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BOURGAIN–DELBAEN L1-SPACES, THE
SCALAR-PLUS-COMPACT PROPERTY AND RELATED

PROBLEMS

Sඉංඋඈඌ A. Aඋ඀ඒඋඈඌ ൺඇൽ Rංർඁൺඋൽ G. Hൺඒൽඈඇ

Abstract

We outline a general method of constructing L1-spaces, based on the ideas of
Bourgain and Delbaen, showing how the solution to the Scalar-plus-Compact Prob-
lem, the embedding theorem of Freeman, Odell and Schlumprecht and other recent
developments fit into this framework.

1 Introduction

Bourgain and Delbaen [1980] introduced a new class of separable Banach space that pro-
vided counterexamples to a number of open problems. On the one hand, each of these
spaces X˛;ˇ is an “L1-space”, which means that its finite-dimensional structure resem-
bles that of a C(K)-space, and the dual X�

˛;ˇ
is isomorphic either to `1 or C [0; 1]�; on the

other hand, each infinite-dimensional subspace of X˛;ˇ has a further subspace isomorphic
to some `p (1 � p < 1), so that the global structure of X˛;ˇ is very different from that
of C(K)-spaces, or complemented subspaces of such spaces.

Much more recently, it has become clear that the spaces X˛;ˇ are a special case of
a more general class, of what we now call Bourgain–Delbaen spaces (or BD-spaces for
short). Taking a suitably general definition, it has been shown by Argyros, Gasparis, and
Motakis [2016] that every separable L1-space is isomorphic to a BD-space, and BD-
constructions have been used both in the solution of the Scalar-plus-Compact Problem by
Argyros and Haydon [2011] and in the proof by Freeman, Odell, and Schlumprecht [2011]
that every Banach space with separable dual embeds in an isomorphic predual of `1. The
aim of this article is to sketch some general theory of BD constructions, trying to show
how recent results fit together, and (hopefully) shedding light on some older theorems by
presenting them in a BD framework. We do not have space for detailed proofs, especially

MSC2010: primary 46B03; secondary 46B26.
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1496 SPIROS A. ARGYROS AND RICHARD G. HAYDON

not of the scalar-plus-compact construction. Readers who are interested in an alternative
account of this may wish to consult the Séminaire Bourbaki paper of Grivaux and Rogin-
skaya [2014–2015], or the associated video available on YouTube. We include statements
and sketched proofs of certain results that are as yet unpublished, including some from the
long-promised paper of Argyros, Freeman, Haydon, Odell, Raikoftsalis, Schlumprecht,
and Zisimopoulou [n.d.]. We also include a few easy proofs of known results, where we
think that they may aid understanding of what is otherwise a rather abstract narrative.

The theory we sketch here builds on a rich body of literature starting with the paper
of Tsirel’son [1974] that introduced the first example of a Banach space with no subspace
isomorphic to c0 or to any `p . Since Tsirelson norms are essential tools for us, we devote a
section to sketching a fairly general theory of such norms, including an account of regular
families of subsets of N and the crucial notion of asymptotic `1 structure.

We then move on to the mixed-Tsirelson spaces that have provided the raw material for
the solution to the Distortion Problem by Odell and Schlumprecht [1994], the remarkable
counterexamples of Gowers [1994a,b, 1996] and the whole theory of indecomposable
and hereditarily indecomposable spaces as initiated by Gowers and Maurey [1993] and
developed further by Argyros and Deliyanni [1997], Argyros and Felouzis [2000], and
Argyros and Tolias [2004]. There are already some excellent surveys of this material in the
literature and we shall try to avoid excessive duplication with papers such as Argyros and
Tolias [2004], Maurey [1994] and Maurey [2003]. In particular, despite their importance,
we shall say little about the notions of distortion and hereditary indecomposability.

Next we follow Argyros, Gasparis, and Motakis [2016] by introducing a notion of BD-
space that is sufficiently general to embrace all separable L1-spaces, before restricting
attention to “standard BD-spaces”, a subclass amenable to detailed analysis and admitting
norm estimates of Tsirelson type. We look at duality and subspace structure for such spaces
and note that the spaces that are constructed in the Embedding Theorem of Freeman, Odell,
and Schlumprecht [2011] may be taken to be of this type. We look at some natural notions
of sub- and super-objects, and see how two known constructions, one due to Zippin [1977]
and one to Cabello Sánchez, Castillo, Kalton, and Yost [2003] emerge naturally from BD
methods. Finally, we move on to the scalar-plus-compact construction of Argyros and
Haydon [2011] and more recent developments of this kind.

2 Notation

We write N for the set f1; 2; 3; : : : g of natural numbers and ! for f0; 1; 2; : : : g, which we
are usually considering as an ordinal. The cardinality of a set A is denoted #A. When
f : X ! Y is a mapping and A � X , we write f [A] for the image of A under f .
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In a vector space, we write sphxi : i 2 I i for the linear span of a set fxi : i 2 I g; in a
normed space sphxi : i 2 I i denotes the corresponding closed linear span. The closed unit
ball of a normed space X is denoted ballX . Two Banach spaces X and Y are said to be
M -isomorphic if there exists a linear homeomorphism T : X ! Y with kT kkT �1k � M .
Sequences (xn)n2N in X and (yn)n2N in Y are said to be M -equivalent if there is an M -
isomorphism T : sphxn : n 2 Ni ! sphyn : n 2 Ni with T (xn) = yn for all n. We say
that a Banach space X is `p-saturated if there is a constant M such that every infinite-
dimensional subspace of X has a further subspace M -isomorphic to `p .

A sequence (Mn)n2N of closed subspaces of a Banach space X is said to be a Schauder
Decomposition if every x 2 X admits a unique representation as a norm-convergent sum
x =

P1

n=1 xn with xn 2 Mn for all n. This is the case if and only if the linear direct
sum

L
n2N Mn is dense in X and there is a constant M such that for each N the usual

projection PN :
L

n2N Mn !
L

n�N Mn extends to an operator on X with norm at most
M . If each of the subspaces Mn is finite-dimensional we speak of a finite-dimensional
decomposition, or f.d.d. Of course, if each of the subspaces is one-dimensional, with
Mn = sphxni, we get back to the well-known notion of a Schauder basis.

We use fairly standard notation for function spaces : RΓ is the space of all scalar valued
functions on a set Γ, and for x 2 RΓ, the support of x is supp x = f
 2 Γ : x(
) ¤ 0g;
R(Γ) is the space of functions of finite support, `1(Γ) the space of bounded functions,
equipped with the supremum norm, c0(Γ) the norm closure of R(Γ) in `1(Γ), and `p(Γ)

the space of all functions x for which the norm kxkp , defined by kxk
p
p =

P

2Γ jx(
)jp

is finite. For 1 � p � 1 we write `p (resp. `n
p) for `p(Γ) with Γ = N (resp. Γ =

f1; 2; : : : ; ng). When Γ1 � Γ2 we identify RΓ1 with the subspace of RΓ2 consisting of
functions that vanish off Γ1, and adopt the same convention for other function spaces.

According to the context, an element y of R(Γ) may be regarded either as a vector, or
as a functional acting on RΓ via the duality hy; xi =

P

 x(
)y(
). If we are thinking

of y as a functional, we shall generally employ a notation adorned with a star, writing
for instance f � instead of y. In particular, the element of RΓ that takes the value 1 at a
specific 
 2 Γ and is zero elsewhere may be denoted either e
 if we are thinking of it as a
vector, or as e�


 if we are thinking of it as the evaluation functional x 7! he�

 ; xi = x(
).

We say that finite subsets E1; E2; : : : of N are successive, and write E1 < E2 < � � �

if maxEj < minEj+1 for all j . If X is a space with a basis (dn)n2N (resp. a finite-
dimensional decomposition (Mn)n2N) we define the range of a vector x, denoted ran x,
to be the minimal interval I � N such that x 2 hdn : n 2 I i (resp. x 2

L
n2I Mn). We

say that vectors x1; x2; : : : are successive, or that (xn) is a block sequence, if ran x1 <

ran x2 < � � � , and that (xn) is a skipped block sequence if 1 +max ran xn < min ran xn+1

for all n. The closed linear span of a block sequence is called a block subspace. In the
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context of a normed space, we say that a sequence (xn) is normalized if kxnk = 1 for all
n.

We say that an infinite-dimensional Banach space X is indecomposable if X cannot be
expressed as the direct sum of two infinite-dimensional closed subspaces, and hereditarily
indecomposable if every infinite-dimensional subspace ofX is indecomposable. We recall
that a bounded linear operator T on a Banach space X is strictly singular if there is no
infinite dimensional subspace Y of X such that T �Y is an isomorphism. We say that X

has few operators if every bounded linear operator on X can be written T = �I + S ,
where S is strictly singular. The Banach space is said to have very few operators, or to
have the Scalar-plus-Compact Property if, in addition, every strictly singular operator on
X is compact.

3 Regular families, Tsirelson norms and asymptotic `p spaces

Definition 3.1. We say that a collection M of finite subsets of N is regular if

1. M is compact (for the topology induced by the product topology on f0; 1gN) and

2. M is spreading, i.e. if M = fm1; m2; : : : ; mkg 2 M and nj � mj for all j then
N = fn1; n2; : : : ; nkg is also in M. (Such an N is called a spread of M .)

We note that a regular family is also hereditary in the sense that N � M 2 M implies
N 2 M, and that any compact family of subsets is contained in a regular family (namely
the closure of the set of all its spreads).

Important examples of regular families include An = fM � N : #M � ng, the
Schreier family S = fM � N : #M � minM g and the higher Schreier families S˛

introduced by Alspach and Argyros [1992] and defined for all countable ordinals ˛. There
is an associative binary operation � defined on the set of regular families by taking M�N

to be the set of all unions fM1[M2[ : : : Mn where M1 ; M2 ; : : : are successive members
of M and fminMj : j � ng 2 N . As with any associative operation we can form powers
M�n = M � M � � � � � M (with n terms). For finite n the higher Schreier families are
given by Sn = S�n.

It follows from standard results (based on the Hahn–Banach Theorem or Ptak’s combi-
natorial lemma) about weakly null sequences of continuous functions on a compact set that
for every regular family and every � > 0 there exist n and a finite sequence a1; a2; : : : ; an

such that aj � 0 for all j ,
Pn

j=1 aj = 1 while
P

j 2M aj � � for all M 2 M. We call
the vector a =

P
n anen a basic convex combination that is �-small for M. The papers

of Alspach and Odell [1988] and Alspach and Argyros [1992] studied this phenomenon
in greater detail, introducing ordinal indices that measure the speed of weak convergence
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of a sequence and the complexity of convex combinations obtained by the method of re-
peated averages. It was in this context that the special regular families S˛ (˛ < !1) were
introduced in Alspach and Argyros [ibid.]. The same ideas yield a general result that is
easy to state and sufficient for our present purposes.

Proposition 3.2. Let M be a regular family. Then there is a regular family M# such that
every maximal member N of M# is the support of a basic convex combination aM;N;� that
is 2�minN+1-small for M.

Let M be a regular family and let E1 < E2 < � � � < En be a sequence of successive
subsets of N. We say that the sequence (Ej )j �n is M-admissible if the set fminEj :

j � ng is in M and that sequence (f �
j )a

j=1 in R(N) is M-admissible if the sequence of
supports supp f �

1 ; : : : ; supp f �
n is.

We are now ready to define Tsirelson norms. There are two ways to to do this: directly
by an implicit functional equation for a norm k�k onR(N), or by constructing a norming set
W � R(N) and defining kxk = supf �2W jhf �; xij. The first approach was introduced in
Figiel and Johnson [1974] and often makes for elegant proofs; the second, closer in spirit
to the original construction Tsirel’son [1974], is useful when a more delicate calculation
based on an analysis of the functionals f � is needed. In the context of Tsirilson spaces we
shall follow the notation of Figiel and Johnson [1974], writing Ex for the vector given by

Ex(n) =

(
x(n) when n 2 E

0 when n … E:

Definition 3.3. Let M be a regular family and let 0 < � < 1 be a real number. We define
W (M; �) to be the minimal subset W of R(N) with ˙e�

n 2 W for all n and such that
�

Pa
j=1 f �

j 2 W whenever f �
1 ; : : : ; f �

a is an M-admissible sequence in W . We define
the Tsirelson norm k � kT (M;�) on R(N) by

kxkT (M;�) = sup
f �2W (M;�)

hf �; xi:

The space T (M; �) is then defined to be the completion of R(N) with respect to this norm.
An equivalent definition of the norm is to define k�kT (M;�) directly as the smallest solution
to the functional equation

kxk = max
n
kxk1 ; � sup

aX
j=1

kEj xk

o
;

where the supremum is taken over all M-admissible sequences E1; : : : ; Ea. The Tsirel-
son space T , as defined in Figiel and Johnson [ibid.] and studied extensively in Casazza
and Shura [1989], is T (S ; 1

2
).
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For general families M, the above definition appears in the preprint ofArgyros and
Deliyanni [1992], where results are obtained even in the case where M is only assumed
to be compact (and not necessarily spreading). In the case of a regular family we have the
following theorem, in which the second statement is due to Bellenot [1986].

Theorem 3.4. Let M be a regular family and let 0 < � < 1. If M has members of
arbitrarily large finite cardinality then T [M; � ] is reflexive with no subspace isomorphic
to any space `p . If the members of M are of bounded cardinality then the unit vector basis
of T [M; � ] is equivalent to the usual basis of `p where � = n�1/p0 , n = maxM 2M #M

and 1/p + 1/p0 = 1.

We shall give a sketch proof of the first statement in this theorem, not because there is
anything new in it (indeed it is very close to that given by Figiel and Johnson), but in order
to give a very easy example of the use of special convex combinations, and to introduce
the important notion of asymptotic `p structure.

Definition 3.5. Let X be a Banach space with a finite-dimensional Schauder decom-
position (Mn)n2N , and let p 2 [1; 1]. We say that (Mn) is asymptotic `p with con-
stant C > 1, if for every n there exists N such that the sequence (x1; x2; : : : ; xn) is
C -equivalent to the unit vector basis of `n

p whenever (xj )
n
j=1 is a normalized block se-

quence with N � ran x1 < ran x2 < � � � ran xn. We sometimes risk ambiguity by saying
that the space X is asymptotic `p . There is a related, but weaker, notion close to what was
called “asymptotic `p” by Maurey, Milman, and Tomczak-Jaegermann [1995]. To avoid
ambiguity, we shall say that a finite-dimensional decomposition is skipped-asymptotic `p

with constant C , if for every n there exists N such that the sequence (x1; x2; : : : ; xn) is
C -equivalent to the unit vector basis of `n

p whenever (xj )
n
j=1 is a normalized skipped

block sequence with N � ran x1.

A space with a finite-dimensional decomposition that is skipped-asymptotic `p with
p < 1 cannot contain c0 or `q for q ¤ p. Theorem 3.4 thus follows from the next
proposition.

Proposition 3.6. Let M be a regular family with members of arbitrarily large finite car-
dinality and let 0 < � < 1 be a real number. Then T (M; �) is reflexive and its usual
unit-vector basis (en)n2N is asymptotic `1.

Proof. For any n there is a set M0 2 M of cardinality n; using the spreading property,
there is a natural number N such that every set M with #M = n and minM � N is in
M. Now suppose that x1; : : : ; xn is a normalized block sequence with min ran x1 � N

and set x =
Pn

j=1 aj xj ; taking Ej = ran xj , we see that the sequence E1; E2; : : : ; En
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is M-admissible, so that

k

nX
j=1

aj xj k = kxk � �

nX
j=1

kEj xk = �

nX
j=1

kaj xj k = �

nX
j=1

jaj j;

by the implicit formula for the norm. Thus T (M; ˇ) is asymptotic `1.
Since T (M; ˇ) has an unconditional basis, to show that it is reflexive it is enough to

show that it has no subspace isomorphic to c0 or `1, and c0 is excluded by the asymptotic
`1 property. By a result of James [1964], if a space has a subspace isomorphic to `1 it
has a space nearly isometric to `1. So it will be enough for us to show that there is no
normalized block sequence (xn)n2N in T (M; �) satisfying the lower estimate

k
X

j

aj xj k � � 0
X

j

jaj j

for all scalars aj , where � 0 = 1
2
(1 + �) < 1.

To do this we shall employ an easy splitting lemma variants of which underlie many
proofs about Tsirelson spaces, as well as the BD-spaces we shall be looking at later.

Lemma 3.7. Let M be a regular family and let E1; : : : ; Ea be an M-admissible sequence
of subsets of N. Let I be an interval in N and let Ri = [pi ; qi ] (i 2 I ) be successive
intervals in N. Then we may write I = I 0 [

Sa
k=0 Ik where

I 0 = fi 2 I : Ri \ Ek = ¿ for all kg

I0 = fi 2 I : Ri \ Ek ¤ ¿ for more than one value of kg

Ik = fi 2 I : Ri \ El ¤ ¿ for l = k but no other value of lg:

The set fqi : i 2 I0g belongs to the family M.

We now consider a normalized block sequence (xn)n2N with ran xj = Rj = [pj ; qj ]

and form the sum x =
P

i2I ai xi where the coefficients ai are chosen so that
P

i2I ai eqi

is a basic convex combination that is �-small for M [ A1, where � = 1
2
(1� �). What this

means is that
P

i2J ai � � whenever fqj : j 2 J g 2 M.
By the implicit definition of the norm, either kxk = kxk1 � maxi jai j � � or there is

an M-admissible sequence E1; : : : ; Ea such that

kxk = �

aX
k=1

kEkxk:
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Applying Lemma 3.7 we obtain

kxk �
X
i2I0

kai xi k + �

aX
k=1

X
i2Ik

kai xi k

�
X
i2I0

ai + �
X
i2I

ai � � + � = � 0;

because fqj : j 2 I0g 2 M.

The original Tsirelson space has a rich theory and, thanks to special properties of the
Schreier family S , we have a good understanding of its subspace structure; the reader is
referred to Casazza and Shura [1989] for a comprehensive account of this material. Taken
together with the generalized versions T (S˛; �), the Tsirelson space has become much
more than an isolated counterexample and now plays a key role in the general theory.
For instance, the “subsequential T (S˛; �)-estimates” of Odell, Schlumprecht, and Zsák
[2007] may be used to study the structure of general separable reflexive spaces.

4 Mixed Tsirelson spaces

The definition we are about to give of a “mixed Tsirelson space” might at first sight seem
an idle generalization. But in fact Schlumprecht’s space Schlumprecht [1991], which is
of this type, opened the way to a new chapter in the theory, making possible Gowers’s
solutions to a group of previously intractable problems in Gowers [1994a,b, 1996], the
theory of hereditarily indecomposable spaces introduced by Gowers and Maurey [1993]
and the solution of the Distortion Problem in Hilbert space by Odell and Schlumprecht
[1994].

Definition 4.1. Argyros and Deliyanni [1997] Let I be a countable set; for each i 2 I

let Mi be a regular family and let 0 < ˇi < 1 be a real number. We define the norming
set W [(Mi ; ˇi )i2I ] to be the smallest subset of R(N) that contains ˙e�

n for all n 2 N and
has the property that the functional f � given by

f � = ˇi

aX
r=1

f �
r

is inW whenever f �
1 ; : : : ; f �

a is anMi -admissible sequencewith f �
r 2 W for all r . (Such

a functional is said to have been created by an (Mi ; ˇi )-operation or to be of weight ˇi .)
The space T [(Mi ; ˇi )i2I ] is defined to be the completion ofR(N) with respect to the norm
given by

kxk = supfhf �; xi : f �
2 W [(Mi ; ˇi )i2I ]g:
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There is of course an alternative definition of the norm using an implicit formula.
It is possible to modify the definition of the norming set W [(Mi ; ˇi )i2I ] by placing

restrictions on the functionals f �
r that are permitted in an (Mi ; ˇi )-operation. One possi-

bility is to insist that f �
r must be a functional of a specific weight (determined by i and

the preceding functionals f �
1 : : : ; f �

r�1); this is referred to as a coding, and is generally
applied for i in some proper subset of I (typically, for i odd when I = N). The idea
of coding in this way can be traced back to the paper of Maurey and Rosenthal [1977].
Another possibility is to insist that f �

r be an average n�1
r

Pnr

k=1 g�
r;k

where the g�
r;k

are
successive elements of W ; this approach, introduced by Odell and Schlumprecht [1995,
2000], is referred to as saturation under constraints and has foundmore recent applications
in Argyros, Beanland, and Motakis [2013], Argyros and Motakis [2014], and Beanland,
Freeman, and Motakis [2015].

The first example in the literature of what we now call a mixed Tsirelson space seems
to be a space constructed by Tzafriri in Tzafriri [1979] to solve a delicate question about
type and cotype. In our notation, this space is T [(An; �/

p
n)n2N ]. Schlumprecht’s space

Schlumprecht [1991] is T [(An; (log2(n + 1))�1
n2N ]. Most subsequent work on heredi-

tary indecomposability and related topics has followed Argyros and Deliyanni [1997] by
working not with the sequence (An)n2N but with either a highly lacunary subsequence
(Ank

)k2N or a sequence (S˛k
)k2N of higher Schreier families. For the applications we are

considering here it is convenient to write ˇi = m�1
i and make some standard assumptions

about the natural numbers mi and the families Mi that we work with.

Definition 4.2. Let (mi )i2N be a sequence of natural numbers and let (Mi )i2N be a
sequence of regular families. We shall say that (mi ) and (Mi ) satisfy the Standard As-
sumptions if

1. each mi has the form 2li with li 2 N, l1 � 2 and li+1 � 2li ;

2. for each i 2 N, Mi+1 � M
�li+1

i

3. for each i 2 N, and each maximal N 2 Mi+1 there is a basic convex combination
supported on N that is m�2

i+1-small for (A4 � Mi )
�li+1 .

The existence, given Mi , of a family Mi+1 satisfying (2) and (3) follows from Proposi-
tion 3.2. A basic convex combination having the property (3) will be called an Mi+1-
special basic convex combination.

The next proposition is central to the theory of mixed Tsirelson spaces and to many
constructions that use coding to achieve hereditary indecomposability and few operators.
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Proposition 4.3. Let (mi ) and (Mi ) satisfy the Standard Assumptions, let h � 2 be a
natural number and let a =

P
n2N anen be an Mh-special basic convex combination.

For a functional f � of weight m�1
i in W [(Mi ; m�1

i )i2I ] we have

jhf �; aij �

(
m�1

i if i � h

2m�1
h

m�1
i if i < h

In particular, kak = m�1
h

and the equality hf �; ai = kak can be achieved only for a
functional f � of weight m�1

h
.

It is an important property of the Tsirelson space T (S ; ˇ) that every normalised block
sequence is equivalent to a subsequence of the usual basis; in fact (xn) is equivalent to
(eqn

), where qn = max supp xn (see Casazza and Shura [1989]). No such result holds for
arbitrary normalised block sequences in mixed Tsirelson spaces, and one could even say
that it is this “failure” that underlies all their interesting properties. Indeed, provided the
Standard Assumptions are satisfied, we can construct block sequences of vectors that do
not behave like a subsequence of the usual basis. The following proposition is proved by
a finite version of the “`1-improvement argument” of James [1964] that we used earlier
in our discussion of Theorem 3.4.

Proposition 4.4. Let (mi ) and (Mi ) satisfy the Standard Assumptions, let h � 2 be
a natural number and let (wn)n2N be a block sequence in T [(Mi ; ˇi )i2I ]. Then there
exists a maximal member M of Mh, and a normalized finite block subsequence (xn)n2I

of (wn) such that fmax supp xn : n 2 I g = M and

k
X
n2I

�nxnk �
1
4

X
n2I

j�nj;

for all scalars �n.

If (xn)n2I and M are as in the above proposition, so that M = fqn : n 2 I g with qn =

max supp xn, we may consider an Mh-special basic convex combination
P

n2I aneqn
,

noting that

k
X
n2I

aneqn
k � m�1

h

k
X
n2I

anxnk �
1
4
;

by Propositions 4.3 and 4.4. Thus there is no constant C such that an inequality

k
X
n2I

anxnk � C k
X
n2I

aneqn
k
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holds for an arbitrary normalized block sequence with qn = max supp xn.
However, there are special sequences for which we do have upper estimates of this

form. These are the so-called “rapidly increasing sequences”, or RIS. The idea is that from
an arbitrary block sequence (wn) we may construct, first of all, successive normalized
finite block sequences (xn)n2Ih

(h = 2; 3; : : : ) as in Proposition 4.4. We then form the
Mh-special convex combinations yh =

P
n2Ih

anxn. A suitable subsequence (“rapidly
increasing”) of (yh)h�2 is then a RIS and satisfies the desired norm estimates. We shall
not go into detail either about rapidly increasing sequences or about the coding that can be
introduced into a mixed Tsirelson construction to produce hereditary indecomposability
and other exotic behaviours. We refer the reader to original papers such as Gowers and
Maurey [1993] and Argyros and Deliyanni [1997], or the survey articles Maurey [1994]
and Maurey [2003]. The idea in brief is that, with suitable coding, a construction of this
kind results in a space X such that for every bounded linear operator T on X , there is a
scalar � such that kT xn � �xnk ! 0 for every RIS (xn). Since every block subspace can
be shown to contain a RIS, T ��I is strictly singular. The spaceX constructed in this way
thus has few operators. In a later section we shall see what coding means in the context
of a BD construction, and attempt to show why we are able to get from strict singularity
to compactness of an operator T � �I .

5 L1 spaces and Bourgain–Delbaen constructions

TheLp-spaceswere introduced some 50 years ago by Lindenstrauss and Pełczyński [1968]
and were studied further in Lindenstrauss and Rosenthal [1969] (see also Nielsen and Wo-
jtaszczyk [1973]). They provide an early, and striking, example of how conditions placed
on finite-dimensional subspaces can have strong consequences for the isomorphic struc-
ture of an infinite-dimensional space, and remain one of the key areas of interest in Banach
spaces.

Definition 5.1. Let X be a Banach space, let 1 � p � 1 and let M > 1 be a real number.
We say that X is a Lp;M -space if for every finite-dimensional subspace E of X there is a
finite-dimensional subspace F � E which is M -isomorphic to `dimF

p . If X is Lp;M for
some M we say it is a Lp-space.

Despite their definition in terms of finite-dimensional structure, the Lp-spaces have
many good infinite-dimensional properties, of whichwe now recall a few. For 1 � p � 1

every separable Lp-space has a Schauder basis, and when p < 1 every such space con-
tains an isomorphic copy of `p . When 1 < p < 1 a separable Banach space is Lp if and
only if it is isomorphic to a non-hilbertian complemented subspace of the Lebesgue space
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Lp(0; 1). A useful characterization of L1-spaces in terms of extensions of compact op-
erators was given in Lindenstrauss and Rosenthal [1969] (see also Theorem 4.2 of Zippin
[2003]).

Proposition 5.2. A Banach space X is an L1;M -space X if and only if, for every Banach
space Z, every closed subspace Y � Z and every compact operator K : Y ! X , there
is a compact extension L : Z ! X with kLk � M kKk.

In other respects, the structure of L1-spaces is more complicated than what we have
for the case p < 1. One of the main achievements of the original paper of Bourgain and
Delbaen [1980] was to exhibit L1-spaces without subspaces isomorphic to c0. We are
now ready to look at the Bourgain–Delbaen construction, and its generalizations, in more
detail.

It is immediate from the definition that a separable Banach space X is a L1-space if
and only if there is a constant M and an increasing sequence of finite-dimensional sub-
spaces E1 � E2 � � � � with

S
n En = X and such that, for each n, En is M -isomorphic

to `1(Γn) for some finite set Γn. In this set-up, the inclusion En ,! En+1 corresponds to
an isomorphic embedding in+1;n : `1(Γn) ! `1(Γn+1), and the structure of a separable
L1-space is determined by this sequence of embeddings.

There is a particular class of isomorphic embeddings that is convenient to work with:
we say that i : `1(Γ1) ! `1(Γ2) is an extension operator if Γ1 is a subset of Γ2 and,
for all u 2 `1(Γ1), (iu)�Γ1

= u. A quick way to describe Bourgain–Delbaen spaces is to
say that they are L1-spaces constructed from a sequence of extension operators. Before
giving a formal definition, we briefly forget about norms and boundedness, and consider
the (very easy) linear algebra of such a sequence of extension operators.

Let Γ1 � Γ2 � � � � be an increasing sequence of finite sets, with Γ =
S

n Γn; for each
n, let rn be the restriction mapping RΓ ! RΓn . We shall say that a sequence (in)n2N of
linear mappings in : RΓn ! RΓ is a compatible sequence of extension mappings if the
following are true:

1. each in is an extension mapping, that is to say rninrn = rn;

2. the compatibility condition inrnim = im holds whenever m < n.

Given such a compatible sequence, each of the “one-step” mappings in+1;n = rn+1in is
an extension mapping RΓn ! RΓn+1 , and conversely, if we are given a sequence of one-
step extension mappings in+1;n as in the earlier discussion, there is a unique compatible
family of extensions in : RΓn ! RΓ satisfying in+1;n = rn+1in.

We now introduce some notation that will be used consistently in the rest of this section.
We consider a countably infinite set Γ, expressed as the union of an increasing sequence of
finite subsets Γn, and write ∆n for the difference set Γn n Γn�1 when n > 1; for the case
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n = 1 we set ∆1 = Γ1. We say that an element 
 is of rank n if 
 2 ∆n. We suppose Γ
to be equipped with a compatible sequence of linear extension mappings in. The images
En = in[RΓn ] form an increasing sequence of subspaces of RΓ and, for each n, we may
define a projection Pn = inrn from RΓ onto En. The dual projection P �

n takes R(Γ) onto
RΓn , regarded as a subspace of R(Γ). When 
 2 ∆n+1 for some n we define c�


 = P �
n e�


 ,
a functional supported on Γn, while if 
 2 Γ1 we set c�


 = 0. In either case we define
d �


 = e�

 � c�


 . For any n and any 
 2 ∆n we define d
 = ine
 2 RΓ.

Proposition 5.3. Let Γ be a countably infinite set, equipped with a compatible sequence of
linear extension mappings as in the discussion above. The family (d �


 )
2Γ is an algebraic
basis of R(Γ) and d
 (
 2 Γ) are the unique elements of RΓ such that (d
 ; d �


 )
2Γ is
a biorthogonal system. The extension mappings in, and the projections Pn and P �

n are
given by

inu =
X


2Γn

hd �

 ; uid
 (u 2 RΓn)

Pnx =
X


2Γn

hd �

 ; xid
 (x 2 RΓ)

P �
n f � =

X

2Γn

hf �; d
 id �

 (f �

2 R(Γ)):

If we think of ∆m as being “to the left” of ∆n when m < n, then (d �

 )
2Γ is a left-

triangular basis of R(Γ), while the family (d
 )
2Γ is right-triangular.

Definition. Let Γ be a countably infinite set, expressed as the union of an increasing
sequence of finite subsets Γn and equipped with a compatible family of linear extension
mappings in : RΓn ! RΓ: We shall say that Γ is a Bourgain–Delbaen set, or more
briefly a BD-set, if the mappings in take values in `1(Γ) and are uniformly bounded as
operators from `1(Γn) to `1(Γ). We defineX(Γ) to be the closure in `1(Γ) of the unionS

n2N in[`1(Γn)] and call X(Γ) a Bourgain–Delbaen space.

When Γ is a BD-set then for any n and any u 2 `1(Γn) we have kuk � kinuk �

M kuk, where M = supn kink. Thus each of the increasing sequence of subspaces
En = in[`1(Γn)] is M -isomorphic to `1(Γn), so that X(Γ) is an L1;M -space. The
subspaces ofX(Γ) defined byMn = in[`1(∆n)] = sphd
 : 
 2 ∆ni form a Schauder de-
composition ofX(Γ), the associated projection ontoM1˚M2˚� � �˚Mn beingPn. In fact,
suitably ordered, the vectors d
 form a Schauder basis ofX(Γ) but we do not often need to
use this finer structure. Similarly, the functionals d �


 form a (“left-triangular”) Schauder
basis of `1(Γ), but it is usually convenient to work with a coarser structure, the Schauder
decomposition formed by the subspaces M �

n = sphd �

 : 
 2 ∆ni; the corresponding pro-

jection onto the finite direct sum M �
1 ˚ M �

2 ˚ � � � ˚ M �
n = sphd �


 : 
 2 Γni = `1(Γn)
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is P �
n . It is convenient in this context to write Γ0 = ¿ and P0 (resp. P �

0 ) for the zero
operator on `1(Γ) (resp. `1(Γ)). When E = [m; n] is an interval in N we shall write
PE = Pn � Pm�1 and P �

E = P �
n � P �

m�1. When we talk about “block-sequences”
in X(Γ) it will always be with respect to the above Schauder decomposition: thus the
range ran x of of an vector x in X(Γ) is the smallest interval E such that PE x = x and
(xn) is a block-sequence if ran xn < ran xn+1 for all n. We adopt similar notation for
the range of a functional f � 2 `1, but we give the word “support” its usual meaning
supp f � = f
 2 Γ : f �(
) ¤ 0g.

Since the extension mappings that are used to build BD-spaces form a rather special
subclass of the class of all isomorphic embeddings of finite-dimensional `1-spaces, it
might be natural to guess that BD-spaces form a rather special sort of L1-space. So the
following recent result of Argyros, Gasparis, and Motakis [2016] is perhaps surprising.

Theorem 5.4. Every infinite-dimensional separable L1-space is isomorphic to a BD-
space.

We have already noted that a BD-structure on a set Γ is determined by specifying either
the extension operators in or the functionals c�


 . When we use this method to carry out
interesting constructions, it is usually most convenient to work with the c�


 and we need a
criterion for norm-boundedness of the mappings in expressed in terms of these functionals.

Proposition 5.5. Let Γ =
S

n Γn be a set equipped with a compatible sequence of exten-
sion mappings (in)n2N and let M � 1. Using our standard notation, the following are
equivalent:

(1) Γ is a BD-set with constant M ; this is to say kink � M for all n;
(2) For the norm of operators on `1(Γ), kP �

n k � M for all n;
(3) For every n, every m < n and every 
 2 ∆n, kP �

mc�

 k1 � M .

As well as introducing the idea of building L1-spaces by successive extensions, the
original paper of Bourgain and Delbaen gave a neat way to construct functionals c�


 satis-
fying condition (3) above. Modifying slightly the definitions that have appeared in earlier
papers, and eliminating some special cases, we give a definition that captures the crucial
idea.

Definition 5.6. Let Γ be a countably infinite set, equipped as usual with a compatible
sequence of linear extension mappings (in). Let ˇ < 1

2
be a positive constant and let n

be a natural number. We shall say that an element c� of `1(Γn) is a BD-functional, with
weight (at most) ˇ, if c� has one of the forms

(5-1) c� =

(
ˇP �

[s;n]b
� or

˛e�
�
+ ˇP �

[s;n]b
�
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with 0 � ˛ � 1, s � n + 1, b� 2 ball `1(Γn n Γs�1) and (in the second case) � 2 ∆m

for some m < s. We note that in the case where s = n + 1, we have b� = 0, so that c�

is either 0 or ˛e�
�
. A trivial generalization of the proof given by Bourgain and Delbaen

[1980] gives us the following theorem.

Theorem 5.7. Let Γ be a countably infinite set, equipped with a compatible sequence of
linear extension mappings (in). Suppose that there is a constant ˇ < 1

2
such that, for each

n and each 
 2 ∆n+1, the functional c�

 is a BD-functional with weight at most ˇ. Then

Γ is a BD-set with supn kink � M = (1 � 2ˇ)�1.

Bourgain and Delbaen considered pairs of scalars ˛; ˇ with ˇ < 1
2
, ˛ � 1 and ˛+ˇ >

1, constructing for each such pair an L1-space X˛;ˇ with the Radon–Nikodým Property;
in particular, X˛;ˇ has no subspace isomorphic to c0. When ˛ = 1 the space X1;ˇ has
the Schur Property and in particular is `1-saturated. For the case ˛ < 1, Haydon [2000]
established `p-saturation, where ˛q + ˇq = 1 and 1/p + 1/q = 1. For a space X(Γ) to
have these properties (for a given pair ˛; ˇ) it is sufficient that

1. for every 
 2 Γ, c�

 is a BD functional with the given values of ˛ and ˇ;

2. for every m < n < p, every � 2 ∆m, every � 2 ∆n and every choice of sign ˙

there exists 
 2 ∆p with c�

 = ˛e�

�
˙ ˇP �

(m;1)e
�
� ,

It is easy to see that, for a general BD-space X(Γ), the evaluation functionals e�

 form

a system equivalent to the usual basis of `1(Γ). So X(Γ)� has a subspace sphe�

 : 
 2 Γi

naturally isomorphic to `1(Γ). It was Alspach [2000] who first observed that for the spaces
X˛;ˇ of Bourgain and Delbaen, when ˛ < 1, this subspace makes up the whole of the dual
space. It seems hard to arrive at straightforward conditions on the functionals c�


 for this
to be true in a general BD construction.

There remain open problems about the original BD spaces X˛;ˇ , for instance whether
X˛;ˇ andX˛0;ˇ 0 are non-isomorphic when ˛; ˇ and ˛0; ˇ0 are distinct pairs with ˛q+ˇq =

1 = ˛0q+ˇ0q . But subsequent developments have concentrated on constructions involving
BD-functionals with ˛ = 1. In the next section we sketch a fairly general framework
within which a lot of constructions are possible, and where precise analysis can be carried
out, including an exact description of the dual space.

6 Standard BD-spaces

We shall say that a BD-set Γ is a standard BD-set if there is a constant ˇ 2 (0; 1
2
), called

the weight of Γ, such that, for each n and each 
 2 ∆n+1, we have

c�

 =

(
ˇP �

[s;1)b
� or

e�
�
+ ˇP �

[s;1)b
�
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with s � n + 1, b� 2 ball `1(Γn n Γs�1) and (in the second case) � 2 Γs�1. We call s the
“cut”, b� the “top” and � (when it exists) the “base” of 
 .

The key tool in the study of the structure of standard BD-spaces is what we call the
evaluation analysis which expresses the evaluation e�


 as a sum of terms that are adapted
to the finite-dimensional decomposition (M �

n )n2N of `1(Γ). If base 
 is undefined this is
easy to write down:

e�

 = c�


 + d �

 = ˇP �

[s;1)b
� + d �


 :

If � = base 
 is defined then we have

e�

 = c�


 + d �

 = e�

� + ˇP �
[s;1)b

� + d �

 ;

and we may continue by expressing e�
�
as c�

�
+ d �

�
and so on. What we end up with is the

following

Proposition 6.1. Let Γ be a standard BD-space of weight ˇ and let 
 be an element of Γ.
Then there exist a natural number a and elements �1; �2; : : : ; �a of Γ such that base �1 is
undefined, �a = 
 and �k = base �k+1 when 1 � k < a. We have the evaluation analysis

e�

 =

aX
k=1

(ˇP �
[sk ;1)b

�
k + d �

�k
);

where sk = cut �k and b�
k
= top �k .

A good way to investigate duality of standard BD spaces is to introduce a tree-order
4 on Γ. We can define this recursively by saying that � 4 
 if and only if either � = 


or � 4 base 
 . What this amounts to is that the elements � with � 4 
 are exactly the
�1; �2; : : : ; �a that occur in the evaluation analysis of Proposition 6.1. The elements 
 with
no base are minimal in this tree. In accordance with standard terminology, we shall say
that a standard BD-set is well-founded if it has no infinite branch, that is to say, if there is
no infinite sequence (�n)n2N such that �n = base �n+1 for all n.

Proposition 6.2. Let Γ be a standard BD-set. Then X(Γ)� = sphe�

 : 
 2 Γi if and only

if Γ is well-founded.

One of the implications in the above proposition is easy to see: if ˇ = f�1 � �2 � �3 �

� � � g is an infinite branch of the tree Γ then we can define a functional f � by hf �; xi =

limn!1 x(�n). This functional, which it is natural to denote by e�
ˇ
, is not in `1(Γ) since

he�
ˇ

; d�n
i = 1 for all n, while hg�; d�n

i ! 0 as n ! 1 for any g� 2 `1(Γ). One way of
proving the converse implication uses the fact that the set of extreme points of the unit ball
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of X(Γ)� is contained in the weak*-closure of the evaluations e�

 and applies Choquet’s

integral representation theorem.
Although in current applications we have need of only one very special sort of BD-set

with infinite branches it may be interesting to note that there is a general duality result
here too. We first note that the set B of infinite branches of Γ has a natural topology as a
Polish space and that for any bounded Radon measure � on B we may define a functional
R�� 2 X(Γ)� by hR��; xi =

R
Bhe�

ˇ
; xid�(ˇ). Subject to modest additional hypothe-

ses on weights (of which the following proposition gives one example) we have a nice
extension of Proposition 6.2, again provable by a Choquet argument.

Proposition 6.3. Let Γ be a standard BD set of weight ˇ < 1
4
. The dual space X(Γ)� is

naturally isomorphic to `1(Γ) ˚ Mb(B).

It is of course an elementary fact that every separable Banach space is isomorphic
to a quotient of `1. The striking and unexpected result proved by Freeman, Odell, and
Schlumprecht [2011] is that, when Y � is a separable dual space, the quotient operator
can be chosen to be the dual of an isomorphic embedding of Y into a space X with X�

isomorphic to `1. Unsurprisingly, they use a BD-construction, though one that does not
quite fit with our definition of a standard BD-space. Nonetheless, their idea carries over
to this framework yielding the following.

Theorem 6.4. Let Y be a Banach space with separable dual and let ˇ < 1
2
be a positive

real number. Then Y embeds isomorphically into a standard BD-space X(Γ) of weight ˇ

with X(Γ)� naturally isomorphic to `1(Γ).

7 Tsirelson-type estimates for standard BD spaces

Let Γ be a standard BD-set and let 
 2 Γ be an element with evaluation analysis

e�

 =

aX
k=1

(ˇP �
[sk ;1)b

�
k + d �

�k
)

as in Proposition 6.1. We shall say that a is the age of 
 and that the set fs1; s2; : : : ; sag is
the history of 
 . If all branches of the tree structure on Γ are finite then the collection of
all histories fhist 
 : 
 2 Γg is a compact family of finite subsets of N and so is contained
in some regular family M.

It becomes clear that there may be a connection with Tsirelson norms if we consider

 with the above evaluation analysis and a sequence (xi )

a
i=1 in X(Γ) such that ran xi �
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[si ; rank �i ). We then have hd �
�k

; xi i = 0 for all i and k, and

hˇP �
[sk ;1)b

�
k ; xi i =

(
hb�

k
; xki if i = k

0 otherwise.

This leads to

he�

 ;

aX
i=1

xi i = ˇ

aX
i=1

hb�
i ; xi i � ˇ

aX
i=1

kxi k

while if the b�
i can be chosen i such a way that hb�

i ; xi i � ıkxi k, we obtain

he�

 ;

aX
i=1

xi i � ˇı

aX
i=1

kxi k;

a formula highly suggestive of Tsirelson norms.
Of course dealing with the general case where the sequence (xi ) does not fit so nicely

with the evaluation analysis of 
 requires some extra effort, but by making use of an
appropriate version of Lemma 3.7 we obtain an upper Tsirelson estimate that is valid for
all block sequences.

Theorem 7.1 (First Basic Inequality). Let M be a regular family and let Γ be a standard
BD-set of weight ˇ such that hist 
 2 M for all 
 2 Γ. Then for any normalized block
sequence (xj )

n
j=1 in X(Γ) we have the upper Tsirelson estimate

k

nX
j=1

aj xj k � ˇ�1
k

nX
j=1

aj eqj
kT (A3�M;ˇ);

where qj = max ran xj .

The above inequality gives an alternative way of proving Proposition 6.2, and also
provides insight into the subspace structure of the “Bourgain–Tsirelson” space introduced
in Haydon [2006].

Proposition 7.2. Let Γ be a standard BD-set of weight ˇ < 1
2
with the following proper-

ties:

1. for every 
 2 Γ the history hist 
 is in the Schreier family S;

2. if s < n are natural numbers, �; � are elements of Γ with rank � < s � rank � < n

and fsg [ hist � 2 S then for each choice of sign ˙ there exists an element 
 with
rank 
 = n, base 
 = � and top 
 = ˙e�

� .
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ThenX(Γ) is skipped-asymptotic `1 and every infinite-dimensional subspace ofX(Γ) con-
tains a sequence equivalent to some subsequence of the unit-vector basis of the Tsirelson
space T (S ; ˇ).

A sketch of the proof proceeds as follows. Consider a normalized block sequence
(xn)n2N in X(Γ), setting ran xn = [pn; qn]. Assumption (1), together with the First Basic
Inequality, yields an upper estimate of the form

k

nX
j=1

aj xj k � C k

nX
j=1

aj eqj
kT (A3�S;ˇ):

Provided (xn) is a skipped-block sequence, Assumption (2) allows us to construct an ele-
ment 
 2 Γ whose analysis does fit nicely with (xn), leading to a lower estimate

k

nX
j=1

aj xj k � ˇ(1 � 2ˇ)

nX
j=1

janj

for a skipped block sequence with min ran x1 � n. This gives the skipped asymptotic `1
property. For “sufficiently skipped” block sequences we can get a better lower estimate

k

nX
j=1

aj xj k � (1 � �)k

nX
j=1

aj epj
kT (S;ˇ):

To finish, we need two standard results from Casazza and Shura [1989] about the standard
Tsirelson space: first that the T (A3 � S ; ˇ)-norm is equivalent to the T (S ; ˇ)-norm and
secondly that the sequences (epn

)n2N and (eqn
)n2N are equivalent in T (S ; ˇ) whenever

p1 � q1 < p2 � q2 < � � � .
It may be helpful at this point to describe explicitly a BD set satisfying the conditions

of Proposition 7.2. The recursive definition that follows is the simple prototype on which
more complicated BD constructions, including the one in Argyros and Haydon [2011] are
modeled.

Definition 7.3. The set ΓBT is defined as
S

n2N ∆n, where the sets ∆n and the function
hist are given recursively by setting∆1 = f1g, Γn =

S
m�n ∆m and

∆n+1 = f(n + 1; 0; s; ˙; �) : 1 � s � n; � 2 Γn n Γs�1g

[ f(n + 1; �; s; ˙; �) : 2 � s � n; � 2 Γs�1; fsg [ hist � 2 S ; � 2 Γn n Γs�1g;

hist (n + 1; 0; s; ˙; �) = fsg hist (n + 1; �; s; ˙; �) = fsg [ hist �:
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We then introduce a standard BD structure (of weight ˇ < 1
2
) on ΓBT by setting

base (n + 1; 0; s; ˙; �) = undefined top (n + 1; �; s; ˙; �) = ˙e�
�

base (n + 1; �; s; ˙; �) = � cut (n + 1; �; s; ˙; �) = s :

8 Two recent examples

We have already mentioned the original spaces X˛;ˇ of Bourgain and Delbaen. In the
case where ˛ = 1, these are standard BD-spaces in our terminology, and the branches
of the tree structure of the corresponding BD-set are all infinite. When ˛ < 1, the `p-
saturated space X˛;ˇ is not a standard BD-space, and it is not immediately obvious how to
construct a standard BD-space that is `p-saturated for 1 < p < 1. Such a construction
has, however, been carried out by Gasparis, Papadiamantis, and Zisimopoulou [2010].
Rephrasing their result, we have the following.

Theorem 8.1. For every real number p with 1 < p < 1 there is a well-founded standard
BD-set Γ such that X(Γ) is `p-saturated.

It is worth noting that in this example there is an upper boundN on the ages of members
of Γ (that is to say on the lengths of branches in the tree-structure of Γ). Another example
with this property has been constructed by Argyros, Gasparis, and Motakis [2016]; this
space lies at the opposite end of the spectrum from the space X(ΓBT), which is skipped-
asymptotic `1.

Theorem 8.2. There is a well-founded standard BD-set Γ such that the standard basis of
X(Γ) is asymptotic-`1 but X(Γ) does not contain c0.

The example above is of interest because it is relevant to problems about uniform home-
omorphisms. It is not known whether a Banach space X that is uniformly homeomorphic
to c0 must be linearly homeomorphic (i.e. isomorphic) to c0, but it is shown in Godefroy,
Kalton, and Lancien [2001] that any such space X must be an isomorphic predual of `1
and have “summable Szlenk index”; Godefroy, Kalton and Lancien ask whether these
properties already imply that X is isomorphic to c0. The example of Argyros, Gasparis
and Motakis shows that the answer is negative; it is not clear whether this space is uni-
formly homeomorphic to c0. Very recently, this example has also found an application in
descriptive set theory, in the proof by Kurka [2017] that the isomorphism class of c0 is
not Borel.
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9 Self-determining subsets and BD augmentations

We have noted that the structure of a BD-set may be thought of in two (equivalent) ways,
either in terms of the extension mappings in : `1(Γn) ! `1(Γ) and the right-triangular
basis (d
 )
2Γ of X(Γ) or in terms of the left-triangular basis functionals d �


 = e�

 � c�




in `1(Γ). This gives two different ways in which certain subsets of Γ may be naturally
equipped with an induced BD structure. Introducing terminology that we shall use only
temporarily, we shall say that a subset Γ0 of Γ is left-closed if supp d �


 � Γ0 whenever

 2 Γ0, and that a subset Γ00 is right-closed if supp d
 � Γ00 whenever 
 2 Γ00.

When Γ0 is left-closed, the functionals d �

 (
 2 Γ0) form a left triangular basis of `1(Γ

0)

and so yield a BD-structure on Γ0; we then write X(Γ0) for the corresponding BD-space.
On the other hand, when Γ00 � Γ is right-closed, we have in[`1(Γ00

n)] � `1(Γ00) for all n,
so that Γ00 has its own BD-structure, defined by the extension operators i 00

n = in�`1(Γ00
n)
.

The connection between our two notions of closedness was established by Argyros and
Motakis [2014].

Theorem 9.1. Let Γ be a BD-set, let Γ0 be a subset of Γ and let Γ00 = Γ n Γ0. Then Γ0 is
left-closed if and only if Γ00 is right-closed. When this is the case, the restriction mapping
R0 : x 7! x�Γ0 is a quotient operator from X(Γ) onto X(Γ0) and kerR0 = X(Γ00).

We note that in the set-up of Theorem 9.1, the BD-space X(Γ00) is a subspace of X(Γ),
but that X(Γ0) typically is not. Indeed this happens only when Γ0 is both left- and right-
closed, and in this caseX(Γ) is just the direct sum of the disjointly supported spacesX(Γ0)

and X(Γ00). In general, X(Γ) is a twisted sum of X(Γ0) and X(Γ00), and the interesting
cases are where this twisted sum is non-trivial.

In the terminology of Argyros and Motakis, left-closed subsets are called self-deter-
mining and we shall use that term in the rest of this paper. Once we have constructed a
suitable “large” BD-set Γ then defining suitable self-determined subsets can be a useful
and economical way of generating further examples with different properties. Thus a num-
ber of examples use self-determined subsets of a certain BD-set constructed by Argyros
and Haydon [2011] and denoted Γmax in that work: these include the scalar-plus-compact
space of Argyros and Haydon [ibid.], the spaces constructed by Tarbard [2012, 2013], the
main example of Argyros and Motakis [2016] and the recent construction due to Manous-
sakis, Pelczar-Barwacz, and Świętek [2017]. We look at the space of Argyros and Haydon
[2011] in greater detail in a later section.

In order to prove refinements of Theorem 6.4, Freeman, Odell, and Schlumprecht
[2011] introduced the tool of “augmenting” a BD-set, by adding extra elements to change
chosen aspects of the structure of the associated BD-space. Let Γ0 =

S
n2N ∆0

n be a
general BD-set; a BD-set Γ = Γ0 [ Γ00 that contains Γ0 as a self-determining subset will
be called an augmentation of Γ0. It is very easy to build augmentations as we have great
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freedom in choosing the functionals c�

 for the new elements 
 2 Γ00. In particular, if

Γ0 is a standard BD-set of weight ˇ, we can recursively build a standard augmentation,
also of weight ˇ, by adding new elements 
 2 ∆00

n+1 with complete freedom of choice
of � = base 
 2 Γn = Γ0

n [ Γ00
n, s = cut 
 � n + 1 and top 
 2 ball `1(Γn n Γs�1).

Augmentations will be used repeatedly in the rest of this article.

10 BD-sets with zero weight

A special case arises if we consider a BD-set such that, for each 
 2 Γ, we have either
c�


 = 0 or c�

 = e�

�
for some � with rank � < rank 
 . We may think of such a set as a

standard BD-set with weightΓ = ˇ = 0. It is not a surprise to find that the spaces X(Γ)

that arise in this way are actually objects with which we are already familiar.

Proposition 10.1. Let Γ be a BD-set of zero weight. If Γ is well-founded, there is a locally
compact topology on the countable set Γ such that X(Γ) = C0(Γ). If Γ is ill-founded and
B is the set of infinite branches of Γ then there is a locally compact topology on Γ [ B
such that X(Γ) is naturally identifiable with C0(Γ [ B).

The topologies in the above proposition are natural ones defined by the tree structure
introduced in Section 6. In the well-founded case, the topology is the coarsest such that
all the sets U
 = fı 2 Γ : 
 4 ıg are open and closed; in the general case we take the
sets V
 (
 2 Γ) as basic clopen sets, where V
 = U
 [ fˇ 2 B : 
 2 ˇg. Two special
cases are worth mentioning: if Γ is of weight zero and, moreover, no element of Γ has a
base, then c�


 = 0 for all 
 and X(Γ) is just c0(Γ); if Γ is of weight 0 and hist 
 2 S for
all 
 2 Γ then X(Γ) is isometric to C0(˛) for some ordinal ˛ � !! .

The technique of BD augmentations gives a neat way to construct certain examples of
twisted sums, due originally to Cabello Sánchez, Castillo, Kalton, and Yost [2003]. The
following is an example.

Theorem 10.2. For every � > 0 there is a Banach space X and a subspace Y of X ,
isometric toC0(!

!), such thatX/Y is (1+�)-isomorphic to c0 while the quotient mapping
X ! X/Y is strictly singular.

To prove this, we start with the set Γ0 = N, equipped with the trivial BD-structure
where rankn = n and c�

n = 0 for all n; as we noted above, X(Γ0) = c0. We construct an
augmentation of Γ0 by adjoining new elements 
 2 Γ00 as in the the construction of ΓBT

above, but subject to the condition that supp top 
 � Γ0 for all 
 (that is to say, � 2 Γ0 in
the notation of Definition 7.3). By Theorem 9.1 the restriction mapping R0 : x 7! x�Γ0

is a quotient mapping from X(Γ) onto X(Γ0) = c0 and the kernel of R0 is the space
X(Γ00). But Γ00, considered as a BD-space in its own right, is of weight zero, because
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of the condition we placed on the tops. Because of the role of the Schreier family in
the construction of Γ00, we see that X(Γ00) is isometric to C0(!

!). To prove the strict
singularity of the quotient mapping R0, we show that asymptotic `1 estimates of the kind
used in Proposition 7.2 are valid for skipped block sequences (xn) in X(Γ) provided that
infn kR0xnk > 0.

There is a natural way to associate with an arbitrary standard BD-set Γ, a BD-set Γ̊ of
weight zero. We take Γ̊ to have the same underlying set asΓ, and retain the same definition
of base 
 , while redefining top 
 to be 0 for all 
 . While X(Γ) and X (̊Γ) typically have
very different Banach space structures, these two subspaces of `1(Γ) are quite close to
each other in the Hausdorff metric.

Proposition 10.3. Let Γ be a standard BD-space of weight ˇ and let Γ̊ be the associated
set of weight zero. For every x 2 X(Γ) (resp. X (̊Γ)) and every � > 0, there exists
y 2 X (̊Γ) (resp. X(Γ)) with kx � yk � (2ˇM + �)kxk, where M = (1 � 2ˇ)�1:

Combining Proposition 10.3 with the embedding given by Theorem 6.4, we retrieve a
result of Zippin [1977].

Theorem 10.4. Zippin [ibid.] Let Y be a Banach space with separable dual and let � be a
positive real number. Then there is a countable locally compact space Γ and a subspace Z

of `1(Γ) which is (1+ �)-isomorphic to Y , such that for all z 2 Z there exists h 2 C0(Γ)

with kz � hk � �kzk.

11 BD-sets with mixed weights

In order to introduce finer structure into our BD-sets and exploit the theory of mixed
Tsirelson spaces, we make the following definition.

Definition 11.1. Let Γ be a countably infinite set and let (mi )i2N be a sequence of nat-
ural numbers satisfying Definition 4.2(1). A weighted BD structure on Γ consists of the
following mappings:

1. rank : Γ ! N such that each inverse image∆n = rank�1
fng is finite;

2. cut : Γ ! N satisfying cut 
 � rank 
 ;

3. top : Γ ! ball `1(Γ) such that supp top 
 � f� 2 Γ : cut 
 � rank � < rank 
g;

4. base : Γ ! Γ [ fundefinedg such that rank base 
 < cut 
 whenever it is defined;

5. weight : Γ ! fm�1
i : i 2 Ng such that weight 
 = weight base 
 when this is

defined.



1518 SPIROS A. ARGYROS AND RICHARD G. HAYDON

Given such a structure we set Γn =
S

m�n ∆m = f
 2 Γ : rank 
 � ng and define
BD-functionals

c�

 = m�1

i (I � P �
s�1)b

�;

where m�1
i = weight 
 , s = cut 
 , b� = top 
 and base 
 is undefined, or

c�

 = e�

� + m�1
i (I � P �

s�1)b
�;

with � = base 
 when this is defined. We call Γ a weighted BD-set.
Provided Γ is well-founded, there are regular families Mi such that hist 
 2 Mi when-

ever 
 is of weight m�1
i . Our first task is to seek a class of sequences in X(Γ) for which

we can establish upper mixed-Tsirelson estimates. These will be the BD versions of the
rapidly increasing sequences mentioned earlier in the context of mixed Tsirelson spaces.
Although we define them in terms of evaluation estimates, rather than a particular method
of construction, we shall shall continue to use the term RIS.

Definition 11.2. Let Γ be a well-founded BD-set with weights taking values in the se-
quence (m�1

i ). We shall say that a block sequence (xk)k2N in X(Γ) is a RIS if there exist
a constant C and an increasing sequence (in) of natural numbers such that the following
hold:

1. kxkk � C for all n;

2. jxk(
)j � C m�1
h

whenever weight 
 = m�1
h

and h < ik ;

3. ik+1 > maxfi : 9
 with rank 
 � max ran xk and weight 
 = m�1
i g.

We note that from a block sequence satisfying (1) and (2) we can always extract a subse-
quence satisfying (3) as well.

The next result is central to many subsequent developments. The proof is slightly intri-
cate but is based on ideas that can be traced back to the splitting lemma, presented earlier
as Lemma 3.7.

Theorem11.3 (SecondBasic Inequality). Let (mi )i2N satisfy Definition 4.2(1), let (Mi )i2N

be sequence of regular families and let Γ be a weighted BD-set such that hist 
 2 Mi

whenever weight 
 = m�1
i . Let (xk)k2N be a C -RIS in X(Γ) with max ran xk = qk . If

I � N is a finite interval, �k (k 2 I ) are scalars and 
 2 Γ then there exist k0 2 I

and g� 2 W [(A4 � Mi ; m�1
i )i2N ] such that either g� = 0 or weightg� = weight 
 and

suppg� � fqk : k0 < k 2 I g, and such that

j
X
k2I

�kxkj � 2C j�k0
j + 2C hg�;

X
k0<k2I

�keqk
i:
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In particular, we have the upper estimate

k
X

k

�kxkk � 4C k
X

k

�keqk
kT [(Mi �A4;m�1

i
)i2N ]:

The second crucial property of weighted BD-spaces, the one that will enable us to pass
from “few operators” to “very few operators” in the next section, is the existence of two
types of RIS that do not have analogues in the usual mixed Tsirelson framework. These
are defined in terms of “local support”. If x 2 X(Γ) has finite range ran xk = [p; q] then
we can write x = iqu, where u 2 `1(Γq) and suppu � Γq n Γp�1; we call suppu the
local support of x. We say that a bounded block sequence (xk) inX(Γ) has bounded local
weight if infk minfweight 
 : 
 2 loc supp xkg > 0, and that (xk) has rapidly decreasing
local weight if maxfweight 
 : 
 2 loc supp xkg tends to 0 sufficiently fast. The interest
of these definitions is in the following two propositions, the first of which is proved using
the Evaluation Analysis 6.1.

Proposition 11.4. Let Γ be a BD-set with weights in the sequence (m�1
i )i2N and let (xk)

be a bounded block sequence in X(Γ). If (xk) has either bounded local weight, or rapidly
decreasing local weight, (xk) is a RIS.

Proposition 11.5. Let Γ be a well-founded BD set, let Y be a Banach space and let T :

X(Γ) ! Y be a bounded linear operator. If kT (xn)k ! 0 for every RIS in X(Γ) then
kT (xn)k ! 0 for every bounded block sequence in X(Γ); hence T is a compact operator.

The proof of this second proposition is worth including, since it is easy and exploits the
local `1-structure of X(Γ). We consider a bounded block sequence (xk) with ran xk =

[pk ; qk ] and assume if possible that kT xkk > ı > 0 for all k. We can write xk = iqk
uk

where suppuk � Γqk
nΓpk�1 and kukk � kxkk. For any h 2 N we define vh

k
2 `1(Γqk

)

by setting

vh
k(
) =

(
uk(
) if weight 
 � m�1

h

0 otherwise

For any h, the sequence (yh
k
) given by yh

k
= iqk

vh
k
is bounded (kyh

k
k � kiqk

kkvh
k
k �

M kxkk) and has bounded local weight; hence it is a RIS and kTyh
k
k ! 0 by hypothesis.

This means that if we write zh
k
= xh

k
� yh

k
= iqk

(uk � vh
k
), we must have kT zh

k
k > 1

2
ı

for all large enough k. It is now easy to construct sequences h(r) and k(r) tending to 1

with r such that kT z
h(r)

k(r)
k > ı for all r . This contradicts our hypothesis, since a suitable

subsequence of (zh(r)

k(r)
) has rapidly decreasing local weight and so is a RIS.
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12 The scalar-plus-compact property and invariant subspaces

In Argyros and Haydon [2011], where Mi is taken to be Ani
, for an appropriately fast-

growing sequence ni , a large BD-set, denotedΓmax was introduced, providing a framework
in which other constructions can be made by taking self-determining subsets. The same
can be done in general, using a recursive construction like that of ΓBT given earlier.

Definition 12.1. We define Γmax[(Mi ; m�1
i )i2N ] to be the union

S
n2N ∆n, where the

sets ∆n and the functions hist and weight are given recursively by setting ∆1 = f1g,
Γn =

S
m�n ∆m and

∆n+1 = f(n + 1; i; 0; s; b�) : i � n + 1; 1 � s � n; b�
2 B(s; n)g

[ f(n + 1; i; �; s; b�) : 2 � s � n; � 2 Γs�1; weight � = m�1
i ; fsg [ hist � 2 Mi ;

b�
2 B(s; n)g; hist (n + 1; i; 0; s; b�) = fsg; hist (n + 1; i; �; s; b�) = fsg [ hist �;

weight (n + 1; i; �; s; b�) = m�1
i :

The differences with Definition 7.3 are first that we introduce i to allow for the mixed
weights, and secondly that we allow the top b� of an element to be a general element of
ball `1(Γn n Γs�1), rather than restricting it to be an evaluation functional ˙e�

� . For the
sets ∆n+1 to be finite, we do need to place some restrictions on b�, requiring it to lie
in some finite �-net B(s; n) (which, of course, ought really to have been included in the
recursive definition).

Aswe have said, themain role ofΓmax is to provide a framework for other constructions,
but the X(Γmax), a mixed-Tsirelson version of the space X(ΓBT) is of some interest in its
own right. It is natural to ask about its subspace structure, and whether there is an analogue
of Proposition 7.2. It has been shown by Świętek that such an analogue does hold, at least
for the version of Γmax given in Argyros and Haydon [ibid.]; the reader is referred to
Świętek [2017] for details.

In order to construct a space with the scalar-plus-compact property, we define a self de-
termining subset Γ0 of Γmax by following the same recursive construction, while restricting
the choice of the tops b� of odd-weight elements. First we fix a coding function � , an in-
creasing injection from the set of odd-weight elements of Γmax into N. Then we insist that
for an element (n+1; 2j � 1; 0; s; b�) to be in∆0

n+1, b� must have the form e�
� for some

� 2 Γ0
n with weight of the form m�1

4i�2, while for an element (n + 1; 2j � 1; �; s; b�)

b� must equal e�
� for some � 2 Γ0 of weight m4�(�). We call the resulting BD-set

ΓK[[(Mi ; m�1
i )i2N ].

Theorem 12.2. Provided the sequences (mi ) and (Mi ) satisfy the Standard Assumptions,
the space X(ΓK) has the scalar-plus-compact property.
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While the full strength of the Standard Assumptions was not needed in the previous sec-
tion, we really need it here, in order to form special convex combinations and apply mixed-
Tsirelson estimates such as Proposition 4.3. The proof, while complicated, is closely mod-
eled on earlier proofs that certain spaces have few operators, eventually showing that for
any bounded linear operator T on X(ΓK) there is a scalar � such that kT xk � �xkk ! 0

for every RIS. The difference here is that we can now deduce compactness of T � �I by
Proposition 11.5.

By the theorem of Aronszajn and Smith [1954], every bounded linear operator on
X(ΓK) has a proper, non-trivial invariant subspace; X(ΓK) was the first infinite-dimen-
sional space known to have this Invariant Subspace Property (though, of course, it is a
famously open problem whether the more familiar space `2 does). A class of spaces with
the Invariant Subspace Property but not the Scalar-plus-Compact Propertywas constructed
by Tarbard [2012].

Theorem 12.3. Tarbard [ibid.] For each natural number N there is a weighted BD-set
ΓN and a strictly singular operator S on X(ΓN ) such that

1. SN is non-compact

2. SN+1 = 0

3. every bounded linear operator T on X(ΓN ) can be written uniquely as T = �I +PN
k=1 �kSk + K with K compact.

Tarbard’s spaces have the Invariant Subspace Property, by Lomonosov’s theorem, be-
cause any operator can be written �I + U with U N+1 compact.

No example is known of an infinite-dimensional reflexive space with the Scalar-plus-
Compact Property (indeed, all known examples are L1-spaces). We must mention, how-
ever, the paper Argyros and Motakis [2014] which uses the method of saturation with
constraints to construct an infinite-dimensional reflexive space all of whose subspaces
have the Invariant Subspace Property.

The space X(ΓK) of Argyros and Haydon [2011] is hereditarily indecomposable and
saturated with reflexive subspaces. Recent work has shown that the scalar-plus-compact
property can hold in spaces with very different subspace structure: the space constructed
by Manoussakis, Pelczar-Barwacz, and Świętek [2017] has the scalar-plus-compact prop-
erty but is saturated with unconditional basic sequences; Argyros and Motakis [2016]
combine the BD construction with the method of saturation with constraints to construct
a space that has the scalar-plus-compact property, but no infinite-dimensional reflexive
subspaces.
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13 Calkin algebras

The Calkin algebra of a Banach space is the quotient L(X)/K(X) where L(X) is the
algebra of all bounded linear operators on X and K(X) the ideal of compact operators.
Obviously the Calkin algebra of X(ΓK) is one-dimensional and that of Tarbard’s space
X(ΓN ) is N +1-dimensional. It is natural to pose a question about the structure of Calkin
algebras as Banach algebras:

Which unital Banach algebras arise as Calkin algebras of Banach spaces?
Tarbard [2013] gave a further example.

Theorem13.1. There is a well-founded BD-setΓ1 such that the Calkin algebra ofX(Γ1)

is isometrically isomorphic to the convolution algebra `1(!).

Direct sums of versions of the example of Argyros and Haydon [2011] are used in
Kania and Laustsen [2017] to show that every finite-dimensional semisimple algebra can
be realised as a Calkin algebra. A major advance has come from Motakis, Puglisi, and
Zisimopoulou [2016] who build on the interesting theory of BD-direct sums developed by
Zisimopoulou [2014].

Theorem 13.2. For every countable compact space K there is a L1 Banach space X

with Calkin algebra isomorphic to C(K).

Most recently, Motakis, Puglisi, and Tolias [2017] give a broad class of algebras of
diagonal operators that may be realized as Calkin algebras, including examples that are
hereditarily indecomposable and quasi-reflexive as Banach spaces. We are however still
a long way from an answer to our question and we are still waiting for a first example of
a unital Banach algebra that is not isomorphic to a Calkin algebra.

14 Indecomposable extensions of Banach spaces with separable
duals

In this section and the next we shall be investigating the question ofwhen aBanach spaceY

can be embedded as a subspace of a separable indecomposable space, or, more ambitiously,
a separable space with the scalar-plus-compact property. The analogous question of when
Y can be expressed as a quotient of a separable, hereditarily indecomposable space has
been completely solved: it was shown by Argyros and Tolias [2004] that this is the case
if and only if Y has no subspace isomorphic to `1. We conjecture that there is a similar
best-possible for irreducible extensions.

Conjecture 14.1. For a Banach space Y with separable dual the following are equivalent:



BOURGAIN–DELBAEN L1-SPACES 1523

1. Y embeds isomorphically into a separable space X with the scalar-plus-compact
property;

2. Y embeds isomorphically into a separable indecomposable space X ;

3. Y has no subspace isomorphic to c0.

It is clear that (1) H) (2) H) (3) because a c0 subspace of a separable space is au-
tomatically complemented by Sobczyk’s theorem. We note that the non-separable space
C(K) constructed byKoszmider [2004] is indecomposable but containsC [0; 1] (and hence
copies of all separable spaces). Thus, to have a sensible conjecture we certainly need the
word “separable” in (2). In passing we remark that we know of no non-separable Ba-
nach space with the scalar-plus-compact property, nor whether there is an upper bound
on the size of such a space. While a hereditarily indecomposable space necessarily em-
beds in `1 (Argyros and Tolias [2004]), it has recently been shown (subject to GCH)
by Koszmider, Shelah, and Świętek [2018] that there exist arbitrarily large indecompos-
able Banach spaces. At the risk of drifting seriously off-topic, we wonder whether every
Banach space not containing `1 embeds in some indecomposable space.

While we cannot prove Conjecture 14.1, some partial results in this direction do exist.
First, it was shown in Argyros, Freeman, Haydon, Odell, Raikoftsalis, Schlumprecht, and
Zisimopoulou [2012] that every separable superreflexive Banach space Y embeds into a
BD-space with the scalar-plus-compact property. The same authors can now do a little
better, replacing the best-possible hypothesis that c0 does not embed in Y with the same
condition applied to the double dual Y ��.

Theorem 14.2. Let Y be a Banach space such that Y � is separable and c0 does not embed
into Y ��. Then Y embeds into a BD-space with the scalar-plus-compact property.

The plan of the proof is to start by applying Theorem 6.4 to embed Y into X(Γ0)where
Γ0 is a well-founded standard BD-set of weight m�1

1 = 1
4
. Since Γ0 is well-founded, there

is a regular family M1 that contains all the histories hist 
 . We introduce m2; m3; : : : and
M2 ; Mr ; : : : so that the Standard Assumptions are satisfied. The aim is then to build
an augmentation Γ = Γ0 [ Γ00, such that X(Γ) has the scalar-plus-compact property and
contains the subspace Y . Even this last part is not as straightforward as it sounds, since,
as we have noticed, X(Γ0) need not be a subspace of X(Γ). For its subspace Y to be
contained in X(Γ) we shall need a rather special sort of augmentation.

Definition 14.3. Let Γ0 be a standard BD-set, let Y be a subspace of X(Γ0) and let Γ =

Γ0 [ Γ00 be a standard augmentation of Γ. Identify Y with the subspace

fx 2 `1(Γ) : x�Γ02 Y and x�Γ00= 0g:
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of `1(Γ). We shall say that the augmentation respects the subspace Y if, for every 
 2 Γ00,
we have

P �
[s;1)b

�
2 Y ? and � 2 Γ00 (if it exists);

where, as usual s = cut 
 , b� = top 
 and � = base 
 .

Proposition 14.4. If Γ is a standard augmentation of a standard BD-set Γ0 that respects
the subspace Y of X(Γ) then Y is a subspace of X(Γ).

So our plan to prove Theorem 14.2 will be to construct an exotic augmentation of Γ0

that respects the subspace Y . We shall need plenty of choice in selecting the tops of newly
added 
 2 Γ00 in order to achieve the scalar-plus-compact property, while ensuring that
the condition P �

[s;1)b
� 2 Y ? is satisfied. Theorem 6.4 does not necessarily have quite the

property we want, so we may need to adjust it slightly, using a standard M-basis argument.

Proposition 14.5. Let Γ0 be a well-founded standard BD-set and let Y be a closed sub-
space ofX(Γ0). Then there is small perturbationZ ofY such thatQ-sphd �


 : 
 2 Γ0i\Z?

is norm-dense in `1(Γ
0) \ Z?.

We assume that Y already has the property of Z in the above proposition and construct
an augmentation that respects Y but is otherwise modeled on Theorem 12.2. We arrange
that for every bounded linear operator T : X(Γ) ! X(Γ) there is a scalar � such that
Q(T � �I ) is compact, where Q : X(Γ) ! X(Γ)/Y is the quotient operator. It is only
now that we need the hypothesis on the original space Y in order to apply the following
result, which we call the “Quotient-Compact Property”.

Proposition 14.6. Let Z be a Banach space, let Y be a subspace of Z such that c0 does
not embed in Y ��,let X be a Banach space with X� isomorphic to `1 and let S : X ! Z

be a bounded linear operator. If QS is compact, where Q : Z ! Z/Y is the quotient
operator, then S is compact.

Applying this proposition with X = Z = X(Γ) and S = T � �I allows us to finish
the proof of Theorem 14.2.

15 A space with the scalar-plus-compact property that contains `1

In this section, based on joint work of the authors with Th. Raikoftsalis, we sketch the
construction of a Banach space that contains `1 and has the scalar-plus-compact property.

We start with a simple case of an ill-founded BD-set of zero weight, taking Γd to be the
dyadic tree

Γd = 2<! =
[
n2!

2n =
˚
( ); (0); (1); (00); (01); : : :

	
:
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We use fairly standard notation for this tree. When 
 2 2n we write n = length 
 (which
is also the domain of 
 if we are thinking of 
 as a function) and for �; 
 2 2<! we write
� � 
 if length � < length 
 and �(i) = 
(i) for 0 � i < length �, that is to say � is the
restriction of 
 to the domain of �. If 
 2 2n+1 we write 
� for the restriction of 
 to n ;
so 
� is the unique member of 2n with 
� � 
 .

To endow Γd with a BD-structure, we define rank 
 = 1 + length 
 and

base 
 = 
�; top 
 = 0;

when length 
 > 0. Of course, the only reason for the term ”+1” in the definition of
rank is our earlier decision that the rank function on a BD-set should take values in N,
rather than !. As in Section 10 we see that X(Γd) may be identified naturally with the
space C(2�!), where 2�! is the compact metric space of all finite and infinite sequences
in f0; 1g. The space C(2�!) has a subspace isomorphic to `1 and is a quotient of X(Γ)

whenever Γ is an augmentation of Γd. By the lifting property, X(Γ) contains `1 for all
such Γ.

Theorem 15.1. There is an augmentation of Γd that has the scalar-plus-compact property.

The idea is very simple: we take sequences (mi ) and Mi ) satisfying the Standard As-
sumptions, and with M1 = S , and then augment the BD-set Γ0 = Γd by adding elements

 2 Γ00 as in the construction of Theorem 12.2. We do not have good upper norm esti-
mates for sequences of vectors in X(Γ), since Γ is not well-founded. But on the subspace
X(Γ00) the machinery of Theorem 12.2 can still be applied, leading to the following.

Proposition 15.2. Let Γ0 = Γd and let Γ = Γ0 [ Γ00 be an augmentation as descibed
above. For every bounded linear operator U : X(Γ00) ! X(Γ) there is a scalar � such
that U � �J is compact, where J : X(Γ00) ! X(Γ) is the inclusion operator.

Once we have this proposition, we consider a bounded linear operator T : X(Γ) !

X(Γ) and set U = T �X(Γ00). There exists a scalar � such that U � �J is compact; since
X(Γ) is a L1-space, there is a compact operator S1 : X(Γ) ! X(Γ) extending U � �J

by Proposition 5.2. The operator T � �I � S1 vanishes on the subspace X(Γ00), which
is the kernel of the restriction quotient mapping R0 : X(Γ) ! X(Γ0). So we can write
T = �I + S1 + S2R0, where S2 : X(Γ0) ! X(Γ) is some operator. Now X(Γ0) is a
C(K)-space, and X(Γ) is skipped-asymptotic `1 (because of our choice M1 = S). We
finish the proof of Theorem 15.1 by using a general result about operators between such
spaces.

Proposition 15.3. If X is skipped-asymptotic `1 then every bounded linear operator from
C(K) to X is compact.
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A more elaborate construction involving a Y -respecting augmentation of Γd leads to
the analogue of Theorem 14.2 for spaces with nonseparable dual.

Theorem 15.4. Let Y be a separable Banach space such that Y �� does not have a sub-
space isomorphic to c0. Then Y may be embedded isomorphically into an indecomposable
BD-L1 space X(Γ). If every bounded linear operator from C [0; 1] into Y is compact,
then X(Γ) may be chosen to have the scalar-plus-compact property.

We have already noted in Proposition 10.9 of Argyros and Haydon [2011] that some
extra condition is needed in Theorem 15.4 in order to get the scalar-plus-compact prop-
erty, rather than just indecomposability. We can make this a little more precise with the
following easy proposition, which seems to be a good note on which to end.

Proposition 15.5. Let Y be a separable Banach space with non-separable dual. If Y

embeds isomorphically in a separable L1-space with the scalar-plus-compact property
then every bounded linear operator from C [0; 1] to Y is compact.

Proof. Assume that Y is a subspace of a L1-space X with the scalar-plus-compact prop-
erty. Since Y � is non-separable, so is X�, which implies that X has a subspace isomor-
phic to `1 by a theorem of Lewis and Stegall [1973]; by a theorem of Pelczynski there
is a quotient operator Q : X ! C [0; 1]. If S : C [0; 1] ! Y is non-compact then so is
T = SQ : X ! Y � X . On the other hand, Y cannot contain c0 and so S is strictly
singular. So T is strictly singular and non-compact contradicting the assumption about
X .
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HARMONIC MEASURE: ALGORITHMS AND APPLICATIONS

Cඁඋංඌඍඈඉඁൾඋ J. Bංඌඁඈඉ

Abstract
This is a brief survey of results related to planar harmonic measure, roughly from

Makarov’s results of the 1980’s to recent applications involving 4-manifolds, dessins
d’enfants and transcendental dynamics. It is non-chronological and rather selective,
but I hope that it still illustrates various areas in analysis, topology and algebra that
are influenced by harmonic measure, the computational questions that arise, the many
open problems that remain, and how these questions bridge the gaps between pure/applied
and discrete/continuous mathematics.

1 Conformal complexity and computational consequences

� Three definitions: First, the most intuitive definition of harmonic measure is as the
boundary hitting distribution of Brownian motion. More precisely, suppose Ω � Rn is a
domain (open and connected) and z 2 Ω. We start a random particle at z and let it run
until the first time it hits @Ω. We will assume this happens almost surely; this is true for
all bounded domains in Rn and many, but not all, unbounded domains. Then the first
hit defines a probability measure on @Ω. The measure of E � @Ω is usually denoted
!(z; E;Ω) or !z(E). For E fixed, !(z; E;Ω) is a harmonic function of z on Ω, hence
the name “harmonic measure”.

Next, if Ω is regular for the Dirichlet problem, then, by definition, every f 2 C (@Ω)

has an extension uf 2 C (Ω) that is harmonic in Ω, and the map z ! uf (z), z 2 Ω is
a bounded linear functional on C (@Ω). By the Riesz representation theorem, uf (z) =R

@Ω fd�z ; for some measure �z , and �z = !z . For domains with sufficient smoothness,
Green’s theorem implies harmonic measure is given by the normal derivative of Green’s
function times surface measure on the boundary. Thus the key to many results are esti-
mates related to the gradient of Green’s function.
The author is partially supported by NSF Grant DMS 16-08577.
MSC2010: primary 30C85; secondary 65D99, 30C30, 37F30.
Keywords: Harmonic measure, Brownian motion, conformal mapping, Hausdorff dimension, optimal
meshing, conformal dynamics, dessins d’enfants, hyperbolic manifolds.
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Finally, in the plane (but not in higher dimensions) Brownian motion is conformally
invariant, so !z for a simply connected domain Ω is the image of normalized Lebesgue
measure on the unit circle T = fw : jwj = 1g under a conformal map f : D = fw :

jwj < 1g ! Ω with f (0) = z. Because of the many tools from complex analysis, we
generally have the best theorems and computational methods in this case.

Figure 1: Continuous Brownian motion and two discrete approximations. In the
center is a random walk on a grid; this is slow to use. On the right is the “walk-on-
spheres” or “Kakutani’s walk”; this is much faster to simulate.

� The walk on spheres: Suppose we want to compute the harmonic measure of one edge
of a planar polygon. The most obvious approach is to approximate a Brownian motion by
a random walk on a 1

n
�

1
n
grid. See Figure 1. However, it takes about n2 steps for this

walk to move distance 1, so for n large, it takes a long time for each particle to get near the
boundary. A faster alternative is to note that Brownian motion is rotationally invariant, so
it first hits a sphere centered on its starting point z in normalized Lebesgue measure. Fix
0 < � < 1 and randomly choose a point on

S�(z) = fw : jw � zj = � � dist(z; @Ω)g:

Now repeat. This random “walk-on-spheres” almost surely converges to a boundary point
exponentially quickly, so onlyO(logn) steps are needed to get within 1/n of the boundary;
see Binder and Braverman [2012]. I learned this process from a lecture of Shizuo Kakutani
in 1986 and refer to it as Kakutani’s walk.

However, even Kakutani’s walk is only practical on small examples. Long corridors
can make some edges very hard to reach, so we need a huge number of samples to estimate
their harmonic measure. This is called the “crowding phenomena” (because the confor-
mal pre-images of these edges are tiny; see below). For example, in a 1 � r rectangle a
Brownian path started at the center has only probability � exp(��r/2) of hitting one of
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the short ends; for r = 10, the probability1 is ! � 3:837587979 � 10�7. See Figure 2.
Thus random walks are not a time efficient method of computing harmonic measure (but
they are memory efficient; see the work of Binder, Braverman, and Yampolsky [2007]).

Figure 2: 10, 100, 1000 and 10000 samples of the Kakutani walk inside a 1 � 10

polygon. This illustrates the exponential difficulty of traversing narrow corridors.

� The Schwarz-Christoffel formula: Conformal mapping gives the best way of com-
puting harmonic measure in a planar domain. See Figure 3. Many practical methods
exist; surveys of various techniques include DeLillo [1994], Papamichael and Saff [1993],
Trefethen [1986], Wegmann [2005]. Some fast and flexible current software includes
SCToolbox byTobyDriscoll, Zipper byDonMarshall, and CirclePack byKen Stephen-
son. To quote an anonymous referee of Bishop [2010a]: “Algorithmic conformal mapping
is a small topic – one cannot pretend that thousands of people pay attention to it. What
it does have going for it is durability. These problems have been around since 1869 and
they have proved of lasting interest and importance.”

When @Ω is a simple polygon, the conformal map f : D ! Ω is given by the Schwarz-
Christoffel formula (e.g., Christoffle [1867], Schwarz [1869], Schwarz [1890]):

f (z) = A + C

Z z

0

nY
k=1

(1 �
w

zk

)˛k�1dw;

where f˛1�; : : : ; ˛n�g, are the interior angles of the polygon and z = fz1; : : : ; zng �

T = fz : jzj = 1g are the preimages of the vertices (we call these the SC-parameters or
the pre-vertices). For references, variations, and history of this formula, see Driscoll and
Trefethen [2002].

1In fact, ! = 2
�
arcsin((3 � 2

p
2)2(2 +

p
5)2(

p
10 � 3)2(51/4 �

p
2
4
); see page 262 of Bornemann,

Laurie, Wagon, and Waldvogel [2004].
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Figure 3: A conformal map to a polygon. The disk is meshed by boxes to a scale
where vertex preimages are well separated. Counting boxes, we can estimate that
the horizontal edge at top left has harmonic measure � 2�16, another illustration of
crowding.

The Schwarz-Christoffel formula does not really give us the conformal map; one must
still solve for the n unknown SC-parameters, and this is a difficult problem. There are
various heuristic methods that work as follows: make a parameter guess, compute the
corresponding map, compare the image with the desired domain and modify the guess
accordingly. Davis [1979] uses a simple side-length comparison: if a side is too long (or
short), one simply decreases (or increases) the gap between the corresponding parameters
proportionally. The more sophisticated CRDT algorithm of Driscoll and Vavasis [1998]
uses cross ratios of adjacent Delaunay triangles to make the updated guess. However,
neither Davis’ method nor CRDT comes with a proof of convergence, nor a bound on
how many steps are needed to achieve a desired accuracy.
� The fast mapping theorem: However, such bounds are possible (see Bishop [2010a]):

Theorem 1. Given � > 0 and an n-gon P , there is w = fw1; : : : ; wng � T so that

1. w can be computed in at most C n steps, where C = O(1 + log 1
�
log log 1

�
),

2. dQC (w; z) < � where z are the true SC-parameters.

Here a step means an infinite precision arithmetic operation or function evaluation. The
error in Theorem 1 is measured using a distance between n-tuples defined by

dQC (w; z) = infflogK : 9 K-quasiconformal h : D ! D such that h(z) = wg:

Ahomeomorphism h : D ! D isK-quasiconformal (K-QC) if it is absolutely continuous
on almost all lines (so partial derivatives make sense a.e.) and j�hj � k < 1, where
�h = hz/hz is the complex dilatation of h (e.g., see Ahlfors [2006]). Geometrically,
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this says that infinitesimal circles are mapped to infinitesimal ellipses with eccentricity
bounded by K = (k + 1)/(k � 1) � 1. In general, QC maps are non-smooth and can
even map a line segment to fractal arc; see Bishop, Hakobyan, and Williams [2016] and
its references.

The possible boundary values of a QC map h : D ! D are exactly the quasisymmetric
(QS) circle homeomorphisms. We say h : T ! T is M -QS if jh(I )j � M jh(J )j

whenever I and J are disjoint, adjacent intervals of the same length on T .
A map f : D ! D is called a quasi-isometry (QI) for the hyperbolic metric � if there

is an A < 1 so that A�1 � �(f (z); f (w))/�(z; w) � A whenever �(z; w) � 1; thus
f is bi-Lipschitz at large scales, but we make no assumptions at small scales, not even
continuity. Nevertheless, such an f does extend to a homeomorphism of the boundary
circle, and the class of these extensions is again the QS-homeomorphisms. Thus QC and
QI self-maps of D have the same set of boundary values.

Using the QC-metric on n-tuples has several advantages: it implies approximation in
the Hausdorff metric and ensures points occur in the correct order on T . When K is close
to 1, the QS formulation holds with M � 1 and implies that the relative gaps between
points are correct in a scale invariant way. We also have dQC (w; z) = 0 iff the n-tuples are
Möbius images of each other; this occurs iff the corresponding polygons are similar, which
makes dQC a natural metric for comparing shapes (to be precise, dQC is only a metric
if we consider n-tuples modulo Möbius transformations). Finally, this metric is easy to
bound by computing any vertex-preserving QC map between the corresponding polygons,
e.g., the obvious piecewise linear map coming from two compatible triangulations. See
Figure 4. Using this, we can bound the QC-distance to the true SC-parameters without
knowing what those parameters are. Computing the exact QC-distance between n-tuples
is much harder, e.g. see Goswami, Gu, Pingali, and Telang [2015].

Figure 4: Equivalent triangulations of two polygons define a piecewise linear QC
map and give an upper bound for the QC distance. Here K = 2 and the most
distorted triangle is shaded.

� Applications to computational geometry: We will first discuss some applications of
the fast mapping theorem (FMT), and then discuss its proof. As explained below, the
proof of the FMT depends on ideas from computational geometry (CG), and it returns the
favor by solving certain problems in CG. Optimal meshing is the problem of efficiently
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decomposing a domain Ω into nice pieces. Assume @Ω is an n-gon. “Efficient” means we
want the number of mesh elements to be bounded by a polynomial in n (independent ofΩ).
“Nice” means the pieces are triangles or quadrilaterals that have angles strictly bounded
between 0ı and 180ı, whenever possible. Some results that use the FMT (or ideas from
its proof) include:
I Thick/thin decomposition: Every polygon can be written as a union of disjoint thick
and thin pieces that are analogous to the thick/thin pieces of a hyperbolic manifold (regions
where the injectivity radius is larger/smaller than some �). See Figure 5. For an n-gon,
each thin piece is either a neighborhood of a vertex (parabolic thin parts), or corresponds
to a pair of sides that have small extremal distance within Ω (hyperbolic thin parts); the
thin parts are in 1-to-1 correspondence with the thin parts of the n-punctured Riemann
sphere formed by gluing two copies of the polygon along its (open) edges. Despite there
being ' n2 pairs of edges, there are O(n) thin parts, and they can be found in time O(n)

using the FMT with � ' 1; see Bishop [2010a].

Figure 5: Thin parts of a surface and a polygon are shaded (light = parabolic, dark
= hyperbolic), and the thick pieces are white.

IOptimal quad-meshing: Any n-gon has anO(n) quadrilateral meshwhere every angle
is less than 120ı and all the new angles are at least 60ı; see Bishop [2010b], Bishop
[2016b] Here “new” means that existing angles < 60ı remain, but are not subdivided.
Both the complexity and angle bounds are sharp. The thick/thin decomposition plays a
major role here: the thin parts are meshed with an ad hoc Euclidean construction and the
thick parts are meshed by transferring a hyperbolic mesh from D by a nearly conformal
map. Is there a similar approach in 3 dimensions, perhaps using decompositions into
pieces that are meshed using some of the eight natural 3-dimensional geometries?
I The NOT theorem: Every planar triangulation with n elements can be refined to a
nonobtuse triangulation (all angles � � = 90ı, called a NOT for brevity) with O(n2:5)

triangles; see Bishop [2016a]. No polynomial bound is possible if � < 90ı and the previ-
ous best result was with � = 132ı, due to Tan [1996]. See also Mitchell [1993]. A gap
remains between the O(n2:5) algorithm and the n2 worst known example. The proof of
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the NOT theorem involves perturbing a natural C 1 flow associated to the triangulation, in
order to cause collisions between certain flow lines. Is there any connection to closing lem-
mas in dynamics, e.g., Pugh [1967]? Perhaps the gap could be reduced using dynamical
ideas, or ideas from the NOT theorem applied to flows on surfaces.

The NOT theorem has an amusing consequence: suppose several adjoining countries
have polygonal boundaries (with n edges in total) and the governments all want to place
cell towers so that a cell phone always connects to a tower (the closest one) in the same
country as the phone. Is this possible using a polynomial number of towers? More math-
ematically, we are asking for a finite point set S whose Voronoi cells conform to the
given boundaries (the Voronoi cells of S are the points closest to each element of S ). If
the countries are nonobtuse triangles this is easy to do, so the NOT theorem implies this
is possible in general using O(n2:5) points, the first polynomial bound for this problem
stated in Salzberg, Delcher, Heath, and Kasif [1995].
� Proof of the FMT: Like the other methods mentioned earlier, the fast mapping algo-
rithm iteratively improves an initial guess for the conformal map. However, whereas
Davis’ method and CRDT use conformal maps onto an approximate domain, and try to
improve the domain, the fast mapping algorithm uses approximately conformal maps onto
the correct target domain and improves the degree of conformality. More precisely, each
iteration computes the dilatation �f of a QC map f : D ! Ω, and attempts to solve the
Beltrami equation gz = �f gz with a homeomorphism g : D ! D. If g was an exact
solution, then F = f ı g�1 would be the desired conformal map. The exact solution is
given by a infinite series involving the Beurling transform (see e.g., Ahlfors [2006]) but
the FMT uses only the leading term of this series and approximately solves the resulting
linear equation (thus it is a higher dimensional version of Newton’s method). Iterating
gives a sequence of QC maps that converge quadratically to a conformal map, assuming
the initial dilatation � is small enough. A variation of this method was implemented by
Green [2011].

To bound the total time, we have to estimate the time needed for each iteration, and
the time needed to find a starting guess for which we can uniformly bound the number of
iterations needed to reach accuracy � (it is not obvious that such a point even exists). The
first step involves representing the map as a collection of series expansions on the disk,
and applying discretized integral operators using the fast multipole method and structured
linear algebra. The second part is less standard: we use computational geometry to make a
“rough-but-fast” QC approximation to the Riemannmap and use 3-dimensional hyperbolic
geometry to prove that this guess is close to the correct answer, with a dilatation bound
independent of the domain. It is (fairly) easy to reduce from “bounded dilatation” to “small
dilatation” by a continuation argument, so we will only discuss proving the uniform bound.
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2 Disks, domes, dogbones, dimension and dendrites

� The medial axis flow: The medial axis (MA) of a planar domain Ω is the set of all
interior points that have � 2 distinct closest points on @Ω. For polygons, these are the
centers of maximal disks inΩ, but the latter set can be strictly larger in general; see Bishop
and Hakobyan [2008]. If @Ω is a polygon, then the medial axis is a finite tree. See Figure 6.

Figure 6: The top shows the medial axis of a domain (left) and the medial axis
foliation and flow (right). The bottom show triangulations of the target polygon and
initial guess using the MA-flow parameters. Here K = 1:24, (the most distorted
triangle is shaded), but the polygons appear almost identical.

If we fix one medial axis disk D0 as the “root” of this tree, then arcs of the remaining
disks foliateΩnD0. Each boundary point can be connected to D0 by a path orthogonal to
this foliation; see Figure 6. The medial axis flow defines Möbius transformations between
medial axis disks, hence preserves certain cross ratios, and given the medial axis, we can
use this to compute the images of all n boundary vertices in O(n) time. The medial axis
itself can be computed in linear time by a result of Chin, Snoeyink, and Wang [1999], so
the MA-flow gives a linear time (i.e., “fast”) initial guess for the SC-parameters.
� The convex hull theorem: Why is our “fast guess” an accurate guess? The answer is
best understood by moving from 2 to 3 dimensions. The “dome” of a planar domain Ω

is the surface S = S(Ω) � H3 = R3
+ = f(x; y; t) : t > 0g that is the boundary of the

union of all hemispheres whose base disk is contained in Ω. In fact, it suffices to consider
only medial axis base disks. See Figure 7.
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Figure 7: A polygonal domain and its dome. The red patches on the dome each
correspond to the dome of a vertex disk of the medial axis; the yellow regions cor-
respond to domes of edge disks.

Recall thatH3 has a hyperbolic metric d� = ds/t . Each hemisphere below the dome S

is a hyperbolic half-space, and the region above S is the intersection of their complements,
hence is hyperbolically convex. Thus the dome ofΩ is also the boundary of the hyperbolic
convex hull inH3 ofΩc = C nΩ. We define the “nearest point retraction”R : Ω ! S(Ω)

by expanding a horo-sphere in R3
+ tangent to R2 at z 2 Ω until it first hits S at a point

R(z). See Figure 8. Dennis Sullivan’s convex hull theorem (CHT) states that R is a
quasi-isometry from the hyperbolic metric onΩ to the hyperbolic path metric on the dome.
Sullivan [1981b] originally proved the CHT in the context of hyperbolic 3-manifolds (see
below) and the version above is due to Epstein andMarden [1987]. See also Bishop [2001],
Bishop [2002], Bridgeman and Canary [2010].

S(   )Ω
C(    )Ωc

z

R(z)

Ω

Figure 8: The dome S of Ω is the boundary of the hyperbolic convex hull of Ωc

(shaded). The retraction map R : Ω ! S defined by expanding horoballs need not
be 1-to-1, but is a quasi-isometry.
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The dome S with its hyperbolic path metric is isometric to the hyperbolic disk. The
isometry � : S ! D can be visualized by thinking of S as bent along a disjoint collection
of geodesics, and “flattening” the bends until we get a hyperbolic plane (the hemisphere
above D0; this is clearly isomorphic to D). Remarkably, the restriction of this map to

Figure 9: The dome of two overlapping disks consists of two hyperbolic half-planes
joined along a geodesic (left). Flattening this bend means rotating one half-plane
around the geodesic until it is flush with the other (center). On R2, this rotation cor-
responds to the medial axis flow in the base domain. The same observation applies
to all finite unions of disks, and the general case follows by a limiting argument.

@S = @Ω equals the MA-flow map @Ω ! @D0. Figure 9 gives the idea of the proof.
Since � ı R : Ω ! D is a quasi-isometry (and because QI and QC maps of D have the
same boundary values), the MA-flow map @Ω ! @D0 has a uniformly QC extension
� : Ω ! D0. Thus our “fast guess” is indeed a “good guess” with uniform bounds.
� Convex hulls and 3-manifolds: As mentioned above, Sullivan’s CHT was first dis-
covered in the context of hyperbolic 3-manifolds. By definition, such a manifold M is
the quotient of H3 by a Kleinian group, i.e., a discrete group G of orientation preserving
hyperbolic isometries. This is completely analogous to a Riemann surface being the quo-
tient of the hyperbolic disk by a Fuchsian group. The accumulation set of any G-orbit on
@H3 = R2 [f1g is called the limit set Λ ofG; this is often a fractal set. The complement
of Λ is called the ordinary set Ω. In this paper we will always assume Ω ¤ ¿. We let
C (Λ) � H3 denote the hyperbolic convex hull of Λ. It is G-invariant, so its quotient de-
fines a region C (M ) � M called the convex core of M ; this is also the convex hull of all
the closed geodesics in M . We define the “boundary at infinity” of M as @1M = Ω/G;
this is a union of Riemann surfaces, one for each connected component ofΩ. The dome of
each component of Ω is a boundary component of C (Λ), and corresponds to a boundary
component of C (M ). The original formulation of Sullivan’s CHT (which he attributes to
Thurston) is that @1M is uniformly QC-equivalent to @C (M ).

A case of particular interest is when M is homeomorphic to Σ � R for some com-
pact surface Σ and C (M ) is compact (this is called a co-compact quasi-Fuchsian man-
ifold). See Figure 10. Then Λ is a Jordan curve, so @C (M ) has two components, Ω1
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R1
R2

M

C(M)

Figure 10: A co-compact quasi-Fuchsian manifold. The tunnel vision function is
the harmonic measure of one component of @1M .

and Ω2. Since u = !(z;Ω2; H3) is invariant under G, it defines a harmonic function
u(z) = !(z; R2; M ) on M . (Here u is harmonic for the hyperbolic metric on H3, not
the Euclidean metric; the two concepts agree in 2 dimensions, but not in 3.) This is the
“tunnel vision” function: for z 2 M , u(z) is the normalized area measure (on the tangent
2-sphere) of the geodesic rays starting at z that tend towards R2 � @1M . Thus u is the
“brightness” at z if R2 is illuminated but R1 is dark. It is easy to check that u � 1/2 on
the component of @C (M ) facing R2 and is � 1/2 on the other component. Thus the level
set fz : u(z) = 1

2
g is contained inside C (M ).

