in homology for families

� � �ΩG
n fF ; F 0

g(X; A)
@

! ΩG
n�1fF 0; F 00

g(X; A) ! ΩG
n�1fF ; F 00

g(X; A) ! � � � :

The bordism condition restricted to the non-relative case ΩG
� fF ; F 0g(X) can be read

as the set bordism classes of maps f : M ! X such that M is F -free and @M is F 0-free
with M endowed with a tangentially stable almost complex G-structure. Two become
equivalent if there exists a G-manifold F : V ! X which is F -free such that @V = M [

M 0 [V + and M \V + = @M , M 0 \V + = @M 0, M \M 0 = ¿, V +\(M [M 0) = @V +,
with the property that F restricts to f on M and to f 0 on M 0 and with V + F 0-free.

In tom Dieck [1972, Satz 3] it is shown that the canonical map that one can define

� : ΩG
n fF ; F 0

g(X; A) ! ΩG
n [F ; F 0](X; A)(1.2)
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becomes a natural isomorphism of homology theories.
A key fact about the (F ; F 0)-free geometric unitary bordism elements of X is the fol-

lowing result proven in Conner and Floyd [1966, Lemma 5.2]. Whenever (M n; @M n; f )

is a (F ; F 0)-free geometric unitary bordism element of X and W n a compact manifold
with boundary regularly embedded in the interior of M n and invariant under the G-action,
such that Gm 2 F 0 for all m 2 M nnW n, then [M n; @M n; f ] = [W n; @Wn; f jW n ] in
ΩG

n fF ; F 0g(X).
Whenever the pair of families F 0 � F differ by a fixed group A, i.e. F nF 0 = (A)

with (A) the set of subgroups of G conjugate to A, then the pair (F ; F 0) is called adja-
cent pair of families of groups. In the case that A is normal in G a (F ; F 0)-free geomet-
ric unitary bordism class [M; @M; f ] of X is equivalent to

Pl
j=1[Uj ; @Uj ; f jUj

] where
the Uj ’s are disjoint G-equivariant tubular neighborhoods of the M A

j ’s and these sets
are the connected components of the A-fixed point set M A. Since the normal bundle of
the fixed point set M A

j may be classified with a map to an appropriate classifying space,
the groups ΩG

� fF ; F 0g(X) become isormophic to the direct sum of G/A-free equivariant
unitary bordism groups of the prroduct of XA with an appropriate classifying space (see
Ángel, Gómez, and B. Uribe [n.d., Thm. 4.5]). To introduce this result we need to under-
stand how the fixed points of universal equivariant bundles behave. This is the subject of
the next section.

2 Equivariant vector bundles and fixed points

2.1 Complex representations. Let G be a compact Lie group and A a closed and nor-
mal subgroup of G fitting in the exact sequence

1 ! A ! G ! Q ! 1:

Let � : A ! U (V�) be an irreducible unitary representation of A, denote by Irr(A) the
set of isomorphism classes of irreducible representations of A and let W be a finite dimen-
sional complex G-representation. Then we have an isomorphism of A-representationsM

�2Irr(A)

V� ˝ HomA(V�; W )
Š
! W:

The group G acts on the set of A-representations

(g � �)(a) := �(g�1ag)

and therefore it acts on Irr(A). Denote by G� := fg 2 Gjg � � Š �g the isotropy group of
the isomorphism class of � and denote Q� := G�/A.
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If g � � Š � then there exists M 2 U (V�) such that g � �(a) = M �1�(a)M . Since
this matrix M is unique up to a central element, we obtain a homomorphism f : G� !

P U (V�) which fits in the following diagram

A

�
��

� � �
// G�

f
��

U (V�)
p

// P U (V�):

thus making V� into a projective G�-representation.
Define the S1-central extension eG� := f �U (V�) of G� which fits into following dia-

gram
S1

��

S1

��

A
e�

//

=
��

eG�

ef
//

��

U (V�)

��

A
�

// G�
f
// P U (V�):

endowing V� with the structure of a eG�-representation where S1 acts by multiplication
with scalars.

The vector space HomA(V�; W ) is also a eG�-representation where for
� 2 HomA(V�; W ) andeg 2 eG� we set

(eg � �)(v) := g�(ef (eg)�1v):

It follows that A acts trivially on HomA(V�; W ) and moreover the lements of S1 act by
multiplication of their inverse.

Hence V� ˝ HomA(V�; W ) is a G� representation, where HomA(V�; W ) is a eQ� :=eG�/A representation where S1 acts by multiplication of the inverse. Here eQ� is an S1-
central extension of Q�.

Since the isotropy group G� contains the connected component of the identity in G, the
index [G : G�] is finite and we may induce the G�-representation V� ˝ HomA(V�; W ) to
G thus obtaining the following result.

Theorem 2.1. There is a canonical isomorphism of G-representationsM
�2Gn Irr(A)

Ind G
G�

(V� ˝ HomA(V�; W )) Š W

where � runs over representatives of the orbits of the action of G on I rr(A).
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2.2 Eequivariant complex bundles. The previous result generalizes to equivariant
complex vector bundles, but prior to showing this generalization we need to recall the
multiplicative induction map introduced in Bix and tom Dieck [1978, §4]. Let H be a
closed subgroup of the compact Lie group G. The right adjoint to the restriction functor
rG

H from G-spaces to H -spaces is called the multiplicative induction functor and takes an
H -space Y and returns the G-space

mG
H (Y ) := map(G; Y )H

of H -equivariant maps from G to Y , with G considered as an H -space by left multiplica-
tion. The G-action on mG

H (Y ) is given by (g � f )(k) := f (kg), it is homeomorphic to
the space of sections of the projection map G �H Y ! G/H and, in the case that G/H

is finite, it is homeomorphic to [G : H ] copies of Y .
There is a homeomorphism

map(X; mG
H (Y ))G Š

! map(rG
H (X); Y )H ; F 7! (x 7! F (x)(1G))

whose inverse maps f to mG
H (f )ıpG

H where pG
H : X ! mG

H (rG
H (X)), pG

H (x)(g) = gx,
is the unit of the adjunction.

Now consider a G-space X on which the closed and normal subgroup A acts trivially.
Take a G-equivariant complex vector bundle p : E ! X and assume that E has an
hermitian metric in such a way that G acts through unitary matrices on the complex fibers.
For a complexA-respresentation � : A ! U (V�) denote byV� the trivialA-vector bundle
�2 : V� � X ! X .

The complex vector bundle HomA(V�; E) is a eQ�-equivariant complex vector bundle
where S1-acts on the fibers bymultiplication of the inverse, V� ˝ HomA(V�; E) is a G�-
equivariant complex vector bundle and

(pG
G�

)�
�
mG

G�
(V� ˝ HomA(V�; E))

�
! X

is a G-equivariant complex vector bundle over X .

Theorem2.2. Ángel, Gómez, and B. Uribe [n.d., Thm. 2.7] LetG be a compact Lie group,
A a closed and normal subgroup, X a G-space on which A acts trivially and E ! X

a G-equivariant complex vector bundle. Then there is an isomorphism of G-equivariant
complex vector bundlesM

�2Gn Irr(A)

(pG
G�

)�
�
mG

G�
(V� ˝ HomA(V�; E))

�
Š
! E

where � runs over representatives of the orbits of the G-action on the set of isomorphism
classes of A-irreducible representations.
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With the same hypothesis as in the previous theorem, there is an induced decomposition
in equivariant K-theory

K�
G(X) Š

M
�2Gn Irr(A)

eQ� K�
Q�

(X); E 7!
M

�2Gn Irr(A)

HomA(V�; E)

whereeQ� K�
Q�

(X) is the eQ�-twisted Q�- equivariant K-theory of X which is built out of
the Grothendieck group of eQ�-equivariant complex vector bundles over X on which the
central S1 acts by multilpication of the fibers.

2.3 Classifying spaces. The decomposition described above can also be written at the
level of classifying spaces; let us set up the notation first. Let G be a compact Lie group
and eG aS1-central group extension ofG. LeteC1 be a countable direct sum of all complex
irreducible eG representations on which S1 acts by multiplication of their inverse. Denote
byeGBGU (n) the Grasmannian of n-planes ofeC1 and denote byeG
GU (n) the canonical
n-plane bundle overeGBGU (n). The complex vector bundle

Cn
!
eG
GU (n) !

eGBGU (n)

is a universal eG-twisted G-equivariant complex vector bundle of rank n. Denote by

GU (n) ! BGU (n) the universal G-equivariant complex vector bundle of rank n.

Take a closed subgroup A of G, let NA denote the normalizer of A in G and WA :=

NA/A. Consider the fixed point set BGU (n)A and the restriction 
GU (n)jBGU (n)A of
the universal bundle to this fixed point set. Take � 2 Irr(A) and by the arguments above
we have that

HomA(V�; 
GU (n)jBGU (n)A)

is a (eWA)�-twisted (WA)�-equivariant complex bundle, but since the space BGU (n)A is
not necessarily connected, it may not have constant rank. Therefore Theorem 2.2 implies
the following equivariant homotopy equivalence.

Theorem 2.3. Ángel, Gómez, and B. Uribe [n.d., Thms. 3.3 & 3, 5] There are WA-
equivariant homotopy equivalences

1G
n=0


GU (n)A
'

 
1G

n=0


WA
U (n1)

!
�

Y
�2WAn Irr(A)

�¤1

m
WA

(WA)�

0@ 1G
n�=0

(fWA)� B(WA)�
U (n�)

1A ;

1G
n=0

BGU (n)A
'

Y
�2WAn Irr(A)

m
WA

(WA)�

0@ 1G
n�=0

(fWA)� B(WA)�
U (n�)

1A :
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If G is abelian then A is normal, G acts trivially on Irr(A) and all the irreducible rep-
resentations are 1-dimensional. Therefore we get a G/A-homotopy equivalence


GU (n)A
'

G
(n�)�2Irr(A)P

� n�=n

0B@
G/AU (n1) �
Y

�2Irr(A)

�¤1

BG/AU (n�)

1CA :

In order to get a similar formula for the case on which G is not abelian we need to add
up some notation and make some choices. Let P (n; A) be the set of arrangements of
non-negative integers (n�)�2Irr(A) such thatX

�2Irr(A)

n�j�j = n;

then non-equivariantly there is a homotopy equivalence

BGU (n)A
'

G
(n�)2P (n;A)

Y
�2Irr(A)

�
(fWA)� B(WA)�

U (n�)
�

:

The group WA acts on P (n; A) on the right permuting the arrangements, i.e. the action
of g 2 WA on the arrangement (n�) is the arrangement (n�) � g := (ng ��) meaning that
it has the number ng �� in the coordinate �. Denote by (WA)(n�) the isotropy group of
the arrangement (n�). Rearranging the terms we obtain the following WA-equivariant
homotopy equivalence

BGU (n)A
'(2.4) G

(n�)2P (n;A)/WA

WA �
(WA)(n�)

0@ Y
�2(WA)(n�)n Irr(A)

m
(WA)(n�)

(WA)�\(WA)(n�)

�
(fWA)� B(WA)�

U (n�)
�1A

where (r�) runs over representatives of the orbits of the action of WA on P (n; A), and �

runs over representatives of the orbits of the action of (WA)(n�) on Irr(A).
For the calculation of the equivariant unitary bordism of adjacent families of groups we

need to consider only the arrangements of non-negative integers (n�) such that the number
associated to the trivial representation is zero, i.e. n1 = 0. Denote by P (n; A) the set of
arrangements (n�) such that n1 = 0 and define the WA space:

CNA;A(k) :=(2.5)

G
(n�)2P (k;A)/WA

WA �
(WA)(n�)

0BB@ Y
�2(WA)(n�)n Irr(A)

�¤1

m
(WA)(n�)

(WA)�\(WA)(n�)

�
(fWA)� B(WA)�

U (n�)
�1CCA



1244 BERNARDO URIBE

Therefore we have the following WA-homotopy equivalence


GU (n)A
'

nG
k=0


WA
U (n � k) � CNA;A(k)(2.6)

such that in the case that G is abelian we have the simple formula

CG;A(k) =
G

(n�)2P (k;A)

Y
�2Irr(A)

�¤1

BG/AU (n�):(2.7)

Now we are ready to state the relation between the G-equivariant unitary bordism
groups of adjacent pair of families of groups and the classifying spaces defined above.

Theorem 2.8. Ángel, Gómez, and B. Uribe [n.d., Cor. 4.6] Let G be a finite group, X a
G-space and (F ; F 0) an adjacent pair of families differing by the conjugacy class of the
subgroup A, then there is an isomorphism

ΩG
n fF ; F 0

g(X) Š
M

0�2k�n

ΩWA

n�2k
ff1gg(XA

� CNA;A(k))

where f1g is the family of subgroups of WA which only contains the trivial group.

Take a bordism class [M; @M; f : M ! X ] in ΩG
n fF ; F 0g(X) and note that M A \

M gAg�1
= ¿ whenever g does not belong to NA. Then choose a NA-equivariant tubular

neighborhoodU ofM A such that itsG-orbitG �U is aG-equivariant tubular neighborhood
of G � M A and such that

G �
NA

U
Š
! G � U; [(g; u)] ! gu

is a G-equivariant diffeomorphism. The assignment

[M; @M; f : M ! X ] 7! [U; @U; f jU : U ! X ]

induces an isomorphism

ΩG
n fF ; F 0

g(X)
Š
! ΩNA

n fF jNA
; F 0

jNA
g(X):

Let M A
n�2k

denote the component of M A which is a (n � 2k)-dimensional WA-free
manifold and such that M A =

S
0�2k�n M A

n�2k
. The tubular neighborhood U is NA-

equivariantly diffeomorphic to
S

0�2k�n D(�n�2k)where �n�2k ! M A
n�2k

is the normal
bundle of the inclusion M A

n�2k
! M . Since the trivial A-representation does not appear
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on the fibers of the normal bundles, by Theorem 2.3 and formula (2.6) we know that
the bundle �n�2k is classified by a WA-equivariant map hn�2k : M A

n�2k
! CNA;A(k).

The bordism class [M A
n�2k

; f jM A
n�2k

� hn�2k : M A
n�2k

! XA � CNA;A(k)] belongs to
ΩWA

n�2k
ff1gg(XA � CNA;A(k)) and the assignment

[M; @M; f : M ! X ] 7!
M

0�2k�n

[M A
n�2k ; f jM A

n�2k
� hn�2k : M A

n�2k ! XA
� CNA;A(k)]

induces the desired isomorphism.

3 The evenness conjecture for finite abelian groups

In this section we will outline the main ingredients that used Landweber [1972] in the
cyclic group case, Stong [1970] in the p-group case and Ossa [1972] in the general case to
show that evenness conjecture holds for finite abelian groups. The conjecture also holds
for compact abelian groups, Löffler [1974] showed it for the homotopic G-equivariant
unitary bordism groups in the case that G is a unitary torus, and Comezaña in May [1996,
§XXVIII] generalized it to any compact abelian group. Comezaña furthermore showed
that the map from the G-equivariant unitary bordism groups to the homotopic ones is
injective whenever G is compact abelian thus proving the evenness conjecture for any
compact abelian group. In this work we will address the finite group case.

Prior to addressing the study of the G-equivariant unitary bordism groups for finite
abelian groups we need to recall some results on the unitary bordism groups.

Thom’s remarkable Theorem 1954 shows that the unitary bordism groups Ω� can be
calculated as the stable homotopy groups limk �n+k(MU (k)) of the Thom spacesMU (k)

of the canonical complex vector bundles overBU (k). Milnor [1960, Thm. 3] showed that
the these stable homotopy groups are zero if n is odd and free abelian if n is even with
a number of generators equal to the number of partitions of n/2. Indepently Novikov
[1960, Thm. 4] showed that as a ring the unitary bordism groups are isomorphic to the
ring of polynomials over the integers with generators x2i of degree 2i for i � 1. The
spectrumMU that the Thom spacesMU (k) defines permitted Atiyah [1961] to define the
homotopy unitary bordism groups MU�(X) and the homotopy unitary cobordism groups
MU �(X) of a space X as a generalized homology and cohomology theory respectively.
Thom’s theorem implies that for X a CW-complex the unitary bordism groups over X are
equivalent to the homotopic ones Ω�(X) Š MU�(X) via the Thom-Pontrjagin map.

The spectral sequence of Atiyah and Hirzebruch [1961] (cf. Kochman [1996, §4.2])
applied to the unitary bordism groups of a CW-complex X produces a spectral sequence
which converges to Ω�(X) and whose second page is E2

p;q Š Hp(X ; Ωq); let us call this
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spectral sequence the bordism spectral sequence. The Thom homomorphism

� : Ω�(X) ! H�(X ;Z); [M; f : M ! X ] 7! f�[M ];

which takes a unitary bordism element in X and maps it to he image under f of the
fundamental class [M ] 2 H�(M ;Z), is a natural transformation of homology theories and
is also the edge homomorphism Ω�(X) ! E2

�;0 Š H�(X ;Z) of the spectral sequence.
Whenever X is a CW-complex whose homology H�(X ;Z) is free abelian then by

Conner and Smith [1969, Lemma 3.1] the bordism spectral sequence collapses, the unitary
bordism groupΩ�(X) is a freeΩ�-module and the homomorphism induced by Thommap

e� : Z ˝
Ω�

Ω�(X) ! H�(X ;Z)

is an isomorphism.
Applying the bordism spectral sequence to the unitary bordism groups of BU (n) it is

shown in Kochman [1996, Prop. 4.3.3] that Ω�(BU (n)) is a free Ω�-module with basis

Ω�(BU (n)) Š Ω�f˛k1
˛k2

: : : ˛kn
: k1 � � � � � kng

where ˛k1
˛k2

: : : ˛kn
is the unitary bordism class of the bordism element

(CP k1 � � � � � CP kn ; F : CP k1 � � � � � CP kn ! BU (n))

where the map F classifies the canonical rank n complex vector bundle over the product
of projective spaces.

In Conner and Smith [1969, Prop. 3.6] it is shown that ifX is a finite CW-complex such
that the Thom homomorphism is surjective then the bordism spectral sequence collapses.
Whenever BG is the classifying space of a finite group G Landweber [1971, Thm. 3]
showed that the following conditions are equivalent:

• The Thom homomorphism � : Ω�(BG) ! H�(BG;Z) is surjective.

• The bordism spectral sequence collapses.

• G has periodic cohomology, i.e. every abelian subgroup of G is cyclic.

• H n(BG;Z) = 0 for all odd n.

• The projective dimension of Ω�(BG) as a Ω�-module is 1 or 0.

The previous result implies that whenever we consider the cyclic group G = Z/k

of order k, the bordism classes [L2n+1(k); � : L2n+1(k) ! BZk ] of the Lens spaces
L2n+1(k) := S2n+1

k
/(Z/k) , where S2n+1

k
denotes the sphere of unit vectors in Cn+1
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with the Z/k-action given by multiplication of the root of unity e
2�i

k , generate Ω�(BZk)

as a Ω�-module.
One property of finite abelian groups that will be used is the following. If A is a sub-

group of a finite abelian group G and Γ is a product of classifying spaces of the form
BGU (k), then by Theorem 2.3 the fixed point set ΓA is a product of classifying spaces of
the form BG/AU (l). This fact permits to use an induction hypothesis when calculating
the equivariant unitary bordism groups of products of spaces of the form BGU (k).

Now when can start with the proof of the evenness conjecture for finite abelian groups.
First we will handle the case of cyclic p-groups following Landweber [1972], then we will
review the case of general abelian p-groups following Stong [1970] and we will show the
general case using a simple argument on localization shown in Ossa [1972].

3.1 Cyclic p-groups. Let G be a cyclic group of order ps a power of the prime p.
Let Γ :=

Ql
i=1 BGU (ki ) be a product of spaces of the form BGU (k) and Ft = fH �

G : jH j � pt g the family of of subgroups or order bounded by pt ; the family Fs is the
family of all subgroups of G and therefore ΩG

� ( ) = ΩG
� fFsg( ). Let us split ΩG

� ( ) =

ΩG
+( ) ˚ ΩG

� ( ) where ΩG
+( ) denotes the even degree bordism groups and ΩG

� ( ) the odd
degree ones. We will prove by induction on the size of the group that for any 0 � t < s

the following properties hold:

• ΩG
� fFs; Ft g(Γ) is a free Ω�-module in even dimensional generators.

• ΩG
+fFt ; Ft�1g(Γ) is a free Ω�-module.

• The boundary homomorphism is surjective

ΩG
+fFs; Ft g(Γ)

@
! ΩG

� fFt ; Ft�1g(Γ):

Let us see that these properties imply that ΩG
� (Γ) is a free Ω�-module in even dimen-

sional generators. Since ΩG
� fFs; F0g(Γ) is a free Ω�-module in even dimensional genera-

tors, the long exact sequence associated to the families of groups F0 � Fs induce the exact
sequence

0 ! ΩG
+fF0g(Γ) ! ΩG

+(Γ) ! ΩG
+fFs; F0g(Γ)

@
! ΩG

� fF0g(Γ) ! ΩG
� (Γ) ! 0:

The unitary bordism group of free actions ΩG
� fF0g(Γ) is isomorphic to Ω�(BG �Ql

i=1 BU (ki )) since both EG � BGU (ki ) and EG � BU (ki ) classify G-equivariant
complex vector bundles of rank ki over free G-spaces. The unitary bordism groups of
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BU (ki ) are free Ω�-modules in even dimensional generators, and therefore by the Kun-
neth theorem we have that

ΩG
� fF0g(Γ) Š Ω�(BG) ˝

Ω�

Ω�

 
lY

i=1

BU (ki )

!
:

Hence we have that ΩG
+fF0g(Γ) is a free Ω�-module in even degrees and that

ΩG
� fF0g(Γ) is all p-torsion. Consider a unitary bordism class defined by the map h :

M !
Ql

i=1 BU (ki ) and denote by E := E1 ˚ � � � ˚ El with Ej the complex vector
bundle that the map �j ı h : M ! BU (kj ) defines. Take the ball B2n+2

ps of vectors
in Cn+1 with norm less than 1 endowed with the action of G given by multiplication
by e

2�i
ps and consider the G-equivariant

Ql
i=1 U (ki ) complex bundle that the product

B2n+2
ps � E ! B2n+2

ps � M defines.
This G-equivariant

Ql
i=1 U (ki ) complex bundle is classified by a G-equivariant map

f : B2n+2
ps � M ! Γ

and its G-equivarian unitary bordism class [B2n+2
ps � M; f ] belongs to ΩG

+fFs; F0g(Γ).
Its boundary is [S2n+1

ps � M; f jS2n+1

ps �M ] and it belongs to ΩG
� fF0g(Γ). By the Kun-

neth isomorphism described above we know that the unitary bordism classes [S2n+1
ps �

M; f jS2n+1

ps �M ] generate ΩG
� fF0g(Γ) and therefore the boundary homomorphism

ΩG
+fFs; F0g(Γ)

@
! ΩG

� fF0g(Γ) is surjective. This implies that ΩG
� (Γ) is trivial.

SinceΩG
+fF0g(Γ) Š Ω+(

Ql
i=1 BU (ki )) is a freeΩ�-module, and by hypothesisΩG

+fFs; F0g

also, then it implies that ΩG
+(Γ) is a free Ω�-module.

In particular we have that the G-equivariant unitary bordism group ΩG
� is a free Ω�-

module in even dimensional generators.
Now let us sketch the proof of the properties cited above. Let us assume that the prop-

erties hold for cyclic groups of order less than ps and let us proceed by induction on
the families of subgroups of G. For the adjacent pair of families (Fs; Fs�1) differing by
the group G, we know by Theorem 2.8 that ΩG

� fFs; Fs�1g(Γ) is a direct sum of groups
Ω�(Γ

G � Γ0) where both ΓG and Γ0 are products of classifying spaces of unitary groups.
Therefore ΩG

� fFs; Fs�1g(Γ) is a free Ω�-module in even dimensional generators and we
have started our induction.

Now let us assume that the properties hod for the pair of families (Fs; Fj ) for s > j � t .
Therefore we get the following exact sequence of groups

0 ! ΩG
+fFt ; Ft�1g(Γ) ! ΩG

+fFs; Ft�1g(Γ) ! ΩG
+fFs; Ft g(Γ)

@
!

ΩG
� fFt ; Ft�1g(Γ) ! ΩG

� fFs; Ft�1g(Γ) ! 0:(3.1)
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Since the pair of families (Ft ; Ft�1) differ by the cyclic group H or order pt , G/H

is a cyclic group of order ps�t , and ΓH is a product of classifying spaces of the form
BG/H U (k), then by Theorem 2.8 there is an isomorphism

ΩG
� fFt ; Ft�1g(Γ) Š

M
k�0

Ω
G/H

��2k
fF0g(ΓH

� CG;H (k))

where both ΓH and CG;H (k) are disjoint unions of products of classifying spaces of the
form BG/H U (k).

Therefore we know that ΩG
+fFt ; Ft�1g(Γ) is a free Ω�-module and by the induction

hypothesis we know that the boundary map

Ω
G/H
+ fFs�t ; F0g(ΓH

� CG;H (k))
@

! ΩG/H
� fF0g(ΓH

� CG;H (k))(3.2)

is surjective. A bordism class in ΩG
� fFt ; Ft�1g(Γ) can be represented by a class

[D(E); f : D(E) ! Γ] where D(E) is the disk bundle of a G-equivariant vector bundle
E ! M over a manifold M on which H acts trivially and G/H acts freely, and such
that the trivial representation of H does not appear on the fibers of E. This bundle is
classified by a G/H -equivariant map h : M ! CG;H (k) for some k, and the bordism
class [M; f jM � h : M ! ΓH � CG;H (k)] lives in ΩG/H

� fF0g(ΓH � CG;H (k)). By
the surjectivicty of (3.2) there is a bordism class [Z; F � h̃ : Z ! ΓH � CG;H (k)] in
Ω

G/H
+ fFs�t ; F0g(ΓH � CG;H (k)) such that @Z = M , F jM = f jM and h̃jM = h. Let

p : V ! Z denote theG-equivariant vector bundle overZ that themap h̃ defines and note
that the bordism class [D(V ); F ı p : D(V ) ! Γ] defines an element in ΩG

� fFs; Ft g(Γ)

since the trivial H -representation does not appear on the fibers of V and the action of
G/H over M is free. The boundary of D(V ) is the union of the sphere bundle S(V ) and
D(V )jM = D(E), but since S(V ) is Ft�1-free we have that

@[D(V ); F ı p : D(V ) ! Γ] = [D(E); pjE ı f jM : D(E) ! Γ]

= [D(E); f : D(E) ! Γ]

and therefore the boundary map

ΩG
+fFs; Ft g(Γ)

@
! ΩG

� fFt ; Ft�1g(Γ)

is surjective.
By the long exact sequence of (3.1) we deduce that ΩG

� fFs; Ft�1g(Γ) is a free Ω�-
module on even-dimensional generators and we conclude that the properties also hold for
the pair of families (Fs; Ft�1).

Therefore the evenness conjecture holds for cyclic p-groups Landweber [1972, Thm.
1’].



1250 BERNARDO URIBE

3.2 General p-groups. The argument to show the evenness conjecture for general p-
groups is more elaborate than the one done above for cyclic p-groups. We will follow the
original proof of Stong [1970] on which the author uses very cleverly the Thom isomor-
phism and the long exact sequence for pairs of spaces in order to understand the long exact
sequence for a pair of families once restricted to a special kind of actions on manifolds.
Here we shorten the original proof and we highlight its main ingredients.

Let G = H � Z/q with q = ps such that all elements in H have order less or equal
than ps and let

Γ :=

lY
i=1

BGU (ki )

be a product of spaces of the form BGU (k). We will show by induction on the order
of the group G that the bordism group ΩG

� (Γ) is a free Ω�-module on even dimensional
generators. Therefore let us assume that ΩK

� (Γ0) is a free Ω�-module in even dimensional
generators for all p-groups of order less than the order of G and Γ0 any product of classi-
fying spaces of the form BKU (l).

Following the notation of Stong [ibid.] let us consider the following families of sub-
groups of G:

• Fa is the family of all subgroups of G,

• Fs is the family of subgroups whose intersection with Z/q is proper, i.e. Fs :=

fW � H � Z/q : f1g � Z/q 6� W g,

• Ff is the family of subgroups whose intersection with Z/q is the unit subgroup, i.e.
Ff := fW � H � Z/q : f1g � Z/q \ W = f(1; 1)g

A manifold M is Fs-free if for every x 2 M the isotropy group (Z/q)x ¤ Z/q, and it
is Ff -free if the restriction of the action to Z/q is free.

The classifying spaceEFf has a freeZ/q-action and can be understood as the universal
H -equivariant Z/q-principal bundle EH Z/q Lück and Uribe [2014, Thm 11.4] . Hence
EFf = EH Z/q and its quotient EFf /(Z/q) = BH Z/q is the classifynig space of H -
equivariant Z/q-principal bundles. By the isomorphism of (1.2), and since the action of
Z/q is free, we get the following isomorphisms (see Stong [1970, Prop. 3.1]):

ΩG
� fFf g(X) Š ΩG

� (X � EH Z/q) Š ΩH
� (X �Z/q EH Z/q):(3.3)

Since both spaces EH Z/q � BGU (ki ) and EH Z/q � BH U (ki ) classify H � Z/q-
equivariant U (ki )-principal bundles over spaces with free Z/q-action, we may take the
maps

BH U (ki ) ! BGU (ki ) ! BH U (ki );
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where the left hand side map classifies the G-equivariant complex bundles such that the
action of Z/q is trivial over the total space of the bundle, and the right hand side is the
one that forgets the Z/q-action, thus producing G-equivariant homotopy equivalences.

EH Z/q � EH U (ki )
'
! EH Z/q � EGU (ki )

'
! EH Z/q � EH U (ki ):

If we denote by

Γ0 :=

lY
i=1

BH U (ki )

and the map � : Γ0 ! Γ is the one that classifies trivial Z/q-bundles over H -spaces, then
the argument above implies that the following isomorphism holds (see Stong [ibid., Prop.
3.2]) :

ΩH
� (BH Z/q � Γ0) Š ΩG

� (EH Z/q � Γ0)
��
!
Š

ΩG
� fFf g (Γ) :(3.4)

Let T be the generator of the group Z/q and denote by Z/pt the subgroup generated
by T ps�t . A manifold is Ff -free if and only if T ps�1 acts freely and therefore a (Fa; Ff )-
manifold M can be localized to the normal bundle of the fixed point set M Z/p of the
subgroup Z/p. The normal bundle is a G-equivariant complex bundle over the trivial
Z/p space and once it is classified to the appropriate spaces CG;Z/p(k) of (2.5) we obtain
the isomorphism (see Stong [ibid., Prop. 3.4]):

ΩG
� fFa; Ff g(X) Š

M
0�2k��

Ω
G/(Z/p)

��2k

�
XZ/p

� CG;Z/p(k)
�

:(3.5)

Applying the previous isomorphism to Γ =
Ql

i=1 BGU (ki ) we obtain that

ΩG
� fFa; Ff g(Γ)

is a free Ω�-module in even dimensional generators since both ΓZ/p and CG;Z/p(k) are
products of spaces of the form BG/(Z/p)U (l) and by induction we assumed that the even-
ness conjecture was true for groups of order less than the one of G and spaces of this type.
Therefore the long exact sequence for the pair of families (Fa; Ff ) becomes:

0 ! ΩG
+fFf g(Γ) ! ΩG

+(Γ)!ΩG
+fFa; Ff g(Γ)

@
! ΩG

� fFf g(Γ) ! ΩG
� (Γ) ! 0:(3.6)

A (Fa; Fs)-freemanifoldM once restricted to the action ofZ/q becomes aZ/q-manifold
on which the boundary has no fixed points of the whole group. Therefore the manifold can
be localized on the normal bundle of the fixed point set M Z/q and the information of th



1252 BERNARDO URIBE

normal bundle can be recorded with appropriate maps to the classifying spaces CG;Z/q(k)

of (2.5). Following the same proof as in Theorem 2.8 one obtains the following isomor-
phism (see Stong [1970, Prop. 3.3]):

ΩG
� fFa; Fsg(X) Š

M
0�2k��

ΩH
��2k

�
XZ/q

� CG;Z/q(k)
�

:(3.7)

Since both ΓZ/q and CG;Z/q(k) are products of spaces of the form BH U (l), by the induc-
tion hypothesis we obtain that ΩG

� fFa; Fsg(Γ) is a free Ω�-module in even dimensional
generators.

In order to understand the image of the boundary map of (3.6) Stong restricted the
equivariant bordism groups to manifolds with a special type of G action. Stong noticed
that the image of the boundary map could be determined by restricting to manifolds on
which the Z/q-fixed points are of codimension 2 and therefore he studied the class of
special G actions.

Definition 3.8. Let G = H � Z/q be a finite abelian group. The class of special G

actions is the collection of G-equivariant unitary manifolds M satisfying:

• The restriction to a Z/q-action is semi-free, i.e. for each x 2 M the isiotropy group
(Z/q)x is either Z/q or f1g.

• The setM Z/q of fixed point sets has codimension 2 inM andZ/q acts in the normal
bundle of M Z/q so that the generator T of Z/q acts by multiplication by e

2�i
q , or

the fixed point set M Z/q is empty.

The class of special G actions is sufficiently large to permit all constructions done in
Section 1, and for a pair of families (F ; F 0) in G we denote by ΩG

� fF ; F 0g the equivariant
homology theory defined by using only special G actions. The inclusion of special G

actions in the class of all G actions defines natural transformations of homology theories

I� : Ω
G

� fF ; F 0
g ! ΩG

� fF ; F 0
g

preserving the relations between these functors. TheG-equivariant unitary bordism groups
of special G actions satisfy the following properties:

(i) The natural transformation

I� : Ω
G

� fFf g
Š
! ΩG

� fFf g

is an equivalence since every Ff action is a special G action.
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(ii) The inclusion (Fa; Ff ) � (Fa; Fs) induces an isomorphism

Ω
G

� fFa; Ff g(X)
Š
! Ω

G

� fFa; Fsg(X)

since Fs-free special G actions are Ff -free.

(iii) From the equation (3.7) we get the isomorphism

Ω
G

� fFa; Fsg(X) Š ΩH
��2(X

Z/q
� BH U (1));

thus implying that ΩG

� fFa; Fsg(X) maps isomorphically to a direct summand in
ΩG

� fFa; Fsg(X).

(iv) For Γ :=
Ql

i=1 BGU (ki ) the induction hypothesis implies that ΩG

� fFa; Ff g(Γ) is
a free Ω�-module in even dimensional generators. Therefore the canonical maps

Ω
G

� fFa; Ff g(Γ) ! ΩG
� fFa; Ff g(Γ) ! ΩG

� fFa; Fsg(Γ)

imply thatΩG

� fFa; Ff g(Γ) alsomaps isomorphically to a direct summand inΩG
� fFa; Ff g(Γ).

Let us now concentrate in understanding the five term exact sequence restricted to
special G actions

0 ! Ω
G

+fFf g(Γ) ! Ω
G

+(Γ)!Ω
G

+fFa; Ff g(Γ)
@

! Ω
G

� fFf g(Γ) ! Ω
G

� (Γ) ! 0:(3.9)

Note that the map �� : Γ0 ! Γ induces the commutative diagram

ΩH
��2(Γ

Z/q � BH U (1))
Š

// Ω
G

� fFa; Ff g(Γ)
@

// Ω
G

��1fFf g(Γ)

ΩH
��2(Γ

0 � BH U (1))
Š

//

OO

Ω
G

� fFa; Ff g(Γ0)

��

OO

@
// Ω

G

��1fFf g(Γ0)

�� Š

OO

where the middle homomorphism �� maps isomorphically Ω
G

� fFa; Ff g(Γ0) into a direct
summand in ΩG

� fFa; Ff g(Γ) since Γ0 is mapped to one connected component of the fixed
point set ΓZ/q . Therefore the image of the boundary homomorphism @ is the same same
in both cases.

In what follows we will study the induced boundary homomorphism

ΩH
��2(Γ

0
� BH U (1)) ! Ω

G

��1fFf g(Γ0) Š ΩH
��1(Γ

0
� BH Z/q)(3.10)
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using the Thom isomorphism, the long exact sequence for pairs and a particular model for
EH Z/q.

Let C1
H be a countable direct sum of all complex irreducible H -representations and

consider the Z/q action on C1
H such that the generator T of Z/q acts by mutliplica-

tion of e
2�i

q . The sphere S(C1
H ) of vectors of norm 1 is an G = Z/q � H space on

which Z/q acts freely and moreover is a Ff -free space. Since the non empty fixed point
sets are infinitely dimensional spheres we know that this sphere S(C1

H ) is a model for
EH Z/q. The Grassmannian Gr1C1

H is a model for BH U (1) since Z/q acts trivially on
the one dimensional vector spaces, and Z/q acts on the fibers of the canonical line bundle

H U (1) ! BH U (1) by multiplication of e

2�i
q . To simplify the notation denote by


1 := 
H U (1)

and note that S(C1
H ) Š S(
1) where S(
1) denotes the sphere bundle of 
1.

Consider now the line bundle 

˝q
1 over BH U (1) which is q-fold tensor product of 
1.

The diagonal map

∆ : 
1 ! 

˝q
1 ; v 7! v ˝ � � � ˝ v

is a q to 1 map on the fibers of the line bundles and therefore it induces an H -equivariant
homeomorphism

S(
1)/(Z/q) Š S(
˝q
1 ):

Thereforewe have that wemay take eitherS(
1)/(Z/q) orS(
˝q
1 ) as amodel forBH Z/q.

The Thom isomorphism

ΩH
� ((D(
˝q

1 ); S(
˝q
1 )) � Γ0) Š ΩH

��2(BH U (1) � Γ0)

together with the long exact sequence for the pair (D(
˝q
1 ); S(
˝q

1 )) and the induction
hypothesis provides a four term exact sequence

0 ! ΩH
+ (Γ0

� S(
˝q
1 )) ! ΩH

+ (Γ0
� BH U (1)) !

ΩH
+ (Γ0

� BH U (1)) ! ΩH
� (Γ0

� S(
˝q
1 )) ! 0;

where the right hand side homomorphism is precisely the one of (3.10). Therefore we ob-
tain that the boundary homomorphism of (3.10) is surjective, and since by the induction hy-
pothesis ΩH

+ (Γ0 � BH U (1)) is a free Ω�-module, we conclude that
ΩH

+ (Γ0 � S(
˝q
1 )) is also a free Ω�-module.
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Therefore we obtain the following commutative diagram with exact rows

0 // ΩG
+fFf g(Γ) // ΩG

+(Γ)
// ΩG

+fFa; Ff g(Γ)
@

// ΩG
� fFf g(Γ) // 0

0 // Ω
G

+fFf g(Γ) //

Š

OO

Ω
G

+(Γ)
//

OO

Ω
G

+fFa; Ff g(Γ)
@

//

?�

OO

Ω
G

� fFf g(Γ)

Š

OO

// 0

0 // Ω
G

+fFf g(Γ0) //

�� Š

OO

Ω
G

+(Γ
0) //

OO

Ω
G

+fFa; Ff g(Γ0)
?�

OO

@
// Ω

G

� fFf g(Γ0)

�� Š

OO

// 0;

thus implying thatΩG
� (Γ) = 0 and thatΩG

+(Γ) is a freeΩ�-module since bothΩG
+fFf g(Γ)

and ΩG
+fFa; Ff g(Γ) are free Ω�-modules.

Therefore the evenness conjecture holds for finite abelian p-groups.

3.3 The general case. The proof of the evenness conjecture for general finite abelian
groups was done by Ossa [1972] and is based on the proof of Stong for p-groups and
appropriate localizations at different primes. For a finite abelian groupK denote byZK :=

Z[1/jKj] the localization of the integers at the ideal generated by the order of K.
Let G = K � L with K and L finite abelian with jKj and jLj relatively prime and

consider the homomorphism ΩK�L
� fF g ! ΩL

� fF g which forgets the K action and F is
any family of subgroups of L . Let us show that the localized homomorphism

ΩK�L
� fF g(Γ) ˝ ZK ! ΩL

� fF g(Γ) ˝ ZK

is an isomorphism whenever Γ :=
Ql

i=1 BGU (ki ). Let us proceed by induction over L

and over the family fF g.
For the trivial family F = ff1gg we obtain the isomorphism

Ω�(BK � BL �
Y

i

BU (ki )) ˝ ZK
Š
! Ω�(BL �

Y
i

BU (ki )) ˝ ZK

since Ω�(BK) ˝ ZK Š Ω� ˝ ZK .
Whenever the adjacent pair of families (F ; F 0) differ by H � L we obtain the homo-

morphism of long exact sequences

// ΩK�L
� fF 0g(Γ) //

��

ΩK�L
� fF g(Γ) //

��

Ω
K�L/H
� ff1gg(ΓH � Γ0) //

��

// ΩL
� fF 0g(Γ) // ΩL

� fF g(Γ) // Ω
L/H
� ff1gg(ΓH � Γ0) //

with Γ0 a disjoint union of products of spaces of the form BK�L/H U (l). Tensoring with
ZK induces an isomorphism on the left vertical arrow by the induction hypothesis on the
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families and an isomorphism on the right vertical arrow by the induction hypothesis on
the group L/H . The 5-lemma implies the desired isomorphism.

Now let F be any family of subgroups ofK and denote by F �Φ the family of subgroups
of G whose elements are groups J � H with J 2 F and H any subgroup of L. Let us
show by induction on F and on the group K that the localized module

ΩK�L
� fF � Φg(Γ) ˝ ZK

is a free Ω� ˝ ZK-module. Whenever F is the trivial family we have shown above that

ΩK�L
� ff1g � Φg(Γ) ˝ ZK

Š
! ΩL(Γ) ˝ ZK

is an isomorphism.
If the adjacent pair of families (F ; F 0) differ by the subgroup J , then we obtain the

long exact sequence

� � � ! ΩK�L
� fF 0

� Φg(Γ) ! ΩK�L
� fF � Φg(Γ) ! Ω

K/J
� ff1gg(ΓJ �L

� Γ00) ! � � �

where Γ00 is a disjoint union of spaces of the form BK/J U (l). Tensoring with ZK gives
us free Ω� ˝ ZK-modules on the left hand side by the induction on families and on the
right hand side by the induction on the group K. Therefore the middle term is also a free
Ω� ˝ ZK-module.

Therefore we have proved that if ΩL(Γ) is free Ω�-module then ΩK�L(Γ) ˝ ZK is
a free Ω� ˝ ZK-module. Let us now write G = P1 � � � � � Pk with Pi its sylow pi -
subgroup. Since the evenness conjecture holds for p-groups, we have that ΩPi

� (Γ) is a
free Ω�-module and therefore ΩG

� (Γ) ˝ Z[1/[G : Pi ]] is a free Ω� ˝ Z[1/[G : Pi ]]-
module. Since the numbers [G : Pi ] are relatively prime it follows that ΩG

� (Γ) is a free
Ω�-module.

Therefore the evenness conjecture holds for finite abelian groups.

4 The equivariant unitary bordism groups for non abelian groups

The evenness conjecture has been shown to be true for the dihedral groups D2p with p-
prime by Ángel, Gómez, and B. Uribe [n.d.], for groups of order pq where p and q are
different primes by Lazarov [1972] and for the more general case of metacyclic groups by
Rowlett [1980]. In these cases the group G is a semidirect product Z/r Ì Z/s of cyclic
groups with r and s relatively prime, and the study of the equivariant unitary bordism
groups is also carried out calculating the equivariant unitary bordism groups of adjacent
pair of families of subgroups as is done in the cyclic group case of Section 3.1.
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The main tool used by Rowlett to study the metacyclic case is the equivariant unitary
spectral sequence constructed by himself in Rowlett [1978, Prop. 2.1]. Suppose that A

is a normal subgroup of G and that Q = G/A. A family F of subgroups of A is called
G-invariant if it is closed under conjugation by elements of G. Consider a pair (F ; F 0) of
G-invariant families of A and note that ΩA

� fF ; F 0g becomes a Q-module in the following
way. Consider an A-manifold M with action � : A�M ! M and take an element g 2 G.
Define a new action onM by the map g�� : A�M ! M , g�(a; m) := �(g�1ag; m) and
denote the action of g on the bordism class [M; � ] by g[M; � ] := [M; g�� ]. This action
is trivial on elements of A and therefore it boils down to an action of Q. Then there is a
first quadrant spectral sequence Er converging to ΩG

� fF ; F 0g whose second page is

E2
p;q Š Hp(Q;ΩA

q fF ; F 0
g):

In the case that both groups A and Q are cyclic of relative prime order, the action of Q

on ΩA
+fF ; F 0g factors through a permutation action on the free generators and therefore

the second page is not difficult to calculate. If we take the family FA of all subgroups of A,
the second page of the spectral sequence becomes Hq(Q;ΩA

q ), and since ΩA
� is a free Ω-

module in even dimensional generators, then we obtain that ΩG
+fF g is a free Ω�-module.

Moreover, the same explicit construction carried out in Section 3.1 can be adopted in this
case to show that the long exact sequence associated to the pair of families fFa; FAg, with
Fa the family of all subgroups, becomes

0 ! ΩG
+fFAg ! ΩG

+ ! ΩG
+fFa; FAg

@
! ΩG

� fFAg ! 0:

The same argument as in (3.5) shows that ΩG
� fFa; FAg is a free Ω�-module in even

dimensional generators and therefore we conclude that ΩG
� is zero and ΩG

+ a free Ω�-
module.

The spectral sequence defined above can also be used in order to understand the torsion
free part of the G-equivariant unitary groups for any abelian group. Take any subgroup A

of G and let (FA; F 0
A) be the adjacent pair of families of G which differ by the conjugacy

class of A. Tensoring with the rationals we obtain an isomorphism

ΩG
� fFA; F 0

Ag ˝ Q Š ΩA
� fFA; F 0

Ag
WA ˝ Q

where the right hand side consists of the WA-invariant part. Since ΩA
� fFA; F 0

Ag is a free
Ω�-module in even dimensional generators we obtain the isomorphism

ΩG
� ˝ Q Š

M
(A)

ΩA
� fFA; F 0

Ag
WA ˝ Q

where (A) runs over the conjugacy classes of subgroups of G (see Rowlett [ibid., Thm.
1.1], c.f. tom Dieck [1973, Thm. 1]). In particular the torsion-free component of ΩG

� is
all of even degree.
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Apart from the non-abelian groups which are metacyclic, there is no other finite non-
abelian group on which the evenness conjecture has been shown to hold.

Themain difficulty lies in the understanding of the equivariant bordism groupsΩG
� fF g(eGBGU (n))

of the classifying spaceseGBGU (n) associated to S1-central extensions eG of G for differ-
ent families F of subgroups. These bordism groups are the ones appearing once we try to
calculate the equivariant unitary bordism groups for adjacent pair of families. Any devel-
opment on the understanding of these equivariant unitary bordism groups will shed a light
on the proof of the evenness conjecture for a bigger class of groups.

5 Conclusion

The evenness conjecture for equivariant unitary bordism has been an important question
in algebraic topology for more than forty years. The conjecture has been proved to hold
only for compact abelian Lie groups and finite metacyclic groups, for all other groups the
conjecture remains open. We do hope that the present summary of known results will help
settle the conjecture in the near future.
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LITTLE DISKS OPERADS AND FEYNMAN DIAGRAMS

Thomas Willwacher

Abstract

The little disks operads are classical objects in algebraic topology which
have seen a wide range of applications in the past. For example they ap-
pear prominently in the Goodwillie-Weiss embedding calculus, which is a
program to understand embedding spaces through algebraic properties of
the little disks operads, and their action on the spaces of configurations of
points (or disks) on manifolds. In this talk we review the recent understand-
ing of the rational homotopy theory of the little disks operads, and how
the resulting knowledge can be used to fulfil the promise of the Goodwillie-
Weiss calculus, at least in the ”simple” setting of long knot spaces and over
the rationals. The derivations prominently use and are connected to graph
complexes, introduced by Kontsevich and other authors.

1 Introduction

The little disks operads are collections of spaces Dn(r) of rectilinear embeddings
of r little disks in the n-dimensional unit disk

Dn(r) = Embrl(D⊔r
n ,Dn).

Here rectilinear means that the embedding may rescale and translate the little
disks, but not rotate or otherwise deform them. The operadic compositions are
defined through the gluing of configurations of disks, with one configuration being

The author acknowledges partial support by the European Research Council, ERC StG 678156–
GRAPHCPX..
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inserted in place of small disk as the following example illustrates.

(1)

1

2

3
◦3 1 2 =

1

2

3 4

The framed little n-disks operad D f r
n is a variant in which one allows the embed-

dings to also rotate the little disks.
The little disks operads have seen various applications in algebra, topology,

and even some branches of mathematical physics. We will focus on one particular
relatively recent application here, the manifold calculus of Weiss and Goodwillie
[1999] and Weiss [1999]. To this end let M be a manifold of dimension m. We
may consider the spaces of embeddings of m-dimensional disks in M, confM(r) =
Emb(Dr

m,M). Again by composition of embeddings (i.e., gluing of disks) the operad
Dm (and likewise D f r

m ) naturally acts on the the collection of spaces confM.

1
◦1 1 2 =

1 2

The idea of the Goodwillie-Weiss manifold calculus is then that properties of the
space M, and spaces derived from it, may be accessed using the spaces confM(r)
and the action of D( f r)

n upon them. In particular, for N another manifold of
dimension n, and under the technical condition that n ≥ m + 3, one can express
the space of embeddings from M into N as a derived mapping space between the
right D f r

m -modules confM and confN , see the work of Weiss and Boavida de Brito
[2013],

(2) Emb(M,N) ≃ Maph
mod−D f r

m
(confM , confN).

In other words, the manifold calculus replaces the complicated topological space
of knottings of M in N on the left by a (potentially) accessible algebraic object
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on the right. One problem of this approach had been that the algebraic object
on the right is still relatively complicated and hard to understand. However, due
to recent progress in understanding the rational (or real) homotopy theory of the
little disks operads and configuration spaces Campos and Willwacher [2016] and
Idrissi [2016], information about the right-hand side may be obtained.

For this exposition we will in fact restrict to the simplest setting, when M = Rm

and N = Rn. In this case one studies the spaces of long knots Emb∂(Rm,Rn), i.e.,
of embeddings of Rm into Rn which agree with the standard embedding outside of
a compact. For technical reasons one furthermore reduces to the homotopy fiber
over immersions

Emb∂(Rm,Rn) = hofiber (Emb∂(Rm,Rn)→ Imm∂(Rm,Rn)) .

The appropriate version of the embedding calculus for this situation then states
that for n − m ≥ 3 there is a weak equivalence (cf. Weiss and Boavida de Brito
[2015], Ducoulombier and Turchin [2017], and Dwyer and Hess [2012])

(3) Emb∂(Rm,Rn) ≃ Ωm+1Maph
op(Dm,Dn),

where on the right-hand side we have the m+1-fold loop space of the derived map-
ping space of operads between Dm and Dn. In particular, note that the Goodwillie-
Weiss calculus states that the homotopy type of the space of (codimension ≥ 3-
)knots is already fully encoded in the homological algebra of the relatively ”simple”
insertion operations (1).

The final result we want to study is that the rational homotopy type of the right-
hand side of (3) may be computed and expressed fully in terms of combinatorial
data, through graph complexes and algebraic structures on graph complexes. The
results we review here are mostly taken from joint works of the author Fresse and
Willwacher [2015] and Fresse, Turchin, and Willwacher [2017b]. We also refer to
these works for more technical details, which often have to be omitted from our
exposition for reasons of brevity.

Notation and conventions. We generally work over the ground field Q unless oth-
erwise stated, i.e., all vector spaces, commutative algebras etc. are considered over
Q. As usual we abbreviate the phrase “differential graded” by dg, and “differen-
tial graded commutative algebra” by dgca. We omit the prefix dg if clear from
the context. For example “vector space” will typically mean dg vector space. We
generally work in cohomological conventions, so that all of our differentials have
degree +1. For a (dg) vector space V we denote by V[k] the degree shifted vecor
space. If v ∈ V has degree d then the corresponding object in V[k] has degree
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d − k. For an introduction to the language of operads we refer the reader to the
textbooks Loday and Vallette [2012] or Fresse [n.d.], whose notation we shall es-
sentially follow. A standard reference for the little disks operads is May [1972,
section 4].

2 Graph complexes

Graph complexes are differential graded vector spaces of linear combinations or
series of combinatorial graphs. There are various versions depending on the type
of graphs considered, for example complexes of undirected graphs, directed acyclic
graphs, ribbon graphs etc. Here we will consider only the simplest version, as
introduced by M. Kontsevich. We define GCn to be the Q-vector space of series of
isomorphism classes of admissible graphs. Here an admissible graph is a connected
undirected graph with an orientation, all of whose vertices have valence ≥ 2, and
which does not have odd symmetries, a condition we shall elucidate shortly.

+
5

2

The definition depends on an integer n, which determines the cohomological degree
of graphs, with a graph in GCn being assigned degree

(#vertices − 1)n − (#edges)(n − 1).

In other words, we consider the vertices as carrying degree n, and the edges as
carrying degree 1−n. An orientation on a graph Γ is the following data, depending
on the parity of n:

• For n even, an orientation of Γ is an ordering or of the set of edges of Γ. If
two such orderings or, or′ differ by a permutation σ, we identify the oriented
graphs up to sign

(Γ, or) = sgn(σ)(Γ, or′).

• For n odd an orientation consists of an ordering of the set of vertices and half-
edges. Again we identify two such orderings up to sign. Note that providing
an ordering of the set of half-edges up to sign is equivalent to providing a
direction on edges, identifying directions up to sign

= − .
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The presence of the orientation implies that graphs with orientation reversing (odd)
symmetries yield zero vectors in the graph complex. More concretely, for n even
and odd symmetry of a graph is an automorphism inducing an odd permutation
on the set of edges. Similarly, for n odd an odd symmetry is an automorphism
inducing an odd permutation on the set of half-edges and vertices.

Note that this in particular implies that for n even any graph with a double
edge is considered zero, for it has an odd symmetry by swapping the edges in the
double edge. Likewise, for n odd any graph with a tadpole (or short cycle) is zero
due to the symmetry reversing the cycle.

...
...↕

· · ·

↔

We define on GCn a differential d, splitting vertices of graphs. More concretely

dΓ =
∑

v

split(Γ, v)

with the operation split(Γ, v) replacing the vertex v by two vertices connected by
an edge and summing over all ways of reconnecting the edges incident at v to the
two new vertices. Here the orientation on graphs in split(Γ, v) is chosen so that
for n even the newly created edge becomes the first in the ordering of edges. For
n odd assume without loss of generality that v is the first vertex in the ordering.
The orientation is chosen such that the newly created vertices are the first two in
the ordering, with the newly created edge pointing from the first to the second.

n even : 7→
∑

1
n odd :

1
7→
∑ 1 2

It is an easy exercise to check that with these conventions on the orientation
d2 = 0, so that we can consider the graph cohomology H(GCn) = kerd/imd. This
cohomology is a somewhat mysterious object that can at present only partially be
computed. Let us recall a few known facts.

First note that the differential cannot alter the loop order of a graph, and hence
the graph complex decomposes into a direct product of subcomplexes of fixed loop
order GCk−loop

n . Furthermore, GCn depends on n essentially only up to parity, and
hence one can see that

H j(GCk−loop
n+2 ) � H j+2k(GCk−loop

n ).

In particular, knowing H(GCn) for one even and one odd n suffices to determine
H(GCn) for all n. On the other hand, despite considerable effort, the author has
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not found any relation between H(GCn) and H(GCn+1) that would allow for the
computation of one through the other.

In low loop orders the graph cohomology can be computed explicitly by hand or
with the help of computers. For example, in loop order 1 the most general graph
has the form

(4) Lk =

· · ·
(k vertices and k edges, deg=n − k).

These graphs have odd symmetries, and hence vanish as elements of the graph
complex, unless k ≡ 2n + 1 mod 4, so that

(5) H(GC1−loop
n ) �

∏
k≥1

k≡2n+1 mod 4

QWk,

with the class Wk living in cohomological degree k − n.
For loop order k ≥ 2 one can show that the inclusion of the subcomplex

GCk−loop,≥3
n ⊂ GCk−loop

n

spanned by graphs all of whose vertices are at least trivalent is a quasi-isomor-
phism, cf. Kontsevich [1993] and Willwacher [2015b]. In this subcomplex, a graph
with v vertices must then have at least 3

2v edges, and hence one can derive the
simple upper degree bound for k ≥ 2

(6) H>−k(n−3)−3(GCk−loop
n ) = 0.

By somewhat different methods one can also derive a lower degree bound (cf.
Willwacher [2015b])

H<−k(n−2)−1(GCk−loop
n ) = 0.

Next, we shall note that GCn carries the structure of a dg Lie algebra. The Lie
bracket is defined combinatorially by inserting a graph in vertices of another.

[γ, ν] = γ • ν − (−1)|γ||ν|ν • γ

with
γ • ν :=

∑
x∈Vγ
γ(insert ν in place of x)

In the case of n = 2 the author showed the following.
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Theorem 1 (Willwacher [ibid.]). The zeroth cohomology H0(GC2) can be identi-
fied with the (completed) Grothendieck-Teichmüller Lie algebra grt1. Furthermore
H1(GC2) � K and H≤1(GC2) = 0.

We will not recall the somewhat technical definition of the Grothendieck-Teichmüller
Lie algebra grt1 defined by Drinfeld [1990], but rather recall the following impor-
tant result of Francis Brown.

Theorem 2 (Brown [2012]). There is an injective Lie algebra morphism

FLie(σ3, σ5, σ7, . . . )→ grt1

from the complete free Lie algebra in generators σ3, σ5, . . . .

Both results together yield an infinite family of nontrivial graph cohomology
classes. One can provide explicit integral formulas for the graph cocycles repre-
senting σ2 j+1 as in “P. Etingof’s conjecture about Drinfeld associators” [2014].
Concretely, σ2k+1 is represented by a linear combination of diagrams of loop order
2k + 1

σ2k+1 ≃
···

+ (· · · ),

where the first “wheel” graph has 2k + 2 vertices, and the terms (...) on the right
which are not explicitly written are linear combinations of graphs all of whose
vertices have valence ≤ 2k.

We shall not recall here in detail the known results for the graph cohomology
H(GC3), or equivalently H(GCn) for n odd. Let us just mention that a large family
of non-trivial cohomology classes in top degree is known through Chern-Simons
theory. Furthermore there are conjectures regarding the precise shape of the top
degree cohomology, see Vogel [2011] and Kneissler [2000, 2001a,b] for details.

Computer generated tables of the numbers dimH j(GCk−loop
n ) can be found in

Figure 1. The red lines depict the degree bounds beyond which the cohomol-
ogy is zero. The cohomology classes giving rise to the numbers appearing in the
(computer accessible portion of) the tables can be “explained”, see Khoroshkin,
Willwacher, and Živković [2017] for more details. However, at large we still do
not know what H(GCn) is, and in particular which entries of the table are zero.
To this end, let us just note a famous vanishing conjecture which goes back to
Kontsevich, and in a similar form to Drinfeld.

Conjecture 3. H1(GC2) = 0.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 1 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 1 0 1 1 2
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1 1 1 2 2 3
-1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12
8 1
4 1
0 1
-2 0 0 0 0 0 0 0 0 0 0 0 0
-3 0 1 1 1 2 2 3 4 5 6 8 9
-4 0 0 0 0 0 0 0 0
-5 0 0 0 0 0 0 0 0
-6 0 0 0 0 0 1 1 2
-7 0 0 0 0 0 0 0 0
-8 0 0 0 0 0 0 0 0 0

Figure 1: Computer generated tables of dimH j(GCk−loop
2 ) (top) and

dimH j(GCk−loop
3 ) (bottom), with j being the row index and the loop order

k the column index. All entries above the upper and below the lower red
line are zero. Entries between the red lines which are not shown have not
been computed.
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Even Odd
loop order χ̃even

b χ̃odd
b

1 0 1
2 1 1
3 0 1
4 1 2
5 -1 1
6 1 2
7 0 2
8 0 2
9 -2 1
10 1 3
11 0 1
12 0 3
13 -2 4
14 0 2
15 -4 2

Even Odd
loop order χ̃even

b χ̃odd
b

16 -3 6
17 -1 4
18 8 -5
19 12 -14
20 27 -21
21 14 -11
22 -25 21
23 -39 44
24 -496 504
25 -2979 2969
26 -412 413
27 38725 -38717
28 10583 -10578
29 -667610 667596
30 28305 -28290

Figure 2: Table of the Euler characteristics of the graph complexes GCn
for even and odd n from Willwacher and Živković [2015]. Note that for
high loop orders the Euler characteristics for the even and odd complexes
are astonishingly similar, with the sign difference being due to conventions.

As a final remark we shall mention that while the above tables suggest that
the cohomology of the graph complexes H(GCn) for even and odd n is very dif-
ferent. However, the Euler characteristic computations of GCn from Willwacher
and Živković [2015], which we reproduce in Figure 2, show that at least the Euler
characteristics of both complexes in high loop orders are strikingly similar. The
author can currently not explain this fact.

2.1 A variant with external legs. We will also need a slight variant of the above
graph complexes. We may consider a complex of graphs HGCm,n built using graphs
with ”external legs” or hairs, as shown in the following pictures

, , , .
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We require that all non-hair vertices are at least trivalent. The cohomological
degree of a graph is determined by the formula

n(#internal vertices) − (n − 1)(#edges) + m(#internal vertices − 1).

Here we count the edges being part of a hair as edges as well. One also equips
these hairy graphs with an orientation. Graphs that possess odd symmetries are
hence considered zero in the graph complex. The differential is again given by
splitting (non-hair) vertices. This operation cannot change the number of hairs,
nor the first Betti number (i.e„ the number of loops) of a graph, Hence the complex
HGCm,n splits into a direct product of subcomplexes of fixed number of hairs and
loops

HGCk−loop,h−hair
m,n ⊂ HGCm,n.

In general, the cohomology of these complexes is not known, but at least one
has partial information. In low loop orders, or for low numbers of hairs one can ex-
plicitly compute the cohomology. For example, in loop order zero the cohomology
is precisely one dimensional, and represented by the following graph cocycles:

(7)
for n − m even, in cohomological degree m − n + 1

for n − m odd, in cohomological degree 2(m − n) + 3

The computation of the loop order one cohomology we leave to the reader. The
computation in loop order two can be found in Conant, Costello, Turchin, and
Weed [2014].

Next, using that non-hair vertices can be required to be at least trivalent one
can easily derive the upper degree bounds

(8) H>−k(n−3)−(h−1)(n−m−2)−1(HGCk−loop,h−hair
m,n ) = 0.

For example, we will use below that for n − 3 ≥ m the only non-trivial classes in
degree −m live in loop order k = 0 and are hence found in the list (7).

By other methods (see Arone and Turchin [2014] and Willwacher [2015b]) one
can also obtain the lower degree bound

H<−k(n−2)−(h−1)(n−m−1)(HGCk−loop,h−hair
m,n ) = 0.

Furthermore, the complexes HGCm,n are also dg Lie algebras. The Lie bracket
of two hairy graphs is computed by connecting a hair of one graph to vertices of



LITTLE DISKS OPERADS AND FEYNMAN DIAGRAMS 1269

the other as indicated in the following picture:

 α
,
β
 =∑

α

β
±
∑

β

α
.

For further information about the hairy graph cohomology H(HGCm,n), we re-
fer the reader to Arone and Turchin [2015] containing a computation of the Euler
characteristic, to Khoroshkin, Willwacher, and Živković [2015] containing a con-
struction of infinite series of nontrivial classes and numerical results, or to Fresse,
Turchin, and Willwacher [2017b] for general information.

3 The little disks operads

3.1 Cohomology of the little disks operad. The cohomology of the little disks
operads Dn has been computed by Arnold (for n = 2) and F. Cohen (for all n).

Theorem 4 (Arnold [1969] and Cohen [1976]). For n ≥ 2 and r ≥ 1 the cohomology
algebra of the space Dn(r) has the presentation

H(Dn(r)) = Q[ωi j | 1 ≤ i , j ≤ n]/⟨R⟩,

where ωi j are generators of degree n − 1 and the relations R read

ωi j = (−1)nω ji ω2
i j = 0 ωi jω jk + ω jkωki + ωkiωi j = 0

From the operad structure on Dn the collection of graded commutative algebras
H(Dn) receives a cooperad structure. Generally, we will call a cooperad in the
category of dg commutative algebras a Hopf cooperad, so that in particular H(Dn)

is a Hopf cooperad.
To understand the operad structure it is slightly easier to consider the dual

operad H•(Dn). For n = 1 this is just the associative operad. For n ≥ 2 it can
be identified with the n-Poisson operad Poisn, which generated by a commutative
product operation ∧ of degree 0 and a Lie bracket [, ] of degree 1− n satisfying the
compatibility relation

[x1, x2 ∧ x3] = [x1, x2] ∧ x3 + x2 ∧ [x1, x3].



1270 THOMAS WILLWACHER

3.2 Rational homotopy theory of operads. Rational homotopy theory is the
study of rational homotopy types of spaces. In Sullivan’s approach, the main
ingredient is a Quillen adjunction between the categories of simplicial sets (which
we shall think of as topological spaces) and of dg commutative algebras

Ω : sSet⇆ dgcaop : G.

Sullivan’s functor Ω sends a simplicial set X to the dg commutative algebra of
piecewise polynomial differential forms

Ω(X) := HomsSet(X,Ωpoly(∆
•)).

We readily extend the definition to topological spaces instead of simplicial sets
via the singular simplicial complexes functor Sing•. We shall quietly abuse the
notation and write, for a topological space X,

Ω(X) := Ω(Sing•X).

When X is a manifold Ω(X) ⊗Q R is weakly equivalent to the dg commutative
algebra of de Rham differential forms on X. For our purposes, rational homo-
topy theory can be seen as the study of the quasi-isomorphism type of the dg
commutative algebra Ω(X).

Let us next consider a topological operad T . To study its rational homotopy
type we would like to apply the functor Ω and study the resulting cooperad ob-
ject in dg commutative algebras. Unfortunately, due to incompatible monoidal-
ity properties of the functor Ω the collection Ω(T ) is not naturally a cooperad.
More concretely, the problem here is that one has a natural quasi-isomorphism
Ω(X) ⊗ Ω(Y) → Ω(X × Y), but no natural morphism in the other direction. There
are essentially three known approaches to work around this technical problem, by
(i) using operads up to homotopy or (ii) changing the functor Ω or (iii) to use
completed tensor products in the smooth setting.

While all three approaches have been used in the literature, we use here ap-
proach (ii). We shall follow Fresse’s rational homotopy theory for operads, see
Fresse [n.d.] and Fresse and Willwacher [2015, section 0], which we briefly outline.
For brevity we call a cooperad in dg commutative algebras a Hopf cooperad. Fresse
constructs a Quillen adjunction

Ω♯ : sSet-Op⇆ Hopf-Opc : G

between the model categories of reduced operads in simplicial sets, and that of dg
Hopf cooperads. The functor Ω♯ here is defined as left adjoint of the realization
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functor G and shall be seen as an operadic upgrade of Sullivan’s functor Ω. In
each arity, Ω♯ is weakly equivalent to Ω.

For our purposes, studying the rational homotopy type of a topological operad
T amounts to studying the quasi-isomorphism class of the dg Hopf cooperad Ω♯(T ),
where we again quietly extend Ω♯ to topological spaces instead of simplicial sets,
taking singular simplices. Furthermore, if S and T are simplicial (or topological)
operads, then one can use the Quillen adjunction above to compute

MapsSet-Op(S, T
Q) = MapsSet-Op(S,G(Ω♯(T ))) ≃ MapHop f Opc(Ω♯(T ),Ω♯(S)).

We finally note that Fresse’s framework has the downside that it requires our
operads to be reduced, i.e., that T (0) = T (1) = ∗ is a point. Unfortunately
the little disks operads introduced above are not reduced, since Dn(1) is not a
point, only contractible. However, there are homotopy equivalent variants of Dn,
for example the Fulton-MacPherson operad FMn Getzler and Jones [1994], which
are reduced. Generally, an En operad is a topological operad weakly equivalent
to Dn. In the following we will abuse the notation a bit and denote by En some
chosen reduced operad weakly equivalent to Dn. Furthermore, for technical reasons
the arity zero operations in T (0) = ∗ are encoded in a Λ-structure instead of
considering them as operations in the operad. A Λ-structure is the collection of
all possible composition maps with nullary operations T (r + s) → T (r), which
are required to satisfy natural compatibility relations. For simplicity of notation
we will hide this further technical complication and do not mark the presence
of the Λ-structure in our notation. We refer to Fresse’s book Fresse [n.d.] for
details. It is shown in Fresse, Turchin, and Willwacher [2017a] that the mapping
spaces computed in the category of reduced operads are weakly equivalent to
those computed in the full category of operads, thus justifying our restriction to
the reduced setting.

3.3 Formality and intrinsic formality of En operads. Today the rational homo-
topy types of the little disks operads are fully understood through the following
Theorem.

Theorem 5 (Formality Theorem for the En operads). The dg Hopf cooperads Ω♯(En)

are formal, i.e., connected by a chain of weak equivalences to the cohomology
cooperad ec

n = H(En).

The Theorem has the following history. The formality of E2 was first shown by
Tamarkin [2003]. The statement for higher n was first established by Kontsevich
[1999], albeit over the ground ring R. It has then been noted in Guillén Santos,
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Navarro, Pascual, and Roig [2005] that Kontsevich’s statement can be improved
to yield formality over Q, provided one disregards the arity zero operations in the
cooperads. Finally, the remaining statement of formality over Q with zero-ary
operations was shown by Fresse and the author in Fresse and Willwacher [2015].
Also, surprisingly, we were able to show a significantly stronger result. A dg
Hopf cooperad C is called intrinsically formal if any dg Hopf cooperad D with
H(D) ≃ H(C) is weakly equivalent to C. One then has:

Theorem 6 (Intrinsic formality for the little diks operadsFresse and Willwacher
[ibid.]). The dg Hopf cooperad Ω♯(En) is intrinsically formal for n ≥ 3 and n not
divisible by 4. If n ≥ 3 is divisible by 4, one does not have intrinsic formality, but
the following statement is retained: Suppose that D is another dg Hopf cooperad
such that H(D) � H(En). Suppose further that I : D → D is an involution which
agrees on cohomology with the canonical involution of En by mirror reflection along
a coordinate axis. Then D ≃ H(En).

For n = 2 the analogous statement is an open conjecture.

Conjecture 7. The little 2-disks operad is rationally intrinsically formal.

In fact, this conjecture would follow from the vanishing Conjecture 3 on the
graph cohomology above.

To conclude this subsection let us also remark on several closely connected
formality questions for the little disks operads. First we note that the little disks
operads come with natural maps Dm → Dn. One may ask what the rational (or
real) homotopy type of these maps are. The question has been answered in works of
Turchin and the author Turchin and Willwacher [2014] and Fresse and the author
Fresse and Willwacher [2015], improving upon earlier results by Lambrechts and
Volić Loday and Vallette [2012].

Theorem 8 (Fresse and Willwacher [2015], Turchin and Willwacher [2014], and
Loday and Vallette [2012]). Let n ≥ m ≥ 1. Then the map Em → En is rationally
formal for n − m , 1, and not formal (even over R) for n − m = 1.

Furthermore the real homotopy type of the map En−1 → En can be fully de-
scribed.

In a different direction, note that the group O(n) naturally acts on the lit-
tle n-disks operad D(n). One can hence ask whether the operad D(n) is O(n)-
equivariantly formal or not. This is equivalent to asking whether the framed little
disks operads are formal or not. This latter question has also been answered by
now: The framed little 2-disks operad D f r

2 was shown to be formal by Giansira-
cusa and Salvatore [2010] (over R) and independently by Ševera [2010] (over Q).
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Furthermore, the formality (over R) of D f r
n for n is even is shown in Khoroshkin

and Willwacher [2017]. For n ≥ 3 odd the operad D f r
n is not formal, but explicit

“small” models capturing the real homotopy type can be found Khoroshkin and
Willwacher [2017] and Moriya [2017]

At present, the (arguably) most important remaining open problem regarding
the formality of the little disks operads is the following.

Open Problem 9. Determine the O(m) × O(n − m)-equivariant rational homotopy
type of the Map Dm → Dn.

This homotopy type appears for example in connection to the Goodwillie-Weiss
manifold calculus, see Section 5 below.

3.4 Kontsevich’s graphical model for En. The intrinsic formality statement (The-
orem 6 above) can be shown by an analysis of the graph complex GCn discussed in
Section 2. The object that builds the bridge are the graphical models Graphsn for
the En opeads introduced by Kontsevich [1999]. More concretely, one defines a col-
lection of dg commutative algebras Graphsn(r) as follows. The space Graphsn(r) is
the space of linear combinations of isomorphism classes of graphs of the following
type:

• The graph is an undirected graph with r numbered “external” vertices, and
an arbitrary (but finite) number of “internal” vertices.

• All internal vertices have valence at least 2.

• Every connected component contains at least one external vertex.

• Graphs are equipped with an orientation, as in Section 2, and we identify
orientations up to sign. More concretely, for n even an orientation is an
ordering of the edges, while for n odd an orientation is an odering of the set
of half-edges and vertices. As discussed before, the presence of the orientation
renders graphs with odd symmetries zero

The following is an examples of a graph in Graphsn(5).

1 2 3 4 5
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The space Graphsn(r) is equipped with a differential by edge contraction, schemat-
ically:

δ = δ = .

Furthermore, we have a commutative product by gluing two graphs along the
external vertices.

1 2 3 4 ∧ 1 2 3 4 = 1 2 3 4

It is clear that Graphsn(r) is free as a graded commutative algebra, generated by
graphs that are internally connected, i.e., connected after removal of the external
vertices.

Furthermore there is cooperad structure on the collection Graphsn, with the
coproduct being the contraction of subgraphs. More precisely, for the generating
cocomposition ∆T corresponding to a tree

1 · · · k − 1

k · · · r

we have that

(9) ∆T (Γ) =
∑
γ

Γ/γ ⊗ γ,

where the sum is over all subgraphs γ ⊂ Γ containing the external vertices k, . . . , r
and no other external vertices, and the graph Γ/γ is obtained by contracting γ to
one external vertex. Here is an example for r = 4 and k = 2:

∆T 1 2 3 4 = 1 2 ⊗ 1 2 3 + 1 2 ⊗ 1 2 3

In this formulas, and more generally (9) there is a natural way to define an orien-
tation on the graphs on the right-hand side of the equation, given an orientation
on the left-hand side, thus fixing the signs.
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Finally, we note that for n ≥ 2 we have a map of dg Hopf cooperads

Graphsn → H(Dn) = ec
n,

which is defined by sending any graph with internal vertices to zero, and sending
a graph Γ without internal vertices and edges (i1, j1), . . . , (ik, jk) to

ωi1 j1 · · ·ωik jk ,

cf. Theorem 4. Kontsevich and Lambrechts-Volić have then shown:

Proposition 10 (Kontsevich [1999] and Loday and Vallette [2012]). The map of dg
Hopf cooperads Graphsn → ec

n above is a quasi-isomorphism.

The advantage of the dg Hopf cooperad Graphsn over the smaller weakly equiv-
alent cooperad ec

n is that it has a large group of automorphism. More precisely we
may consider the dg Lie algebra

(10) QL ⋉GCn,

where the generator L on the left acts on a graph by multiplication with the loop
order.

[L, γ] = (#loops) · γ

The statement is now that the dg Lie algebra (10) acts on the Hopf cooperad
Graphsn by biderivations, i.e., compatibly with both the cooperad and the dg
commutative algebra structures. More concretely, the action of the generator L
on a graph Γ ∈ Graphsn is by

L · Γ = (#(edges) −#(internal vertices))Γ.

The action of γ ∈ GCn on Γ ∈ Graphsn can be defined combinatorially as the
contraction of subgraphs of shape γ in Γ, see Willwacher [2015b] for more details
and the explicit formula.

3.5 A sketch of a proof of Theorem 6. As an illustration of the connection be-
tween the graph complexes GCn of Section 2 we sketch here a proof of our intrinsic
formality theorem (Theorem 6 above). We deviate slightly from the original ref-
erence Fresse and Willwacher [2015], where a different approach was used, using
Bousfield’s obstruction theory. The proof proceeds along the following sequence
of steps.
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1. As for most algebraic objects, we can define a deformation complex
Def(C,D) for Hopf cooperads C and D, governing maps between C and
D. More concretely, Def(C,D) is a dg Lie or L∞-algebra, whose Maurer-
Cartan elements correspond to maps from a cofibrant replacement of C to
a fibrant replacement of D. In particular H2(Def(C,D)) is a space of po-
tential obstructions to constructing such maps. Furthermore, given a Hopf
operad map f : C → D and the corresponding Maurer-Cartan element α f ,
the twisted dg Lie algebra Def(C

f
−→ D) := Def(C,D)α f governs deformations

of the map f . We refer to Fresse, Turchin, and Willwacher [2017b, sections
3, 5] for details.

We are interested in particular in Def(ec
n) := Def(ec

n
id−→ ec

n), governing au-
tomorphisms of ec

n = H(Dn). If D is a Hopf cooperad with H(D) = ec
n,

then H2(Def(ec
n)) appears as a space of potential obstructions of lifting the

cohomology map ec
n

=−→ H(C) to a weak equivalence of Hopf cooperads be-
tween ec

n and C. Our goal henceforth is to understand the space H2(Def(ec
n)),

obstructing the intrinsic formality of the little n-disks operad.

2. If g is a dg Lie algebra acting on ec
n, or a quasi-isomorphic object, we obtain

a map H(g) → H(Def(ec
n))[1]. It turns out that in the case of g = QL ⋉GCn

acting on Graphsn ≃ ec
n as described above the resulting map

QL ⊕ H(GCn)→ H(Def(ec
n))[1]

is an isomorphism. This means in particular that the space of (potential)
obstructions to intrinsic formality is given precisely by H1(GCn).

3. By the degree counting result (6) we hence see that for n ≥ 3 the only
possible obstructions are given by the graph cohomology classes represented
by multiples of the loop graphs (4) appearing in (5). These graphs live in
degree 1 only if n is divisible by 4. The intrinsic formality statment hence
follows for n ≥ 3 not divisible by 4.

4. Suppose next that n ≥ 3 is divisible by 4. One can check that the O(n) action
on En is such that conjugation with the involution S ∈ O(n) flipping the sign
of one of the coordinates amounts to a multiplication of graphs in GCn by
(−1)#loops. One can hence conclude that under the additional requirement
of the presence of an involution on the operad as in Theorem 6, the relevant
obstructions to intrinsic formality lie in the even loop order part H(GCn)

Z2 .
Hence the one-loop graphs cannot contribute.
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By a similar analysis one can also make statements about the homotopy auto-
morphisms of ec

n for n ≥ 3. Infinitesimally, they are governed by QL ⋉ H0(GCn).
The piece QL corresponds to the “trivial” automorphisms S λ : ec

n → ec
n which

just rescale the Lie cobracket by the factor λ ∈ Q×. By invoking again the de-
gree counting result 6 we see that (for n ≥ 3) H0(GCn) = 0 if n , 3 mod 4 and
otherwise H0(GCn) is one-dimensional, spanned by Ln. Hence one can say that
for n ≥ 3 the rationalization of the little n-disks operad has non-trivial homotopy
automorphisms only if n = 4k + 3, and then only a 1-parameter family of such.
Note that this is in striking contrast to the case of n = 2, where the homotopy
automorphisms form the infinite dimensional Grothendieck-Teichmüller group, cf.
Fresse [n.d.] or Theorem 1.

4 Mapping spaces and long knots

Let us turn again to the computation of the rational homotopy type of the space
of long knots. Using the result (3) from the Goodwillie-Weiss embedding calculus
we see that the quantity to evaluate is the mapping space Maph

op(Em, En). We are
interested in the rationalization of this space. By Fresse, Turchin, and Willwacher
[2017b, Theorem 15 and Proposition 6.1] the rationalization is weakly equivalent
to the space

Maph
op(Em, E

Q
n ) ≃ Maph

Hopf-Opc(Ω♯En,Ω♯Em) ≃ Maph
Hopf-Opc(ec

n, ec
m)

if n − m ≥ 3. For the last equivalence one uses the formality result of the previous
section.

The space on the right-hand side of the above equation can be expressed
through purely combinatorial data, and shown to be weakly equivalent to the
nerve (Maurer-Cartan space) of the Lie algebra of hairy graphs HGCm,n.

Theorem 11 (Fresse, Turchin, and Willwacher [ibid.]). For n ≥ m ≥ 2 we have that

Maph
Hopf-Opc(ec

n, ec
m) ≃ MC•(HGCm,n) := MC(HGC⊗̂Ωpoly(∆

•))

where the hairy graph complex HGCm,n is equipped with the Lie algebra structure
of Section 2.1.

In fact, the same statement continues to hold for m = 1, if one modifies the Lie
algebra structure on HGC1,n to an L∞-algebra structure described in Willwacher
[2015a].

Theorem 11 states in particular that the real homotopy type of the spaces of
long knots in codimension n−m ≥ 3 is fully expressed through combinatorial data
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encoded in the graph complexes. In particular one finds that for k ≥ 0 and n−m ≥ 3

(see also Arone and Turchin [2015] for an earlier but weaker result)

Q ⊗ πk(Emb∂(Rm,Rn)) � H−k−m(HGCm,n).

Since the cohomology of the graph complex HGCm,n can be explicitly computed in
low degrees as described in Section 2.1, this result allows us to compute rational
homotopy groups for low degrees k explicitly. As one application, let us consider
here the case k = 0, detecting nontrivial knottings of Rm in Rn. From the degree
bound (8) we conclude that the only possible contribution can come from graphs
in loop order 0, and those graph cohomology classes are listed in (7). Concretely
the “line” graph of degree n − m − 2 occurring for n − m even produces nontrivial
knottings if n = 4 j−1 and m = 2 j for some j. Similarly the tripod graph of degree
2(n −m) − 3 occurring for n −m odd yields nontrivial zeroth homotopy n = 6 j and
m = 4 j − 1 for some j, see Fresse, Turchin, and Willwacher [2017b, Corollary 20].
In particular one hence recovers Haefliger’s classical result Haefliger [1965] on the
existence of non-trivial knots of dimension 4 j − 1 in 6 j-space.

5 Outlook, extensions and open problems

Above we have seen that a rational version of the Goodwillie-Weiss manifold cal-
culus can be used to compute the rational homotopy type of the space of higher
dimensional long knots through the combinatorial structure of the graph com-
plexes HGCm,n. Evidently, one can similarly hope to attack arbitrary embedding
spaces Emb(M,N) via the rationalized Goodwillie-Weiss calculus. To complete
this program one in particular needs to understand the rational homotopy types
of all spaces and operads involved. As of today, at least over the reals, we un-
derstand the real homotopy types of (unframed) configuration spaces of points on
compact orientable manifolds through the works Campos and Willwacher [2016]
and Idrissi [2016]. Also, we understand the real homotopy type of the framed little
disks operads Khoroshkin and Willwacher [2017]. The main open problem is the
following.

Open Problem 12. Determine the real or rational homotopy type of the n-framed
configuration spaces of points on a manifold M as a right E f r

n -module, where n ≤
dimM.

This problem is also closely related to Open Open Problem 9 above.
After the real or rational homotopy types of the aforementioned objects are un-

derstood there should be no principle obstacle for generalizing the mapping space
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space computations we reviewed here to arbitrary M and N. I can even describe
the expected form of the graph complexes replacing the hairy graph complexes
HGCm,n in this setting. The relevant graphs should be hairy graphs as before, ex-
cept that the hairs are additionaly decorated by a dgca model for the source space
M, and the internal vertices may be decorated by the homology of the target N as
in Campos and Willwacher [2016].

Unfortunately, the embedding calculus is fully applicable only in codimensions
dimN − dimM ≥ 3. In lower codimension one still has the map (2) (from left to
right), but one can not assert it to be a weak equivalence. Nevertheless I expect
that valuable information about the left-hand side can be obtained from the right-
hand side. For example, in codimension 0, we have a map into the homotopy
automorphisms of right framed-little disks (co)modules

(11) Diff(M)→ Auth
Ω(E f r

n )-comod
(Ω(confM)).

I claim that the right-hand side can be computed and expressed through graph
complexes. This then provides an arena in which one can study diffeomorphism
groups, although the map (11) is generally not (expected to be) a rational homo-
topy equivalence.
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Abstract
We survey a number of results regarding the representation theory of W -algebras

and their connection with the resent development of the four dimensional N = 2

superconformal field theories.

1 Introduction

(Affine) W -algebras appeared in 80’s in the study of the two-dimensional conformal field
theory in physics. They can be regarded as a generalization of infinite-dimensional Lie al-
gebras such as affine Kac-Moody algebras and the Virasoro algebra, althoughW -algebras
are not Lie algebras but vertex algebras in general. W -algebras may be also considered as
an affinizaton of finite W -algebras introduced by Premet [2002] as a natural quantization
of Slodowy slices. W -algebras play important roles not only in conformal field theories
but also in integrable systems (e.g. V. G. Drinfeld and Sokolov [1984], De Sole, V. G. Kac,
and Valeri [2013], and Bakalov and Milanov [2013]), the geometric Langlands program
(e.g. E. Frenkel [2007], Gaitsgory [2016], Tan [2016], and Aganagic, E. Frenkel, and Ok-
ounkov [2017]) and four-dimensional gauge theories (e.g. Alday, Gaiotto, and Tachikawa
[2010], Schiffmann and Vasserot [2013], Maulik and Okounkov [2012], and Braverman,
Finkelberg, and Nakajima [2016a]).

In this notewe survey the resent development of the representation theory ofW -algebras.
One of the fundamental problems in W -algebras was the Frenkel-Kac-Wakimoto conjec-
ture E. Frenkel, V. Kac, and Wakimoto [1992] that stated the existence and construction
of rational W -algebras, which generalizes the integrable representations of affine Kac-
Moody algebras and the minimal series representations of the Virasoro algebra. The no-
tion of the associated varieties of vertex algebras played a crucial role in the proof of the
Frenkel-Kac-Wakimoto conjecture, and has revealed an unexpected connection of vertex
algebras with the geometric invariants called the Higgs branches in the four dimensional
N = 2 superconformal field theories.
MSC2010: primary 81R10; secondary 17B67, 17B67.

1281

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v2-p


1282 TOMOYUKI ARAKAWA (荒川知幸)

Acknowledgments. The author benefited greatly from discussionwith Christopher Beem,
Davide Gaiotto, Madalena Lemos, Victor Kac, Anne Moreau, Hiraku Nakajima, Takahiro
Nishinaka, Wolfger Peelaers, Leonardo Rastelli, Shu-Heng Shao, Yuji Tachikawa, and
Dan Xie. The author is partially supported in part by JSPS KAKENHI Grant Numbers
17H01086, 17K18724.

2 Vertex algebras

A vertex algebra consists of a vector space V with a distinguished vacuum vector j0i 2 V

and a vertex operation, which is a linear map V ˝V ! V ((z)), written a˝b 7! a(z)b =

(
P

n2Z a(n)z
�n�1)b, such that the following are satisfied:

• (Unit axioms) (j0i)(z) = 1V and a(z)j0i 2 a + zV [[z]] for all a 2 V .

• (Locality) (z � w)n[a(z); b(w)] = 0 for a sufficiently large n for all a; b 2 V .

The operator T : a 7! a(�2)j0i is called the translation operator and it satisfies (Ta)(z) =

[T; a(z)] = @za(z). The operators a(n) are called modes.
For elements a; b of a vertex algebra V we have the following Borcherds identity for

any m; n 2 Z:

[a(m); b(n)] =
X
j �0

�
m

j

�
(a(j )b)(m+n�j );(1)

(a(m)b)(n) =
X
j �0

(�1)j

�
m

j

�
(a(m�j )b(n+j ) � (�1)mb(m+n�j )a(j )):(2)

By regarding the Borcherds identity as fundamental relations, representations of a vertex
algebra are naturally defined (see V. Kac [1998] and E. Frenkel and Ben-Zvi [2004] for
the details).

One of the basic examples of vertex algebras are universal affine vertex algebras. Let
G be a simply connected simple algebraic group, g = Lie(G). Letbg = g[t; t�1] ˚ CK

be the affine Kac-Moody algebra associated with g. The commutation relations ofbg are
given by

[xtm; ytn] = [x; y]tm+n + mım+n;0(xjy)K; [K;bg] = 0 (x; y 2 g; m; n 2 Z);(3)

where ( j ) is the normalized invariant inner product of g, that is, ( j ) = 1/2h_�Killing
form and h_ is the dual Coxeter number of g. For k 2 C, let

V k(g) = U (bg) ˝U (g[t ]˚CK) Ck ;
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where Ck is the one-dimensional representation of g[t ]˚ CK on which g[t ] acts trivially
and K acts as multiplication by k. There is a unique vertex algebra structure on V k(g)

such that j0i = 1 ˝ 1 is the vacuum vector and

x(z) =
X
n2Z

(xtn)z�n�1 (x 2 g):

Here on the left-hand-side g is considered as a subspace of V k(g) by the embedding
g ,! V k(g), x 7! (xt�1)j0i. V k(g) is called the universal affine vertex algebra associ-
ated with g at a level k. The Borcherds identity (1) for x; y 2 g � V k(g) is identical to
the commutation relation (3) with K = k id, and hence, any V k(g)-module is abg-module
of level k. Conversely, any smooth bg-module of level k is naturally a V k(g)-module,
and therefore, the category V k(g) -Mod of V k(g)-modules is the same as the category of
smoothbg-modules of level k. Let Lk(g) be the unique simple graded quotient of V k(g),
which is isomorphic to the irreducible highest weight representation L(kΛ0) with highest
weight kΛ0 as abg-module. The vertex algebraLk(g) is called the simple affine vertex alge-
bra associated with g at level k, andLk(g) -Mod forms a full subcategory of V k(g) -Mod,
the category of smoothbg-modules of level k.

A vertex algebra V is called commutative if both sides of (1) are zero for all a; b 2 V ,
m; n 2 Z. If this is the case, V can be regarded as a differential algebra (=a unital commu-
tative algebra with a derivation) by the multiplication a:b = a(�1)b and the derivation T .
Conversely, any differential algebra can be naturally equipped with the structure of a com-
mutative vertex algebra. Hence, commutative vertex algebras are the same1 as differential
algebras (Borcherds [1986]).

Let X be an affine scheme, J1X the arc space of X that is defined by the functor
of points Hom(SpecR; J1X) = Hom(SpecR[[t ]]; X). The ring C[J1X ] is naturally a
differential algebra, and hence is a commutative vertex algebra. In the case that X is a
Poisson scheme C[J1X ] has the structure of Poisson vertex algebra (Arakawa [2012b]),
which is a vertex algebra analogue of Poisson algebra (see E. Frenkel and Ben-Zvi [2004]
and V. Kac [2015] for the precise definition).

It is known by Haisheng Li [2005] that any vertex algebra V is canonically filtered, and
hence can be regarded2 as a quantization of the associated graded Poisson vertex algebra
grV =

L
p F pV /F p+1V , where F �V is the canonical filtration of V . By definition,

F pV = spanCf(a1)(�n1�1) : : : (ar)(�nr �1)j0i j ai 2 V; ni � 0;
X

i

ni � pg:

1However, the modules of a commutative vertex algebra are not the same as the modules as a differential
algebra.

2This filtration is separated if V is non-negatively graded, which we assume.
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The subspace
RV := V /F 1V = F 0V /F 1V � grV

is called Zhu’s C2-algebra of V . The Poisson vertex algebra structure of grV restricts to
the Poisson algebra structure of RV , which is given by

ā:b̄ = a(�1)b; fā; b̄g = a(0)b:

The Poisson variety

XV = Specm(RV )

called the associated variety of V (Arakawa [2012b]). We have Li [2005] the inclusion

Specm(grV ) � J1XV :(4)

A vertex algebra V is called finitely strongly generated if RV is finitely generated. In
this note all vertex algebras are assumed to be finitely strongly generated. V is called
lisse (or C2-cofinite) if dimXV = 0. By (4), it follows that V is lisse if and only if
dimSpec(grV ) = 0 (Arakawa [2012b]). Hence lisse vertex algebras can be regarded as
an analogue of finite-dimensional algebras.

For instance, consider the case V = V k(g). We have F 1V k(g)) = g[t�1]t�2V k(g),
and there is an isomorphism of Poisson algebras

C[g�]
∼
! RV ; x1 : : : xr 7! (x1t�1) : : : (xr t�1)j0i (xi 2 g):

Hence

XV k(g) Š g�:(5)

Also, we have the isomorphism Spec(grV k(g)) Š J1g�. By (5), we have XLk(g) � g�,
which is G-invariant and conic. It is known Dong and Mason [2006] that

Lk(g) is lisse () Lk(g) is integrable as abg-module (() k 2 Z�0):(6)

Hence the lisse condition may be regarded as a generalization of the integrability condition
to an arbitrary vertex algebra.

A vertex algebra is called conformal if there exists a vector !, called the conformal
vector, such that the corresponding field !(z) =

P
n2Z Lnz�n�2 satisfies the following

conditions. (1) [Lm; Ln] = (m�n)Lm+n+
m3�m

12
ım+n;0c idV , where c is a constant called

the central charge of V; (2)L0 acts semisimply on V; (3)L�1 = T . For a conformal vertex
algebra V we set V∆ = fv 2 V j L0v = ∆V g, so that V =

L
∆ V∆. The universal affine
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vertex algebra V k(g) is conformal by the Sugawara construction provided that k ¤ �h_.
A positive energy representation M of a conformal vertex algebra V is a V -module M

on which L0 acts diagonally and the L0-eivenvalues on M is bounded from below. An
ordinary representation is a positive energy representation such that each L0-eivenspaces
are finite-dimensional. For a finitely generated ordinary representationM , the normalized
character

�V (q) = trV (qL0�c/24)

is well-defined.
For a conformal vertex algebra V =

L
∆ V∆, one defines Zhu’s algebra I. B. Frenkel

and Zhu [1992] Zhu(V ) of V by

Zhu(V ) = V /V ı V; V ı V = spanCfa ı b j a; b 2 V g;

where a ı b =
P

i�0

�
∆a

i

�
a(i�2)b for a 2 ∆a. Zhu(V ) is a unital associative algebra

by the multiplication a � b =
P

i�0

�
∆a

i

�
a(i�1)b. There is a bijection between the

isomorphism classes Irrep(V ) of simple positive energy representation of V and that of
simple Zhu(V )-modules (I. B. Frenkel and Zhu [1992] and Zhu [1996]). The grading of V

gives a filtration on Zhu(V ) which makes it quasi-commutative, and there is a surjective
map

RV � gr Zhu(V )(7)

of Poisson algebras. Hence, if V is lisse then Zhu(V ) is finite-dimensional, so there
are only finitely many irreducible positive energy representations of V . Moreover, the
lisse condition implies that any simple V -module is a positive energy representation (Abe,
Buhl, and Dong [2004]).

A conformal vertex algebra is called rational if any positive energy representation of V

is completely reducible. For instance, the simple affine vertex algebra Lk(g) is rational if
and only if Lk(g) is integrable, and if this is the case Lk(g) -Mod is exactly the category
of integrable representations of bg at level k. A theorem of Y. Zhu [1996] states that if
V is a rational, lisse, Z�0-graded conformal vertex algebra such that V0 = Cj0i, then
the character �M (e2�i� ) converges to a holomorphic functor on the upper half plane for
any M 2 Irrep(V ). Moreover, the space spanned by the characters �M (e2�i� ), M 2

Irrep(V ), is invariant under the natural action of SL2(Z). This theorem was strengthened
in Dong, Lin, and Ng [2015] to the fact that f�M (e2�i� ) j M 2 Irrep(V )g forms a vector
valued modular function by showing the congruence property. Furthermore, it has been
shown in Huang [2008] that the category of V -modules form a modular tensor category.
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3 W -algebras

W -algebras are defined by the method of the quantized Drinfeld-Sokolov reduction that
was discovered by Feigin and E. Frenkel [1990]. In the most general definition of W -
algebras given by V. Kac, Roan, and Wakimoto [2003], W -algebras are associated with
the pair (g; f ) of a simple Lie algebra g and a nilpotent element f 2 g. The corresponding
W -algebra is a one-parameter family of vertex algebra denoted by Wk(g; f ), k 2 C. By
definition,

Wk(g; f ) := H 0
DS;f (V

k(g));

where H �
DS;f

(M ) denotes the BRST cohomology of the quantized Drinfeld-Sokolov re-
duction associated with (g; f )with coefficient in a V k(g)-moduleM , which is defined as
follows. Let fe; h; f g be an sl2-triple associated with f , gj = fx 2 g j [h; x] = 2j g, so
that g =

L
j 2 1

2 Z gj . Set g�1 =
L

j �1 gj , g>0 =
L

j �1/2 gj . Then � : g�1[t; t�1] !

C, xtn 7! ın;�1(f jx), defines a character. LetF� = U (g>0[t; t�1])˝U (g>0[t ]+g�1[t;t�1])

C�, where C� is the one-dimensional representation of g>0[t ] + g�1[t; t�1] on which
g�1[t; t�1] acts by the character � and g>0[t ] acts triviality. Then, for a V k(g)-module
M ,

H �
DS;f (M ) = H

1
2 +�(g>0[t; t�1]; M ˝ F�);

where H
1
2 +�(g>0[t; t�1]; N ) is the semi-infinite g>0[t; t�1]-cohomology Feĭgin [1984]

with coefficient in a g>0[t; t�1]-module N . Since it is defined by a BRST cohomology,
Wk(g; f ) is naturally a vertex algebra, which is calledW-algebra associated with (g; f )

at level k. By E. Frenkel and Ben-Zvi [2004] and V. G. Kac and Wakimoto [2004], we
know that H i

DS;f
(V k(g)) = 0 for i ¤ 0. If f = 0 we have by definition Wk(g; f ) =

V k(g). The W -algebra Wk(g; f ) is conformal provided that k ¤ �h_.
Let Sf = f + ge � g Š g�, the Slodowy slice at f , where ge denotes the centralizer

of e in g. The affine variety Sf has a Poisson structure obtained from that of g� by
Hamiltonian reduction (Gan and Ginzburg [2002]). We have

XWk(g;f ) Š Sf ; Spec(grWk(g; f )) Š J1Sf(8)

(De Sole and V. G. Kac [2006] and Arakawa [2015a]). Also, we have

Zhu(Wk(g; f )) Š U (g; f )

(Arakawa [2007] and De Sole and V. G. Kac [2006]), where U (g; f ) is the finite W -
algebra associated with (g; f ) (Premet [2002]). Therefore, the W -algebra Wk(g; f ) can
be regarded as an affinization of the finiteW -algebraU (g; f ). The map (7) forWk(g; f )
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is an isomorphism, which recovers the fact Premet [2002] and Gan and Ginzburg [2002]
that U (g; f ) is a quantization of the Slodowy slice Sf . The definition of Wk(g; f ) natu-
rally extends V. Kac, Roan, and Wakimoto [2003] to the case that g is a (basic classical)
Lie superalgebra and f is a nilpotent element in the even part of g.

We have Wk(g; f ) Š Wk(g; f 0) if f and f 0 belong to the same nilpotent orbit of g.
TheW -algebra associated with aminimal nilpotent element fmim and a principal nilpotent
element fprin are called a minimal W -algebra and a principal W -algebra, respectively.
For g = sl2, these two coincide and are isomorphic to the Virasoro vertex algebra of
central charge 1�6(k�1)2/(k+2) provided that k ¤ �2. In V. Kac, Roan, andWakimoto
[ibid.] it was shown that almost every superconformal algebra appears as the minimal W -
algebra Wk(g; fmin) for some Lie superalgebra g, by describing the generators and the
relations (OPEs) of minimal W -algebras. Except for some special cases, the presentation
of Wk(g; f ) by generators and relations is not known for other nilpotent elements.

Historically, the principal W -algebras were first extensively studied (see Bouwknegt
and Schoutens [1995]). In the case that g = sln, the non-critical principal W -algebras
is isomorphic to the Fateev-Lukyanov’s Wn-algebra Fateev and Lykyanov [1988] (Feigin
and E. Frenkel [1990] and E. Frenkel and Ben-Zvi [2004]). The critical principal W -
algebra W�h_

(g; fprin) is isomorphic to the Feigin-Frenkel center z(bg) ofbg, that is the
center of the critical affine vertex algebra V �h_

(g) (Feigin and E. Frenkel [1992]). For a
general f , we have the isomorphism

z(bg) Š Z(W�h_

(g; f ));

(Arakawa [2012a] andArakawa andMoreau [2018a]), whereZ(W�h_

(g; f )) denotes the
center ofW�h_

(g; f ). This fact has an application toVinberg’s Problem for the centralizer
ge of e in g Arakawa and Premet [2017].

4 Representation theory of W -algebras

The definition of Wk(g; f ) by the quantized Drinfeld-Sokolov reduction gives rise to a
functor

V k(g) -Mod ! Wk(g; f ) -Mod

M 7! H 0
DS;f (M ):

Let Ok be the category O ofbg at level k. Then Ok is naturally considered as a full subcat-
egory of V k(g) -Mod. For a weight � ofbg of level k, let L(�) be the irreducible highest
weight representations ofbg with highest weight �.
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Theorem 1 (Arakawa [2005]). Let fmin 2 Omin and let k be an arbitrary complex
number.

i. We haveH i
DS;fmin

(M ) = 0 for anyM 2 Ok and i 2 Znf0g. Therefore, the functor

Ok ! Wk(g; fmin) -Mod; M 7! H 0
DS;fmin

(M )

is exact.

ii. For a weight � of bg of level k, H 0
DS;fmin

(L(�)) is zero or isomorphic to an irre-
ducible highest weight representation of Wk(g; fmin). Moreover, any irreducible
highest weight representation the minimal W -algebra Wk(g; fmin) arises in this
way.

By Theorem 1 and the Euler-Poincaré principal, the character chH 0
DS;f�

(L(�)) is ex-
pressed in terms of chL(�). Since chL(�) is known Kashiwara and Tanisaki [2000] for
all non-critical weight �, Theorem 1 determines the character of all non-critical irreducible
highest weight representation of Wk(g; fmin). In the case that k is critical the character
of irreducible highest weight representation of Wk(g; fmin) is determined by the Lusztig-
Feigin-Frenkel conjecture (Lusztig [1991], Arakawa and Fiebig [2012], and E. Frenkel
and Gaitsgory [2009]).

Remark 2. Theorem 1 holds in the case that g is a basic classical Lie superalgebra as
well. In particular one obtains the character of irreducible highest weight representations
of superconformal algebras that appear as Wk(g; fmin) once the character of irreducible
highest weight representations ofbg is given.

Let KLk be the full subcategory of Ok consisting of objects on which g[t ] acts locally
finitely. Altough the functor

Ok ! Wk(g; f ) -Mod; M 7! H 0
DS;f (M )(9)

is not exact for a general nilpotent element f , we have the following result.

Theorem 3 (Arakawa [2015a]). Let f , k be arbitrary. We have H i
DS;fmin

(M ) = 0 for
any M 2 KLk and i ¤ 0. Therefore, the functor

KLk ! Wk(g; fmin) -Mod; M 7! H 0
DS;fmin

(M )

is exact.

In the case that f is a principal nilpotent element, Theorem 3 has been proved in E.
Frenkel and Gaitsgory [2010] using Theorem 4 below.
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The restriction of the quantized Drinfeld-Sokolv reduction functor to KLk does not
produce all the irreducible highest weight representations of Wk(g; f ). However, one
can modify the functor (9) to the “�”-reduction functor H 0

�;f
(?) (defined in E. Frenkel,

V. Kac, andWakimoto [1992]) to obtain the following result for the principalW -algebras.

Theorem 4 (Arakawa [2007]). Let f be a principal nilpotent element, and let k be an
arbitrary complex number.

i. We have H i
�;fprin

(M ) = 0 for any M 2 Ok and i 2 Znf0g. Therefore, the functor

Ok ! Wk(g; fprin) -Mod; M 7! H 0
�;fprin

(M )

is exact.

ii. For a weight � of bg of level k, H 0
�;fprin

(L(�)) is zero or isomorphic to an irre-
ducible highest weight representation of Wk(g; fprin). Moreover, any irreducible
highest weight representation the principal W -algebra Wk(g; fprin) arises in this
way.

In type A we can derive the similar result as Theorem 4 for any nilpotent element f

using the work of Brundan and Kleshchev [2008] on the representation theory of finite
W-algebras (Arakawa [2011]). In particular the character of all ordinary irreducible repre-
sentations of Wk(sln; f ) has been determined for a non-critical k.

5 BRST reduction of associated varieties

Let Wk(g; f ) be the unique simple graded quotient of Wk(g; f ). The associated variety
XWk(g;f ) is a subvariety of XWk(g;f ) = Sf , which is invariant under the natural C�-
action on Sf that contracts to the point f 2 Sf . Therefore Wk(g; f ) is lisse if and only
if XWk(g;f ) = ff g.

By Theorem 3, Wk(g; f ) is a quotient of the vertex algebra H 0
DS;f

(Lk(g)), provided
that it is nonzero.

Theorem 5 (Arakawa [2015a]). For any f 2 g and k 2 C we have

XH0
DS;f

(Lk(g))
Š XLk(g) \ Sf :

Therefore,

i. H 0
DS;f

(Lk(g)) ¤ 0 if and only if G:f � XLk(g);
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ii. If XLk(g) = G:f then XH0
DS;f

(Lk(g))
= ff g. Hence H 0

DS;f
(Lk(g)) is lisse, and

thus, so is its quotient Wk(g; f ).

Theorem 5 can be regarded as a vertex algebra analogue of the corresponding result
Losev [2011] and Ginzburg [2009] for finite W -algebras.

Note that ifLk(g) is integrable we haveH 0
DS;f

(Lk(g)) = 0 by (6). Therefore we need
to study more general representations ofbg to obtain lisse W -algebras using Theorem 5.

Recall that the irreducible highest weight representation L(�) ofbg is called admissible
V. G. Kac and Wakimoto [1989] (1) if � is regular dominant, that is, h�+ �; ˛_i 62 �Z�0

for any ˛ 2 ∆re
+ , and (2) Q∆(�) = Q∆re . Here ∆re is the set of real roots ofbg, ∆re

+

the set of positive real roots ofbg, and ∆(�) = f˛ 2 ∆re j h� + �; ˛_i 2 Zg, the set of
integral roots of �. Admissible representations are (conjecturally all) modular invariant
representations ofbg, that is, the characters of admissible representations are invariant un-
der the natural action of SL2(Z) (V. G. Kac and Wakimoto [1988]). The simple affine
vertex algebra Lk(g) is admissible as abg-module if and only if

k + h_ =
p

q
; p; q 2 N; (p; q) = 1; p �

(
h_ if (q; r_) = 1;

h if (q; r_) = r_
(10)

(V. G. Kac and Wakimoto [2008]). Here h is the Coxeter number of g and r_ is the lacity
of g. If this is the case k is called an admissible number for bg and Lk(g) is called an
admissible affine vertex algebra.

Theorem 6 (Arakawa [2015a]). Let Lk(g) be an admissible affine vertex algebra.

i. (Feigin-Frenkel conjectrue) We have XLk(g) � N, the nilpotent cone of g.

ii. The variety XLk(g) is irreducible. That is, there exists a nilpotent orbit Ok of g

such that
XLk(g) = Ok :

iii. More precisely, let k be an admissible number of the form (10). Then

XLk(g) =

(
fx 2 g j (ad x)2q = 0g if (q; r_) = 1;

fx 2 g j ��s
(x)2q/r_

= 0g if (q; r_) = r_;

where �s is the highest short root of g and ��s
is the irreducible finite-dimensional

representation of g with highest weight �s .

From Theorem 5 and Theorem 6 we immediately obtain the following assertion, which
was (essentially) conjectured by V. G. Kac and Wakimoto [2008].
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Theorem 7 (Arakawa [2015a]). Let Lk(g) be an admissible affine vertex algebra, and
let f 2 Ok . Then the simple affine W -algebra Wk(g; f ) is lisse.

In the case that XLk(g) = G:fprin, the lisse W -algebras obtained in Theorem 7 is the
minimal series principalW -algebras studied in E. Frenkel, V. Kac, andWakimoto [1992].
In the case that g = sl2, these are exactly the minimal series Virasoro vertex algebras
(Feĭgin and Fuchs [1984], Beilinson, Belavin, V. Drinfeld, and et al. [2004], and Wang
[1993]). The Frenkel-Kac-Wakimoto conjecture states that these minimal series principal
W -algebras are rational. More generally, all the lisseW -algebrasWk(g; f ) that appear in
Theorem 7 are conjectured to be rational (V. G. Kac and Wakimoto [2008] and Arakawa
[2015a]).

6 The rationality of minimal series principal W-algerbas

An admissible affine vertex algebra Lk(g) is called non-degenearte (E. Frenkel, V. Kac,
and Wakimoto [1992]) if

XLk(g) = N = G:fprin:

If this is the case k is called a non-degenerate admissible number forbg. By Theorem 6
(iii), “most” admissible affine vertex algebras are non-degenerate. More precisely, an
admissible number k of the form (10) is non-degenerate if and only if

q �

(
h if (q; r_) = 1;

r_Lh_ if (q; r_) = r_

where Lh_ is the dual Coxeter number of the Langlands dual Lie algebra Lg. For a non-
degenerate admissible number k, the simple principalW -algebra Wk(g; fprin) is lisse by
Theorem 7.

The following assertion settles the Frenkel-Kac-Waimoto conjecture E. Frenkel, V.
Kac, and Wakimoto [ibid.] in full generality.

Theorem 8 (Arakawa [2015b]). Let k be a non-degenerate admissible number. Then the
simple principal W -algebra Wk(g; fprin) is rational.

The proof of Theorem 8 based on Theorem 4, Theorem 7, and the following assertion on
admissible affine vertex algebras, which was conjectured by Adamović and Milas [1995].

Theorem 9 (Arakawa [2016]). Let Lk(g) be an admissible affine vertex algebra. Then
Lk(g) is rational in the category O, that is, any Lk(g)-module that belongs to O is com-
pletely reducible.
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The following assertion, which has beenwidely believed sinceV. G. Kac andWakimoto
[1990] and E. Frenkel, V. Kac, and Wakimoto [1992], gives a yet another realization of
minimal series principal W -algebras.

Theorem 10 (Arakawa, Creutzig, and Linshaw [2018]). Let g be simply laced. For an
admissible affine vertex algebra Lk(g), the vertex algebra (Lk(g)˝L1(g))

g[t ] is isomor-
phic to a minimal series principal W -algebra. Conversely, any minimal series principal
W -algebra associated with g appears in this way.

In the case that g = sl2 and k is a non-negative integer, the statement of Theorem 10 is
well-known as the GKO construction of the discrete series of the Virasoro vertex algebras
Goddard, Kent, and Olive [1986]. Some partial results have been obtained previously in
Arakawa, Lam, and Yamada [2017] and Arakawa and Jiang [2018]. From Theorem 10,
it follows that the minimal series principal W -algebra Wp/q�h_(g; fprin) of ADE type
is unitary, that is, any simple Wp/q�h_(g; fprin)-module is unitary in the sense of Dong
and Lin [2014], if and only if jp � qj = 1.

7 Four-dimensional N = 2 superconformal algebras, Higgs branch
conjecture and the class S chiral algebras

In the study of four-dimensional N = 2 superconformal field theories in physics, Beem,
Lemos, Liendo, Peelaers, Rastelli, and van Rees Beem, Lemos, Liendo, Peelaers, Rastelli,
and van Rees [2015] have constructed a remarkable map

Φ : f4d N = 2 SCFTsg ! fvertex algebrasg(11)

such that, among other things, the character of the vertex algebraΦ(T ) coincides with the
Schur index of the corresponding 4d N = 2 SCFT T , which is an important invariant of
the theory T .

How do vertex algebras coming from 4d N = 2 SCFTs look like? According to Beem,
Lemos, Liendo, Peelaers, Rastelli, and van Rees [ibid.], we have

c2d = �12c4d ;

where c4d and c2d are central charges of the 4dN = 2 SCFT and the corresponding vertex
algebra, respectively. Since the central charge is positive for a unitary theory, this implies
that the vertex algebras obtained by Φ are never unitary. In particular integrable affine
vertex algebras never appear by this correspondence.

The main examples of vertex algebras considered in Beem, Lemos, Liendo, Peelaers,
Rastelli, and van Rees [ibid.] are the affine vertex algebrasLk(g) of typesD4, F4,E6,E7,
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E8 at level k = �h_/6�1, which are non-rational, non-admissible affine vertex algebras
studies in Arakawa and Moreau [2016]. One can find more examples in the literature, see
e.g. Beem, Peelaers, Rastelli, and van Rees [2015], Xie, Yan, and Yau [2016], Córdova
and Shao [2016], and Song, Xie, and Yan [2017].

Now, there is another important invariant of a 4d N = 2 SCFT T , called the Higgs
branch, which we denote by HiggsT . The Higgs branch HiggsT is an affine algebraic
variety that has the hyperKähler structure in its smooth part. In particular, HiggsT is a
(possibly singular) symplectic variety.

Let T be one of the 4d N = 2 SCFTs studied in Beem, Lemos, Liendo, Peelaers,
Rastelli, and van Rees [2015] such that that Φ(T ) = Lk(g) with k = h_/6 � 1 for types
D4, F4,E6,E7,E8 as above. It is known thatHiggsT = Omin, and this equals Arakawa
and Moreau [2016] to the the associated variety XΦ(T ). It is expected that this is not just
a coincidence.

Conjecture 11 (Beem and Rastelli [2017]). For a 4d N = 2 SCFT T , we have

HiggsT = XΦ(T ):

So we are expected to recover the Higgs branch of a 4d N = 2 SCFT from the corre-
sponding vertex algebra, which is a purely algebraic object.

We note that Conjecture 11 is a physical conjecture since the Higgs branch is not a
mathematical defined object at themoment. The Schur index is not amathematical defined
object either. However, in view of (11) and Conjecture 11, one can try to define both Higgs
branches and Schur indices of 4d N = 2 SCFTs using vertex algebras. We note that there
is a close relationship betweenHiggs branches of 4dN = 2 SCFTs andCoulomb branches
of three-dimensionalN = 4 gauge theories whose mathematical definition has been given
by Braverman, Finkelberg, and Nakajima [2016b].

AlthoughHiggs branches are symplectic varieties, the associated varietyXV of a vertex
algebra V is only a Poisson variety in general. A vertex algebra V is called quasi-lisse
(Arakawa and Kawasetsu [n.d.]) if XV has only finitely many symplectic leaves. If this
is the case symplectic leaves in XV are algebraic (Brown and Gordon [2003]). Clearly,
lisse vertex algebras are quasi-lisse. The simple affine vertex algebra Lk(g) is quasi-lisse
if and only if XLk(g) � N. In particular, admissible affine vertex algebras are quasi-lisse.
See Arakawa and Moreau [2016, 2017, 2018b] for more examples of quasi-lisse vertex
algebras. Physical intuition expects that vertex algebras that come from 4d N = 2 SCFTs
via the map Φ are quasi-lisse.

By extending Zhu’s argument Zhu [1996] using a theorem of Etingof and Schelder
Etingof and Schedler [2010], we obtain the following assertion.

Theorem 12 (Arakawa and Kawasetsu [n.d.]). Let V be a quasi-lisse Z�0-graded con-
formal vertex algebra such that V0 = C. Then there only finitely many simple ordinary
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V -modules. Moreover, for an ordinary V -module M , the character �M (q) satisfies a
modular linear differential equation.

Since the space of solutions of a modular linear differential equation is invariant under
the action of SL2(Z), Theorem 12 implies that a quasi-lisse vertex algebra possesses a
certain modular invariance property, although we do not claim that the normalized charac-
ters of ordinary V -modules span the space of the solutions. Note that Theorem 12 implies
that the Schur indices of 4d N = 2 SCFTs have some modular invariance property. This
is something that has been conjectured by physicists (Beem and Rastelli [2017]).

There is a distinct class of four-dimensionalN = 2 superconformal field theories called
the theory of class S (Gaiotto [2012] and Gaiotto, Moore, and Neitzke [2013]), where S
stands for 6. The vertex algebras obtained from the theory of class S is called the chiral al-
gebras of class S (Beem, Peelaers, Rastelli, and van Rees [2015]). The Moore-Tachikawa
conjectureMoore and Tachikawa [2012], whichwas recently proved in Braverman, Finkel-
berg, and Nakajima [2017], describes the Higgs branches of the theory of class S in terms
of two-dimensional topological quantum field theories.

Let V be the category of vertex algebras, whose objects are semisimple groups, and
Hom(G1; G2) is the isomorphism classes of conformal vertex algebras V with a vertex
algebra homomorphism

V �h_
1 (g1) ˝ V �h_

2 (g2) ! V

such that the action of g1[t ] ˚ g2[t ] on V is locally finite. Here gi = Lie(Gi ) and h_
i

is the dual Coxeter number of gi in the case that gi is simple. If gi is not simple we
understand V �h_

i (gi ) to be the tensor product of the critical level universal affine vertex
algebras corresponding to all simple components of gi . The composition V1 ı V2 of V1 2

Hom(G1; G2) and V2 2 Hom(G1; G2) is given by the relative semi-infinite cohomology

V1 ı V2 = H
1
2 +�(bg2; g2; V1 ˝ V2);

where bg2 denotes the direct sum of the affine Kac-Moody algebra associated with the
simple components of g2. By a result of Arkhipov and Gaitsgory [2002], one finds that the
identity morphism idG is the algebra Dch

G of chiral differential operators on G (Malikov,
Schechtman, and Vaintrob [1999] and Beilinson and V. Drinfeld [2004]) at the critical
level, whose associated variety is canonically isomorphic to T �G.

The following theorem, which was conjectured in Beem, Lemos, Liendo, Peelaers,
Rastelli, and van Rees [2015] (see Tachikawa [n.d.(a),(b)]) for mathematical expositions),
describes the chiral algebras of class S.

Theorem 13 (Arakawa [n.d.]). Let B2 the category of 2-bordisms. There exists a unique
monoidal functor �G : B2 ! V which sends (1) the object S1 to G, (2) the cylinder,
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which is the identity morphism idS1 , to the identity morphism idG = Dch
G , and (3) the

cap to H 0
DS;fprin

(Dch
G ). Moreover, we have X�G(B) Š �BF N

G (B) for any 2-bordism B ,
where �BF N

G is the functor form B2 to the category of symplectic variaties constructed in
Braverman, Finkelberg, and Nakajima [2017].

The last assertion of the above theorem confirms the Higgs branch conjecture for the
theory of class S.
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DOUBLE AFFINE GRASSMANNIANS AND COULOMB
BRANCHES OF 3dN = 4 QUIVER GAUGE THEORIES
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Abstract

We propose a conjectural construction of various slices for double affine Grass-
mannians as Coulomb branches of 3-dimensionalN = 4 supersymmetric affine quiver
gauge theories. It generalizes the known construction for the usual affine Grassman-
nians, and makes sense for arbitrary symmetric Kac-Mody algebras.

1 Introduction

1.1 Historical background. The geometric Satake equivalence Lusztig [1983],
Ginzburg [1995], Beilinson and Drinfeld [2000], and Mirković and Vilonen [2007]
proposed by V. Drinfeld for the needs of the Geometric Langlands Program proved very
useful for the study of representation theory of reductive algebraic groups (starting from
G. Lusztig’s construction of q-analogues of weight multiplicities). About 15 years ago,
I. Frenkel and I. Grojnowski envisioned an extension of the geometric Satake equivalence
to the case of loop groups. The affine Grassmannians (the main objects of the geometric
Satake equivalence) are ind-schemes of ind-finite type. Their loop analogues (double
affine Grassmannians) are much more infinite, beyond our current technical abilities.
We are bound to settle for some provisional substitutes, such as transversal slices to the
smaller strata in the closures of bigger strata. These substitutes still carry quite powerful
geometric information.

Following I. Frenkel’s suggestion, some particular slices for the double affine Grass-
mannians were constructed in terms of Uhlenbeck compactifications of instanton moduli
spaces on Kleinian singularities about 10 years ago. More recently, H. Nakajima’s ap-
proach to Coulomb branches of 3-dimensional N = 4 supersymmetric gauge theories,
applied to affine quiver gauge theories, paved a way for the construction of the most gen-
eral slices.
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1.2 Contents. We recall the geometric Satake equivalence in Section 2. The (gener-
alized) slices for the affine Grassmannians are reviewed in Section 3. The problem of
constructing (the slices for) the double affine Grassmannians is formulated in Section 4.
The mathematical construction of Coulomb branches of 3d N = 4 gauge theories and its
application to slices occupies Section 5. Some more applications are mentioned in Sec-
tion 6.

Acknowledgments. This report is based mostly on the works of A. Braverman
and H. Nakajima, some joint with the author. I was incredibly lucky to have an
opportunity to learn mathematics from them. Before meeting them, I was introduced
to some semiinfinite ideas sketched below by A. Beilinson, V. Drinfeld, B. Feigin,
V. Ginzburg and I. Mirković. It is also a pleasure to acknowledge my intellectual debt to
R. Bezrukavnikov, D. Gaiotto, D. Gaitsgory, J. Kamnitzer and V. Pestun.

2 Geometric Satake equivalence

LetO denote the formal power series ringC[[z]], and letK denote its fraction fieldC((z)).
Let G be an almost simple complex algebraic group with a Borel and a Cartan subgroup
G � B � T , and with the Weyl group Wfin of (G; T ). Let Λ be the coweight lattice, and
letΛ+ � Λ be the submonoid of dominant coweights. Let alsoΛ+ � Λ be the submonoid
spanned by the simple coroots ˛i ; i 2 I . We denote by G_ � T _ the Langlands dual
group, so that Λ is the weight lattice of G_.

The affine Grassmannian GrG = GK/GO is an ind-projective scheme, the unionF
�̄2Λ+ Gr�̄G of GO-orbits. The closure of Gr�̄G is a projective variety Gr�̄G =

F
�̄��̄ Gr

�̄
G .

The fixed point set GrTG is naturally identified with the coweight lattice Λ; and �̄ 2 Λ lies
in Gr�G iff �̄ 2 Wfin�̄.

One of the cornerstones of the Geometric Langlands Program initiated by V. Drinfeld
is an equivalence S of the tensor category Rep(G_) and the category PervGO

(GrG) of
GO-equivariant perverse constructible sheaves on GrG equipped with a natural monoidal
convolution structure ? and a fiber functor H �(GrG ; �) Lusztig [1983], Ginzburg [1995],
Beilinson and Drinfeld [2000], and Mirković and Vilonen [2007]. It is a categorification
of the classical Satake isomorphism betweenK(Rep(G_)) = C[T _]Wfin and the spherical
affine Hecke algebra of G. The geometric Satake equivalence S sends an irreducible G_-
module V �̄ with highest weight �̄ to the Goresky-MacPherson sheaf IC(Gr�̄G).

In order to construct a commutativity constraint for (PervGO
(GrG); ?), Beilinson and

Drinfeld introduced a relative version GrG;BD of the Grassmannian over the Ran space
of a smooth curve X , and a fusion monoidal structure Ψ on PervGO

(GrG) (isomorphic
to ?). One of the main discoveries of Mirković and Vilonen [2007] was a Λ-grading of
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the fiber functor H �(GrG ; F ) =
L

�̄2Λ Φ�̄(F ) by the hyperbolic stalks at T -fixed points.
For a G_-module V , its weight space V�̄ is canonically isomorphic to the hyperbolic stalk
Φ�̄(SV ).

Various geometric structures of a perverse sheaf SV reflect some fine representation
theoretic structures of V , such as Brylinski-Kostant filtration and the action of dynamical
Weyl group, see Ginzburg and Riche [2015]. One of the important technical tools of study-
ing PervGO

(GrG) is the embedding GrG ,! GrG into Kashiwara infinite type scheme
GrG = GC((z�1))/GC[z] Kashiwara [1989] and Kashiwara and Tanisaki [1995]. The quo-
tientGC[[z�1]]nGrG is the moduli stack BunG(P 1) ofG-bundles on the projective line P 1.
TheGC[[z�1]]-orbits onGrG are of finite codimension; they are also numbered by the dom-
inant coweights of G, and the image of an orbit Gr�̄

G in BunG(P 1) consists of G-bundles
of isomorphism type �̄ Grothendieck [1957]. The stratifications GrG =

F
�̄2Λ+ Gr�̄G and

GrG =
F

�̄2Λ+ Gr�̄
G are transversal, and their intersections and various generalizations

thereof are the subject of the next section.

3 Generalized slices

3.1 The dominant case. We denote by K1 the first congruence subgroup of GC[[z�1]]:
the kernel of the evaluation projection ev1 : GC[[z�1]] � G. The transversal slice W�̄

�̄

(resp. W�̄
�̄) is defined as the intersection of Gr�̄G (resp. Gr�̄G) and K1 � �̄ in GrG . It is

known that W�̄
�̄ is nonempty iff �̄ � �̄, and dimW�̄

�̄ is an affine irreducible variety of
dimension h2�̄_; �̄ � �̄i. Following an idea of I. Mirković, Kamnitzer, Webster, Weekes,
and Yacobi [2014] proved that W�̄

�̄ =
F

�̄��̄��̄ W�̄
�̄ is the decomposition of W�̄

�̄ into
symplectic leaves of a natural Poisson structure.

The only T -fixed point of W�̄
�̄ is �̄. We consider the cocharacter 2�̄ : C� ! T , and

denote by R�̄
�̄ � W�̄

�̄ the corresponding repellent: the closed affine subvariety formed by
all the points that flow into �̄ under the action of 2�̄(t), as t goes to 1. Let r stand for
the closed embedding of R�̄

�̄ into W�̄
�̄, and let � stand for the closed embedding of �̄ into

R�̄
�̄. Then the hyperbolic stalk Φ�̄

�̄F of a T -equivariant constructible complex F on W�̄
�̄

is defined as �!r�F , see Braden [2003] and Drinfeld and Gaitsgory [2014].
Recall that the geometric Satake equivalence takes an irreducible G_-module V �̄ to

the IC-sheaf IC(Gr�̄G), and the weight space V �̄
�̄ is realized as V �̄

�̄ = Φ�̄IC(Gr�̄G) =

Φ�̄
�̄IC(W�̄

�̄). The usual stalks of both IC(Gr�̄G) and IC(W�̄
�̄) at �̄ are isomorphic up to

shift to the associated graded grV �̄
�̄ with respect to the Brylinski-Kostant filtration.
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3.2 The general case. If we want to reconstruct the whole of V �̄ from the various
slices W�̄

�̄, we are missing the weight spaces V �̄
�̄ with nondominant �̄. To take care of

the remaining weight spaces, for arbitrary �̄ we consider the moduli space W�̄
�̄ of the

following data:
(a) A G-bundle P on P 1.
(b) A trivialization � : PtrivjP1nf0g

∼
�! P jP1nf0g having a pole of degree � �̄ at 0 2 P 1

(that is defining a point of Gr�̄G).
(c) A B-structure � on P of degree w0�̄ with the fiber B� � G at 1 2 P 1 (with

respect to the trivialization � of P at 1 2 P 1). Here G � B� � T is the Borel subgroup
opposite to B , and w0 2 Wfin is the longest element.

This construction goes back to Finkelberg and Mirković [1999]. The space W�̄
�̄ is

nonempty iff �̄ � �̄. In this case it is an irreducible affine normal Cohen-Macaulay
variety of dimension h2�̄_; �̄ � �̄i, see Braverman, Finkelberg, and Nakajima [2016a]. In
case �̄ is dominant, the two definitions of W�̄

�̄ agree. At the other extreme, if �̄ = 0,
then W0

�˛ is nothing but the open zastava space
ı

Z�w0˛ . The T -fixed point set (W�̄
�̄)

T is
nonempty iff the weight space V �̄

�̄ is not 0; in this case (W�̄
�̄)

T consists of a single point
denoted �̄. We consider the repellent R�̄

�̄ � W�̄
�̄. It is a closed subvariety of dimension

h�̄_; �̄ � �̄i (equidimensional). We have V �̄
�̄ = Φ�̄IC(Gr�̄G) = Φ�̄

�̄IC(W�̄
�̄), so that V �̄ =L

�̄2Λ Φ�̄
�̄IC(W�̄

�̄) (see Krylov [2017]). Similarly to Braverman and Gaitsgory [2001],
one can introduce a crystal structure on the set of irreducible components

F
�̄2Λ IrrR�̄

�̄

(see Krylov [2017]), so that the resulting crystal is isomorphic to the integrable crystal
B(�̄) (for a beautiful survey on crystals, see Kashiwara [1995]).

3.3 Beilinson-Drinfeld slices. Let �̄ = (�̄1; : : : ; �̄N ) be a collection of dominant
coweights of G. We consider the moduli space W

�̄
�̄ of the following data:

(a) A collection of points (z1; : : : ; zN ) 2 AN on the affine line A1 � P 1.
(b) A G-bundle P on P 1.
(c) A trivialization � : PtrivjP1nfz1;:::;zN g

∼
�! P jP1nfz1;:::;zN g with a pole of degree �PN

s=1 �̄s � zs on the complement.
(d) A B-structure � on P of degree w0�̄ with the fiber B� � G at 1 2 P 1 (with

respect to the trivialization � of P at 1 2 P 1).
W

�̄
�̄ is nonempty iff �̄ � �̄ :=

PN
s=1 �̄s . In this case it is an irreducible affine normal

Cohen-Macaulay variety flat over AN of relative dimension h2�̄_; �̄ � �̄i, see Braverman,
Finkelberg, and Nakajima [2016a]. The fiber over N � 0 2 AN is nothing but W�̄

�̄. We
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can consider the Verdier specialization Sp IC(W�̄
�̄) to the special fiber W�̄

�̄. It is a per-
verse sheaf on W�̄

�̄ � AN smooth along the diagonal stratification of AN . We denote by
ΨIC(W�̄

�̄) its restriction to W�̄
�̄ � z where z is a point of AN

R such that z1 > : : : > zN .
Then

ΨIC(W�̄
�̄) '

M
�̄��̄��̄; �̄2Λ+

M
�̄
�̄ ˝ IC(W�̄

�̄);

where M
�̄
�̄ is the multiplicity HomG_(V �̄ ; V �̄1 ˝ : : : ˝ V �̄N ).

3.4 Convolution diagram over slices. In the setup of Section 3.3 we consider the mod-
uli space fW�̄

�̄ of the following data:
(a) A collection of points (z1; : : : ; zN ) 2 AN on the affine line A1 � P 1.
(b) A collection of G-bundles (P1; : : : ; PN ) on P 1.
(c) A collection of isomorphisms �s : Ps�1jP1nfzsg

∼
�! PsjP1nfzsg with a pole of degree

� �̄s at zs . Here 1 � s � N , and P0 := Ptriv.
(d) A B-structure � on PN of degree w0�̄ with the fiber B� � G at 1 2 P 1 (with

respect to the trivialization �N ı : : : ı �1 of PN at 1 2 P 1).
A natural projection $ : fW�̄

�̄ ! W
�̄
�̄ sends (P1; : : : ; PN ; �1; : : : ; �N ) to (PN ; �N ı

: : : ı �1). We denote $�1(W�̄
�̄) by fW�̄

�̄. Then $ : fW�̄
�̄ ! W�̄

�̄ is stratified semismall,
and

$�IC(fW�̄
�̄) =

M
�̄��̄��̄; �̄2Λ+

M
�̄
�̄ ˝ IC(W�̄

�̄):

4 Double affine Grassmannian

In this section G is assumed to be a simply connected almost simple complex algebraic
group.

4.1 The affine group and its Langlands dual. We consider the minimal integral even
positive definite Wfin-invariant symmetric bilinear form (�; �) on the coweight lattice Λ. It
gives rise to a central extension bG of the polynomial version GC[t˙1] of the loop group:

1 ! C�
! bG ! GC[t˙1] ! 1:

The loop rotation groupC� acts naturally onGC[t˙1], and this action lifts to bG. We denote
the corresponding semidirect productC�ËbG byGaff. It is an untwisted affine Kac-Moody
group ind-scheme.
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We denote byG_
aff the corresponding Langlands dual group. Note that ifG is not simply

laced, then G_
aff is a twisted affine Kac-Moody group, not to be confused with (G_)aff.

However, we have a canonical embedding G_ ,! G_
aff.

We fix a Cartan torus C� � T � C� � Gaff and its dual Cartan torus C� � T _ � C� �

G_
aff. Here the first copy ofC� is the centralC�, while the second copy is the loop rotation

C�. Accordingly, the weight lattice Λaff of G_
aff is Z ˚ Λ ˚ Z: the first copy of Z is the

central charge (level), and the second copy is the energy. A typical element � 2 Λaff will
be written as � = (k; �̄; n). The subset of dominant weights Λ+

aff � Λaff consists of all the
triples (k; �̄; n) such that �̄ 2 Λ+ and h�̄; �̄_i � k. Here �̄_ =

P
i2I ai ˛

_

i is the highest
root of G � B � T . We denote by Λ+

aff;k � Λ+
aff the finite subset of dominant weights

of level k; we also denote by Λaff;k � Λaff the subset of all the weights of level k. We
say that � � � if � � � is an element of the submonoid generated by the positive roots
of G_

aff (in particular, � and � must have the same level). Finally, let !̄i ; i 2 I , be the
fundamental coweights of G, and � := (1; 0; 0) +

P
i2I (ai ; !̄i ; 0) 2 Λaff.

The affine Weyl group Waff is the semidirect product Wfin Ë Λ. For k 2 Z>0, we also
consider its version Waff;k = Wfin ËkΛ; it acts naturally on Λaff;k = fkg�Λ˚Z (trivially
on Z). Every Waff;k-orbit on Λaff;k contains a unique representative in Λ+

aff;k . It follows
that if we denote by Γk the group of roots of unity of order k, then there is a natural
isomorphism Λ+

aff;k/Z = Waff;knΛ ∼
�!Hom(Γk ; G)/AdG .

4.2 The quest. We would like to have a double affine Grassmannian GrGaff and a ge-
ometric Satake equivalence between the category of integrable representations Rep(G_

aff)

and an appropriate category of perverse sheaves on GrGaff . Note that the affine Satake
isomorphism at the level of functions is established in Braverman and Kazhdan [2013]
and Braverman, Kazhdan, and Patnaik [2016] (and in Gaussent and Rousseau [2014] for
arbitrary Kac-Moody groups).

Such a quest was formulated by I. Grojnowski in his talk at ICM-2006 in Madrid. At
approximately the same time, I. Frenkel suggested that the integrable representations of
level k should be realized in cohomology of certain instanton moduli spaces on A2/Γk .
Here Γk acts on A2 in a hyperbolic way: �(x; y) = (�x; ��1y).

Note that the set of dominant coweights Λ+ is well ordered, which reflects the fact
that the affine Grassmannian GrG is an ind-projective scheme. However, the set of affine
dominant coweights Λ+

aff is not well ordered: it does not have a minimal element. In fact,
it has an automorphism group Z acting by the energy shifts: (k; �̄; n) 7! (k; �̄; n + n0)

(we add a multiple of the minimal imaginary coroot ı). This indicates that the sought for
double affine Grassmannian GrGaff is an object of semiinfinite nature.

At the moment, the only technical possibility of dealing with semiinfinite spaces is via
transversal slices to strata. Following I. Frenkel’s suggestion, in the series Braverman and
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Finkelberg [2010, 2012, 2013] we developed a partial affine analogue of slices of Section 3
defined in terms of Uhlenbeck spaces UG(A2/Γk).

4.3 Dominant slices via Uhlenbeck spaces. The Uhlenbeck spaceUd
G(A2) is a partial

closure of the moduli space Bund
G(A2) of G-bundles of second Chern class d on the

projective plane P 2 trivialized at the infinite line P 1
1 � P 2, see Braverman, Finkelberg,

and Gaitsgory [2006]. It is known that Bund
G(A2) is smooth quasiaffine, andUd

G(A2) is a
connected affine variety of dimension 2dh_

G (where h_

G is the dual Coxeter number of G).
Conjecturally, Ud

G(A2) is normal; in this case Ud
G(A2) is the affinization of Bund

G(A2).
The group G � GL(2) acts naturally on Ud

G(A2): the first factor via the change of
trivialization at P 1

1, and the second factor via its action on (P 2; P 1
1). The group Γk is

embedded into GL(2). Given � = (k; �̄; m) 2 Λ+
aff;k we choose its lift to a homomor-

phism from Γk to G; thus Γk embeds diagonally into G � GL(2) and acts on Bund
G(A2).

The fixed point subvariety Bund
G(A2)Γk consists ofΓk-equivariant bundles and is denoted

Bund
G;�(A

2/Γk); another choice of lift above leads to an isomorphic subvariety. Since
0 2 A2 is a Γk-fixed point, for any Γk-equivariant G-bundle P 2 Bund

G;�(A
2/Γk) the

group Γk acts on the fiber P0. This action defines an element of Hom(Γk ; G)/AdG to be
denoted [P0].

Now given � = (k; �̄; l) 2 Λ+
aff;k we define Bun�

G;�(A
2/Γk) as the subvariety of

Bund
G;�(A

2/Γk) formed by all P such that the class [P0] 2 Hom(Γk ; G)/AdG is the
image of �, and d = k(l � m) + (�̄;�̄)�(�̄;�̄)

2
. It is a union of connected components of

Bund
G;�(A

2/Γk). Conjecturally, Bun�
G;�(A

2/Γk) is connected. This conjecture is proved
if G = SL(N ), or k = 1, or k is big enough for arbitrary G and fixed �̄; �̄.

Finally, we define the dominant slice W�
� as the closure U�

G;�(A
2/Γk) of

Bun�
G;�(A

2/Γk) in the Uhlenbeck space Ud
G(A2).

4.4 (Hyperbolic) stalks. The Cartan torus Taff = C� � T � C� maps into G �GL(2).
Here the first copy of C� goes to the diagonal torus of SL(2) � GL(2), while the sec-
ond copy of C� goes to the center of GL(2). So Taff acts on W�

�, and we denote by
� 2 W�

� the only fixed point. The corresponding repellent R�
� is the closed affine sub-

variety formed by all the points that flow into � under the action of 2�(t), as t goes to
1. The corresponding hyperbolic stalk Φ�

�IC(W�
�) is conjecturally isomorphic to the

weight space V �
� of the integrable G_

aff-module V � with highest weight �. In type A this
conjecture follows from the identification of W�

� with a Nakajima cyclic quiver variety
and I. Frenkel’s level-rank duality between the weight multiplicities and the tensor prod-
uct multiplicities Frenkel [1982], Nakajima [2002, 2009], and Braverman and Finkelberg



1308 MICHAEL FINKELBERG

[2010]. In type ADE at level 1 this conjecture follows from Braverman, Finkelberg, and
Nakajima [2016b]. Also, as the notation suggests, the hyperbolic stalk Φ�

�IC(W�
�) is

isomorphic to the vanishing cycles of IC(W�
�) at � with respect to a general function van-

ishing at� Finkelberg and Kubrak [2015]. The usual stalk of IC(W�
�) at� is conjecturally

isomorphic to the associated graded of V �
� with respect to the the affine Brylinski-Kostant

filtration Slofstra [2012]. At level 1, this conjecture follows from the computation of the
IC-stalks of Uhlenbeck spaces in Braverman, Finkelberg, and Gaitsgory [2006].

The affine analogs of generalized slices of Sections 3.2, 3.3, 3.4 were constructed in
type A in Braverman and Finkelberg [2012, 2013] in terms of Nakajima cyclic quiver
varieties mentioned above. For arbitrary G, the desired generalized slices are expected
to be the Uhlenbeck partial compactifications of the moduli spaces of Γk-equivariant Gc-
instantons (where Gc � G is a maximal compact subgroup) on multi Taub-NUT spaces
(for a physical explanation via a supersymmetric conformal field theory in 6 dimensions,
see Witten [2010]). Unfortunately, we are still lacking a modular definition of the Uh-
lenbeck compactification Baranovsky [2015], and the existing ad hoc constructions are
not flexible enough. Another approach via the Coulomb branches of framed affine quiver
gauge theories following Nakajima [2016a] and Braverman, Finkelberg, and Nakajima
[2016c,a, 2017] is described in the remaining sections. For a beautiful short introduction
to the Coulomb branches, the reader may consult Nakajima [2016b, 2015].

5 Coulomb branches of 3d N = 4 quiver gauge theories

5.1 General setup. Let N be a finite dimensional representation of a complex con-
nected reductive group G (having nothing to do with G of previous sections). We con-
sider the moduli space RG;N of triples (P ; �; s) where P is a G-bundle on the formal disc
D = SpecO; � is a trivialization of P on the punctured formal disc D� = SpecK; and s

is a section of the associated vector bundle Ptriv
G
�N on D� such that s extends to a regular

section of Ptriv
G
�N on D, and �(s) extends to a regular section of P G

�N on D. In other
words, s extends to a regular section of the vector bundle associated to theG-bundle glued
from P and Ptriv on the non-separated formal scheme glued from 2 copies of D along D�

(raviolo). The group GO acts on RG;N by changing the trivialization � , and we have
an evident GO-equivariant projection RG;N ! GrG forgetting s. The fibers of this pro-
jection are profinite dimensional vector spaces: the fiber over the base point is N ˝ O,
and all the other fibers are subspaces in N ˝ O of finite codimension. One may say that
RG;N is a GO-equvariant “constructible profinite dimensional vector bundle” over GrG.
The GO-equivariant Borel-Moore homology H

GO
� (RG;N) is well-defined, and forms an

associative algebra with respect to a convolution operation. This algebra is commutative,
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finitely generated and integral, and its spectrum MC (G;N) = SpecH
GO
� (RG;N) is an ir-

reducible normal affine variety of dimension 2 rk(G), the Coulomb branch. It is supposed
to be a (singular) hyper-Kähler manifold Seiberg and Witten [1997].

Let T � G be a Cartan torus with Lie algebra t � g. Let W = NG(T)/T be the
corresponding Weyl group. Then the equivariant cohomology H �

GO
(pt) = C[t/W]

forms a subalgebra of H
GO
� (RG;N) (a Cartan subalgebra), so we have a projection

˘ : MC (G;N) ! t/W.
Finally, the algebra H

GO
� (RG;N) comes equipped with quantization: a C[„]-

deformation C„[MC (G;N)] = H
C�ËGO
� (RG;N) where C� acts by loop rotations, and

C[„] = H �
C�(pt). It gives rise to a Poisson bracket on C[MC (G;N)] with an open

symplectic leaf, so that ˘ becomes an integrable system: C[t/W] � C[MC (G;N)] is a
Poisson-commutative polynomial subalgebra with rk(G) generators.

5.2 Flavor symmetry. Suppose we have an extension 1 ! G ! G̃ ! GF !

1 where GF is a connected reductive group (a flavor group), and the action of G on
N is extended to an action of G̃. Then the action of GO on RG;N extends to an ac-
tion of G̃O , and the convolution product defines a commutative algebra structure on
the equivariant Borel-Moore homology H

G̃O
� (RG;N). We have the restriction homomor-

phism H
G̃O
� (RG;N) ! H

GO
� (RG;N) = H

G̃O
� (RG;N) ˝H �

GF
(pt) C. In other words,

MC (G;N) := SpecH G̃O
� (RG;N) is a deformation of MC (G;N) over SpecH �

GF
(pt) =

tF /WF .
We will need the following version of this construction. Let Z � GF be a torus em-

bedded into the flavor group. We denote by G̃Z the pullback extension 1 ! G ! G̃Z !

Z ! 1. We define MZ
C (G;N) := SpecH G̃Z

O
� (RG;N): a deformation of MC (G;N) over

z := SpecH �
Z (pt).

Since MC (G;N) is supposed to be a hyper-Kähler manifold, its flavor deformation
should come together with a (partial) resolution. To construct it, we consider the obvi-
ous projection �̃ : RG̃;N ! GrG̃ ! GrGF

. Given a dominant coweight �F 2 Λ+
F �

GrGF
, we set R�F

G̃;N
:= �̃�1(�F ), and consider the equivariant Borel-Moore homology

H
G̃Z

O
� (R�F

G̃;N
). It carries a convolution module structure over H

G̃Z
O

� (RG;N). We consider

fMZ;�F

C (G;N) := Proj(
M
n2N

H
G̃Z

O
� (Rn�F

G̃;N
))

$
�! MZ

C (G;N):
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We denote $�1(MC (G;N)) by fM�F

C (G;N). We have

fM�F

C (G;N) = Proj(
M
n2N

H
GO
� (Rn�F

G̃;N
)):

More generally, for a strictly convex (i.e. not containing nontrivial subgroups) cone
V � Λ+

F , we consider the multi projective spectra

fMZ;V
C (G;N) := Proj(

M
�F 2V

H
G̃Z

O
� (R�F

G̃;N
))

$
�! MZ

C (G;N)

and fMV
C (G;N) := Proj(

M
�F 2V

H
GO
� (R�F

G̃;N
))

$
�! MC (G;N):

5.3 Quiver gauge theories. Let Q be a quiver with Q0 the set of vertices, and Q1 the
set of arrows. An arrow e 2 Q1 goes from its tail t(e) 2 Q0 to its head h(e) 2 Q0. We
choose a Q0-graded vector spaces V :=

L
j 2Q0

Vj and W :=
L

j 2Q0
Wj . We set G =

GL(V ) :=
Q

j 2Q0
GL(Vj ). We choose a second grading W =

LN
s=1 W (s) compatible

with the Q0-grading of W . We set GF to be a Levi subgroup
QN

s=1

Q
j 2Q0

GL(W (s)
j ) of

GL(W ), and G̃ := G � GF . Finally, we define a central subgroup Z � GF as follows:
Z :=

QN
s=1 ∆

(s)
C� �

QN
s=1

Q
j 2Q0

GL(W (s)
j ), where C� Š ∆

(s)
C� �

Q
j 2Q0

GL(W (s)
j )

is the diagonally embedded subgroup of scalar matrices. The reductive group G̃ acts
naturally on N :=

L
e2Q1

Hom(Vt(e); Vh(e)) ˚
L

j 2Q0
Hom(Wj ; Vj ).

The Higgs branch of the corresponding quiver gauge theory is the Nakajima quiver
variety MH (G;N) = M(V; W ). We are interested in the Coulomb branch MC (G;N).

5.4 Back to slices in an affine Grassmannian. Let now G be an adjoint simple simply
laced algebraic group. We choose an orientation Ω of its Dynkin graph (of type ADE),
and denote by I its set of vertices. Given an I -graded vector space W we encode its
dimension by a dominant coweight �̄ :=

P
i2I dim(Wi )!̄i 2 Λ+ of G. Given an I -

graded vector space V we encode its dimension by a positive coroot combination ˛ :=P
i2I dim(Vi )˛i 2 Λ+. We set �̄ := �̄ � ˛ 2 Λ. Given a direct sum decomposition

W =
LN

s=1 W (s) compatible with the I -grading of W as in Section 5.3, we set �̄s :=P
i2I dim(W

(s)
i )!̄i 2 Λ+, and finally, �̄ := (�̄1; : : : ; �̄N ).