�Dogbones and 4-manifolds: The topology of the tunnel vision level sets has an interest-
ing connection to 4-dimensional geometry. If Λ is a circle, then the level sets fu(z) = �g,
0 < � < 1, are topological disks, but if Λ approximates @Ω, where

Ω = fz : jz � 1j < 1/2g [ fz : jz + 1j < 1/2g [ fz = x + iy : jxj < 1; jyj < �g;

and � is small, then they can be non-trivial and u has a critical point. See Figure 11.
This critical point has a surprising consequence. Claude LeBrun has shown how to turn

the hyperbolic 3-manifold M into a closed anti-self-dual 4-manifold N , so that N has an
almost-Kähler structure if and only if u has no critical points. For definitions and details,
see Bishop and LeBrun [2017]. The simplest case is to take M � T and collapse @1M

to two points; this gives a conformally flat N , but a hierarchy of topologically distinct
non-flat examples also exists. In Bishop and LeBrun [ibid.] we construct a co-compact
Fuchsian group that can be deformed to a quasi-Fuchsian group with limit set approximat-
ing the dogbone curve. Thus the almost-Kähler metrics sweep out an open, non-empty,
but proper subset of the moduli space of anti-self-dual metrics on the corresponding 4-
manifold N , giving the first example of this phenomena. Thus harmonic measure solves
a problem about 4–manifolds, and 4–manifolds raise new questions about harmonic mea-
sure: for which planar domains Ω does !(z;Ω; H3) have a critical point? The group in
Bishop and LeBrun [ibid.] has a huge number of generators; how many are really needed
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Figure 11: The dogbone domain (left) approximates two disjoint disks if the corridor
is very thin. For two disks, the level surfaces fu(z) = �g evolve from two separate
surfaces into a connected surface, so u must have a critical point; the critical surface
is shown at right.

to get an example with a critical point? Are critical points common near the boundary of
Teichmüller space for any large G?
� Heat kernels and Hausdorff dimension: As above, supposeM ' Σ�R is hyperbolic
and C (M ) is compact. By compactness, a Brownian motion inside C (M ) hits @C (M )

almost surely; as noted earlier, it then has probability � 1/2 of hitting the corresponding
component of @1M . This implies Brownian motion on M leaves C (M ) almost surely,
which implies Brownian motion on H3 leaves C (Λ) almost surely, which is equivalent to
area(Λ) = 0. This observation can be made much more precise.

The heat kernel, kM (x; y; t), on a manifold M gives the probability that a Brown-
ian motion starting at x at time 0 will be at y at time t . Thus the probability of being
in C (M ) at time t is p(x; t) =

R
C (M ) kM (x; y; t)dy: The heat kernel can be written

in terms of the eigenvalues and eigenfunctions of the Laplacian on M, kM (x; y; t) =P1

n=0 e��nt 'n(x)'n(y); so it seems reasonable that p(x; t) = O(exp(��0t)). See
Davies [1988], Grigor’yan [1995], which make this precise. The lift of kM to H3 is a
sum over G-orbits of

kH3(w; z; t) = (4�t)�3/2 �(z; w)

sinh(�(z; w))
exp(�t �

�(z; w)2

4t
):

Let Gn = fg 2 G : n < �(0; g(0)) � n + 1g and Nn = #Gn. The critical exponent
ı = lim supk(logNk)/k; is always a lower bound for dim(Λ), and equality holds in many
cases, e.g., when G is finitely generated. See Bishop and P. W. Jones [1997a], Sullivan
[1984].
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Putting these estimates together (and dropping the non-exponential terms) gives

e��0t
' kM (x; x; t) '

X
n

X
g2Gn

k3
H(0; g(0); t) ' e�t

X
n

e�(1�ı)n�n2/4t :

The final sum is dominated by the term n = �2t(1 � ı), and comparing the exponents
gives �0 = ı(2 � ı), a well known formula relating the geometry of Λ to Brownian
motion on M . Are other relations possible? If C (M ) is non-compact, but has finite
volume, Sullivan [ibid.] showed the limit set has finite, positive packing measure (instead
of Hausdorff measure, as happens when C (M ) is compact). Is this reflected by some
property of Brownian motion or harmonic measure on M ?

When vol(C (M )) = 1, Peter Jones and I proved that either (1) �0 = 0 and dim(Λ) =

ı = 2 or (2) �0 > 0 and area(Λ) > 0. See Bishop and P. W. Jones [1997a]. Again, this
reduces to harmonic measure estimates: bounding !(z; @C (M ); M ) at points deep inside
C (M ). Both cases above can occur in general, but the second case (area(Λ) > 0) is im-
possible for finitely generated groups with Ω ¤ ¿; this is the Ahlfors measure conjecture
and was proven independently by Agol [2004] and by Calegari and Gabai [2006].
� Dimension of dendrites: We can strengthen the Ahlfors conjecture in some cases. Con-
sider a singly degenerate manifold M ' Σ � R where C (M ) contains one end of M ,
and also assume that M has positive injectivity radius (i.e., non-trivial loops have length
bounded away from zero). See Figure 12. Then the limit setΛ is a dendrite (connected and
does not separate the plane) of dimension 2 and area zero. Such limit sets are notoriously
difficult to understand and compute.

C(M)

M

R1

Figure 12: Co-compact quasi-Fuchsian manifolds can limit on a singly degenerate
M : C (M ) contains a geometrically infinite end of M , and its complement is a
geometrically finite end.

In this case, the tunnel vision function is constant, but there is an interesting alternative.
By pushing the pole of Green’s function G to 1 through the geometrically infinite end,
normalizing at a fixed point, and using estimates of jrGj in terms of the injectivity radius,
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one can show there is a positive harmonic function u on M that is zero on R1 � @1M ,
and grows linearly in the geometrically infinite end, i.e., u(z) ' 1 + dist(z; @C (M )) for
z 2 C (M ). See Bishop and P. W. Jones [1997b]. Note that u lifts to a positive harmonic
U on H3, and U must be the Poisson integral of a measure � supported on Λ.

We expect Brownian motion, Bt , on the geometrically infinite end of M to behave like
a Brownian path in [0; 1). By the law of the iterated logarithm (LIL), we then expect
u(Bn) to be as large as

p
n log logn infinitely often (i.o.). Since a Brownian path on H3

tends to the boundary at linear speed in the hyperbolic metric, this means that at �-a.e.
z 2 Λ, i.o. we have U ((1 � e�n) � z) '

p
n log logn. Estimates for the Poisson kernel

then imply that �–a.e. point of Λ is covered by disks such that

�(D(z; t)) ' '(t) = t2
r
log

1

t
log log log

1

t
:

In fact, this optimistic calculation is actually correct; the paper Bishop and P. W. Jones
[ibid.] shows that Λ has finite, positive Hausdorff '-measure, verifying a conjecture of
Sullivan [1981a]. The optimal gauge ' for the general case, where injectivity radius ap-
proaches zero, remains unknown. What about subsets of Λ defined using geodesic rate of
escape as in Gönye [2008], or Lundh [2003]?

3 Logarithms, length and Liouville

� Makarov’s theorems: The LIL above for dendritic limit sets was much easier to dis-
cover because the connection between harmonic measure, random walks and Hausdorff
dimension had already been uncovered by a celebrated result of Nick Makarov a decade
earlier; see Makarov [1985]. Suppose Ω is planar and simply connected. He showed that
if

'C (t) = t exp

 
C

r
log

1

1 � t
log log log

1

1 � t

!
;

then there is a C = C1 so that !(E) = 0 whenever E has zero 'C -measure. However,
there is also a C = C2, and a fractal domain Ω, so that !(E) = 1 for some set E � @Ω of
'C measure zero. In fact, we can take Ω to be the interior of the von Koch snowflake, or
any sufficiently “wiggly” fractal (some cases were known earlier, e.g., Carleson’s paper
Carleson [1985]). Makarov discovered that if f : D ! Ω is conformal, then the harmonic
function g = log jf 0j behaves precisely like the dyadic martingale fung on T defined on
each nth generation dyadic interval I � T by

un = lim
r%1

1

jI j

Z
I

g(rei� )d�:(1)
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Distortion estimates for f 0 imply this limit exists and jg(z) � un(I )j = O(1); for any z

in the Whitney square corresponding to I . See Figure 13.

Figure 13: A Whitney decomposition of the disk and an enlargement near the
boundary. Each box corresponds to a dyadic interval on the boundary. Although
g = log jf 0j is non-constant on each box, it is within O(1) of the associated mar-
tingale value.

The fung have bounded differences, and the LIL for suchmartingales implies jun(x)j =

O(
p

n log logn); for a.e. x 2 T . This, in turn, gives

jg(r � x)j = O

 r
log

1

1 � r
log log log

1

1 � r

!
;

as r % 1 for a.e. x 2 T , and this implies Makarov’s LIL. Makarov’s discovery has
since been refined and exploited in many interesting ways, e.g., it makes sense to talk
about the asymptotic variance of g = log jf 0j near the boundary and precise estimates
for this have led to exciting developments in the theory of conformal and quasiconformal
mappings, e.g., see the papers Astala, Ivrii, Perälä, and Prause [2015], Hedenmalm [2017],
Ivrii [2016].

Makarov’s LIL is just half of a remarkable theorem: dim(!) = 1 for any simply con-
nected planar domain, where dim(!) = infE fdim(E) : !(E) = 1g. Since 'C (t) = o(t˛)

for any ˛ < 1, the LIL shows dim(E) < 1 implies !(E) = 0. Hence dim(!) � 1. On
the other hand, since g = log jf 0j behaves like a martingale, along a.e. radius it is either
bounded or oscillates between �1 and 1. The boundary set where the former happens
maps to � -finite length (since this set is a countable union of sets where jf 0j is radially
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bounded) and the latter set maps to zero length (since jf 0j ! 0 along some radial se-
quence). Thus dim(!) � 1. See Pommerenke [1986]. For extensions to general planar
domains, see P. W. Jones and Wolff [1988], Wolff [1993].

The obvious generalization to higher dimensions is that dim(!) = n for domains in
Rn+1. Bourgain [1987], proved dim(!) � n + 1 � �(n), Wolff [1995] constructed inge-
nious fractal “snowballs” inR3 where dim(!) can be strictly larger than or strictly smaller
than 2, so the generalization above is false. In the plane, log jruj is subharmonic if u is
harmonic, and the failure of this key fact in R3 is the basis of Wolff’s examples. However,
in Rn+1, jrujp is subharmonic if p > 1� 1/n, and this suggests dim(!) � n+ 1� 1/n

for all Ω � Rn+1, but this remains completely open.
� Harmonic measure and rectifiability: The F. and M. Riesz theorem (F. Riesz and M.
Riesz [1920]) states that for a simply connected planar domain with a finite length bound-
ary, harmonic measure and 1-measure are mutually absolutely continuous. Extending this
has been a major goal in the study of harmonic measure for the last century.

For example, McMillan [1969] proved that for a general simply connected domain in
R2, ! gives full measure to the union of two special subsets of the boundary: the cone
points and the twist points. Cone points are simply vertices of cones inside Ω, and on
these points ! and Hausdorff 1-measure are mutually absolutely continuous. McMillan’s
theorem generalizes the F. and M. Riesz theorem since almost every point of a rectifiable
curve is a tangent point, and hence is a cone point for each side.

A point w 2 @Ω is a twist point if arg(z � w) on Ω is unbounded above and below in
any neighborhood of w. More geometrically, any curve in Ω terminating at w must twist
arbitrarily far in both directions around w. On the twist points we have

lim sup
r!0

!(D(x; r))

r
= 1; lim inf

r!0

!(D(x; r))

r
= 0:(2)

The left side is due to Makarov [1985]; it implies that on the twist points, ! is supported
on a set of zero length. The right side is due to Choi [2004].

Choi’s theorem has an interesting consequence. Suppose E consists of twist points, fix
� > 0, and cover !-a.e. point of E using disjoint disks such that !(D(xj ; rj )) < �rj

(use the Vitali covering lemma). Then any curve 
 containing E has length at least

`(
) �
X

j

rj �
1

�

X
j

!(Dj \ E) �
!(E)

�
;

i.e., `(
) = 1 if !(E) > 0. This implies the “local” F. and M. Riesz Theorem: if E

is a zero length subset of a rectifiable curve, then !(E) = 0 for any simply connected
domain. A quantitative version of this, proven in Bishop and P. W. Jones [1990], Bishop
and P. W. Jones [1994], was one of the first applications of Jones’ ˇ-numbers and his trav-
eling salesman theorem characterizing planar rectifiable sets in terms of ˇ-numbers P. W.
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Jones [1990]. There has been steady progress since this result on the relationship between
harmonic measure and rectifiability, and even a sketch of this area would fill a survey
longer than this one. A recent landmark, giving a converse to the local Riesz theorem in
all dimensions, is due to Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and
Volberg [2016]: if !jE � HnjE then !jE is rectifiable (it’s support can be covered by
countably many Lipschitz graphs). Since ! is the normal derivative of Green’s function
G, ! � Hn roughly means that jrGj is bounded near a subset of E, and this implies that
the Riesz transforms (which relate the components of rG) are bounded operators with re-
spect to ! on a suitable subset. Several recent deep results on singular integral operators
and geometric measure theory then imply rectifiability; e.g., see Léger [1999], Nazarov,
Tolsa, and Volberg [2014], Nazarov, Treil, and Volberg [2003].

The left side of Equation (2) has an amusing corollary. If x 2 @Ω1 \ @Ω2, where
Ω1;Ω2 � Rn+1 are disjoint with harmonic measures !1; !2 (fix some base point in each),
then by Bishop [1991]

!1(D(x; r)) � !2(D(x; r)) = O(r2n):(3)

Now assume n = 1 and 
 = @Ω1 = @Ω2 is a closed Jordan curve. By the left side of
Equation (2), !-a.e. twist point of Ω1 can be covered by disks where !1(D) � r , so by
Equation (3), these disks must also satisfy !2(D) � r � !1(D). This implies !1 ? !2

on the twist points of 
 . On the tangent points of 
 , !1 and !2 are mutually continuous to
each other and to 1-measure, so !1 ? !2 on 
 if and only if the set of tangent points of 


has zero length; see Bishop, Carleson, Garnett, and P. W. Jones [1989]. This happens for
the von Koch snowflake, as well as many other fractal curves. See Figure 14.

Figure 14: Conformal images of 120 equally spaced radial lines, illustrating the
singularity of the inner and outer harmonic measures. On the right are 100 and 1000
Kakutani walks on each side; white shows points that are hard to hit from either side.

One way to think about Equation (2) is to consider a castle whose outer wall is a
snowflake. If the fractal fortress is attacked by randomly moving warriors, then only a
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zero length subset of the wall needs to be defended, whereas if the fortress wall was finite
length then it must all be defended. Thus a fractal fortress would be easier to defend (at
least against a drunken army). However, because of the local Riesz theorem, it would take
an officer infinite time to inspect all the defended positions.
� Conformal welding: We would like to compare !1; !2 for the two sides of a curve 
 ,
but !1/!2 does not make sense in general. Instead, we consider the orientation preserving
(o.p.) circle homeomorphism h = g�1 ı f , where f and g are conformal maps from the
two sides of the unit circle to the two sides of 
 . Such an h is called a “conformal welding”
(CW). Not every circle homeomorphism is a conformal welding (see Figure 15), and a
useful characterization is likely to be very difficult to find.

f f

gg

1

1

2

2

Figure 15: If f1; g1 map the two sides of T to the two sides of a sin(1/x) curve 
 ,
then h = g�1

1 ı f1 is a homeomorphism, but is not a CW. Otherwise, h = g�1
2 ı f2

withmaps corresponding to a Jordan curve, and then (byMorera’s theorem) f2ıf �1
1

and g2 ı g�1
1 would define a conformal map from the complement of a segment to

the complement of a point, contradicting Liouville’s theorem.

If h(z) = z, then the maps f; g are equal on T , so by Morera’s theorem they define
a 1-1 entire function, and this must be linear by Liouville’s theorem. Thus only circles
can have equal harmonic measures on both sides. If h is bi-Lipschitz with constant near
1, David [1982] showed the corresponding curve is rectifiable, but for large constants the
curve can have infinite length (see citeMR852832), or even dimension close to 2 (see
Bishop [1988]). Nothing is known about where this transition occurs.

Every “nice” o.p. circle homeomorphism is a conformal welding, where “‘nice” means
quasisymmetric; this includes every diffeomorphism but also many singular maps. These
send full Lebesgue measure on T to zero measure; this happens exactly when !1 ? !2,
as for the snowflake. Surprisingly, all sufficiently “wild” homeomorphisms are also con-
formal weldings, where “wild” means log-singular: there is a set E of zero logarithmic
capacity on the circle so thatT nh(E) also has zero logarithmic capacity. Zero logarithmic
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capacity sets are very small, e.g., Hausdorff dimension zero, so log-singular homeomor-
phisms are very, very singular. See Lundberg [2005]. Moreover, each log-singular map h

corresponds to a dense set of all closed curves in the Hausdorff metric, so the association
h $ 
 is far from 1-to-1. See Bishop [2007].

To illustrate the gap between these two cases, consider the space of circle homeomor-
phisms with the metric d (f; g) = jfx : f (x) ¤ g(x)gj. This space has diameter 2� and
the set of QS-homeomorphisms and log-singular homeomorphisms are distance 2� apart.
However, conformal weldings are known to be dense in this space; see Bishop [ibid.]. Are
they a connected set in this metric? Residual? Borel? For some generalizations and ap-
plications of conformal welding, see the papers of Feiszli [2008], Hamilton [1991], and
Rohde [2017].

4 True trees and transcendental tracts

� Dessins d’enfants: As noted above, a curve 
 with !1 = !2 must be a circle. Thus
in terms of harmonic measure, a circle is the most “natural” way to draw a closed Jordan
curve. What happens for other topologies? Can we draw any finite planar tree T so
harmonic measure is equal on “both sides”? More precisely, with respect to the point at
infinity, can we draw T so that

(1) every edge has equal harmonic measure,
(2) any subset of any edge has equal harmonic measure from both sides?

Perhaps surprisingly, the answer is yes, every finite planar tree T has such drawing, called
the “true form of the tree” (or a “true tree” for short). To prove this, consider Figure 16.
Let � be a quasiconformal map of the exterior Ω of T to D� = fz : jzj > 1g, with each
side of T mapping to an arc of length �/n, and arclength on each edge mapping to a
multiple of arclength in the image. Let J (z) = 1

2
(z + 1

z
) be the Joukowsky map; this is

conformal from D� to U = C n [�1; 1]. Then q(x) = J (�(z)n) is quasiregular off T and
continuous across T , so is quasiregular on C.

By the measurable Riemannmapping theorem there is a QC “correction” map ' : C !

C so that p = q ı ' is holomorphic. Since p is also n–to–1, it must be a polynomial of
degree n. Its only critical values are ˙1, so it is a generalized Chebyshev, or Shabat,
polynomial and T 0 = '(T ) = p�1([�1; 1]) is a true tree.

It is easy to see that the polynomial p can be normalized to have its coefficients in
some algebraic number field. This connection is part of Grothendieck’s’ theory of dessins
d’enfants and is closely connected to the spherical case of Belyi’s theorem: a Riemann sur-
face is algebraic iff it supports a meromorphic function ramified over three values. There
are many fascinating related problems, e.g., Grothendieck proved that the absolute Galois
groupGal(Q/Q) acts faithfully on the set of planar trees, but the orbits are unknown (some
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Figure 16: For a true tree, the conformal map � : C n T ! D� sends sides of T to
arcs of equal length arcs. In general, we choose a QC map � that sends normalized
arclength on sides of T to arclength on T ; then q(z) = J (�(z)n) is continuous
across T and quasiregular on C.

things are known, e.g., equivalent trees have the same set of vertex degrees). For more
background see G. A. Jones and Wolfart [2016], Schneps [1994], Shabat and Zvonkin
[1994].

It is a difficult problem to compute the correspondence between trees and polynomials,
but this has been done by hand for trees with 10 or fewer edges, Kochetkov [2007], Ko-
chetkov [2014]. It is possible to go much farther using harmonic measure. Don Marshall
and Steffen Rohde have adapted Marshall’s conformal mapping program ZIPPER; to com-
pute the true form of a given planar tree (even with thousands of edges). See Marshall
and Rohde [2007]. For small trees (less than 50 edges or so) they can obtain the vertices
(and hence the polynomial) to thousands of digits of accuracy. Given enough digits of an
algebraic integer ˛ 2 R one can search for an integer relation among 1; ˛; ˛2; : : : , that de-
termines the field, e.g., using Helaman Ferguson’s PSLQ algorithm; see Ferguson, Bailey,
and Arno [1999].

Alex Eremenko asked if Shabat polynomials have special geometry. In Bishop [2014],
I showed the answer is no in the sense that given any compact, connected set K there
are polynomials with critical values ˙1 whose critical sets approach K in the Hausdorff
metric. In particular, the true tree T = p�1([�1; 1]) can be �-close to any connected
shape, i.e., “true trees are dense”. See Figure 17.

Figure 17: True trees approximating some random letters of the alphabet.
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Is there a higher dimensional analog of true trees? In what other settings does “equal
harmonic measure from both sides” makes sense and lead to interesting problems? If we
drop (1) from the definition of a true tree, then we get trees that connect their vertices
using minimum logarithmic capacity. See Stahl [2012].
� Dessins d’adolescents: Given the connection between true trees and polynomials, it is
natural to ask about a correspondence between infinite planar trees and entire functions,
e.g., is every unbounded planar tree T equivalent to f �1([�1; 1]) for some entire function
f with critical values ˙1? The answer is no: one can show the infinite 3-regular tree is
not of this form. However, a version of the “true trees are dense” construction does hold.
Consider how to adapt the construction in Figure 16 to unbounded trees, as in Figure 18.
Now, Ω = C n T is a union of unbounded, simply connected domains, called tracts, and
each of these tracts can be mapped to Hr = fx + iy : x > 0g, by a conformal map � . The
power function zn is replaced by exp : Hr ! D�, but is still followed by the Joukowsky
map, giving a holomorphic function F (z) = J (exp(�(z))) on each tract, but F need
not be continuous across T . Fixing this requires some assumptions (some regularity of T

that replaces finiteness). Via � , the vertices of T define a partition of iR = @Hr and we
assume that this partition satisfies

(1) adjacent intervals have comparable length,
(2) interval lengths are all � � .

Under these hypotheses, the QC-folding theorem fromBishop [2015] gives a quasi-regular
g that agrees with F outside T (r) = [e2T fz : dist(z; e) < r � diam(e)g; where the union
is over all edges in T . The tree T 0 = g�1([�1; 1]) satisfies T � T 0 � T (r). The
measurable Riemann mapping theorem gives a quasiconformal ' so that f = g ı '�1 is
an entire function with critical values ˙1 and no other singular values (the singular set
S(f ) is the closure of the critical values and finite asymptotic values, i.e., limits of f

along curves to 1).
Since g is holomorphic off T (r), �' is supported in T (r) and is uniformly bounded

in terms of the assumptions on T . In many applications T (r) has finite, even small, area,
and ' is close to the identity. Thus the QC-folding theorem converts an infinite planar
tree T satisfying some mild restrictions into an entire function f with S(f ) = f˙1g, and
such that T 0 = f �1([�1; 1]) is “close to” T in a precise sense.

Let T denote the transcendental entire functions (non-polynomials). The Speiser class
is S = ff 2 T : S(f ) is finiteg, and the Eremenko-Lyubich class is B = ff 2 T :

S(f ) is boundedg. The QC-folding theorem (or simple modifications) gives a flexible
way to construct examples in S and B with specified singular sets, including:
I A f 2 B with a wandering domain. Wandering domains do not exist for rational func-
tions by Sullivan’s non-wandering theorem Sullivan [1985], nor in S bywork of Eremenko
and Lyubich [1992] and Goldberg and Keen [1986]. See Figure 19. See also the paper of
Lazebnik [2017].
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Figure 18: The transcendental version of Figure 16. F is holomorphic off T but not
necessarily across T . QC-folding defines a quasiregular g so that g = F outside a
“small” neighborhood of T .

I A f 2 S so that area(fz : jf (z)j > �g) < 1 for all �. This is a strong counterexample
to the area conjecture of Eremenko and Lyubich [1992].
I A f 2 S whose escaping set has no non-trivial path components; this improves the
counterexample to the strong Eremenko conjecture in B due to Rottenfusser, Rückert,
Rempe, and Schleicher [2011].
I A f 2 S so that lim supr!1 logm(r; f )/ logM (r; f ) = �1 where m; M denote the
min, max of jf j on fjzj = rg. In 1916 Wiman had conjectured lim sup � �1, as occurs
for exp(z). Beurling [1949] gave a partial positive result, but Hayman [1952] found a
counterexample in general, and QC-folding now improves this to S.
I f 2 S with Julia sets so that dim(J) < 1 + � Albrecht and Bishop [2017]. Examples
in B are due to Stallard [1997], Stallard [2000], who also showed dim(J) > 1 for f 2 B.
Baker [1975] proved dim(J) � 1 for all f 2 T , and examples with dim(J) = 1 (even
with finite spherical linear measure) exist Bishop [2018], but it is unknown whether they
can lie on a rectifiable curve on the sphere.
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DECOUPLINGS AND APPLICATIONS
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Abstract

We describe a Fourier analytic tool that has found a large number of applications
in Number Theory, Harmonic Analysis and PDEs.

1 Introduction

The circle of ideas described in this note have grown inside the framework of restriction
theory. This area of harmonic analysis was born in the late 60s, when Elias Stein has
considered the problem of restricting the Fourier transform of anLp functionF : Rn ! C
to the sphere Sn�1. When p = 1, the Fourier transform is always a continuous function,
its value is well defined at each point. At the other extreme, when p = 2, bF is merely
measurable, so restricting it to a set of Lebesguemeasure zero such asSn�1 is meaningless.
It turns out that the range 1 < p < 2 hosts a completely new phenomenon. A plethora
of restriction-type estimates exist in this range, for a wide variety of curved manifolds
other than the sphere. These are quantified by various operator bounds on the so-called
extension operator, to be introduced momentarily.

A major breakthrough in the analysis of the extension operator came with the discovery
of its relation to the quantitative forms of the Kakeya set conjecture. In one of its simplest
forms, this conjecture asserts that each subset of Rn containing a unit line segment in ev-
ery direction must have full Hausdorff dimension n. This is trivial when n = 1, relatively
easy to prove when n = 2, and wide open for n � 3. The quantitative formulations of
the conjecture involve estimating the overlap of collections of congruent tubes of arbi-
trary orientations. The afore-mentioned extension operator has an oscillatory nature, but
it can be decomposed into pieces which have roughly constant magnitude on appropriate
tubes. Then one can gain valuable information by understanding the worst conspiracies
that tubes can use to maximize their overlap. Using the intuition from the case when tubes

The author is partially supported by the NSF Grant DMS-1161752.
MSC2010: primary 42B20; secondary 11L05, 42B37.
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are replaced with lines can sometimes be helpful, though it has been well documented that
the thickness of the tubes creates significant additional complications.

It turns out that the overlap question is easier to understand if one intersects families of
tubes with very separated directions. This property will be called transversality. A critical
role in the arguments presented in the following is played by the multilinear Kakeya esti-
mate of Bennett, Carbery, and Tao [2006], which proves a sharp bound on the intersection
of n transverse families of tubes. The way to harness the power of multilinear estimates in
order to prove linear ones was explained by Bourgain and Guth in the fundamental paper
Bourgain and Guth [2011].

A built-in feature of any restriction estimate is that of scale. Scales arise by localizing
the operator to spatial balls of finite radius. The operator norms at various scales are
typically compared using a process called induction on scales. A bootstrapping argument
forces these operator norms to only grow mildly with the scale. Sometimes an � removal
argument is available to completely eliminate this dependence. In other cases, such as with
decouplings, finding an � removal mechanism continues to remain a challenge. Parabolic
rescaling and its variants is a key tool that allows moving back and forth between different
scales. This exploits the invariance of the manifold under certain affine transformations
which interact well with the Fourier transform.

We will start by analyzing a few classical exponential sum estimates and will continue
by showing how decouplings lead to new ones. We close by presenting the proof of the
simplest decoupling at critical exponent, an L6 result for the parabola.

2 Stein–Tomas–Strichartz and exponential sum estimates on small
balls

We will denote by e(z) the quantity e2�iz , z 2 R. For F 2 L1(Rn) we recall its Fourier
transform bF (�) =

Z
Rn

F (x)e(�x � �)dx; � 2 Rn:

LetD be an open cube, ball or annulus inRm, 1 � m � n�1. Given a smooth function
 : D ! Rn�m we define the manifold

(1) M = M = f(�;  (�)) : � 2 Dg

and its associated extension operator for f : D ! C

Ef (x) = EMf (x) =

Z
D

f (�)e(x̄ � � + x�
�  (�))d�; x = (x̄; x�) 2 Rm � Rn�m:
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For a subset S � D we will denote E(f 1S ) by ESf . The defining formula shows
that ESf is the Fourier transform of the pullback of the measure fd� from Rm to the
manifold.

Examples of interesting manifolds arising this way include the truncated paraboloid

Pn�1 = f(�1; : : : ; �n�1; �
2
1 + : : :+ �2n�1) : j�i j < 1g;

the hemispheres
Sn�1

˙ = f(�;˙
p
1 � j�j2); j�j < 1g;

the truncated cone
Con�1 = f(�; j�j) : 1 < j�j < 2g

and the moment curve

Γn = f(�; �2; : : : ; �n) : � 2 (0; 1)g:

To provide the reader with some motivation for considering the extension operator, let
Ψ(x̄; t) be the solution of the free Schrödinger equation with initial data g(

2�iΨt = ∆x̄Ψ; (x̄; t) 2 Rn�1 � R

Ψ(x̄; 0) = g(x̄)
:

A simple computation reveals that Ψ(x̄; t) = EPn�1
f (x̄; t), where f =bg. A similar

relation exists between the cone and the wave equation and also between the sphere and
the Helmholtz equation.

The following theorem provides the first wave of restriction estimates that were ever ob-
tained. They are due to Stein and Tomas in the case of the (hemi)sphere, and to Strichartz
in the case of the paraboloid. What makes them special is the fact that the function f is
estimated in L2. The core of the argument relies on the T T � method.

Theorem 2.1 (Stein [1993], Strichartz [1977], Tomas [1975]). Let E be the extension
operator associated with either Sn�1

˙
or Pn�1. Then for each p �

2(n+1)
n�1

and f 2 L2(D)

we have
kEf kLp(Rn) . kf k2:

There is an equivalent way to rephrase this theorem, using a rather standard local to
global mechanism. The resulting inequality is an example of discrete restriction estimate.
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Corollary 2.2. Let M be either Sn�1 or Pn�1. For each R � 1, each collection Λ � M
consisting of 1

R
-separated points, each sequence a� 2 C and each ball BR of radius R in

Rn we have

(2) k
X
�2Λ

a�e(� � x)k
L

2(n+1)
n�1 (BR)

. R
n�1
2 ka�kl2 :

If we introduce the normalized Lp norms

kF kLp

]
(B) := (

1

jBj

Z
B

jF j
p)1/p;

then (2) says that

(3) k
X
�2Λ

a�e(� � x)k
L

2(n+1)
n�1

]
(BR)

. R
n�1

2(n+1) ka�kl2 :

The exponent ofR is sharp, as can be seen by taking a� � 1 andΛ a maximal 1
R
-separated

set.
We will call the scale R of the spatial balls BR the uncertainty principle scale, as it

is the reciprocal of the scale that separates the frequency points �. Since averages over
large balls are controlled by averages over smaller balls, inequality (3) persists if BR is
replaced with BR0 for R0 � R. However, we will see that averaging the exponential sums
over larger spatial balls will lead to improved estimates. This will be a direct consequence
of the new decoupling phenomenon. In short, the waves e(� � x) oscillate in different
directions, and annihilate each other better if they are given more room to interact.

3 A first look at decouplings

Let (fj )Nj=1 be N elements of a Banach space X . The triangle inequality

k

NX
j=1

fj kX �

NX
j=1

kfj kX

is universal, it does not incorporate any possible cancelations between the fj . When
combined with the Cauchy–Schwarz inequality it leads to

k

NX
j=1

fj kX � N
1
2 (

NX
j=1

kfj k
2
X )

1/2:
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But if X is a Hilbert space (e.g. X = L2(T )) and if fj are pairwise orthogonal (e.g.
fj (x) = e(xj )) then we have a stronger inequality (in fact an equality)

k

NX
j=1

fj kX � (

NX
j=1

kfj k
2
X )

1/2:

We will call such an inequality l2(X) decoupling. It is natural to ask if there is some-
thing analogous in Lp(Rn) when p 6= 2, in the absence of Hilbert space orthogonality.

The answer is yes. Our first example (X = L4[0; 1]) is due to the ”bi-orthogonality”
of the squares. Note that we loseN � (and some loss inN is in fact necessary in this case),
but this will be acceptable in our definition of decoupling.

Theorem 3.1 (Discrete l2(L4) decoupling for squares). For each � > 0, the following
decoupling holds

k

NX
j=1

aj e(j
2x)kL4[0;1] .� N �(

NX
j=1

kaj e(j
2x)k2L4[0;1])

1/2 = N �
kaj kl2 :

Proof. We present the argument in the case aj = 1, the general case requires only minor
modifications. By raising to the fourth power, the left hand side equalsZ 1

0

X
1�ji �N

e((j 2
1 + j 2

2 � j 2
3 � j 2

4 )x)dx =
X

1�j1;j2�N

jf(j3; j4) : j
2
3 + j 2

4 = j 2
1 + j 2

2 gj

.� N 2+�:

The last inequality follows since the equation

j 2
3 + j 2

4 = A

has .� A� solutions, Grosswald [1985].

The second well known example relies on the “multi-orthogonality” of the sequence
2j .

Theorem 3.2 (Discrete Lp decoupling for lacunary exponential sums). For 1 � p < 1

and aj 2 C

k

NX
j=1

aj e(2
jx)kLp [0;1] ∼p (

NX
j=1

kaj e(2
jx)k2Lp [0;1])

1/2 = kaj kl2 :
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These easy examples are of arithmetic structure. We will develop tools that do not
depend on this restriction. The reader will notice that what lies behind both examples is
the fact that there is increasing level of separation between higher frequencies (squares,
powers of 2). We will see that in higher dimensions quasi-uniform separation will suffice,
as long as the frequencies lie on a curved manifold.

We close this section with one of the most important results in classical harmonic analy-
sis, perhaps in the entire mathematics. It is a consequence and a continuous reformulation
of Theorem 3.2.

Theorem 3.3 (Littlewood–Paley theorem). Given f : R ! C, let

Pjf (x) =

Z
Ij

bf (�)e(x�)d�
be its Fourier projection on Ij = [2j ; 2j+1] [ [�2j+1;�2j ], for j 2 Z. Then for each
1 < p < 1

kf kLp(R) ∼p k(
X
j

jPjf j
2)

1
2 kLp(R):

For our purposes, it suffices to note that, when combined with Minkowski’s inequality,
the Littlewood–Paley theorem leads to the following l2(Lp) decoupling on the real line,
for p � 2

kf kLp(R) . (
X
j

kPjf k
2
Lp(R))

1
2 :

4 Fourier analytic decouplings

For a ball (or cube) BR in Rn with center c and radius (side length) R, we will denote by
wBR

(x) a weight of the form (1 + jx�cj

R
)�C , for some large unspecified C . This can be

thought of as being a smooth approximation of 1BR
.

Fix a manifold M = M as in (1) and let f : D ! C. If we partition D into sets �
then we may write

EMf =
X
�

EM
� f:

Roughly speaking, EM
� f (x) has the oscillatory phase e(x � (�� ;  (�� ))), where �� is a

point in � . If M has some curvature, which is the same as saying that  is “far” from
being affine, then there will be lots of cancellations between the components EM

� f (x).
This will be formalized by a Fourier decoupling, which (for now) takes the following
rather vague conjectural form.
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Conjecture 4.1 (Fourier decoupling). Let M be sufficiently curved. Then there is a crit-
ical index pc > 2 and some q � 1 so that for each partition Pı of the domain D into N
“caps” � of “size” ı we have

kEMf kLp(BR) .� ı��(
X
�2Pı

kEM
� f k

2
Lp(wBR

))
1/2 (l2(Lp) decoupling)

or (alternatively)

kEMf kLp(BR) .� ı��N
1
2 � 1

p (
X
�2Pı

kEM
� f k

p

Lp(wBR
))

1/p (lp(Lp) decoupling)

for each ball BR with radius R � ı�q and each 2 � p � pc .

The presence of wBR
on the right hand side is probably necessary, but completely

harmless for applications.
Note that an l2 decoupling always implies an lp decoupling, due to the Cauchy-Schwarz

inequality. However, sometimes the former is false and the latter is true. In most applica-
tions, an lp decoupling is as good as an l2 decoupling.

The shape of the “caps”, the precise meaning of “size” as well as the values of q and of
the critical exponent pc depend on the manifold M. Due to orthogonality considerations,
there is always a decoupling for p = 2, even for flat manifolds (hyperplanes). In this
latter case however, considering f � 1 shows that there is no decoupling outside L2, so
pc = 2.

The formulation of Conjecture 4.1 is vague in many ways. There are interesting exam-
ples of manifolds that are known to simultaneously host different decoupling phenomena,
corresponding to different values of pc , q and for different types of caps. While, as ob-
served in Section 2, restriction inequalities are associated with the uncertainty principle
scale (q = 1), the most genuine decouplings will happen at spatial scales of magnitude
q � 2.

The first to consider a Fourier decoupling was Wolff [2000]. He proved an lp(Lp)
decoupling for the cone Co2 when p > 74, by masterfully combining Fourier analytic
and incidence geometric arguments. In his theorem the caps are thin annular sectors of
dimensions ∼ ı and 1. Wolff also showed that his decoupling has consequences for the
local smoothing of the solutions to the wave equation. Subsequent developments for the
higher dimensional cone and other manifolds, prior to the work we are about the describe
here, have appeared in Łaba and Wolff [2002], Laba and Pramanik [2005], Garrigós and
Seeger [2009], Garrigós and Seeger [2010], Pramanik and Seeger [2007], Bourgain [2013]
and Demeter [n.d.].

The first full range results for any manifold came in our joint work Bourgain and Deme-
ter [2015] with Jean Bourgain.



1564 CIPRIAN DEMETER

Theorem 4.2. Assume M has positive definite second fundamental form (e.g. Sn�1,
Pn�1). For any partition of the domain D into square-like caps � with diameter ı we
have

kEMf kLp(BR) .� ı��(
X
�

kEM
� f k

2
Lp(wBR

))
1/2

as long as R � ı�2 and 2 � p �
2(n+1)
n�1

.

The proof of this for P 1 will be presented in Section 6. Quite surprisingly, we were
able to use this result for Pn�1 as a black box, in order to derive the sharp result for the
cone in all dimensions, thus closing the program initiated by Wolff. Let us get a glimpse
into our argument for Co2. After a rotation, the equation of Co2 can be rewritten as
z = x2

y
. The y-slices are parabolas with roughly the same curvature. This forces small

pieces of the cone to be close to parabolic cylinders. One may combine the decoupling for
the parabola with Fubini in the zero curvature direction to gradually separate the cone into
smaller pieces. This argument is very different from Wolff’s, in that it does not require
any incidence geometry.

Theorem 4.3 (Bourgain and Demeter [2015]). Let M = Con�1 be the cone. For any
partition of the domainD = fj�j ∼ 1g into sectors � with angular width ı we have

kECon�1

f kLp(BR) .� ı��(
X
�

kECon�1

� f k
2
Lp(wBR

))
1/2

as long as R � ı�2 and 2 � p �
2n
n�2

. The range for p is sharp.

Another milestone of decoupling theory was the resolution of curves with torsion, in
collaboration with Bourgain and Guth. More precisely, consider Φ : [0; 1] ! Rn,

Φ(�) = (�1(�); : : : ; �n(�))

with �i 2 C n([0; 1]) and such that the Wronskian W (�0
1; : : : ; �

0
n)(�) is nonzero on [0; 1].

One example is the moment curve Γn. Let EΦ be the associated extension operator.

Theorem 4.4 (Bourgain, Demeter, and Guth [2016]). Partition [0; 1] into intervals � of
length ∼ ı. Then

kEΦf kLp(BR) .� ı��(
X
�

kEΦ
� f k

2
Lp(wBR

))
1/2

as long as R � ı�n and 2 � p � n(n+ 1). The range for p is sharp.
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The proof for Γ2 = P 1 appeared in Bourgain and Demeter [2015], while for n � 3

in Bourgain, Demeter, and Guth [2016]. The extension to the arbitrary Φ with torsion is
explained in Section 4 of Bourgain and Demeter [2017].

Decouplings for a wide variety of other manifolds have been proved in Bourgain and
Demeter [ibid.], Bourgain andDemeter [2016a], Bourgain andDemeter [2016b], Bourgain
[2017], Bourgain, Demeter, and Guo [2017], Demeter, Guo, and Shi [n.d.], Bourgain and
Watt [2017], Bourgain and Watt [n.d.], Guo and Oh [n.d.], and the list is rapidly growing.

5 Applications: Exponential sums on large balls

It turns out that there is a very simple mechanism that allows decouplings to imply expo-
nential sum estimates that are often sharp. Essentially, one applies the decoupling to a
weighted combination of (approximations of) Dirac deltas. In this regard each decoupling
seems to be stronger than the exponential sum estimate it implies, the author is not aware
of any argument that reverses the implication.

Theorem 5.1. Let M = M . Consider a partition Pı as in Conjecture 4.1, with N =

jPı j. Let �� 2 � for each � 2 Pı and let �� = (�� ;  (�� )) be the corresponding point on
M. Then for each 2 � p � pc , a� 2 C and each R � ı�q we have

k
X
�2Pı

a�e(�� � x)kLp

]
(BR) .� ı��

ka�kl2 ;

if the l2 version of the decoupling in Conjecture 4.1 holds true, and

k
X
�2Pı

a�e(�� � x)kLp

]
(BR) .� ı��N

1
2 � 1

p ka�klp ;

if the lp version of the conjecture holds instead.

Proof. Apply the conjecture to functions of the form f (�) =
P
�2Pı

a�1B(�� ;r)(�) and
let r ! 0. The computation is straightforward.

One notable feature of this estimate is that it does not assume anything else about ��
other than the separation guaranteed by the pairwise disjointness of the caps. In particular,
the points need not belong to a rescaled lattice. This is indicative of the fact that our
methods do not involve number theory, and that in fact sometimes they transcend the
barrier that is currently accessible using number theoretic methods.

Let us now consider a few particular cases of interest.
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5.1 Stricharz estimates. An application of Theorem 5.1 to Sn�1 and Pn�1 leads to the
following corollary.

Corollary 5.2. For each R � 1, each collection Λ consisting of 1
R
-separated points on

either Sn�1 or Pn�1 and each ball BR0 of radius R0 � R2 in Rn we have

(4) k
X
�2Λ

a�e(� � x)k
L

2(n+1)
n�1

]
(BR0 )

.� R�ka�kl2 :

Comparing this with (3) shows that large ball averages get smaller.
This corollary leads to sharp Strichartz estimates in the periodic and quasi-periodic case.

More precisely, fix 1
2
< �1; : : : ; �n�1 < 2 either rational or irrational. For � 2 L2(Tn�1)

consider its Laplacian

∆�(x1; : : : ; xn�1) =

X
(�1;:::;�n�1)2Zn�1

(�21�1 + : : :+ �
2
n�1�n�1)�̂(�1; : : : ; �n�1)e(�1x1 + : : :+ �n�1xn�1)

on the torus
Qn�1
i=1 R/(�iZ). Let also

eit∆�(x1; : : : ; xn�1; t) =

X
(�1;:::;�n�1)2Zn�1

�̂(�1; : : : ; �n�1)e(x1�1 + : : :+ xn�1�n�1 + t(�
2
1�1 + : : :+ �

2
n�1�n�1))

be the solution of the Schrödinger equation in this context. We have the following result.
When p > 2(n+1)

n�1
, the N � loss can be removed, see Bourgain and Demeter [2015] and

Killip and Vişan [2016].

Theorem 5.3 (Strichartz estimates for rational and irrational tori, Bourgain and Demeter
[2015]). Let � 2 L2(Tn�1) with supp(�̂) � [�N;N ]n�1. Then for each � > 0 and
p �

2(n+1)
n�1

we have

(5) keit∆�kLp(Tn�1�[0;1]) .� N
n�1
2 �

n+1
p +�

k�k2;

and the implicit constant does not depend on N .
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Proof. It suffices to consider the case p = 2(n+1)
n�1

. For �N � �1; : : : ; �n�1 � N define

�i =
�
1/2

i
�i

4N
and a� = �̂(�). A simple change of variables shows that

(6)
Z

Tn�1�[0;1]

jeit∆�j
p .

1

N n+1

Z
jy1j;:::;jyn�1j�8N

yn2I
N2ˇ̌̌̌

ˇ X
�1;:::;�n�1

a�e(y1�1 + : : :+ yn�1�n�1 + yn(�
2
1 + : : : �

2
n�1))

ˇ̌̌̌
ˇ
p

dy1 : : : dyn

where IN 2 is an interval of length ∼ N 2. By periodicity in the y1; : : : ; yn�1 variables we
bound the above by

1

N n+1N n�1

Z
BN2

ˇ̌̌̌
ˇ X
�1;:::;�n�1

a�e(y1�1 + : : :+ yn�1�n�1 + yn(�
2
1 + : : : �2n�1))

ˇ̌̌̌
ˇ
p

dy1 : : : dyn;

for some ball BN 2 of radius ∼ N 2. Our result will follow once we note that the points

(�1; : : : ; �n�1; �
2
1 + : : : �

2
n�1)

are ∼ 1
N

separated on Pn�1 and then apply Corollary 5.2 with R0 ∼ N 2.

5.2 Diophantine inequalities and the Vinogradov Mean Value Theorem. An appli-
cation of Theorem 5.1 to the moment curve gives the following exponential sum estimate.

Corollary 5.4. For each 1 � i � N , let ti be a point in ( i�1
N
; i
N
]. Then for eachR & N n

and each p � 2 we have

(
1

jBRj

Z
j

NX
i=1

aie(x1ti + x2t
2
i + : : :+ xnt

n
i )j

pwBR
(x)dx1 : : : dxn)

1
p .

(7) .� (N � +N
1
2 (1�

n(n+1)
p )+�)kaikl2(f1;:::;N g);

and the implicit constant does not depend on N , R and ai .
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For each 1 � i � N consider some real numbers i � 1 < Xi � i . We do not insist
that Xi are integers. Let SX = fX1; : : : ; XN g. For each s � 1, denote by Js;n(SX ) the
number of solutions of the following system of inequalities

(8) jX i1 + : : :+X
i
s � (X is+1 + : : :+X

i
2s)j � N i�n; 1 � i � n

with Xi 2 SX .

Corollary 5.5. For each integer s � 1 and each SX as above we have that

Js;n(SX ) .� N s+� +N 2s�
n(n+1)

2 +�;

where the implicit constant does not depend on SX .

Proof. Let � : Rn ! [0;1) be a positive Schwartz function with positive Fourier trans-
form satisfyingb�(�) � 1 for j�j . 1. Define �N (x) = �( x

N
). Using the Schwartz decay,

(7) with ai = 1 implies that for each s � 1

(
1

jBNn j

Z
Rn

�Nn(x)j

NX
i=1

e(x1ti + : : :+ xnt
n
i )j

2sdx1 : : : dxn)
1
2s

(9) .� N
1
2+� +N 1�

n(n+1)
4s +�;

whenever ti 2 [ i�1
N
; i
N
). Apply (9) to ti = Xi

N
. Let now

�N;1(x1; x2; : : : ; xn) = �(
x1

N n�1
;
x2

N n�2
; : : : ; xn):

It suffices to consider the case s = n(n+1)
2

. After making a change of variables and
expanding the product, the termZ

Rn

�Nn(x)j

NX
i=1

e(x1ti + : : :+ xnt
n
i )j

2sdx1 : : : dxn

can be written as the sum over all Xi 2 SX of

N
n(n+1)

2

Z
Rn

�N;1(x)e(x1Z1 + : : :+ xnZn)dx1 : : : dxn;

where
Zi = X i1 + : : :+X

i
s � (X is+1 + : : :+X

i
2s):
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Each such term is equal to

N n2b�(N n�1Z1; N
n�2Z2; : : : ; Zn):

Recall that this is always positive, and in fact greater than N n2 at least Js;n(SX ) times. It
now suffices to use (9).

The special case of Corollary 5.5 when Xi = i and the inequalities (8) are replaced
with equalities

X i1 + : : :+X
i
s = X is+1 + : : :+X

i
2s; 1 � i � n

was known as the Main Conjecture in the Vinogradov Mean Value Theorem. The case
n = 2 is very easy, while the case n = 3 was only recently proved by Wooley using the
efficient congruencing method, Wooley [2016]. The case n � 4 was proved for the first
time in Bourgain, Demeter, and Guth [2016].

6 The proof of the decoupling theorem for the parabola

In this section we prove Theorem 4.2 for the parabola P 1. The argument in higher dimen-
sions is very similar, though technically slightly more complicated. We will denote by E
the extension operator associated with P 1.

It will be more convenient to think of BR as being an arbitrary square (rather than ball)
with side length R in R2. We will often partition big squares into smaller ones.

Form � 0 let Im be the collection of the 2m dyadic subintervals of [0; 1] of length 2�m.
Thus I0 consists of only [0; 1]. Note that each I 2 Im+1 is inside some I 0 2 Im and each
I 0 2 Im has two “children” in Im+1, adjacent to each other.

Define Dec(n; p) to be the smallest constant such that the inequality

kEf kLp(wB4n ) � Dec(n; p)(
X
I2In

kEIf k
2
Lp(wB4n ))

1/2

holds true for each f : [0; 1] ! C. Minkowski’s inequality shows that Dec(n; p) controls
the decoupling on larger squares, too. By that we mean that the inequality

kEf kLp(wBR
) . Dec(n; p)(

X
I2In

kEIf k
2
Lp(wBR

))
1/2

holds for each R � 4n; with the implicit constant in . independent of R.
It will suffice to prove that

(10) Dec(n; p) .�;p 2n�; 2 � p � 6:
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The inequality Dec(n; 2) . 1 follows from simple orthogonality reasons. We start by
explaining why the proof of (10) is not quite as immediate as one would wish, whenp > 2.
Let Ap be the smallest constant that governs the decoupling into two intervals. In precise
terms, assume

kEf kLp(B) � Ap(kEJ1f k
2
Lp(wB ) + kEJ2f k

2
Lp(wB ))

1/2

holds for each disjoint intervals J1; J2 � R of arbitrary length L � 1 that are adjacent to
each other, each f : J1 [ J2 ! C and for each square B � R2 with side length at least
L�2. One can check that Ap > 1 for p > 2.

Since each I 0 2 Im has two children in Im+1, it is easy to see that

Dec(m+ 1; p) � ApDec(m;p):

Iterating this, we get the very unfavorable estimate Dec(n; p) � An�1
p Dec(1; p). Indeed,

note that Ap > 1 forces An�1
p � 2n�0 , for some �0 > 0. This shows that we can not

afford to lose Ap each time we go one level up (call this a step). Instead, we are going
to make huge leaps, and rather than going from level m to level m+ 1 at a time, we will
instead go from m to 2m. The choice for the size of this leap is motivated by the fact
that intervals in I2m have length equal to those in Im squared. We have a very efficient
mechanism to decouple from scale ı to ı2, namely the bilinear Kakeya inequality.

Each leap will combine two inequalities. One is a consequence of the bilinear Kakeya,
the other one is a form of L2 orthogonality. The loss for each application of the bilinear
Kakeya is rather tiny, at most nC (compare this with the loss Amp accumulated if instead
we went from level m to 2m in m steps). From I0 to In, we need logn such leaps, so
the overall loss from the repeated use of bilinear Kakeya amounts to nO(logn). This is
easily seen to be O(2n�) for each � > 0, as desired. There is however a price we pay
in our approach: in each leap we only decouple a 1 � �p fraction of the operator. See
Proposition 6.5 for a precise statement.

Here is a sketch of how we put things together, and we will limit attention to the hardest
case p = 6. First, we will do a trivial decoupling (Cauchy-Schwarz) to get from I0 to I n

2s

by loosing only 2O( n
2s ). We will be able to choose s as large as we wish, so this loss will

end up being controlled by 2n� . The transition from I n
2s

to In will then be done in s leaps,
by each time applying Proposition 6.5. Collecting all contributions, an a priori bound of
the form

Dec(n; 6) . 2nA; for some A > 0

will get upgraded to a stronger (assuming s is large enough) bound

Dec(n; 6) . 2n(A(1�
s+1

2s+1 )+ 1
2s�1 ):
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Applying this bootstrapping argument will force A to get smaller and smaller, arbitrarily
close to 0.

The leaps are performed using bilinear decouplings, in order to take advantage of the
bilinear Kakeya phenomenon. The fact that there is no serious loss in bilinearization is
proved in Proposition 6.2.

6.1 Parabolic rescaling and linear vs. bilinear decoupling. One of our main tools
will be the following parabolic rescaling, that takes advantage of the affine invariance of
the parabola.

Proposition 6.1. Let I = [t; t + 2�l ] � R be an interval of length 2�l and for n > l let
the collection In(I ) consist of all subintervals of I of the form [t +j 2�n; t +(j +1)2�n],
with j 2 N. Then for each f supported on I

kEf kLp(wB4n ) . Dec(n � l; p)(
X

J2In(I )

kEJf k
2
Lp(wB4n ))

1/2

Note that the upper bound Dec(n�l; p) is morally stronger than the trivial upper bound
Dec(n; p).

Proof. The proof is a simple applications of affine change of variables. Indeed LI (�) =
2l(� � t) maps In(I ) to In�l and the square B4n to a parallelepiped that can be covered
efficiently with squares B4n�l .

Define BilDec(n; p) to be the smallest constant such that the inequality

kjEf1Ef2j
1/2

kLp(wB4n ) �

� BilDec(n; p)(
X

I2In(I1)

kEIf1k
2
Lp(wB4n )

X
I2In(I2)

kEIf2k
2
Lp(wB4n ))

1/4

holds true for all f1, f2 supported on I1 and I2, respectively.
It is immediate that

BilDec(n; p) � Dec(n; p):

The next result is some sort of a converse.

Proposition 6.2. For each � > 0

Dec(n; p) .� 2n�(1 +max
m�n

BilDec(m;p)):
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Proof. It will suffice to prove that for each k < n

Dec(n; p) . C
n
k (1 + Cknmax

m�n
BilDec(m;p)):

This will instead follow by iterating the inequality

(11) Dec(n; p) � CDec(n � k; p) + Ck max
m�n

BilDec(m;p);

with C independent of n; k. Let us next prove this inequality.
Fix k and let f be supported on [0; 1]. Since

Ef (x) =
X
I2Ik

EIf (x);

it is not difficult to see that

(12) jEf (x)j � 4max
I2Ik

jEIf (x)j + 2O(k)
X

J1;J22Ik
2J1\2J2=¿

jEJ1f (x)EJ2f (x)j
1/2;

where the sum on the right is taken over all pairs of intervals J1; J2 2 Ik which are not
neighbors. Fix such a pair J1 = [a; a + 2�k ], J2 = [b; b + 2�k ], and let m be a positive
integer satisfying 2�m � b � a < 2�m+1. Since J1; J2 are not adjacent to each other,
we must have m � k � 1. It follows that the affine function T (�) = ��a

2�m+1 maps J1
to a dyadic subinterval of [0; 1

4
] and J2 to a dyadic subinterval of [ 1

2
; 1]. Thus, parabolic

rescaling shows that
kjEJ1fEJ2f j

1/2
kLp(wB4n )

. BilDec(n �m+ 1; p)(
X

I2In(J1)

kEIf k
2
Lp(wB4n )

X
I2In(J2)

kEIf k
2
Lp(wB4n ))

1/4

(13) � BilDec(n �m+ 1; p)(
X
I2In

kEIf k
2
Lp(wB4n ))

1/2:

Finally, invoking again Proposition 6.1 we get

kmax
I2Ik

jEIf jkLp(wB4n ) � (
X
I2Ik

kEIf k
2
Lp(wB4n ))

1
2

. Dec(n � k; p)(
X
I2Ik

X
I 02In(I )

kEI 0f k
2
Lp(wB4n ))

1
2

(14) = Dec(n � k; p)(
X
I 02In

kEI 0f k
2
Lp(wB4n ))

1
2 :

Now (11) follows by combining (12), (13) and (14).
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6.2 A consequence of bilinear Kakeya. We start by recalling the following bilinear
Kakeya inequality. While this inequality is rather trivial in two dimensions, its higher
dimensional analogs that are needed in order to prove decouplings for the paraboloidPn�1,
n � 3, are more complicated. The multilinear Kakeya inequality was first proved in
Bennett, Carbery, and Tao [2006], and an easier proof appeared in Guth [2015].

Theorem 6.3. Consider two families T1;T2 consisting of rectangles T in R2 having the
following properties

(i) each T has the short side of length R1/2 and the long side of length equal to R
pointing in the direction of the unit vector vT

(ii) vT1
^ vT2

�
1

100
for each Ti 2 Ti .

We have the following inequality

(15)
Z

R2

2Y
i=1

Fi .
1

R2

2Y
i=1

Z
R2

Fi

for all functions Fi of the form

Fi =
X
T2Ti

cT 1T ; cT 2 [0;1):

The implicit constant will not depend on R; cT ;Ti .

Proof. The verification is immediate using the fact that jT1 \T2j . R whenever Ti 2 Ti .

If I � R is an interval of length 2�l and ı = 2�k with k � l , wewill denote by Partı(I )
the partition of I into intervals of length ı. Recall also that I1 = [0; 1

4
], I2 = [ 1

2
; 1] and

that Lq
]
denotes the average integral in Lq .

The following result is part of a two-stage process. Note that, strictly speaking, this
inequality is not a decoupling, since the size of the frequency intervals Ii;1 remains un-
changed. However, the side length of the spatial squares increases from ı�1 to ı�2. This
will facilitate a subsequent decoupling, as we shall later see in Proposition 6.5.

Proposition 6.4. Let q � 2 and ı < 1. Let B be an arbitrary square in R2 with side
length ı�2, and let B be the unique partition of B into squares∆ of side length ı�1. Then
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for each g : [0; 1] ! C we have

(16)
1

jBj

X
∆2B

264 2Y
i=1

0@ X
Ii;12Partı(Ii )

kEIi;1
gk

2
L

q

]
(w∆)

1A 1
2

375
q

.
�
log

�
1

ı

��O(1)

264 2Y
i=1

0@ X
Ii;12Partı(Ii )

kEIi;1
gk

2
L

q

]
(wB )

1A 1
2

375
q

:

Moreover, the implicit constant is independent of g; ı; B .

Proof. Wewill reduce the proof to an application of Theorem 6.3. Indeed, for each interval
J of length ı, the Fourier transform ofEJg is supported inside a 2ı�2ı2-rectangle. This
in turn suggests that jEJgj is essentially constant on ı�1 � ı�2-rectangles dual to this
rectangle. Note that due to the separation of I1 and I2, the rectangles corresponding to
intervals I1;1 � I1, I2;1 � I2 satisfy the requirements in Theorem 6.3 with R = ı�2.

Since we can afford logarithmic losses in ı, it suffices to prove the inequality with
the summation on both sides restricted to families of Ii;1 for which kEIi;1

gkLq

]
(wB ) have

comparable size (within a multiplicative factor of 2), for each i . Indeed, the intervals I 0
i;1

satisfying (for some large enough C = O(1))

kEI 0
i;1
gkLq

]
(wB ) � ıC max

Ii;12Partı(Ii )
kEIi;1

gkLq

]
(wB )

can be easily dealt with by using the triangle inequality, since we automatically have

max
∆2B

kEI 0
i;1
gkLq

]
(w∆) � ıC max

Ii;12Partı(Ii )
kEIi;1

gkLq

]
(wB ):

This leaves only log2(ı�O(1)) sizes to consider.

Let us now assume that we haveNi intervals Ii;1, with kEIi;1
gkLq

]
(wB ) of comparable

size. Since q � 2, by Hölder’s inequality (16) is at most

(17)

 
2Y
i=1

N
1
2 � 1

q

i

!q
1

jBj

X
∆2B

0@ 2Y
i=1

0@X
Ii;1

kEIi;1
gk
q

L
q

]
(w∆)

1A1A :
For each I = Ii;1 centered at cI , consider the family FI of pairwise disjoint, mutually

parallel rectangles TI . They have the short side of length ı�1 and the longer side of length
ı�2, pointing in the direction of the normal N (cI ) to the paraboloid P 1 at cI .
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The function
FI (x) := kEIgk

q

L
q

] (wB(x;ı�1))

can be thought of as being essentially constant on rectangles in FI . This can be made
precise, but we will sacrifice a bit of the rigor for the sake of keeping the argument simple
enough. Thus we may write

1

jBj

X
∆2B

Y
i

0@X
Ii;1

kEIi;1
gk
q

L
q

]
(w∆)

1A �
1

jBj

Z 2Y
i=1

Fi ;

with Fi (x) =
P
Ii;1

FIi;1
(x).

Applying Theorem 6.3 we can dominate the term on the right by

1

jBj2

Y
i

Z
Fi :

Note also that
1

jBj

Z
Fi �

X
Ii;1

kEIi;1
gk
q

L
q

]
(wB )

:

It follows that (17) is dominated by

(18)

 
2Y
i=1

N
1
2 � 1

q

i

!q 2Y
i=1

0@X
Ii;1

kEIi;1
gk
q

L
q

]
(wB )

1A :
Recalling the restriction we have made on Ii;1, (18) is comparable to264 2Y

i=1

0@X
Ii;1

kEIi;1
gk

2
L

q

]
(wB )

1A1/2
375
q

;

as desired.

6.3 The leap: decoupling from scale ı to ı2. To simplify notation, we denote by Br
an arbitrary square in R2 with side length 2r . Given q; r 2 N, t � 2 and g supported in
I1 [ I2 write

Dt (q;B
r ; g) =

240@ X
I2Iq(I1)

kEIgk
2
Lt

]
(wBr )

1A0@ X
I2Iq(I2)

kEIgk
2
Lt

]
(wBr )

1A35 1
4

:
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For s � r we will denote by Bs(Br) the partition of Br into squares Bs . Define

Ap(q;B
r ; s; g) =

0@ 1

jBs(Br)j

X
Bs2Bs(Br )

D2(q;B
s; g)p

1A 1
p

:

Note that when r = s,
Ap(q; B

r ; r; g) = D2(q;B
r ; g):

For p � 4, let 0 � �p � 1 satisfy
2

p
=

1 � �p

2
+
�p

p
;

that is
�p =

p � 4

p � 2
:

The following result shows how to decouple from scale ı = 2�q to scale ı2. Note also
that only a 1 � �p fraction gets decoupled.

Proposition 6.5. We have for each p � 4, r � q and each g supported in I1 [ I2

Ap(q; B
2r ; q; g) .� ı��Ap(2q;B

2r ; 2q; g)1��pDp(q; B
2r)�p

Proof. By using elementary inequalities, it suffices to prove the proposition for r = q.
By Hölder’s inequality,

kEIgkL2
]
(wBq ) . kEIgk

L
p
2

]
(wBq )

:

Using this and Proposition 6.4 with ı = 2�q we can write

(19) Ap(q; B
2q; q; g) .�

ı��

240@ X
I2Iq(I1)

kEIgk
2

L
p
2

] (wB2q )

1A0@ X
I2Iq(I2)

kEIgk
2

L
p
2

]
(wB2q )

1A35 1
4

:

Using Hölder’s inequality again, we can dominate this by

ı��

240@ X
I2Iq(I1)

kEIgk
2
L2

]
(wB2q )

1A0@ X
I2Iq(I2)

kEIgk
2
L2

]
(wB2q )

1A35 1��p
4

�

240@ X
I2Iq(I1)

kEIgk
2
L

p

]
(wB2q )

1A0@ X
I2Iq(I2)

kEIgk
2
L

p

]
(wB2q )

1A35 �p
4

:
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To further process the first term we invoke L2 orthogonality for each I 2 Iq

kEIgk
2
L2

]
(wB2q )

.
X

J2I2q(I )

kEJgk
2
L2

]
(wB2q )

:

6.4 Putting everything together. We will now prove inequality (10). It will suffice to
work with n = 2u, u 2 N.

Iterating Proposition 6.5 s times leads to the following multi-scale inequality, for each
p � 4.

Proposition 6.6. For each g supported on I1 [ I2 and s � u we have

Ap

� n
2s
; B2n;

n

2s
; g
�

.s;� 2�snAp
�
n;B2n; n; g

�(1��p)s
sY
l=1

Dp

� n
2l
; B2n; g

��p(1��p)s�l

:

Via one application of Cauchy–Schwarz we see that

kjEf1Ef2j
1/2

kLp

]
(B2n) =

0B@ 1

jB n
2s

(B2n) j

X
B2B n

2s
(B2n)

kjEf1Ef2j
1/2

k
p

L
p

]
(B)

1CA
1/p

�

� 2
n

2s+1

2664 1

jB n
2s

(B2n) j

X
B2B n

2s
(B2n)

0B@ X
I2I n

2s
(I1)

kEIf1k2
L

p
]
(B)

X
I2I n

2s
(I2)

kEIf2k2
L

p
]
(B)

1CA
p/4

3775
1/p

holds true for all f1, f2 supported on I1 and I2, respectively.
At this point we need to invoke the following reverse Hölder’s inequality

(20) kEIfikLp

]
(B) . kEIfikL2

]
(B);

for each square B with side length 2
n
2s and each I of length 2� n

2s . This is a consequence
of the fact that jEIfi j is essentially constant on B .

We conclude as follows.

Proposition 6.7. The inequality

kjEf1Ef2j
1/2

kLp

]
(B2n) � 2

n
2s+1 Ap

� n
2s
; B2n;

n

2s
; g
�

holds true when f1, f2 are the restrictions of g to I1, I2, respectively.
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To combine the last two propositions, we need one more inequality, a consequence of
Proposition 6.1.

Proposition 6.8. For each l � u

Dp

� n
2l
; B2n; g

�
. Dec

�
n �

n

2l
; p
�
Dp

�
n;B2n; g

�
:

The following result is now rather immediate.

Theorem 6.9. Assume f1, f2 are the restrictions of g to I1 and I2, respectively. Then for
each s � u

kjEf1Ef2j
1/2

kLp

]
(B2n) .s;� 2�sn2

n
2s+1Dp

�
n;B2n; g

� sY
l=1

Dec
�
n �

n

2l
; p
��p(1��p)s�l

Proof. Using Hölder and Minkowski’s inequality in l
p
2 we find that

Ap
�
n;B2n; n; g

�
. Dp

�
n;B2n; g

�
:

Combine this with the previous three propositions.

Since this inequality holds for arbitrary gwe can take the supremum to get the following
inequality.

Corollary 6.10. For each s � u

BilDec (n; p) .s;� 2�sn2
n

2s+1

sY
l=1

Dec
�
n �

n

2l
; p
��p(1��p)s�l

:

We are now ready to finalize the proof of inequality (10). Take p = 6, and note that
�6 = 1

2
. The case p < 6 would follow very similarly since �p < 1

2
.

We will use a bootstrapping argument. Assume Dec (n; 6) . 2nA holds for some A
and all n. For example, it is easy to see that A = 1

2
works. We will show that a smaller

value of A always works, too. Corollary 6.10 implies that for each s and each n

BilDec (n; 6) .s 2n(Acs+
1
2s );

where

cs =

sX
l=1

�
1 �

1

2l

�
1

2s�l+1
= 1 �

s + 1

2s+1
:
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Combining this with Proposition 6.2 we may write

(21) Dec (n; 6) .s 2n(Acs+
1

2s�1 ):

Define
A := fA > 0 : Dec (n; 6) . 2nAg

and let A0 = infA. Note that A is either (A0;1) or [A0;1). We claim that A0 must be
zero, which will finish the proof of our theorem. Indeed, if A0 > 0 then

Acs +
1

2s�1
< A0

for some A 2 A sufficiently close to A0 and s sufficiently large. This combined with (21)
contradicts the definition of A0.
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1 Introduction

Let X be a compact Kähler manifold of dimension k. Let f : X ! X be a dynamical
system associated with a dominant holomorphic map, or more generally, a meromorphic
map or correspondence, i.e. multivalued map. As a basic example, one can consider
the complex affine space Ck as the complement of a projective hyperplane in the complex
projective space P k . Then, any polynomial map fromCk toCk extends to a meromorphic
map from P k to P k .

Denote by f n := f ı � � � ı f (n times) the iterate of order n of f . The aim of the the-
ory of complex dynamics is to study the longtime asymptotic behaviour of the sequence
(f n)n�0. This includes not only the study of the orbits of points, sets, currents, measures,
under the action of f , but also the dynamical invariants such as dynamical degrees, en-
tropies, Green currents, equilibrium measures, and the distribution of periodic points, etc.

Complex dynamics in dimension 1 has a long history, going back to the works by Fa-
tou and Julia in 1920s, see e.g. Berteloot and Mayer [2001] and Carleson and Gamelin
[1993]. In 1965, Brolin considered the harmonic measure of the Julia set of a polynomial
in one complex variable which turns out to be a fundamental dynamical object, see Brolin
[1965]. In 1981, Sibony considered the Green functions associated with Brolin’s measures
of polynomials of fixed degree. They can be obtained as the rate of escaping to infinity
of the orbits of points in C under the action of the polynomials, see Sibony [1984, 1999].
Sibony also considered these Green functions in a family which constitute the Green func-
tion for some dynamical systems in higher dimension. Hubbard extended this notion of
Green function to complex Hénon maps on C2, see Hubbard [1986]. In 1990, Sibony con-
sidered positive closed currents associated to these Green functions and their intersection,
see Bedford, Lyubich, and Smillie [1993b, p.78] and also Sibony [1999].

Green currents and their intersections turn out to be fundamental objects in dynamics
and pluripotential theory becomes a powerful tool in the field. The theory of complex
dynamics of several variables has been developed quickly, see for example, the works
by Bedford, Lyubich, and Smillie [1993a,b] and Bedford and Smillie [1991, 1992] and
Fornæss and Sibony [1992, 1994a,b,c, 1995a] among others. One can observe that many
works only involve currents of bi-degree (1; 1) and their intersections because pluripoten-
tial theory has been developed first in this setting. However, some very basic questions
already show the necessity of using positive closed currents of arbitrary bi-degree.

We will see in this survey different applications of such currents. Let’s illustrate here
their important role in the following basic picture. The periodic points of period n of f are
the solutions of the equation f n(z) = z. They can be identified with the intersection of
the graph Γn of f n with the diagonal∆ of X �X . When n goes to infinity, for interesting
dynamical systems, the volume of Γn tends to infinity. So in order to study the distribution
of periodic points when n tends to infinity, it is necessary to consider the positive closed
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(k; k)-current [Γn] associated with Γn. Indeed, in this way, one can normalize [Γn] to have
mass 1 and consider the limit as n tends to infinity.

It is worth noting that in general Γn is not a complete intersection of hypersurfaces in
X � X : we may need more than k hypersurfaces in order to get Γn as their intersection.
For example, the diagonal of P k � P k , with k � 2, which is the graph of the identity map
on P k , is not a complete intersection. More generally, the current associated with Γn is
rarely the intersection of positive closed (1; 1)-currents. So it is not enough to use (1; 1)-
currents to study Γn. Furthermore, computing the limit of a sequence of intersections of
(1; 1)-currents requires strong conditions on these currents which are not always available
in the dynamical setting.

We will focus our discussion on the recent developments of pluripotential theory for
currents of arbitrary bi-degree and their applications to dynamics. We refer the reader
to the non-exhaustive list of references at the end of the paper, in particular the surveys
Dinh and Sibony [2010a, 2017], Fornæss [1996], and Sibony [1999], for a more complete
panorama of the theory of complex dynamics in higher dimension.

In Section 2, we will recall basic facts on currents and discuss the problem of ap-
proximating positive closed currents by appropriate smooth differential forms. As con-
sequences, we will give some calculus on positive closed currents. Dynamical degrees,
topological and algebraic entropies will be introduced together with the famous Gromov’s
inequality saying that the topological entropy is bounded from above by the algebraic one.
The regularization theorem is a key point in the proofs.

In Section 3, we will introduce the notion of super-potentials which are canonical
functions associated with positive closed (p; p)-currents. They play the role of quasi-
plurisubharmonic functions which are used as quasi-potentials for positive closed (1; 1)-
currents. An intersection theory for positive closed currents of arbitrary bi-degrees will be
presented. We then state some theorems in dynamics on the equidistribution of orbits of
points and varieties. Unique ergodicity property and rigidity for dynamical currents will
be discussed.

In Section 4, we will introduce the theory of densities for positive closed currents. A
basic example of the theory is the case of two analytic subsets whose intersection is larger
than expected, in terms of dimension. The densities are introduced in order to measure
the dimension excess for the intersection of positive closed currents, see Fulton [1998]
for an algebraic counterpart. Applications to dynamics concerning the distribution or the
counting of periodic points will be considered.

Finally, in Section 5, some open problems in dynamics will be stated. They are related
to the discussions in the previous sections and will require new ideas from pluripotential
theory or from complex geometry. We expect that the solutions to these questions will
provide new tools for complex dynamics.
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2 Regularization of currents, dynamical degrees and entropies

In this section, we will discuss a regularization theorem for positive closed currents and its
applications. We refer the reader to Demailly [2012], Hörmander [1990], Siu [1974] for
basic notions and results of pluripotential theory and to Voisin [2002] for Hodge theory
on compact Kähler manifolds.

Let X be a compact Kähler manifold of dimension k and let ! be a Kähler form on
X . Let T be a positive closed (p; p)-current on X . The pairing hT; !k�pi, i.e. the
value of T at the test form !k�p , depends only on the (Hodge or de Rham) cohomology
classes of T and !. Moreover, this quantity is comparable with the mass of T which is, by
definition, the norm of T as a linear operator on the space of continuous test (k�p; k�p)-
forms. Therefore, a large part of the computations with positive closed currents reduces
to a computation with cohomology classes which is often simpler.

Positive closed currents can be seen as positive closed differential forms with distribu-
tion coefficients. In general, they are singular and calculus with them requires suitable
regularization processes. The following result gives us a regularization with a control of
the positivity loss, see Demailly [1992] and Dinh and Sibony [2004]. The loss of positiv-
ity is unavoidable in general. For simplicity, we also call kT k := hT; !k�pi the mass of
T .

Theorem 2.1 (Demailly for p = 1, Dinh–Sibony for p � 1). Let (X; !) be a compact
Kähler manifold. There is a constant c > 0 depending only on X and ! satisfying the
following property. If T is a positive closed (p; p)-current on X , there are positive closed
(p; p)-currents T + and T � which can be approximated by smooth positive closed (p; p)-
forms and such that

T = T +
� T � and kT ˙

k � ckT k:

This result still holds for larger classes of currents, e.g. positive dd c-closed currents.
It is the analytic counterpart of the known fact in algebraic geometry that any cycle can
be represented as the difference of movable effective cycles. The regularization process
used in the proof preserves good properties of T when they exist. We will give now two
consequences of the regularization theorem. They are used to prove the properties of
dynamical degrees and entropies that we will discuss later.
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Corollary 2.2. Let X; ! be as above and let U be an open subset of X . Let T1; : : : ; Tn be
positive closed currents on X of mass at most equal to 1 whose total bi-degree is at most
(k; k). Assume that T1; : : : ; Tn�1 are given by smooth positive closed forms on U ; so the
intersection (wedge-product) T1 ^ : : : ^ Tn is a well-defined positive closed current on U .
Then, there is a positive closed current S on X such that T1 ^ : : : ^ Tn � S on U and the
mass of S on X is bounded by a constant depending only on X; !.

In the dynamical setting, we need to work with positive closed forms which are smooth
outside an analytic subset of X . This corollary allows us to show that the integrals involv-
ing such singular forms do not explode near the set of singularities.

Recall that a meromorphic map from X to X is a holomorphic map f from a dense
Zariski open set Ω of X to X whose graph in Ω� X is a Zariski open set of an irreducible
analytic subset Γ of dimension k in X � X . For simplicity, we call Γ the graph of the
meromorphic map f : X ! X . We assume that f is dominant, that is, the image of
f contains a non-empty open subset of X , see Oguiso [2016b,a, 2017] and Oguiso and
Truong [2015] for some recent examples.

Denote by �1 and �2 the two canonical projections from X � X to X . So the map �1

restricted to Γ is generically 1:1. Let I (f ) be the set of points x 2 X such that Γ\��1
1 (x)

is not a single point, or equivalently, of positive dimension. This is the indeterminacy set
of f which is an analytic subset of codimension at least 2 in X . It is non-empty when f

is not holomorphic on X .
Consider two dominant meromorphic maps f and f 0 from X to X . We can define the

composition f 0 ı f as a holomorphic map on a suitable Zariski open set of X and then
extend it to a meromorphic map from X to X . By composing f with itself, we obtain the
iterates of f .

Let S be a (p; q)-current on X . Define formally the pull-back of S by f by

f �(S) := (�1)�(�
�
2 (S) ^ [Γ]);

when the last expression makes sense. Since the operators ��
i and (�i )� are well-defined

on all currents, the last definition is meaningful when the wedge-product ��
2 (S) ^ [Γ] is

meaningful. Similarly, the push-forward operator f� is defined by

f�(S) := (�2)�(�
�
1 (S) ^ [Γ]);

when the last expression makes sense.
Consider the particular case of a smooth differential (p; q)-form � on X . The wedge-

product ��
2 (�) ^ [Γ] is well-defined because ��

2 (�) is smooth. So f �(�) is well-defined
in the sense of currents. Moreover, the value of f �(�) at a point x is roughly the sum of
the values of ��

2 (�) on the fiber ��1
1 (x) \ Γ. We can check that f �(�) is in general an
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L1 form and it may be singular at the indeterminacy set I (f ). So we cannot iterate the
operator f � on smooth forms.

Recall that the Hodge cohomology group H p;q(X; C) of X can be defined using either
smooth forms or singular currents. When � is closed or exact then f �(�) is also closed or
exact. Therefore, the above operator f � induces a linear map from H p;q(X; C) to itself,
that we still denote by f �. The operator f� on H p;q(X; C) is defined similarly. We can
iterate those operators as for every linear operator on a vector space but in general we
don’t have (f n)� = (f �)n on H p;q(X; C).

Consider an arbitrary positive closed (p; p)-current T onX . The pull-back f �(T ) and
the push-forward f�(T ) of T are not always well-defined. We can however define a strict
transform of T by f in the following way. Choose a Zariski open set Ω of X such that �2

restricted to Γ \ ��1
2 (Ω) defines a unramified covering over Ω. Then the pull-back of T

by �2 is well-defined on Γ \ ��1
2 (Ω). We can show using Theorem 2.1 that it has finite

mass and then its extension by 0 is a positive closed current on X � X , according to a
theorem of Skoda [1982]. The push-forward of the last current by �1 is a positive closed
(p; p)-current of X that we denote by f �(T ). We define f�(T ) in a similar way.

In the following result, the norms of the operators f � and f� are considered using a
fixed norm on the vector space H p;p(X; C).

Corollary 2.3. There is a constant c > 0 depending only on X; ! and the norm on
H p;p(X; C) such that

kf �(T )k � ckT kkf � : H p;p(X; C) ! H p;p(X; C)k

and
kf�(T )k � ckT kkf� : H p;p(X; C) ! H p;p(X; C)k:

This result is clear when T is a smooth form. We then deduce the general case using
Theorem 2.1. Note that the operators f � and f� depend on the choice of a Zariski open
set. However, when we work with L1 forms for example, this choice is not important.
Note also that the constants involved in the above results do not depend on T nor on f .
In the proofs of the results below, they will intervene under the form c1/n and their role
will be negligible when n goes to infinity.

As mentioned above, we don’t have in general (f n)� = (f �)n on H p;q(X; C). How-
ever, we can show that the following quantities are always well-defined.

Definition 2.4. We call dynamical degree of order p of f the following limit

dp(f ) := lim
n!1

k(f n)� : H p;p(X; C) ! H p;p(X; C)k1/n;

and algebraic entropy of f the following quantity

ha(f ) := max
0�p�k

log dp(f ):
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The last dynamical degree dk(f ) is also called topological degree because it is equal to
the number of points in f �1(a) for a generic point a in X .

Note that by Poincaré duality, we also have

dp(f ) := lim
n!1

k(f n)� : H k�p;k�p(X; C) ! H k�p;k�p(X; C)k1/n:

Theorem 2.5 (Dinh–Sibony). The limit in the above definition of dp(f ) always exists.
It is finite and doesn’t depend on the choice of the norm on H p;p(X; C). Moreover, the
dynamical degrees and the algebraic entropy are bi-meromorphic invariants of the dynam-
ical system: if � : X 0 ! X is a bi-meromorphic map between compact Kähler manifolds,
then

dp(�
�1

ı f ı �) = dp(f ) and ha(�
�1

ı f ı �) = ha(f ):

We also have for n � 1 that dp(f
n) = dp(f )n and ha(f

n) = nha(f ).

When X is a projective space, the first statement was used by Fornæss–Sibony for p =

1 in order to construct the Green dynamical (1; 1)-current Fornæss and Sibony [1994c].
Also for projective spaces, it was extended by Russakovskii–Shiffman for higher degrees
Russakovskii and Shiffman [1997]. In this case, the group H p;p(X; C) is of dimension 1
and the action of (f n)� is just the multiplication by an integer dp;n. Therefore, we easily
get dp;n+m � dp;ndp;m which implies the existence of the limit of (dp;n)

1/n as n tends
to infinity.

The proof of the above theorem in the general case uses in an essential way a computa-
tion with positive closed currents and Theorem 2.1 plays a crucial role. We refer to Dinh
and Sibony [2004, 2005] for details and Dinh, Nguyên, and Truong [2012], Esnault and
Srinivas [2013], and Truong [2016] for related results. We also obtained in these works
the following result, which is due to Gromov for holomorphic maps Gromov [2003].

Theorem 2.6 (Gromov, Dinh–Sibony). Let X and f be as above. Then the topological
entropy ht (f ) of f is bounded from above by its algebraic entropy ha(f ). In particular,
the topological entropy of f is finite.

The topological entropy is an important dynamical invariant. It measures the rate of
divergence of the orbits of points. The formal definition for meromorphicmaps is the same
as the Bowen’s definition for continuous maps, except that we don’t consider orbits which
reach the indeterminacy set. Therefore, it is not obvious that the entropy of a meromorphic
map is finite. Note also that when f is a holomorphic map, the above result combined
with a theorem by Yomdin [1987] implies that the topological entropy is indeed equal to
the algebraic one. This property still holds for large families of meromorphic maps. We
don’t know if in general, there is always a map f̂ bi-meromorphically conjugate to f such
that ht (f̂ ) = ha(f̂ ), see Problem 5.1 below.
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Observe that the action of f n on H p;q(X; C) is not explicitly used in the above prop-
erty of entropies when p 6= q. This can be explained by the following inequality from
Dinh [2005]

lim sup
n!1

k(f n)� : H p;q(X; C) ! H p;q(X; C)k1/n
�

q
dp(f )dq(f ):

Let T be a positive closed (p; p)-current on X , for example, the current of integration
on a complex subvariety of codimensionp. Applying Corollary 2.3 to f n instead of f , we
obtain that the mass of (f n)�(T ) is bounded by a constant times (dp(f ) + �)n for every
� > 0. Similarly, the mass of (f n)�(T ) is bounded by a constant times (dk�p(f ) + �)n.
We see that dynamical degrees measures the growth of the degree and volume of varieties
under the action of f or its inverse f �1. So dynamical degrees are fundamental invariants
in the study of the orbits of varieties. They play, with some variants, an important role
in the problem of classification of meromorphic dynamical systems using invariant mero-
morphic fibrations, see Amerik and Campana [2008], Dinh, Nguyên, and Truong [2012],
Nakayama and Zhang [2009], Oguiso [2016a], and Zhang [2009a,b] for details

Finally, recall that a direct consequence of the mixed Hodge–Riemann theorem applied
to (resolutions of singularities of) the graphs of f n, see e.g. Dinh and Nguyên [2006] and
Gromov [1990], implies that, the function p 7! log dp(f ) is concave. Equivalently, we
have

dp(f )2 � dp�1(f )dp+1(f ) for 1 � p � k � 1:

In particular, we have 1 � dp(f ) � d1(f )p , ha(f ) > 0 if and only if d1(f ) > 1, and
there are two numbers r and s with 0 � r � s � k such that

1 = d0(f ) < � � � < dr(f ) = � � � = ds(f ) > � � � > dk(f ):

The maximal dynamical degree dr(f ) is also called the main dynamical degree. The
algebraic entropy of f is then equal to log dr(f ).

3 Super-potentiel theory and equidistribution problems

Super-potentials have been introduced in order to deal with positive closed currents of ar-
bitrary bi-degree. Let T be a positive closed (p; p)-current on a compact Kähler manifold
X as above. Any analytic set of pure codimension p in X defines by integration a positive
closed (p; p)-current. So the current T can be seen as a generalization of analytic sets of
codimension p.

When p = 1, the current T can be seen as a generalization of hypersurfaces. Locally,
we can write T = dd cu, where u is a plurisubharmonic (p.s.h. for short) function. This
function is unique up to an additive pluriharmonic functionwhich is real analytic. Globally,
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if ˛ is a smooth closed real (1; 1)-form onX , in the cohomology class of T , by the classical
@@-lemma, one can write T = ˛ + dd cu. Here, u is a quasi-p.s.h. function on X , that is,
u is locally the sum of a p.s.h. function and a smooth function. It is uniquely determined
by T and ˛, up to an additive constant. In particular, there is a unique function u such that
maxu = 0. Recall that d c := 1

2�i
(@ � @) and dd c = i

�
@@.

For the case of higher bi-degree, the current T corresponds to a generalized algebraic
cycle of higher co-dimension. We still can write T in a similar way but u will be a current
of bi-degree (p �1; p �1). It doesn’t satisfy a similar uniqueness property and there is no
intrinsic choice for u. Super-potentials are canonical functions defined on some infinite
dimensional spaces. They play the role of quasi-potentials as quasi-p.s.h. functions do for
bi-degree (1; 1). For simplicity, we will not introduce this notion in full generality and
refer the reader to Dinh and Sibony [2009, 2010c] for details.

Let Dq(X) denote the real vector space spanned by positive closed (q; q)-currents
on X . Define the �-norm on this space by kRk� := min(kR+k + kR�k), where R˙

are positive closed (q; q)-currents satisfying R = R+ � R�. We consider this space of
currents with the following topology : a sequence (Rn)n�0 in Dq(X) converges in this
space to R if Rn ! R weakly and if kRnk� is bounded independently of n. On any
�-bounded subset of Dq(X), this topology coincides with the classical weak topology
for currents. By Theorem 2.1, the subspace eDq(X) of real closed smooth (q; q)-forms is
dense in Dq(X) for the considered topology.

Let D0
q(X) and eD0

q(X) denote the linear subspaces in Dq(X) and eDq(X) respectively
of currents whose cohomology classes in H q;q(X; R) vanish. Their co-dimensions are
equal to the dimension of H q;q(X; R)which is finite. Fix a real smooth and closed (p; p)-
form ˛ in the cohomology class of T in H p;p(X; R). We will consider the super-potential
of T which is the real function UT on eD0

k�p+1
(X) defined by

UT (R) := hT � ˛; URi for R 2 eD0
k�p+1(X);

where UR is any smooth form of bi-degree (k � p; k � p) such that dd cUR = R. This
form always exists because the cohomology class of R vanishes. Note that since the co-
homology class of T � ˛ vanishes, we can write T � ˛ = dd cUT for some current UT .
By Stokes theorem, we have

UT (R) = hdd cUT ; URi = hUT ; dd cURi = hUT ; Ri:

We deduce from these identities that UT (R) doesn’t depend on the choice of UR and UT .
However, UT depends on the reference form ˛: Note also that if T is smooth, it is not
necessary to take R and UR smooth.

For simplicity, we will not consider other super-potentials of T . They are some affine
extensions of UT to some subspaces of Dk�p+1(X). The following notions do not de-
pend on the choice of super-potential nor on the reference form ˛. We say that T has
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a bounded super-potential if UT is bounded on each �-bounded subset of eD0
k�p+1

(X).
We say that T has a continuous super-potential if UT can be extended to a continuous
function on D0

k�p+1
(X) with respect to the topology previously introduced.

As the definition of super-potentials introduces a new space Dk�p+1(X), their calcu-
lus is not immediate. Recently, with Nguyen and Vu, we proved that if a positive closed
current is bounded by another one with bounded or continuous super-potentials, then it
satisfies the same property Dinh, Nguyên, and Truong [2017b]. The result plays a role in
some constructions of dynamical Green currents and the study of periodic points. Super-
potentials also permit to build an intersection theory, see Bedford and Taylor [1982], De-
mailly [2012], and Fornæss and Sibony [1995b] for the case of bi-degree (1; 1). In the
dynamical setting, they allow us to define invariant measures as intersections of dynami-
cal Green currents.

Consider two positive closed currents T and S on X of bi-degree (p; p) and (q; q)

respectively. Assume that p+q � k and that T has a continuous super-potential. So UT

is defined on whole D0
k�p+1

(X). We can define the wedge-product T ^ S by

hT ^ S; �i := h˛ ^ S; �i + UT (S ^ dd c�)

for every smooth real test form � of bi-degree (k �p �q; k �p �q). Note that S ^dd c�

belongs to D0
k�p+1

(X) because it is equal to dd c(S ^ �). It is not difficult to check that
T ^ S is equal to the usual wedge-product of T and S when one of them is smooth. The
current T ^ S is positive and closed, see Dinh, Nguyên, and Truong [2017b], Dinh and
Sibony [2009, 2010c], and Vu [2016b] for details.

In this short survey, we will not be able to discuss all properties of super-potentials. Let
us focus our discussion in a key property which is crucial in the solution of equidistribution
problems. It also illustrates how one can use super-potentials in a similar way that one can
do with quasi-p.s.h. functions.

It is not difficult to show that quasi-p.s.h. functions are integrable with respect to the
Lebesgue measure on X . However, we have the following much stronger property, see
e.g. Dinh, Nguyên, and Sibony [2010], Kaufmann [2017], and Vu [2016a]. It implies that
quasi-p.s.h. functions are Lp for all 1 � p < 1.

Theorem 3.1 (Skoda). Let X and ! be as above. Let ˛ be a smooth real closed (1; 1)-
form on X . There are constants � > 0 and c > 0 such that if T is any positive closed
(1; 1)-current in the cohomology class of ˛ and u is the quasi-p.s.h. function satisfying
dd cu = T � ˛ and maxu = 0, then we haveZ

X

e�juj!k
� c:
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It is not clear how to generalize this result to super-potentials because there is no natural
measure on the domain of definition of super-potentials. The following result of Dinh and
Sibony [2009, 2010c] gives us an answer to this question.

Theorem 3.2 (Dinh–Sibony). Let X and ! be as above. Let ˛ be a smooth real closed
(p; p)-form on X . There is a constant c > 0 such that if T is any positive closed (p; p)-
current in the cohomology class of ˛ and UT is its super-potential defined above, then

jUT (R)j � c(1 + log+ kRkC1);

for R 2 D0
k�p+1

(X) with kRk� = 1, where log+ := max(log; 0).

If we remove log+ from the statement, the obtained estimate is much weaker and easy
to prove. So the contribution of log+ here is similar to the role of the exponential in The-
orem 3.1. Several applications of super-potentials in dynamics have been obtained. We
will only present here two results and refer the reader to Ahn [2016], De Thélin and Vigny
[2010], and Dinh and Sibony [2009, 2010c] for some other applications, in particular, for
dynamics of automorphisms of compact Kähler manifolds.

Let Hd denote the family of all holomorphic self-maps of P k such that the first dy-
namical degree is an integer d � 2. This can be identified to a Zariski open subset of
a projective space. A generic map from Ck to Ck whose components are polynomials
of degree d can be extended to a holomorphic self-map of P k . The following result was
obtained in Dinh and Sibony [2009], see also Ahn [2016] for some extension.

Theorem 3.3 (Dinh–Sibony). There is an explicit dense Zariski open subset H 0
d
of Hd

such that for every f in H 0
d
and every analytic subset V of pure codimension p and of

degree deg(V ) of P k we have

lim
n!1

1

d pn deg(V )
(f n)�[V ] = T p;

where T p is the p-th power of the dynamical Green (1; 1)-current T of f . Moreover, the
convergence is uniform on V and exponentially fast with respect to some natural distances
on the space of positive currents.

We have not yet introduced the Green current T . This is a positive closed (1; 1)-current
on P k , invariant by d �1f �, with unit mass and continuous potentials. The power T p

is well-defined and is called Green (p; p)-current of f . The last theorem gives us a
construction of T by pulling back a hypersurface V by f n (case p = 1). However, T

was originally constructed for every f 2 Hd by pulling back smooth positive closed
(1; 1)-forms, see Dinh and Sibony [2010a] and Sibony [1999] for details.
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Note that Theorem 3.3 still holds if we replace [V ] by any positive closed (p; p)-current.
So f satisfies the unique ergodicity for currents. The result is however not true for every
map f in Hd . In general, there may exist exceptional analytic sets V for which the con-
vergence in the theorem doesn’t hold, see Conjecture 5.2 below. There are satisfactory
equidistribution results for general maps f only when p = k and p = 1, that is, when V

is a point or a hypersurface. The full result for p = k was obtained by Dinh and Sibony
[2003, 2010b] generalizing results obtained by Fornæss and Sibony [1994c] and Briend
and Duval [2001]. The case p = 1 was obtained in Dinh and Sibony [2008] and Taflin
[2011] generalizing results obtained earlier by Fornæss and Sibony [1994b], Russakovskii
and Shiffman [1997] and Favre and Jonsson [2003] (forp = 1; k = 2). The same property
for dynamics in one variable, except the rate of convergence, has been proved by Brolin
[1965], Freire, Lopes, and Mañé [1983] and Ljubich [1983].

The convergence of currents in Theorem 3.3 is equivalent to the convergence of their
super-potentials. The rate of the convergence of super-potentials implies the rate of con-
vergence of currents with respect to some natural distances for positive currents. These
distances are analogous to the classical Kantorovich–Wasserstein distance for measures.

We discuss now the second result where, as for the last result, super-potentials and
Theorem 3.2 play crucial roles in the proof. Let f be a polynomial automorphism of
Ck . We extend it to a birational map on the projective space P k . Denote by I (f ) and
I (f �1) the indeterminacy sets of f and f �1 respectively. They are analytic subsets of
the hyperplane at infinity P k n Ck . The following notion was introduced under the name
of regular automorphisms in Sibony [1999].

Definition 3.4 (Sibony). We say that f is a Hénon-type automorphism if f is not an
automorphism of P k and I (f ) \ I (f �1) = ¿:

This is a large family of maps. In dimension 2, all polynomial automorphisms ofC2 are
conjugated either to Hénon-type maps as in Definition 3.4 or to elementary maps whose
dynamics is simple to study, see Friedland and Milnor [1989]. Consider a Hénon-type
map f as above. It is known that there is an integer p such that dim I (f ) = k � p � 1

and dim I (f �1) = p � 1. The action of f on cohomology is simple and dp(f ) is the
main dynamical degree.

It is also known that the set I (f �1) is attractive for f . Let U(f ) denote the basin of
I (f �1) which is an open neighbourhood of I (f �1) in P k . The set K(f ) := Ck nU(f )

is the set of all points z 2 Ck whose orbits by f are bounded in Ck . The closure K(f )

of K(f ) in P k is known to be the union of K(f ) with I (f ). The following result was
obtained in Dinh and Sibony [2009] generalizing results by Bedford, Lyubich, and Smillie
[1993b] and Fornæss and Sibony [1994c], where the case of dimension 2, except the rate
of convergence, was considered.
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Theorem 3.5 (Dinh–Sibony). Let V be an analytic subset of pure dimension k � p and
of degree deg(V ) in P k such that V \ I (f �1) = ¿. Then deg(V )�1dp(f )�n(f n)�[V ]

converges exponentially fast to a positive closed (p; p)-current T (f ) with support in
K(f ). Moreover, the set K(f ) is rigid in the sense that T (f ) is the unique positive
closed (p; p)-current of mass 1 with support in K(f ).

Note that the rigidity ofK(f ) implies the convergence of deg(V )�1dp(f )�n(f n)�[V ]

to T (f ) because f �n(V ) converges to K(f ). However, it doesn’t imply the rate of
convergence. The current T (f ) is the dynamical Green (p; p)-current of f . It was con-
structed by Sibony as a power of the dynamical Green (1; 1)-current. The later has been ob-
tained by pulling back smooth positive closed (1; 1)-forms, see Sibony [1999] and Taflin
[2011] for details. Observe that Theorem 3.5 still holds if we replace [V ] by any positive
closed (p; p)-current whose support is disjoint from I (f �1). The result can be applied
for f �1 instead of f since f �1 is also a Hénon-type automorphism of Ck . We refer the
reader to the survey Dinh and Sibony [2014] for a more complete panorama on rigidity
property in dynamics.

4 Theory of densities of currents and periodic points

The theory of densities has been introduced in order to study the intersection between pos-
itive closed currents of arbitrary dimension. These currents may not admit an intersection
in the classical sense. In particular, the theory permits to measure the dimension excess of
the intersection and to understand what happens for the limit of such intersections. Such
situations appear in several dynamical problems. We will not report on the theory in full
generality and refer the reader to Dinh and Sibony [2012, 2018] for details. Some appli-
cations in dynamics will be discussed at the end of this section.

Consider the case of two positive closed currents : the first one is a general positive
closed (p; p)-current T and the second one is the current of integration on a submanifold
V ofX . We want to understand the densities of T , i.e. the repartition of mass in various di-
rections, along V via a notion of tangent current. The case where V is a point corresponds
to the classical theory of Lelong number for positive closed currents. The rough idea is
to dilate the manifold X in the normal directions to V . When the dilation factor tends to
infinity, the image of T by the dilation admits limits that we will call tangent currents of
T along V . They may not be unique but belong to the same cohomology class. However,
in general, there is no natural dilations in the normal directions to V and tangent currents
are defined in a more sophisticated way.