Recall the notations of Section 5.2. Since the flavor group GF is a Levi subgroup of
GL(W ), its weight lattice is naturally identified with ZdimW . More precisely, we choose
a basis w1; : : : ; wdimW of W such that any Wi ; i 2 I , and W (s); 1 � s � N , is spanned



GRASSMANNIANS AND COULOMB BRANCHES OF GAUGE THEORIES 1311

by a subset of the basis, and we assume the following monotonicity condition: if for
1 � a < b < c � dimW we have wa; wb 2 W (s) for certain s, then wb 2 W (s) as
well. We define a strictly convex cone V = f(n1; : : : ; ndimW )g � Λ+

F � ZdimW by the
following conditions: (a) if wk 2 W (s); wl 2 W (t), and s < t , then nk � nl � 0; (b) if
wk ; wl 2 W (s), then nk = nl . The following isomorphisms are constructed in Braverman,
Finkelberg, and Nakajima [2016a] (notations of Section 3):

W�̄
�̄

∼
�! MC (G;N); W

�̄
�̄

∼
�! MZ

C (G;N);

(we learned of their existence from V. Pestun). We also expect the following isomor-
phisms: fW�̄

�̄
∼

�! fMZ;V
C (G;N); fW�̄

�̄
∼

�! fMV
C (G;N):

In case G is an adjoint simple non simply laced algebraic group, it can be obtained
by folding from a simple simply laced group G̃ (i.e. as the fixed point set of an outer
automorphism of G̃). The corresponding automorphism of the Dynkin quiver of G̃ acts
on the above Coulomb branches, and the slices for G can be realized as the fixed point
sets of these Coulomb branches.

5.5 Back to slices in a double affine Grassmannian. We choose an orienta-
tion of an affine Dynkin graph of type A(1); D(1); E(1) with the set of vertices
Ĩ = I t fi0g, and repeat the construction of Section 5.4 for an affine dominant
coweight � =

P
i2Ĩ dim(Wi )!i = (k; �̄; 0) 2 Λ+

aff, a positive coroot combination
˛ =

P
i2Ĩ dim(Vi )˛i 2 Λaff;+, and � := � � ˛ = (k; �̄; n) 2 Λaff.

We define the slices in GrGaff (where G is the corresponding adjoint simple simply
laced algebraic group) as

W�
� := MC (G;N); W

�
� := MZ

C (G;N); fW�
� := fMZ;V

C (G;N); fW�
� := fMV

C (G;N):

If � is dominant, the slices W�
� conjecturally coincide with the ones of Section 4.3. In

type A this conjecture follows from the computation Nakajima and Takayama [2017] of
Coulomb branches of the cyclic quiver gauge theories and their identification with the
Nakajima cyclic quiver varieties.

Note that �0(RG;N) = �0(GrGL(V )) = �1(GL(V )) = ZĨ , so that H
GO
� (RG;N) =

C[MC (G;N)] = C[W�
�] is ZĨ -graded. We identify ZĨ with the root lattice of Taff �

Gaff : ZĨ = Zh˛_

i ii2Ĩ . Then the ZĨ -grading on C[W�
�] corresponds to a Taff-action on

W�
�. Composing with the cocharacter 2� : C� ! Taff, we obtain an action of C� on W�

�.
Conjecturally, the fixed point set (W�

�)
C� is nonempty iff the V �

� ¤ 0, and in this case
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the fixed point set consists of a single point denoted by �. We consider the corresponding
repellent R�

� � W�
� and the hyperbolic stalk Φ�

�IC(W�
�).

Similarly to Section 5.4, in case G is an adjoint simple non simply laced group, the
Dynkin diagram of its affinization can be obtained by folding of a Dynkin graph of type
A(1); D(1); E(1), and the above slices for G are defined as the fixed point sets of the cor-
responding slices for the unfolding of G. The repellents and the hyperbolic stalks are thus
defined for arbitrary simple G too, and we expect the conclusions of Sections 3.2, 3.3, 3.4
to hold in the affine case as well.

5.6 Warning. In order to formulate the statements about multiplicities for fusion and
convolution as in 3.3 and 3.4, we must have closed embeddings of slices W�0

� ,! W�
� for

�0 � � 2 Λ+
aff. Certainly we do have the natural closed embeddings of generalized slices in

GrG : W�̄0

�̄ ,! W�̄
�̄; �̄0 � �̄ 2 Λ+, but these embeddings have no manifest interpretation

in terms of Coulomb branches (see Section 6.4 below for a partial advance, though). For
a slice in GrG , the collection of closures of symplectic leaves in W�̄

�̄ coincides with the
collection of smaller slices W�̄0

�̄ � W�̄
�̄; �̄ � �̄0 � �̄; �̄0 2 Λ+. However, in the

affine case, in general there are more symplectic leaves in W�
� than the cardinality of

f�0 2 Λ+
aff : � � �0 � �g. For example, if k = 1, and � = 0, so that W�

� ' Ud
G(A2),

the symplectic leaves are numbered by the partitions of size � d : they are all of the form
S � Bund 0

G (A2) where 0 � d 0 � d , and S is a stratum of the diagonal stratification of
Symd�d 0

A2.
Thus we expect that the slice W�0

� for �0 2 Λ+
aff; � � �0 � �, is isomorphic to

the closure of a symplectic leaf in W�
�. We also do expect the multiplicity of IC(W�0

� )

in ΨIC(W�
�) = $�IC(fW�

�) to be M
�

�0 = HomG_
aff
(V �0

; V �1 ˝ : : : ˝ V �N ) for any
�0 2 Λ+

aff such that � � �0 � �. However, it is possible that the IC sheaves of other sym-
plectic leaves’ closures also enter ΨIC(W�

�) = $�IC(fW�
�) with nonzero multiplicities.

We should understand the representation-theoretic meaning of these extra multiplicities,
cf. Nakajima [2009, Theorem 5.15 and Remark 5.17(3)] for G of type A.

Also, the closed embeddings of slices (for Levi subgroups of Gaff) seem an indispens-
able tool for constructing a g_

aff-action on
L

� Φ�
�IC(W�

�) or a structure of g_
aff-crystal onF

� Irr(R�
�) (via reduction to Levi subgroups), cf. Krylov [2017].

5.7 Further problems. Note that the construction of Section 5.5 uses no specific prop-
erties of the affine Dynkin graphs, and works in the generality of arbitrary graphQ without
edge loops and the corresponding Kac-Moody Lie algebra gQ. We still expect the conclu-
sions of Sections 3.2, 3.3, 3.4 to hold in this generality, see Braverman, Finkelberg, and
Nakajima [2016a, 3(x)].
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The only specific feature of the affine case is as follows. Recall that the category
Repk(G

_
aff) of integrable G_

aff-modules at level k 2 Z>0 is equipped with a braided bal-
anced tensor fusion structure Moore and Seiberg [1989] and Bakalov and Kirillov [2001].
Unfortunately, I have no clue how this structure is reflected in the geometry of GrGaff . I
believe this is one of the most pressing problems about GrGaff .

6 Applications

6.1 Hikita conjecture. We already mentioned in Section 5.5 that in case V �
� ¤ 0 we

expect the fixed point set (W�
�)

Taff to consist of a single point �. This point is the sup-
port of a nilpotent scheme � defined as follows: we choose a Taff-equivariant embedding
W�

� ,! AN into a representation of Taff, and define� as the scheme-theoretic intersection
of W�

� with the zero weight subspace AN
0 inside AN . The resulting subscheme � � W�

�

is independent of the choice of a Taff-equivariant embedding W�
� ,! AN . According

to the Hikita conjecture Hikita [2017], the ring C[�] is expected to be isomorphic to the
cohomology ring H �(M(V; W )) of the corresponding Nakajima affine quiver variety,
see Section 5.3. This is an instance of symplectic duality (3d mirror symmetry) between
Coulomb and Higgs branches. The Hikita conjecture for the slicesW�̄

�̄ in GrG and the cor-
responding finite type Nakajima quiver varieties is proved in Kamnitzer, Tingley, Webster,
Weekes, and Yacobi [2015] for types A; D (and conditionally for types E).

6.2 Monopole formula. We return to the setup of Section 5.1. Recall that RG;N is a
union of (profinite dimensional) vector bundles over GO-orbits in GrG. The correspond-
ing Cousin spectral sequence converging to H

GO
� (RG;N) degenerates and allows to com-

pute the equivariant Poincaré polynomial (or rather Hilbert series)

(1) P
GO
t (RG;N) =

X
�2Λ

+

G

td� �2h�G;�iPG(t ; �):

Here deg(t) = 2; PG(t ; �) =
Q
(1 � tdi )�1 is the Hilbert series of the equivariant coho-

mology H �
StabG(�)

(pt) (di are the degrees of generators of the ring of StabG(�)-invariant
functions on its Lie algebra), and d� =

P
�2Λ_

G
max(�h�; �i; 0) dimN�. This is a slight

variation of themonopole formula of Cremonesi, Hanany, and Zaffaroni [2014]. Note that
the series (1) may well diverge (even as a formal Laurent series: the space of homology
of given degree may be infinite-dimensional), e.g. this is always the case for unframed
quiver gauge theories. To ensure its convergence (as a formal Taylor series with the con-
stant term 1) one has to impose the so called ‘good’ or ‘ugly’ assumption on the theory. In
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this case the resultingN-grading onH
GO
� (RG;N) gives rise to aC�-action onMC (G;N),

making it a conical variety with a single (attracting) fixed point.
Now recall the setup of Sections 5.3, 5.4; in particular, the isomorphism

W�̄
�̄

∼
�! MC (G;N). In case �̄ is dominant, the slice W�̄

�̄ � GrG is conical with respect
to the loop rotation C�-action. However, this action is not the one of the previous
paragraph. They differ by a hamiltonian C�-action (preserving the Poisson structure).
The Hilbert series of W�̄

�̄ graded by the loop rotation C�-action is given by

(2) Pt (C[W�̄
�̄]) =

X
�2Λ

+

G

td� �2h�G;�i� 1
2 �̄��detNhor+

1
2 �̄��C �˛PG(t ; �):

Here deg(t) = 1; ˛ = �̄ � �̄ 2 Λ+ = NI ; �̄ is the class of � 2 ΛG = ΛGL(V ) in
�0GrGL(V ) = ZI ; �̄� is the transposed row-vector; C is the I � I Cartan matrix of G;
and Nhor =

L
i!j 2Ω Hom(Vi ; Vj ) is the “horizontal” summand of GL(V )-module N, so

that detNhor is a character of GL(V ), i.e. an element of ZI .
Finally, we consider a double affine Grassmannian sliceW�

� with dominant� as in Sec-
tion 4.3. The analogue of the loop rotation action of the previous paragraph is the action
of the second copy of C� (the center of GL(2)) in Section 4.4. We expect that the Hilbert
series of W�

� graded by this C�-action is given by the evident affine analogue of the for-
mula (2) (with the Ĩ � Ĩ Cartan matrix Caff of Gaff replacing C ). In particular, in case of
level 1, this gives a formula for the Hilbert series of the coordinate ringC[Ud

G(A2)] of the
Uhlenbeck space proposed in Cremonesi, Mekareeya, Hanany, and Ferlito [2014]. Note
that the latter formula works for arbitrary G, not necessarily simply laced one. In type A

it follows from the results of Nakajima and Takayama [2017].

6.3 Zastava. Let us consider the Coulomb branch MC (G;N) of an unframed quiver
gauge theory for anADE type quiver: Wi = 08i 2 I , so thatN = Nhor. An isomorphism
MC (G;N) ∼

�!
ı

Z˛ with the open zastava1 (themoduli space of degree ˛ basedmaps from
the projective line P 1 3 1 to the flag varietyB 3 B� of G, where ˛ =

P
i2I (dimVi )˛i ),

is constructed in Braverman, Finkelberg, and Nakajima [2016a] (we learned of its exis-
tence from V. Pestun). As the name suggests, the open zastava is a (dense smooth sym-
plectic) open subvariety in the zastava spaceZ˛ , a normal Cohen-Macaulay affine Poisson
variety.

Note that there is another version of zastava Z˛ that is the solution of a moduli problem
(G-bundles on P 1 with a generalized B-structure and an extra U�-structure transversal at
1 2 P 1) Braverman, Finkelberg, Gaitsgory, and Mirković [2002] given by a scheme
cut out by the Plücker equations. This scheme is not reduced in general (the first example

1Zastava = flags in Croatian.
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occurs in typeA4) E. Feigin andMakedonskyi [2017], andZ˛ is the corresponding variety:
Z˛ := Z˛

red.
We already mentioned that the open zastava is a particular case of a generalized slice:

ı

Z˛ = W0
w0˛ . The zastava space Z˛ is the limit of slices in the following sense: for

any �̄ � �̄ such that w0�̄ � w0�̄ = ˛, there is a loop rotation equivariant regular
birational morphism s�̄

�̄ : W�w0�̄
�w0�̄ ! Z˛ , and for any N 2 N and big enough dom-

inant �̄, the corresponding morphism of the coordinate rings graded by the loop rota-
tions (s�̄

�̄)
� : C[Z˛] ! C[W�w0�̄

�w0�̄] is an isomorphism in degrees � N (both C[Z˛] and
C[W�w0�̄

�w0�̄] for dominant �̄ are positively graded).
Now C[Z˛] is obtained by the following version of the Coulomb branch construc-

tion. Given a vector space U we define the positive part of the affine Grassmannian
Gr+

GL(U ) � GrGL(U ) as the moduli space of vector bundles U on the formal disc D =

Spec(O) equipped with trivialization � : UjD�
∼

�! U ˝ OD� on the formal punctured
disc D� = Spec(K) such that � extends through the puncture as an embedding � : U ,!

U ˝ OD . Since G = GL(V ) =
Q

i2I GL(Vi ), we have GrGL(V ) =
Q

i2I GrGL(Vi ),
and we define Gr+GL(V ) =

Q
i2I Gr

+
GL(Vi )

. Finally, we define R+
G;N as the preimage of

Gr+GL(V ) � GrGL(V ) underRG;N ! GrGL(V ). ThenH
GO
� (R+

G;N) forms a convolution sub-
algebra of H

GO
� (RG;N), and an isomorphism M+

C (G;N) := SpecH
GO
� (R+

G;N)
∼

�! Z˛

is constructed in Braverman, Finkelberg, and Nakajima [2016a].
An analogue of the monopole formula (2) gives the character of the T � C�-module

C[Z˛]:

(3) �(C[Z˛]) =
X
Λ

++

G

z�̄ td� �2h�G;�i� 1
2 �̄��detN+ 1

2 �̄��C �˛PG(t ; �):

Here Λ++
G is the set of I -tuples of partitions; i -th partition having length at most dimVi

(recall that the cone of dominant coweightsΛ+
G is formed by the I -tuples of nonincreasing

sequences (�(i)
1 � �

(i)
2 � : : : � �

(i)
dimVi

) of integers, and for Λ++
G � Λ+

G we require these
integers to be nonnegative). Also, z denotes the coordinates on the Cartan torus T � G

identified with (C�)I via zi = ˛_

i .
The character of the T � C�-module C[Z˛] for G of type ADE was also computed

in Braverman and Finkelberg [2014]. Namely, it is given by the fermionic formula of B.
Feigin, E. Feigin, Jimbo, Miwa, and Mukhin [2009], and the generating function of these
characters for all ˛ 2 Λ+ is an eigenfunction of the q-difference Toda integrable system. It
would be interesting to find a combinatorial relation between the monopole and fermionic
formulas.

In the affine case, the zastava spaceZ˛
gaff

was introduced in Braverman, Finkelberg, and
Gaitsgory [2006]. It is an irreducible affine algebraic variety containing a (dense smooth
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symplectic) open subvariety
ı

Z˛
gaff

: the moduli space of degree ˛ based maps from the
projective line P 1 to the Kashiwara flag scheme Flgaff . Contrary to the finite case, the
open subvariety

ı

Z˛
gaff

is not affine, but only quasiaffine, and we denote by
ı

Z˛
gaff

its affine
closure. We do not know if the open embedding

ı

Z˛
gaff

,! Z˛
gaff

extends to an open em-
bedding

ı

Z˛
gaff

,! Z˛
gaff

: it depends on the normality property of Z˛
gaff

that is established
only for g of types A; C Braverman and Finkelberg [2014] and Finkelberg and Rybnikov
[2014] at the moment (but is expected for all types). For an A(1); D(1); E(1) type quiver
and an unframed quiver gauge theory with ˛ =

P
i2Ĩ (dimVi )˛i , we have an isomor-

phism MC (G;N) ∼
�!

ı

Z˛
gaff

Braverman, Finkelberg, and Nakajima [2016a]. If Z˛
gaff

is
normal, this isomorphism extends to M+

C (G;N) ∼
�! Z˛

gaff
, and the fermionic formula for

the character �(C[Z˛]) holds true.
Finally, for an arbitrary quiver Q without edge loops we can consider an unframed

quiver gauge theory, and a coroot ˛ :=
P

i2Q0
(dimVi )˛i of the corresponding Kac-

Moody Lie algebra gQ. The moduli space
ı

Z˛
gQ

of based maps from P 1 to the Kashiwara
flag scheme FlgQ

was studied in Braverman, Finkelberg, and Gaitsgory [2006]. It is a
smooth connected variety. We expect that it is quasiaffine, and its affine closure

ı

Z˛
gQ

is
isomorphic to the Coulomb branch MC (G;N). It would be interesting to find a modular
interpretation of M+

C (G;N) and its stratification into symplectic leaves. In the affine case
such an interpretation involves Uhlenbeck spaces Ud

G(A2).
The Jordan quiver corresponds to the Heisenberg Lie algebra. The computations

of Finkelberg, Ginzburg, Ionov, and Kuznetsov [2016] suggest that the Uhlenbeck
compactification of the Calogero-Moser phase space plays the role of zastava for the
Heisenberg Lie algebra.

6.4 Multiplication and quantization. The multiplication of slices in the affine Grass-
mannianW�̄

�̄�W�̄0

�̄0 ! W�̄+�̄0

�̄+�̄0 was constructed in Braverman, Finkelberg, and Nakajima
[2016a] via multiplication of scattering matrices for singular monopoles (we learned of its
existence from T. Dimofte, D. Gaiotto and J. Kamnitzer). The corresponding comultiplica-
tion C[W�̄+�̄0

�̄+�̄0 ] ! C[W�̄
�̄]˝ C[W�̄0

�̄0 ] can not be seen directly from the Coulomb branch
construction of slices. However, its quantization C„[W

�̄+�̄0

�̄+�̄0 ] ! C„[W
�̄
�̄] ˝ C„[W

�̄0

�̄0 ]

(recall from the end of Section 5.1 that C„[W
�̄
�̄] is the loop rotation equivariant Borel-

Moore homology of the corresponding variety of triples) already can be realized in terms
of Coulomb branches. The reason for this is that the quantized Coulomb branch C„[W

�̄
�̄]

is likely to have a presentation by generators and relations of a truncated shifted Yangian
Y �̄

�̄ ' C„[W
�̄
�̄] of Braverman, Finkelberg, and Nakajima [ibid., Appendix B]. Also, it

seems likely that the comultiplication of Finkelberg, Kamnitzer, Pham, Rybnikov, and
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Weekes [2018] descends to a homomorphism ∆: Y �̄+�̄0

�̄+�̄0 ! Y �̄
�̄ ˝ Y �̄0

�̄0 . Finally, we ex-
pect that the desired comultiplication C[W�̄+�̄0

�̄+�̄0 ] ! C[W�̄
�̄] ˝ C[W�̄0

�̄0 ] is obtained by
setting „ = 0 in∆.

Returning to the question of constructing the closed embeddings of slices W�̄0

�̄ ,! W�̄
�̄

in terms of Coulomb branches (see the beginning of Section 5.6), we choose dominant
coweights �̄; �̄0; �̄0 such that �̄0 + �̄ = �̄0; �̄0 + �̄ = �̄0, and set �̄00 := �̄ � �̄0. Then
we have the multiplication morphism W�̄

�̄00 � W�̄0

�̄0 ! W�̄
�̄, and we restrict it to W�̄

�̄00 =

W�̄
�̄00 �f�̄0g ! W�̄

�̄ where �̄0 2 W�̄0

�̄0 is the fixed point. Then the desired closed subvariety
W�̄0

�̄ � W�̄
�̄ is nothing but the closure of the image of W�̄

�̄00 ! W�̄
�̄.

The similar constructions are supposed to work for the slices in GrGaff . They are based
on the comultiplication for affine Yangians constructed in Guay, Nakajima, andWendlandt
[2017].

6.5 Affinization of KLR algebras. We recall the setup of Section 5.3, and set W = 0

(no framing). We choose a sequence j = (j1; : : : ; jN ) of vertices such that any vertex j 2

Q0 enters dimVj times; thus, N = dimV . The set of all such sequences is denoted J(V ).
We choose a Q0-graded flag V = V 0 � V 1 � : : : � V N = 0 such that V n�1/V n is a
1-dimensional vector space supported at the vertex jn for any n = 1; : : : ; N . It gives rise
to the following flag ofQ0-graded lattices in VK = V ˝K : : : : � L�1 � L0 � L1 � : : :,
where Lr+N = zLr for any r 2 Z; L0 = VO , and Ln/LN = V n � V = L0/LN for
any n = 1; : : : ; N . Let Ij � GO be the stabilizer of the flag L� (an Iwahori subgroup).
Then the Ij-module NO contains a submodule Nj formed by the K-linear homomorphisms
be : Vt(e);K ! Vh(e);K such that for any e 2 Q1 and r 2 Z; be takes Lr

t(e) to Lr+1
h(e)

.

We consider the following version of the variety of triples: Rj;j := f[g; s] 2 GK

Ij
�

Nj : gs 2 Njg, cf. Braverman, Etingof, and Finkelberg [2016] and Webster [2016, Sec-
tion 4]. Then the equivariant Borel-Moore homology Hj;j := H

C�ËIj
� (Rj;j) forms an

associative algebra with respect to a convolution operation. Moreover, if we take an-

other sequence j0 2 J(V ) and consider Rj0;j := f[g; s] 2 GK

Ij
� Nj : gs 2 Nj0g, then

Hj0;j := H
C�ËIj0
� (Rj;j0) forms a Hj0;j0 � Hj;j-bimodule with respect to convolution, and

we have convolutions Hj00;j0 ˝ Hj0;j ! Hj00;j. In other words, HV :=
L

j;j02J(V ) Hj0;j
forms a convolution algebra.

Furthermore, given j1 2 J(V ); j2 2 J(V 0), the concatenated sequence j1j2 lies in
J(V ˚ V 0), and one can define the morphisms Hj01;j1 ˝ Hj02;j2 ! Hj01j02;j1j2 summing up
to a homomorphism HV ˝ HV 0 ! HV ˚V 0 .

Similarly to the classical theory of Khovanov-Lauda-Rouquier algebras (see a beauti-
ful survey Rouquier [2012] and references therein), we expect that in case Q has no loop
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edges, the categories of finitely generated graded projective HV -modules provide a cat-
egorification of the positive part U ++

Q of the quantum toroidal algebra UQ (where U ++
Q

is defined as the subalgebra generated by the positive modes of the positive generators
ej;r : j 2 Q0; r � 0).
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REPRESENTATIONS OF GALOIS ALGEBRAS

Vඒൺർඁൾඌඅൺඏ Fඎඍඈඋඇඒ

Abstract
Galois algebras allow an effective study of their representation theory based on the

invariant skew group structure. In particular, this leads to many remarkable results on
Gelfand-Tsetlin representations of the general linear Lie algebra gln, quantum gln,
Yangians of type A and finite W -algebras of type A.

1 Introduction

A classical problem of the representation theory of simple complex finite dimensional Lie
algebras is the classification of simple modules. Today such a classification is known
only for the Lie algebra sl2 Block [1981]. Special attention is addressed to the study of
so-called weight modules, i.e. those on which a certain Cartan subalgebra is diagonaliz-
able. By the results of Fernando [1990] and Mathieu [2000], the classification of simple
weight modules with finite dimensional weight subspaces is well known for any simple
finite dimensional Lie algebra. On the other hand, a classification of simple modules re-
mains open even in the category of weight modules with infinite dimensional weight sub-
spaces. The largest subcategory of the category of weight module with some understand-
ing of simple objects is the category of Gelfand-Tsetlin modules. The Gelfand-Tsetlin
theory has attracted considerable interest in the last 40 years after the pioneering work of
Gelfand and Cetlin [1950] and was developed in Drozd, Ovsienko, and Futorny [1991],
Graev [2004], Graev [2007], Drozd, Ovsienko, and Futorny [1989], Mazorchuk [1998],
Mazorchuk [2001], Molev [2006], Želobenko [1973], among the others. Gelfand-Tsetlin
integrable systems were studied by Guillemin and Sternberg [1983], Kostant and Wallach
[2006a], Kostant andWallach [2006b], Colarusso and Evens [2010], Colarusso and Evens
[2014].

Gelfand-Tsetlin theory can be viewed in a more general context of Harish-Chandra cat-
egories Drozd, Futorny, and Ovsienko [1994], Futorny and Ovsienko [2007] which play
very important role in the representation theory. These are the categories of modules over
MSC2010: primary 17B10; secondary 17B05, 16G30.
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a given algebra defined by the restriction onto a fixed subalgebra. General setting for
the study of Harish-Chandra categories was established in Drozd, Futorny, and Ovsienko
[1994]. Examples of Harish-Chandra categories include classical Harish-Chandra mod-
ules over a finite dimensional Lie algebra defined with respect to a reductive subalge-
bra (Dixmier [1974]), weight modules over semisimple finite dimensional Lie algebras
with respect to a Cartan subalgebra, Gelfand-Tsetlin modules over gln (Drozd, Ovsienko,
and Futorny [1991]), certain representations of Yangians (Futorny, Molev, and Ovsienko
[2005]) etc. In the case of generalized Weyl algebras of rank 1 this approach led to a com-
plete classification of simple modules (Bavula [1992], Bavula and van Oystaeyen [2004]).

Developed techniques turned out to be very useful in the study of Gelfand-Tsetlin mod-
ules for the Lie algebra gln (Drozd, Ovsienko, and Futorny [1991], Ovsienko [2002]).
Gelfand-Tsetlin modules form the full subcategory of weight gln-modules which are sums
of finite dimensional modules over the Gelfand-Tsetlin subalgebra Γ (certain maximal
commutative subalgebra of the universal enveloping algebra of gln) Drozd, Ovsienko,
and Futorny [1991], Futorny and Ovsienko [2010]. These modules are weight modules
with respect to some Cartan subalgebra of gln but they allow to have infinite dimensional
weight spaces.

Gelfand-Tsetlin theory had a successful development in Ovsienko [2002], where it was
shows that simple Gelfand-Tsetlin modules over gln are parametrized up to some finite-
ness by the maximal ideals of Γ. Different explicit constructions of Gelfand-Tsetlin mod-
ules for gln were recently obtained in Futorny, Grantcharov, and Ramirez [2014], Futorny,
Grantcharov, and Ramirez [2015], Futorny, Grantcharov, and Ramirez [2016b], Futorny,
Grantcharov, and Ramirez [2016a], Futorny, Ramirez, and Zhang [2016], Zadunaisky
[2017], Vishnyakova [2018], Vishnyakova [2017], Ramírez and Zadunaisky [2017]. Nev-
ertheless, the problem remains open.

As an attempt to unify the representation theories of the universal enveloping algebra of
gln and of the generalizedWeyl algebras a new concept of Galois orders was introduced in
Futorny and Ovsienko [2010]. These algebras have a hidden skew (semi)group structure.
In particular, the universal enveloping algebra of gln is an example of such algebra where
invariant skew group structure comes from the Gelfand-Tsetlin formulas. Representation
theory of Galois algebras was developed in Futorny and Ovsienko [2014]. It provides
a new framework for the study of representation of various classes of algebras. Recent
paper of Hartwig (Hartwig [2017a]) discovers new examples of Galois algebras for which
the theory can be effectively applied.
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2 Harish-Chandra modules

We recall basic facts about Harish-Chandra module categories following Drozd, Futorny,
and Ovsienko [1994]. Let U be an associative algebra over k, Γ � U a subalgebra. The
set of maximal idealsm of Γ such that dimΓ/m < 1 will be called the cofinite spectrum
cfsΓ of Γ. Then every m 2 cfsΓ defines a unique simple Γ-module of dimension l(m)

where Γ/m ' Ml(m)(k).
We say thatM is aHarish-Chandramodule (with respect toΓ) ifM a finitely generated

U -module such that
M =

M
m2cfsΓ

M (m);

where
M (m) = fx 2 M j9k; mkx = 0g:

The support of a Harish-Chandra module M is a subset of cfsΓ consisting of those m
for which M (m) ¤ 0.

We denote by H(U;Γ) the full subcategory consisting of all Harish-Chandra modules
in U � mod. It is closed under the operations of taking submodules, quotients and direct
sums.

In Drozd, Futorny, and Ovsienko [ibid.] a concept of a Harish-Chandra subalgebra was
introduced. For any m 2 cfsΓ denote by Lm the unique simple Γ/m-module. We say
that Γ is quasi-commutative if Ext1(Lm; Ln) = 0 for all m ¤ n. We also say that Γ is
quasi-central if for every u 2 U , the Γ-bimodule ΓuΓ is finitely generated as a left and
as a right Γ-module. Clearly, for a noetherian Γ it is sufficiently to check this condition
only for the generators of Γ (cf. Drozd, Futorny, and Ovsienko [ibid.], Proposition 8). A
subalgebra Γ is called Harish-Chandra if it is quasi-central and quasi-commutative.

Example 2.1. Let g be a finite dimensional Lie algebra andF its reductive Lie subalgebra.
Then Γ = U (F) is a Harish-Chandra subalgebra of U = U (g). Indeed, Γ is quasi-
commutative since any m 2 cfsΓ is cofinite. Also Γ is quasi-central since g is finite
dimensional.

The concept of a Harish-Chandra subalgebra is essential for understanding the cate-
gories of Harish-Chandra modules. We address to Drozd, Futorny, and Ovsienko [ibid.]
for further properties of Harish-Chandra subalgebras in the general setting. The most stud-
ied is the case of commutative Γ which we consider next.

2.1 Commutative Γ. Let U be an associative algebra and Γ � U a noetherian com-
mutative subalgebra. A natural idea is to try to parametrize simple modules in the Harish-
Chandra categoryH(U;Γ) by simpleΓ-modules. Since any simpleΓ-module is 1-dimensional
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it defines a homomorphism from Γ to k which we call a character of Γ. The kernel of any
such character is a maximal ideal of Γ, thus there is a one-to-one correspondence between
the characters of Γ and elements of SpecmΓ. The following problem of extension of char-
acters to simple modules in H(U;Γ) is of prime importance for description of possible
supports of simple Harish-Chandra modules.

Problem 1. Given m 2 SpecmΓ is there a (simple) module M 2 H(U;Γ) such that
M (m) ¤ 0.

Recall that in the classical setting when both U and Γ are commutative and extension
Γ � U is integral then we have a map between the sets of prime (maximal) ideals ' :

SpecU ! SpecΓ and the fiber '�1(p) is non-empty for every p 2 SpecA. In particular,
every character of Γ can be extended to a character of U . Moreover, if U is finitely
generated module over Γ then all fibers '�1(p) are finite and the number of different
extensions of each character of Γ is finite. By the Hilbert-Noether theorem this is the case
when U = S(V ) is the symmetric algebra of a finite dimensional vector space V and Γ

is the subalgebra of G-invariants of U for some finite subgroup G of GL(V ).
If U is noncommutative then the restriction functor from the category H(U;Γ) to the

category of torsion Γ-modules induces a map Φ from SpecmΓ to the set of isomorphism
classes I rr(U ) of simple U -modules in H(U;Γ). Given a maximal ideal m 2 SpecmΓ,
Φ(m) consist of those simple V 2 H(U;Γ) such that V (m) ¤ 0 (or left maximal ideals
of U which contain m).

Example 2.2. (i) Let g be a reductive Lie algebra with a Cartan subalgebra H, U =

U (g) and Γ = U (H). Then for any weight � 2 H� the fiber Φ(�) is infinite (even
in the category O which is a subcategory of H(U;Γ)).

(ii) Let U = Un = C[Sn], U1 � : : : � Un, Zk the center of C[Uk ]. Then Γ =<

Z1; : : : ; Zn > is maximal commutative. It is generated by the Jucys-Murphy ele-
mentsXi = (1i)+: : :+(i�1i), i = 1; : : : ; n. The elements of SpecmΓ parametrize
the irreducible representations of the group Sn Okounkov and Vershik [1996].

The freeness of U over Γ as a right module guarantees the lifting of characters of Γ
(all examples above are of this kind). Finding sufficient conditions for the fiber Φ(m) to
be non-empty for any point m 2 SpecmΓ is a difficult problem in general. In particular,
if U is a special filtered such conditions were obtained in Futorny and Ovsienko [2005]
generalizing the Kostant’s theorem (see further examples in Futorny and Ovsienko [ibid.]
and Futorny, Molev, and Ovsienko [2005]).
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3 Galois algebras

A class of Galois rings (orders) was introduced in Futorny and Ovsienko [2010] to deal
with the problem of extension of characters of commutative subalgebras.

Let R be a ring, M a monoid acting on R by ring automorphisms. We will denote the
action of m 2 M on r 2 R by rm. Consider the skew monoid ring R � M. Any element
of R � M can be written in the form x =

P
m2M xmm. Define supp x as the set of those

m 2 M for which xm is not zero.
Let G be a finite group acting on M by conjugation. Then we have an action of G on

R � M by ring automorphisms: g(rm) = g(r)g(m), g 2 G; r 2 R, m 2 M.
Assume now that Γ is an integral domain, K the field of fractions of Γ and L a finite

Galois extension of K with the Galois group G = Gal(L/K). Consider the action of
G by conjugation on Aut(L). Let M be any G-invariant submonoid of Aut(L). For our
purposes we will always require M to be K-separating, that is m1jK = m2jK ) m1 =

m2 for m1; m2 2 M. The action of G on L and on M (by conjugations) extends to the
action of G on the skew monoid ring L � M. Denote by K = (L � M)G the subring of
invariants.

Definition 3.1. A finitely generated Γ-subring U of K is called a Galois ring over Γ if
UK = KU = K.

We have the following characterization of Galois rings:
We will always assume that all Galois rings are k-algebras. In this case we say that a

Galois ring is a Galois algebra over Γ.

Example 3.1. Let U = Γ(�; a) be a generalized Weyl algebra of rank 1 (Bavula [1992]),
where Γ is a unital integral domain, a 2 Γ, � an automorphism of Γ of infinite order. It
is generated over Γ by X and Y such that X
 = �(
)X; Y
 = ��1(
)Y; YX = a;

XY = �(a): Let K be the field of fractions of Γ and M ' Z is a subgroup of AutΓ
generated by � . Then U can be embedded into the skew group algebra K � Z when
X 7! � and Y 7! a��1. Clearly, U is a Galois algebra over Γ. Note that U ' Γ � Z if
a is invertible in Γ.

3.1 Galois orders. Now we discuss a special class of Galois rings which are called
Galois orders. Galois orders were introduced in Futorny and Ovsienko [2010] as a natu-
ral noncommutative generalization of a classical notion of order in skew group rings (cf.
McConnell and Robson [1987]).

A Galois ring U over Γ. is right (respectively left) Galois order, if for any finite dimen-
sional right (respectively left) K-subspace W � U [S�1] (respectively W � [S�1]U ),
W \ U is a finitely generated right (respectively left) Γ-module. A Galois ring is Galois
order if it is both right and left Galois order.
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For a right Γ-submodule M � U denote

Dr(M ) = fu 2 U j9
 2 Γ; 
 ¤ 0 such that u � 
 2 M g:

It follows immediately that Dr(M ) is a Γ-module.
We have the following characterization of a Galois order.

Proposition 3.1 (Futorny and Ovsienko [2010], Corollary 5.1, 5.2). (i) A Galois
ring U over a noetherian Γ is right (left) Galois order if and only if for every finitely
generated right (left) Γ-module M � U , the right (left) Γ-module Dr(M ) is finitely
generated.

(ii) If a Galois ringU over a noetherian domainΓ is projective as a right (left)Γ-module
then U is a right (left) Galois order.

In the commutative case if K is the field of fractions of Γ, U � K is finitely gener-
ated over Γ and the extension Γ � U is integral then U is Galois order over Γ. Further
examples of Galois orders include: generalized Weyl algebras over integral domains with
infinite order automorphisms (e.g. the n-th Weyl algebra An, the quantum plane, the q-
deformed Heisenberg algebra, quantized Weyl algebras, the Witten-Woronowicz algebra
Bavula [1992]; the universal enveloping algebra of gln over the Gelfand-Tsetlin subalge-
bra Drozd, Ovsienko, and Futorny [1991], Drozd, Futorny, and Ovsienko [1994], finite
W -algebras Futorny, Molev, and Ovsienko [2005]).

There is a strong connection between Galois orders and maximality of Harish-Chandra
subalgebras. Namely, we have

Theorem 3.1. (i) Let Γ be a finitely generated domain over k and U a Galois order
over Γ. Then Γ is a Harish-Chandra subalgebra in U .

(ii) Let U be a Galois ring over finitely generated k-algebra Γ and M be a group. If Γ
is a Harish-Chandra subalgebra in U then U is a Galois order if and only if Ue is
an integral extension of Γ.

(iii) Let U be a Galois ring over a normal noetherian Harish-Chandra subalgebra Γ

and M be a group. Then U is a Galois order over Γ if and only if Γ is maximal
commutative in U .

Proof. First item follows from [Futorny and Ovsienko [2010], Corollary 5.4]. Second
item follows from [Futorny and Ovsienko [ibid.], Theorem 5.2, (2)]. Let U be a Galois
ring over a normal noetherian Harish-Chandra subalgebraΓ. IfΓ is maximal then applying
[Futorny and Ovsienko [ibid.], Corollary 5.6, (2)] and the fact that U has no torsion as a Γ-
module we conclude that U is a Galois order over Γ. To prove the converse, it is sufficient
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to show that U \ K = Γ by [Futorny and Ovsienko [ibid.], Theorem 4.1]. Since U \ K

is an integral extension of Γ by the second item, the statement follows from the normality
of Γ.

The problem of lifting of characters for Galois orders was studied in Futorny and
Ovsienko [2014]. In particular, sufficient conditions for the fiber Φ(m) to be nontriv-
ial and finite were established. Let U � (L � M)G be a Galois ring over Γ. Consider
the integral closure Γ̄ of Γ in L. It is a standard fact that if Γ is finitely generated as a
k-algebra then any character of Γ has finitely many extensions to characters of Γ̄.

Let m̄ be any lifting ofm to the integral closure of Γ inL, andMm the stabilizer of m̄ in
M. Note that the group Mm is defined uniquely up to G-conjugation. Thus the cardinality
of Mm does not depend on the choice of the lifting. We denote it by jmj.

For m;n 2 SpecmΓ set

S(m;n) = fm 2 M j n̄ 2 GmG � m̄g;

which is a G-invariant subset in M. If M is a group then we have

jS(m;n)/Gj � jfx 2 M j xm̄ = n̄gj:

Denote by r(m;n) the minimal number of generators of U (S(m;n)) as a right Γ-
module.

Theorem 3.2. [Futorny and Ovsienko [ibid.], Theorem A, , Theorem 8] Let Γ be a com-
mutative domain which is finitely generated as a k-algebra, U � (L�M)G a right Galois
order over Γ, m 2 SpecmΓ. Suppose jmj is finite.

(i) The fiber Φ(m) is non-empty.

(ii) If U is a Galois order over Γ, then the fiber Φ(m) is finite.

(iii) Let U be a Galois order over normal noetherian Γ, M 2 H(U;Γ) a simple U -
module andm 2 SpecmΓ. If U is free as a right Γ-module then for any n

dimk M (n) � jS(m;n)/Gj:

3.2 Principal Galois orders. Further examples of Galois orders were recently con-
structed by Hartwig [2017a]. As before denote K = (L � M)G . Clearly, K is its own
Galois subring over Γ. But, K is a Galois order if and only if Λ = L, where Λ is the
integral closure of Γ in L [Hartwig [ibid.], Corollary 2.15].

Let x =
P

�2M x�� 2 L�M and a 2 L. Define the evaluation x(a) :=
P

�2M x��(a)

[Hartwig [ibid.], Definition 2.18]. Then we have
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Theorem 3.3 (Hartwig [2017a], Theorem 2.21).

KΓ = fx 2 K j x(
) 2 Γ for all 
 2 Γg

is a Galois order over Γ in K.

One immediately sees that any Galois subring of KΓ over Γ is a Galois order. Such
orders are called principal Hartwig [ibid.].

A new class of principal Galois orders, rational Galois orders, was introduced in
Hartwig [ibid.]. These structures are attached to an arbitrary finite reflection group and a
set of difference operators with rational function coefficients. In particular, the parabolic
subalgebras of finite W -algebras of type A are rational Galois orders [Hartwig [ibid.],
Theorem 1.2]. This extends the result of Futorny, Molev, and Ovsienko [2005] for W -
algebras of typeA. Other examples of principal Galois orders include orthogonal Gelfand-
Tsetlin algebras (Hartwig [2017a], Theorem 4.6) introduced in Mazorchuk [1999] and
quantum orthgonal Gelfand-Tsetlin algebras (Hartwig [2017a], Theorem 5.6) introduced
in Hartwig [2017b]. The family of quantum orthogonal Gelfand-Tsetlin algebras includes
in particular quantized universal enveloping algebra Uq(gln) and, as a consequence, im-
plies the maximality of the Gelfand-Tsetlin subalgebra of Uq(gln) when q is not a root of
unity (this was conjectured by Mazorchuk and Turowska [2000]).

4 Gelfand-Tsetlin modules

Now we address the Lie algebra gln consisting of all n � n complex matrices with the
standard basis of elementary matrices fei;j j 1 � i; j � ng. For each k 6 n denote by
glk the Lie subalgebra of gln spanned by feij j i; j = 1; : : : ; kg. We have the following
embeddings of Lie subalgebras

gl1 � gl2 � : : : � gln:

We have corresponding embeddings U1 � U2 � : : : � Un of the universal enveloping
algebras Uk = U (glk), 1 � k � n. Set U = Un.

Let Zk be the center of Uk . This is the polynomial algebra generated by the following
elements

(1) cks =
X

(i1;:::;is)2f1;:::;kgs

ei1i2ei2i3 : : : eis i1 ;

s = 1; : : : ; k.
Let Γ be the subalgebra of U (gln) generated by the centers Zk , k = 1; : : : ; n, the

Gelfand-Tsetlin subalgebra Drozd, Ovsienko, and Futorny [1991]. The generators cks ,
k = 1; : : : ; n, s = 1; : : : ; k are algebraically independent Želobenko [1973].
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Let Λ be the polynomial algebra in the variables f�ij j 1 6 j 6 i 6 ng. Consider the
embedding � : Γ�! Λ such that

cks 7!

kX
i=1

(�ki + k � 1)s
Y
j ¤i

�
1 �

1

�ki � �kj

�
:

One can easily check that �(cks) is a symmetric polynomial in Λ of degree s in vari-
ables �k1; : : : ; �kk . Let G =

Qn
i=1 Si be the product of symmetric groups. Then G acts

naturally onΛwhere Sk permutes the variables �k1; : : : ; �kk , k = 1; : : : ; n. The image of
Γ, �(Γ), coincides with the subalgebra ofG-invariant polynomials inΛwhich we identify
with Γ.

Consider the Harish-Chandra category H (U;Γ). We will call the modules of H (U;Γ)

Gelfand-Tsetlin modules. If M 2 H (U;Γ) then

M =
M

m2SpecmΓ

M (m);

where M (m) = fv 2 M jmkv = 0 for some k � 0g: Clearly, any simple Gelfand-Tsetlin
module over gl(n) is a weight module with respect to the Cartan subalgebra spanned by
ei i , i = 1; : : : ; n. Moreover, for n = 2 any simple weight module is a Gelfand-Tsetlin
module. For n > 2 this is not true in general, but holds for modules with finite weight
multiplicities. For a Gelfand-Tsetlin module M (m) 2 H (U;Γ) and m 2 SpecmΓ we
call the dimension of M (m) the Gelfand-Tsetlin multiplicity of m.

4.1 Finite dimensional modules over gln. We recall a classical result of Gelfand and
Cetlin [1950] which gives an explicit basis for all simple finite dimensional gln-modules.

For convenience we consider the elements of the space Ck as k-tuples whose entries
are labeled as follows (vk1;:::;vkk

). We also identify C
n(n+1)

2 with Tn(C) = Cn � Cn�1 �

: : : � C. Then every vector v in C
n(n+1)

2 can be written in the following form:

v = (vn1; :::; vnnjvn�1;1; :::; vn�1;n�1j � � � jv21; v22jv11)

to which we associate the following array T (v)

vn1 vn2 � � � vn;n�1 vnn

vn�1;1 � � � vn�1;n�1

� � � � � � � � �

v21 v22
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v11

Such an array will be called a Gelfand-Tsetlin tableau of height n.
For a fixed element v = (vij )

n
j �i=1 2 Tn(C) consider the set

v + Tn�1(Z) = fv + w j w = (wij )
n
j �i=1; wij 2 Z; wnk = 0 ; k = 1; : : : ; ng:

Denote by V (T (v)) the complex vector space spanned by the set v + Tn�1(Z) as a basis.
Clearly, the spaces V (T (v)) and Tn(C) are not isomorphic as T (v +w) ¤ T (v)+T (w)

in V (T (v)).
A Gelfand-Tsetlin tableau T (v) of height n is called standard if vki � vk�1;i 2 Z�0

and vk�1;i � vk;i+1 2 Z>0 for all 1 � i � k � n � 1.

Theorem 4.1 (Gelfand and Cetlin [1950]). Let L(�) be the simple finite dimensional gln-
module of highest weight � = (�1; : : : ; �n). Then the set of all standard tableaux T (v)

with fixed top row vni = �i � i + 1, i = 1; : : : ; n forms a basis of L(�). Moreover, the
action of the generators of gl(n) on L(�) is given by the Gelfand-Tsetlin formulas:

ek;k+1(T (v)) = �

kX
i=1

 Qk+1
j=1(vki � vk+1;j )Qk

j ¤i (vki � vkj )

!
T (v + ıki );

ek+1;k(T (v)) =

kX
i=1

 Qk�1
j=1(vki � vk�1;j )Qk

j ¤i (vki � vkj )

!
T (v � ıki );

ekk(T (v)) =

 
k � 1 +

kX
i=1

vki �

k�1X
i=1

vk�1;i

!
T (v):

If ek;k+1(T (v)) or ek+1;k(T (v)) contains a summand with a non-standard T (v ˙ ıki ),
then the summand is assumed to be zero.

These formulas define a Gelfand-Tsetlin modules where the action of the generators of
Γ is given by:

cmk(T (v)) = 
mk(v)T (v);

where

(2) 
mk(v) :=

mX
i=1

(vmi + m � 1)k
Y
j ¤i

�
1 �

1

vmi � vmj

�
:

To every w 2 v+Tn�1(Z)we associate the maximal ideal of Λ generated by �ij �wij

and the maximal ideal mw of Γ generated by cij � 
ij (w), where 
ij (w) are symmetric
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polynomials defined in (2). Again, the correspondence w 7! mw is not one-to-one, a
given m 2 SpecmΓ defines the finite fiber of maximal ideals of Λ corresponding to the
set bm of w 2 v + Tn�1(Z) withmw = m.

The basis of tableaux defined in Theorem 4.1 is called the Gelfand-Tsetlin basis. Dis-
covery of Gelfand-Tsetlin bases are among the most remarkable results of the representa-
tion theory of classical Lie algebras. It provides a convenient realization of every simple
finite dimensional representation of the Lie algebra gln. For other types of simple finite
dimensional Lie algebras we refer to Molev [2006].

4.2 U (gln) is a Galois order over Γ. We identify Tn�1(Z)with the free abelian group
M ' Z

n(n�1)
2 generated by ıij , 1 6 j 6 i 6 n � 1, where (ıij )ij = 1 and all other

(ıij )k` are zero, 1 � j � i � n�1. The group M acts naturally on Tn(C) by translations.
We also have the action of G = Sn � Sn�1 � � � � � S1 on Tn(C) as follows:

�(v) := (vn;��1[n](1); : : : ; vn;��1[n](n)j : : : jv1;��1[1](1)):

where v 2 Tn(C), � 2 G and � [k] 2 Sk . This leads to the action of the semidirect product
G Ë Tn�1(Z) on Tn(C) .

Denote by K the field of fractions of Γ and by L the field of fractions of Λ. We have
LG = K, ΛG = Γ and G = G(L/K) is the Galois group of the field extension K � L.
The group M acts naturally on L and U is a subalgebra of (L � M)G . Following Futorny
and Ovsienko [2014], define a linear map � : U 7�! (L � M)G where

�(emm) = emm � e; �(em m+1) =

mX
i=1

a+
mi ı

mi ; �(em+1m) =

mX
i=1

a�
mi (ı

mi )�1;

where

a˙
mi = �

Q
j (�m˙1;j � �mi )Q
j ¤i (�mj � �mi )

;

and e is the identity element of the group M.
In fact, themap � is algebra homomorphism since the defining relations ofgln are given

by some rational functions which agree on finite dimensional modules, thus relations are
satisfied.

Moreover, we have

Theorem 4.2 (Futorny and Ovsienko [2010], Proposition 7.2). � is an embedding and U

is a Galois order over Γ.
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Applying Theorem 3.2 we obtain that the number of isomorphism classes of simple
Gelfand-Tsetlin U -modules with a given maximal ideal of Γ in the support is bounded byQn�1

i=1 i !: Another consequence of Theorem 4.2 is the following. If M is a Gelfand-Tsetlin
U -module andm = mv 2 SpecmΓ for some v 2 Tn(C) then

ek;k˙1M (m) �

kX
i=1

M (mv˙ıki ):

From here and Theorem 3.1 one easily obtains

Corollary 4.1. (i) Γ is a Harish-Chandra subalgebra of U .

(ii) Γ is maximal commutative in U .

4.3 Tableaux modules. The explicit nature of the Gelfand-Tsetlin formulas in Theo-
rem 4.1 and the fact that the coefficients in the formulas are rational functions on the
entries of the tableaux, naturally raises the question whether this construction can be ex-
tended for more general tableaux.

If V is a Gelfand-Tsetlin modules which has a basis parametrized by the tableaux and
the action of Γ is determined by the entries of tableaux as in (2) then such V will be called
tableau module. The problem of constructing of tableaux modules was studied by Gelfand
and Graev in Gelfand and Graev [1965] and by Lemire and Patera (for n = 3) in Lemire
and Patera [1979], Lemire and Patera [1985]. Tableux relalization for Generalzied Verma
modules was considered in Mazorchuk [1998].

If the action of the generators of gln on a tableau Gelfand-Tsetlin module V is given by
the classical Gelfand-Tsetlin formulas as in Theorem 4.1 then V will be called standard
tableau module. Modules considered in Gelfand and Graev [1965], Lemire and Patera
[1979], Lemire and Patera [1985] are standard tableau modules.

We call T (v) a generic tableau and v a generic vector if vrs � vrt … Z for any r < n

and all possible s ¤ t . For a generic tableau all denominators in the Gelfand-Tsetlin
formulas are nonintegers and one can use the same formulas to define generic standard
tableau Gelfand-Tsetlin module V (T (v)) (Drozd, Futorny, and Ovsienko [1994], Section
2.3). All Gelfand-Tsetlin multiplicities of maximal ideals of V (T (v)) are 1.
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Definition 4.1. For each generic vector w and any 1 � r; s � n define

drs(w) :=

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�

Qs
j=1(ws�1;1�ws;j )Qs�1

j=2(ws�1;1�ws�1;j )

s�2Y
j=r

 Qj+1
t=2 (wj1 � wj+1;t )Qj

t=2(wj1 � wjt )

!
; if r < s;

Qs�1
j=1(ws1�ws�1;j )Qs

j=2(ws1�wsj )

rY
j=s+2

 Qj �2
t=2 (wj �1;1 � wj �2;t )Qj �1
t=2 (wj �1;1 � wj �1;t )

!
; if r > s;

r � 1 +
rP

i=1

wri �

r�1P
i=1

wr�1;i ; if r = s;

Let 1 � r < s � n � 1. Set "rs := ır;1 + ır+1;1 + : : : + ıs�1;1 2 Tn(Z); "rr = 0 and
"sr = �"rs .

Let eSk be the subset of Sn consisting of the transpositions (1; i), i = 1; : : : ; k. For
s < `, set Φs` = eS`�1 � � � � �eS s . For s > ` we set Φs` = Φ`s . Finally we let Φ`` = fIdg.
Every � in Φs` will be written as a js � `j-tuple of transpositions � [k] (where � [k] is the
k-th component of � ).

Proposition 4.1 (Futorny, Grantcharov, and Ramirez [2015]). Let v 2 Tn(C) be generic.
Then the gln-module structure on V (T (v)) is defined by the formulas:

(3) ek`(T (v + z)) =
X

�2Φk`

dk`(�(v + z))T (v + z + �("k`));

for z 2 Tn�1(Z) and 1 � k; ` � n. Moreover, V (T (v)) is a Gelfand-Tsetlin module with
action of Γ given by the formulas (2).

Note that if v � v0 2 Tn�1(Z) then V (T (v)) and V (T (v0)) are isomorphic as vectors
spaces but not necessarily as the gln-modules. Simple generic Gelfand-Tsetlin modules
were described in Futorny, Grantcharov, and Ramirez [ibid.].

The main difficulty in the defining of a tableau Gelfand-Tsetlin module structure on
V (T (v)) is the existence of entries in one row of T (v) that have integer difference. Let
v 2 C

n(n+1)
2 . A pair of entries (vkij ; vkis ) such that k > 1 and vkij � vkis 2 Z is

called a singular pair. We say that v (and T (v)) is singuar if v has singular pairs. First
examples of infinite dimensional tableau Gelfand-Tsetlin modules with singular tableaux
were considered in Gelfand and Graev [1965], Lemire and Patera [1979], Lemire and
Patera [1985]. A new effective method of constructing standard tableau simple Gelfand -
Tsetlin modules was proposed in Futorny, Ramirez, and Zhang [2016]. It allowed to obtain
a large family of simple modules that have a basis consisting of Gelfand-Tsetlin tableaux
and the action of the generators of gln is given by the classical Gelfand-Tsetlin formulas.
All examples obtained inGelfand andGraev [1965], Lemire and Patera [1979], Lemire and
Patera [1985] are particular cases of this construction. But the class of modules defined in
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Futorny, Ramirez, and Zhang [2016] ismore general. They build out of a tableau satisfying
certain FRZ-condition.

A tableau T (v) is critical if it has equal entries in one or more rows different from the
top row. Otherwise, tableau is noncritical.

Theorem 4.3 (Futorny, Ramirez, and Zhang [ibid.], Theorem II). Let T (w) be a tableau
satisfying the FRZ-condition. There exists a unique simple Gelfand-Tsetlin gln-module
Vw having the following properties:

(i) Vw(mw) ¤ 0;

(ii) Vm has a basis consisting of noncritical tableaux and the action of the generators
of gln is given by the classical Gelfand-Tsetlin formulas (4.1).

(iii) All Gelfand-Tsetlin multiplicities of maximal ideals of Γ in the support of Vw equal
1.

Theorem 4.3 provides a combinatorial way to explicitly construct a large class of infi-
nite dimensional simple Gelfand-Tsetlin modules.

Conjecture 1. If V is a simple Gelfand-Tsetlin gln-module which has a basis consisting
of noncritical tableaux with classical action of the generators of gln then V ' Vw for
some w satisfying the FRZ-condition.

The conjecture holds for n � 4.
A systematic study of singular modules was initiated in Futorny, Grantcharov, and

Ramirez [2015] where the case of a singular tableau T (v) with a unique singular pair
was considered (1-singular case). A significant difference from all previous cases is the
existence of derivative tableaux in the basis of V (T (v)) which reflects the fact that the
exact bound for the Gelfand-Tsetlin multiplicities of V (T (v)) is 2. Alternative interpre-
tation of a tableau Gelfand-Tsetlin module structure on V (T (v)) in 1-singular case was
given independently in Vishnyakova [2018] and Zadunaisky [2017]. Simple subquotients
of V (T (v)) were described in Gomes and Ramirez [2016].

We say that v is singular of index m � 2 if:

(i) there exists a row k, 1 < k < n, and m entries vki1 ; : : : ; vkim on this row such that
vkij � vkis 2 Z for all j; s 2 f1; : : : ; mg;

(ii) m is maximal with the property (i).

The case of arbitrary singularity of index m = 2 was solved in Futorny, Grantcharov, and
Ramirez [2016a]. In this case any number of singular pairs (but not singular triples) and
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multiple singular pairs in the same row were allowed. Finally, the general case of an arbi-
trary singularity was solved in Vishnyakova [2017] (for p-singularity) and Ramírez and
Zadunaisky [2017] (for arbitrary singularity). We provide the construction from Ramírez
and Zadunaisky [ibid.] whose spirit is closer to our original approach.

Recall that L is the field of rational functions in �ij , i = 1; : : : ; n, j = 1; : : : ; i , and
a˙

mi 2 L for all 1 � i � k < n. Consider a set of all tableau with integral entries
whose top row consists of zeros. We set VC to be the C-vector space with this basis, and
VL = L ˝C VC . Since � (4.2) is a homomorphism, VL is a U -module, with the action of
gln given by the Gelfand-Tsetlin formulas.

The group G acts acts on VL by the diagonal action, while M acts on Λ and L by
translations: ık;i � �l;j = �l;j + ık;lıi;j .

Denote by A the algebra of regular functions over generic tableaux, that is those el-
ements in L which can be evaluated in any generic tableau, and let VA to be the A-
submodule of VL generated by all integral tableaux. Given a generic tableau T (v), we
can recover the corresponding generic module V (T (v)) by specializing VA at v. If T (v)

is a singular tableau then we replace A with an algebra B � L such that there exists
a B-submodule VB � VL which is also a U -submodule and any element of VB can be
evaluated at v. Specialization at v finally defines V (T (v)).

Each point v 2 C
n(n+1)

2 defines the following refinement �(v) of v, which measures
of how far is v from being generic Ramírez and Zadunaisky [ibid.]. Fix 1 � k � n � 1.
Construct a graph with vertices i = 1; : : : ; k, put an edge between i and j if and only if
vk;i �vk;j is integer. The graph is the disjoint union of connected components, we set �(k)

to be a sequence of their cardinalities arranged in descending order. The entries vk;i that
form one connected component are called an �-block of v. If v is generic then �(k) = (1k),
a sequence consisting of n ones. We set � = (�(1); : : : ; �(n�1); 1n) to be the �-type of v

and �(v) to be the element in C
n(n+1)

2 obtained from v by rearranging of it components
to match the �-blocks.

Let B be the localization of Λ by the multiplicative subset of Λ generated by the ele-
ments

�k;i � �k;j � z; 1 � i < j � k < n; z 2 Z n f0g:

Following Ramírez and Zadunaisky [ibid.], we say that v is in an �-normal form if
vk;i � vk;j 2 Z�0 implies that vk;i and vk;j belong to the same �-block of v and i < j .
Clearly, the orbit G �v has at least one (but not necessarily unique) element in normal form.
We also say that v is an �-critical if it is in �-normal form and vk;i � vk;j 2 Z implies
vk;i = vk;j .

Consider a subgroup G� � G consisting of those elements of G which preserve the
block structure of �(v).
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Fix � and an �-critical v. Set B� to be the localization of B by the multiplicative set
generated by all �k;i � �k;j such that vk;i ¤ vk;j .

Now we consider divided difference operators that play a key role in the construction
of V (T (v)). Denote by s

(k)
i the simple transposition in G� which interchanges �k;i and

�k;i+1 and fixes all other elements. The divided difference associated to s
(k)
i is

@
(k)
i =

1

�k;i � �k;i+1

(id � s
(k)
i ):

It can be viewed as an element of the smash product L#G� , where (f ˝ �) � (g ˝ � 0) =

f �(g) ˝ �� 0 for f; g 2 L and all �; � 0 2 G� .
Let G�;k � G� be the corresponding component of Sk , k = 1; : : : ; n. If � =

s
(k)
i1

s
(k)
i2

� � � s
(k)
il

is a reduced decomposition for � 2 G�;k then set @� = @
(k)
i1

� @
(k)
i2

� � � @
(k)
il

which does not depend of the chosen reduced decomposition. This naturally extends to
the whole group G� .

For each � 2 G� we define the symmetrized divided difference operator

D�
� = sym� �@� ;

where sym� = 1
jG�j

P
�2G�

� .
Since B� is closed under the action of G� , we have D

�
� (f ) 2 B� for all f 2 B� .

Denote by V� � VL the B�-span of fD
�
� T (z) j � 2 G�; z 2 Tn�1(Z)g. Then V� is a

U -submodule of VL. Denote N� = fz 2 Tn�1(Z) j v + z is in normal formg: If z 2 N�

then the stabilizer subgroup of z in G� is G�(z) where �(z) is some refinement of �. Fix
z 2 N. We say that � 2 G� is a �(z)-shuffle if it is increasing in each �(z)-block. We
denote the set of all �(z)-shuffles in G� by Shuffle�

�(z). Write D̄
�
� (v + z) = 1 ˝ D

�
� (z)

for z 2 N and � 2 Shuffle�

�(z).
Combining Theorems 5.3 and 5.6 of Ramírez and Zadunaisky [2017] we obtain

Theorem 4.4. Let V (T (v)) = C ˝B�
V� , where C is a right B�-module such that 1 ˙f =

f (v). Then V (T (v)) is a Gelfand-Tsetlin module with a basis fD̄
�
� (v + z) j z 2 N�; � 2

Shuffle�

�(z)g and mv belongs to the support of V (T (v)).

Conjecture 2. Any simple Gelfand-Tsetlin module V with V (mv) ¤ 0 is isomorphic to
a subquotient of V (T (v)) for any singular v.

The conjecture was stated for any singular v of index 2 in Futorny, Grantcharov, and
Ramirez [2016a]. It is known to be true for n = 2 and n = 3, and for the 1-singular v

Futorny, Grantcharov, and Ramirez [2017]. In particular, it gives a complete classification
of all simple Gelfand-Tsetlin gl(3)-modules, Futorny, Grantcharov, and Ramirez [2014].
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A VIEW ON INVARIANT RANDOM SUBGROUPS AND
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Abstract

For more than half a century lattices in Lie groups played an important role in
geometry, number theory and group theory. Recently the notion of Invariant Random
Subgroups (IRS) emerged as a natural generalization of lattices. It is thus intriguing to
extend results from the theory of lattices to the context of IRS, and to study lattices by
analyzing the compact space of all IRS of a given group. This article focuses on the
interplay between lattices and IRS, mainly in the classical case of semisimple analytic
groups over local fields.

LetG be a locally compact group. We denote by Sub(G) the space of closed subgroups
of G equipped with the Chabauty topology. The compact space Sub(G) is usually too
complicated to work with directly. However, considering a random point in Sub(G) is
often much more effective. Note that G acts on Sub(G) by conjugation. An invariant
random subgroup (or shortly IRS) is a G-invariant probability measure on Sub(G). We
denote by IRS(G) the space of all IRSs of G equipped with the w�-topology. By Riesz’
representation theorem and Alaoglu’s theorem, IRS(G) is compact.

The Dirac measures in IRS(G) correspond to normal subgroups. Any lattice Γ in G

induces an IRS �Γ which is defined as the push forward of the G-invariant probability
measure from G/Γ to Sub(G) via the map gΓ 7! gΓg�1.

More generally consider a probability measure preserving action G Õ (X; m). By a
result of Varadarajan, the stabilizer of almost every point in X is closed in G. Moreover,
the stabilizer map X ! SubG ; x 7! Gx is measurable, and hence one can push the
measure m to an IRS on G. In other words the random subgroup is the stabilizer of a
random point in X . In a sense, the study of pmp G-spaces can be divided to the study
of stabilizers (i.e. IRSs), the study of orbit spaces and the interplay between the two.
Vice versa, every IRS arises (non-uniquely) in this way (see Abert, Bergeron, Biringer,
Gelander, Nikolov, Raimbault, and Samet [2017a, Theorem 2.6]).

MSC2010: primary 22D05; secondary 22E40, 22B99, 20G15, 37A05, 53C35.
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Since its rebirth in the beginning of the current decade (see Section 10 for a short sum-
mery of the history of IRS), the topic of IRS played an important role in various parts of
group theory, geometry and dynamics, and attracted the attention of many mathematicians
for various different reasons. Not aiming to give an overview, I will try to highlight here
several aspects of the evolving theory.

1 IRS and Lattices

IRSs can be considered as a generalisation of lattices, and one is tempted to extend results
from the theory of lattices to IRS. In the other direction, as often happens in mathematics
where one considers random objects to prove result about deterministic ones, the notion of
IRS turns out to yield an extremely powerful tool to study lattices. In this section I will try
to give a taste of the interplay between IRSs and Lattices focusing mainly on the second
point of view. Attempting to expose the phenomenon in a rather clear way, avoiding
technicality, I will assume throughout most of this section that G is a noncompact simple
Lie group, although most of the results can be formulated in the much wider setup of
semisimple analytic groups over arbitrary local fields, see Section 1.5.

1.1 Borel Density. Let PSub(G) denote the space of proper closed subgroups. Since
G is an isolated point in Sub(G) (see Toyama [1949] and Kuranishi [1951]) we deduce
that PSub(G) is compact. Letting PIRS(G) denote the subspace of IRS(G) consisting of
the measures supported on PSub(G), we deduce:

Lemma 1.1. The space of proper IRSs, PIRS(G) is compact.

Let us say that that an IRS � is discrete if a random subgroup is � almost surely dis-
crete, and denote by DIRS(G) the subspace of IRS(G) consisting of discrete IRSs. The
following is a generalization of the classical Borel Density Theorem:

Theorem 1.2. (Borel Density Theorem for IRS, Abert, Bergeron, Biringer, Gelander,
Nikolov, Raimbault, and Samet [2017a, Theorem 2.9]) Every proper IRS in G is discrete,
i.e. PIRS(G) = DIRS(G). Moreover, for every � 2 DIRS(G), �-almost every subgroup
is either trivial or Zariski dense.

In order to prove Theorem 1.2 one first observes that there are only countably many
conjugacy classes of non-trivial finite subgroups in G, hence the measure of their union is
zero with respect to any non-atomic IRS. Then one can apply the same idea as in Fursten-
berg’s proof of the classical Borel density theorem Furstenberg [1976]. Indeed, taking the
Lie algebra of H 2 Sub(G) as well as of its Zariski closure induce measurable maps (see
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Gelander and Levit [2017, §4])

H 7! Lie(H ); H 7! Lie(H Z
):

As G is noncompact, Furstenberg’s argument implies that the Grassman variety of non-
trivial subspaces of Lie(G) does not carry an Ad(G)-invariant measure. It follows that
Lie(H ) = 0 and Lie(H Z

) 2 fLie(G); 0g almost surely, and the two statements of the
theorem follow.

1.2 Weak Uniform Discreteness. Let U be an identity neighbourhood in G. A family
of subgroups F � Sub(G) is called U -uniformly discrete if Γ \ U = f1g for all Γ 2 F .

Definition 1.3. A family F � DIRS(G) of invariant random subgroups is said to be
weakly uniformly discrete if for every � > 0 there is an identity neighbourhood U� � G

such that
�(fΓ 2 SubG : Γ \ U� ¤ f1gg) < �

for every � 2 F .

A justification for this definition is given by the following result which is proved by an
elementary argument and yet provides a valuable information:

Theorem 1.4. Let G be a connected non-compact simple Lie group. Then DIRS(G) is
weakly uniformly discrete.

Let Un; n 2 N be a descending sequence of compact sets in G which form a base of
identity neighbourhoods, and set

Kn = fΓ 2 SubG : Γ \ Un = f1gg:

Since G has NSS (no small subgroups), i.e. there is an identity neighbourhood which
contains no non-trivial subgroups, we have:

Lemma 1.5. The sets Kn are open in Sub(G).

Proof. Fix n and let V � Un be an open identity neighbourhood which contains no non-
trivial subgroups, such that V 2 � Un. It follows that a subgroup Γ intersects Un non-
trivially iff it intersects Un n V . Since Un n V is compact, the lemma is proved.

In addition, observe that the ascending union
S

n Kn exhausts Subd (G), the set of all
discrete subgroups of G. Therefore we have:

Claim 1.6. For every � 2 DIRS(G) and � > 0 we have �(Kn) > 1 � � for some n.
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Let
Kn;� := f� 2 DIRS(G) : �(Kn) > 1 � �g:

Since Sub(G) is metrizable, it follows from Lemma 1.5 that Kn;� is open. By Claim 1.6,
for any given � > 0, the sets Kn;�; n 2 N form an ascending cover of DIRS(G). Since
the latter is compact, we have DIRS(G) � Km;� for some m = m(�). It follows that

�
�
fΓ 2 Sub(G) : Γ intersects Um triviallyg

�
> 1 � �;

for every � 2 DIRS(G). Thus Theorem 1.4 is proved.

Picking � < 1 and applying the theorem for the IRS �Γ where Γ � G is an arbitrary
lattice, one deduces the Kazhdan–Margulis theorem Každan and Margulis [1968], and in
particular that there is a positive lower bound on the volume of locally G/K-orbifolds:

Corollary 1.7 (Kazhdan–Margulis theorem). There is an identity neighbourhood Ω � G

such that for every lattice Γ � G there is g 2 G such that gΓg�1 \ Ω = f1g.

Figure 1: Every X -manifold has a thick part.

A famous conjecture of Margulis Margulis [1991, page 322] asserts that the set of all
torsion-free anisotropic arithmetic lattices in G is U -uniformly discrete for some identity
neighbourhood U � G. Theorem 1.4 can be regarded as a probabilistic variant of this
conjecture as it implies that all lattices in G are jointly weakly uniformly discrete.

In the language of pmp actions Theorem 1.4 can be reformulated as follows:

Theorem 1.8 (p.m.p. actions are uniformly weakly locally free). For every � > 0 there is
an identity neighbourhood U� � G such that the stabilizers of 1 � � of the points, in any
non-atomic probability measure preserving G-space (X; m) are U�-uniformly discrete.
I.e., there is a subset Y � X with m(Y ) > 1 � � such that U� \ Gy = f1g; 8y 2 Y .
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1.3 Local Rigidity. Observe that local rigidity implies Chabauty locally rigid:

Proposition 1.9. Let G be a connected Lie group and Γ � G a locally rigid lattice. Then
Γ is Chabauty locally rigid, i.e. the conjugacy class of Γ is Chabauty open.

Proof. Let Γ � G a locally rigid lattice. Let U be a compact identity neighborhood in G

satisfying:

• U \ Γ = f1g,

• U contains no nontrivial groups,

and let V be an open symmetric identity neighborhood with V 2 � U . By the choice of V

we for a subgroup H � G, that H \ U ¤ f1g iff H meets the compact set U n V .
Recall that Γ, being a lattice in a Lie group, is finitely presented and let hΣjRi be

a finite presentation of Γ. Denote S = fs1; : : : ; skg. We can pick a sufficiently small
identity neighborhood Ω so that for every choice of gi 2 siΩ; i = 1; : : : ; k and every
w 2 R we have w(g1; : : : ; gn) 2 U .

Now if H 2 Sub(G) is sufficiently close to Γ in the Chabauty topology then H \

siΩ ¤ ¿; i = 1; : : : ; k and H \ (U n V ) = ¿, i.e. H \ U = f1g. Picking hi 2

H \ siΩ; i = 1; : : : ; k one sees that the assignment si 7! hi induces a homomorphism
from Γ into H . Since Γ is locally rigid it follows that if H is sufficiently close to Γ then
it contains a conjugate of Γ. However there are only finitely many subgroups containing
Γ and intersecting U trivially, hence if H is sufficiently close to Γ then it is a conjugate
of Γ.

Denote by EIRS(G) the space ergodic IRSs of G, i.e. the set of extreme points of
IRS(G).

Corollary 1.10. Let G be a connected Lie group and Γ � G a locally rigid lattice. Then
the IRS �Λ is isolated in EIRS(G).

Proof. Let Γ be as above. If � is an IRS of G sufficiently close to �Γ then with positive
�-probability a random subgroup is a conjugate of Γ. Thus if � is ergodic then it must be
�Γ.

1.4 Farber property.

Definition 1.11. A sequence �n of invariant random subgroups of G is called Farber1 if
�n converge to the trivial IRS, ıf1g.

1Various authors use various variants of this notion.
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One of the key results of Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault, and
Samet [2017a] is the following theorem:

Theorem 1.12. Let G be a simple Lie group of real rank at least 2. Let Γn be a sequence
of pairwise non-conjugate lattices, then �Γn

is Farber.

The proof relies on the following variant of Stuck–Zimmer theorem (see Abert, Berg-
eron, Biringer, Gelander, Nikolov, Raimbault, and Samet [ibid.]):

Theorem 1.13. Assuming rank(G) � 2, a proper non-trivial ergodic IRS of G is �Γ for
some lattice Γ, i.e.

EIRS(G) = fıG ; ıf1g; �Γ; Γ a lattice in Gg:

Proof of Theorem 1.12. Since G is of rank � 2 it has Kazhdan’s property (T ), Každan
[1967]. By E. Glasner and Weiss [1997], EIRS(G) is compact. Since ıG and ı�Γ

where
Γ is a lattice in G are isolated points, it follows that ıf1g is the unique accumulation point
of EIRS(G). In particular �Γn

! ıf1g.

1.5 Semisimple analytic groups. Above we have carried out the arguments under the
assumption that G is a simple Lie group. In this section we state the results in the more
general setup of analytic groups over local fields.

Definition 1. Let k be a local field and G a connected k-isotropic k-simple linear k-
algebraic group.

• A simple analytic group is a group of the form G(k).

• A semisimple analytic group is an almost direct product of finitely many simple
analytic groups, possibly over different local fields.

Note that if k is a local field and G is a connected semisimple linear k-algebraic group
without k-anisotropic factors then G(k) is a semisimple analytic group. Such a group is
indeed analytic in the sense of e.g. Serre [2006]. Associated to a semisimple analytic
group G are its universal covering group eG and adjoint group G. There are central k-

isogenies eG ep
�! G

p
�! G and this data is unique up to a k-isomorphism Margulis [1991,

p. I.4.11]. For a semisimple analytic group G, denote by G+ the subgroup of G generated
by its unipotent elements Margulis [ibid., pp. I.1.5, I.2.3]. If G is simply connected then
G = G+. If G is Archimedean then G+ is the connected component G0 at the identity. In
general G/G+ is a compact abelian group. The group G+ admits no proper finite index
subgroups.
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Definition 2. A simple analytic group G is happy if char(k) does not the divide jZj

where Z is the kernel of the map eG ! G. A semisimple analytic group is happy if all of
its almost direct factors are.

Note that a simply connected or a zero characteristic semisimple analytic group is auto-
matically happy. From the work of Barnea and Larsen [2004] one obtains that a semisim-
ple analytic group G is happy, iff G/G+ is a finite abelian group, iff some (equivalently
every) compact open subgroup in the non-Archimedean factor of G is finitely generated.

Self Chabauty isolation.

Definition 3. A l.c.s.c. group G is self-Chabauty-isolated if the point G is isolated in
Sub(G) with the Chabauty topology.

Note that G is self-Chabauty-isolated if and only if there is a finite collection of open
subsets U1; : : : ; Un � G so that the only closed subgroup intersecting every Ui non-
trivially is G itself. The following result is proved in Gelander and Levit [2017, §6].

Theorem 4. Let G be a happy semisimple analytic group. Then G+ is self-Chabauty-
isolated.

As an immediate consequence we deduce the analog of Lemma 1.1, namely that the
space PSub(G+) is compact for every G as in Theorem 4.

Borel Density. The following generalization of Theorem 1.2 was obtained in Gelander
and Levit [ibid., Theorem 1.9]:

Theorem 5 (Borel density theorem for IRS). Let k be a local field andG a happy semisim-
ple analytic group over k. Assume that G has no almost k-simple factors of type Bn; Cn

or F4 if char(k) = 2 and of type G2 if char(k) = 3.
Let � be an ergodic invariant random subgroup of G. Then there is a pair of normal

subgroups N; M C G so that

N � H � M; H/N is discrete in G/N and H
Z
= M

for �-almost every closed subgroup H in G. Here H
Z is the Zariski closure of H .

Weak Uniform Discreteness. As shown in Gelander [2018, Theorem 2.1] the analog
of Theorem 1.4 holds for general semisimple Lie groups:

Theorem 1.14. Let G be a connected center-free semisimple Lie group with no compact
factors. Then DIRS(G) is weakly uniformly discrete.
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Consider now a general locally compact � -compact group G. Since Subd (G) �

Sub(G) is a measurable subset, by restricting attention to it, one may replace Property
NSS by the weaker Property NDSS (no discrete small subgroups), which means that there
is an identity neighbourhood which contains no non-trivial discrete subgroups. In that
generality, the analog of Lemma 1.5 would say that Kn are relatively open in Subd (G).
Thus, the ingredients required for the argument above are:

1. DIRS(G) is compact,

2. G has NDSS.

In particular we have:

Theorem 1.15. Let G be a locally compact � -compact group which satisfies (1) and (2).
Then DIRS(G) is weakly uniformly discrete.

IfG possesses the Borel density theorem andG is self-Chabauty-isolated then (1) holds.
By the previous paragraphs happy semisimple analytic groups enjoy these two properties,
and hence (1).

p-adic groups. Note that a p-adic analytic group G has NDSS, and hence DIRS(G) is
uniformly discrete (in the obvious sense). Moreover, if G � GLn(Qp) is a rational al-
gebraic subgroup, then the first principal congruence subgroup G(pZp) is a torsion-free
open compact subgroup. In particular the space DIRS(G) is G(pZp)-uniformly discrete.
Supposing further that G is simple, then in view of the Borel density theorem we have:

Let (X; �) be a probability G-space essentially with no global fixed points. Then the
action of the congruence subgroup G(pZp) on X is essentially free.

Positive characteristic. Algebraic groups over local fields of positive characteristic do
not posses property NDSS, and the above argument does not apply to them.

Conjecture 1.16. Let k be a local field of positive characteristic, let G be simply con-
nected absolutely almost simple k-group with positive k-rank and let G = G(k) be the
group of k-rational points. Then DIRS(G) weakly uniformly discrete.

The analog of Corollary 1.7 in positive characteristic was proved in Salehi Golsefidy
[2013] and Raghunathan [1972]. A. Levit proved Conjecture 1.16 for k-rank one groups
Levit [n.d.].
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Local Rigidity. Combining Theorem 7.2 and Proposition 7.9 of Gelander and Levit
[2017] we obtain the following extension of Proposition 1.9:

Theorem 6. (Chabauty local rigidity Gelander and Levit [ibid.]) Let G be a semisimple
analytic group andΓ an irreducible lattice inG. If Γ is locally rigid then it is also Chabauty
locally rigid.

Let us also mention the following generalization of the classical Weil local rigidity
theorem:

Theorem 7. (Gelander and Levit [2016, Theorem 1.2] Let X be a proper geodesically
complete CAT(0) space without Euclidean factors and with IsomX acting cocompactly.
Let Γ be a uniform lattice in IsomX . Assume that for every de Rham factor Y of X

isometric to the hyperbolic plane the projection of Γ to IsomY is non-discrete. Then Γ is
locally rigid.

Farber Property. The proof presented above for Theorem 1.12 follows the lines devel-
oped at Gelander and Levit [2017] and is simpler and applies to a more general setup than
the original proof from Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault, and
Samet [2017a]. In particular, the following general version of Abert, Bergeron, Biringer,
Gelander, Nikolov, Raimbault, and Samet [ibid., Theorem 4.4] is proved in Gelander and
Levit [2017]:

Theorem 8. Gelander and Levit [ibid., Theorem 1.1] Let G be a semisimple analytic
group. Assume that G is happy, has property (T ) and rank(G) � 2. Let Γn be a sequence
of pairwise non-conjugate irreducible lattices in G. Then Γn is Farber.

Farber property for congruence subgroups. Relying on intricate estimates involving
the trace formula, Raimbault [2013] and Fraczyk [2016] were able to establish Benjamini–
Schramm convergence for every sequence of congruence lattices in the rank one groups
SL2(R) and SL2(C).

Using property (� ) as a replacement for property (T), Levit [2017a] establishedBenjamini–
Schrammconvergence for every sequence of congruence lattices in any higher-rank semisim-
ple group G over local fields. Whenever lattices in G are known to satisfy the congruence
subgroup property this applies to all irreducible lattices in G.

1.6 The IRS compactification of moduli spaces. One may also use IRS(G) in order
to obtain new compactifications of certain natural spaces.

Example 1.17. Let Σ be a closed surface of genus � 2. Every hyperbolic structure on Σ
corresponds to an IRS in PSL2(R). Indeed one take a random point and a random tangent
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vector w.r.t the normalized Riemannian measure on the unit tangent bundle and consider
the associated embedding of the fundamental �1(Σ) in PSL2(R) via deck transformations.

Taking the closure in IRS(G) of the set of hyperbolic structures on Γ, one obtains an
interesting compactification of the moduli space of Σ.

Problem 1.18. Analyse the IRS compactification of Mod(Σ).

Note that the resulting compactification is similar to (but is not exactly) the Deligne–
Munford compactification.

2 The Stuck–Zimmer theorem

One of the most remarkable manifestations of rigidity for invariant random subgroups is
the following celebrated result due to Stuck and Zimmer [1994].

Theorem 9. Let k be a local field and G be connected, simply connected semi-simple
linear algebraic k-group. Assume that G has no k-anisotropic factors, has Kazhdan’s
property (T ) and rankk(G) � 2. Then every properly ergodic and irreducible probability
measure preserving Borel action of G is essentially free.

We recall that a probability measure preserving action is properly ergodic if it is ergodic
and not essentially transitive, and is irreducible if every non-central normal subgroup is
acting ergodically.

In the work of Stuck and Zimmer G is assumed to be a Lie group. The modifications
necessary to deal with arbitrary local fields were carried on in Levit [2017b]. Much more
generally, Bader and Shalom obtained a variant of the Stuck–Zimmer theorem for products
of locally compact groups with property (T) in Bader and Shalom [2006].

The connection between invariant random subgroups and stabilizer structure for prob-
ability measure preserving actions allows one to derive the following:

Theorem 10. Let G be as in Theorem 9. Then any irreducible invariant random subgroup
of G is either ıfeg; ıG or �Γ for some irreducible lattice Γ in G.

We would like to point out that the Stuck–Zimmer theorem is a generalization of the
following normal subgroup theorem of Margulis.

Theorem 11. Let G be as in Theorem 9 and Γ an irreducible lattice in G. Then any
non-trivial normal subgroup N C Γ is either central or has finite index in Γ.

The Stuck–Zimmer theorem implies the normal subgroup theorem— indeed the ideas
that go into its proof build upon the ideas of Margulis. One key ingredient is the interme-
diate factor theorem of Nevo and Zimmer, which in turn generalizes the factor theorem
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of Margulis. We point out that this aspect of the proof is entirely independent of property
(T).

Question 2.1. Do Theorems 9 and 10 hold for all higher rank semisimple linear groups,
regardless of property (T)?

Observe that the role played by Kazhdan’s property (T) in the proof of Theorem 9 is in
establishing the following fact.

Proposition 2.2. Let G be a second countable locally compact group with Kazhdan’s
property (T ). Then every properly ergodic probability measure preserving Borel action
of G is not weakly amenable in the sense of Zimmer.

The Nevo–Zimmer intermediate factor theorem is then used to show that a non-weakly
amenable action is essentially free. On the other hand, the contrapositive ofweak amenabil-
ity follows quite readily from the fact that there are no non-trivial cocycles into amenable
groups associated to probability measure preserving Borel actions of G.

To summarize, it is currently unknown if groups like SL(R) � SL2(R) or SL2(Qp) �

SL2(Qp) admit any non-trivial irreducible invariant random subgroups not coming from
lattices.

We would like to point out that rank one semisimple linear groups, discrete hyperbolic
or relatively hyperbolic groups as well as mapping class groups and Out(Fn) have a large
supply of exotic invariant random subgroups Bowen [2015b], Dahmani, Guirardel, and
Osin [2017], and Bowen, Grigorchuk, and Kravchenko [2015].

3 The Benjamini–Schramm topology

Let M be the space of all (isometry classes of) pointed proper metric spaces equipped
with the Gromov–Hausdorff topology. This is a huge space and for many applications it
is enough to consider compact subspaces of it obtained by bounding the geometry. That
is, let f (�; r) be an integer valued function defined on (0; 1) � R>0, and let Mf consist
of those spaces for which 8�; r , the �-entropy of the r-ball BX (r; p) around the special
point is bounded by f (�; r), i.e. no f (�; r) + 1 points in BX (r; p) form an �-discrete set.
Then Mf is a compact subspace of M.

In many situations one prefers to consider some variants of M which carry more infor-
mation about the spaces. For instance when considering graphs, it may be useful to add
colors and orientations to the edges. The Gromov–Hausdorff distance defined on these
objects should take into account the coloring and orientation. Another example is smooth
Riemannian manifolds, in which case it is better to consider framed manifolds, i.e. mani-
fold with a chosen point and a chosen frame at the tangent space at that point. In that case,
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one replace the Gromov–Hausdorff topology by the ones determined by (�; r) relations
(see Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault, and Samet [2017a, Section
3] for details), which remembers also the directions from the special point.

We define the Benjamini–Schramm space BS = Prob(M) to be the space of all Borel
probability measures on M equipped with the weak-� topology. Given f as above, we
set BSf := Prob(Mf ). Note that BSf is compact.

The name of the space is chosen to hint that this is the same topology induced by ‘local
convergence’, considered by Benjamini and Schramm in Benjamini and Schramm [2001],
when restricting to measures on rooted graphs. Recall that a sequence of random rooted
bounded degree graphs converges to a limiting distribution iff for every n the statistics of
the n ball around the root (i.e. the probability vector corresponding to the finitely many
possibilities for n-balls) converges to the limit.

The case of general proper metric spaces can be described similarly. A sequence �n 2

BSf converges to a limit � iff for any compact pointed ‘test-space’ M 2 M, any r and
some arbitrarily small2 � > 0, the �n probability that the r ball around the special point
is ‘�-close’ to M tends to the �-probability of the same event.

Example 3.1. An example of a point in BS is a measured metric space, i.e. a metric
space with a Borel probability measure. A particular case is a finite volume Riemannian
manifold— in which case we scale the Riemannian measure to be one, and then randomly
choose a point and a frame.

Thus a finite volume locally symmetric space M = ΓnG/K produces both a point in
the Benjamini–Schramm space and an IRS inG. This is a special case of a general analogy
that I’ll now describe. Given a symmetric space X , let us denote by M(X) the space of all
pointed (or framed) complete Riemannian orbifolds whose universal cover is X , and by
BS(X) = Prob(M(X)) the corresponding subspace of the Benjamini–Schramm space.

Let G be a non-compact simple Lie group with maximal compact subgroup K � G

and an associated Riemannian symmetric space X = G/K. There is a natural map

fdiscrete subgroups of Gg ! M(X); Γ 7! ΓnX:

It can be shown that this map is continuous, hence inducing a continuous map

DIRS(G) ! BS(X):

2This doesn’t mean that it happens for all �.
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It can be shown that the later map is one to one, and since DIRS(G) is compact, it is a
homeomorphism to its image (see Abert, Bergeron, Biringer, Gelander, Nikolov, Raim-
bault, and Samet [2017a, Corollary 3.4]). 3

Remark 3.2 (Invariance under the geodesic flow). Given a tangent vector v at the origin
(the point corresponding to K) of X = G/K, define a map Fv from M(X) to itself by
moving the special point using the exponent of v and applying parallel transport to the
frame. This induces a homeomorphism of BS(X). The image of DIRS(G) under the map
above is exactly the set of � 2 BS(X)which are invariant under Fv for all v 2 TK(G/K).

Thus we can view geodesic-flow invariant probability measures on framed locally X -
manifolds as IRS on G and vice versa, and the Benjamini–Schramm topology on the first
coincides with the IRS-topology on the second.

Remark 3.3. The analogy above can be generalised, to some extent, to the context of
general locally compact groups. Given a locally compact group G, fixing a right invariant
metric on G, we obtain a map SubG ! M; H 7! G/H , where the metric on G/H

is the induced one. Moreover, this map is continuous hence defines a continuous map
IRS(G) ! BS.

For the sake of simplicity let us forget ‘the frame’ and consider pointed X -manifolds,
and BS(X) as probability measures on such. We note that while for general Riemannian
manifolds there is a benefit for working with framed manifolds, for locally symmetric
spaces of non-compact type, pointed manifolds, and measures on such, behave nicely
enough.

In order to examine convergence in BS(X) it is enough to use as ‘test-space’ balls in
locallyX -manifolds. Moreover, sinceX is non-positively curved, a ball in anX -manifold
is isometric to a ball in X iff it is contractible.

Note that since X is a homogeneous space, all choices of a probability measure on X

correspond to the same point in BS(X). Abusing notations, we shall denote this point by
X .

Definition 3.4. Let us say that a sequence in BS(X) is Farber if it converges to X .

For an X -manifold M and r > 0, we denote by M�r the r-thick part in M :

M�r := fx 2 M : InjRadM (x) � rg;

where InjRadM (x) = supf� : BM (x; �) is contractibleg.
3It wasMiklos Abert who pointed out to me, about eight years ago, the analogy between Benjamini–Schramm

convergence (at that time ‘local convergence’) and convergence of Invariant Random Subgroups, which later
played an important rule in the work Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault, and Samet
[2017a] and earlier in the work of Abért, Y. Glasner, and Virág [2016, 2014].
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Proposition 3.5. Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault, and Samet
[2017a, Corollary 3.8] A sequence Mn of finite volume X -manifolds is Farber iff

vol((Mn)�r)

vol(Mn)
! 1;

for every r > 0.

Theorem 1.12 can be reformulated as:

Theorem 3.6. Let X be an irreducible Riemannian symmetric space of non compact type
of rank at least 2. For any r and � there is V such that if M is an X -manifold of volume
v � V then vol(M�r )

v
� 1 � � (see Figure 2).

Figure 2: A large volume manifold is almost everywhere fat.

4 Applications to L2-invariants

LetΓ be a uniform lattice inG. The right quasi-regular representation �Γ ofG inL2(ΓnG; �G)

decomposes as a direct sum of irreducible representations. Every irreducible unitary rep-
resentation � of G appears in �Γ with finite multiplicity m(�;Γ).
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Definition 12. The normalized relative Plancherel measure of G with respect to Γ is an
atomic measure on the unitary dual bG given by

�Γ =
1

vol(ΓnG)

X
�2bG m(�;Γ)ı� :

The following result, extending earlier works of de George and Wallach [1978], De-
lorme [1986] andmany others, was proved inAbert, Bergeron, Biringer, Gelander, Nikolov,
Raimbault, and Samet [2017a] for real Lie groups and then generalized to non-archimedean
groups in Gelander and Levit [2017]:

Theorem 13. Let G be a semisimple analytic group in zero characteristic. Fix a Haar
measure onG and let �G be the associated Plancherel measure on bG. LetΓn be a uniformly
discrete sequence of lattices in G with �Γn

being weak-� convergent to ıfeg. Then

�Γn
(E)

n!1
����! �G(E)

for every relatively quasi-compact �G-regular subset E � bG.

One of the consequence of Theorem 13 is the convergence of normalized Betti num-
bers (cf. Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault, and Samet [2011]).
Recently we were able to get rid of the co-compactness and the uniform discreteness
assumptions and proved the following general version, making use of the Bowen–Elek
Bowen [2015a, §4] simplicial approximation technique:

Theorem 4.1. Abert, Bergeron, Biringer, and Gelander [n.d.] LetX be a symmetric space
of non compact type of dim(X) ¤ 3 and (Mn) is a weakly convergent sequence of finite
volume X -manifolds. Then for all k, the normalized Betti numbers bk(Mn)/vol(Mn)

converge.

Here, the only three-dimensional irreducible symmetric spaces of noncompact type
are scales of H3. In fact, the conclusion of Theorem 4.1 is false when X = H3. As
an example, let K � S3 be a knot such that the complement M = S3 n K admits a
hyperbolic metric, e.g. the figure-8 knot. Using meridian–longitude coordinates, let Mn

be obtained by Dehn filling M with slope (1; n); then each Mn is a homology 3-sphere.
The manifolds Mn ! M geometrically, see Benedetti and Petronio [1992, Ch E.6], so the
measures �Mn

weakly converge to �M (c.f. Bader, Gelander, and Sauer [2016, Lemma
6.4]) and the volumes vol(Mn) ! vol(M ). However, 0 = b1(Mn) 6! b1(M ) = 1, so
the normalized Betti numbers of the sequence M1; M; M2; M; : : : do not converge.

Corollary 14. Suppose that (Mn) is a Farber sequence of finite volume X -manifolds.
Then for all k 2 N, we have bk(Mn)/vol(Mn) ! ˇ

(2)

k
(X):



1354 TSACHIK GELANDER

In the thin case, we were able to push our analytic methods far enough to give a proof
for X = Hd , see Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault, and Samet
[2017a, Theorem 1.8]. Hence, there is no problem in allowing X = H3 in Corollary 14.
The analog of Corollary 14 for p-adic Bruhat Tits buildings is proved in Gelander and
Levit [2017].

5 Measures on the space of Riemannian manifolds

When X = G/K is a symmetric space of noncompact type, say, the quotient of a discrete,
torsion-free IRS Γ of G is a random X -manifold M . Fixing a base point p in X , the pro-
jection of p to ΓnX is a natural base point for the quotient. So, we can regard the quotient
of an IRS as a random pointed X -manifold. In fact, the conjugation invariance of Γ di-
rectly corresponds to a property called unimodularity of the random pointed X-manifold,
just as IRSs of discrete groups correspond to unimodular random Schreier graphs.

In Biringer and Abert [2016], the Abert and Biringer study unimodular probability mea-
sures on the more general space Md of all pointed Riemannian d -manifolds, equipped
with the smooth topology. One can construct such unimodular measures from finite vol-
ume d -manifolds, or from IRSs of continuous groups as above (see Biringer and Abert
[ibid., Proposition 1.9]). Under certain geometric assumptions like pinched negative cur-
vature or local symmetry, they show that sequences of unimodular probability measures
are precompact, in parallel with the compactness of the space of IRSs of a Lie group, see
Biringer and Abert [ibid., Theorems 1.10 and 1.11]. They also show that unimodular mea-
sures on Md are just those that are ‘compatible’ with its foliated structure. Namely, Md

is almost a foliated space, where a leaf is obtained by fixing a manifold M and varying the
basepoint. While this foliation may be highly singular, they show in Biringer and Abert
[ibid., Theorem 1.6] that after passing to an (actually) foliated desingularization, unimod-
ular measures are just those that are created by integrating the Riemannian measures on
the leaves against some invariant transverse measure. This is a precise analogue of the
hard-to-formalize statement that a unimodular random graph is a random pointed graph in
which the vertices are ‘distributed uniformly’ across each fixed graph.

6 Soficity of IRS

Definition 15. An IRS � is co-sofic if it is a weak-� limit in IRS(G) of ones supported
on lattices.

The following result justify the name (cf. Abert, Gelander, and Nikolov [2017, Lemma
16]):
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Proposition 6.1. Let Fn be the free group of rank n. A Dirac mass ıN ; N C Fn is
co-sofic iff the corresponding group G = Fn/N is sofic.

Given a group G it is natural to ask:

Question 6.2. Is every IRS in G co-sofic?

In particular for G = Fn this is equivalent to the Aldous–Lyons conjecture that every
unimodular network (supported on rank n Schreier graphs) is a limit of ones corresponding
to finite Schreier graphs Aldous and Lyons [2007].

Therefore it is particularly intriguing to study Question 6.2 for G, a locally compact
group admitting Fn as a lattice. This is the case for G =SL2(R); SL2(Qp) and Aut(T ).

7 Exotic IRS

In the lack of Margulis’ normal subgroup theorem there are IRS supported on non-lattices.
Indeed, from a lattice Γ � G and a normal subgroup of infinite index N C Γ one can
cook an IRS in G supported on the closure of the conjugacy class N G .

A more interesting example in SO(n; 1) (from Abert, Bergeron, Biringer, Gelander,
Nikolov, Raimbault, and Samet [2016]) is obtained by choosing two compact hyperbolic
manifolds A; B with totally geodesic boundary, each with two components, and all four
components are pairwise isometric and then glue random copies of A; B along an imagi-
nary line to obtain a random hyperbolic manifold whose fundamental group is an IRS in
SO(n; 1). If A; B are chosen wisely, the random subgroup obtained is not contained in a
lattice. However, all IRSs obtained that way are co-sofic. Other constructions of exotic
IRS in SO(3; 1) are given in Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault,
and Samet [ibid.].

8 Existence

There are many well known examples of discrete groups without nontrivial IRS, for in-
stance PSLn(Q), and also the Tarski Monsters. In Gelander [2015, §8] I asked for non-
discrete examples, and in particular weather the Neretin group (of almost adthomorphisms
of a regular tree) admits non-trivial IRS. Recently Boudec and Bon [2017] constructed an
example of a non-discrete locally compact group with no non-trivial IRS. (Note however
that it is not compactly generated.)
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9 Character Rigidity

Definition 16. Let Γ be a discrete group. A character on Γ is an irreducible positive
definite complex-valued class function ' : Γ ! C satisfying '(e) = 1.

The irreducibility of ' simply means that it cannot be written as a convex combination
of two distinct characters. This notion was introduced by Thoma in Thoma [1964a,b]. In
the abelian case Definition 16 reduces to the classical notion.

We will say that Γ has Character rigidity if only the obvious candidates occur as char-
acters of Γ. The following theorem of Bekka [2007] is an outstanding example of such a
result.

Theorem 17. Let ' be a character of the group Γ = SLn(Z) for n � 3. Then either ' fac-
tors through an irreducible representation of some finite congruence quotient SLn(Z/N Z)

or ' vanishes outside the center of Γ.

The connection between invariant random subgroups and characters arises from the
following construction. Let (X; �) be a Borel probability space with an action of Γ pre-
serving �. Consider the following real-valued function ' : Γ ! R that is associated to
the action of Γ. The function g is given by

'(
) = �(Fix(
))

for every 
 2 Γ, where
Fix(
) = fx 2 X : 
x = xg:

For instance '(
) = 1 if 
 lies in the kernel of the action and '(
) = 0 if �-almost every
point of X is not fixed by 
 . It turns out that ' is a positive define class function satisfying
'(e) = 1.

Let Γ be an irreducible lattice in a higher rank semisimple linear group G with property
(T). It can be shown by means of induced actions that Theorem 10 holds for the lattice Γ
as well, namely any properly ergodic action of Γ has central stabilizers.

We see that Theorem 17 in fact implies Theorem 9 in the special case of the particular
arithmetic group Γ = SLn(Z); n � 3, which in turn implies the normal subgroup theorem
of Margulis4. A character rigidity result is in general much stronger than invariant random
subgroups rigidity— indeed, not all characters arise in the above manner from probability
measure preserving actions.

Recently Peterson [2014] has been able to vastly generalize Bekka’s result, as follows.

4The normal subgroup theorem for SLn(Z) with n � 3 is in fact a much older theorem, dating back to
Mennicke’s work on the congruence subgroup problem Mennicke [1965].
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Theorem 18. Character rigidity in the sense of Theorem 17 holds for any irreducible
lattice in a higher rank semisimple Lie group without compact factors and with property
(T).

Let us survey a few other well-known classification results for characters of discrete
groups. In his original papers Thoma studied characters of the infinite symmetric group
Thoma [1964a]. Dudko and Medynets studied characters of the Higman—Thompson and
related groups Dudko and Medynets [2014]. Peterson and Thom establish character rigid-
ity for linear groups over infinite fields or localizations of orders in number fields Peterson
and Thom [2016b], generalizing several previous results Kirillov [1965] and Ovčinnikov
[1971].

10 History

The interplay between a group theoretic and geometric viewpoints characterises the theory
of IRS from its beginning. Two groundbreaking papers, Stuck and Zimmer [1994] and
Aldous and Lyons [2007] represent these two points of view. Zimmer’s work, throughout,
was deeply influenced by Mackey’s virtual group philosophy which draws an analogy
between the subgroups of G and its ergodic actions. When G is a center free, higher rank
simple Lie group, it is proved in Stuck and Zimmer [1994] that every non-essentially-free
ergodic action is in fact a transitive action on the cosets of a lattice subgroup. These results
can be viewed as yet another implementation of higher rank rigidity, but they also show
that Mackey’s analogy becomes much tighter when one considers non-essentially-free
actions.

The Aldous–Lyons paper is influenced by the geometric notion of Benjamini–Schramm
convergence in graphs, sometimes also referred to as weak convergence or as conver-
gence in local statistics, developed in Aldous and Steele [2004],Benjamini and Schramm
[2001],Benjamini, Lyons, Peres, and Schramm [1999]. Any finite graph5 gives rise to a
random rooted graph, upon choosing the root uniformly at random. Thus the collection
of finite graphs, embeds as a discrete set, into the space of Borel probability measures on
the (compact) space of rooted graphs. Random rooted graph in the w�-closure of this set
are subject to themass transport principal introduced by Benjamini and Schramm [2001]:
For every integrable function on the space of bi-rooted graphsZ X

x2V (G)

f (G; o; x)d�([G; o]) =

Z X
x2V (G)

f (G; x; o)d�([G; o]):

5or more generally an infinite graph whose automorphism group contains a lattice.
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Aldous and Lyons define random unimodular graphs to be random rooted graphs subject to
the mass transport principal. In Aldous and Lyons [2007, Question 10.1] they ask whether
every random unimodular graph is in the w�-closure of the set of finite graphs. When
one specialises this theory to Schreier graphs of a given finitely generated group Γ (more
generally to the quotients of the Cayley-Abels graph of a given compactly generated group
G) one obtains the theory of IRS in Γ or in G. For probability measures on the Chabauty
space of subgroups SubΓ — the mass transport principal is equivalent to invariance under
the adjoint action of the group. When Γ = Fd is the free group and N C Γ is a normal
subgroup the group Γ/N is sofic in the sense of Gromov and Weiss if and only if the
IRS ıN is a w�-limit of IRS supported on finite index subgroups. Thus the Aldous-Lyons
question in the setting of Schreier graphs of Fd specializes to Gromov’s question whether
every group is sofic.

In a pair of papers Abért, Y. Glasner, and Virág [2016, 2014], Abért, Glasner and Virág
introduced the notion of IRS and used it to answer a long standing question in graph theory.
A sequence fXng of finite, distinct d -regular Ramanujan graphs Benjamini–Schramm con-
verges to the universal covering tree Td . They provided a quantitative estimate for this
result, for a Ramanujan graph X ,

Prfx 2 X j injX (x) � ˇ log log(jX j)g = O
�
log(jX j)�ˇ

�
;

where ˇ = (30 log(d � 1))�1, InjX (x) = maxfR 2 N j BX (x; R) is contractibleg and
the probability is the uniform over the vertices of X . The proof combines the geometric
and group theoretic viewpoints in an essential way: They start with a sequence of Ra-
manujan (Schreier) graphs fXng. Passing if necessary to a subsequence they assume that
Xn ! ∆nFd/2, where ∆ is an IRS in Fd/2. Now the main technical result of their pa-
per shows that the Schreier graph of an IRS has to satisfy Kesten’s spectral gap theorem
�(Cay(Γ/∆; S)) � �(Cay(Γ; S)) with equality if and only if ∆ = hei a.s. Thus the
limiting object is indeed the tree.

More generally they develop the theory of Benjamini–Shcramm limits of unimodular
random graphs, as well as for Γ-Schreier graphs for arbitrary finitely generated group Γ.
In this case the IRS version of Kesten’s theorem reads �(Cay(Γ/∆; S)) � �(Cay(Γ; S)),
with an (a.s.) equality, iff∆ is (a.s.) amenable. In hope of reproducing this same beautiful
picture for general finitely generated groups, Abért, Glasner and Virág phrased a funda-
mental question that was quickly answered by Bader, Duchesne, and Lécureux [2016]
giving rise to the following theorem: Every amenable IRS in a group Γ is supported on
the subgroups of the amenable radical of Γ.

Independently of all of the above, Lewis Bowen in Bowen [2014], introduced the notion
of an IRS, and of the Poisson boundary relative to an IRS. He used these notions to solve
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a long standing question in dynamics — proving that the Furstenberg entropy spectrum
of the free group is a closed interval. Let (G; �) be a locally compact group with a Borel
probability measure on it, and (X; �) a (G; �) space. This means that G Õ X acts on X

measurably and � is a �-stationary probability measure in the sense that � = � � �. The
Furstenberg entropy of this space is

h�(X; �) =

Z Z
� log

d� ı g

d�
(x)d�(x)d�(g):

Spec(G; �) := fh�(X; �) j (X; �) an ergodic(G; �)-spaceg is called the Furstenberg en-
tropy spectrum and it is bounded in the interval [0; hmax(�)]. The value 0 is obtained
when the action is measure preserving, and the maximal value is always attained by the
Poisson boundary B(G; �). The study of the entropy spectrum is tightly related to the
study of factors of the Poisson boundary. Nevo and Zimmer, Nevo and Zimmer [2000],
consider a restricted spectrum, that comes only form actions subject to certainmixing prop-
erties and show that this restricted spectrum Spec0(G) is finite for a centre free, higher rank
semisimple Lie groupG. This result was then used in their proof of the intermediate factor
theorem, which in retrospect also validated the proof of the Stuck-Zimmer theorem Nevo
and Zimmer [1999, 2002b,a]. Bowen’s work on IRS filled in a gap in the other direction
— providing as it did many examples of stationary actions.

Let K 2 Sub(G). The Poisson boundary B(KnG; �) is the (Borel) quotient of the
space of all�-randomwalks onKnG under the shift �(Kg0; Kg1; Kg2; : : :) = (Kg1; Kg2; : : :).
If ∆ = N happens to be normal then one retains the Kaimanovich–Vershik description
of the Poisson boundary on G/N and clearly G acts on this space from the left giving
it the structure of a (G; �)-space. In the more general setting introduced by Bowen,
G still acts on the natural bundle over Sub(G), where the fibre over K 2 Sub(G) is
B(KnG; �). The natural action of G on the space of all walks on all these coset spaces,
given by g(Kg1; Kg2; : : :) = (gKg�1gg1; gKg�1gg2; : : :) clearly commutes with the
shift and gives rise to a well defined action of (G; �) on this bundle. Any choice of
an IRS � 2 IRS(G) gives rise to a (G; �)-stationary measure on this bundle. Now for
Fd = hs1; : : : ; sd i, � = 1

2d

�Pd
i=1 si + s�1

i

�
the proof that Spec(Fd ; �) = [0; hmax(�)]

is completed by finding a certain path ˛ : I :! IRS(Fd ) in the space of IRSs with the
following properties: (i) the path starts at the trivial IRS (corresponding to the action on
the Poisson boundary), (ii) it ends at an IRS giving rise to arbitrarily small entropy values
and (iii) the entropy function is continuous on this path. Continuity of the entropy function
is very special and so are the IRS that are chosen in order to allow for this continuity. The
existence of paths on the other hand is actually general, in Bowen [2015b] Bowen proves
that the collection of ergodic IRS on Fd that are not supported on finite index subgroups
is path connected.
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Vershik [2012, 2010], also indpendently, arrived at IRS from his study of the repre-
sentation theory and especially the characters of S1

f
— the group of finitely supported

permutations of a countable set. To an IRS � 2 IRS(Γ) in a countable group define its
Vershik character as follows

�� : Γ ! R�0; ��(
) = � (f∆ 2 Sub(Γ) j 
 2 ∆g) :

If the IRS is realized as the stabilizer Γx of a random point in a p.m.p. action Γ Õ (X; �)

(by Abért, Y. Glasner, and Virág [2014], every IRS can be realized in this fashion), the
same IRS is given by ��(
) = �(F ix(
)). Vershik also describes the GNS constuctions
associated with this character. Let R = f(x; y) 2 X �X jy 2 Γxg and let � be the infinite
measure on R given by

R
f (x; y)�(x; y) =

R P
y2Γx f (x; y)d�(x): Γ acts on R via its

action on the first coordinate 
(x; y) = (
x; y) and hence it acts on the Hilbert space
L2(R; �). Let �(x; y) = 1x=y 2 L2(R; �) be the characteristic function of the diagonal.
It is easy to verify thatphi�(
) = h
�; �i. The defintion of the Vershik character clarified
the deep connection between character rigidity in the snese of Connes and and the Stuck–
Zimmer theorem.

Acknowledgments. Several people helped me in writing up parts of this paper: Ian
Biringer with Section 5, Arie Levit with Section 9 and Section 2 and Yair Glasner with
Section 10.

References

M. Abert, N. Bergeron, I. Biringer, and T. Gelander (n.d.). “Convergence of normalized
Betti numbers in nonpositive curvature” (cit. on p. 1353).

Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolov, Jean
Raimbault, and Iddo Samet (2011). “On the growth of Betti numbers of locally sym-
metric spaces”. C. R. Math. Acad. Sci. Paris 349.15-16, pp. 831–835. MR: 2835886
(cit. on p. 1353).

– (Dec. 2016). “On the growth of L2-invariants of locally symmetric spaces, II: exotic
invariant random subgroups in rank one”. arXiv: 1612.09510 (cit. on p. 1355).

– (2017a). “On the growth of L2-invariants for sequences of lattices in Lie groups”. Ann.
of Math. (2) 185.3, pp. 711–790. arXiv: 1210.2961. MR: 3664810 (cit. on pp. 1339,
1340, 1344, 1347, 1350–1354).

– (2017b). “On the growth of L2-invariants for sequences of lattices in Lie groups”. Ann.
of Math. (2) 185.3, pp. 711–790. MR: 3664810.

https://doi.org/10.1016/j.crma.2011.07.013
https://doi.org/10.1016/j.crma.2011.07.013
http://www.ams.org/mathscinet-getitem?mr=MR2835886
http://arxiv.org/abs/1612.09510
http://arxiv.org/abs/1612.09510
http://arxiv.org/abs/1612.09510
https://doi.org/10.4007/annals.2017.185.3.1
http://arxiv.org/abs/1210.2961
http://www.ams.org/mathscinet-getitem?mr=MR3664810
https://doi.org/10.4007/annals.2017.185.3.1
http://www.ams.org/mathscinet-getitem?mr=MR3664810


A VIEW ON INVARIANT RANDOM SUBGROUPS AND LATTICES 1361

Miklos Abert, Tsachik Gelander, and Nikolay Nikolov (2017). “Rank, combinatorial cost,
and homology torsion growth in higher rank lattices”.Duke Math. J. 166.15, pp. 2925–
2964. MR: 3712168 (cit. on p. 1354).

Miklós Abért, Yair Glasner, and Bálint Virág (2014). “Kesten’s theorem for invariant ran-
dom subgroups”. Duke Math. J. 163.3, pp. 465–488. MR: 3165420 (cit. on pp. 1351,
1358, 1360).

– (2016). “The measurable Kesten theorem”. Ann. Probab. 44.3, pp. 1601–1646. MR:
3502591 (cit. on pp. 1351, 1358).

David Aldous and Russell Lyons (2007). “Processes on unimodular random networks”.
Electron. J. Probab. 12, no. 54, 1454–1508. MR: 2354165 (cit. on pp. 1355, 1357,
1358).

David Aldous and J.Michael Steele (2004). “The objectivemethod: probabilistic combina-
torial optimization and local weak convergence”. In: Probability on discrete structures.
Vol. 110. Encyclopaedia Math. Sci. Springer, Berlin, pp. 1–72. MR: 2023650 (cit. on
p. 1357).

Uri Bader, Pierre-Emmanuel Caprace, Tsachik Gelander, and Shahar Mozes (2012). “Sim-
ple groups without lattices”. Bull. Lond. Math. Soc. 44.1, pp. 55–67. MR: 2881324.

Uri Bader, Bruno Duchesne, and Jean Lécureux (2016). “Amenable invariant random sub-
groups”. Israel J. Math. 213.1.With an appendix by PhillipWesolek, pp. 399–422. MR:
3509477 (cit. on p. 1358).

Uri Bader, Tsachik Gelander, and Roman Sauer (Dec. 2016). “Homology and homotopy
complexity in negative curvature”. arXiv: 1612.04871 (cit. on p. 1353).

Uri Bader and Yehuda Shalom (2006). “Factor and normal subgroup theorems for lat-
tices in products of groups”. Invent. Math. 163.2, pp. 415–454. MR: 2207022 (cit. on
p. 1348).

Y. Barnea and M. Larsen (2004). “Random generation in semisimple algebraic groups
over local fields”. J. Algebra 271.1, pp. 1–10. MR: 2022476 (cit. on p. 1345).

Bachir Bekka (2007). “Operator-algebraic superridigity for SLn(Z), n � 3”. Invent. Math.
169.2, pp. 401–425. MR: 2318561 (cit. on p. 1356).

Riccardo Benedetti and Carlo Petronio (1992). Lectures on hyperbolic geometry. Univer-
sitext. Springer-Verlag, Berlin, pp. xiv+330. MR: 1219310 (cit. on p. 1353).

I. Benjamini, R. Lyons, Y. Peres, and O. Schramm (1999). “Group-invariant percolation
on graphs”. Geom. Funct. Anal. 9.1, pp. 29–66. MR: 1675890 (cit. on p. 1357).

Itai Benjamini and Oded Schramm (2001). “Recurrence of distributional limits of finite
planar graphs”. Electron. J. Probab. 6, no. 23, 13. MR: 1873300 (cit. on pp. 1350,
1357).

Ian Biringer and Miklos Abert (June 2016). “Unimodular measures on the space of all
Riemannian manifolds”. arXiv: 1606.03360 (cit. on p. 1354).

https://doi.org/10.1215/00127094-2017-0020
https://doi.org/10.1215/00127094-2017-0020
http://www.ams.org/mathscinet-getitem?mr=MR3712168
https://doi.org/10.1215/00127094-2410064
https://doi.org/10.1215/00127094-2410064
http://www.ams.org/mathscinet-getitem?mr=MR3165420
https://doi.org/10.1214/14-AOP937
http://www.ams.org/mathscinet-getitem?mr=MR3502591
https://doi.org/10.1214/EJP.v12-463
http://www.ams.org/mathscinet-getitem?mr=MR2354165
https://doi.org/10.1007/978-3-662-09444-0_1
https://doi.org/10.1007/978-3-662-09444-0_1
http://www.ams.org/mathscinet-getitem?mr=MR2023650
https://doi.org/10.1112/blms/bdr061
https://doi.org/10.1112/blms/bdr061
http://www.ams.org/mathscinet-getitem?mr=MR2881324
https://doi.org/10.1007/s11856-016-1324-7
https://doi.org/10.1007/s11856-016-1324-7
http://www.ams.org/mathscinet-getitem?mr=MR3509477
http://arxiv.org/abs/1612.04871
http://arxiv.org/abs/1612.04871
http://arxiv.org/abs/1612.04871
https://doi.org/10.1007/s00222-005-0469-5
https://doi.org/10.1007/s00222-005-0469-5
http://www.ams.org/mathscinet-getitem?mr=MR2207022
https://doi.org/10.1016/j.jalgebra.2002.12.001
https://doi.org/10.1016/j.jalgebra.2002.12.001
http://www.ams.org/mathscinet-getitem?mr=MR2022476
https://doi.org/10.1007/s00222-007-0050-5
http://www.ams.org/mathscinet-getitem?mr=MR2318561
https://doi.org/10.1007/978-3-642-58158-8
http://www.ams.org/mathscinet-getitem?mr=MR1219310
https://doi.org/10.1007/s000390050080
https://doi.org/10.1007/s000390050080
http://www.ams.org/mathscinet-getitem?mr=MR1675890
https://doi.org/10.1214/EJP.v6-96
https://doi.org/10.1214/EJP.v6-96
http://www.ams.org/mathscinet-getitem?mr=MR1873300
http://arxiv.org/abs/1606.03360
http://arxiv.org/abs/1606.03360
http://arxiv.org/abs/1606.03360


1362 TSACHIK GELANDER

Adrien Le Boudec and Nicolas Matte Bon (Sept. 2017). “Locally compact groups whose
ergodic or minimal actions are all free”. arXiv: 1709.06733 (cit. on p. 1355).

Lewis Bowen (2014). “Random walks on random coset spaces with applications to
Furstenberg entropy”. Invent. Math. 196.2, pp. 485–510. MR: 3193754 (cit. on
p. 1358).

– (2015a). “Cheeger constants and L2-Betti numbers”. Duke Math. J. 164.3, pp. 569–
615. MR: 3314481 (cit. on p. 1353).

– (2015b). “Invariant random subgroups of the free group”. Groups Geom. Dyn. 9.3,
pp. 891–916. MR: 3420547 (cit. on pp. 1349, 1359).

Lewis Bowen, Rostislav Grigorchuk, and Rostyslav Kravchenko (2015). “Invariant ran-
dom subgroups of lamplighter groups”. Israel J. Math. 207.2, pp. 763–782. MR:
3359717 (cit. on p. 1349).

F. Dahmani, V. Guirardel, and D. Osin (2017). “Hyperbolically embedded subgroups
and rotating families in groups acting on hyperbolic spaces”. Mem. Amer. Math. Soc.
245.1156, pp. v+152. arXiv: 1111.7048. MR: 3589159 (cit. on p. 1349).

Patrick Delorme (1986). “Formules limites et formules asymptotiques pour les multiplic-
ités dans L2(G/Γ)”. Duke Math. J. 53.3, pp. 691–731. MR: 860667 (cit. on p. 1353).

Artem Dudko and Konstantin Medynets (2014). “Finite factor representations of Higman-
Thompson groups”. Groups Geom. Dyn. 8.2, pp. 375–389. arXiv: 1212.1230. MR:
3231220 (cit. on p. 1357).

Mikolaj Fraczyk (Dec. 2016). “Strong Limit Multiplicity for arithmetic hyperbolic sur-
faces and 3-manifolds”. arXiv: 1612.05354 (cit. on p. 1347).

Harry Furstenberg (1976). “A note on Borel’s density theorem”. Proc. Amer. Math. Soc.
55.1, pp. 209–212. MR: 0422497 (cit. on p. 1340).

Tsachik Gelander (2014). “Lectures on lattices and locally symmetric spaces”. In: Geo-
metric group theory. Vol. 21. IAS/Park City Math. Ser. Amer. Math. Soc., Providence,
RI, pp. 249–282. MR: 3329730.

– (Mar. 2015). “A lecture on Invariant Random Subgroups”. arXiv: 1503.08402 (cit. on
p. 1355).

– (2018). “Kazhdan–Margulis theorem for invariant random subgroups”. Adv. Math. 327,
pp. 47–51. MR: 3761990 (cit. on p. 1345).

Tsachik Gelander and Arie Levit (May 2016). “Local Rigidity Of Uniform Lattices”.
arXiv: 1605.01693 (cit. on p. 1347).

– (July 2017). “Invariant random subgroups over non-Archimedean local fields”. arXiv:
1707.03578 (cit. on pp. 1341, 1345, 1347, 1353, 1354).

David L. de George and Nolan R. Wallach (1978). “Limit formulas for multiplicities in
L2(ΓnG)”. Ann. of Math. (2) 107.1, pp. 133–150. MR: 0492077 (cit. on p. 1353).

http://arxiv.org/abs/1709.06733
http://arxiv.org/abs/1709.06733
http://arxiv.org/abs/1709.06733
https://doi.org/10.1007/s00222-013-0473-0
https://doi.org/10.1007/s00222-013-0473-0
http://www.ams.org/mathscinet-getitem?mr=MR3193754
https://doi.org/10.1215/00127094-2871415
http://www.ams.org/mathscinet-getitem?mr=MR3314481
https://doi.org/10.4171/GGD/331
http://www.ams.org/mathscinet-getitem?mr=MR3420547
https://doi.org/10.1007/s11856-015-1160-1
https://doi.org/10.1007/s11856-015-1160-1
http://www.ams.org/mathscinet-getitem?mr=MR3359717
https://doi.org/10.1090/memo/1156
https://doi.org/10.1090/memo/1156
http://arxiv.org/abs/1111.7048
http://www.ams.org/mathscinet-getitem?mr=MR3589159
https://doi.org/10.1215/S0012-7094-86-05338-X
https://doi.org/10.1215/S0012-7094-86-05338-X
http://www.ams.org/mathscinet-getitem?mr=MR860667
https://doi.org/10.4171/GGD/230
https://doi.org/10.4171/GGD/230
http://arxiv.org/abs/1212.1230
http://www.ams.org/mathscinet-getitem?mr=MR3231220
http://arxiv.org/abs/1612.05354
http://arxiv.org/abs/1612.05354
http://arxiv.org/abs/1612.05354
https://doi.org/10.2307/2041874
http://www.ams.org/mathscinet-getitem?mr=MR0422497
http://www.ams.org/mathscinet-getitem?mr=MR3329730
http://arxiv.org/abs/1503.08402
http://arxiv.org/abs/1503.08402
https://doi.org/10.1016/j.aim.2017.06.011
http://www.ams.org/mathscinet-getitem?mr=MR3761990
http://arxiv.org/abs/1605.01693
http://arxiv.org/abs/1605.01693
http://arxiv.org/abs/1707.03578
http://arxiv.org/abs/1707.03578
https://doi.org/10.2307/1971140
https://doi.org/10.2307/1971140
http://www.ams.org/mathscinet-getitem?mr=MR0492077


A VIEW ON INVARIANT RANDOM SUBGROUPS AND LATTICES 1363

E. Glasner and B.Weiss (1997). “Kazhdan’s property T and the geometry of the collection
of invariant measures”. Geom. Funct. Anal. 7.5, pp. 917–935. MR: 1475550 (cit. on
p. 1344).

Yair Glasner (2017). “Invariant random subgroups of linear groups”. Israel J. Math. 219.1.
With an appendix by Tsachik Gelander and Glasner, pp. 215–270. arXiv: 1407.2872.
MR: 3642021.

D. A. Každan (1967). “On the connection of the dual space of a group with the structure
of its closed subgroups”. Funkcional. Anal. i Priložen. 1, pp. 71–74. MR: 0209390
(cit. on p. 1344).

D. A. Každan and G. A. Margulis (1968). “A proof of Selberg’s hypothesis”. Mat. Sb.
(N.S.) 75 (117), pp. 163–168. MR: 0223487 (cit. on p. 1342).

A. A. Kirillov (1965). “Positive-definite functions on a group of matrices with elements
from a discrete field”.Dokl. Akad. Nauk SSSR 162, pp. 503–505. MR: 0193183 (cit. on
p. 1357).

Benoı̂t Kloeckner (2009). “The space of closed subgroups of Rn is stratified and simply
connected”. J. Topol. 2.3, pp. 570–588. MR: 2546586.

Masatake Kuranishi (1951). “On everywhere dense imbedding of free groups in Lie
groups”. Nagoya Math. J. 2, pp. 63–71. MR: 0041145 (cit. on p. 1340).

A. Levit (n.d.). “Weak uniform discreteness of lattices in positive characteristic” (cit. on
p. 1346).

Arie Levit (May 2017a). “On Benjamini–Schramm limits of congruence subgroups”.
arXiv: 1705.04200 (cit. on p. 1347).

– (2017b). “The Nevo-Zimmer intermediate factor theorem over local fields”. Geom.
Dedicata 186, pp. 149–171. MR: 3602889 (cit. on p. 1348).

G. A. Margulis (1991). Discrete subgroups of semisimple Lie groups. Vol. 17. Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(3)]. Springer-Verlag, Berlin, pp. x+388. MR: 1090825 (cit. on pp. 1342, 1344).

Jens L. Mennicke (1965). “Finite factor groups of the unimodular group”. Ann. of Math.
(2) 81, pp. 31–37. MR: 0171856 (cit. on p. 1356).

Amos Nevo and Robert J. Zimmer (1999). “Homogenous projective factors for actions
of semi-simple Lie groups”. Invent. Math. 138.2, pp. 229–252. MR: 1720183 (cit. on
p. 1359).

– (2000). “Rigidity of Furstenberg entropy for semisimple Lie group actions”. Ann. Sci.
École Norm. Sup. (4) 33.3, pp. 321–343. MR: 1775184 (cit. on p. 1359).

– (2002a). “A generalization of the intermediate factors theorem”. J. Anal. Math. 86,
pp. 93–104. MR: 1894478 (cit. on p. 1359).

– (2002b). “A structure theorem for actions of semisimple Lie groups”. Ann. of Math. (2)
156.2, pp. 565–594. MR: 1933077 (cit. on p. 1359).

https://doi.org/10.1007/s000390050030
https://doi.org/10.1007/s000390050030
http://www.ams.org/mathscinet-getitem?mr=MR1475550
https://doi.org/10.1007/s11856-017-1479-x
http://arxiv.org/abs/1407.2872
http://www.ams.org/mathscinet-getitem?mr=MR3642021
http://www.ams.org/mathscinet-getitem?mr=MR0209390
http://www.ams.org/mathscinet-getitem?mr=MR0223487
http://www.ams.org/mathscinet-getitem?mr=MR0193183
https://doi.org/10.1112/jtopol/jtp022
https://doi.org/10.1112/jtopol/jtp022
http://www.ams.org/mathscinet-getitem?mr=MR2546586
http://projecteuclid.org/euclid.nmj/1118764740
http://projecteuclid.org/euclid.nmj/1118764740
http://www.ams.org/mathscinet-getitem?mr=MR0041145
http://arxiv.org/abs/1705.04200
http://arxiv.org/abs/1705.04200
https://doi.org/10.1007/s10711-016-0183-z
http://www.ams.org/mathscinet-getitem?mr=MR3602889
https://doi.org/10.1007/978-3-642-51445-6
http://www.ams.org/mathscinet-getitem?mr=MR1090825
https://doi.org/10.2307/1970380
http://www.ams.org/mathscinet-getitem?mr=MR0171856
https://doi.org/10.1007/s002220050377
https://doi.org/10.1007/s002220050377
http://www.ams.org/mathscinet-getitem?mr=MR1720183
https://doi.org/10.1016/S0012-9593(00)00113-0
http://www.ams.org/mathscinet-getitem?mr=MR1775184
https://doi.org/10.1007/BF02786645
http://www.ams.org/mathscinet-getitem?mr=MR1894478
https://doi.org/10.2307/3597198
http://www.ams.org/mathscinet-getitem?mr=MR1933077


1364 TSACHIK GELANDER

S. V. Ovčinnikov (1971). “Positive definite functions on Chevalley groups”. Funkcional.
Anal. i Priložen. 5.1, pp. 91–92. MR: 0291371 (cit. on p. 1357).

Jesse Peterson (2014). “Character rigidity for lattices in higher-rank groups” (cit. on
p. 1356).

Jesse Peterson and Andreas Thom (2016a). “Character rigidity for special linear groups”.
J. Reine Angew. Math. 716, pp. 207–228. MR: 3518376.

– (2016b). “Character rigidity for special linear groups”. J. Reine Angew. Math. 716,
pp. 207–228. MR: 3518376 (cit. on p. 1357).

Vladimir Platonov and Andrei Rapinchuk (1994). Algebraic groups and number theory.
Vol. 139. Pure and Applied Mathematics. Translated from the 1991 Russian original by
Rachel Rowen. Academic Press, Inc., Boston, MA, pp. xii+614. MR: 1278263.

M. S. Raghunathan (1972). Discrete subgroups of Lie groups. Ergebnisse der Mathematik
und ihrer Grenzgebiete, Band 68. Springer-Verlag, New York-Heidelberg, pp. ix+227.
MR: 0507234 (cit. on p. 1346).

Jean Raimbault (Nov. 2013). “On the convergence of arithmetic orbifolds”. arXiv: 1311.
5375 (cit. on p. 1347).

Alireza Salehi Golsefidy (2013). “Lattices ofminimum covolume are non-uniform”. Israel
J. Math. 196.1, pp. 363–373. MR: 3096596 (cit. on p. 1346).

Jean-Pierre Serre (2006). Lie algebras and Lie groups. Vol. 1500. Lecture Notes in Mathe-
matics. 1964 lectures given at Harvard University, Corrected fifth printing of the second
(1992) edition. Springer-Verlag, Berlin, pp. viii+168. MR: 2179691 (cit. on p. 1344).

Garrett Stuck and Robert J. Zimmer (1994). “Stabilizers for ergodic actions of higher
rank semisimple groups”. Ann. of Math. (2) 139.3, pp. 723–747. MR: 1283875 (cit. on
pp. 1348, 1357).

Elmar Thoma (1964a). “Die unzerlegbaren, positiv-definiten Klassenfunktionen der
abzählbar unendlichen, symmetrischen Gruppe”. Math. Z. 85, pp. 40–61. MR:
0173169 (cit. on pp. 1356, 1357).

– (1964b). “Über unitäre Darstellungen abzählbarer, diskreter Gruppen”.Math. Ann. 153,
pp. 111–138. MR: 0160118 (cit. on p. 1356).

Hiraku Toyama (1949). “On discrete subgroups of a Lie group”. Kōdai Math. Sem. Rep.,
1.2. Volume numbers not printed on issues until Vol. 7 (1955), pp. 36–37.MR: 0029918
(cit. on p. 1340).

A. M. Vershik (2010). “Nonfree actions of countable groups and their characters”. Zap.
Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 378.Teoriya Pred-
stavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XVIII, pp. 5–16, 228. MR:
2749291 (cit. on p. 1360).

– (2012). “Totally nonfree actions and the infinite symmetric group”.Mosc.Math. J. 12.1,
pp. 193–212, 216. MR: 2952431 (cit. on p. 1360).

http://www.ams.org/mathscinet-getitem?mr=MR0291371
http://www.math.vanderbilt.edu/peters10/rigidity.pdf
https://doi.org/10.1515/crelle-2014-0009
http://www.ams.org/mathscinet-getitem?mr=MR3518376
https://doi.org/10.1515/crelle-2014-0009
http://www.ams.org/mathscinet-getitem?mr=MR3518376
http://www.ams.org/mathscinet-getitem?mr=MR1278263
http://www.ams.org/mathscinet-getitem?mr=MR0507234
http://arxiv.org/abs/1311.5375
http://arxiv.org/abs/1311.5375
http://arxiv.org/abs/1311.5375
https://doi.org/10.1007/s11856-012-0167-0
http://www.ams.org/mathscinet-getitem?mr=MR3096596
http://www.ams.org/mathscinet-getitem?mr=MR2179691
https://doi.org/10.2307/2118577
https://doi.org/10.2307/2118577
http://www.ams.org/mathscinet-getitem?mr=MR1283875
https://doi.org/10.1007/BF01114877
https://doi.org/10.1007/BF01114877
http://www.ams.org/mathscinet-getitem?mr=MR0173169
https://doi.org/10.1007/BF01361180
http://www.ams.org/mathscinet-getitem?mr=MR0160118
http://projecteuclid.org/euclid.kmj/1138833432
http://www.ams.org/mathscinet-getitem?mr=MR0029918
https://doi.org/10.1007/s10958-011-0273-2
http://www.ams.org/mathscinet-getitem?mr=MR2749291
http://www.ams.org/mathscinet-getitem?mr=MR2952431


A VIEW ON INVARIANT RANDOM SUBGROUPS AND LATTICES 1365

Robert J. Zimmer (1984). Ergodic theory and semisimple groups. Vol. 81. Monographs in
Mathematics. Birkhäuser Verlag, Basel, pp. x+209. MR: 776417.

Received 2017-11-27.

Tඌൺർඁං඄ Gൾඅൺඇൽൾඋ
tsachik.gelander@weizmann.ac.il

https://doi.org/10.1007/978-1-4684-9488-4
http://www.ams.org/mathscinet-getitem?mr=MR776417
mailto:tsachik.gelander@weizmann.ac.il




Pඋඈർ. Iඇඍ. Cඈඇ඀. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 2 (1363–1384)

SOME RESULTS ON AFFINE DELIGNE–LUSZTIG VARIETIES
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Abstract
The study of affine Deligne-Lusztig varieties originally arose from arithmetic ge-

ometry, butmany problems on affineDeligne-Lusztig varieties are purely Lie-theoretic
in nature. This survey deals with recent progress on several important problems on
affine Deligne-Lusztig varieties. The emphasis is on the Lie-theoretic aspect, while
some connections and applications to arithmetic geometry will also be mentioned.

1 Introduction

1.1 Bruhat decomposition and conjugacy classes. Let G be a connected reductive
group over a field k and G = G(k). In this subsection, we assume that k is algebraically
closed. Let B be a Borel subgroup of G and W be the finite Weyl group of G. The Bruhat
decompositionG = tw2W BwB plays a fundamental role in Lie theory. This is explained
by Lusztig [2010] in the memorial conference of Bruhat:

“By allowing one to reduce many questions about G to questions about the Weyl group
W , Bruhat decomposition is indispensable for the understanding of both the structure and
representations of G.”

Below we mention two examples of the interaction between the Bruhat decomposition
and the (ordinary and twisted) conjugation action of G.

1. Assume that k = Fq and � is the Frobenius of k over Fq . We assume that G is
defined over Fq and we denote by � the corresponding Frobenius morphism onG. The
(classical) Deligne-Lusztig varieties was introduced by Deligne and Lusztig in their
seminal work Deligne and Lusztig [1976]. For any elementw 2 W , the corresponding
Deligne-Lusztig variety Xw is a subvariety of the flag variety G/B defined by

Xw = fgB 2 G/B;g�1�(g) 2 BwBg:

X. H. was partially supported by NSF DMS-1463852.
MSC2010: primary 14L05; secondary 20G25.
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By Lang’s theorem, the variety Xw is always nonempty. It is a locally closed, smooth
variety of dimension `(w). The finite reductive group G(Fq) acts naturally on Xw and
on the cohomology of Xw . The Deligne-Lusztig variety Xw plays a crucial role in the
representation theory of finite reductive groups, see Deligne and Lusztig [1976] and
Lusztig [1984]. The structure of Xw has also found important applications in number
theory, e.g., in the work of Rapoport, Terstiege, and W. Zhang [2013], and in the work
of Li and Y. Zhu [2017] on the proof of special cases of the “arithmetic fundamental
lemma” of W. Zhang [2012].

2. Let k be any algebraically closed field. In a series of papers Lusztig [2012], Lusztig
discovered a deep relation between the unipotent conjugacy classes ofG and the conju-
gacy classes of W , via the study of the intersection of the unipotent conjugacy classes
with the Bruhat cells of G.

1.2 AffineDeligne-Lusztig varieties. Themain objects of this survey are affineDeligne-
Lusztig varieties, analogous of classical Deligne-Lusztig varieties for loop groups.

Unless otherwise stated, in the rest of this survey we assume that k = Fq((�)). Let �

be the Frobenius morphism of k over Fq((�)). We assume that G is defined over Fq((�))

and we denote by � the corresponding Frobenius morphism on the loop groupG = G(k).
We choose a � -stable Iwahori subgroup I of G. If G is unramified, then we also choose a
� -stable hyperspecial parahoric subgroup K � I . The affine flag variety F l = G/I and
the affine GrassmannianGr = G/K (ifG is unramified) have natural scheme structures.1

Let S be a maximal k-split torus of G defined over Fq((�)) and let T be its centralizer,
a maximal torus of G. The Iwahori-Weyl group associated to S is

W̃ = N (k)/T (k)1;

where N is the normalizer of S in G and T (k)1 is the maximal open compact subgroup
of T (k). The group W̃ is also a split extension of the relative (finite) Weyl group W0 by
the normal subgroup X�(T )Γ0

, where X�(T ) is the coweight lattice of T and Γ0 is the
Galois group of k over k (cf. Pappas and Rapoport [2008, Appendix]). The group W̃ has a
natural quasi-Coxeter structure. We denote by ` and 6 the length function and the Bruhat
order on W̃ . We have the following generalization of the Bruhat decomposition

G = tw2W̃ IwI;

1One may replace Fq((�)) by the fraction field of the Witt ring. In that case, the affine Grassmannian Gr

and the affine flag variety F l have the structure of perfect schemes, thanks to the recent breakthrough of X. Zhu
[2017], and of Bhatt and Scholze [2017]. Many of the results we discuss in this survey hold for the fraction field
of the Witt ring as well.
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due to Iwahori and Matsumoto [1965] in the split case, and to Bruhat and Tits [1972] in
the general case. If G is unramified, then we also have

G = t� is a dominant coweightK��K:

Affine Deligne-Lusztig varieties were introduced by Rapoport in Rapoport [2005].
Compared to the classical Deligne-Lusztig varieties, we need two parameters here: an
element w in the Iwahori-Weyl group W and an element b in the loop group G. The
corresponding affine Deligne-Lusztig variety (in the affine flag variety) is defined as

Xw(b) = fgI 2 G/I ;g�1b�(g) 2 IwI g � F l:

If G is unramified, one may use a dominant coweight � instead of an element in W̃ and
define the affine Deligne-Lusztig variety (in the affine Grassmannian) by

X�(b) = fgK 2 G/K;g�1b�(g) 2 K��Kg � Gr:

Affine Deligne-Lusztig varieties are schemes locally of finite type over Fq . Also the
varieties are isomorphic if the element b is replaced by another element b0 in the same
� -conjugacy class.

A major difference between affine Deligne-Lusztig varieties and classical Deligne-
Lusztig varieties is that affine Deligne-Lusztig varieties have the second parameter: the
element b, or the � -conjugacy class [b] in the loop group G; while in the classical case
considered in Section 1.1, by Lang’s theorem there is only one � -conjugacy class inG(Fq)

and thus adding a parameter b 2 G(Fq) does not give any new variety.
The second parameter [b] in the affine Deligne-Lusztig varieties makes them rather

challenging to study, both from the Lie-theoretic point of view, and from the arithmetic-
geometric point of view. Belowwe list somemajor problems on the affineDeligne-Lusztig
varieties:

• When is an affine Deligne-Lusztig variety nonempty?

• If it is nonempty, what is its dimension?

• What are the connected components?

• Is there a simple geometric structure for certain affine Deligne-Lusztig varieties?

We may also consider the affine Deligne-Lusztig varieties associated to arbitrary para-
horic subgroups, besides hyperspecial subgroups and Iwahori subgroups. This will be
discussed in Section 7.
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1.3 A short overview of X(�; b). The above questions may also be asked for a certain
union X(�; b) of affine Deligne-Lusztig varieties in the affine flag variety.

Let � be a dominant coweight of G with respect to a given Borel subgroup of G over
k (in applications to number theory, � usually comes from a Shimura datum). The admis-
sible set Adm(�) was introduced by Kottwitz and Rapoport in R. Kottwitz and Rapoport
[2000]. It is defined by

Adm(�) = fw 2 W̃ ;w 6 tx(�) for some x 2 W0g:

We may explain it in a more Lie-theoretic language. Let GrG be the deformation from
the affine Grassmannian to the affine flag variety Gaitsgory [2001]. The coherence con-
jecture of Pappas and Rapoport [2008] implies that the special fiber of the global Schu-
bert variety GrG;� associated to the coweight � (cf. X. Zhu [2014, Definition 3.1]) is
[w2Adm(�)IwI/I . This conjecture was proved by Zhu in X. Zhu [ibid.]. Now we set

X(�; b) = [w2Adm(�)Xw(b) � F l:

This is a closed subscheme of F l and serves as the group-theoretic model for the Newton
stratum corresponding to [b] in the special fiber of a Shimura variety giving rise to the
datum (G; �).

It is also worthmentioning that, although the admissible set Adm(�) has a rather simple
definition, it is a very complicated combinatorial object. We refer to the work of Haines
and Ngô Haines and Châu [2002], and the recent joint work of the author with Haines and
He [2017] for some properties of Adm(�).

1.4 Current status. Affine Deligne-Lusztig varieties in the affine Grassmannian are
relatively more accessible than the ones in the affine flag variety, mainly due to the fol-
lowing two reasons:

• The set of dominant coweights is easier to understand than the Iwahori-Weyl group;

• For X�(b) the group G is unramified while for Xw(b), we need to deal with ramified,
or even non quasi-split reductive groups.

For an unramified group G, we also have the fibration [w2W0t�W0
Xw(b) ! X�(b),

with fibers isomorphic to the flag variety of G(Fq). Thus much information on X�(b)

can be deduced from Xw(b).
Nevertheless, the study of the affine Deligne-Lusztig varieties in affine Grassmannian

is a very challenging task and has attracted the attention of experts in arithmetic geometry
in the past two decades. It is a major achievement in arithmetic geometry to obtain a fairly
good understanding on these varieties.
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As to the affine Deligne-Lusztig varieties in the affine flag varieties, the situation is
even more intriguing. We have made significant progress in the past 10 years in this direc-
tion, yet many aspects of Xw(b) remain rather mysterious. I hope that by combining var-
ious Lie-theoretic methods together with arithmetic-geometric methods, our knowledge
on affine Deligne-Lusztig varieties will be considerably advanced.

In the rest of the survey, we will report on some recent progress on the affine Deligne-
Lusztig varieties.

Acknowledgments. We thank Ulrich Görtz, Urs Hartl, George Lusztig, Michael Rapo-
port, Sian Nie and Rong Zhou for useful comments.

2 Some relation with affine Hecke algebras

2.1 The set B(G) and Kottwitz’s classification. Let B(G) be the set of � -conjugacy
classes of G. R. E. Kottwitz [1985] and R. E. Kottwitz [1997] gave a classification of the
setB(G), generalizing the Dieudonné-Manin classification of isocrystals by their Newton
polygons. Any � -conjugacy class [b] is determined by two invariants:

• The element �([b]) 2 �1(G)Γ, where Γ is the Galois group of k over Fq((�));

• The Newton point �b in the dominant chamber of X�(T )Γ0
˝Q.

A different point of view, which is quite useful in this survey, is the relation between
the set B(G) with the set B(W̃ ; �) of � -conjugacy classes of W̃ . Recall that W̃ =

N (k)/T (k)1. The natural embeddingN (k)! G induces a natural mapΨ : B(W̃ ; �)!

B(G). By Görtz, Haines, R. E. Kottwitz, and Reuman [2010] and He [2014], the map Ψ
is surjective. The map Ψ is not injective. However, there exists an important family
B(W̃ ; �)str of straight � -conjugacy classes of W̃ . By definition, a � -conjugacy class O
of W̃ is straight if it contains an elementw 2 O such that `(w�(w) � � � �n�1(w)) = n`(w)

for all n 2 N. The following result is discovered in He [ibid., Theorem 3.7].

Theorem 2.1. The map Ψ : B(W̃ ; �)! B(G) induces a bijection

B(W̃ ; �)str  ! B(G):

This result gives the parametrization of the � -conjugacy classes of G in terms of the
set of straight � -conjugacy classes of its Iwahori-Weyl group W̃ . In particular, the two
parameters occurring in the definition of the affine Deligne-Lusztig variety Xw(b) are all
from W̃ .

Note that the affine Deligne-Lusztig varietyXw(b) is closely related to the intersection
IwI \ [b]. This intersection is very complicated in general. However, it is discovered
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in He [2014] that for certain elements w 2 W̃ , the intersection IwI \ [b] equals IwI .
More precisely, we denote by W̃��min the set of elements in W̃ that are of minimal length
in their � -conjugacy classes. Then

For w 2 W̃��min, IwI � [b] if [b] = Ψ(w).

This serves as the starting point of the reduction method for affine Deligne-Lusztig vari-
eties Xw(b) for arbitrary w.

2.2 “Dimension=Degree” theorem. Deligne and Lusztig introduced in Deligne and
Lusztig [1976] a reduction method to study the classical Deligne-Lusztig varieties. Their
method works for the affine Deligne-Lusztig varieties as well. Some combinatorial prop-
erties of affine Weyl groups established in joint work with Nie 2014 allow us to reduce
the study of Xw(b) for any w, via the reduction method à la Deligne and Lusztig, to the
study of Xw(b) for w 2 W̃��min.

The explicit reduction procedure, however, is rather difficult to keep track of. In He
[2014], we discovered that the same reduction procedure appears in a totally different
context as follows.

Let H be the affine Hecke algebra (over Z[v˙1]) associated to W̃ . Let [H̃ ; H̃ ]� be the
� -twisted commutator, i.e. the Z[v˙1]-submodule of H generated by [h; h0]� = hh0 �

h0�(h). By He and Nie [2014], the � -twisted cocenter H = H/[H; H ]� has a standard
basis given by fTOg, where O runs over all the � -conjugacy classes of W̃ . Thus for any
w 2 W̃ , we have

Tw �
X

O

fw;OTO mod [H; H ]� :

The coefficients fw;O 2 N[v� v�1], which we call the class polynomials (over v� v�1).
We have the following “dimension=degree” theorem established in He [2014].

Theorem 2.2. Let b 2 G and w 2 W̃ . Then

dim(Xw(b)) = max
O;Ψ(O)=[b]

1

2

�
`(w) + `(O) + deg(fw;O)

�
� h�b; 2�i:

Here `(O) is the length of any minimal length element in O and � is the half sum of
positive roots in G. Here we use the convention that the dimension of an empty variety
and the degree of a zero polynomial are both �1. Thus the above theorem reduces the
nonemptiness question and the dimension formula of Xw(b) to some questions on the
class polynomials fw;O for Ψ(O) = [b].

The explicit computation of the class polynomials is very difficult at present. Note that
there is a close relation between the cocenter and representations of affine Hecke algebras
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Ciubotaru and He [2017]. One may hope that some progress in the representation theory
of affine Hecke algebras would also advance our knowledge on affine Deligne-Lusztig
varieties. At present, we combine the “dimension=degree” theorem together with some
Lie-theoretic techniques, and the results on X�(b) in the affine Grassmannian established
previously by arithmetic-geometric method, to obtain some explicit answers to certain
questions on Xw(b) and on X(�; b).

3 Nonemptiness pattern

3.1 Mazur’s inequality. In this subsection, we discuss the non-emptiness patterns of
affine Deligne-Lusztig varieties. Here Mazur’s inequality plays a crucial role.

In Mazur [1973], Mazur proved that the Hodge slope of any F -crystal is always larger
than or equal to the Newton slope of associated isocrystal. The converse was obtained by
Kottwitz and Rapoport in R. Kottwitz and Rapoport [2003]. Here we regard the Newton
slope and Hodge slope as elements in Qn

+ = fa1; � � � ; an; a1 > � � � > ang and the partial
order in Qn

+ is the dominance order, i.e. (a1; � � � ; an) � (b1; � � � ; bn) if and only if a1 6
b1; a1+a2 6 b1+b2; � � � ; a1+ � � �+an�1 6 b1+ � � �+bn�1; a1+ � � �+an = b1+ � � �+bn.

Note that Qn
+ is the set of rational dominant coweights for GLn. The dominant order

can be defined for the set of rational dominant coweights for any reductive group. This is
what we use to describe the nonemptiness pattern of some affine Deligne-Lusztig varieties.

3.2 In the affine Grassmannian. For X�(b) in the affine Grassmannian, we have a
complete answer to the nonemptiness question.

Theorem 3.1. Let � be a dominant coweight and b 2 G. Then X�(b) ¤ ¿ if and only if
�([b]) = �(�) and �b � �.

The “only if” part was proved by Rapoport and Richartz in Rapoport and Richartz
[1996], and by Kottwitz in R. E. Kottwitz [2003]. The “if” part was proved by Gashi
[2010]. The result also holds if the hyperspecial subgroup of an unramified group is re-
placed by a maximal special parahoric subgroup of an arbitrary reductive group. This was
obtained in He [2014] using the “dimension=degree” Theorem 2.2.