Let E denote the normal vector bundle to V in X and E its canonical compactification.
Denote by A� : E ! E the map induced by the multiplication by � on fibers of E with
� 2 C�. We also identify V with the zero section of E. The tangent currents to T along
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V will be positive closed (p; p)-currents on E which are V -conic, i.e. invariant under the
action of A�.

Let � be a diffeomorphism between a neighbourhood of V in X and a neighbourhood
of V in E whose restriction to V is identity. Assume that � is admissible in the sense that
the endomorphism of E induced by the differential of � is the identity map from E to E.
Using exponential maps associated with a Kähler metric on X , it is not difficult to show
that such maps exist. Here is a main result of the theory of densities.

Theorem 4.1. Let X; V; T; E; E; A� and � be as above. Then the family of currents
T� := (A�)���(T ) is relatively compact and any limit current, for � ! 1, is a posi-
tive closed (p; p)-current on E whose trivial extension is a positive closed (p; p)-current
on E. Moreover, if S is such a current, it is V -conic, i.e. invariant under (A�)�, and its
cohomology class in H p;p(E; R) does not depend on the choice of � and S .

Note that T� is not of bi-degree (p; p) in general and one cannot talk about its positivity.
The above theorem not only states the existence of a unique cohomology class, but it claims
that it can be computed using any admissible � . The result still holds and we obtain the
same family of limit currents using local admissible diffeomorphisms. This flexibity is
very useful in the analytic calculus with tangent currents and densities while the use of
global admissible diffeomorphisms is convenient for calculus on cohomology.

We say that S is a tangent current to T along V . Its cohomology class is called the total
tangent class of T along V . Note that this notion generalizes a notion of tangent cone in
the algebraic setting where T is also given by a manifold. It measures the densities of T

along V . The cohomology ring of E is generated by the cohomology ring of V and the
tautological (1; 1)-class on E. Therefore, we can decompose the cohomology class of S

and associate to it cohomology classes of different degrees on V . These classes represent
different parts of the tangent class of T along V .

Note also that for the general case of two arbitrary positive closed currents T and T 0

on X (the manifold V is replaced by a general current T 0), the densities between T and
T 0 are determined by the densities between the tensor product T ˝ T 0 on X � X and the
diagonal of X � X . As already mentioned above, we will not develop the general case in
this report.

It is important to estimate or compute the densities. The following particular case of
Dinh and Sibony [2012, Th.4.11] is used in the proofs of the dynamical properties pre-
sented below. It is analogous to a result by Siu for Lelong numbers.

Theorem 4.2. Let Tn be a sequence of positive closed (p; p)-current converging to a
positive closed (p; p)-current T on X . Let V be a submanifold of X and denote by �n; �

the total tangent classes of Tn; T along V . Let c be the cohomology class of a projective
subspace of a fiber of E. Assume that � = �c for some non-negative constant �. Then
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any cluster value of �n has the form �0c with a constant 0 � �0 � �. In particular, if
� = 0 then �n tends to 0.

We will give now some applications in dynamics where the last two statements play
a crucial role in the proof. For the following result, see Bedford, Lyubich, and Smillie
[1993a] and Dinh and Sibony [2016].

Theorem 4.3 (Bedford–Lyubich–Smillie for k = 2, Dinh–Sibony for k � 2). Under
the hypotheses of Theorem 3.5, let Pn denote the set of periodic points of period n of f

in Ck . Then the points in Pn(f ) are asymptotically equidistributed with respect to the
equilibrium measure � of f . More precisely, if ıa denotes the Dirac mass at a point a,
then

lim
n!1

dp(f )�n
X

a2Pn(f )

ıa = �:

The result still holds if we replace Pn(f ) by the set of saddle periodic points of period n.

Themeasure�was constructed by Sibony [1999]. With the notations of Theorem 3.5, it
is equal to the intersection of the Green current T (f ) of f and the Green current T (f �1)

of f �1. It has support in the compact set K(f ) \ K(f �1) in Ck . If ∆ denotes the
diagonal of P k � P k , then � can be identified with the intersection between the current
[∆] and the tensor product T (f ) ˝ T (f �1).

Let Γn denote the graph of f n in P k � P k . The set Pn(f ) can be identified with the
intersection of Γn and ∆ in Ck � Ck . Denote for simplicity d := dp(f ). We can show
that the positive closed (k; k)-currents d �n[Γn] converge to the current T (f )˝ T (f �1).
Therefore, Theorem 4.3 is equivalent to the identity

lim
n!1

�
[∆] ^ d �n[Γn]

�
= [∆] ^

�
lim

n!1
d �n[Γn]

�
on Ck � Ck .

In the general setting of the theory of currents, the two operations of intersection and of
taking the limit, evenwhen they arewell-defined, may not commute. In our setting, the last
identity requires a transversality property described below for the intersection between Γn

and∆ which is, in some sense, uniform in n. To establish this property requires a delicate
analysis using in particular a result by de Thélin [2008].

Let Gr(P k � P k ; k) denote the Grassmannian bundle over P k � P k where each point
corresponds to a pair (x; [v]) of a point x 2 P k � P k and the direction [v] of a simple
tangent k-vector v of P k � P k at x. Let eΓn denote the set of points (x; [v]) in Gr(P k �

P k ; k) with x 2 Γn and v a k-vector not transverse to Γn at x. Let b∆ denote the lift of
∆ to Gr(P k � P k ; k), i.e. the set of points (x; [v]) with x 2 ∆ and v tangent to ∆. The
intersection eΓn \ b∆ corresponds to the non-transverse points of intersection between Γn
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and ∆. Note that dimeΓn + dim b∆ is smaller than the dimension of Gr(P k � P k ; k) and
the intersection of subvarieties of such dimensions are generically empty.

We show that the currents d �n[eΓn] cluster towards a positive closed current whose tan-
gent currents along b∆ vanish. This together with Theorem 4.2 implies that the intersection
between Γn and∆ is asymptotically transverse as n goes to infinity. As mentioned above,
this is the key point in the proof of Theorem 4.3.

We will end this section with another application of the theory of densities. Let f be
a general dominant meromorphic map from X to X . When the periodic points of period
n of f are isolated, then their number, counting with multiplicity, can be obtained using
Lefschetz fixed point formula. In general, this set may have components of positive di-
mension, but we still want to study the distribution of isolated periodic points, in particular,
to count them. The following result was recently obtained in Dinh, Nguyên, and Truong
[2017a] as a consequence of Theorem 4.2 and some properties of the sequence Γn.

Theorem 4.4 (Dinh–Nguyen–Truong). Let f be a dominant meromorphic self-map on a
compact Kähler manifold X . Let ha(f ) be its algebraic entropy and Pn(f ) its number
of isolated periodic points of period n counted with multiplicity. Then we have

lim sup
n!1

1

n
logPn(f ) � ha(f ):

In particular, f is an Artin–Mazur map, i.e., its number of isolated periodic points of
period n grows at most exponentially fast with n.

Note that there are smooth real maps on compact manifolds which are not Artin–Mazur
maps, see e.g. Artin and Mazur [1965] and Kaloshin [2000]. For large families of mero-
morphic maps or correspondences, we can obtain a sharp upper bound for the cardinality
of Pn(f ) which is equal to 1 + o(1) times the number given by the Lefschetz fixed point
formula Dinh, Nguyên, and Truong [2015, 2017a,b]. This is a crucial step in the study of
the equidistribution property for these points. Lower bounds for the cardinality of Pn(f )

were also obtained in some cases using other ideas from dynamics. We refer to Can-
tat [2001], Diller, Dujardin, and Guedj [2010], Dujardin [2006], Favre [1998], Iwasaki
and Uehara [2010], Jonsson and Reschke [2015], Saito [1987], and Xie [2015] for lower
bounds and related results.

5 Some open problems

In this section, we will state three open problems which are related to our discussion in the
previous three sections. We think that they are important problems in complex dynamics.
They require new ideas and may provide new techniques that can be used to solve other
questions.
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The following problem is related to Theorem 2.6. It may require some ideas from
complex analysis together with the techniques used by Yomdin [1987]. It was already
briefly mentioned in Section 2.

Problem 5.1. Let f : X ! X be a dominant meromorphic map. Does there always exist
a bi-meromorphic map � : X 0 ! X between compact Kähler manifolds such that the
algebraic and topological entropies of ��1 ı f ı � are equal ?

Some trivial examples show that we don’t have this equality without modifying the
manifold X , see Guedj [2005].

The following conjecture was stated in Dinh and Sibony [2008]. It may requires a deep
understanding on the space of positive closed currents which is of infinite dimension. Let
f be an endomorphism of P k of algebraic degree d � 2. A proper analytic subset of
P k is said to be totally invariant if it is invariant by both f and f �1. They appear as
exceptional sets, where the multiplicity of f is large. Recall that the family of all these
analytic sets is either empty or finite, see Dinh and Sibony [2010b].

Conjecture 5.2. Let T be the Green (1; 1)-current of f and let p be an integer with
2 � p � k � 1. Then (degV )�1d �pn(f n)�[V ] converge to T p for every analytic subset
V of P k of pure codimension p which is generic. Here, V is generic if either V \ E = ¿
or codimV \ E = p + codimE for any irreducible component E of a totally invariant
proper analytic subset of P k .

Finally, the following problem seems to be very challenging. The current approach to
get the equidistribution of periodic points in Theorem 4.3 contains different steps. Sev-
eral of them are quantifiable but some of them need to be substituted by new ideas from
pluripotential theory.

Problem 5.3. Study the rate of convergence of periodic points of Hénon-typemaps toward
the equilibrium measure.
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THE INVERSE HULL OF 0-LEFT CANCELLATIVE
SEMIGROUPS

Rඎඒ Eඑൾඅ ൺඇൽ Bൾඇඃൺආංඇ Sඍൾංඇൻൾඋ඀

Abstract

Given a semigroup S with zero, which is left-cancellative in the sense that st =
sr ¤ 0 implies that t = r , we construct an inverse semigroup called the inverse
hull of S , denotedH (S). When S admits least common multiples, in a precise sense
defined below, we study the idempotent semilattice ofH (S), with a focus on its spec-
trum. When S arises as the language semigroup for a subsift X on a finite alphabet,
we discuss the relationship between H (S) and several C*-algebras associated to X
appearing in the literature.

1 Introduction

The goal of this note is to announce a series of results about semigroups, together with
applications to C*-algebras, whose proofs will appear in later papers. The theory of semi-
group C*-algebras has a long history, beginning with Coburn’s work [Coburn 1967, 1969]
where the C*-algebra of the additive semigroup of the natural numbers is studied in con-
nection to Toeplitz operators. In [Murphy 1987] G. Murphy generalized this construction
to the positive cone of an ordered group, and later to left cancellative semigroups ([Murphy
1991; Murphy 1994]). The C*-algebras studied byMurphy turned out to be too wild, even
for nice looking semigroups such as N � N, and this prompted Li [Li 2012] to introduce
an alternative C*-algebra for a left cancellative semigroup. By definition a semigroup S
is said to be left cancellative provided, for every r , s and t in S , one has that

st = sr ) t = r:(1.1)

Many interesting semigroups in the literature possess a zero element, namely an ele-
ment 0 such that

s0 = 0s = 0;
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for every s, and it is obvious that the presence of a zero prevents a semigroup from being
left cancellative. In this work we focus on 0-left cancellative semigroups, meaning that
(1.1) is required to hold only when the terms in its antecedent are supposed to be nonzero.
This dramatically opens up the scope of applications including a wealth of interesting
semigroups, such as those arising from subshifts and, more generaly, languages over a
fixed alphabet. This also allows for the inclusion of categories and, more generally, the
semigroupoids of [Exel 2008], once the multiplication is extended to all pairs of elements
by setting undefined products to zero.

Starting with a 0-left cancellative semigroup S , the crucial point is first to build an
inverse semigroup H(S), which we call the inverse hull of S , by analogy with [Clifford
and Preston 1961] and [Cherubini and Petrich 1987], from where one may invoke any of
the now standard constructions of C*-algebras from inverse semigroups, such as the tight
C*-algebra [Exel 2008] or Paterson’s [Paterson 1999] universal C*-algebra. In fact this
endeavor requires a lot more work regarding the passage from the original semigroup to its
inverse hull, rather than the much better understood passage from there to the C*-algebras.
Particularly demanding is the work geared towards understanding the idempotent semilat-
tice of H(S), which we denote by E(S), as well as its spectrum. By a standard gadget
E(S) is put in correspondence with a subsemilattice of the power set of S n f0g, whose
members we call the constructible sets, by analogy with a similar concept relevant to Li’s
work in [Li 2012].

Central to the study of the spectrum of E(S) is the notion of strings, which are mo-
tivated by the description of the unit space of graph groupoids in terms of paths in the
graph.

Regarding the problem of understanding the spectrum of E(S), we believe the present
work represents only a modest beginning in a mammoth task lying ahead. This impression
comes from situations in which similar spectra have been more or less understood, such
as in [Exel and Laca 1999] and in [Dokuchaev and Exel 2017], illustrating the high degree
of complexity one should expect.

It is only in our final section that we return to considering C*-algebras wherewe discuss,
from the present perspective, how the Matsumoto and Carlsen-Matsumoto C*-algebras
associated to a given subshift arise from the consideration of the inverse hull of the as-
sociated language semigroup. None of these correspond to the more well known tight or
Paterson’s universal C*-algebras, but we show that they instead arise from reductions of
the Paterson groupoid to closed invariant subsets of its unit space which hitherto have not
been identified.
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2 Representations of semigroups

Let S be a semigroup, namely a nonempty set equipped with an associative operation.
A zero element for S is a (necessarily unique) element 0 2 S , satisfying

s0 = 0s = 0; 8s 2 S:

In what follows we will fix a semigroup S possessing a zero element.

Definition 2.1. Let Ω be any set. By a representation of S on Ω we shall mean any map

� : S ! I(Ω);

where I(Ω) is the symmetric inverse semigroup1 on Ω, such that

(i) �0 is the empty map on Ω, and

(ii) �s ı �t = �st , for all s and t in S .

Given a set Ω, and any subset X � Ω, let idX denote the identity function on X , so
that idX an element of E

�
I(Ω)

�
, the idempotent semilattice of I(Ω). One in fact has that

E
�
I(Ω)

�
= fidX : X � Ωg;

so we may identify E
�
I(Ω)

�
with the meet semilattice P (Ω) formed by all subsets of Ω.

Definition 2.2. Given a representation � of S , for every s in S we will denote the domain
of �s by F �

s , and the range of �s by E�
s , so that �s is a bijective mapping

�s : F �
s ! E�

s :

When

Ω =

 [
s2S

F �
s

!
[

 [
s2S

E�
s

!
;(2.3)

we will say that � is an essential representation. We will moreover let

f �
s := ��1

s �s = idE�
s

and e�
s := �s�

�1
s = idF �

s
:

Let us fix, for the time being, a representation � of S onΩ. Whenever there is only one
representation in sight we will drop the superscripts in F �

s , E�
s , f �

s , and e�
s , and adopt

the simplified notations Fs , Es , fs , and es .
1The symmetric inverse semigroup on a set Ω is the inverse semigroup formed by all partially defined bijec-

tions on Ω.
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The following may be proved easily.

Proposition 2.4. Given s and t in S , one has that

(i) �set = est�s , and

(ii) ft�s = �sfts .

Definition 2.5.

(i) The inverse subsemigroup of I(Ω) generated by the set f�s : s 2 Sgwill be denoted
by I(Ω; �).

(ii) Given any X 2 P (Ω) such that idX belongs to E
�
I(Ω; �)

�
, we will say X is a

�-constructible subset.

(iii) The collection of all �-constructible subsets of Ω will be denoted by P (Ω; �). In
symbols

P (Ω; �) =
˚
X 2 P (Ω) : idX 2 E

�
I(Ω; �)

�	
:

Observe thatEs and Fs are �-constructible sets. For the special case of s = 0, we have
Es = Fs = ¿, so the empty set is �-constructible as well.

Since P (Ω; �) corresponds to the idempotent semilattice of I(Ω; �) by definition, it is
clear that P (Ω; �) is a semilattice, and in particular the intersection of two �-constructible
sets is again �-constructible.

3 Cancellation properties for semigroups

Definition 3.1. Let S be a semigroup containing a zero element. We will say that S is
0-left cancellative if, for every r; s; t 2 S ,

st = sr ¤ 0 ) t = r;

and 0-right cancellative if
ts = rs ¤ 0 ) t = r:

If S is both 0-left cancellative and 0-right cancellative, we will say that S is 0-cancellative.
I In what follows we will fix a 0-left cancellative semigroup S . In a few occasions
below we will also assume that S is 0-right cancellative.

For any s in S we will let

Fs = fx 2 S : sx ¤ 0g;

and
Es = fy 2 S : y = sx ¤ 0; for some x 2 Sg:
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Observe that the correspondence “x ! sx” gives a map from Fs onto Es , which is
one-to-one by virtue of 0-left cancellativity.

Definition 3.2. For every s in S we will denote by �s the bijective mapping given by

�s : x 2 Fs 7! sx 2 Es :

Observing that 0 is neither in Fs , nor in Es , we see that these are both subsets of

S 0 := S n f0g;(3.3)

so we may view �s as a partially defined bijection on S 0, which is to say that �s 2 I(S 0).
We should also notice that when s = 0, both Fs and Es are empty, so �s is the empty map.

Proposition 3.4. The correspondence

s 2 S 7! �s 2 I(S 0)

is a representation of S on S 0, henceforth called the regular representation of S .

Regarding the notations introduced in (2.2) in relation to the regular representation,
notice that

Fs = F �
s and Es = E�

s :

Definition 3.5. A semigroup S is called right reductive if it acts faithfully on the left of
itself, that is, sx = tx for all x 2 S implies s = t .

Of course every unital semigroup is right reductive. If S is a right reductive 0-left
cancellative semigroup, then it embeds in I(S 0) via s 7! �s .

Observe that if S is 0-right cancellative, then a single x for which sx = rx, as long as
this is nonzero, is enough to imply that s = t . So, in a sense, right reductivity is a weaker
version of 0-right cancellativity.

Definition 3.6. The inverse hull of S , henceforth denoted by H(S), is the inverse sub-
semigroup of I(S 0) generated by the set f�s : s 2 Sg. Thus, in the terminology of (2.5.i)
we have

H(S) = I(S 0; �):

The reader should compare the abovewith the notion of inverse hull defined in [Clifford
and Preston 1961; Cherubini and Petrich 1987].

The collection of � -constructible subsets of S 0 is of special importance to us, so we
would like to give it a special notation:
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Definition 3.7. The idempotent semilattice of H(S), which we will tacitly identify with
the semilattice of � -constructible subsets of S 0, will be denoted by E(S). Thus, in the
terminology of (2.5.iii) we have

E(S) = P (S 0; �):

It will be important to identify some properties of 0-left cancellative semigroups which
will play a role later.

Proposition 3.8. Let S be a 0-left cancellative semigroup.

(i) If e is an idempotent element in S and s 2 S nf0g, then es ¤ 0 if and only if es = s,
that is, s 2 eS n f0g.

(ii) If s 2 S n f0g, then s 2 sS if and only if se = s for a necessarily unique idempotent
e.

(iii) If sS = S and S is right reductive, then S is unital and s is invertible.

A semigroup S is said to have right local units if S = SE(S), that is, for all s 2 S ,
there exists an idempotent element e in S with se = s. A unital semigroup has right local
units for trivial reasons. If S has right local units, then sS = 0 implies that s = 0. From
Proposition 3.8 we obtain the following:

Corollary 3.9. Let S be a 0-left cancellative semigroup. Then S has right local units if
and only if s 2 sS for all s 2 S .

In a right reductive 0-left cancellative semigroup, the idempotents are orthogonal to
each other:

Proposition 3.10. Let S be a right reductive 0-left cancellative semigroup and suppose
that e ¤ f are distinct idempotents of S . Then ef = 0.

If S is a 0-left cancellative, right reductive semigroup with right local units, then for
s 2 S n f0g, we denote by s+ the unique idempotent with ss+ = s. If S is unital, then
s+ = 1. If C is a left cancellative category, we can associate a semigroup S(C ) by
letting S(C ) consist of the arrows of C together with a zero element 0. Products that are
undefined in C are made zero in S(C ). It is straightforward to check that S(C ) is 0-left
cancellative, right reductive and has right local units. If f : c ! d is an arrow of C , then
f + = 1c .
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4 Examples

If G is any group, and P is a subsemigroup of G, let S = P [ f0g, where 0 is any
element not belonging to P , with the obvious multiplication operation. Then S is clearly
a 0-cancellative semigroup.

A more elaborate example is as follows: let Λ be any finite or infinite set, henceforth
called the alphabet, and let Λ+ be the free semigroup generated by Λ, namely the set of
all finite words in Λ of positive length (and hence excluding the empty word), equipped
with the multiplication operation given by concatenation.

Let L be a language on Λ, namely any nonempty subset of Λ+. We will furthermore
assume that L is closed under prefixes and suffixes in the sense that, for every ˛ and ˇ in
Λ+, one has

˛ˇ 2 L ) ˛ 2 L; and ˇ 2 L:

Define a multiplication operation on

S := L [ f0g;(4.1)

where 0 is any element not belonging to L, by

˛ � ˇ =

�
˛ˇ; if ˛; ˇ ¤ 0, and ˛ˇ 2 L;

0; otherwise.

One may then prove that S is a 0-cancellative semigroup.
One important special case of the above example is based on subshifts. Given an alpha-

bet Λ, as above, letX � ΛN be any nonempty subset invariant under the left shift, namely
the mapping � : ΛN ! ΛN given by

�(x1x2x3 : : :) = x2x3x4 : : :

Let L � Λ+ be the language of X , namely the set of all finite words occuring in some
infinite word belonging to X . Then L is clearly closed under prefixes and suffixes, and
hence we are back in the conditions of the above example.

The fact that X is invariant under the left shift is indeed superfluous, as any nonempty
subset X � ΛN would lead to the same conclusion. However, languages arising from
subshifts have been intensively studied in the literature, hence the motivation for the above
example. The semigroup associated to the language of a shift was first studied in the early
days of symbolic dynamics by Morse and Hedlund [Morse and Hedlund 1944].

Definition 4.2. (Munn [1964]) We will say that a semigroup S with zero is categorical
at zero if, for every r; s; t 2 S , one has that

rs ¤ 0; and st ¤ 0 ) rst ¤ 0:
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The semigroup associated to a category is categorical at zero, whence the name. We
may use the above ideas to produce a semigroup which is not categorical at zero: take any
nonempty alphabet Λ, let L be the language consisting of all words of length at most two,
and let S = L [ f0g, as described above. If a, b and c, are members of Λ, we have that
abc = 0, but ab and bc are nonzero, so S is not categorical at zero.

In contrast, notice that if S is the semigroup built as above from a Markov subshift,
then S is easily seen to be categorical at zero.

Another interesting example is obtained from self-similar graphs [Exel and Pardo 2016].
LetG be a discrete group, E = (E0; E1) be a graph with no sources, � be an action ofG
by graph automorphisms on E, and

' : G �E1
! G

be a one-cocycle for the restriction of � to E1, which moreover satisfies

�'(g;e)(x) = �g(x); 8g 2 G; 8e 2 E1; 8x 2 E0:

Let E� be the set of all finite paths2 on E, including the vertices, which are seen as
paths of length zero, and put

S = (E�
�G) [ f0g:

Given nonzero elements (˛; g) and (ˇ; h) in S , define

(˛; g)(ˇ; h) =

� �
˛�g(ˇ); '(g; ˇ)h

�
; if s(˛) = r

�
�g(ˇ)

�
;

0; otherwise.

One may then show that S is a categorical at zero, 0-left cancellative semigroup, which
is 0-right cancellative if and only if (G;E) is pseudo-free in the sense of Exel and Pardo
[ibid., Proposition5.6].

5 Least common multiples

We now wish to introduce a special class of semigroups, but for this we must first consider
the question of divisibility.

Definition 5.1. Given s and t in a semigroup S , we will say that s divides t , in symbols

s j t;

2We adopt the functorial point of view so a path is a sequence e1 : : : en of edges, such that s(ei ) = r(ei+1),
for all i , as opposed to the also very popular “r(ei ) = s(ei+1)”.
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or that t is a multiple of s, when either s = t , or there is some u in S such that su = t . In
other words,

t 2 fsg [ sS:

We observe that division is a reflexive and transitive relation, so it may be seen as a
(not necessarily anti-symmetric) order relation.

For the strict purpose of simplifying the description of the division relation, regardless
of whether or not S is unital, we shall sometimes employ the unitized semigroup

S̃ := S [ f1g;

where 1 is any element not belonging to S , made to act like a unit for S . For every s and
t in S we therefore have that

s j t () 9u 2 S̃ ; su = t:(5.2)

Having enlarged our semigroup, we might as well extend the notion of divisibility:

Definition 5.3. Given v and w in S̃ , we will say that v j w when there exists some u in
S̃ , such that vu = w.

Notice that if v and w are in S , then the above notion of divisibility coincides with the
previous one by (5.2). Analysing the new cases where this extended divisibility may or
may not apply, notice that:

8w 2 S̃ ; 1 j w;

8v 2 S̃ ; v j 1 () v = 1:
(5.4)

The introduction of S̃ brings with it several pitfalls, not least because S̃ might not be
0-left cancellative: when S already has a unit, say 1S , then in the identity “s1S = s1”, we
are not allowed to left cancel s, since 1S ¤ 1. One should therefore be very careful when
working with S̃ .

Definition 5.5. Let S be a semigroup and let s; t 2 S . We will say that an element r 2 S

is a least common multiple for s and t when

(i) sS \ tS = rS ,

(ii) both s and t divide r .

Observe that when S has right local units then r 2 rS , by (3.9), and hence condition
(5.5.i) trivially implies (5.5.ii), so the former condition alone suffices to define least com-
mon multiples. However in a unitless semigroup condition (5.5.i) may hold while (5.5.ii)
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fails. Nevertheless, when sS \ tS = f0g, then 0 is a least common multiple for s and t
because s and t always divide 0.

Regardless of the existence of right local units, notice that condition (5.5.ii) holds if
and only if rS̃ � sS̃ \ t S̃ , and therefore one has that r is a least common multiple for s
and t if and only if

sS \ tS = rS � rS̃ � sS̃ \ t S̃ :(5.6)

One may of course think of alernative definitions for the concept of least common
multiples, fiddling with the above ideas in many different ways. However (5.5) seems to
be the correct choice, at least from the point of view of the theory we are about to develop.

Definition 5.7. We shall say that a semigroup S admits least common multiples if there
exists a least common multiple for each pair of elements of S .

The language semigroup of (4.1) is easily seen to be an example of a semigroup admit-
ting least common multiples.

Another interesting example is obtained from the quasi-lattice ordered groups of [Nica
1992], which we would now like to briefly describe.

Given a group G and a unital subsemigroup P � G, one defines a partial order on G
via

x � y () x�1y 2 P:

The quasi-lattice condition says that, whenever elements x and y in G admit a common
upper bound, namely an element z in G such that z � x and z � y, then there exists a
least common upper bound, usually denoted x _ y.

Under this situation, consider the semigroup S = P [ f0g, obtained by adjoining a
zero to P . Then, for every nonzero s in S , i.e. for s in P , one has that

sS = fx 2 P : x � sg [ f0g;

so that the multiples of s are precisely the upper bounds of s in P , including zero.
If t is another nonzero element in S , one therefore has that s and t admit a nonzero

commun multiple if and only if s and t admit a common upper bound in P , in which case
s _ t is a least common multiple of s and t .

On the other hand, when s and t admit no common upper bound, then obviously s _ t

does not exist, but still s and t admit a least common multiple in S , namely 0.
Summarizing we have the following:

Proposition 5.8. Let (G;P ) be a quasi-lattice ordered group. Then the semigroup S :=

P [ f0g admits least common multiples.
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I From this point on we will fix a 0-left cancellative semigroup S admitting least com-
mon multiples.

Proposition 5.9. Given u and v in S̃ , there exists w in S̃ such that

(i) uS \ vS = wS ,

(ii) both u and v divide w.

Proof. When u and v lie in S , it is enough to takew to be a (usual) least common multiple
of u and v. On the other hand, if u = 1, one takes w = v, and if v = 1, one takes
w = u.

Based on the above we may extend the notion of least common multiples to S̃ , as
follows:

Definition 5.10. Given u and v in S̃ , we will say that an elementw in S̃ is a least common
multiple of u and v, provided (5.9.i-ii) hold. In the exceptional case that u = v = 1, only
w = 1 will be considered to be a least common multiple of u and v, even though there
might be another w in S satisfying (5.9.i-ii).

It is perhaps interesting to describe the exceptional situation above, where we are arbi-
trarily prohibiting by hand that an element of S be considered as a least common multiple
of 1 and itself, even though it would otherwise satisfy all of the required properties. If
w 2 S is such an element, then

wS = 1S \ 1S = S;

so, in case we also assume that S is right-reductive, we deduce from (3.8.iii) that S is
unital and w is invertible. Thus, in hindsight it might not have been such a good idea to
add an external unit to S after all.

On the other hand, when s and t lie in S , it is not hard to see that any least common
multiple of s and t in the new sense of (5.10) must belong to S , and hence it must also be
a least common multiple in the old sense of (5.5).

Given a representation � of S on a set Ω, we will now concentrate our attention on
giving a concrete description for the inverse semigroup I(Ω; �) defined in (2.5), provided
� satisfies certain special properties, which we will now describe.

Initially notice that if s j r , then the range of �r is contained in the range of �s because
either r = s, or r = su, for some u in S , in which case �r = �s�u. So, using the notation
introduced in (2.2),

E�
r � E�

s :

When r is a common multiple of s and t , it then follows that

E�
r � E�

s \E�
t :
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Definition 5.11. A representation � of S is said to respect least common multiples if,
whenever r is a least common multiple of elements s and t in S , one has that E�

r =

E�
s \E�

t :

As an example, notice that the regular representation of S , defined in (3.4), satisfies
the above condition since the fact that rS = sS \ tS implies that

E�
r = rS n f0g = (sS \ tS) n f0g = (sS n f0g) \ (tS n f0g) = E�

s \E�
t :(5.12)

I From now on we will fix a representation � of S on a set Ω, assumed to respect least
common multiples. Since � will be the only representation considered for a while, we
will use the simplified notations Fs , Es , fs , and es .

There is a cannonical way to extend � to S̃ by setting

F1 = E1 = Ω; and �1 = idΩ :

It is evident that � remains a multiplicative map after this extension. Whenever we find
it convenient we will therefore think of � as defined on S̃ as above. We will accordingly
extend the notations fs and es to allow for any s in S̃ , in the obvious way.

Proposition 5.13. Let � be a representation of S on a set Ω. If � respects least common
multiples then so does its natural extension to S̃ . Precisely, if u and v are elements of S̃ ,
and if w 2 S̃ is a least common multiple of u and v, then Ew = Eu \Ev .

Definition 5.14. Given a representation � of S , and given any nonempty finite subset
Λ � S̃ , we will let

F �
Λ =

\
u2Λ

F �
u ; and f �

Λ =
Y
u2Λ

f �
u :

When there is only one representation of S in sight, as in the present moment, we will
drop the superscripts and use the simplified notations FΛ and fΛ.

We should remark that, since each fs is the identity map on Fs , one has that fΛ is the
identity map on FΛ.

Also notice that, since f1 = idΩ, the presence of 1 in Λ has no effect in the sense that
fΛ = fΛ[f1g, for every Λ. Thus, whenever convenient we may assume that 1 2 Λ.

As already indicated we are interested in obtaining a description for the inverse semi-
group I(Ω; �). In that respect it is interesting to observe that most elements of the form
fΛ belong to I(Ω; �), but there is one exception, namely when Λ = f1g. In this case we
have

ff1g = idΩ;
which may or may not lie in I(Ω; �). However, when Λ \ S ¤ ¿, then surely

fΛ 2 I(Ω; �):(5.15)
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We should furthermore remark that, whenever we are looking at a term of the form
�ufΛ�

�1
v , we may assume that u; v 2 Λ, because

�ufΛ�
�1
v = �u�

�1
u �ufΛ�

�1
v �v�

�1
v =

= �ufufΛfv�
�1
v = �uffug[Λ[fvg�

�1
v ;

(5.16)

so Λ may be replaced by fug [ Λ [ fvg without altering the above term. Moreover, as in
(5.15), observe that when Λ \ S ¤ ¿, then

�ufΛ�
�1
v 2 I(Ω; �):

Theorem5.17. LetS be a 0-left cancellative semigroup admitting least commonmultiples.
Also let � be a representation of S on a setΩ, assumed to respect least common multiples.
Then the generated inverse semigroup I(Ω; �) is given by

I(Ω; �) =
n
�ufΛ�

�1
v : Λ � S̃ is finite, Λ \ S ¤ ¿; and u; v 2 Λ

o
:

With this we may describe the constructible sets in a very concrete way.

Proposition 5.18. Under the assumptions of (5.17), the �-constructible subsets of Ω are
precisely the sets of the form

X = �u(FΛ);

where Λ � S̃ is a finite subset, Λ \ S ¤ ¿, and u 2 Λ.

Recalling that the regular representation of S respects least common multiples, our last
two results apply to give:

Corollary 5.19. Let S be a 0-left cancellative semigroup admitting least common multi-
ples. Then

H(S) =
n
�ufΛ�

�1
v : Λ � S̃ is finite, Λ \ S ¤ ¿; and u; v 2 Λ

o
;

and
E(S) =

n
uFΛ : Λ � S̃ is finite, Λ \ S ¤ ¿; and u 2 Λ

o
:

6 Strings

This section is intended to introduce a device which will be highly useful in the study of
the spectrum of E(S).
I Throughout this section S will be a fixed 0-left cancellative semigroup.
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Definition 6.1. A nonempty subset � � S is said to be a string in S , if

(i) 0 … � ,

(ii) for every s and t in S , if s j t , and t 2 � , then s 2 � ,

(iii) for every s1 and s2 in � , there is some s in � such that s1 j s, and s2 j s.

An elementary example of a string is the set of divisors of any nonzero element s in S ,
namely,

ıs = ft 2 S : t j sg:(6.2)

Strings often contain many elements, but there are some exceptional strings consist-
ing of a single semigroup element. To better study these it is useful to introduce some
terminology.

Definition 6.3. Given s in S we will say that s is:

(i) prime, if the only divisor of s is s, itself, or, equivalently, if ıs = fsg,

(ii) irreducible, if there are no two elements x and y in S such that s = xy, or, equiva-
lently, if s … S2.

It is evident that any irreducible element is prime, but there might be prime elements
which are not irreducible. For example, in the semigroupS = f0; s; eg, withmultiplication
table given by

� 0 e s

0 0 0 0

e 0 e 0

s 0 s 0

one has that s is prime but not irreducible because s = se 2 S2.

Definition 6.4. A singleton fsg is a string if and only if s is prime.

Proof. If s is prime then the singleton fsg coincides with ıs , and hence it is a string. Con-
versely, supposing that fsg is a string, we have by (6.1.ii) that ıs � fsg, from where it
follows that s is prime.

Definition 6.5. The set of all strings in S will be denoted by S?.

From now on our goal will be to define an action of S on S?.

Proposition 6.6. Let � be a string in S , and let r 2 S . Then
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(i) if 0 is not in r� , one has that

r � � :=
˚
t 2 S : t j rs; for some s 2 �g

is a string whose intersection with rS is nonempty.

(ii) If � is a string whose intersection with rS is nonempty, then

r�1
� � :=

˚
t 2 S : rt 2 �

	
is a string, and 0 is not in r(r�1 � �).

It should be noted that, under the assumptions of (6.6.i), one has that

r� � r � �;(6.7)

and in fact r � � is the hereditary closure of r� relative to the order relation given by
division.

We may then define a representation of S on the set S? of all strings in S , as follows:

Proposition 6.8. For each r in S , put

F ?
r =

˚
� 2 S? : r� 63 0

	
; and E?

r =
˚
� 2 S? : � \ rS ¤ ¿

	
:

Also let
�?

r : F ?
r ! E?

r

be defined by �?
r (�) = r � � , for every � 2 F ?

r . Then:

(i) �?
r is bijective, and its inverse is the mapping defined by

� 2 E?
r 7! r�1

� � 2 F ?
r :

(ii) Viewing �? as a map from S to I(S?), one has that �? is a representation of S on
S?.

Useful alternative characterizations of F ?
r and E?

r are as follows:

Proposition 6.9. Given r in S , and given any string � in S?, one has that:

(i) � 2 F ?
r , � � F �

r ,

(ii) � 2 E?
r , � \E�

r ¤ ¿;

(iii) � 2 E?
r ) r 2 � . In addition, the converse holds provided r 2 rS (e.g. if S has

right local units).
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Recall from (5.19) that, when S has least common multiples, every � -constructible
subset of S 0 has the form �u(F

�
Λ), where Λ � S̃ is finite, Λ \ S ¤ ¿, and u 2 Λ. By

analogy this suggests that it might also be useful to have a characterization of �?
u (F

?
Λ )

along the lines of (6.9).

Proposition 6.10. Let Λ be a finite subset of S̃ having a nonempty intersection with S ,
and let u 2 Λ. Then �?

u (F
?
Λ ) consists precisely of the strings � such that

¿ ¤ � \E�
u � �u(F

�
Λ):

After (6.8) we now have two natural representations of S , namely the regular represen-
tation � acting on S 0, and �? acting on S?.

Proposition 6.11. The map
ı : s 2 S 0

7! ıs 2 S?;

where ıs is defined in (6.2), is covariant relative to � and �?.

Observe that the union of an increasing family of strings is a string, so any string is
contained in a maximal one by Zorn’s Lemma.

Definition 6.12. The subset of S? formed by all maximal strings will be denoted by S1.

Our next result says that S1 is invariant under �?.

Proposition 6.13. For every r in S , and for every maximal string � in F ?
r , one has that

�?
r (�) is maximal.

Observe that the above result says that S1 is invariant under each �?
r , but not neces-

sarily under �?
r

�1.
An example to show that S1 may indeed be non invariant under �?

r
�1 is as follows.

Consider the language L on the alphabet Σ = fa; bg given by

L = fa; b; aa; bag:

Then, � = fb; bag is a maximal string, while �?
b

�1 = fag is not maximal.

Definition 6.14. By a representation of a given inverse semigroup S on a set Ω we shall
mean any map

� : S ! I(Ω);

such that �(0) is the empty map, and for every s and t in S, one has that �(st) = �(s)�(t),
and �(s�1) = �(s)�1.
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Proposition 6.15. Let S be a 0-left cancellative semigroup admitting least common mul-
tiples. Then there exists a unique representation � of H(S) on S?, such that the following
diagram commutes.

S
�?

//

�

  A
AA

AA
AA

AA
AA

AA
A I(S�)

H(S)

�

<<yyyyyyyyyyyyyy

Observing that a homomorphism of inverse semigroups must restrict to the correspond-
ing idempotent semilattice s, we obtain the following:

Corollary 6.16. Let S be a 0-left cancellative semigroup admitting least common multi-
ples. Then there exists a semilattice representation

" : E(S) ! P (S?);

such that
"
�
�u(F

�
Λ)
�
= �?

u (F
?
Λ );

whenever Λ is a finite subset of S̃ intersecting S nontrivially, and u 2 Λ.

Observing that E�
r = �r(F

�
r ), notice that

"(E�
r ) = �?

r (F
?
r ) = E?

r :

7 The spectrum of the semilattice of constructible sets

Let us now fix a 0-left cancellative semigroup S admitting least common multiples. It is
our goal in this section to study the spectrum of E(S).

Recall that if E is a semilattice with zero, the spectrum of E is the set of all semilattice
homomorphisms ' : E ! f0; 1g, such that '(0) = 0. Here f0; 1g is equipped with its
standard semilattice structure 0 < 1.

Considering the representation

" : E(S) ! P (S?);

introduced in (6.16), and given � 2 S?, set

'� : X 2 E(S) 7! [� 2 "(X)] 2 f0; 1g:
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It is clear that '� is a semilattice homomorphism, so it is a character as long as it is nonzero.
The question of whether or not '� is nonzero evidently boils down to the existence of

some constructible set X for which � 2 "(X). By (5.19) it is easy to see that for every
constructible setX , there is some r in S such thatX � Er , orX � Fr . Therefore '� = 0

if and only if � is never in any E?
r nor in any F ?

r , that is,

� 6� F �
r ; and � \E�

r = ¿;

for every r in S , by (6.9).
The second condition above implies that every element in � is irreducible, so it neces-

sarily follows that � is a singleton, say � = fsg, where s is irreducible. In turn, the first
condition above implies that s lies in no F �

r , whence Ss = 0.

Definition 7.1. (i) An element s in S will be called degenerate if s is irreducible and
Ss = f0g:

(ii) A string � will be called degenerate if � = fsg, where s is a degenerate element.

(iii) The set of all non-degenerate strings will be denoted by S?
]
.

(iv) For every non-degenerate string � , we shall denote by '� the character of E(S)

given by
'� (X) = [� 2 "(X)]; 8X 2 E(S):

Suppose we are given '� and we want to recover � from '� . In the special case in
which S has right local units, we have that

'� (E
�
s ) = 1 () � 2 "(E�

s ) = E?
s

(6:9:iii)
() s 2 �;(7.2)

so � is recovered as the set fs 2 S : '� (E
�
s ) = 1g. Without assuming right local units,

the last part of (7.2) cannot be trusted, but it may be replaced with

� � �
(6:9:ii)
() � \E�

s ¤ ¿;(7.3)

so we at least know which E�
s have a nonempty intersection with � .

Proposition 7.4. Given any string � , let the interior of � be defined by

�̊ := fs 2 S : 9x 2 S; sx 2 �g:

Then
�̊ = fs 2 S : '� (E

�
s ) = 1g:
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Given any character ' of E(S), regardless of whether or not it is of the form '� as
above, we may still consider the set

�' := fs 2 S : '(E�
s ) = 1g;(7.5)

so that, when ' = '� , we get �' = �̊ .

Proposition 7.6. If ' is any character of E(S), and �' is nonempty, then �' is a string
closed under least common multiples.

Based on (7.1.iv) we may define a map from the set of all non-degenerate strings to
Ê(S), the spectrum of E(S), by

Φ : � 2 S?
] 7! '� 2 Ê(S);(7.7)

but if we want the dual correspondence suggested by (7.5), namely

' 7! �' ;(7.8)

to give a well defined map from Ê(S) to S?, we need to worry about its domain because
we have not checked that �' is always nonempty, and hence �' may fail to be a string.
The appropriate domain is evidently given by the set of all characters ' such that �' is
nonempty but, before we formalize this map, it is interesting to introduce a relevant sub-
semilattice of E(S).

Proposition 7.9. The subset of E(S) given by3

E1(S) = fsF �
Λ ; Λ � S is finite, and s 2 Λg;

is an ideal of E(S). Moreover, for every X in E(S), one has that X lies in E1(S) if and
only if X � E�

s , for some s in S .

Whenever J is an ideal in a semilattice E, there is a standard inclusion

' 2 Ĵ 7! '̃ 2 Ê;

where, for every x in E, one has that '̃(x) = 1, if and only if there exists some y in J
with y � x, and '(y) = 1. The next result is intended to distinguish the elements of the
copy of Ê1(S) within Ê(S) given by the above correspondence.

Proposition 7.10. Let ' be a character on E(S). Then the following are equivalent:
3This should be contrasted with (5.19), where the general form of an element of E(S) is uF �

Λ , where u is
in S̃ , rather than S .
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(i) ' 2 Ê1(S),

(ii) '(E�
s ) = 1, for some s in S ,

(iii) �' is nonempty, and hence it is a string by (7.6).

If S admits right local units, then E1(S) = E(S), so �' is a string for every character
' 2 Ê(S).

The vast majority of non-degenerate strings � lead to a character '� belonging to
Ê1(S), but there are exceptions.

Proposition 7.11. If � is a non-degenerate string in S?
]
then '� does not belong to Ê1(S)

if and only if � = fsg, where s is an irreducible element of S .

By (7.10) we have that the largest set of characters on which the correspondence de-
scribed in (7.8) produces a bona fide string is precisely Ê1(S), so we may now formaly
introduce the map suggested by that correspondence.

Definition 7.12. We shall let
Σ : Ê1(S) 7! S?;

be the map given by

Σ(') = �' = fs 2 S : '(E�
s ) = 1g; 8' 2 Ê1(S):

For every string � , excluding the exceptional ones discussed in (7.11), we then have
that

Φ(�) = '� 2 Ê1(S);

and

Σ
�
Φ(�)

�
= �̊ ;(7.13)

by (7.4).

Definition 7.14. A string � in S will be termed open if � = �̊ :

The nicest situation is for open strings:

Proposition 7.15. If � is an open string, then

(i) � is non-degenerate,

(ii) Φ(�) 2 Ê1(S), and

(iii) Σ
�
Φ(�)

�
= � .
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Given that the compositionΣıΦ is so well behaved for open strings, we will now study
the reverse composition Φ ı Σ on a set of characters related to open strings.

Definition 7.16. Acharacter' in Ê(S)will be called an open character if �' is a (nonempty)
open string.

We remark that every open character belongs to Ê1(S) by (7.10), although not all
characters in Ê1(S) are open.

By (7.15) it is clear that '� is an open character for every open string � .
If S admits right local units, we have seen that every string in S? is open, and also that

�' is a string for every character. Therefore every character in Ê(S) is open.
The composition Φ ı Σ is not as well behaved as the one discussed in (7.15), but there

is at least some relationship between a character ' and its image under Φ ı Σ, as we shall
now see.

Proposition 7.17. Given any open character ', one has that

' � Φ
�
Σ(')

�
:

This leads us to one of our main results.

Theorem7.18. LetS be a 0-left cancellative semigroup admitting least commonmultiples.
Then, for every open, maximal string � over S , one has that '� is an ultra-character.

The previous result raises the question as to whether �' is a maximal string for every
ultra-character ', but this is not true in general. Consider for example the unital semigroup

S = f1; a; aa; 0g;

in which a3 = 0. The � -constructible subsets of S are precisely

E�
1 = F �

1 = f1; a; aag

F �
a = f1; ag E�

a = aF �
a = fa; aag

F �
aa = f1g aF �

aa = fag E�
aa = aaF �

aa = faag

List of �-constructible sets

and there are three strings over S , namely

ı1 = f1g ıa = f1; ag ıaa = f1; a; aag
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Since the correspondence s 7! ıs is a bijection from S 0 to S?, we see that �? is iso-
morphic to � , and in particular the �?-constructible subsets of S?, listed below, mirror the
� -constructible ones.

E?
1 = F ?

1 = fı1; ıa; ıaag

F ?
a = fı1; ıag E?

a = aF ?
a = fıa; ıaag

F �
aa = fı1g aF ?

aa = fıag E�
aa = aaF ?

aa = fıaag

List of ��-constructible sets

Observe that the string � := ıa = f1; ag is a proper subset of the string f1; a; aag,
and hence � is not maximal. But yet notice that '� is an ultra-character, since fıag is a
minimal4 member of P (S?; �?). We thus get an example of

“A string � which is not maximal but such that '� is an ultra-character.”

On the other hand, since � = �'�
, this also provides an example of

“An ultra-character ' such that �' is not maximal.”

This suggests the need to single out the strings which give rise to ultra-characters:

Definition 7.19. We will say that a string � is quasi-maximal whenever '� is an ultra-
character. The set of all quasi-maximal strings will be denoted by S/.

Adopting this terminology, the conclusion of (7.18) states that every open, maximal
string is quasi-maximal.

Theorem7.20. LetS be a 0-left cancellative semigroup admitting least commonmultiples.
Then, every open ultra-character on E(S) is of the form '� for some open, quasi-maximal
string � .

The importance of quasi-maximal strings evidenced by the last result begs for a better
understanding of such strings. While we are unable to provide a complete characterization,
we can at least exhibit some further examples beyond the maximal ones.

To explain what we mean, recalll from (6.9.i) that a string � belongs to some F ?
Λ if

and only if � is contained in F �
Λ . It is therefore possible that � is maximal among all

strings contained in F �
Λ , and still not be a maximal string. An example is the string f1; ag

mentioned above, which is maximal within F �
a , but not maximal in the strict sense of the

word.
4Whenever e0 is a nonzero minimal element of a semilattice E , the character '(e) = [e0 � e] is an

ultra-character.
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Proposition 7.21. Let Λ be a nonempty finite subset of S and suppose that � is an open
string such that � � F �

Λ . Suppose moreover that � is maximal among the strings con-
tained in F �

Λ , in the sense that for every string �, one has that

� � � � F �
Λ ) � = �:

Then '� is an ultra-character, and hence � is a quasi-maximal string.

8 Ground characters

In the last section we were able to fruitfully study open characters using strings, culmi-
nating with Theorem (7.20), stating that every open ultra-character is given in terms of a
string. However nothing of interest was said about an ultra-character when it is not open.
The main purpose of this section is thus to obtain some useful information about non-open
ultra-characters. The main result in this direction is Theorem (8.11), below.
I Throughout this section we fix a 0-left cancellative semigroup S admitting least com-
mon multiples. For each s in S let

F̂s = f' 2 Ê(S) : '(F �
s ) = 1g; and Ês = f' 2 Ê(S) : '(E�

s ) = 1g;

and for every ' in F̂s , consider the character �̂s(') given by

�̂s(')(X) = '
�
��1

s (E�
s \X)

�
; 8X 2 E(S):

Observing that

�̂s(')(E
�
s ) = '

�
��1

s (E�
s )
�
= '(F �

s ) = 1;(8.1)

we see that �̂s(') is indeed a (nonzero) character, and that �̂s(') belongs to Ês . As a
consequence we get a map

�̂s : F̂s ! Ês;

which is easily seen to be bijective, with inverse given by

�̂�1
s (')(X) = '

�
�s(F

�
s \X)

�
; 8' 2 Ês; 8X 2 E(S):

We may then see each �̂s as an element of I
�
Ê(S)

�
, and it is not hard to see that the

correspondence
�̂ : s 2 S 7! �̂s 2 I(Ê(S))

is a representation of S on Ê(S).
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All of this may also be deduced from the fact that any inverse semigroup, such asH(S),
admits a canonical representation on the spectrum of its idempotent semilattice (see Exel
[2008, Section 10]), and that �̂ may be obtained as the composition

S
�

�! H(S) �! I
�
Ê(S)

�
;

where the arrow in the right-hand-side is the canonical representation mentioned above.

Definition 8.2. We shall refer to �̂ as the dual representation of S .

The following technical result gives some useful information regarding the relationship
between the dual representation and the representation � of H(S) described in (6.15).

Lemma 8.3. Given s in S , and � in S?
]
, one has that

(i) '� 2 F̂s () � 2 F ?
s ,

(ii) if the equivalent conditions in (i) are satisfied, then �̂s('� ) = '�?
s (�),

(iii) '� 2 Ês () � 2 E?
s ,

(iv) if the equivalent conditions in (iii) are satisfied, then �̂�1
s ('� ) = '�?�1

s (�).

Considering the representation �? of S on S?, observe that S?
]
is an invariant subset

of S?, and it is easy to see that it is also invariant under the representation � of H(S)

described in (6.15). Together with the dual representation of H(S) on Ê(S) mentioned
above, we thus have two natural representations of H(S), which are closeely related, as
the following immediate consequence of the above result asserts:

Proposition 8.4. The mapping
Φ : S?

] ! Ê(S)

of (7.7) is covariant relative to the natural representations of H(S) referred to above.

The fact that the correspondence between strings and characters is not a perfect one
(see e.g. (7.13) and (7.17)) is partly responsible for the fact that expressing the covariance
properties of the map Σ of (7.12) cannot be done in the same straightforward way as we
did for Φ in (8.4). Nevertheless, there are some things we may say in this respect.

Let us first treat the question of covariance regarding �̂�1
s ('). Of course, for this to

be a well defined character we need ' to be in Ês , meaning that '(E�
s ) = 1, which is

also equivalent to saying that s 2 �' . In particular characters with empty strings are
immediately ruled out.
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Lemma 8.5. For every s in S , and every character ' in Ês , one has that

�
�̂�1

s (')
= fp 2 S : sp 2 �'g:

The set appearing in the right hand side of the equation displayed in (8.5) is precisely
the same set mentioned in definition (6.6.ii) of s�1��' , except that this notation is reserved
for the situation in which the intersection of � with sS is nonempty, which precisely means
that s 2 �̊' .

Proposition 8.6. Pick s in S and let ' be any character in Ês . Then s 2 �' , and moreover

(i) if s is in �̊' , then �' 2 E?
s , and ��̂�1

s (')
= �?�1

s (�'),

(ii) if s is not in �̊' , then ��̂�1
s (')

= ¿.

Regarding the behavior of strings associated to characters of the form �̂s('), we have:

Lemma 8.7. For every s in S , and every character ' in F̂s , one has that �̂s(') belongs
to Ê1(S) (and hence (7.10) implies that �

�̂s
(') is a string), and moreover

(i) if �' is nonempty, then �' 2 F ?
s , and �

�̂s(')
= �?

s (�'),

(ii) if �' is empty, then �
�̂s(')

= ıs .

We may interpret the above result, and more specifically the identity

�
�̂s(')

= �?
s (�');

as saying that the correspondence ' 7! �' is covariant with respect to the actions �̂ and �?,
on Ê(S) and S?, respectively, except that the term “�'” appearing is the right-hand-side
above is not a well defined string since it may be empty, even though the left-hand-side
is always well defined. In the problematic case of an empty string, (8.7.ii) then gives the
undefined right-hand-side the default value of ıs .

Definition 8.8. A character ' in Ê(S) will be called a ground character if �' is empty.

By (7.10), the ground characters are precisely the members of Ê(S) n Ê1(S).
Besides the ground characters, a character ' may fail to be open because �' , while

being a bona fide string, is not an open string. In this case we have that �' = ıs , for some
s in S such that s … sS .

Proposition 8.9. Let ' be a character such that �' = ıs , where s is such that s … sS .
Then ' 2 Ês , and �̂�1

s (') is a ground character.
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We may now give a precise characterization of non-open characters in terms of the
ground characters:

Proposition 8.10. Denote by Êop(S) the set of all open characters on E(S). Then

Ê(S) n Êop(S) =
n
�̂u(') : u 2 S̃ ; ' is a ground character in F̂u

o
:

Moreover for each  in the above set, there is a unique pair (u; '), with u in S̃ , and ' a
ground character, such that  = �̂u(').

We may now combine several of our earlier results to give a description of all ultra-
characters on E(S).

Theorem 8.11. LetS be a 0-left cancellative semigroup admitting least commonmultiples.
Denote by Ê1(S) the set of all ultra-characters on E(S), and by

Êop
1(S) = Êop(S) \ Ê1(S);

namely the subset formed by all open ultra-characters. Then

(i) Ê
op
1(S) =

˚
'� : � is an open, quasi-maximal string in S

	
, and

(ii) Ê1(S) n Ê
op
1(S) =

˚
�̂u(') : u 2 S̃ ; ' is a ground, ultra-character in F̂u

	
.

The upshot is that in order to understand all ultra-characters on E(S), it only remains
to describe the ground ultra-characters.

9 Subshift semigroups

By a subshift on a finite alphabet Σ one means a subset X � ΣN, which is closed relative
to the product topology, and invariant under the left shift map

x1x2x3 : : : 7! x2x3x4 : : :

I Throughout this chapter we will let X be a fixed subshift.

The language of X is the set L formed by all finite words appearing as a block in some
infinite word belonging to X. We will not allow the empty word in L, as sometimes done
in connection with subshifts, so all of our words have strictly positive length.

In the present section we will be concerned with the semigroup

SX = L [ f0g;(9.1)
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equipped with the multiplication operation given by

� � � =

�
��; if �; � ¤ 0, and �� 2 L;

0; otherwise,

where �� stands for the concatenation of � and �.
Given � and � in SX, with � nonzero, notice that � j � if and only if � is a prefix of

�. Given that divisibility is also well defined for the unitized semigroup S̃X, and that 1
divides any � 2 SX, we will also say that 1 is a prefix of �.

Some of the special properties of SX of easy verification are listed below:

Proposition 9.2.

(i) SX is 0-left cancellative and 0-right cancellative,

(ii) SX admits least common multiples,

(iii) SX has no idempotent elements other than 0.

A further special property of SX is a very strong uniqueness of the normal form for
elements in H(SX):

Proposition 9.3. For i = 1; 2, letΛi be a finite subset of S̃X intersectingSX non-trivially,
and let ui ; vi 2 Λi be such that

�u1
fΛ1

��1
v1

= �u2
fΛ2

��1
v2

¤ 0:

Then u1 = u2, v1 = v2, and FΛ1
= FΛ2

.

Given the importance of strings, let us give an explicit description of these in the present
context.

Proposition 9.4. Given a (finite or infinite) word

! = !1!2!3 : : : ;

on the alphabet Σ, assume ! to be admissible (meaning that ! belongs to L, if finite, or
to X, if infinite) and consider the set ı! formed by all prefixes of ! having positive length,
namely

ı! = f!1; !1!2; !1!2!3; : : : g:

Then:

(i) ı! is a string,
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(ii) ı! is an open string if and only if ! is an infinite word,

(iii) ı! is a maximal string if and only if ! is an infinite word,

(iv) for any string � in SX, there exists a unique admissible word ! such that � = ı! .

Strings consist in one of our best instruments to provide characters on E(SX). Now
that we have a concrete description of strings in terms of admissible words, let us give an
equally concrete description of the characters induced by strings.

Proposition 9.5. Let! be a given infinite admissible word, and letX be any � -constructible
set, written in normal form, namely X = uF �

Λ , where Λ is a finite subset of S̃X, intersect-
ing SX nontrivially, and u 2 Λ. Regarding the string ı! , and the associated character
'ı!

, the following are equivalent:

(i) 'ı!
(X) = 1,

(ii) u is a prefix of !, and upon writing ! = u�, for some infinite word �, one has that
t� is admissible (i.e. lies in X), for every t in Λ.

In case the set X of the above result coincides with F �
� , for some � in L, we get the

following simplification:

Proposition 9.6. Let ! be an infinite admissible word, and let � 2 L. Then

'ı!
(F �

� ) = 1 , �! 2 X:

Let us now study a situation in which infinite words provide all ultra-characters.

Proposition 9.7. The following are equivalent:

(i) for every finite subset Λ � S̃X, such that Λ \ SX ¤ ¿, one has that F �
Λ is either

empty or infinite,

(ii) every nonempty constructible set is infinite,

(iii) fE�
a : a 2 Σg is a cover for E(SX),

(iv) E(SX) admits no ground ultra-characters,

(v) for every ultra-character ' on E(SX), there exists an infinite admissible word !,
such that ' = 'ı!

.
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Let us conclude this section with an example to show that nonempty finite constructible
sets may indeed exist and hence the equivalent conditions of (9.7) do not always hold.
Consider the alphabet Σ = fa; b; cg and let X be the subshift on Σ consisting of all
infinite words ! such that, in any block of ! of length three, there are no repeated letters.
Alternatively, a set of forbidden words defining X is the set of all words of length three
with some repetition.

It is then easy to see that the language L of X is formed by all finite words on Σ with
the same restriction on blocks of length three described above.

Notice that c 2 Ffa;bg, because both ac and bc are in L. However there is no element
in Ffa;bg other than c, because it is evident that neither a nor b lie in Ffa;bg, and for any x
in Σ, either acx or bcx will involve a repetition. So voilà the finite constructible set:

Ffa;bg = fcg:(9.8)

10 C*-algebras associated to subshifts

In this final section wewill briefly discuss applications of the theory so far described to var-
ious C*-algebras associated to subshifts that have been studied starting with Matsumoto’s
original work [Matsumoto 1997].

Given a subshift X, as in the previous section, we will consider the 0-left cancellative
semigroup SX, as well as its inverse hull H(SX). We may then consider several general
constructions of C*-algebras from inverse semigroups, and our goal is to argue that many
of these, once applied to H(SX), produce all of the C*-algberas studied in the literature in
connection with subshifts.

The constructions we have in mind share a common pattern in the following sense.
Given an inverse semigroupSwith zero, consider the standard action ofS onbE(S), namely
the dual of the idempotent semilattice of S. We may then build the groupoid GS formed
by all germs for this action. This groupoid is sometimes referred to via the suggestive
notation

S Ë bE(S):

The C*-algebra of GS is well known to be a quotient5 of Paterson’s universal C*-algebra
for S.

Whenever Y is a closed invariant subset of bE(S), we may restrict the action of S to Y ,
and consider the corresponding groupoid of germs S Ë Y , which may also be seen as the
reduction of GS to Y .

5Modulo the relation that identifies the zero of S with the zero of the corresponding C*-algebra.
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Our point is that several C*-algebras studied in the literature in connection to the sub-
shift X are actually groupoid C*-algebras of the form

C �
�
H(SX) Ë Y

�
;

where Y is a closed subset of Ê(SX), invariant under the standard action of H(SX).
In order to describe the first relevant alternative for Y , let S be any 0-left cancellative

semigroup and consider the representation � of E(S) on P (S 0) given by the inclusion of
the former in the latter. We will say that a character ' of E(S) is essentially tight (relative
to the above representation �) provided one has that

'(X) =

n_
i=1

'(Yi );

whenever X; Y1; : : : ; Yn are in E(S), and the symmetric difference

X ∆

 
n[

i=1

Yi

!
is finite. The set of all essentially tight characters of E(S) will be denoted by Êess(S),
and it may be shown that Êess(S) is a closed invariant subset of Ê(S).

The second relevant alternative for Y is based on the set Êmax(S) defined by

Êmax(S) = f'� : � is a maximal stringg:

In general Êmax(S) is not invariant under the action of H(S), but when S = SX for some
subshift X, invariance is guaranteed. One may then take Y to be the closure of Êmax(SX).

The tight spectrum Êtight(SX) is a further alternative, and in some sense it is the most
natural one given that many C*-algebras associated to inverse semigroups turn out to be
the groupoid C*-algebra for the reduction of Paterson’s universal groupoid to the tight
spectrum of the idempotent semilattice.

These subsets are related to each other as follows

Êmax(SX) � Êtight(SX)

�

Êess(SX)

(10.1)

As already observed, all of these are subsets of E(SX) which are closed and invariant
under the action of H(SX), so each gives rise to a reduced subgroupoid, which we will
correspondingly denote by Gmax, Gtight and Gess.
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Theorem 10.2. Given any subshift X, one has that

(i) C �(Gess) is isomorphic toMatsumoto’s C*-algebra introduced in [Matsumoto 1997].

(ii) C �(Gmax) is isomorphic to Carlsen-Matsumoto’s C*-algebra introduced in Carlsen
and Matsumoto [2004, Definition 2.1].

There are many situations in which the inclusions in (10.1) reduce to equality, but
examples may be given to show these are, in general, proper inclusions. The fact that
Êmax(SX) and Êess(SX) may differ is related to the fact that Matsumoto’s C*-algebra
may be non-isomorphic to the Carlsen-Matsumoto one, but it may be shown that under
condition (�)6 of Carlsen and Matsumoto [ibid.], one has that Êmax(SX) = Êess(SX),
whence isomorphism holds.
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CONSTANT NONLOCAL MEAN CURVATURES SURFACES
AND RELATED PROBLEMS
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Abstract

The notion of Nonlocal Mean Curvature (NMC) appears recently in the mathe-
matics literature. It is an extrinsic geometric quantity that is invariant under global
reparameterization of a surface and provide a natural extension of the classical mean
curvature. We describe some properties of the NMC and the quasilinear differential
operators that are involved when it acts on graphs. We also survey recent results on
surfaces having constant NMC and describe their intimate link with some problems
arising in the study of overdetermined boundary value problems.

1 Introduction

The concept ofmean curvature of a surface goes back to Sophie Germain’s work on elastic-
ity theory in the seventeenth century. The mathematical formulation of the mean curvature
was first derived by Young and then by Laplace in the eighteenth, see Finn [1986]. The
mean curvature of a surface is an extrinsic measure of curvature which locally describes
the curvature of surface in some ambient space. The notion of nonlocal mean curvature ap-
peared recently and for the first time in the work of L. A. Caffarelli and Souganidis [2010]
on cellular automata. It is also an extrinsic geometric quantity that is invariant under
global reparameterization of a surface. While Constant Mean Curvature (CMC) surfaces
are stationary points for the area functional under some constraints, Constant Nonlocal
Mean Curvature (CNMC) surfaces are also critical points of a fractional order area func-
tional, called fractional or nonlocal perimeter, under some constraints. For simplicity, the
fractional perimeter of a bounded set is given by a Sobolev fractional seminorm of its in-
dicator function. Moreover, up to a normalization, as the fractional parameter tends to a
maximal value, it approaches the classical perimeter functional. In some phase transition
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author’s work is supported by the Alexander von Humboldt Foundation.
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problems driven by Lèvy-type diffusion, the sharp-interface energy is given by the frac-
tional perimeter functional, see Savin and Valdinoci [2012]. Moreover, the rich structure
of CNMC surfaces captures the geometry and distributions of some periodic equilibrium
patterns observed in physical systems involving short and long range competitions, see
M. M. Fall [2017].

In this note, we survey recent results on embedded surfaces with nonzero constant non-
local mean curvature together with their counterparts within the classical theory of con-
stant mean curvature surfaces such as the Alexandrov’s classification theorem, rotationally
symmetric and periodic surfaces. Unlike the study of CMC surfaces, where we can rely
on the theory ordinary differential equations in certain cases, the nonlocal case does not
provide such advantage. Neither does it provide, in general, an analytic verification of
parameterized surfaces to have CNMC. Up to now, almost all nontrivial surfaces with
CNMC appearing in the literature are either derived by variational methods or by means
of topological bifurcation theory. The study of solutions to partial differential equations
with overdetermined boundary values is surprisingly intimately related with the question
of finding CNMC surfaces. We also describe a number of such phenomena, notably those
that were found recently as formal consequences of the highly nonlinear and nonlocal
equations which are involved.

2 Constant mean curvature hypersurfaces

Let Σ be an orientable C 2 hypersurface of RN and denote by VΣ : Σ ! RN the unit
normal vector field onΣ. For every p 2 Σ, we let fe1; : : : ; eN�1g be an orthonormal basis
of the tangent plane TpΣ of Σ at p. The (normalized) mean curvature at p of Σ is given
by

(2.1) H (Σ;p) :=
1

N � 1

N�1X
i=1

hDVΣ(p)ei ; ei i:

Here and in the following, h; i and ”�” denote scalar product on RN . As a consequence,
for a C 1-extension of VΣ by a unit vector field eVΣ in a neighborhood of p in RN , we
have

H (Σ;p) :=
1

N � 1
divRN

eVΣ(p):

Let Ω and E be two open subsets of RN with E � Ω. Then the perimeter functional of
E relative to Ω (total variation of 1E in Ω) is given by

P (E;Ω) = jD1E j(Ω) := sup
�Z
E

div�(x) dx : � 2 C1
c (Ω;RN ); j�j � 1

�
:
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In the following, we will simply write P (E) := P (E;RN ).

Definition 2.1. We consider a vector field � 2 C1
c (RN ;RN ) and define the flow (Yt )t2R

induced by � given by(
@tYt (x) = �(Yt (x)) t 2 R

Y0(x) = x for all x 2 RN :
(2.2)

For E � RN , we call the family of sets Et := Yt (E), t 2 R, the variation of E with
respect to the vector field �.

Physically, constant mean curvatures surfaces appear also when looking at surface at
equilibrium enclosing a given volume in the absence of gravity. We have the well know
formula for first variation of area, see Spivak [1979].

Proposition 2.2. Let Ω and E be two bounded domains of RN , with E of class C 2. Let
� 2 R and (Et )t be a variation of E with respect to � 2 C1

c (Ω;RN ). Then the map
t 7! J (t) := P (Et ;Ω) � �jEt \ Ωj is differentiable at zero. Moreover

J 0(0) = (N � 1)

Z
@E

fH (@E;p) � �g v(p) dV (p);

where v(p) := h�(p);V@E (p)i and V@E is the unit exterior normal vector field of E.

The first classification result of compact CMC surfaces is due to Jellet in the 18th in
Jellet [1853], showing that a compact CMC surface, enclosing a star-shaped domain in
R3 must be the standard sphere. An other classification is due to Aleksandrov [1958],
which we record in the following

Theorem 2.3. An embedded closed C 2 hypersurface in RN , with nonzero constant mean
curvature is a finite union of disjoint round spheres with same radius.

Alexandrov’s result for embedded CMC hypersurfaces provides, in particular, a pos-
itive partial answer to a conjecture of H. Hopf, stating that: a compact orientable CMC
surface must be a sphere. Hopf gave a positive answer to his conjecture in Hopf [1989] for
the case of CMC immersions of S2 into R3. As what concerns immersed hypersurfaces
with genus larger than 1, Hsiang found in Hsiang [1982] a first counterexample in R4 to
Hopf’s conjecture. Later Wente constructed in Wente [1986] an immersion of the torus
T 2 in R3 having constant mean curvature. While Wente’s CMC torus has genus g = 1,
compact CMC immersions with any genus g > 1 in R3 were obtained by N. Kapouleas
[1991]. For a recent survey on constant mean curvature surfaces, we refer the reader to
Meeks, Pérez, and Tinaglia [2016] and the references therein.
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Alexandrov introduced the method of moving plane in the proof of Theorem 2.3. For-
mally, the argument goes as follows. Consider a connected hypersurface Σ of class C 2

and pick a unit vector e 2 RN together with a hyperplane Pe which is perpendicular to e
and not intersecting Σ. Then slide the plane along the e-direction, toward Σ, until one of
the two properties occurs for the first time:

1. interior touching: the reflection of Σ with respect to Pe , called Σe , intersects Σ at
a point p0 62 Pe ,

2. non-transversal intersection: the vector e 2 Tp0
Σ, for some p0 2 Σ \ Σe .

In either case, local comparison principles for elliptic equations applied to the graphsu and
ue , locally representingΣ andΣe , show that there exists an r > 0 such thatΣ\Br(p0) =

Σe\Br(p0). Now by unique continuations property of elliptic PDEs, we find thatΣ = Σe .
Since e is arbitrary, this implies thatΣmust be a round sphere. Indeed, lettingH the mean
curvature of Σ, then u and ue satisfies

div
rup

1 + jruj2
= div

ruep
1 + jruej2

= H on B;

for some centered ball B � RN�1 ' Tp0
Σ. Moreover, making the ball smaller if neces-

sary, we have u � ue on B . The main point here is that w = u � ue solves an elliptic
equation of the form

@i (aij (x)@jw) = 0 on B;

for a symmetric matrix (aij (x))1�i;j�N�1 with positive and C 1 coefficients, only de-
pending on the partial derivatives of u and ue . The comparison principles that is need is
resumed in the following result.

Lemma 2.4. Let w 2 C 2(B) \ C 1(B) be a nonegative function on B and satisfy

@i (aij (x)@jw) = 0 on B;

for some positive definite matrix aij of class C 1. Then the following holds.

i. If w(x0) = 0, for some x0 2 @B then w = 0 in B .

ii. Ifw(x0) = rw(x0) �� = 0, for some x0 2 @B and � a unit vector normal to Tx0@B ,
then w = 0 in B .

The proof of Lemma 2.4 can be found in many text books, see e.g. Gilbarg and
Trudinger [1983]. Lemma 2.4(i) and (i i) are now used, to deal with cases 1. and 2.,
respectively, yielding w = 0 in B .
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2.1 Rotationally symmetric constant mean curvature surfaces. An important class
of CMC surfaces can be found in the family of unbounded rotationnaly symmetric ones.
They were first studied in Delaunay [1841], which he described explicitly as surfaces of
revolution of roulettes of the conics1. These surfaces are the catenoids, unduloids, nodoids
and right circular cylinders. They have the form

Σ = f(x(s); y(s)�) : s 2 R; � 2 S1
g � R � R2:

where the rotating plane curve s 7! (x(s); y(s)) is parmeterized by arclength and y a
positive function on R. The explicit form of the mean curvature of Σ at a point q(s; �) =
(x(s); y(s)�) is given by

(2.3) H (Σ; q(s; �)) =
1

2

�x0(s) + y(s)fx0(s)y00(s) � x00(s)y0(s)g

y(s)
:

Of particular interest to us in this note are the embedded surfaces with nonzero CMC, the
so called unduloids. They constitute a smooth 1-parameter family of surfaces (Σb)b2(0;1)

varying from the straight cylinder Σ0 to a translation invariant tangent spheres Σ1. Their
explicit form was found by Kenmotsu [1979],

Σb = f(xb(s); yb(s)�) : s 2 R; � 2 S1
g;

where

xb(s) =

Z s

0

1 + b sin(hr)p
1 + b2 + 2b sin(hr)

dr and yb(s) =
1

h

q
1 + b2 + 2b sin(hs):

It is clearly that Σb is invariant under the translations z 7! z + xb(2k�/h)e1, with
e1 = (1; 0; 0) and k 2 Z. Moreover Σ0 = R �

1
h
S1, the straight cylinder of width

1
h
. Furthermore, with the change of variables cos( �

2
) = h

2
y1(s), for s 2 (� �

2h
; �
2h
) and

� = �(s) 2 (0; �), we see that

x1(s) =

p
2

h
�

2

h
sin(�) and y1(s) =

2

h
cos(�):

That is

Σ1 =

(
2

h
(� sin(�); cos(�)�) +

p
2 + 4k

h
e1 : � 2 [0; � ]; � 2 S1; k 2 Z

)
;

where e1 = (1; 0; 0) 2 R3. Therefore Σ1 is a family of tangent spheres with radius 2
h
,

centered at the points
p
2+4k
h

e1, k 2 Z:

1 http://www.mathcurve.com/courbes2d/delaunay/delaunay.shtml
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Next, we observe that for b 2 (0; 1), the map xb is increasing on R. Hence with the
change of variable t = xb(s), and setting '(t) = yb(x

�1
b

(t)), we deduce that

Σb = f(t; �) 2 R � R2 : t 2 R; j�j = 'b(t)g:

Recently, Sicbaldi and Schlenk used in Schlenk and Sicbaldi [2012] the Crandall–Rabi-
nowitz bifurcation theorem (see Crandall and Rabinowitz [1971]) to derive these surfaces
for b close to 0. We record it here.

Theorem 2.5. There exist b0; h� > 0 and a smooth curve (�b0; b0) 3 b 7! �(b) such
that �(0) = 1 and

'b(t) =
1

h�

+
b

�(b)
fcos (�(b)t) + va(�(b)t)g ;

where vb ! 0 in C 2;˛(R/2�Z) as b ! 0 and
R �

��
vb(t) cos(t) dt = 0 for every b 2

(�b0; b0).

Remark 2.6. We note that the family of surfaces (Σb)b>1 are the immersed constant mean
curvature surfaces known as the nodoids.

Expression (2.3) was first derived by M. Sturm, in an appended note in Delaunay
[1841], and characterizes the Delauney surfaces variationally, as the extremals of sur-
faces of rotation having fixed volume while maximizing lateral area. A gereralization
of Delauney surfaces in higher dimension is due to Hsiang and Yu [1981].

3 Constant Nonlocal Mean Curvature hypersurfaces

Similarly to the mean curvature, the fractional or Nonlocal Mean Curvature (NMC for
short) is an extrinsic geometric quantity that is invariant under global immersion repre-
senting a surface. Let ˛ 2 (0; 1). If Σ is a smooth oriented hypersurface in RN with unit
normal vector field VΣ, its nonlocal mean curvature of order ˛ at a point x 2 Σ is defined
as

(3.1) H˛(Σ; x) =
2

˛

Z
Σ

(y � x) � VΣ(y)

jy � xjN+˛
dV (y):

If Σ is of class C 1;ˇ for some ˇ > ˛ and we assume
R
Σ(1 + jyj)1�N�˛ dV (y) < 1,

then the integral in (3.1) is absolutely convergent in the Lebesgue sense. The orientation
is chosen here so thatH˛ is positive for a sphere.
We note that if Σ is of class C 2, then the normalized nonlocal mean curvature
1�˛
!0

N

H˛(Σ; �) converges, as ˛ ! 1, locally uniformly to the classical mean curvature
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H (Σ; �) defined in 2.1, see Dávila, del Pino, and Wei [n.d.] and Abatangelo and Valdinoci
[2014]. Here !0

N is the measure of the (N � 2)-dimensional unit sphere.
There is an alternative expression for H˛(Σ; �) in terms of a solid integral. Suppose that
Σ = @E for some open set E � RN and V@E is the normal exterior to E. Then, for all
x 2 Σ, we have

(3.2) H˛(@E; x) = PV

Z
RN

�E (y)

jy � xjN+˛
dy = lim

"!0

Z
RN nB"(x)

�E (y)

jy � xjN+˛
dy;

where �E := 1RN nE � 1E , with 1D denotes the characteristic function of a setD � RN .
This can be derived using the divergence theorem and the fact that

(3.3) ry � (y � x)jy � xj
�N�˛ = �˛jy � xj

�N�˛:

Remark 3.1. The formula of NMC in (3.2) is comparable with the one of the mean cur-
vature, when written in infinitesimal solid integral,

H (@E; x) := C lim
"!0

�1

"jB"(x)j

Z
B"(x)

�E (y) dy;

for some constant C > 0 depending only on N . Here the orientation is chosen so that
the mean curvature is positive for a sphere. In particular the mean curvature of @E is an
infinitesimal average, centered at @E, of the sum of the ”�1” coming from inside E and
the ”+1” from outsideE. After all by Young’s law, the mean curvature measures pressure
difference across the interface of two non mixing fluids at rest. On the other hand the
nonlocal mean curvature is a weighted average of the sum of all the ”�1” coming from
inside E and all the ”+1” from outside E.

Both forms of the NMC (3.1) and (3.2) turn out to be useful depending on the users
interests. For instance, global comparison principles is easily proved using (3.2), while
expression (3.1) (without principle value integration) seems more convenient to work with
when dealing with regularity of the NMC operator acting on graphs. By noticing that if
E1 � E2 then �E1

� �E2
= 21E1nE2

on RN , we can state the following result.

Lemma 3.2. Let E1; E2 be two open sets of class C 1;ˇ , ˇ > ˛, in a neighborhood of
p 2 @E1 \ @E2. If E1 � E2, then H˛(@E2;p) � H˛(@E1;p), with equality if and only
if E1 = E2, up to set of zero Lebesgue measure.

Local comparison principle does not hold true in general as in the classical case.

Alike the mean curvature, the nonlocal mean curvature appears in the first variation
of nonlocal perimeter functional as well. The fractional perimeter of a bounded open set
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E � RN is given by

P˛(E) =
1

2

Z
RN

Z
RN

j1E (x) � 1E (y)j
2

jy � xjN+˛
dxdy =

Z
E

Z
RN nE

1

jy � xjN+˛
dxdy:

Wenote that, ifE is a set with finite perimeter, the normalized fractional perimeter 1�˛
!N �1

P˛(E)

converges, as ˛ ! 1, to P (E), see Ambrosio, De Philippis, and Martinazzi [2011] and
Dávila, del Pino, and Wei [n.d.]. Here !N�1 is the measure of the unit ball in RN�1.
Isoperimetric type inequalities with respect to this functional was investigated in Garsia
and Rodemich [1974] and Frank and Seiringer [2008]. According to a result of Frank
and Seiringer [2008], it is known that balls uniquely minimize P˛ among all sets with a
equal volume. A quantitative stability of the fractional isoperimetric inequality is proven
by Fusco, Millot, and Morini [2011].
Provided E is bounded with Lipschitz boundary, using integration by parts and (3.3), we
can rewrite the fractional perimeter as

P˛(E) =
1

˛(1 + ˛)

Z
@E

Z
@E

V@E (y) � (y � x)V@E (x) � (x � y)

jy � xjN+˛
dV (y)dV (x):(3.4)

Note that (3.4) provides a natural way to define a nonlocal or fractional measure of an
orientable compact hypersurface.
In the theory of minimal surfaces, the Plateau’s problem is to show the existence of a
surface that locally minimize perimeter with a given boundary. For a nonlocal setting of
Plateau’s problem, in L. Caffarelli, Roquejoffre, and Savin [2010] the authors introduced
the fractional perimeter in a reference open set Ω given by

P˛;Ω(E) = L(E \ Ω; Ec \ Ω) + L(E \ Ω; E \ Ωc) + L(Ec \ Ω; Ec \ Ωc);

where Ac := RN n A and the interaction functional is given by

L(A;B) :=

Z
B

Z
A

dxdy

jx � yjN+˛
:

We note that the interaction between Ec \Ωc and E \Ωc is left free. This, allows a well-
posed setting of a (nonparametric) nonlocal Plateau’s problem: existence of sets minimiz-
ing P˛;Ω among all sets that coincide in Ωc . The seminal paper L. Caffarelli, Roquejoffre,
and Savin [ibid.] established the first existence and regularity results for nonlocal perime-
ter minimizing sets in a reference set Ω, and moreover the boundary of the minimizers
have, in a viscosity sense, zero NMC in Ω. In the literature the boundary of such sets are
called s-minimal or nonlocal minimal hypersurfaces.

The following formula for the first variation of fractional perimeter was found in Figalli,
Fusco, Maggi, Millot, and Morini [2015] and L. Caffarelli, Roquejoffre, and Savin [2010].
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Theorem 3.3. Let Ω and E be two domains of RN , with E of class C 1;ˇ , ˇ > ˛. Let
� 2 R and (Et )t2R be a variation of E with respect to � 2 C1

c (Ω;RN ). Then the map
t 7! J˛(t) := P˛;Ω(Et ) � �jEt \ Ωj is differentiable at zero. Moreover

J 0
˛(0) = (N � 1)

Z
@E

fH˛(@E;p) � �g v(p) dV (p);

where v(p) := h�(p);V@E (p)i.

The paper Figalli, Fusco, Maggi, Millot, and Morini [2015] contains also the second
variation of fractional perimeter.
From now on, we say thatΣ is a CNMC hypersurface if it is of classC 1;ˇ , for some ˇ > ˛,
and such thatH˛(Σ; �) is a nonzero constant on Σ.
Even though we will be mainly interested in this note to CNMC hyperusfrcaes, we find it
important to make a brief digression in the theory of the nonlocal minimal hypersurfaces
and those with vanishing NMC but not necessarily minimizing fractional perimeter, since
it is also a hot topic nowadays with challenging open questions, see Bucur and Valdinoci
[2016].
We first recall that besides the hyperplane, which trivially has zero nonlocal mean curva-
ture, there are some nontrivial ones: the s-Lawson cones found by Dávila, del Pino, and
Wei [n.d.]; the helicoid found by Cinti, Davila, and Del Pino [2016]. Moreover, local
inversion arguments have been used in Dávila, del Pino, and Wei [n.d.], to derive, for ˛
close to 1, two interesting examples of rotationally symmetric surfaces with zero nonlocal
mean curvature. The first one posses the shape of the catenoid whereas the other is dis-
connected with two ends which are asymptotic to a cone of revolution.
Regularity theory, stability and Bernstein-type results in the nonlocal setting are also stud-
ied in the recent years. Recall that in the theory of constant mean curvature surfaces,
the boundary of perimeter minimizing regions are smooth except a closed singular set of
Hausdorff dimension at most N � 8. Such regularity result, in its full generality, is still
not known to be true in the nonlocal setting. The progress made in this direction so far par-
allel the classical regularity theory up to a dimension shift. This latter fact was discovered
by Dávila, del Pino, and Wei [ibid.] proving, for ˛ close to 0 and N = 7, that there are
nonlocal perimeter minimizing (s-Lawson) cones in any reference set. On the other hand
when ˛ is close to 1, L. Caffarelli and Valdinoci [2011, 2013] proved the C 1;
 regularity
of nonlocal minimal hypersurfaces, except a set of (N � 8)-Hausdorff dimension. This,
together with the subsequent results of Barrios, Figalli, and Valdinoci [2014], leads, for ˛
close to 1, to theirC1 regularity up to dimensionN � 7. We note that forN = 2 and any
˛ 2 (0; 1), Savin and Valdinoci [2013] established that nonlocal minimal curves are C1.
Decisive regularity estimates have been proved in L. Caffarelli, Roquejoffre, and Savin
[2010], Figalli and Valdinoci [2017], Cinti, Serra, and Valdinoci [2016], Cabre, Cinti, and
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Serra [2017], and Cabre and Cozzi [2017], see also the monograph Bucur and Valdinoci
[2016] and the references there in.

We close this section by noting that nonlocal capillary problems have been investigated
in Maggi and Valdinoci [2017] and Mihaila [2017] and nonlocal mean curvature flow in
Sáez and Valdinoci [2015], Cinti, Sinestrari, and Valdinoci [2016], and Imbert [2009].

3.1 Expressions of the NMC of some globally parameterized hypersurfaces. In this
section, we derive some formulae of some hypersurfaces which admit global parameter-
izations. We will use both expression of the NMC in (2.1) and (3.1). Depending on the
problems under study, each expression has its own advantages. For instance to prove
regularity of the NMC operator, it is in general more convenient to consider those formu-
lae from (2.1), whereas those from (3.1) turns out to be useful in the study of qualitative
properties of the NMC acting on graphs as a quasilinear nonlocal elliptic operator.

3.1.1 Without principle value integration. We have the following result.

Proposition 3.4. Let N = n + m � 1, with n;m 2 N. Let u : Rm ! (0;+1) be a
function of class C 1;ˇ , ˇ > ˛, and satisfyZ

Rm

(1 + jru(�)j)un�1(�)

(1 + j� j + u(�))N�1+˛
d� < 1:

Consider the set
Eu := f(s; �) 2 Rm � Rn : j�j < u(s)g:

(i) For n � 2, the NMC of Σu at the point q = (s; u(s)e1) is given by

(3.5) �
˛

2
H˛(Σu; q) =

=

Z
Sn�1

Z
Rm

˚
u(s) � u(s � �) � � � ru(s � �)

	
un�1(s � �)

fj� j2 + (u(s) � u(s � �))2 + u(s)u(s � �)j� � e1j2g(N+˛)/2
d�d�

�
u(s)

2

Z
Sn�1

Z
Rm

j� � e1j2un�1(s � �)

fj� j2 + (u(s) � u(s � �))2 + u(s)u(s � �)j� � e1j2g(N+˛)/2
d�d�;

where e1 = (1; 0; : : : ; 0) 2 Rn. (ii) For n = 1, the NMC of Σu at the point q = (s; u(s))

is given by

(3.6) �
˛

2
H (Σu; q) =

Z
RN �1

u(s) � u(s � �) � � � ru(s � �)

fj� j2 + (u(s) � u(s � �))2g(N+˛)/2
d�

�

Z
RN �1

u(s) + u(s � �) + � � ru(s � �)

fj� j2 + (u(s) + u(s � �))2g(N+˛)/2
d�:



CONSTANT NONLOCAL MEAN CURVATURES SURFACES 1641

Moreover, all integrals above converge absolutely in the Lebesgue sense.

Expression (3.5) and (3.6) are easily derived from (3.1), by change of variables, taking
into account that the unit outer normal of @Σu at the point q = (s; u(s)�) is given by

V@Eu
(q) =

1p
1 + jruj2(s)

(�ru(s); �)

and the volume element isun�1(s)
p
1 + jruj2(s)dsd�:The proof uses similar arguments

as in Cabré, M. M. Fall, and Weth [2018]. We note that the first term in the right hand of
(3.6) provides the expression of NMC of an euclidean graph xN = u(x0)without principle
value integral.

3.1.2 With principle value integration. We consider a function u : RN�1 ! R of
class C 1;ˇ , for some ˇ > ˛. We let

Eu =
˚
(y; t) 2 RN�1

� R : t < u(y)
	

and consider the parametrization

RN ! RN (y; t) 7! F (y; t) = (y; u(y) + t) :

It is well known that this parametrization is volume preserving. We now compute the
NMC of the graph u (denoted by H (u)) at the point F (x; 0) = (x; u(x)) 2 @Eu. From
(3.1), making change of variables and using Fubini’s theorem, we have

H (u)(x) := H˛(@Eu; (x; u(x))) =

Z
RN

�E0
(y; t)

j(x; u(x)) � F (y; t)jN+˛
dydt

=

Z
RN �1

I (x; y)dy;

where

I (x; y) = [

Z 0

�1

�

Z +1

0

]
˚
jx � yj

2 + (t + u(y) � u(x))2
	 �(N+˛)

2 dt

= jx � yj
�(N+˛)[

Z 0

�1

�

Z +1

0

]

(
1 +

�
t + u(y) � u(x)

jx � yj

�2
) �(N+˛)

2

dt:

We then make the change of variables s = t+u(y)�u(x)
jx�yj

and define

(3.7) pu(x; y) =
u(y) � u(x)

jx � yj
;
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to get

I (x; y) = �jx � yj
�(N�1+˛)[

Z pu(x;y)

�1

�

Z +1

pu(x;y)

]
˚
1 + s2

	 �(N+˛)
2 ds:

Letting

(3.8) F (p) :=

Z +1

p

d�

(1 + �2)
(N+˛)

2

;

we find that
H (u)(x) =

Z
RN �1

F (pu(x; y)) � F (�pu(x; y))

jx � yjN�1+˛
dy:

We then have the following formulae for the NMC of the hypersurface @Eu.

Proposition 3.5. Let u : RN�1 ! R of class C 1;ˇ , ˇ > ˛. Consider the subgraph of u,

Eu =
˚
(y; t) 2 RN�1

� R : t < u(y)
	
:

At a point q = (x; u(x)) 2 @Eu, we have

H (u)(x) := H˛(@Eu; q) = PV

Z
RN �1

F (pu(x; y)) � F (�pu(x; y))

jx � yjN�1+˛
dy(3.9)

= PV

Z
RN �1

u(x) � u(y)

jx � yjN+˛
qu(x; y) dy;(3.10)

where pu and F are given by (3.7) and (3.8), respectively, and

qu(x; y) =

Z 1

�1

�
1 + �2

(u(x) � u(y))2

jx � yj2

��
N+˛

2

d�:

Here, (3.10), is a consequence of the fundamental theorem of calculus, which yields

F (p) � F (�p) = p

Z 1

�1

F 0(�p) d�:

As in the classical case, we may expect that the difference of the NMC operator of two
graphs gives rise to a nonlocal symmetric operator allowing for local comparison princi-
ples.

Lemma 3.6. LetΩ be an open set of RN�1 and u; v 2 C
1;ˇ
loc

(Ω)\C (RN�1). Then letting
w = u � v, for every x 2 Ω, we have

(3.11) H (u)(x) �H (v)(x) = PV

Z
RN �1

w(x) � w(y)

jx � yjN+˛
equ;v(x; y) dy;
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whereequ;v(x; y) := �2
R 1
0 F

0 (pv(x; y) + �pu�v(x; y)) d�: In particular, if

H (u)(x) �H (v)(x) � 0 for every x 2 Ω

and u � v on RN�1 n Ω, then u � v cannot attain its global minimum in Ω unless it is
constant on RN�1.

Proof. Since F 0 is even, by the fundamental theorem of calculus, we get

[F (a) � F (b)] � [F (�a) � F (�b)] = 2(a � b)

Z 1

0

F 0 (b + �(a � b)) d�:

In view of (3.9), this gives (3.11) since pw(x; y) = �
w(x)�w(y)

jx�yj
.

For the comparison principle, we suppose that, for some x0 2 Ω, we have w(x0) =

minx2RN �1 w(x):We then have

0 � H (u)(x0) �H (v)(x0)

= �2PV

Z
RN �1

w(x0) � w(y)

jx0 � yjN�1+˛

Z 1

0

F 0 (pv(x0; y) + �pw(x0; y)) d� dy � 0:

Therefore, since F 0 < 0 on R, we deduce that w � w(x0) on RN�1.

In the case of generalized slabs, we have the following result, the proof is similar to
one in Cabré, M. M. Fall, and Weth [2018].

Proposition 3.7. Let u : Rm ! (0;+1) be a a function of class C 1;ˇ and N = m+ n.
Consider the open set

Eu := f(s; �) 2 Rm � Rn : j�j < u(s)g:

Then at the point q = (s; u(s)z), we have

H˛(@Eu; q) = PV

Z
Rn

Z
Rm

��E1
(s̄; z)

((s � s̄)2 + (u(s)e1 � u(s̄)z)2)
N+˛

2

un(s̄) dzd s̄:

We note that in the expressions of the NMC with PV in Proposition 3.5 and 3.7, no
growth control of u at infinity is required.

3.2 Bounded constant nonlocal mean curvature hypersurfaces. In addition to the
cylinders, spheres, which are CNMC with nozero NMC, we shall see that there many
more. However, this class is reduced by a nonlocal counterpart of the Alexandrov result
on the characterization of spheres as the only closed embedded CMC-hypersurfaces.



1644 MOUHAMED MOUSTAPHA FALL

Theorem 3.8 (Cabré, Fall, Moustapha, Solà-Morales, and Weth [n.d.] and Ciraolo, Fi-
galli, Maggi, and Novaga [n.d.]). Suppose that E is a nonempty bounded open set (not
necessarily connected) with C 2;ˇ -boundary for some ˇ > ˛ and with the property that
H˛(@E; �) is constant on @E. Then E is a ball.

This result was obtained at the same time and independently by Cabré, Solà-Morales,
Weth and the author in Cabré, Fall, Moustapha, Solà-Morales, and Weth [n.d.] and by
Ciraolo, Figalli, Maggi, and Novaga [n.d.]. We mention that the paper Ciraolo, Figalli,
Maggi, and Novaga [ibid.] contains also stability results with respect to this rigidity theo-
rem.
This new characterization of the sphere relies on the Alexandrov’s moving planes method
discussed above. Indeed, pick a unit vector e 2 RN together with a hyperplane Pe which
is perpendicular to e and not intersecting E. Call Ee the reflection of E with respect to
the plane Pe . Then slide the plane along the e-direction, toward E, until one of the two
properties occurs for the first time:

1. interior touching: there exists x0 62 Pe , with x0 2 @E \ @Ee ,

2. non-transversal intersection: e 2 Tx0@E, for some x0 2 @E.

In both cases, we will find that Ee = E, and since e is arbitrary, this implies that E must
be a unit ball. As mentioned earlier, in contrast to the classical case, there is no local com-
parison principle related to the fractional mean curvature. Moreover, while comparison
principle holds for graphs (see Lemma 3.6), we dare not hope for a global parameteriza-
tion ofE by a graph! However, we may rely on a global comparison principles inherent to
problem. The montonicity of the weight t 7! KN (t) := jt j�N�˛ will be crucial. Indeed,
in case (1), we have

0 = H˛(@E; x0) �H˛(@Ee; x0) =
1

2
PV

Z
RN

(�E (y) � �Ee
(y))KN (x0 � y) dy

=
1

2
PV

Z
EnEe

(�E (y) � �Ee
(y))KN (x0 � y) dy+

+
1

2
PV

Z
EenE

(�E (y) � �Ee
(y))KN (x0 � y) dy

=
1

2
PV

Z
EnEe

KN (x0 � y) dy �
1

2
PV

Z
EenE

KN (x0 � y) dy

=
1

2
PV

Z
EnEe

(KN (x0 � z) �KN (x0 � R(z))) dz:

We made the change of variable, y = Re(z), with Re being the reflection with respect to
the plane Pe . Now since E n Ee is contained on the side of the plane containing x0, we
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find that jx0 � zj < jx0 � R(z)j for every z 2 E nEe , together with the monotonicity of
KN imply that E = Ee .
Case 2. is far more tricky and requires a formula for directional derivative of H˛(@E; �),
see Proposition 3.9 below. Since e 2 Tx0@E = Tx0@Ee , we have

0 =
1

2

�
@eH˛(@E; x0) � @eH˛(@Ee; x0)

�
= �

N + ˛

2
PV

Z
RN

(x0 � e � y � e)
�
�E (y) � �Ee

(y)
�
KN+2(x0 � y) dy

= �
N + ˛

2
PV

Z
RN

(x0 � e � y � e)(1EnEe
(y) � 1EenE (y))KN+2(x0 � y) dy:

Since the integrand does not change sign on RN , there must be E = Ee . We then con-
clude that in either case E = Ee , and since e is arbitrary, we deduce that E is a ball.
Of course to make all these argument rigorous, one should take into account that the inte-
grals are defined in the principle value sense, see Cabré, Fall, Moustapha, Solà-Morales,
and Weth [n.d.] and Ciraolo, Figalli, Maggi, and Novaga [n.d.] for more details.

The following formula for the derivatives of the nonlocal mean curvature was used
above, see Cabré, Fall, Moustapha, Solà-Morales, and Weth [n.d.] and Ciraolo, Figalli,
Maggi, and Novaga [n.d.].

Proposition 3.9. If E � RN is bounded and @E is of class C 2;ˇ for some ˇ > ˛, then
HE is of class C 1 on @E, and we have

@vH˛(@E; x) = �(N + ˛)PV

Z
RN

�E(y)jx � yj
�(N+2+˛)(x � y) � v dy

for x 2 @E and v 2 Tx@E.

In order to reduce to a single sphere, connectedness is obviously a necessary assumption
in Theorem 2.3 whereas Theorem 3.8 allow for disconnected sets E with finitely many
connected components. Similar pheonomenon was also observed in the study of fractional
overdetermined problems, see M. M. Fall and Jarohs [2015].

3.3 Unbounded constant nonlocal mean curvature hypersurfaces. When compact-
ness is dropped, the cylinder provides a trivial example of surfaces with constant and
nonzero local/nonlcal mean curvature. Obviously, CMC curves bounding a periodic do-
main in 2-dimension are parallel straight lines and hence has zero boundary mean curva-
ture. This latter fact does not hold in the nonlocal case, since two parallel straight lines in
R2 has positive CNMC. In fact, any slab f(s; �) 2 Rn � Rm : j�j = 1g has a positive
CNMC, as it can be easily seen from Proposition 3.4. It is therefore natural to ask if there
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are CNMC hypersurfaces besides the cylinder?
The lack of ODE theory in the nonlocal frameworkmake this question not trivial to answer.
Up to now, all existence results use either variational methods or perturbation methods.

The first answer to the above question, for N = 2, has been given by Cabré, J. Solà-
Morales, Weth and the author in Cabré, Fall, Moustapha, Solà-Morales, and Weth [n.d.],
where a continuous branch of periodic CNMC sets bifurcating from the straight band was
found. This was improved and generalized in Cabré, M. M. Fall, and Weth [2018] to
higher dimensions. We note that in Dávila, del Pino, Dipierro, and Valdinoci [2016], it is
established variationally the existence of periodic and cylindrically symmetric hypersur-
faces in RN which minimize the periodic fractional perimeter under a volume constraint.
More precisely, Dávila, del Pino, Dipierro, and Valdinoci [ibid.] establishes the existence
of a 1-periodic minimizer for every given volume within the slab f(s; �) 2 R � RN�1 :

�1/2 < s < 1/2g, which are CNMC hypersurfaces in the viscosity sense of L. Caffarelli,
Roquejoffre, and Savin [2010], since it is not known if they are of class C 1;ˇ for some
ˇ > ˛.

3.3.1 CNMC hypersurface of revolution. We consider hypersurfaces with constant
nonlocal mean curvature of the form

Σu = f(s; �) 2 R � RN�1 : j�j = u(s)g;

where u : R ! (0;1) is a positive and even function. The following result shows
the existence of a smooth branch of sets which are periodic in the variable s and have
all the same constant nonlocal mean curvature; they bifurcate from a straight cylinder
ΣR := fj�j = Rg. The radius R of the straight cylinder is chosen so that the periods
of the new cylinders converge to 2� as they approach the straight cylinder. We state the
counterpart of Theorem 2.5.

Theorem 3.10. Let N � 2. For every ˛ 2 (0; 1), ˇ 2 (˛; 1) there exist R; a0 > 0 and
smooth curves a 7! ua and a 7! �(a), with �(0) = 1, such that, for every a 2 (�a0; a0),

Σua
= f(s; �) 2 R � RN�1 : j�j = ua(s)g

is a CNMC hypersurface of class C 1;ˇ , with

H˛(Σua
; q) = H˛(ΣR; �); for all q 2 @Σua

.

Moreover for every a 2 (�a0; a0), we have

ua(s) = R +
a

�(a)
fcos (�(a)s) + va(�(a)s)g ; u�a(s) = ua

�
s +

�

�(a)

�
;

where va ! 0 in C 1;ˇ (R/2�Z) as a ! 0 and
R �

��
va(t) cos(t) dt = 0 for every a 2

(�a0; a0).
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The proof of Theorem 3.10 rests on the application the Crandall-Rabinowitz bifurcation
theorem Crandall and Rabinowitz [1971], applied to the quasilinear type fractional elliptic
equation, see Proposition 3.4,

H˛(Σu; �) �H˛(ΣR; �) = 0 in @Σu:

To do so and to obtain a smooth branch of bifurcation parameter, we need the smoothness
of u 7! (s 7! H˛(Σu; (s; u(s)e1))) as map from an open subset ofC 1;ˇ (R) taking values
in C 0;ˇ�˛(R). This is a nontrivial task, and as such the use of the formula for the NMC
without PV (see Proposition 3.4) become crucial.

The first question that may come to the reader’s mind, is the existence of global contin-
uous (Σua

)a2(0;1), branches of nonlocal Delaunay hypersurfaces and the transition from
unduloids to a periodic array of spheres as in the local case (˛ = 1) discussed in Sec-
tion 2.1. It is indeed an open question. However some key differences are expected in the
embedded regime a 2 (0; 1). Indeed, two results suggest that as the bifurcation parame-
ter a varies from 0 to 1, the hypersurfaces Σua

should approach an infinite compound of
not-round-spheres. The first one being Dávila, del Pino, Dipierro, and Valdinoci [2016],
where the authors proved that the enclosed sets of their (weak) CNMC Delauney hyper-
surface, as their constraint volume goes to zero, tend in measure (more precisely, in the
so called Fraenkel asymmetry) to a periodic array of balls. The second one is a conse-
quence of the work of Cabré, Weth and the author in Cabré, M. M. Fall, and Weth [2017],
where it is proven that an array of periodic disjoint round spheres is not necessary a CNMC
hypersurface. We detail a bit more on the latter result in the following section.

3.3.2 Near-sphere lattices with CNMC. In this section, we consider CNMC hypersur-
faces given by an infinite compound of aligned round spheres, tangent or disconnected, en-
lightening possible limiting configuration of nonlocal unduloidsΣua

(from Theorem 3.10)
as the bifurcation parameter becomes large. In a more general setting, we can look for
CNMC hypersurfaces which are countable union of a certain bounded domain. To be
precise, we assume N � 2 and let

S := SN�1
� RN

denote the unit centered sphere of RN . For M 2 N with 1 � M � N we regard RM

as a subspace of RN by identifying x0 2 RM with (x0; 0) 2 RM � RN�M = RN .
Let fa1; : : : ; aM g be a basis of RM . By the above identification, we then consider the
M -dimensional lattice

(3.12) L =

(
MX
i=1

kiai : k = (k1; : : : ; kM ) 2 ZM
)



1648 MOUHAMED MOUSTAPHA FALL

as a subset of RN . In the case where fa1; : : : ; aM g is an orthogonal or an orthonormal
basis, we say that L is a rectangular lattice or a square lattice, respectively. We define, for
r > 0;

Sr0 := S + rL :=
[
p2L

�
S + rp

�
� RN :

For r large enough, the set Sr0 is the union of disjoint unit spheres centered at the lattice
points in rL. Consequently, Sr0 is a set of constant classical mean curvature (equal to
one). In contrast, we shall see that the NMC functionH˛(Sr0 ; �) is in general not constant
on Sr0 . However nearby Sr0 , one may expect CNMC sets for r large enough. Indeed, as
r ! 1, the hypersurface Sr0 tends to the single centered sphere S , which has CNMC. On
the other hand, by invariance under translations RN , the linearized NMC operator about
S has anN -dimensional kernel spanned by the coordinates functions x1; : : : ; xN . Taking
advantages on the invariance of the NMC operator by even reflections, we shall see that
this program is realizable. Indeed, we consider the open set

O := f' 2 C 1;ˇ (S) : k'kL1(S) < 1; ' is even on Sg;

with ˇ 2 (˛; 1), and the deformed sphere S' := f(1 + '(�))� : � 2 Sg; ' 2 O:
Provided that r > 0 is large enough, the deformed sphere lattice

Sr' := S' + rL :=
[
p2L

�
S' + rp

�
is a noncompact periodic hypersurface of class C 1;ˇ . We have the following result.

Theorem 3.11 (Cabré, M. M. Fall, and Weth [2017]). Let ˛ 2 (0; 1), ˇ 2 (˛; 1), N � 2,
1 � M � N and L be an M -dimensional lattice. Then, there exist r0 > 0, and a
C 2-curve (r0;+1) ! O, r 7! 'r such that for every r 2 (r0;+1), the hypersurface
S'r

+ rL has constant nonlocal mean curvature given byH˛(S'r
+ rL; �) � H˛(S ; �).

Moreover if 1 � M � N � 1, then the functions 'r , r > r0, are non-constant on S .

As a consequence a periodic array of aligned spheres does not necessarily have constant
nonlocal mean curvature. A Taylor expansion of the perturbation 'r , as r ! 1, shows
how the near-spheres interact to form a CNMC hypersurface. To see this, we consider the
linearized operator for the NMC operator acting on graphs on the unit sphere S , given by

' 7! 2(L˛' � �1');

where
L˛'(�) = PV

Z
S

'(�) � '(�)

j� � � jN+˛
dV (�):
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The operator L˛ can be seen as a spherical fractional Laplacian, and the above integral is
understood in the principle value sense. It has the spherical harmonics as eigenfunctions
corresponding to an increasing sequence of eigenvalues �0 = 0 < �1 < �2 < :::.
The function 'r in Theorem 3.11 expands as

'r(�) = r�N�˛

0@��0 + r
�2

8<:�1 X
p2L�

(� � p)2

jpjN+˛+4
� �2

9=; + o
�
r�2

�1A for � 2 S

as r ! +1, where L� := Lnf0g, for some positive constants �0; �2; �3, only depending
on N; ˛; �1; �2 and on L. Since �0 > 0, the above expansion shows that, for large r , the
perturbed spheres S'r

become smaller than S as the perturbation parameter r decreases.
With regard to the order r�N�˛ , the shrinking process is uniform on S , whereas non-
uniform deformations of the spheres may appear at the order r�N�˛�2. In the caseM =

N , it is not known whether 'r is not constant on S . In fact, we have the following more
explicit form of 'r in the case of square lattices. Assume that L is a square lattice. Then

'r(�) = r�N�˛

0@��0 + r
�2

8<:�̃1 MX
j=1

�2j � �2

9=; + o(r�2)

1A for � 2 S as r ! +1;

where �̃1 =
�1

M

X
p2L�

1

jpjN+˛+2
. In particular, ifM = N , then

'r(�) = r�N�˛
�
��0 + r

�2
�
�̃1 � �2

�
+ o(r�2)

�
as r ! 1.

Hence the deformation of the lattice S'r
+ rL is uniform up to the order r�N�˛�2. It is

conjectured in Cabré, M. M. Fall, and Weth [ibid.] that thatH˛(Sr0 ; �) is non-constant for
any N -dimensional lattice L, as long as Sr0 is a hypersurface of class C 1;ˇ , ˇ 2 (˛; 1).
The proof of Theorem 3.11, is based on the application of the implicit function theorem,
to solve the r-parameter dependence fractional quasilinear elliptic type problem on the
sphere,

H˛(S
r
' ; �) = H˛(S' ; �) + r

�N�˛G(r; '; �) = H˛(S0; �):

The term containing G in the above identity is a lower order term. In fact the function
G together with all its derivatives in the ' variables are bounded, for r large enough. On
the other hand the leading quasilinear operator given by H˛(S' ; �) is the NMC operator
acting on graphs on the sphere. Its expression, derived from (3.1), is explicitly given in
the following
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Proposition 3.12. Let  2 C 1;ˇ (SN�1) with  > 0. Then the NMC of the hypersurface

Σ :=
˚
� (�) : � 2 SN�1

	
at the point q = � (�) is given by

h˛( )(�) :=
˛

2
H˛(Σ ; q)

= � (�)

Z
S

 (�) �  (�) � (� � �) � r (�)

j� � � jN+˛
 N�2(�)K( ; �; �) dV (�)

+

Z
S

( (�) �  (�))2

j� � � jN+˛
 N�2(�)K( ; �; �) dV (�)

+
 (�)

2

Z
S

 N�1(�)

j� � � jN+˛�2
K( ; �; �) dV (�);

whereK( ; �; �) :=
1�

( (�)� (�))2

j��� j2
+  (�) (�)

�(N+˛)/2
:Moreover, all integrals above

converge absolutely.

Establishing the regularity of the NMC operator h˛ , appearing in Proposition 3.12, as
a map from open subsets of C 1;ˇ (SN�1) and taking values in C 0;ˇ�˛(SN�1), turns out
to be an involved task. The inconveniences in the above expression is the presence of �
in the singular kernel j� � � j�N�˛ and the fact that it involves only euclidean distance
instead of geodesic distance on the sphere.

4 Serrin’s overdetermined problems

We consider the problem of finding domains (not necessarily bounded) and functions u 2

C 2(Ω) such that

�∆gu = 1 in Ω; u = 0; @�u = const: on @Ω;(4.1)

A domain Ω is called a Serrin domain if it is of class C 2 and if (4.1) admits a solution.
System (4.1) was considered in eulidean space by J. Serrin in 1971 in his seminal paper
Serrin [1971].

Theorem 4.1 (Serrin [ibid.], Weinberger [1971]). Bounded Serrin domains in Euclidean
space are balls.
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Serrin’s argument relies on Alexandrov’s moving plane method, with refined compar-
ison principle. The proof of Weinberger [ibid.] uses the P -function method, Pohozaev
identity and maximum principles. Serrin’s result can be also derived from Alexandrov’s
rigidity result. Namely if (4.1) has a solution then @Ω has CMC and thus is a ball, see
Farina and Kawohl [2008] and Choulli and Henrot [1998].
The additional Neumann boundary condition in (4.1) arises inmany applications as a shape
optimization problem for the underlying domain Ω. For a detailed discussion of some ap-
plications e.g. in fluid dynamics and the linear theory of torsion, see Serrin [1971] and
Sirakov [2002]. Moreover, as observed in Minlend [2017], Serrin domains arise also in
the context of Cheeger sets in a Riemannian framework. To explain this connection more
precisely, we recall that the Cheeger constant of a Lipschitz subdomain Ω � M is given
by

h(Ω) := inf
A�Ω

P (A)

jAj
:

Here the infimum is taken over measurable subsetsA � Ω, with finite perimeterP (A) and
where jAj denotes the volume ofA (both with respect to the metric g). If h(Ω) is uniquely
attained byΩ itself, thenΩ is called uniquely self-Cheeger. By means of the Weinberger’s
P -function method, it is shown in Minlend [ibid.] that every bounded Serrin domain in a
compact Riemannian manifold M, with Ricci curvature bounded below by some constant,
is uniquely self-Cheeger. Cheeger constants play an important role in eigenvalue estimates
on Riemannian manifolds (see Chavel [1984]), whereas in the classical Euclidean case
(M; g) = (RN ; geucl) these notions have applications in the denoising problem in image
processing, see e.g. Parini [2011] and Leonardi [2015].
The above Serrin’s classification result was extended in Kumaresan and Prajapat [1998]
to subdomains Ω of the round hemis-sphere M = SN or M is a space forms of constant
negative sectional curvatures. More precisely, it is proved in Kumaresan and Prajapat
[ibid.] that any smooth Serrin domain Ω contained in a hemisphere of SN is a geodesic
ball while the geodesic ball is the only Serrin domain in space forms of constant negative
sectional curvatures. It is an interesting and widely open problem to construct and classify
Serrin domains.

Minlend and the author in M. M. Fall and Minlend [2015], found that on any compact
Riemaniann manifold, there exists a Serrin domain, which is a perturbation of a geodesic
balls. On the hand the symmetry group of the ambient manifold might be used to find non-
trivial Serrin domains with different geometry. Indeed, very recently, Minlend, Weth and
the author in M. M. Fall, Minlend, and Weth [2018, 2017] considered the cases M = SN

the unit sphere and the case M = Rn�Rm/2�Zm, endowed with the flat metric, proving
existences of Serrin domains with nonconstant principal curvatures of the boundary.
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From an analytic point of view, the question of finding Serrin domains share simi-
lar features to the one of finding CNMC hypersurfaces. Indeed, an admissible class of
parametrizations ' of the unknown domain boundary is considered. Then the solvability
condition is formulated as an operator equation of the form H (') = const:, where H
is a nonlinear Dirichlet-to-Neumann operator, thus sharing same traits with a quasilinear
nonlocal operators. In fact, the nonlocal character of this operator become apparent when
computing its linearization along a trivial branch of the problem, see e.g. M. M. Fall, Min-
lend, and Weth [2018, 2017]. Here we end up with a pseudo-differential operator of order
1 that shares many features with the square-root of the negative of the Laplace operator,
see Guillen, Kitagawa, and Schwab [2017].

From a geometric point of view, the results in M. M. Fall, Minlend, and Weth [2018,
2017], Cabré, M. M. Fall, and Weth [2018], and Cabré, Fall, Moustapha, Solà-Morales,
and Weth [n.d.] support naturally the perception that the structure of the set of Serrin do-
mains in a manifold (M; g) share similarites to those of CNMC hypersurfaces, which
both, up to a dimesion shift, share some structure to CMC hypersurfaces in M. Indeed,
as in the theory CNMC hypersurfaces, there exists in R2, non-straight periodic Serrin do-
mains, see M. M. Fall, Minlend, and Weth [2017]. We also emphasize from M. M. Fall,
Minlend, and Weth [2018] that there exist Serrin domains in S2 which are not bounded
by geodesic circles, whereas CMC-hypersurfaces in S2 are obviously trivial, i.e., they are
geodesic circles.
Next, we recall that Alexandrov also proved in Alexandrov [1962] that any closed embed-
ded CMC hypersurface contained in a hemisphere of SN is a geodesic sphere. An explicit
family of embedded CMC hypersurfaces in SN with nonconstant principal curvatures was
found in Perdomo [2010] in the caseN � 3. These hypersurfaces seem somewhat related
to the Serrin domains in M. M. Fall, Minlend, and Weth [2018], although they bound a
tubular neighborhood of S1 and not of SN�1.
Overdetermined boundary value problems involving different elliptic equations has inten-
sively studied recently. Starting with the pioneering papers of Pacard and Sicbaldi [2009],
Sicbaldi [2010] and Hauswirth, Hélein, and Pacard [2011], the construction of nontrivial
domains giving rise to solutions of overdetermined problems has been performed in many
specific settings, see e.g. Del Pino, Pacard, and Wei [2015], Schlenk and Sicbaldi [2012],
Ros, Ruiz, and Sicbaldi [2016], and Morabito and Sicbaldi [2016]. Moreover, the rigidity
results for these domains were derived in Farina and Valdinoci [2010a,b], Ros and Sicbaldi
[2013], Ros, Ruiz, and Sicbaldi [2017], and Traizet [2014].
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RIGIDITY FOR VON NEUMANN ALGEBRAS
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Abstract
We survey some of the progress made recently in the classification of von Neu-

mann algebras arising from countable groups and their measure preserving actions on
probability spaces. We emphasize results which provide classes of (W�-superrigid)
actions that can be completely recovered from their von Neumann algebras and II1
factors that have a unique Cartan subalgebra. We also present cocycle superrigidity
theorems and some of their applications to orbit equivalence. Finally, we discuss sev-
eral recent rigidity results for von Neumann algebras associated to groups.

1 Introduction

A von Neumann algebra is an algebra of bounded linear operators on a Hilbert space which
is closed under the adjoint operation and in the weak operator topology. Von Neumann
algebras arise naturally from countable groups and their actions on probability spaces, via
two seminal constructions of Murray and von Neumann [1936, 1943]. Given a countable
group Γ, the left regular representation of Γ on `2Γ generates the group von Neumann
algebra L(Γ). Equivalently, L(Γ) is the weak operator closure of the complex group
algebra CΓ acting on `2Γ by left convolution. Every nonsingular action Γ Õ (X; �) of
a countable group Γ on a probability space (X; �) gives rise to the group measure space
von Neumann algebra L1(X) Ì Γ.

A central theme in the theory of von Neumann algebras is the classification of L(Γ)

in terms of the group Γ and of L1(X) Ì Γ in terms of the group action Γ Õ (X; �).
These problems are typically studied when Γ has infinite non-trivial conjugacy classes
(icc) and when Γ Õ (X; �) is free ergodic and measure preserving, respectively. These
assumptions guarantee that the corresponding algebras are II1 factors: indecomposable
infinite dimensional von Neumann algebras which admit a trace. Moreover, it follows
Supported in part by NSF Career Grant DMS #1253402 and a Sloan Foundation Fellowship.
MSC2010: primary 46L36; secondary 37A20, 28D15.
Keywords: von Neumann algebra, II1 factor, measure preserving action, group measure space construction,
Cartan subalgebra, Bernoulli action, W�-superrigidity.
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that L1(X) is a Cartan subalgebra of L1(X)ÌΓ, that is, a maximal abelian subalgebra
whose normalizer generates L1(X) Ì Γ.

The classification of II1 factors is a rich subject, with deep connections to several areas
of mathematics. Over the years, it has repeatedly provided fertile ground for the devel-
opment of new, exciting theories: Jones’ subfactor theory, Voiculescu’s free probability
theory, and Popa’s deformation/rigidity theory. The subject has been connected to group
theory and ergodic theory from its very beginning, via the group measure space construc-
tion Murray and von Neumann [1936]. Later on, Singer made the observation that the
isomorphism class of L1(X) Ì Γ only depends on the equivalence relation given by the
orbits of Γ Õ (X; �) Singer [1955]. This soon led to a new branch of ergodic theory,
which studies group actions up to orbit equivalence Dye [1959]. Orbit equivalence theory,
further developed in the 1980s (see Ornstein and Weiss [1980], Connes, Feldman, and
Weiss [1981], and Zimmer [1984]), has seen an explosion of activity in the last twenty
years (see Shalom [2005], Furman [2011], and Gaboriau [2010]). This progress has been
in part triggered by the success of the deformation/rigidity approach to the classification
of II1 factors (see Popa [2007b], Vaes [2010], and Ioana [2013]). More broadly, this ap-
proach has generated a wide range of applications to ergodic theory and descriptive set
theory, including:

• the existence of non-orbit equivalent actions of non-amenable groups Gaboriau and
Popa [2005], Ioana [2011c], and Epstein [n.d.].

• cocycle superrigidity theorems for Bernoulli actions in Popa [2007a, 2008], leading
to examples of non-Bernoullian factors of Bernoulli actions for a class of countable
groups Popa [2006b] and Popa and Sasyk [2007], and the solution of some open
problems in descriptive set theory Thomas [2009]

• cocycle superrigidity theorems for profinite actions Ioana [2011b], Furman [2011],
and Gaboriau, Ioana, and Tucker-Drob [n.d.], leading to an explicit uncountable
family of Borel incomparable treeable equivalence relations Ioana [2016].

• solid ergodicity of Bernoulli actions Chifan and Ioana [2010] (see alsoOzawa [2006]).

The classification of II1 factors is governed by a strong amenable/non-amenable di-
chotomy. Early work in this area culminated with Connes’ celebrated theorem from the
mid 1970s: all II1 factors arising from infinite amenable groups and their actions are iso-
morphic to the hyperfinite II1 factor Connes [1976]. Amenable groups thus manifest a
striking absence of rigidity: any property of the group or action, other than the amenabil-
ity of the group, is lost in the passage to von Neumann algebras.

In contrast, it gradually became clear that in the non-amenable case various aspects of
groups and actions are remembered by their von Neumann algebras. Thus, non-amenable
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groups were used in McDuff [1969] and Connes [1975] to construct large families of non-
isomorphic II1 factors. Rigidity phenomena for von Neumann algebras first emerged in
the work of Connes from the early 1980s Connes [1980]. He showed that II1 factors
arising from property (T) groups have countable symmetry (fundamental and outer au-
tomorphism) groups. Representation theoretic properties of groups (Kazhdan’s property
(T), Haagerup’s property, weak amenability) were then used to prove unexpected non-
embeddability results for II1 factors associated to certain lattices in Lie groups Connes and
Jones [1985] and Cowling and Haagerup [1989]. But while these results showcased the
richness of the theory, the classification problem for non-amenable II1 factors remained
by and large intractable.

A major breakthrough in the classification of II1 factors was made by Popa with his
invention of deformation/rigidity theory Popa [2006a,d,e] (see the surveys Popa [2007b]
and Vaes [2007]). The studied II1 factors, M , admit a distinguished subalgebra A (e.g.,
L1(X) or L(Γ) when M = L1(X) Ì Γ) such that the inclusion A � M satisfies
both a deformation and a rigidity property. Popa discovered that the combination of these
properties can be used to detect the position of A inside M , or even recover the underlying
structure of M (e.g., the group Γ and action Γ Õ X when M = L1(X) Ì Γ). He also
developed a series of powerful technical tools to exploit this principle.

Popa first implemented this idea and techniques to provide a class of II1 factors, M ,
which admit a unique Cartan subalgebra, A, with the relative property (T) Popa [2006a].
The uniqueness of A implies that any invariant of the inclusion A � M is in fact an
invariant ofM . When applied toM = L1(T 2)Ì SL2(Z), it follows that the fundamental
group of M is equal to that of the equivalence relation of the action SL2(Z) Õ T 2. Since
the latter is trivial by Gaboriau’s work Gaboriau [2000, 2002], this makes M the first
example of a II1 factor with trivial fundamental group Popa [2006a], thereby solving a
longstanding problem.

In Popa [2006d,e], Popa greatly broadened the scope of deformation/rigidity theory by
obtaining the first strong rigidity theorem for group measure space factors. To make this
precise, suppose that Γ Õ (X; �) is a Bernoulli action of an icc group Γ and Λ Õ (Y; �)

is a free ergodic probability measure preserving action of a property (T) group Λ (e.g.,
Λ = SLn�3(Z)). Under this assumptions, it is shown in Popa [2006d,e] that if the group
measure space factors L1(X)ÌΓ and L1(Y )ÌΛ are isomorphic, then the groups Γ and
Λ are isomorphic and their actions are conjugate.

The goal of this survey is to present some of the progress achieved recently in the
classification of II1 factors. We focus on advances made since 2010, and refer the reader
to Popa [2007b] and Vaes [2010] for earlier developments. A topic covered there but
omitted here is the calculation of symmetry groups of II1 factors; see Popa [2006a,d],
Ioana, Peterson, and Popa [2008], and Popa and Vaes [2010a] for several key results in
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this direction. There is some overlap with Ioana [2013], but overall the selection of topics
and presentation are quite different.

We start with a section of preliminaries (Section 2) and continue with a discussion
of the main ideas from Popa’s deformation/rigidity theory (Section 3). Before giving an
overview of Sections 4-6, we first recall some terminology and background. Two free
ergodic p.m.p. (probability measure preserving) actions Γ Õ (X; �) and Λ Õ (Y; �) are
called:

1. conjugate if there exist an isomorphism of probability spaces ˛ : (X; �)! (Y; �)

and an isomorphism of groups ı : Γ! Λ such that ˛(g � x) = ı(g) � ˛(x), for all
g 2 Γ and almost every x 2 X .

2. orbit equivalent (OE) if there exists an isomorphism of probability spaces
˛ : (X; �)! (Y; �) such that ˛(Γ � x) = Λ � ˛(x), for almost every x 2 X .

3. W�-equivalent if L1(X) Ì Γ is isomorphic to L1(Y ) Ì Λ.

Singer showed that OE amounts to the existence of an isomorphism L1(X) Ì Γ Š

L1(Y ) Ì Λ which identifies the Cartan subalgebras L1(X) and L1(Y ) Singer [1955].
Thus, OE implies W�-equivalence. Since conjugacy clearly implies orbit equivalence,
putting these together we have:

conjugacy H) orbit equivalence H) W�-equivalence

Rigidity usually refers to a situation in which a weak equivalence between two objects
can be used to show that the objects are equivalent in a much stronger sense or even iso-
morphic. In the present context, rigidity occurs whenever some of the above implications
can be reversed for all actions Γ Õ (X; �) and Λ Õ (Y; �) belonging to two classes
of actions. The most extreme form of rigidity, called superrigidity, happens when this
can be achieved without any restrictions on the second class of actions. Thus, an action
Γ Õ (X; �) is W�-superrigid (respectively, OE-superrigid) if any free ergodic p.m.p.
action Λ Õ (Y; �) which is W�-equivalent (respectively, OE) to Γ Õ (X; �) must be
conjugate to it. In other words, the conjugacy class of the action can be entirely recon-
structed from the isomorphism class of its von Neumann algebra (respectively, its orbit
equivalence class).

The seminal results from Popa [2006a,d,e] suggested two rigidity conjectures which
have guided much of the work in the area in the ensuing years. First, Popa [2006a] pro-
vided a class of II1 factors L1(X) Ì Fn associated to actions of the free groups Fn, with
n � 2, for which L1(X) is the unique Cartan subalgebra satisfying the relative property
(T). This led to the conjecture that the same might be true for arbitrary Cartan subalge-
bras of arbitrary free group measure space factors: (A) L1(X)Ì Fn has a unique Cartan
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subalgebra, up to unitary conjugacy, for any free ergodic p.m.p. action Fn Õ (X; �) of
Fn with n � 2. Second, Popa [2006d,e] showed that within the class of Bernoulli actions
of icc property (T) groups, W�-equivalence implies conjugacy. Moreover, it was proved
in Popa [2007a] that such actions are OE-superrigid. These results naturally led to the
following conjecture: (B) Bernoulli actions Γ Õ (X; �) of icc property (T) groups Γ are
W�-superrigid.

In Section 4, we discuss the positive resolutions of the above conjectures. These were
the culmination of a period of intense activity which has generated a series of striking
unique Cartan decomposition and W�-superrigidity results. The first breakthrough was
made by Ozawa and Popa who confirmed conjecture (A) in the case of profinite actions
Ozawa and Popa [2010a]. The class of groups whose profinite actions give rise to II1
factors with a unique group measure space decomposition was then shown to be much
larger in Ozawa and Popa [2010a,b] and Peterson [n.d.].

But, since none of these actions was known to be OE-superrigid, W�-superrigidity
could not be deduced. Indeed, proving that an action Γ Õ (X; �) is W�-superrigid
amounts to showing that the action is OE-superrigid and that L1(X) Ì Γ has a unique
group measure space Cartan subalgebra1. Nevertheless, Peterson was able to show the
existence of “virtually” W�-superrigid actions Peterson [n.d.]. Soon after, Popa and Vaes
discovered a large class of amalgamated free product groups Γ whose every free ergodic
p.m.p. action Γ Õ (X; �) gives rise to a II1 factor with a unique group measure space Car-
tan subalgebra, up to unitary conjugacy Popa andVaes [2010b]. ApplyingOE-superrigidity
results from Popa [2007a, 2008] and Kida [2011] enabled them to provide the first con-
crete classes of W�-superrigid actions. However, these results do not apply to actions of
property (T) groups and so despite all of this progress, conjecture (B) remained open until
it was eventually settled by the author in Ioana [2011a].

New uniqueness theorems for group measure space Cartan subalgebras were then ob-
tained in Chifan and Peterson [2013] and in Ioana [2012b], while Chifan and Sinclair
extended the results of Ozawa and Popa [2010a] from free groups to hyperbolic groups in
Chifan and Sinclair [2013]. However, the available uniqueness results for Cartan subal-
gebras required either a rigidity property of the group (excluding the free groups), or the
action to be in a specific class. Thus, the situation for arbitrary actions of the free groups re-
mained unclear until conjecture (A) was resolved by Popa and Vaes in their breakthrough
work Popa and Vaes [2014a]. Subsequently, several additional families of groups were
shown to satisfy conjecture (A), including non-elementary hyperbolic groups Popa and

1This terminology is used to distinguish the Cartan subalgebras coming from the group measure space con-
struction from general Cartan subalgebras, see Section 2.6.
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Vaes [2014b], free product groups Ioana [2013], and central quotients of braid groups Chi-
fan, Ioana, and Kida [2015], while conjecture (B) was established for the more general
class of mixing Gaussian actions in Boutonnet [2013].

Section 5 is devoted to rigidity results in orbit equivalence. After recalling the pioneer-
ing rigidity and superrigidity phenomena discovered by Zimmer [1980, 1984] and Furman
[1999], we discuss several recent cocycle superrigidity results. Our starting point is Popa’s
remarkable cocycle superrigidity theorem: any cocycle for a Bernoulli action of a property
(T) group into a countable group is cohomologous to a homomorphism Popa [2007a]. The
property (T) assumption was removed in Popa [2008], where the same was shown to hold
for Bernoulli actions of products of non-amenable groups. A cocycle superrigidity theo-
rem for a different class of actions of property (T) groups, the profinite actions, was then
obtained in Ioana [2011b]. Answering a question motivated by the analogy with Bernoulli
actions, this theorem was recently extended to product groups in Gaboriau, Ioana, and
Tucker-Drob [n.d.].

These andmany other results provide large classes of “rigid” groups (including property
(T) groups, product groups, and by Kida’s work Kida [2010], most mapping class groups)
which admit OE-superrigid actions. In contrast, other non-amenable groups, notably the
free groups Fn, posses no OE-superigid actions. Nevertheless, as we explain in the second
part of Section 4, a general OE-rigidity theorem for profinite actions was discovered in
Ioana [2016]. This result imposes no assumptions on the acting groups and so it applies,
in novel fashion, to actions of groups such as Fn and SL2(Z). As an application, it led to
a continuum of mutually non-OE and Borel incomparable actions of SL2(Z), confirming
a conjecture from Thomas [2003, 2006]. It also motivated a “local spectral gap” theorem
for dense subgroups of simple Lie groups in Boutonnet, Ioana, and Golsefidy [2017].

In Section 6, we discuss recent rigidity results for group von Neumann algebras. These
give instances when certain algebraic properties of groups, such as the absence or presence
of a direct product decomposition, are remembered by their von Neumann algebras. A
remarkable result of Ozawa shows that for any icc hyperbolic group Γ, the II1 factor L(Γ)

is prime, i.e. it cannot be decomposed as a tensor product of two II1 factors Ozawa [2004].
In particular, this recovered the primeness of L(Fn), for n � 2, which was first proved
in Ge [1998] using Voiculescu’s free probability techniques. Later on, several other large
classes of icc groups Γ were shown to give rise to prime II1 factors (see e.g. Ozawa
[2006], Peterson [2009], Popa [2007c], and Chifan and Houdayer [2010]). However, all
such groups, Γ, satisfy various properties which relate them closely to lattices in rank one
simple Lie groups. On the other hand, it is an open problem whether II1 factors associated
to icc irreducible lattices Γ in higher rank simple or semisimple Lie groups G are prime.
We present in Section 6 a result from Drimbe, D. Hoff, and Ioana [n.d.] which answers
this positively in the case when G is a product of simple Lie groups of rank one.
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We continue with the recent finding in Chifan, de Santiago, and Sinclair [2016] and
Chifan and Ioana [2018] of large classes of product and amalgamated free product groups
whose product (respectively, amalgam) structure can be recognized from their von Neu-
mann algebras. Finally, we turn our attention to the strongest type of rigidity for group
II1 factors L(Γ), called W�-superrigidity. This occurs when the isomorphism class of Γ
can be reconstructed from the isomorphism class of L(Γ). We conclude the section with
a discussion of the first examples of W�-superrigid groups discovered in our joint work
Ioana, Popa, and Vaes [2013], and the subsequent examples exhibited in Berbec and Vaes
[2014] and Chifan and Ioana [2018].

Let us mention a few exciting topics related to the classification of II1 factors which
have received a lot of attention recently but are not covered here, due to limitations of
space. First, we point out the impressive work of Houdayer and his co-authors (including
Houdayer and Vaes [2013], Boutonnet, Houdayer, and Raum [2014], Houdayer and Isono
[2017], and Boutonnet, Houdayer, and Vaes [n.d.]) where the deformation/rigidity frame-
work is adapted to study von Neumann algebras of type III. A notable advance in this di-
rection is the classification theorem for free Araki-Woods factors obtained by Houdayer,
Shlyakhtenko, and Vaes [n.d.]. We also highlight Peterson’s remarkable work Peterson
[2015] (see also Creutz and Peterson [n.d.]) which shows that lattices in higher rank sim-
ple Lie groups admit a unique II1 factor representation, the regular representation, thus
solving a conjecture of Connes from the 1980s. Finally, we mention the model theory for
II1 factors which was introduced in Farah, Hart, and Sherman [2013, 2014a,b]. Subse-
quently, our joint work with Boutonnet, Chifan, and Ioana [2017] settled a basic question
in the theory. More precisely, we showed the existence of uncountably many different ele-
mentary classes of II1 factors (equivalently, of uncountably many II1 factors with pairwise
non-isomorphic ultrapowers).

Acknowledgments. It is my pleasure to thank Rémi Boutonnet, Cyril Houdayer, and
Sorin Popa for many comments that helped improve the exposition.

2 Preliminaries

2.1 Tracial von Neumann algebras. A von Neumann algebra M is called tracial if it
admits a linear functional τ : M ! C, called a trace, which is

1. positive: τ(x�x) � 0, for all x 2M .

2. faithful: τ(x�x) = 0, for some x 2M , implies that x = 0.

3. normal: τ(
P

i2I pi ) =
P

i2I τ(pi ), for any family fpigi2I of mutually orthogonal
projections.
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4. tracial: τ(xy) = τ(yx), for all x; y 2M .

A von Neumann algebra with trivial center is called a factor. An infinite dimensional
tracial factor is called a II1 factor. Note that any II1 factor M admits a unique trace τ such
that τ(1) = 1.

Any tracial von Neumann algebra (M; τ) admits a canonical (or standard) represen-
tation on a Hilbert space. Denote by L2(M ) the completion of M with respect to the
2-norm kxk2 :=

p
τ(x�x). Then the left and right multiplication actions of M on itself

give rise to representations of M and its opposite algebra M op on L2(M ). This makes
L2(M ) a Hilbert M -bimodule, i.e. a Hilbert space H endowed with commuting normal
representations M � B(H) and M op � B(H).

Let P � M be a von Neumann subalgebra and denote by EP : M ! P the
unique τ-preserving conditional expectation onto P . Specifically, EP is determined by
the identity τ(EP (x)y) = τ(xy), for all x 2 M and y 2 P . By completing the alge-
braic tensor product M ˝alg M with respect to the scalar product hx1 ˝ x2; y1 ˝ y2i =

τ(y�
2EP (x�

2x1)y1) we obtain the Hilbert M -bimodule L2(M ) ¯̋ P L2(M ). Alternatively,
this bimodule can be realized as the L2-space of Jones’ basic construction hM; P i. In the
case P = M and P = C1, we recover the so-called trivial and coarse bimodules, L2(M )

and L2(M ) ¯̋L2(M ), respectively.

2.2 Group von Neumann algebras. Let Γ be a countable group and denote by fıhgh2Γ

the usual orthonormal basis of `2Γ. The left regular representation u : Γ ! U(`2Γ) is
given by ug(ıh) = ıgh. The group von Neumann algebra L(Γ) is defined as the weak
operator closure of the linear span of fuggg2Γ. It is a tracial von Neumann algebra with
a trace τ : L(Γ) ! C given by τ(x) = hxıe; ıei. Equivalently, τ is the unique trace on
L(Γ) satisfying τ(ug) = ıg;e , for all g 2 Γ.

Note that L(Γ) is a II1 factor if and only if Γ is icc: fghg�1jg 2 Γg is infinite, for all
h 2 Γ n feg.

2.3 Group measure space von Neumann algebras. Let Γ Õ (X; �) be a p.m.p. ac-
tion of a countable group Γ on a probability space (X; �). For g 2 Γ and c 2 L2(X), let
�g(c) 2 L2(X) be defined by �g(c)(x) = c(g�1 �x). The elements of both Γ andL1(X)

can be represented as operators on the Hilbert space L2(X) ¯̋ `2Γ through the formulae
ug(c ˝ ıh) = �g(c)˝ ıgh and b(c ˝ ıh) = bc ˝ ıh. Then ug is a unitary operator and
ugbu�

g = �g(b), for all g 2 Γ and b 2 L1(X). As a consequence, the linear span of
fbug jb 2 L1(X); g 2 Γg is a �-algebra.

The group measure space von Neumann algebra L1(X) Ì Γ is defined as the weak
operator closure of the linear span of fbug jb 2 L1(X); g 2 Γg. It is a tracial von
Neumann algebra with a trace τ : L1(X)ÌΓ! C given by τ(a) = ha(1˝ ıe); 1˝ ıei.
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Equivalently, τ is the unique trace on L1(X) Ì Γ satisfying τ(bug) = ıg;e

R
X

b d�, for
all g 2 Γ and b 2 L1(X).

Any element a 2 L1(X) Ì Γ admits a Fourier decomposition a =
P

g2Γ agug , with
ag 2 L1(X) and the series converging in k:k2. These so-called Fourier coefficients
faggg2Γ of a are given by ag = EL1(X)(au�

g) and satisfyX
g2Γ

kagk
2
2 = kak22:

If the action Γ Õ (X; �) is (essentially) free and ergodic, then L1(X) Ì Γ is a II1
factor. Recall that the action Γ Õ (X; �) is called free if fxj g � x = xg is a null set, for
all g 2 Γ n feg, and ergodic if any Γ-invariant measurable subset A � X must satisfy
�(A) 2 f0; 1g.

2.4 Examples of free ergodic p.m.p. actions.

1. Let Γ be a countable group and (X0; �0) be a non-trivial probability space. Then
Γ acts on the space XΓ

0 of sequences x = (xh)h2Γ by shifting the indices: g � x =

(xg�1h)h2Γ. This action, called the Bernoulli action with base (X0; �0), preserves
the product probability measure �Γ

0 , and is free and ergodic.

2. Let Γ be a countable group together with a dense embedding into a compact group
G. The left translation action of Γ on G given by g � x = gx preserves the Haar
measuremG of G, and is free and ergodic. For instance, assume that Γ is residually
finite, and let G = lim

 �
Γ/Γn be its profinite competition with respect to a chain

Γ = Γ0 > Γ1 > ::: > Γn > ::: of finite index normal subgroups with trivial
intersection. Then G is a profinite hence totally disconnected compact group, and
the map g 7! (gΓn)n gives a dense embedding of Γ into G. At the opposite end,
we have the case when G is a connected compact group (e.g. G = SO(n)) and Γ

is a countable dense subgroup of G.

3. Generalizing example (2), a p.m.p. action Γ Õ (X; �) is called compact if the
closure of Γ in Aut(X; �) is compact, and profinite if it is an inverse limit of actions
Γ Õ (Xn; �n), withXn a finite set, for all n. Any profinite p.m.p. action is compact.
Any ergodic compact p.m.p. action is isomorphic to a left translation action of
the form Γ Õ (G/K;mG/K), where G is a compact group containing Γ densely,
K < G is a closed subgroup andmG/K is the unique G-invariant Borel probability
measure on G/K. Any ergodic profinite p.m.p. action is of this form, with G a
profinite group.
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4. Finally, the standard action of SLn(Z) on the n-torus T n = Rn/Zn preserves
the Lebesgue measure, and is free and ergodic. The left multiplication action of
PSLn(Z) on SLn(R)/SLn(Z) preserves the unique SLn(R)-invariant probability
measure, and is free and ergodic.

2.5 Equivalence relations. An equivalence relation R on a standard probability space
(X; �) is called countable p.m.p. if R has countable classes, R is a Borel subset of X �X ,
and any Borel automorphism of X whose graph is contained in R preserves � Feldman
and Moore [1977]. If Γ Õ (X; �) is a p.m.p. action of a countable group Γ, its or-
bit equivalence relation RΓÕX := f(x; y) 2 X2 j Γ � x = Γ � yg is a countable
p.m.p. equivalence relation. It is now clear that two p.m.p. actions of countable groups
Γ Õ (X; �) and Λ Õ (Y; �) are orbit equivalent precisely when their OE relations are
isomorphic: (˛ � ˛)(RΓÕX ) = RΛÕY , for some isomorphism of probability spaces
˛ : (X; �)! (Y; �).

2.6 Cartan subalgebras. Let M be a II1 factor. The normalizer of a subalgebra A �

M , denoted by NM (A), is the group of unitaries u 2 M satisfying uAu� = A. An
abelian von Neumann subalgebra A � M is called a Cartan subalgebra if it is maximal
abelian and its normalizer generates M . For instance, if Γ Õ (X; �) is a free ergodic
p.m.p. action, then A := L1(X) is a Cartan subalgebra of the group measure space II1
factor M := L1(X)ÌΓ. To distinguish such Cartan subalgebras from arbitrary ones we
call them of group measure space type.

In general, any Cartan subalgebra inclusion A �M can be identified with an inclusion
of the form L1(X) � L(R; w), where (X; �) is a probability space and L(R; w) is the
von Neumann algebra associated to a countable p.m.p. equivalence relation R on X and a
2-cocycle w 2 H2(R; T ) Feldman and Moore [ibid.]. By Feldman and Moore [ibid.], R
arises as the OE relation of a p.m.p action Γ Õ (X; �). If the action is free and the cocycle
is trivial, then we canonically have M = L1(X)ÌΓ. However, the action cannot always
be chosen to be free Furman [1999], and thus not all Cartan subalgebras are of group
measure space type.

The next proposition makes clear the importance of Cartan subalgebras in the study of
group measure space factors.

Proposition 2.1 (Singer [1955]). If Γ Õ (X; �) and Λ Õ (Y; �) are free ergodic p.m.p.
actions, then the following conditions are equivalent

1. the actions Γ Õ (X; �) and Λ Õ (Y; �) are orbit equivalent.

2. there exists a �-isomorphism � : L1(X)ÌΓ! L1(Y )ÌΛ such that �(L1(X)) =

L1(Y ).
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Proposition 2.1 is extremely useful in two ways. First, the implication (1)) (2) pro-
vides an approach to the study of orbit equivalence of actions using von Neumann algebras.
This has been instrumental in several developments, including the finding of non-OE ac-
tions of non-amenable groups (see Gaboriau and Popa [2005] and Ioana [2009, 2011c])
and of new OE-superrigidity results (see Popa [2007a, 2008] and Ioana [2011b]). On the
other hand, the implication (2)) (1) allows one to reduce the classification of group mea-
sure space factors to the classification of the corresponding actions up to orbit equivalence,
whenever uniqueness of group measure space Cartan subalgebras can be established. This
has been used for instance to exhibit the first families ofW�-superrigid actions in Peterson
[n.d.], Popa and Vaes [2010b], and Ioana [2011a].

2.7 Amenability and property (T). In the early 1980s, Connes discovered that Hilbert
bimodules provide an appropriate representation theory for tracial von Neumann algebras,
paralleling the theory of unitary representations for groups (see Connes [1982] and Popa
[1986]).

To illustrate this point, assume that M = L(Γ), for a countable group Γ. Given a uni-
tary representation � : Γ!U(H) on a Hilbert spaceH, the Hilbert spaceH ¯̋ `2Γ carries
a natural Hilbert M -bimodule structure: ug(� ˝ ıh)uk = �(g)(�) ˝ ıghk . Moreover,
the map � 7! � ˝ ıe turns sequences of Γ-almost invariant unit vectors into sequences
of M -almost central tracial vectors. Here, for a Hilbert M -bimodule K and a subalgebra
P �M , we say that a vector � 2 K is tracial if hx�; �i = h�x; �i = τ(x), for all x 2M ,
and P -central if y� = �y, for all y 2 P . A net of vectors �n 2 K is called P -almost
central if ky�n � �nyk ! 0, for all y 2 P .

The analogy between representations and bimodules led to von Neumann algebraic
analogues of various representation theoretic properties of groups, including amenability
and property (T):

Definition 2.2. Let (M; τ) be a tracial von Neumann algebra, and P; Q � M be subal-
gebras.

1. We say that M is amenable if there exists a net �n 2 L2(M ) ¯̋L2(M ) of tracial,
M -almost central vectors Popa [1986]. We say that Q is amenable relative to P

if there exists a net �n 2 L2(M ) ¯̋ P L2(M ) of tracial, Q-almost central vectors
Ozawa and Popa [2010a].

2. We say that M has property (T) if any Hilbert M -bimodule without M -central vec-
tors does not admit a net of M -almost central unit vectors Connes and Jones [1985].
We say that P � M has the relative property (T) if any Hilbert M -bimodule with-
out P -central vectors does not admit a net of M -almost central, tracial vectors Popa
[2006a].
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2.8 Popa’s intertwining-by-bimodules. In Popa [2006a,d], Popa developed a power-
ful technique for showing unitary conjugacy of subalgebras of a tracial von Neumann
algebra.

Theorem 2.3 (Popa [2006a,d]). If P; Q are von Neumann subalgebras of a separable
tracial von Neumann algebra (M; τ), then the following are equivalent:

1. There is no sequence of unitaries un 2 P satisfying kEQ(aunb)k2 ! 0, for all
a; b 2M .

2. There are non-zero projections p 2 P; q 2 Q, a �-homomorphism � : pPp !

qQq, and a non-zero partial isometry v 2 qMp such that �(x)v = vx, for all
x 2 pPp.

If these conditions hold, we say that a corner of P embeds into Q.
Moreover, if P and Q are Cartan subalgebras of M and a corner of P embeds into a

corner of Q, then there is a unitary u 2M such that P = uQu�.

3 Popa’s deformation/rigidity theory

3.1 Deformations. Since its introduction in the early 2000’s, Popa’s deformation/ri-
gidity theory has had a transformative impact on the theory of von Neumann algebras.
The theory builds on Popa’s innovative idea of using the deformations of a II1 factor to
locate its rigid subalgebras. Before illustrating this principle with several examples, let us
make precise the notion of a deformation.

Definition 3.1. A deformation of the identity of a tracial von Neumann algebra (M; τ) is
a sequence of unital, trace preserving, completely positive maps �n : M !M satisfying

k�n(x) � xk2 ! 0; for all x 2M:

A linear map � : M !M is called completely positive if the map �(m) : Mm(M )!

Mm(M ) given by �(m)([xi;j ]) = [�(xi;j )] is positive, for all m � 1. Note that any
unital, trace preserving, completely positive map � : M ! M extends to a contraction
� : L2(M )! L2(M ).

Remark 3.2. Deformations arise naturally from continuous families of automorphisms of
larger von Neumann algebras. To be precise, let (M̃ ; τ̃) be a tracial von Neumann algebra
containing M such that τ̃jM = τ. Assume that (�t )t2R is a pointwise k:k2-continuous
family of trace preserving automorphisms of M̃ with �0 = id. Then �n := EM ı �tn :

M ! M defines a deformation of M , for any sequence tn ! 0. Abusing notation, such
pairs (M̃ ; (�t )t2R) are also called deformations of M .
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Next, we proceed to give three examples of deformations. For a comprehensive list of
examples, we refer the reader to Ioana [2015, Section 3].

Example 3.3. First, let Γ be a countable group and 'n : Γ! C be a sequence of positive
definite functions such that 'n(e) = 1, for all n, and 'n(g) ! 1, for all g 2 Γ. Then
�n(ug) = 'n(g)ug defines a deformation of the group algebra L(Γ) and �n(aug) =

'n(g)aug defines a deformation of any group measure space algebra L1(X) Ì Γ.
If Γ has Haagerup’s property Haagerup [1978/79], then there is such a sequence 'n :

Γ ! C satisfying 'n 2 c0(Γ), for all n. When applied to Γ = SL2(Z), the above
procedure gives a deformation of the II1 factorM = L1(T 2)Ì SL2(Z)which is compact
relative to L1(T 2). This fact was a crucial ingredient in Popa’s proof that M has a trivial
fundamental group Popa [2006a].

Example 3.4. Second, let Γ Õ (X; �) := ([0; 1]Γ;LebΓ) be the Bernoulli action of
a countable group Γ. In Popa [2006c,d], Popa discovered that Bernoulli actions have
a remarkable deformation property, called malleability: there is a continuous family of
automorphisms (˛t )t2R of the product space X �X which commute with diagonal action
of Γ and satisfy ˛0 = id and ˛1(x; y) = (y; x).

To see this, first construct a continuous family of automorphisms (˛0
t )t2R of the prob-

ability space [0; 1]� [0; 1] such that ˛0
0 = id and ˛0

1(x; y) = (y; x). For example, we can
take

˛0
t (x; y) =

(
(x; y); if jx � yj � t

(y; x); if jx � yj < t .

Then identify X �X = ([0; 1] � [0; 1])Γ and define ˛t ((xg)g2Γ) = (˛0
t (xg))g2Γ.

The automorphisms (˛t )t2R of X �X give rise to a deformation of M := L1(X)ÌΓ,
as follows. Since ˛t commutes with the diagonal action of Γ on X � X , the formula
�t (aug) = (aı˛�1

t )ug defines a trace preserving automorphism of M̃ := L1(XÌX)ÌΓ.
Thus, (�t )t2R is a continuous family of automorphisms of M̃ such that �0 = id and
�1(a ˝ b) = b ˝ a, for all a; b 2 L1(X). Since M embeds into M̃ via the map
aug 7! (a˝ 1)ug , one obtains a deformation of M (see Remark 3.2).

Example 3.5. Finally, we recall from Popa [1986, 2007c] the construction of a malleable
deformation for the free group factors, L(Fn). For simplicity, we consider the case n = 2

and put M = L(Fn). Denote by a1; a2; b1; b2 the generators of F4, and view F2 as the
subgroup of F4 generated by a1; a2. This gives an embedding of M into M̃ = L(F4). If
we see b1 and b2 as unitary elements of M̃ , then we can find self-adjoint operators h1 and
h2 such that b1 = exp(ih1) and b2 = exp(ih2). One can now define a 1-parameter group
of automorphism (�t )t2R of M̃ as follows:

�t (a1) = exp(i th1)a1; �t (a2) = exp(i th2)a2; �t (b1) = b1; and �t (b2) = b2:
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3.2 Deformation vs. rigidity. We will now explain briefly and informally how Popa
used these deformations to prove structural results for subalgebras satisfying various rigid-
ity properties.

A main source of rigidity is provided by the relative property (T). Indeed, assume that
P � M is an inclusion with the relative property (T). The correspondence between com-
pletely positive maps and bimodules (see, e.g., Popa [2007b, Section 2.1]) implies that
any deformation �n : M ! M must converge uniformly to the identity in k:k2 on the
unit ball of P Popa [2006a]. In particular, for any large enough n0 � 1 one has that

(i) k�n0
(u) � uk2 � 1/2 for all unitaries u 2 P .

In Popa [2006a,d], this analytical condition is combinedwith the intertwining-by-bimodule
technique to deduce P can be unitarily conjugate into a distinguished subalgebra Q �M .

First, suppose that M = L1(T 2)ÌΓ, where Γ = SL2(Z), and denote Q = L1(T 2).
Since Γ has Haagerup’s property, we can find positive definite functions 'n 2 c0(Γ) such
that 'n ! 1 pointwise. As in Example 3.3, we obtain a deformation �n : M !M given
by �n(aug) = 'n(g)aug . Consider the Fourier decomposition u =

P
g2Γ EQ(uu�

g)ug

of a unitary u belonging to the subalgebra P � M with the relative property (T). The
specific formula of �n0

allows one to rewrite (i) as

(ii)
X
g2Γ

j'n0
(g) � 1j2 kEQ(uu�

g)k
2
2 � 1/4 for all unitaries u 2 P .

Since 'n0
2 c0(Γ), we have that j'n0

(g) � 1j2 � 1/2, for all g 2 Γ outside a finite
subset F . Taking into account that

P
g2Γ kEQ(uu�

g)k
2
2 = τ(u�u) = 1 and using (ii),

one concludes that

(iii)
X
g2F

kEQ(uu�
g)k

2
2 � 1/2 for all unitaries u 2 P :

As a corollary, P does not admit a sequence a unitaries satisfying condition (1) of Theo-
rem 2.3. In other words, a corner of P embeds into Q. If P is a Cartan subalgebra of M ,
then the moreover part of Theorem 2.3 implies that P must be unitarily conjugate to Q

Popa [2006a].
Second, suppose that M = L1(X) Ì Γ, where Γ Õ (X; �) = ([0; 1]Γ;LebΓ) is the

Bernoulli action. Denote Q = L(Γ) and let (M̃ ; (�t )t2R) the deformation introduced in
Example 3.4. Then the deformation �n := EM ı�1/2n converges uniformly to the identity
in k:k2 on the unit ball of any subalgebra P � M with the property (T). It is immediate
that the same must be true for �1/2n . In particular, for any large enough n0 � 1 one has
that

(iv) k�1/2n0 (u) � uk2 � 1/2 for all unitaries u 2 P .
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This implies the existence of a non-zero element v 2 M̃ satisfying �1/2n0 (u)v = vu

for all unitaries u 2 P . By employing a certain symmetry of the deformation (�t )t2R,
Popa proved that the same holds for �1. Using the formula of the restriction �1 to M , it
follows that a corner of P embeds into Q. Assuming that Γ is icc, Popa concludes that P

can be unitarily conjugate into Q Popa [2006d].
The rigidity considered in Popa [2006a,d] is due to (relative) property (T) assumptions.

In Popa [2008, 2007c], Popa discovered a less restrictive from of rigidity, arising from
the presence of subalgebras with non-amenable relative commutant. To illustrate this,
assume the context from Example 3.5: M = L(F2) � M̃ = L(F4) and (�t )t2R is the 1-
parameter group of automorphisms of M̃ defined therein. The deformation (M̃ ; (�t )t2R)

has two crucial properties:

(a) the M -bimodule L2(M̃ )	L2(M ) is isomorphic to a multiple of L2(M ) ¯̋L2(M ).

(b) the contraction EM ı �t : L2(M )! L2(M ) is a compact operator, for any t > 0.

Recovering Ozawa’s solidity theorem Ozawa [2004] in the case of the free group fac-
tors, Popa proved in Popa [2007c] that the relative commutant P 0 \M is amenable, for
any diffuse subalgebra P � M . Let us explain how (a) and (b) are combined in Popa
[ibid.] to deduce the following weaker statement: there is no diffuse subalgebra P � M

which commutes with a non-amenable II1 subfactor N �M .
Assume that we can find such commuting subalgebrasP; N �M . The non-amenability

of N leads to a spectral gap condition for its coarse bimodule Connes [1976]: there is a
finite set F � N such that

(v) k�k �
X
x2F

kx � � � � � xk for all vectors � 2 L2(N ) ¯̋L2(N ):

The spectral gap condition is then used to establish the following rigidity property for
P : the deformation EM ı �t : M ! M converges uniformly on the unit ball of P . One
first notes that (a) implies that (v) holds for every � 2 M̃ with EM (�) = 0. Thus, we may
take � = �t (u) � EM (�t (u)), for any unitary u 2 P and t > 0. Using that u commutes
with every x 2 F , one derives that

(vi) kx � � � � � xk � kx�t (u) � �t (u)xk2

= k��t (x)u � u��t (x)k2

= k(��t (x) � x)u � u(��t (x) � x)k2

� 2k��t (x) � xk2:

Combining (v) and (vi) gives that if t > 0 is chosen small enough then k�t (u)�EM (�t (u))k2 �

1/2, for all unitaries u 2 P . Since P is assumed diffuse it contains a sequence of unitaries
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un converging weakly to 0. The compactness of EM ı�t gives that kEM (�t (un))k2 ! 0,
leading to a contradiction.

4 Uniqueness of Cartan subalgebras and W�-superrigidity of
Bernoulli actions

4.1 Uniqueness of Cartan subalgebras. The first result showing uniqueness, up to
unitary conjugacy, of arbitrary Cartan subalgebras, was proved by Ozawa and Popa:

Theorem 4.1 (Ozawa and Popa [2010a]). Let Fn Õ (X; �) be a free ergodic profinite
p.m.p. action of Fn, for n � 2. Then M := L1(X)ÌFn has a unique Cartan subalgebra,
up to unitary conjugacy: if P �M is any Cartan subalgebra, then P = uL1(X)u�, for
some unitary element u 2M .

The proof of Theorem 4.1 relies on the completemetric approximation property (CMAP)
of Fn, used as a weak form of a deformation of the II1 factor L(Fn). Recall that a count-
able group Γ has the CMAP Haagerup [1978/79] if there exists a sequence of finitely
supported functions 'k : Γ! C such that 'k(g)! 1, for all g 2 Γ, and the linear maps
�k : L(Γ)! L(Γ) given by �k(ug) = 'k(g)ug , for all g 2 Γ, satisfy lim supk k�kkcb =

1. If the last condition is weakened by assuming instead that lim supk k�kkcb < 1, then
Γ is called weakly amenable Cowling and Haagerup [1989]. Here, k�kkcb denotes the
completely bounded norm of �k .

Since Fn has the CMAPHaagerup [1978/79] and the action Fn Õ X is profinite, the II1
factor M also has the CMAP: there exists a sequence of finite rank completely bounded
maps �k : M !M such that k�k(x)�xk2 ! 0, for all x 2M , and lim supk k�kkcb = 1.

Let P �M be an arbitrary diffuse amenable subalgebra and denote by G its normalizer
in M . If the conjugation action G Õ P happens to be compact, i.e. the closure of G inside
Aut(P ) is compact, then the unitary representation G Õ L2(P ) is a direct sum of finite
dimensional representations. This provides many vectors � 2 L2(P ) ¯̋L2(P ) that are
invariant under the diagonal action of G. Indeed, if �1; :::; �d is an orthonormal basis of
any finite dimensional G-invariant subspace of L2(P ), then � =

Pd
i=1 �i ˝ ��

i has this
property.

Ozawa and Popa made the fundamental discovery that since M has the CMAP, the
action G Õ P is weakly compact (although it is typically not compact). More precisely,
they showed the existence of a net of vectors �k 2 L2(P ) ¯̋L2(P ) which are almost
invariant under the diagonal action of G. In the second part of the proof, they combined
the weak compactness property, with a malleable deformation of M analogous to the one
from Example 3.5 and a spectral gap rigidity argument. Thus, they concluded that either a
corner of P embeds into L1(X) or the von Neumann algebra generated by G is amenable.
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If P � M is a Cartan subalgebra, then the first condition must hold since M is not
amenable. By Theorem 2.3, this forces that P is unitarily conjugate to L1(X).

Theorem 4.1 is restricted both by the class of groups and the family of actions it applies
to. Ozawa [2012] showed that the weak compactness property established in the proof of
Theorem 4.1 more generally holds for profinite actions of weakly amenable groups. Build-
ing on this and the weak amenability of hyperbolic groups Ozawa [2008], Chifan and Sin-
clair extended Theorem 4.1 to all non-elementary hyperbolic groups ΓChifan and Sinclair
[2013]. A conceptual novelty of their approach was the usage of quasi-cocyles (rather than
cocycles Peterson and Sinclair [2012] and Sinclair [2011]) to build deformations.

Soon after, Popa and Vaes obtained uniqueness results of unprecedented generality in
Popa and Vaes [2014a,b]. Generalizing Ozawa and Popa [2010a] and Chifan and Sin-
clair [2013], they showed that Theorem 4.1 holds for arbitrary actions of free groups and
hyperbolic groups:

Theorem 4.2 (Popa and Vaes [2014a,b]). Let Γ Õ (X; �) be a free ergodic p.m.p. ac-
tion of a countable group Γ. Assume either that Γ is weakly amenable and admits an
unbounded cocycle into a non-amenable mixing orthogonal representation, or Γ is non-
elementary hyperbolic. Then L1(X) Ì Γ has a unique Cartan subalgebra, up to unitary
conjugacy.

This result covers any weakly amenable group Γ with a positive first `2-Betti number,
ˇ
(2)
1 (Γ) > 0. Indeed, the latter holds if and only if Γ is non-amenable and admits an un-

bounded cocycle into its left regular representation Bekka and Valette [1997] and Peterson
and Thom [2011].

Theorem 4.2 led to the resolution of the group measure space analogue of the famous,
still unsolved, free group factor problem which asks whether L(Fn) and L(Fm) are iso-
morphic or not, for n 6= m. More precisely, Popa and Vaes showed in Popa and Vaes
[2014a] that if 2 � n; m � 1 and n 6= m, then for any free ergodic p.m.p. actions
Fn Õ (X; �) and Fm Õ (Y; �) one has:

L1(X) Ì Fn 6Š L1(Y ) Ì Fm:

If these factors were isomorphic, then Theorem 4.2 would imply that the actions Fn Õ X ,
Fm Õ Y are orbit equivalent. However, it was shown by Gaboriau [2000, 2002] that free
groups of different ranks do not admit orbit equivalent free actions.

In the setting of Theorem 4.2, let P � L1(X) Ì Γ be a diffuse amenable subalge-
bra and denote by G its normalizer. The weak amenability of Γ is used to show that,
roughly speaking, the action G Õ P is weakly compact relative to L1(X). When P

is a Cartan subalgebra, in combination with the deformations obtained from cocycles or
quasi-cocycles of Γ, one concludes that P is unitarily conjugate to L1(X).
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Now, assume that Γ is a non-abelian free group or, more generally, a non-elementary
hyperbolic group. In this context, Popa and Vaes proved a deep, important dichotomy
for arbitrary diffuse amenable subalgebras P of arbitrary tracial crossed products B Ì Γ:
either a corner of P embeds into B , or otherwise the von Neumann algebra generated by
the normalizer of P is amenable relative to B Popa and Vaes [2014a,b]. This property
of such groups Γ, called relative strong solidity, has since found a number of impressive
applications. In particular, it was used in Ioana [2013] to provide the first class of non-
weakly amenable groups satisfying Theorem 4.2:

Theorem 4.3. Ioana [ibid.] Let Γ = Γ1 �Σ Γ2 be an amalgamated free product group.
Assume that [Γ1 : Σ] � 2, [Γ2 : Σ] � 3, and \n

i=1giΣg�1
i = feg, for some elements

g1; :::; gn 2 Γ. Let Γ Õ (X; �) be a free ergodic p.m.p. action. Then L1(X) Ì Γ has a
unique Cartan subalgebra, up to unitary conjugacy.

Theorem 4.3 in particular applies to any free product group Γ = Γ1 �Γ2 with jΓ1j � 2,
jΓ2j � 3. Since such groups have a positive first `2-Betti number, Theorem 4.2 and
Theorem 4.3 both provide supporting evidence for the following general conjecture:

Problem I. Let Γ be a countable group with ˇ
(2)
1 (Γ) > 0. Prove that L1(X) Ì Γ has

a unique Cartan subalgebra, up to unitary conjugacy, for any free ergodic p.m.p. action
Γ Õ (X; �).

A weaker version of Problem I asks to prove that L1(X)ÌΓ has a unique group mea-
sure space Cartan subalgebra. This has been confirmed by Chifan and Peterson [2013]
under the additional assumption thatΓ has a non-amenable subgroupwith the relative prop-
erty (T) (see also Vaes [2013]). A positive answer was also obtained in Ioana [2012b,a]
when the action Γ Õ (X; �) is rigid or profinite.

If Problem I or its weaker version were solved, then as `2-Betti numbers of groups
are invariant under orbit equivalence Gaboriau [2002], it would follow that ˇ

(2)
1 (Γ) is an

isomorphism invariant of L1(X)ÌΓ. This would provide a computable invariant for the
class of group measure space II1 factors.

4.2 Non-uniqueness of Cartan subalgebras. If Γ is any group as in Theorem 4.2 and
Theorem 4.3, thenL1(X)ÌΓ has a unique Cartan subalgebras, for any free ergodic p.m.p.
action of Γ, while L(Γ) and L(Γ) ¯̋N do not have Cartan subalgebras, for any II1 factor
N . This provides several large families of II1 factors with at most one Cartan subalgebra.
However, in the non-uniqueness regime, little is known about the possible cardinality of
the set of Cartan subalgebras of a II1 factor.

Although the hyperfinite II1 factor R admits uncountably many Cartan subalgebras
up to unitary conjugacy Packer [1985], any two Cartan subalgebras are conjugated by an
automorphism of R Connes, Feldman, and Weiss [1981]. The first class of examples of
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II1 factors admitting two Cartan subalgebras that are not conjugated by an automorphism
was given by Connes and Jones [1982]. A second class of examples of such II1 factors
where the two Cartan subalgebras are explicit was found by Ozawa and Popa [2010b] (see
also Popa and Vaes [2010b]). A class of II1 factors M whose Cartan subalgebras cannot
be concretely classified up to unitary conjugacy or up to conjugation by an automorphism
of M was then introduced in Speelman and Vaes [2012]. Most recently, a family of II1
factors whose all group measure space Cartan subalgebras can be described explicitly
was constructed in Krogager and Vaes [2017]. In particular, the authors give examples
of II1 factors having exactly two group measure space Cartan subalgebras, up to unitary
conjugacy, and a prescribed number of group measure space Cartan subalgebras, up to
conjugacy with an automorphism. However, there are currently no known examples of II1
having precisely n � 2 arbitrary Cartan subalgebras:

Problem II. Given an integer n � 2, find II1 factors M which have exactly n Cartan
subalgebras, up to unitary conjugacy (or up to conjugacy with an automorphism).

4.3 W�-superrigidity of Bernoulli actions. Popa’s strong rigidity theoremPopa [2006e]
led to the natural conjecture that Bernoulli actions of icc property (T) groups are W�-
superrigid. In this section we discuss the solution of this conjecture.

Theorem 4.4 (Ioana [2011a]). Let Γ be an icc property (T) group and (X0; �0) be a
non-trivial probability space. Then the Bernoulli action Γ Õ (X; �) = (XΓ

0 ; �Γ
0 ) is

W�-superrigid.

The proof of Theorem 4.4 relies on a general strategy for analyzing group measure
space decompositions of II1 factors Ioana [ibid.]. Let M = L1(X) Ì Γ be the II1 factor
arising from a “known” free ergodic p.m.p. action Γ Õ (X; �). Assume that we can
also decompose M = L1(Y ) Ì Λ, for some “mysterious” free ergodic p.m.p. action
Λ Õ (Y; �).

The new group measure space decomposition of M gives rise to an embedding ∆ :

M ! M ¯̋M defined by ∆(buh) = uh ˝ uh, for all b 2 L1(X) and h 2 Λ. This
embedding has been introduced in Popa and Vaes [2010b] were it was used to transfer
rigidity properties throughW�-equivalence. The strategy of Ioana [2011a] is to first prove
a classification of all embeddings of M into M ¯̋M , and then apply it to∆. This provides
a relationship between the actions Γ Õ X;Λ Õ Y which is typically stronger than the
original W�-equivalence and which, ideally, can be exploited to show that the actions are
orbit equivalent or even conjugate.

In the case Γ Õ (X; �) is a Bernoulli action of a property (T) group, a classification
of all possible embeddings � : M ! M ¯̋M was obtained in Ioana [ibid.]. This classi-
fication is precise enough so that when combined with the above strategy it implies that
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L1(X) is the unique group measure space Cartan subalgebra of M , up to unitary con-
jugacy. Since the action Γ Õ (X; �) is OE-superrigid by a theorem of Popa [2007a], it
follows that the action is also W�-superrigid.

The main novelty of Ioana [2011a] is a structural result for abelian subalgebrasD onM

that are normalized by a sequence of unitary elements un 2 L(Γ) converging weakly to 0.
Under this assumption, it is shown thatD and its relative commutantD0\M can be essen-
tially unitarily conjugated into eitherL(Γ) or L1(X). An analogous dichotomy is proven
in Ioana [ibid.] for abelian subalgebras D �M ¯̋M which are normalized by “many” uni-
tary elements from L(Γ) ¯̋L(Γ). This is applied to study embeddings � : M ! M ¯̋M

as follows. Since �(L(Γ)) is a property (T) subalgebra of M ¯̋M , by adapting the ar-
guments described in Section 3.2, we may assume that �(L(Γ)) � L(Γ) ¯̋L(Γ). As a
consequence, D = �(L1(X)) is normalized by the group �(Γ) � L(Γ) ¯̋L(Γ), and thus
the dichotomy can be applied to D.

By Theorem 4.4, II1 factors arising from Bernoulli actions of icc property (T) groups
have a unique group measure space Cartan subalgebra. The following problem proposed
by Popa asks to prove that the same holds for arbitrary non-amenable groups and general
Cartan subalgebras:

Problem III. Let Γ Õ (X; �) = (XΓ
0 ; �Γ

0 ) be a Bernoulli action of a non-amenable
group Γ. Then L1(X) Ì Γ has a unique Cartan subalgebra, up to unitary conjugacy.

A positive answer to this problem would imply that if two Bernoulli actions of non-
amenable groups areW�-equivalent, then they are orbit equivalent. By Popa [2007a,b], for
Bernoulli actions of groups in a large class (containing all infinite property (T) groups), or-
bit equivalence implies conjugacy. However, this does not hold for arbitrary non-amenable
groups. Indeed, if n � 2, then the Bernoulli actions Fn Õ (XFn

0 ; �
Fn

0 ) of Fn are com-
pletely classified up to conjugacy by the entropy of base space (X0; �0) Bowen [2010];
on the other hand, all Bernoulli actions of Fn are orbit equivalent Bowen [2011].

5 Orbit equivalence rigidity

PioneeringOE rigidity results were obtained by Zimmer for actions of higher rank semisim-
ple Lie groups and their lattices by using his influential cocycle superrigidity theorem
Zimmer [1980, 1984]. Deducing OE rigidity results from cocycle superrigidity theo-
rems has since become a paradigm in the area. An illustration of this is Furman’s proof
that “generic” free ergodic p.m.p. actions of higher rank lattices, including the actions
SLn(Z) Õ (T n;Leb) for n � 3, are virtually OE-superrigid. Since then, numerous strik-
ing OE superrigidity results have been discovered in Popa [2007a, 2008], Kida [2010],
Ioana [2011b], Popa and Vaes [2011], Furman [2011], Kida [2011], Peterson and Sinclair
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[2012], Tucker-Drob [n.d.], Ioana [2017], Chifan and Kida [2015], Drimbe [n.d.], and
Gaboriau, Ioana, and Tucker-Drob [n.d.].

5.1 Cocycle superrigidity. Many of these results have been obtained by applying tech-
niques and ideas from Popa’s deformation/rigidity theory. In all of these cases, one proves
that much more than being OE superrigid, the actions in question are cocycle superrigid
Popa [2007a, 2008], Ioana [2011b], Popa and Vaes [2011], Furman [2011], Peterson and
Sinclair [2012], Tucker-Drob [n.d.], Ioana [2017], Drimbe [n.d.], andGaboriau, Ioana, and
Tucker-Drob [n.d.]. These developments were trigerred by Popa’s discovery of a striking
new cocycle superrigidity phenomenon:

Theorem 5.1 (Popa [2007a, 2008]). Assume that Γ is either an infinite property (T) group
or the product Γ1�Γ2 of an infinite group and a non-amenable group. Let Γ Õ (X; �) :=

(XΓ
0 ; �Γ

0 ) be the Bernoulli action, where (X0; �0) is a non-trivial standard probability
space. Let Λ be a countable group. Then any cocycle w : Γ �XΓ

0 ! Λ is cohomologous
to a group homomorphism ı : Γ! Λ.

Theorem 5.1 more generally applies to cocycles with values into Ufin groups Λ, i.e.,
isomorphic copies of closed subgroups of the unitary group of a separable II1 factor.

Recall that if Λ is a Polish group, then a measurable map w : Γ � X ! Λ is called a
cocycle if it satisfies the identity w(g1g2; x) = w(g1; g2 � x)w(g2; x) for all g1; g2 2 Γ

and almost every x 2 X . Two cocycles w1; w2 : Γ �X ! Λ are called cohomologous if
there exists a measurable map ' : X ! Λ such that w2(g; x) = '(g � x)w1(g; x)'(x)�1,
for all g 2 Γ and almost every x 2 X . Any group homomorphism ı : Γ ! Λ gives rise
to a constant cocycle, w(g; x) := ı(g).

Remark 5.2. If ˛ : (X; �) ! (Y; �) is an OE between Γ Õ (X; �) and a free p.m.p.
action Λ Õ (Y; �), then the map w : Γ � X ! Λ uniquely determined by the formula
˛(gx) = w(g; x) � ˛(x) is a cocycle, called the Zimmer cocycle. Assume that w is
cohomologous to a homomorphism, i.e. w(g; x) = '(g � x)ı(g)'(x)�1. Then the map
˜̨ : X ! Y given by ˜̨(x) := '(x)�1 � ˛(x) satisfies ˜̨(g � x) = ı(g) � ˜̨(x). This can
be often used to conclude that the actions are conjugate, e.g., if Γ is icc and its action is
free and weakly mixing Popa [2007a]. Consequently, the actions from Theorem 5.1 are
OE-superrigid whenever Γ is icc.

The proof of Theorem 5.1 relies on the malleability of Bernoulli actions. Assume for
simplicity that (X0; �0) = ([0; 1];Leb). Let (˛t )t2R be a continuous family of automor-
phisms of X � X commuting with the diagonal action of Γ and satisfying ˛0 = id and
˛1(x; y) = (y; x), as in Example 3.4. Then the formula wt (g; (x; y)) = w(g; ˛t (x; y))

defines a family (wt )t2R of cocycles for the product action Γ Õ X � X . Note that
w0(g; (x; y)) = w(g; x), while w1(g; (x; y)) = w(g; y).
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In Popa [2007a], Popa uses property (T) to deduce that wt is cohomologous to w0, for
t > 0 small enough. The same conclusion is derived in Popa [2008] via a spectral gap
rigidity argument (see Section 3.2). In both papers, this is then shown to imply that w is
cohomologous to w1. Finally, using the weak mixing property of Bernoulli actions, it is
concluded that w is cohomologous to a homomorphism. For a presentation of the proof
of Theorem 5.1 in the property (T) case, see also Furman [2007] and Vaes [2007].

In addition to property (T) and product groups, Theorem 5.1 has been shown to hold
for groups Γ such that L(Γ) is L2-rigid in the sense of Peterson [2009] (see Peterson and
Sinclair [2012]) and for inner amenable non-amenable groups Γ (see Tucker-Drob [n.d.]).
The following problem due to Popa remains however open:

Problem IV.Characterize the class of groupsΓwhose Bernoulli actions are cocycle su-
perrigid (for arbitrary countable or Ufin “target” groups Λ), in the sense of Theorem 5.1.

This class is conjecturally characterised by the vanishing of the first L2-Betti number.
Indeed, all groups Γ known to belong to the class satisfy ˇ

(2)
1 (Γ) = 0. On the other hand,

if ˇ
(2)
1 (Γ) > 0, then the Bernoulli actions of Γ are not cocycle superrigid with Λ = T as

the target group Peterson and Sinclair [2012].
In Ioana [2011b], the author established a cocycle superrigidity theorem for translation

actions Γ Õ (G;mG) of property (T) groups Γ on their profinite completions G, see part
(1) of Theorem 5.3. Note that these actions are in some sense the farthest from being
weakly mixing or Bernoulli: the unitary representation Γ Õ L2(G) is a sum of finite
dimensional representations, by the Peter-Weyl theorem.

Motivated by the analogy with Theorem 5.1, it was asked in Ioana [ibid.] whether a
version of the cocycle superrigidity theorem obtained therein holds for product groups,
such as Γ = F2 � F2. The interest in this question was especially high at the time, since
a positive answer combined with the work Ozawa and Popa [2010a] would have lead to
the (then) first examples of virtually W�-superrigid actions. This question was recently
settled in Gaboriau, Ioana, and Tucker-Drob [n.d.], see part (2) of Theorem 5.3.

Theorem 5.3. Let Γ and ∆ be countable dense subgroups of a compact profinite group
G. Consider the left translation action Γ Õ (G;mG) and the left-right translation action
Γ �∆ Õ (G;mG).
Let Λ be a countable group. Let w : Γ � G ! Λ and v : (Γ � ∆) � G ! Λ be any
cocycles.

1. Ioana [2011b] Assume that Γ has property (T). Then we can find an open subgroup
G0 < G such that the restriction of w to (Γ \ G0) � G0 is cohomologous to a
homomorphism ı : Γ \G0 ! Λ.

2. Gaboriau, Ioana, and Tucker-Drob [n.d.] Assume that Γ Õ (G;mG) has spectral
gap, and Γ, Λ are finitely generated. Then we can find an open subgroup G0 < G
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such that the restriction of v to
[(Γ\G0)� (∆\G0)]�G0 is cohomologous to a homomorphism ı : (Γ\G0)�

(∆ \G0)! Λ.

Recall that the left-right translation action Γ �∆ Õ (G;mG) is given by (g; h) � x =

gxh�1. A p.m.p. action Γ Õ (X; �) is said to have spectral gap if the representation
Γ Õ L2(X)	C1 does not have almost invariant vectors. A well-known result of Selberg
implies that the left translation action SL2(Z) Õ SL2(Zp) has spectral gap, for every
prime p. This was recently generalized in Bourgain and Varjú [2012] to arbitrary non-
amenable subgroups Γ < SL2(Z): the left translation of Γ onto its closure Γ̄ < SL2(Zp)

has spectral gap.
Note that in Furman [2011], Furman provided an alternative approach to part (1) of

Theorem 5.3 which applies to the wider class of compact actions.
The proof of Theorem 5.3 relies on the following criterion for untwisting cocycles

w : Γ �G ! Λ. First, endow the space of such cocycles with the “uniform” metric

d (w; w0) := sup
g2Γ

mG(fx 2 G j w(g; x) 6= w0(g; x)g):

Second, since the left and right translation actions of G on itself commute, wt (g; x) =

w(g; xt) defines a family of cocycles (wt )t2G . It is then shown in Ioana [2011b] and
Furman [2011] that if w verifies the uniformity condition d (wt ; w)! 0, as t ! 1G , then
w untwists, in the sense of part (1) of Theorem 5.3.

5.2 OE rigidity for actions of non-rigid groups. In this section, we present a rigidity
result for translation actions with spectral gap which describes precisely when two such
actions are OE.

Moreover, the result also applies to the notion of Borel reducibility from descriptive
set theory (see e.g. the survey Thomas [2006]). If R; S are equivalence relations on
standard Borel spaces X; Y , we say that R is Borel reducible to S whenever there exists
a Borel map ˛ : X ! Y such that (x; y) 2 R , (˛(x); ˛(y)) 2 S. This encodes that
the classification problem associated to R is no more complicated than the classification
problem associated to S.

Theorem 5.4. Ioana [2016] Let Γ andΛ be countable dense subgroups of profinite groups
G and H . Assume that the left translation action Γ Õ (G;mG) has spectral gap.

1. Γ Õ (G;mG) is OE to Λ Õ (H;mH ) iff there exist open subgroup G0 < G; H0 <

H and a topological isomorphism ı : G0 ! H0 such that ı(Γ \ G0) = Λ \H0

and [G : G0] = [H : H0].
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2. RΓÕG is Borel reducible to RΛÕH iff we can find an open subgroup G0 < G, a
closed subgroup H0 < H and a topological isomorphism ı : G0 ! H0 such that
ı(Γ \G0) = Λ \H0.

The main novelty of this theorem lies in that there are no assumptions on the groups,
but instead, all the assumptions are imposed on their actions. Thus, the theorem applies
to many natural families of actions of SL2(Z) and the free groups Fn, leading to the fol-
lowing:

Corollary 5.5. Ioana [2016] If S and T are distinct non-empty sets of primes, then the
actions

SL2(Z) Õ
Y
p2S

SL2(Zp) and SL2(Z) Õ
Y
p2T

SL2(Zp)

are not orbit equivalent, and their equivalence relations are not Borel reducible one to
another.

This result settles a conjecture of Thomas (see Thomas [2003, Conj. 5.7] and Thomas
[2006, Conj. 2.14]). In particular, it provides a continuum of treeable countable Borel
equivalence relations that are pairwise incomparable with respect to Borel reducibility.
Note that the existence of uncountably many such equivalence relations has been first
established by Hjorth [2012]. However, prior to Corollary 5.5, not a single example of a
pair of treeable countable Borel equivalence relations such that neither is Borel reducible
to the other was known.

Theorem 5.4 also leads to natural concrete uncountable families of pairwise non-OE
free ergodic p.m.p. actions of the non-abelian free groups, Fn (the existence of such fami-
lies was proved in Gaboriau and Popa [2005], while the first explicit families were found
in Ioana [2011c]). In contrast, a non-rigidity result of Bowen shows that any two Bernoulli
actions of Fn are OE Bowen [2011].

Theorem 5.4 admits a version which applies to connected (rather than profinite) com-
pact groups. More precisely, let Γ < G and Λ < H be countable dense subgroups of
compact connected Lie groups with trivial centers. Assuming that Γ Õ (G;mG) has
spectral gap, it is shown in Ioana [2016] that the actions Γ Õ G and Λ Õ H are orbit
equivalent iff they are conjugate. Subsequently, this has been generalized in Ioana [2017]
to the case when G and H are arbitrary, not necessarily compact, connected Lie groups
with trivial centers. The only difference is that, in the locally compact setting, the spectral
gap assumption no longer makes sense and has to be replaced with the assumption that the
action Γ Õ (G;mG) is strongly ergodic. After choosing a Borel probability measure �

on G equivalent to mG , the latter requires that any sequence of measurable sets An � G

satisfying �(gAn∆An) ! 0, for all g 2 Γ, must be asymptotically trivial, in the sense
that �(An)�(A

c
n)! 0.
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IfG is a connected compact simple Lie group (e.g., ifG = SO(n), for n � 3), the trans-
lation action Γ Õ (G;mG) has spectral gap and thus is strongly ergodic, whenever Γ is
generated by matrices with algebraic entries. This result is due to Bourgain and Gamburd
for G = SO(3) Bourgain and Gamburd [2008], and to Benoist and de Saxcé in general
Benoist and de Saxcé [2016]. In joint work with Boutonnet and Salehi-Golsefidy, we
have shown that the same holds if G is an arbitrary connected simple Lie group Bouton-
net, Ioana, and Golsefidy [2017]. In particular, the translation action Γ Õ (G;mG) is
strongly ergodic, whenever Γ < G := SLn(R) is a dense subgroup whose elements are
matrices with algebraic entries.

6 Structure and rigidity for group von Neumann algebras

In this section, we survey some recent developments in the classification of von Neumann
algebras arising from countable groups. Our presentation follows three directions.

6.1 Structural results. We first present results which provide classes of group II1 fac-
tors L(Γ) with various indecomposability properties, such as primeness and the lack of
Cartan subalgebras.

In Popa [1983], Popa proved that II1 factors arising from free groups with uncountably
many generators are prime and do not have Cartan subalgebras. The first examples of sep-
arable such II1 factors were obtained in the mid 1990s as an application of free probability
theory. Thus, Voiculescu showed that the free group factors L(Fn), with n � 2, do not
admit Cartan subalgebras Voiculescu [1996]. Subsequently, Ge used the techniques from
Voiculescu [ibid.] to prove that the free group factors are also prime Ge [1998].

These results have been since generalized and strengthened in several ways. Using
subtle C�-algebras techniques, Ozawa remarkably proved that II1 factors associated to
icc hyperbolic groups Γ are solid: the relative commutant A0 \ L(Γ) of any diffuse von
Neumann subalgebra A � L(Γ) is amenable Ozawa [2004]. In particular, L(Γ) and all of
its non-amenable subfactors are prime. By developing a novel technique based on closable
derivations, Peterson showed that II1 factors arising from icc groups with positive first `2-
Betti number are prime Peterson [2009]. A new proof of solidity of L(Fn) was found by
Popa [2007c] (see Example 3.5), while II1 factors coming from icc groups Γ admitting
a proper cocycle into `2(Γ) were shown to be solid in Peterson [2009]. For additional
examples of prime and solid II1 factors, see Ozawa [2006], Popa [2008], Chifan and Ioana
[2010], Chifan and Houdayer [2010], Vaes [2013], Boutonnet [2013], Houdayer and Vaes
[2013], Dabrowski and Ioana [2016], Chifan, Kida, and Pant [2016], and D. J. Hoff [2016].

In Ozawa and Popa [2010a], Ozawa and Popa discovered that the free group factors en-
joy a striking structural property, called strong solidity, which strengthens both primeness
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and absence of Cartan subalgebras: the normalizer of any diffuse amenable subalgebra
A � L(Fn) is amenable. Generalizing this result, Chifan and Sinclair showed that in fact
the von Neumann algebra of any icc hyperbolic group is strongly solid Chifan and Sin-
clair [2013]. For further examples of strongly solid factors, see Ozawa and Popa [2010b],
Houdayer [2010], Houdayer and Shlyakhtenko [2011], and Sinclair [2011].

The groups Γ for which L(Γ) was shown to be prime have certain properties, such
as hyperbolicity or the existence of unbounded quasi-cocycles, relating them to lattices in
rank one Lie groups. On the other hand, the primeness question for the higher rank lattices
such as PSLm(Z), m � 2, remains a major open problem. Moreover, little is known about
the structure of II1 factors associated to lattices in higher rank semisimple Lie groups. We
formulate a general question in this direction:

Problem V. Let Γ be an icc irreducible lattice in a direct product G = G1 � ::: � Gn

of connected non-compact simple real Lie groups with finite center. Prove that L(Γ) is
prime and does not have a Cartan subalgebra. Moreover, if G1; :::; Gn are of rank one,
prove that L(Γ) is strongly solid.

AsubgroupΓ < G is called a lattice if it is discrete and has finite co-volume,mG(G/Γ) <

1. A lattice Γ < G is called irreducible if its projection onto �j 6=i Gj is dense, for all
1 � i � n.

When n = 1, Problem V has been resolved in Ozawa [2004] and Chifan and Sinclair
[2013] (see also Ozawa and Popa [2010b] and Sinclair [2011]) whenever G = G1 has
rank one, but is open if G has higher rank.

In the rest of the section, we record recent progress in the case n � 2. Note that
the irreducibility assumption on Γ is needed in order to exclude product lattices Γ =

Γ1� :::�Γn, whose II1 factors are obviously non-prime. However, it seems plausible that
L(Γ) does not have a Cartan subalgebra, for an arbitrary lattice Γ of G, irreducible or not.
Indeed, this was established by Popa and Vaes [2014b] if G1; : : : ; Gn are all of rank one.
Complementing their work, the first examples of prime II1 factors arising from lattices in
higher rank semisimple Lie groups were only recently obtained in Drimbe, D. Hoff, and
Ioana [n.d.]:

Theorem 6.1. Drimbe, D. Hoff, and Ioana [ibid.] If Γ is an icc irreducible lattice in a
product G = G1 � ::: � Gn of n � 2 connected non-compact rank one simple real Lie
groups with finite center, then L(Γ) is prime.

Theorem 6.1 implies that the II1 factor associated to PSL2(Z[
p
2]), which can be re-

alized as an irreducible lattice in PSL2(R)�PSL2(R), is prime. Theorem 6.1 also ap-
plies when each Gi is a rank one non-compact simple algebraic group over a local field.
This implies that the II1 factor arising from PSL2(Z[ 1

p
]), which is an irreducible lattice

in PSL2(R)�PSL2(Qp), is prime for any prime p. It remains however an open problem
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whether PSL2(Z[
p
2]), PSL2(Z[ 1

p
]), or any other group covered by Theorem 6.1 gives

rise to a strongly solid II1 factor.
To overview the proof of Theorem 6.1, put M = L(Γ) and assume the existence of a

decomposition M = M1 ¯̋M2 into a tensor product of factors. Let ∆Γ : M ! M ¯̋M

be the embedding given by

∆Γ(ug) = ug ˝ ug ; for all g 2 Γ.

Since Gi has rank one, it admits a non-elementary hyperbolic latticeΛi < Gi . As a conse-
quence, Γ is measure equivalent (in the sense of Gromov) to a productΛ = Λ1�:::�Λn of
hyperbolic groups. In combination with the relative strong solidity of hyperbolic groups
Popa and Vaes [2014b], this allows one to conclude that a corner of ∆Γ(Mj ) embeds
into M ¯̋Mj , for all j 2 f1; 2g. By making crucial use of an ultrapower technique from
Ioana [2012b], we derive that Γ admits commuting non-amenable subgroups. Indeed, by
Ioana [ibid.] the existence of commuting non-amenable subgroups can be deduced when-
ever we can find II1 subfactors A; B � M such that a corner of ∆Γ(A) embeds into
M ¯̋ (B 0 \M ). While more work is needed in general, this easily gives a contradiction
for Γ = PSL2(Z[

p
2]) or PSL2(Z[ 1

p
]).

6.2 Algebraic rigidity. The primeness results discussed in Section 6.1 provide classes
of groups for which the absence of a direct product decomposition is inherited by their
von Neumann algebras. In a complementary direction, it was recently shown in Chifan, de
Santiago, and Sinclair [2016] that for a wide family of product groupsΓ, the von Neumann
algebra L(Γ) completely remembers the product structure of Γ.

Theorem 6.2. Chifan, de Santiago, and Sinclair [ibid.] Let Γ = Γ1 � ::: � Γn, where
Γ1; :::;Γn are n � 2 icc hyperbolic groups. Then any countable groupΛ such thatL(Γ) Š

L(Λ) is a product of n icc groups, Λ = Λ1 � ::: � Λn.

By applying the unique prime factorization theorem fromOzawa and Popa [2004], The-
orem 6.2 can be strengthened to moreover show that L(Λi ) is stably isomorphic to L(Γi ),
for all i .

To outline the proof of Theorem 6.2, assume that n = 2 and put M = L(Γ) and
Mi = L(Γi ). Consider the embedding ∆Λ : M ! M ¯̋M associated to an arbitrary
group von Neumann algebra decomposition M = L(Λ). First, solidity properties of
hyperbolic groups Ozawa [2004] and Brown and Ozawa [2008] are used to derive the
existence of i; j 2 f1; 2g such that a corner of ∆Λ(Mi ) embeds into M ¯̋Mj . The ultra-
power technique of Ioana [2012b] then allows to transfer the presence of non-amenable
commuting subgroups from Γ to the mysterious groupΛ. Using a series of ingenious com-
binatorial lemmas and strong solidity results from Chifan and Sinclair [2013] and Popa
and Vaes [2014b], the authors conclude that Λ is indeed a product of icc groups.
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Motivated by Theorem 6.2, it seems natural to investigate what other constructions in
group theory can be detected at the level of the associated von Neumann algebra. Very
recently, progress on this problem has been made in Chifan and Ioana [2018] by providing
a class of amalgamated free product groups Γ = Γ1 �Σ Γ2 whose von Neumann algebra
L(Γ) entirely recognizes the amalgam structure of Γ. This class includes all groups of the
form (A�B�A�B)�A�A (A�B�A�B), where A is an icc amenable group and B is a
non-trivial hyperbolic group. For such groupsΓ it is shown in Chifan and Ioana [ibid.] that
any group Λ satisfying L(Γ) Š L(Λ) admits a amalgamated free product decomposition
Λ = Λ1�ΩΛ2 such that the inclusions L(Σ) � L(Γi ) and L(Ω) � L(Λi ) are isomorphic,
for all i 2 f1; 2g.

6.3 W�-superrigidity. The rigidity results presented in Section 6.1 and Section 6.2 give
instances when various algebraic aspects of groups can be recovered from their von Neu-
mann algebras. We now discuss the most extreme type of rigidity for group von Neumann
algebras. This occurs when the von Neumann algebra L(Γ) completely remembers the
group Γ. Thus, we say that a countable group Γ isW�-superrigid if any groupΛ satisfying
L(Γ) Š L(Λ) must be isomorphic to Γ.

The first class of W�-superrigid groups was discovered in our joint work with Ioana,
Popa, and Vaes [2013]:

Theorem 6.3. Ioana, Popa, and Vaes [ibid.] Let G0 be any non-amenable group and S

be any infinite amenable group. Define the wreath product group G = G
(S)
0 Ì S , and

consider the left multiplication action of G on I = G/S . Then the generalized wreath
product group Γ = (Z/2Z)(I ) Ì G is W�-superrigid.

The conclusion of Theorem 6.3 does not hold for plain wreath product groups Γ =

(Z/2Z)(G) Ì G. In fact, for any non-trivial torsion free group G, there is a torsion free
group Λ with L(Γ) Š L(Λ), while Γ and Λ are not isomorphic. Nevertheless, for a large
family of groups G, including all icc property (T) groups, we are able to conclude that
any group Λ satisfying L(Γ) Š L(Λ) decomposes as a semi-direct product Γ = Σ Ì G,
for some abelian group Σ. This is in particular recovers a seminal result of Popa [2006e]
showing that if Λ = (Z/2Z)(H) Ì H is also a plain wreath product, then L(Γ) Š L(Λ)

entails G Š H .
To describe the strategy of the proof of Theorem 6.3, let M = L(Γ) and assume that

M = L(Λ), for a countable group Λ. Then we have two embeddings ∆Γ;∆Λ : M !

M ¯̋M . Notice that M can also be realized as the group measure space factor of the
generalized Bernoulli action G Õ f0; 1gI . By extending the methods of Ioana [2011a]
from plain to generalized Bernoulli actions, we give a classification of all possible embed-
dings ∆ : M ! M ¯̋M . This enables us to deduce the existence of a unitary element
u 2 M ¯̋M such that ∆Λ(x) = u∆Γ(x)u

�, for all x 2 M . A principal novelty of Ioana,
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Popa, and Vaes [2013] is being able to conclude that the groups Γ and Λ are isomorphic
(in fact, unitarily conjugate modulo scalars inside M ) from the mere existence of u.

Following Ioana, Popa, and Vaes [ibid.], several other classes of W�-superrigid groups
were found in Berbec and Vaes [2014] and Chifan and Ioana [2018]. Thus, it was shown
in Berbec and Vaes [2014] that the left-right wreath product Γ = (Z/2Z)(Γ) Ì (Γ � Γ)

is W�-superrigid, for any icc hyperbolic group Γ. Very recently, a class of W�-superrigid
amalgamated free product groups was found in Chifan and Ioana [2018]. These groups
are also C�

red-superrigid since, unlike the examples from Ioana, Popa, and Vaes [2013] and
Berbec and Vaes [2014], they do not admit non-trivial normal amenable subgroups.

While the above results provide several large families of W�-superrigid groups, the
superrigidity question remains open for many natural classes of groups including the lat-
tices PSLm(Z), m � 3. In fact, a well-known rigidity conjecture of Connes [1982] asks
if L(Γ) Š L(Λ) for icc property (T) groups Γ and Λ implies Γ Š Λ. Since property
(T) is a von Neumann algebra invariant Connes and Jones [1985], Connes’ conjecture is
equivalent to asking whether icc property (T) groups Γ are W�-superrigid.
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SOME 20+ YEAR OLD PROBLEMS ABOUT BANACH SPACES
AND OPERATORS ON THEM

Wංඅඅංൺආ B. Jඈඁඇඌඈඇ

Abstract
In the last few years numerous 20+ year old problems in the geometry of Banach

spaces were solved. Some are described herein.

1 Introduction

In this note I describe some problems in Banach space theory from the 1970s and 1980s
that were solved after they had been opened for 20+ years. The problems are mostly not
connected to one another, so each section is independent from the other sections. I use
standard Banach space notation and terminolgy, as is contained e.g. in Lindenstrauss and
Tzafriri [1977] or Albiac and N. J. Kalton [2006]. In this introduction I just recall some
definitions that are used repeatedly. Other possibly unfamilar definitions are introduced
in the sections in which they are used.
All spaces are Banach spaces and subspaces are closed linear subspaces. An operator is
a bounded linear operator between Banach spaces. An isomorphism is a not necessarly
surjective linear homeomorphism. L(X; Y ) denotes the space of operators from X to Y .
This is abbreviated to L(X) when X = Y . BX denotes the closed unit ball of the space
X . An operator T with domain X is compact if TBX has compact closure and is weakly
compact if TBX has weakly compact closure. An operator T is strictly singular if the
restriction of T to any infinite dimensional subspace of its domain is not an isomorphism.
If Y is a Banach space and T is an operator, T is said to be Y -singular if the restriction of T

to any subspace of its domain that is isomorphic toY is not an isomorphism. SoT is strictly
singular if T is Y -singular for every infinite dimensional space Y . The isomorphism
constant or Banach-Mazur distance between Banach spaces X1 and X2 is defined as

d (X1; X2) = inf kT k � kT �1
k
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where the infimum is taken over all isomorphisms from X1 onto X2. So d (X1; X2) = 1

if X1 is not isomorphic to X2.

2 The diameter of the isomorphism class of a Banach space

Given a Banach space X , define

D(X) = supfd (X1; X2) : X1; X2 are isomorphic toXg:

J. J. Schäffer considered the following question to be well-known when he included it in
his 1976 book Schäffer [1976]:

Is D(X) = 1 for all infinite dimensional X?
My first PhD student, E. Odell (who died much too young) and I gave an affirmative
answer for separable X Johnson and E. Odell [2005]. A new definition helped: Call a
Banach space X K-elastic provided every isomorph of X K-embeds into X . Call X

elastic if X is K-elastic for some K < 1.
Ted and I proved the following, which easily implies that D(X) = 1 if X is separable
and infinite dimensional.

Theorem 2.1. If X is a separable Banach space so that for some K, every isomorph of
X is K-elastic, then X is finite dimensional.