3.3 In the affine flag. Now we consider the variety Xw(b) in the affine flag variety.
(i) We first discuss the case where [b] is basic, i.e., the corresponding Newton point �b

is central in G (and thus Mazur’s inequality is automatically satisfied).

Theorem 3.2. Let G be a quasi-split group. Let [b] 2 B(G) be basic and w 2 W̃ . Then
Xw(b) ¤ ¿ if and only if there is no “Levi obstruction”.
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The “Levi obstruction” is defined in terms of the P -alcove elements, introduced by
Görtz, Haines, Kottwitz, and Reuman in Görtz, Haines, R. E. Kottwitz, and Reuman
[2010]. The explicit definition is technical and we omit it here. This result was con-
jectured by Görtz, Haines, R. E. Kottwitz, and Reuman [ibid.] for split groups and was
established in joint work with Görtz and Nie 2015 for any quasi-split group. Note that the
“quasi-split” assumption here is not essential as one may relate Xw(b) for any reductive
group G to another affine Deligne-Lusztig variety for the quasi-split inner form of G. We
refer to He [2016a, Theorem 2.27] for the explicit statement in the general setting.

(ii) For any nonbasic � -conjugacy class [b], one may ask for analogues of “Mazur’s
inequality” and/or the “Levi obstruction” in order to describe the nonemptiness pattern of
Xw(b). This is one of the major open problems in this area. We refer to Görtz, Haines,
R. E. Kottwitz, and Reuman [2010, Remark 12.1.3] for some discussion in this direc-
tion. As a first step, one may consider the conjecture of Görtz-Haines-Kottwitz-Reumann
Görtz, Haines, R. E. Kottwitz, and Reuman [ibid., Conjecture 9.5.1 (b)] on the asymptotic
behavior of Xw(b) for nonbasic [b]. Some affirmative answer to this conjecturewas given
in He [2016a, Theorem 2.28] in the case where [b] = [��] for some dominant coweight �.

3.4 Kottwitz-Rapoport conjecture. To describe the nonemptiness pattern on the union
X(�; b) of affine Deligne-Lusztig varieties in the affine flag variety, we recall the defini-
tion of neutrally acceptable � -conjugacy classes introduced by Kottwitz in R. E. Kottwitz
[1997],

B(G; �) = f[b] 2 B(G); �([b]) = �(�); �b 6 �˘
g;

where �˘ is the Galois average of �.
By Theorem 3.1, X�(b) ¤ ¿ if and only if [b] 2 B(G; �). We have a similar result

for the union X(�; b) of affine Deligne-Lusztig varieties in the affine flag variety.

Theorem 3.3. Let [b] 2 B(G). Then X(�; b) ¤ ¿ if and only if [b] 2 B(G; �).

This result was conjectured by Kottwitz and Rapoport in R. Kottwitz and Rapoport
[2003] and Rapoport [2005]. The “only if” part is a group-theoretic version of Mazur’s
inequality and was proved by Rapoport and Richartz for unramified groups in Rapoport
and Richartz [1996, Theorem 4.2]. The “if” part is the “converse to Mazur’s inequality”
and was proved by Wintenberger in Wintenberger [2005] for quasi-split groups. The gen-
eral case in both directions was established in He [2016b] by a different approach, via
a detailed analysis of the map Ψ : B(W̃ ) ! B(G), of the partial orders on B(G) (an
analogy of Grothendieck’s conjecture for the loop groups) and of the maximal elements
in B(G; �) He and Nie [2018].

As we mentioned in Section 3.3, for a single affine Deligne-Lusztig variety Xw(b),
one may reduce the case of a general group to the quasi-split case. However, for the union
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of affine Deligne-Lusztig varieties, the situation is different. There is no relation between
the admissible set Adm(�) (and hence X(�; b)) for an arbitrary reductive group and its
quasi-split inner form. This adds essential difficulties in the study of X(�; b) for non
quasi-split groups.

Rad and Hartl in Rad and Hartl [2016] established the analogue of the Langlands-
Rapoport conjecture Langlands and Rapoport [1987] for the rational points in the moduli
stacks of global G-shtukas, for arbitrary connected reductive groups and arbitrary para-
horic level structure. They described the rational points as a disjoint union over isogeny
classes of global G-Shtukas, and then used Theorem 3.3 to determine which isogeny
classes are nonempty.

4 Dimension formula

4.1 In the affine Grassmannian. For X�(b) in the affine Grassmannian, we have an
explicit dimension formula.

Theorem 4.1. Let � be a dominant coweight and b 2 G. If X�(b) ¤ ¿, then

dimX�(b) = h� � �b; �i �
1

2
defG(b);

where defG(b) is the defect of b.

The dimension formula of X�(b) was conjectured by Rapoport in Rapoport [2005],
inspired by Chai’s work Chai [2000]. The current reformulation is due to R. E. Kot-
twitz [2006]. For split groups, the conjectural formula was obtained by Görtz, Haines,
R. E. Kottwitz, and Reuman [2006] and Viehmann [2006]. The conjectural formula for
general quasi-split unramified groups was obtained independently by X. Zhu [2017] and
Hamacher [2015a].

4.2 In the affine flag variety. Now we consider Xw(b) in the affine flag variety.

Theorem 4.2. Let [b] 2 B(G) be basic and w 2 W̃ be an element in the shrunken Weyl
chamber (i.e., the lowest two-sided cell of W̃ ). If Xw(b) ¤ ¿, then

dimXw(b) =
1

2
(`(w) + `(�� (w)) � defG(b)):

Here �� : W̃ ! W0 is defined in Görtz, Haines, R. E. Kottwitz, and Reuman [2010].

This dimension formula was conjectured by Görtz, Haines, Kottwitz, and Reuman in
Görtz, Haines, R. E. Kottwitz, and Reuman [ibid.] for split groups and was established
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for residually split groups in He [2014]. The proof in He [ibid.] is based on the “dimen-
sion=degree” Theorem 2.2, some results on the � -twisted cocenter H of affine Hecke
algebra H , together with the dimension formula of X�(b) (which was only known for
split groups at that time). The dimension formula for arbitrary reductive groups (under
the same assumption on b and w) is obtained by the same argument in He [ibid.], once
the dimension formula of X�(b) for quasi-split unramified groups became available, cf.
Theorem 4.1.

Note that the assumption that w is contained in the lowest two-sided cell is an essential
assumption here. A major open problem is to understand the dimension of Xw(b) for [b]
basic, when w is in the critical stripes (i.e., outside the lowest two-sided cell). So far, no
conjectural dimension formula has been formulated. However, the “dimension=degree”
Theorem 2.2 and the explicit computation in low rank cases Görtz, Haines, R. E. Kottwitz,
and Reuman [2010] indicate that this problem might be closely related to the theory of
Kazhdan-Lusztig cells. I expect that further progress on the affine cellularity of affine
Hecke algebras, which is a big open problem in representation theory, might shed new
light on the study of dimXw(b).

I also would like to point out that affine Deligne-Lusztig varieties in affine Grassman-
nians are equi-dimensional, while in general affine Deligne-Lusztig varieties in the affine
flag varieties are not equi-dimensional.

4.3 Certain unions. We will see in Section 8 that for certain pairs (G; �), X(�; b)

admits some simple geometric structure. In these cases, one may write down an explicit
dimension formula for X(�; b). Outide these case, very little is known for dimX(�; b).

Here we mention one difficult case: the Siegel modular variety case. Here G = Sp2g

and � is the minuscule coweight. It was studied by Görtz and Yu in Görtz and Yu [2010],
in which they showed that for basic [b], dimX(�; b) = g2

2
if g is even and g(g�1)

2
6

dimX(�; b) 6 [g2

2
] if g is odd. It would be interesting to determine the exact dimension

when g is odd.

5 Hodge–Newton decomposition

To study the set-theoretic and geometric properties of affine Deligne-Lusztig varieties, a
very useful tool is to reduce the study of affine Deligne-Lusztig varieties of a connected
reductive group to certain affine Deligne-Lusztig varieties of its Levi subgroups. Such
reduction is achieved by the Hodge-Newton decomposition, which originated in Katz’s
work Katz [1979] on F -crystals with additional structures. In this section, we discuss its
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variation for affine Deligne-Lusztig varieties in affine Grassmannians, and further devel-
opment on affine Deligne-Lusztig varieties in affine flag varieties, and on the union of
affine Deligne-Lusztig varieties.

5.1 In the affine Grassmannian. For affine Deligne-Lusztig varieties in the affine
Grassmannian, Kottwitz in R. E. Kottwitz [2003] (see also Viehmann [2008]) established
the following Hodge-Newton decomposition, which is the group-theoretic generalization
of Katz’s result. Here the pair (�; b) is called Hodge-Newton decomposable with respect
to a proper Levi subgroup M if b 2 M and � and b have the same image under the
Kottwitz’s map �M for M .

Theorem 5.1. LetM be a Levi subgroup ofG and (�; b) beHodge-Newton decomposable
with respect to M . Then the natural map XM

�
(b)! XG

�
(b) is an isomorphism.

5.2 In the affine flag variety. For affine Deligne-Lusztig varieties in affine flag vari-
eties, the situation is more complicated, as the Hodge-Newton decomposability condition
on the pairs (w; b) is rather difficult. As pointed out in Görtz, Haines, R. E. Kottwitz, and
Reuman [2010], “It is striking that the notion of P -alcove, discovered in the attempt to
understand the entire emptiness pattern for the Xx(b) when b is basic, is also precisely
the notion needed for our Hodge-Newton decomposition.”

The Hodge-Newton decomposition for Xw(b) was established by Görtz, Haines, Kot-
twitz and Reuman in Görtz, Haines, R. E. Kottwitz, and Reuman [ibid.].

Theorem 5.2. Suppose that P = MN is a semistandard Levi subgroup of G and w 2 W̃

is a P -alcove element in the sense of Görtz, Haines, R. E. Kottwitz, and Reuman [ibid.].
Let b 2M . Then the natural map XM

w (b)! XG
w (b) induces a bijection

J M
b nX

M
w (b) Š J G

b nX
G
w (b):

5.3 Certain unions. ForX(�; b), theHodge-Newton decomposability condition is still
defined on the pair (�; b). However, the precise condition is more complicated than in
Section 5.1 as we consider arbitrary connected reductive groups, not only the unramified
ones. We refer to Goertz, He, and Nie [2016, Definition 2.1] for the precise definition.
The following Hodge-Newton decomposition for X(�; b) was established in a joint work
with Görtz and Nie 2016.

Theorem 5.3. Suppose that (�; b) is Hodge-Newton decomposable with respect to some
proper Levi subgroup. Then

X(�; b) Š
G

P 0=M 0N 0

XM 0

(�P 0 ; bP 0);



1374 XUHUA HE (何旭华)

where P 0 runs through a certain finite set of semistandard parabolic subgroups. The
subsets in the union are open and closed.

We refer to Goertz, He, and Nie [2016, Theorem 3.16] for the precise statement. Note
that an essential new feature is that unlike the Hodge-Newton decomposition of a single
affine Deligne-Lusztig variety (e.g. X�(b) or Xw(b)) where only one Levi subgroup is
involved, in the Hodge-Newton decomposition of X(�; b) several Levi subgroups are
involved.

Thus, the statement here is more complicated than the Hodge-Newton decomposition
of X�(b) and Xw(b). But this is consistent with the fact that the Newton strata in the
special fiber of Shimura varieties with Iwahori level structure are more complicated than
those with hyperspecial level structure. I believe that the Hodge-Newton decomposition
here would help us to overcome some of the difficulties occurring in the study of Shimura
varieties with Iwahori level structure (as well as arbitrary parahoric level structures). We
will see some results in this direction in Section 6 and in Section 8.

6 Connected components

In this subsection, we discuss the set of connected components of some closed affine
Deligne-Lusztig varieties, e.g.

X��(b) := [�0��X�0(b) and X(�; b) = [w2Adm(�)Xw(b):

The explicit description of the set of connected components has some important applica-
tions in number theory, which we will mention later.

Note that affine Grassmannians and affine flag varieties are not connected in general,
and their connected components are indexed by �1(G)Γ0

. This gives the first obstruction
to the connectedness. The second obstruction comes from the Hodge-Newton decomposi-
tion, which we discussed in Section 5. Onemay expect that these are the only obstructions.
We have the following results.

Theorem 6.1. Assume that G is an unramified simple group and that (�; b) is Hodge-
Newton indecomposable. Then

�0(X��(b)) Š �1(G)�
Γ0

:

This was first proved by Viehmann for split groups, and then by M. Chen, Kisin, and
Viehmann [2015] for quasi-split unramified groups and for � minuscule. The description
of �0(X��(b)) for G quasi-split unramified, and � non-minuscule, was conjectured in M.
Chen, Kisin, and Viehmann [ibid.] and was established by Nie [2015].
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Note that the minuscule coweight case is especially important for applications in num-
ber theory. Kisin [2017] proved the Langlands-Rapoport conjecture for mod-p points
on Shimura varieties of abelian type with hyperspecial level structure. Compared to the
function field analogous of Langlands-Rapoport conjecture Rad and Hartl [2016], there
are extra complication coming from algebraic geometry and the explicit description of the
connected components of X(�; b) in M. Chen, Kisin, and Viehmann [2015] is used in an
essential way to overcome the complication.

Theorem 6.2. Let � be a dominant coweight and b 2 G. Assume that [b] 2 B(G; �) and
that (�; b) is Hodge-Newton indecomposable. Then

(1) If [b] is basic, then �0(X(�; b)) Š �1(G)�
Γ0
.

(2) If G is split, then �0(X(�; b)) Š �1(G).

Here part (1) was obtained in joint work with Zhou 2016. As an application, we verified
the Axioms in He and Rapoport [2017] for certain PEL type Shimura varieties. In He and
Zhou [2016], the set of connected components ofX(�; b)was also studied for nonbasic b.
We proved the in a residually split group, the set of connected components is “controlled”
by the set of straight elements, together with the obstruction from the corresponding Levi
subgroup. Combined with the work of Zhou [2017], we verified in the residually split
case, the description of the mod-p isogeny classes on Shimura varieties conjectured by
Langlands and Rapoport [1987]. Part (2) is recent work of L. Chen and Nie [2017].

We would like to point out that in the statement, the following two conditions are es-
sential:

• The � -conjugacy class [b] is neutrally acceptable, i.e. [b] 2 B(G; �). This condition
comes from the Kottwitz-Rapoport conjecture (see Theorem 3.3).

• The pair (�; b) is Hodge-Newton indecomposable. In the general case, we need to
apply the Hodge-Newton decomposition (see Theorem 5.3). As a consequence, several
�1(M ) are involved in the description of �0(X(�; b)) in general.

7 Arbitrary parahoric level structure

7.1 Parahoric level versus Iwahori level. Let K 0 � I be a standard parahoric sub-
group of G and WK0 be the finite Weyl group of K 0. We define

X(�; b)K0 = fgK 0
2 G/K 0;g�1b�(g) 2 K 0 Adm(�)K 0

g:

IfK 0 = I , thenX(�; b)K0 = X(�; b). IfG is unramified,� is minuscule andK 0 = K

is a hyperspecial parahoric subgroup, then X(�; b)K0 = X�(b). As we have mentioned,
the varieties X�(b) (resp. X(�; b)) serve as group-theoretic models for the Newton strata
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in the special fiber of Shimura varieties with hyperspecial (resp. Iwahori) level structure.
The variety X(�; b)K0 plays the same role in the study of Shimura varieties with arbitrary
parahoric level structure.

The following result relates X(�; b)K0 for an arbitrary parahoric subgroup K 0 with
X(�; b) (for the Iwahori subgroup I ).

Theorem 7.1. The projection map G/I ! G/K 0 induces a surjection

X(�; b) � X(�; b)K0 :

This was conjectured by Kottwitz and Rapoport in Kudla and Rapoport [2011] and
Rapoport [2005] and was proved in He [2016b]. This fact allows one to reduce many
questions (e.g. nonemptiness pattern, connected components, etc.) of X(�; b)K0 for ar-
bitrary K 0 to the same questions for X(�; b). In fact, the statements in Theorem 3.3 and
Theorem 6.2 hold ifX(�; b) is replaced byX(�; b)K0 for an arbitrary parahoric subgroup
K 0.

7.2 Lusztig’sG-stable pieces. I would like to draw attention to some crucial ingredient
in the proof, which has important applications in arithmetic geometry.

Note that I Adm(�)I ¤ K 0 Adm(�)K 0 if I ¤ K 0. In order to show that X(�; b)!

X(�; b)K0 is surjective, one needs to have some decomposition of K 0 Adm(�)K 0, finer
than the decomposition intoK 0 double cosets. The idea of the sought-after decomposition
is essentially due to Lusztig. In 2004, Lusztig introduced G-stable pieces for reductive
groups over algebraically closed fields. The closure relation between G-stable pieces was
determined in He [2007b] and a more systematic approach using the “ partial conjugation
action” technique was given later in He [2007a]. The notion and the closure relation of
G-stable pieces also found application in arithmetic geometry, e.g. in the work of Pink,
Wedhorn and Ziegler on algebraic zip data Pink, Wedhorn, and Ziegler [2011].

7.3 Ekedahl-Kottwitz-Oort-Rapoport stratification. Lusztig’s ideawas also adapted
to loop groups, first with a hyperspecial parahoric subgroup, independently by the author
2011, and by Viehmann [2014]. It was used it to define the Ekedahl-Oort stratification of
a general Shimura variety.

The desired decomposition of K 0 Adm(�)K 0 for an arbitrary parahoric subgroup K 0

was given in He [2016b] as

K 0 Adm(�)K 0 = tw2K0
W̃ \Adm(�)K

0
�� IwI;

whereK0

W̃ is the set ofminimal length elements inWK0nW̃ and �� means the � -conjugation
action. This decomposition is used in joint workwith Rapoport 2017 to define the Ekedahl-
Kottwitz-Oort-Rapoport stratification of Shimura varieties with arbitrary parahoric level
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structure. This stratification interpolates between the Kottwitz-Rapoport stratification in
the case of the Iwahori level structure and the Ekedahl-Oort stratificationViehmann [2014]
in the case of hyperspecial level structure.

8 Affine Deligne-Lusztig varieties with simple geometric structure

8.1 Simple geometric structure for some X(�; b0)K0 . The geometric structure of
X(�; b0)K0 for basic b0 is rather complicated in general. However, in certain cases,
X(�; b0)K0 admit a simple description. The first nontrivial example is due to Vollaard and
Wedhorn in Vollaard and Wedhorn [2011]. They showed that X�(b0) for an unramified
unitary group of signature (1; n�1) and� = (1; 0; � � � ; 0) (and for hyperspecial parahoric
level structure), is a union of classical Deligne-Lusztig varieties, and the index set and the
closure relations between the strata are encoded in a Bruhat-Tits building. Since then, this
question has attracted significant attention. We mention the work of Rapoport, Terstiege,
andWilson [2014] on ramified unitary groups, of Howard and Pappas [2014], Howard and
Pappas [2017] on orthogonal groups, of Tian and Xiao [2016] in the Hilbert-Blumenthal
case. In all these works, the parahoric subgroups involved are hyperspecial parahoric
subgroups or certain maximal parahoric subgroups. The analogous group-theoretic ques-
tion for maximal parahoric subgroups was studied in joint work with Görtz Görtz and He
[2015].

Note that these simple descriptions of closed affine Deligne-Lusztig varieties (and the
corresponding basic locus of Shimura varieties) have been used, with great success, to-
wards applications in number theory: to compute intersection numbers of special cycles,
as in the Kudla-Rapoport program Kudla and Rapoport [2011] or in work Rapoport, Ter-
stiege, and W. Zhang [2013], Li and Y. Zhu [2017] towards Zhang’s Arithmetic Funda-
mental Lemma W. Zhang [2012]; and to prove the Tate conjecture for certain Shimura
varieties Tian and Xiao [2014], Helm, Tian, and Xiao [2017].

The work of Vollaard and Wedhorn [2011], Rapoport, Terstiege, and Wilson [2014],
Howard and Pappas [2014], Howard and Pappas [2017], Tian and Xiao [2016] focused
on specific Shimura varieties with certain maximal parahoric level structure. The work
Görtz and He [2015] studied the analogous group-theoretic question for arbitrary reduc-
tive groups. The conceptual interpretation on the occurrence of classical Deligne-Lusztig
varieties was given; however, a large part of the work in Görtz and He [ibid.] was still
obtained by brute force.

8.2 Some equivalent conditions. From the Lie-theoretic point of view, one would like
to consider not only the maximal parahoric subgroups, but all parahoric subgroups; and
one would like to have a conceptual understanding on the following question:
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When and why is X(�; b0)K0 naturally a union of classical Deligne-Lusztig varieties?
This was finally achieved in joint work with Görtz and Nie 2015 as follows

Theorem 8.1. Assume that G is simple, � is a dominant coweight of G and K 0 is a
parahoric subgroup. Then the following conditions are equivalent:

• For basic [b0] 2 B(G; �), X(�; b0)K0 is naturally a union of classical Deligne-Lusztig
varieties;

• For any nonbasic [b] 2 B(G; �), dimX(�; b)K0 = 0;

• The pair (�; b) is Hodge-Newton decomposable for any nonbasic [b] 2 B(G; �);

• The coweight � is minute for G.

Here the minute condition is an explicit combinatorial condition on the coweight �.
For quasi-split groups, it means that for any � -orbit O on the set of simple roots, we haveP

i2Oh�; !i i 6 1. For non quasi-split groups, the condition is more involved and we
refer to Goertz, He, and Nie [2016, Definition 2.2] for the precise definition. It is also
worth mentioning that it is not very difficult to classify the pairs (G; �) with the minute
condition. In Goertz, He, and Nie [ibid., Theorem 2.5], a complete list of the cases is
obtained, where X(�; b0)K0 is naturally a union of classical Deligne-Lusztig varieties.

Fargues and Rapoport conjectured that for p-adic period domains, the weakly admissi-
ble locus coincideswith the admissible locus if and only if the pair (�; b) is Hodge-Newton
decomposable for any nonbasic [b] 2 B(G; �) (cf. Goertz, He, and Nie [ibid., Conjecture
0.1]). This conjectured is established in a very recent preprint M. Chen, Fargues, and Shen
[2017] by Chen, Fargues and Shen.

8.3 Further remarks. From the Lie-theoretic point of view, there are some quite strik-
ing new features in Theorem 8.1:

1. The relations between the variety X(�; b)K0 for the basic � -conjugacy class and for
nonbasic � -conjugacy classes;

2. The relation between the condition that X(�; b0)K0 has a simple description and the
Hodge-Newton decomposability condition;

3. The existence of a simple description of X(�; b0)K0 is independent of the parahoric
subgroup K 0.

Note that part (1) and part (2) are new even for the specific Shimura varieties with hy-
perspecial level structure considered in the previous works. Part (3) is the most mysterious
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one. In Goertz, He, and Nie [2016], we state that “We do not see any reason why this inde-
pendence of the parahoric could be expected a priori, but it is an interesting parallel with
the question when the weakly admissible and admissible loci in the rigid analytic period
domain coincide.”

For applications to number theory, one needs to consider the fraction field of the Witt
ring instead of the formal Laurent series field Fq((�)). In that setting, we have a similar,
but weaker result, namely,X(�; b0)K0 is naturally a union of classical Deligne-Lusztig va-
rieties as perfect schemes. It is expected that the structural results hold without perfection,
as indicated in the special cases established in the papers mentioned in Section 8.1.

9 Some applications to Shimura varieties

In the last subsection, we give a very brief discussion of some applications to arithmetic
geometry.

9.1 Some characteristic subsets. The study of some characteristic subsets in the spe-
cial fiber of a Shimura variety is a central topic in arithmetic geometry. We mention
the Newton strata, the Ekedahl-Oort strata for the hyperspecial level structure and the
Kottwitz-Rapoport strata for the Iwahori level structure. Concerning these stratifications,
there are many interesting questions one may ask, e.g. which strata are nonempty, what
is the relation between these various stratifications, etc.. These questions have been in-
tensively studied in recent years and there is a large body of literature on these questions.
Among them, wemention thework ofViehmann andWedhorn [2013] on the nonemptiness
of Newton strata and Ekedahl-Oort strata for PEL type Shimura varieties with hyperspe-
cial level structure, the work of M. Kisin, Madapusi, and Shin [n.d.] on the nonemptiness
of the basic Newton stratum, the work of Hamacher [2015b] on the closure relation be-
tween Newton strata, and the work of Wedhorn [1999] and Moonen [2004] on the density
of the �-ordinary locus (i.e. the Newton stratum corresponding to ��). We refer to He
and Rapoport [2017, Introduction] and Viehmann [2015] for more references.

9.2 An axiomatic approach. In the works mentioned above, both algebro-geometric
and Lie-theoretic methods are involved, and are often mixed together.

In joint work with He and Rapoport [2017], we purposed an axiomatic approach to
the study of these characteristic subsets in a general Shimura variety. We formulated five
axioms, based on the existence of integral models of Shimura varieties (which have been
established in various cases by the work of Rapoport and Zink [1996], Kisin and Pap-
pas [2015]), the existence of the following commutative diagram and some compatibility
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:

Here K 0 is a parahoric subgroup, ShK0 is the special fiber of a Shimura variety with K 0

level structure, and G/K 0
� is the set-theoretic quotient of G by the � -conjugation action

of K 0.
As explained in Goertz, He, and Nie [2016, §6.2], affine Deligne-Lusztig varieties are

involved in the diagram in an essential way, via the bijection

JbnX(�; b)K0

∼
�! d �1

K0 ([b]) \ `�1
K0 (K 0 Adm(f�g)K 0):

9.3 Some applications and current status of the axioms. It is shown inHe andRapoport
[2017] that under those axioms, the Newton strata, the Ekedahl-Oort strata, the Kottwitz-
Rapoport strata, and the Ekedahl-Kottwitz-Oort-Rapoport strata discussed in Section 7,
are all nonempty in their natural range. Furthermore, under those axioms several relations
between these various stratifications are also established in He and Rapoport [ibid.].

Following He and Rapoport [ibid.], Shen and C. Zhang [2017] studied the geometry of
good reductions of Shimura varieties of abelian type. They established basic properties
of these characteristic subsets, including nonemptiness, closure relations and dimension
formula and some relations between these stratifications.

In joint work with Nie 2017, based on the framework of He and Rapoport [2017], we
studied the density problem of the�-ordinary locus. Under the axioms of He and Rapoport
[ibid.] we gave several explicit criteria on the density of the �-ordinary locus.

Algebraic geometry is essential in the verification of these axioms. For PEL type
Shimura varieties associated to unramified groups of type A and C and to odd ramified uni-
tary groups, the axioms are verified in joint work with Zhou 2016. For Shimura varieties
of Hodge type, most of the axioms are verified in recent work of Zhou [2017].
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Abstract

We consider the Ext-analogues of branching laws for representations of a group
to its subgroups in the context of p-adic groups.
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1 Introduction

Considering the restriction of representations of a groupG to one of its subgroupsH , say
of G = SOn+1(F ) toH = SOn(F ) for a non-archimedean local field F has been a very
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fruitful direction of research especially through its connections to questions on period inte-
grals of automorphic representations, cf. Gan, Gross, and Prasad [2012] for the conjectural
theory both locally and globally. The question for local fields amounts to understanding
HomSOn(F )[�1; �2] for irreducible admissible representations �1 of SOn+1(F ), and �2

of SOn(F ). The first result proved about this is the multiplicity one property which says
that this space is at most one dimensional, cf. Aizenbud, Gourevitch, Rallis, and Schiff-
mann [2010], Sun and Zhu [2012]. It may be mentioned that before the full multiplicity
one theorem was proved, even finite dimensionality of the space was not known. With
multiplicity one theorem proved, one then goes on to prove more precise description of
the set of irreducible admissible representations �1 of SOn+1(F ), and �2 of SOn(F )with
HomSOn(F )[�1; �2] 6= 0. These have now become available in a series of papers due to
Waldspurger, and Moeglin-Waldspurger, cf. J.-L.Waldspurger [2010], J.-L.Waldspurger
[2012b], J.-L.Waldspurger [2012a], Moeglin and J.-L.Waldspurger [2012]. There is also
a recent series of papers by Beuzart-Plessis on similar questions for unitary groups, cf.
Beuzart-Plessis [2016], Beuzart-Plessis [2015], Beuzart-Plessis [2014].

Given the interest in the space HomSOn(F )[�1; �2], it is natural to consider the related
spaces ExtiSOn(F )[�1; �2], and in fact homological algebra methods suggest that the sim-
plest answers are not for these individual spaces, but for the alternating sum of their di-
mensions: EP[�1; �2] =

P1
i=0(�1)i dimExtiSOn(F )[�1; �2]; these hopefully more man-

ageable objects –certainly more flexible– when coupled with vanishing of higher Ext’s
(when available) may give theorems about HomSOn(F )[�1; �2]. We hasten to add that
before we can define EP[�1; �2], ExtiSOn(F )[�1; �2] needs to be proved to be finite dimen-
sional for �1 and �2 finite length admissible representations of SOn+1(F ) and SOn(F )

respectively, and also proved to be 0 for i large. Vanishing of ExtiSOn(F )[�1; �2] for large i
is a well-known generality to which we will come to later. Towards a proof of finite dimen-
sionality of Exti in this case, to be made by an inductive argument on n later in the paper,
we note that unlike HomSOn(F )[�1; �2], where we will have no idea how to prove finite
dimensionality if both �1 and �2 are cuspidal, exactly this case we can handle apriori, for
i > 0, as almost by the very definition of cuspidal representations, they are both projective
and injective objects in the category of smooth representations. Recently, there is a very
general finiteness theorem for Exti [�1; �2] (for spherical varieties) in Aizenbud and Sayag
[2017]. However, we have preferred to give our own older approach via Bessel models
which intervene when analyzing principal series representations of SOn+1(F ) when re-
stricted to SOn(F ). As a bonus, this approach gives explicit answers about Euler-Poincaré
characteristics.

Thinking about Ext-analogues suggest interchanging the roles of �1 and �2 in anal-
ogy with the known relationship, EP[V1; V _2 ] = EP[V2; V _1 ] when V1 and V2 are finite
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length representations on the same group, and allows one to consider submodules as in
HomSOn(F )[�2; �1], and more generally, ExtiSOn(F )[�2; �1].

Based on various examples, a clear picture seems to be emerging about ExtiH [�1; �2].
For example, we expect that when �1 and �2 are tempered, ExtiH [�1; �2] is nonzero only
for i = 0. On the other hand we expect that ExtiH [�2; �1] is typically zero for i = 0 (so no
wonder branching is usually not considered as a subrepresentation!), and shows up only
for i equals the split rank of the center of the Levi from which �2 arises through parabolic
induction of a supercuspidal representation; in fact ExtiH [�2; �1] is zero beyond the split
rank of the center of this Levi by generalities, so ExtiH [�1; �2] is typically nonzero only for
i = 0, whereas ExtiH [�2; �1] is nonzero only for the largest possible i . We make precise
some of these suggestions during the course of the paper, and discuss some examples as
evidence for the suggested conjectures made here.

In the process of relating Exti [�1; �2] with Exti [�2; �1], we were led to a duality the-
orem for a general reductive group which turned out to be a consequence of the work
in P.Schneider and U.Stuhler [1997]. It is the subject matter of Section 8. As an exam-
ple, calculation of dimC HomPGL2(F )[�1 ˝ �2; �3] which was part of author’s work in
Prasad [1990], and simple calculations about EPPGL2(F )[�1 ˝ �2; �3] allow the calcula-
tion of Ext1PGL2(F )[�1 ˝ �2; �3], and then by the duality theorem, we are able to analyze
HomPGL2(F )[�3; �1 ˝ �2] (irreducible submodules of the tensor product).

In the archimedean case, several papers of T. Kobayashi, see e.g. Kobayashi [1994],
do study the restriction problem for (g; K)-modules in the sense of sub-modules but the
analogous restriction problem in the sense of sub-modules seems to be absent in the p-
adic case. Proposition 5.1 and Proposition 5.3 suggest that HomH [�2; �1] = 0 whenever
�1 is an irreducible tempered representation of G (assumed to be simple) unless H has
compact center, and �2 is a supercuspidal representation of it.

To summarize the main results of the paper, we might mention Theorem 4.2 giving
a complete understanding of EPGLn(F )[�1; �2] for �1 and �2 finite length representa-
tions of GLn+1(F ) and GLn(F ) respectively. Theorem 6.1 proves ExtiSOn(F )[�1; �2]

to be finite dimensional for �1 and �2 finite length representations of SOn+1(F ) and
SOn(F ) respectively, and as Corollary 6.3 of the proof, gives a good understanding of
EPSOn(F )[�1; �2] when �1 is a principal series. We formulate as Conjecture 5.1 the van-
ishing of ExtiGLn(F )[�1; �2] for i > 0 for generic representations, and Conjecture 7.1 sug-
gests that the integral formula discovered by Waldspurger in the papers J.-L.Waldspurger
[2010] and J.-L.Waldspurger [2012b] are actually for Euler-Poincaré characteristic of gen-
eral finite length representations in the spirit of Kazhdan orthogonality. In Section 9 we
suggest that all nontrivial Ext’s have some ‘geometric’ origin.
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2 Preliminaries

Given a connected reductive F -group G, we make the usual abuse of notation to also
denote byG the locally compact totally disconnected groupG(F ) of F -rational points of
the algebraic groupG. We denote byR(G) the abelian category of smooth representations
of G over C. The abelian category R(G) has enough projectives and enough injectives,
e.g. for any compact open subgroupK ofG, indGK(C) is a projective object in R(G), and
IndGK(C) is an injective object in R(G) (we use throughout the paper ind for compactly
supported induction and Ind for induction without compact support condition); in fact
these projective objects and their direct summands, and their smooth duals as injective
objects suffice for all considerations in the paper. Since R(G) has enough projectives and
enough injectives, it is meaningful to talk about ExtiG [�1; �2] as the derived functors of
HomG [�1; �2].

For reductive p-adic groups G considered in this paper, it is known that ExtiG [�; � 0]
is zero for any two smooth representations � and � 0 of G when i is greater than the F -
split rank of G. This is a standard application of the projective resolution of the trivial
representation C ofG provided by the building associated toG. For another proof of this,
and for finite dimensionality of ExtiG [�; � 0], see Proposition 2.9 below.

For two smooth representations � and � 0 of G one can consider the Euler-Poincaré
pairing EPG [�; � 0] between � and � 0 defined by

EPG [�; � 0] =
X
i

(�1)i dimC ExtiG [�; �
0]:

For this definition to make sense, we must prove that ExtiG [�; � 0] are finite-dimensional
vector spaces over C for all integers i . An obvious remark which will be tacitly used
throughout this paper is that if

0 ! �1 ! � ! �2 ! 0;

is an exact sequence of smoothG-modules, and if any two of the EPG [�1; �
0];EPG [�; � 0];

EPG [�2; �
0]; make sense, then so does the third (finite dimensionality of the Ext groups,

and zero beyond a stage), and

EPG [�; � 0] = EPG [�1; �
0] + EPG [�2; �

0]:
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This remark will be used to break up representations � or � 0 in terms of simpler objects
for which EP can be proved to make sense by reducing to smaller groups via some form
of Frobenius recoprocity.

The following proposition summarizes some key properties of the Euler-Poincaré pair-
ing, see P.Schneider and U.Stuhler [1997] for the proofs (part 2.1 (4) is known only in
characteristic zero).

Proposition 2.1. Let � and � 0 be finite-length, smooth representations of a reductive
p-adic group G. Then:

1. EP[�_1 ; �2] is a symmetric, Z-bilinear form on the Grothendieck group of finite-
length representations of G.

2. EP is locally constant. (A family f��g of representations on a fixed vector space V
is said to vary continuously if all ��jK are all equivalent for some compact open
subgroup K, and the matrix coefficients h��v; ṽi vary continuously in �.)

3. EPG [�; � 0] = 0 if � or � 0 is induced from any proper parabolic subgroup in G.

4. EPG [�; � 0] =
R
Cellip

Θ(c)Θ̄0(c) dc, where Θ and Θ0 are the characters of � and
� 0 assumed to have the same unitary central character, and dc is a natural measure
on the set Cel lip of regular elliptic conjugacy classes inG. (Note that ifG has non-
compact center, then both sides of this equality are zero; the right hand side being
zero as there are no regular elliptic elements in G in that case, and the left hand
side being zero by a simple argument.)

Several assertions about Hom spaces can be converted into assertions about Exti . The
following generality allows one to do so.

Proposition 2.2. Let A and B be two abelian categories, and F a functor from A to B,
and G a functor from B and A. Assume that G is a left adjoint of F , i.e., there is a natural
equivalence of functors:

HomB[X; F (Y )] Š HomA[G(X); Y ]:

Then,

1. If F and G are exact functors, then F maps injective objects of A to injective objects
of B, and G maps projective objects of B to projective objects of A.

2. If F and G are exact functors, then ExtiB[X; F (Y )] Š ExtiA[G(X); Y ]:
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Proof. Part (1) of the Proposition follows directly from definitions; see Bernstein [1992],
Proposition 8. For part (2), it suffices to note that if

� � �Pn ! Pn�1 ! � � � ! P1 ! P0 ! X ! 0;

is a projective resolution of an object X in B, then by part (1) of the Proposition,

� � � G(Pn) ! G(Pn�1) ! � � � ! G(P1) ! G(P0) ! G(X) ! 0;

is a projective resolution of G(X). Therefore part (2) of the proposition follows from the
adjointness relationship between F and G.

The following is a direct consequence of Frobenius reciprocity combined with Propo-
sition 2.2.

Proposition 2.3. Let H be a closed subgroup of a p-adic Lie group G. Then,

1. The restriction of any smooth projective representation of G to H is a projective
object in R(H ), and IndGHU is an injective representation of G for any injective
representation U of H .

2. For any smooth representation U of H , and V of G,

ExtiG [V; Ind
G
HU ] Š ExtiH [V;U ]:

Note that for any two smooth representations U; V of G,

HomG [U; V _] Š HomG [V;U_];

where U_; V _ are the smooth duals of U; V respectively. Therefore we have adjoint
functors as in Proposition 2.2 with F = G to be the smooth dual from the category of
smooth representations of a p-adic group G to its opposite category. By Proposition 2.2,
it follows that the smooth dual of a projective object in R(G) is an injective object in
R(G), and further we have the following proposition.

Proposition 2.4. For a p-adic Lie group G, let U and V be two smooth representations
of G. Then,

ExtiG [U; V
_] Š ExtiG [V;U

_]:

Since the smooth dual of indGH (U ) is IndGH (U_) (for normalized induction), the previ-
ous two propositions combine to give:

Proposition 2.5. For H a closed subgroup of a p-adic Lie group G, let U be a smooth
representation of H , and V a smooth representation of G. Then,

ExtiH [V;U_] Š ExtiG [V; Ind
G
H (U_)] Š ExtiG [ind

G
HU; V

_]:
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For smooth representations U; V;W of G, the canonical isomorphism,

HomG [V ˝ U ;W _] Š HomG [U ˝W ;V _];

translates into the following proposition by Proposition 2.2.

Proposition 2.6. For a p-adic Lie group G, and U; V;W smooth representations of G,
there are canonical isomorphisms,

ExtiG [V ˝ U ;W _] Š ExtiG [U ˝W ;V _];

in particular
ExtiG [V ˝ U;C] Š ExtiG [V;U

_]:

Proposition 2.2 with the form of Frobenius reciprocity for Jacquet modules, implies the
following proposition.

Proposition 2.7. For P a parabolic subgroup of a reductive p-adic group G with Levi
decomposition P = MN , the Jacquet functor V ! VN from R(G) to R(M ) takes
projective objects to projective objects, and for V 2 R(G), U 2 R(M ), we have (using
normalized parabolic induction and normalized Jacquet module),

ExtiG [V; Ind
G
PU ] Š ExtiM [VN ; U ]:

The proof of the following proposition is exactly as the proof of the earlier proposition.
This proposition will play an important role in setting-up an inductive context to prove
theorems on a group G in terms of similar theorems for subgroups.

Proposition 2.8. For P a (not necessarily parabolic) subgroup of a reductive p-adic
group G with Levi decomposition P = MN , let  be a character of N normalized by
M . Then for any irreducible representation � ofM , one can define a representation of P ,
denoted by � � which when restricted toM is �, and when restricted toN is  . For any
smooth representation V of G, let VN; be the twisted Jacquet module of V with respect
to the character  of N which is a smooth representation of M . Then,

ExtiG [ind
G
P (� �  ); V _] Š ExtiM [VN; ; �

_]:

The following much deeper result than these earlier results follows from the so called
Bernstein’s second adjointness theorem.

Theorem 2.1. For P a parabolic subgroup of a reductive p-adic group G with Levi
decomposition P = MN , let U be a smooth representation of M thought of as a repre-
sentation of P , and V a smooth representation of G. Let P� = MN� be the parabolic
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opposite to P =MN . Then we have (using normalized parabolic induction and normal-
ized Jacquet module),

ExtiG [Ind
G
PU; V ] Š ExtiM [U; VN� ]:

As a sample of arguments with the Ext groups, we give a proof of the following basic
proposition.

Proposition 2.9. Suppose that V is a smooth representation of G of finite length, and
that all of its irreducible subquotients are subquotients of representations induced from
supercuspidal representations of a Levi factor of the standard parabolic subgroup P =

MU of G, defined by a subset Θ of the set of simple roots for a maximal split torus of
G. Then if V 0 is a finite length smooth representation of G, ExtiG [V; V 0] and ExtiG [V 0; V ]

are finite dimensional vector spaces over C. If V 0 is any smooth representation of G,
ExtiG [V; V 0] = ExtiG [V 0; V ] = 0 for i > d (M ) = d � jΘj where d is the F -split rank of
G. Further, EPG [�; � 0] = 0 if both �; � 0 are finite length representations of G, and � or
� 0 is induced from a proper parabolic subgroup of G.

Proof. This is Corollary III.3.3 in P.Schneider and U.Stuhler [1997]. Since this is elemen-
tary enough, we give another proof.

We begin by noting that tensoring V by the resolution of C by projective modules in
R(G) afforded by the building associated to G gives a projective resolution of V , but
one which is not finitely generated as a G-module even if V is irreducible, and therefore
proving finite dimensionality of ExtiG [V; V 0] requires some work. The resolution given
by the building at least proves that these are 0 beyond the split rank of G. Our proof
below first proves the assertions on ExtiG [V; V 0] if V or V 0 is a full principal series IndGP �
where � is a cuspidal representation ofM , and then handles all subquotients by a standard
dévissage.

Fix a surjective map � : M ! Zd(M ) with kernelM � which is sometimes called the
subgroup ofM generated by compact elements.

Let � be a cuspidal representation ofM . Therefore � restricted toM � , which is [M;M ]

up to a compact group, is an injective module, and hence Exti
M� [VN ; �] = 0 for i > 0.

By Frobenius reciprocity, combined with the spectral sequence associated to the normal
subgroupM � ofM with quotient Zd , it follows that:

ExtiG [V; Ind
G
P �] Š ExtiM [VN ; �]

Š H i (Zd(M );HomM� [VN ; �]):

This proves that ExtiG [V; Ind
G
P �] = 0 for i > d (M ) for any smooth representation V

of G, and that ExtiG [V; Ind
G
P �] are finite dimensional for V of finite length.
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Similarly, by the second adjointness theorem, it follows that ExtiG [Ind
G
P (�); V

0] = 0

for i > d (M ), and that ExtiG [Ind
G
P (�); V

0] are finite dimensional for V 0 a finite length
representation in R(G).

Having proved properties of ExtiG [V; Ind
G
P �] and ExtiG [Ind

G
P (�); V

0], the rest of the
proposition about ExtiG [V; V 0] follows by dévissage by writing an irreducible representa-
tion V of G as a quotient of a principal series Ps = IndGP �, and using conclusions on the
principal series to make conclusions on V . This part of the argument is very similar to
what we give in Lemma 6.1, so we omit it here.

3 Kunneth Theorem

In this section, we prove a form of the Kunneth theorem which we will have several oc-
casions to use. A version of Kunneth’s theorem is there in Raghuram [2007] assuming,
however, finite length conditions on both E1 and E2 which is not adequate for our appli-
cations.

During the course of the proof of the Kunneth Theorem, we will need to use the follow-
ing most primitive form of Frobenius reciprocity.

Lemma 3.1. Let K be an open subgroup of a p-adic group G. Let E be a smooth repre-
sentation of K, and F a smooth representation of G. Then,

HomG [indGKE;F ] Š HomK [E;F ]:

Theorem 3.1. Let G1 and G2 be two p-adic groups. Let E1; F1 be any two smooth rep-
resentations of G1, and E2; F2 be any two smooth representations of G2. Then assuming
that G1 is a reductive p-adic group, and E1 has finite length, we have

ExtiG1�G2
[E1 �E2; F1 � F2] Š

M
i=j+k

ExtjG1
[E1; F1] ˝ ExtkG2

[E2; F2]:

Proof. If P1 is a projective module for G1, and P2 a projective module for G2, then
P1 � P2 is a projective module for G1 �G2.

Let
� � � ! P1 ! P0 ! E1 ! 0;

� � � ! Q1 ! Q0 ! E2 ! 0;

be a projective resolution for E1 as a G1-module, and a projective resolution for E2 as a
G2-module.

It follows that the tensor product of these two exact sequences:

� � � ! P1 �Q0 + P0 �Q1 ! P0 �Q0 ! E1 �E2 ! 0;
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is a projective resolution of E1 � E2. Therefore, ExtiG1�G2
[E1 � E2; F1 � F2] can be

calculated by taking the cohomology of the chain complex HomG1�G2
[
L
i+j=k Pi �

Qj ; F1 � F2].
It is possible to choose a projective resolution ofE1 by Pi = indG1

Ki
Wi for finite dimen-

sional representations Wi of compact open subgroups Ki of G1. The existence of such a
projective resolution is made possible through the construction of an equivariant sheaf on
the Bruhat-Tits building of G1 associated to the representation E1, cf. P.Schneider and
U.Stuhler [1997]. this is the step which needs G1 to be reductive, and also requires the
admissibility of E1.

Since Wi are finite dimensional, we have the isomorphism

HomK�G2
[Wi �Qj ; F1 � F2] Š HomK [Wi ; F1] ˝ HomG2

[Qj ; F2];

therefore,

HomG1�G2
[Pi �Qj ; F1 � F2] = HomG1�G2

[indG1

K (Wi ) �Qj ; F1 � F2]

Š HomK�G2
[Wi �Qj ; F1 � F2]

Š HomK [Wi ; F1] ˝ HomG2
[Qj ; F2]

Š HomG1
[Pi ; F1] ˝ HomG2

[Qj ; F2]:

Thus we are able to identify the chain complex HomG1�G2
[
L
i+j=k Pi �Qj ; F1�F2] as

the tensor product of the chain complexes HomG1
[Pi ; F1] and HomG2

[Qj ; F2]. Now the
abstract Kunneth theorem which calculates the cohomology of the tensor product of two
chain complexes in terms of the cohomology of the individual chain complexes completes
the proof of the theorem.

4 Branching laws from GLn+1(F ) to GLn(F )

We begin by recalling the following basic result in this context, cf. Prasad [1993].

Theorem 4.1. Given an irreducible generic representation �1 of GLn+1(F ), and an irre-
ducible generic representation �2 of GLn(F ),

HomGLn(F )[�1; �2] = C:

The aim of this section is to prove the following theorem which can be considered as
the Euler-Poincaré version of Theorem 4.1.

Theorem 4.2. Let �1 be an admissible representation of GLn+1(F ) of finite length, and
�2 an admissible representation of GLn(F ) of finite length. Then, ExtiGLn(F )[�1; �2] are
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finite dimensional vector spaces over C, and

EPGLn(F )[�1; �2] = dimWh(�1) � dimWh(�2);

where Wh(�1), resp. Wh(�2), denotes the space of Whittaker models for �1, resp. �2,
with respect to fixed non-degenerate characters on the maximal unipotent subgroups in
GLn+1(F ) and GLn(F ).

The proof of this theorem will be accomplished using some results of Bernstein and
Zelevinsky regarding the structure of representations ofGLn+1(F ) restricted to themirabolic
subgroup.

Denote by En the mirabolic subgroup of GLn+1(F ) consisting of matrices whose last
row is equal to (0; 0; � � � ; 0; 1) and let Nn+1 be the group of upper triangular unipotent
matrices in GLn+1(F ). We will be using subgroups GLi (F ) of GLn+1(F ) for i � n+ 1

always sitting at the upper left corner of GLn+1(F ). We fix a nontrivial character  0 of
F and let  n+1 be the character of Nn+1 given by

 n+1(u) =  0(u1;2 + u2;3 + � � � + un;n+1):

For a representation � of GLn+1(F ), let

� i = the i-th derivative of �;

which is a representation of GLn+1�i (F ). It will be important for us to note that � i are
representations of finite length of GLn+1�i (F ) if � is of finite length for GLn+1(F ).

To recall the definition of � i , let Rn+1�i = GLn+1�i (F ) � Vi be the subgroup of
GLn+1(F ) consisting of matrices �

g v

0 z

�
with g 2 GLn+1�i (F ), v 2 M(n+1�i)�i , z 2 Ni . If the character  i of Ni is extended to
Vi by extending it trivially acrossM(n+1�i)�i , then we have

� i = �Vi ; i
;

where �Vi ; i
is the twisted Jacquet module of � , i.e., the maximal quotient of � on which

Vi operates via the character  i .
Here is a generality from Bernstein and Zelevinsky [1976], §3.5.

Proposition 4.1. Any smooth representation Σ of En has a natural filtration by E = En
modules

0 = Σ0 � Σ1 � Σ2 � � � � � Σn+1 = Σ
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such that
Σi+1/Σi = indEn

Ri
(Σn+1�i

˝  n+1�i ) for i = 0; � � � ; n,

where Ri = GLi (F ) � Vn+1�i is the subgroup of GLn+1(F ) consisting of�
g v

0 z

�
with g 2 GLi (F ), v 2 Mi�(n+1�i), z 2 Nn+1�i , and the character  n+1�i on Nn+1�i

is extended to Vn+1�i by extending it trivially across Mi�(n+1�i).

The proof of the following proposition is a direct consequence of Proposition 2.8.

Proposition 4.2. For a smooth representation �1 of GLn+1(F ), and �2 of GLn(F ),

ExtjGLn(F )[ind
GLn(F )
Ri

(�n�i+1
1 ˝  n�i ); �

_
2 ] = ExtjGLi (F )[�

n�i
2 ; (�n�i+1

1 )_]:

Proof. Since GLn(F ) � Ri = En, GLn(F ) \ Ri = GLi (F ) � Vn�i , the restriction of
�n+1�i
1 ˝ n+1�i from Ri to GLn(F )\Ri = GLi (F ) � Vn�i is �n+1�i

1 ˝ n�i for any
i , 0 � i � n. Therefore, the proposition follows from Proposition 2.8.

Lemma 4.1. For any two smooth representations V1; V2 of GLn(F ), n � 1, of finite
length,

EPGLn(F )[V1; V2] = 0:

Proof. It suffices to prove the lemma assuming that both V1 and V2 are irreducible repre-
sentations of GLn(F ). If the two representations V1; V2 were irreducible, and had differ-
ent central characters, then clearly ExtiGLn(F )[V1; V2] = 0 for all integers i . On the other
hand, we know by Proposition 2.1(b) that for representations V1 and V2 of finite length of
GLn(F ), EPGLn(F )[V1; V2] is constant in a connected family, so denoting by � the char-
acter �(g) = j detgj of GLn(F ), we have EPGLn(F )[V1; V2] = EPGLn(F )[�

s � V1; V2] for
all s 2 C. Choosing s appropriately, we can change the central character of �s � V2 to be
different from V1, and hence EPGLn(F )[V1; V2] = EPGLn(F )[�

s � V1; V2] = 0.

Proof of Theorem 4.2: Since the Euler-Poincaré characteristic is additive in exact se-
quences, it suffices to calculate EPGLn(F )[ind

GLn(F )
Ri

(�n�i1 ˝ n�i+1); �2]which by Propo-
sition 2.8 is EPGLi (F )[(�

n�i
2 )_; (�n�i+1

1 )_];which by Lemma 4.1 above is 0 unless i = 0.
(Note that in EPGLi (F )[(�

n�i
2 )_; (�n�i+1

1 )_]; both the representations involved are admis-
sible representations of GLi (F ).) For i = 0, note that we are dealing with GL0(F ) =

1, and the representations involved are (�_1 )
n+1 and (�_2 )

n, which are nothing but the
space of Whittaker models of �_1 and �_2 . Since for representations V1; V2 of the group
GL0(F ) = 1, EP[V1; V2] = dimHom[V1; V2] = dimV1 � dimV2, this completes the proof
of the theorem.
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Remark 4.1. One knows, cf. Prasad [1993], that there are irreducible generic representa-
tions of GL3(F ) which have the trivial representation of GL2(F ) as a quotient; similarly,
there are irreducible nongeneric representations of GL3(F )with irreducible generic repre-
sentations of GL2(F ) as a quotient. For such pairs (�1; �2) of representations, it follows
from Theorem 4.2 that EPGL2(F )[�1; �2] = 0; whereas HomGL2(F )[�1; �2] 6= 0: There-
fore, for such pairs (�1; �2) of irreducible representations, wemust have ExtiGL2(F )[�1; �2] 6=

0; for some i > 0.

5 Conjectural vanishing of Ext groups for generic representations

The following conjecture seems to be at the root of why the simple and general result
of previous section on Euler-Poincaré characteristic translates into a simple result about
Hom spaces for generic representations. The author has not managed to prove it in any
generality. There is a recent preprint by Chan and Savin, cf. Chan and Savin [2017]
dealing with some cases of this conjecture.

Conjecture 5.1. Let �1 be an irreducible generic representation of GLn+1(F ), and �2

an irreducible generic representation of GLn(F ). Then,

ExtiGLn(F )[�1; �2] = 0; for all i > 0:

Remark 5.1. By Remark 4.1, one cannot remove the genericity condition for either �1 or
�2 in the above conjecture. In particular, one cannot expect that a generic representation
of GLn+1(F ) when restricted to GLn(F ) is a projective representation in R(GLn(F ))

although this is the case for supercuspidal representations of GLn+1(F ). The paper Chan
and Savin [ibid.] proves that the part of the Steinberg representation of GLn+1(F ) (de-
noted Stn+1) in the Iwahori component of the Bernstein decomposition for R(GLn(F ))

is a projective module. There is no doubt then that Stn+1 when restricted to GLn(F ) is a
projective representation in R(GLn(F )), therefore

ExtiGLn(F )[Stn+1; �2] = 0 for i > 0

for any irreducible representation �2 of GLn(F ). As a consequence, it will follow from
the duality theorem of Schneider-Stuhler, cf. Theorem 8.1 below, that Stn+1 contains no
irreducible submodule of GLn(F ).

Towards checking the validity of this conjecture in some cases, note that by Theo-
rem 4.1 and Theorem 4.2, under the hypothesis of the conjecture,

dimHomGLn(F )[�1; �2] = 1; and EP[�1; �2] = 1:
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It follows that if we already knew that ExtiGLn(F )[�1; �2] = 0; i > 1; then we will also
know that, Ext1GLn(F )[�1; �2] = 0; and the conjecture will be proved for such representa-
tions.

It is easy to see that if �1 or �2 is cuspidal, then ExtiGLn(F )[�1; �2] = 0 for i > 1:We
do one slightly less obvious case when �1 arises as a subquotient of a principal series rep-
resentation induced from a cuspidal representation of a maximal parabolic in GLn+1(F ).

It follows from Corollary III.3.3(i) of P.Schneider and U.Stuhler [1997] that if �1 arises
from a cuspidal representation of a maximal parabolic in GLn+1(F ), it has a projective res-
olution of length 1 in the category R�(G) of smooth representations of G = GLn+1(F )

with central character �. It is easy to see that a projective module in R�(GLn+1(F ))

when considered as a representation of GLn(F ) is a projective module in R(GLn(F )), cf.
Proposition 3.2 inM.Nori and Prasad [2017]. This proves vanishing of ExtiGLn(F )[�1; �2] =

0 for i > 1; hence also of Ext1GLn(F )[�1; �2]:

This takes care ofG = GLn+1(F ) for n+1 � 3, except that for GL3(F ) if both �1 and
�2 arise as components of principal series representations induced from their Borel sub-
groups then there is a possibility of having nontrivial Ext2GL2(F )[�1; �2]. By the duality the-
orem of Schneider-Stuhler, cf. Theorem 8.1 below, we will have, HomGL2(F )[D�2; �1] 6=

0 (whereD�2 is the Aubert-Zelevinsky involution of�2). The following proposition takes
care of this.

Proposition 5.1. Let �1 be an irreducible generic representation of GL3(F ), and �2 any
irreducible representation of GL2(F ) which is not a twist of the Steinberg representation
of GL2(F ). Then

HomGL2(F )[�2; �1] = 0:

Wewill not prove this proposition here but discuss two propositions which deal with all
but a few cases of the proposition above. The cases left out by the next two propositions
can be handled by the Mackey restriction of an explicit principal series (especially using
that different inducing data can give rise to the same principal series).

Proposition 5.2. Let H1 � H be p-adic groups with Z = F � contained in the center of
H withZ\H1 = f1g. Suppose� is a smooth representation ofH1, and �2 an irreducible
admissible representation of H . Then HomH [�2; indHH1

(�)] = 0.

Proof. Note that for each x 2 H/H1, restriction of functions from H to (Z = F �) � x

gives rise to F �-equivariant maps

indHH1
(�) �! S(F �);

which can be assumed to be nonzero for any f 2 indHH1
(�) by choosing x 2 H/H1

appropriately.
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Therefore if HomH [�2; indHH1
(�)] 6= 0 choosing x 2 H/H1 appropriately, we get a

nonzero map from �2 �! S(F �) which is !-equivariant where ! is the central character
of �2. Since S(F �) has no functions on which F � operates by a character, the proof of
the proposition is complete.

This lemma when combined with the Bernstein-Zelevinsky filtration in Proposition 4.1
has the following as an immediate consequence.

Proposition 5.3. Let �1 be any smooth representation of GLn+1(F ) of finite length, and
�2 any irreducible representation of GLn(F ). Then if

HomGLn(F )[�2; �1] 6= 0;

then �2 appears a submodule of Jn;1(�1) where Jn;1 denotes the un-normalized Jacquet
module with respect to the (n; 1) parabolic in GLn+1(F ) considered as a module for
GLn(F ) � GLn(F ) � GL1(F ); in particular, if Jn;1(�1) = 0, then there are no nonzero
GLn(F )-submodules in �1.

Proof. The proof of the proposition is an immediate consequence of the observation that
the Bernstein-Zelevinsky filtration in Proposition 4.1 when restricted to GLn(F ) gives
rise to representations of GLn(F ) induced from subgroups Hi � GLn(F ) with Hi \

fZ(GLn(F )) = F �g = f1g except in the case when Hi = GLn(F ) which corresponds
to the Jacquet module Jn;1(�1).

6 Finite dimensionality of Ext groups

In this section we prove the finite dimensionality of Ext-groups in the case of SOn(F ) �

SOn+1(F ). The proof will have an inductive structure, and will involve Bessel models in
the inductive step, so we begin by recalling the concept of Bessel models.

Let V = X + D + W + Y be a quadratic space over the non-archimedean local
field F with X and Y totally isotropic subspaces of V in duality with each other under
the underlying bilinear form, D an anisotropic line in V , and W a quadratic subspace
of V . Suppose that the dimension of X is k; fix a complete flag he1i � he1; e2i �

� � � � he1; e2; � � � ; eki = X of isotropic subspaces in X . Let P = MU be the parabolic
subgroup in SO(V ) stabilizing this flag, withM = GL1(F )k�SO(D+W ). ForW � V a
codimension 2k+1 subspace as above, the subgroup SO(W )�U which is uniquely defined
up to conjugacy by SO(V ) makes frequent appearance in this work, as well as in other
works on classical groups. We call this subgroup as the Bessel subgroup, and denote it as
Bes(V;W ) = SO(W ) � U .
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Let PX = MX � UX be the maximal parabolic of SO(V ) stabilizing X . We have
MX Š GL(X) � SO(W +D), and UX sits in the exact sequence,

1 ! Λ2X ! UX ! X ˝ (D +W ) ! 1:

Let ` : U ! F be a linear form such that

1. its restriction to each of the simple root spaces in GL(X) defined by the flag he1i �

he1; e2i � � � � � he1; e2; � � � ; eki = X of isotropic subspaces in X is non-trivial;

2. its restriction to the unipotent radical of the parabolic PX = MXUX in SO(V )

stabilizing X is trivial on the subgroup of UX which is Λ2X ;

3. and on the quotient of UX by Λ2X which can be identified to (D +W ) ˝ X , ` is
given by the tensor product of a linear form on D +W which is trivial on W , and
a linear form on X which is trivial on the subspace he1; e2; � � � ; ek�1i.

Composing the linear form ` : U ! F with a nontrivial character  0 : F ! C�, we
get a character  : U ! C�. This character  : U ! C� depends only on W � V a
nondegenerate subspace of V of odd codimension, such that the quadratic space V /W is
split, and is independent of all choices made along the way (including that of the character
 0). The character ofU is invariant under SO(W ). For any representation � of SO(W ),
Bes(V;W ) = SO(W ) �U comes equipped with the representation which is � on SO(W ),
and  on U ; since  is fixed when considering representations of Bes(V;W ) = SO(W ) �

U , we denote this representation of Bes(V;W ) = SO(W ) �U as � itself or sometimes as
� ˝  .

The Bessel models of a smooth representation � of SO(V ) are irreducible admissible
representations � of SO(W ) such that the following isomorphic spaces are nonzero:

HomBes(V;W )[�; � ] Š HomSO(V )

h
�; IndSO(V )

Bes(V;W )(�)
i

Š HomSO(V )

h
indSO(V )

Bes(V;W )(�
_); �_

i
:

When W is a codimension one subspace of V , then Bes(V;W ) = SO(W ), and the
notion of a Bessel model is simply that of restriction from SO(V ) to SO(W ), whereas
when dim(W ) = 0; 1, then the notion of a Bessel model is nothing but that of the Whit-
taker model (for a particular character of the maximal unipotent subgroup of SO(V ) if
dim(W ) = 1).
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We can define the higher Ext versions of the Bessel models as one of the following
isomorphic spaces:

ExtiBes(V;W )[�; � ] Š ExtiSO(V )

h
�; IndSO(V )

Bes(V;W )(�)
i

Š ExtiSO(V )

h
indSO(V )

Bes(V;W )(�
_); �_

i
:

The following proposition whose proof we will omit is analogous to that of Theorem
15.1 of Gan, Gross, and Prasad [2012]. It allows one to prove finite dimensionality of
ExtiBes(V;W0)

[�; � ] if we know the finite dimensionality of ExtiSO(W )[�; �
0] where W is a

codimension one subspace in the quadratic space V , and � 0 an irreducible representation
of SO(W ).

Proposition 6.1. Let W � V be a nondegenerate quadratic subspace of codimension 1
over a non-archimedean local field F . Suppose that

W = Yk ˚W0 ˚ Y _k

and
V = Yk ˚ V0 ˚ Y _k ;

with Yk and Y _
k

isotropic subspaces and W0 � V0 nondegenerate quadratic spaces with
W0 a subspace of codimension one in V0. Let PW (Yk) be the parabolic in SO(W ) stabi-
lizing Yk with Levi subgroup

M = GL(Yk) � SO(W0)

For an irreducible supercuspidal representation � of GL(Yk) and an irreducible admissi-
ble representation �0 of SO(W0), let

� Ì �0 = IndSO(W )

PW (Yk)
(� � �0)

be the corresponding (un-normalized) principal series representation of SO(W ). Let � be
an irreducible admissible representation SO(V ) which does not belong to the Bernstein
component associated to (GL(Yk)�SO(V0); � ��) for any irreducible representation �
of SO(V0). Then

ExtiSO(W )[�; � Ì �0] Š ExtiBes(V;W0)
[�; �0]:

Corollary 6.1. With the notation as above, if ExtiSO(W )[�; � Ì �0] are finite dimensional,
then so are ExtiBes(V;W0)

[�; �0].

Proof. It suffices to observe that given �0, there is a representation � of SO(V ) which
does not belong to the Bernstein component associated to (GL(Yk)� SO(V0); � ��) for
any irreducible representation � of SO(V0).



1402 DIPENDRA PRASAD

We now come to the proof of finite dimensionality of the Ext groups.

Theorem 6.1. Let V = X+D+W +Y be as at the beginning of the section, a quadratic
space over the non-archimedean local field F with W a quadratic subspace of codimen-
sion 2k + 1. Then for any irreducible admissible representation � of SO(V ) and irre-
ducible admissible representation � of SO(W ), ExtiBes(V;W )[�; � ] are finite dimensional
vector spaces over C for all i � 0.

Proof. The proof of this theorem will be by induction on the dimension of V . We thus
assume that for any quadratic spaces W � V with dim(V) < dim(V ) (with V/W a split
quadratic space of odd dimension), and for any irreducible admissible representation � of
SO(V) and irreducible admissible representation � of SO(W),

ExtiBes(V;W)[�; � ]

are finite dimensional vector spaces over C for all i � 0.
We begin by proving the theorem for a principal series representation of SO(V ) induced

from an irreducible representation of a maximal parabolic subgroup. By the previous
proposition, we need only prove the finite dimensionality of ExtiSO(V 0)[�; �

0] where V 0 is
a codimension one subspace of V , and � 0 is an irreducible, admissible representation of
SO(V 0).

Much of the proof below closely follows the paper Moeglin and J.-L.Waldspurger
[2012], where they have to do much harder work to precisely analyze HomSO(V 0)[�; �

0].
Assume that the dimension of V is n + 1, and that V 0 is a subspace of dimension n.

Let V = X +V0 +Y with X and Y totally isotropic subspaces of V of dimensionm, and
in perfect pairing with each other. Let P be the maximal parabolic subgroup of SO(V )

stabilizingX . LetM = GL(X)�SO(V0) be a Levi subgroup ofP , �0˝�0 an irreducible
representation ofM realized on the spaceE�0

˝E�0 , and � = �0 Ì�0 the corresponding
principal series representation of SO(V ). Denote by E� the space of function on SO(V )

with values in E�0
˝ E�0 verifying the usual conditions under left translation by P (F )

for defining the principal series representation � = �0 Ì �0 of SO(V ).
To understand the restriction of the principal series � = �0 Ì �0 to SO(V 0), we need

to analyze the orbits of SO(V 0) on P (F )nSO(V ). To every g 2 P (F )nSO(V ), one can
associate an isotropic subspace g�1(X) of V . Let U be the set of g 2 P (F )nSO(V )

such that dim(g�1(X) \ V 0) = m � 1, and let X be the set of g 2 P (F )nSO(V ) such
that dim(g�1(X) \ V 0) = m. Then U is an open subset of P (F )nSO(V ) which is a
single orbit under SO(V 0), and X is a closed subset of P (F )nSO(V ) which is a single
orbit under SO(V 0) unless n is even, and n = 2m in which case there are two orbits in X
under SO(V 0).

Denote by E�;U the subspace of functions in E� with support in U, and denote by
E�;X the space E�/E�;U. The spaces E�;U and E�;X are invariant under SO(V 0), and
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we have an exact sequence of SO(V 0)-modules,

0 ! E�;U ! E� ! E�;X ! 0:

To prove the finite dimensionality of Ext groups ExtiSO(V 0)[E� ; �
0], it suffices to prove

similar finite dimensionality theorems for the Ext groups involving the SO(V 0)-modules
E�;U and E�;X. We analyze the two terms separately.

For analyzing E�;X, we assume (after conjugation by SO(V )) that both X and Y are
contained in V 0. Thus, V 0 = X + V 00 + Y with V 00 = V 0 \ V0. It can be seen that,

E�;X = �0j:j1/2 � �0jSO(V 0
0)
:

By Theorem 2.1 (the second adjointness theorem of Bernstein),

ExtiSO(V 0)[E�;X; �
0] = ExtiM [�0j:j1/2 � �0jSO(V 0

0)
; � 0N� ];

whereM = GL(X) � SO(V 00).
The proof of the finite dimensionality of ExtiSO(V 0)[E�;X; �

0] now follows from the in-
duction hypothesis according towhich the theoremwas supposed to be known for SO(V 00) �

SO(V0), besides the fact that� 0N� , the Jacquetmodulewith respect to the opposite parabolic
P� =MN� is an admissible representation ofM = GL(X)�SO(V 00), hence has a finite
filtration by tensor product of irreducible representations of GL(X) and SO(V 00), and then
an application of the Kunneth theorem.

We now move on to E�;U. In this case, after conjugation by SO(V ), we will be in the
situation,

V 0 = X 0 +D0 + V0 + Y
0;

whereX 0 andY 0 are totally isotropic subspaces ofV 0 of dimension (m�1), andD0; V0; X 0+
Y 0 are non-degenerate quadratic spaces. LetX 0 = fe1; � � � ; em�1g, andY 0 = ff1; � � � ; fm�1g.
Let V 0

k
= X 0

k�1
+D0 + V0 + Y

0
k�1

; where X 0
k�1

= fem�k+1; � � � ;

em�1g, and Y 0
k�1

= ffm�k+1; � � � ; fm�1g, each of dimension (k � 1) for k = 1; � � � ; m,
and let G0

k
= SO(V 0

k
):

Using the filtration of the representation �0 of GL(X) restricted to its mirabolic sub-
group given by Proposition 4.1 in terms of the derivatives �k0 = ∆k(�0), Moeglin and
J.-L.Waldspurger [ibid.] obtain a filtration,

0 = �m+1 � �m � �m�1 � � � � �1 = E�;U;

with,
�k/�k+1 Š ∆k(�0) Ì �0k ;
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as modules for SO(V 0); the representation ∆k(�0) Ì �0
k
is a principal series represen-

tation of SO(V 0) induced from a parabolic Pk = MkNk with Levi subgroup Mk =

GLm�k(F ) �G0
k
, and where

�0k = indG
0
k

Bes(V 0
k
;V0)

(�0);

By Theorem 2.1,

ExtiSO(V 0)[�k/�k+1; �
0] = ExtiSO(V 0)[∆

k(�0) Ì�0k ; �
0] Š ExtiMk

[∆k(�0) ��0k ; �
0
Nk

� ];

withMk = GLm�k(F ) �G0
k
, a Levi subgroup in SO(V 0). Once again Kunneth theorem

implies the finite dimensionality of the Ext groups,

ExtiMk
[∆k(�0) � �0k ; �

0
N�

k
]:

Having proved the theorem for principal series representations of SO(V ) induced from
maximal parabolics, the next lemma proves the theorem in general.

Lemma 6.1. Let V be a quadratic space over the non-archimedean local field F withW
a quadratic subspace of codimension 1. If for any principal series representation Ps of
SO(V ) induced from a maximal parabolic and any irreducible admissible representation
� of SO(W ), ExtiSO(W )[Ps; � ] are finite dimensional vector spaces over C for all i �

0, then for any irreducible representation � of SO(V ) and any irreducible admissible
representation � of SO(W ), ExtiSO(W )[�; � ] are finite dimensional vector spaces over C
for all i � 0.

Proof. By Proposition 2.3, if � is a supercuspidal representation of SO(V ), its restriction
to SO(W ) is a projective object in R(SO(W )). Therefore ExtiSO(W )[�; � ] are zero for
i > 0, and Ext0SO(W )[�; � ] = HomSO(W )[�; � ] is finite dimensional.

Assume now that � is not a supercuspidal representation, and write � as a quotient
of a principal series representation induced from a representation of a maximal parabolic
subgroup of SO(V ). We thus have an exact sequence,

0 ! � ! Ps ! � ! 0:

This gives rise to a long exact sequence,

0 ! HomSO(W )[�; � ] ! HomSO(W )[Ps; � ] ! HomSO(W )[�; � ] !

! Ext1SO(W )[�; � ] ! Ext1SO(W )[Ps; � ] ! Ext1SO(W )[�; � ] ! Ext2SO(W )[�; � ] ! � � �

Since we know that all Hom spaces in the above exact sequence are finite dimensional,
and also Ext1SO(W )[Ps; � ] is given to be finite dimensional, we get the finite dimensional-
ity of Ext1SO(W )[�; � ] for any irreducible representation � of SO(V ). This implies finite
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dimensionality of Ext1SO(W )[�; � ] for any finite length representation � of SO(V ). Armed
with this finite dimensionality of Ext1SO(W )[�; � ] for any finite length representation � of
SO(V ), and with the knowledge that Ext2SO(W )[Ps; � ] is given to be finite dimensional,
we get the finite dimensionality of Ext2SO(W )[�; � ] for any irreducible representation �
of SO(V ), and similarly we get the finite dimensionality of ExtiSO(W )[�; � ] for any irre-
ducible representation � of SO(V ), and any i � 0.

The proof of Theorem 6.1 uses Theorem 3.1 (Kunneth theorem) for representations of
GLm(F )�G0

k
. Since for any two irreducible representationsV; V 0 ofGLm(F ), EPGLm(F )[V; V

0] =

0 unless m = 0 cf. Lemma 4.1, we obtain the following corollary of the proof of the the-
orem.

Corollary 6.2. For a principal series representation � = �0 Ì �0 of SO(V ) where �0 is
an admissible representation of SO(W ), and � 0 is an admissible representation of SO(V 0)
where W � V 0 � V with V 0 a nondegenerate codimension 1 subspace of the quadratic
space V with dim(V 0) � dim(W ) = 2m � 1,

EPSO(V 0)[�; �
0] = EPBes(V 0;W )[�

0; �0] � dimWh(�0):

Definition: A finite length representation � of a classical group will be called a full prin-
cipal series if it is irreducible and supercuspidal, or is of the form � = �0 Ì �0 with both
�0 and �0 irreducible, and �0 supercuspidal.