The only “obvious” example of a separable elastic space is C [0; 1]. It is 1-elastic be-
cause Mazur proved that every separable Banach space is isometrically isomorphic to a
subspace of C [0; 1]. Odell and I suspected that isomorphs of C [0; 1] are the only elastic
separable spaces and remarked that our proof of Theorem 2.1 could be streamlined a lot
if this is true. We could not prove this but were able to use Bourgain’s `1 index theory
Bourgain [1980] to prove that a separable elastic space contains a subspace that is isomor-
phic to c0 and used that information in the proof of Theorem 2.1. Ten years later my third
PhD student, D. Alspach, and B. Sari created a new index that they used to verify that our
suspicion was correct. Their proof is rather complicated, but even more recently Beanland
and Causey [n.d.] simplified the proof somewhat by using more descriptive set theory. It
looks likely that the Alspach-Sari index will be used more down the road.
Schäffer’s problem remains open for non separable spaces. In some models of set theory
(GCH) there are spaces of every density character that are 1-elastic by virtue of being
universal, but some tools that were used in the separable setting are not available when
the spaces are non separable. Godefroy [2010] proved that under Martin’s Maximum
Axiom Schäffer’s problem has an affirmative answer for subspaces of `1.



SOME 20+ YEAR OLD PROBLEMS ABOUT BANACH SPACES 1693

3 Commutators

The commutator of two elements A and B in a Banach algebra is given by

[A; B] = AB � BA:

A natural problem that arises in the study of derivations on a Banach algebra A is to clas-
sify the commutators in the algebra. Probably the most natural non commutative Banach
algebras other than C � algebras are the spaces L(X) of bounded linear operators on a
Banach space X. When X is n < 1 dimensional, L(X) can be identified with the n by
n matrices of scalars, and it is classical that such a matrix is a commutator if and only if it
has trace zero. There is generally no trace on L(X) when X is infinite dimensional, and
the only general obstruction to an operator being a commutator is due to Wintner [1947],
who proved that the identity in a unital Banach algebra is not a commutator. It follows
immediately by passing to the quotient algebra L(X)/I(X) that no element of the form
�I + K, where K belongs to a proper norm closed ideal I(X) of L(X) and � ¤ 0, can
be a commutator. With this in mind we call a Banach space X a Wintner space provided
the only non commutators in L(X) are elements of the form �I + K with � 6= 0 and K

in a proper closed ideal.
Here is Wielandt’s elegant proof Wielandt [1949] of Wintner’s theorem that I is not a
commutator:
If I = AB � BA then by induction

8n AnB � BAn = nAn�1:

So A cannot be nilpotent and

nkAn�1
k � 2kAk � kBk � kAn�1

k:

To determine whether a Banach space X is a Wintner space, the first thing one most know
is what elements in L(X) lie in a proper closed ideal, so one needs to know what are
the maximal ideals in L(X) (maximal ideals in a unital Banach algebra are automatically
closed because the invertible elements are open). In certain classical spaces, such as `p

for 1 � p < 1, and c0, there is only one proper closed ideal; namely, the ideal of compact
operators onX, (Gohberg, Markus, and Feldman [1960], see alsoWhitley [1964, Theorem
6.2]), so it is not surprising that these spaces received the most attention early on. After
a decade of so research on commutators by numerous people, in 1965 Brown and Pearcy
[1965]) made a breakthrough by proving that `2 is a Wintner space. In 1972, Apostol
[1972a] verified that `p for 1 < p < is a Wintner space and a year later Apostol [1973] he
proved that c0 is a Wintner space. Apostol obtained information about commutators on `1
and `1, and there was also research done around the same time about commutators onLp ,
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but it was only 30 years later that another classification theorem was proved. In 2009, my
student D. Dosev showed in his dissertation that `1 is a Wintner space. In D. Dosev and
Johnson [2010], he and I codified what is needed for the technology developed by Brown–
Pearcy, Apostol, and him in order to prove that an operator is a commutator in spaces that
have aPełczyński decomposition. (The spaceX is said to have a Pełczyński decomposition
if X is isomorphic to

� P
X

�
p
with 1 � p � 1 or p = 0.) Notice that if X has a

Pełczyński decomposition then one can define right and left shifts of infinite multiplicity
on X. Such shifts can be used to show that certain operators on X are commutators. In
D. Dosev and Johnson [ibid.] the following theorem was proved (but it was only stated in
D. Dosev, Johnson, and Schechtman [2013]).

Theorem 3.1. Let X be a Banach space such that X is isomorphic to
� P

X
�

p
, where

1 � p � 1 or p = 0. Let T 2 L(X) be such that there exists a subspace X � X such
that' X, TjX is an isomorphism, X+T (X) is complemented inX, and d (X; T (X)) > 0.
Then T is a commutator.

In practice, Theorem 3.1 allows one to avoid operator theoretic arguments when trying
to check whether a space X is a Wintner space and concentrate on the geometry of X.
This is particularly important when K(X) is not the only closed ideal in L(X), as is
the case in all classical spaces other than `p , 1 � p < 1 and c0. In D. Dosev and
Johnson [2010] Dosev and I used Theorem 3.1 to prove that `1 is a Wintner space and
in D. Dosev, Johnson, and Schechtman [2013] together with Schechtman we used it to
prove that Lp := Lp(0; 1) is a Wintner space. In `1 the unique maximal ideal is not
too bad–it is the ideal of strictly singular operators. However, in Lp , the unique maximal
ideal is horrendously large and hard to deal with–it is the ideal of Lp-singular operators.
Theorem 3.1 also was used in Chen, Johnson, and Zheng [2011] and Zheng [2014].
Here is a wild conjecture that was made in D. Dosev and Johnson [2010]:
If X has a Pełczyński decomposition then X is a Wintner space.
The most interesting classical spaces not known to beWintner spaces are the spaces C (K)

where K is an infinite compact metric space with C (K) not isomorphic to c0–all of these
have a .Pełczyński decomposition. The best partial results on these spaces is contained
in Dosev’s paper D. T. Dosev [2015]. There are other recent papers that prove that some
simpler spaces areWintner spaces, including Zheng [2014] and Chen, Johnson, and Zheng
[2011].
After D. Dosev and Johnson [2010] was written it was proved by Tarbard [2012] that not
every infinite dimensional Banach space is a Wintner space. Building on the work of his
advisor, R. Haydon, and S. Argyros that solved a famous 40+ year old problem that they
will discuss at their 2018 ICM lecture, Tarbard constructed a Banach space X such that
every operator on X has the form �I +˛S +K with � and ˛ scalars, K is compact, and S

is special non compact operator whose square is compact. The strictly singular operators
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form the unique maximal ideal in L(X) and it is clear that S is not a commutator, so X is
not a Wintner space.
Two other well-known open problems about commutators are worth mentioning.
Problem 1. If X is infinite dimensional, then is every compact operator on X a commu-
tator?
I suspect that, to the contrary, there is an infinite dimensional space X such that every
finite rank commutator on X has zero trace.
The following problem is open for every infinite dimensional space.
Problem 2. Is every compact operator the commutator of two compact operators?

4 Counting Ideals in L(Lp)

After C � algebras, probably the most natural non commutative Banach algebras are the
spaces of bounded linear operators on such classical Banach spaces as Lp := Lp(0; 1). In
order to study any Banach algebra one must understand something about the closed ideals
in the algebra. For L(`p), the space of bounded linear operators on `p , 1 � p < 1, the
situation is the same as for `2. The only non trivial closed ideal is the ideal of compact
operators (see Gohberg, Markus, and Feldman [1960] and Whitley [1964]). The situation
for L(Lp), 1 � p 6= 2 < 1, is much more complicated. Let’s call an ideal I small if I is
contained in the ideal of strictly singular operators. Call an ideal large if it is not small. The
most natural way to construct a large ideal in L(X) is to find a complemented subspace Y

of X and consider the closed ideal IY generated by a bounded linear projection from X

onto Y . If, as is usually the case, Y is isomorphic to Y ˚ Y , this ideal is the closure of the
collection of all operators on X that factor through Y . Then IY is a proper ideal as long
as X is not isomorphic to a complemented subspace of Y . Schechtman [1975] proved that
L(Lp), 1 < p 6= 2 < 1, has at least@0 ideals by constructing@0 isomorphically different
complemented subspaces of Lp . With Bourgain and Rosenthal, he Bourgain, Rosenthal,
and Schechtman [1981] improved this to @1 by constructing @1 isomorphically different
complemented subspaces of Lp . It is still open whether in ZFC L(Lp) has a continuum
of large ideals.
Only recently was it proved that L(Lp), 1 < p 6= 2 < 1, has infinitely many closed
small ideals. In fact, building on some other recent work, Schlumprecht and Zsák [2018]
show that L(Lp) has a continuum of small closed ideals, solving in the process a problem
in Pietsch’s 1978 book Pietsch [1978]. It remains open whether L(Lp), 1 < p 6= 2 < 1,
has more than a continuum of closed ideals.
For L(L1), the situation was stagnant for an even longer time. In 1978 Pietsch [ibid.]
recorded thewell-known problemwhether there are infinitelymany closed ideals inL(L1).
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At that time the only non trivial ideals in L(L1) known were the ideal of compact oper-
ators, the ideal of strictly singular operators, the ideal of operators that factor through `1,
and the unique maximal ideal. It is easy to write down candidates for other ideals, but
many turn out to be one of these four. For example, if 1 < p � 1, the closure of the
operators on L1 that factor through Lp is the ideal of weakly compact operators, and on
L1 an operator is weakly compact if and only if it is strictly singular. Just in the past
year, Johnson, Pisier, and Schechtman [n.d.] proved that there are other closed ideals. We
constructed a continuum of closed small ideals in L(L1). For 2 < p < 1 we take a
Λ(p) sequence (xp

n ) of characters that has certain extra properties (“Λ(p)” means that the
Lp and L2 norms are equivalent on the linear span of the set of characters). Let Jp be
the bounded linear operator from `1 into L1 that maps the nth unit basis vector to x

p
n and

let I(p) be the closure of the operators on L1 that factor through Jp . It turns out that
I(p) 6= I(q) when p 6= q.
It is open whether L(L1) has more than two large ideals. This is closely connected to
the famous problem whether every infinite dimensional complemented subspace of L1 is
isomorphic either to `1 or to L1.

5 Spaces that are uniformly homeomorphic to L1 spaces

Banach spaces X and Y are said to be uniformly homeomorphic if there is an injective
uniformly continuous function from X onto Y whose inverse is uniformly continuous.
B. Maurey, G. Schechtman, and I gave an affirmative answer to the 1982 question of
Heinrich and Mankiewicz [1982]:

Are the L1 spaces are preserved under uniform homeomorphisms?
A Banach space X is said to be L1 if its dual X� is isomorphic to C (K) for some compact
Hausdorff space K. That is really a theorem Lindenstrauss and Rosenthal [1969]. The
definition Lindenstrauss and Pełczyński [1968] is that X is the increasing union of finite
dimensional subspaces that are uniformly isomorphic to finite dimensional L1 spaces.
Subsequently N. J. Kalton [2012] proved that this theorem is optimal by constructing two
separable L1 spaces that are uniformly homeomorphic but not isomorphic.
At the heart of the question is a recurring problem:
Suppose a linear mapping T : X ! Y admits a Lipschitz factorization through a Banach
space Z; i.e., we have Lipschitz F1 : X ! Z and F2 : Z ! Y and F2 ı F1 = T . What
extra is needed to guarantee that T admits a linear factorization through Z?
Something extra is needed because the identity on C [0; 1] Lipschitz factors through c0
Aharoni [1974], Lindenstrauss [1964].
The main result in Johnson, Maurey, and Schechtman [2009] is
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Theorem 5.1. Let X be a finite dimensional normed space, Y a Banach space with the
Radon-Nikodym property (which means that every Lipschitz mapping from the real line
into Y is differentiable almost everywhere) and T : X ! Y a linear operator. Let Z be
a separable Banach space and assume there are Lipschitz maps F1 : X ! Z and F2 :

Z ! Y with F2 ıF1 = T . Then for every � > 1 there are linear maps T1 : X ! L1(Z)

and T2 : L1(Z) ! Y with T2 ı i1;1 ı T1 = T and kT1k � kT2k � �Lip (F1)Lip (F2).

If Z is L1 then so is L1(Z) and hence T linearly factors through a L1 space.
This and fairly standard tools in non linear geometric functional analysis give an affirma-
tive answer to the Heinrich–Mankiewicz problem. The proof of Theorem 5.1 is based on
a rather simple local-global linearization idea. For the application we need only the case
where Y is finite dimensional.

6 Weakly null sequences in L1

The first weakly null normalized sequences (WNNS) with no unconditional sub-sequence
were constructed byMaurey and Rosenthal [1977]. Their technique was incorporated into
the famous paper of Gowers and Maurey [1993] that contains an example of an infinite
dimensional Banach space that contains NO unconditional sequence, but the examples in
Maurey and Rosenthal [1977] are still interesting because the ambient spaces were C (K)

with K countable. These C (K) spaces are hereditarily c0 and so have unconditional se-
quences all over the place. Every subsequence of the WNNS they constructed reproduces
the (conditional) summing basis on blocks.
In 1977 Maurey and Rosenthal [ibid.] asked whether every WNNS sequence in L1 :=

L1(0; 1) has an unconditional subsequence. Like the C (K) spaces with K countable, ev-
ery infinite dimensional subspace of L1 contains an unconditional sequence. In Johnson,
Maurey, and Schechtman [2007] we constructed a WNNS in L1 such that every subse-
quence contains a block basis that is 1 + �–equivalent to the (conditional) Haar basis for
L1, which implies that the WNNS has no unconditional subsequence. In fact, the theo-
rem stated this way extends to rearrangement invariant spaces which (in some appropriate
sense) are not to the right of L2 (e.g. Lp , 1 < p < 2) and which are not too close to L1.

7 Subspaces of spaces that have an unconditional basis

A problem that goes back to the 1970s is to give an intrinsic characterization of Banach
spaces that isomorphically embed into a space that has an unconditional basis. It was
shown that every space with an unconditional expansion of the identity (in particular, ev-
ery space with an unconditional finite dimensional decompostion) embeds into a space
with unconditional basis Pełczyński and Wojtaszczyk [1971], Lindenstrauss and Tzafriri
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[1977]. However for spaces that lack such a strong approximation property the only ap-
parently useful invariant is that in a subspace of a space with unconditional basis, every
weakly null normalized sequence (WNNS) has an unconditional subsequence. A quotient
of a space with shrinking unconditional basis has this desirable property Johnson [1977],
E. Odell [1992]. (A basis is shrinking provided the linear functionals biorthogonal to the
basis vectors are a basis for the dual space. Every basis for a reflexive space is shrinking.)
But this condition is not suffiencient even for reflexive spaces: in Johnson and Zheng
[2008] my student B. Zheng and I used a variation of a construction of E. W. Odell and
Schlumprecht [2006] to build a separable reflexive space that does not embed into a space
with unconditional basis, yet every WNNS in the space has an unconditional subsequence.
On the other hand, Feder [1980] proved that a reflexive quotient X of a space with shrink-
ing unconditional basis embeds into a space with unconditional basis as long as X has the
approximation property. Unfortunately, all classical reflexive spaces other than Hilbert
spaces have quotients that fail the approximation property.
So there were two problems
1. Give an intrinsic characterization of Banach spaces that embed into a space that has an
unconditional basis.
2. Does every quotient of a space with shrinking unconditional basis embed into a space
with unconditional basis?
Much research centered around reflexive spaces. For example, in addition to the result
of Feder mentioned above, it was proved that every reflexive subspace of a space with
unconditional basis embeds into a reflexive space with unconditional basis Davis, Figiel,
Johnson, and Pełczyński [1974], Figiel, Johnson, and Tzafriri [1975].
In Johnson and Zheng [2008] Zheng and I answered both problems in the affirmative for
reflexive spaces. Our later paper Johnson and Zheng [2011] gives an affirmative answer to
(2) in general and to (1) for spaces that have a separable dual. The answer to (1) for spaces
with non separable dual must be completely different because of the space `1, which has
an unconditional basis but also has the Schur property–every WNNS converges in norm
to zero.
The answers for reflexive spaces follow from the following omnibus theorem, which basi-
cally says that every condition that might be equivalent to “the reflexive space X embeds
into a space with an unconditional basis” actually is equivalent to it.

Theorem 7.1. Let X be a separable reflexive Banach space. Then the following are
equivalent.

(a) X has the UTP.

(b) X is isomorphic to a subspace of a Banach space with an unconditional basis.

(c) X is isomorphic to a subspace of a reflexive space with an unconditional basis.
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(d) X is isomorphic to a quotient of a Banach space with a shrinking unconditional
basis.

(e) X is isomorphic to a quotient of a reflexive space with an unconditional basis.

(f) X is isomorphic to a subspace of a quotient of a reflexive space with an uncondi-
tional basis.

(g) X is isomorphic to a subspace of a reflexive quotient of a Banach space with a
shrinking unconditional basis.

(h) X is isomorphic to a quotient of a subspace of a reflexive space with an uncondi-
tional basis.

(i) X is isomorphic to a quotient of a reflexive subspace of a Banach space with a
shrinking unconditional basis.

(j) X� has the UTP.

The UTP is a strengthening of the property “every WNNS has an unconditional subse-
quence”. The weaker property for a reflexive space does NOT imply embeddability into
a space with unconditional basis Johnson and Zheng [2008]. The definition of the UTP is
due to E. W. Odell and Schlumprecht [2006]:

Definition 7.2. A branch of a tree is amaximal linearly ordered subset of the tree under the
tree order. We say X has the C -unconditional tree property (C -UTP) if every normalized
weakly null infinitely branching tree in X has a C -unconditional branch. X has the UTP
if X has the C -UTP for some C > 0.

The proof of the theorem uses some new tricks, blocking methods developed in the 1970s
Johnson and Zippin [1972], Johnson and Zippin [1974], Johnson and E. Odell [1974],
Johnson and E. Odell [1981], Johnson [1977], and the Odell-Schlumprecht analysis E. W.
Odell and Schlumprecht [2006] relating tree properties to embeddability into spaces that
have a finite dimensional decomposition with the corresponding skipped blocking prop-
erty.
For Banach spaces with a separable dual, there is a similar theorem Johnson and Zheng
[2011], but the characterization involves the weak� UTP. A Banach space X is said to
have the weak� UTP provided every normalized weak� null infinitely branching tree in
X� has a branch that is an unconditional basic sequence. Themain new technical feature in
Johnson and Zheng [ibid.] is that blocking and “killing the overlap” techniques originally
developed for finite dimensional decompositions are adapted to work for blockings of
shrinking M -bases (that is, biorthogonal sequences fxn; x�

ng with span xn dense in X and
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span x�
n dense in X�). Shrinking M -bases are known to exist in every Banach space

that has a separable dual. These technical advances provide some simplifications of the
argument in the reflexive case presented in Johnson and Zheng [2008] and likely will be
used in the future to study the structure of Banach spaces that lack a good approximation
property.

8 Operators on `1 with dense range

In http://mathoverflow.net/questions/101253 A. B. Nasseri asked
“Can anyone give me an example of an (sic) bounded and linear operator T : `1 ! `1

(the space of bounded sequences with the usual sup-norm), such that T has dense range,
but is not surjective?”
This question quickly drew two close votes. Nevertheless it took a couple of years for
Nasseri, G. Schechtman, T. Tkocz, and me to resolve it Johnson, Nasseri, Schechtman,
and Tkocz [2015].
On separable infinite dimensional spaces, there are always dense range compact operators,
but compact operators have separable ranges. On a non separable space, even on a dual
to a separable space, it can happen that every dense range operator is surjective: Argyros,
Arvanitakis, and Tolias [2006] constructed a separable space X so that X� is non separa-
ble, hereditarily indecomposable (HI) in the sense of Gowers–Maurey, and every strictly
singular operator onX� is weakly compact. SinceX� is HI, every operator onX� is of the
form �I +S with S strictly singular Gowers and Maurey [1993]. If � 6= 0, then �I +S is
Fredholm of index zero by Kato’s classical perturbation theory. On the other hand, since
every weakly compact subset of the dual to a separable space is norm separable, every
strictly singular operator on X� has separable range.
It turns out that Nasseri’s problem is related to Tauberian operators on L1 := L1(0; 1).
An operator T : X ! Y is called Tauberian if T ���1(Y ) = X N. Kalton and Wilan-
sky [1976]. The book of González and Martı́nez-Abejón [2010] on Tauberian operators
contains:

Theorem 8.1. Let T : L1(0; 1) ! Y . The following are equivalent.

0. T is Tauberian.

1. For all normalized disjoint sequences fxi g, lim infi!1 kT xi k > 0.

2. If fxi g is equivalent to the unit vector basis of `1 then there is an N such that
Tj[xi ]

1
i=N

is an isomorphism.

3. There are "; ı > 0 such that kTf k � "kf k for all f with jsupp(f )j < ı.
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What is the connection between Tauberian operators onL1 and dense range, non surjective
operators on `1? If T is injective Tauberian, T �� is injective. Thus, if T is a Tauberian
operator on L1 that is injective but does not have closed range, then T � is a dense range
operator on L1 that is not surjective. Since L1 is isomorphic to `1, having an injective
Tauberian, non closed range operator on L1 gives a positive answer to Nasseri’s question.
In fact, we checked that whether there is such an operator on L1 is a priori equivalent to
Nasseri’s question.
One of the main open problems mentioned in González and Martı́nez-Abejón [ibid.],
raised in 1984 by Weis and Wolff [1984], is whether there is a Tauberian operator T on
L1 whose kernel is infinite dimensional. If T satisfies this condition, then you can play
around and get a perturbation S of T that is Tauberian, injective, and has dense, non closed
range (so is not surjective). Taking the adjoint of S and replacing L1 by its isomorph `1,
you would have an injective, dense range, non surjective operator on `1. (To get S from
T , take an injective nuclear operator from the kernel on T that has dense range in L1,
extend it to a nuclear operator on L1, and add it to T . This does not quite work, but some
fiddling produces the desired S .) In fact, without knowing the solution to either problem,
one can check that the Weis—Wolff question is equivalent to Nasseri’s question. The bot-
tom line is that the question whether there is a dense range non surjective operator on the
non separable space `1 is really a question about the existence of a Tauberian operator
with infinite dimensional kernel on the separable space L1.
It happened that T satisfying condition (3) in Theorem 8.1 and having an infinite dimen-
sional kernel has a known finite dimensional analogue:

Theorem 8.2. [CS result] For each n sufficiently large, putting m = [3n/4], there is an
operator T : `n

1 ! `m
1 such that 1

4
kxk1 � kT xk1 � kxk1 for all x with ]supp(x) �

n/400.

This CS result (where “CS” can be interpreted either to mean “Computer Science” or
“Compressed Sensing”) is a very special case of a theorem due to Berinde, Gilbert, Indyk,
Karloff, and Strauss [2008]. The kernel of Tn has dimension at least n/4, so if you take
the ultraproduct T̃ of the Tn you get an operator with infinite dimensional kernel on some
gigantic L1 space. Let T be the restriction of T̃ to some separable T̃ -invariant L1 sub-
space that intersects the kernel of T̃ in an infinite dimensional subspace. As long as T̃ is
Tauberian, the operator T will be a Tauberian operator with infinite dimensional kernel
on L1, and we will be done. It remains to isolate a condition implying Tauberianism that
is possessed by all Tn and is preserved under ultraproducts.
Say an operator T : X ! Y (X an L1 space) is (r; N )-Tauberian provided whenever
(xn)

N
n=1 are disjoint unit vectors in X , then max1�n�N kT xnk � r .

Lemma 8.3. T : X ! Y is Tauberian iff 9 r > 0 and N such that T is (r; N )-Tauberian.



1702 WILLIAM B. JOHNSON

Proof: T being (r; N )-Tauberian implies that if (xn) is a disjoint sequence of unit vec-
tors in X , then lim infn kT xnk > 0, so T is González and Martı́nez-Abejón [2010]. Con-
versely, suppose there are disjoint collections (xn

k
)n
k=1

, n = 1; 2; : : : with
max1�k�n kT xn

k
k ! 0 as n ! 1. Then the closed sublattice generated by

[1
n=1(x

n
k
)n
k=1

is a separableL1 space, hence is order isometric toL1(�) for some probabil-
ity measure� byKakutani’s theorem. Choose 1 � k(n) � n so that the support of xn

k(n)
in

L1(�) has measure at most 1/n. Since T is Tauberian, necessarily lim infn kT xn
k(n)

k > 0

González and Martı́nez-Abejón [ibid.], a contradiction.
It is not difficult to prove that the property of being (r; N )-Tauberian is stable under ul-
traproducts of uniformly bounded operators, so it is just a matter of observing that the
operators Tn of Berinde, Gilbert, Indyk, Karloff, and Strauss [2008]. are all (1/4; 400)–
Tauberian.
Conclusion: There is a non surjective Tauberian operator on L1 that has dense range.
The operator can be chosen either to be injective or to have infinite dimensional kernel.
Consequently, there is a dense range, non surjective, injective operator on `1.
Conclusion from the proof: Computer science has applications to non separable Banach
space theory!

9 Approximation properties

A Banach space X has the approximation property (AP) provided the identity operator is
the limit of finite rank operators in the topology of uniform convergence on compact sets.
If these operators can be taken to be uniformly bounded, we say that X has the bounded
approximation property (BAP) or �-BAP if the uniform bound can be �. Grothendieck
[1955] proved that a reflexive space that has the APmust have the 1-BAP, but there are non
reflexive spaces that have the AP but fail the BAP Figiel and Johnson [1973]. Sometimes
these properties come up when considering problems that, on the surface, have nothing
to do with approximation. For example, given a family F of operators between Banach
spaces, it is natural to try to find a single (usually separable) Banach space Z such that
all the operators in F factor through Z. If F is the collection of all operators between
separable Banach spaces that have the BAP, there is such a separable Z; namely, the sep-
arable universal basis space of Pełczyński [1969], Pełczyński [1971], Kadec [1971]. This
space, as well as smaller (even reflexive) spaces Johnson [1971] have the property that
every operator that is uniformly approximable by finite rank operators factors through Z.
A. Szankowski and I proved that there is not a separable space such that every operator
between separable spaces (not even every operator between spaces that have the AP) fac-
tors through it Johnson and Szankowski [1976], but this paper left open the question: Is
there a separable space such that every compact operator factors through it? 23 years later,
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in part 2 of Johnson and Szankowski [ibid.], we finally managed to proved that no such
space exists Johnson and Szankowski [2009].

* * * * * * * *
A Banach space has the hereditary approximation property (HAP) provided every sub-
space has the approximation property. There are non Hilbertian spaces that have the
HAP Johnson [1980], Pisier [1988]. All of these examples are asymptotically Hilbertian;
i.e., for some K and every n, there is a finite codimensional subspace all of whose n-
dimensional subspaces are K-isomorphic to `n

2 . An asymptotically Hilbertian space must
be superreflexive and cannot have a symmetric basis unless it is isomorphic to a Hilbert
space. This led to two problems Johnson [1980]:
1. Can a non reflexive space have the HAP?
2. Does there exist a non Hilbertian space with a symmetric basis that has the HAP?
The HAP is very difficult to work with, partly because it does not have good permanence
properties–there are spaces X and Y that have the HAP such that X ˚ Y fails the HAP
Casazza, Garcı́a, and Johnson [2001].
Themain result of Johnson and Szankowski [2012] gives an affirmative answer to problem
2 from Johnson [1980]:

Theorem 9.1. There is a function f (n) " 1 such that if for infinitely many n we have
Dn(X) � f (n), then X has the HAP.

Here Dn(X) := sup d (E; `n
2), where the sup is over all n-dimensional subspaces of X .

The proof combines the ideas in Johnson [ibid.] with the argument in Lindenstrauss and
Tzafriri [1976].
You can build Banach spaces with a symmetric basis, even Orlicz sequence spaces, that
are not isomorphic to a Hilbert space and yetDn(X) goes to infinity as slowly as is desired.
Hence problem (2) has an affirmative answer.
It turns out that Theorem 9.1 can be used to give a footnote to the famous theorem of
J. Lindenstrauss and L. Tzafriri Lindenstrauss and Tzafriri [1971] that Hilbert spaces are
the only, up to isomorphism, Banach spaces in which every subspace is complemented.
Timur Oikhberg asked us whether there is a non Hilbertian Banach space in which every
subspace is isomorphic to a complemented subspace.

Theorem 9.2. Johnson and Szankowski [2012] There is a separable, infinite dimensional
Banach space not isomorphic to `2 that is complementably universal for all subspaces of
all of its quotients.

Let X be any non Hilbertian separable Banach space such that D4n(X) � f (n) for all
n. Let (Ek) be a sequence of finite dimensional spaces that is dense (in the sense of the
Banach-Mazur distance) in the collection of all finite dimensional spaces that are contained
in some quotient of `2(X) and let Y be the `2-sum of the Ek . Then Dn(Y ) � f (n) for
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all n. If you are old enough to know the right background, you can give a short argument
to prove that Y is complementably universal for all subspaces of all of its quotients.
Problem (1) remains open.

* * * * * * * * *
It was a privilege for Tadek Figiel and me to be co-authors on A. Pełczyński’s last pa-
per Figiel, Johnson, and Pełczyński [2011]. The solution to a (not especially important)
problem that had eluded Tadek and me in the early 1970s Figiel and Johnson [1973] just
dropped out, so I have an excuse to include a discussion of part of Figiel, Johnson, and
Pełczyński [2011] in this note.
Let X be a Banach space, let Y � X be a subspace, let � � 1. The pair (X; Y ) is said to
have the �-BAP if for each �0 > � and each subspace F � X with dimF < 1, there is a
finite rank operator u : X ! X such that jjujj < �0, u(x) = x for x 2 F and u(Y ) � Y .
If (X; Y ) has the �-BAP then X/Y has the �-BAP. Thus by a theorem due to Szankowski
[2009], for 1 � p < 2 there are subspaces Y of `p that have the BAP and yet (`p; Y )

fails the BAP.
It is open whether (X; Y ) has the BAP if X , Y , and X/Y all have the BAP, but I don’t
believe it.
If Y is a finite dimensional subspace of X and X has the �-BAP then also (X; Y ) has the
�-BAP and hence also X/Y has the �-BAP. That is, the �-BAP passes to quotients by
finite dimensional subspaces. By duality you get that if X� the �-BAP then every finite
codimensional subspace of X has the �-BAP. In particular, every finite codimensional
subspace of anL1 space has the 1-BAP. Easy as this is, I don’t think that anyone previously
had noticed this.
In fact,

Proposition 9.3. X� has the �-BAP iff (X; Y ) has the �-BAP for every finite codimen-
sional subspace Y .

The following proposition turned out to be useful.

Proposition 9.4. Let X be a Banach space and let Y � X be a closed subspace such that
dimX/Y = n < 1 and Y has the ��BAP . Then the pair (X; Y ) has the 3��BAP .

This gives the corollary

Corollary 9.5. If X is a Banach space and Y has the ��BAP for every finite codimen-
sional subspace Y � X , then X� has the 3��BAP .

Consequently, in contradistinction to the case of commutativeL1 spaces, for every � there
are finite codimensional subspaces Y of the non commutative L1 space S1 of trace class
operators on `2 that fail the �-BAP because Szankowski [1981] proved that L(`2) fails
the AP and L(`2) is the dual to S1.
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Themain result in my 1972 paper with Figiel and Johnson [1973] is that there is a subspace
of c0 that has the AP but fails the BAP. We could not prove the same result for `1.

Corollary 9.6. Figiel, Johnson, and Pełczyński [2011] There is a subspace Y of `1 that
has the AP but fails the BAP.

Proof. Start with a subspace X of `1 that fails the approximation property Szankowski
[1981]. From the existence of such a space it follows Johnson [1972] that if we let Z be
the `1�sum of a dense sequence (Xn) of finite dimensional subspaces of X , then Z� fails
the BAP and yet Z has the BAP. Then Y can be the `1� sum of a suitable sequence of
finite codimensional subspaces of Z because of Corollary 9.5.
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Abstract
This note describes the impact of disorder or irregularities in the ambient medium

on the behavior of stationary solutions to elliptic partial differential equations and on
spatial distribution of eigenfunctions, as well as the profound and somewhat surprising
connections between these two topics which have been revealed in the past few years.

1 Introduction

Irregularities in boundary value problems appear in different forms: for example, in the
non-smooth boundary of the ambient domain, in a lack of sufficient geometric structure
or connectedness, and in disordered potentials and other features of the rough media. It is
well known that such irregularities may have a drastic impact on the solutions of the equa-
tions or eigenfunctions of the underlying operators and completely change their behavior
from what is known to occur in a smooth uniform setting.

A survey of the entirety of the circle of such phenomena would be impossible. We
concentrate here on two recent research directions in this area and the somewhat unex-
pected connections between them that have become evident in the past few years. We
shall demonstrate that in many situations, different types of irregularities may be treated
using the same mechanisms.

The first direction pertains to fundamental questions about regularity of solutions to
elliptic equations in arbitrary domains. In the context of the Laplacian, these questions
were settled using the maximum principle, which is a simple consequence of the mean
value property, and with the Wiener criterion proved in 1924. However, even the simplest
higher order generalization of the Laplacian, the polyharmonic operator (�∆)m, m 2 N,
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has remained resistant to known techniques. The first part of this note is based on a series
of papers from 2009–2017 which pioneered a new method of weighted integral inequali-
ties and achieved a complete description of the boundary regularity of polyharmonic func-
tions in arbitrary domains, including sharp dimensional restrictions on boundedness of
the derivatives of the solution, and also geometric conditions on the domain necessary
and sufficient for continuity of the derivatives, an analogue of the Wiener test.

The second part of this paper focuses on the global spatial distribution of waves, or
eigenfunctions of elliptic operators, and on the perplexing effect of wave localization – a
confinement of wave propagation to a small portion of the original domain, triggered by
irregularities of the boundary or of the coefficients of the underlying operator. Despite
the profoundly interferential nature of this phenomenon, there turns out to be a magical
stationary solution to an elliptic boundary value problem which governs both spatial distri-
bution of eigenfunctions and the location of eigenvalues near the bottom of the spectrum,
and connects certain wave propagation mechanisms to the properties of individual solu-
tions of elliptic equations. Curiously, one of the main components of this new approach
involves once again some intricate weighted integral inequalities, albeit different from
those used for the higher order Wiener test.

2 Regularity of solutions to higher order equations

Most of the material in this Section is based on the work of Mayboroda and V. Maz’ya
[2009, 2014, 2018]. However, there is an extended historical discussion, and, while the
restrictions of the format of this survey make putting local references rather difficult, we
will list the links to the corresponding literature in the end of the Section. The reader can
find a complete version of this paper on ArXiv.

2.1 Regularity of polyharmonic functions in general domains. Elliptic operators of
order greater than two arise in many areas of mathematics, including conformal geome-
try (the Paneitz operator,Q-curvature), free boundary problems, and non-linear elasticity.
They have fundamental applications in physics and engineering, ranging from standard
models of elasticity to cutting-edge research on Bose-Einstein condensation in graphene,
and have enjoyed persistent attention from physicists and mathematicians alike. However,
the properties of higher order PDEs on general domains remained largely beyond reach.

The prototypical example of a higher-order elliptic operator, well known from the the-
ory of elasticity, is the bilaplacian ∆2 = ∆(∆); a more general example is the polyhar-
monic operator (�∆)m, m � 2. Already for these model operators, known results defied
intuition and classical mathematical approaches, as the XXth century has slowly revealed
a sequence of fascinating counterexamples. For instance, Hadamard’s 1908 conjecture
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regarding positivity of the biharmonic Green’s function was refuted in 1949. The bilapla-
cian, which is commonly used to model the deflection of a clamped plate, has a Green’s
function which can change sign in an elongated smooth convex domain, and actually os-
cillates near a corner of a rectangle. Szegö’s 1950 conjecture about the positivity of the
fundamental eigenfunction met a similar counterexample in 1982. Later on, it was shown
that the weak maximum principle may fail as well, at least in high dimensions. One could
also mention the Babuška paradox: the solution with “hard” supported plate conditions on
a smooth domain cannot be approximated by solutions in polyhedra. This makes straight-
forward finite element methods intrinsically inapplicable.

The positive results of this nature for higher order PDEs have been essentially restricted
to three main settings: smooth domains, domains with isolated singularities, and domains
with a Lipschitz boundary. Unfortunately, none of the emerging methods and techniques
could be extended to domains with more complicated geometry.

To see the extent of this shortfall, let us recall the second order case. A fundamental
result of elliptic theory is the maximum principle for harmonic functions. It holds in
arbitrary domains and guarantees that every solution to the Dirichlet problem for Laplace’s
equation achieves its maximum on the boundary and, in particular, that a solution with
bounded data is bounded. A similar statement extends to all divergence form second order
elliptic operators.

The situation for higher order PDEs is different. On smooth domains the study of higher
order differential equations went hand-in-hand with the second order theory and a weak
version of the maximum principle was established in 1960. Roughly speaking, if u is a
solution to a uniformly elliptic differential equation of order 2m with smooth coefficients
on a smooth domain Ω, the weak maximum principle gives the estimate

(2-1) max
0�k�m�1

∥∥r
ku

∥∥
L1(Ω)

� C max
0�k�m�1

∥∥r
ku

∥∥
L1(@Ω)

;

where rku = f@˛ugj˛j=k is a vector of all partial derivatives of u of order k and we adopt
the usual convention that the derivative of order zero is u itself. In the early 1990s, (2-1)
was extended to three-dimensional domains diffeomorphic to polyhedra or with Lipschitz
boundary. The formulation in non-smooth domains could be slightly different from above.
However, no matter the setting, the weak maximum principle always guarantees that a
solution with “nice” data has bounded derivatives of order m � 1.

In striking contrast with the case of harmonic functions, for every elliptic operator of
order greater than two there exists a cone in Rn, n � 4, in which the maximum principle
is violated. In particular, there are variational solutions to the polyharmonic equation in
certain domains Ω in dimensions n � 4, with bounded Dirichlet data, such that rm�1u is
unbounded in Ω.
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These positive and negative results raise a number of fundamental questions. Can (2-1)
be extended to arbitrary domains in dimension 3, on par with the maximum principle for
the Laplacian? Can one establish results of similar generality and strength in higher dimen-
sions, for lower order derivatives? And finally, if any of these answers is positive, might
it be possible to find the capacitory conditions which govern continuity of the appropriate
derivatives?

The main results of Mayboroda and V. Maz’ya [2009, 2014] establish sharp pointwise
estimates on variational solutions to the polyharmonic equation and their derivatives in
arbitrary bounded open sets, without any restrictions on the geometry of the underlying
domain:

Theorem 2-2. Let Ω be a bounded domain in Rn, 2 � n � 2m+ 1, and

(2-3) (�∆)mu = f in Ω; f 2 C1
0 (Ω); u 2 W̊ m;2(Ω):

Then
(2-4)

r
m�n/2+1/2u 2 L1(Ω) when n is odd and r

m�n/2u 2 L1(Ω) when n is even:

In particular,

(2-5) r
m�1u 2 L1(Ω) when n = 2; 3:

Here the space W̊ m;2(Ω) is the completion of C1
0 (Ω) with respect to the norm

kukW̊ m;2(Ω) = krmukL2(Ω), so (2-3) is a weak form of the Dirichlet boundary condi-
tion which in smooth domains corresponds to rku = 0 on @Ω, k = 0; ::; m � 1, and
(�∆)m is interpreted in the usual weak sense. We note that W̊ m;2(Ω) embeds into C k(Ω)

for k < m �
n
2
, n < 2m. Thus Theorem 2-2 gains one classical derivative over the

outcome of Sobolev embedding.
The results of Theorem 2-2 cannot be improved, for in general domains solutions need

not exhibit smoothness higher than that given in (2-4)–(2-5). This fact is a straightfor-
ward consequence of the Wiener-type test that we will discuss in Section 2.3, but let us
nonetheless show some simpler counterexamples.

When n 2 [3; 2m � 1] is odd, the main example reduces simply to a punctured ball in
Rn. Indeed, let Ω = B1 n fOg, where Br = fx 2 Rn : jxj < rg and O stands for the
origin. Suppose � 2 C1

0 (B1/2) is such that � = 1 on B1/4 and let

(2-6) u(x) := �(x) @
m� n

2 � 1
2

i (jxj
2m�n); x 2 B1 n fOg;

where @i stands for the derivative in the direction of xi for some i = 1; :::; n. Then
u 2 W̊ m;2(Ω) and (�∆)mu 2 C1

0 (Ω). Furthermore, while rm� n
2 +

1
2u is bounded, the
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vector of higher order classical derivatives, rm� n
2 +

3
2u, is not, and in fact rm� n

2 +
1
2u is

not continuous at the origin. Therefore, estimates (2-4)–(2-5) are optimal.
When n = 2m+ 1, the sharpness of (2-4)–(2-5) follows from a possible lack of conti-

nuity of a solution that will be proved with the capacitary estimates in Section 2.3.
When n 2 [2; 2m] is even, one can use previously available results on the asymptotic

character of a solution in the complement of a ray, and show that there is an m-harmonic
function behaving like jxjm� n

2 +
1
2 . Thus, truncating by the same cut-off � as above, one

obtains a solution u to (2-3) in B1 n fx1 = 0; :::; xn�1 = 0; 0 � xn < 1g with the property
that rm� n

2 +1u is unbounded. Therefore, (2-4) need not hold for higher order classical
derivatives. In Section 2.3 we exhibit refined counterexamples confirming sharpness of
our results at the precise level of fractional derivatives and even confirming that rm� n

2 u

need not be continuous when n is even.

2.2 Estimates for the Green’s function. Theorem 2-2 has a quantitative aspect as well.
It has several possible manifestations, including monotonicity-type formulas that will be
discussed in Section 2.4. Here we concentrate on the kernel of the representation formulas,
the Green’s function of the polyharmonic operator. Much like the maximum principle,
pointwise estimates on the Green’s function lie at the foundations of elliptic theory. In
the second order case the basic bound G(x; y) � C jx � yj2�n, x ¤ y 2 Ω, is indeed
a straightforward consequence of the maximum principle. As for the higher order PDEs,
already the counterexamples to Hadamard’s conjecture that we have discussed above show
that the biharmonic Green’s function is an intricate object, with a very peculiar behavior
at singular points of the boundary. Nonetheless, the estimates behind the main results
in Section 2.1 yield roughly the same order-of-magnitude bounds on the derivatives of a
polyharmonic Green’s function as one would expect in a regular setting, of course with
the same restrictions on the maximal order of differentiability as in Theorem 2-2. The list
of all such estimates is extensive, so we highlight the highest order case.

To this end, let Ω � Rn be an arbitrary bounded domain with n 2 [3; 2m + 1] odd.
We denote by G the Green’s function for the polyharmonic equation, i.e., a solution to
(�∆x)

mG(x; y) = ı(x � y), x 2 Ω; in W̊ m;2(Ω), and by Γ the fundamental solution in
Rn. The difference G(x; y) � Γ(x � y) is the regular part of the Green’s function. Here
∆x denotes the Laplacian in x, and similarly, rx , ry denote the gradient in x, and in y,
respectively. The function d (x) is the distance from x 2 Ω to @Ω.

The theorems in the work of Mayboroda and V. Maz’ya [2014] include the following
estimates. If n 2 [3; 2m+ 1] is odd, then

(2-7)
∣∣∣rm� n

2 +
1
2

x r
m� n

2 +
1
2

y (G(x; y) � Γ(x � y))
∣∣∣ �

C

maxfd (x); d (y); jx � yjg
;
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and

(2-8)
∣∣∣rm� n

2 +
1
2

x r
m� n

2 +
1
2

y G(x; y)
∣∣∣ �

C

jx � yj
;

for every x; y 2 Ω. The constant C here depends on the dimension and the order of the
operator, but not on the size or geometry of Ω. Similar estimates have been obtained in
even dimensions, with mixed derivatives of the Green’s function of order 2m � n on the
left-hand side and appropriate logarithmic terms on the right-hand side.

Much as for general solutions, previous results have been available in smooth domains,
in conical domains, and in polyhedra. In addition, for arbitrary domains, pointwise bounds
on the Green’s function (rather than its derivatives) in dimensions 2m + 1 and 2m + 2

for m > 2 and dimensions 5; 6; 7 for m = 2 can be found in existing literature (see
Section 2.5).

Estimates (2-7) and (2-8) for the derivatives of the Green’s function have been treated
by Mayboroda and V. Maz’ya [2014] for the first time and are essentially the best possible.
The higher derivatives may be unbounded, due to the counterexamples in Section 2.1.

2.3 The Wiener test. As we discussed above, the maximum principle for harmonic
functions, guaranteeing that solutions with bounded data are always bounded, is a beauti-
fully simple result that requires no assumptions on the boundary of the domain and enjoys
a fairly straightforward proof. By contrast, even for the Laplacian, the question of continu-
ity of solutions at the boundary stood out as an important, highly non-trivial open problem
in the beginning of the XXth century. The results of Poincaré, Zaremba and Lebesgue
showed that harmonic functions are always continuous at the vertex of a cone, while in the
complement of a sufficiently thin cusp this property may fail. In 1924 Wiener introduced
the harmonic capacity, which now bears his name, and established his famous criterion for
regularity of a boundary point. Wiener’s interest in the problem was primarily guided by
a physical example, the question of breakdown of an electrostatic field at the tip of a light-
ning rod, and the now famous Wiener capacity was an extension of the physical notion of
a capacitor in electrostatics. However, over the century the Wiener criterion has made a
profound impact in many branches of mathematics. Most notably, the notion of capacity
gave a non-linear analogue to the Lebesgue measure, suitable for measuring exceptional
sets in Sobolev spaces much as the Lebesgue measure does inLp , and seamlessly entered
probability, potential theory, and function space theory.

To formulate the Wiener criterion, we recall that a point O 2 @Ω is referred to as
regular if every solution to the Dirichlet problem for the Laplacian, with continuous data,
is continuous at O . The Wiener criterion states that O 2 @Ω is a regular point if and only
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if

(2-9)
1∑

j=0

2j (n�2) cap (B2�j n Ω) = +1;

where B2�j is the ball of radius 2�j centered at O and the harmonic capacity of a com-
pactum K � Rn, n � 3, is defined as
(2-10)

cap (K) := inf
{

kruk
2
L2(Rn) : u 2 C1

0 (Rn); u = 1 in a neighborhood of K
}
:

In other words, harmonic functions are always continuous at the boundary point O if and
only if the complement of the domain near the point O , measured in terms of the Wiener
capacity, is sufficiently massive. An appropriately modified version of this condition is
also available in dimension n = 2.

We remark that we have not specified which concept of solution to the Dirichlet prob-
lem is used in (2-9)–(2-10). Below we will continue working with an equivalent reformu-
lation in terms of (2-3), although it was notWiener’s definition, but it is instructive to point
out that a part of the appeal and the original goal of the Wiener criterion was to separate
the issues of definition and boundary regularity of solutions and to give a comprehensive
description of situations when a solution is “classical”, that is, continuously achieves its
boundary data.

The Wiener test has been extended to a large variety of second order differential equa-
tions, including general divergence form elliptic equations, degenerate and parabolic PDEs,
the Schrödinger operator, and also celebrated notoriously difficult quasilinear and nonlin-
ear problems. Nonetheless, none of the previous methods could handle the Wiener crite-
rion or Wiener capacity in a higher order context, and moreover, as we discussed above,
even modest analogues of the maximum principle remained an open problem impeding
any further progress. Indeed, to address a Wiener-type criterion for continuity of higher
order derivatives, one must establish their boundedness first. Theorem 2-2 establishes the
exact order of smoothness for polyharmonic functions on domains with no geometrical
restrictions and sets the stage for a discussion of the Wiener test for continuity of the cor-
responding derivatives of the solution. The first obstacle in carrying this out is the lack of
a definition of an appropriate capacity since (2-10) is tailored to second order equations
and, moreover, the “boundary data” u = 1 on the compactumK in (2-10) is geared to un-
derstanding the continuity of u rather than its derivatives at the boundary. The following
solution has been presented in the work of Mayboroda and V. Maz’ya [2018].

Let n 2 [2; 2m+ 1] and denote by Z the following set of indices:

Z = f0; 1; :::; m � n/2 + 1/2g; if n is odd;(2-11)
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Z = fm � n/2; m � n/2 � 2; m � n/2 � 4; :::g \ (N [ f0g); if n is even:(2-12)

Let Π be the space of linear combinations of spherical harmonics

(2-13) P (x) =
∑
p2Z

∑
l

bplY
p

l (x/jxj); bpl 2 R; x 2 Rn
n fOg;

where l is an integer parameter running from 1 to N (p; n), the number of linearly inde-
pendent homogeneous harmonic polynomials of degree p in n variables. The space Π

is equipped with the norm kP kΠ given by the `2 norm of the coefficients fbplgp; l ; we
also set Π1 := fP 2 Π : kP kΠ = 1g: Given P 2 Π1, an open set D in Rn such that
O 2 Rn nD, and a compactum K inD, we define
(2-14)

CapP (K;D) := inf

{∫
D

jr
mu(x)j2 dx : u 2 W̊ m;2(D); u = P in a neigh. of K

}
;

and

(2-15) Cap (K;D) := inf
P 2Π1

CapP (K;D):

Since we will be primarily working in dyadic annuli C2�j ;2�j+2 , j 2 N, where Cs;as :=

fx 2 Rn : s < jxj < asg, s; a > 0, it is convenient to abbreviate the notation and drop
reference to the “ambient” set, thus writing

(2-16) CapP (C2�j ;2�j+2 n Ω) := CapP (C2�j ;2�j+2 n Ω; C2�j �2;2�j+4); j 2 N;

and similarly for Cap.
Given a domain Ω � Rn, n � 2, the point Q 2 @Ω is called k-regular with respect

to Ω and the operator (�∆)m, m 2 N, if any weak solution to the Dirichlet boundary
problem for the m-Laplacian (2-3) satisfies the condition

(2-17) r
ku(x) ! 0 as x ! Q; x 2 Ω;

that is, all partial derivatives of u of order k are continuous atQ. Notice that, in the spirit
of our discussion for the Laplacian, the case k = m�1 addresses the “classical” solutions,
that is, the case when a weak solution achieves its Dirichlet boundary data continuously.

Theorem 2-18 (Mayboroda and V. Maz’ya [2009, 2018]). Let Ω be an arbitrary open set
in Rn, m 2 N, 2 � n � 2m+ 1. Assume first that n is odd. If

(2-19)
1∑

j=0

2�j (2m�n) inf
P 2Π1

CapP (C2�j ;2�j+2 n Ω) = +1;
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then the pointO is (m�n/2+1/2)-regular with respect to the domainΩ and the operator
(�∆)m. Conversely, if the point O 2 @Ω is (m � n/2 + 1/2)-regular then

(2-20) inf
P 2Π1

1∑
j=0

2�j (2m�n) CapP (C2�j ;2�j+2 n Ω) = +1:

Assume next that n is even. If the condition (2-19) holds with j 2�j (2m�n) in place of
2�j (2m�n), then the point O is (m � n/2)-regular with respect to the domain Ω and the
operator (�∆)m. Conversely, if the pointO 2 @Ω is (m�n/2)-regular then the condition
(2-20) is satisfied with j 2�j (2m�n) in place of 2�j (2m�n).

A byproduct of Theorem 2-18 is a strengthened version of the Green’s function bounds
in Section 2.2. For instance, form = 2 and n = 3, inequality (2-8) can be strengthened to

jrxryG(x; y)j �
C

jx � yj
� exp

(
�c

lyx∑
j=2

24j
jyjCap (C24j+1jyj;24j+5jyj n Ω)

)
;

where jyj � cjxj and lyx � 2, lyx 2 N, is such that jxj � 24lyx+5jyj. In particular, this
yields Hölder continuity of the Green’s function in a class of domains satisfying uniform
capacity conditions.

Turning back to Theorem 2-18, we note that this result was the first treatment of neces-
sary and sufficient conditions for boundary continuity of derivatives of an elliptic equation
of order 2m > 2 and the first time the capacity (2-14) for m > 2 appeared in literature.
Continuity of the solution itself (but not of its derivatives) was previously treated for the
polyharmonic operator, and the resulting criterion follows from Theorem 2-18. In par-
ticular, when n = 2m, the new notion of capacity (2-15) coincides with the potential-
theoretical Bessel capacity. When applied to the casem = 1, n = 3, Theorem 2-18 yields
the classical Wiener criterion (2-9)–(2-10). In fact, for n = 2m or n = 2m + 1 the nec-
essary and sufficient conditions in Theorem 2-18 are trivially the same, as P � 1. In
lower dimensions, the discrepancy is not artificial: for example, (2-19) may fail to be nec-
essary. One could furthermore treat the aforementioned results in Lipschitz and smooth
domains as sufficient conditions for the continuity of the corresponding derivatives of
polyharmonic functions. It is not difficult to verify that they fall into the scope of Theo-
rem 2-18 as well since the capacity of a cone, and hence the capacity of an intersection
with a complement of a Lipschitz domains, is large enough to assure divergence of the
series in (2-19).

Finally, let us come back to the question of sharpness of Theorem 2-2. Resting on The-
orem 2-18 and choosing sufficiently small balls in the consecutive annuli as a complement
to the domain, we can build a set with a convergent capacitory integral and, respectively,
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an irregular solution with discontinuous derivatives of order m � n/2 or m � n/2 + 1/2

at the point O in even and odd dimensions, respectively. This provides additional, albeit
somewhat more technical, counterexamples, in concert with the discussion at the end of
Section 2.1.

At the heart of Theorem 2-18, much as at the heart of the original Wiener criterion, lies
the challenge of finding a correct notion of polyharmonic capacity and of understanding
its key properties. While seemingly exotic, a careful choice of linear combinations of
spherical harmonics (see (2-11)–(2-12) and (2-13)), dependent on the parity ofm and n, is
crucial at several stages of the proof. Needless to say, it necessitates quite different argu-
ments than the original Wiener criterion, and moreover, this new capacity and the notion
of higher-order regularity sometimes exhibits unexpected properties. To mention only a
few examples, we recall that contrary to the classical theory 1-regularity of a boundary
point for the bilaplacian may be unstable under the affine changes of coordinates. Per-
haps even more surprising is the fact that in sharp contrast to the second order case, the
same geometric conditions are not responsible for regularity of solutions to all higher order
equations.

The latter point is important and we elaborate further. The Wiener criterion for second
order partial differential equations is exceptionally versatile. A boundary point is 0-regular
for the Laplacian (any weak solution is continuous) if and only if it is 0-regular for any
other elliptic operator � divAr with real bounded measurable coefficients. One might
thus conjecture that Theorems 2-2 and 2-18 hold for general higher order elliptic operators.
However, this is false, even for constant coefficient operators. For instance, a solution
to the biharmonic equation (�∆)2u = 0 is continuous at the vertex of a cone in any
dimension, while for [(�∆2) + a(@/@xn)

4]u = 0 in dimensions n � 8, the solution need
not bounded, much less continuous, for any a > 0 such that (n�3) arctan

p
a 2 (2�; 4�),

e.g., for a > 5+2
p
5when n = 8. On the other hand, for n � 2m, the higher orderWiener

criterion for 0-regularity of a boundary point has been extended to constant coefficient
operators satisfying a certain weighted integral positivity property. Such properties are
explained in the next section, but we remark now that when n = 2m, this weighted integral
positivity property (and hence, the Wiener criterion) holds for every higher order elliptic
equation with real constant coefficients. This leads to a number of interesting questions.

Another important direction of future research is to understand the new capacity for
further common examples. For instance, supposem = 2, n = 3, and the domain Ω has an
inner cusp, so that in a neighborhood of the origin, Ω = f(r; �; �) : 0 < r < c; h(r) <

� � �; 0 � � < 2�g, where h is a non-decreasing function such that h(br) � h(r) for
some b > 1. For such a domain Theorem 2-18 yields the following criterion:

(2-21) the point O is 1-regular if and only if
∫ 1

0

s�1h(s)2 ds = +1:
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Overall, our understanding of higher order capacity is far from complete.

2.4 Weighted integral inequalities. A technical core of the proof of Theorem 2-2, and
an important part of the work of Mayboroda and V. Maz’ya [2009, 2014, 2018], is a new
method which builds on some intricate weighted integral identities. It does not require any
a priori information on the geometry of the domain and allows one to estimate the growth
of a solution in spherical sections centered at a given boundary point, much as monotonic-
ity formulas do for nice second order operators. The main difficulty is the proper choice
of the weight function w, which is finely tuned to the underlying elliptic operator in such
a way that suitable lower bounds can be derived from

∫
Ω(�∆)muuwdx; which we write

as hLu; uwi, L = (�∆)m.
To give a sense of the key estimates, let us concentrate on the technically simpler case

when the dimension is odd. We assume, as before, that m 2 N, n 2 [3; 2m+ 1] (odd for
the moment), and Ω is a bounded domain in Rn, O 2 Rn n Ω, and u 2 C1

0 (Ω). Our key
tool is the weighted integral inequality

(2-22) C
1

j�jn�1

∫
x2Ω: jxj=j�j

( u(x)

jxjm� n
2 +

1
2

)2

d�x � hLu; uw�i;

for every u 2 C1
0 (Ω), � 2 Ω; and

(2-23) w�(x) = jxj
�1

(
C1h

(
log

j�j

jxj

)
+ C2

)
; x; � 2 Ω:

Here C;C1; C2 are constants depending on m and n only, and

(2-24) h(t) =


∑m

j=1 �j e
�˛j t ; t > 0;∑m

j=1 �j e
ˇj t ; t < 0:

The constants ˛j > 0, j = 1; 2; :::; m, ˇ1 = 0, and ˇj > 0 for j = 2; :::; m are given by

(2-25) f�˛j g
m
j=1

∪
fˇj g

m
j=1 =

{
�m+

n

2
�
1

2
+2j

}m�1

j=0
[

{
�
n

2
�
1

2
+m�2j

}m�1

j=0
;

and writing E
 = (�˛1; :::;�˛m; ˇ1; :::; ˇm), E� = (�1; :::; �m;��1; :::;��m), the coeffi-
cients �j ; �j 2 R satisfy �i = (�1)m+1

∏
j ¤i (
j � 
i )

�1:

The expression on the left in (2-22) can be written more concisely, but the form here
emphasizes its key features. This inequality is a statement about uniform control of spher-
ical averages of u(x)

jxjm� n
2 + 1

2
for solutions in a neighborhood of a boundary point O 2 @Ω.
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By interior regularity estimates, it also yields uniform control on rm� n
2 +

1
2u, which is our

goal. Indeed, using (2-22) we prove that for anyQ 2 Rn n Ω a solution to

(2-26) (�∆)mu = f in Ω; f 2 C1
0 (Ω n B4R(Q)); u 2 W̊ m;2(Ω); R > 0;

satisfies the monotonicity-type formula
(2-27)

1

�2m

∫
S�(Q)\Ω

ju(x)j2 d�x �
C

R2m+1

∫
CR;4R(Q)\Ω

ju(x)j2 dx for every � < R;

where C is a constant depending only onm and n, and S�(Q) = fx 2 Rn : jx�Qj = �g,
B�(Q) = fx 2 Rn : jx �Qj < �g, and CR;4R(Q) = fx 2 Rn : R < jx �Qj < 4Rg.
Thus solutions do not grow faster than jx �Qjm� n

2 +
1
2 nearQ 2 @Ω, and

(2-28)

jr
iu(x)j2 � C

jx �Qj2m�n+1�2i

R2m+1

∫
CR/4;4R(Q)\Ω

ju(y)j2 dy; 0 � i � m �
n

2
+

1

2
;

for every x 2 BR/4(Q) \ Ω. In particular, for every bounded domain Ω � Rn, the
solution to the boundary value problem (2-26) satisfies jrm�n/2+1/2uj 2 L1(Ω).

The choice of the weight function w� in (2-22) is dictated by several considerations.
It must be a fundamental solution of a suitable ordinary differential equation so that the
integration by parts leading from the right side of (2-22) to a weighted quadratic form
produces a delta function. This restricts the corresponding portion of the integral to the
sphere jxj = j�j, which yields the term on the left in (2-22). In addition, w� must also
be chosen so that all the terms of the resulting quadratic form which do not contribute to
the aforementioned integral on the sphere give a positive quantity. For the bilaplacian on
R3the computation is explicit, but appears somewhat magical, and the difficulties of han-
dling generalm and n seemed at first insurmountable. Our most recent work introduces a
novel systematic construction of the weight leading to (2-22), which uses, in particular, an
induction in the eigenvalues of the Laplace-Beltrami operator on the sphere, preservation
of some positivity properties under a change of underlying higher order operator, and the
exploitation of delicate features of (�∆)m which depend on the parity of m; n;m � n/2.
While the role of parity ofm andm� n/2 is somewhat peculiar, one can imagine a differ-
ence between the analysis in odd and even dimensions in parallel with the Laplacian, for
which the fundamental solution in R2 is logarithmic, while in R3 it is a power function.

2.5 Historical references. The counterexamples to positivity and local regularity of
solutions to higher order equations mentioned in Subsection 2.1 are due to Duffin [1949],
Coffman [1982], Babuška [1963], V. G. Maz’ya and Rossmann [1992], Pipher and Ver-
chota [1995]. The results on smooth domains discussed in connection with the maximum
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principle can be found in the work of Agmon [1960], while for domains with isolated
singularities we refer to Kozlov, V. G. Maz’ya, and Rossmann [2001], V. G. Maz’ya and
Rossmann [1991], and for domains with a Lipschitz boundary we refer to Pipher and Ver-
chota [1995].

Estimates for the Green function of the general second order elliptic operators, as well
as the corresponding Wiener criterion can be found in the work of Littman, Stampac-
chia, and Weinberger [1963]. The original Wiener criterion for the Laplacian is due to
Wiener [1924]. Furthermore, pointwise estimates for solutions to the higher order equa-
tions (rather than derivatives of the solutions) and the correspondingWiener criterion have
been obtained in the work of V. G. Maz’ya [1999, 2002] and V. Maz’ya [1997]. In these
papers one can also find some of the aforementioned examples.

3 Wave localization

This section is devoted to the work of author and her collaborators on localization of eigen-
functions. The flagship references are Filoche and Mayboroda [2009, 2012], and Arnold,
David, Jerison, Mayboroda, and Filoche [2018b, 2016], and some others will be men-
tioned throughout the text. Much as before, the historical references will placed in the end
of the Section. The complete version of this paper can be found on ArXiv.

3.1 Dirichlet problem and the birth of the landscape function. The regularity results
for solutions of the Dirichlet problem described in Section 2 have yielded far-reaching
implications well beyond their original scope. In particular, some aspects of the emerging
intuition are at the heart of the first ideas in a new approach to wave localization.

To illustrate this at a rudimentary level, consider the eigenfunctions ' of the bilaplacian.
These satisfy ∆2' = �' in a bounded domain Ω with the Dirichlet boundary condition,
' 2 W̊ 2;2(Ω) (cf. (2-3)). Unlike the case of the Laplacian, explicit solutions of this eigen-
value problem, when Ω is a rectangle R = (a; b) � (c; d ) � R2, are not available (recall
Szegö’s conjecture discussed in Section 2.1). However, known formulas and numerical
experiments confirm that eigenfunctions inR still behave at large like linear combinations
of products of sines and cosines and therefore are uniformly distributed throughout R.

It turned out that in a punctured rectangle, R n P , where P is a point in R; all eigen-
functions at the bottom of the spectrummay be localized. For instance, ifR = (0;

p
20)�

(0; 1/
p
20) and the pointP has coordinates (1/5; 1/2), then essentially the first 200 eigen-

functions ofRnP stay strictly on the right or on the left of the clamped point (see Figure 1).
In other words, one nail strategically placed in a rectangular bench could virtually bring
to a halt the transfer of energy and induce severe wave localization.
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Figure 1: An eigenfunction of the bilapla-
cian in a rectangular plate with one interior
clamped point.

Inspired both by the positive and negative re-
sults described in Section 2, Filoche and May-
boroda [2009] discovered a completely different
behavior in domains infinitesimally close to R.

But what is wave localization? It is an as-
tonishing ability of physical systems to maintain
vibrations in small portions of their original do-
mains of activity, preventing extended propaga-
tion. In this context, one should not think solely
in terms of mechanical vibrations. Light is a
particular example of an electromagnetic wave,
wifi is delivered by waves, sound is a pressure
wave, and, from the vantage point of quantum
physics, even matter can be perceived as a type of wave. Localization of waves plays
a paramount role in each of its physical manifestations. However, many aspects of this
phenomenon remain a mystery.

There are some simple and well-understood examples. For instance, in a dumbbell do-
main given by two non-identical balls connected by a long thin passage, there are Dirichlet
eigenfunctions of the Laplacian which are essentially confined to one of the balls and for
all practical purposes vanish in the other, visually dying off along the thin passage.

Another better quantified example is the harmonic oscillator �∆ + V on Rn, with
V (x) = jxj2. In this case, the eigenfunctions are known explicitly:

(3-1) u˛(x) =

n∏
j=1

H˛j
(xj ) e

�
jxj2

2 ; x 2 Rn; ˛ 2 Nn
0 ;

where H˛j
are the Hermite polynomials of degree ˛j . The exponential decay is a rigor-

ous manifestation of localization. This pivotal example has been generalized significantly
in the work of Agmon [1982], who proved the exponential decay of eigenfunctions with
eigenvalues � < M for any potential V such that V � M outside of some compact set.
This provided the foundation for many important developments in semiclassical analy-
sis. While there are virtually no other restrictions, Agmon’s potentials must be strongly
confining, i.e., they must stay above someM > 0 in a neighborhood of infinity.

However, localization does not have to be triggered by confinement; the reader can
witness this in the example in Figure 1. From now on we concentrate on more involved
cases where no bottleneck and no visible confining potential is present. In this context
localization has long been attributed to purely interferential mechanisms, and as such it
has seemed barely related to the local properties of stationary solutions discussed in Sec-
tion 2. In this exposition we present a new approach to wave localization which shows that
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significant information about the eigenvalues and eigenfunctions near the bottom of the
spectrum is encoded in a solution to one special stationary boundary value problem akin
to (2-3). In particular, localization can be rather accurately predicted from the geometric
properties of this solution.

The work of Filoche and Mayboroda [2012] introduced the landscape function. At
first, the key to their approach was the following inequality. Assume thatL is a positivity-
preserving linear operator. Then all eigenfunctions, i.e., solutions to L' = �' on a
bounded domain Ω, satisfy the bound

(3-2)
j'(x)j

supΩ j'j
� �u(x); x 2 Ω;

where u is the solution to Lu = 1 in Ω. We intentionally leave undefined a notion of
a positivity-preserving operator as the proof requires only positivity of the solution to
Lu = f for f > 0. In particular, the Laplacian �∆ or more generally the Schrödinger
operator �∆+V , V � 0, as well as the divergence form operator � divAr for an elliptic
matrixAwith boundedmeasurable coefficients, with Dirichlet or Neumann boundary data,
fit the profile. As pointed out in Section 2.1 the bilaplacian is not positivity-preserving
due to the failure of the Hadamard’s conjecture, but for many examples this distinction
yields only marginal errors.

Inequality (3-2) postulates that all eigenfunctions are controlled by a solution to one
stationary problem,

Lu = 1 in Ω:

In the context of a membrane vibration, u can be envisioned as a deflection of the mem-
brane under a uniform load. Thus, quite naturally, in this and many other applications u
exhibits a structure with clearly defined “high mountains” and “low valleys”; this will be
referred to as a landscape. Due to (3-2), along the valleys of u the amplitude of any '
is small, as long as �u < 1. As a result, the valleys indicate separation into localization
regions. For instance, in Figure 1 a valley would indeed be a vertical line passing through
P .

The proof of (3-2) is so simple that it leaves one wondering why it was not discovered
before: denoting by G the Green’s function of L, i.e., a solution to LxG(x; y) = ıy(x),
we have '(x) =

∫
G(x; y)�'(y) dy, u(x) =

∫
G(x; y) dy, and hence, by positivity of

the Green’s function,

j'(x)j =
∣∣∣∫ G(x; y)�'(y) dy

∣∣∣ � �k'kL1(Ω)

∫
jG(x; y)j dy = �k'kL1(Ω)u(x);

for every x 2 Ω. However, this landscape function turns out to be strikingly useful. In
the paper of Filoche and Mayboroda [ibid.] the reader can find a numerical study of the
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accuracy of the method which uses valleys of the landscape function to predict localization
regions for eigenfunctions of the Dirichlet problem for a variety of elliptic operators. This
work numerically demonstrates a much better precision than what inequality (3-2) would
warrant. Part of this phenomenon will be explained in the next section in the context of the
Anderson model. For now we mention simply that results for the bilaplacian have been
confirmed experimentally for thin duraluminium plates and have provided a foundation
for systematic use of the landscape function in mechanical engineering (Lefebvre et al.
[2016]).

3.2 The Schrödinger equation and the effective potential of localization. In 1958
Anderson introduced the concept of suppression of electron transport due to disorder. This
idea has shaped the development of mathematical and condensed matter physics over the
past 50 years and continues to be a topic of active research. In Anderson’s interpreta-
tion, a disorder in the potential V induces exponential decay of the eigenfunctions of the
Schrödinger operator �∆+ V , due to destructive interferences between waves traveling
from an initial source along different propagation pathways. Over the years, Anderson
localization has been confirmed experimentally and celebrated results of mathematical
physics have provided rigorous proofs for many types of random potentials.

Of course the phenomenon of Anderson localization is completely different from any
confinement considerations as well as from the decay of Dirichlet eigenfunctions in a
bounded domain; indeed, it pertains to dense pure point spectrum rather than discrete spec-
trum. We will show, however, that some signatures of exponential decay in the Anderson
model can also be predicted by means of the landscape function. More importantly, the
landscape magically reveals a hidden “ordered” structure perceived by the eigenfunctions
in the presence of a disordered potential V .

We start with a few definitions. Consider an elliptic operator

(3-3) L = �
1

m
div (mAr) + V;

with Neumann, Dirichlet, or periodic boundary conditions on an open, connected,
bounded, Lipschitz domain Ω � Rn. (One could equally well replace Rn with a com-
pact connected C 1 manifold.) Assume that the potential V 2 L1(Ω) is a non-negative,
bounded, real-valued function, which is non-degenerate in the sense that it is strictly pos-
itive on a subset of positive measure of Ω. We denote by Vmax the maximum of V on Ω.
As usual, A = (aij (x))

n
i;j=1 is an elliptic symmetric matrix of real bounded measurable

coefficients satisfying

(3-4) C�1
j�j2 � A(x) � � � � C j�j2; x 2 Ω; � 2 Rn;
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we also fixm 2 L1(Ω), a real-valued density satisfying uniform upper and lower bounds
C�1 � m(x) � C; for some positive constant C , and setM = Ω̄:

A disordered structure of the potential V and/or of the matrix of coefficients A can
produce localization of eigenfunctions of the operator L. Consider, for instance, L =

�∆ + V on a square domain with periodic boundary conditions, where V is obtained
by dividing the square into 80 � 80 unit subsquares and assigning to each randomly a
value 0 with probability 0.6 and 4 with probability 0.4. An example of such a potential
and its fundamental eigenfunction are depicted in Figure 2, (a) and (b). Led by (3-2) we
have computed the landscape for this equation, determined the valleys, and superimposed
the valley network (thin white lines) on the map of the eigenfunction in Figure 2, (b).
Beautifully, the valleys convincingly outline the actual localization region.

Figure 2: (a) Anderson-Bernoulli potential; (b) an eigenfunction ' together with the
superimposed network of valleys; (c)

∣∣r log j'j
∣∣ together with the superimposed

network of valleys.

There are much deeper mechanisms at play than (3-2), and these are of a nonlinear
nature. The work of Arnold, David, Jerison, Mayboroda, and Filoche [2018b] shows that
the reciprocal of the landscape function, 1/u, acts as an effective potential. The eigenfunc-
tions are constrained to the wells of 1/u and undergo quantum tunneling, i.e., exponential
decay, across the barriers of 1/u (in the terminology of Section 3.1, across the valleys
of u). A strong manifestation of this appears in Figure 2, (c); this demonstrates that the
exponential decay of the eigenfunction ', interpreted through large values of

∣∣r log j'j
∣∣

(white regions), holds precisely in the neighborhood of valleys of 1/u (thin red lines). Fur-
thermore, the landscape function splits the domain into independently vibrating regions,
and the spectrum of the original domain maps bijectively to the combined spectra of the
subregions delimited by the barriers.

To state these results rigorously, denote by W̊ 1;2(Ω), Ω � M , the closure of the
space of smooth functions compactly supported in Ω with respect to the norm

(∫
jr'j2 +
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'2 dx
) 1

2 . We say that v 2 W̊ 1;2(Ω) is a weak solution to Lv = f , f 2 L2(Ω), if

(3-5)
∫
Ω

[(Arv) � r�+ V v�]mdx =

∫
Ω

f �mdx

for every � 2 W̊ 1;2(Ω). Note that we do not require Ω to be necessarily an open or a
closed set, and thus the definition above prescribes Neumann boundary conditions on the
parts of @Ω that belong to Ω and Dirichlet boundary conditions on the parts of @Ω that
belong to its complement.

We define the landscape function as the unique solution to Lu = 1 on M . By the
maximum principle u is strictly positive. Now fix some small ı > 0, and let

E(�+ ı) := fx 2 M : 1/u(x) � �+ ıg; � > 0:

The (typically disconnected) set E(� + ı) can be envisioned as a collection of subsets
of several regions bounded by the valleys of 1/u and referred to as wells below. The
work of the author and her collaborators shows that an eigenfunction with eigenvalue �
is necessarily localized inside those wells and decays exponentially in the complement of
E(� + ı). To quantify this statement, let

(
1
u

� �
)
+

:= max
(
1
u

� �; 0
)
, B = A�1 =

(bij )
n
i;j=1, and �� be the distance in the Riemannian metric ds2 =

(
1
u

� �
)
+
B dx � dx,

that is,

(3-6) ��(x; y) = inf



∫ 1

0

(( 1

u
� �

)
+
(
(t))

n∑
i;j=1

bij (
(t))
̇i (t)
̇j (t)
)1/2

dt;

where the infimum is taken over all absolutely continuous paths 
 : [0; 1] ! Ω such that

(0) = y and 
(1) = x. Finally, let

�(x;E(�+ ı)) = inff��(x; y) : y 2 E(�+ ı)g

be the Agmon distance from x to E(� + ı). With this at hand, we state (a simplified
version of) one of the main results in Arnold, David, Jerison, Mayboroda, and Filoche
[2018b].

Theorem 3-7. Let � > 0 and 0 < ı � Vmax/10 be such that �+ ı � Vmax. Let  be an
eigenfunction of L satisfying L = � onM , � � �. Then

(3-8)
∫

f�(x;E(�+ı))�1g

e �(x;E(�+ı))(jr j
2 + Vmax 

2) dx �
50Vmax

ı

∫
M

Vmax 
2 dx:

Thus, roughly speaking, an eigenfunction with the eigenvalue � decays as
e��(x;E(�+ı))/2 away fromE(�+ı), which, in particular, explains the exponential decay
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across the “valleys” in Figure 2, (c). Note that the constant in (3-8) does not depend on
the ellipticity constants of A, m, or on the oscillations of V .

Underpinning these results is the identity

(3-9)
∫

M

jrAf j
2 + Vf 2 dx =

∫
M

u2
∣∣∣rA

(f
u

)∣∣∣2 + 1

u
f 2 dx; f 2 W̊ 1;2(M );

where jrAf j2 = Arf rf , which implies that

(3-10) hLf; f i � h(1/u)f; f i:

Here h � ; � i denotes the inner product on L2(M ).
Although very different in nature from (2-22), the weighted inequality (3-10) provides

very accurate information about the solutions (this time, eigenfunctions). The crux of the
matter, once again, is to choose the weight function very carefully.

The bound (3-10) is a form of the uncertainty principle. Indeed, h(1/u)f; f i combines
the impact of the kinetic energy coming from jrAf j2 and the potential energy given by the
integral of Vf 2. Agmon already realized that a positive lower bound on the form hLf; f i

yields exponential decay of eigenfunctions, but he used the trivial inequality hLf; f i �

hV+f; f i. Later, these rudimentary ideas were advanced considerably in the framework
of semiclassical analysis. In that formalism one approximates a smooth potential V near
its minimum by the potential of a harmonic oscillator C jxj2. In our setting, however, the
potentials are not smooth, and even more importantly, the estimate for the exponential
decay in terms of the Agmon distance using (V � �)+ is virtually useless; for example,
(V ��)+ = 0, and hence the corresponding Agmon distance is zero, in the entire grey area
in Figure 2, (a), so this estimate would give no decay whatsoever. By contrast,

(
1
u

� �
)
+

is extremely efficient, as in the disordered regimes (akin to the Anderson model) a plot
of

(
1
u

� �
)
+
typically demonstrates a clear separation into disjoint regions, at least for

smaller values of �.
We now prove a diagonalization of the operatorLmodulo an exponentially small error.

To this end, retaining the notation of Theorem 3-7, consider a finite decomposition of
E(� + ı) =

∪
`E` into disjoint sets. Denote by S the Agmon distance between these

sets,
S = inff��(x; y) : x 2 E`; y 2 E`0 ; ` ¤ `0

g:

We regard the sets E` as individual wells of E(� + ı), but note that that it might be
advantageous to combine several nearby connected components into oneE` in the interest
of maximizing the pairwise distance S . Going further, we denote by Ω` a collection of
reasonably regular sets, each containing an (S 0/2)-neighborhood of E`, S 0 < S , and so
that Ω` is disjoint from an (S/2)-neighborhood of E`0 for any `0 ¤ `. (These are chosen
“in the spirit of” Voronoi sets.) We also ensure that @Ω` \Ω` = @Ω` \@Ω. Denote by '`;j
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the eigenfunctions of L in W̊ 1;2(Ω`) with eigenvalues �`;j . By assumption, they satisfy
Neumann boundary conditions at @Ω` \ @Ω and Dirichlet boundary conditions on the
remaining parts of the boundary. The second main theorem in the work of Arnold, David,
Jerison, Mayboroda, and Filoche [2018b] states that the eigenfunctions of the operator L
on the original domain Ω are exponentially close to the functions '`;j , and vice versa.
More precisely, for every eigenfunction  j with an eigenvalue � = �j � � � ı,

(3-11)
∥∥ � Φ(��ı; �+ı) 

∥∥2
L2(M; m dx)!L2(M; m dx)

� 300 (Vmax/ı)
3
e�S/2;

where Φ(��ı; �+ı) denotes the orthogonal projection in L2(M;mdx) onto the span of
eigenvectors '`;j with eigenvalues �`;j 2 (� � ı; � + ı) (extended by 0 to all of M ).
Conversely, the same upper bound holds for ' � Ψ(��ı; �+ı)' for any ' = '`;j with
� = �`;j � � � ı, where Ψ denotes the orthogonal projection in L2(M;mdx) onto the
span of the eigenfunctions  j with eigenvalues within (� � ı; �+ ı).

Moreover, ifN0(�) = #f�`;j � �g is the counting function for the combined spectrum
of the domains Ω`, and N (�) is the spectral counting function for the original operator L
onM , then for � � � we have

(3-12) min(N̄ ; N0(� � ı)) � N (�) and min(N̄ ; N (� � ı)) � N0(�):

with the threshold N̄ such that 300 N̄ (Vmax/ı)
3
e�S/2 � 1: It follows that, e.g., the

fundamental eigenvalue can be identified with a precision ı ∼ e�S/6 and the fundamen-
tal eigenfunction is a linear combination of eigenfunctions of individual subregions with
eigenvalues roughly within a band

(
� � e�S/6; �+ e�S/6

)
.

Taking a limit as the domain becomes infinite, a potential of the type described above
induces Anderson localization, that is, the system almost surely exhibits dense pure point
spectrum and eigenfunctions are exponentially localized. The limiting case of our theo-
rems depends on the dynamics of the separation between the wells and on the probability
of resonances. We rigorously demonstrate the pattern of exponential decay between wells,
but do not yet discuss the probability that the eigenvalues of nearby wells are exponentially
close. A reasonable probabilistic conjecture in the spirit of Anderson localization would
say that almost surely for some family of disordered potentials V , the effective potential
1/u has a well-defined structure of walls and wells which are nearly independent.

Meanwhile, the idea of diagonalization of L based on the uncertainty principle (3-10)
has proved to be remarkably powerful. We have already compared our theorems with
various results from the 1980s designed to treat smooth potentials. A related step in this
direction, albeit one with different goals, was taken by Fefferman and Phong, who intro-
duced an improved uncertainty principle

(3-13)
∫
Ω

jrf j
2 + Vf 2 dx � C0

∫
Ω

m(x; V )f 2 dx for all f 2 C1
0 (Ω);
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where the maximal function ism(x; V ) = infr>0

{
1
r
: 1

rn�2

∫
B(x;r) V (y) dy � 1

}
: That

result is valid when V lies in the reverse Hölder class B n
2 (Rn), so

(∫
B
V

n
2 (x) dx

) 2
n �

CV

∫
B
V (x) dx on all balls B � Rn, and the constant C0 in (3-13) depends on the con-

stant CV in the B n
2 condition, that is, on the oscillations of V onM . Thus, if one tries to

diagonalize the operatorL onM starting from (3-13), the resulting correspondence would
invoke a large band of frequencies, and would produce considerably weaker bounds on
eigenfunctions. In some sense, the estimate withm(�; V ) treats all eigenfunctions as collec-
tions of bumps, and this typically becomes reasonably accurate only for large eigenvalues,
whereas the effective potential function 1/u is sensitive to the precise shape of low-energy
eigenfunctions.

Figure 3: Counting function for the eigenvalues
of a 1D Schrödinger operator with the old and new
Weyl-type estimates.

An important correlate of the uncer-
tainty principle is the Weyl law, which
asserts that as � ! 1, the counting
function for the eigenvalues of �∆ + V ,
N (�), behaves like the volume NV (�) :=∣∣f(�; x) : j�j2 + V (x) � �g

∣∣. Roughly speak-
ing, this holds because by the uncertainty
principle every eigenvalue contributes a
box of size at least 1 in (�; x) phase space.
The Fefferman-Phong uncertainty principle
improved this asymptotic result by develop-
ing a method to estimate the number of dis-
torted boxes of size 1 in fj�j2 + V (x) � �g

rather than simply using the volume of this
set. In many examples our uncertainty principle yields a significantly better estimate
for small eigenvalues. For instance, Figure 3 displays the data for a 1D Schrödinger
operator on an interval [0; 256] obtained by randomly assigning values between 0 and
1 on each interval of size 1. The graph displays the actual counting function N (in
black), the classical Weyl law estimate NV (in blue), and the estimate using the volume
N1/u(�) :=

∣∣f(�; x) : j�j2 + 1/u(x) � �g
∣∣ (in red) which treats 1/u rather than V as the

relevant potential. Asymptotically, when � is large, these all give approximately the same
result, but near the bottom of the spectrum the estimate with 1/u is far more accurate.
In the work of Arnold, David, Jerison, Mayboroda, and Filoche [2018a], we numerically
study this phenomenon and show that in fact the local minima of the effective potential,
properly normalized, already provide a good and computationally efficient approximation
to the eigenvalue distribution. A mathematical treatment of these results remains open.
However, these considerations, along with rigorous estimates of the exponential decay
outlined above, have already initiated a transformative change in the treatment of quantum
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localization effects in the physics of semiconductors and in the LED engineering (Filoche,
Piccardo, Wu, Li, Weisbuch, and Mayboroda [2017]).

3.3 Historical references. Anderson localization is a vast and celebrated subject and
we do not aim to provide a reasonable historical account. Among the major highlights in
concert with this paper one could mention the pivotal work of Anderson Anderson [1958],
the mathematical proofs for several types of random potentials, most notably, Aizenman
and Molchanov [1993], Fröhlich and Spencer [1983], and Bourgain and Kenig [2005],
and a general review of related progress in theoretical and experimental physics Abrahams
[2010].

Similarly, it would be impossible to survey related achievements in semiclassical anal-
ysis. Closest to our investigation are perhaps the works of Helffer and Sjöstrand [1984]
and Simon [1984].

Fefferman-Phong maximal principle discussed in Section 3.2 can be found in Feffer-
man [1983] and Shen [1994].

Picture credits. Figure 1 first appeared in Filoche andMayboroda [2009] and Figure 2,
(a), (c), in Arnold, David, Jerison, Mayboroda, and Filoche [2016].
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MEASURABLE EQUIDECOMPOSITIONS

Aඇൽඋගඌ Mගඍඁඣ

Abstract

The famous Banach–Tarski paradox andHilbert’s third problem are part of story of
paradoxical equidecompositions and invariant finitely additive measures. We review
some of the classical results in this area including Laczkovich’s solution to Tarski’s
circle-squaring problem: the disc of unit area can be cut into finitely many pieces that
can be rearranged by translations to form the unit square.

We also discuss the recent developments that in certain cases the pieces can be
chosen to be Lebesgue measurable or Borel: namely, a measurable Banach–Tarski
‘paradox’ and the existence of measurable/Borel circle-squaring.

1 Paradoxical equidecompositions and invariant measures

In the plane, any polygon can be transformed into any other polygon of the same area
by cutting it into polygonal pieces and recomposing these after applying translations and
rotations (isometries of the plane). This is the Bolyai–Gerwien–Wallace theorem from
the nineteenth century. The analogous problem about polyhedra in R3 became known
as Hilbert’s third problem in 1900. This was solved by Dehn by inventing an algebraic
invariant that shows that the unit cube cannot be cut into finitely many polyhedral pieces
that, after applying isometries, reassemble into the regular tetrahedron of unit volume.

It makes sense to study analogous questions where we may cut geometric objects into
arbitrary sets, not just polygons or polyhedra. For sets A; B 2 Rn let A Š B denote
that they are congruent; that is, there is a distance-preserving bijection from A to B , or
equivalently, there is an Euclidean motion (isometry) moving A to B .

Definition 1.1. We say that sets A; B 2 Rn are equidecomposable if there are finite
partitions A = [k

i=1Ai and B = [k
i=1Bi such that Ai Š Bi for every i = 1; : : : ; k.

The most famous result about equidecompositions is the following.
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Theorem 1.2 (Banach–Tarski paradox Banach and Tarski [1924]). If A; B � Rn, n � 3,
are bounded sets with non-empty interior, then A and B are equidecomposable.

Their result is based on earlier work of Hausdorff that essentially says that the unit
sphere in R3 is equidecomposable to the disjoint union of two unit spheres, modulo count-
able sets.

Theorem 1.3 (Hausdorff paradox, 1914). Let S2 be the unit sphere in R3. Then there are
partitions

S2 = A1 [ A2 [ C1 and S2 = A3 [ A4 [ A5 [ C2

where the sets Ai are congruent to each other and C1; C2 are countable.

Hausdorff’s proof is based on his discovery that SO(3), the group of rotations of S2,
contains a free subgroup of rank 2.

The interest in equidecompositions originates from questions about the existence of
certain invariant measures. In 1905 Vitali proved that there are no non-trivial isometry-
invariant � -additive measures defined on all subsets of R (that assign measure 1 to the
unit interval). Hausdorff raised the question whether at least finitely additive isometry-
invariant measures defined on all subsets of Rn exist. An immediate corollary of his
Theorem 1.3 is that the analogous question for S2 has a negative answer. His question,
for R and R2, was solved by Banach in 1923.

Theorem 1.4 (Existence of Banach measures in R and R2 Banach [1923].). In R and
R2 the Lebesgue measure can be extended to all subsets as an isometry-invariant finitely
additive measure.

An immediate corollary of this theorem is that if two Lebesgue measurable setsA; B �

R or R2 are equidecomposable, then they must have equal Lebesgue measure. Similarly,
the Banach–Tarski paradox immediately implies that there are no non-trivial isometry-
invariant finitely additive measures defined on all subsets of Rn for n � 3 (that assign
positive and finite measure to the unit cube).

So clearly, the existence of paradoxical equidecompositions imply the non-existence
of invariant measures. It is a fundamental theorem of Tarski that the other direction holds
as well in a very general setting.

Definition 1.5. Assume that a group G acts on a set X . We say that A; B � X are G-
equidecomposable if there are finite partitions A = [k

i=1Ai and B = [k
i=1Bi such that,

for each i , Bi = gi (Ai ) for some gi 2 G.

Theorem 1.6 (Tarski 1929). Assume that a group G acts on a set X and A � X . Then
there is a G-invariant finitely additive measure � defined on all subsets of X satisfying
�(A) = 1 if and only if A cannot be written as the union of disjoint sets A0; A00 such that
A is G-equidecomposable to both A0 and A00.
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1.1 Remark on amenability. The Banach–Tarski paradox holds inRn for n � 3, while
Banach measures exist in R and R2. This contrast was better understood after von Neu-
mann (1929) studied the behaviour of the isometry groups of these spaces. A group G is
called amenable if there is a finitely additive probability measure � defined on all subsets
of G that is left invariant under the action of G on itself:

�(
A) = �(A) for every A � G; 
 2 G:

He proved that the isometry group of R and R2 are amenable (in fact, solvable, and as
he proved, every solvable group is amenable), whereas the isometry group of Rn (n � 3)
and SO(3) are not amenable.

When G is amenable, the existence of G-invariant measures carries to spaces X on
which G acts.

Theorem 1.7 (Mycielski [1979]). Assume that an amenable group G is acting on a set
X , and let � be a G-invariant finitely additive measure defined on a G-invariant algebra
A of subsets of X . Then � can be extended to be a G-invariant finitely additive measure
defined on all subsets of X .

1.2 Equidecompositions using sets of the Baire property. Recall that a set A � Rn

is meager (or of the first Baire category) if it is a union of countably many nowhere dense
sets. A set is said to have the Baire property if it is the symmetric difference of an open
set and a meager set. (All Borel sets have the Baire property.) A set A is called Jordan
measurable if it is bounded and the boundary @A has Lebesgue measure zero. Its Jordan
measure is the same as its Lebesgue measure.

Marczewski proved an analogue of Banach’s Theorem 1.4.

Theorem 1.8 (Existence of Marczewski measures in R and R2). In R and R2 there is an
isometry-invariant finitely additive measure � defined on all subsets such that � extends
the Jordan measure and vanishes on meager sets.

Marczewski posed the question, in 1930, whether the same holds inRn, for n � 3. This
was unsolved until 1992 when Dougherty and Foreman proved that these measures cannot
exist in higher dimensions. In fact, they proved the striking result that the Banach–Tarski
paradox works with pieces that are Baire measurable.

Theorem 1.9 (Dougherty and Foreman [1992, 1994]). Let n � 3. The unit ball in Rn

can be equidecomposed to the union of two disjoint unit balls by sets that have the Baire
property.
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The underlying statement is that a dense open subset of the unit ball is equidecompos-
able by open pieces to a dense open subset of the union of two disjoint unit balls. The-
orem 1.9 is then obtained by “combining” this equidecomposition with the one given by
the Banach–Tarski paradox restricted to a suitable meager set.

1.3 The Banach–Ruziewicz problem and the measurable Banach–Tarski paradox.
In this sectionwe consider finitely additivemeasures that are defined only on the � -algebra
of Lebesgue measurable sets, not for all subsets of Rn.

Question 1.10 (Banach–Ruziewicz problem). Let Sn�1 � Rn be the unit sphere.

1. Assume that � is a rotation invariant finitely additive probability measure defined
on Lebesgue measurable sets of Sn�1. Does � necessarily coincide with the nor-
malized Lebesgue measure?

2. Assume that� is an isometry invariant finitely additive measure defined on bounded
Lebesgue measurable sets of Rn, assigning measure 1 to the unit cube. Does �

necessarily coincide with the Lebesgue measure?

For S1, R and R2, the questions have a negative answer. These easily follow from
the existence of Marczewski measures � on R and R2 (Theorem 1.8), as � differs from
Lebesgue measure on meager sets of positive Lebesgue measure.

On the other hand, for n � 3, the answers to both questions are positive. This was
independently proved by Margulis [1980] and Sullivan [1981] for n � 5 in 1980 and then
by Drinfel’d [1984] for n = 2; 3 in 1984. The proofs rely on Kazhdan’s property (T) and
the existence of a spectral gap for certain averaging operators, see Section 2 for details.

The Banach–Ruziewicz problem also has a connection to paradoxical equidecomposi-
tions. The following theorem can be regarded as the measurable version of the Banach–
Tarski paradox. It is easy to see that it implies the positive answers to Question 1.10 for
n � 3.

Theorem 1.11 (Grabowski, Máthé, and Pikhurko [2016]). Let Sn�1 � Rn be the unit
sphere, and let n � 3.

1. Let A; B � Sn�1 be measurable sets with non-empty interior and equal Lebesgue
measure. Then A is equidecomposable to B using rotations withmeasurable pieces.

2. Let A; B � Rn be bounded measurable sets with non-empty interior and equal
Lebesgue measure. Then A is equidecomposable to B with measurable pieces.

The proof is based on work by Lyons and Nazarov [2011], Elek and Lippner [2010]
and the spectral gap results of Margulis, Sullivan and Drinfeld. We review this proof in
detail in Section 2.
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1.4 Tarski’s circle-squaring problem.

Question 1.12 (Tarski’s circle-squaring problem, 1925). Are the disc and a square of the
same area equidecomposable?

Dubins, Hirsch, and Karush [1963] proved in 1963 that circle-squaring is not possible
by pieces that are Jordan domains (that is, topological discs), even if their boundaries can
be ignored.

In 1985 Gardner proved that circle-squaring is not possible if the pieces are arbitrary
but they are moved by isometries that generate a locally discrete group. In fact, he proved
the following theorem.

Theorem 1.13 (Gardner [1985]). Let G be a locally discrete group of isometries of Rn.
If a convex polytope and a convex set in Rn are G-equidecomposable, then they are G-
equidecomposable with convex pieces.

Finally, in 1990, Tarski’s circle-squaring problem was solved by Laczkovich in the
affirmative.

Theorem 1.14 (Laczkovich [1990]). The disc is equidecomposable to a square of the
same area; in fact, it is enough to use translations only.

His proof extends to more general sets, assuming a condition on their boundary. Recall
that the upper Minkowski (or box) dimension of a (non-empty bounded) set X � Rn is

dimM (X) = lim sup
ı!0

logNı(X)

� log ı

where Nı(X) denotes the minimum number of (grid) cubes of side ı that cover the set X .

Theorem 1.15 (Laczkovich [1992a]). Let A and B be bounded measurable sets in Rn

with equal positive Lebesgue measure such that dimM (@A) < n and dimM (@B) < n.
Then A and B are equidecomposable using translations; that is, there exist partitions
A = [k

i=1Ai , B = [k
i=1Bi and translation vectors xi 2 Rn such that Bi = Ai + xi .

The condition on the Minkowski dimension is satisfied, for example, when the sets are
bounded convex sets, or if they are Jordan domains of the plane with rectifiable boundaries
(of finite length).

The condition on the Minkowski dimension of the boundary is necessary. Laczkovich
[1993] proved that there exist intervals converging to zero such that their union A is not
equidecomposable to an interval. (The boundary of A is a sequence of points converging
to zero — such sequences can have Minkowski dimension one, and it has in this case.)

It has turned out recently that circle-squaring is possible with “nice” pieces as well.
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Theorem 1.16 (Grabowski, Máthé, and Pikhurko [2017]). Circle-squaring is possible
using translations with pieces that are Lebesgue measurable and have the Baire property.

This result was quickly superseded by a stronger result of Marks and Unger.

Theorem 1.17 (A. S. Marks and S. T. Unger [2017]). Circle-squaring is possible using
translations with Borel pieces.

In fact, both Grabowski, Máthé, and Pikhurko [2017] and A. S. Marks and S. T. Unger
[2017] prove that these equidecompositions exist not just for the disc and square, but
for any sets A, B satisfying the assumptions of Theorem 1.15. Both papers build on
Laczkovich’s work.

In the next section we discuss the connection of equidecompositions to perfect match-
ings in (infinite) bi-partite graphs. To briefly summarise these proofs: Theorem 1.15 is
proved by checking that Hall’s condition holds in the bi-partite graph implying the exis-
tence of a perfect matching; Theorem 1.16 considers (an algorithm involving) augmenting
paths to provide a measurable perfect matching; and Theorem 1.17 uses (Borel) flows to
find a Borel perfect matching.

We will discuss Laczkovich’s solution in Section 3, and the proof of Theorem 1.16 (for
measurable pieces) in Section 5. (For the elegant proof Theorem 1.17, see the original
paper A. S. Marks and S. T. Unger [ibid.].)

Remark 1.18. Before the results on the measurable and Borel circle-squaring, it was
already known that Laczkovich’s non-measurable circle-squaring implies circle-squaring
by measurable functions. This was proved independently by Wehrung and Laczkovich.
We review the exact statement and its proof in Section 4.

1.5 Equidecompositions and perfect matchings in bi-partite graphs. When we are
looking for equidecompositions, the best way is to first fix the finitely many isometries
that we are going to use to move the pieces, and then try to find the pieces. This way the
problem of finding equidecompositions reduces to finding perfect matchings in certain
bi-partite graphs. Let A; B be arbitrary subsets of a set X , and let H be a finite set of
bijections X ! X . (For example, X = Rn and H is a finite set of isometries.) To avoid
confusion later, let us assume that A and B are disjoint. Define the bi-partite graph

ΓH (A; B) = f(a; b) 2 A � B : b = f (a) for some f 2 H g:

Then the two sets of vertices of the bi-partite graph are A and B , and a vertex a 2 A is
connected to a vertex b 2 B by an edge if one of the bijections f 2 H move a to b.

Recall that a set M of edges of a bi-partite graph is a matching if no vertex is covered
by two edges in M, and it is a perfect matching if every vertex is covered exactly once.
The following is obvious.
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Lemma 1.19.

1. There is a perfect matching in the graph ΓH (A; B) if and only if A is equidecom-
posable to B by using bijections of H .

2. Let G act on X . Then A; B � X are G-equidecomposable if there is a finite set
H � G such that ΓH (A; B) contains a perfect matching.

As it is noted by Laczkovich [2002], the connection of equidecomposability and perfect
matchings was already known and used by König and Tarski.

Hall’s marriage theorem extend to the case of infinite bi-partite graphs if all degrees
are finite (Rado [1949]). In particular, we obtain the following.

Lemma 1.20. The graph ΓH (A; B) contains a perfect matching if and only if

(1-1) jN (U )j � jU j

for every finite set of vertices U , where N (U ) denotes the set of neighbours of U .

Therefore proving that Hall’s condition (1-1) holds is enough to prove the existence of
an equidecomposition. However, it does not yield measurable or Borel equidecomposi-
tions as Rado’s result relies on the Axiom of Choice.

Remark 1.21. For the full story of equidecompositions see Wagon’s excellent book on
the Banach–Tarksi paradox Wagon [1985] and the new edition by Tomkowicz and Wagon
[2016]. Another excellent reading is Laczkovich’s monograph on paradoxes in measure
theory Laczkovich [2002].

2 Measurable Banach–Tarski

In this section we sketch the proof of Theorem 1.11 Grabowski, Máthé, and Pikhurko
[2016] following Grabowski, Máthé, and Pikhurko [2014]. We focus on the technically
easier case of the sphere Sn�1. First we consider measurable equidecompositions modulo
nullsets.

Theorem 2.1. Let n � 3 and let A; B � Sn�1 be measurable sets with non-empty inte-
riors and of the equal Lebesgue measure. Then there are measurable sets A0 � A and
B 0 � B that are equidecomposable with measurable pieces such that A n A0 and B n B 0

have measure zero.

Sketch of proof. Let us assume, to simplify notation, that A and B are disjoint. We may
assume that A; B are Borel sets (as we can forget about nullsets). Let � denote the nor-
malised Lebesgue measure on Sn�1. The key ingredient of the proof is the following
spectral gap property.
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Lemma 2.2 (Margulis [1980], Sullivan [1981] for n � 5, Drinfel’d [1984] for n � 3).
There exist rotations 
1; : : : ; 
k 2 SO(n) and " > 0 such that the averaging operator
T : L2(Sn�1; �) ! L2(Sn�1; �) defined by

(Tf )(x) =
1

k

kX
i=1

f (
i (x)) (f 2 L2(Sn�1; �); x 2 Sn�1)

satisfies kTf k2 � (1 � ")kf k2 for every f 2 L2(Sn�1; �) with
R

f d� = 0.

It is easy to show that this lemma implies the following expansion property. For any
large constant C > 1 there is a finite set S of rotations such that for every measurable set
U � Sn�1 we have

(2-1) �
�

[
2S 
(U )
�

� min
�
C �(U ); 1 � C �1

�
:

SinceA andB have non-empty interior in the sphere, we can find a finite set of rotations
T such that Sn�1 = [
2T 
(A) = [
2T 
(B). Choose C so that C � 2jT j and C �1 �

�(A)/3 and with the obtained S = S(C ) define

R = T �1S [ S�1T = f��1
 : � 2 T; 
 2 Sg [ f
�1� : � 2 T; 
 2 Sg � SO(n):

Then R is closed under taking inverses, R�1 = R.
As in Section 1.5, consider the bi-partite graph Γ whose set of vertices is A [ B and

there is an edge between x 2 A and y 2 B if y = 
(x) for some 
 2 R. (We will also
use the notation xy 2 E(Γ) in this case.) Then the following expansion property holds.

Claim 2.3. Let U � A [ B and let N (U ) be the set of neighbours of U in G. Then

(2-2) �(N (U )) � min
�
2�(U ); 2

3
�(A)

�
:

Proof. It is enough to prove the claim when U � A or U � B . We may assume U � A.
Let S:U denote [f
(U ) : 
 2 Sg. By (2-1), we have �(S:U ) � 2jT j�(U ) or �(S:U ) �

1� �(A)/3. First assume the former. Since the sets �(B) (� 2 T ) cover the sphere, there
is � 2 T such that

2�(U ) � �(S:U \ �(B)) = �(��1(S:U ) \ B) � �(N (U )):

Now assume that �(S:U ) � 1 � �(A)/3. Then, for any � 2 T ,

2
3
�(B) � �(S:U \ �(B)) = �(��1(S:U ) \ B) � �(N (U )):
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AmatchingM in the graphΓ is calledBorel if there exist disjoint Borel subsetsA
 � A

indexed by 
 2 R such that

(2-3) M = [
2R

˚
fx; 
(x)g : x 2 A


	
:

Clearly, in order to finish the proof it is enough to find a Borel matching in Γ such
that the set of unmatched vertices has measure zero. As noted in Lyons and Nazarov
[2011, Remark 2.6], the expansion property (2-2) suffices for this. In the following, we
just outline their strategy.

Recall that an augmenting path for a matching M is a path which starts and ends at an
unmatched vertex and such that every second edge belongs to M. A Borel augmenting
family is a Borel subset U � A [ B and a finite sequence 
1; : : : ; 
l of elements of R

such that (i) for every x 2 U the sequence y0; : : : ; yl , where y0 = x and yj = 
j (yj �1)

for j = 1; : : : ; l , forms an augmenting path and (ii) for every distinct x; y 2 U the
corresponding augmenting paths are vertex-disjoint.

As shown by Elek and Lippner [2010], there exists a sequence (Mi )i2N of Borel match-
ings such that Mi admits no augmenting path of length at most 2i � 1 and Mi+1 can be
obtained from Mi by iterating the following at most countably many times: pick some
Borel augmenting family (U; 
1; : : : ; 
l) with l � 2i + 1 and flip (i.e. augment) the cur-
rent matching along all paths given by the family. See Elek and Lippner [ibid.] for more
details.

Our task now is to show, using Claim 2.3, that the measure of of vertices not matched by
Mi tends to zero as i ! 1 and that the sequence (Mi )i2N stabilises almost everywhere
(that is, for almost every vertex, the edge inMi containing the vertex stabilises as i ! 1).

Lemma 2.4. Let i � 1. Then the measure of vertices of A and B that are not covered by
Mi is at most

2�(A) � 2�b(i�1)/2c:

Before proving this lemma, let us finish the proof of the theorem.
As we noted before, Mi+1 arises from Mi by flipping augmenting paths of length at

most 2i +1 in a Borel way. When one such path is flipped, two vertices are removed from
the current set of unmatched vertices. Using this observation and the fact that each rotation
is measure-preserving, one can show that the set of vertices covered by the symmetric
difference Mi+14Mi has measure at most (2i + 2) times the measure of unmatched
vertices by Mi . We know from the lemma that this goes to 0 exponentially fast with i ;
in particular, it is summable over i 2 N. The Borel–Cantelli Lemma implies that the
sequence of matchings (Mi )i2N stabilises almost everywhere.

Proof of Lemma 2.4. Let us fix i � 1 and let X0 be the subset of A consisting of vertices
that are not matched by Mi . An alternating path of length l is a sequence of distinct



1740 ANDRÁS MÁTHÉ

vertices x0; : : : ; xl such that (i) x0 2 X0, (ii) for odd j we have xj xj+1 2 Mi , and
(iii) for even j we have xj xj+1 2 E(Γ) n Mi . Let Xj consist of the end-vertices of
alternating paths of length at most j . Clearly for all j we have Xj � Xj+1 and so, in
particular, �(Xj+1) � �(Xj ). For j � 1, let X 0

j = Xj n Xj �1.
It’s not difficult to show the following.

Claim 2.5. For every odd j � 2i � 1 we have �(X 0
j ) = �(X 0

j+1) and �(Xj \ B) �

�(Xj+1 \ A).

Proof of Claim. All vertices in X 0
j are covered by the matching Mi , for otherwise we

would have an augmenting path of length j . It follows that Mi gives a bijection between
X 0

j and X 0
j+1. If we take the sets A
 that represent Mi as in Equation (2-3), then the

partitions [
2R A
 and [
2R 
(A
 ) induce a Borel equidecomposition between X 0
j and

X 0
j+1, so these sets have the same measure, as required.
The second part (i.e. the inequality) follows analogously from the fact that Mi gives

an injection of Xj \ B into Xj+1 \ A (with X0 being the set of vertices missed by this
injection).

Let k be even, with 2 � k � 2i �2. LetU = Xk \A. We have thatN (U ) = Xk+1\B .
By Claim 2.3,

�(Xk+1 \ B) = �(N (U )) � min
�
2

3
�(A); 2�(U )

�
:

If �(Xk+1 \ B) �
2
3

�(A) then, by Claim 2, �(Xk+2 \ A) � �(Xk+1 \ B) �
2
3

�(A)

and thus
�(Xk+2) = �(Xk+1 \ B) + �(Xk+2 \ A) �

4

3
�(A):

Now, suppose that �(Xk+1 \ B) � 2�(U ). By applying Claim 2.5 for j = k � 1 we
obtain

�(X 0
k+1) = �(Xk+1 \ B) � �(Xk�1 \ B) � 2�(U ) � �(U ) = �(U ):

Again, by Claim 2, �(X 0
k+2

) = �(X 0
k+1

) and �(Xk) = �(Xk�1 \ B) + �(U ) � 2�(U ).
Thus

�(Xk+2) = �(Xk) + �(X 0
k+1) + �(X 0

k+2) � �(Xk) + 2�(U ) � 2�(Xk):

Thus the measure of Xk expands by factor at least 2 when we increase k by 2, unless
�(Xk+2) �

4
3

�(A). Also, this conclusion formally holds for k = 0, when X1 = N (X0).
By using induction, we conclude that, for all even k with 0 � k � 2i ,

(2-4) �(Xk) � min
�
4

3
�(A); 2k/2�(X0)

�
:
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In the same fashionwe defineY0 to be the subset ofB consisting of vertices notmatched
by Mi and let Yj consist of the end-vertices of alternating paths that start in Y0 and have
length at most j . As before, we obtain that the sets Yj satisfy the analogue of Equa-
tion (2-4).

The sets Xi�1 and Yi are disjoint for otherwise we would find and augmenting path of
length at most 2i � 1. It follows that they cannot each have measure more than �(A) =
1
2

�(A [ B). Since �(X0) = �(Y0) we conclude that

(2-5) �(X0 [ Y0) � 2�(A) �

�
1

2

�b(i�1)/2c

:

This proves the Lemma.

This finishes the proof of Theorem 2.1.

Theorem 2.6. Let n � 3 and let A; B � Sn�1 be measurable sets with non-empty inte-
riors and of the equal Lebesgue measure. Then there are measurable sets A0 � A and
B 0 � B that are equidecomposable with measurable pieces such that A n A0 and B n B 0

have measure zero.

Sketch of proof. The argument that leads to Claim 2.3 can be adopted to show that jN (X)j �

2 jX j for every finite subsetX ofA (and of B). By a result of Rado [1949], this guarantees
that Γ has a perfect matching. The (exact) measurable equidecomposition of A and B can
be obtained by modifying the equidecomposition from Theorem 2.1 on suitably chosen
sets of measure zero (containing AnA0 and B nB 0) where we use Rado’s theorem and the
Axiom of Choice. This way we obtain a measurable equidecomposition between A and
B .

Remark 2.7. The spectral gap property as stated in Lemma 2.2 fails in Rn. However, one
can argue that a suitable reformulation of the expansion property still holds Grabowski,
Máthé, and Pikhurko [2016], and that is enough to prove Theorem 1.11 for Rn, n �

3. Alternatively, one can use the notion of a local spectral gap Boutonnet, Ioana, and
Golsefidy [2017], see also Grabowski, Máthé, and Pikhurko [2016].

3 Laczkovich’s circle-squaring

The aim of this section is to decribe the main steps in Laczkovich’s proof of Tarski’s
circle-squaring problem, providing an equidecomposition between the disc and a square
(using non-measurable pieces).

Instead of looking at the problem in Rn, we may assume that A; B are subsets of the
torus T n = Rn/Zn. Indeed, we may assume that A; B � [0; 1/3]n, and in this case, any
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equidecomposition of A to B on the torus yields an equidecomposition of A to B in Rn,
with the same (number of) pieces. Let � denote the probability Lebesgue measure in T n.

Let d be a sufficiently large positive integer, and fix translation vectors v1; v2; : : : ; vd

2 T n that are linearly independent over the rationals and generate a dense subgroup (iso-
morphic to Zd ) of T n. (It will turn out later that a random choice of these vectors is
what we need.) Considering how the subgroup’s cosets intersect A and B we define, for
u 2 T n,

Av
u =

n
(k1; : : : ; kd ) 2 Zd : u + k1v1 + : : : kd vd 2 A

o
;

Bv
u =

n
(k1; : : : ; kd ) 2 Zd : u + k1v1 + : : : kd vd 2 B

o
:

The following lemma implies that if we can find bijections fromAv
u toBv

u that move ev-
ery point by at most a fixed distance, thenA andB are equidecomposable using translation
vectors that are integer linear combinations of the vectors vj .

Lemma 3.1. The following statements are equivalent for every constant C .

(i) A and B are equidecomposable using the translation vectors

VC =

(
dX

j=1

kj vj 2 T n : jkj j � C

)
:

(ii) For every u 2 T n there exist a bijection fu : Av
u ! Bv

u such that

kfu(k) � kk1 � C (k 2 Zd ):

Proof. Notice that A and B are equidecomposable using vectors w1; : : : ; wm if and only
if there is a bijection f : A ! B such that for every x 2 A, f (x) � x 2 fw1; : : : ; wmg.

So (i) is equivalent to saying that there is a bijection f : A ! B such that for every
x 2 A, f (x) � x 2 VC . On the other hand, it is easy to see that (ii) is equivalent to
saying that for every coset Cu of the group generated by the vectors vj there is a bijection
f : A \ Cu ! B \ Cu with f (x) � x 2 VC for x 2 A \ Cu.

Clearly, (i) implies (ii). For the opposite direction, observe that many choices of u

determine the very same coset. Still, we can pick exactly one u from each coset by the
Axiom of Choice. Therefore (ii) implies (i).

In order to prove Theorem 1.15, it is enough to prove that (ii) of Lemma 3.1 holds for
some choice of vectors v1; : : : ; vd . By the pointwise ergodic theorem, we can expect that
the densities of the sets Av

u and Bv
u in Zd will be the same (and equal to �(A) = �(B)).

This is obviously necessary for the existence of the bijections f v
u . However, we need
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to know much more about these sets than just the densities. In particular, we need fine
estimates on the number of points of Av

u and Bv
u inside any cube of Zd .

First consider the case that A = X � T n is a box, that is, the product of sub-intervals
of [0; 1). An application of the Erdős–Turán–Koksma inequality yields the following.

Lemma 3.2. Let v1; : : : ; vd 2 T n be uniformly distributed independent random vectors.
Then with probability 1, there is a constant c such that for every box X � T n, every
u 2 T n, every cube Q � Zd (containing more than 1 point) we have thatˇ̌̌

jXv
u \ Qj � �(X) jQj

ˇ̌̌
� c logn+d+1

jQj:

This lemma implies a similar discrepancy result (with weaker upper bounds) for sets
A of (upper) Minkowski dimension less than n.

Lemma 3.3. Let A � T n satisfy dimM (A) < n. If d is large enough, the following
is true. Let v1; : : : ; vd 2 T n be uniformly distributed independent random vectors. With
probability 1, there is a constant c (depending on A and the vectors vj ) such that for every
u 2 T n, every cube Q � Zd with side length N we have thatˇ̌̌

jAv
u \ Qj � �(A) jQj

ˇ̌̌
� cN d�2:

(Instead of the bound N d�2, any exponent less than d � 1 would be sufficient.)
Lemma 3.3 follows from Lemma 3.2 by a result of Niederreiter and Wills [1975]. The

outline of the proof is the following. For some ı > 0, cover A by grid cubes of side
ı. Consider those cubes that are in the interior of A. If we apply Lemma 3.2 to all of
these boxes, we cannot obtain a good bound on the discrepancy. Instead, we merge some
of these cubes into boxes in the following way. If two cubes (in the interior of A) share
an (n � 1)-dimensional face and have the same projection to the first n � 1 coordinates,
we merge them into the same box. Applying Lemma 3.2 to these boxes and using trivial
bounds for the grid cubes that intersect the boundary of A, we obtain a bound on the
discrepancy. The last step in the proof is to choose ı so that we minimize this bound on
the discrepancy.

The key and most difficult part in Laczkovich’s proof is the following theorem.

Theorem3.4 (Laczkovich [1992b]). LetA�; B� � Zd and suppose that there are˛; "; c >

0 such that ˇ̌̌
jA�

\ Qj � ˛jQj

ˇ̌̌
� cN d�1�";ˇ̌̌

jB�
\ Qj � ˛jQj

ˇ̌̌
� cN d�1�"

for every cube Q � Zd of side length N . Then there is a bijection f : A� ! B� such
that kf (k) � kk1 � C for every k 2 A�, where the constant C depends only on ˛; "; c

and d .
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By Lemma 1.19, the existence of this bijection f : A� ! B� is equivalent to the exis-
tence of a perfect matching in the bi-partite graph Γ(A�; B�) where a 2 A� is connected
to b 2 B� if ka � bk1 � C . The main part of Laczkovich’s proof is checking that Hall’s
condition is satisfied (for large enough C ).

Finally, it is easy to see that Theorem 3.4 and Lemma 3.3 imply Theorem 1.15.

Remark 3.5. Laczkovich’s estimate is that about 1040 pieces are enough to equidecom-
pose the disc to the square.

4 Circle-squaring with measurable functions

The following result was proved independently by Laczkovich [1996] and Wehrung
[1992]. See also Laczkovich [2002, Theorem 9.6].

Theorem 4.1. Suppose A and B are Lebesgue measurable sets in Rn. If A and B are
equidecomposable under isometries g1, …, gm from an amenable group G (for exam-
ple, they are all translations), then there are non-negative Lebesgue measurable functions
f1; : : : ; fm such that

1A = f1 + : : : + fm

1B = f1 ı g�1
1 + : : : + fm ı g�1

m :

(In such cases we say that A and B are continuously equidecomposable with Lebesgue
measurable functions f1; : : : ; fm.)

The proof is very short and enlightening so we include it here. The idea is that one
can approximate non-measurable sets by Lebesgue measurable functions by considering
convolutions with Lebesgue measurable mollifiers where the integration is with respect
to a (finitely additive) G-invariant measure defined on all subsets of Rn.

Proof. Since the Lebesgue measure is isometry invariant, Theorem 1.7 gives us a G-
invariant finitely additive measure � defined on all subsets of Rn that extends Lebesgue
measure. (For n = 1; 2, this measure � can be taken to be the Banach measure.)

By the assumption on equidecomposability, there is a partition A = A1 [ : : : [ Am

such that B = g1(A1) [ : : : [ gm(Am). Let B(x; r) denote the open ball around x of
radius r .

Consider the sequences of densities

f k
i (x) =

�(B(x; 1/k) \ Ai )

�(B(x; 1/k))



MEASURABLE EQUIDECOMPOSITIONS 1745

where k is a positive integer, and the denominator does not depend on x. The functions
f k

i are measurable, because they are Lipschitz. Notice that

mX
i=1

f k
i (x) =

�(B(x; 1/k) \ A)

�(B(x; 1/k))

and, since � is invariant under the isometries gi ,

mX
i=1

f k
i (g�1

i (x)) =
�(B(x; 1/k) \ B)

�(B(x; 1/k))
:

Take a subsequence (kj ) such that the weak-* limits exist:

fi = lim
j !1

f
kj

i :

We obtain measurable functions fi (defined almost everywhere) that satisfy

(4-1)
mX

i=1

fi = 1A

and

(4-2)
mX

i=1

fi ı g�1
i = 1B

almost everywhere (since A and B are Lebesgue measurable). We claim that one can
modify these functions on a nullset such that the equalities hold everywhere, using the
original equidecompositions. Indeed, consider a nullset that is closed under the countable
group generated by the isometries gi and contains the points where (4-1) or (4-2) fail or the
functions fi are not defined. On this nullset, redefine fi to be the characteristic function
of Ai .

5 Measurable circle-squaring

Theorem 5.1 (Grabowski, Máthé, and Pikhurko [2017]). Let A and B be bounded mea-
surable sets in Rn with equal positive Lebesgue measure such that dimM (@A) < n and
dimM (@B) < n. ThenA andB are equidecomposable using translations with measurable
pieces; that is, there exist partitions A = [k

i=1Ai , B = [k
i=1Bi and translation vectors

xi 2 Rn such that Bi = Ai + xi .
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(Note that under the same assumptions, A and B are equidecomposable with Borel
pieces by the result of A. S. Marks and S. T. Unger [2017].)

Note that it is enough to prove that A and B are equidecomposable up to nullsets with
measurable pieces. Indeed, having such an equidecomposition, we can extend it and mod-
ify it on a nullset (which is invariant under our translations) using Theorem 1.15 to obtain
a measurable equidecomposition of A to B with measurable pieces.

As in Section 3, we may assume that A; B � T n = Rn/Zn. We may also assume that
A and B are disjoint.

Definition 5.2. Given a finite set V = fv1; : : : ; vd g � T n and a positive integer C , let

VC =

(
dX

j=1

kj vj : jkj j � C

)
:

As in Section 1.5, consider the bi-partite graph

ΓVC
(A; B) = f(a; b) : a 2 A; b 2 B; b � a 2 VC g:

We may simply write Γ(A; B) when VC is clear from the context.

Similarly to Lemma 3.1, we have the following.

Lemma 5.3. For any finite set of vectors V = fv1; : : : ; vd g � T n and any constant C ,
the following are equivalent.

(i) A and B are equidecomposable with measurable pieces using translation vectors
from VC .

(ii) There exists a measurable bijection f : A ! B such that

f (x) � x 2 VC for every x 2 A:

In other words, there is a measurable perfect matching in ΓVC
(A; B).

Recall that Laczkovich’s proof of Theorem 1.15 relied on Hall’s and Rado’s theorem to
conclude the existence of a perfect matching in the graph ΓVC

. This graph has continuum
many connected components as every connected component is contained by a coset of the
subgroup generated by V . If there was a measurable set that intersected every coset in
exactly one point, then the same proof would yield a measurable equidecomposition. Of
course, such measurable set does not exist.

One of the ideas of the proof of Theorem 5.1 is to consider small Borel sets in T n that
intersect every coset in a sufficiently sparse but non-empty set, and use the points of these
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sparse sets as the origins of (local) coordinate systems in the cosets (that are isomorphic
to Zd ).

The measurable perfect matching in ΓVC
(to be precise, the measurable almost perfect

matching) is obtained by taking a limit of a sequence of measurable matchings that sta-
bilises almost everywhere. These matchings are provided by an algorithm that improves
our matchings by augmenting paths. The measurability of the matchings is an immediate
consequence of the fact that our algorithm is local: whether there is an edge (a; b) in the
i th matching only depends on how the sets A, B and the graph ΓVC

(A; B) look like in
the Ri neighbourhood of a (or b). Of course, Ri ! 1.

The existence of this algorithm and the matchings rely on sufficient conditions on the
discrepancy of the setsA andB in the cosets of V , similar to those needed by Laczkovich’s
proof. An extra ingredient that we need is the existence of short augmenting paths. We
summarise these tools below.

Definition 5.4. Given v = (v1; : : : ; vd ) 2 (T n)d , for p 2 Zd , let

hv; pi = v1p1 + : : : + vd pd 2 T n:

For a set P � Zd , let
hv; P i = fhv; pi : p 2 P g � T n:

When P is a product of intervals (i.e. sets of consecutive integers), we may refer to both
P and hv; P i as a rectangle.

Lemma 5.5. Fix any " > 0. Let d be sufficiently large and let v1; : : : ; vd be random
independent uniformly chosen vectors in T n. Then, with probability 1, there is a positive
integer C and c > 0 such that the following statements hold.

1. For any x 2 T n and any rectangle R � Zd with maximal side length N ,ˇ̌̌
jA \ (x + hv; Ri)j � jB \ (x + hv; Ri)j

ˇ̌̌
� cN d�1�":

2. Let R be a rectangle in Zd with maximal side length N . Then, for every x 2 T n,
there is a matching inside x + hv; Ri, that is, inside

ΓVC
(A \ (x + hv; Ri); B \ (x + hv; Ri))

such that at most cN d�1�" points are unmatched.

3. Let Q be any cube in Zd of side length N . Let M be a matching inside x + hv; Qi.
If there are points both in A and B that are unmatched by M inside x+ hv; Qi then
there is an augmenting path connecting two unmatched points of length at most N .
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Proofs of these (or similar) statements can be found in Grabowski, Máthé, and Pikhurko
[2017]. All these are generalizations and strengthenings of statements of Laczkovich
[1992b]. The third statement uses the fact that not only Hall’s condition

jN (X)j � jX j (X � A finite)

holds in the graph, but it holds relative to a large enough cube, moreover, it can be replaced
(essentially) by the stronger inequality

(5-1) jN (X)j � jX j + c0
j@X j � jX j + jX j

d�1
d :

Here @X can be understood as those points x of X for which x + V1 6� X . Note that the
exponent (d � 1)/d is optimal by the isoperimetric inequality. (To be correct, @X in (5-1)
should be replaced by boundary of a smoothened version of X .)

Corollary 5.6. Let Q be any cube in Zd of side length N . Let M be a matching inside
x + hv; Qi such that the number of unmatched points is t . Using augmenting paths we
can define a new matching M 0 such that only cN d�1�" points will be unmatched and that
jM4M 0j � tN .

Proof of Corollary 5.6. We can improve the matching by augmenting paths; combining
part Item 2. and Item 3. of Lemma 5.5 concludes the proof.

6 Open problems

Question 6.1 (Borel Banach–Tarski). Let n � 3. Let A; B 2 Rn be bounded Borel sets of
non-empty interior of equal Lebesgue measure. Is A equidecomposable to B using Borel
pieces?

Note that the answer is affirmative if A and B have nice boundaries by the theorem
of A. S. Marks and S. T. Unger [2017]; that is, if the boundaries have upper Minkowski
dimension less than n. (On the other hand, for n = 1; 2 the answer is negative. Laczkovich
[2003] gave examples of Jordan domains in the plane that are not even equidecomposable
with arbitrary pieces.)

The disc and the square are equidecomposable using Borel pieces, in particular, with
pieces that are both Lebesgue and Baire measurable. However, in some sense, the “true”
combination of Lebesgue and Baire measurability is Jordan measurability. Recall that a
bounded set is Jordan measurable if its boundary has Lebesgue measure zero.

Question 6.2. Is it possible to equidecompose the disc to a square by Jordan measurable
pieces?

Note that the result of Dubins, Hirsch, and Karush [1963] says that the pieces cannot
be Jordan domains.
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HIGHER ORDER COMMUTATORS AND MULTI-PARAMETER
BMO

Sඍൾൿൺඇංൾ Pൾඍൾඋආංർඁඅ

Abstract
In this article we highlight the interplay ofmulti-parameter BMO spaces and bound-

edness of corresponding commutators. In a variety of settings, we discuss two-sided
norm estimates for commutators of classical singular operators with a symbol function.
In its classical form, this concerns a theorem by Nehari, factorisation of Hardy space,
Hankel and Toeplitz forms. We highlight recent results in which a characterization
of Lp boundedness of iterated commutators of multiplication by a symbol function
and tensor products of Riesz and Hilbert transforms is obtained, completing a theory
on characterisation of BMO spaces begun by Cotlar, Ferguson and Sadosky. In the
light of real analysis, we discuss results in a more intricate situation; commutators of
multiplication by a symbol function and Calderón-Zygmund or Journé operators. We
show that the boundedness of these commutators is also determined by the inclusion
of their symbol function in the same multi-parameter BMO class. In this sense the
Hilbert or Riesz transforms or their tensor products are a representative testing class
for Calderón-Zygmund or Journé operators.

1 Introduction

A classical result of Nehari Nehari [1957] studies L2 boundedness of Hankel operators
with anti-analytic symbol b mapping analytic functions into the space of anti-analytic
functions by

Hb : f 7! P�bf:

A BMO condition on the symbol characterises boundedness. This theorem has an equiv-
alent formulation in terms of the boundedness of the commutator of the multiplication
operator with symbol function b and the Hilbert transform

[H; b] = Hb � bH:

MSC2010: primary 42B35; secondary 47B35, 47B38, 30H35.
Keywords: Iterated commutator, Journé operator, multi-parameter BMO, Hankel operator, Toeplitz operator.
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To see this correspondence one uses that up to a constant H = P+ � P� and rewrites
the commutator as a sum of Hankel operators with orthogonal ranges. One writes the
two-sided inequality on the operator norm

kbkBMO . k[H; b]kL2!L2 . kbkBMO :

This two-sided estimate uses the classical factorisation into inner and outer functions.
Notably, the lower commutator estimate relies heavily on its corollary, a factorisation the-
orem of functions in the complex Hardy space H 1 into a product of two H 2 functions.
Here is a sketch of the argument showing necessity and sufficiency of a BMO condition
for the boundedness of Hb .

kHbk = sup
kgkH2

�
=1

sup
kf kH2=1

j(Hbf; g)j

= sup
kgkH2

�
=1

sup
kf kH2=1

j(P�(((P� + P+)b)f ); g)j

= sup
kgkH2

�
=1

sup
kf kH2=1

j(P�((P�b)f ); g)j

= sup
kgkH2

�
=1

sup
kf k

H2
+
=1

j((P�b)f; g)j

= sup
kgkH2=1

sup
kf kH2=1

j(P�b; f̄ g)j

= sup
kgkH2=1

sup
kf kH2=1

j(b; f̄ g)j:

Using H 1 � BMO duality and factorisation of Hardy space for the necessity, we get the
characterisation of BMO.

LetH 2(T 2) denote the Banach space of analytic functions inL2(T 2): In Ferguson and
Sadosky [2000], Ferguson and Sadosky study the symbols of bounded ‘big’ and ‘little’
Hankel operators on the bidisk. Big Hankel operators are those which project on to a
‘big’ subspace of L2(T 2) - the orthogonal complement of H 2(T 2); while little Hankel
operators project onto the smaller subspace of complex conjugates of functions inH 2(T 2)

- or anti-analytic functions. The corresponding commutators are

[H1H2; b];

and
[H1; [H2; b]]
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where b = b(x1; x2) and Hk are the Hilbert transforms acting in the kth variable. Fergu-
son and Sadosky show that the first commutator is bounded if and only if the symbol b

belongs to the so called little BMO class, consisting of those functions that are uniformly
in BMO in each variable separately. Their argument is based on a classical fact on Toeplitz
operators. They also show that if b belongs to the product BMO space, as identified by
Chang and Fefferman Chang and Fefferman [1985], Chang and Fefferman [1980] then
the second commutator is bounded. The fact that boundedness of the second commutator
implies that b is in product BMO was shown in the groundbreaking paper of Ferguson
and Lacey Ferguson and Lacey [2002]. The absence of factorisation theorems in this
multi-parameter setting lead the authors to study two-sided commutator estimates - a very
difficult task, considering the complicated structure of the product BMO space. The set
up still has Hankel operators at heart, but the techniques to tackle this question in several
parameters are very different and have brought valuable new insight and use to existing
theories, for example in the interpretation of Journé’s lemma Journé [1986] in combina-
tion with Carleson’s example Carleson [1974]. Lacey and Terwilliger extended this result
to an arbitrary number of iterates in Lacey and Terwilleger [2009], requiring thus, among
others, a refinement of Pipher’s iterated multi-parameter version Pipher [1986] of Journé’s
lemma. One can then deduce a weak factorisation theorem on the bi-disk. Commutators
of the mixed type whose base case is for example

[H1; [H2H3; b]]

were considered by Ou, Strouse and the author in Yumeng, Petermichl, and Strouse [2016].
One classifies boundedness of these commutators by a little product BMO class: those
functions b = b(x1; x2; x3) so that b(�; x2; �) and b(�; �; x3) are uniformly in product BMO.
Similar results can be obtained for any finite iteration of any finite tensor product of Hilbert
transforms. The proof for this Hilbert transform case is a simple application of Toeplitz
operators, if one admits the work by Ferguson, Lacey and Terwilliger.

The main focus in this note however, is in the setting of real analysis, where Hankel
and Toeplitz operators cannot be used as a tool.

When leaving the notion of Hankel operators behind, their interpretation as commuta-
tors allow for natural generalizations. Through the use of completely different real variable
methods, Coifman, Rochberg and Weiss Coifman, Rochberg, and Weiss [1976] extended
Nehari’s one-parameter theory to real analysis in the sense that the Hilbert transforms were
replaced by Riesz transforms. The missing features of the Riesz transforms include ana-
lytic projection on one hand as well as strong factorisation theorems of analytic function
spaces.
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The authors in Coifman, Rochberg, and Weiss [1976] obtained sufficiency, i.e. that a
BMO symbol b yields an L2(Rd ) bounded commutator for certain more general, convo-
lution type singular integral operators. For necessity, they showed that the collection of
Riesz transforms was representative enough:

kbkBMO . sup
1�j�d

k[Rj ; b]k2!2:

Notably this lower bound was obtained somewhat indirectly through use of spherical har-
monics in combination with the mean oscillation characterisation of BMO in one param-
eter.

These one-parameter results in Coifman, Rochberg, and Weiss [ibid.] were extended
to the multi-parameter setting in the work by Lacey, Pipher, Wick and the author Lacey,
Petermichl, Pipher, and Wick [2009]. Both the upper and lower estimate have proofs very
different from those in one parameter. For the lower estimate, themethods in Ferguson and
Lacey [2002] or Lacey and Terwilleger [2009] find an extension to real variables through
operators closer to the Hilbert transform than the Riesz transforms (cone operators) and
an indirect passage on the Fourier transform side.

In a recent paper Dalenc and Ou [2014] it is shown that iterated commutators formed
with any arbitrary Calderón-Zygmund operators are bounded if the symbol belongs to
product BMO.

Ou, Strouse and the author considered in Yumeng, Petermichl, and Strouse [2016] all
generalisations of the base case

[R1;j1 ; [R2;j2R3;j3 ; b]];

whereRk;jk
are Riesz transforms of direction jk acting in the kth variable. We show neces-

sity and sufficiency of the little product BMO condition when the Rk;jk
are allowed to run

through all Riesz transforms by means of a two-sided estimate. While in the Hilbert trans-
form case, Toeplitz operators with operator symbol arise naturally, using Riesz transforms
in Rd as a replacement, there is an absence of analytic structure and tools relying on ana-
lytic projection or orthogonal spaces are not readily available. We again overcome part of
this difficulty through the use of Calderón-Zygmund operators whose Fourier multiplier
symbols are adapted to cones. In this situation, the Toeplitz forms create an additional
difficulty which is overcome through an intermediate passage and the construction of a
multi-parameter cone operator not of tensor product type.

Further it was shown in work by Holmes, Ou, Strouse, Wick and the author Yumeng,
Petermichl, and Strouse [ibid.], Holmes, Petermichl, andWick [2018] that the tensor prod-
ucts of Riesz transforms in the upper estimate can be replaced by Journé operators, these
are singular integral operators of the product type.
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Much like discussed in the base cases of the results Coifman, Rochberg, and Weiss
[1976], Lacey, Petermichl, Pipher, and Wick [2009], boundedness of commutators involv-
ing Hilbert or Riesz transforms are a testing condition. If these commutators are bounded,
the symbol necessarily belongs to a BMO, little BMO, product BMO or little product
BMO. Then, iterated commutators using a much more general class than that of tensor
products of Riesz transforms are also bounded: commutators withCalderón-Zygmund or
Journé operators.

2 Aspects of Multi-Parameter Theory

This section contains some review on Hardy spaces in several parameters as well as some
definitions and lemmas relevant to us.

2.1 Chang-Fefferman BMO. We describe the elements of product Hardy space theory,
as developed byChang and Fefferman aswell as Journé. By this wemean theHardy spaces
associated with domains like the poly-disk or R

Ed :=
Nt

s=1 Rds for Ed = (d1; : : : ; dt ).
While doing so, we typically do not distinguish whether we are working on Rd or T d . In
higher dimensions, the Hilbert transform is usually replaced by the collections of Riesz
transforms.

The (real) one-parameter Hardy space H 1
Re(R

d ) denotes the class of functions with the
norm

dX
j=0

kRj f k1

where Rj denotes the j th Riesz transform or the Hilbert transform if the dimension is one.
Here and below we adopt the convention that R0, the 0th Riesz transform, is the identity.
This space is invariant under the one-parameter family of isotropic dilations, while the
product Hardy space H 1

Re(R
Ed ) is invariant under dilations of each coordinate separately.

That is, it is invariant under a t parameter family of dilations, hence the terminology ‘multi-
parameter’ theory. One way to define a norm on H 1

Re(R
Ed ) is

kf kH1 ∼
X

0�jl�dl

k

tY
l=1

Rl;jl
f k1:

Rl;jl
is the Riesz transform in the j th

l
direction of the l th variable, and the 0th Riesz trans-

form is the identity operator.
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The dual of the real Hardy space H 1
Re(R

Ed )� is BMO(R Ed ), the t -fold product BMO
space. It is a theorem of S.-Y. Chang and R. Fefferman Chang and Fefferman [1985],
Chang and Fefferman [1980] that this space has a characterization in terms of a product
Carleson measure.

Define

(1) kbkBMO(R Ed )
:= sup

U�R Ed

0B@jU j
�1

X
R�U

X
E"2sig Ed

j(b; wE"R)j
2

1CA
1/2

:

Here the supremum is taken over all open subsets U � R
Ed with finite measure, and we

use a wavelet basis wE"R adapted to rectangles R = Q1 �� � ��Qt , where each Ql is a cube.
The superscript E" reflects the fact that multiple wavelets are associated to any dyadic cube,
see Lacey, Petermichl, Pipher, and Wick [2009] for details. In this note most often we
use the well known Haar wavelet basis. The fact that the supremum admits all open sets
of finite measure cannot be omitted, as Carleson’s example shows Carleson [1974]. This
fact is responsible for some of the difficulties encountered when working with this space.

Theorem 2.1 (Chang, Fefferman). We have the equivalence of norms

kbk
(H1

Re(R
Ed ))� ∼ kbkBMO(R Ed )

:

That is, BMO(R Ed ) is the dual to H 1
Re(R

Ed ).

This BMO norm is invariant under a t -parameter family of dilations. Here the dila-
tions are isotropic in each parameter separately. See also Fefferman [1979] and Fefferman
[1987].

2.2 Little BMO. Following Cotlar and Sadosky [1990] and Ferguson and Sadosky
[2000], we review the space little BMO, often written as ‘bmo’. A locally integrable
function b : R

Ed = Rd1 � : : : � Rds ! C is in bmo if and only if

kbkbmo = sup
EQ=Q1�����Qs

j EQj
�1

Z
EQ

jb(Ex) � b EQj < 1

Here the Qk are dk-dimensional cubes and b EQ denotes the average of b over EQ.
It is easy to see that this space consists of all functions that are uniformly in BMO

in each variable separately. Let Exv̂ = (x1; : : : :; xv�1; �; xv+1; : : : ; xs). Then b(Exv̂) is a
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function in xv only with the other variables fixed. Its BMO norm in xv is

kb(Exv̂)kBMO = sup
Qv

jQvj
�1

Z
Qv

jb(Ex) � b(Exv̂)Qv
jdxv

and the little BMO norm becomes

kbkbmo = max
v

fsup
Exv̂

kb(Exv̂)kBMOg:

On the bi-disk, this becomes

kbkbmo = maxfsup
x1

kb(x1; �)kBMO; sup
x2

kb(�; x2)kBMOg;

the space discussed in Ferguson and Sadosky [ibid.]. All other cases are an obvious gen-
eralisation, at the cost of notational inconvenience.

2.3 Little product BMO. In this section we define a BMO space which is in between
little BMO and product BMO. As mentioned in the introduction, we aim at characterising
BMO spaces consisting for example of those functions b(x1; x2; x3) such that b(x1; �; �)

and b(�; �; x3) are uniformly in product BMO in the remaining two variables.

Definition 2.2. Let b : R
Ed ! C with Ed = (d1; � � � ; dt ). Take a partition I = fIs : 1 �

s � lg of f1; 2; :::; tg so that [̇1�s�lIs = f1; 2; :::; tg. We say that b 2 BMOI(R
Ed ) if for

any choices v = (vs); vs 2 Is , b is uniformly in product BMO in the variables indexed by
vs . We call a BMO space of this type a ‘little product BMO’. If for any Ex = (x1; :::; xt ) 2

R
Ed , we define Exv̂ by removing those variables indexed by vs , the little product BMO norm

becomes
kbkBMOI

= max
v

fsup
Exv̂

kb(Exv̂)kBMOg

where the BMO norm is product BMO in the variables indexed by vs .

When Ed and Es have dimension one, the definition recovers that of little BMO. When
Ed and Es have dimension t > 1 and Es = E1, then we recover the t -parameter product BMO
space in R

Ed . The following simple example captures the essence of the intermediary
spaces: BMO(1;1)�(2;1) is a class of functions defined on (R1�R1)�(R1) and is uniformly
in two-parameter product BMO in variables 1 and 3 as well as 2 and 3.
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3 Upper Bounds

In this section we describe upper norm estimates for commutators in terms of BMO norms
of their symbol.

3.1 Hilbert transform. The easiest such estimate is

k[H; b]k2!2 � C kbkBMO :

There are very simple proofs of this fact, using the projection structure of the Hilbert trans-
form. Let us revisit a different proof using the seminal idea of Haar shift, a strategy started
by the author in Petermichl [2000] to address a question by Pisier on the dimensional
growth of Hankel operators with matrix symbol. We will see that this proof restricted to
the scalar case enjoys the generalisations we are seeking. For historic reasons we detail
the object in its original form.

We will be using a variety of dyadic grids in R. The standard dyadic grid, starting at 0
with intervals of length 1 � 2n, will be called D0;1.

D0;1 = f2�k([0; 1) + m) : k; m 2 Zg:

Then h
0;1
J is the Haar function for J 2 D0;1, namely

h
0;1
J = 1/

p
jJ j (�J�

� �J+
)

where J� is the left half of J and J+ the right half of J . We obtain a variation of D0;1 by
first shifting the starting point 0 to ˛ 2 R and secondly choosing intervals of length r � 2n

for positive r . The resulting grid is called D˛;r , and the corresponding Haar functions
h˛;r are chosen so that they are still normalized in L2. We often omit the indices ˛; r in
our notations for the Haar functions. For f 2 L2(R) we have

f (x) =
X

I2D˛;r

(f; hI )hI (x) 8˛ 2 R; r > 0:

We define for such ˛; r a dyadic shift operator S˛;r by

(S˛;rf )(x) =
X

I2D˛;r

(f; hI )(hI�
(x) � hI+

(x)):
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Its L2 operator norm is
p
2 and its representing kernel is

(2) K˛;r(t; x) =
X

I2D˛;r

hI (t)(hI�
(x) � hI+

(x)):

Through elementary methods one can show (see Petermichl [ibid.])

Lemma 3.1. For x ¤ t let

K(t; x) = lim
L!1

1

2 logL

Z L

1/L

lim
R!1

1

2R

Z R

�R

K˛;r(t; x) d˛
dr

r
:

The limits exist pointwise and the convergence is bounded for jx � t j � ı for every ı > 0

and K(t; x) = c0/(t � x) for some c0 > 0.

Notice that 1/(t �x) is, up to a constant, the kernel of the Hibert transform. This funda-
mental lemma allows one to estimate commutators with Haar shifts instead of the Hilbert
transform. The latter is the correct tool to capture the cancellation of the commutator.

We show that for all ˛ 2 R and for all r > 0

(3) kS˛;rb � bS˛;r
kL2!L2 � C kbkBMO :

In the following ˛; r will be omitted because all estimates do not depend on the dyadic
grid. Consider formally

(4) b(x) =
X
I2D

(b; hI )hI (x)

and

(5) f (x) =
X
I2D

(f; hI )hI (x):

By multiplying the sums (4) and (5) formally one gets bf = Ab(f ) + Πb(f ) + Rb(f ),
where

Ab(f ) =
X
I2D

(b; hI )(f; hI )h
2
I
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Πb(f ) =
X
I2D

(b; hI )hf iI hI

Rb(f ) =
X
I2D

hbiI (f; hI )hI

The expressions can be made meaningful in a standard way. Hence

Sb � bS = SAb � AbS + SΠb � ΠbS + SRb � RbS

and we can estimate the terms separately.
The term Πb is a paraproduct with symbol b and kΠbkL2!L2 � C kbkBMO . Also

A�B = ΠB� , so this term is bounded. We estimate the last term as commutator, noting that

SRbf � RbSf = 1/2
X

I

(hbiI+
� hbiI�

)(f; hI )(hI�
� hI+

):

Observe that j(hbiI+
� hbiI�

)j . kbkBMO . We have therefore shown that
k[H; b]k2!2 . kbkBMO .

3.2 Calderón-Zygmund operators. The idea of Haar shift and representation theo-
rems for singular operators has found deep generalisations. To obtain a proof of the esti-
mate

k[T; b]k2!2 � C kbkBMO

with T a Calderón-Zygmund operator that will generalise to the iterated case, we use a fa-
mous theorem by Hytönen Hytönen [2012]. The original argument in Coifman, Rochberg,
and Weiss [1976] does not generalise to the multi-parameter case.

Recall that a Calderón-Zygmund operator T acts on test functions and has a kernel
representation for x … suppf

Tf (x) =

Z
Rd

K(x; y)f (y)dy:

Here the kernel K satisfies the standard estimates such as for example

jK(x; y)j �
c0

jx � yjd

jK(x; y) � K(x0; y)j + jK(y; x) � K(y; x0)j �
c1

jx � yjd

�
jx � x0j

jx � yj

�ı
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for all x; x0 with jx � yj > 2[x � x0j for some 0 < ı � 1. We say that T is bounded if in
addition it acts boundedly in L2.

To obtain a representation formula for T , consider instead of simple translates and
dilates of the dyadic grid as in the Hilbert transform case, the randomised grid due to
Nazarov, Treil, and Volberg [2003] with parameter ! 2 (f0; 1gd )Z and

I
�

+ ! = I +
X

j :2�j <`(I )

2�j !j

where I belongs to the standard dyadic grid and `(I ) is the side length. The space is
endowed with the natural probability measure.

A dyadic shift with parameters i; j 2 N is an operator Sf =
P

K2D AKf where

AKf =
X

I;J2D;I;J�K;`(I )=2�i `(K);`(J )=2�j `(K)

aIJK(f; hI )hJ

with coefficients jaIJK j �
(jI jjJ j)1/2

jKj
. It is called cancellative if all Haar functions in the

representation are cancellative, otherwise non-cancellative.
Let T be a bounded Calderón-Zygmund operator. Then it was proved by Hytönen that

it has an expansion for test functions f; g

(g; Tf ) = cT E!

1X
i;j=0

�(i; j )(g; S i;j
! f )

where S
i;j
! is a dyadic shift of parameters i; j on the dyadic system D! . Except possibly

S
0;0
! all are cancellative. � has exponential decay with respect to the complexity parame-

ters i; j with some dependence on the characteristics of the operator T .
This representation, along with careful consideration allows one to obtain the upper

estimate
k[T; b]k2!2 � C kbkBMO

through the use of paraproducts. The specificity of this proof is its applicability to the
more difficult multi-parameter situation. One obtains the theorem below

Theorem 3.2. (Dalenc-Ou) Let us consider R
Ed with Ed = (d1; : : : ; dt ). Let b 2 BMO and

let Ts denote a Calderón-Zygmund operator acting on function defined on Rds . Then we
have the estimate

k[T1; : : : [Tl ; b] : : :]k
L2(R Ed ) -

. kbkBMO;

where on the right hand side the product BMO norm stands.
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This estimate was first proved under a restriction on the kernel by Coifman, Rochberg,
and Weiss [1976] in the one-parameter case and by Lacey, Petermichl, Pipher, and Wick
[2009] and the author in the multi-parameter case. Through the use of Haar shift this last
proof was simplified considerably and restrictions on the kernel were removed by Dalenc
and Ou [2014]. It is now known that this estimate also holds in Lp for 1 < p < 1. These
recent proofs make use of multi-parameter paraproducts and estimates at their endpoint,
considered by Journé Journé [1985] and Muscalu, Pipher, Tao, and Thiele [2004] and
Muscalu, Pipher, Tao, and Thiele [2006].

For j = 1; 2; 3 let f'j;R j R 2 D Ed g be three families of functions adapted to the
dyadic rectangles in D Ed (we consider here products of cancellative or non-cancellative
Haar functions, the actual theorems hold in greater generality). We say 'j;R has zero in
a coordinate if the corresponding Haar function in that coordinate is cancellative. Then
define

B(f1; f2) :=
X

R2D Ed

(f1; '1;R)

jRj1/2
(f2; '2;R)'3;R:

Theorem 3.3. Assume that the family f'1;Rg has zeros in all coordinates. For every other
coordinate s, assume that there is a choice of j = 2; 3 for which the the family f'j;Rg has
zeros in the sth coordinate. Then the operator B enjoys the property

B : BMO � Lp
�! Lp ; 1 < p < 1 :

3.3 Journé operators. To pass to the little BMO case, we observe that the generality
of the upper estimate holds for Calderón-Zygmund operators of the multi-parameter type
(or Journé operators).

The first generation of multi-parameter singular integrals that are not of tensor product
type goes back to Fefferman [1981] and was generalised by Journé in Journé [1985] to the
non-convolution type in the framework of his T (1) theorem in this setting. We restrict
ourselves for clarity to the bi-parameter case.

The class of bi-parameter singular integral operators treated in this section is that of any
Journé type operator (not necessarily a tensor product and not necessarily of convolution
type) satisfying a certain weak boundedness property, which we define as follows:

Definition 3.4. A continuous linear mapping T : C10 (Rn) ˝ C10 (Rm) ! [C10 (Rn) ˝

C10 (Rm)]0 is called a bi-parameter Calderón-Zygmund operator if the following condi-
tions are satisfied:

1. T is a Journé type bi-parameter ı-singular integral operator, i.e. there exists a
pair (K1; K2) of ıCZ-ı-standard kernels so that, for all f1; g1 2 C10 (Rn) and f2; g2 2
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C10 (Rm),

hT (f1 ˝ f2); g1 ˝ g2i =

Z
f1(y1)hK1(x1; y1)f2; g2ig1(x1) dx1dy1

when sptf1 \ sptg1 = ¿;

hT (f1 ˝ f2); g1 ˝ g2i =

Z
f2(y2)hK2(x2; y2)f1; g1ig2(x2) dx2dy2

when sptf2 \ sptg2 = ¿.
2. T satisfies the weak boundedness property jhT (�I ˝ �J ); �I ˝ �J ij . jI jjJ j, for

any cubes I � Rn; J 2 Rm.

T is called paraproduct free if T (1 ˝ �) = T (� ˝ 1) = T �(1 ˝ �) = T �(� ˝ 1) = 0.
Recall that ıCZ-ı-standard kernel is a vector valued standard kernel taking values in

the Banach space consisting of all Calderón-Zygmund operators. It is easy to see that
an operator defined as above satisfies all the characterizing conditions in Martikainen’s
paper Martikainen [2012], hence is L2 bounded and can be represented as an average of
bi-parameter dyadic shift operators together with dyadic paraproducts. This is the gen-
eralisation of Hytönen’s theorem to the bi-parameter case. See also higher order Journé
operators treated by Ou in Ou [2014]. To be precise, for test functions f; g, one has the
following representation:

(6) hTf; gi = C E!1
E!2

1X
i1;j1=0

1X
i2;j2=0

2�max(i1;j1)2�max(i2;j2)hS i1j1i2j2f; gi:

where expectation is with respect to a certain parameter of the dyadic grids. The dyadic
shifts S i1j1i2j2 are defined as

Si1j1i2j2 f :=
X

K12D1

X
I1;J1�K1;I1;J12D1

`(I1)=2�i1 `(K1)

`(J1)=2�j1 `(K1)

X
K22D2

X
I2;J2�K2;I2;J22D2

`(I2)=2�i2 `(K2)

`(J2)=2�j2 `(K2)

aI1J1K1I2J2K2
hf; hI1

˝ hI2
ihJ1

˝ hJ2

=:
X
K1

(i1;j1)X
I1;J1�K1

X
K2

(i2;j2)X
I2;J2�K2

aI1J1K1I2J2K2
hf; hI1

˝ hI2
ihJ1

˝ hJ2
:

The coefficients above satisfy aI1J1K1I2J2K2
�

p
jI1jjJ1jjI2jjJ2j

jK1jjK2j
, which also guarantees

that kS i1j1i2j2kL2!L2 � 1. Moreover, if T is paraproduct free, all the Haar functions
appearing above are cancellative. The theorem below was proved partially in the author’s
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work with Ou and Strouse Yumeng, Petermichl, and Strouse [2016] for the paraproduct-
free case and in full generality as part of the author’s work with Holmes and Wick in
Holmes, Petermichl, and Wick [2018]. We obtained the estimate below.

Theorem 3.5. Let us consider R
Ed , Ed = (d1; : : : ; dt ) with a partition I = (Is)1�s�l of

f1; : : : ; tg as discussed before. Let b 2 BMOI(R
Ed ) and let Ts denote a multi-parameter

Journé operator acting on function defined on
N

k2Is
Rdk . Then we have the estimate

k[T1; : : : [Tl ; b] : : :]k
L2(R Ed ) -

. kbkBMOI(R
Ed )

:

The same estimate holds in Lp for 1 < p < 1.
This last estimate is more general than all previously mentioned commutator estimates.

4 Lower Bounds

In this section we bring a list of notable theorems under one roof. The theorem by Nehari
in its formulation through a Hilbert transform commutator:

Theorem 4.1. (Nehari) There holds

kbkBMO . k[H; b]k2!2 . kbkBMO

as well as Ferguson and Sadosky’s theorem on the commutator with the double Hilbert
using the little BMO space:

Theorem 4.2. (Ferguson-Sadosky) There holds

kbkbmo . k[H1H2; b]k2!2 . kbkbmo

as well as the iterated Hilbert commutators by Ferguson, Lacey, Terwilleger using prod-
uct BMO:

Theorem 4.3. (Ferguson, Lacey, Terwilleger)There holds

kbkBMO . k[H1; : : : [Ht ; b] : : :]k2!2 . kbkBMO :

. In the real variable situation it includes the characterisation of Coifman, Rochberg
and Weiss:

Theorem 4.4. (Coifman, Rochberg, Weiss) There holds

kbkBMO . sup
j

k[Rj ; b]k2!2 . kbkBMO
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It also includes the characterisation of Lacey, Pipher, Wick and the author using product
BMO:

Theorem 4.5. (Lacey, Pipher, Petermichl, Wick) There holds

kbkBMO . sup
Ej

k[R1;j1 ; : : : [Rt;jt
; b] : : :]k2!2 . kbkBMO :

To be precise, we prove a characterisation theorem of the space BMOI(R
Ed ). Wemodel

the exposition after the formulation of the result by Ferguson and Sadosky.

Theorem 4.6. (Ferguson-Sadosky) For b 2 L1(T 2) the following are equivalent with
linear relations of their norms:

(1) b 2 bmo

(2) The commutators [H1; b] and [H2; b] are bounded on L2(T 2)

(3) The commutator [H2H1; b] is bounded on L2(T 2).

Corollary 4.7. (Ferguson-Sadosky) There is the equivalence of norms

kbkbmo . k[H1H2; b]k2!2 . kbkbmo:

The punch line in their beautiful argument is the use of Toeplitz forms. Indeed, typical
terms of simple commutators, say with H1 in this setting are of the form P1;�bP1;+ while
the double commutator has typical terms of the form P2;+P1;�bP1;+P2;+. The norms of
these are equal, when regarded as a Toeplitz operator with Hankel symbol. Further, the
L1(BMO) characterisation arises naturally, admitting Nehari’s theorem as a base.

This theorem in the iterated real variable setting and in its most general form reads as
follows. See Yumeng, Petermichl, and Strouse [2016].

Theorem 4.8. The following are equivalent with linear dependence in the respective
norms.

(1) b 2 BMOI(R
Ed )

(2) All commutators of the form [Rk1;jk1
; : : : ; [Rkl ;jkl

; b] : : :] are bounded in L2(R
Ed )

where ks 2 Is and Rks ;jks
is the one-parameter Riesz transform in direction jks

.

(3) All commutators of the form [ ER
1; Ej (1) ; : : : ; [ ER

l; Ej (l) ; b] : : :] are bounded inL2(R
Ed )where

Ej (s) = (jk)k2Is
, 1 � jk � dk and the operators ER

s; Ej (s) are a tensor product of Riesz
transforms ER

s; Ej (s) =
N

k2Is
Rk;jk

.
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Corollary 4.9. Let Ej = (j1; : : : ; jt ) with 1 � jk � dk and let for each 1 � s � l , Ej (s) =

(jk)k2Is
be associated a tensor product of Riesz transforms ER

s; Ej (s) =
N

k2Is
Rk;jk

; here
Rk;jk

are j th
k

Riesz transforms acting on functions defined on the kth variable. We have
the two-sided estimate

kbk
BMOI(R

Ed )
. sup

Ej

k[ ER
1; Ej (1) ; : : : ; [ ER

t; Ej (t) ; b] : : :]k
L2(R Ed ) -

. kbk
BMOI(R

Ed )
:

Such two-sided estimates also hold in Lp for 1 < p < 1.

We make some remarks about the strategy of the proof.
In the Hilbert transform case, Toeplitz operators with operator symbol arise naturally.
While Riesz transforms in Rd are a good generalisation of the Hilbert transform, there

is absence of analytic structure and tools relying on analytic projection or orthogonal
spaces are not readily available. We overcome this difficulty through a first intermedi-
ate passage via tensor products of Calderón-Zygmund operators whose Fourier multiplier
symbols are adapted to cones. This idea is inspired by Lacey, Petermichl, Pipher, and
Wick [2009].

A class of operators of this type classifies little product BMO through two-sided com-
mutator estimates, but it does not allow the passage to a classification through iterated
commutators with tensor products of Riesz transforms. In a second step, we find it nec-
essary to consider upper and lower commutator estimates using a well-chosen family of
Journé operators that are not of tensor product type. These operators are constructed to
resemble the multiple Hilbert transform. A two-sided estimate of iterated commutators in-
volving operators of this family facilitates a passage to iterated commutators with tensor
products of Riesz transforms. There is an increase in difficulty when the arising tensor
products involve more than two Riesz transforms and when the dimension is greater than
two.

The actual passage to the Riesz transforms requires for us to prove a stability estimate in
commutator norms for the multi-parameter singular integrals in terms of the mixed BMO
class (see the section on upper bounds). In this context, we prove a qualitative upper
estimate for iterated commutators using Journé operators.

To give a flavour of the argument, let us focus on R2 for simplicity. Riesz transforms
and cone operators are homogeneous and their Fourier symbols are determined through
their values on S1. Riesz transforms have the symbols of the coordinates, while cone
operators have value 1 on an interval on the sphere covering less than half of the sphere and
0 else. The cone multipliers have to be mollified to result in Calderón-Zygmund operators,
a fact we will omit. Through polynomial approximation, the symbols of (mollified) cone
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operators can be expressed via Riesz transforms symbols. One uses the simple fact

[AB; b] = A[B; b] + [A; b]B

to pass from lower cone transform estimates to lower Riesz transform estimates. This was
one of the essential points in Lacey, Petermichl, Pipher, and Wick [ibid.]. The Toeplitz
forms that arise in the tensor product case create an additional difficulty. Most polynomial
representations, such as obtained when using tensor products of cone operators, are no
longer enough. Other cone operators have to be considered that we try to describe.

Cone functions based on the two oblique strips containing E� are averaged as illustrated
below. The cone multiplier is 1 where the two oblique strips containing E� intersect, it is
1/2 in sections with just one of the two strips and 0 else.
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Figure 1: R2 � R2

The rectangle around E� with sides parallel
to the axes illustrates the support of the ten-
sor product of cone operators with direc-
tion E�. The longer side is the aperture that
arises from the Hankel part Lacey, Peter-
michl, Pipher, and Wick [ibid.]. The short
sides can be chosen freely as they arise from
the Toeplitz part and is chosen small so that
the rectangle fits into the oblique square.
The other small rectangle corresponds to the
Fourier support of the test function f .

This picture generalises to multiple copies of higher order spheres through the use of
zonal harmonics and their identities. An averaging technique on products of spheres comes
into play.

Using this intermediate tool, one can obtain lower commutator estimates with tensor
products of Riesz transforms in accordance to the model of Ferguson and Sadosky in the
Hilbert transform case.

5 Weak Factorization

It is well known that two-sided commutator estimates have an equivalent formulation in
terms of weak factorization of Hardy space; indeed, this equivalence was important to
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the part of the proof of the two sided estimates of the iterated commutator. Let us recall
the theorem of Lacey, Pipher, Wick and the author Lacey, Petermichl, Pipher, and Wick
[2009].

Theorem 5.1. We have the two-sided estimate

kbkBMO . sup
Ej

k[R1;j1 ; : : : [Rt;jt
; b] : : :]k2!2 . kbkBMO :

For E| the vector above with 1 � js � ds , and s = 1; : : : ; t , let Π E| be the bilinear
operator defined by the following equation

hC E| (b; f ); gi := hb;Π E| (f; g)i:

One can express Π E| as a linear combination of products of iterates of Riesz transforms,
Rs;js

, applied to the f and g. It follows immediately by duality from the two sided esti-
mate for iterated Riesz commutators Lacey, Petermichl, Pipher, and Wick [ibid.] that for
sequences f

E|

k
; g
E|

k
2 L2(R

Ed ) with
P
E|

P1
k=1 kf

E|

k
k2kg

E|

k
k2 < 1 we have

X
E|

1X
k=1

Π E| (f
E|

k
; g
E|

k
) 2 H 1(R

Ed ):

With this observation, we define

(7) L2(R
Ed )b̌L2(R

Ed ) :=
n
f 2 L1(R

Ed ) : f =
X
E|

1X
k=1

Π E| (f
E|

k
; g
E|

k
)
o

:

This is the projective tensor product given by

kf k
L2(R Ed )b̌L2(R Ed )

:= inf
nX
E|

X
k

kf
E|

k
k2kg

E|

k
k2

o
where the infimum is taken over all decompositions of f as in (7). We have the following
corollary.

We have H 1(R
Ed ) = L2(R

Ed )b̌L2(R
Ed ). Namely, for any f 2 H 1(R

Ed ) there exist
sequences f

E|

k
2 L2(R

Ed ) and g
E|

k
2 L2(R

Ed ) such that

f =
X
E|

1X
k=1

Π E| (f
E|

k
; g
E|

k
)
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with
kf kH1 '

X
E|

X
k

kf
E|

k
k2kg

E|

k
k2:

Similar results hold when replacing the exponent 2 by 1 < p < 1.

6 Div-Curl Lemma

Suppose E; B 2 L2(Rn; Rn) are vector fields. It is immediate that their dot product
E � B 2 L1(Rn) with

kE � BkL1(Rn) � kEkL2(Rn;Rn)kBkL2(Rn;Rn):

If in addition they satisfy

divE(x) = 0 and curlB(x) = 0;

then we have more cancellation: E � B 2 H 1(Rn) with

kE � BkH1(Rn) . kEkL2(Rn;Rn)kBkL2(Rn;Rn):

Indeed, this fact is included in the paper by Coifman, Lions, Meyer, and Semmes [1993].
We sketch their elegant proof, using an upper Riesz commutator estimate. There exists a
function � such that Bj = Rj � with kBkL2(Rn;Rn) ∼ k�kL2(Rn). We then have point
wise

E � B =
X

j

Ej Bj =
X

j

Ej Rj � + �Rj Ej � �Rj Ej =
X

j

Ej Rj � + �Rj Ej :

The last equality is due to E being divergence free and
P

j Rj Ej = 0. Now test this
equality over b 2 BMO and obtain

(E � B; b) =
X

j

(b; Ej Rj � + �Rj Ej ) =
X

j

([b; Rj ](Ej ); �):

Thanks to the BMO condition we know that [b; Rj ] is bounded. Thus

j(E�B; b)j . kbkBMOkEkL2(Rn;Rn)k�kL2(Rn) ∼ kbkBMOkEkL2(Rn;Rn)kBkL2(Rn;Rn):
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The duality between H 1 and BMO then yields

kE � BkH1(Rn) . kEkL2(Rn;Rn)kBkL2(Rn;Rn):

There are several possible generalisations of this result to the multi-parameter case.
See Lacey, Pipher, Wick and the author in Lacey, Petermichl, Pipher, and Wick [2012].
We state one possible generalisation, that uses the upper estimate of the iterated Riesz
commutator in terms of product BMO.

Theorem 6.1. Suppose E 2 L2(Rn � Rn;Rn) and B 2 L2(Rn � Rn;Rn) have

divxE(x; y) = 0 curlxB(x; y) = 0 8y 2 Rn

and
divyE(x; y) = 0 curlyB(x; y) = 0 8x 2 Rn:

Then Z
Rn

kE(x; �) � B(x; �)kH1dx . kEkL2kBkL2

and Z
Rn

kE(�; y) � B(�; y)kH1dy . kEkL2kBkL2 :
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TOEPLITZ METHODS IN COMPLETENESS AND SPECTRAL
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Abstract
We survey recent progress in the gap and type problems of Fourier analysis ob-

tained via the use of Toeplitz operators in spaces of holomorphic functions. We discuss
applications of such methods to spectral problems for differential operators.

1 Introduction

This note is devoted to a discussion of several well-known problems from the area of
the Uncertainty Principle in Harmonic Analysis (UP) and their reformulations in terms of
kernels of Toeplitz operators. The Toeplitz approach first appeared in a series of papers
by Hruščëv, Nikolskii, and Pavlov [1981], Nikolskii [1986], and Pavlov [1979], where it
was applied to problems on Riesz bases and sequences of reproducing kernels in model
spaces. It was extended to problems on completeness and spectral analysis of differential
operators in Makarov and Poltoratski [2005, 2010] and used in several recent papers in
the area.

The Beurling-Malliavin (BM) theory, created in the early 1960s to solve the problem
on completeness of exponential functions in L2([0; 1]) Beurling and Malliavin [1962],
Beurling and Malliavin [1967], and Beurling [1989], remains one of the deepest ingre-
dients of UP. Although the theory did solve the classical problem it aimed to solve, the
need for expansions to broader classes of function spaces, other systems of functions and
related problems immediately appeared. At present, most of such problems remain open
and suitable extensions of BM theory are yet to be found.

A search for such an extension in the settings of completeness problems and spectral
problems for differential operators served as initial motivation for Makarov and Poltoratski
[2005, 2010]. The first paper contained a list of problems of UP which could be translated
into problems on injectivity of Toeplitz operators. It included problems on completeness

The author is partially supported by NSF Grant DMS-1665264.
MSC2010: 42A38.
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of Airy and Bessel functions and spectral problems for 1D Schrödinger equation. The
main result of the second paper gives a condition for the triviality of a kernel of a Toeplitz
operator with a unimodular symbol, which can be viewed as an extension of the BM the-
orem.

In this note we will discuss the BM problem as well as the so-called gap and type
problems of Fourier analysis, along with their reformulations in the Toeplitz language.
We will show how such reformulations become a part of a new circle of problems on the
partial ordering relations for the set of meromorphic inner functions (MIF) induced by
Toeplitz operators. At the end of the paper we include applications to inverse spectral
problems for Krein’s canonical systems.

2 Completeness problems and spectral gaps

2.1 Beurling-Malliavin, gap and type problems. One of the canonical questions of
Harmonic Analysis is whether any function from a given space can be approximated by lin-
ear combinations of functions from a selected collection of harmonics. The most common
choices for the space are weighted Lp-spaces or spaces with weighted uniform norm of
Bernstein’s type. The role of harmonics can be played by polynomials, complex exponen-
tials, solutions to various differential equations or special functions, such as Airy or Bessel
functions, etc. A system of functions is called complete if finite linear combinations of its
functions are dense in the space.

Let Λ = f�ng be a discrete (without finite accumulation points) sequence of complex
numbers. Denote by EΛ the system of complex exponentials with frequencies from Λ:

EΛ = fei�nz ; �n 2 Λg:

The main question answered by BM theory is for what Λ will EΛ be complete inL2([0; a]).
More precisely, let us define the radius of completeness of Λ as

R(Λ) = supfa j EΛ is complete in L2([0; a])g

and as 0 if the set is empty. BM theory provided a formula forR(Λ) in terms of the exterior
density of the sequence, defined as follows.

A sequence of disjoint intervals In on the real line is called long if

(2-1)
X jInj2

1 + dist2(0; In)
= 1;

and short otherwise. For a discrete sequence of real points Λ we define its exterior (BM)
density as

D(Λ) = supfd j 9 long sequence fIng such that ;8n; #(Λ [ In) > d jInjg:
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If Λ is a complex sequence, assuming without loss of generality that it has no purely
imaginary points, we define D(Λ) to be the density of the real sequence 1/(< 1

�n
).

Theorem 1 (Beurling and Malliavin [1962] and Beurling and Malliavin [1967]).

R(Λ) = 2�D(Λ):

Since its appearance in the early 1960s, the BM theorem above and several ingredients
of its proof had major impact on Harmonic Analysis. At present, new applications of the
theorem continue to emerge in adjacent fields including Fourier analysis and spectral the-
ory. At the same time, the search for generalizations of the BM theorem to other function
spaces, several variables, other families of functions, etc., still continues with most of such
problems remaining open.

A similar, and in some sense ’dual’ completeness problem, is the so-called type problem
which can be formulated as follows. For a > 0 denote by Ea the system of exponentials

Ea = feisz ; s 2 [�a; a]g:

For a finite positive Borel measure � on R the exponential type of � is defined as

T� = inffa j Ea is complete in L2(�)g:

The problem of finding T� in terms of � appears in several adjacent areas of analysis
and was studied by N. Wiener, A. Kolmogorov and M. Krein in connection with predic-
tion theory and spectral problems for differential operators. For further information on
such connections and problem’s history see for instance Borichev and Sodin [2011] and
Poltoratski [2015b]. We will return to the type problem in Section 2.5.

If the system Ea is incomplete inLp(�); p > 1 then there exists f 2 Lq(�); 1
p
+ 1
q
=

1; annihilating all functions from Ea. Equivalently for the Fourier transform cf� of the
measure f� we have

cf�(s) = 1
p
2�

Z
e�istf (t)d�(t) = 0

for all s 2 [�a; a]. Hence, the problem translates into finding an Lq-density f such that
f� has a gap in the Fourier spectrum (spectral gap) containing the interval [�a; a]. It turns
out that before solving the type problem one needs to solve this version of the gap problem
for q = 1, which is no longer equivalent to Lp-completeness. This is the so-called gap
problem, whose recent solution we discuss in Section 2.3.
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2.2 Toeplitz kernels. Recall that the Toeplitz operator TU with a symbol U 2 L1(R)

is the map
TU : H 2

! H 2; F 7! P+(UF );

where P+ is the Riesz projection, i.e. the orthogonal projection from L2(R) onto the
Hardy space H 2 in the upper half-plane C+. Passing from a function in H 2 to its non-
tangential boundary values on R, H 2 can be identified with a closed subspace of L2(R)

which makes the Riesz projection correctly defined.
We will use the following notation for kernels of Toeplitz operators (or Toeplitz kernels)

in H 2:
N [U ] = ker TU :

A bounded analytic function in C+ is called inner if its boundary values on R have
absolute value 1 almost everywhere. Meromorphic inner functions (MIFs) are those inner
functions which can be extended as meromorphic functions in the whole complex plane.
MIFs play a significant role in applications to spectral problems for differential operators,
see for instance Makarov and Poltoratski [2005].

If � is an inner function we denote byK� the so-called model space of analytic functions
in the upper half-plane defined as the orthogonal complement inH 2 to the subspace �H 2,
K� = H 2	�H 2. An important observation is that for the Toeplitz kernel with the symbol
�̄ we have N [�̄ ] = K� for any inner � .

Along withH 2-kernels of Toeplitz operators, one may consider kernelsN p[U ] in other
Hardy classes Hp , the kernel N 1;1[U ] in the ’weak’ space H 1;1 = Hp \ L1;1; 0 <

p < 1, or the kernel in the Smirnov class N+(C+), defined as

N+[U ] = ff 2 N+
\ L1

loc(R) : Ū f̄ 2 N+
g

for N+ and similarly for other spaces. If � is a meromorphic inner function,K+
�

= N+[�̄ ]

can also be considered. For more on such kernels see Makarov and Poltoratski [2005] and
Poltoratski [2015b].

Now let us discuss reformulations of the BM, gap and type problems mentioned above
in the language of Toeplitz kernels, starting with the gap problem. One of the ways to
state the gap problem is as follows.

Denote by M the set of all finite complex measures on R. For a closed subset of real
line X define its gap characteristic GX as

(2-2) GX = supfa j 9 � 2 M; � 6� 0; supp� � X; such that b� = 0 on [0; a]g:

The problem is to find a formula for GX in terms of X . Notice that the version of the
problem discussed in the previous section, where for a fixed measure � one looks for the
supremum of the size of the spectral gap of f� taken over all f 2 L1(�) is equivalent to
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the last version of the problem with X = supp�, see Proposition 1 in Poltoratski [2012]
or Poltoratski [2015b].

While we postpone the formula for GX until Section 2.3, here is the connection with
the problem on injectivity of Toeplitz operators.

Here and throughout the paper for a > 0 we denote by Sa the exponential MIF,
Sa(z) = eiaz . For an inner function � in the upper half-plane we denote by spec� the
closed subset of bR = R [ f1g of points at which the non-tangential limits of � are equal
to 1. Note that � is a MIF if and only if spec� is a discrete set.

If once again X � R is a closed set, denote

NX = supfa j N [�̄Sa] ¤ 0 for some meromorphic inner �; spec� � Xg:

Theorem 2 (Makarov and Poltoratski [2005], Section 2.1).

GX = NX :

Similar translations can be given for the BM and type problems. If Λ � C is a complex
sequence of frequencies, denote byΛ0 � C+ the sequence in the upper half-plane obtained
from Λ by replacing all points from the lower half-plane with their complex conjugates
and replacing every real point � 2 Λ with � + i . Note that if Λ0 does not satisfy the
Blaschke condition in C+ then the radius of completeness of Λ, R(Λ) defined in the last
section, is infinite. If Λ0 does satisfy the Blaschke condition, denote by BΛ the Blaschke
product with zeros at Λ0. Then the radius of completeness of Λ satisfies

R(Λ) = supfa j N [SaBΛ] = 0g:

This formula provides a reformulation of the BM problem in the language of injectivity
of Toeplitz operators and can be used to translate the BM theorem into a result in this area.
Such a translation can then be used in applications and point to further generalizations of
BM theory, see Makarov and Poltoratski [2005, 2010].

Let � be a finite positive singular measure on R and let us denote by K� its Cauchy
integral

K�(z) =
1

2�i

Z
d�(t)

t � z
:

Let � = �� denote the Clark inner function corresponding to �, i.e., the inner function in
C+ defined as

�(z) =
K�(z) � 1

K�(z) + 1
:
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The Toeplitz version of the type problem is obtained via the following formula for the type
of � (defined in the last section):

T� = supfa j N [�̄Sa] ¤ 0g:

Comparing this equation with the Toeplitz version of the formula for the radius of com-
pleteness above, one can see the ’duality’ relation between the BM and type problems,
which translate into problems on injectivity of Toeplitz operators with complex conjugate
symbols. Such a connection between the two problems was known to the experts on the
intuitive level for a long time, but now can be expressed in precise mathematical terms
using the Toeplitz language.

For a more detailed discussion of the results mentioned in this section and further ref-
erences see Poltoratski [2015b].

2.3 A formula for the gap characteristic of a set. To give a formula for GX defined
in Section 2.2 we need to start with the following definition.

Let
::: < a�2 < a�1 < a0 = 0 < a1 < a2 < :::

be a two-sided sequence of real points. We say that the intervals In = (an; an+1] form a
short partition of R if jInj ! 1 as n ! ˙1 and the sequence fIng is short, i.e. the sum
in (2-1) is finite.

Let Λ = f�ng be a discrete sequence of distinct real points and let d be a positive
number. We say that Λ is a d -uniform sequence if there exists a short partition fIng such
that

(2-3) ∆n = #(Λ \ In) = d jInj + o(jInj) as n ! ˙1 (density condition)

and

(2-4)
X
n

∆2
n log jInj �En

1 + dist2(0; In)
< 1 (energy condition)

where

En = E(Λ \ In) =
X

�k ;�l 2In; �k¤�l

log j�k � �l j:

Notice that the series in the energy condition is positive since every term in the sum
defining En is at most log jInj and there are less than ∆2

n terms. Convergence of positive
series is usually easier to analyze.
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The quantity En admits a physical interpretation as the potential energy of a system of
’flat electrons’ placed at points of Λ\ In. The term ∆2

n log jInj corresponds to the energy
of ∆n electrons spread uniformly over In, up to a O(jInj2)-term, which is negligible in
(2-4) due to the shortness of fIng. Hence (2-4) can be viewed as the condition of finite
work, needed to transform our sequence into an arithmetical progression.

In regard to the gap problem, d -uniform sequences have the property that any such
sequence can support a measure with a spectral gap of the size d � " for any " > 0.
Conversely, any discrete sequence with this property must contain a d -uniform sequence.
Moreover, for a general closed set we have
Theorem 3 (Poltoratski [2012, 2015b]).

GX = supfd j X contains a d -uniform sequenceg;

if the set on the right is non-empty and GX = 0 otherwise.

One of the main ingredients of the proof is the Toeplitz approach to the gap problem
discussed in the last section and used earlier in Mitkovski and Poltoratski [2010]. De
Branges’ ”Theorem 66” (Theorem 66, de Branges [1968]) in Toeplitz form, which in its
turn uses the Krein-Milman result on the existence of extreme points in a convex set, pro-
vides a key step of the proof allowing to discretize the problem. Another key component
is the idea by Beurling and Malliavin to set up an extremal problem in the real Dirichlet
space in C+ to construct an extremal measure with the desired spectral gap, see Poltoratski
[2012, 2015b].

2.4 Bernstein’s weighted uniform approximation. We say that a function W > 1 on
R is a weight if W is lower semi-continuous and W (x) ! 1 as jxj ! 1. Denote by
CW the space of all continuous functions f on R such that f /W ! 0 as x ! ˙1 with
the norm

(2-5) jjf jjW = sup
R

jf j

W
:

The weighted approximation problem posted by Sergei Bernstein in 1924 Bernstein [1924]
asks to describe the weightsW such that polynomials are dense in CW . Similar questions
can be formulated for exponentials and other families of functions in place of polynomials.
Further information and references on the history of Bernstein’s problem can be found in
two classical surveys by Akhiezer Ahiezer [1956] and Mergelyan [1956], a recent one by
Lubinsky [2007], or in the first volume of Koosis’ book Koosis [1988].

It turns out that to obtain a formula for the type of a finite positive measure it makes
sense to follow the historic path and first consider the problem on completeness of expo-
nentials in Bernstein’s settings. As a byproduct, for the original question on completeness
of polynomials one obtains the following formula.
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If Λ is a discrete real sequence we will assume that it is enumerated in the natural
order, i.e. �n < �n+1, non-negative elements are indexed with non-negative integers and
negative elements with negative integers.

We say that a sequence Λ = f�ng has (two-sided) upper density d if

lim sup
A!1

#[Λ \ (�A;A)]

2A
= d:

If d = 0 we say that the sequence has zero density.
A discrete sequence Λ = f�ng is called balanced if the limit

(2-6) lim
N!1

X
jnj<N

�n

1 + �2n

exists.
Observe that any even sequence (any sequenceΛ satisfying �Λ = Λ) is balanced. So is

any two-sided sequence sufficiently close to even. At the same time, a one-sided sequence
has to tend to infinity fast enough to be balanced (the series

P
��1
n must converge).

Let Λ = f�ng be a balanced sequence of finite upper density. For each n; �n 2 Λ; put

pn =
1

2

24log(1 + �2n) +
X

n¤k; �k2Λ

log
1 + �2

k

(�k � �n)2

35 ;
where the sum is understood in the sense of principle value, i.e. as

lim
N!1

X
0<jn�kj<N

log
1 + �2

k

(�k � �n)2
:

We will call the sequence of such numbers P = fpng the characteristic sequence of Λ.
Note that for a sequence of finite upper density the last limit exists for every n if and

only if it exists for some n, if and only if the sequence is balanced.

Theorem 4 (Poltoratski [2015a,b]). Let W be a weight such that CW contains all poly-
nomials. Polynomials are not dense in CW if and only if there exists a balanced sequence
Λ = f�ng of zero density such that Λ and its characteristic sequence P = fpng satisfy

(2-7)
X

W (�n) exp(pn) < 1:

The proof is elementary in nature and the result is similar to de Branges’ theorem from
de Branges [1959] where the condition of completeness of polynomials is formulated in



TOEPLITZ METHODS IN COMPLETENESS AND SPECTRAL PROBLEMS 1779

terms of existence of a certain entire function. In the next section we will pass from Bern-
stein’s problem to the type problem mentioned in the introduction by first replacing the
polynomials with exponentials. Such a replacement complicates the problem significantly.
In particular, its solution presented below requires advanced tools of BM theory, which
are not required for the above result.

2.5 Type formulas. Continuing our discussion of Bernstein’s weighted uniform ap-
proximation from the last section, for a weight W we define the type of W as

TW = inffa j Ea is complete in CW g:

We put TW = 0 if the last set is empty.

Theorem 5 (Poltoratski [2015b]).

TW = sup
�
d j

X logW (�n)

1 + �2n
< 1 for some d -uniform sequence Λ

�
;

if the set is non-empty, and 0 otherwise.

Via the connection between Bernstein’s and Lp-approximation problems found by A.
Bakan in Bakan [2008], the last statement immediately yields the followingLp-statement.
For p > 1 We define theLp-type of a measure, Tp�, similarly to the definition ofT� given
in Section 2.1, but with L2(�) replaced with Lq(�). In these notations, T� = T2

�. We
say that W is a �-weight if

R
Wd� < 1.

Corollary 1 (Poltoratski [2013]). Let � be a finite positive measure on the line. Let 1 <
p 6 1 and a > 0 be constants.

Then Tp� > a if and only if for any �-weight W and any 0 < d < a there exists a
d -uniform sequence Λ = f�ng � supp� such that

(2-8)
X logW (�n)

1 + �2n
< 1:

As one can see from this statement, T� = Tp� for any p > 1, which came as a surprise
to some of the experts. In view of this property, it makes sense to return to the notation
T� in our future statements. Note that the case of p = 1 constitutes the gap problem
discussed above with a different solution.

A more convenient Lp-statement was recently given in Poltoratski [n.d.]. If Λ =

f�ng � R is a discrete sequence of distinct points we denote by Λ� the sequence of
intervals ��

n such that each ��
n is centered at �n and has the length equal to one-third of

the distance from �n to the rest of Λ. Note that then the intervals ��
n are pairwise disjoint.
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Theorem 6. Let � be a finite positive measure on the line. Then

T� = maxfd j 9 d -uniform Λ such that
X log�(��

n)

1 + n2
> �1g

if the set is non-empty and T� = 0 otherwise.

2.6 Toeplitz order. Toeplitz operators provide universal language which can put many
seemingly different problems from the area of UP into the same scale. Translations of
known results and open problems from different areas into this universal language reveal
surprising connections, point to correct generalizations and may indicate further directions
for research. As was mentioned before, first such translations were found in the series
of papers by Hruschev, Nikolski and Pavlov Hruščëv, Nikolskii, and Pavlov [1981] and
Pavlov [1979] where problems on Riesz sequences and bases in model spaces were studied
in terms of invertibility of related Toeplitz operators. In Makarov and Poltoratski [2005,
2010] connections between problems on completeness, uniqueness sets and spectral prob-
lems for differential operators with injectivity of Toeplitz operators were established. A
recent attempt to systematize the problems on Toeplitz operators which emerge via this
approach was undertaken in Poltoratski [2017]. The main idea is to define a partial order
on the set of MIFs induced by Toeplitz operators and view several general questions of UP
as questions on the properties of such an order. In this section we present a short overview
of this approach.

Definition 1. If � is an inner function we define its (Toeplitz) dominance set D(�) as

D(�) = fI inner j N [�̄I ] ¤ 0g:

Every collection of sets admits natural partial ordering by inclusion. In our case, we
consider dominance sets D(�) as subsets of the set of all inner functions in the upper half-
plane and the partial order � on this collection. This partial order induces a preorder on
the set of all inner functions in C+. Proceeding in a standard way, we can modify this
preorder into a partial order by introducing equivalence classes of inner functions. The
details of this definition are as follows.

Definition 2. Wewill say that two inner functions I and J are Toeplitz equivalent, writing
I T∼ J , if D(I ) = D(J ). This equivalence relation divides the set of all inner functions in
C+ into equivalence classes. We call this relation Toeplitz equivalence (TE).

Further, we introduce a partial order on these equivalence classes defining it as follows.

Definition 3. We write I T
6 J (meaning that the equivalence class of I is ’less or equal’

than the equivalence class of J ) if D(I ) � D(J ). We call this partial order on the set of
inner functions in C+ Toeplitz order (TO).
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LetBn andBk be Blaschke products of degree n and k correspondingly. ThenBn T∼Bk
iff n = k and Bn T

<Bk iff n < k. The relation becomes more interesting for infinite
Blaschke products and singular inner functions. For instance, if J� and J� are two singular
functions then � � � � 0 implies J�

T
6 J� but not vice versa as follows from an example

by A. Alexandrov.
Now let us present some of the translations of the known problems mentioned in pre-

vious sections in the language of TO.
Recall that any MIF I has the form I = BΛS

a where B is a Blaschke product with
a discrete sequence of zeros Λ and Sa = eiaz is the exponential function. Put r(I ) =

D�(Λ) + a. The BM Theorem 1 discussed in Section 2.1 is equivalent to the following
statement.

Theorem 7. For any MIF I ,

I
T
6Sb ) r(I ) � b

and
r(I ) < b ) I

T
< Sb :

As we can see, the Beurling-Malliavin formula gives a metric condition for TO in the
very specific case when one of the functions is the exponential function. Similar descrip-
tions for more general classes of inner functions, especially those appearing in applications
to completeness problems and spectral analysis remain mostly open. Below we present
one of such extensions found in Makarov and Poltoratski [2010].

As was shown in Makarov and Poltoratski [2005] the class of MIFs with polynomially
growing arguments appears naturally in a number of applications including completeness
problems for Airy and Bessel functions, spectral problems for regular Schrödinger opera-
tors and Dirac systems, etc. An analog of Theorem 1 proved in Makarov and Poltoratski
[2010] can be applied to some of such problems. Here we present an equivalent reformu-
lation similar to Theorem 7.

Let 
 : R ! R be a continuous function such that 
(�1) = ˙1. i.e.,

lim
x!�1


(x) = +1; lim
x!+1


(x) = �1:

Define 
� to be the smallest non-increasing majorant of 
 :


�(x) = max
t2[x;+1)


(t):

The family of intervals BM (
) = fIng is defined as the collection of the connected com-
ponents of the open set

fx 2 Rj 
(x) ¤ 
�(x)g :
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Let � � 0 be a constant. We say that 
 is �-almost decreasing if

(2-9)
X

In2BM (
)

(dist(In; 0) + 1)��2
jInj

2 < 1:

We define an argument of a MIF I on R is a real analytic function such that I = ei .

Theorem 8 (Makarov and Poltoratski [2010] and Poltoratski [2017]). Let U be a MIF
with jU 0j � x� ;

� � 0, 
 = argU on R. Let J be another MIF, � = argJ on R.

I) If � � (1 � ")
 is �-almost decreasing, then J T
<U ;

II) If J T
6U then � � (1 + ")
 is �-almost decreasing.

Let us point out that even finding an analog for the above statement for � < 0 presents
an open problem. MIFs with � < 0 appear in some of the applications mentioned in
Makarov and Poltoratski [2010].

In regard to the type problem we have the following translation. We will denote by ��
the inner function with Clark measure � as defined in Section 2.2.

Theorem 9 (Poltoratski [2017]).

T� = supfajSa
T
6 ��g:

As one can see, the solutions to BM and type problems give formulas which can be
used to compare MIFs with respect to TO in several particular situations. In both cases
the functions are compared with the exponential function Sa. The extension found in
Makarov and Poltoratski [2010] replaces Sa with a function with polynomially growing
argument. Apart from the results mentioned here and a few elementary examples con-
tained in Poltoratski [2017], giving metric conditions on MIFs I; J necessary or sufficient
for I T∼ J present a collection of open problems with applications in several areas of UP.

3 Inverse spectral problems and truncated Toeplitz operators

3.1 Canonical systems. Consider a 2� 2 differential system with a spectral parameter
z 2 C:

(3-1) ΩẊ = zH (t)X �Q(t)X; �1 < t� < t < t+

where
X(t) =

�
u(t)

v(t)

�
and Ω =

�
0 1

�1 0

�
:
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We assume the (real-valued) coefficients to satisfy

H; Q 2 L1
loc((t�; t+) ! R2�2):

By definition, a solution X = Xz(t) is a C 2((t�; t+))-function satisfying the equation.
An initial value problem (IVP) for the system (3-1) can be given via an initial condition
X(t�) = x; x 2 C2. Let us immediately point out the following well-known property.

Theorem 10. Every IVP for (3-1) has a unique solution on (t�; t+). For each fixed t , this
solution presents an entire function Et (z) = uz(t) � ivz(t) of exponential type.

Let us further assume that H (t); Q(t) are real symmetric locally summable matrix-
valued functions and that H (t) � 0. The Hilbert space L2(H ) consists of (equivalence
classes) of vector-functions with

jjf jj
2
H =

Z t+

t�

< Hf; f > dt < 1:

The system (3-1) is an eigenvalue equation DX = zX for the (formal) differential
operator

D = H�1

�
Ω
d

dt
+Q

�
:

Many important classes of second order differential equations can be rewritten in the
form of (3-1). Consider, for instance, the Schrödinger equation �ü = zu � qu on an
interval. Put v = �u̇ and X = (u; v)T to obtain

ΩẊ = z

�
1 0

0 0

�
X �

�
q 0

0 �1

�
X:

Similarly one can use (3-1) to rewrite string, Dirac and several other known equations. A
discrete version of (3-1) where the functionH consists of so-called jump intervals can be
used to express difference equations and Jacobi matrices. Well studied Dirac systems are
usually written in the form of a 2 � 2 system. In that case H � I and the general form is

ΩẊ = z

�
1 0

0 1

�
X �

�
q11 q12
q21 q22

�
X; q12 = q21:

The ”standard form” of a Dirac system is with Q =

�
�q2 �q1
�q1 q2

�
: In this case f =

q1 + iq2 is the potential function.
Among all self-adjoint systems discussed above we single out a subclass of so-called

canonical systems with Q � 0:

(3-2) ΩẊ = zH (t)X:
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This turns out to be the right object for the theory. The first key observation is that a
general self-adjoint system can be reduced to canonical form. To perform such a reducion
first solve ΩV̇ = �QV for a 2 � 2 matrix valued function V and make a substitution
X = V Y: Then (3-1) becomes

ΩẎ = z [V �HV ]Y:

For instance, a Dirac system with real potential f becomes a canonical system with
Hamiltonian

HCS =

 
e�2

R t
0 f 0

0 e�2
R t
0 f

!
:

When analyzing a second order equation one starts with a self-adjoint form of the
system (3-1) into which the equation can be easily converted. Further conversion into
the canonical form is necessary in the theory because only for canonical systems (after
some additional normalizations) the theory provides a one-to-one correspondence with
de Branges spaces of entire functions defined below. In the preliminary (3-1)-form two
different systems may correspond to the same space.

3.2 DeBranges spaces. We call an entire functionE an an Hermite-Biehler (de Branges)
function if it satisfies

jE(z)j > jE(z̄)j

for all z 2 C+. As before we denote by H 2 the Hardy space in C+.
For an entire funcionG(z) we denoteG#(z) = Ḡ(z̄). For every Hermite-Biehler (HB)

function E we define the space B(E) to be the Hilbert space of entire functions F such
that

F /E; F #/E 2 H 2:

The Hilbert structure in the space is inherited from H 2, i.e. if F;G 2 B(E) then

< F;G >B(E)=< F /E;G/E >H2=

Z
R
F (x)Ḡ(x)

dx

jEj2
:

The well-known Paley-Wiener spaces of entire functions PWa give a particular exam-
ple of de Branges spaces B(E) with E(z) = e�iaz ; a > 0.

One of the fundamental properties of de Branges’ spaces is that they admit an equivalent
axiomatic definition. A similar definition with a slightly different set of axioms (for a
slightly different space) was earlier found by Krein.

Theorem 11 (de Branges [1968]).
Suppose thatH is a Hilbert space of entire functions that satisfies
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(A1) F 2 H;F (�) = 0 ) F (z)(z � �̄)/(z � �) 2 H with the same norm
(A2) 8� 62 R, the point evaluation is bounded
(A3) F ! F # is an isometry
ThenH = B(E) for some E 2 HB .

Let E be an Hermite-Biehler function. Consider entire functions

A = (E +E#)/2 and B = (E �E#)/2i:

The space B(E) is a reproducing kernel space, i.e. any � 2 C, there exists K� 2 B(E)

such that F (�) =< F;K� > for any F 2 B(E). The kernels are given by the formula

K�(z) =
1

�

B(z)Ā(�) � A(z)B̄(�)

z � �̄
:

Each HB-function E gives rise to a MIF �E (z) = E#(z)
E(z)

. Conversely, for each MIF
� there exists an HB-function E such that � = �E . The model space K� defined in
Section 2.2 is related to the de Branges space B(E) via the simple identity B(E) = EK�
with the map f 7! Ef defining an isometric isomorphism between the spaces.

The following connection between canonical systems and de Branges spaces translates
spectral problems for various classes of second order differential equations into the lan-
guage of complex analysis.

For the sake of brevity here we will consider only canonical systems (3-2) without
”jump intervals”, i.e. without intervals where H is a constant matrix of rank 1. This as-
sumption is made in many survey articles on the subject as it simplifies the main statements
in the theory. At the same time, the case of jump intervals allows one to include discrete
models, such us difference equations, Jacobi matrices, orthogonal polynomials, etc., into
the scope of Krein - de Branges theory.

Consider a canonical system (without jump intervals) with any real initial condition
at t�. Denote the solution by Xz(t) = (At (z); Bt (z)). For each fixed t consider the
entire function Et (z) = At (z) � iBt (z). The following statement connects canonical
systems with HB-functions and de Branges spaces, see de Branges [1968] and Makarov
and Poltoratski [2005].

Theorem 12. For any fixed t , Et (z) is a Hermit-Biehler entire function. The map W
defined asWXz = Ktz̄ extends unitarily to the map fromL2(H; (t�; t)) to the de Branges
space B(Et ) (Weyl Transform).

The formula for W :

Wf (z) =< Hf;Xz̄ >L2(H;(t�;t))=

Z t

t�

< H (t)f (t); Xz̄(t) > dt:
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HereKtz denotes the reproducing kernel in B(Et ). The Weyl transform can be viewed
as a general form of Fourier transform that puts Krein’s canonical systems into one-to-one
correspondence with chains of de Branges’ spaces B(Et ); t� � t < t+. The case of free
Dirac system (Q = 0) produces the standard Fourier transform and Payley-Wiener spaces
PWt .

One of the key results of the Krein-de Branges theory says that for any (regular) chain
of de Branges spaces there exists a canonical system generating that chain as in the last
statement. For some such chains the corresponding systems will have jump intervals, the
case we do not discuss in this note. For instance, orthogonal polynomials inL2(�) satisfy
difference equations that can be rewritten as a Krein system with jump intervals. In that
case B(Et ) = Bn will be a space of polynomials of degree less than n. The space will
remain the same, as a set, on each jump interval.

We will write B(E1)
�
=B(E2) if the two de Branges spaces B(E1) and B(E2) are

equal as sets, with possibly different norms. Such relations occur in spectral theory when
the difference between corresponding Hamiltonians is locally summable or similar. For
instance, the following is an important observation in the theory of Dirac systems:

Theorem 13. Let B(Et ); t 2 (t�; t+) be the chain of de Branges’ spaces corresponding
to a Dirac system on (t�; t+) with an L1

loc
-potential. Then B(Et ) �

=PWt .

A more general Gelfand-Levitan theory can be viewed a subset of Krein - de Branges
theory in the case when the system corresponds to the chain of de Branges spaces that
are equal to Payley-Wiener spaces as sets. Together with regular Schrödinger and Dirac
operators such theory will contain a broader class of canonical systems, appearing in ap-
plications, see Makarov and Poltoratski [n.d.].

The following important question arises in connection with Gelfand-Levitan theory.
For what functions E will the de Brnanges space B(E) coincide with the Payley-Wiener
space as a set (with a different but equivalent norm)? This question is equivalent to char-
acterizing Riesz bases of reproducing kernels in Payley-Wiener spaces or Riesz bases of
exponential functions in L2(a; b). It is related to many similar questions in harmonic
analysis, such as problems on frames, sampling and interpolation.

A more general question, that can be similarly translated, is to describe pairs of HB-
functions such thatB(E1)

�
=B(E2). Even in the Payley-Wiener case above, despite a large

number of deep results (see for instance Ortega-Cerdà and Seip [2002] and Seip [2004]
for such results and further references), the problem is not completely finished. Very little
is known in the general case.

In the language of Toeplitz Order defined in Section 2.6 we have the following connec-
tion.
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Theorem 14 (Poltoratski [2017]).

B(E1) = B(E2) , �E1

T∼ �E2
:

3.3 Inverse spectral problems. Once again, let us consider a canonical system (3-2)

with no jump intervals. Let us fix a boundary condition X(t�) =

�
1

0

�
. We call a positive

measure � a spectral measure for the system (3-2) (corresponding to the chosen boundary
condition at t�) if for every t 2 [t�; t+) the space B(Et ) is isometrically embedded into
L2(�). Such a spectral measure may be unique (limit point case) or belong to a one-
parameter family of measures with similar property (limit circle case). The limit point
case occurs when the integral Z t+

t�

trace H (t)dt

is infinite and the limit circle case corresponds to the finite integral.
Equivalently, a spectral measure can be defined with the condition that the Weyl trans-

form is a unitary operator L2(H; (t�; t)) ! L2(�) for any t 2 [t�; t+).
An inverse spectral problem for the canonical system (3-2) asks to recover the system,

i.e., the HamiltonianH , from its spectral measure�. Classical results by Borg, Marchenko
(Schrödinger case) and de Branges (general canonical system) establish uniqueness of
solution for the inverse spectral problem. In the case of canonical systems, there is also a
remarkable existence result by de Branges de Branges [1968] which says that any Poisson-
finite positive measure is a spectral measure of a canonical system. We call a measure �
on R Poisson-finite if Z

d j�j

1 + x2
< 1:

As it often happens, the existence theorem does not provide an algorithm for the re-
covery of H from �. In fact, after many decades of research only several elementary
examples of explicit solutions to the inverse spectral problem for canonical systems have
been recorded in the literature. Our methods based on the use of truncated Toeplitz opera-
tors provide such an algorithm which yields a number of new interesting examples for the
inverse problem. Our next goals is to describe our methods and present examples.

3.4 PW -measures and systems. This part of the note is based on our recent work with
N. Makarov, Makarov and Poltoratski [n.d.].

Let � be a Poisson-finite positive measure on R. We say that � is a sampling measure
for the Paley-Wiener space PWa if there exist constants 0 < c < C such that for any
f 2 PWa,

cjjf jjPWa
< jjf jjL2(�) < C jjf jjPWa

:
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We say that� is a Payley-Wiener (PW ) measure if it is sampling for all spacesPWa; 0 <
a < 1.

Note that any PW -measure defines equivalent norms in all PWa spaces. By verifying
the axioms from Theorem 11 one can show the chain of PW -spaces with norms inherited
from L2(�) is a chain of de Branges spaces B(Et ) for some unknown HB-functions Et ,
B(Et )

�
=PWt .