The following corollary is a consequence of the previous corollary together with the
fact that if � is a cuspidal representation of SO(W ), then �˝ is an injective module for
Bes(V;W ).

Corollary 6.3. Let � be a finite length representation of SO(V ), and � 0 of SO(V 0) where
V 0 � V is a nondegenerate codimension 1 subspace of the quadratic space V . Assume
that � is a full principal series, and � 0 is an irreducible representation of SO(V 0). Then,
EPSO(V 0)[�; �

0] is either 0 or 1. If � = �0 Ì �0 of SO(V ) where �0 is an admissible
representation of SO(W ) with dimW � 1, EPSO(V 0)[�; �

0] = dimWh(�) � dimWh(� 0)
(if dimW = 1, Wh(� 0) is for a particular character of a maximal unipotent subgroup of
SO(V 0)).

Remark 6.1. In the previous corollary, we see a large number of cases when the Euler-
Poincaré characteristic is 0 or 1. Is there a multiplicity one result for EP, or for Exti?

7 An integral formula of Waldspurger, and a conjecture on E-P

In this section we review an integral formula of Waldspurger which we then propose to be
the integral formula for the Euler-Poincaré pairing for EPBes(V;W )[�; �

0] for � any finite
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length representation of SO(V ), and � 0 any finite length representation of SO(W ), where
V and W are quadratic spaces over F with V = X +D + W + Y with W a quadratic
subspace of V of codimension 2k + 1 with X and Y totally isotropic subspaces of V in
duality with each other under the underlying bilinear form, and D an anisotropic line in
V . Let Z = X + Y .

Let T denote the set of elliptic tori T in SO(W ) such that there exist quadratic sub-
spaces WT ;W 0T of W such that:

1. W = WT ˚W 0T , and V = WT ˚W 0T ˚D ˚Z.

2. dim(WT ) is even, and SO(W 0T ) and SO(W
0
T ˚D ˚Z) are quasi-split.

3. T is a maximal (elliptic) torus in SO(WT ).

Clearly the group SO(W ) operates on T . Let T denote a set of orbits for this action
of SO(W ) on T . For our purposes we note the most important elliptic torus T = hei

corresponding to WT = 0.
For � an admissible representation of SO(V ) of finite length, define a function c� (t)

for regular elements of a torus T belonging to T by the germ expansion of the character
�� (t) of � on the centralizer of t in the Lie algebra of SO(V ), and picking out ‘the’ leading
term. The semi-simple part of the centralizer of t in the Lie algebra of V is the Lie algebra
of SO(W 0T ˚D˚Z) which, ifW 0T ˚D˚Z has odd dimension, has a unique conjugacy
class of regular nilpotent element, but ifW 0T ˚D˚Z has even dimension, then although
there are several regular nilpotent conjugacy classes, there is one which is ‘relevant’, and
is what is used to define c� (t). Similarly, for � 0 an admissible representation of SO(W )

of finite length, one defines a function c� 0(t) for regular elements of a torus T belonging
to T by the germ expansion of the character �� 0(t) of � 0.

Define a function ∆T on an elliptic torus T belonging to T with W = WT ˚W 0T , by
∆(t) = j det(1 � t)jWT

jF ; and let DH denote the discriminant function on H (F ). For
a torus T in H , define the Weyl group W (H;T ) by the usual normalizer divided by the
centralizer: W (H;T ) = NH(F )(T )/ZH(F )(T ).

The following theorem is proved by Waldspurger in J.-L.Waldspurger [2010] and J.-
L.Waldspurger [2012b].

Theorem 7.1. Let V = X +D+W +Y be a quadratic space over the non-archimedean
local field F withW a quadratic subspace of codimension 2k+1 as above. Then for any
irreducible admissible representation � of SO(V ) and irreducible admissible representa-
tion � 0 of SO(W ),X

T2T

jW (H;T )j�1
Z
T (F )

c� (t)c� 0(t)DH (t)∆k(t)dt;
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is a finite sum of absolutely convergent integrals. (The Haar measure on T (F ) is normal-
ized to have volume 1.) If either � is a supercuspidal representation of SO(V ), and � 0 is
arbitrary irreducible admissible representation of SO(W ), or both � and � 0 are tempered
representations, then

dimHomBes(V;W )[�; �
0] =

X
T2T

jW (H;T )j�1
Z
T (F )

c� (t)c� 0(t)DH (t)∆k(t)dt:

Given this theorem of Waldspurger, it is most natural to propose the following conjec-
ture on Euler-Poincaré pairing.

Conjecture 7.1. Let V = X+D+W +Y be a quadratic space over the non-archimedean
local field F with W a quadratic subspace of V of codimension 2k + 1 as before. Then
for any irreducible admissible representation � of SO(V ) and irreducible admissible rep-
resentation � 0 of SO(W ),

1.

EPBes(V;W )[�; �
0] =

X
i

(�1)i dimExtiBes(V;W )[�; �
0]

=
X
T2T

jW (H;T )j�1
Z
T (F )

c� (t)c� 0(t)DH (t)∆k(t)dt:

2. If � and � 0 are irreducible tempered representations, then ExtiBes(V;W )[�; �
0] = 0

for i > 0.

Remark 7.1. Note that a supercuspidal representation of SO(V ) is a projective object in
the category of smooth representations of SO(V ), and hence by Proposition 2.4, it remains
a projective object in the category of smooth representations of SO(W ) � U . Therefore
if � or � 0 is supercuspidal, ExtiBes(V;W )[�; �

0] = 0 for i > 0. (We note that for a super-
cuspidal representation � 0 of SO(W ), the representation � 0˝ is an injective module in
the category of smooth representations of SO(W ) � U .) Thus Waldspurger’s theorem is
equivalent to the conjectural statement on Euler-Poincaré characteristic if � or � 0 is super-
cuspidal (except that it is not proved if � 0 is supercuspidal, but � is arbitrary). Part 2 of
the conjecture is there as the simplest possible explanation of Waldspurger’s theorem for
tempered representations!

Example 7.1. Assume that either G = SOn+1(F ) is a split group, and � is induced
from a character of a Borel subgroup of G, or H = SOn(F ) is a split group and � 0 is
induced from a character of a Borel subgroup of H . Then the conjectural formula on
Euler-Poincaré becomes EP[�; � 0] = 1 which is a consequence of Corollary 6.3.
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Remark 7.2. We consider the Waldspurger integral formula as some kind of Riemann-
Roch theorem. Recall that for X a smooth projective variety with Todd class TX , and for
any coherent sheaf F on X with Chern class c(F), one has,

EP (X;F) =
X
i

(�1)i dimH i (X;F) =
X
i

(�1)i dimExti (OX ;F) =

Z
X

(TX � c(F)):

In our case, EP [�1; �2] =
P
i (�1)i dimExtiH [�1; �2] is conjecturally expressed as

EP [�1; �2] =

Z
X

TX � c(�1; �2);

where X is a certain set of elliptic tori in H , TX is a function on this set of elliptic tori,
and c(�1; �2) is a function on these elliptic tori defined in terms of the germ expansion of
�1 and �2.

8 The Schneider-Stuhler duality theorem

The following theorem is a mild generalization of a duality theorem of Schneider and
Stuhler due toM.Nori and Prasad [2017]; it turns questions on Exti [�1; �2] to Extj [�2; �1],
and therefore is of central importance to our theme in this paper.

Theorem 8.1. Let G be a reductive p-adic group, and � an irreducible, admissible rep-
resentation of G. Let d (�) be the largest integer i � 0 such that there is an irreducible,
admissible representation � 0 of G with  ExtiG [�; � 0] nonzero . Then,

1. There is a unique irreducible representation � 0 of G with Extd(�)G [�; � 0] 6= 0:

2. The representation� 0 in (1) is nothing butD(�)whereD(�) is the Aubert-Zelevinsky
involution of � , and d (�) is the split rank of the Levi subgroup M of G which car-
ries the cuspidal support of � .

3. Extd(�)G [�;D(�)] Š C.

4. For any smooth representation � 0 of G, the bilinear pairing

(�) ExtiG [�; �
0] � ExtjG [�

0;D(�)] ! Exti+j=d(�)G [�;D(�)] Š C;

is nondegenerate in the sense that if � 0 = lim
!
� 0n of finitely generated G-sub-

modules � 0n, then ExtiG [�; � 0] = lim
!

ExtiG [�; �
0
n], a direct limit of finite dimensional

vector spaces over C, and ExtjG [�
0;D(�)] = lim

 
ExtjG [�

0
n;D(�)], an inverse limit
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of finite dimensional vector spaces over C, and the pairing in (�) is the direct limit
of perfect pairings on these finite dimensional spaces:

ExtiG [�; �
0
n] � ExtjG [�

0
n;D(�)] ! Exti+j=d(�)G [�;D(�)] Š C:

(Observe that a compatible family of perfect pairings on finite dimensional vector
spaces Bn : Vn �Wn ! C with Vn part of an inductive system, and Wn part of a
projective system, gives rise to a natural pairing B : lim

!
Vn � lim

 
Wn ! C such

that the associated homomorphism from (lim
!
Vn)

? to lim
 
Wn is an isomorphism.

As an example, the following proposition giving complete classification of irreducible
submodules � of the tensor product �1 ˝ �2 of two (irreducible, infinite dimensional)
representations �1; �2 of GL2(F ) with the product of their central characters trivial, is
essentially a translation of vanishing of Ext1PGL2(F )[�1 ˝�2; �3] by this duality theorem.
The vanishing itself follows because Ext2PGL2(F )[�1 ˝ �2; �3] = 0 by Proposition 2.9,
and both EP and Hom spaces have the same dimension.

Proposition 8.1. Let �1; �2 be two irreducible admissible infinite dimensional represen-
tations of GL2(F ) with product of their central characters trivial. Then the following is
the complete list of irreducible sub-representations � of �1 ˝ �2 as PGL2(F )-modules.

1. � is a supercuspidal representation of PGL2(F ), and appears as a quotient of �1 ˝

�2.

2. � is a twist of the Steinberg representation, which we assume by absorbing the
twist in �1 or �2 to be the Steinberg representation St of PGL2(F ). Then St is a
submodule of �1 ˝ �2 if and only if �1; �2 are both irreducible principal series
representations, and �1 Š �_2 .

9 Geometrization of Ext groups

A natural way to construct exact sequences in representation theory is via the Bernstein-
Zelevinsky exact sequence arising from the inclusion of an open setX�Y in a topological
space X equipped with an `-sheaf F, with Y a closed subspace of X , giving rise to

0 ! S(X � Y;F) ! S(X;F) ! S(Y;F) ! 0:

Observe that in this exact sequence, the larger space S(X � Y;F) arises as a subspace,
whereas the smaller space S(Y;F) arises as a quotient of S(X;F). Assuming that a group
G operates on the space X , preserving the closed subspace Y , as well as the sheaf F,
then this exact sequence gives rise to an element of HomG [S(X;F);S(Y;F)], as well as
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an element of Ext1G [S(Y;F);S(X � Y;F)]. Note that the Hom is from a larger space
S(X;F) to a smaller space S(Y;F), whereas the Ext is between a smaller space and a
larger space.

Similarly, if X2; X1 are closed subsets of an `-space X with X2 � X1 � X , and
endowed with an `-sheaf F, we have exact sequences,

0 ! S(X �X1;F) ! S(X �X2;F) ! S(X1 �X2;F) ! 0;

0 ! S(X1 �X2;F) ! S(X1;F) ! S(X2;F) ! 0;

which can be spliced together to give rise to the exact sequence,

0 ! S(X �X1;F) ! S(X �X2;F) ! S(X1;F) ! S(X2;F) ! 0;

which gives an element of Ext2G [S(X2;F);S(X �X1;F)]; so as the representation �2 =

S(X2;F) becomes smaller and smaller compared to �1 = S(X �X1;F) (as the spaceX2

is ‘two step smaller’ than X ), it may be expected to contribute to higher and higher Ext
groups ExtiG [�2; �1].

Various examples around the present work suggest that homomorphisms between rep-
resentations, or extensions between them correspond to some geometric spaces (and `-
sheaves on them) as above, in particular, a typical homomorphism is from a larger space
to smaller ones, whereas a typical Ext is the other way around!

Althoughmost geometric spaces have algebraic geometric origin, that is not necessarily
the case when thinking about the Bernstein-Zelevinsky exact sequence. For instance, one
can use the action of G on its Bruhat-Tits building and its various compactifications. If
X is the tree associated to PGL2(F ), then one knows that there is a compactification X
of X on which PGL2(F ) continues to act with X � X = P 1(F ), a closed subset of X .
The zero-skeleton X0 of X together with X � X is a compact topological space, call it
X0, with an action of PGL2(F ) with two orbits: X0 which is the open orbit, and P 1(F )

which is the closed orbit.
An unramified character � of B gives rise to a sheaf, say C�, on P 1(F ), which can be

extended to a PGL2(F )-equivariant sheaf on X0 by making it indPGL2(F )

PGL2(OF )C on X0. Call
the extended sheaf on X0 also as C�; note that the restriction of C� to X0 is the constant
sheaf C. Thus we have an exact sequence,

0 ! S(X0;C) ! S(X0;C�) ! S(P 1(F );C�) ! 0:

Since PGL2(F ) acts transitively on the zero-skeleton X0 with stabilizer PGL2(OF ),
we have S(X0;C) Š indPGL2(F )

PGL2(OF )C. We have thus constructed an element of

Ext1PGL2(F )[Ind
PGL2(F )
B �; indPGL2(F )

PGL2(OF )C]
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Itmay be hoped thatmany extensionswhich representation theory offers will bematched
by geometric action ofG on topological spaces with finitely manyG-orbits coming either
from algebraic geometric spaces, or from the Bruhat-Tits building and its compactifica-
tions; there is then also the issue of proving that geometric actions do give non-trivial
extensions!

We end with a precise question but before that we need to make a definition. In what
follows, groups and spaces are what are called `-groups and `-spaces in Bernstein and
Zelevinsky [1976] and Bernstein [1992]; we will also use the notion of an `-sheaf from
these references which we recall is a sheaf, say F , over X of vector spaces over C with
the space of compactly supported global sections S(X; F ) = Fc(X), a module over S(X),
which is nondegenerate in the sense that S(X) � Fc(X) = Fc(X); the functor F ! Fc(X)

gives an equivalence between `-sheaves on X and nondegenerate modules over S(X).

Definition: A complex representation V of G = G(F ) is said to be of geometric origin
if

1. there is a G-space XV with finitely many G-orbits,

2. a G-equivariant sheaf FV on XV ,

such that on each G-orbit Y � XV of the form G/HY , FV jY is the equivariant sheaf
associated to a finite dimensional representation WY of HY , and V Š S(XV ; FV ) (cf.
§1.16 of Bernstein and Zelevinsky [1976] for the definition of the restriction of an `-sheaf
to a locally closed subset such as Y ).

Example 9.1. Parabolic induction and Jacquet functor take representations of geometric
origin to representations of geometric origin. It is expected that all supercuspidal repre-
sentations are of geometric origin (proved for GLn(F ) and classical groups in odd residue
characteristic). In understanding the class of representations of geometric origin given by
the action of a groupG on a spaceX , one difficulty seems to be to glue vector bundles on
various orbits to an `-sheaf on X .

Question 9.1. Suppose that we have two complex smooth representations V1 and V2 of
G = G(F ) of geometric origin with Ext1G [V1; V2] 6= 0with V 2 Ext1G [V1; V2] represented
by the extension

0 ! V2 ! V ! V1 ! 0:

Then is V of geometric origin?

Remark 9.1. A representation of geometric origin comes equipped with considerable
additional data as in the Bernstein–Zelevinsky exact sequence, which may be important
to refine the question above.
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KAC POLYNOMIALS AND LIE ALGEBRAS ASSOCIATED TO
QUIVERS AND CURVES
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Abstract

We provide an explicit formula for the following enumerative problem: howmany
(absolutely) indecomposable vector bundles of a given rank r and degree d are there
on a smooth projective curve X of genus g defined over a finite field Fq? The answer
turns out to only depend on the genus g, the rank r and the Weil numbers of the
curve X . We then provide several interpretations of these numbers, either as the Betti
numbers or counting polynomial of the moduli space of stable Higgs bundles (of same
rank r and degree d ) over X , or as the character of some infinite dimensional graded
Lie algebra. We also relate this to the (cohomological) Hall algebras of Higgs bundles
on curves and to the dimension of the space of absolutely cuspidal functions on X .

1 Kac polynomials for quivers and curves

1.1 Quivers. Let Q be a locally finite quiver with vertex set I and edge set Ω. For
any finite field Fq and any dimension vector d 2 NI , let AQ;d(Fq) be the number of
absolutely indecomposable representations of Q over Fq , of dimension d. Kac proved the
following beautiful result:

Theorem 1.1 (Kac [1980]). There exists a (unique) polynomial AQ;d(t) 2 Z[t ] such that
for any finite field Fq ,

AQ;d(Fq) = AQ;d(q):

Moreover AQ;d(t) is independent of the orientation of Q and is monic of degree
1 � hd;di.

Here h ; i is the Euler form, see Section 2.1 The fact that the number of (absolutely)
indecomposable Fq-representations behaves polynomially in q is very remarkable: the ab-
solutely indecomposable representations only form a constructible substack of the stack
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MQ;d of representations of Q of dimension d and we count them here up to isomorphism,
i.e. without the usual orbifold measure. Let us briefly sketch the idea of a proof. Standard
Galois cohomology arguments ensure that it is enough to prove that the number of inde-
composable Fq-representations is given by a polynomial IQ;d in q (this polynomial is not
as well behaved as or as interesting as AQ;d). Next, by the Krull-Schmidt theorem, it is
enough to prove that the number of all Fq-representations of dimension d is itself given by
a polynomial in Fq . This amounts to computing the (orbifold) volume of the inertia stack
IMQ;d of MQ;d; performing a unipotent reduction in this context, we are left to comput-
ing the volume of the stack Ni lQ;d parametrizing pairs (M; �) with M a representation
of dimension d and � 2 End(M ) being nilpotent. Finally, we use a Jordan stratification
of Ni lQ;d and easily compute the volume of each strata in terms of the volumes of the
stacks MQ;d0 for all d0. This actually yields an explicit formula for AQ;d(t) (or IQ;d(t)),
see Hua [2000]. We stress that beyond the case of a few quivers (i.e. those of finite or
affine Dynkin type) it is unimaginable to classify and construct all indecomposable repre-
sentations; nevertheless, the above theorem says that we can count them.

The positivity of AQ;d(t) was only recently1:

Theorem 1.2 (Hausel, Letellier, and Rodriguez-Villegas [2013]). For any Q and any d
we have AQ;d(t) 2 N[t ].

The desire to understand the meaning of the Kac polynomials AQ;d(t), for instance as
the dimension of certain natural graded vector spaces (such as the cohomology of some al-
gebraic variety), has been a tremendous source of inspiration in geometric representation
theory; it has lead to the development over the years of a beautiful and very rich theory
relating various moduli spaces of representations of quivers to Lie algebras and quantum
groups, yielding geometric constructions of a host of important objects in representation
theory (such as canonical and crystal bases, Yangians, quantum affine algebras, their high-
est weight or finite-dimensional representations, etc.). We will present here some recent
developments in this area, in particular in relation to the structure and representation theory
of Kac-Moody algebras and graded Borcherds algebras.

1.2 Curves. Now let X be a smooth projective curve defined over some finite field
Fq . For any r � 0; d 2 Z let Ar;d (X) be the number of isomorphism classes of abso-
lutely indecomposable coherent sheaves F over X of rank r and degree d . It turns out
that this number may also be computed explicitly and depends ’polynomially’ on X . In
order to make sense of this, we need to introduce a few notations. The action of the geo-
metric Frobenius F rX on the l-adic cohomology group H 1

et (XFq
; Ql) is semisimple with

1the special case of an indivisible dimension vector was proved earlier by Crawley-Boevey and Van den
Bergh [2004]
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eigenvalues f�1; : : : ; �2gg which may be ordered so that �2i�1�2i = q for all i . More-
over, F rX belongs to the general symplectic group GSp(H 1

et (XFq
; Ql)) relative to the

intersection form on H 1
et (XFq

; Ql). We may canonically identify the character ring of
GSp(H 1

et (XFq
; Ql)) with Rg = Ql [Tg ]

Wg where

Tg = f(�1; : : : ; �2g) 2 G2g
m j �2i�1�2i = �2j �1�2j 8 i; j g; Wg = (S2)

g Ì Sg

are the maximal torus, resp. Weyl group of GSp(2g; Ql). We can evaluate any element
f 2 Rg on F rX for any smooth projective curve X of genus g, defined over some2 finite
field Fq ; concretely, we have

f (F rX ) = f (�1; �2; : : : ; �2g):

We will say that a quantity depending on X is polynomial if it is the evaluation of some
element f 2 Rg . For instance the size of the field Fq of definition of X is polynomial
in X (take f = �2i�1�2i for any i ), as is the number jX(Fq)j of Fq-rational points of X

(take f = 1 �
P

i �i + q); this is also true of symmetric powers S lX of X . We extend
the above definition to the case g = 0 by setting Rg = Ql [q

˙1].

Theorem 1.3 (Schiffmann [2016]). For any fixed g; r; d there exists a (unique) polyno-
mial Ag;r;d 2 Rg such that for any smooth projective curve X of genus g defined over a
finite field, the number of absolutely indecomposable coherent sheaves on X of rank r and
degree d is equal to Ag;r;d (F rX ). Moreover, Ag;r;d is monic of leading term q1+(g�1)r2 .

The finiteness of the number of absolutely indecomposable coherent sheaves of fixed
rank and degree is a consequence of Harder-Narasimhan reduction theory; it suffices
to observe that any sufficiently unstable coherent sheaf is decomposable as its Harder-
Narasimhan filtration splits in some place. Let us say a few words about the proof of
Theorem 1.3: like for quivers, standard Galois cohomology arguments combined with the
Krull-Schmidt theorem reduce the problem to counting all isomorphism classes of coher-
ent sheaves of rank r and degree d ; unfortunately, this number is infinite as soon as r > 0

hence it is necessary to introduce a suitable truncation of the category Coh(X); there are
several possibilities here, one of them being to consider the category Coh�0(X) of posi-
tive coherent sheaves, i.e. sheaves whose HN factors all have positive degree. One is thus
lead to compute the volumes of the inertia stacks IM�0

X;r;d
of the stacks M�0

X;r;d
positive

sheaves of rank r and degree d on X . Finally, after a unipotent and Jordan reduction simi-
lar to the case of quivers, this last computation boils down to the evaluation of the integral
of certain Eisenstein series over the truncated stacks M�0

X;r;d
; this is performed using a

variant of Harder’s method for computing the volume of MX;r;d , see Schiffmann [ibid.]
2technically, of characteristic different from l
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for details. The proof is constructive and yields an explicit but complicated formula for
Ag;r;d . Hence, just like for quivers, although classifying all indecomposable vector bun-
dles for curves of genus g > 1 is a wild problem, it is nevertheless possible to count them.
The explicit formula for Ag;r;d was later combinatorially very much simplified by Mellit
[2017b], who in particular proved the following result:

Theorem 1.4 (Mellit [ibid.]). The polynomial Ag;r;d is independent of d .

Thanks to this theorem, we may simply write Ag;r for Ag;r;d . Like their quivery
cousins, Kac polynomials of curves satisfy some positivity and integrality property, namely

Theorem 1.5 (Schiffmann [2016]). For any g; r , Ag;r 2 Im(N[��1; : : : ; ��g ]
Wg !

Rg):

In other words, Ag;r is a Wg -symmetric polynomial in ��1; : : : ; ��2g with positive
integral coefficients. However, this is not the most natural form of positivity:

Conjecture 1.6. For any g; r there exists a canonical (non-virtual) finite-dimensional
representation Ag;r of GSp(2g; Ql) such that Ag;r = �(ch(Ag;r)), where � 2 Aut(Rg)

is the involution mapping �i to ��i for all i .

The paper Hua [2000] contains many examples of Kac polynomials for quivers. Let us
give here the examples of Kac polynomials for curves (of any genus) for r = 0; 1; 2; we
will write q for �2i�1�2i .

Ag;0 = 1 �
X

i

�i + q; Ag;1 =

2gY
i=1

(1 � �i );

Ag;2 =

2gY
i=1

(1 � �i ) �

� Q
i (1 � q�i )

(q � 1)(q2 � 1)
�

Q
i (1 + �i )

4(1 + q)
+

+

Q
i (1 � �i )

2(q � 1)

"
1

2
�

1

q � 1
�
X

i

1

1 � �i

#!
:

For r = 0; 1 we recognize the number of Fq-rational points of X and P ic0(X) respec-
tively. In particular, we have Ag;0 = C ˚ V ˚ det(V )1/g and Ag;1 = Λ�V , where V is
the standard 2g-dimensional representation of GSp(2g; Ql).

Motivated by the analogy with quivers, it is natural to try to seek a representation-
theoretic meaning to the Kac polynomials Ag;r . What is the analog, in this context, of
the Kac-Moody algebra associated to a quiver ? Are the Kac polynomials related to the
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Poincaré polynomials of some interesting moduli spaces ? Although it is still much less
developed than in the context of quivers, we will illustrate this second theme through two
examples of applications of the theory of Hall algebras of curves: a case of geometric
Langlands duality (in the neighborhood of the trivial local system) and the computation
of the Poincaré polynomial of the moduli spaces of semistable Higgs bundles on smooth
projective curves.

1.3 Quivers vs. Curves. Kac polynomials of quivers and curves are not merely related
by an analogy: they are connected through the following observation, which comes by
comparing the explicit formulas for AQ;d and Ag;r . Let Sg be the quiver with one vertex
and g loops.

Proposition 1.7 (Rodriguez-Villegas). For any r we have ASg ;r(1) = Ag;r(0; : : : ; 0).

This relation between the constant term of Ag;r and the sum of all the coefficients of
ASg ;r has a very beautiful conjectural conceptual explanation in terms of the mixed Hodge
structure of the (twisted) genus g character variety, we refer the interested reader to Hausel
and Rodriguez-Villegas [2008]. We will provide another conceptual explanation in terms
of the geometric Langlands duality in Section 5.4.
Remark. There is an entirely similar story for the category of coherent sheaves on a smooth
projective curve equipped with a (quasi-)parabolic structure along an effective divisor D,
see Schiffmann [2004], Lin [2014], and Mellit [2017a]. Proposition 1.7 still holds in this
case, with the quiver Sg being replaced by a quiver with a central vertex carrying g loops,
to which are attached finitely many type A branches, one for each point in D.
Plan of the paper. In Sections 2 to 4 we describe various Lie-theoretical (Sections 2.2, 2.5,
3.3, 4.4 and 4.6) or geometric (Sections 4.1 and 4.4 to 4.6) incarnations (some conjectural)
of the Kac polynomials for quivers; in particular we advocate the study of a certain graded
Borcherds algebraegQ canonically associated to a quiver, which is a graded extension of
the usual Kac-Moody algebra gQ attached to Q. From Section 5 onward, we turn our at-
tention to curves and present several algebraic or geometric constructions suggesting the
existence of some hidden, combinatorial and Lie-theoretical structures controlling such
things as dimensions of spaces of cuspidal functions (Section 6.2), or Poincaré polynomi-
als of moduli spaces of (stable) Higgs bundles on curves (Sections 7.2 and 7.3).

2 Quivers, Kac polynomials and Kac-Moody algebras

We begin with some recollections of some classical results in the theory of quivers and
Kac-Moody algebras, including the definitions of Hall algebras and Lusztig nilpotent va-
rieties, and their relations to (quantized) enveloping algebra of Kac-Moody algebras. This
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is related to the constant term AQ;d(0) of the Kac polynomials AQ;d(t). The theory is
classically developed for quivers without edge loops. The general case, important for
applications, is more recent.

2.1 Kac-Moody algebras from quivers. Let Q = (I;Ω) be a finite quiver without
edge loops. For any fieldkwe denote byRepk(Q) the abelian category ofk-representations
ofQ and for any dimension vector d 2 NI we denote byMQ;d the stack of d-dimensional
representations of Q. The category Repk(Q) is of global dimension at most one (and ex-
actly one if Ω is non-empty) with finite-dimensional Ext spaces. As a result, the stack
MQ =

F
d MQ;d is smooth. The first relation to Lie theory arises when considering the

Euler forms

hM; N i = dim Hom(M; N ) � dim Ext1(M; N ); (M; N ) = hM; N i + hN; M i:

(2-1)

Let cij be the number of arrows in Q from i to j , and let C = (cij )i;j 2I be the adjacency
matrix. Set A = 2Id � C � t C . The Euler forms h ; i and ( ; ) factor through the map

dim : K0(RepkQ) ! ZI ; M 7! (dim Mi )i

and are given by

hd;d0
i = td (Id � C )d0; (d;d0) = tdAd0:

Note that dim MQ;d = �hd;di. Now, A is a (symmetric) generalized Cartan matrix in
the sense of Kac [1985], to which is attached a Kac-Moody algebra gQ. The Euler lattice
(ZI ; ( ; )) of RepkQ is identified to the root lattice3 QgQ

of gQ together with its standard
Cartan pairing, via the map ZI ! QgQ

;d 7!
P

i di ˛i (here ˛i are the simple roots of
gQ). Accordingly, we denote by gQ =

L
d gQ[d] the root space decomposition of gQ.

2.2 Kac’s theorem and the constant term conjecture. Kac proved that AQ;d(t) ¤ 0

if and only if d belongs to the root system∆+ of gQ; this generalizes the famous theorem
of Gabriel [1972] which concerns the case of finite-dimensional gQ. Moreover, he made
the following conjecture, which was later proved by Hausel (see Crawley-Boevey and Van
den Bergh [2004] for the case of indivisible d):

Theorem 2.1 (Hausel [2010]). For any d 2 ∆+, we have AQ;d(0) = dim gQ[d].
3we apologize for the unfortunate –yet unavoidable– clash between the traditional notations for the root lattice

and for the quiver
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We will sketch a proof of Theorems 1.2 and 2.1 using cohomological Hall algebras in
Section 4.4. These proofs are different from, but related to the original proofs of Hausel
et al.

In the remainder of Section 2, we discuss two (related) constructions of the Kac-Moody
algebra gQ: as the spherical Hall algebra of the categories Repk(Q) for k a finite field,
or in terms of the complex geometry of the Lusztig nilpotent varieties ΛQ;d.

2.3 Ringel-Hall algebras. It is natural at this point to ask for an actual construction of
gQ using the moduli stacks MQ;d of representations of Q. This was achieved by Ringel
[1990] and Green [1995] using theHall (or Ringel-Hall) algebra of RepkQ. Let k be again
a finite field and set MQ =

F
d MQ;d. The set of k-points MQ(k) =

F
d MQ;d(k) is by

construction the set of k-representations of Q (up to isomorphism). Put

HQ =
M
d

HQ[d]; HQ[d] := Fun(MQ;d(k); C)

and consider the following convolution diagram

(2-2) MQ � MQ
fMQ

qoo p // MQ

wherefMQ is the stack parametrizing short exact sequences

0 // M // R // N // 0

in RepkQ (alternatively, inclusions M � R in RepkQ); the map p assigns to a short exact
sequence as above its middle term R; the map q assigns to it its end terms (N; M ). The
stackfMQ can be seen as parametrizing extensions between objects in RepkQ. The map
p is proper and, because RepkQ is of homological dimension one, the map q is a stack
vector bundle whose restriction to MQ;d � MQ;d0 is of rank �hd0;di. Following Ringel
and Green, we put v = (#k) 1

2 , let K = C[k˙1
i ]i be the group algebra of ZI and we equipeHQ := HQ ˝ K with the structure of a NI -graded bialgebra by setting

(2-3) f � g = vhd;d0ip!q
�(f ˝ g); knf k�1

n = v(d;n)f

(2-4) ∆(f ) =
X

d0+d00=d

vhd0;d00i(qd0;d00)!p
�
d0;d00(f ) ∆(ki ) = ki ˝ ki

for f 2 HQ[d]; g 2 HQ[d0];n 2 ZI and i 2 I . The bialgebra eHQ is equipped with the
nondegenerate Hopf pairing

(2-5) (f kd; gkd0) = v(d;d0)

Z
MQ

f g; 8 f; g 2 HQ
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(see Schiffmann [2012] for more details and references). Denoting by f�i gi the canonical
basis of ZI we have M�i

' BGm for all i since M�i
has as unique object the simple

object Si of dimension �i . We define the spherical Hall algebra eHsph
Q as the subalgebra ofeHQ generated by K and the elements 1Si

for i 2 I . It is a sub-bialgebra.

Theorem 2.2 (Ringel [1990] and Green [1995]). The assignement Ei 7! 1Si
; K˙1

i 7!

k˙1
i for i 2 I induces an isomorphism Ψ : Uv(bQ)

∼
! eHsph

Q between the positive Borel
subalgebra of the Drinfeld-Jimbo quantum enveloping algebra Uv(gQ) and the spherical
Hall algebra of Q.

One may recover the entire quantum group Uv(gQ) as the (reduced) Drinfeld double
DeHsph

Q of eHQ (see e.g. Schiffmann [2012, Lec. 5]).

2.4 Lusztig nilpotent variety. Let T �MQ =
F

d T �MQ;d be the cotangent4 stack of
MQ. This may be realized explicitly as follows. Let Q = (I;Ω t Ω�) be the double of
Q, obtained by replacing every arrow h in Q by a pair (h; h�) of arrows going in opposite
directions. The preprojective algebra ΠQ is the quotient of the path algebra kQ by the
two-sided ideal generated by

P
h2Ω[h; h�]. UnlessQ is of finite type, the abelian category

RepkΠQ is of global dimension two. The stack of k-representations of ΠQ is naturally
identified with T �MQ. We say that a representation M of ΠQ is nilpotent if there exists
a filtration M � M1 � � � � � Ml = f0g for which Π+

Q(Mi ) � Mi+1, where Π+
Q � ΠQ

is the augmentation ideal. Following Lusztig, we define the nilpotent variety (or stack)
ΛQ =

F
d ΛQ;d � T �MQ as the substack of nilpotent representations of ΠQ.

Theorem 2.3 (Kashiwara and Saito [1997]). The stack ΛQ is a lagrangian substack of
T �MQ and for any d 2 NI we have #I rr(ΛQ;d) = dim U (nQ)[d].

The above theorem is strongly motivated by Lusztig’s geometric lift of the spherical
Hall algebra to a category of perverse sheaves on MQ, yielding the canonical basis B
of Uv(nQ), see Lusztig [1991]. It turns out that ΛQ is precisely the union of the singular
support of Lusztig’s simple perverse sheaves, hence the above may be seen as a microlocal
avatar of Lusztig’s construction. Kashiwara and Saito prove much more, namely they
equip I rr(Λ)with the combinatorial structure of a Kashiwara crystal which they identify
as the crystal B(1) of U (nQ). This also yields a canonical bijection between B and
I rr(ΛQ).

2.5 Arbitrary quivers and nilpotentKac polynomials. What happenswhen the quiver
Q does have edge loops, such as the g-loop quiver Sg ? This means that the matrix of

4to be precise, we only consider the underived, or H0-truncation, of the cotangent stacks here
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the Euler form may have some (even) nonpositive entries on the diagonal, hence it is asso-
ciated to a Borcherds algebra rather than to a Kac-Moody algebra. Accordingly, we call
real, resp. isotropic, resp. hyperbolic a vertex carrying zero, resp. one, resp. at least two
edge loops, and in the last two cases we say that the vertex is imaginary. One may try
to get Hall-theoretic constructions of the Borcherds algebra gQ associated to Q (see e.g.
Kang and Schiffmann [2006] and Kang, Kashiwara, and Schiffmann [2009]) but the best
thing to do in order to get a picture as close as possible to the one in 2.1–2.4. seems to be
to consider instead a slightly larger algebra gB

Q defined by Bozec which has as building
blocks the usual sl2 for real roots, the Heisenberg algebra H for isotropic roots and a free
Lie algebra H 0 with one generator in each degree for hyperbolic roots, see Bozec [2015].

The Hall algebra eHQ is defined just as before, but we now let eHsph
Q be the subalgebra

generated by elements 1Si
for i real vertices and by the characteristic functions 1Ml�i

for
i imaginary and l 2 N. The stack of nilpotent representations of ΠQ is not lagrangian
anymore in general, we consider instead the stack of seminilpotent representations, i.e.
representations M for which there exists a filtration M � M1 � � � � � Ml = f0g such
that h(Mi/Mi+1) = 0 for h 2 Ω or for h 2 Ω� not an edge loop.

Theorem 2.4 (Bozec [2015, 2016] and Kang [2018]). The following hold:

i) eHsph
Q is isomorphic to Uv(b

B
Q),

ii) The stack ΛQ of seminilpotent representations is lagrangian in T �MQ. For any
d 2 NI we have #I rr(ΛQ;d) = dim U (nB

Q)[d].

The theories of canonical bases and crystal graphs also have a natural extension to this
setting. What about the relation to Kac polynomials ? Here as well we need some slight
variation; let us call 1-nilpotent a representation M of Q in which the edge loops at any
given imaginary vertex i generate a nilpotent (associative) subalgebra of End(Mi ). Of
course any representation of a quiver with no edge loops is 1-nilpotent.

Theorem 2.5 (Bozec, Schiffmann, and Vasserot [2017]). For any d there exists a (unique)
polynomial Anil

Q;d 2 Z[t ], independent of the orientation of Q, such that for any finite
field k the number of isomorphism classes of absolutely indecomposable 1-nilpotent k-
representations of Q of dimension d is equal to Anil

Q;d(#k). Moreover, for any d 2 NI we
have

i) Anil
Q;d(1) = AQ;d(1),

ii) Anil
Q;d(0) = dim gB

Q[d].

We will sketch a proof of the fact that Anil
Q;d(t) 2 N[t ] in Section 4.4.
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3 Quivers, Kac polynomials and graded Borcherds algebras I
–counting cuspidals–

Starting form a Kac-Moody algebra g (or its variant defined by Bozec) we build a quiver
Q by orienting the Dynkin diagram of g in any fashion, and obtain a realization of Uv(b)

as the spherical Hall algebra eHsph
Q ; now, we may ask the following question: what is the

relation between g and the full Hall algebra ? Here’s a variant of this question: Kac’s
constant term conjecture gives an interpretation of the constant term of the Kac polynomial
AQ;d(t); is there a similar Lie-theoretic meaning for the other coefficients ? As we will
explain in 3.3. below, the two questions turn out to have a beautiful common conjectural
answer: the full Hall algebra eHQ is related to a graded Borcherds algebra egQ whose
graded multiplicities dimZ egQ[d] =

P
l dim egQ[d; l ]t l are equal to AQ;d(t). What’s

more, egQ, like gQ, is independent of the choice of the orientation of the quiver and is
hence canonically attached to gQ. Although the above makes sense for an arbitrary quiver
Q, there is an entirely similar story in the nilpotent setting (better suited for a quiver with
edge loops), replacing AQ;d(t) by Anil

Q;d(t) andHQ by the subalgebraHnil
Q of functions on

the stack Mnil
Q of 1-nilpotent representations of Q. This is then conjecturally related to a

graded Borcherds algebraegnil
Q .

3.1 The full Hall algebra. The first general result concerning the structure of the full
Hall algebra eHQ is due to Sevenhant and Van den Bergh. Let us call an element f 2 HQ

is cuspidal if ∆(f ) = f ˝ 1 + kf ˝ 1. Denote by Hcusp
Q =

L
dH

cusp
Q [d] the space of

cuspidals, and set CQ/k;d = dim Hcusp
Q [d]. We write Q/k instead of Q to emphasize

the dependance on the field. Consider the infinite Borcherds–Cartan data (AQ/k;mQ/k),
with NI � NI Cartan matrix AQ/k = (ad;d0)d;d0 and charge function mQ/k : NI ! N
defined as follows:

ad;d0 = (d;d0); mQ/k(d) = CQ/k;d 8 d;d0
2 NI :

Denote byegQ/k the Borcherds algebra associated to (AQ/k;mQ/k).

Theorem 3.1 (Sevenhant and Van Den Bergh [2001]). The Hall algebra HQ/k is iso-
morphic to the positive nilpotent subalgebra Uv(enQ/k) of the Drinfeld-Jimbo quantum
enveloping algebra ofegQ/k.

In other words, the cuspidal element span the spaces of simple root vectors for the Hall
algebra HQ/k. Note that adding the ’Cartan’ K to HQ will only produce a quotient of
Uv(ebQ/k), whose own Cartan subalgebra is not finitely generated.



KAC POLYNOMIALS AND LIE ALGEBRAS ASSOCIATED TO QUIVERS 1421

3.2 Counting cuspidals for quivers. To understand the structure of egQ/k better, we
first need to understand the numbers CQ/k;d. In this direction, we have the following
theorem, proved by Deng and Xiao for quivers with no edge loops, and then extended to
the general case in Bozec and Schiffmann [2017]:

Theorem 3.2 (Deng and Xiao [2003] and Bozec and Schiffmann [2017]). For any Q =

(I;Ω) and d 2 NI there exists a (unique) polynomial CQ;d(t) 2 Q[t ] such that for any
finite field k, CQ/k;d = CQ;d(#k).

Let us say a word about the proof. By the Krull-Schmidt theorem, there is an isomor-
phism of NI -graded vector spaces between HQ/k and Sym(

L
d F un(Mind

Q/k;d(k); C)),
whereMind

Q/k;d(k) is the groupoid of indecomposable k-representations ofQ of dimension
d. This translates into the equality of generating series

(3-1)
X
d

(dim HQ/k[d])zd = Expz

 X
d

IQ;d(t)z
d

!
jt=#k

where Expz stands for the plethystic exponential with respect to the variable z, see e.g.
Mozgovoy [2011]. From the PBW theorem,

(3-2)
X
d

(dim U (enQ/k)[d])zd = Expz

 X
d

(dimenQ/k[d])zd

!

from which it follows that dim enQ/k[d] = IQ;d(#k) for any d. We are in the following
situation: we know the character5 of the Borcherds algebraegQ/k and from that we want to
determine its Borcherds-Cartan data. This amounts to inverting the Borcherds character
(or denominator) formula, which may be achieved in each degree by some finite iterative
process6. Following through this iterative process and using the fact that IQ;d (#k) is
a polynomial in #k, one checks that the Borcherds-Cartan data, in particular the charge
functionmQ/k(d) = CQ/k;d is also polynomial in #k. This process is constructive, but as
far as we know no closed formula is known in general (see Bozec and Schiffmann [2017]
for some special cases, such as totally negative quivers like Sg ; g > 1). And in particular,
the structure (and the size) of HQ/k depends heavily on k.

5there is a subtle point here:egQ/k is Z(NI )-graded, but we only know the character after projection of the
grading to NI .

6here we use the fact that the Weyl group ofegQ/k only depends on the subset of real simple roots, which is
the same as that of gQ .



1422 OLIVIER G. SCHIFFMANN

3.3 Counting absolutely cuspidals for quivers. In order to get a more canonical struc-
ture out of HQ/k one is tempted to view the polynomial CQ;d(t) as giving the graded di-
mension of some vector space. Unfortunately, as can readily be seen for the Jordan quiver
S1 and d = 2, the polynomial CQ;d(t) fails to be integral or positive in general. This is
familiar: the same things happens for Kac’s A and I polynomials and one might guess
that the better thing to count would be absolutely cuspidal elements of HQ/k. Unfortu-
nately (and contrary to the case of curves), there is at the moment no known definition
of an absolutely cuspidal element of HQ/k ! One way around this is to use a well-known
identity between Kac A-polynomials and I -polynomials to rewrite (3-1) as
(3-3)X

d

dim(U (enQ/k)[d])zd =
X
d

dim(HQ/k[d])zd = Expz;t

 X
d

AQ;d(t)z
d

!
jt=#k

and interpret the right hand side as the character of the enveloping algebra of (the nilpotent
subalgebra of) a putative graded Borcherds algebraegQ whose graded character is given
by the polynomials AQ;d(t)

(3-4) dimZ egQ[d] = AQ;d(t):

Taking this as a working hypothesis, we can run through the above iterative process (in
the graded sense) to get a well-defined family of polynomials C abs

Q;d(t).

Theorem 3.3 (Bozec and Schiffmann [2017]). For any Q and d we have C abs
Q;d(t) 2 Z[t ].

In addition, we have C abs
Q;d(t) = CQ;d(t) for any hyperbolic d (i.e. (d;d) < 0) while for

any indivisible isotropic d,

Expz

0@X
l�1

CQ;ld(t)z
l

1A = Expt;z

0@X
l�1

C abs
Q;ld(t)z

l

1A
Our definition of C abs

Q;d(t) was motivated by the putative existence of a graded Bor-
cherds algebraegQ. This existence is a posteriori equivalent to the following conjecture:

Conjecture 3.4. For any Q and d we have C abs
Q;d 2 N[t ].

We stress that the above positivity conjecture is strictly stronger than the positivity of
Kac’s A-polynomials. Indeed by construction Kac polynomials are integral positive poly-
nomials in the C abs

Q;d(t). We will give in Sections 4.4 and 4.6 two other (conjectural) con-
structions of the Lie algebraegQ, based on the geometry of T �MQ;ΛQ and on Nakajima
quiver varieties respectively, either of which would imply the above positivity conjecture.
We finish this section with another (somewhat imprecise) conjecture, which is a quiver
analog of a conjecture of Kontsevich and Deligne, see Section 6.1.
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Conjecture 3.5. For any Q;d there exists a ’natural’ algebraic variety CQ;d defined over
Z such that for any finite field k we have C abs

Q;d(#k) = #CQ;d(k).

There are obvious variants of this conjecture, replacing CQ;d by a complex algebraic
variety and the point count by the Poincaré polynomial, fixing the characteristic of k, etc.
Examples: For Q an affine quiver, we have C abs

Q;d(t) = 1; t or 0 according to whether
d 2 f�i gi , d 2 Nı for ı the indivisible imaginary root, or neither of the above. For
Q = S3 and d = 3 we have

C abs
Sg ;3 =

t9g�3 � t5g+2 � t5g�2 � t5g�3 + t3g+2 + t3g�2

(t2 � 1)(t3 � 1)
:

3.4 More questions than answers. As we have seen, there is a method for counting
cuspidal (or even ’absolutely’ cuspidal) functions, via Kac polynomials and the Borcherds
character formula. But is it possible to get a geometric parametrization of these cuspidals
(either in the sense of Conjecture 3.5, or as in the Langlands program in terms of some
’spectral data’ 7) ? Is it possible to explicitly construct cuspidal functions ? Can one lift
a suitable basis of the space of cuspidal functions to some perverse sheaves on MQ ? In
other words, is there a theory of canonical bases for Uv(enQ) ? If so, can one describe
explicitly the Ext-algebra of that category of perverse sheaves ? Equivalently, is there
a analog, for egQ, of the Khovanov-Lauda-Rouquier algebra, see Khovanov and Lauda
[2009] and Rouquier [2012] ?

4 Quivers, Kac polynomials and graded Borcherds algebras II
–Cohomological Hall algebras and Yangians–

The previous section offered a conjectural definition of Lie algebrasegQ;egnil
Q whose graded

multiplicities areAQ;d(t); Anil
Q;d(t), but the construction –involving something like a ’generic

form’ for the full Hall algebras HQ;Hnil
Q– was somewhat roundabout. In this section

we describe a geometric construction, in terms of the cohomology of T �MQ or ΛQ,
of algebras –the cohomological Hall algebras– which are deformations of the envelop-
ping algebras U (n̄Q[u]); U (n̄nil

Q [u]) for certain graded Lie algebras n̄Q; n̄nil
Q satisfying

dimZ n̄Q = AQ;d(t); dimZ n̄nil
Q = Anil

Q;d(t). Of course, it is expected that n̄Q; n̄nil
Q are

positive halves of Borcherds algebras ḡQ; ḡnil
Q and thus coincide withegQ;egnil

Q . One nice
output of this construction is that it yields for free a whole family of representations (in
the cohomology of Nakajima quiver varieties). In this section, k = C.

7a preliminary question: what plays the role of Hecke operators in this context?
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4.1 Geometry of the nilpotent variety. Let us begin by mentioning a few remark-
able geometric properties of the (generally very singular) stacks T �MQ, ΛQ introduced
in 2.4. and 2.5.. Here Q = (I;Ω) is an arbitrary quiver. Denote by T = (C�)2 the
two-dimensional torus acting on ΛQ and T �MQ by scaling the arrows in Ω and Ω� re-
spectively.

Theorem 4.1 (Schiffmann and Vasserot [2017a] and Davison [2016]). The T -equivariant
Borel-Moore homology space H T

� (ΛQ; Q) =
L

d H T
� (ΛQ;d; Q) is even, pure, and free

over H �
T (pt; Q). The same holds for T �MQ.

We will only consider (co)homology with Q-coefficients and drop the Q in the nota-
tion. The above theorem for ΛQ is proved by constructing a suitable compactification of
ΛQ;d for each d, itself defined in terms of Nakajima varieties, see Schiffmann and Vasserot
[2017a] and Nakajima [1994]. The second part of the theorem relies on dimensional reduc-
tion from a 3d Calabi-Yau category, see Davison [2016]. Kac polynomials are intimately
related to the cohomology of ΛQ and T �MQ. More precisely,

Theorem 4.2 (Bozec-S.-Vasserot, Davison, Mozgovoy). The Poincaré polynomials of
ΛQ and T �MQ are respectively given by:

(4-1)
X
i;d

dim H2i (ΛQ;d)t
hd;di+i zd = Exp

 X
d

Anil
Q;d(t

�1)

1 � t�1
zd

!

(4-2)
X
i;d

dim H2i (T
�MQ;d)t

hd;di+i zd = Exp

 X
d

AQ;d(t)

1 � t�1
zd

!
:

Equality (4-1) is proved in Bozec, Schiffmann, and Vasserot [2017] and hinges again
on some partial compactification of the stacks ΛQ;d defined in terms of Nakajima quiver
varieties. The second equality (4-2) is obtained by combining the purity results of Davi-
son [2016] with the point count of Mozgovoy [2011]. In some sense, (4-1) and (4-2)
are Poincaré dual to each other. Note that dim ΛQ;d = �hd;di hence (4-1) is a series in
C[[t�1]][z]. Taking the constant term in t�1 yields

P
d #I rr(Λd)z

d = Exp(
P

d Anil
d (0)zd),

in accordance with Theorem 2.4 ii), Theorem 2.5 ii). In other terms, (4-1) provides a ge-
ometric interpretation (as the Poincaré polynomial of some stack) of the full Kac poly-
nomial Anil

Q;d(t) rather than just its constant term and passing from Anil
Q;d(0) to Anil

Q;d(t)

essentially amounts to passing from Htop(ΛQ;d) to H�(ΛQ;d). Of course, (4-2) has a
similar interpretation.

4.2 Cohomological Hall algebras. The main construction of this section is the follow-
ing:
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Theorem 4.3 (Schiffmann and Vasserot [2013a] and Schiffmann and Vasserot [2017a]).
The spaces H T

� (T �MQ) and H T
� (ΛQ) carry natural Z � NI -graded algebra structures.

The direct image morphism i� : H T
� (ΛQ) ! H T

� (T �MQ) is an algebra homomorphism.

Let us say a few words about how the multiplication map

H T
� (T �MQ;d1) ˝ H T

� (T �MQ;d2) ! H T
� (T �MQ;d1+d2)

is defined. There is a convolution diagram

T �MQ;d1 � T �MQ;d2 Zd1;d2
qoo p // T �MQ;d1+d2

similar to (2-2), where Zd1;d2 is the stack of inclusions M̄ � R̄ with M̄ ; R̄ representations
ofΠQ of respective dimensions d2;d1+d2, and p and q are the same as in (2-2). The map
p is still proper, so that p� : H T

� (Zd1;d2) ! H T
� (T �MQ;d1+d2) is well-defined, but q is

not regular anymore and we cannot directly define a Gysin map q�. Instead, we embedd
Zd1;d2 and T �MQ;d1 � T �MQ;d2 into suitable smooth moduli stacks of representations
of the path algebra of the double quiver Q (without preprojective relations) and define a
refined Gysin map q! : H T

� (T �MQ;d1 � T �MQ;d2) ! H T
� (Zd1;d2). The multiplication

map is thenm = p�q!. Note that it is of cohomological degree�hd1;d2i�hd2;d1i; to rem-
edy this, we may (and will) shift the degree of H T

� (T �MQ;d) by hd;di. There is another
notion of cohomological Hall algebra due to Kontsevich and Soibelman, associated to any
Calabi-Yau category of dimension three (Kontsevich and Y. Soibelman [2011]); as shown
by Davison, see the appendix to Ren and Y. Soibelman [2017] (see also Yang and Zhao
[2016]) using a dimensional reduction argument, the algebras H T

� (T �MQ); H T
� (ΛQ)

arise in that context as well. In addition, the above construction of the cohomological Hall
algebras can be transposed to any oriented cohomology theory which has proper pushfor-
wards and refined Gysin maps, such as Chow groups, K-theory, elliptic cohomology or
Morava K-theory (see Yang and Zhao [2014]). This yields in a uniform way numerous
types of quantum algebras with quite different flavors.

Not very much is known about the precise structure of H T
� (T �MQ) or H T

� (ΛQ) in
general (and even less so for other types of cohomology theories). However, it is possible
to give a simple set of generators; for any d there is an embedding of MQ;d in ΛQ;d as the
zero-section, the image being one irreducible component of ΛQ;d.

Theorem 4.4 (Schiffmann and Vasserot [2017a]). The algebra H T
� (ΛQ) is generated

over H �
T (pt) by the collection of subspaces

fH T
� (MQ;�i

) j i 2 I re
[ I iso

g [ fH T
� (MQ;l�i

) j i 2 I hyp; l 2 Ng

Note that MQ;d = Ed/Gd, where Ed is a certain representation of Gd =
Q

i GL(di ),
hence H T

� (MQ;d) = H �
Gd�T (pt) � [MQ;d] ' Q[q1; q2; cl(Mi ) j i 2 I; l � di ], where
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q1; q2 are the equivariant parameters corresponding to T . The above result is for the
nilpotent stack ΛQ;d, but one can show that H T

� (ΛQ) ˝ Q(q1; q2) = H T
� (T �MQ) ˝

Q(q1; q2)
8 so that the same generation result holds for H T

� (T �MQ) ˝ Q(q1; q2).

4.3 Shuffle algebras. One can also give an algebraic model for a certain localized form
of H T

� (T �MQ) (or H T
� (ΛQ)). Namely, let Ed = T �Ed be the vector space of represen-

tations of Q in
L

i kdi . The direct image morphism i� : H T
� (T �MQ;d) ! H T

� (Ed/Gd)

is an isomorphism after tensoring by F rac(H �
T �Gd

(pt)). What’s more, it is possible to
equip

Sh
H T

�

Q :=
M
d

H T
� (Ed/Gd) '

M
d

H �
T �Gd

(pt)

with the structure of an associative algebra (such that i� becomes an algebra morphism),
described explicitly as a shuffle algebra. More precisely, let us identify

(4-3) H �
T �Gd

(pt) ' Q[q1; q2; zi;l j i 2 I; l � di ]
Wd

where Wd =
Q

i Sdi
is the Weyl group of Gd. To unburden the notation, we will collec-

tively denote the variables zi;1; : : : ; zi;di
(for all i 2 I ) by z[1;d], and use obvious variants

of that notation. Also, wewill regard q1; q2 as scalars and omit them from the notation. Fix
dimension vectors d; e and put n = d+e. For two integers r; s we denote byShr;s � Sr+s

the set of (r; s)-shuffles, i.e. permutations � satisfying �(i) < �(j ) for 1 � i < j � r

and r < i < j � r + s, and we put Shd;e =
Q

i Shdi ;ei
�
Q

i Sni
= Wn. In terms of

(4-3), the multiplication map H �
T �Gd

(pt) ˝ H �
T �Ge

(pt) ! H �
T �Gn

(pt) now reads

(f � g)(z[1;n]) =
X

�2Shd;e

�
h
Kd;e(z[1;n]) � f (z[1;d]) � g(z[d+1;n])

i
where Kd;e(z[1;n]) =

Q2
s=0 K

(s)
d;e (z[1;n]) with

K
(0)
d;e (z[1;n]) =

Y
i2I

Y
1�l�di

di+1�k�ni

(zi;l � zi;k)
�1;

K
(1)
d;e (z[1;n]) =

Y
h2Ω

Y
1�l�dh0

dh00+1�k�nh00

(zh0;l � zh00;k � q1)
Y

1�l�dh00

dh0+1�k�nh0

(zh00;l � zh0;k � q2)

8in other words H T
� (ΛQ) and H T

� (T �MQ) are two different integral forms of the same Q(q1; q2)-
algebra; this explains the discrepancy between usual and nilpotent Kac polynomials.
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and
K

(2)
d;e (z[1;n]) =

Y
i2I

Y
1�l�di

di+1�k�ni

(zi;k � zi;l � q1 � q2):

As shown in Schiffmann and Vasserot [2017a], H T
� (T �MQ;d) and H T

� (ΛQ;d) are
torsion-free and of generic rank one as modules over H �

T �Gd
(pt), hence the localization

map i� is injective and Theorem 4.4 yields a description of the cohomological Hall algebra
H T

� (ΛQ) as a subalgebra of the above shuffle algebra, generated by an explicit collection
of polynomials. This allows one to identify the rational form of H T

� (MQ) with the pos-
itive half of the Drinfeld Yangian Yh(gQ) when Q is of finite type and with the positive
half of the Yangian version of the elliptic Lie algebra gQ0

[s˙1; t˙1] ˚ K when Q is an
affine Dynkin diagram. Here K is the full central extension of the double loop algebra
gQ0

[s˙1; t˙1]. Beyond these case, shuffle algebras tend to be rather difficult to study and
the algebraic structure of H T

� (MQ) (or H T
� (ΛQ)) is still mysterious (see, however Neguţ

[2015, 2016] for some important applications to the geometry of instanton moduli spaces
in the case of the Jordan or affine type A quivers).

There are analogous shuffle algebra models in the case of an arbitrary oriented Borel-
Moore homology theory, but the torsion-freeness statement remains conjectural in general.
In order to give the reader some idea of what these are, as well as for later use, let us
describe the localized K-theoretic Hall algebra of the g-loop quiver Sg . In this case, there
is a g + 1-dimensional torus Tg acting by rescaling the arrows:

(�1; �2; : : : ; �g ; p) � (h1; h�
1 ; : : : ; hg ; h�

g) = (�1h1; p��1
1 h�

1 ; : : : ; �ghg ; p��1
g h�

g)

and we have an identification

ShKTg

Sg
:=
M

d

KTg�Gd (pt) '
M

d

Q[�˙1
1 ; : : : ; �˙1

g ; p˙1; z˙1
1 ; : : : ; z˙1

d ]Sd :

The multiplication takes the form

(4-4) (f � g)(z[1;n]) =
X

�2Shd;e

�
h
Kd;e(z[1;n]) � f (z[1;d ]) � g(z[d+1;n])

i
where Kd;e(z[1;n]) =

Q2
s=0 K

(s)

d;e
(z[1;n]) with

K
(0)

d;e
(z[1;n]) =

Y
1�l�d

d+1�k�n

(1 � zl/zk)
�1

K
(1)

d;e
(z[1;n]) =

Y
1�l�d

d+1�k�n

gY
u=1

(1 � ��1
u zl/zk)(1 � p�1�uzl/zk)
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K
(2)

d;e
(z[1;n]) =

Y
1�l�d

d+1�k�n

(1 � p�1zk/zl)
�1:

4.4 PBW theorem. We finish this paragraph with the following important structural
result due to Davison and Meinhardt:

Theorem 4.5 (Davison and Meinhardt [2016]). There exists a graded algebra filtration
Q = F0 � F1 � � � � of H�(T

�MQ) and an algebra isomorphism

(4-5) grF�
(H�(T

�MQ)) ' Sym(n̄Q[u])

where n̄Q =
L

d2NI n̄Q;d is a NI � N-graded vector space and deg(u) = �2. The
same holds for H�(ΛQ).

The filtration F� is, essentially, the perverse filtration associated to the projection from
the stack T �MQ to its coarse moduli space. As a direct corollary,F1 ' n̄Q[u] is equipped
with the structure of an N-graded Lie algebra; it is easy to see that it is the polynomial
current algebra of an N-graded Lie algebra n̄Q (coined the BPS Lie algebra in Davison
and Meinhardt [ibid.]). Loosely speaking, Theorem 4.5 says that H�(T

�MQ) is (a fil-
tered deformation of) the enveloping algebra U (n̄Q[u]), i.e. some kind of Yangian of n̄Q.
Comparing graded dimension and using Theorem 4.2 we deduce that for any d 2 NI

(4-6) dimZ n̄Q;d = AQ;d(t):

Moreover, when Q has no edge loops, it can be shown that the degree zero Lie subalgebra
n̄Q[0] is isomorphic to the positive nilpotent subalgebra nQ of the Kac-Moody algebra gQ.
This implies at once both the positivity and the constant term conjectures for Kac polyno-
mials, see Section 2.2 The same reasoning also yields a proof of the nilpotent versions of
the Kac conjectures (for an arbitrary quiver) of Section 2.5, see Davison [2016].

At this point, the following conjecture appears inevitable:

Conjecture 4.6. The graded Lie algebra n̄Q is isomorphic to the positive subalgebraenQ

ofegQ.

Notice that the definition ofegQ involves the usual Hall algebra of Q (over all the finite
fields Fq), while that of n̄Q involves the (two-dimensional) cohomological Hall algebra
of Q and the complex geometry of RepC ΠQ. Conjecture 4.6 would follow from the fact
that n̄Q is the positive half of some graded Borcherds algebra ḡQ.

4.5 Action on Nakajima quiver varieties. One important feature of the cohomolog-
ical Hall algebras H T

� (T �MQ); H T
� (ΛQ) is that they act, via some natural correspon-

dences, on the cohomology of Nakajima quiver varieties. Recall that the Nakajima quiver
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variety MQ(v;w) associated to a pair of dimension vectors v;w 2 NI is a smooth quasi-
projective symplectic variety, which comes with a proper morphism � : MQ(v;w) !

MQ;0(v;w) to a (usually singular) affine variety. The morphism � is an example of a
symplectic resolution of singularities, of which quiver varieties provide one of the main
sources. The quiver variety also comes with a canonical (in general singular) lagrangian
subvariety L(v;w) which, when the quiver has no edge loops, is the central fiber of � .
Examples include the Hilbert schemes of points on A2 or on Kleinian surfaces, the mod-
uli spaces of instantons on theses same spaces, resolutions of Slodowy slices in nilpotent
cones and many others (see e.g. Schiffmann [2008] for a survey of the theory of Naka-
jima quiver varieties). The following theorem was proved by Varagnolo [2000], based
on earlier work by Nakajima in the context of equivariant K-theory (see Nakajima [1998,
2001]).

Theorem 4.7 (Varagnolo [2000]). Let Q be without edge loops and w 2 NI . There is a
geometric action of the Yangian Yh(gQ) on Fw :=

L
v H

T �Gw
� (MQ(v;w)), preserving

the subspace Lw :=
L

v H
T �Gw
� (LQ(v;w)). For Q of finite type, Lw is isomorphic to

the universal standard Yh(gQ)-module of highest weight w.

In the above, the YangianYh(gQ) is defined usingDrinfeld’s new realization, applied to
an arbitrary Kac-Moody root system, see Varagnolo [ibid.]. Its precise algebraic structure
is only known for Q of finite or affine type.

Theorem 4.8 (Schiffmann and Vasserot [2017a]). For any Q and any w 2 NI there is a
geometric action of the cohomological Hall algebra H T

� (T �MQ) on Fw. The diagonal
action of H T

� (T �MQ) on
Q

w Fw is faithful. The subalgebra H T
� (ΛQ) preserves Lw,

which is a cyclic module.

For quivers with no edge loops, we recover Varagnolo’s Yangian action by Theorem 4.4;
It follows that there exists a surjective map

Y +
h
(gQ) ˝ Q(q1; q2) ! H T

� (T �MQ) ˝ Q(q1; q2)

This map is an isomorphism for Q of finite or affine type. The action of H T
� (T �MQ) is

constructed by means of general Hecke correspondences; in fact one can view
H T

� (T �MQ) as the largest algebra acting on Fw via Hecke correspondences. Consid-
ering dual Hecke correspondences (or adjoint operators), one defines an opposite action
of H T

� (T �MQ); it is natural to expect that these two actions extend to an action of some
’Drinfeld double’ of H T

� (T �MQ), but this remains to be worked out. It is also natural
to expect that Lw is a universal or standard module for H T

� (T �MQ), as is suggested by
Hausel’s formula for the Poincaré polynomial of MQ(v;w) or LQ(v;w), which involves
the (full) Kac polynomials, seeHausel [2010] andBozec, Schiffmann, andVasserot [2017].
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Theorem 4.8 has an obvious analog (with the same proof) for an arbitrary OBM theory
(see Yang and Zhao [2014] for the construction of the action).

4.6 Relation to Maulik-Okounkov Yangians. We finish this section by very briefly
mentioning yet another (conjectural) construction of the Lie algebraegQ, this time directly
by means of the symplectic geometry of Nakajima quiver varieties. Using the theory of
stable enveloppes for C�-actions on smooth symplectic varietes, Maulik and Okounkov
constructed for any pair of dimension vectors w1;w2 a quantum R-matrix

Rw;w2
(t) = 1 +

„

v�1
rw1;w2

+ O(v�2) 2 End(Fw1
˝ Fw2

)[[v�1]]:

Applying the RTT formalism, we obtain a graded algebra YQ acting on all the spaces
Fw; similarly, from the classical R-matrices rw1;w2

we obtain a Z-graded Lie algebra gQ.
Moreover, YQ is (up to some central elements) a filtered deformation of U (gQ[u]) (hence
the nameMaulik-Okounkov Yangian see Maulik and Okounkov [2012]). It can be shown
that gQ is a graded Borcherds algebra. The following conjecture was voiced by Okounkov
[n.d.]:

Conjecture 4.9 (Okounkov). For any Q and any d 2 NI we have dimZ gQ[d] =

AQ;d(t).

The conjecture is known when Q is of finite type. Comparing with (3-4) and (4-6)
leads to the following

Conjecture 4.10. For any Q we have gQ ' ḡQ 'egQ.

As a first step towards the above conjecture, we have

Theorem 4.11 (Schiffmann and Vasserot [2017b]). For any Q there is a canonical em-
bedding H T

� (ΛQ) ! Y+
Q , compatible with the respective actions on

Q
w Fw of H T

� (ΛQ)

and YQ.

All together, we see that there are conjecturally (at least) three different incarnations of
the same graded Borcherds Lie algebra: as a ’generic form’ of the full Hall algebra of the
category of representations of Q over finite fields, as a cohomological Hall algebra of the
complex (singular) stack T �MQ, or as an algebra acting on the cohomology of Nakajima
quiver varieties via R-matrices constructed by means of symplectic geometry. The precise
structure of this graded Borcherds algebra, in particular its Cartan matrix (determined by
the polynomials C abs

Q;d(t) counting the dimensions of the spaces of ’absolutely’ cuspidal
functions for Q) remains however very mysterious. From the symplectic geometry per-
spective, one might expect the polynomials C abs

Q (t) to be related to some motive inside
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the Nakajima quiver variety, but there is no conjectural construction of such a motive that
we know of.

In the remainder of this paper, we shift gears and consider categories of coherent
sheaves on smooth projective curves instead of representations of quivers; motivated by
the analogy with quivers, we will describe the spherical Hall algebra, full Hall algebra
and 2d -cohomological Hall algebras (!) of a curve, as well as a geometric interpretation
of Kac polynomials in terms of Higgs bundles. We finish with some speculation about the
Lie theoretic structures that we believe are lurking in the background.

5 Hall algebras of curves and shuffle algebras

5.1 Notations. We fix an integer g � 0 and a smooth, geometrically connected, pro-
jective curve X of genus g over a field k. We denote by Coh(X) the category of coherent
sheaves on X and by MX;r;d the stack of coherent sheaves of rank r and degree d . It
is a smooth stack, locally of finite type. The Euler form is given by the Riemann-Roch
formula

hF ; Gi = (1 � g)rk(F )rk(G) + (rk(F )deg(G) � rk(G)deg(F )):

Set MX =
F

r;d MX;r;d .

5.2 Ringel–Hall algebra of a curve. Let us now assume that k is a finite field, and
define

HX =
M
r;d

HX [r; d ]; HX [r; d ] := Fun(MX;r;d (k); C):

In an entirely similar fashion to (2-2), there is a convolution diagram

(5-1) MX � MX
fMX

qoo p // MX

wherefMX is the stack parametrizing short exact sequences

0 // F // H // G // 0

in Coh(X); The map p is proper, while the map q is again a stack vector bundle, whose
restriction to MX;r;d � MX;r 0;d 0 is of rank �h(r 0; d 0); (r; d )i. Setting v = (#k) 1

2 , K =

C[k˙1
(0;1); k˙1

(1;0)] we equip, using (2-3) and (2-4), eHX := HX ˝ K with the structure of
a Z2-graded bialgebra called the Hall algebra of X . It carries a nondegenerate Hopf
pairing by (2-5). Finally, HX ' Hbun

X Ë H0
X where Hbun

X ;H0
X are the Hall subalgebras of

vector bundles, resp. torsion sheaves. The Hall algebra of a curve was first considered
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by M. M. Kapranov [1997], who established the (direct) dictionary between Hbun
X and

the space of automorphic forms9 for the groups GL(n; AX ), together with the operations
of parabolic induction (Eisenstein series) and restriction (constant term map), and who
observed a striking analogy between eHX and quantum loop groups.

Let Hsph
X (resp. Hsph,bun

X ) be the subalgebra of HX generated by the constant functions
on MX;r;d for r = 0; 1 (resp. r = 1) and d 2 Z. From the point of view of automorphic
forms, Hsph,bun

X is the space spanned by all components of Eisenstein series induced from
trivial (i.e constant) automorphic forms for the torus (together with a suitable space of
Hecke operators in the case of Hsph

X ). One can show that eHsph
X := Hsph

X ˝ K is a self-
dual sub-Hopf algebra of eHX which contains the characteristic functions of any Harder-
Narasimhan strata (see Schiffmann [2011]). Moreover, contrary to eHX which depends
strongly on the fine arithmetic structure ofX ,eHsph

X only depends on theWeil numbers ofX

and admits anRg -rational form, i.e. there exists a torsion-freeRg -Hopf algebraeHsph
Σg

such
that for any smooth projective curve X defined over a finite field, eHsph

Σg
˝Rg

CX ' eHsph
X ,

where CX is the Rg -module corresponding to the evaluation morphism Rg ! Ql ' C,
f 7! f (F rx). We view eHsph

Σg
as some kind of (half) quantum group which depends on

dim Tg = g + 1 quantum parameters, associated to curves of genus g. The full quantum
group is, as before, obtained by the Drinfeld double procedure. Hall algebras in genus 0
and 1 are already very interesting:

Theorem 5.1 (M.M.Kapranov [1997],Baumann andKassel [2001]). TheDrinfeld double
DeHsph

Σ0
is isomorphic to the quantum affine algebra Uv(csl2).

Theorem5.2 (Burban and Schiffmann [2012],Schiffmann andVasserot [2011]). TheDrin-
feld doubleDeHsph

Σ1
is isomorphic to the spherical double affineHecke algebraSḦq;t (GL1)

of type GL(1).

In the above two cases, the structure of the Hall algebra eHsph
Σg

is rather well understood:
it has a PBW-type basis as well as a canonical basis constructed from simple perverse
sheaves (Eisenstein sheaves) on the stacks MX . The spherical Hall algebra eHsph

Σ1
–also

called the elliptic Hall algebra– has found a surprising number of applications in repre-
sentation theory of Cherednik algebras, low-dimensional topology and knot theory (e.g.
Morton and Samuelson [2017] , Gorsky and Neguţ [2015]), algebraic geometry and math-
ematical physics of the instanton spaces on A2 (e.g. Schiffmann and Vasserot [2013b],
Schiffmann and Vasserot [2013a], and Neguţ [2016]), combinatorics of Macdonald poly-
nomials (e.g. Bergeron, Garsia, Leven, and Xin [2016] and Francesco and Kedem [2017]),

9one nice feature of the Hall algebra is that it incorporates the algebra of Hecke operators, as the sub Hopf
algebra of torsion sheaves H0

X
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categorification (e.g. Cautis, Lauda, Licata, Samuelson, and Sussan [2016]), etc. The el-
liptic Hall algebra (or close variants thereof) has independently appeared in the work of
Miki [2007] and Ding and Iohara [1997] and Feigin and his collaborators (see e.g., B.
Feigin, E. Feigin, Jimbo, Miwa, and Mukhin [2011]).

5.3 Shuffle algebra presentation. Although the structure of eHsph
Σg

for g > 1 is much
less well understood, we always have a purely algebraic model of eHsph

Σg
at our disposal,

once again10 in the guise of a shuffle algebra. More precisely, let

�Σg
(z) :=

Qg
i=1(1 � �i z)

(1 � z)(1 � qz)
2 Rg(z)

be the ’generic’ zeta function of a curve of genus g and put �0
Σg

(z) = (1 � qz)(1 �

qz�1)�Σg
(z). Consider the shuffle algebra

ShΣg
:=
M

d

Rg [z
˙1
1 ; : : : ; z˙1

d ]Sd

with multiplication

(5-2) (f � g)(z[1;n]) =
X

�2Shd;e

�
h
Kd;e(z[1;n])f (z[1;d ])g(z[d+1;n])

i
where Kd;e(z[1;n]) =

Q
1�l�d<k�n �0

Σg
(zl/zk), for any d; e and n = d + e.