On the other hand, by a theorem from de Branges [1968], � is a spectral measure of
a canonical system (3-2) with a locally summable Hamiltonian H . By uniqueness of reg-
ular de Branges chains isometrically embedded in L2-spaces of Poisson-finite measures,
the chain induced by the canonical system must coincide with the chain B(Et ) obtained
above.

Conversely, if one starts with a canonical system on [0;1) whose de Branges chain
satisfies B(Et ) �

=PWt , its spectral measure � is a PW -measure. We will call such sys-
tems PW -systems. This is a broad class of canonical systems which includes all of the
equations considered in the classical Gelfand-Levitan theory and more.

As we saw, PW -systems and measures are in one-to-one correspondence with each
other (after standard normalization of the time variable in the system). A study of spec-
tral problems for PW -systems can be viewed as a generalization of the Gelfand-Levitan
theory.

Let us start with the following analytic description ofPW -measures. Let ı be a positive
constant. We say that an interval I � R is a (�; ı)-interval if

�(I ) > ı and jI j > ı:

Theorem 15 (Makarov and Poltoratski [n.d.]). A positive Poisson-finite measure � is a
Paley-Wiener measure if and only if

1) supx2R �((x; x + 1)) < 1.
2) For any d > 0 there exists ı > 0 such that for all sufficiently large intervals I there

exist at least d jI j disjoint (�; ı)-intervals intersecting I .

3.5 Truncated Toeplitz operators. Let � 2 L1(R). The truncated Toeplitz operator
with symbol � is defined as

L� : PWa ! PWa; L�f = P (�f );

where P denotes the orthogonal projection L2(R) ! PWa. If � is a measure on R one
can define L� via quadratic forms with the operator L� : PWa ! PWa given by the
relation Z

R
f ḡdx =

Z
f ḡd�:

Notice that if d�(x) = �(x)dx for � 2 L1(R), then L� = L� .
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Lemma 1 (Makarov and Poltoratski [ibid.]). L� is a positive invertible operator in PWa
if and only if � is a sampling measure for PWa. Consequently, L� is a positive invertible
operator in every PWa; 0 < a < 1; if and only if � is a PW -measure.

Truncated Toeplitz operators corresponding to PW -measures appear in inverse spec-
tral problems for canonical systems in the following way. For simplicity, let us consider
the case of Krein’s string, i.e., a canonical system (3-2) with a diagonal locally summable
Hamiltonian

H (t) =

�
h11(t) 0

0 h22(t)

�
:

Via a proper change of variable, one can normalize the problem so that detH = 1 a.e.
on (t�; t+). After performing such a normalization and fixing a boundary condition at
t�, such systems are put in one-to-one correspondence with even Poisson-finite positive
measures on the real line (spectral measures).

Let now � be a spectral measure of a PW -type Krein’s string. Define the truncated
Toeplitz operatorL� and notice that by the last lemmaL� is invertible in everyPWa. The
key relation which solves the inverse spectral problem in this case is that the reproducing
kernel in the de Branges space B(Et ) corresponding to the system is the image of the sinc
function, the reproducing kernel in PWa, under L�1

� :

Kt0(z) = L�1
�

�
sin tz
z

�
:

After the reproducing kernelKt0 is recovered, the Hamiltonian of the system can be found
from

(3-3) h11(t) = �
d

dt
Kt0(0)

and h22 = 1/h11 (since detH = 1).
In the case of general, non-diagonal Hamiltonians, the problem requires several ad-

ditional steps, which can be completed via similar methods. The key ingredient in the
general case, which we have no space to discuss here, is the so-called generalized Hilbert
transform, which maps the de Branges chain B(Et ) into the conjugate chain B(Ẽt ) cor-
responding to the Hamiltonian

H̃ =

�
h11(t) �h12(t)

�h21(t) h22(t)

�
;

see Example 3 below. This operator reduces to the standard Hilbert transform in the free
case. For more detailed account and the proofs see Makarov and Poltoratski [ibid.].
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3.6 Examples of inverse spectral problems via truncated Toeplitz operators. We
finish with the following examples of solutions to the inverse spectral problem.

Example 1. Let � =
p
2�ı0 +

1p
2�
m, where m stands for the Lebesgue measure on R

and ıa is the unit mass at the point a. This is probably the simplest new example in our
theory. The measure satisfies conditions of Theorem 15 and therefore is a PW -measure.
The measure is even, henceH must be diagonal

H =

�
h(x) 0

0 1
h
(x)

�
:

Our goal is to find h using the formula (3-3).
Denote by ft the Fourier transform of Kt0(x). Then ft is supported on [�t; t ] and

satisfies
ft �b� = 1 on [�t; t ]

because 1p
2�
�[�t;t ] is the Fourier transform of the sinc function, the reproducing kernel

of PWt , and
bKt0� =

1
p
2�
ft �b�:

Since b� = ı0 +m, the Fourier transform of the reproducing kernel satisfies

1 = ft (x) +

Z t

�t

ft (y)dy on [�t; t ]:

It follows that ft (x) = c(t)�[�t;t ](x) where

1 = c(t) + 2tc(t); i.e., c(t) = 1/(1 + 2t):

Then
h(t) =

d

dt
Kt0(0) =

d

dt

Z t

�t

c(t)dx =
d

dt

2t

1 + 2t
=

2

(1 + 2t)2

and

H =

 
2

(1+2t)2
0

0 (1+2t)2

2

!
:

for 0 � t < 1.

Example 2. Consider the Krein system with the spectral measure � = 1p
2�

(1+ cos x)m.
Once again, the measure is a PW -measure. It is even and thereforeH must be diagonal.

As before, the Fourier transform of Kt0, ft , satisfies

ft �b� = 1 on [�t; t ]:
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Inserting the Fourier transform of � and solving the last equation one obtains ft as a step
function described below.

For n
2
< t < n+1

2
, define ft as follows. Consider the infinite Toeplitz matrix

J =

0BBBBBBB@

1 1
2

0 0 0 : : :
1
2

1 1
2

0 0 : : :

0 1
2

1 1
2

0 : : :

0 0 1
2

1 1
2
: : :

0 0 0 1
2

1
:::
:::
:::
:::
:::
: : :

1CCCCCCCA
where the diagonals are equal to the pointmasses of b� at n; n 2 Z. Denote by Jn the
n � n sub-matrix in the upper left corner of J .

Consider the intervals Ik = (ak ; bk); 1 � k � n+ 1; of length t �
n
2
centered at

�n

2
;

�n+ 2

2
; :::;

n � 2

2
;
n

2

enumerated in the natural left-to-right order. Denote by Jk complementary intervals Jk =

(bk ; ak+1). On each Ik define ft = 1
2
an+1
k

and on each Jk define ft = 1
2
an
k
, where0BBB@

am1
am2
:::

amm

1CCCA = J�1
m

0BBB@
1

1
:::

1

1CCCA :
Notice that

h(t) =
d

dt
Kt0(0) =

d

dt

Z t

�t

ft (x)dx = Σ(J�1
n+1) � Σ(J�1

n ) on
�
n

2
;
n+ 1

2

�
;

where Σ denotes the sum of all elements of the matrix, with Σ(J�1
0 ) defined as 0. Elemen-

tary calculations show the values of h(t) on (0; 1
2
]; ( 1

2
; 1]; (1; 3

2
]; ::: to be

1;
1

3
;
2

3
;
2

5
;
3

5
;
3

7
;
4

7
;
4

9
;
5

9
;

5

11
;

6

11
;

6

13
;

7

13
;

7

15
;

8

15
;

8

17
;

9

17
;

9

19
;
10

19
;
10

21
;
11

21
; :::

:::;
n

2n � 1
;

n

2n+ 1
;
n+ 1

2n+ 1
;
n+ 1

2n+ 3
;
n+ 2

2n+ 3
; :::
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Example 3. Let now � = 1p
2�

(1 + sin x)m. Note that � is not even and hence the
Hamiltonian has the general form

H =

�
˛(x) ˇ(x)

ˇ(x) 
(x)

�
;

with non-zero ˇ. Clearly, � is a PW -measure and hence this example can be treated
within the extended Gelfand-Levitan theory. The entries ˛ and 
 can be calculated as in
the last example. The Toeplitz matrix for the pointmasses of b� = ı0 +

i
2
(ı�1 � ı1) is

J =

0BBBBBBB@

1 �
i
2

0 0 0 : : :
i
2

1 �
i
2

0 0 : : :

0 i
2

1 �
i
2

0 : : :

0 0 i
2

1 �
i
2
: : :

0 0 0 1
2

1
:::

:::
:::

:::
:::

: : :

1CCCCCCCA :

Then

˛(t) = Σ(J�1
n+1) � Σ(J�1

n ) on
�
n

2
;
n+ 1

2

�
:

Elementary calculations give the following values of ˛ on on (0; 1
2
]; ( 1

2
; 1]; (1; 3

2
]; ::: :

i1; 5/3; 4/3; 4/5; 13/15; 25/21; 8/7; 8/9; 41/45; 61/55; 12/11; 12/13;

85/91; 113/105; 16/15; 16/17; 145/153; 181/171; 20/19; 20/21; :::

For 
 we need to consider

� =
1

p
2�

�
1

2
m+

1

2

X
ı2�n� �

2

�
;

the so-called dual Clark measure for � (i.e., � is the Clark measure for �� , while � is the
Clark measure for � , as defined is Section 2.2). After calculating

b� =
1

2
ı0 +

1

2

X
n2Z

(i)nın;
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the corresponding Toeplitz matrix is

L =

0BBBBBBB@

1 i
2

�
1
2

�
i
2

1
2
: : :

�
i
2

1 i
2

�
1
2

�
i
2
: : :

�
1
2

�
i
2

1 i
2

�
1
2
: : :

i
2

�
1
2

�
i
2

1 i
2
: : :

1
2

i
2

�
1
2

�
i
2

1
:::

:::
:::

:::
:::

: : :

1CCCCCCCA :

Then

(t) = Σ(L�1

n+1) � Σ(L�1
n ) on

�
n

2
;
n+ 1

2

�
;

which produces the values

1; 5/3; 17/6; 5/2; 5/3; 37/21; 65/28; 9/4; 9/5; 101/55; 145/66; 13/6;

13/7; 197/105; 257/120; 17/8; 17/9; 325/171; 401/190; 21/10; :::

For the calculation of ˇ we need to utilize the generalized Hilbert transform of the
kernel Kt0 (at 0) mentioned in Section 3.5.

We define the Hilbert transform as

Hf = K(f�) �K(f�) + cf;

where
Kf� =

1

i�

Z
1

t � z
f (t)d�(t) = P (f�) + iQ(f�):

Here P and Q stand for the Poisson and the conjugate Poisson transforms correspond-
ingly. The constant c is to be determined at the end of the calculation from the condition
detH = 1.

One of the main formulas of the theory gives the remaining coefficient ˇ(t) as

ˇ(t) =
d

dt
HKt0(0):

We have
1PKt0� = bKt0� and 1QKt0� = (�i)sign x � bKt0�;

and therefore
2KKt0� = Kt0�+ sign x � bKt0�

For Kt0K� we have
2Kt0K� = bKt0�+ cKt0 � (sign x �b�):
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Altogether we get

ˇ(t) =
d

dt

Z
R
[ bKt0�+ sign x � bKt0� � bKt0� � bKt0 � (sign x �b�) + cbKt0] =
d

dt

Z
R
[sign x � bKt0� � bKt0 � (sign x �b�) + cbKt0]:

Put n = [2t ]. Let, like in the first section,0BBB@
am1
am2
:::

amm

1CCCA = J�1
m

0BBB@
1

1
:::

1

1CCCA :
By our construction, bKt0� is equal to

bKt0� =

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
i
2
an1 on (�t � 1;�1 � n/2)

�
i
2
an�1
1 on (�1 � n/2;�t)

1/2 on (�t; t)
i
2
an�1
n�1 on (t; n/2 + 1)

i
2
ann on (n/2 + 1; t + 1)

:

Hence,
d

dt

Z
R

bKt0� = 1 +
i

2
(ann � an�1

n�1 � an1 + an�1
1 ):

Taking into account the relation am1 = āmm, we get

d

dt

Z
R

bKt0� = 1 + =an1 � =an�1
1 :

Since � = (1 + sin x)m,Z
R

bKt0� =

Z
R

cKt0 + i

2

Z
R

cKt0 �
i

2

Z
R

cKt0 =

Z
R

cKt0:
and we get

d

dt

Z
R

cKt0 = 1 + =(an1 � an�1
1 ):

Also,
d

dt

Z
R

bKt0� sign x =
1

2
(ann � an�1

n�1 + a
n
1 � an�1

1 ) =
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<(an1 � an�1
1 ):

Finally, Z
R

bKt0 � (sign x �b�) = i

2

Z
R

cKt0 + i

2

Z
R

cKt0 = i

Z
R

cKt0:
For ˇ we get

ˇ(t) = <(an1 � an�1
1 ) + i(1 + =(an1 � an�1

1 )) + c(1 + =(an1 � an�1
1 )):

Numerical calculation and the condition ˛
 � ˇ2 = 1 suggest c = �1 � i and

ˇ = <(an1 � an�1
1 ) � =(an1 � an�1

1 ) � 1

on ((n � 1)/2; n/2].
This produces the values of ˇ on (0; 1

2
]; ( 1

2
; 1]; (1; 3

2
]; ::::

0;�4/3; �5/3; �1; �2/3; �22/21; �9/7; �1; �4/5; �56/55; �13/11;

�1; �6/7; �106/105; �17/15; �1; �8/9; �172/171; �21/19;

�1; �10/11; �254/253; �25/23;�1:::

Note that the sequence for �ˇ displays the following pattern. Each entry number 4n,
n = 1; 2; :::, is equal to 1. The 4n + 1 entry, n = 0; 1; 2; ::: has denominator 2n + 1

and numerator 2n. The 4n+ 3 entry has the denominator 4n+ 3 and numerator 4n+ 5.
Finally the 4n + 2 entry, between the last two, has the denominator equal to the product
of their denominators, (2n+ 1)(4n+ 3) and the numerator (2n+ 1)(4n+ 3) + 1.

These and further examples of inverse spectral problems along with the necessary
proofs can be found in Makarov and Poltoratski [n.d.].
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Abstract

In these notes we will survey recent results on various finitary approximation prop-
erties of infinite groups. Wewill discuss various restrictions on groups that are approx-
imated for example by finite solvable groups or finite-dimensional unitary groups with
the Frobenius metric. Towards the end, we also briefly discuss various applications
of those approximation properties to the understanding of the equational theory of a
group.

1 Introduction

1.1 The setup. Let Γ be a finitely presented group, given by a finite generating set
X := fx1; : : : ; xkg and a finite set R � Fk = hXi of relations, i.e. Γ := hX jRi = Fk/N ,
where Fk denotes the free group on X and N = hhRii the normal subgroup generated by
R. Throughout the article, X and R will be fixed.

Very basic questions about Γ are usually hard to answer unless Γ can be realized as
a group of symmetries of a sufficiently concrete object, such as a finite set, a finite-
dimensional vector space or a metric space with suitable properties. In the easiest situation,
maybe Γ is residually finite, i.e. for any finite subsetF � Γ, there exists a homomorphism
to a finite group ' : Γ ! H , such that the restriction of ' to F is injective. In order to
overcome the algebraic and arithmetic obstruction to the existence of finite quotients and
finite-dimensional unitary representations it is worthwhile to relax these notions. Infor-
mally speaking, we will seek for asymptotic homomorphisms from Γ with values in a
family of (typically compact) metric groups. Let (G; d ) be a metric group and assume
throughout the entire article that d : G �G ! [0;1) is bi-invariant, i.e.

d (gh; gk) = d (h; k) = d (hg; kg); 8g; h; k 2 G:
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Note that any bi-invariant metric is uniquely determined by the associated invariant length
function `(g) = d (1; g), which is a subadditive, symmetric and conjugation invariant,
[0;1)-valued function on G that takes the value 0 only at 1G .

Well-known invariant length functions in this context include the normalized Hamming
distance on symmetric groups or various length functions induced by unitarily invariant
norms on groups of unitary matrices. Somewhat similarly, there is a rank length function,
which is defined if G � GLn(q) for some n 2 N and q a prime power: `rankG (g) :=

n�1 � rk(1 � g): Another important example is the conjugacy length function, which is
defined by

`conj(g) := logjGjjg
G

j

for g 2 G, where gG is the conjugacy class of g 2 G, andG is a finite and centerless group.
IfG is the alternating group or a finite simple group of Lie type, then the conjugacy metric
is comparable to the more geometrically defined metrics above. A fundamental result in
the work of Liebeck and Shalev [2001] says that the conjugacy length is intrinsically tied
to the algebraic properties of G if G is simple: indeed, there exists an absolut constant
c > 0, such that (gG)ck = G if k > `conj(G)�1. Thus, the conjugacy length is also
comparable to the normalized word metric w.r.t. any sufficiently small conjugacy class. It
turns out that there is essentially just one invariant length function up to a suitable notion
of equivalence on a finite simple group.

1.2 Approximation and stability. Now we can define more precisely what we mean
by metric approximation of an abstract group by a class of metric groups C.

Definition 1.1. A group Γ is called C-approximated if there is a length function ı : Γ !

[0;1) such that for any finite subset S � Γ and " > 0 there exist a group (G; d ) 2 C
and a map ' : Γ ! G, such that

(i) if g; h; gh 2 S , then d ('(g)'(h); '(gh)) < " and

(i i) for g 2 S we have d (1H ; '(g)) � ı(g).

In some situations, we will only fix a classC of groups and let the choice of bi-invariant
metrics be arbitrary – we will also speak about C-approximability in this context. The
previous definition has emerged from various contexts, including an influential work of
Ulam [1960], the work of Connes [1976], Gromov [1999], Weiss [2000] and later work
Thom [2012], Holt and Rees [2016], and Glebsky [2016].

Let us also introduce the closely related notion of asymptotic homomorphisms. Note
that any map ' : X ! G, for some (G; d ) 2 C, uniquely determines a homomorphism
Fk ! G which we will also denote by '.
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Definition 1.2. Let (G; d ) 2 C and let '; : X ! G be maps. The defect of ' is defined
by

def(') := max
r2R

d ('(r); 1G):

The distance between ' and  is defined by

dist('; ) = max
1�i�k

d ('(xi );  (xi )):

The homomorphism distance of ' is defined by

HomDist(') := inf
�2Hom(Γ;G)

dist('; �jX ):

Definition 1.3. A sequence of maps 'n : X ! Gn, for (Gn; dn) 2 C, is called an asymp-
totic homomorphism with values in C if

lim
n!1

def('n) = 0:

Definition 1.4. Let Gn 2 C; n 2 N. Two sequences 'n;  n : X ! Gn are called equiva-
lent if

lim
n!1

dist('n;  n) = 0:

If an asymptotic homomorphism ('n)n2N is equivalent to a sequence of homomorphisms,
we call ('n)n2N trivial.

It is easy to see that a group Γ = hX jRi is C-approximated if and only if there is an
asymptotic homomorphism with values in C that separates elements in a suitable sense.
Note that the existence of a finite presentation is assumed mostly for convenience. More-
over, note that it is easy to see that the property of being C-approximated depends only on
Γ and not on the finite presentation.

Let us discuss some examples of C-approximated groups. We denote byAlt (resp. Fin)
the class of finite alternating groups (resp. the class of all finite groups). A group is called
sofic (resp. weakly sofic) if and only if it is Alt-approximated (resp. Fin-approximated)
as an abstract group, see Glebsky [2016]. The class of sofic groups is of central interest
in group theory. Indeed, eversince the work of Gromov [1999] on Gottschalk’s Surjunc-
tivity Conjecture, the class of sofic groups has attracted much interest in various areas
of mathematics. Major applications of this notion arose in the work of Elek and Szabó
[2004] on Kaplansky’s Direct Finiteness Conjecture, on Lück’s Determinant Conjecture
by Elek and Szabó [2005], and more recently in joint work of Klyachko and Thom [2017]
on generalizations of the Kervaire-Laudenbach Conjecture and Howie’s Conjecture. De-
spite considerable effort, no non-sofic group has been found so far – whether all groups
are sofic is one of the outstanding open problems in group theory.
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Question 1.5 (Gromov). Are all groups sofic?

Examples of sofic groups which fail to be locally residually amenable are given in Cor-
nulier [2011] and Kar and Nikolov [2014] (see also Thom [2010]), answering a question
of Gromov [1999].

Groups approximated by certain classes of finite simple groups of Lie type have been
studied in Arzhantseva and Păunescu [2017] and Thom and Wilson [2014, 2016]. We
will discuss approximation by groups of unitary matrices, a central topic in the theory of
operator algebras and free probability theory, at length in Section 3.

Non-approximation results are rare, however, in Thom [2012] it was proved that the so-
calledHigman group cannot be approximated by finite groupswith commutator-contractive
invariant length functions. In Howie [1984] Howie presented a group which (by a result of
Glebsky and Rivera [2008]) turned out not to be approximated by finite nilpotent groups
with arbitrary invariant length function. In Sections 2 and 3, we will survey more gen-
eral results of this type that have been proved recently in Nikolov, Schneider, and Thom
[2017].

A central definition in the present context is the notion of stability that was studied in
De Chiffre, Glebsky, Lubotzky, and Thom [2017].

Definition 1.6. The group Γ is called C-stable if all asymptotic homomorphisms with
values in C are trivial, that is: for all " > 0 there exists ı > 0 such that def(') < ı

implies HomDist(') < " for all ' : X ! (G; d ) with (G; d ) 2 C.

It is clear that any group Γ that is both C-approximated and C-stable is residually a
subgroup of groups in C. If C consists of finite groups or more generally compact groups
this readily implies that Γ must be residually finite. This observation has been used in
De Chiffre, Glebsky, Lubotzky, and Thom [ibid.] to prove non-approximation results by
proving that certain groups are C-stable but not residually C, see Theorem 3.2.

1.3 Metric ultraproducts. Throughout these notes, we fix a non-principal ultrafilter
U on N. Let (Gn)n2N be a family of groups, all equipped with bi-invariant metrics dn.
In this case, the subgroup

N =

(
(gn)n2N 2

Y
n2N

Gnj lim
n!U

dn(gn; 1Gn
) = 0

)
of the direct product

Q
n2N Gn is normal, so that we can define the metric ultraproductY

n!U

(Gn; dn) :=
Y
n2N

Gn

.
N:
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The relevance of metric ultraproducts becomes apparent in the following folklore re-
sult:

Proposition 1.7. LetC is a class of metric groups. A groupΓ = hX jRi isC-approximated
if and only if it is isomorphic to a subgroup of a metric ultraproduct of C-groups.

For more details on the algebraic and geometric structure of such ultraproducts see
also Stolz and Thom [2014] and Thom and Wilson [2014, 2016] and Schneider and Thom
[2017]. In view of Proposition 1.7 it is natural to generalize the notion of aC-approximated
group to topological groups using ultraproducts:

Definition 1.8. A topological group is called C-approximated if it is topologically isomor-
phic to a closed subgroup of a metric ultraproduct of C-groups.

Wewill constrain ourselves to Polish groups and countable ultraproducts, but that is just
for convenience. Typically, for example in the context of sofic or weakly sofic groups, it
is easy to see that an abstract C-approximated group is also C-approximated when viewed
as a topological group with the discrete topology. It is clear that any Fin-approximated
topological group must admit a bi-invariant metric that induces the topology. We will
discuss various less obvious restrictions on Fin-approximability in Section 2.3.

In view of the definition of metric ultraproducts, any approximation property for a
group Γ by a class of compact groups leads to an embedding into a quotient of a compact
group.

Question 1.9. Is any group a sub-quotient of a compact group?

2 Weak soficity and the pro-finite topology

2.1 Connections with the pro-finite topology. In this section, we want to survey some
recent results that were proved in joint work with Nikolov and Schneider, see Nikolov,
Schneider, and Thom [2017]. The main insight that helped us was to combine the rela-
tionship between soficity and properties of the pro-finite topology that was established
by Glebsky and Rivera [2008] with the deep work on finite groups by Segal [2009] and
Nikolov and Segal [2012]. Let C be a class of finite groups. Adapting Theorem 4.3 of
Glebsky and Rivera [2008], one can prove the following theorem relatingC-approximated
groups to properties of the pro-C topology on a free group:

Theorem 2.1 (Nikolov, Schneider, and Thom [2017]). Let Fk/N be a presentation of a
group Γ. Then, if Γ is C-approximated, for each finite sequence n1; : : : ; nm 2 N it holds
that

nF1 � � �nFm � N;
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where the closure is taken in the pro-C topology on Fk . The converse holds under mild
assumptions on C.

The coarsest such topology on Fk is of course the pro-finite topology and at the time
of writing of Glebsky and Rivera [2008] it was an open problem to decide whether a
finite product of conjugacy classes in a non-abelian free group is always closed in this
topology. As has been remarked in Nikolov, Schneider, and Thom [2017], it is a rather
straightforward consequence of the work of Nikolov-Segal (see Nikolov and Segal [2012]
or Theorem 2.7) that this is not the case. Indeed, one of their main results implies that in
Fk the profinite closure of a finite product of conjugacy classes of x�1

1 ; x1; : : : ; x
�1
k
; xk

contains the entire commutator subgroup, while it is a well known fact (see Theorem 3.1.2
of Segal [2009]) that the commutator width of Fk is infinite if k > 1. This implication
was first observed by Segal and independently discovered by Gismatullin. In view of this
observation it seems unlikely that the pro-finite closure is always contained in the normal
closure, but this remains an open problem.

Question 2.2 (Glebsky and Rivera [2008]). Let n1; : : : ; nm 2 Fk . Is it true, that

nF1 � � �nFm � hhn1; : : : ; nmii;

where the closure is taken in the pro-finite topology on Fk?

In general, there are quite a number of mysteries that can be formulated in terms of
closure properties of the pro-C topology for particular more restricted families of groups.
Indeed, let us just mention a question from Herwig and Lascar [2000].

Question 2.3 (Herwig and Lascar [ibid.]). It is easy to see that if a finitely generated
subgroup H < Fk is closed in the pro-odd topology, then it satisfies a2 2 H ) a 2 H .
Is the converse true?

2.2 Approximation by classes of finite groups. For more restricted families of groups,
the answer to Question 2.2 becomes negative. Indeed, let Sol (resp. Nil) be the class of
finite solvable (resp. nilpotent) groups. In view of Theorem 2.1 this implies that there are
groups which are not Sol-approximated. More precisely, we proved:

Theorem2.4 (Nikolov, Schneider, and Thom [2017]). Every finitely generatedSol-approximated
group has a non-trivial abelian quotient.

As a consequence, perfect groups cannot be Sol-approximated and a finite group is
Sol-approximated if and only if it is solvable. Indeed, any finite solvable group is clearly
Sol-approximated and on the other hand, a non-solvable finite group contains a non-trivial
perfect subgroup and hence cannot be Sol-approximated by Theorem 2.4.
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Initially, Howie proved in Howie [1984] that the group hx; yjx�2y�3; x�2(xy)5i is
notNil-approximated. We followed his proof for any non-trivial finitely generated perfect
group and then extended it in Nikolov, Schneider, and Thom [2017] and established that
these groups are not even Sol-approximated using techniques of Segal [2000, 2009].

Note that finite generation is crucial in the statement of Theorem 2.4. Indeed, there exist
countably infinite locally finite-p groups which are perfect and even characteristically
simple, see McLain [1954]. These groups areNil-approximated, since finite p-groups are
nilpotent. It is known that locally finite-solvable groups cannot be non-abelian simple, but
it seems to be an open problem if there exist Sol-approximated simple groups.

Let us also remark, that the assumptions of Theorem 2.4 are not enough to conclude
that a finitely generated Sol-approximated group has an infinite solvable quotient. Indeed,
consider a suitable congruence subgroup of SL(3;Z), which is residually p-finite and thus
even Nil-approximated and has Kazhdan’s property (T) – thus all amenable quotients are
finite. However, the following seems to be an open problem.

Question 2.5. Is every finitely presented and Sol-approximated group residually finite-
solvable?

Even more, it could be that all finitely presented groups are Sol-stable (in a suitable
sense). A positive answer to the previous question would be in sharp contrast to other
forms of approximability. Indeed, for example the Baumslag-Solitar group BS(2; 3) is not
residually finite, but residually solvable and hence sofic and in particularFin-approximated.

Let us finish this section by mentioning some structure result on the class of Fin-
approximated groups. Let PSL be the class of simple groups of type PSL(n; q), i.e. n 2

N�2 and q is a prime power and (n; q) ¤ (2; 2); (2; 3), and recall that Fin is the class of
all finite groups. In Nikolov, Schneider, and Thom [2017] we prove the following result.

Theorem 2.6 (Nikolov, Schneider, and Thom [ibid.]). Any non-trivial finitely generated
Fin-approximated group has a non-trivial PSL-approximated quotient. In particular, ev-
ery finitely generated simple and Fin-approximated group is PSL-approximated.

The proof makes use of seminal results of Liebeck and Shalev [2001] and Nikolov
and Segal [2012]. The previous result may be seen as a first step towards a proof that all
Fin-approximated groups are sofic.

2.3 Approximability of Lie groups. Let us explain how a theorem of Nikolov-Segal
allows us to deduce two results concerning the approximability of Lie groups by finite
groups and one result on compactifications of pseudofinite groups.
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Theorem 2.7 (Theorem 1.2 of Nikolov and Segal [2012]). Let g1; : : : ; gm be a symmetric
generating set for the finite group G. If K E G, then

[K;G] =

0@ mY
j=1

[K; gj ]

1Ae

;

where e only depends on m.

The following result is an immediate corollary of Theorem 2.7.

Corollary 2.8 (Nikolov, Schneider, and Thom [2017]). Let G be a finite group, then for
g; h 2 G and k 2 N we have

[gk ; hk ] 2
�
[G; g][G; g�1][G; h][G; h�1]

�e

for some fixed constant e 2 N that is independent of G.

We deduce immediately that the same conclusion holds for any quotient of a product
of finite groups and in particular, for any metric ultraproduct of finite groups. Combining
the finitary approximation with the local geometry of Lie groups we obtain the following
consequence.

Theorem 2.9 (Nikolov, Schneider, and Thom [ibid.]). A connected Lie group is Fin-
approximated as a topological group if and only if it is abelian.

Indeed, this is a direct consequence of the following auxiliary result:

Lemma 2.10. Let '; : R ! (H; `) =
Q

U (Hi ; `i ) be continuous homomorphisms
into a metric ultraproduct of finite metric groups with bi-invariant metrics. Then, the
images of ' and  commute.

Note that Theorem 2.9 provides an answer to Question 2.11 of Doucha [n.d.] whether
there are groups with invariant length function that do not embed in a metric ultraproduct
of finite groups with invariant length function. Note also that the topology matters a lot
in this context. Indeed, it can be shown that any compact Lie group is a discrete subgroup
of a countable metric ultraproduct of finite groups, see Nikolov, Schneider, and Thom
[2017].

When one restricts the class of finite groups further and approximates with symmetric
groups, one can not even map the real line R non-trivially and continuously to a metric
ultraproduct of such groups with invariant length function. Indeed, for the symmetric
group Sym(n), it can be shown that all invariant length functions ` on it satisfy `(�k) �

3`(�), for every k 2 Z and � 2 Sym(n). Using this identity, it is simple to deduce that
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the only continuous homomorphism of R into a metric ultraproduct of finite symmetric
groups with invariant length function is trivial.

Referring to a question of Zilber [2014, p. 17] (see also Question 1.1 of Pillay [2017])
whether a compact simple Lie group can be a quotient of the algebraic ultraproduct of
finite groups, we obtained the following second application of Corollary 2.8:

Theorem 2.11 (Nikolov, Schneider, and Thom [2017]). Let G be a Lie group equipped
with an bi-invariant metric generating its topology. If G is an abstract quotient of a prod-
uct of finite groups, then G has abelian identity component.

The proof of this result is almost identical to the proof of Theorem 2.9. Theorem 2.11
implies that any compact simple Lie group, the simplest example being SO(3;R), is not a
quotient of a product of finite groups, answering the questions of Zilber and Pillay. Note
also that these results are vast generalizations of an ancient result of Turing [1938].

Moreover, Theorem 2.11 remains valid if we replace the product of finite groups by
a pseudofinite group, i.e. a group which is a model of the theory of all finite groups. It
then also provides a negative answer to Question 1.2 of Pillay [2017], whether there is a
surjective homomorphism from a pseudofinite group to a compact simple Lie group.

By a compactification of an abstract group G, we mean a compact group C together
with a homomorphism � : G ! C with dense image. Pillay conjectured that the Bohr
compactification (i.e. the universal compactification) of a pseudofinite group has abelian
identity component (Conjecture 1.7 in Pillay [ibid.]). We answer this conjecture in the
affirmative by the following result:

Theorem 2.12 (Nikolov, Schneider, and Thom [2017]). Let G be a pseudofinite group.
Then the identity component of any compactification � : G ! C is abelian.

Again, the proof is an application of Corollary 2.8.

3 Approximation by unitary matrices

3.1 The choice of the metric. We will now focus on approximation of groups by uni-
tary matrices. Today, the theme knows many variations, ranging from operator-norm ap-
proximations that appeared in the theory of operator algebras Blackadar and Kirchberg
[1997] and Carrion, Dadarlat, and Eckhardt [2013] to questions related to Connes’ Em-
bedding Problem, see Connes [1976] and Pestov [2008] for details. Several examples of
this situation have been studied in the literature:

(1) Gn = U(n), where the metric dn is induced by the Hilbert-Schmidt norm kT kHS =q
n�1

Pn
i;j=1 jTij j2. In this case, approximated groups are sometimes called hy-

perlinear Pestov [2008], but we choose to call them Connes-embeddable.
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(2) Gn = U(n), where themetric dn is induced by the operator norm kT kop = supkvk=1 kT vk:

In this case, groups which are (Gn; dn)
1
n=1-approximated are called MF, see Car-

rion, Dadarlat, and Eckhardt [2013].

(3) Gn = U(n), where the metric dn is induced by the unnormalized Hilbert-Schmidt
norm kT kFrob =

qPn
i;j=1 jTij j2, also called Frobenius norm. We will speak about

Frobenius-approximated groups in this context, see De Chiffre, Glebsky, Lubotzky,
and Thom [2017].

Let us emphasize that the approximation properties are local in the sense that only
finitely many group elements and their relations have to be considered at a time. This is in
stark contrast to the uniform situation, which – starting with the work of Grove, Karcher,
and Ruh [1974] and Kazhdan [1982] – is much better understood, see Burger, Ozawa, and
Thom [2013] and Ozawa, Thom, and De Chiffre [2017].

Again, there are longstanding problems that ask if any group exists which is not ap-
proximated in the sense of (1), a problem closely related to Connes’ Embedding Problem
Connes [1976] and Pestov [2008].

Question 3.1 (Connes [1976]). Is every discrete group Connes-embeddable?

Connes’ Embedding Problem has many incarnations and we want to mention only a
few of them, see Ozawa [2004] and Pestov [2008] for more details. The most striking al-
ternative formulation is due to Kirchberg, who showed that Connes’ Embedding Problem
has an affirmative answer if and only if the group F2 �F2 is residually finite dimensional,
i.e. if the finite-dimensional unitary representations of this group are dense in the unitary
dual equipped with the Fell topology.

Blackadar and Kirchberg [1997] conjectured that any stably finite C �-algebra is em-
beddable into an norm-ultraproduct of matrix algebras, implying a positive answer to the
approximation problem in the sense of (2) for any group. Recent breakthrough results
imply that any amenable group is MF, i.e. approximated in the sense of (2), see Tikuisis,
White, and Winter [2017].

Approximation in the sense of (3) is known to bemore restrictive – as has been shown in
De Chiffre, Glebsky, Lubotzky, and Thom [2017]. Indeed, in joint work with De Chiffre,
Glebsky, Lubotzky, and Thom [ibid.], a conceptually new technique was introduced, that
allowed to provide groups that are not approximated in the sense of (3) above. An anal-
ogous result for the normalized Frobenius norm would answer the Connes’ Embedding
Problem. Even though we had little to say about Connes’ Embedding Problem, we be-
lieve that we provided a promising new angle of attack.

Theorem 3.2 (De Chiffre, Glebsky, Lubotzky, and Thom [ibid.]). There exists a finitely
presented group, which is not Frobenius-approximated. Specifically, we can take a certain
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central extension of a lattice inU(2n)\Sp(2n;Z[i; 1/p]) for a large enough prime p and
n � 3.

The key insight was that there exists a cohomological obstruction (in the second coho-
mologywith coefficients in a certain unitary representation) to the possibility of improving
the asymptotic homomorphism. The use of cohomological obstructions goes in essence
back to the pioneering work Kazhdan [1982] on stability of (uniform) approximate repre-
sentations of amenable groups. The main result of De Chiffre, Glebsky, Lubotzky, and
Thom [2017] is the following theorem.

Theorem 3.3 (De Chiffre, Glebsky, Lubotzky, and Thom [ibid.]). Let Γ be a finitely pre-
sented group such that

H 2(Γ;H�) = 0

for every unitary representation � : Γ ! U(H�). Then, any asymptotic homomorphism
'n : Γ ! U(n) w.r.t. the Frobenius norm is asymptotically close to a sequence of homo-
morphisms, i.e. Γ is Frobenius-stable.

It is well-known that a discrete group hasKazhdan’s property (T) if and only ifH 1(Γ;H�) =

0 for all unitary representations. In De Chiffre, Glebsky, Lubotzky, and Thom [ibid.], the
notion of a group to be n-Kazhdan was introduced as a vanishing condition of cohomol-
ogy in dimension nwith coefficients in arbitrary unitary representations, seeDefinition 3.8.
Important work by Garland [1973] and Ballmann and Świątkowski [1997] provides first
examples of 2-Kazhdan groups. However, those groups all act on Bruhat-Tits buildings of
higher rank and thus are residually finite. The remaining delicate work was then to show
that nevertheless there do exist finitely presented groups which are 2-Kazhdan and are not
residually finite. The method in De Chiffre, Glebsky, Lubotzky, and Thom [2017] is based
on Deligne’s construction Deligne [1978] of a non-residually finite central extension of a
Sp(2n;Z).

Before we outline the definition of the cohomological obstruction to the possibility of
improving an asymptotic homomorphism and consider a few examples, let us mention a
few open questions.

Question 3.4. Are all amenable (or even all nilpotent or solvable) groups Frobenius-
approximated?

Question 3.5. Is the class of Frobenius-approximated groups closed under central quo-
tients or crossed products byZ, compare with Ozawa, Rørdam, and Sato [2015] and Thom
[2010]?

The analogue of Theorem 3.3 also holds for approximation in the sense of (2) above.
However, the corresponding cohomology vanishing results in order to apply the theorem in
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a non-trivial situation are not available. Note that Kirchberg’s conjecture discussed above
implies that MF-stable groups should be Ramanujan in the sense of
Lubotzky and Shalom [2004].

3.2 Cohomological obstructions to stability. In this section, we want to outline how
a cohomological obstruction to stability can be obtained. Consider the family of matrix
algebras Mn(C) equipped with some unitarily invariant, submultiplicative norms k�kn,
say the Frobenius norms. We consider the ultraproduct Banach space

MU :=
Y

n!U

(Mn(C); k�kn);

and the metric ultraproduct

UU :=
Y

n!U

(U(n); dk�kn
):

We can associate an element [˛] 2 H 2 (Γ;
Q

n!U(Mn(C); k�k)) to an asymptotic rep-
resentation 'n : X ! U(n). This is done so that if [˛] = 0, then the defect can be dimin-
ished in the sense that there is an equivalent asymptotic representation '0

n with effectively
better defect, more precisely def('0

n) = oU(def('n)).
Note that an asymptotic representation as above induces a homomorphism 'U : Γ !

UU on the level of the group Γ. Thus Γ acts on MU through 'U. We consider a section
� : Γ ! Fk of the natural surjection Fk ! Γ and have �(g)�(h)�(gh)�1 2 hhRii for all
g; h 2 Γ. We set '̃n = 'n ı � .

Let us now outline how to define an element in H 2(Γ;MU) associated to 'n. To this
end we define cn := cn('n) : Γ � Γ ! Mn(C) by

cn(g; h) =
'̃n(g)'̃n(h) � '̃n(gh)

def('n)
;

for all n 2 N such that def('n) > 0 and cn(g; h) = 0 otherwise, for all g; h 2 Γ.
Then, it follows that for every g; h 2 Γ, cn(g; h) is a bounded sequence, so that the

sequence defines a map
c = (cn)n2N : Γ � Γ ! MU:

The map c is a Hochschild 2-cocycle with values in the Γ-module MU and ˛(g; h) :=

c(g; h)'U(gh)� is a 2-cocycle in the usual group cohomology. We call ˛ the cocycle
associated to the sequence ('n)n2N .

Assume now that ˛ represents the trivial cohomology class in H 2(Γ;MU), i.e. there
exists a map ˇ : Γ ! MU satisfying

˛(g; h) = 'U(g)ˇ(h)'U(g)�
� ˇ(gh) + ˇ(g); g; h 2 Γ:
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Then, we have ˇ(1Γ) = 0, ˇ(g) = �'U(g)ˇ(g�1)'U(g)� and

c(g; h) = 'U(g)ˇ(h)'U(h) � ˇ(gh)'U(gh) + ˇ(g)'U(gh):

Furthermore, we can choose ˇ(g) to be skew-symmetric for all g 2 Γ. Now let ˇ be
as above and let ˇn : Γ ! Mn(C) be any bounded and skew-symmetric lift of ˇ. Then
exp(� def('n)ˇn(g)) is a unitary for every g 2 Γ, so we can define a sequence of maps
 n : Γ ! U(n) by

 n(g) = exp(� def('n)ˇn(g))'̃n(g):

Note that since '̃n(1Γ) = 1n and ˇn(1Γ) = 0, we have  n(1Γ) = 1n. It follows easily
that  njX is an asymptotic representation with

def( njX ) = OU(def('n));

but we prove that the defect of  njX is actually oU(def('n)). If we define the asymptotic
representation '0

n : X ! U(n) by '0
n =  njX , the conclusion can be summarized as

follows:

Theorem 3.6 (De Chiffre, Glebsky, Lubotzky, and Thom [2017]). Let Γ = hX jRi be
a finitely presented group and let 'n : X ! U(n) be an asymptotic representation with
respect to a family of submultiplicative, unitarily invariant norms. Assume that the asso-
ciated 2-cocycle ˛ = ˛('n) is trivial in H 2(Γ;MU). Then there exists an asymptotic
representation '0

n : X ! U(n) such that

dist('n; '
0
n) = OU(def('n)) and def('0

n) = oU(def('n)):

The converse of Theorem 3.6 is also valid in the following sense.

Proposition 3.7 (De Chiffre, Glebsky, Lubotzky, and Thom [ibid.]). Let Γ = hX jRi be
a finitely presented group, let 'n;  n : X ! U(n) be asymptotic representations with
respect to some family of submultiplicative, unitarily invariant norms and suppose

• dist('n;  n) = OU(def('n)) and

• def( n) = oU(def('n)).

Then, the 2-cocycle ˛ associated with ('n)n2N is trivial in H 2(Γ;MU). In particular, if
'n is sufficiently close to a homomorphism for n large enough, then ˛ is trivial.

It remains to observe that in case of the Frobenius-norm, the ultraproduct MU is a
Hilbert space and the action of Γ is given by a unitary representation. Together with a
somewhat subtle minimality argument this proves Theorem 3.3.

It is now clear that we are in need of large classes of groups for which general vanishing
results for the second cohomology with Hilbert space coefficients can be proven. We will
discuss some aspects of this problem in the next section.
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3.3 Cohomology vanishing and examples of n-Kazhdan groups. Recall that if Γ is
a finitely generated group, then Γ has Kazhdan’s Property (T) if and only if the first co-
homology H 1(Γ;H�) vanishes for every unitary representation � : Γ ! U(H�) on a
Hilbert space H� , see Bekka, de la Harpe, and Valette [2008] for a proof and more back-
ground information. We will consider groups for which the higher cohomology groups
vanish. Higher dimensional vanishing phenomena have been studied in various articles,
see for example Bader and Nowak [2015], Ballmann and Świątkowski [1997], Dymara
and Januszkiewicz [2002], and Oppenheim [2015].

In De Chiffre, Glebsky, Lubotzky, and Thom [2017], we proposed the following termi-
nology.

Definition 3.8. Let n 2 N. A group Γ is called n-Kazhdan if Hn(Γ;H�) = 0 for all
unitary representations (�;H�) of Γ. We call Γ strongly n-Kazhdan, if Γ is k-Kazhdan
for k = 1; : : : ; n.

So 1-Kazhdan is Kazhdan’s classical property (T). See Bader and Nowak [2015] and
Oppenheim [2015] for discussions of other related higher dimensional analogues of Prop-
erty (T). Let’s discuss briefly one source of n-Kazhdan groups for n � 2. Let K be a
non-archimedean local field of residue class q, i.e. if O � K is the ring of integers and
m � O is its unique maximal ideal, then q = jO/mj. Let G be a simple K-algebraic
group of K-rank r and assume that r � 1. The group G := G(K) acts on the associated
Bruhat-Tits building B. The latter is an infinite, contractible, pure simplicial complex of
dimension r , on which G acts transitively on the chambers, i.e. the top-dimensional sim-
plices. Let Γ be a uniform lattice in G, i.e. a discrete cocompact subgroup of G. When
Γ is also torsion free, then the quotient X := ΓnB is a finite r-dimensional simplicial
complex and Γ = �1(X): In particular, the group Γ is finitely presented. We will use
the following theorem which essentially appears in work of Ballmann and Świątkowski
[1997] building on previous work of Garland [1973].

Theorem 3.9 (Garland, Ballmann–Świątkowski). For every natural number r � 2, there
exists q0(r) 2 N such that the following holds. If q � q0(r) and G and Γ are as above,
then Γ is strongly (r � 1)-Kazhdan. In particular, if r � 3, then Γ is 2-Kazhdan.

It is very natural to wonder what happens in the analogous real case. It is worth noting
that already H 5(SLn(Z);R) is non-trivial for n large enough Borel [1974]; thus SLn(Z)

fails to be 5-Kazhdan for n large enough. Similarly, note that
H 2(Sp(2n;Z);R) = R for all n � 2 Borel [ibid.], so that the natural generalization
to higher rank lattices in real Lie groups has to be formulated carefully; maybe just by
excluding an explicit list of finite-dimensional unitary representations.

Question 3.10 (De Chiffre, Glebsky, Lubotzky, and Thom [2017]). Is it true that SLn(Z)

is 2-Kazhdan for n � 4?
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It is worthwhile to return to the remark that Theorem 3.6 and the analogue of Theo-
rem 3.3 is valid if one replaces k�kFrob with any submultiplicative norm k�k and the as-
sumption thatH 2(Γ; V ) = f0g whenever V =

Q
n!U(Mn(C); k�k) equipped with some

action of Γ. This, for instance, gives a sufficient condition for stability with respect to the
operator norm, but it seems difficult to prove the existence of a group Γ with vanishing
second cohomology in this case. The following question seems more approachable.

Question 3.11. Can the above strategy be used to prove stability results w.r.t. to the
Schatten-p-norm?

The techniques rely on submultiplicativity of the norm and thus cannot be directly ap-
plied to the normalized Hilbert-Schmidt norm k�kHS. However, it is worth noting, that
since 1p

k
kAkFrob = kAkHS � kAkop � kAkFrob for A 2 Mk(C), we get the following

immediate corollary to Theorem 3.3.

Corollary 3.12 (De Chiffre, Glebsky, Lubotzky, and Thom [ibid.]). Let Γ = hX jRi be a
finitely presented 2-Kazhdan group and let 'n : X ! U(n) be a sequence of maps such
that

def('n) = oU(n�1/2);

where the defect is measured with respect to either k�kHS or k�kop. Then 'n is equivalent
to a sequence of homomorphisms.

The preceding corollary provides some quantitative information on Connes’ Embed-
ding Problem. Indeed, if a finitely presented, non-residually finite, 2-Kazhdan group is
Connes-embeddable, then there is some upper bound on the quality of the approximation
in terms of the dimension of the unitary group. Needless to say it would be very interesting
to decide if groups as above are Connes-embeddable. A positive answer to Question 3.11
for p > 2 should lead to improvements in Corollary 3.12.

4 Applications to group theory

4.1 The basic setup. For any group Γ, an element w in the free product Γ � Fk deter-
mines a word map w : Γ�n ! Γ given by evaluation. Let us denote by " : Γ � Fk ! Fk

the natural augmentation which sends Γ to the neutral element and call "(w) the content
of w. We call w 2 Γ�Fk a group word in k variables with coefficients in Γ. Every group
word w 2 Γ � Fk determines an equation w(X) = 1 in k variables with coefficients in
Γ in an obvious way. We say that w 2 Γ � Fk can be solved over Γ if there exists an
overgroup Λ � Γ and g1; : : : ; gk 2 Λ such that w(g1; : : : ; gk) = 1, where 1 denotes the
neutral element in Λ. Similarly, we say that it can be solved in Γ if we can take Λ = Γ.
It is clear that an equation w 2 Γ � Fk can be solved over Γ if and only if the natural
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homomorphism Γ ! Γ � Fk/hhwii is injective. Similarly, an equation can be solved in Γ
if and only if the natural homomorphism Γ ! Γ � Fk/hhwii is split-injective, i.e., it has a
left inverse.

The study of equations over groups dates back to the work of Neumann [1943]. There
is an extensive literature about equations over groups, including Gersten [1987], Ger-
stenhaber and Rothaus [1962], Howie [1981], Klyachko [1993], Levin [1962], Neumann
[1943], Klyachko and Thom [2017], and Roman’kov [2012]. In this section, we plan to
survey some observations and results that were obtained in joint work with Klyachko and
Thom [2017].

Let us start with an observation. It is well-known that not all equations with coeffi-
cients in Γ are solvable over Γ. For example if Γ = ha; bja2; b3i, then the equation
w(x) = xax�1b with variable x is not solvable over Γ. Indeed, a and b cannot become
conjugate in any overgroup of Γ. Another example involving only one kind of torsion is
Γ = Z/pZ = hai with the equation w(x) = xax�1axa�1x�1a�2. However, in both
cases we have "(w) = 1 2 Fk . Indeed, the only known examples of equations which
are not solvable over some Γ are equations whose content is trivial. We call an equation
w 2 Γ � Fk singular if its content is trivial, and non-singular otherwise. This leads to the
following question:

Question 4.1 (Klyachko and Thom [ibid.]). Let Γ be a group and w 2 Γ � Fk be an
equation in n variables with coefficients in Γ. If w is non-singular, is it true, that it is
solvable over Γ? In addition, if Γ is finite, can we find a solution in a finite extension?

The case k = 1 is the famous Kervaire-Laudenbach Conjecture. The one-variable
case was studied in work by Gerstenhaber–Rothaus, see Gerstenhaber and Rothaus [1962].
They showed that if Γ is finite, then every non-singular equation in one variable can be
solved in a finite extension of Γ. Their proof used computations in cohomology of the
compact Lie groups U(n). Their strategy was to use homotopy theory to say that the
associated word map w : U(n) ! U(n) has a non-vanishing degree (as a map of oriented
manifolds) and thus must be surjective. Any preimage of the neutral element provides a
solution to the equation w. The key to the computation of the degree is to observe that
the degree depends only on the homotopy class of w and thus – since U(n) is connected
– does not change if w is replaced by "(w). The computation of the degree is now an
easy consequence of classical computations of Hopf [1940]. We conclude that any non-
singular equation in one variable with coefficients in U(n) can be solved U(n) – thus U(n)
deserves to be called algebraically closed.

The property of being algebraically closed is easily seen to pass to arbitrary Cartesian
products of groups and arbitrary quotients of groups. As a consequence, non-singular
equations in one variable with coefficients in Γ as above can be solved over Γ if Γ is
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isomorphic to a subgroup of a quotient of the infinite product
Q

nU(n) – an observation
that is due to Pestov [2008]:

Theorem 4.2 (Pestov [ibid.]). The Kervaire-Laudenbach Conjecture holds for Connes-
embeddable groups.

Note that this covers all amenable groups, or more generally, all sofic groups Pestov
[ibid.]. As we have discussed, the Connes’ Embedding Conjecture predicts (among other
things) that every countable group is Connes-embeddable and thus implies the Kervaire-
Laudenbach Conjecture – this was also observed in Pestov [ibid.].

Actually, Gerstenhaber and Rothaus [1962] studied the more involved question
whether m equations of the form w1; : : : ; wm 2 Γ � Fk in k variables can be solved
simultaneously over Γ. Their main result is that this is the case if Γ is finite (or more
generally, locally residually finite) and the presentation two-complex

X := KhX j"(w1); : : : ; "(wm)i

satisfies H2(X;Z) = 0, i.e., the second homology of X with integral coefficients van-
ishes.

Howie [1981] proved the same result for locally indicable groups and conjectured it to
hold for all groups – we call that Howie’s Conjecture. Again, Connes’ Embedding Con-
jecture implies Howie’s Conjecture – and more specifically, every Connes-embeddable
group satisfies Howie’s Conjecture.

4.2 Topological methods to prove existence of solutions. The main goal of Klyachko
and Thom [2017] was to provide examples of singular equations in many variables which
are solvable over every Connes-embeddable group, where the condition on the equation
only depends on its content. Indeed, we gave a positive answer to Question 4.1 when
k = 2 in particular cases. This should be compared for example with results of Gersten
[1987], where the conditions on w depended on the unreduced word obtained by deleting
the coefficients from w.

Theorem 4.3 (Klyachko and Thom [2017]). Let Γ be a Connes-embeddable group. An
equation in two variables with coefficients in Γ can be solved over Γ if its content does
not lie in [F2; [F2;F2]]. Moreover, if Γ is finite, then a solution can be found in a finite
extension of Γ.

In order to prove our main result we had to refine the study of Gerstenhaber–Rothaus
on the effect of word maps on cohomology of compact Lie groups. Again, the strategy is
to show that such equations can be solved in SU(n) for sufficiently many n 2 N. More
specifically, we proved:
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Theorem4.4 (Klyachko and Thom [2017]). Letp be a prime number and letw 2 SU(p)�
F2 be a group word. If

"(w) 62 [F2;F2]
p[F2; [F2;F2]];

then the equation w(a; b) = 1 can be solved in SU(p).

If "(w) 62 [F2;F2], then this theorem is a direct consequence of the work of Gersten-
haber–Rothaus. However, if "(w) 2 [F2;F2], then a new idea is needed. We showed
– under the conditions on p which are mentioned above – that the induced word map
w : PU(p) � PU(p) ! SU(p) is surjective, where SU(p) denotes the special unitary
group and PU(p) its quotient by the center. Again, the strategy was to replace w by the
much simpler and homotopic map induced by "(w) and study its effect on cohomology
directly.

The proof is a tour de force in computing the effect of "(w) : PU(p)�PU(p) ! SU(p)
in cohomology with coefficients in Z/pZ. Using fundamental results of Serre, Bott, and
Baum-Browder on the p-local homotopy type of spheres, lens spaces and projective uni-
tary groups and finally computations of Kishimoto and Kono [2009], we managed to show
that the image of the top-dimensional cohomology class of SU(p) is non-trivial. This im-
plies that no map that is homotopic to "(w) can be non-surjective. In particular, we can
conclude as in the arguments of Gerstenhaber–Rothaus thatw : PU(p)�PU(p) ! SU(p)
must be surjective.

In general, the assumption on "(w) cannot be omitted in the previous theorem. Indeed,
in previous work the following result (independently obtained by Elon Lindenstrauss) was
shown.

Theorem 4.5 (Thom [2013]). For every k 2 N and every " > 0, there existsw 2 F2nfeg,
such that

kw(a; b) � 1nk < "; 8a; b 2 SU(k):

In particular, the equation w(a; b) = g is not solvable when kg � 1nk � ".

The construction that proves the preceding theorem yields words in F2 that lie deep in
the derived series, so that there is no contradiction with Theorem 4.4.

The surjectivity of word maps without coefficients is an interesting subject in itself.
Larsen conjectured that for each non-trivial w 2 F2 and n high enough, the associated
word map w : PU(n) � PU(n) ! PU(n) is surjective. This was shown (with some divis-
ibility restrictions on n) for words not in the second derived subgroup of F2 by Elkasapy
and the author in Elkasapy and Thom [2014].

In a similar direction, we believe that for n high enough – or again, with some divisi-
bility restrictions – the word mapw should define a non-trivial homotopy class and be not
even homotopic to a non-surjective map. In this context let us mention some questions that
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appear naturally at the interface between homotopy theory and the study of word maps.
Given a topological groupG, it is natural to study the group of words modulo those which
are null-homotopic. Indeed, we set

Nn;G := fw 2 Fkjw : Gn
! G is homotopically trivialg

and define Hn;G := Fk/Nn;G .

Question 4.6. Can we compute H2;SU(n)?

See James and Thomas [1959] and Yagita [1993] for partial information about Hn;G

in special cases. For example, it follows from classical results of Whitehead that HG is
k-step nilpotent for some k � 2 dim(G).

Similarly, we call w 2 Fk homotopically surjective with respect to G if every map in
the homotopy class of w : G�n ! G is surjective.

Question 4.7. Letw 2 F2 be non-trivial. Isw : PU(n)�PU(n) ! PU(n) homotopically
surjective for large n?

In order to study words which lie deeper in the lower central series, we suspected in
Klyachko and Thom [2017] that it might be helpful to observe that the induced word map
w : PU(p)�PU(p) ! PU(p) does not only lift to SU(p) –which is the simply connected
cover of PU(p) – but lifts even to higher connected covers of PU(p). Indeed, for example
one can show that if w 2 [F2; [F2;F2]], then the associated word map lifts to the complex
analogue of the string group.

Acknowledgments. I thank Jakob Schneider for careful reading.
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STRUCTURE OF NUCLEAR C�-ALGEBRAS:
FROM QUASIDIAGONALITY TO CLASSIFICATION

AND BACK AGAIN

Wංඅඁൾඅආ Wංඇඍൾඋ

Abstract
I give an overview of recent developments in the structure and classification theory

of separable, simple, nuclear C�-algebras. I will in particular focus on the role of
quasidiagonality and amenability for classification, and on the regularity conjecture
and its interplay with internal and external approximation properties.

Introduction

AC�-algebra is a (complex) Banach-� algebra such that kx�xk = kxk2 for all elements x.
Equivalently, C�-algebras may be thought of as norm-closed �-subalgebras of the bounded
operators onHilbert spaces. A vonNeumann algebra is one that is even closedwith respect
to the weak operator topology. Examples of C�-algebras include continuous functions on
compact Hausdorff spaces, section algebras of vector bundles with matrix fibres, or suit-
able norm completions of group algebras. Group C�-algebras come in different sizes; in
particular there is a full one, which is universal with respect to all unitary representations
of the group, and a reduced one, which is the norm completion of the left regular represen-
tation. Similar constructions can be associated with topological dynamical systems, via
the crossed product construction.

From the 1970s on it became clear that the notion of amenability for groups, with its
many equivalent formulations, can be rephrased, in almost as many ways, for operator
algebras as well. Some of these notions are more or less directly carried over from groups
to group C�-algebras or group von Neumann algebras. But then it often turns out that
they make perfect sense at a much more abstract level — and even there they remain
closely related. Highlights are Choi–Effros’ and Kirchberg’s characterisation of nuclear
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C�-algebras by the completely positive approximation property, and of course Connes’
classification of injective II1 factors.

Connes’ theorem kicked off an avalanche of further developments in von Neumann
algebras, but it also remained an inspiration for C�-algebras. Elliott quite boldly conjec-
tured that separable nuclear C�-algebras should be classifiable by K-theoretic data. After
some refinements and adjustments, and many years of hard work, we now understand the
conjecture and its scope fairly well, at least for simple and unital C�-algebras. Moreover,
after a long detour, we now know that classification of simple nuclear C�-algebras is not
only philosophically, but also technically, surprisingly analogous to the classification of
injective factors. In particular, the von Neumann algebraic properties of being (o) injec-
tive, (i) hyperfinite, (ii) McDuff, and (iii) having tracial comparability of projections, do
have C�-algebraic counterparts: (o) nuclearity, (i) finite (noncommutative) topological
dimension, (ii) Z-stability, and (iii) comparison of positive elements. Here, nuclearity is
characterised via the completely positive approximation property, topological dimension
is either decomposition rank or nuclear dimension, and Z-stability is tensorial absorption
of the Jiang–Su algebra Z, the smallest possible C�-algebraic analogue of the hyperfinite
II1 factor R. Comparison of positive elements can be described as a regularity property
(lack of perforation) of the Cuntz semigroup.

A major difference between the C�- and the von Neumann algebra situation is that for
von Neumann factors injectivity implies the three other properties, whereas a simple C�-
algebra may be nuclear but fail to have finite nuclear dimension, beZ-stable, or have strict
comparison. However, at least conjecturally these three properties occur or fail simulta-
neously — and for C�-algebras with, say, not too complicated tracial state spaces, this
is indeed a theorem. For now let us state a special case; we give a more comprehensive
version later on.
Tඁൾඈඋൾආ A: For a separable, simple, unital, nuclear C�-algebra A ¤ Mr(C) with at
most one tracial state, the following are equivalent:

(i) A has finite nuclear dimension.

(ii) A is Z-stable, A Š A˝ Z.

(iii) A has strict comparison of positive elements.

After the classification of injective factors was complete, it took around fifteen years to
finish the C�-analogue of the type III case. (I say ‘finish’, but this is only correct modulo
the UCT problem. We will soon return to this little wrinkle.) So why did the type II
analogue take almost forty years? For once, there is more information to keep track of:
for type II1 factors the invariant is simply a point, whereas for C�-algebras the invariant
involves all possible ordered K-groups together with arbitrary Choquet simplices (arising
as tracial state spaces). There is, however, also a deeper, and more mysterious reason.
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This is related to both the universal coefficient theorem (UCT) and to quasidiagonality.
The UCT problem asks whether all separable nuclear C�-algebras are—in a very weak
sense—homotopy equivalent to commutative ones. Conceptually this has a topological
flavour, so from this perspective it is reasonable that the UCT becomes an issue in the C�-
algebraic (i.e., topological) setup, and not in the von Neumann algebraic (i.e., measure
theoretic) situation. Nonetheless, I would like to understand this explanation at a more
technical level — but maybe this is asking for too much as long as the UCT problem is
not resolved. Quasidiagonality is an external approximation property; the quasidiagonality
question (QDQ) asks whether all stably finite nuclear C�-algebras admit a separating set of
finite dimensional approximate representations; cf. Blackadar and Kirchberg [1997]. For
von Neumann algebras the situation is more clear, since here it is a 2-norm (i.e., tracial)
version of quasidiagonality that matters.

The connection between amenability and quasidiagonality was perhaps first drawn in
Hadwin [1987], where Rosenberg observed that discrete groups with quasidiagonal re-
duced group C�-algebras are amenable. The converse statement became known as Rosen-
berg’s conjecture.

In Tikuisis, White, and Winter [2017], QDQ was answered for UCT C�-algebras with
faithful tracial states.
Tඁൾඈඋൾආ B: Let A be a nuclear C�-algebra with a faithful tracial state. Suppose A satis-
fies the UCT (one could also say that A is KK-equivalent to a commutative C�-algebra).
Then, A is quasidiagonal.

By work of Tu (and Higson–Kasparov), amenable group C�-algebras do satisfy the
UCT; since they also have a canonical faithful trace, this confirms Rosenberg’s conjecture,
and one arrives at a new characterisation of amenability.
Cඈඋඈඅඅൺඋඒ C: For a discrete group G, the reduced group C�-algebra is quasidiagonal if
and only if G is amenable.

Upon combining Theorems A and B with the work of Elliott, Gong, Lin, and Niu, we
are now in a position to state the most general classification result that can currently be
expected in the simple and unital case.1,2
Tඁൾඈඋൾආ D: The class of separable, simple, unital, nuclear, and Z-stable C�-algebras
satisfying the UCT is classified by K-theoretic invariants.

Separability will always be necessary for a classification result of this type, and nu-
clearity and Z-stability are known to be essential — and so, within its simple and unital
scope, the theorem is complete modulo the UCT problem. For the time being this remains
a sore point; however, one should note that in applications the C�-algebras of interest very

1To be precise, we need more general versions of Theorems A and B here; I’ll state these in Sections 5 and
3.

2There are impressive results also in the non-unital and even in the non-simple situation, but I won’t go into
these here.
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often come with sufficient additional geometric structure, so that the UCT can be verified
directly.

With the benefit of hindsight, one might divide the classification programme into three
major challenges. These are linked at many levels—not least by the final result—but
quasidiagonality showcases these connections particularly beautifully. This is the point
of view I will take in these notes. Let us have a quick look at each of these challenges and
very briefly sketch how quasidiagonality enters the game; we will see some more details
in the main part of the paper.
The first challenge: Understand nuclearity and the interplay with finite dimensional ap-
proximation properties.
Themain step was the completely positive approximation property as established by Choi–
Effros and Kirchberg. This has been refined in various ways since then; in particular it
has been used to model finite covering dimension in a noncommutative setting. While
these are internal approximations, quasidiagonality may be regarded as an external ap-
proximation property. Understanding when quasidiagonality holds is a major task of the
theory.
The second challenge: Understand the C�-algebraic regularity properties (i), (ii), (iii)
above and their interplay.
This is about the regularity conjecture for nuclear C�-algebras, now often referred to as
Toms–Winter conjecture. I will state the conjecture in its full form, and describe what we
know andwhat we don’t know. There are twoC�-algebraic counterparts of hyperfiniteness
in this context: finite decomposition rank and finite nuclear dimension. The first occurs
only for finite C�-algebras, the second in greater generality. It was open for some time
what the difference between the two notions is, and we now know that (at least for simple
C�-algebras) the dividing line is marked by quasidiagonal traces.
The third challenge: Implement the actual classification procedure.
This is technical, and not easy to describe in short. As an illustration I will at least state
a stable uniqueness result, Theorem 2.4, which allows one to compare �-homomorphisms
up to unitary equivalence. This is particularly important for Elliott’s intertwining argu-
ment; cf. Elliott [2010]. I will also mention Kirchberg–Phillips classification, Lin’s TAF
classification, and the recent spectacular work of Gong–Lin–Niu, together with the, indeed
quite final, classification theorem that is now in place.

I find the common history of quasidiagonality and classification most intriguing, since
the two have met time and time again, and often very unexpectedly. First, Kirchberg used
Voiculescu’s result on quasidiagonality of suspensions to prove his famous O2-embedding
theorem, which in turn led to Kirchberg–Phillips classification of purely infinite nuclear
C�-algebras. Next, Popa showed how to excise finite dimensional C�-algebras in quasidi-
agonal ones withmany projections. This was the starting point for Lin’s TAF classification.
(Later on, quasidiagonality also became crucial for the classification of specific types of
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examples, in particular for simple quotients of certain group C�-algebras and for crossed
products associated to free and minimal Zd -actions on compact and finite dimensional
Hausdorff spaces.) Quasidiagonality (of all traces, to be precise) was also a crucial hy-
pothesis for the classification result of Elliott–Gong–Lin–Niu. Theorem B above marked
a surprising turn of events, as it, conversely, invoked a classification result to arrive at
quasidiagonality.

The title of this note refers to the chronological development of matters, as outlined
above. The main body of the paper is arranged thematically, in order to give a better
overview of the individual aspects of the theory.

In Section 1 we recall the notion of nuclearity, and various versions of the completely
positive approximation property. Section 2 gives a very brief overview of K-theory, El-
liott’s invariant, and the role of the UCT, especially for stable uniqueness results. Section 3
is devoted to quasidiagonality, and a rough outline of the main theorem of Tikuisis, White,
and Winter [2017]. In Section 4 we revisit Rosenberg’s conjecture on the connection be-
tween amenability and quasidiagonality. Section 5 summarises what is known and what
is not known about the Toms–Winter conjecture for simple, unital, nuclear C�-algebras.
Finally, Section 6 highlights the state of the art of Elliott’s classification programme.

I am indebted to Hannes Thiel, Aaron Tikuisis, and Stuart White for looking carefully
at an earlier manuscript.

1 Internal approximation: nuclearity and exactness

1.1 C�-algebras form a category, with the most natural choice for morphisms being
�-homomorphisms. (It follows from spectral theory that these are automatically norm-
decreasing, hence continuous.)

Another important class of morphisms consists of completely positive maps (we write
c.p., or c.p.c. if they are also contractive). These are linear and �-preserving, and send posi-
tive elements to positive elements, even after amplification with matrix algebras. By Stine-
spring’s theorem, every c.p. map can be written as a compression of a �-homomorphism.
More precisely, a map ' : A �! B is completely positive if and only if B embeds into
another C�-algebra C and if there are a �-homomorphism � : A �! C and some h 2 C

such that

'( : ) = h��( : )h:

1.2 A completely positive map ' : A �! B is order zero if it preserves orthogonality, i.e.,
whenever a1; a2 2 A satify a1a2 = 0, then '(a1)'(a2) = 0. By Winter and Zacharias
[2009], c.p. order zero maps are precisely those for which there is a Stinespring dilation
such that h 2 C is positive and commutes with �(A).
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As a consequence of this structure theorem, there is a bijective correspondence between
c.p.c. order zero maps A �! B and �-homomorphisms C0((0; 1]; A) �! B . Moreover,
one can use functional calculus on the commutative C�-algebra generated by h (which in
fact is a quotient of C0((0; 1])), to define a notion of functional calculus for c.p.c. order
zero maps; cf. Winter and Zacharias [2009].
1.3 Dൾൿංඇංඍංඈඇ: A C�-algebra A has the completely positive approximation property, if
the following holds:

For any finite subset F � A and any tolerance � > 0, there is a diagram

(1) A
 

�! F
'

�! A

with F a finite dimensional C�-algebra and completely positive contractive maps  and
', such that ' agrees with the identity map up to � on F , in short

' =F ;� idA; i.e., ka � ' (a)k < � for all a 2 F :

We have asked the maps  and ' to be contractions. One could also ask them to be
just bounded. As long as the norm bound is uniform, the resulting definitions will be
equivalent.
1.4 A C�-algebra A is nuclear if, for every other C�-algebra B , there is only one C�-norm
on the algebraic tensor product A ˇ B; equivalently, the maximal and minimal tensor
products of A and B agree. A is exact if taking the minimal tensor product with another
C�-algebra B is an exact functor for any B . Since the maximal tensor product has this
property, nuclear C�-algebras are automatically exact.

Choi and Effros proved in Choi and Effros [1978] (and Kirchberg in Kirchberg [1977])
that a C�-algebra is nuclear if and only if it has the completely positive approximation
property. By the Choi–Effros lifting theorem, c.p.c. maps from nuclear C�-algebras into
quotient C�-algebras always admit c.p.c. lifts.

Kirchberg’s O2 embedding theorem says that any separable exact C�-algebra can be
embedded into the Cuntz algebra O2. Separable nuclear C�-algebras are precisely those
which in addition are the images of conditional expectations on O2.
1.5 In 2004, Eberhard Kirchberg and I defined a notion of covering dimension for C�-
algebras which is based on 1.3 and uses order zero maps to model disjointness of open sets
in a noncommutative situation. This notion, called decomposition rank, was generalised
in Winter and Zacharias [2010] by Joachim Zacharias and myself. Here are the precise
definitions.
Dൾൿංඇංඍංඈඇ: A C�-algebra A has nuclear dimension at most d , dimnucA � d , if the
following holds:
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For any finite subset F � A and any tolerance � > 0, there is a diagram

A
 

�! F
'

�! A

with F a finite dimensional C�-algebra,  completely positive contractive and ' com-
pletely positive, such that

(i) ka � ' (a)k < � for all a 2 F ,

(ii) there is a decomposition F = F (0) ˚ : : :˚ F (d) such that each '(i) := 'jF (i) is
c.p.c. order zero.

If, moreover, the maps ' can be chosen to be contractive as well, then we say A has
decomposition rank at most d , drA � d .

Both of these concepts generalise covering dimension for locally compact spaces. The
values are zero precisely for AF algebras, and they can be computed (or at least bounded
from above) for many concrete examples.

Note that for nuclear dimension, the maps ' are sums of d +1 contractions, hence are
uniformly bounded. Therefore, both finite nuclear dimension and finite decomposition
rank imply nuclearity. The two concepts, as similar as they look, are genuinely different.
In particular, unlike decomposition rank, nuclear dimension may be finite also for infinite
C�-algebras such as the Toeplitz algebra or the Cuntz algebras. The problem of charac-
terising the difference turned out to be close to the heart of the subject. It was shown
in Kirchberg and Winter [2004] and Winter and Zacharias [2010], respectively, that the
maps  can be arranged to be approximately multiplicative for decomposition rank, and
approximately order zero for nuclear dimension. In the former case, this shows that fi-
nite decomposition rank implies quasidiagonality; cf. Section 3. We will see that this is
close to nailing down the difference between decomposition rank and nuclear dimension
precisely.
1.6 The approximations of 1.5 are more rigid than those of 1.3. This means for some pur-
poses they are more useful, but we also know that not all nuclear C�-algebras have finite
nuclear dimension. Building on Hirshberg, Kirchberg, and White [2012] (and extending
Choi and Effros [1978]), Brown, Carrión, and White [2016] gave a refined version of the
completely positive approximation property, which asks the involved maps to be some-
what more rigid. In particular, the ‘downwards’ maps  can be taken to be approximately
order zero, and the ‘upwards’ maps ' to be sums of honest order zero maps. The precise
statement is as follows.
Tඁൾඈඋൾආ: A C�-algebra A is nuclear if and only if the following holds:

For any finite subset F � A and any tolerance � > 0, there is a diagram

A
 

�! F
'

�! A
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with F a finite dimensional C�-algebra and c.p.c. maps  and ', such that

(i) ka � ' (a)k < � for all a 2 F ,

(ii) k (a) (b)k < � whenever a; b 2 F satisfy ab = 0,

(iii) there is a decomposition F = F (0) ˚ : : :˚ F (k), such that the restrictions 'jF (i)

all have order zero, and such that
Pk
i=1 k'jF (i)k � 1.

Compared to 1.5, in this statement the number of summands (of which I think as
colours) is not uniformly bounded, but unlike in the original completely positive approx-
imation property of 1.3 one still has individual order zero maps. As an extra bonus, one
can arrange the norms to add up to one, or, upon normalising, one can think of the maps
' as convex combinations of c.p.c. order zero maps. This kind of approximation is a little
subtle to write down explicitly, even when A is a commutative C�-algebra like C([0; 1]).
(In particular, the number of colours in this setup will typically become very large; this is
because in the proof at some point one has to pass from weak� to norm approximations
via a convexity argument.)
1.7 One can think of the approximations of 1.5 and 1.6 as internal in the following sense:

By 1.2, each order zero map corresponds to a �-homomorphism from the cone over
the domain C�-algebra, which – for each matrix summand – essentially is given by an
embedding of an algebra like C0(X n f0g) ˝ Mk . Here, X � [0; 1] is a compact subset
which is just the spectrum of the positive contraction '(1Mk

) 2 A. On the other hand, one
may approximate X n f0g by the union of at most one half-open interval, finitely many
closed intervals, and finitely many points. Now one can use order zero functional calculus
to slightly modify 'jMk

in such a way that the image sits in an honest subalgebra of A
which (after rescaling and relabeling the involved intervals) is isomorphic to

(C0((0; 1]) ˝Mk) ˚ (C([0; 1]) ˝Mk) ˚ : : :˚ (C([0; 1]) ˝Mk) ˚Mk ˚ : : :˚Mk :

The overall ' then maps into a (non-direct) sum of such subalgebras; with a little extra
effort one can describe the map  in terms of associated conditional expectations, and of
course one can also keep track of the convex coefficients in 1.6. It is usually more practical
to write c.p. approximations like in (1), but I often do find it useful to think of them as
genuinely internal.

2 K-theory, the UCT, and stable uniqueness

2.1 K-theory for C�-algebras is a generalisation of topological K-theory; it is the homol-
ogy theory which is at the same time homotopy invariant, half-exact, and compatible with
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stabilisation. For a (say unital) C�-algebra A, K0(A) may be defined in terms of equiva-
lence classes of projections in matrix algebras over A, or in terms of equivalence classes
of finitely generated projective modules over A. (One first arrives at a semigroup, whose
Grothendieck group is an ordered abelian group defined to be K0.) K1(A)may be defined
in terms of equivalence classes of unitaries, or by taking K0 of the suspension. Like for
topological K-theory, one has Bott periodicity, so K�+2(A) Š K�(A).

Every tracial state on A naturally induces a state (i.e., a positive real valued character)
on the ordered K0-group.
2.2 ForA simple and unital, the Elliott invariant consists of the ordered K0-group (together
with the position of the class of the unit), K1, and of the trace space together with the
pairing with K0,

Ell(A) := (K0(A);K0(A)+; [1A]0;K1(A);T(A); rA : T(A) �! S(K0(A))):

Ell( : ) is a functor in a natural manner.
We say a class E of simple unital C�-algebras is classified by the Elliott invariant, if

the following holds:
WheneverA, B are in E, and there is an isomorphism between Ell(A) and Ell(B), then

there is an isomorphism between the algebras lifting the isomorphism of invariants. We
will see in Section 6 that this actually happens, and in great generality.
2.3 Kasparov’s KK-theory is a bivariant functor from C�-algebras to abelian groups which
is contravariant in the first and covariant in the second variable. It has similar abstract
properties as K-theory, and we have K�(A) Š KK�(C; A).

Rosenberg and Schochet in Rosenberg and Schochet [1987] studied the sequence

(2) 0 �! Ext1(K�(A);K�+1(B)) �! KK(A;B) �! Hom(K�(A);K�(B)) �! 0:

A separable C�-algebra A is said to satisfy the universal coefficient theorem (UCT for
short), if the sequence (2) is exact for every � -unital C�-algebraB . It follows from Rosen-
berg and Schochet [ibid.] (cf. Blackadar [1998, Theorem 23.10.5]), that A satisfies the
UCT precisely if it is KK-equivalent to an abelian C�-algebra.

The UCT problem asks whether all separable nuclear C�-algebras satisfy the UCT.
This is perhaps the most important open question about nuclear C�-algebras.
2.4 The sequence (2) allows one to lift homomorphisms betweenK-groups toKK-elements.
The latter are already a little closer to �-homomorphisms between the C�-algebras, but to
get there one needs fairly precise control over the extent to which �-homomorphisms are
determined by their KK-classes. This is often done by so-called stable uniqueness theo-
rems, as developed in particular by Lin, Dadarlat and Eilers, and others. Let us state here
a slightly simplified version of Dadarlat and Eilers [2002, Theorem 4.5].
Tඁൾඈඋൾආ: LetA,B be unitalC�-algebras withA separable and nuclear. Let � : A �! B

be a unital �-homomorphism which is totally full, i.e., for every nonzero positive element
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of A, its image under � generates all of B as an ideal. Let �; : A �! B be unital
�-homomorphisms such that KK(�) = KK( ).

Then, for every finite subset G � A and every ı > 0 there are n 2 N and a unitary
u 2 Mn+1(B) such that

ku(�(a) ˚ �˚n(a))u�
� ( (a) ˚ �˚n(a))k < ı for all a 2 G:

2.5 In the theorem above, the number n depends on G and on ı, but also on the maps �,  ,
and �. However, in applications one often cannot specify these maps beforehand. Dadarlat
and Eilers in Dadarlat and Eilers [2002] have found a way to deal with this issue (their
original result only covers simple domains, but it can be pushed to the non-simple situation
as well; cf. Lin [2005, Lemma 5.9] or Tikuisis, White, and Winter [2017, Theorem 3.5]).
The idea is it to assume that n cannot be chosen independently of the maps, and then to
construct sequences of maps which exhibit this behaviour. Now regard these sequences
as product maps, and apply the original Theorem 2.4 to arrive at a contradiction. To this
end, it is important to keep control over the KK-classes of the product maps — which is
not easy, since KK-theory is not compatible with products in general. At this point the
UCT saves the day, since (at least for the algebras involved) it guarantees that the map

KK
�
A;

Q
N Bn

�
�!

Q
N KK(A;Bn)

is injective. Very roughly, if two sequences of KK-elements on the right hand side agree,
they are connected by a sequence of homotopies. But since there is no uniform control
over the length of these, it is not clear how to combine them to a single homotopy on the
left hand side, at least not for general A. On the other hand, one can do this if the domain
algebra A has some additional geometric structure — e.g., if it is commutative. But then
of course it also suffices if A is KK-equivalent to a commutative C�-algebra, i.e., if it
satisfies the UCT.

3 External approximation: quasidiagonality

3.1 Halmos defined a set S � B(H) of operators on a Hilbert space to be quasidiagonal
if there is an increasing net of finite rank projections converging strongly to the identity
operator on the Hilbert space, such that the projections approximately commute with ele-
ments of S . One then calls a C�-algebra quasidiagonal if it has a faithful representation on
some Hilbert space, such that the image forms a quasidiagonal set of operators in Halmos’
sense. Voiculescu in Voiculescu [1991, Theorem 1] rephrased this in a way highlighting
quasidiagonality as an external approximation property.
Tඁൾඈඋൾආ: A C�-algebra A is quasidiagonal if, for every finite subset F of A and � > 0,
there are a matrix algebraMk and a c.p.c. map  : A �! Mk such that
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(i) k (ab) �  (a) (b)k < � for all a; b 2 F ,

(ii) k (a)k > kak � � for all a 2 F .

3.2 The maps of the theorem above may be thought of as approximate finite dimensional
representations. This point of view has still not been fully exploited, partly because C�-
algebras are not so accessible to representation theoretic methods. It has, on the other
hand, turned out to be fruitful to think of quasidiagonality as an embeddability property.
Let Q denote the universal UHF algebra, Q =M2˝M3˝ : : :, so that each matrix algebra
embeds unitally into Q. Then, a separable C�-algebra A is quasidiagonal if and only if
there is a commuting diagram of the form

Q
N Q

��
A

 ̄ //

 ̃

66mmmmmmmmmmmmmmmm Q
N Q/

L
N Q

with  ̄ an injective �-homomorphism and  ̃ a completely positive contraction. If, in
addition, A is nuclear, then the lift  ̃ always exists by the Choi–Effros lifting theorem.
Moreover, one may replace the sequence algebra

Q
N Q/

L
N Q by an ultrapower Q! .

As a result, a separable nuclear C�-algebra A is quasidiagonal if and only if there is an
embedding

(3) � : A �! Q! :

3.3 Every quasidiagonal C�-algebra is stably finite, i.e., neither the algebra nor any of its
matrix amplifications contains a projections which is Murray–von Neumann equivalent
to a proper subprojection (this is a finiteness condition, reminiscent of the absence of
paradoxical decompositions). The quasidiagonality question (QDQ) asks whether this is
the only obstruction, at least in the nuclear case.
Qඎൾඌඍංඈඇ: (QDQ) Is every stably finite nuclear C�-algebra quasidiagonal?

After being around for some time this was first put in writing by Blackadar and Kirch-
berg in Blackadar and Kirchberg [1997]. There is a range of variations as discussed in
Winter [2016].
3.4 By Ozawa [2013], like Q itself, the ultrapower Q! also has a unique tracial state �Q!

.
The composition �Q!

ı � is a positive tracial functional on A. Whenever this is nonzero
one may rearrange both � and its lift so that �Q!

ı � is a tracial state on A. A tracial state



1830 WILHELMWINTER

� which arises in this manner is called a quasidiagonal trace:

A
9� //

�

&&NN
NNN

NNN
NNN

NN Q!

�Q!

��
C

It is common to drop the injectivity requirement on � in (3) in this context; this is largely
for notational convenience since otherwise one would often have to factorise through the
quotient by the trace kernel ideal.

A natural refinement of 3.3 is QDQ for traces; cf. Brown and Ozawa [2008] and Win-
ter [2016]. Just as QDQ, this has been around for a while; to the best of my knowledge it
appeared in Nate Brown’s Brown [2006] for the first time explicitly. It became a quite cru-
cial topic for Bosa, Brown, Sato, Tikuisis, White, and Winter [2015] and Tikuisis, White,
and Winter [2017], and also for Elliott’s classification programme, as we will see below.
Qඎൾඌඍංඈඇ: Is every tracial state on a nuclear C�-algebra quasidiagonal?
3.5 The fact that unital quasidiagonal C�-algebras always have at least one quasidiagonal
trace was first observed by Voiculescu in Voiculescu [1993]. On the other hand, an ar-
bitrary embedding � : A �! Q! may well end up in the trace kernel ideal of �Q!

, so
that the composition �Q!

ı � vanishes. For embeddings of cones as in Voiculescu [1991]
this will always be the case. In that paper Voiculescu showed that quasidiagonality is ho-
motopy invariant and concluded that cones and suspensions of arbitrary (say separable)
C�-algebras are always quasidiagonal. The method is completely general, but it does not
allow to keep track of tracial states.

For cones over nuclear C�-algebras, one can say more: Tikuisis, White, and Winter
[2017, Lemma 2.6] introduced a way of mapping a cone over the nuclear C�-algebra A to
Q! while at the same time controlling a prescribed trace on A. More precisely:
Lൾආආൺ: Let A be a separable nuclear C�-algebra with a tracial state �A. Then,

(i) there is a c.p.c. order zero map

' : A �! Q!

such that �A = �Q!
ı ', and

(ii) there is a �-homomorphism

Λ́ : C0((0; 1]) ˝ A �! Q!

such that ��˝ �A = �Q!
ı Λ́, where �� denotes the Lebesgue integral on C0((0; 1]).
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Let us have a quick glance at the proof. Since Q is tensorially self-absorbing and since
it is not very hard to find an embedding � of the interval into Q in a Lebesgue trace
preserving way, (ii) follows from (i) by extending the c.p.c. order zero map

A
�(id(0;1])˝'

�! Q ˝ Q! �! (Q ˝ Q)! Š Q!

to a �-homomorphism defined on the cone,

Λ́ : C0((0; 1]) ˝ A �! Q! :

For (i), for the sake of simplicity let us assume that �A is extremal. Then since A is
nuclear, by Connes’ work Connes [1976], the weak closure ofA in the GNS representation
��A for �A is the hyperfinite II1 factor R. It follows from the Kaplansky density theorem
that there is a surjection from Q! onto R! . Now again by nuclearity, the Choi–Effros
lifting theorem yields a c.p.c. lifte' of ��A :

Q!

q
��

A
��A

//

e' 55jjjjjjjjjjjjjjjjjjjj R � � // R!

This lifte' has no reason to be order zero. However, for any approximate unit (e�)Λ of the
kernel of the quotient map q, the mapse'� := (1� e�)

1/2e'( : )(1� e�)
1/2 will lift ��A as

well — and if one takes the approximate unit to be quasicentral with respect toQ! those
maps are at least approximately order zero. Now use separability of A and a ‘diagonal
sequence argument’ to turn the e'� into an honest order zero lift '. This type of diagonal
sequence argument appears inevitably when working with sequence algebras. In this case
one can run it more or less by hand, but a better, and more versatile way to implement it
in a C�-algebra context is Kirchberg’s �-test; cf. Kirchberg [2006, Lemma A1].
3.6 Let us take another look at the lemma above when A is unital. In this case, we have
an embedding

�́ := Λ́jC0((0;1])˝1A
: C0((0; 1]) �! Q!

of the cone into Q! . One may unitise this map to arrive at an embedding

�̄ : C([0; 1]) �! Q!

which still induces the Lebesgue integral when composed with �Q!
. If only we could

extend this map �̄ to C([0; 1]) ˝ A, then this would immediately prove quasidiagonality
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of the trace �A. Of course such an extension seems far too much to ask for, but it is not
completely unreasonable either: The map �̄ restricts to the embeddings

�́ : C0((0; 1]) �! Q! and �̀ : C0([0; 1)) �! Q! :

Now since the Lebesgue integral is symmetric under flipping the interval, we see that
it agrees with both maps �Q!

ı �́ and �Q!
ı �̀ ı flip (where flip denotes the canonical

isomorphism between C0((0; 1]) and C0([0; 1)). Moreover, by Ciuperca and Elliott [2008]
this is enough to make the maps �́ ı flip and �̀ approximately unitarily equivalent —
and again by a diagonal sequence argument one can even make them honestly unitarily
equivalent, i.e., one can find a unitary u 2 Q! such that

(4) �̀( : ) = u �́(flip( : ))u�:

Now this map can clearly be extended to all of C0([0; 1)) ˝ A by setting

Λ̀ := u Λ́((flip ˝ idA)( : ))u�:

At this point we have two maps

Λ́ : C0((0; 1]) ˝ A �! Q! and Λ̀ : C0([0; 1)) ˝ A �! Q! ;

which we would like to ‘superpose’ to a map defined on C([0; 1]) ˝ A. This can be done
by means of a 2 � 2 matrix trick, involving the unitary u and rotation ‘along the interval’.
The result will be a c.p.c. map

Λ̄ : C([0; 1]) ˝ A �! M2(Q!)

which will map 1[0;1] to a projection of trace 1/2. However, to arrive at quasidiagonality,
Λ̄ would also have to be multiplicative. This will indeed happen provided one can in
addition choose the unitary u to implement the flip on all of the suspension C0((0; 1))˝A,
or equivalently, to satisfy (4) as well as

(5) Λ̀(f ˝ a) = u Λ́(f ˝ a)u� = Λ́(f ˝ a)

for all a 2 A and for all f 2 C0((0; 1))which are symmetric in the sense that flip(f ) = f .
In other words, we have to implement the flip on C0((0; 1)) in the relative commutant of
a certain suspension over A.

It is a lot to ask for such a unitary to begin with, and even approximate versions are just
as hard to achieve, since in an ultrapower approximately implementing (4) and (5) will
be as good as implementing them exactly. On the other hand, the domains of our maps
are cones, or suspensions embedded in cones, hence zero-homotopic, and so there is no
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obstruction in K-theory to finding such a u. Luckily, there are powerful techniques from
C�-algebra classification in place which do allow to compare maps when they sufficiently
agree on K-theory; cf. Lin [2002] and Dadarlat and Eilers [2002], or 2.4 above. These
require the target algebra to be ‘admissible’ (which is the case here), but there is also a
price to pay: with these stable uniqueness theorems, one can only compare maps up to
(approximate) unitary equivalence after adding a ‘large’ map to both sides. This large-
ness can be measured numerically using the trace of the target algebra (which recovers
the trace �A on A via Λ; at this point it is important that �A is faithful). In general the
largeness constant depends on the algebras involved, but also on the maps. In Tikuisis,
White, and Winter [2017] we found a way to use large multiples of the original maps as
correcting summands. It is then important for the largeness constant to not depend on the
maps involved. As pointed out in 2.5, Dadarlat and Eilers have indeed developed such
a stable uniqueness theorem which works when the domain (in our case the suspension
C0((0; 1)) ˝ A) in addition satisfies the UCT.

This is all made precise in Tikuisis, White, and Winter [ibid.], which also contains
an extensive sketch of the proof (a slightly more informal sketch can be found in Winter
[2016]). Here is the result.
3.7 Tඁൾඈඋൾආ: Every faithful trace on a nuclear C�-algebra satisfying the UCT is qua-
sidiagonal.

In particular this answers the quasidiagonality question QDQ for UCT C�-algebras
with faithful traces. We will see some more consequences in the subsequent sections.
3.8 In 2017, Gabe generalised the theorem above to the situation whereA is only assumed
to be exact (but still satisfying the UCT), and the trace is amenable.

In 2017, Schafhauser gave a different, and shorter, proof, which replaces the stable
uniqueness theorem of Dadarlat and Eilers [2002] by a result from Elliott and Kucerovsky
[2001].

4 Rosenberg’s conjecture: amenability

4.1 In the appendix of Hadwin [1987], Rosenberg observed that for reduced group C�-
algebras amenability and quasidiagonality are closely related.
Pඋඈඉඈඌංඍංඈඇ: Let G be a countable discrete group and suppose the reduced group C�-
algebra C�

r (G) � B(`2(G)) is quasidiagonal. Then, G is amenable.
A proof is not hard, and worth looking at (the one below can be extracted from Brown

and Ozawa [2008, Corollary 7.1.17, via Theorem 6.2.7]): For g 2 G let ug denote the
image of g in B(`2(G)) under the left regular representation. Let (pn)N � B(`2(G)) be
a sequence of finite rank projections strongly converging to the identity and approximately
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commuting with C�
r (G). Compression with the pn yields unital c.p. maps

'n : C�
r (G) �! pnB(`2(G))pn Š Mrn

(where rn is just the rank of pn). Since the pn approximately commute with elements of
C�
r (G), these maps are approximately multiplicative, so that the limit map

'1 : C�
r (G) �!

Q
N Mrn/

L
N Mrn

is a �-homomorphism. Note that each 'n extends to a unital c.p. map

'̄n : B(`2(G)) �! Mrn

by Arveson’s extension theorem. Now by Stinespring’s theorem, C�
r (G) sits in the multi-

plicative domain of the limit map

'̄1 : B(`2(G)) �!
Q

N Mrn/
L

N Mrn ;

which in particular means that for every g 2 G and every x 2 B(`2(G)),

'̄1(ugx) = '̄1(ug)'̄1(x):

Upon choosing a free ultrafilter ! 2 ˇN n N, the canonical tracial states on the Mrn ,
evaluated along !, yield a tracial state �! on

Q
N Mrn/

L
N Mrn . Now for x 2 B(`2(G))

we have

�! ı '̄1(ugxu
�
g) = �!('̄1(ug)'̄1(x)'̄1(u�

g))

= �!('̄1(u�
g)'̄1(ug)'̄1(x))

= �!('̄1(u�
gug)'̄1(x))

= �! ı '̄1(x):

This in particular holds for x 2 `1(G) (regarded as multiplication operator), and we see
that �! ı '̄1 is a translation invariant state on `1(G). The existence of such an invariant
mean is equivalent to G being amenable.
4.2 In the argument above, the pn approximately commute with elements of C�

r (G) in
norm. However, the construction almost forgets about this and really only requires the
pn to approximately commute with C�

r (G) in trace. The point is that �! ı '̄1 is an
amenable trace, which is enough to show amenability of G; cf. Brown and Ozawa [2008,
Proposition 6.3.3]. If one conversely starts with an amenable group G with a sequence of
Følner sets Fn, and chooses pn 2 B(`2(G)) to be the associated finite rank projections,
then the same construction as above will again yield an invariant mean. Of course the pn
will approximately commute with C�

r (G) only in trace, and not in norm.
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On the other hand, for G = Z, one has C(S1) Š C�
r (G) � B(`2(G)), and it is well

known that commutative C�-algebras are quasidiagonal, not just in the abstract sense, but
also when they are concretely represented on a Hilbert space. In this situation, one can
even construct the quasi-diagonalising projections fairly explicity, from Følner sets, i.e.,
one canmodify such Følner projections tomake them approximately commute with C�

r (G)

even in norm. (The idea is to ‘connect’ the left and right hand sides of Følner sets inside
the matrix algebra hereditarily generated by the projection.)
4.3 The question of when (and how) one can find projections quasi-diagonalising C�

r (G)

has turned out to be a hard one. Despite having ever so little evidence at hand at the time,
Rosenberg did conjecture that amenable discrete groups are always quasidiagonal. He did
not put the conjecture in writing in Hadwin [1987], but did promote the problem subse-
quently; see Brown [2006] and Brown and Ozawa [2008] for a more detailed discussion.

The conjecture received attention by a number of researchers, and was indeed con-
firmed for larger and larger classes of amenable groups. These arguments often start with
the abelian case and use some kind of bootstrap argument to reach more general classes
of groups. The problem usually is that quasidiagonality does not pass to extensions.
4.4 In 2015, Ozawa, Rørdam and Sato proved Rosenberg’s conjecture for elementary
amenable groups. The latter form a bootstrap class, containing many but not all amenable
groups (Grigorchuk’s examples with exponential growth are amenable but not elemen-
tary amenable — but their group C�-algebras were already known to be quasidiagonal
for other reasons). The argument of Ozawa, Rørdam, and Sato [2015] relies on methods
and results from the classification programme for simple nuclear C�-algebras. Therefore,
already Ozawa, Rørdam, and Sato [ibid.] factorises through a stable uniqueness result like
2.4.
4.5 Eventually, Rosenberg’s conjecture was confirmed in full generality as a consequence
of the main result from Tikuisis, White, and Winter [2017].
Cඈඋඈඅඅൺඋඒ: If G is a discrete amenable group, then C�

r (G) is quasidiagonal.
First, it is well known (and not too hard to show) that the canonical trace on C�

r (G)

is faithful. Then one consults Tu’s work Tu [1999] to conclude that amenable group
C�-algebras always satisfy the UCT. Theorem 3.7 now says that C�

r (G) has a faithful
quasidiagonal representation, i.e., it is quasidiagonal as an abstract C�-algebra. But even
in its concrete representation on `2(G) it is quasidiagonal; cf. Brown and Ozawa [2008,
Theorem 7.2.5].3
4.6 The Corollary above does indeed settle Rosenberg’s conjecture, but of course only in
a very abstract manner. In particular, at this point there seems no way to exhibit quasi-
diagonalising projections explicitly, starting, say, with a Følner system for G.

3Note that countability / separability is not an issue since all properties involved can be tested locally.
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5 Toms–Winter regularity

5.1 Kirchberg’s O1-absorption theorem says that a separable, simple, nuclear C�-algebra
is purely infinite precisely if it absorbs the Cuntz algebraO1,A Š A˝O1; see Kirchberg
[1995]. Next to his O2-embedding theorem, this is one of the cornerstones for Kirchberg–
Phillips classification; cf. Rørdam [2002] for an overview.

At the time it was not at all clear whether one should expect a similar statement for
stably finite C�-algebras. We now know that the Jiang–Su algebra Z of Jiang and Su
[1999] really is the right analogue of O1 in this context. Moreover, we know that pure
infiniteness can be interpreted as a regularity property of the Cuntz semigroup (almost
unperforation, to be more specific) in the absence of traces; cf. Rørdam [2006]. On the
other hand, the state of Elliott’s classification programme in the early 2000s suggested that
dimension type conditions should also play a crucial role.
5.2 In 2009, Andrew Toms and I exhibited a class of inductive limit C�-algebras for which
finite decomposition rank, Z-stability, and almost unperforation of the Cuntz semigroup
occur or fail simultaneously. This class (Villadsen algebras of the first type) was somewhat
artificial, and a bit thin, but still large enough to prompt our conjecture that these three
conditions should be equivalent for separable, simple, unital, nuclear and stably finite C�-
algebras. Once nuclear dimension was invented and tested, it became soon clear that the
conjecture should be generalised to comprise both nuclear dimension and decomposition
rank. The full version reads as follows.
Cඈඇඃൾർඍඎඋൾ: For a separable, simple, unital, nuclearC�-algebraA ¤ Mr the following
are equivalent:

(i) A has finite nuclear dimension.