Theorem 5.3 (Schiffmann andVasserot [2012]). The assignment 1P icd 7! zd 2 ShΣg
[1]

extends to an Rg -algebra embedding Ψ : Hsph,bun
Σg

! ShΣg
.

The map Ψ is essentially the iterated coproduct ∆(r) : Hsph
Σg

[r ] ! (Hsph
Σg

[1])˝r . In the
language of automorphic forms, Theorem 5.3 amounts to the Langlands formula for the
constant term of Eisenstein series, or equivalently to the Gindikin-Karpelevich formula.
One should not be deceived by the apparent simplicity of the shuffle algebra description
for Hsph,bun

X . In particular, Hsph,bun
Σg

is not free over Rg and the relations satisfied by the
generators 1P icd ofHsph,bun

X do depend on the arithmetic of the Weil numbers �1; : : : ; �2g

of X (more precisely, on the Z-linear dependence relation between log(�1); : : : log(�2g),
the so-called wheel relations).

10There is nothing surprising in the ubiquity of shuffle algebras: any finitely generated, N-graded self-dual
Hopf algebra has a realization as a shuffle algebra
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5.4 Geometric Langlands isomorphism. Comparing (4-4) and (5-2) we immediately
see that, up to the identification p = q�1; �i = ��1

i we have ShΣg
' ShKTg

Sg
. This

implies that there is an isomorphism

(5-3) Φ : Hsph,bun
Σg

∼
�! Ksph;Tg

Sg

where Ksph;Tg

Sg
is the subalgebra of KTg (T �MSg

) generated by its rank one component
KTg (T �MSg ;1). The isomorphism (5-3) between the (spherical) Hall algebra of X and
the (spherical) K-theoretical Hall algebra of the Sg quiver should be viewed as an incar-
nation, at the level of Grothendieck groups, of a (linearized) form of geometric Langlands
correspondence. Indeed, the Langlands philosophy predicts an equivalence

Coh(LocSysr(XC)) ' D�mod (Bunr(XC))

between suitable (infinity) categories of coherent sheaves on the moduli stack of GLr -
local systems on XC and D-modules on the stack of GLr -bundles on XC . On one hand,
the formal neighborhood in LocSysr(XC) of the trivial local system may be linearized
as the formal neighborhood of 0 in f(x1; : : : ; xg ; y1; : : : ; yg) 2 glr(C)2g j

P
i [xi ; yi ] =

0g/GLr(C) ' T �MSg ;r ; on the other hand, Hsph;bun
Σg

may be lifted to a category of
holonomic D-modules (perverse sheaves) on Bunr(XC). We refer to Schiffmann and
Vasserot [2012] for a more detailed discussion.

5.5 Variations. There are several interesting variants of the above constructions and
results: one can consider categories of D-parabolic coherent sheaves (see Schiffmann
[2004] and Lin [2014]); this yields, for instance, some quantum affine or toroidal algebras.
One can also consider arithmetic analogs the Hall algebra, replacing the abelian category
of coherent sheaves on a curve X over a finite field by coherent sheaves or vector bundles
(in the sense of Arakelov geometry) over Spec(OK), where K is a number field. The
case of K = Q is discussed in M. Kapranov, Schiffmann, and Vasserot [2014], where the
spherical Hall algebra is described as some analytic shuffle algebra with kernel given by
the Riemann zeta function �(z).

6 Counting Cuspidals and Cohomological Hall algebras of curves

6.1 Counting cuspidals and the full Hall algebra of a curve. In Sections 5.2 and 5.3
we considered the spherical Hall algebra Hsph

X for which we provided a shuffle algebra
description involving the zeta function �X (z). What about the whole Hall algebra HX

? As shown in M. Kapranov, Schiffmann, and Vasserot [2017], Hbun
X admits a shuffle
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description as well, but it is much less explicit than for Hsph
X . Recall that an element

f 2 Hbun
X [r; d ] is cuspidal if it is quasi-primitive, i.e. if

∆(f ) 2 f ˝ 1 + kr;d ˝ f +H0
X ˝ eHX [r ]:

The algebra Hbun
X is generated by the spaces of cuspidal elements

Hcusp
X =

M
r;d

Hcusp
X [r; d ]

and dim Hcusp
X [r; d ] < 1 for all r; d . The function field Langlands program (Lafforgue

[2002]) sets up a correspondence � 7! f� between characters � : H0
X ! C associ-

ated to rank r irreducible local systems on X and cuspidal Hecke eigenfunctions f� =P
d f�;d 2

Q
d H

cusp
X [r; d ]. The shuffle algebra description of HX is as follows: we have

a family of variables z�;i , i 2 N for each cuspidal Hecke eigenform f� (up to Gm-twist)
and the shuffle kernels involve the Rankin-Selberg L-functions L(�; �0; z) of pairs of
characters �; �0 in place of �X (z) (see Fratila [2013] for a full treatment when g = 1).
In principle, one could try, using the PBW theorem and arguing as in the case of quivers
(see Section 3.2), to deduce from the above shuffle description of HX an expression for
the dimensions of the spaces of cuspidal functions Hcusp

X [r; d ] (or better, absolutely cuspi-
dal functions Habs. cusp

X [r; d ]) in terms of the Kac polynomials Ag;r . Very recently H. Yu
managed –by other means11– to compute the dimension of Habs. cusp

X [r; d ] directly:

Theorem 6.1 (Yu [n.d.]). For any g; r there exists a (unique) polynomial C abs
g;r 2 Rg such

that for any smooth projective curveX of genusg defined over a finite field, dim Habs. cusp
X [r; d ] =

C abs
g;r (F rX ).

This generalizes a famous result of Drinfeld (for r = 2, Drinfel’d [1981]) and proves a
conjecture of Deligne [2015] and Kontsevich [2009]. Interestingly, the polynomial C abs

g;r

is explicit: Yu expresses it in terms of the numbers of rational points of the moduli spaces
of stable Higgs bundles over finite fields and hence, by Theorem 7.1 below, in terms of
the Kac polynomials Ag;r ! This strengthens our belief that the structure of HX as an
associative algebra is nice enough that it should have a character formula similar to that
of Borcherds algebras. For instance, we have

Ag;1(F ) = C abs
g;1(F ); Ag;2(F ) = C abs

g;2(F ) + (g � 1)C abs
g;1(F )2 + C abs

g;1(F )

Ag;3(F ) =C abs
g;3(F ) + (g � 1)C abs

g;1(F )
˚
4C abs

g;2(F ) + C abs
g;1(F

2) + 2(g � 1)C abs
g;1(F )2

	
+ 4(g � 1)C abs

g;1(F )2 + C abs
g;1(F )

where F = F rX .
11namely, using the Arthur-Selberg trace formula
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Conjecture 6.2. For any g; r there exists a (non-virtual) GSp(2g; Ql)-representation
Cabs

g;r such that C abs
g;r = �(ch(Cabs

g;r)).

6.2 Cohomological Hall algebra of Higgs sheaves. We take k = C here. The (un-
derived) cotangent stack T �MX =

F
r;d T �MX;r;d is identified with the stack of Higgs

sheaves HiggsX =
F

r;d HiggsX;r;d , which parametrizes pairs (F ; �)with F 2 Coh(X)

and � 2 HomOX
(F ; F ˝ ΩX ). The global nilpotent cone ΛX =

F
r;d ΛX;r;d is the

closed Lagrangian substack whose objects are Higgs sheaves (F ; �) for which � is nilpo-
tent. Both stacks are singular, locally of finite type and have infinitely many irreducible
components. The stack ΛX;r;d is slightly better behaved since all irreducible components
are of dimension (g�1)r2. We refer to Bozec [2017] for an explicit description of these ir-
reducible components. The torus T = Gm acts onHiggsX andΛX by t �(F ; �) = (F ; t�).

Theorem 6.3 (Sala and Schiffmann [2018] and Minets [2018]). The Borel-Moore homol-
ogy spacesH T

� (HiggsX ) andH T
� (ΛX ) carry naturalZ�Z2-graded associative algebra

structures. Moreover, the direct image morphism

i� : H T
� (ΛX ) ! H T

� (HiggsX )

is an algebra homomorphism.

The definition of the algebra structure roughly follows the same strategy as for quivers:
working in local charts, we use the construction of HiggsX as a symplectic reduction to
embed everything into some smooth moduli stacks. As before, the morphism i� becomes
invertible after localizing with respect to H �

T (pt). There is an embedding of MX in ΛX

as the zero section of the projection p : HiggsX ! MX ; its image is an irreducible
component of ΛX .

Theorem 6.4 (Sala and Schiffmann [2018]). The algebra H T
� (ΛX ) is generated by the

collection of subspaces H T
� (MX;r;d ) for (r; d ) 2 Z2.

What about a shuffle algebra description of H T
� (ΛX ) ? The cohomology ring Hr;d =

H �(MX;r;d ) acts on H T
� (ΛX;r;d ) by c � h = p�(c) \ h. By Heinloth’s extension of

the Atiyah-Bott theorem Heinloth [2012], H0;d = Sd (H �(X)[z]) for d � 1 while for
r � 1; d 2 Z, Hr;d = Q[ci;
 (Er;d ) j i � 1; 
 ] is a polynomial algebra in the Künneth
components ci;
 (Er;d ) of the Chern classes of the tautological sheaf Er;d overMX;r;d �X ;
here 
 runs over a basis f1; a1; b1; : : : ; ag ; bg ; $g of H �(X).

Theorem 6.5 (Sala and Schiffmann [2018] and Minets [2018]). The Hr;d -module
H T

� (ΛX;r;d ) is torsion-free and of generic rank one.
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This opens up the possibility to construct a (shuffle) algebra structure on
L

r;d Hr;d ,
but this has so far only be achieved for the subalgebra of torsion sheaves, seeMinets [2018].
Very similar shuffle algebras occur, not surprisingly, as operators on the cohomology of
moduli spaces of semistable sheaves on smooth surfaces, see Neguţ [2017].

7 Kac polynomials and Poincaré polynomials of moduli of stable
Higgs bundles

7.1 Moduli spaces of stable Higgs bundles. Recall that a Higgs sheaf (V; �) on X is
semistable if for any subsheaf W � V such that �(W ) � W ˝ ΩX we have �(W ) �

�(V ), where �(F ) = deg(F )/rk(F ) is the usual slope function. Replacing � by < we
obtain the definition of a stableHiggs sheaf. The open substackHiggsst

X;r;d
� HiggsX;r;d

of stable sheaves is aGm-gerbe over a smooth quasi-projective symplectic varietyHiggsst
r;d

.
On the contrary, the open substack Higgsss

r;d
� HiggsX;r;d of semistable sheaves is sin-

gular as soon as gcd (r; d ) > 1; when gcd (r; d ) = 1, Higgsss
X;r;d

= Higgsst
X;r;d

. The
variety Higgsst

X;r;d
has played a fundamental role in algebraic geometry, in the theory

of integrable systems, in the geometric Langlands program, in the theory of automorphic
forms, and is still the focus of intensive research; we refer to e.g. Hausel [2013] for a
survey of the many important conjectures in the subject.

7.2 Poincaré polynomials andKac polynomials. Assume that k = Fq . The following
result provides a very vivid geometric interpretation of the Kac polynomial Ag;r .

Theorem 7.1 (Schiffmann [2016] and Mozgovoy and Schiffmann [2017]). For any r; d

with gcd (r; d ) = 1 we have

#Higgsst
X;r;d (Fq) = q(g�1)r2+1Ag;r(F rX ):

Together with some purity argument and Mellit’s simplification of the explicit for-
mula for Ag;r , this proves the conjecture of Hausel and Rodriguez-Villegas [2008] for
the Poincaré polynomial of Higgsst

X;r;d
(for k = C or Fq). There are two proofs of The-

orem 7.1: one is based on a deformation argument to relate directly the point count of
HiggsX;r;d (Fq) to the count of indecomposable sheaves; the other uses Hall-theoretic
techniques (for the category of positive Higgs sheaves). Both have been generalized or
put in a broader context, see Dobrovolska, Ginzburg, and Travkin [2016] and Fedorov, A.
Soibelman, and Y. Soibelman [2017].

Concerning the stable global nilpotent cone Λst
X;r;d

= ΛX;r;d \ Higgsst
X;r;d

we have
the following interpretation of the constant term of the Kac polynomial:
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Theorem 7.2 (Schiffmann [2016]). For any (r; d ) with gcd (r; d ) = 1 we have

#I rr(Λst
X;r;d ) = Ag;r;d (0)

Recall that by Proposition 1.7 we have Ag;r(0) = ASg ;r(1); this suggests the existence
of some natural partition of I rr(Λst

X;r;d
), but the geometric meaning of such a partition is

unclear to us.

7.3 Donaldson-Thomas invariants and Kac polynomials. What about non coprime
(r; d ) ? In this case, it is still possible to perform the (orbifold) point count of the stack
HiggsX;r;d (k)when k = Fq ; this point count is best expressed in terms of the Donaldson-
Thomas invariants ΩX;r;d which are defined by the following generating series:

8 � 2 Q;
X
d
r =�

ΩX;r;d

q � 1
wrzd := Log

0B@X
d
r =�

q(1�g)r2#(Higgsss
X;r;d (Fq))w

rzd

1CA :

Theorem7.3 (Mozgovoy and Schiffmann [2017]). For any r; d we haveΩX;r;d = qAg;r(F rX ).

If gcd (r; d ) = 1 then

ΩX;r;d = (q � 1)q(1�g)r2#(Higgsst
X;r;d (Fq)) = q(1�g)r2#Higgsst

X;r;d (Fq)

so that we recover Theorem 7.1.

8 Delirium Tremens: a hierarchy of Lie algebras

We conclude this survey with some wild speculations concerning potential Lie algebras
associated to curves, rather than to quivers

8.1 Lie algebras from curves ? Following the analogy with quivers, it is natural to
expect the existence of a family of Z2-graded complex Lie algebras gg =

L
r;d gg [r; d ]

such that Hsph
g is a (g + 1)-quantum parameter deformation of U +(gg), and

dim gg [r; d ] = Ag;r(0; : : : ; 0)

for any r; d . This Lie algebra gg would be a curve analog of the Kac-Moody algebra
gQ associated to a quiver Q (or its variant gB

Q if Q has edge loops). What about the the
analog of the graded Borcherds algebraegQ ? Because the grading in the context of curves
is by the character ring of GSp(2g; Ql) rather than by Z, it seems natural to expect the
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existence of a Lie algebraegg in the tensor category of finite-dimensional GSp(2g; Ql)-
modules, with gg being identified with the sub-Lie algebra corresponding to the tensor
subcategory of trivial representations (of arbitrary rank). Moreover, we should have

egg [r; d ] = Ag;r 2 GSp(2g; Ql) � mod;

where Ag;r is as in Conjecture 1.6, and the cuspidal (or ’simple root vectors’) ofegg [r; d ]

should form a subrepresentation isomorphic to Cabs
g;r , where Cabs

g;r is as in Conjecture 6.2.
Although we do not have any clue at the moment as to whategg could be, the Langlands

isomorphism (5-3) provides us with a very good guess concerning gg . Namely, it is ex-
pected that the (spherical) K-theoretical Hall algebra KT (T �MQ)– by analogy with the
(spherical) cohomological Hall algebra H T

� (T �MQ)– is a deformation of U +(egQ[u˙1]).
This strongly suggests that, at least as a vector space, gg ' egSg

[u˙1]. Note that the
N-grading of egSg

gets lost in the process since there is no obvious grading in the K-
theoretical Hall algebra. Taking graded dimensions, we obtain the equality ASg ;r(1) =

Ag;r(0; : : : ; 0) of Proposition 1.7. Of course, this is not a proof but rather a conceptual
explanation of this equality. We summarize this in the chain of inclusions of Lie algebras

gSg
� g̃Sg

� g̃Sg
[t; t�1] ' gg � g̃g � g̃g [t; t�1]:

Examples. i) Suppose g = 0. ThenegS0
= gS0

= sl2 and g0 ' csl2, while it is natural to
expect thateg0 = (sl2 ˚K)[u˙1], where K is a one dimensional central extension, placed
in degree one. Note that we have A0;0 = q + 1, A0;1 = 1 and A0;r = 0 for r > 1.
ii) Suppose g = 1. Then egS1

' gS1
= Ql [s

˙1] is the Heisenberg algebra, and g1 =

Ql [s
˙1; t˙1] ˚ K1 ˚ K2, where K1 ˚ K2 is a two-dimensional central extension. The

Lie algebra structure is not the obvious one however, but rather a central extension of the
Lie bracket [sr td ; sntm] = (rm � dn)sr+ntd+m (see Schiffmann and Vasserot [2013a],
App. F. for the case of the Yangian).

8.2 Summary of Hall algebras, their corresponding Lie algebras and Kac polyno-
mials. We conclude this survey with the following table, containing our heuristics.

Type of Hall Algebras Quivers Curves
K-thr. Hall algebra Ksph;T (T �M) egQ[u˙1]; AQ(t)ı(t) egg [u]; Ag(�1; : : : ; �2g)ı(t)

Coho. Hall algebra H T
� (T �M) egg [u

˙1]; AQ(t)/(1 � t) egg [u]; Ag(�1; : : : ; �2g)/(1 � t)

Hall algebra H egQ; AQ(t) egg ; Ag(�1; : : : ; �2g)

Spherical Hall algebra Hsph gQ; AQ(0) gg ; Ag(0; : : : ; 0)
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MODULI SPACES OF LOCAL G-SHTUKAS
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Abstract
We give an overview of the theory of localG-shtukas and their moduli spaces that

were introduced in joint work of U. Hartl and the author, and in the past years studied
by many people. We also discuss relations to moduli of global G-shtukas, properties
of their special fiber through affine Deligne-Lusztig varieties and of their generic fiber,
such as the period map.

1 Introduction

Local G-shtukas are an analog over local function fields of p-divisible groups with ad-
ditional structure. In this article we give an overview about the theory of moduli spaces
of local G-shtukas and their relation to moduli of global G-shtukas. It parallels the the-
ory of Rapoport-Zink moduli spaces of p-divisible groups and their relation to Shimura
varieties. Yet it has the additional charm that additional structure given by any parahoric
group scheme G can be easily encoded and treated in a group-theoretic way.

We begin by defining local G-shtukas for a parahoric group scheme G over
Spec Fq [[z]] (see Section 2). They are pairs consisting of an L+G-torsor G together with
an isomorphism ��LG ! LG for the associated LG-torsor. Here for unexplained no-
tation we refer to the respective sections. Local G-shtukas are the function field analog
of p-divisible groups with additional structure, as well as a group theoretic generaliza-
tion of Drinfeld’s shtukas. Next we discuss possible bounds on the singularities of local
G-shtukas. These are a more general replacement of the minuscule coweights fixed to
define Shimura varieties. In Section 3 we consider deformations for local G-shtukas, and
the description of the universal deformation in terms of the loop group LG. In Section 4
we describe the analog of Rapoport-Zink moduli spaces for local G-shtukas bounded by
a given bound Ẑ and within a given quasi-isogeny class. They are representable by a
formal scheme, locally formally of finite type over SpfR̆. Here, R̆ is the completion of
the maximal unramified extension of the ring of definition of the chosen bound Ẑ. Also,
MSC2010: primary 11G09; secondary 11G18, 14L05, 14M15.
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they admit a tower of coverings indexed by compact open subgroups of G(Fq((z))). Our
next topic is the special fiber of a Rapoport-Zink moduli space of local G-shtukas. It can
be identified with a so-called affine Deligne-Lusztig variety. In Section 5 we discuss ap-
plications of this result to geometric questions such as dimensions and closure relations
of Newton strata. In Section 6 we describe the relation between our local G-shtukas and
global G-shtukas where G is a parahoric group scheme over a smooth projective geo-
metrically irreducible curve C over Fq . There are several results in this direction, the
central idea being that one wants to describe a global G-shtuka by corresponding local
Gi -shtukas associated with each of the legs ci . Due to our choice of definition of localG-
shtukas, this works particularly well when considering global G-shtukas with fixed legs.
Then one obtains analogues/generalizations of Serre-Tate’s theorem, as well as of several
classical results comparing Shimura varieties and Rapoport-Zink spaces in the arithmetic
case. In the last section we define period spaces as suitable subspaces of an affine Grass-
mannian. Contrary to the arithmetic case they are no longer subspaces of a classical flag
variety because we allow also non-minuscule bounds. We define the period map from the
analytic space associated with a Rapoport-Zink space to the corresponding period space,
and discuss its image and compatibility with the tower of coverings of the generic fiber of
the Rapoport-Zink space.

2 Local G-shtukas

2.1 Generalities. Let Fq be a finite field of characteristic p with q elements, let F be
a fixed algebraic closure of Fq , and let Fq [[z]] and Fq [[�]] be the power series rings over
Fq in the (independent) variables z and �. As base schemes we will consider the category
NilpFq [[� ]]

consisting of schemes over Spec Fq [[�]] on which � is locally nilpotent. Let
G be a parahoric group scheme over Spec Fq [[z]] with connected reductive generic fiber,
compare Bruhat and Tits [1972], Déf. 5.2.6 and Haines and Rapoport [2008].

Let S 2 NilpFq [[� ]]
and consider any sheaf of groupsH on S for the fpqc-topology. By

an H -torsor on S we mean a sheaf H for the fpqc-topology on S together with a (right)
action of the sheafH such that H is isomorphic toH on an fpqc-covering of S .

Let now LG and L+G be the loop group and the group of positive loops associated
with G, i.e. for an Fq-algebra R let

(L+G)(R) = G(R[[z]]) and (LG)(R) = G(R((z))):

Let G be an L+G-torsor on S . Via the inclusion L+G � LG we can associate an
LG-torsor LG with G. For any LG-torsor G0 on S we denote by ��G0 the pullback of G0

under the q-Frobenius morphism � := Frobq : S ! S .
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Definition 2-1. A local G-shtuka over some S 2 NilpFq [[� ]]
is a pair G = (G; �G) consist-

ing of anL+G-torsor G onS and an isomorphism of the associatedLG-torsors �G : �
�LG ∼

�!

LG.
A quasi-isogeny g : (G0; �G0) ! (G; �G) between local G-shtukas over S is an isomor-

phism g : LG0 ∼�! LG of the associated LG-torsors with g ı �G0 = �G ı ��g.

LocalG-shtukas were introduced and studied in Hartl and Viehmann [2011], Hartl and
Viehmann [2012] in the case where G is a constant split reductive group over Fq . The
general case was first considered in work of Arasteh Rad and Hartl [2014].

Example 2-2. For G = GLr , we have the following more classical description.
A local shtuka over S 2 NilpFq [[� ]]

(of rank r) is a pair (M;�) whereM is a sheaf of
OS [[z]]-modules on S which Zariski-locally is free of rank r , together with an isomorphism
of OS ((z))-modules

� : ��M ˝OS [[z]] OS ((z))
∼
�! M ˝OS [[z]] OS ((z)):

Then the category of local GLr -shtukas over S is equivalent to the category of local
shtukas of rank r over S , see Hartl and Viehmann [2011], Lemma 4.2.

Local shtukas were first introduced by Anderson [1993] over a complete discrete valu-
ation ring. Genestier [1996] constructed moduli spaces for them in the Drinfeld case and
used these to uniformize Drinfeld modular varieties.

An important invariant of localG-shtukas is their Newton point. To define it let k be an
algebraically closed field of characteristicp and letL = k((z)). Then every localG-shtuka
(G; �G) over k has a trivialization G Š (L+G)k . Via this isomorphism the Frobenius map
�G corresponds to an element b 2 LG(k) = G(L). Changing the trivialization replaces
b by a different representative of its L+G(k)-� -conjugacy class. In the same way, local
G-shtukas isogenous to (G; �G) correspond to the elements of the � -conjugacy class

[b] = fg�1b�(g) j g 2 G(L)g:

Let G denote the generic fiber of G. Then the set of � -conjugacy classes B(G) = f[b] j

b 2 G(L)g for quasi-split G is described by Kottwitz [1985], Kottwitz [1997] by two
invariants. Let T be a maximal torus of G. The first invariant is then the Kottwitz point,
i.e. the image under the Kottwitz map �G : G(L) ! �1(G)Γ. Here, �1(G) is Borovoi’s
fundamental group, and Γ is the absolute Galois group of Fq((z)). This invariant is locally
constant on LG, and can also be computed using the identification �0(LG) = �1(G)/Γ,
compare Neupert [2016], 2.2. The second invariant is the Newton point �b , an element of
X�(T )

Γ
Q.
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Consider now a local G-shtuka (G; �G) over a scheme S . Then we obtain an induced
decomposition of S(k) into subsets N[b](k) for [b] 2 B(G) with

N[b](k) = fx 2 S(k) j (G; �G)x is in the isogeny class of [b]g:

By Rapoport and Richartz [1996], this induces a decomposition of S into locally closed
subschemes, which we call Newton strata. If S is connected, they correspond to the strata
obtained by fixing the Newton point only.

2.2 Bounds. To ensure finiteness properties of moduli spaces of local G-shtukas, or of
deformations of local G-shtukas, we bound the singularity of the morphism �G. In the
arithmetic context, such bounds are usually assumed to be minuscule and correspond to
the choice of the Hodge cocharacter defining a Shimura datum. In our context we define
bounds more generally as suitable ind-subschemes of the affine flag variety.

The affine flag variety FlagG associated with G is the fpqc-sheaf associated with the
presheaf

S 7! LG(S)/L+G(S) = G(OS ((z))(S))/G(OS [[z]](S))

on the category of Fq-schemes. By Pappas and Rapoport [2008], Theorem 1.4 and Richarz
[2016] Theorem A, FlagG is represented by an ind-scheme which is ind-projective over
Fq .

Consider further the group scheme G �Fq [[z]] Spec Fq((�))[[z � �]] under the homomor-
phism

(2-3) Fq [[z]] ! Fq((�))[[z � �]]; z 7! z = � + (z � �):

The associated affine Grassmannian GrBdR
G is the sheaf of sets for the fpqc-topology on

Spec Fq((�)) associated with the presheaf

(2-4) X 7! G(OX ((z � �)))/G(OX [[z � �]]):

Remark 2-5. GrBdR
G is in the same way as FlagG above an ind-projective ind-scheme over

Spec Fq((�)). Here, note that the homomorphism in (2-3) induces an inclusion Fq((z)) !

Fq((�))[[z��]], so the groupG�Fq [[z]] Spec Fq((�))[[z��]] is reductive, justifying the name
affine “Grassmannian”. The notation BdR refers to the fact that if C is the completion of
an algebraic closure of Fq((�)), then C ((z � �)) is the function field analog of Fontaine’s
p-adic period field BdR.

We fix an algebraic closure Fq((�)) of Fq((�)), and consider pairs (R; ẐR), where
R/Fq [[�]] is a finite extension of discrete valuation rings contained in Fq((�)), and where
ẐR � bFlagG;R := FlagGb�Fq

SpfR is a closed ind-subscheme that is contained in a
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bounded (or: projective) subscheme of bFlagG;R. Two such pairs (R; ẐR) and (R0; Ẑ0R0)

are equivalent if they agree over a finite extension of the rings R, R0.
A bound is then abstractly defined as an equivalence class Ẑ := [(R; ẐR)] of such

pairs (R; ẐR) satisfying certain properties (for the precise conditions compare Hartl and
Viehmann [2017], Def. 2.1), in particular

1. ẐR � bFlagG;R is a �-adic formal scheme over SpfR that is stable under the left
L+G-action.

2. The special fiberZR := ẐRb�SpfRSpec �R is a quasi-compact subscheme of FlagGb�Fq
�R

where �R is the residue field of R.

3. Let Ẑan
R be the strictly R[ 1

�
]-analytic space associated with ẐR. Then the Ẑan

R are
invariant under the left multiplication of G(�[[z � �]]) on GrBdR

G .

The reflex ring RẐ of [(R; ẐR)] is the intersection in Fq((�)) of the fixed field of f
 2

AutFq [[� ]](Fq((�))) j 
(Ẑ) = Ẑg with all finite extensions of Fq [[�]] over which a represen-
tative ẐR of the given bound exists.

Let (G; �G) be a local G-shtuka over some S 2 NilpR
Ẑ
and let S 0 be an étale covering

of S over which a trivialization G Š (L+G)S 0 exists. Then (G; �G) (or �G) is bounded by
Ẑ if for every such trivialization and for every finite extension R of Fq [[�]] over which a
representative ẐR of Ẑ exists, the morphism

S 0b�R
Ẑ
SpfR ! LGb�Fq

SpfR ! bFlagG;R

induced by �G factors through ẐR.
The above definition of bounds follows the strategy to allow as general bounds as possi-

ble. On the other hand, classically and by analogy with the arithmetic case, one considers
bounds given as Schubert varieties. They are described as follows (compare Arasteh Rad
and Hartl [2014], Example 4.12).

Example 2-6. Consider the base changeGL ofG toL = F((z)). LetA be a maximal split
torus inGL and let T be its centralizer, a maximal torus. LetN = N (T ) be the normalizer
of T and let T 0 be the identity component of the Néron model of T over OL = F [[z]].

Consider the Iwahori–Weyl group eW = N (L)/T 0(OL) and let eW G = (N (L) \

G(OL))/T 0(OL). Then by the Bruhat-Tits decomposition we have a bijection

(2-7) eW G
n eW /eW G

! L+G(F)nLG(F)/L+G(F):

Let ! be in the right hand side, and let F! be a finite extension of Fq such that ! has a
representative g! 2 LG(F!). We define the Schubert variety S! as the ind-scheme theo-
retic closure of the L+G-orbit of g! in FlagGb�Fq

F! . Let R = F! [[�]] and let ẐF! [[� ]] =



1448 EVA VIEHMANN

S!b�F!
SpfR. Then the equivalence class of (R; ẐR) defines a bound. In this case we

also say “bounded by !” instead of “bounded by (R; ẐR)”.

3 Deformations

Let FlagG denote again the affine flag variety, i.e. the quotient sheaf FlagG = LG/L+G,
an ind-scheme overFq which is of ind-finite type. Let bFlagG be the fiber product FlagG�Spec Fq

Spf Fq((�)).
Then generalizing Hartl and Viehmann [2011, Prop. 5.1] (where the case thatG is split

is considered) the ind-scheme bFlagG pro-represents the functor NilpFq [[� ]]
o

! (Sets)

S 7!f(G; ı) j G a G-torsor on S ,
ı : LG ! LGS an isomorphism of the associated LG-torsorsg/ Š :

Here (G; ı) and (G0; ı) are isomorphic if ı�1 ı ı0 is an isomorphism G0 ! G.
We fix a bound [(R; ẐR)] and a localG-shtukaG = (G; �G) over a field k 2 NilpFq [[� ]]

which is bounded by ẐR. We consider the functor of bounded deformations of G on the
category of Artinian local k[[�]]-algebras with residue field k,

DefG;ẐR
: (Artk) !(Sets)

A 7!f(G; ˇ) j G a local G-shtuka over Spec A bounded by ẐR

ˇ : G ! G ˝A k an isomorphism of local G-shtukasg/ Š

and require isomorphisms to be compatible with the maps ˇ.

Remark 3-1. In Hartl and Viehmann [ibid.], 5 this functor and the deformation space
representing it are explicitly described in case thatG is split and ẐR associated with some
! 2 eW as in Example 2-6, see below. This is generalized to reductive groups G in
Viehmann and Wu [2016]. It would be interesting to have these results also in the more
general context of parahoric group schemes.

Assume that G is a reductive group scheme over Spec Fq [[z]]. Then the left hand side
of Equation (2-7) is W0n eW /W0 where W0 is the finite Weyl group of GFq

. This dou-
ble quotient is isomorphic to X�(T )dom. Let � 2 X�(T )dom and (R; ẐR) be the cor-
responding bound as in Example 2-6. Let G be a local G-shtuka bounded by � over a
field k 2 NilpFq [[� ]]

. Assume that there is a trivialization ˛ : G ! (Gk ; b0�) for some
b0 2 LG(k). Using the boundedness, let x 2 ZR(k) be the point defined by b�10 . By
Hartl and Viehmann [2011], Thm. 5.6 and Viehmann and Wu [2016], Proposition 2.6 we
have
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Theorem 3-2. Let G be reductive, and ẐR as in Example 2-6. Let G and ˛ be as above.
Let D be the complete local ring of ẐR at the point x. It is a complete noetherian local
ring over k[[�]]. ThenD pro-represents the formal deformation functor DefG;ẐR

.

To study Newton strata in a family of local G-shtukas it is helpful to also have a corre-
sponding stratification on deformations. However, for infinitesimal deformations such a
question does not make sense. Instead we will replace the formal deformation space SpfD
by SpecD, using the following proposition. Here, a linearly topologized Fq [[z]]-algebra
R is admissible if R = lim

 
R˛ for a projective system (R˛; u˛ˇ ) of discrete rings such

that the filtered index-poset has a smallest element 0, all maps R ! R˛ are surjective,
and the kernels I˛ := keru˛;0 � R˛ are nilpotent.

Proposition 3-3. LetR be an admissible Fq [[z]]-algebra as above with filtered index-poset
N0. Then the pullback under the natural morphism SpfR ! Spec R defines a bijection
between local G-shtukas bounded by � over Spec R and over SpfR.

Remark 3-4. Without a boundedness condition the pullback map is in general only in-
jective. The corresponding result for p-divisible groups is shown by Messing and by de
Jong. The above proposition is proved for splitG in Hartl and Viehmann [2011], Proposi-
tion 3.16. However, the same proof also shows this assertion for all G that are reductive
over Spec Fq [[z]].

4 Moduli spaces

In this section we fix G, an isogeny class of local G-shtukas and a bound Ẑ. We then
define moduli spaces of localG-shtukas bounded by Ẑ in the same way as Rapoport-Zink
define their moduli spaces of p-divisible groups in Rapoport and Zink [1996].

Definition 4-1. Let G0 be a local G-shtuka over F . Let Ẑ = [(R; ẐR)] be a bound and
denote its reflex ring by RẐ = �[[�]]. It is a finite extension of Fq [[�]]. Set R̆Ẑ := F [[�]],
and consider the functor

M̆ : (NilpR̆
Ẑ
)ı ! (Sets)

S 7! f(G; ı̄) j G a local G-shtuka over S bounded by Ẑ�1,
ı̄ : GS̄ ! G0;S̄ a quasi-isogenyg/ Š

Here S̄ := VS (�) is the zero locus of � in S , and two pairs (G; ı̄); (G0; ı̄0) are isomorphic
if ı̄�1 ı ı̄0 lifts to an isomorphism G0 ! G.

By Hartl and Viehmann [2017], 2.2 G is bounded by Ẑ�1 if and only if ��1G is bounded
by ẐR.
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Let QIsogF (G0) be the group of self-quasi-isogenies of G0. It naturally acts on the
functor M̆. Since F has no non-trivial étale coverings, we may fix a trivialization G0 Š

((L+G)F ; b�
�) where b 2 LG(F) represents the Frobenius morphism. Via such a trivi-

alization, QIsogF (G0) is identified with

(4-2) Jb(Fq((z))) := fg 2 G(F((z))) j g�1b�(g) = bg:

This is the set of Fq((z))-valued points of an algebraic group Jb over Fq((z)).

Theorem4-3 (ArastehRad andHartl [2014], Thm. 4.18 andCor. 4.26, Hartl andViehmann
[2017], Rem. 3.5). The functor M̆ is ind-representable by a formal scheme over SpfR̆Ẑ

which is locally formally of finite type and separated. It is an ind-closed ind-subscheme
of FlagGb�Fq

SpfR̆Ẑ .

By its analogy with moduli spaces of p-divisible groups, the formal scheme represent-
ing M̆ is called a Rapoport-Zink space for bounded local G-shtukas.

Let E be the quotient field of RẐ , and Ĕ Š F((�)) the completion of its maximal
unramified extension. We write M̆an for the strictly Ĕ-analytic space associated with M̆.

Next we explain the construction of a tower of coverings of M̆an. Roughly spoken, it is
obtained by trivializing the (dual) Tate module of the universal local G-shtuka over M̆an.

Definition 4-4. Let S be an F((�))-scheme or a strictly F((�))-analytic space. Then an
étale local G-shtuka over S is a pair G = (G; �G) consisting of an L+G-torsor G on S and
an isomorphism �G : ��G ! G of L+G-torsors.

Remark 4-5. Let S = SpfB be an affinoid admissible formal R̆Ẑ-scheme and S an the as-
sociated strictly Ĕ-analytic space. Consider a trivialized local G-shtuka ((L+G)S ; A�

�)

over S . Then A 2 G(B[[z]][ 1
z��

]). Note that

(z � �)�1 = �

1X
i=0

��i�1zi
2 OSan(S an)[[z]]

implies B[[z]][ 1
z��

] � OSan(S an)[[z]]. Therefore ((L+G)S ; A�
�) induces an étale local

G-shtuka ((L+G)San ; A��) over S an.
To obtain similarly a universal family of étale local G-shtukas over M̆an, we cover M̆

by affinoid admissible formal R̆Ẑ-schemes. For each of them one chooses a finite étale
covering trivializing the local G-shtuka, and applies the above construction. Descend-
ing the étale local G-shtuka then yields the desired universal family, compare Hartl and
Viehmann [ibid.], 6.

There are two approaches to construct the (dual) Tate module of an étale localG-shtuka
G over a connected strictly Ĕ-analytic space X . To define it directly, following Neupert
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[2016], 2.6, consider for each n 2 N the L+G/Gn-torsor associated with G where Gn is
the kernel of the projectionG(Fq [[z]]) ! G(Fq [[z]]/(z

n)). The isomorphisms �G : ��G !

G and �� : G ! ��G then induce correspondingmaps ofL+G/Gn-torsors. The invariants
of � ı�� form aG(Fq [[z]]/(z

n))-torsor which is trivialized by a finite étale covering ofX .
One can then define the Tate module of G as the inverse limit over n of these torsors.

Alternatively, one can define it as a tensor functor, following Arasteh Rad and Hartl
[2014], or Hartl and Viehmann [2017], 7: Fix a geometric base point x̄ ofX . We consider
representations � : G ! GLr in RepFq [[z]]

(G). Let M = (M; �M ) be the étale local
shtuka of rank r associated with ��G as in Example 2-2. LetM x̄ denote its fiber over x̄.
The (dual) Tate module of G with respect to � is the (dual) Tate module ofM x̄ ,

ŤM x̄ = fm 2 M x̄ j �M (��m) = mg;

a free Fq [[z]]-module of rank r . It carries a continuous monodromy action of �ét
1 (X; x̄),

which also factors through �alg
1 (X; x̄). We obtain the dual Tate module of G as a tensor

functor
ŤG;x̄ : RepFq [[z]]

G ! RepcontFq [[z]]
(�

alg
1 (X; x̄)):

Similarly, using rational representations in RepFq((z))
G one can define the rational dual

Tate module
V̌G;x̄ : RepFq((z))

G ! RepcontFq((z))
(�et

1 (X; x̄)):

The two constructions of dual Tatemodules are compatible in the sense that the tensor func-
tor associated with the above torsor coincides with the tensor functor ŤG;x̄ : RepFq [[z]]

G !

(Fq [[z]]-Loc)X with values in the local systems of Fq [[z]]-lattices on X that can be associ-
ated with ŤG;x̄ as in the second construction (compare Hartl and Viehmann [ibid.], Prop.
5.3).

We can now proceed to define level structures and the tower of coverings of M̆an. Let
FModA denote the category of finite locally free A-modules. We consider the forgetful
functors

(4-6) !ıA : RepAG ! FModA

and

(4-7) forget : RepcontA (�et
1 (X; x̄)) ! FModA:

For an étale local G-shtuka G over X the two sets

TrivG;x̄(Fq [[z]]) = Isom˝(!ıFq [[z]]
; forget ı ŤG;x̄)(Fq [[z]])

TrivG;x̄(Fq((z))) = Isom˝(!ıFq((z))
; forget ı V̌G;x̄)(Fq((z)))
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are non-empty and carry natural actions of G(Fq [[z]]) � �
alg
1 (X; x̄) and G(Fq((z))) �

�et
1 (X; x̄), respectively. Here, the first factor acts via !ı and the second via the action

on the Tate module. Note that non-emptiness needs our assumption that G has connected
fibers, and thus slightly differs from the setting of Rapoport and Zink.

In the same way as in the arithmetic case we define coverings of M̆.

Definition 4-8. Let G be an étale local G-shtuka over a connected Ĕ-analytic space X ,
and let K be an open compact subgroup of G(Fq [[z]]). An integralK-level structure on G

is a �alg
1 (X; x̄)-invariant K-orbit in TrivG;x̄(Fq [[z]]).

For an open subgroup K � G(Fq [[z]]) let XK be the functor on the category of Ĕ-
analytic spaces over X parametrizing integral K-level structures on the local G-shtuka G
over X .

Let K � G(Fq((z))) be compact open. Let K 0 � K be a normal subgroup of finite in-
dexwithK 0 � G(Fq [[z]]). Then gK 0 2 K/K 0 acts onXK0 by sending the triple (G; ı; �K 0)
over XK0 to the triple (G; ı; �gK 0).

We define M̆K as the Ĕ-analytic space which is the quotient of M̆K0

:= M̆an;K0 by
the finite groupK/K 0. It is independent of the choice ofK 0. In particular, M̆K0 = (M̆)an

for K0 = G(Fq [[z]]).

By Hartl and Viehmann [2017], Cor. 7.13 one can also describe M̆K directly as a
parameter space of local G-shtukas with level structure.

Furthermore, if K 0 � K is as above, the action of gK 0 2 K/K 0 on M̆K0 can be
described in this interpretation as a Hecke correspondence.

5 The geometry of the special fiber

We fix again a bound (R; ẐR) and let � be the residue field of R. Let Z�1 be the special
fiber of the inverse bound Ẑ�1 over �. The affine Deligne-Lusztig variety associated with
an element b 2 LG(F) and Z�1 is the reduced closed ind-subscheme XZ�1(b) � FlagG
whose k-valued points (for any field extension k of F ) are given by

(5-1) XZ�1(b)(k) = fg 2 FlagG(k) j g�1b�(g) 2 Z�1(k)g:

Our conditions on the bound imply thatZ�1 is a left-L+G-invariant subscheme of FlagG.
TheL+G-orbits in FlagG correspond bijectively to the elements of eW Gn eW /eW G, compare
Example 2-6. For x 2 eW let

(5-2) Xx(b)(k) = fg 2 FlagG(k) j g�1b�(g) 2 L+GxL+Gg:

Thus by left invariance every XZ�1(b)(k) is a union of affine Deligne-Lusztig varieties
of the form Xx(b). By the boundedness condition on ẐR, this union is finite. In the
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arithmetic context, such unions of affine Deligne-Lusztig varieties have been studied for
example in He [2016].

Affine Deligne-Lusztig varieties are the underlying reduced subschemes of Rapoport-
Zink spaces:

Theorem 5-3 (Hartl and Viehmann [2011], 6, Arasteh Rad and Hartl [2014], Thm. 4.18,
Cor. 4.26). The underlying reduced subscheme of the moduli space M̆ associated with
ẐR and b as in Theorem 4-3 equals XZ�1(b). It is a scheme locally of finite type and
separated over F , all of whose irreducible components are projective.

Thus to describe the special fiber of the Rapoport-Zink spaces M̆ it is enough to study
the affine Deligne-Lusztig varieties Xx(b). For an overview of the current state of the art
of this field compare Viehmann [2015] and X. He’s talk at this ICM He [2018]. We will
here only discuss one class of results that were obtained as an application of the relation
to local G-shtukas, and that were one of the initial goals of this theory. For the following
result it is essential to assume that G is reductive over Fq [[z]]. For more general groups
there are counterexamples to all assertions in the theorem. Recall that for reductive groupseW Gn eW /eW G Š X�(T )dom. Let def(b) = rkG� rkFq((z))Jb where Jb is as in (4-2). Note
that X�(T )dom is partially ordered by the Bruhat ordering. Via the induced ordering on
the Newton points (requiring equality of Kottwitz points) also B(G) inherits an ordering.
Let l denote the length of a maximal chain between two elements in the partially ordered
set B(G), and let � be the half-sum of the positive roots of G.

Theorem 5-4 (Viehmann [2013], Hamacher and Viehmann [2017], 3.2). Let �1 � �2 2

X�(T ) be dominant coweights and [b] 2 B(G). Assume that �G(b) = �2 in �1(G)Γ and
that �b � �2.

1. Let
S�1;�2

=
[

�1��0��2

L+G�0(z)L+G:

Then the Newton stratum N[b] = [b] \ S�1;�2
is pure of codimension

l([b]; [�2]) = h�; �2 � �bi +
1

2
def(b)

in S�1;�2
. The closure of N[b] in S�1;�2

is the union of all N[b0] for [b0] with
�G(b0) = �2 in �1(G)Γ and �b0 � �b .

2. X�2
(b) and X��2

(b) =
S

���2
X�(b) are equidimensional of dimension

dimX�2
(b) = dim X��2

(b) = h�; �2 � �bi �
1

2
def(b):
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Here, the first assertion is most useful for �1 = �2, or for �1 the unique minuscule
coweight with �1 � �2:

Note that one needs to define the notions of codimension and of the closure of the
infinite-dimensional schemes N[b]. Both of these definitions use that there is an open
subgroupH of LG+ such that the Newton point of an element of S�1;�2

only depends on
itsH -coset, an element of the finite-dimensional scheme S�1;�2

/H , compare Viehmann
[2013], 4.3. These (co)dimensions are directly linked to the dimensions of Newton strata
in the universal deformation of a local G-shtuka as in Section 3. In fact, Theorem 5-4 is
equivalent to a completely analogous result on dimensions and closure relations in that
context, and this equivalence is also used in the proof of Theorem 5-4.

The proofs of the two parts of the theorem are closely linked: One first shows the
upper bound on dimX��2

(b) and how to compute dimN[b] from dimX��2
(b). Then a

purity result for the Newton stratification proves the lower bound and equidimensionality.
For the proof compare Hamacher and Viehmann [2017], 3.2 explaining how the proof for
splitG in Viehmann [2013] can be generalized. The theorem also inspired a corresponding
theory for Newton strata in Shimura varieties of Hodge type by Hamacher.

6 Comparison to global G-shtukas

6.1 Global G-shtukas. Moduli spaces of bounded global G-shtukas are the function
field analogue of Shimura varieties. Using these moduli spaces Lafforgue [2012] showed
one direction of the global Langlands correspondence for all groups G in the function
field case. In this section we describe the relation between moduli spaces of bounded
local G-shtukas and global G-shtukas.

To define them, let C be a smooth projective geometrically irreducible curve over Fq ,
and let G be a parahoric group scheme over C , i.e. a smooth affine group scheme with
connected fibers whose generic fiber is reductive over Fq(C ) and such that for every point
v of C for which the fiber above v is not reductive, the group scheme Gv is a parahoric
group scheme over Av , as defined by Bruhat and Tits. Here Av denotes the completion of
k[C ] at v.

Definition 6-1. A global shtuka with n legs over a scheme S is a tuple (G ; s1; : : : ; sn; ')
where

1. G 2 H1(C;G)(S) is a G-torsor over C �Fq
S

2. the si 2 C (S) are pairwise disjoint S -valued points, called the legs

3. ' is an isomorphism

' : ��G jC�Fq Snf
S

i Γsi
g ! G jC�Fq Snf

S
i Γsi

g;
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called the Frobenius isomorphism.

The stack rnH1(C;G) over Spec Fq is the moduli stack of global G-shtukas with n
legs.

There is a canonical morphism rnH1(C;G) ! C n n ∆ mapping a global G-shtuka
to its legs.

We fix distinct places ci 2 C (F) for 1 � i � n, and write c = (c1; : : : ; cn). Let Ac

be the completion of the local ring OC n;c , and let Fc be the residue field. Then Ac Š

Fc [[�1; : : : ; �n]].
Writing Aci

Š Fci
[[z]], let Gci

= G �C Spec Aci
, a parahoric group scheme over

Spec Fci
[[z]], and Gi := ResFci

[[z]]/Fq [[z]]Gci
.

Let
rnH1(C;G)c = rnH1(C;G)b�C nSpfAc

be the formal completion of the stack rnH1(C;G) along c. It parametrizes global G-
shtukas with n legs in the formal neighborhoods of the ci . We want to define a global-local
functor associating with such a global G-shtuka local shtukas at each of these places, com-
pareArastehRad andHartl [2014], or Neupert [2016], 3.2. Let (G ; (si ); ') 2 rnH1(C;G)c(S).
In other words, si : S ! C factors through SpfAci

. We consider each place ci separately.
Let Sci

= Spec Fci
�Spec Fq

S . The base change of G to SpfAci
b�Fq

S = Sci
[[z]] defines

an element of H1(Fq;Gci
)(Sci

[[z]]). We now use the following translation, cf. Hartl and
Viehmann [2011], Prop. 2.2a, Neupert [2016], Prop. 3.2.4, or Arasteh Rad and Hartl
[2014], 2.4.

Proposition 6-2. Let S be a scheme over Fq . There is a natural equivalence of categories

H1(Fq;G)(S [[z]]) ! H1(Fq; L
+G)(S):

We thus obtain an element of

H1(Fq; L
+Gci

)(Sci
) = H1(Fq; L

+Gi )(S);

or an L+Gi -torsor Gi over S .
Also, the Frobenius morphism ' induces local Frobenius morphisms 'i on the Gi -

torsors for each i . Altogether we obtain a functor

L = (L1; : : : ;Ln) : rnH1(C;G)c
!

Y
i

ShtGi
; (G ; (si ); ') 7! ((Gi ; 'i ))

called the global-local functor.
In the same way, one can associate with every global G-shtuka G 2 rnH1(C;G)c(S)

for some scheme S and every fixed place s 2 C n fci g an étale local Gs-shtuka Ls(G ) =
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G s . One can then define level structures on global G-shtukas away from the legs using
the corresponding notion for local G-shtukas. For a detailed discussion compare Neupert
[2016], 3.4.

Definition 6-3. Let G = (G ; (si ); ') be a global G-shtuka over S , letD0 � C be a finite
reduced subscheme with si 2 (C n D0)(S) for every i . For every v 2 D0 fix an open
subgroup Uv � L+Gv(Fq) and let U =

Q
Uv . Then an integral U -level structure on G

consists of an integral Uv-level structure of Lv(G ) for every v 2 D0.
We denote by rH1

U (C;G)c the stack of global G-shtukas in rH1(C;G)c with U -
level structure.

Rather ad hoc boundedness conditions are defined as follows (compare Arasteh Rad
and Hartl [2013]).

Definition 6-4. Let Ẑc = (Ẑi )i be a tuple of bounds Ẑi � bFlagGi
. Then (G ; (si ); ') 2

rnH1(C;G)c(S) is bounded by Ẑc if for every i the associated local Gi -shtuka (Gi ; 'i )

is bounded by Ẑi . We denote by r
Ẑc
n H1(C;G)c the substack of rnH1(C;G)c of global

G-shtukas bounded by Ẑc , and analogously for r
Ẑc
n H1

U (C;G)c .

There are two other definitions of boundedness: A (seemingly more natural) one by
Varshavsky [2004], Def. 2.4b for which, however, it is not clear how to establish a com-
patibility between bounded global and local shtukas. In Neupert [2016], 3.3 Neupert gives
a global definition of boundedness, generalizing that of Varshavsky and he shows that it
coincides with the one presented here.

6.2 The Serre-Tate theorem. Classically, the Serre-Tate theorem gives an equivalence
of categories between deformations of an abelian variety over a scheme on which p is
locally nilpotent, and its p-divisible group. By work of Arasteh Rad and Hartl, the analog
in our situation also holds, taking into account that shtukas have several legs, and requiring
them to be in the formal neighborhoods of fixed places of C .

Let S be in NilpAc
and let j : S ! S be a closed subscheme defined by a locally

nilpotent sheaf of ideals. Let c1; : : : ; cn 2 C and let (G ; (si ); ') 2 rnH1(C;G)c(S).
Let ((Gi ; 'i )) = L(G ; (si ); ').

Let DefS ((G ; (si ); ')) be the category of lifts of (G ; (si ); ') to S , i.e. of pairs (H ; ˛)

where H 2 rnH1(C;G)c(S) and where ˛ is an isomorphism between (G ; (si ); ') and
the base change of H to S . Morphisms of lifts are isomorphisms compatible with the mor-
phisms˛. For the localGi -shtukaswe define analogously a category of lifts DefS ((Gi ; 'i )).

Theorem 6-5 (Arasteh Rad and Hartl [2014], Th. 5.10). Let (ci )i 2 C n, let (G ; (si ); ')
2 rnH1(C;G)c(S) and let ((Gi ; 'i )) = L(G ; (si ); '). Then the global-local functor
induces an equivalence of categories DefS ((G ; (si ); ')) !

Q
i DefS ((Gi ; 'i )):
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6.3 Foliations. Webegin by considering the uniformizationmorphism forNewton strata
by Rapoport-Zink spaces, following Neupert [2016], 5 and Arasteh Rad and Hartl [2014],
5, and paralleling the uniformization result for p-divisible groups of Rapoport and Zink
[1996]. In this subsection we assume thatG is the base change toC of a reductive groupG
over Fq . It would be interesting to have a generalization of this result to the more general
context considered before.

Let T denote a maximal torus of G, and fix a Borel subgroup B containing T . Let
C be as above and fix characteristic places c1; : : : ; cn 2 C . Let �i 2 X�(T ) be dom-
inant cocharacters defined over a finite extension E of Fq , and � = (�1; : : : ; �n) 2

X�(T )
n. Fix decent local Gi -shtukas Gi = (L+GiE ; bi�

�) over Spec E, in particular
bi 2 LGi (E). Let M��i

bi
be the Rapoport-Zink space associated with [bi ] and the bound

given by �i .

Theorem 6-6 (Neupert [2016], Theorem 5.1.18, Arasteh Rad and Hartl [2013], Theorem
7.4). LetS be aDM-stack over SpfE[[�1; : : : ; �n]] such that (�1; : : : ; �n) is locally nilpotent
on S . Let (G0; �0;  0) 2 rnH1

U (C;G)c(S) for some congruence subgroup U . For each
place ci assume that there is, and fix, an isomorphism Lci

(G0; �0) Š Gi S
. Then there is

a morphism of formal DM-stacks over SpfE[[�1; : : : ; �n]]

S �SpfE [[�1;:::;�n]]

Y
i

M��i

bi
! r

�
n H1

U (C;G)c

which is ind-proper and formally étale.

This theorem has also generalizations to coverings of the moduli spaces associated with
compatible level structures, and is then equivariant with respect to the action of G(Aci

Q)

by Hecke correspondences.
We consider for the universal global G-shtuka G over r

�
n H1

U (C;G)c the strata

N
([bi ])i

G
=

\
i

N[bi ];Li (G ) � r
�
n H1

U (C;G)c :

Here, the N[bi ];Li (G ) are the Newton strata in r
�
n H1

U (C;G)c associated with the local
Gi -shtuka Li (G ).

Then the uniformization morphism of Theorem 6-6 maps each geometric point of the
left hand side to N

([bi ])i

G
where the [bi ] are the classes of the elements used to define the

Rapoport-Zink space. Refining this description we now consider a foliation structure on
these Newton strata, following Neupert [2016], 5.

In the arithmetic case, Oort and later Mantovan [2004] defined a foliation structure on
Newton strata on Shimura varieties, by Rapoport-Zink spaces and so-called Igusa varieties.
The latter are defined as covers of a central leaf, i.e. the locus in the Shimura variety
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where the p-divisible group is in a very particular isomorphism class. In our situation, the
definition is slightly more involved. One needs to pass to the perfection of all involved
moduli spaces to define the analog of Igusa varieties, and then to construct the foliation
morphism.

Recall that a Newton stratum only depends onLGi -� -conjugacy classes [bi ], and not on
individual representatives. A fundamental alcove in [bi ] is an element xbi

of eW such that
all (or one) representative bi;0 inN (L) is contained in [bi ], and such that the length `(xbi

)

is minimal with that property, compare Viehmann [2014], Theorem 6.5, or Nie [2015].
One can then show that this length is equal to h2�G ; �bi

i where �G is the half-sum of the
positive roots of G and where �bi

is the dominant Newton point of [bi ]. Fundamental
alcoves are a group-theoretic generalization of the minimal p-divisible groups studied by
Oort. For each [bi ] we fix such a representative bi;0. The central leaf

C
(bi;0)

U � N
([bi ])i

G

is then defined as the locuswhere the associated localGi -shtukas are isomorphic to ((L+Gi )k ; bi;0�
�).

It depends on the choice of the fundamental alcove, but not on that of the representative
in N (L).

We now define formal versions of these subschemes of r
�
n H1

U (C;G).

Definition 6-7. Recall that the formal completion of C n n (c1; : : : ; cn) is isomorphic to
SpfAc = Spf Fc [[�1; : : : ; �n]].

Let N
([bi ])i

U denote the formal completion of r
�
n H1

U (C;G)c along the Newton stratum
N

([bi ])i

G
. This is not (�1; : : : ; �n)-adic.

Let C
(bi;0)

U be the locus in r
�
n H1

U (C;G)c such that after an fpqc-covering each local
Gi -shtuka associated with the universal global G-shtuka is isomorphic to (L+Gi ; bi;0�

�).
One can then show that this is represented by a (�1; : : : ; �n)-adic formal scheme over
SpfAc , called the central leaf. (Neupert [2016], Prop. 6.1.7)

By X] we denote the perfection of a formal scheme X . It is again a formal scheme.
For d 2 N we consider the subgroups Kd = fg 2 L+Gi j g � 1 (mod zd+1)g and

Id (bi;0) =
\

N�0

�N (Kd )

where �(g) = b�1i;0�
�1(g)bi;0.

The following theorem shows existence of the formal Igusa varieties.

Theorem 6-8 (Neupert [ibid.], Cor. 6.1.9). For all tuples (di )i , define Ig
(di )]
U (T ) as

the set of pairs consisting of an element of C
(bi )]
U (T ) together with Idi

-truncated isomor-
phisms between the associated local Gi -shtukas and (L+Gi ; bi;0�

�) for all i . Then this
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defines a sheaf Ig
(di )]
U over C

(bi )]
U representable by a (�1; : : : ; �n)-adic formal scheme

which is finite étale over C
(bi )]
U . It is called a formal Igusa variety of level (di ).

Similarly, Ig
(1i )]
U parametrizing trivializations of the whole local Gi -shtukas is rep-

resentable by a formal scheme, isomorphic to lim
 

Ig
(di )]
U .

The foliation structure is then established by the following result.

Theorem 6-9 (Neupert [ibid.], Thm. 6.2.1). There is a natural formally étale morphism
of formal schemes over SpfA]

c

�̂(1i ) :
Y

i

M��i ]

bi;0
�SpfA]

c
Ig

(1i )]
U ! N

[bi ]]
U :

There are also variants of this result for the special fiber of the spaces, using bounds on
the quasi-isogenies, and for the associated adic spaces in the sense of Huber.

The very rough idea of the construction of this morphism is the following: A point in
the Igusa variety gives us a global shtuka, such that at each place ci the associated local
Gi -shtuka is the one defined by bi;0. Then a point in the Rapoport-Zink space M��i

bi;0

gives us a modification by a quasi-isogeny of this local Gi -shtuka, and we define a new
global G-shtuka by keeping the old one away from the ci and replacing it in a formal
neighborhood of ci by this new local Gi -shtuka.

Applying the theorem to the cohomology of the moduli space of global G-shtukas, and
its decomposition into Newton strata, one can express the cohomology of Newton strata,
and therefore of the whole moduli space of global G-shtukas in terms of the cohomology
of Rapoport-Zinkmoduli spaces and of Igusa varieties. For technical reasons the statement
is only known over a finite extension E 0 of Fq that can be described in terms of G and �.
Denote byK the function field of the curve C , byK an algebraic closure, and by ΓE 0 the
absolute Galois group of E 0.

Theorem 6-10 (Neupert [ibid.], Main Theorem 2). Letr�
n H1(C;G) be a moduli space of

globalG-shtukas, such that all connected components ofr�
n H1(C;G)�C nn∆Spec E 0[[�1; : : : ; �n]]

are proper over Spec E 0[[�1; : : : ; �n]].
Then there exists a canonical isomorphism between the virtual G(Aci

Q)�ΓE 0 -representa-
tions X

j

(�1)jH j
c

�
r

�
n H1(C;G) �K;Q`

�
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andX
[bi ]

X
d;e;f

(�1)d+e+f Tor
H(

Q
Jbi;0

)

d

�
H e

c

�Y
M��i

bi;0
� F ; RΨan

� Q`);

; lim
�!
U

lim
�!
di

Hf
c (Ig(di )

U � F ; RΨan
� Q`

��
:

7 Period spaces and the period map

In our context, period spaces are constructed as strictly Fq((�))-analytic spaces in the sense
of Berkovich. In the generality presented here, they are introduced and studied in Hartl and
Viehmann [2017]. We allow more general bounds than those associated with minuscule
coweights. Even if the bound is given by a coweight as in Example 2-6, the bound is in
general a union of Schubert cells, and not a single one as in the minuscule case. For these
two reasons the period spaces have to be defined as subspaces of an affine Grassmannian
instead of a (classical) flag variety. To define them, we consider the affine Grassmannian
GrBdR

G of Remark 2-5. The space of Hodge-Pink G-structures bounded by Ẑ is defined as
HG;Ẑ := ẐE . It is a projective subscheme of GrBdR

G
b�Fq((�))E. Fix a local G-shtuka G0

over F and a trivialization G0 Š (L+GF ; b�
�).

A z-isocrystal over F is a pair (D; �D) consisting of a finite-dimensional F((z))-vector
space D and an isomorphism �D : ��D ! D of F((z))-vector spaces. A Hodge-Pink
structure on (D; �D) over a field extension L of F((�)) is a free L[[z � �]]-submodule
qD � D ˝F((z)) L((z � �)) of full rank, compare Hartl and Kim [2016], 5.

Definition 7-1. Let L and b be as above and let 
 2 GrBdR
G (L). Let � : GFq((z)) !

GLn;Fq((z)) be a representation and let V be the representation space. Then we associate
with b (and �) the z-isocrystal (V ˝Fq((z)) F((z)); �(��b)��) over F . With 
 we associate
the Hodge-Pink structure over L defined by

qD(V ) = �(
) � V ˝Fq((z)) L[[z � �]] � D ˝F((z)) L((z � �)):

Let
Db;
 (V ) = (V ˝Fq((z)) F((z)); �(��b)��;qD(V )):

Consider the Newton point �b 2 X�(T ) as a homomorphismDF((z)) ! GF((z)). Recall
the Kottwitz map �G : G(F((z))) ! �1(G)Γ. We then define the Hodge degree and the
Newton degree as

tH (Db;
 (V )) = ��(�G(
)) and tN (Db;
 (V )) = detV ı � ı �b :
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Using �1(GL(V ))Γ = Z and Hom(DF((z));Gm) = Q we can view these as rational
numbers. (Compare Hartl and Viehmann [2017], 4 for a definition in terms of Db;
 (V )

only.)
We callDb;
 (V )weakly admissible if the images of [b] and 
 in�1(G)Γ;Q coincide and

for all subobjects the Hodge degree is less or equal to the Newton degree. Finally, the pair
(b; 
) is weakly admissible if Db;
 (V ) is weakly admissible for a faithful representation
� of G.

Let H̆G;Ẑ := HG;Ẑ
b�E Ĕ where HG;Ẑ = ẐE . The period space H̆wa

G;Ẑ;b
is then defined

as the set of all 
 in the associated Ĕ-analytic space H̆an
G;Ẑ

such that (b; 
) is weakly
admissible.

To define the admissible locus H̆a

G;Ẑ;b
� H̆an

G;Ẑ
, one associates with D a pair of � -

bundles E(D) = Eb;
 (V ) and F (D) = F b;
 (V ). The admissible locus is then defined
as the subset over which F b;
 (V ) has slope zero. Then H̆wa

G;Ẑ;b
and H̆a

G;Ẑ;b
are open

paracompact strictly Ĕ-analytic subspaces of H̆an
G;Ẑ

(Hartl and Viehmann [ibid.], Theorem
4.20).

The neutral admissible locus H̆na

G;Ẑ;b
� H̆a

G;Ẑ;b
is defined by the condition that the

images of [b] and 
 in �1(G)Γ coincide.

We have the analog of the theorem of Colmez and Fontaine that “admissible implies
weakly admissible”, see Hartl [2011],Theorem 2.5.3. In other words, we have an inclusion

H̆a

G;Ẑ;b
� H̆wa

G;Ẑ;b
:

Furthermore, we have H̆a

G;Ẑ;b
(L) = H̆wa

G;Ẑ;b
(L) for all finite field extensions L/Ĕ. If L

is algebraically closed, weakly admissible does not imply admissible in general.
For an F [[�]]-algebra B , complete and separated with respect to a bounded norm j � j :

B ! [0; 1] � R with 0 < j�j < 1, we consider the F((z))-algebra

B[[z; z�1g = f
X
i2Z

biz
i

j bi 2 B; jbi j j�jri
! 0 (i ! �1) for all r > 0g

and the element t� =
Q

i2N0

�
1 �

�qi

z

�
2 B[[z; z�1g:

We want to define the period morphism

�̆ : M̆an
! H̆a

G;Ẑ;b

as in Hartl andViehmann [2017], 6 whereM is the Rapoport-Zink space associatedwith Ẑ
and b. Let S be an affinoid, strictly Ĕ-analytic space and let S ! M̆an be a morphism of
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Ĕ-analytic spaces. With it we have to associate a morphism S ! H̆an
G;Ẑ

. By construction

of M̆an a morphism S ! M̆an is induced by a morphism from a quasi-compact admissible
formal R̆Ẑ-scheme S with S an = S to M̆. The latter corresponds to some (G; ı̄) 2 M̆(S).
After an étale covering S 0 = SpfB 0 ! S of admissible formal R̆Ẑ-schemes there is a
trivialization ˛ : GS 0 Š ((L+G)S 0 ; A��) for some A 2 G(B 0[[z]][ 1

z��
]).

Denote by � the reduction to V (�). Then the quasi-isogeny ı̄ induces via ˛ an ele-
ment ∆ 2 LG(B

0
). One then shows that there is a uniquely determined element ∆ 2

G(B 0[[z; z�1g[ 1
t�
]) lifting ∆ with ∆A = b ��(∆) for A as above and b defining the

Rapoport-Zink space. Consider the element


 = ��(∆)A�1 � G(B 0[ 1
�
][[z � �]]) 2 G(B 0[ 1

�
]((z � �)))/G(B 0[ 1

�
][[z � �]]):

The boundedness of G then implies that 
 factors through H̆an
G;Ẑ

. It descends to a well-

defined element of H̆an
G;Ẑ

(S) which is the image under the period morphism.

Proposition 7-2 (Hartl and Viehmann [2017], Prop. 6.9, 6.10). The period morphism
factors through the open Ĕ-analytic subspace H̆a

G;Ẑ;b
and induces an étale morphism

�̆ : M̆an
! H̆a

G;Ẑ;b
:

To describe the image of �̆ recall the tensor functors of (4-6) and (4-7). The construc-
tion of the � -bundle F b;
 (V ) of Definition 7-1 has a generalization to a � -bundle F b(V )

over H̆G;Ẑ with fibers F b;
 (V ). It further induces a canonical local system Vb(V ) of
Fq((z))-vector spaces on H̆a

G;Ẑ;b
with Vb(V )
̄ = 
̄�F b(V )� where we take invariants

under the isomorphism � defining the � -bundle. Let !b;
̄ : RepFq((z))
G ! FModFq((z))

be the fiber functor with !b;
̄ (V ) := Vb(V )
̄ = 
̄�F b(V )� . Then, one of the main re-
sults of Hartl and Viehmann [ibid.] is the following description of the image of the period
map. The condition thatG be unramified can also be replaced by another, more technical,
but possibly more general condition.

Theorem 7-3. Assume that G is unramified.

1. The image �̆(M̆an) of the period morphism is equal to the union of those connected
components of H̆a

G;Ẑ;b
on which there is an Fq((z))-rational isomorphism ˇ : !ı !

!b;
̄ .

2. The rational dual Tate module V̌G of the universal local G-shtuka G over M̆an de-
scends to a tensor functor V̌G from RepFq((z))G to the category of local systems of
Fq((z))-vector spaces on �̆(M̆an). It carries a canonical Jb(Fq((z)))-linearization
and is canonically Jb(Fq((z)))-equivariantly isomorphic to the tensor functor Vb .
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3. The tower of strictly Ĕ-analytic spaces (M̆K)K�G(Fq((z))) is canonically isomor-
phic over �̆(M̆an) in a Hecke and Jb(Fq((z)))-equivariant way to the tower of étale
covering spaces of �̆(M̆an) that is naturally associated with the tensor functor Vb .
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HITCHIN TYPE MODULI STACKS IN AUTOMORPHIC
REPRESENTATION THEORY

Zඁංඐൾං Yඎඇ (恽之玮)

Abstract

In the study of automorphic representations over a function field, Hitchin moduli
stack and its variants naturally appear and their geometry helps the comparison of
trace formulae. We give a survey on applications of this observation to a relative
fundamental lemma, the arithmetic fundamental lemma and to the higher Gross-Zagier
formula.

1 Introduction

1.1 Hitchin’s original construction. In an influential paper by Hitchin [1987], he in-
troduced the famous integrable system, the moduli space of Higgs bundles. Let X be a
smooth proper and geometrically connected curve over a field k. Let G be a connected
reductive group over k. Let L be a line bundle over X . An L-twisted G-Higgs bundle
overX is a pair (E; ')where E is a principalG-bundle overX and ' is a global section of
the vector bundle Ad(E)˝L overX . Here, Ad(E) is the vector bundle associated to E and
the adjoint representation of G. The moduli stack MG;L of L-twisted Higgs G-bundles
over X is called the Hitchin moduli stack. Hitchin defined a map

(1-1) f : MG;L ! AG;L

to some affine space AG;L by collecting invariants of ' such as its trace and determinant
in the case G = GLn. The map f is called the Hitchin fibration. When L = !X is the
line bundle of 1-forms on X , Hitchin showed that f exhibited the stable part of MG;!X

as a completely integrable system. He also gave concrete descriptions of the fibers of f
in terms of spectral curves.

The works presented here have been supported by the NSF grants DMS-0969470/1302071/1736600 and the
Packard Foundation.
MSC2010: primary 11F70; secondary 14D24, 22E57, 11F67.
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1.2 Applications in geometric representation theory. Although discovered in the
context of Yang-Mills theory, Hitchin moduli stacks have subsequently played important
roles in the development of geometric representation theory.

When L = !X , MG;!X
is essentially the total space of the cotangent bundle of the

moduli stack BunG ofG-bundles overX . Therefore the categories of twistedD-modules
on BunG give quantizations ofMG;!X

. Beilinson and Drinfeld studied such quantizations
and used them to realize part of the geometric Langlands correspondence (namely when
the bG-connection comes from an oper). This can be viewed as a global analogue of the
Beilinson-Bernstein localization theorem. A related construction in positive characteristic
was initiated by Braverman and Bezrukavnikov [2007] for GLn and extended to any G
by Chen and Zhu [2017]. Hitchin’s integrable system also plays a key role in the work of
Kapustin and Witten [2007] which ties geometric Langlands correspondence to quantum
field theory.

Hitchin moduli stacks have also been used to construct representations of the dou-
ble affine Hecke algebra, giving global analogues of Springer representations. See Yun
[2011a], Yun [2012] and Oblomkov and Yun [2016].

1.3 Applications in automorphic representation theory. Ngô [2006] made the fun-
damental observation that point-counting on Hitchin fibers is closely related to orbital
integrals that appear in the study of automorphic representations. This observation, along
with ingenious technical work, allowed Ngô to prove the Lie algebra version of the Funda-
mental Lemma conjectured by Langlands and Shelstad in the function field case, see Ngô
[2010].

Group versions of theHitchinmoduli stackwere introduced byNgô usingVinberg semi-
groups. They are directly related to the Arthur-Selberg trace formula, as we will briefly
review in Section 2.1. See recent works by Ngô [2014], Bouthier [2017] and Bouthier,
Ngô, and Sakellaridis [2016] for applications of group versions of the Hitchin moduli
stack.

1.4 Contents of this report. This report will focus on further applications of variants
of Hitchin moduli stacks to automorphic representation theory.

In Section 2, we explain, in heuristic terms, why Hitchin-type moduli stacks naturally
show up in the study of Arthur-Selberg trace formula and more generally, relative trace
formulae. A relative trace formula calculates the L2-pairing of two distributions on the
space of automorphic forms ofG given by two subgroups. Such pairings, when restricted
to cuspidal automorphic representations, are often related to special values of automorphic
L-functions. In Section 2.3, we will elaborate on the relative trace formulae introduced
by Jacquet and Rallis, for which the fundamental lemma was proved in Yun [2011b].
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In Section 3, we point out a new direction initiated in the works Yun [n.d.], Yun and
Zhang [2017] and Yun and Zhang [n.d.]. Drinfeld introduced the moduli stack of Shtukas
as an analogue of Shimura varieties for function fields, which turns out to allow richer
variants than Shimura varieties. Cohomology classes of these moduli of Shtukas gener-
alize the notion of automorphic forms. In Section 3.1 we review the basic definitions of
Shtukas, and discuss the spectral decomposition for the cohomology of moduli of Shtukas.
In Section 3.2, we introduce Heegner-Drinfeld cycles on the moduli ofG-Shtukas coming
from subgroups H of G. The relative trace in the context of Shtukas is then defined in
Section 3.3 as the intersection pairing of two Heegner-Drinfeld cycles. We believe that
such pairings, when restricted to the isotypical component of a cuspidal automorphic rep-
resentation, are often related to higher derivatives of automorphic L-functions. We then
explain why Hitchin-type moduli stacks continue to play a key role in the Shtuka context,
and what new geometric ingredients are needed to study relative trace formulae in this
setting.

In Section 3.4-Section 3.5 we survey what has been proven in this new direction. In
Section 3.4, we review Yun and Zhang [2017] and Yun and Zhang [n.d.], in which we
obtain formulae relating higher derivatives of automorphic L-functions for PGL2 and the
intersection numbers of Heegner-Drinfeld cycles. Our results generalize the Gross-Zagier
formula in the function field case. In Section 3.5 we discuss the analogue of the fundamen-
tal lemma in the Shtuka setting. This was originally conjectured by W.Zhang under the
name arithmetic fundamental lemma. We state an extension of his conjecture for function
fields involving higher derivatives of orbital integrals, and sketch our strategy to prove it.

Acknowledgments. I would like to thank my mentors for bringing me to the exciting
crossroads of algebraic geometry, representation theory and number theory. The influ-
ences of R. MacPherson, P. Deligne, G. Lusztig, B. Gross, B.C. Ngô and R. Bezrukavni-
kov on my career are especially important. I also learned a lot from my collaborators,
colleagues and fellow students, to whom I would like to express my deep gratitude.

2 Hitchin moduli stack and trace formulae

Throughout this article we fix a finite field k = Fq . Let X be a smooth, projective and
geometrically connected curve over k of genus g. Let F = k(X) be the function field
of X . The places of F can be identified with the set jX j of closed points of X . Let A
denote the ring of adèles of F . For x 2 jX j, let Ox be the completed local ring of X at
x, and Fx (resp. kx) be its fraction field (resp. residue field). We also use$x to denote a
uniformizer of Ox .
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In this section we work with the classical notion of automorphic forms for groups over
function fields. We shall briefly review the Arthur-Selberg trace formula and the relative
trace formulae, and explain why Hitchin type moduli stacks naturally show up in the study
of these trace formulae.

2.1 Arthur-Selberg trace formula. The Arthur-Selberg trace formula is an important
tool in the theory of automorphic representations. For a detailed introduction to the theory
over a number field we recommend Arthur’s article Arthur [2005]. Here we focus on the
function field case. The idea that Hitchin moduli stacks give a geometric interpretation of
Arthur-Selberg trace formula is due to B.C. Ngô. For more details, we refer to Ngô [2006]
for the Lie algebra version, and Frenkel and Ngô [2011] for the group version.

We ignore the issue of convergence in the discussion (i.e., we pretend to be working
with an anisotropic group G), but we remark that the convergence issue lies at the heart
of the theory of Arthur and we are just interpreting the easy part of his theory from a
geometric perspective.

2.1.1 The classical setup. Let G be a split connected reductive group over k and we
view it as a group scheme overX (hence over F ) by base change. Automorphic forms for
G are C-valued smooth functions on the coset space G(F )nG(A). Fix a Haar measure
�G onG(A). Let A be the space of automorphic forms forG. For any smooth compactly
supported function f on G(A), it acts on A by right convolution R(f ).

The Arthur-Selberg trace formula aims to express the trace ofR(f ) on A in two differ-
ent ways: one as a sum over conjugacy classes ofG(F ) (the geometric expansion) and the
other as a sum over automorphic representations (the spectral expansion). The primitive
form of the geometric expansion reads

(2-1) Tr(R(f );A)00 =00
X


2G(F )/∼

J
 (f )

where 
 runs over G(F )-conjugacy classes in G(F ), and J
 (f ) is the orbital integral

J
 (f ) = vol(G
 (F )nG
 (A); �G

)

Z
G
 (A)nG(A)

f (g�1
g)
�G

�G


(g)

where �G

is any Haar measure on the centralizerG
 (A) of 
 . We write the equality sign

in quotation marks 1 to indicate that the convergence issue has been ignored in (2-1). We
will give a geometric interpretation of the geometric expansion.

1Later we will use the same notation (equal signs in quotation marks) to indicate heuristic identities.
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Fix a compact open subgroup K =
Q

x2jX jKx � G(A) and assume vol(K;�G) = 1.
Let AK = Cc(G(F )nG(A)/K) on which the Hecke algebra Cc(KnG(A)/K) acts. For
g 2 G(A), there is a Hecke correspondence attached to the double coset KgK � G(A)

(2-2) G(F )nG(A)/K G(F )nG(A)/(K \ gKg�1)
p0oo q0 // G(F )nG(A)/K

where p0 is the natural projection and q0 is induced by right multiplication by g. The ac-
tion of f = 1KgK on AK is given by ' 7! q0!p

�
0', where q0! means summing over

the fibers of q0. Upon ignoring convergence issues, the trace of R(1KgK) on AK is
equal to the cardinality of the restriction of G(F )nG(A)/(K \ gKg�1) to the diago-
nal G(F )nG(A)/K via the maps (p0; q0). In other words, we should form the pullback
diagram of groupoids

(2-3) MG;KgK

��

// G(F )nG(A)/(K \ gKg�1)

(p0;q0)

��
G(F )nG(A)/K

∆ // G(F )nG(A)/K �G(F )nG(A)/K

and we have a heuristic identity

(2-4) Tr(R(1KgK);AK)00 =00 #MG;KgK :

Here #X of a groupoid X is a counting of isomorphism classes of objects in X weighted
by the reciprocals of the sizes of automorphism groups.

2.1.2 Weil’s interpretation. Let K0 =
Q

x2jX jG(Ox). It was observed by Weil that
the double coset groupoid G(F )nG(A)/K0 is naturally isomorphic to the groupoid of
G-bundles over X that are trivial at the generic point of X . In fact, starting from g =

(gx) 2 G(A), one assigns the G-bundle on X that is glued from the trivial bundles on
the generic point Spec F and the formal disks Spec Ox via the “transition matrices” gx .
For a compact openK � K0, one can similarly interpretG(F )nG(A)/K as the groupoid
of G-bundles with K-level structures. There is an algebraic stack BunG;K classifying G-
bundles on X with K-level structures, and the above observation can be rephrased as a
fully faithful embedding of groupoids

(2-5) G(F )nG(A)/K ,! BunG;K(k):

Apriori, the groupoid BunG;K(k) contains alsoG-bundles that are not trivial at the generic
point, or equivalently G0-bundles for certain inner forms G0 of G. Since we assume G is
split, the embedding (2-5) is in fact an equivalence.
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In the same spirit, we interpret G(F )nG(A)/(K \ gKg�1) as the groupoid of triples
(E;E0; ˛) where E;E0 are G-bundles with K-level structures on X , and ˛ : E Ü E0 is
a rational isomorphism between E and E0 (i.e., an isomorphism of G-bundles over the
generic point Spec F ) such that the relative position of E and E0 at each closed point x 2

jX j is given by the double cosetKxgxKx . For example, whenG = GLn,Kx = GLn(Ox)

and gx = diag($x ; 1; � � � ; 1), then ˛ has relative position KxgxKx at x if and only if ˛
extends to a homomorphism ˛x : EjSpec Ox

! E0jSpec Ox
, and that coker(˛x) is one-

dimensional over the residue field kx . There is a moduli stack HkG;KgK classifying such
triples (E;E0; ˛). The above discussion can be rephrased as an equivalence of groupoids

(2-6) HkG;KgK(k) Š G(F )nG(A)/(K \ gKg�1):

Moreover, HkG;KgK is equipped with two maps to BunG;K by recording E and E0, which
allow us to view it as a self-correspondence of BunG;K

(2-7) BunG;K HkG;KgK
poo q // BunG;K

Under the equivalences (2-5) and (2-6), the diagram (2-7) becomes the diagram (2-2) after
taking k-points.

2.1.3 Geometric interpretation of the trace. Continuing further with Weil’s observa-
tion, we can form the stack-theoretic version of (2-3), and define the stack MG;KgK by
the Cartesian diagram

(2-8) MG;KgK

��

// HkG;KgK

(p;q)

��
BunG;K

∆ // BunG;K � BunG;K

so that MG;KgK(k) =MG;KgK .
By the defining Cartesian diagram (2-8), MG;KgK classifies pairs (E; ') where E is a

G-bundle over X with K-level structures, and ' : E Ü E is a rational automorphism
with relative position given by KgK.

Recall the classical Hitchin moduli stackMG;L in Section 1.1. If we writeL = OX (D)

for some effective divisorD,MG;L then classifies pairs (E; ')whereE is aG-bundle over
X and ' is a rational section of Ad(E) (an infinitesimal automorphism of E) with poles
controlled by D. Therefore MG;L can be viewed as a Lie algebra version of MG;KgK ,
and MG;KgK is a group version of MG;L.

Let CG be the GIT quotient of G by the conjugation action of G; CG(F ) is the set of
stable conjugacy classes in G(F ). There is an affine scheme BG;KgK classifying ratio-
nal maps X Ü CG with poles controlled by KgK. The Hitchin fibration (1-1) has an
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analogue

(2-9) hG : MG;KgK ! BG;KgK :

Using the map hG , the counting ofMG;KgK , hence the trace of R(1KgK), can be decom-
posed into a sum over certain stable conjugacy classes a

(2-10) Tr(R(1KgK);AK)00 =00
X

a2BG;KgK(k)

#MG;KgK(a)(k):

Here MG;KgK(a) (a stack over k) is the fiber h�1
G (a). To tie back to the classical story,

#MG;KgK(a)(k) is in fact a sum of orbital integrals

#MG;KgK(a)(k) =
X


2G(F )/∼;[
 ]=a

J
 (1KgK)

over G(F )-conjugacy classes 
 that belong to the stable conjugacy class a.
By the Lefschetz trace formula, we can rewrite (2-10) as

(2-11) Tr(R(1KgK);AK)00 =00
X

a2BG;KgK(k)

Tr(Froba; (RhG!Q`)a):

This formula relates the Arthur-Selberg trace to the direct image complex of the Hitchin
fibration hG (called the Hitchin complex for G). Although it is still difficult to get a
closed formula for each term in (2-11), this geometric point of view can be powerful in
comparing traces for two different groups G and H by relating their Hitchin bases and
Hitchin complexes.

In the work of Ngô [2010], where the Lie algebra version was considered, the Hitchin
complex was studied in depth using tools such as perverse sheaves and the decomposi-
tion theorem. When H is an endoscopic group of G, Ngô shows that the stable part of
the Hitchin complex for H appears as a direct summand of the Hitchin complex for G,
from which he deduces the Langlands-Shelstad fundamental lemma for Lie algebras over
function fields.

2.2 Relative trace formulae.

2.2.1 Periods of automorphic forms. For simplicity we assume G is semisimple. Let
H � G be a subgroup defined over F , and �H a Haar measure onH (A). For a cuspidal
automorphic representation � of G(A), the linear functional on �

P G
H;� : � ! C(2-12)

' 7!

Z
H(F )nH(A)

'�H
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is called theH -period of � . It factors through the space of coinvariants �H(A).
One can also consider variants where we integrate ' against an automorphic charac-

ter � of H (A). If � has nonzero H -period, it is called H -distinguished. Distinguished
representations are used to characterize important classes of automorphic representations
such as those coming by functoriality from another group. In case the local coinvariants
(�x)H(Fx) are one-dimensional for almost all places x (as in the case for many spherical
subgroups ofG), one expects the period P G

H;� to be related to special values ofL-functions
of � .

2.2.2 Example. Let G = PGL2 and H = A be the diagonal torus. Then by Hecke’s
theory, for a suitably chosen ' 2 � ,

R
H(F )nH(A) '(t)jt j

s�1/2dt gives the standard L-
function L(s; �).

2.2.3 Relative trace formulae. Now suppose H1;H2 are two subgroups of G. Let
� be a cuspidal automorphic representation of G(A) and e� its contragradient. We get a
bilinear form

P G
H1;� ˝ P G

H2;e� : � ˝ e� ! C

In case the local coinvariants (�x)Hi (Fx) are one-dimensional for all places x and i = 1; 2,
theH1(A) �H2(A) invariant bilinear forms on � � e� are unique up to scalar. Therefore
P G

H1;� ˝ P G

H2;e� is a multiple of the natural pairing on � � e� given by the Petersson inner
product. This multiple is often related to special values of L-functions attached to � . For
a systematic treatment of this topic, see Sakellaridis and Venkatesh [n.d.].

An important tool to study the pairing P G
H1;� ˝ P G

H2;e� is the relative trace formula. We
have natural maps of cosets

(2-13) H1(F )nH1(A)
'1 // G(F )nG(A) H2(F )nH2(A)

'2oo

Consider the push-forward of the constant functions onHi (F )nHi (A) along 'i , viewed as
distributions onG(F )nG(A). Since wewill only give a heuristic discussion of the relative
trace formula, we will pretend that the L2-pairing of two distributions makes sense. The
relative trace of a test function f 2 C1

c (G(A)) is the L2-pairing
(2-14)

RTrGH1;H2
(f )00 =00

h'1;!1H1(F )nH1(A); R(f )'2;!1H2(F )nH2(A)iL2(G(F )nG(A);�G)

A variant of this construction is to replace the constant function 1 on Hi (F )nHi (A) by
an automorphic quasi-character �i ofHi (A).

The relative trace formula is an equality between a spectral expansion of RTrGH1;H2
(f )

into quantities related to P G
H1;� ˝ P G

H2;e� and a geometric expansion into a sum of orbital
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integrals JG
H1;H2;
 (f ) indexed by double cosetsH1(F )
H2(F ) � G(F )

(2-15)

JG
H1;H2;
 (f ) = vol(H
 (F )nH
 (A); �H


)

Z
H
 (A)n(H1�H2)(A)

f (h�1
1 
h2)

�H1�H2

�H


(h1; h2)

whereH
 is the stabilizer of 
 under the left-right translation on G byH1 �H2.
Let CG

H1;H2
= Spec F [G]H1�H2 . We may call elements in CG

H1;H2
(F ) stable orbits

of G under the action ofH1 �H2. There is a tautological map

inv : H1(F )nG(F )/H2(F ) ! CG
H1;H2

(F ):

We define

(2-16) JG
H1;H2

(a; f ) =
X


2H1(F )nG(F )/H2(F );inv(
)=a

JG
H1;H2;
 (f ):

Nowwe fix a compact open subgroupK � G(A) and letKi = K\Hi (A) for i = 1; 2.
Choose Haar measures on Hi (A) and G(A) so that Ki and K have volume 1. Consider
the test function f = 1KgK as before. Unwinding the definition of the relative trace, we
can rewrite (2-14) as

(2-17) RTrGH1;H2
(1KgK)00 =00 #MG

H1;H2;KgK

whereMG
H1;H2;KgK is defined by the Cartesian diagram of groupoids

MG
H1;H2;KgK

//

��

G(F )nG(A)/(K \ gKg�1)

(p0;q0)

��
H1(F )nH1(A)/K1 �H2(F )nH2(A)/K2

('1;'2)// G(F )nG(A)/K �G(F )nG(A)/K

2.2.4 Geometric interpretation of the relative trace. Now we give a geometric inter-
pretation ofMG

H1;H2;KgK . We assumeH1 andH2 are also obtained by base change from
split reductive groups over k, which we denote by the same notation. We have maps

BunH1;K1

Φ1 // BunG;K BunH2;K2
:

Φ2oo

Taking k-points of the above diagramwe recover (2-13) up to modding out by the compact
open subgroups Ki and K. We may form the Cartesian diagram of stacks

MG
H1;H2;KgK

//

��

HkG;KgK

(p;q)

��
BunH1;K1

� BunH2;K2

(Φ1;Φ2)// BunG;K � BunG;K
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We have MG
H1;H2;KgK(k) =MG

H1;H2;KgK .

2.2.5 Example. Consider the special case G = G1 � G1 (G1 is a semisimple group
over k) and H1 = H2 is the diagonal copy of G1, K1 = K2, K = K1 � K2. Taking
g = (1; g1) for some g1 2 G1(A), we get a canonical isomorphism between the stacks
MG1�G1

∆(G1);∆(G1);K(1;g1)K
and MG1;K1g1K1

. In this case, the relative trace is the usual trace
of R(1K1g1K1

) on the space of automorphic forms for G1.

The moduli stack MG
H1;H2;KgK classifies (E1;E2; ˛) where Ei is an Hi -bundle with

Ki -structure over X for i = 1; 2; ˛ is a rational isomorphism between the G-bundles
induced from E1 and E2, with relative position given by KgK.

One can construct a scheme BG
H1;H2;KgK classifying rational maps X Ü CG

H1;H2

with poles controlled by KgK, so that BG
H1;H2;KgK(k) � CG

H1;H2
(F ). For (E1;E2; ˛) 2

MG
H1;H2;KgK , we may restrict ˛ to the generic point of X and take its invariants as a

rational map X Ü CG
H1;H2

. This way we get a map of algebraic stacks

(2-18) hG
H1;H2

: MG
H1;H2;KgK ! BG

H1;H2;KgK :

In the situation of Example 2.2.5, hG
H1;H2

specializes to the usual Hitchin map (2-9) for
G1, so we may think of hG

H1;H2
as an analogue of the Hitchin map for the Hitchin-like

moduli MG
H1;H2;KgK . Taking k-points of (2-18) we get a map

(2-19) MG
H1;H2;KgK ! [H1nG/H2](F )

inv
�! CG

H1;H2
(F )

whose fiber over a 2 CG
H1;H2

(F ) has cardinality equal to JG
H1;H2

(a; 1KgK) defined in
(2-16). We may thus decompose the relative trace into a sum of point-counting along the
fibers of the map (2-19)

RTrGH1;H2
(1KgK)00 =00

X
a2CG

H1;H2
(F )

JG
H1;H2

(a; 1KgK)

=
X

a2BG
H1;H2;KgK

(k)

Tr(Froba; (RhG
H1;H2;!Q`)a):(2-20)

The above formula relates the relative trace to the direct image complexRhG
H1;H2;!Q`. As

in the case of the Arthur-Selberg trace formula, wemay apply sheaf-theoretic tools to study
this direct image complex, especially when it comes to comparing two such complexes.

2.2.6 Example. Consider the case G = PGL2, and H1 = H2 = A � G is the diagonal
torus. Let K1 = K2 =

Q
x A(Ox) and K =

Q
x G(Ox). Let D =

P
x nxx be an
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effective divisor. Define the function hD on G(A) to be the characteristic function of
Mat2(O)D = f(gx)jgx 2 Mat2(Ox); vx(detgx) = nx ;8x 2 jX jg. Then Mat2(O)D is a
finite union of K-double cosets KgiK. We will define a stack MG

A;A;D which turns out
to be the union of the MG

A;A;Kgi K .
Consider the stack fMG

A;A;D classifying the data (L1;L2;L0
1;L

0
2; ') where

• Li , L0
i are line bundles over X , for i = 1; 2;

• ' : L1 ˚ L2 ! L0
1 ˚ L0

2 is an injective map of coherent sheaves such that det('),
viewed as a section of the line bundle L�1

1 ˝ L�1
2 ˝ L0

1 ˝ L0
2, has divisorD.

The Picard stack PicX acts on fMG
A;A;D by simultaneously tensoring on Li and L0

i . We
define

MG
A;A;D Š fMG

A;A;D/PicX :

The bi-A-invariant regular functions onG are generated by
�
a b

c d

�
7!

bc
ad�bc

, therefore

the space CG
A;A is isomorphic to A1. Define the Hitchin base BG

A;A;D to be the affine space
H0(X;OX (D)).

To define the Hitchin map in this case, we write ' above as a matrix
�
'11 '12
'21 '22

�
where 'ij is a section of L�1

j ˝ L0
i . The determinant det(') gives an isomorphism L�1

1 ˝

L�1
2 ˝ L0

1 ˝ L0
2 Š OX (D). On the other hand, '12'21 gives another section of L�1

1 ˝

L�1
2 ˝ L0

1 ˝ L0
2. The Hitchin map

hG
A;A : MG

A;A;D ! H0(X;OX (D)) = BG
A;A;D

then sends (L1;L2;L0
1;L

0
2; ') to '12'21, viewed as a section of OX (D) via the identifi-

cation given by det(').
Although MG

A;A;D is not of finite type, it is the disjoint union of finite type substacks
indexed by a subset of Z4/∆(Z). Indeed, for d = (d1; d2; d

0
1; d

0
2) 2 Z4/∆(Z) such that

d 0
1 + d

0
2 = d1 + d2 + degD, the substack d MG

A;A;D where degLi = di and degL0
i = d 0

i

is of finite type. We may write RTrGA;A(hD) as a formal sum of

dRTrGA;A(hD) = #d MG
A;A;D(k) = Tr(Frob;H�

c (
d MG

A;A;D ˝ k;Q`)):

2.3 Relative fundamental lemma. In many cases we do not expect to prove closed
formulae for relative traces of the form (2-14). Instead, for applications to problems on au-
tomorphic representations, it often suffices to establish an identity between relative traces
for two different situations (G;H1;H2) and (G0;H 0

1;H
0
2).
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2.3.1 General format of RTF comparison. In order to establish such an identity, we
need the following structures or results:

1. There should be an isomorphism between the spaces of invariantsCG
H1;H2

Š CG0

H 0
1;H 0

2
.

2. (fundamental lemma) For almost all x 2 jX j, and

ax 2 CG
H1;H2

(Fx) Š CG0

H 0
1;H 0

2
(Fx)

we should have an identity of local orbital integrals up to a transfer factor

JG
H1;H2;x(ax ; 1G(Ox)) ∼ JG0

H 0
1;H 0

2;x
(ax ; 1G0(Ox)):

Here JG
H1;H2;x(ax ; fx) is the local analogue of JG

H1;H2
(a; f ) defined in (2-16).

3. (smooth matching) For any x 2 jX j, ax 2 CG
H1;H2

(Fx) Š CG0

H 0
1;H 0

2
(Fx), and

fx 2 C1
c (G(Fx)), there exists f 0

x 2 C1
c (G0(Fx)) such that JG

H1;H2;x(ax ; fx) =

JG0

H 0
1;H 0

2;x
(ax ; f

0
x).

The geometric interpretation (2-20) of the relative trace gives a way to prove the funda-
mental lemma by comparing the direct image complexes of the Hitchin maps hG

H1;H2
and

hG0

H 0
1;H 0

2
. Below we discuss one such example.

2.3.2 The relative trace formulae of Jacquet and Rallis. 2011 proposed a relative
trace formula approach to the Gan-Gross-Prasad conjecture for unitary groups. They con-
sidered two relative trace formulae, one involving general linear groups, and the other
involving unitary groups. They formulated both the fundamental lemma and the smooth
matching in this context as conjectures. In Yun [2011b], we used the geometric interpre-
tation sketched in Section 2.2.4 to prove the fundamental lemma conjectured by Jacquet
and Rallis, in the case of function fields. In the appendix to Yun [ibid.], J.Gordon used
model theory to deduce the mixed characteristic case from the function field case. On the
other hand, W. Zhang [2014] proved the smooth matching for the Jacquet-Rallis relative
trace formula at non-archimedean places. Together with the fundamental lemma proved
in Yun [2011b], W.Zhang deduced the Gan-Gross-Prasad conjecture for unitary groups
under some local restrictions.

In the next two examples, we introduce the groups involved in the two trace formulae
in Jacquet and Rallis [2011], and sketch the definition of the moduli stacks relevant to the
orbital integrals. Since we proved the fundamental lemma by reducing to its Lie algebra
analogue, our moduli stacks will be linearized versions of the Hitchin-type moduli stacks
introduced in Section 2.2.4, which are closer to the classical Hitchin moduli stack.
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2.3.3 Example. Let F 0/F be a separable quadratic extension corresponding to a double
cover � : X 0 ! X . Let � 2 Gal(F 0/F ) be the nontrivial involution. Consider G =

ResF 0/F GLn � ResF 0/F GLn�1, H1 = ResF 0/F GLn�1 and H2 = GLn � GLn�1 (over

F ). The embeddingH1 ! G sends h 2 H1 to (
�
h

1

�
; h) 2 G.

The double quotientH1nG/H2 can be identified with GLn�1nSn, where

Sn = fg 2 ResF 0/F GLnj�(g) = g�1
g

with GLn�1 acting by conjugation. The local orbital integral relevant to this relative trace
formula is
(2-21)
J GL

x;
 (f ) :=

Z
GLn�1(Fx)

f (h�1
h)�x(deth)dh; 
 2 Sn(Fx); f 2 C1
c (Sn(Fx)):

Here �x is the character F �
x ! f˙1g attached to the quadratic extension F 0

x/Fx .
The Lie algebra analogue of GLn�1nSn is GLn�1n(gln ˝F F 0

�) where
F 0

� = (F 0)�=�1, and GLn�1 acts by conjugation. Let Vn be the standard representation
of GLn over F . It is more convenient to identify GLn�1n(gln ˝F F 0

�) with

GLnn
�
HomF (Vn; Vn ˝ F 0

�) � (Vn � V �
n )1

�
;

where (Vn � V �
n )1 consists of (e; e�) 2 Vn � V �

n such that e�(e) = 1, and GLn is act-
ing diagonally on all factors (conjugation on the first factor). The GIT quotient C of
HomF (Vn; Vn ˝ F 0

�) � (Vn � V �
n )1 by GLn is an affine space of dimension 2n � 1. For

('; e; e�) 2 HomF (Vn; Vn ˝ F 0
�) � (Vn � V �

n )1, we have invariants ai (') 2 (F 0
�)

˝i

that records the i -th coefficient of the characteristic polynomial of ' (1 � i � n), and
bi = e�('ie) 2 (F 0

�)
˝i for 1 � i � n � 1. The invariants (a1; � � � ; an; b1; � � � ; bn�1)

give coordinates for C.
We introduce the following moduli stack M which serves as a global avatar for the

Lie algebra version of the orbital integrals appearing in this relative trace formula. Fix
line bundles L and L0 on X . Let L� = L ˝OX

O�=�1
X 0 . The stack M classifies tu-

ples (E; '; s; s�) where E is a vector bundle of rank n over X , ' : E ! E ˝ L�,
s : L0�1 ! E and s� : E ! L0 are OX -linear maps of coherent sheaves. The “Hitchin
base” B in this situation is the affine space

Qn
i=1 Γ(X;L

˝i
� ) �

Qn�1
i=0 Γ(X;L

0˝2 ˝ L˝i
� ).

The Hitchin map f : M ! B sends (E; '; s; s�) to the point of B with coordinates
(a1('); � � � ; an('); b0; � � � ; bn�1), where ai (') are the coefficients of the characteristic
polynomial of ', and bi = s� ı 'i ı s : L0�1 ! L˝i

� ˝ L0.

2.3.4 Example. Let F 0/F and � : X 0 ! X be as in Example 2.3.3. Let Wn�1 be a
Hermitian vector space of dimension n � 1 over F 0. Let Wn = Wn�1 ˚ F 0en with the
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Hermitian form (�; �) extending that on Wn�1 and such that Wn�1?en, (en; en) = 1. Let
Un and Un�1 be the unitary groups over F attached to Wn and Wn�1. Consider G0 =

Un � Un�1, and the subgroupH 0
1 = H 0

2 = Un�1 diagonally embedded into G0.
The double quotient H 0

1nG0/H 0
2 can be identified with the quotient Un�1nUn where

Un�1 acts by conjugation. For x 2 jX j, the local orbital integral relevant to this relative
trace formula is

J U
x;ı(f ) =

Z
Un�1(Fx)

f (h�1ıh)dh; ı 2 Un(Fx); f 2 C1
c (Un(Fx)):

The Lie algebra analogue of Un�1nUn is Un�1nun, where un, the Lie algebra of Un,
consists of skew-self-adjoint endomorphisms ofWn. As in the case of Example 2.3.3, we
identify Un�1nun with Unn

�
un �W 1

n

�
where W 1

n is the set of vectors e 2 Wn such that
(e; e) = 1. The GIT quotient of un �W 1

n by Un can be identified with the space C intro-
duced in Example 2.3.3. For ( ; e) 2 un�W 1

n , its image inC is (a1( ); � � � ; an( ); b1; � � � ; bn�1)

where ai ( ) 2 (F 0
�)

˝i are the coefficients of the characteristic polynomial of  (as an
endomorphism of Wn), and bi = ( ie; e) 2 (F 0

�)
˝i , since �( ie; e) = (e;  ie) =

(�1)i ( ie; e).
We introduce a moduli stack N which serves as a global avatar for the Lie algebra

version of the orbital integrals appearing in this relative trace formula. Fix line bundles L
and L0 onX . The stack N classifies tuples (F ; h;  ; t) where F is a vector bundle of rank
n onX 0, h : F

∼
! ��F _ is a Hermitian form on F , : F ! F ˝��L is skew-self-adjoint

with respect to h and t : ��L0�1 ! F is an OX 0 -linear map. When � is unramified, the
base B introduced in Example 2.3.3 still serves as the Hitchin base for N. The Hitchin
map g : N ! B sends (F ; h;  ; t) to (a1( ); � � � ; an( ); b0; � � � ; bn�1), where ai ( ) are
the coefficients of the characteristic polynomial of  , and bi = t_ ı h ı  i ı t descends
to an OX -linear map L0�1 ! L˝i

� ˝ L0.

2.3.5 Theorem (Yun [2011b]). Let x be a place of F such that F 0/F is unramified over
x and the Hermitian space Wn;x has a self-dual lattices Λn;x . Then for strongly regular
semisimple elements 
 2 Sn(Fx) and ı 2 Un(Fx) with the same invariants in C(Fx), we
have

J GL
x;
 (1Sn(Ox)) = ˙J U

x;ı(1U(Λn;x))

for some sign depending on the invariants of 
 .

Themain geometric observation in Yun [ibid.] is that both f : M ! B and g : N ! B
are small maps when restricted to a certain open subset of B. This enables us to prove
an isomorphism between the direct images complexes of f and g by checking over the
generic point of B. Such an isomorphism of sheaves, after passing to the Frobenius traces
on stalks, implies the identity above, which was the fundamental lemma conjectured by
Jacquet and Rallis.
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3 Hitchin moduli stack and Shtukas

In this section we consider automorphic objects that arise as cohomology classes of mod-
uli stacks of Shtukas, which are the function-field counterpart of Shimura varieties. These
cohomology classes generalize the notion of automorphic forms. The periods and rela-
tive traces have their natural analogues in this more general setting. Hitchin-type moduli
stacks continue to play an important role in the study of such relative trace formulae. We
give a survey of our recent work Yun and Zhang [2017],Yun and Zhang [n.d.] on higher
Waldspurger-Gross-Zagier formulae and Yun [n.d.] on the arithmetic fundamental lemma,
which fit into the framework to be discussed in this section.

3.1 Moduli of Shtukas. In his seminal paper, Drinfeld [1974] introduced the moduli
of elliptic modules as a function field analogue of modular curves. Later, Drinfeld [1987]
defined more general geometric object called Shtukas, and used them to prove the Lang-
lands conjecture for GL2 over function fields. Since then it became clear that the moduli
stack of Shtukas should play the role of Shimura varieties for function fields, and its coho-
mology should realize the Langlands correspondence for global function fields. This idea
was realized for GLn by L. Lafforgue [2002] who proved the full Langlands conjecture in
this case. For an arbitrary reductive groupG, V. Lafforgue [2012] proved the automorphic
to Galois direction of the Langlands conjecture using moduli stacks of Shtukas.

3.1.1 The moduli of Shtukas. The general definition of G-Shtukas was given by Var-
shavsky [2004]. For simplicity of presentation we assume G is split. Again we fix an
open subgroupK � K0, and let N � jX j be the finite set of places whereKx ¤ G(Ox).
Choosing a maximal split torus T and a Borel subgroup B containing T , we may there-
fore talk about dominant coweights of T with respect to B . Let r � 0 be an integer. Let
� = (�1; � � � ; �r) be a sequence of dominant coweights of T . Recall dominant coweights
of T are in bijection with relative positions of two G-bundles over the formal disk with
the same generic fiber.

Let Hk�
G;K be the Hecke stack classifying points x1; � � � ; xr 2 X �N together with a

diagram of the form

E0
f1 //___ E1

f2 //___ � � �
fr //___ Er

where Ei are G-bundles over X with K-level structures, and fi : Ei�1jX�xi

∼
! Ei jX�xi

is an isomorphism compatible with the level structures whose relative position at xi is in
the closure of that given by �i .
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A G-Shtuka of type � with level K is the same data as those classified by Hk�
G;K ,

together with an isomorphism of G-bundles compatible with K-level structures

(3-1) � : Er
∼
!

� E0:

Here, � E0 is the image of E0 under the Frobenius morphism Fr : BunG;K ! BunG;K . If
we are talking about an S -family of G-Shtukas for some k-scheme S , E0 is a G-torsor
over X � S , then � E0 := (idX � FrS )�E0. There is a moduli stack Sht�G;K of G-Shtuka
of type �, which fits into a Cartesian diagram

(3-2) Sht�G;K
//

��

Hk�
G;K

(p0;pr )

��
BunG;K

(id;Fr) // BunG;K � BunG;K

Let us observe the similarity with the definition of the (group version of) Hitchin stack in
diagram (2-8): the main difference is that we are replacing the diagonal map of BunG;K

by the graph of the Frobenius.
Recording only the points x1; � � � ; xr gives a morphism

�
�
G;K : Sht�G;K ! (X �N )r

The datum� is called admissible if
P

i �i lies in the coroot lattice. The existence of an
isomorphism (3-1) forces � to be admissible. Therefore Sht�G;K is nonempty only when
� is admissible. When r = 0, Sht�G;K is the discrete stack given by the double coset
BunG;K(k) = G(F )nG(A)/K. For � admissible, we have

dG(�) := dimSht�G;K =
X

i

(h2�G ; �i i + 1):

3.1.2 Hecke symmetry. Let g 2 G(A) and let S be the finite set of x 2 jX j � N

such that gx … G(Ox). There is a self-correspondence Sht�G;KgK (the dependence on
g is only through the double coset KgK) of Sht�G;K j(X�N �S)r such that both maps to
Sht�G;K j(X�N �S)r are finite étale. It then induces an endomorphism of the direct image
complex R��

G;K;!IC(Sht
�
G;K)j(X�N �S)r . V. Lafforgue [2012] used his construction of ex-

cursion operators to extend this endomorphism to the whole complex
R��

G;K;!IC(Sht
�
G;K) over (X � N )r . If we assign this endomorphism to the function

1KgK , it extends by linearity to an action of the Hecke algebra Cc(KnG(A)/K) on the
complex R��

G;K;!IC(Sht
�
G;K), and hence on its geometric stalks and on its cohomology

groups.
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3.1.3 Intersection cohomology of Sht�G;K . The singularities of the map ��
G;K are ex-

actly the same as the product of the Schubert varieties GrG;��i
in the affine Grassmannian

GrG . It is expected that the complex R��
G;K;!IC(Sht

�
G;K) should realize the global Lang-

lands correspondence for G in a way similar to the Eichler-Shimura correspondence for
modular curves. The phenomenon of endoscopy makes stating a precise conjecture quite
subtle, but a rough form of the expectation is a Cc(KnG(A)/K)-equivariant decomposi-
tion over (X �N )r

(3-3) R��
G;K;!IC(Sht

�
G;K)00 =00

0@ M
� cuspidal

�K
˝ (�r

i=1�
�i
� [1])

1A M
(Eisenstein part):

Here � runs over cuspidal automorphic representations of G(A) such that �K ¤ 0, �� is
the bG-local system on X �N attached to � by the Langlands correspondence, and ��i

� is
the local system obtained by the composition

�1(X �N;�)
��
��! bG(Q`) ! GL(V (�i ))

where V (�i ) is the irreducible representation of the dual group bG with highest weight �i .
One approach to prove (3-3) is to use trace formulae. One the one hand, consider the

action of a Hecke operator composed with a power of Frobenius at some x 2 jX j � N

acting on the geometric stalk at x of the left side of (3-3), which is IH�
c (Sht

�
G;K;x). The

trace of this action can be calculated by the Lefschetz trace formula, and can be expressed
as a sum of twisted orbital integrals. On the other hand, the trace of the same operator
on the right side of (3-3) can be calculated by the Arthur-Selberg trace formula, and be
expressed using orbital integrals. The identity (3-3) would then follow from an identity
between the twisted orbital integrals and the usual orbital integrals that appear in both
trace formulae, known as the base-change fundamental lemma.

The difficulty in implementing this strategy is that Sht�G;K is not of finite type, and both
the Lefschetz trace and the Arthur-Selberg trace would be divergent. L. Lafforgue [2002]
treated the case G = GLn and � = ((1; 0; � � � ; 0); (0; � � � ; 0;�1)) by difficult analysis of
the compactification of truncations of Sht�G;K , generalizing the work of Drinfeld on GL2.

3.1.4 Cohomological spectral decomposition. We discuss a weaker version of the
spectral decomposition (3-3). As mentioned above, Sht�G;K is not of finite type, so its
intersection cohomology is not necessarily finite-dimensional. One can present Sht�G;K

as an increasing union of finite-type open substacks, but these substacks are not pre-
served by the Hecke correspondences. Despite all that, we expect nice finiteness prop-
erties of IH�

c (Sht
�
G;K ˝ k) as a Hecke module. More precisely, the spherical Hecke alge-

bra Cc(K
N
0 nG(AN )/KN

0 ;Q`) (superscript N means removing places in N ) should act
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through a quotient H
N (possibly depending on �) which is a finitely generated algebra

overQ`, and that IH�
c (Sht

�
G;K ˝ k) should be a finitely generated module overH

N . Now

viewing IH�
c (Sht

�
G;K ˝ k) as a coherent sheaf on H

N , we should get a canonical decom-

position of it in terms of connected components of H
N . A coarser decomposition should

take the following form

(3-4) IH�
c (Sht

�
G;K ˝ k) =

M
[P ]

IH�
c (Sht

�
G;K ˝ k)[P ]

where [P ] runs over associated classes of parabolic subgroups of G. The support of
IH�

c (Sht
�
G;K ˝ k)[P ] should be described using the analogous quotient of the Hecke al-

gebra H
N

L for the Levi factor L of P , via the Satake transform from the spherical Hecke
algebra for G to the one for L. If G is semisimple, the part IH�

c (Sht
�
G;K ˝ k;Q`)[G]

should be finite-dimensional over Q`.
In the simplest nontrivial case G = PGL2 we have proved the coarse decomposition.

3.1.5 Theorem (Yun and Zhang [2017],Yun and Zhang [n.d.]). For G = PGL2, consider
the moduli of Shtukas ShtrG without level structures of type � = (�1; � � � ; �r) where each
�i is the minuscule coweight. Then there is a decomposition of Hecke modules

H2r
c (ShtrG ˝ k) = (˚�H2r

c (ShtrG ˝ k)[�]) ˚ H2r
c (ShtrG ˝ k)Eis

where � runs over a finite set of characters of the Hecke algebra Cc(K0nG(A)/K0), and
the support of H2r

c (ShtrG ˝ k)Eis is defined by the Eisenstein ideal.
For i ¤ 2r , Hi

c(Sht
r
G ˝ k) is finite-dimensional.

Similar result holds for a version of ShtrG with Iwahori level structures.

We expect the similar techniques to work for general split G and general type �.
Assume we have an analogue of the above theorem for G. Let � be a cuspidal auto-

morphic representation of G(A) such that �K ¤ 0, then Cc(K
N
0 nG(AN )/KN

0 ;Q`) acts
on �K by a character �� up to semisimplification. Suppose �� does not appear in the
support of IH�

c (Sht
�
G ˝ k)[P ] for any proper parabolic P (in which case we say �� is non-

Eisenstein), then the generalized eigenspace IH�
c (Sht

�
G;K ˝ k)[�� ] is a finite-dimensional

direct summand of IH�
c (Sht

�
G;K ˝ k) containing the contribution of � but possibly also

companions of � with the same Hecke character �� away from N .

3.2 Heegner-Drinfeld cycles and periods. When r = 0, the left side of (3-3) is sim-
ply the function space Cc(G(F )nG(A)/K) where cuspidal automorphic forms live. In
general, we should think of cohomology classes in IH�

c (Sht
�
G;K;x) or IH

�
c (Sht

�
G;K ˝ k)
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as generalizations of automorphic forms. We shall use this viewpoint to generalize some
constructions in Section 2 from classical automorphic forms to cohomology classes of
Sht�G;K .

3.2.1 Heegner-Drinfeld cycles. Let H � G be a subgroup defined over k with level
group KH = K \H (A). It induces a map �Bun : BunH;KH

! BunG;K .
Fix an integer r � 0. Let � = (�1; � � � ; �r) be an admissible sequence of dominant

coweights ofH ; let � = (�1; � � � ; �r) be an admissible sequence of dominant coweights
of G. To relate Sht�H to Sht�G , we need to impose more restrictions on � and �. For two
coweights �;�0 of G we write � �G �0 if for some (equivalently all) choices of a Borel
B 0 � Gk and a maximal torus T 0 � B 0, �0

B0;T 0 � �B0;T 0 is a sum of positive roots. Here
�B0;T 0 (resp. �0

B0;T 0 ) is the unique dominant coweight of T 0 conjugate to � (resp. �0).
We assume that �i �G �i for 0 � i � r . In this case there is a natural morphism of

Hecke stacks
�Hk : Hk�

H;KH
! Hk�

G;K

compatible with �Bun. The Cartesian diagram (3-2) and its counterpart for Sht�H then
induce a map over (X �N )r

� : Sht�H;KH
! Sht�G;K :

If � is proper, the image of the fundamental class of Sht�H;KH
defines an algebraic cycle

Sht�G;K which we call a Heegner-Drinfeld cycle.

3.2.2 Example. Consider the caseG = PGL2, andH = T is a non-split torus of the form
T = (ResF 0/F Gm)/Gm for some quadratic extension F 0/F . Since T is not a constant
group scheme over X , our previous discussion does not directly apply, but we can easily
define what a T -Shtuka is. The quadratic extension F 0 is the function field of a smooth
projective curve X 0 with a degree two map � : X 0 ! X . Let � = (�1; � � � ; �r) 2

Zr with
P

i �i = 0, we may consider the moduli of rank one Shtukas Sht�GL1;X 0 over
X 0 of type �. We define Sht�T to be the quotient Sht�GL1;X 0/PicX (k), where the discrete
groupoid PicX (k) is acting by pulling back to X 0 and tensoring with rank one Shtukas. It
can be shown that the projection Sht�T ! X 0r is a finite étale Galois cover with Galois
group PicX 0(k)/PicX (k). In particular, Sht�T is a smooth and proper DM stack over k of
dimension r .

Now let � = (�1; � � � ; �r) be a sequence of dominant coweights of G. Then each
�i can be identified with an element in Z�0, with the positive coroot corresponding to
1. Admissibility of � means that

P
i �i is even. The condition �i �G �i is saying that

j�i j � �i and that �i � �i is even. When �i �G �i for all i , the map � : Sht�T !
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Sht�G simply takes a rank one Shtuka (fEi g; fx
0
i g) on X

0 and sends it to the direct image
(f��Ei g; f�(x

0
i )g), which is a rank two Shtuka on X .

3.2.3 Periods. Fix a Haar measure �H onH (A). Under a purely root-theoretic condi-
tion on � and �, �� induces a map

�� : IH2dH (�)
c (Sht�G;K ˝ k) ! H2dH (�)

c (Sht�H;KH
˝ k);

and therefore defines a period map

P G;�

H;�
: IH2dH (�)

c (Sht�G;K ˝ k)
��

�! H2dH (�)
c (Sht�H;KH

˝ k)
\[Sht�

H;KH
]�vol(KH ;�H )

�����������������! Q`:

The last map above is the cap product with the fundamental class of Sht�H followed by
multiplication by vol(KH ; �H ).

Now assume Sht�H;KH
has half the dimension of Sht�G;K ,

(3-5) dG(�) = 2dH (�):

Let � be a cuspidal automorphic representation ofG(A). To make sense of periods on � ,
we assume for the moment that the contribution of � to the intersection cohomology of
Sht�G;K is as predicted in (3-3). Restricting P G;�

H;�
to the �-part we get

�K
˝ (˝r

i=1H
1
c((X �N ) ˝ k; ��i

� ))
��

�! H2dH (�)
c (Sht�H;KH

˝ k) ! Q`:

As we expect ��i
� to be pure, the above map should factor through the pure quotient of

H1
c((X �N ) ˝ k; �

�i
� ), which is H1

c(X ˝ k; j!��
�i
� ) (the cohomology of the middle ex-

tension of ��i
� ), and which does not change after enlarging N . Now shrinking K and

passing to the direct limit, we get

P G;�

H;�;�
: � ˝ (˝r

i=1H
1(X ˝ k; j!��

�i
� )) ! Q`

which is the analogue of the classical period (2-12). Again P G;�

H;�;�
should factor through

the coinvariants �H(A) ˝ (� � � ).

3.3 Shtuka version of relative trace formula.

3.3.1 The setup. Let H1 and H2 be reductive subgroups of G over k. Fix an integer
r � 0. Let � = (�1; � � � ; �r) (resp. � and �) be an admissible sequence of dominant
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coweights of H1 (resp. H2 and G). Assume that �i �G �i and �i �G �i . In this case
there are natural morphisms

Sht�H1

�1 // Sht�G Sht�H2

�2oo

Suppose
dimSht�H1

= dimSht�H2
=

1

2
dimSht�G :

With the same extra assumptions as in Section 3.2.3, we may define the periods P G;�

H1;�;�

and P G;�

H2;�;e� (where e� is the contragradient of �). We expect the tensor product

P G;�

H1;�;�
˝P G;�

H2;�;e� : �˝e�˝

�
˝

r
i=1

�
H1(X ˝ k; j!��

�i
� ) ˝ H1(X ˝ k; j!��

�ie� )
��

! Q`

to factor through the pairing between H1(X ˝ k; j!��
�i
� ) and H1(X ˝ k; j!��

�ie� ) given
by the cup product (the local systems ��ie� and ��i

� are dual to each other up to a Tate twist).
Assuming this, we get a pairing

P G;�

H1;�;�
˝ P G;�

H2;�;e� : �H1(A) ˝ e�H2(A) ! Q`:

When dim�H1(A) = dime�H2(A) = 1, we expect the ratio between the above pairing and
the Petersson inner product to be related to derivatives of L-functions of � , though I do
not know how to formulate a precise conjecture in general.

3.3.2 The relative trace. One way to access P G;�

H1;�;�
˝ P G;�

H2;�;e� is to develop a relative
trace formula whose spectral expansion gives these periods. Fix a compact open subgroup
K � G(A) and let Ki = Hi (A) \K. Assume �i are proper, we have Heegner-Drinfeld
cycles

Z�
H1

= �1�[Sht�H1;K1
]; Z�

H2
= �2�[Sht�H2;K2

]

both of half dimension in Sht�G;K . Intuitively we would like to form the intersection num-
ber

(3-6) I
(G;�)

(H1;�);(H2;�)
(f ) = hZ�

H1
; f � Z�

H2
iSht�

G;K
; f 2 Cc(KnG(A)/K)

as the “relative trace” of f in this context. Here f � (�) denotes the action of the Hecke
algebra on the Chow group of Sht�G;K , defined similarly as in Section 3.1.2. However,
there are several technical issues before we can make sense of this intersection number.

1. Sht�G;K may not be smooth so the intersection product of cycles may not be defined.
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2. Suppose the intersection of Z�
H1

and Z�
H2

is defined as a 0-cycle on Sht�G;K , if we
want to get a number out of this 0-cycle, we need it to be a proper cycle, i.e., it
should lie in the Chow group of cycles with proper support (over k).

The first issue goes away if we assume each �i to be a minuscule coweight of G, which
guarantees that Sht�G;K is smooth over (X � N )r . The second issue is more serious and
is analogous to the divergence issue for the usual relative trace. In results that we will
present later, it won’t be an issue because there Z�

H1;K1
is itself a proper cycle. In the

sequel we will proceed with heuristic arguments as we did in Section 2.2, and ignore these
issues.

When �; �; � are all zero, the linear functional I (G;0)

(H1;0);(H2;0) becomes the relative trace

RTrGH1;H2
defined in (2-14). Therefore the functional I (G;�)

(H1;�);(H2;�)
is a generalization of

the relative trace.

3.3.3 Intersection number in terms of Hitchin-like moduli stacks. In the case of the
usual relative trace forf = 1KgK , we introduced aHitchin-likemoduli stackMG

H1;H2;KgK

whose point-counting is essentially the relative trace of f . We now try to do the same
for I (G;�)

(H1;�);(H2;�)
. To simplify notations we assume K = K0 =

Q
x G(Ox), hence

Ki =
Q
Hi (Ox), and suppress them from the notation for Shtukas.

To calculate the intersection number (3-6), a natural starting point is to form the stack-
theoretic intersection of the cycles Z�

H1
and f �Z�

H2
, i.e., consider the Cartesian diagram

(3-7) Sht(G;�)

(H1;�);(H2;�);K0gK0

//

��

Sht�G;K0gK0

��
Sht�H1

� Sht�H2

�1��2 // Sht�G � Sht�G

The expected dimension of Sht(G;�)

(H1;�);(H2;�);K0gK0
is zero. If Sht(G;�)

(H1;�);(H2;�);K0gK0
in-

deed was zero-dimensional and moreover was proper over k, then I (G;�)

(H1;�);(H2;�)
(1K0gK0

)

would be equal to the length of Sht(G;�)

(H1;�);(H2;�);K0gK0
. However, neither the zero-dimensionality

nor the properness is true in general. Putting these issues aside, we proceed to rewrite
Sht(G;�)

(H1;�);(H2;�);K0gK0
in Hitchin-like terms.

Recall we have Hecke correspondences Hk�
G ;Hk

�
H1

and Hk�
H2

for BunG ;BunH1
and

BunH2
related by themaps �1;Hk and �2;Hk. We can also define a Hecke correspondence for

HkG;K0gK0
as the moduli stack classifying x1; � � � ; xr 2 X and a commutative diagram
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of rational isomorphisms of G-bundles over X

(3-8) E0
//___

'0

���
�
� E1

//___

'1

���
�
� � � � //___ Er

'r

���
�
�

E0
0

//___ E0
1

//___ � � � //___ E0
r

such that

1. The top and bottom rows of the diagram give objects in Hk�
G over (x1; � � � ; xr) 2

X r ;

2. Each column of the diagram gives an object in HkG;K0gK0
, i.e., the relative position

of 'i is given by K0gK0 for 0 � i � r .

We denote the resulting moduli stack by Hk�
Hk;K0gK0

. We have maps
p;q : Hk�

Hk;K0gK0
! Hk�

G by taking the top and the bottom rows; we also have maps
pi : Hk�

Hk;K0gK0
! HkG;K0gK0

by taking the i th column. The Hecke correspondence
Sht�G;K0gK0

in Section 3.1.2 is defined as the pullback of (p0;pr) : Hk�
Hk;K0gK0

!

HkG;K0gK0
� HkG;K0gK0

along the graph of the Frobenius morphism for HkG;K0gK0
.

We then define Hk�;�
M;K0gK0

using the Cartesian diagram

Hk�;�
M;K0gK0

//

��

Hk�
Hk;K0gK0

(p;q)

��
Hk�

H1
� Hk�

H2

�1;Hk��2;Hk // Hk�
G � Hk�

G

Now Hk�;�
M;K0gK0

can be viewed as an r-step Hecke correspondence for MG
H1;H2;K0gK0

.
Indeed, Hk�;�

M;K0gK0
classifies a diagram similar to (3-8), except that Ei (resp. E0

i ) are
now induced from H1-bundles Fi (resp. H2-bundles F 0

i ), and the top row (resp. bottom
row) are induced from an object in Hk�

H1
(resp. Hk�

H2
). Now each column in such a

diagram gives an object in MG
H1;H2;K0gK0

. Recording the i -th column gives a map mi :

Hk�;�
M;K0gK0

! MG
H1;H2;K0gK0

. We claim that there is a Cartesian diagram expressing
Sht(G;�)

(H1;�);(H2;�);K0gK0
as the “moduli of Shtukas for MG

H1;H2;K0gK0
with modification
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type (�; �)”:

(3-9) Sht(G;�)

(H1;�);(H2;�);K0gK0

//

��

Hk�;�
M;K0gK0

(m0;mr )

��
MG

H1;H2;K0gK0

(id;Fr) // MG
H1;H2;K0gK0

� MG
H1;H2;K0gK0

Indeed, this diagram is obtained by unfolding each corner of (3-7) as a fiber product of an
r-step Hecke correspondence with the graph of Frobenius, and re-arranging the order of
taking fiber products.

Continuing with the heuristics, the intersection number I (G;�)

(H1;�);(H2;�)
(1K0gK0

),

which “is” the length of Sht(G;�)

(H1;�);(H2;�);K0gK0
, should also be the intersection number

of Hk�;�
M;K0gK0

with the graph of Frobenius for MG
H1;H2;K0gK0

. In other words, we are
changing the order of intersection and leaving the “Shtuka-like” construction to the very
last step. It is often true that Hk�;�

M;K0gK0
has the same dimension as MG

H1;H2;K0gK0
,

and the fundamental class of Hk�;�
M;K0gK0

induces an endomorphism of the cohomology
of MG

H1;H2;K0gK0
which we denote by [Hk�;�

M;K0gK0
]. The Lefschetz trace formula then

gives the following heuristic identity
(3-10)
I
(G;�)

(H1;�);(H2;�)
(1K0gK0

)00 =00 Tr([Hk�;�
M;K0gK0

] ı Frob;H�
c (M

G
H1;H2;K0gK0

˝ k;Q`)):

The equal sign above is in quotationmarks for at least two reasons: both sidesmay diverge;
change of the order of intersection needs to be justified.

Let BG
H1;H2;K0gK0

be the Hitchin base and hG
H1;H2

be the Hitchin map as in (2-18).
Observe that for various 0 � i � r , the compositions hG

H1;H2
ı mi : Hk�;�

M;K0gK0
!

BG
H1;H2;K0gK0

are all the same. On the other hand, the Frobenius ofMG
H1;H2;K0gK0

covers
the Frobenius of BG

H1;H2;K0gK0
. Therefore diagram (3-9) induces a map

Sht(G;�)

(H1;�);(H2;�);K0gK0
! BG

H1;H2;K0gK0
(k)

which simply says that Sht(G;�)

(H1;�);(H2;�);K0gK0
decomposes into a disjoint union

(3-11) Sht(G;�)

(H1;�);(H2;�);K0gK0
=

a
a2BG

H1;H2;K0gK0
(k)

Sht(G;�)

(H1;�);(H2;�);K0gK0
(a):
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The action of [Hk�;�
M;K0gK0

] on the cohomology of MG
H1;H2;K0gK0

can be localized to
an action on the complex RhG

H1;H2;!Q` using the formalism of cohomological correspon-
dences. Then we may rewrite (3-10) as

(3-12) I
(G;�)

(H1;�);(H2;�)
(1K0gK0

)00 =00
X

a

Tr([Hk�;�
M;K0gK0

]a ı Froba; (RhG
H1;H2;!Q`)a);

where a runs over BG
H1;H2;K0gK0

(k).
Comparing (3-12) with (2-20), we see the only difference is the insertion of the operator

[Hk�;�
M;K0gK0

]a acting on the stalk (RhG
H1;H2;!Q`)a.

3.3.4 Example. Suppose G = PGL2 and H1 = H2 = T as in Example 3.2.2. Let
r � 0 be even. We pick �; � 2 f˙1gr with total sum zero, and form Sht�T and Sht�T .
Let � = (�1; � � � ; �r) consist of minuscule coweights of G. In this situation we have
dimSht�T = dimSht�T = r = 1

2
dimSht�G . Below we give more explicit descriptions of

MG
T;T;K0gK0

and Hk�;�
M;K0gK0

. For simplicity, we assume that the double cover � : X 0 !

X is étale.
As in Example 2.2.6, it is more convenient to work with the test function hD rather than

1K0gK0
, where D is an effective divisor on X . We denote the corresponding version of

MG
T;T;K0gK0

byMG
T;T;D . To describeMG

T;T;D , we first consider the moduli stack fMG
T;T;D

classifying (L;L0; ') where L and L0 are line bundles over X 0, and ' : ��L ! ��L0

is an injective map of coherent sheaves such that det(') has divisor D. We then have
MG

T;T;D = fMG
T;T;D/PicX , where PicX acts by pulling back to X 0 and simultaneously

tensoring with L and L0.
It is more convenient to workwith another description ofMG

T;T;D . Themap ' : ��L !

��L0 is equivalent to the data of two maps

˛ : L ! L0; ˇ : ��L ! L0

where � is the nontrivial involution of X 0 over X . The determinant det(') = Nm(˛) �

Nm(ˇ), as sections of Nm(L)�1 ˝ Nm(L0). Let MG;}
T;T;D � MG

T;T;D be the open subset
where ˛ and ˇ are nonzero. By recording the divisors of ˛ and ˇ, we may alternatively
describe MG;}

T;T;D as the moduli of pairs (D˛;Dˇ ) of effective divisors on X 0 of degree
d = degD, such that there exists a rational function f on X (necessarily unique) satisfy-
ing div(f ) = �(D˛) � �(Dˇ ) and div(1 � f ) = D � �(Dˇ ).

The Hecke correspondence Hk�;�
M;D

is the composition of r correspondences each of
which is either H+ or H� depending on whether �i = �i or not. Over the open sub-
set MG;}

T;T;D , H+ can be described as follows: it classifies triples of effective divisors
(D˛;Dˇ ;D

0
ˇ
) on X 0 such that (D˛;Dˇ ) 2 MG;}

T;T;D , and D0
ˇ
is obtained by changing



1490 ZHIWEI YUN (恽之玮)

one point of Dˇ by its image under � . The two maps p+; q+ : H+ ! MG;}
T;T;D send

(D˛;Dˇ ;D
0
ˇ
) to (D˛;Dˇ ) and (D˛;D

0
ˇ
). Similarly, over MG;}

T;T;D , H� classifies triples
of effective divisors (D˛;D

0
˛;Dˇ ) on X 0 such thatD0

˛ is obtained by changing one point
ofD˛ by its image under � .

3.4 Application to L-functions. In the work Yun and Zhang [2017], we considered
the case G = PGL2 and the moduli of Shtukas ShtrG without level structures, where r
stands for the r-tuple � = (�1; � � � ; �r) consisting of minuscule coweights of G (so r
is even). Let � : X 0 ! X be an unramified double cover. The Heegner-Drinfeld cycle
we considered was the one introduced in Example 3.2.2, i.e., Sht�T for � 2 f˙1gr . We
consider the lifting of the natural map � : Sht�T ! ShtrG

� 0 : Sht�T ! Sht0rG := ShtrG �Xr X 0r :

Since Sht�T is proper of dimension r , the Heegner-Drinfeld cycle Z�
T := � 0

�[Sht
�
T ] is an

r-dimensional proper cycle in the 2r-dimensional Sht0rG . Therefore Z�
T defines a class

Z�
T 2 H2r

c (Sht0rG ˝ k;Q`)(r).
Now let � be an everywhere unramified cuspidal automorphic representation of G(A)

with coefficients inQ`. By the coarse cohomological spectral decomposition for H2r
c (Sht0rG ˝ k;Q`)

(see Theorem 3.1.5), we may project Z�
T to the �� -isotypical summand, and denote the

resulting class by Z�
T;� 2 H2r

c (Sht0rG ˝ k;Q`)[�� ].

3.4.1 Theorem (Yun and Zhang [ibid.]). We have

hZ�
T;� ; Z

�
T;�iSht0r

G
=

q2�2g

2(log q)r

L(r)(�F 0 ; 1/2)

L(�;Ad; 1)
where

• hZ�
T;� ; Z

�
T;�iSht0r

G
is the self-intersection number of the cycle class Z�

T;� .

• �F 0 is the base change of � to F 0 = k(X 0).

• L(�F 0 ; s) = q4(g�1)(s�1/2)L(�F 0 ; s) is the normalized L-function of �F 0 such
that L(�F 0 ; s) = L(�F 0 ; 1 � s).

In Yun and Zhang [n.d.], we extended the above theorem to allow the automorphic rep-
resentation � to have square-free level structures (which means the local representations
�v are either unramified or an unramified twist of the Steinberg representation), and to
allow ramifications for the double cover � : X 0 ! X . We consider the moduli stack
ShtrG(Σ;Σ1) where Σ is a finite set of places where we add Iwahori level structures to
the G-Shtukas; Σ1 � Σ is a subset of places where we impose supersingular conditions.
The admissibility condition forces r to have the same parity as #Σ1.
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3.4.2 Theorem (Yun and Zhang [ibid.]). Let � be a cuspidal automorphic representation
of G(A) with square-free level Σ. Assume the double cover � : X 0 ! X is unramified
over Σ. Let Σ1 � Σ be the places that are inert in F 0. Let r 2 Z�0 be of the same parity
as #Σ1. Then for any r1; r2 2 Z�0 such that r1 + r2 = r , there is an explicit linear
combination Zr1;r2

T of the cycles fZ�
T ;� 2 f˙1grg such that

hZ
r1;r2
T;� ; Z

r1;r2
T;� iSht0r

G
(Σ;Σ1) =

q2�2g+�/2�N

2(� log q)r

L(r1)(�; 1/2)L(r2)(� ˝ �F 0/F ; 1/2)

L(�;Ad; 1)
:

where

• N = degΣ, and � is the degree of the ramification locus of �.

• L(�; s) = q(2g�2+N/2)(s�1/2)L(�; s) is the normalized L-function of � such that
L(�; s) = L(�; 1 � s).

• �F 0/F is the character of F �nA� corresponding to the quadratic extension F 0/F .

• L(� ˝ �F 0/F ; s) = q(2g�2+�+N/2)(s�1/2)L(� ˝ �F 0/F ; s) is the normalized L-
function of � ˝ �F 0/F such that L(� ˝ �F 0/F ; s) = L(� ˝ �F 0/F ; 1 � s).

When r = 0, the above theorem is a special case of the Waldspurger formula Wald-
spurger [1985], and our proof in this case is very close to the one in Jacquet [1986]. When
r = 1 and #Σ1 = 1, the above theorem is an analogue of the Gross-Zagier formula
(see Gross and Zagier [1986]) which expresses the first derivative of the base-change L-
function of a cuspidal Hecke eigenform in terms of the height of Heegner points on the
modular curve. However our proof is very different from the original proof of the Gross-
Zagier formula in that we do not need to explicitly compute either side of the formula.

3.4.3 Relation with the B-SD conjecture. Theorem 3.4.2 is applicable to those � com-
ing from semistable elliptic curves E over the function field F . The relation of our result
and the Birch–Swinnerton-Dyer conjecture forE can be roughly stated as follows. Take r
to be the vanishing order ofL(EF 0 ; s) = L(�F 0 ; s�1/2) at s = 1. According to the expec-
tation (3-3), Z�

T;� is an element in �K ˝ H1(X 0 ˝ k; j!��
���)

˝r . The 2-dimensional `-
adic Galois representation �� attached to� is the Tatemodule ofE, thereforeL(EF 0 ; s) =

det(1 � q�sFrobjH1(X 0 ˝ k; j!��
���)). The standard conjecture predicts that the Frobe-

nius acts semisimply on H1(X 0 ˝ k; j!��
���), hence the multiplicity of the Frobenius

eigenvalue q should be r . We expectZ�
T;� to lie in �K ˝ ^r(H1(X 0 ˝ k; j!��

���)
Fr=q),

and giving a basis for this hypothetically 1-dimensional space. However, currently we do
not have a way to construct rational points on E from the Heegner-Drinfeld cycle Sht�T .
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3.4.4 . The method to prove Theorems 3.4.1 is by comparing the Shtuka version of
the relative trace IG

T;T (f ) = hZ�
T ; f � Z�

T iSht0r
G
as in (3-6) with the usual relative trace

of the kind in Example 2.2.6. More precisely, for the triple (G;A;A) considered in
Example 2.2.6, we consider the relative trace involving a complex variable s

RTrGA;(A;�)(f; s) = h'!j � j
s
A(F )nA(A); '!(�j � j

s)A(F )nA(A)iL2(G(F )nG(A);�G):

Here j � j : A(F )nA(A) = F �nA� ! qZ is the global absolute value function, and
� = �F 0/F . Let Jr(f ) be the r th derivative of RTrGA;(A;�)(f; s) at s = 0. The key to
the proof is to establish the following identity of relative traces for all spherical Hecke
functions f

(3-13) IG
T;T (f ) = (log q)�rJr(f ):

To prove this identity, it suffices to consider f = hD for effective divisors D on
X (see Example 2.2.6). The moduli stacks MG

A;A;D in Example 2.2.6 and MG
T;T;D in

Example 3.3.4 share the same Hitchin base BD = H0(X;OX (D)). We may fix a de-
gree d and let D vary over effective divisors of degree d and get Hitchin maps fd :

MG
A;A;d

! Bd and gd : MG
T;T;d

! Bd . Formulae (2-20) and (3-12) suggest that we
should try to prove an identity between the direct image complexes of fd and gd . The
new geometric input here is the action of the Hecke correspondences [Hk�;�

Md
] on the com-

plex Rgd !Q`, which is the r-th iteration of the action of the correspondence [H+] defined
in Example 3.3.4. It turns out that the eigenvalues of the action of [H+] on Rgd !Q`

match exactly with the factors coming from taking the derivative of the relative trace
RTrGA;(A;�)(f; s), which explains why derivatives of automorphic quantities are indeed ge-
ometric.

3.5 Arithmetic fundamental lemma. Generalizing Theorems 3.4.1 and 3.4.2 to higher
rank groups would involve intersecting non-proper cycles in an ambient stack which is not
of finite type. This is the same issue as the non-convergence of the naive relative trace
(2-14), therefore a certain truncation and regularization procedure is needed. There is,
however, a local version of such results that can be proved for higher rank groups. One
example of such a local version is the Arithmetic Fundamental Lemma formulated by
W. Zhang [2012] originally for Rapoport-Zink spaces. In Yun [n.d.], we stated a higher
derivative extension of W.Zhang’s conjecture in the function field case, and sketched a
proof. This was the first time higher derivatives of automorphic quantities were related to
geometry, and it partially motivated the later work Yun and Zhang [2017].

3.5.1 Local Shtukas. The moduli of Shtukas has a local version. Fix a local function
field Fx with ring of integers Ox . In the diagram (3-2) defining the moduli of Shtukas, we
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may replace BunG by the affine Grassmannian GrG , and replace Hk�
G by an iterated Hecke

correspondence for GrG over a formal disk∆r = Spf (Ox b̋ � � � b̋Ox) of dimension r . We
also have the freedom of changing the Frobenius morphism on GrG by the composition
b ı Fr : GrG ! GrG , where b is an element of the loop group of G giving the datum of
a G-isocrystal. The resulting object bSht�;loc

G by forming the Cartesian square as (3-2) is
called the moduli space of local Shtukas, and it is a formal scheme over ∆r . The special
fiber of bSht�;loc

G is an iterated version of the affine Deligne-Lusztig variety. The twisted
centralizerGb of b is an inner form of a Levi subgroup ofG, andGb(Fx) acts on bSht�;loc

G .
For a subgroup H � G with a sequence of coweights � = (�1; � � � ; �r) such that

�i �G �i for all i and an H -isocrystal bH compatible with b, we have a morphism
� loc : bH Sht�;loc

H ! bSht�;loc
G over ∆r . This morphism is a closed embedding because

GrH ! GrG is. We define the local Heegner-Drinfeld cycle bH Z�;loc
H as the image of

� loc.
If we have two local Heegner-Drinfeld cycles b1Z�;loc

H1
and b2Z�;loc

H2
in bSht�;loc

G with
complementary dimensions, and if �i are minuscule and the reduced structure of their
intersection is proper over k, we may ask for their intersection number in bSht�;loc

G . More
generally, if ı 2 Gb(Fx), we may consider the intersection number

Iı = h
b1Z�;loc

H1
; ı �

b2Z�;loc
H2

ibSht�;loc
G

using the action of Gb(Fx) on bSht�;loc
G . When � = 0, this is the same as the local

orbital integral JG
H1;H2;ı

(1G(Ox)) (see (2-15)) for the relative trace formula of the triple
(G;H1;H2).

3.5.2 Example. Let F 0
x/Fx be an unramified quadratic extension, with ring of integers

O0
x and residue field k0

x . Fix a Hermitian vector space Wn;x of dimension n over x, and
let Un be the unitary group of Wn;x . We define the moduli of local Shtukas Shtr;loc

Un
over

∆0
r = Spf (O0

x
b̋

k0
x

� � � b̋
k0

x
O0

x) in the followingway. Let GrUn
be the affine Grassmannian

classifying self-dual lattices inWn;x . Since Un is split over F 0
x , the base change GrUn

˝kx

k0
x can be identified with the affine Grassmannian GrGLn

˝kx
k0

x classifying O0
x-lattices

inWn;x . We have the local Hecke correspondence HklocUn
over∆0

1 which, after identifying
GrUn

˝kx
k0

x with GrGLn
˝kx

k0
x , corresponds to the upper modification of lattices inWn;x

of colength one. Let Hkr;loc
Un

be the r-fold composition of HklocUn
as a correspondence, so

Hkr;loc
Un

! ∆0
r . Then Sht

r;loc
Un

is defined using the Cartesian diagram

Shtr;loc
Un

//

��

Hkr;loc
Un

��
GrUn

(id;Fr) // GrUn
� GrUn
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The group Un(Fx) acts on Shtr;loc
Un

. We remark that Shtr;loc
Un

is formally smooth over∆0
r of

relative dimension r(n � 1).
Now suppose we are in the situation of Example 2.3.4 so we have an orthogonal de-

composition Wn;x = Wn�1;x ˚ F 0
xen and (en; en) = 1. Adding a standard lattice O0

xen

gives an embedding GrUn�1
,! GrUn

compatible with the Hecke modifications, hence
induces an embedding Shtr;loc

Un�1
,! Shtr;loc

Un
. Consider the diagonal map

∆ : Shtr;loc
Un�1

! Shtr;loc
Un�1

�∆0
r
Shtr;loc

Un
:

The image of∆ gives an r(n� 1)-dimensional cycle Zr;loc
x in the 2r(n� 1)-dimensional

ambient space Shtr;loc
Un�1

�∆0
r
Shtr;loc

Un
. For strongly regular semisimple ı 2 Un(Fx) (with

respect to the conjugation action by Un�1) we form the intersection number

I
U;r
x;ı

= hZr;loc
x ; (id � ı)Zr;loc

x iShtr;loc
Un�1

�
∆0

r
Shtr;loc

Un

:

This makes sense because the support of the intersection of the two cycles Zr;loc
x and

(id � ı)Zr;loc
x is proper. When r = 0, we have IU;r

x;ı
is either equal to J U

x;ı
(1U(Λn;x)) as in

Example 2.3.4 if a self-dual lattice Λn;x � Wn;x exists, or 0 otherwise.

To state the higher arithmetic fundamental lemma, we introduce a variant of the orbital
integral (2-21) with a complex variable s

J GL
x;
 (f; s) =

Z
GLn�1(Fx)

f (h�1
h)�x(deth)j dethj
sdh; 
 2 Sn(Fx); f 2 C1

c (Sn(Fx)):

For 
 strongly regular semisimple, J GL
x;
 (f; s) is a Laurent polynomial in qs

x , where qx =

#kx . Let

J GL;r
x;
 (f ) =

�
d

ds

�r

js=0J
GL
x;
 (f; s):

3.5.3 Theorem (Yun [n.d.]). Let 
 2 GLn(Fx) and ı 2 Un(Fx) be strongly regular
semisimple with the same invariants in the sense of Example 2.3.3 and Example 2.3.4.
Then

(3-14) I
U;r
x;ı

= c(log qx)
�rJ GL;r

x;
 (1Sn(Ox))

with an explicit constant c depending on r and the invariants of 
 .

The proof consists of the following main steps.

1. Prove a global analogue of (3-14). Consider the triple (G;H1;H2) as in
Example 2.3.4 with coweights� forG and � forH1 = H2 being the first fundamen-
tal coweights. Let the triple (G0;H 0

1;H
0
2) be as in Example 2.3.3. Recall that for



HITCHIN TYPE MODULI STACKS IN REPRESENTATION THEORY 1495

the global situation, the intersection number I (G;�)

(H1;�);(H2;�)
(1K0gK0

) is the degree of

a certain 0-cycle on Sht(G;�)

(H1;�);(H2;�);K0gK0
introduced in the diagram (3-7). On the

other hand, we have a decomposition (3-11) of Sht(G;�)

(H1;�);(H2;�);K0gK0
into a disjoint

union of Sht(G;�)

(H1;�);(H2;�);K0gK0
(a) indexed by k-points of the base BG

H1;H2;K0gK0
.

For strongly regular semisimple a, Sht(G;�)

(H1;�);(H2;�);K0gK0
(a) is proper for any g, so

we can talk about the degree of the a-component of the zero cycle Z�
H1

� (f �Z�
H2

),
denoted hZ�

H1
; f � Z�

H2
ia. The global analogue of (3-14) means proving an iden-

tity of the form (3-13), but with both sides replaced by their a-components. One can
prove such a global identity by analyzing the direct image complexes of the Hitchin
maps hG

H1;H2
and hG0

H 0
1;H 0

2
using sheaf-theoretic methods, as we did in Yun [2011b]

and Yun and Zhang [2017].

2. Deduce the arithmetic fundamental lemma from the global identity. The moduli
Sht�;loc

G of local Shtukas forG is related to a formal completion of the global moduli
stack Sht�G by a uniformization diagram, analogous to the one relating Rapoport-
Zink spaces and Shimura varieties. Using the uniformization, one can express
hZ�

H1
; f � Z�

H2
ia as a finite sum, where each summand is a product of usual orbital

integrals and intersection numbers of the form IU;ri

xi ;ı
(with

P
ri = r). There is a sim-

ilar product formula for the global orbital integral for
(G0;H 0

1;H
0
2). By choosing a appropriately we may deduce the local identity (3-14)

from the global one using the product expansions and the known fundamental lemma
(Theorem 2.3.5).
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