(ii) A is Z-stable.

(iii) A has strict comparison of positive elements.

Under the additional assumption that A is stably finite, one may replace (i) by

(i’) A has finite decomposition rank.

5.3 I stated the above as a conjecture (perhaps in part for sentimental reasons), but after
hard work by many people it is now almost a theorem (i.e., most of the implications have
been proven in full generality). Let us recap what’s known at this point.

When A has no trace, then (ii) () (iii) follows from Kirchberg’s O1-absorption
theorem as soon as one knows that an infinite exact C�-algebra is Z-stable if and only if
it is O1-stable; see Rørdam [2004].

In the finite case, (ii) H) (iii) was shown by Rørdam in Rørdam [ibid.].
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I showed first (i’) H) (ii) and then (i) H) (ii) in Winter [2010] and Winter [2012],
respectively.

In 2012, Matui and Sato showed (iii)H) (ii) whenA has only one tracial state. In each
of Sato [2012], Kirchberg and Rørdam [2014], and Toms, White, and Winter [2015] this
was generalised to the case where the tracial state space of A (always a Choquet simplex)
has compact and finite dimensional extreme boundary.

In 2014, Matui and Sato showed (ii) H) (i’) when A has only finitely many extremal
tracial states, and under the additional assumption that A is quasidiagonal. In Sato, White,
and Winter [2015], (ii) H) (i) was implemented in the case of a unique tracial state. In
the six author paper Bosa, Brown, Sato, Tikuisis, White, and Winter [2015], Joan Bosa,
Nate Brown, Yasuhiko Sato, Aaron Tikuisis, Stuart White and myself showed (ii) H) (i)
when the tracial state space of A has compact extreme boundary; (ii) H) (i’) was shown
assuming in addition that every trace is quasidiagonal (by Theorem 3.7 this is automatic
when A satisfies the UCT). For these last results, the ground was prepared by Ozawa’s
theory of von Neumann bundles fromOzawa [2013]. In upcoming work, Jorge Castillejos,
Sam Evington, Aaron Tikuisis, Stuart White and I will show (ii) H) (i) in full generality,
and (ii) H) (i’) provided that every trace is quasidiagonal.
5.4With all these results in place now, to sum up it is shorter to state what’s not yet known:
All we are missing is (iii) H) (ii) for arbitrary trace spaces, and (i) H) (i’) without any
quasidiagonality assumption.

I am still quite optimistic about the latter statement. For the former one, I also remain
positive, but every once in a while I’m tempted to travel back in time to replace condition
(iii) by

(iii’) A has strict comparison and has almost divisible Cuntz semigroup.

(This condition is equivalent to saying that the Cuntz semigroups of A and A˝ Z agree.)
On the other hand, Thiel has recently shown that almost divisibility follows from strict
comparison in the stable rank one case; see Thiel [2017]. Without this assumption, I
wouldn’t be too surprised if lack of divisibility was a new source of high dimensional
examples in the spirit of Toms [2008].
5.5 Ever since its appearance, Connes’ classification of injective II1 factors was an in-
spiration for the classification and structure theory of simple nuclear C�-algebras. Once
Conjecture 5.2 was formulated, it did not take that long to realise the surprising analogy
with Connes’ work, in particular Connes [1976, Theorem 5.1]. Roughly speaking, nucle-
arity on the C�-algebra side corresponds to injectivity for von Neumann algebras, finite
nuclear dimension to hyperfiniteness, Z-stability to R-absorption, i.e., being McDuff (cf.
McDuff [1970]), and strict comparison corresponds to comparison of projections.

Matui and Sato in Matui and Sato [2012] and Matui and Sato [2014] have taken this
analogy to another level, by turning it into actual theorems. This trend was further pursued
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in Sato, White, and Winter [2015] and Bosa, Brown, Sato, Tikuisis, White, and Winter
[2015]. I find these extremely convincing; by now I am even optimistic that eventually
we will be able to view Connes’ result and Conjecture 5.2 as incarnations of the same
abstract theorem.

6 Elliott’s programme: classification

6.1 The first general classification result for nuclear C�-algebras was probably Glimm’s
classification of UHF algebras in terms of supernatural numbers. Bratteli observed that
one can do essentially the same for AF algebras using Bratteli diagrams, but it was El-
liott who classified AF algebras in terms of their ordered K0-groups; Elliott [1976]. More
classification results for larger classes were picked up in the 1980s and early 1990s; these
prompted Elliott to conjecture that separable, simple, nuclear C�-algebra might be clas-
sifiable by K-theoretic invariants. (The precise form of the invariant underwent some
adjustments as the theory and understanding of examples progressed.) Up to that point,
all available results covered certain types of inductive limit C�-algebras. Then Kirchberg
opened the door to classification in a much more abstract context; Kirchberg [1995].
6.2 I have already mentioned that Voiculescu showed quasidiagonality to be a homotopy
invariant property. This in particular means that cones over separable C�-algebras are
quasidiagonal, because the former are contractible; since quasidiagonality passes to sub-
algebras, suspensions are quasidiagonal as well. Kirchberg used this statement to prove
his celebrated O2-embedding theorem (cf. Kirchberg [ibid.]; see also Rørdam [2002]),
which was a cornerstone for Kirchberg–Phillips classification of separable, nuclear, sim-
ple, purely infinite C�-algebras.

This was perhaps the earliest indication that quasidiagonality should be relevant for the
classification of nuclear C�-algebras, but of course in this situation we have quasidiagonal
cones over C�-algebras which are themselves very far from being quasidiagonal.
6.3 Soon after, however, Popa in Popa [1997] carried over his local quantisation technique
from von Neumann factors to simple C�-algebras with traces and sufficiently many pro-
jections. The theorem roughly says that such C�-algebras can be approximated locally by
finite dimensional C�-subalgebras. It is safe to say that this result kicked off the systematic
use of quasidiagonality in the classification of stably finite simple nuclear C�-algebras.
6.4 Next, Lin modified Popa’s local approximation to the effect that the approximating
subalgebras are moreover required to be large in a certain sense; this can often bemeasured
tracially, hence the name TAF (tracially approximately finite dimensional) C�-algebras.
Here is the precise definition.
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Dൾൿංඇංඍංඈඇ: A simple, unitalC�-algebraA is TAF, if the following holds: For every finite
subset F � A, � > 0, and positive contraction 0 ¤ e 2 A, there are a finite dimensional
C�-subalgebra F � A and a partial isometry s 2 A such that

(i) dist(1F a1F ; F ) < � for all a 2 F ,

(ii) k1F a � a1F k < � for all a 2 F ,

(iii) s�s = 1A � 1F and ss� 2 eAe.

The element e dominates the complement of 1F , and therefore controls the size of F
inside A. In many situations, this can be done in terms of tracial states on A, hence the
name tracially AF.
6.5 In 2004, Lin managed to classify nuclear TAF algebras satisfying the UCT. The proof
is inspired by Kirchberg–Phillips classification.
Tඁൾඈඋൾආ: The class of all separable, simple, unital, nuclear, infinite dimensional, TAF,
UCT C�-algebras is classified by the Elliott invariant.
6.6 The theorem covers a fairly large class of stably finite C�-algebras which is charac-
terised abstractly (as opposed to the various classes of inductive limit type algebras han-
dled earlier). The UCT hypothesis remains mysterious, but in applications, for example
to transformation group C�-algebras, this is often no issue since one can confirm the UCT
directly. The scope of the theorem is nonetheless limited by the TAF assumption, which
in particular requires the existence of many projections, and also the ordered K0-group
to be weakly unperforated. Weakly unperforated K-theory is implied by Z-stability of
the algebra; in Matui and Sato [2014] it was shown that nuclear TAF algebras are indeed
Z-stable. In Winter [2014] it was shown that classification of Z-stable C�-algebras can
be derived from classification of UHF-stable ones. This paved the road to applying Lin’s
TAF classification also in situations when the algebras contain no or only few projections.

In 2015, Gong, Lin and Niu generalised Definition 6.4 by admitting more general build-
ing blocks than just finite dimensional C�-algebras. At the same time, they managed to
prove a classification result like Theorem 6.5 also in this context. This is a spectacular out-
come, since the class covered by the result is no longer subject to K-theoretic restrictions
other than those implied by Z-stability anyway.

In Elliott, Gong, Lin, and Niu [2015], finally, it was shown that the UCT, together with
finite nuclear dimension and quasidiagonality of all traces suffices to arrive at classifica-
tion. In conjunction with 5.3 and Theorem 3.7, this confirms Elliott’s conjecture in the Z-
stable, finite, UCT case. The Z-stable, infinite, UCT case is precisely Kirchberg–Phillips
classification. Moreover, Rørdam’s and Toms’ examples in Rørdam [2003] and in Toms
[2008] (inspired by Villadsen [1999]) have shown that Z-stability cannot be disposed of
for classification via the Elliott invariant.
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The upshot of this discussion is a classification result which—modulo theUCTproblem—
is as complete and final as can be. It is the culmination of decades of work, by many many
hands. It reads as follows.
Tඁൾඈඋൾආ: The class of all separable, simple, unital, nuclear, Z-stable UCT C�-algebras
is classified by the Elliott invariant.
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Abstract

We discuss optimization of Birkhoff averages of real or vectorial functions and of
Lyapunov exponents of linear cocycles, emphasizing whenever possible the similari-
ties between the commutative and non-commutative settings.

Introduction

In this paper (X; T ) denotes a topological dynamical system, that is,X is a compact metric
space and T : X ! X is a continuous map. Often we will impose additional conditions,
but broadly speaking the dynamics that interest us the most are those that are sufficiently
“chaotic”, and in particular have many invariant probability measures.

Our subject is ergodic optimization in a broad sense, meaning the study of extremal
values of asymptotic dynamical quantities, and of the orbits or invariant measures that
attain them. More concretely, we will discuss the following topics:

1. maximization or minimization of the ergodic averages of a real-valued function;

2. optimization of the ergodic averages of a vectorial function, meaning that we are
interested in the extrema of the ergodic averages of a function taking values in some
euclidian space Rd ;

3. maximization orminimization of the top Lyapunov exponent of a linear cocycle over
(X; T ), or more generally, of the asymptotic average of a subadditive sequence of
functions;

4. optimization of the whole vector of Lyapunov exponents of a linear cocycle.
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Unsurprisingly, many basic results and natural questions that arise in these topics are par-
allel. The aim of this paper is to provide an unified point of view, hoping that it will attract
more attention to the many open problems and potential applications of the subject. The
setting should also be convenient for the study of problems where one cares about classes
of invariant measures that are not necessarily optimizing.

Disclaimer: This mandatorily short article is not a survey. We will not try to catalog
the large corpus of papers that fit into the subject of ergodic optimization. We will neither
provide a historical perspective of the development of these ideas, nor explore connec-
tions with fields such as Lagrangian Mechanics, Thermodynamical Formalism, Multifrac-
tal Analysis, and Control Theory.1

1 Optimization of Birkhoff averages

We denote by MT the set of T -invariant probability measures, which is a nonempty con-
vex set and is compact with respect to the weak-star topology. Also let ET �MT be the
subset formed by ergodic measures, which are exactly the extremal points of MT .

Let f : X ! R be a continuous function. We use the following notation for Birkhoff
sums:

f (n) := f + f ı T + � � �+ f ı T n�1 :

By Birkhoff theorem, for every � 2 MT and �-almost every x 2 X , the asymptotic
average limn!1

1
n
f (n)(x) is well-defined. The infimum and the supremum of all those

averages will be denoted by ˛(f ) and ˇ(f ), respectively; we call these numbers the
minimal and maximal ergodic averages of f . Since ˛(f ) = �ˇ(�f ), let us focus the
discussion on the quantity ˇ. It can also be characterized as:

(1-1) ˇ(f ) = sup
�2MT

Z
f d� :

Compactness of MT implies the following attainability property: there exists at least one
measure � 2 MT for which

R
f d� = ˇ(f ); such measures will be called maximizing

measures.
Another characterization is given by the following enveloping property:

(1-2) ˇ(f ) = inf
n�1

1

n
sup
x2X

f (n)(x) ; and the inf is also a lim.

Actually, upper semicontinuity of f suffices for these characterizations: see Jenkinson
[2006a].

1I recommend Jenkinson’s new survey Jenkinson [2017], which appeared shortly after the conclusion of this
paper.
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Recall that a function of the form h ı T � h with h continuous is called a coboundary
(or C 0-coboundary). Two functions that differ by a coboundary are called cohomologous,
and have the same maximal ergodic average ˇ. Actually, ˇ(f ) can be characterized as a
minimax over the cohomology class of f :

(1-3) ˇ(f ) = inf
h2C0(X)

sup
x2X

(f + h ı T � h) :

Following the terminology in linear programming, this is called the dual characterization
of ˇ(f ): see Radu [2004]. Formula (1-3) was discovered independently several times; it
is Lemma 1.3 in the paper Furstenberg and Kifer [1983], where it is proved using Hahn–
Banach theorem. Let us reproduce themore direct proof fromConze andGuivarc’h [1993].
The finite-time average 1

n
f (n) is cohomologous to f ; indeed it equals f + h ı T � h for

h := 1
n

Pn
i=1 f

(i). Using the enveloping property (1-2) we obtain the � inequality in the
dual formula (1-3). The reverse inequality is trivial.

Given f , a natural question arises: is the infimum in (1-3) attained? Well, if h 2 C 0(X)

attains the infimum, then the inequality f + h ı T � h � ˇ(f ) holds everywhere on X .
Consider the closed setK where equality holds. This set is nonempty; indeed by integrat-
ing the inequality we see that a measure � 2MT is maximizing if and only if �(K) = 1,
that is, if supp� � K. Any closed set with this property is called a maximizing set. So an-
other question is whether the existence of such sets is guaranteed. Let us postpone answers
a bit.

Every continuous function f can be seen as a linear functional on the vector space of
signed Borel measures on X , and conversely. The quantity ˇ(f ) is the maximum that
this linear functional attains in the compact convex set MT , and so its computation is a
problem of infinite-dimensional linear programming.

Since every ergodic � is an extremal point of MT , it is maximizing for some f . Fur-
thermore, since MT is a simplex (by uniqueness of ergodic decompositions), every er-
godic � is the unique maximizing measure for at least one function f 2 C 0(X) (see
Jenkinson [2006b] for the precise arguments). Conversely, if f has a unique maximizing
measure � then � must be ergodic (because the ergodic decomposition of a maximizing
measure is formed by maximizing measures).

Uniqueness of the maximizing measure is a (topologically) generic property, i.e., it
holds for every function in a dense Gı subset of C 0(X). Furthermore, the same is true
if C 0(X) is replaced by any Baire vector space F of functions that embeds continuously
and densely in C 0(X): see Jenkinson [2006a, Thrm. 3.2].

The properties of maximizing measures of generic functions in F may be very different
according to the space under consideration. Consider F = C 0(X) first. Suppose that T
is sufficiently hyperbolic (more precisely, T satisfies Bowen’s specification property); to
avoid trivialities also assume thatX is a perfect set. Then, as shown by Morris [2010], the
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uniquemaximizingmeasure of a generic function f 2 C 0(X) satisfies any chosen generic
property in the space of measures MT (X); in particular maximizing measures generically
have zero entropy and full support. Note that if a function f admits a maximizing set K
and has a maximizing measure of full support, then necessarily K = X and therefore all
probability measures have the same integral. Since the latter property is obviously non-
generic (our T ’s are not uniquely ergodic), we conclude that generic continuous functions
f admit no maximizing set, and in particular the infimum in the dual formula (1-3) is not
attained.

The situation is radically different formore regular functions. A central result in ergodic
optimization, found in different forms via variousmethods bymany authors, roughly states
that if the dynamics T is sufficiently hyperbolic and the function f is sufficiently regular,
then the infimum in the dual formula (1-3) is attained. Such results are called non-positive
Livsic theorems, Mañé–Conze–Guivarch lemmas, or Mañé lemmas for short. One of the
simplest versions is this: if T : X ! X is a one-sided subshift of finite type, and f is a
� -Hölder function (assuming X metrized in the usual way), then there exists a � -Hölder
function h such that

(1-4) f + h ı T � h � ˇ(f ) ;

Similar statements also hold for uniformly expanding maps, Anosov diffeomorphisms and
flows, etc. Some references are Conze and Guivarc’h [1993], Savchenko [1999], Contr-
eras, Lopes, and Thieullen [2001], Bousch [2001], Lopes and Thieullen [2003], Pollicott
and Sharp [2004], Bousch [2011], and Garibaldi [2017]. The methods of proof are also di-
verse: some proofs use Thermodynamical Formalism, some use fixed point theorems, and
some use bare hands. A function h solving the cohomological inequality (1-4) is called
a subaction. As negative result, it is shown in Bousch and Jenkinson [2002] that the reg-
ularity of the subaction h is not always as good as f : it may be impossible to find a C 1

subaction h even if T and f are C! . The study of subactions forms a subject by itself:
see Garibaldi [2017].

So it is natural to focus the study on regular functions f and hyperbolic dynamics T ,
for which the theory is richer. Yuan and Hunt [1999] showed that only measures � sup-
ported on periodic orbits can have the locking property, which means that � is the unique
maximizing measure for some f and also for functions sufficiently close to f . Much
more recently, Contreras [2016] settled a main open problem and proved that maximizing
measures are generically supported on periodic orbits. More precisely, he proved that if
T is a expanding map then a generic Lipschitz function has a unique maximizing measure,
which is supported on a periodic orbit and has the locking property.

Contreras’ theorem provides some confirmation of the experimental findings of Hunt
andOtt published two decades beforeHunt andOtt [1996]. They basically conjectured that
for typical chaotic systems T and typical smooth functions f , the maximizing measure is
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supported on a periodic orbit. However, their concept of typicality was a probabilistic one:
Hunt and Ott actually conjectured that for typical parameterized families of functions, the
Lebesgue measure of the parameters corresponding to maximizing orbits of period p or
greater is exponentially small in terms of p. This type of conjecture remains open.

A conceptually clean probabilistic notion of typicality in function spaces was intro-
duced in Hunt, Sauer, and Yorke [1992] (basically rediscovering Christensen [1972]); it
is called prevalence. See Broer, Hasselblatt, and Takens [2010] for several examples of
prevalent properties (not all of them topologically generic) in Dynamical Systems. Bochi
and Zhang [2016] have obtained the following result in the direction of Hunt–Ott conjec-
tures: if T is the one-sided shift on two symbols, and F is a space of functions with a
very strong modulus of regularity, then every f in a prevalent subset of F has a unique
maximizing measure, which is supported on a periodic orbit and has the locking prop-
erty. Furthermore, we have obtained a sufficient condition for periodicity in terms of the
wavelet coefficients of f . There is experimental evidence that this condition is prevalent
not only in the space F but also on bigger spaces of Hölder functions, but a proof is still
missing.

For full shifts (and for other sufficiently hyperbolic dynamics as well), the set of mea-
sures supported on periodic orbits is dense in MT . In particular, MT is a Poulsen simplex:
its set ET of extremal points is dense. It seems fanciful to try to form a mental image
of such an object, but let us try anyway. There are natural ways (see Bochi and Zhang
[ibid.]) to approximate the Poulsen simplex by a nested sequence R1 � R2 � � � � �MT

of (finite-dimensional) polyhedra whose vertices are measures supported on periodic or-
bits. Moreover, each polyhedron Rn is a projection of the next one Rn+1, and the whole
simplex MT is the inverse limit of the sequence. These polyhedra are not simplices: on
the contrary, they have a huge number of vertices and their faces are small. Moreover, the
polyhedra are increasingly non-round: the height of Rn+1 with respect to Rn is small. In
particular, each interior point of Rn can be well-approximated by a vertex of some Rm

with m > n; this resembles the Poulsen property. Furthermore, among the vertices of
Rn, only a few of them are “pointy”, and the others are “blunt”; these pointy vertices are
the measures supported on orbits of low period. If we take at random a linear functional
on the finite-dimensional span of Rn, then the vertex of Rn that attains the maximum is
probably a pointy vertex. This is a speculative justification for the Hunt–Ott conjectures.

As mentioned before, not every � 2 ET can appear as a unique maximizing measure
of a regular function. So it is natural to ask exactly which measures can appear once the
regularity class is prescribed. Motivated by a class of examples that we will explain in the
next section, Jenkinson formulated the following fascinating question Jenkinson [2006a,
Probl. 3.12]: if T is the doubling map on the circle and f is an analytic function with a
unique maximizing measure �, can � have positive entropy?
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2 Optimization of vectorial Birkhoff averages

Now consider a continuous vectorial function f : X ! Rd . The rotation set of f is the
set R(f ) of all averages

R
f d� where � 2 MT . This is a compact convex subset of

Rd . Furthermore, by ergodic decomposition, it equals the convex hull of the averages of
f with respect to ergodic measures; in symbols:

(2-1) R(f ) = co
�Z

f d� ; � 2 ET

�
:

If d = 1 thenR(f ) = [˛(f ); ˇ(f )], using the notation of the previous section. The prime
type of examples of rotation set, which justifies the terminology, are those when f equals
the displacement vector of a map of the d -torus homotopic to the identity. Other examples
of rotation sets, where the dynamics is actually a (geodesic) flow, are Schwartzman balls:
see Paternain [1999] and Pollicott and Sharp [2004].

The measures � 2 MT for which
R
f d� is an extremal point of R(f ) are called

extremal measures. Of course, each of these measures is also a maximizing measure for a
real-valued function hc; f (�)i, for some nonzero vector c 2 Rd , so we can use tools from
one-dimensional ergodic optimization.

Let us describe a very important example that appeared in many of the early results in
ergodic optimization Conze and Guivarc’h [1993], Hunt and Ott [1996], Jenkinson [1996,
2000], and Bousch [2000]. Let T (z)´ z2 be the doubling map on the unit circle, and let
f : S1 ! C be the inclusion function. The associated rotation set R(f ) � C = R2 is
called the fish. Confirming previous observations from other researchers, Bousch [2000]
proved that the extremal measures are exactly the Sturmian measures. These measures
form a family �� parametrized by rotation number � 2 R/Z. If � = p/q is rational then
�� is supported on a periodic orbit of period q, while if � is irrational then �� is supported
on an extremely thin Cantor set (of zero Hausdorff dimension, in particular) where T is
semiconjugated to an irrational rotation. In particular, Jenkinson’s problem stated at the
end of Section 2 has a positive answer if f is a trigonometric polynomial of degree 1:
Sturmian measures not only have zero entropy (i.e., subexponential complexity), but in
fact they have linear complexity.

Let us come back to arbitrary T and f . Analogously to (1-2), we have the following
enveloping property:

(2-2) R(f ) =
\
n�1

1

n
co

�
f (n)(X)

�
;

and the intersection is also a limit (in both the set-theoretic and the Hausdorff senses).
Using the same trick as in the proof of (1-3), it follows that for every neighborhood U of
R(f ) there exists g cohomologous to f whose image is contained in U .
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The following question arises: when can we find g cohomologous to f taking values
in R(f )? As we have already learned in the previous section, to hope for this to be true
we need at least some hyperbolicity and regularity assumptions. If moreover d = 1 then
the answer of the question becomes positive: Bousch [2002] showed that whenever T and
f satisfy the assumptions of a Mañé Lemma, there exists g cohomologous to f taking
values in R(f ), i.e. such that ˛(f ) � g � ˇ(f ). What about d � 2? Unfortunately the
answer is negative. The following observation was found by Vincent Delecroix and the
author:

Proposition 2.1. Let (X; T ) and f be as in the definition of the fish. There exists no g
C 0-cohomologous to f taking values in the fish.

Proof. For a contradiction, suppose that there exists a continuous function h : S1 ! C
such that g ´ f + h ı T � h takes values in the fish. For each integer n � 0, let
zn := e2�i/2n . These points form a homoclinic orbit

� � � 7! z2 7! z1 7! z0  - with lim zn = z0 :

We claim that g(zn) = 1 for every n. This leads to a contradiction, because on one hand,
the series

P1

n=1(f (zn)�1) is absolutely convergent to a non-zero sum (as the imaginary
part is obviously positive), and on the other hand, by telescopic summation and continuity
of h, the sum should be zero.

In order to prove the claim, note that g must constant equal to
R
f d�� on the support

of each Sturmian measure ��. In particular, the compact set K := (g ı T � g)�1(0)

contains all those supports. Consider the obvious semiconjugacy ' between the one-sided
two-shift and the doubling map T , namely the map which associates to an infinite word
w = b0b1 : : : in zeros and ones the complex number '(w) = e2�it where t = 0:b1b2 : : :

in binary. Then '(0n101) = zn. On the other hand, for each k � 0, the periodic infinite
word (0n10k)1 is Sturmian, and it tends to 0n101 as k ! 1. This shows that each zn

is the limit of points that belong to supports of Sturmian measures. In particular, each zn

belongs to K. This means that the value g(zn) is independent of n. Since z0 = 1 is a
fixed point, we conclude that this value is 1, as claimed.

Following Bousch and Jenkinson [2002], a function f is called a weak coboundary ifR
f d� = 0 for every � 2 MT , or equivalently if f is a uniform limit of coboundaries.

There exist weak coboundaries f that are not coboundaries; indeed this happens when-
ever T is a non-periodic homeomorphism: see Kocsard [2013]. The paper Bousch and
Jenkinson [2002] contains an explicit example of such f in the case T is the doubling map.
The reason why their function f is not a coboundary is that the sum over a homoclinic
orbit is nonzero. This is exactly the obstruction we used in the proof of Proposition 2.1.
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Therefore we pose the problem: Does it exist a function g weakly cohomologous to f
taking values in the fish?

Naturally, there are many other questions about rotation sets. We can ask about their
shape, either for typical or for all functions with some prescribed regularity. It is shown
in Kucherenko and Wolf [2014] that any compact convex subset of Rd is the rotation set
of some continuous function. In the case of the fish, the boundary is not differentiable,
and has a dense subset of corners, one at each extremal point corresponding to a measure
supported on a periodic orbit; furthermore, and all the curvature of the boundary is con-
centrated at these corners. This seems to be the typical situation of rotation sets of regular
functions. Let us note that the boundary of Schartzmann balls is never differentiable: see
Pollicott and Sharp [2004] and references therein.

Another property of the fish is the following: the closure of the union of the supports
of the extremal measures has zero topological entropy (actually it has cubic complexity;
see Mignosi [1991, Corol. 18]). Is this phenomenon typical?

3 Optimization of the top Lyapunov exponent

We now replace Birkhoff sums by matrix products. That is, given a continuous map
F : X ! Mat(d;R) taking values into the space of d � d real matrices, we consider
the products

F (n)(x)´ F (T n�1x) � � �F (T x)F (x) :

The triple (X; T; F ) is called a linear cocycle of dimension d . It induces a skew-product
dynamics on X �Rd by (x; v) 7! (T x; F (x)v), whose n-th iterate is therefore (x; v) 7!
(T nx; F (n)(x)v). More generally, we could replaceX �Rd by any vector bundle overX
and then consider bundle endomorphisms that fiber over T : X ! X , but for simplicity
will refrain from doing so.

As an immediate consequence of the Kingman’s subadditive ergodic theorem, for any
� 2 MT and �-almost every x 2 X , the following limit, called the top Lyapunov expo-
nent at x, exists:

�1(F; x)´ lim
n!1

1

n
log kF (n)(x)k 2 [�1;+1);

which is clearly independent of the choice of norm on the space of matrices. Similarly
to what we did in Section 1, we can either minimize or maximize this number; the corre-
sponding quantities will be denoted by ˛(F ) and ˇ(F ). However, this time the maximiza-
tion and the minimization problems are fundamentally different. While ˇ(F ) is always
attained by at least one measure (which will be called Lyapunov maximizing), that is not
necessarily the case for ˛(F ). Indeed, absence of Lyapunov minimizing measures may be
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locally generic Bochi and Morris [2015, Rem. 1.13], and may occur even for “derivative
cocycles”: see Cao, Luzzatto, and Rios [2006].

More generally, one can replace log kF (n)k by any subadditive sequence of continuous
functions, or even upper semicontinuous ones, and optimize the corresponding asymptotic
average. One show check that a maximizing measure always exists, and that a envelop-
ing property similar to (1-2) holds. See the appendix of the paper Morris [2013] for the
proofs of these and other basic results on subadditive ergodic maximization. From these
general results one can derive immediately those of Cao [2003] and Dragičević [2017],
for example.

The maximization of the linear escape rate of a cocycle of isometries also fits in the
context of subadditive ergodic optmization. Under a nonpositive curvature assumption,
this maximal escape rate satisfies a duality formula resembling (1-3): see Bochi and Navas
[2015]. For some information on the maximal escape rate in the case of isometries of
Gromov-hyperbolic spaces, see Oregón-Reyes [2016].

Returning to linear cocycles, note that if the matrices F (x) are invertible then we can
define a skew-product transformation TF on the compact spaceX�RP d�1 by (x; [v]) 7!
(T x; [F (x)v]). Then ˇ(F ) can be seen as the maximal ergodic average of the function
f (x; [v]) ´ log(kF (x)vk/kvk). In this way, maximization of the top Lyapunov expo-
nent can be reduced to commutative ergodic optimization. Note, however, that the space
of TF -invariant probability measures depends on F in a complicated way.

There is a specific setting where optimization of the top Lyapunov exponent has been
studied extensively. An one-step cocycle is a linear cocycle (X; T; F ) where (X; T ) is
the full shift (either one- or two-sided) on a finite alphabet, say f1; : : : ; kg, and the matrix
F (x) only depends on the zeroth symbol of the sequence x. Therefore an one-step cocycle
is completely specified by a k-tuple of matrices (A1; : : : ; Ak). It is possible to consider
also compact alphabets, but for simplicity let us stick with finite ones.

The joint spectral radius and the joint spectral subradius of a tuple of matrices are re-
spectively defined as the numbers eˇ(F ) and e˛(F ), where (X; T; F ) is the corresponding
one-step cocycle. The joint spectral radius was introduced in 1960 by Rota and Strang
[1960], and it became a popular subject in the 1990’s as applications to several areas
(wavelets, control theory, combinatorics, etc) were found. The joint spectral subradius
was introduced later by Gurvits [1995], and has also been the subject of some pure and
applied research. See the book Jungers [2009] for more information.

The first examples of one-step cocycles with finite alphabets without a Lyapunov-
maximizing measure supported on a periodic orbit were first constructed in dimension
d = 2 by Bousch and Mairesse [2002], refuting the finiteness conjecture from Lagarias
andWang [1995]. Other constructions appeared later: see Blondel, Theys, andVladimirov
[2003]. Counterexamples to the finiteness conjecture seem to be very non-typical: Mae-
sumi [2008] conjectures that they have zero Lebesgue measure in the space of tuples of
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matrices, and Morris and Sidorov [2013] exhibit one-parameter families of pairs of matri-
ces where counterexamples form a Cantor set of zero Hausdorff dimension.

The Lyapunov maximizing measures for the one-step cocycles in the examples from
Bousch and Mairesse [2002] and Morris and Sidorov [2013] (among others) are Sturmian
and so have linear complexity. There are higher-dimensional examples with arbitrary poly-
nomial complexity: see Hare, Morris, and Sidorov [2013]. In all known examples where
the Lyapunov maximizing measure is unique, it has subexponential complexity, i.e., zero
entropy. So the following question becomes inevitable: is this always the case?

A partial result in that direction was obtained by Bochi and Rams [2016]. We exhibit
a large class of 2-dimensional one-step cocycles for which the Lyapunov-maximizing and
Lyapunov-minimizing measures have zero entropy; furthermore the class includes coun-
terexamples to the finiteness conjecture. Our sufficient conditions for zero entropy are
simple: existence of strictly invariant families of cones satisfying a non-overlapping con-
dition. (In particular, our cocycles admit a dominated splitting; see Section 4 below for the
definition.) To prove the result, we identify a certain order structure on Lyapunov-optimal
orbits (or more precisely on the Oseledets directions associated to those orbits) that leaves
no room for positive entropy.

In the setting considered in Bochi and Rams [ibid.] (or more generally for cocycles
that admit a dominated splitting of index 1), Lyapunov-minimizing measures do exist,
and moreover the minimal top Lyapunov exponent ˛ is continuous among such cocycles.
For one-step cocycles that admit no such splitting, ˇ is still continuous, but ˛ is not: see
Bochi and Morris [2015]. In fact, even though discontinuities of ˛ are topologically non-
generic, we believe that they form a set of positive Lebesgue measure: Bochi and Morris
[ibid., Conj. 7.7].

Let us now come back to general linear cocycles, but let us focus the discussion on
the maximal top Lyapunov exponent ˇ. As we have seen in Section 1, Mañé Lemma is a
basic tool in 1-dimensional commutative ergodic optimization. Let us describe related a
notion in the setting of Lyapunov exponents.

Let (X; T; F ) be a linear cocycle of dimension d . A Finsler norm is a family fk�kxg
of norms in Rd depending continuously on x 2 X . An extremal norm is a Finsler norm
such that

kF (x)vkT x � e
ˇ(F )
kvkx for all x 2 X and v 2 Rd .

In the case d = 1, the linear maps F (x) : R! R consist of multiplication by scalars
˙ef (x), and the maximal Lyapunov exponent ˇ(F ) of the cocycle equals the maximal
ergodic average ˇ(f ) of the function f . Moreover, an arbitrary Finsler norm can be
written as kvkx = eh(x)jvj, and it will be an extremal norm if and only if f +hıT �h �

ˇ(f ), which is the cohomological inequality (1-4). So the relation with Mañé Lemma
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becomes apparent and we see that existence of an extremal norm is far from automatic
even in dimension d = 1.

Extremal norms were first constructed by Barabanov [1988a] in the case of one-step
cocycles: he showed that under an irreducibility assumption (no common invariant sub-
space, except for the trivial ones), there exists an extremal norm that is constant (i.e. kvkx
is independent of the basepoint x).2 These extremal norms provide a fundamental tool in
the study of the joint spectral radius: see also Wirth [2002] and Jungers [2009].

Beyond one-step cocycles, when can we guarantee the existence of an extremal norm?
Bochi and Garibaldi [n.d.] consider the situation where T is a hyperbolic homeomorphism
and F : X ! GL(d;R) is a � -Hölder continuous map. As it happens often in this context,
it is useful to assume fiber bunching, which roughlymeans that the largest rate under which
the matrices F (x) distort angles is bounded by �� , where � > 1 is a constant related to
the hyperbolicity of T . (Note that locally constant cocycles, being locally constant, are � -
Hölder for arbitrarily large � , and so always satisfy fiber bunching; in this sense, our setting
generalizes the classical one.) We say that the cocycle is irreducible if has no � -Hölder
invariant subbundles, except for the trivial ones. The main result of Bochi and Garibaldi
[ibid.] is that strong fiber bunching together with irreducibility implies the existence of an
extremal norm. Let us also mention a curious fact: there are examples where the extremal
norm cannot be Riemannian.

The existence of an extremal norm is a first step towards more refined study of max-
imizing measures: for example, it implies the existence of a Lyapunov maximizing set,
similarly to the maximizing sets discussed in Section 1. Such sets were studied in Morris
[2013] for one-step cocycles.

We can recast in the present context the same type of questions discussed above: How
complex are Lyapunov-maximizing measures, either for typical cocycles, or (assuming
uniqueness) among all cocycles within a prescribed regularity class?

4 Optimization of all Lyapunov exponents

In this final section, we consider all Lyapunov exponents and not only the top one. Our
aim is modest: to introduce an appropriate setting for ergodic optimization of Lyapunov
exponents, and to check that the most basic properties seen in the previous sections are
still valid.

Let s1(g) � � � � � sd (g) denote the singular values of a matrix g 2 GL(d;R). These
are the semi-axes of the ellipsoid g(Sd�1), where Sd�1 is the unit sphere in Rd . The

2Barabanov’s norms also have an extra property that does not concern us here. Previously, Rota and Strang
[1960] have already considered the weaker notion of extremal operator norms.
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Cartan projection is the map

(4-1) E�(g)´
�
log s1(g); : : : ; log sd (g)

�
;

which takes values in the positive chamber

a+
´

˚
(�1; : : : ; �d ) 2 Rd ; �1 � � � � � �d

	
:

The Cartan projection has the subadditive property

(4-2) E�(gh) 4 E�(g) + E�(h) ;

where 4 denotes themajorization partial order in Rd defined in as follows: � 4 � (which
reads as � is majorized by �) if � is a convex combination of vectors obtained by permuta-
tion of the entries of �. The group of automorphisms of Rd consisting of permutation of
coordinates is called the Weyl group and is denoted W; so � 4 � if and only if � belongs
to the polyhedron co(W�) (called a permuthohedron). For vectors � = (�1; : : : ; �d ) and
� = (�1; : : : ; �d ) in the positive chamber a+, majorization can be characterized by the
following system of inequalities:

� 4 � , 8i 2 f1; : : : ; dg; �1 + � � �+ �i � �1 + � � �+ �i ;with equality if i = d .

For a proof, see the book Marshall, Olkin, and Arnold [2011], which contains plenty of
information on majorization, including applications.

Now let us consider a linear cocycle (X; T; F ). For simplicity, let us assume that the
matrices F (x) are invertible. Using Kingman’s theorem, one shows that for every � 2
MT and �-almost every x 2 X , the limit

E�(F; x)´ lim
n!1

1

n
E�(F (n)(x))

exists; it is called the Lyapunov vector of the point x. Its entries are called the Lyapunov
exponents. If � is ergodic then the Lyapunov vector is �-almost surely equal to a constant
E�(F;�). The Lyapunov spectrum of the cocycle is defined as:

L+(F )´
n
E�(F;�) ; � 2 ET

o
� a+ :

By analogy with the rotation set (2-1), we introduce the inner envelope of the cocycle
as the closed-convex hull of the Lyapunov spectrum, that is, I+(F ) ´ co(L+(F )). 3

3In recent work, Sert [2017] considers one-step cocycles taking values on more general Lie groups and
satisfying a Zariski denseness assumption, introduces and studies a subset of the positive chamber called joint
spectrum, and applies it to obtain results on large deviations. It turns out that the joint spectrum coincides with
our inner envelope I+(F ), in the SL(d; R) case at least.
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Differently from the commutative situation, however, extremal points of this convex set
are not necessarily attained. Therefore we introduce other sets (see Figure 1):

L(F )´W � L+(F ) (symmetric Lyapunov spectrum);
I (F )´W � I+(F ) (symmetric inner envelope);
O(F )´ co(I (F )) (symmetric outer envelope);
O+(F )´ O(F ) \ a+ (outer envelope).

Then the extremal points of the symmetric outer envelope O(F ) are attained as (perhaps
reordered) Lyapunov vectors of ergodic measures:

(4-3) ext(O(F )) � L(f ) :

Sometimes this is the best we can say about attainability, but sometimes we can do better.
There is one situation where all extremal points of the symmetric inner envelope I (f ) are
attained, namely if the cocycle admits a dominated splitting into one-dimensional bundles,
because then we are essentially reduced to rotation sets in Rd .

Let us explain the concept of domination. For simplicity, let us assume that T : X !

X is a homeomorphism. Let us also assume that there is a fully supported T -invariant
probability measure (otherwise we simply restrict T to the minimal center of attraction;
see Akin [1993, Prop. 8.8(c)]).

Suppose that V andW are two F -invariant subbundles of constant dimensions. We say
that V dominates W if there are constants �0 > 1 and n0 � 1 such that for every x 2 X
and every n � n0, the smallest singular value of F (n)(x)jV (x) is bigger than �n

0 times
the biggest singular value of F (n)(x)jW (x). We say that V is the dominating bundle, and
W is the dominated bundle. The terminology exponentially separated splitting is more
common in ODE and Control Theory, and other terms also appear especially in the earlier
literature, but we will stick to the terminology dominated splitting, though grammatically
inferior. The bundles V andW are in fact continuous, and they are robust with respect to
perturbations of F : see Bonatti, Dı́az, and Viana [2005] for this and other basic properties
of domination.

The cocycle has a unique finest dominated splitting; this is a finite collection of invari-
ant subbundles V1, V2, …, Vk , each one dominating the next one, and with maximal k. It
is indeed a splitting in the sense that V1(x) ˚ � � � ˚ Vk(x) = Rd for every x. If k = 1

then the splitting is called trivial.
We say that i 2 f1; : : : ; d � 1g is a index of domination of the cocycle if there exists

a dominated splitting with a dominating bundle of dimension i ; otherwise we say that
that i is a index of non-domination. So, if V1 ˚ � � � ˚ Vk is the finest dominated splitting
of the cocycle, and di ´ dimVi , then the indices of domination are d1, d1 + d2, …,
d1 + d2 + � � �+ dk�1.
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There is a way of detecting domination without referring to invariant subbundles or
cones. As shown in Bochi and Gourmelon [2009], i 2 f1; : : : ; d � 1g is a index of domi-
nation if and only if there is an exponential gap between i -th and (i+1)-th singular values;
more precisely: there are constants �1 > 1 andn1 � 1 such that si (F (n)(x))/si+1(F

(n)(x)) �

�n
1 for all x 2 X and all n � n1. In terms of the sets

(4-4) Σn(F )´
˚
E�(F (n)(x)) ; x 2 X

	
� a+ ;

we have the following geometric characterization: i is an index of domination if and only
if for all sufficiently large n, the sets 1

n
Σn(F ) are uniformly away from the wall �i = �i+1

(a hyperplane that contains part of the boundary of the positive chamber a+).
IfΘ is a subset of f1; 2; : : : ; d �1g, define theΘ-superchamber as the following closed

convex subset of Rd :

aΘ
´

˚
(�1; : : : ; �d ) 2 Rd ; 1 � i � j < k � d integers, j 62 Θ ) �i � �k

	
:

For example, aΘ = a+ if Θ is empty, and aΘ = Rd if Θ = f1; 2; : : : ; d � 1g. (Moreover,
aΘ equals the orbit of a+ under an appropriate subgroup of W, but we will not need this
fact.) If C is any subset of Rd , the closed-Θ-convex hull of C , denoted by coΘ(C ), is
defined as the smallest closed subset of Rd that contains C , is invariant under the Weyl
group W, and whose intersection with the superchamber aΘ is convex.

Let Θ be the set of indices of non-domination of the cocycle (X; T; F ). We define the
following two sets:

M (F )´ coΘ
�
L+(F )

�
(symmetric Morse spectrum);

M+(F )´ a+
\M (F ) (Morse spectrum).

The Morse spectra (symmetric or not) are sandwiched between the inner and outer en-
velopes: see Figure 1). If Θ = ¿ thenM (F ) = I (F ), while if Θ = f1; : : : ; d � 1g then
M (F ) = O(F ).

The Morse spectrum allows us to state the following attainability property, which is
stronger than (4-3):

(4-5) ext(M (F )) � L(F ) :

The name “Morse” comes fromMorse decompositions in Conley theory Conley [1978].
Morse spectra were originally defined by Colonius and Kliemann [1996]; see also Colo-
nius, Fabbri, and Johnson [2007]. TheMorse spectra defined here are more closely related
to the ones considered by SanMartin and Seco [2010] (who in fact dealt with more general
Lie groups). In concrete terms, we have the following characterization: � 2 M+(F ) if
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wall �1 = �2

wall �2 = �3wall �1 = �3

L+(F ) positive chamber

Figure 1: Suppose F takes values in SL(3; R); then all spectra are contained in the plane
f(�1; �2; �3) 2 R3 ; �1 + �2 + �3 = 0g. The figure shows a possibility for the three sets
I (F ) � M (F ) � O(F ), which are are pictured in decreasing shades of gray, assuming
that the unique index of domination is 1, i.e., Θ = f2g.

and only if there exist sequences ni ! 1 and "i ! 0, "i -pseudo orbits (xi;0; xi;1; : : : ),
and matrices gi;j 2 GL(d;R) with kgi;j � F (xi;j )k < "i such that:

1

ni

E�
�
gi;ni �1 � � �gi;1gi;0

�
! � :

We will not provide a proof. For background on Morse spectra defined in terms of pseudo
orbits and relations with dominated splittings and Lyapunov exponents (and without Lie
algebra terminology), see the book Colonius and Kliemann [2014]. Let us remark that all
those type of Morse spectra contain more information that the Mather [1968] and Sacker–
Sell spectra Dragičević [2017]. Indeed, the finest dominated splitting refines the Sacker–
Sell decomposition, which may be seen as the finest absolute (as opposed to pointwise)
dominated splitting.

Let us inspect other basic properties of theMorse spectra which are similar to properties
of the rotation sets seen in Section 2. The following enveloping property is analogous to
(2-2):

(4-6) M (F ) =
\
n2N

1

n
coΘ(Σn(F )) ;

and again the intersection above is a limit. In particular, the Morse spectrumM (�) is an
upper semicontinuous function of F (with respect to the uniform topology). If the cocycle
has a dominated splitting into k = d bundles thenM (�) is continuous at F .
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Two cocycles F and G over the same base (X; T ) are called conjugate if there is con-
tinuous map H : X ! GL(d;R) such that G(x) = H (T x)�1F (x)H (x). The Morse
spectrum is invariant under cocycle conjugation.

Let us state a result similar to the duality property (1-3) and its vectorial counterpart
explained in Section 2:

Proposition 4.1. Given a neighborhoodU ofM+(F ), there exists a cocycleG conjugate
to F such that Σ1(G) � U .

The proof requires some preliminaries. Let S denote the space of inner products in Rd .
The group GL(d;R) acts transitively on S as follows:

hh�; �ii2 = g � hh�; �ii1 , hhu; vii2 = hhg�1u; g�1vii1 :

Using the standard inner product h�; �i µ o as a reference, every element hh�; �ii of S can
be uniquely represented by a positive (i.e. positive-definite symmetric) matrix p such that
hhu; vii = hp�1u; vi. In this way we may identify S with the set of positive matrices, and
o is identified with the identity matrix. In these terms, the group action becomes:

g � p = gpgt :

The vectorial distance is defined as the following map:

Eı : S � S! a+ ; Eı(p; q)´ 2E�(p�1/2q1/2) ;

where E� is the Cartan projection (4-1). It has the following properties:

1. Eı(o; q) = E�(q);

2. Eı is a complete invariant for the group action on pairs of points, that is, Eı(p1; q1) =
Eı(p2; q2) if and only if there exists g 2 GL(d;R) such that g � p1 = p2 and
g � q1 = q2;

3. Eı(p; p) = 0;

4. Eı(q; p) = i(Eı(p; q)), where i(�1; : : : ; �d ) := (��d ; : : : ;��1) is the opposition in-
volution;

5. triangle inequality: Eı(p; r) 4 Eı(p; q) + Eı(q; r); this follows from (4-2).

In particular, the euclidian norm of Eı is a true distance function, and it invariant under the
action; indeed that is the usual way to metrize S.
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A parameterized curve 
 : [0; 1] ! S is called a geodesic segment if there is a vector
� 2 a+ such that Eı(f (t); f (s)) = (s � t)� , provided t � s. A geodesic segment is
determined uniquely by its endpoints p = f (0) and q = f (1); it is given by the formula
f (s) = qs if p = o. The image of f is denoted [p; q] and by abuse of terminology is also
called a geodesic segment. The midpoint of the geodesic segment is mid[p; q] := f (1/2).

We shall prove the following vectorial version of the Busemann nonpositive curvature
inequality:

(4-7) Eı
�
mid[r; p];mid[r; q]

�
4 1

2
Eı(p; q) ; for all r; p; q 2 S :

Parreau [2017] has announced a general version of this inequality that holds in other sym-
metric spaces and affine buildings, using the appropriate partial order.

In order to prove (4-7), consider the Jordan projection E� : GL(d;R)! a+ defined by
E�(g)´

�
log jz1j; : : : ; log jzd j

�
, where z1, …, zd are the eigenvalues of g, ordered so that

jz1j � � � � � jzd j. The Jordan projection is cyclically invariant, that is, E�(gh) = E�(hg).
The Cartan and Jordan projections are related by E�(g) = 1

2
E�(ggt). Another property is

that Cartan majorizes Jordan: E�(g) < E�(g). This follows from the fact that the spectral
radius of a matrix is less than or equal to its top singular value, applied to g and its exterior
powers.

Proof of the vectorial Busemann NPC inequality (4-7). Take arbitraries r ,p, q 2 S. Since
the vectorial distance is invariant under the group action, it is sufficient to consider the
case where r = o. Then the midpoints under consideration are p1/2 and q1/2. Using the
definition of Eı and the properties of the projections E� and E�, we have:

Eı(p1/2; q1/2) = 2E�
�
p�1/4q1/4

�
= E�

�
p�1/4q1/2p�1/4

�
= E�

�
p�1/2q1/2

�
4 E�

�
p�1/2q1/2

�
= 1

2
Eı(p; q) :

Proof of Proposition 4.1. Wewill adapt the argument fromBochi andNavas [2015, p. 383–
384], using (4-7) instead of the ordinary Busemann NPC inequality. Consider the case
Θ = f1; : : : ; d � 1g, i.e., the cocycle no nontrivial dominated splitting. ThenM+(F ) is
closed under majorization, in the sense that:

� 2 a+; � 2M+(F ); � 4 � ) � 2M+(F )

Fix a neighborhoodU �M+(F ). Without loss of generality, we may assume thatU \a+

is closed under majorization. We want to findG conjugate toF such thatΣ1(G) � U . By
(4-6), for sufficiently large N we have 1

N
ΣN (F ) � U . Fix such N of the form N = 2k .

Let us define recursively continuous maps  0,  1, …,  k : X ! S as follows:  0 is
constant equal to o, and

 j+1(x) := mid
�
(F (2k�j �1)(x))�1

�  j (T
2k�j �1

x);  j (x)
�
;
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Then:

 j+1(T
2k�j �1

x)„ ƒ‚ …
1

= mid
�
(F (2k�j �1)(T 2k�j �1

x))�1
�  j (T

2k�j

x)„ ƒ‚ …
2

;  j (T
2k�j �1

x)
�

and, using equivariance of midpoints,

F (2k�j �1)(x) �  j+1(x)„ ƒ‚ …
3

= mid
�
 j (T

2k�j �1

x); F (2k�j �1)(x) �  j (x)„ ƒ‚ …
4

�
:

By (4-7), we have Eı
�
1 ; 3

�
4 1

2
Eı
�
2 ; 4

�
, which, by the invariance of the vectorial dis-

tance, amounts to

Eı
�
 j+1(T

2k�j �1

x); F (2k�j �1)(x)� j+1(x)
�

4 1
2
Eı
�
 j (T

2k�j

x); F (2k�j )(x)� j (x)
�
:

Combining the whole chain of these inequalities we obtain:

Eı
�
 k(T x); F (x) �  k(x)

�
4 1

2k
Eı
�
 0(T

2k

x); F (2k)(x) �  0(x)
�
:

Equivalently, denoting ' :=  k ,

(4-8) Eı
�
'(T x); F (x) � '(x)

�
4 1

N
Eı
�
o; F (N )(x) � o

�
:

Take a continuous mapH : X ! GL(d;R) such thatH (x) � '(x) = o for every x (e.g.,
H := '�1/2), and let G(x) := H (T x)F (x)H (x)�1. Then

Eı
�
'(T x); F (x) � '(x)

�
= Eı

�
o;G(x) � o

�
= E�

�
G(x) � o

�
4 1

N
E�

�
F (N )(x) � o

�
2

1
N
ΣN (F ) � U \ a+ :

Since U \ a+ is closed under majorization, we conclude that E�
�
G(x) � o

�
2 U . That is,

Σ1(G) � U , as we wanted to show.
In the case the cocycle admits a nontrivial dominated splitting, we take a preliminary

conjugation to make the bundles of the finest dominated splitting orthogonal. Then the
exact same procedure above leads to the desired conjugation, but we omit the verifications.

As a corollary of Proposition 4.1, we reobtain a result of Gourmelon [2007], which
says that it is always possible to find an adapted Riemannian norm for which dominations
are seen in the first iterate (i.e., n0 = 1 in our definition). Indeed, the corresponding inner
product at the point x is '(x), where ' is the map constructed in the proof of Proposi-
tion 4.1.
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Furthermore, the construction gives as extra property which is essential to certain ap-
plications in Bochi, Katok, and Rodriguez Hertz [n.d.], namely: fixed a favored ergodic
measure�0 2 ET , we can choose the adaptedmetric ' with respect to which the expansion
rates in the first iterate are close to the Lyapunov exponents with respect to �0, except on
a set of small �0 measure.4 More precisely, we can take N large enough so that the RHS
in (4-8) is L1(�0)-close to the Lyapunov vector E�(F;�0). On the other hand, the integral
of the LHS majorizes the Lyapunov vector. It follows that the RHS is also L1(�0)-close
to the Lyapunov vector.

The measures � 2 MT for which the Lyapunov vector E�(F;�) is an extremal point
of the symmetric Morse set M (F ) are called extremal measures for the linear cocycle
(X; T; F ).

As an example, consider the one-step cocycle generated by the pair of matrices A1 :=

( 1 1
0 1 ) and A2 := ( 2 0

2 2 ). The extremal measures of this cocycle are Sturmian: this can
be deduced from a result of Hare, Morris, Sidorov, and Theys [2011]5. Moreover, results
of Morris and Sidorov [2013] imply that the boundary of the symmetric Morse set is not
differentiable, with a dense subset of corners, just like the fish seen in Section 2. Again,
we ask: are these phenomena typical?

Acknowledgments. I thank Ian D. Morris and Cagri Sert for corrections and suggestions.
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A BRIEF INTRODUCTION TO SOFIC ENTROPY THEORY

Lൾඐංඌ P. Bඈඐൾඇ

Abstract

Sofic entropy theory is a generalization of the classical Kolmogorov-Sinai entropy
theory to actions of a large class of non-amenable groups called sofic groups. This is
a short introduction with a guide to the literature.

1 Introduction

Classical entropy theory is concerned with single transformations of a topological or mea-
sure space. This can be generalized straightforwardly to actions of the lattice Zd . How-
ever, one encounters real difficulty in any attempt to generalize to actions of non-amenable
groups. This short survey will begin with the free group of rank 2, F2 := ha; bi. The
Cayley graph G = (V;E) of this group has vertex set V = F2 and directed edges
(g; ga); (g; gb) for g 2 F2. It is a 4-regular tree. It is non-amenable because any fi-
nite subset F � V has the property that if @F is the set of edges e 2 E with one end in
F and one end outside of F then j@F j � 2jF j. After understanding the special case of
the free group (from a dynamicist’s view), we will generalize to residually finite groups
and sofic groups and then briefly survey recent developments; namely the classification
of Bernoulli shifts, Bernoulli factors, Rokhlin entropy theory, algebraic dynamics and the
geometry of model spaces.

We will not define amenability here (see Kerr and Li [2016] for example). We will also
not cover classical entropy theory. The interested reader is encouraged to consult one of
the standard texts (e.g. Petersen [1989]). Other introductions and surveys on sofic entropy
theory includeWeiss [2015], Kerr and Li [2016], Gaboriau [2016], and L. Bowen [2017a].
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1.1 The Ornstein-Weiss factor. In 1987, Ornstein and Weiss exhibited a curious ex-
ample D. S. Ornstein and Weiss [1987]. To explain it, letX := (Z/2Z)F2 be the set of all
maps x : F2 ! Z/2Z. This is a compact abelian group under pointwise addition. We can
identifyX�X with the group of maps from F2 ! Z/2Z�Z/2Z. DefineΦ : X ! X�X

by
Φ(x)(g) = (x(g) � x(ga); x(g) � x(gb)):

This a surjective homomorphism. It is also F2-equivariant where F2 acts on X by

(f x)(g) := x(f �1g):

And its kernel consists of the two constant maps. So it is a continuous, algebraic, 2-1
factor map from (Z/2Z)F2 onto (Z/2Z � Z/2Z)F2 .

This appears to give a contradiction to entropy theory because if K is a finite set then
the entropy of the action of F2 on KF2 should be log jKj. So the Ornstein-Weiss factor
map increases entropy! At the time of D. S. Ornstein and Weiss [ibid.] it was unknown
whether or not the two actions F2ÕX and F2ÕX � X could be measurably conjugate
(with respect to Haar measure on X and X � X ). We will show by Theorem 7.1 below
that they are not measurably conjugate.

2 Topological entropy for Z-actions

Here we will develop entropy theory for Z-actions in a slightly non-traditional way which
generalizes to actions of free groups. To begin, consider a homeomorphism T : X !

X of a compact metric space (X; d ). A partial orbit of length n is a tuple of the form
(x; T x; : : : ; T n�1x) 2 Xn. Define a metric d (n)

1 on Xn by

d
(n)
1 (x; y) = max

i
d (xi ; yi )

where, for example x = (x1; : : : ; xn). Then Rufus Bowen’s definition of the topological
entropy of T is

h(T ) := sup
�>0

lim sup
n!1

1

n
log Sep�(flength n partial orbitsg; d (n)

1 )

where if S � Xn then Sep�(S; d1) denotes the maximum cardinality of an �-separated
subset Y � S R. Bowen [1971]. (Recall that a subset Y � S is �-separated if d (y; z) > �
for any y; z 2 Y with y ¤ z).

Instead of counting partial orbits to compute entropy, we can count pseudo-orbits. To
be precise, an n-tuple x 2 Xn is an (n; ı)-pseudo orbit if

1

n

n�1X
i=1

d (T xi ; xi+1) < ı:
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By Markov’s inequality and continuity, any pseudo orbit contains a long subword that is
close to a partial orbit. Hence

h(T ) = sup
�>0

inf
ı>0

lim sup
n!1

1

n
log Sep�(f(n; ı) pseudo orbitsg; d

(n)
1 ):

This is similar to Katok’s treatment of entropy in Katok [1980] and follows from Kerr-Li’s
approach to entropy in Kerr and Li [2011b].

It is of classical interest to count periodic orbits too. Wewill say that x 2 Xn is periodic
with period � n if T xi = xi+1 for all 1 � i � n � 1 and T xn = x1. The growth rate of
periodic orbits is a lower bound for the entropy rate but in general they are not equal. To
remedy this, let us consider pseudo-periodic orbits. To be precise, a n-tuple x 2 Xn is an
(n; ı)-pseudo-periodic orbit if

1

n

 
n�1X
i=1

d (T xi ; xi+1) + d (T xn; x1)

!
< ı:

Since (n; ı)-pseudo-periodic orbits are (n; ı)-pseudo orbits and (n; ı)-pseudo orbits are
(n; ı + on(1))-pseudo-periodic orbits, it follows that

h(T ) = sup
�>0

inf
ı>0

lim sup
n!1

1

n
log Sep�(f(n; ı) pseudo-periodic orbitsg; d

(n)
1 ):

Now it might look like we have not gained much by these observations since pseudo-
periodic orbits are almost the same as pseudo orbits and the latter shadow partial orbits
of only slightly less length. However, there is a conceptual advantage. This is because
pseudo-periodic orbits can be thought of as maps from an external model, namely Z/nZ,
toX that approximate the dynamics. It is a very useful observation that we are not required
to count only partial orbits or periodic orbits, both of which are too restrictive to generalize
to actions of free groups.

3 Topological sofic entropy for actions of free groups

Suppose the free group F2 acts on a compact space X by homeomorphisms. A periodic
orbit of this action consists of a finite set V0, an action of F2 on V0 and an F2-equivariant
map � : V0 ! X .

It can be helpful to visualize the action of F2 on V0 by making the action graph G0 =

(V0; E0) whose edges consist of all pairs of the form (v; a � v) and (v; b � v) for v 2 V0. It
is a directed graph in which every vertex has in-degree and out-degree 2.
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Given a finite subset F � F2 and ı > 0, a (V0; ı; F )-pseudo-periodic orbit is a map
� : V0 ! X that is approximately equivariant in the sense that

jV0j
�1
X
v2V0

d (�(g � v); g � �(v)) < ı

for every g 2 F .
Now suppose that we fix a sequence Σ := fF2ÕVi g

1
i=1 of actions of F2 on finite sets

Vi . Tentatively, we will call the topological sofic entropy of F2ÕX with respect to Σ the
quantity

hΣ(F2ÕX) := sup
�>0

inf
ı>0

inf
F bF2

lim sup
n!1

1

n
log Sep�(f(Vn; ı; F ) pseudo-periodic orbitsg; dVn

1 ):

where dVn
1 is the metric on XVn defined by

dVn
1 (�; ) := max

v2Vn

d (�(v);  (v)):

To state the next result, we need some terminology. Given a countable group Γ and
continuous actions ΓÕX , ΓÕY , an embedding of ΓÕX into ΓÕY is a continuous Γ-
equivariant injective map Φ : X ! Y . If it is also surjective then it is a topological
conjugacy.

Theorem 3.1. If F2ÕX embeds into F2ÕY then for any Σ,

hΣ(F2ÕX) � hΣ(F2ÕY ):

In particular, topological sofic entropy is a topological conjugacy invariant.

The proof of this is straightforward, see Kerr and Li [2011b, 2016] for details. (The
definition of topological sofic entropy is due to Kerr and Li [2011b] which was inspired
by my earlier work L. Bowen [2010a]).

3.1 Examples.

3.1.1 A boring example and asymptotic freeness. Suppose that Vn is a single point
for all n. In this case, hΣ(F2ÕX) is simply the logarithm of the number of fixed points
of the action. While this is a topological conjugacy invariant, it is not what one usually
means by entropy. To avoid this kind of example, we require that the actions fF2ÕVngn

are asymptotically free. This means that for every nonidentity element g 2 F2

lim
n!1

jVnj
�1#fv 2 Vn : g � v = vg = 0:(1)
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A countable group Γ admits a sequence fΓÕVng1
n=1 of actions on finite sets satisfying

asymptotic freeness if and only if Γ is residually finite. We will come back to this point
later. From now on, we assume the actions fF2ÕVngn are asymptotically free.

3.1.2 A curious example. Let X = Z/2Z and consider the action F2ÕX defined by
s � x = x + 1 for s 2 fa; bg. Let Σ = fΓÕVng1

n=1 be a sequence of actions on finite sets
with the property that the corresponding action graphs Gn := (Vn; En) are bipartite. Let
Vn = PntQn be the bi-partition. Then define � : Vn ! X by �(Pn) = f0g and �(Qn) =

f1g. This map is a (Vn; ı; F )-pseudo-periodic orbit for all ı; F . So hΣ(F2ÕX) � 0. It
can be shown that in fact any pseudo-periodic orbit must be close to either � or � + 1

which implies hΣ(F2ÕX) = 0.
Next let Σ0 = fΓÕV 0

ng1
n=1 be a sequence of actions such that the corresponding action

graphs G0
n := (V 0

n; E
0
n) are far from bi-partite. For example, it is known (and will be

explained in Section 7.3) that if the action ΓÕV 0
n is chosen uniformly at random and

jV 0
nj ! 1 as n ! 1 then with high probability the action graphs will be far from bi-

partite in the following sense. For small enough ı > 0 and F = fa; b; a�1; b�1g there
are no (V 0

n; ı; F )-pseudo-periodic orbits. Since log(0) = �1 this implies hΣ0(ΓÕX) =

�1.
This example shows (1) entropy depends on the choice of sequence Σ and (2) it is

possible for the entropy to be �1, even for very simple systems.

3.1.3 The Ornstein-Weiss example revisited. In Section 7 below we will sketch a
proof that the full shift action F2ÕKF2 has topological sofic entropy log jKj for any finite
set K. So the Ornstein-Weiss factor map does indeed increase entropy. How can this
happen? The answer is that if F2ÕX factors onto F2ÕY (meaning there is a continuous
F2-equivariant surjective map Φ : X ! Y ) then, generally speaking, there is no way
to “lift” pseudo-periodic orbits of the downstairs action F2ÕY up to the source action
F2ÕX , even approximately.

Let us see this in detail for the Ornstein-Weiss map. Suppose Σ := fF2ÕVngn is a
sequence of actions on finite sets and form the action graphs Gn = (Vn; En). Given any
map  : Vn ! Z/2Z � Z/2Z, we can define the pullback or pullback name of  by

e : Vn ! (Z/2Z � Z/2Z)F2 ; e (v)(g) =  (g�1
� v):

This map is a (Vn; ı; F )-pseudo-periodic orbit for the shift-action F2Õ(Z/2Z�Z/2Z)F2

for any ı > 0 and finite F � F2. In particular, this can be used to show that the entropy
of F2Õ(Z/2Z � Z/2Z)F2 is at least log 4.
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However most of these maps do not “lift” via the Ornstein-Weiss map. To be precise,
define

Φn : (Z/2Z)Vn ! (Z/2Z � Z/2Z)Vn

Φn( )(v) = ( (v) �  (a�1
� v);  (v) �  (b�1

� v)):

This map is induced from the Ornstein-Weiss map. The point is that while the Ornstein-
Weiss map is surjective, its finite approximations Φn are from surjective. This is obvious
since the domain of Φn is exponentially smaller than (Z/2Z � Z/2Z)Vn . Another argu-
ment is homological.

Given  : Vn ! Z/2Z � Z/2Z, let  0 : En ! Z/2Z be the map defined by

 (v) =
�
 0(v; a�1

� v);  0(v; b�1
� v)

�
:

Then  is in the image of Φn if and only if  0 is a coboundary. So the “reason” the
Ornstein-Weiss factor map increases entropy is that the Z/2Z-homology of the approxi-
mating graphs Gn grows exponentially. This observation generalizes: Gaboriau and Se-
ward show in Gaboriau and Seward [2015] that if Γ is any sofic group and k is a finite
field then the sofic entropy of ΓÕkΓ/k is at least (1 + ˇ1

(2)(Γ)) log jkj where ˇ1
(2)(Γ) is

the first `2-Betti number of Γ and kΓ/k is the quotient of kΓ by the constant functions.
By contrast, any pseudo-periodic orbit of a Z-action is close to a partial orbit of slightly

less length. Partial orbits always lift. This explains why entropy is monotone decreasing
for actions of Z.

4 Sofic groups

You might have noticed that we have not used any special properties of free groups. In
fact, the definition of topological sofic entropy stated above works for any residually fi-
nite group Γ in place of F2. Recall that Γ is residually finite if there exists a decreas-
ing sequence Γ � Γ1 � Γ2 � � � such that each Γn is normal and finite-index in Γ and
\nΓn = feg (this is equivalent to the previous definition in Section 3.1.1). In this case,
the sequence of actions ΓÕΓ/Γn is asymptotically free and so the above definition of
topological sofic entropy makes sense.

However, the actions ΓÕVn do not really have to be actions! To explain, let �n : Γ !

sym(Vn) be a sequence of maps from Γ to the symmetric groups sym(Vn). We do not
require these maps to be homomorphisms but we do require that they are asymptotically
multiplicative in the following sense: for every g; h 2 Γ we require:

lim
n!1

jVnj
�1#fv 2 Vn : �n(gh)v = �n(g)�n(h)vg = 1:(2)
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We still require that they are asymptotically free, which means for every nonidentity g 2 Γ

lim
n!1

jVnj
�1#fv 2 Vn : �n(g) � v = vg = 0:(3)

Any sequence Σ = f�ng1
n=1 satisfying equations (2, 3) is called a sofic approximation

to Γ and Γ is called sofic if it has a sofic approximation. The definition of topological
sofic entropy given above makes sense for arbitrary sofic groups with respect to a sofic
approximation Σ once we replace g � v in the definition of a pseudo-periodic orbit with
�n(g) � v.

Sofic groups were defined implicitly by Gromov in Gromov [1999]. They were given
their name by Benjy Weiss in Weiss [2000]. It is known that amenable groups and resid-
ually finite groups are sofic. The class of sofic groups is closed under a large number of
group operations including passing to subgroups, direct limits, inverse limits, extensions
by amenable groups, direct products, free products with amalgamation over amenable sub-
groups, graph products and wreathe products Elek and Szabó [2006], Dykema, Kerr, and
Pichot [2014], Păunescu [2011], Elek and Szabó [2011], Ciobanu, Holt, and Rees [2014],
and Hayes and Sale [2016]. By Malcev’s Theorem, finitely generated linear groups are
residually finite Malcev [1940]. Since soficity is closed under direct limits, all countable
linear groups are sofic. Sofic groups solve special cases of a number of general conjec-
tures including Connes Embedding Conjecture Elek and Szabó [2005], the Determinant
Conjecture Elek and Szabó [ibid.], the Algebraic Eigenvalue Conjecture Thom [2008] and
Gottschalk’s Surjunctivity Conjecture (more on that later on). It is a major open problem
whether all countable groups are sofic. Surveys on sofic groups include Pestov [2008],
Pestov and Kwiatkowska [2012], and Capraro and Lupini [2015].

5 An application to Gottschalk’s Surjunctivity Conjecture

Conjecture 1. Gottschalk [1973] Let k be a finite set, Γ a countable group andΦ : kΓ !

kΓ a continuous Γ-equivariant map (where kΓ is given the product topology). If Φ is
injective then it is also surjective.

This conjecture was proven to be true whenever Γ is sofic by Gromov [1999]. Another
proof was given byWeiss [2000] and then another by Kerr and Li [2011b]. Here is a sketch
of Kerr-Li’s proof: the sofic entropy of ΓÕkΓ is log jkj. However, the sofic entropy of
any proper closed Γ-invariant subset X � kΓ is strictly less than log jkj. Since entropy is
a topological invariant, this proves the conjecture.

By the way, Gottschalk’s conjecture implies Kaplansky’s Direct Finiteness Conjecture
which states: if k is a finite field, x; y are elements of the group ring kΓ and xy = 1 then
yx = 1. To see the connection, observe that x and y induce linear Γ-equivariant maps
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Φx ;Φy from kΓ to itself. If xy = 1 then ΦxΦy is the identity and so Φy is injective.
If Gottschalk’s conjecture holds then Φy must also be surjective and therefore Φx is its
inverse. So ΦyΦx = 1, which implies yx = 1. In fact this result holds for all fields k,
even infinite fields because every field is embeddable into an ultraproduct of finite fields
Capraro and Lupini [2015]. When Γ is sofic, direct finiteness of kΓ also holds whenever
k is a division ring Elek and Szabó [2004] or a unital left Noetherian ring Li and Liang
[2016].

6 Measure sofic entropy

Before defining measure sofic entropy, let us revisit topological sofic entropy. The new
notation will be useful in treating the measure case. Again, let ΓÕX be an action by
homeomorphisms on a compact metric space (X; d ) and fix a sofic approximation Σ =

f�ng1
n=1 where �n : Γ ! sym(Vn). Let Ω(�n; ı; F ) � XVn be the set of all (�n; ı; F )-

pseudo-periodic orbits. To be precise, � 2 XVn is in Ω(�n; ı; F ) if and only if

jVnj
�1
X

v2Vn

d (�(�n(g) � v); g � �(v)) < ı

for every g 2 F . So Ω(�n; ı; F ) depends implicitly on the action ΓÕX . The topological
sofic entropy of ΓÕX is defined by

hΣ(ΓÕX) := sup
�>0

inf
ı>0

inf
F bΓ

lim sup
n!1

1

n
log Sep�(Ω(�n; ı; F ); dVn

1 ):

To define measure sofic entropy, we need a few more preliminaries. Let Prob(X) de-
note the space of Borel probability measures on X . It is a compact metrizable space with
respect to the weak* topology which is defined by: a sequence of measures�n 2 Prob(X)

converges to a measure � if and only if: for every continuous function f on X ,Z
f d�n !

Z
f d�

as n ! 1.
Given a map � : V0 ! X (where V0 is a finite set), the empirical distribution of � is

the measure
P� := jV0j

�1
X
v2V0

ıv 2 Prob(X):

Given an open subsetO � Prob(X), letΩ(�n; ı; F;O) be the set of all pseudo-periodic
orbits � 2 Ω(�n; ı; F ) such that P� 2 O. Then the sofic entropy of a measure-preserving
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action ΓÕ(X;�) with respect to Σ is

hΣ(ΓÕ(X;�)) := sup
�>0

inf
ı>0

inf
F bΓ

inf
O3�

lim sup
n!1

1

n
log Sep�(Ω(�n; ı; F;O); dVn

1 ):

This is a measure-conjugacy invariant! For the proof see Kerr and Li [2011b, 2016].
This definition is due to Kerr and Li [2011b] which was inspired by my earlier efforts L.
Bowen [2010a]. The proof is straightforward if the measure-conjugacy is a topological
conjugacy. The general case is obtained by approximating a measure-conjugacy and its
inverse by continuous maps.

There is also a variational principle (due to Kerr and Li [2011b]):

Theorem 6.1 (Variational Principle). h(ΓÕX) = sup� h(ΓÕ(X;�)) where the sup is
over all Γ-invariant measures � 2 Prob(X). If no such measures exist then h(ΓÕX) =

�1.

There is also a notion of sofic pressure and a corresponding variational principle Chung
[2013]. See also Zhang [2012] for local versions. Moreover, sofic entropy (both topologi-
cal and measure) agrees with classical entropy whenever Γ is amenable Kerr and Li [2013]
and L. Bowen [2012b].

7 Symbolic actions: the topological case

Let (A; dA) be a compact metric space. In most applications, A is either finite or a torus
(thought of as a compact abelian group). Let AΓ be the space of all functions x : Γ ! A
with the topology of pointwise convergence on finite sets. The group Γ acts on this space
by (g � x)(f ) = x(g�1f ).

Now suppose X � AΓ is a closed Γ-invariant subspace. There is a more convenient
definition of the sofic entropy of ΓÕX based on maps � : Vn ! A (instead of maps
� : Vn ! X ). Given � : Vn ! A and v 2 Vn, define the pullback of � by

Π�n
v (�) 2 AΓ; Π�n

v (�)(g) := �(�n(g)
�1v):

Given an open neighborhood U of X in AΓ, let Ω0(�n; ı;U) be the set of all maps
� : Vn ! A such that

jVnj
�1#fv 2 Vn : Π�n

v (�) 2 Ug � 1 � ı:

We call such a map a (�n; ı;U)-microstate (this terminology is inspired by Voiculescu’s
free entropy Voiculescu [1995]). We also call such a map a microstate if the parameters
are understood or intentionally left ambiguous. Then

hΣ(ΓÕX) = sup
�>0

inf
ı>0

inf
U�X

lim sup
n!1

1

n
log Sep�(Ω

0(�n; ı;U); dVn
1 )



1874 LEWIS P. BOWEN

where (by abuse of notation) the metric dVn
1 on AVn is defined by

dVn
1 (�; ) = max

v2Vn

dA(�(v);  (v))

The reason this works is that given any�0 2 Ω0(�n; ı;U)we can find a pseudo-periodic
orbit � : Vn ! X such that �(v) is close to Π�n

v (�0) for most v. Conversely, given a
pseudo-periodic orbit � we can define �0 : Vn ! A by �0(v) = the projection of � to
the identity-coordinate. Then Π�n

v (�0) will be close to �(v) for most v. The measure
case of this statement is proven in Austin [2016a]. The topological case follows from the
variational principle.

If A is finite then we can simplify further by setting � = 0. To be precise,

hΣ(ΓÕX) = inf
ı>0

inf
U�X

lim sup
n!1

1

n
log #Ω0(�n; ı;U):

The reason this works is that if �; 2 AVn are any distinct elements then dVn
1 (�; ) �

c > 0 where c is the minimum distance between distinct elements of A.
Using this definition of sofic entropy, it is easy to check that hΣ(ΓÕAΓ) = log jAj.

Indeed, this is true because Ω0(�n; ı;U) = AVn .

7.1 Symbolic actions: themeasure case. Suppose� 2 Prob(AΓ) is a probability mea-
sure preserved under the action. For any open neighborhood O 3 �, a (�n;O)-microstate
for � is a map � : Vn ! A such that its empirical measure, defined by

P� := jVnj
�1
X

v2Vn

ıΠ�n
v (�)

is contained in O. Let Ω0(�n;O) be the set of all (�n;O)-microstates for �. Then

hΣ(ΓÕ(AΓ; �)) = sup
�>0

inf
O3�

lim sup
n!1

1

n
log Sep�(Ω

0(�n;O); dVn
1 ):

This approach is proven in Austin [ibid.].
As in the topological case, we can simplify further if A is finite by setting � = 0 to

obtain

hΣ(ΓÕ(AΓ; �)) = inf
O3�

lim sup
n!1

1

n
log #Ω0(�n;O):

The above is essentially the same as my original definition of sofic entropy in L. Bowen
[2010a].
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7.2 Bernoulli shifts. Let � be a Borel probability measure on A. The Shannon entropy
of � is

H (�) := �
X
a2A

�(fag) log �(fag)

if � is supported on a countable set (and 0 log 0 := 0). If � is not supported on a countable
set thenH (�) := +1.

Let �Γ be the product measure on AΓ. The action ΓÕ(AΓ; �Γ) is called the Bernoulli
shift over Γ with base space (A; �).

Theorem 7.1. For any sofic approximation Σ,

hΣ(ΓÕ(AΓ; �Γ)) = H (�):

The finite entropy case of this was obtained in L. Bowen [ibid.] and the infinite entropy
case is in Kerr and Li [2011a]. Here is a sketch in the special case in which A is finite.
The lower bound. Let � be a random map Vn ! A with distribution �Vn . A second
moment argument shows that, for any open neighborhood O of �, if n is sufficiently large
then with high probability � is a (�n;O)-microstate for �Γ. By the law of large numbers
or the Shannon-McMillan Theorem, any subset S � AVn with measure close to 1 has
cardinality at least ejVnjH(�)�o(jVnj). This proves the lower bound.
The upper bound. Suppose that O consists of all measures � 2 Prob(AΓ) such that if
P : AΓ ! A denotes projection onto the identity coordinate then kP�� � �kT V < �.
Then the number of (�n;O)-microstates is approximately the multinomial

jVnj!

 Y
a2A

b�(fag)Vnc!

!�1

which, by Stirling’s formula, is approximately ejVnjH(�)+o(jVnj). This proves the upper
bound.

7.3 The f -invariant and RS-entropy. For this section, consider the special case in
which Γ = Fr = hs1; : : : ; sri is the rank r free group. Instead of fixing a sofic approxi-
mation, set Vn := f1; : : : ; ng and let �n : Fr ! sym(Vn) be a uniformly random homo-
morphism. The f -invariant or RS-entropy of a measure-preserving action FrÕ(X;�) is
defined in the same way as sofic entropy except that ones takes an expected value before
the logarithm:

f (�) := hRS (�) := sup
�>0

inf
ı>0

inf
F bΓ

inf
O3�

lim sup
n!1

1

n
logE�n

�
Sep�(Ω(�n; ı; F;O); dVn

1 )
�
:
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The RS stands for “replica-symmetric” to emphasize the analogy with the corresponding
notions in the literature in statistical physics and theoretical computer science Dembo and
Montanari [2010]. In the special case in which � is a shift invariant measure on AFr and
A is finite, the definition reduces to

f (�) = hRS (�) = inf
O3�

lim sup
n!1

1

n
logE�n

[#Ω0(�n;O)]:

Alternatively, let P be a countable measurable partition of X . Its Shannon entropy is
defined by

H�(P ) := �
X
P 2P

�(P ) log�(P ):(4)

Define

F�(P ) := �(2r � 1)H�(P ) +

rX
i=1

H�(P _ si P )

where P _ si P is the smallest partition refining both P and si P . For any finite W � Fr ,
let P W be the smallest partition containing wP for all w 2 W .

Theorem 7.2. L. Bowen [2010c] f (�) = infR>0 F�(P B(R)) where B(R) � Fr is the
ball of radius R > 0 with respect to the word metric and P is any generating partition for
the action such that H�(P ) < 1. (A partition P is generating if the smallest complete
Γ-invariant � -sub-algebra containing P consists of all measurable sets).

The theorem above was taken as the definition of f in L. P. Bowen [2010] where the f -
invariant was first proven to be ameasure-conjugacy invariant without usingmodel spaces.
Conditional on the existence of a finite generating partition, the f -invariant is additive
under direct products, it satisfies an ergodic decomposition formula Seward [2014b], a
subgroup formula Seward [2014a], an Abraham-Rokhlin formula L. Bowen [2010b] and
a (restricted) Yuzvinskii addition formula L. Bowen and Gutman [2014]. Sofic entropy
does not, in general, satisfy such formulas L. Bowen [2017a].

Example 1. The f -invariant of any action Γ on a finite set X is �(r � 1) log jX j. So
E�n

[#Ω0(�n;O)] � jX j�(r�1)jVnj (forO small andn large). Since #Ω0(�n;O) 2 f0; 1; 2; : : :g,
with high probability Ω0(�n;O) is empty (if O is small enough, r � 2 and jX j � 2). This
explains why, as claimed in Section 3.1.2, if ΓÕV 0

n is uniformly random then with high
probability the graphs G0

n = (V 0
n; E

0
n) are far from bipartite in the sense that there are no

pseudo-periodic orbits (or microstates) for the action ΓÕZ/2Z where each generator acts
nontrivially.
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The paper L. Bowen [2010b] defines Markov processes over the free group and shows
that, for such processes, F�(P ) = f (�). In particular, it is very easy to compute. It can be
shown that some mixing Markov processes (e.g., the Ising process with small transition
probability and free boundary conditions) have negative f -invariant. These cannot be
isomorphic to Bernoulli shifts. By contrast, all mixingMarkov processes over the integers
are isomorphic to Bernoulli shifts. It is a major open problem to classify (mixing) Markov
processes over a free group up to measure-conjugacy.

8 Classification of Bernoulli shifts

Theorem 7.1 shows that if Γ is sofic then Bernoulli shifts with different base space en-
tropies are not measurably conjugate. Surprisingly, the converse is true even without
soficity:

Theorem 8.1. If Γ is any countably infinite group and (A; �), (B; �) are two probabil-
ity spaces with equal Shannon entropies H (�) = H (�) then ΓÕ(A; �)Γ is measurably
conjugate to ΓÕ(B; �)Γ.

Remark 1. The special case in which Γ = Z is Ornstein’s famous theorem of 1970 D. Orn-
stein [1970a]. Stepin observed that if Γ is any countable group containing a copy ofZ then
the theorem above holds for Γ because one can build an isomorphism for Γ-actions from
an isomorphism for Z-actions, coset-by-coset Stepin [1975]. Ornstein-Weiss extended
Ornstein’s Theorem to all countably infinite amenable groups through the technology of
quasi-tilings D. S. Ornstein and Weiss [1980]. I showed in L. Bowen [2012a] that the
above theorem is true whenever the supports of � and � each contain more than 2 elements.
The proof is essentially a “measurable version” of Stepin’s trick. The last remaining case
(when say jAj = 2) has been handled recently in soon-to-be-published work of Brandon
Seward.

9 Bernoulli factors

Theorem 9.1. Let Γ be any non-amenable group. Then every nontrivial Bernoulli shift
over Γ factors onto every other nontrivial Bernoulli shift.

This theorem is obtained in L. Bowen [2017b]. The special case of the free group
F2 was handled in L. Bowen [2011b] using the Ornstein-Weiss map and Sinai’s Factor
Theorem (for actions of Z). It immediately follows for any group containing a copy of
F2 since we can build the factor map coset-by-coset. In Ball [2005], it was shown that if
Γ is any non-amenable group then there is some Bernoulli shift over a finite base space
that factors onto all other Bernoulli shifts. The argument used a rudimentary form of the



1878 LEWIS P. BOWEN

Gaboriau-Lyons Theorem (before that theorem existed) which states that if Γ is any non-
amenable group then there is some Bernoulli shift (over a finite base space) ΓÕ(A; �)Γ

and an ergodic essentially free action of the free group F2ÕAΓ such that the orbits of the
free group action are contained in the Γ-orbits Gaboriau and Lyons [2009]. We can then
view this free group action as being essentially like having a free subgroup of Γ and build
the factor map coset-by-coset as before. The main new result of L. Bowen [2017b] is
that the Gaboriau-Lyons Theorem holds for arbitrary Bernoulli shifts. Theorem 9.1 then
follows from an argument similar to Ball [2005].

10 Rokhlin entropy

Ameasurable partition P of a measure space (X;�) is generating for an action ΓÕ(X;�)

if the smallest Γ-invariant sigma-algebra containing P consists of all measurable sets
(modulo sets of measure zero). The Rokhlin entropy of an ergodic action ΓÕ(X;�) is the
infimum of the Shannon entropies of generating partitions (the Shannon entropy is defined
by (4)). In the special case that Γ = Z, Rokhlin proved that this agrees with Kolmogorov-
Sinai entropy Rohlin [1967]. A modern proof of this, that holds for all amenable Γ, is in
Seward and Tucker-Drob [2016].

Rokhlin entropy is an upper bound to sofic entropy. It is unknown whether they are
equal, conditioned on the sofic entropy not being minus infinity. For example, this is
unknown even for principal algebraic actions (see Section 11.0.2). Unfortunately, sofic
entropy is the only known lower bound for Rokhlin entropy; hence we do not even know
how to compute the Rokhlin entropy of Bernoulli shifts, except when the group is sofic,
in which case the Rokhlin entropy equals the Shannon entropy of the base. Indeed, it
is shown in Seward [2015a] that if the Rokhlin entropy of Bernoulli shifts is positive
(for all groups) then Gottschalk’s conjecture holds for all groups. It is also known that
Rokhlin entropy equals sofic entropy for Gibbs measures satisfying a strong spatial mixing
condition Alpeev [2017] and Austin and Podder [2017].

Rokhlin entropy has mainly been used as a hypothesis rather than a conclusion. There
are two main theorems of this form; they generalize Krieger’s Generator Theorem and
Sinai’s Factor Theorem:

Theorem 10.1. Seward [2014c] IfΓÕ(X;�) is ergodic and has Rokhlin entropy< log(n)
for some integer n > 1 then there exists a generating partition for the action with n parts.

This Theorem is the simplest version of a large variety of far more refined results con-
tained in Seward [2014c, 2015a] and Alpeev and Seward [2016].

Theorem 10.2. Seward [2015b] If ΓÕ(X;�) is ergodic and has positive Rokhlin entropy
then it factors onto a Bernoulli shift.
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11 Algebraic actions

An algebraic action is an action of a countable group Γ on a compact group X by group-
automorphisms. Themain problem is to relate algebraic or analytic properties of the image
ofΓ in Aut(X)with purely dynamical properties. The study of single automorphisms (that
is, Γ = Z) goes back at least to Juzvinskiĭ [1965a,b] and R. Bowen [1971]. The special
case Γ = Zd was studied intensively in the 80’s and 90’s Schmidt [1995]. Here we will
highlight a few recent achievements and open problems extending classical results to the
realm of sofic group actions.

11.0.1 Topological versus measure entropy. Yuzvinskii and R. Bowen showed that,
when Γ = Z, the topological and measure-entropy of an algebraic action ΓÕX agree
(where the measure onX is Haar measure) Juzvinskiĭ [1965b] and R. Bowen [1971]. This
was extended to amenable Γ by Deninger [2006]. It was an open problem since 2011
whether this result could be extended to sofic groups. There were computations of entropy
showing that it was true in a number of special cases Kerr and Li [2011b], L. Bowen
[2011a], L. Bowen and Li [2012], andHayes [2016b] but these all proceeded by computing
the topological entropy and the measure entropy separately in terms of analytic data and
then showing their equality. So it is astonishing that just recently Ben Hayes proved under
a mild hypothesis on the actions that the topological entropy agrees with the measure
entropy Hayes [2016a]. The proof uses Austin’s lde-sofic-entropy Austin [2016a].

11.0.2 Principal algebraic actions. Let f be an element of the integer group ring ZΓ

and consider the principal ideal ZΓf � ZΓ generated by f . Then ZΓ/ZΓf is a count-
able abelian group that Γ acts on by automorphisms (namely the action is g(x+ZΓf ) :=

gx+ZΓf ). LetXf := Hom(ZΓ/ZΓf;R/Z) be the Pontryagin dual. This is a compact
abelian group under pointwise addition. Moreover, the action of Γ on ZΓ/ZΓf induces
an action of Γ on Xf by automorphisms.

In the special case in which Z = Γ, we can write f as f =
Pn

i=�m cix
i for some

coefficients ci 2 Z and some 0 � m; n. After multiplying f by some xk we may assume
that m = 0 and c0 ¤ 0. This change does not affect the dynamics. So we can think of
f as a polynomial. Yuzvinskii and R. Bowen showed that the entropy of Z acting on Xf

is the log-Mahler measure of f . This result was extended to Zd by Lind, Schmidt, and
Ward [1990]. Chris Deninger observed that the Fuglede-Kadison determinant generalizes
Mahler measure to non-abelian Γ and conjectured that, when Γ is amenable, h(ΓÕXf )

is the log of the Fuglede-Kadison determinant of f Deninger [2006]. Special cases were
handled in Deninger [2006] and Deninger and Schmidt [2007] before the general case was
completed by Hanfeng Li in Li [2012].
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The first result in the setting of a non-amenable acting group Γ was the case of expan-
sive principal algebraic actions of residually finite groups L. Bowen [2011a]. This was
extended in L. Bowen and Li [2012] to some non-expansive actions (harmonic mod 1
points). Then in a stunning breakthrough Hayes proved that for an arbitrary sofic Γ and
arbitrary f 2 ZΓ either f is not injective as a convolution operator on `2(Γ) (in which
case the sofic entropy is infinite) or it is injective and the sofic entropy equals the log of
the Fuglede-Kadison determinant of f Hayes [2016b].

11.0.3 Yuzvinskii’s addition formula. Suppose that N C X is a closed Γ-invariant
normal subgroup. We say the addition formula holds for (ΓÕX;N ) if the entropy of
ΓÕX equals the sum of the entropy of ΓÕN with the entropy of ΓÕX/N . In the special
case in which Γ = Z, this result is due to Yuzvinskii Juzvinskiĭ [1965a,b]. It was extended
to Zd in Lind, Schmidt, and Ward [1990] and to arbitrary amenable groups in Li [2012]
(and independently in unpublished work of Lind-Schmidt). It is an important structural
result which when combined with the principal algebraic case yields a general procedure
for computing entropy of algebraic actions satisfying mild hypotheses Schmidt [1995].
Using it, Li and Thom relate entropy to L2-torsion Li and Thom [2014] thereby obtaining
new results about L2-torsion and algebraic dynamics.

The Ornstein-Weiss example shows that addition formulas fail for sofic entropy in gen-
eral. Indeed, it has been shown in Bartholdi and Kielak [2017] that for any non-amenable
Γ and any field k, there exists an embedding (kΓ)n ! (kΓ)n�1 for some n 2 N (as
kΓ-modules). Taking the dual and setting k equal to a finite field gives a contradiction to
the addition formula.

However, the f -invariant satisfies the addition formula whenX is totally disconnected
and satisfies some technical hypothesis L. Bowen and Gutman [2014]. The reason this
does not contradict the previous paragraph is that the f -invariant, unlike sofic entropy,
can take finite negative values. It is an open problem whether the addition formula holds
for the f -invariant in general.

11.0.4 Pinsker algebra. In recent work, Hayes shows that under mild hypotheses, the
outer Pinsker algebra of an algebraic action of a sofic group is algebraic; that is, it comes
from an invariant closed normal subgroup Hayes [2016c]. To explain a little more, the
outer sofic entropy of a factor is the growth rate of the number of microstates that lift to
the source action. The outer Pinsker algebra is the maximal � -sub-algebra such that the
corresponding factor has zero outer sofic entropy. It follows that, in order, to prove an
algebraic action has completely positive entropy (CPE), it is sufficiently to check all of its
algebraic factors.
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In Schmidt [1995] it is shown that if Γ = Zd then all CPE algebraic actions are
Bernoulli. Could this be true more generally? Even for amenable groups, this problem is
open.

12 Geometry of model spaces

Recall from Section 7.1 that

hΣ(ΓÕ(AΓ; �)) = sup
�>0

inf
O3�

lim sup
n!1

1

n
log Sep�(Ω

0(�n;O); dVn
1 ):

The spaces Ω0(�n;O) are called model spaces. We consider them with the metrics dVn

1

defined by
d

Vn

1 (�; ) :=
1

jVnj

X
v2Vn

d (�(v);  (v)):

In the special case in which A is finite and d (x; y) 2 f0; 1g for all x; y 2 A, dVn

1 is the
normalized Hamming metric. The asymptotic geometry of these model spaces can be used
to define new invariants.

In Austin [2016b] Tim Austin introduced a notion of asymptotic coarse connectedness
for model spaces that depends on a choice of sofic approximation Σ. He calls this notion
connected model spaces relΣ. For fixedΣ, it is a measure-conjugacy invariant. He shows
that Bernoulli shifts have connectedmodel spaces relΣ (for anyΣ). On the other hand, ifΓ
is residually finite, has property (T) andT is the 1-torus then there is a sofic approximation
Σ such that the model spaces for the action ΓÕTΓ/T are not asymptotically coarsely
connected. In particular, this action is a factor of a Bernoulli shift that is not isomorphic
to a Bernoulli shift (by contrast, all factors of Bernoulli shifts of Z-actions are Bernoulli
D. Ornstein [1970b]). This was known earlier from work of Popa-Sasyk Popa and Sasyk
[2007] and the example is the same, but the proof is different since it goes through this
new measure-conjugacy invariant.

In forthcoming work, I will generalize model-connectedness to asymptotic coarse ho-
mological invariants. These new invariants will be applied to show that there are Markov
processes over the free group that do not have the Weak Pinsker Property. By contrast,
Austin recently proved that all processes over Z have the Weak Pinsker Property Austin
[2017].

In Austin [2016a] Austin defines a notion of convergence for sequences of probability
measures �n on AVn (with respect to Σ) and uses this to define new notions of sofic
entropy. One of these notionswas called “doubly-quenched sofic entropy” inAustin [ibid.]
but has now been renamed to “locally doubly empirical entropy” to avoid conflict with
physics notions. This particular version of sofic entropy is additive under direct products.



1882 LEWIS P. BOWEN

Under very mild hypotheses, it agrees with the power-stabilized entropy which is defined
by

hPS
Σ (ΓÕ(X;�)) = lim

n!1

1

n
hPS
Σ (ΓÕ(X;�)n)

where ΓÕXn acts diagonally g(x1; : : : ; xn) := (gx1; : : : ; gxn). Thus, it seems to be the
‘right’ version of sofic entropy if one requires additivity under direct products.

Acknowledgments. Thanks to Tim Austin and Andrei Alpeev for helpful comments.
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Abstract

These notes present recent progress on a conjecture about the dynamics of rational
maps on P1(C), connecting critical orbit relations and the structure of the bifurcation
locus to the geometry and arithmetic of postcritically finite maps within the moduli
spaceMd . The conjecture first appeared in a 2013 publication by Baker and DeMarco.
Also presented are some related results and open questions.

1 The critical orbit conjecture

These lecture notes are devoted to a conjecture presented in Baker and DeMarco [2013]
and the progressmade over the past five years. The setting for this problem is the dynamics
of rational maps

f : P 1(C) ! P 1(C)

of degree d > 1. Such a map has exactly 2d � 2 critical points, when counted with mul-
tiplicity, and it is well known in the study of complex dynamical systems that the critical
orbits of f play a fundamental role in understanding its general dynamical features. For
example, hyperbolicity on the Julia set, linearizability near a neutral fixed point, and stabil-
ity in families can all be characterized in terms of critical orbit behavior. The postcritically
finite maps – those for which each of the critical points has a finite forward orbit – play a
special role within the family of all maps of a given degree d .

The critical orbit conjecture, in its most basic form, is the following:

Conjecture 1.1. Let ft : P 1 ! P 1 be a nontrivial algebraic family of rational maps of
degree d > 1, parametrized by t in a quasiprojective complex algebraic curve X . There
are infinitely many t 2 X for which ft is postcritically finite if and only if the family ft

has at most one independent critical orbit.
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Remark 1.2. Favre and Gauthier have recently announced a proof of Conjecture 1.1
for all families ft of polynomials, building on the series of works Baker and DeMarco
[2011], Ghioca, Hsia, and Tucker [2013], Baker and DeMarco [2013], Ghioca and Ye
[2016], Favre and Gauthier [2016]. Other forms of this conjecture appear as Baker and
DeMarco [2013, Conjecture 1.10], Ghioca, Hsia, and Tucker [2015, Conjecture 2.3], De-
Marco [2016a, Conjecture 6.1], DeMarco [2016b, Conjecture 4.8], treating also the higher-
dimensional parameter spaces X , where much less is known.

An algebraic family is, by definition, one for which the coefficients of ft are meromor-
phic functions of t on a compactification X . We also assume that ft is a holomorphic
family on the Riemann surface X , in the sense that it determines a holomorphic map
f : X � P 1 ! P 1. The family is said to be trivial if all ft , for t 2 X , are Möbius
conjugate rational maps.

The notion of having “at most one independent critical orbit” is a bit subtle to define. I
will give two candidate definitions of this notion in Section 2, so Conjecture 1.1 is actually
two distinct conjectures. But, roughly speaking, if ci : X ! P 1, i = 1; : : : ; 2d � 2,
parametrize the critical points of ft , then “at most one independent critical orbit” should
mean that, for every pair i 6= j , either (1) at least one of ci or cj is persistently preperiodic,
so that f n

t (ci (t)) = f m
t (ci (t)) or f n

t (cj (t)) = f m
t (cj (t)) for some n > m and all t 2 X ;

or (2) there is an orbit relation of the form f n
t (ci (t)) = f m

t (cj (t)) holding for all t .
(Assuming condition (1) or (2) for every pair fi; j g easily implies that there are infinitely
many postcritically finite maps in the family ft , but this assumption is too strong for a
characterization: these conditions do not capture the possible symmetries in the family
ft .)

Let us put this conjecture into context. From a complex-dynamical point of view, the
independent critical orbits in a holomorphic family ft induce bifurcations. Indeed, a holo-
morphic family ft with holomorphically-parametrized critical points ci (t) (for t in a disk
D � C) is structurally stable on its Julia set if and only if each of the critical orbits de-
termines a normal family of holomorphic functions ft 7! f n

t (c(t))gn�0 from D to P 1

Mañé, Sad, and Sullivan [1983], Lyubich [1983]. For nontrivial algebraic families as in
Conjecture 1.1, McMullen proved that the family is stable on all of X if and only if all of
the critical points are persistently preperiodic McMullen [1987]; in other words, the fam-
ily will be postcritically finite for all t 2 X . Thurston’s Rigidity Theorem states that the
only nontrivial families of postcritically finite maps are the flexible Lattès maps, meaning
that they are quotients of holomorphic maps on a family of elliptic curves Douady and
Hubbard [1993]; thus, we obtain a complete characterization of stable algebraic families.
From this perspective, then, Conjecture 1.1 is an attempt to characterize a slight weakening
of stability, where the number of independent critical orbits is allowed to be equal to the
dimension of the parameter space. One then expects interesting geometric consequences:



CRITICAL ORBITS AND ARITHMETIC EQUIDISTRIBUTION 1887

for example, the postcritically finite maps should be uniformly distributed with respect to
the bifurcation measure (defined in DeMarco [2001] when dimX = 1 and Bassanelli and
Berteloot [2007] in general) on any such parameter space X .

But Conjecture 1.1 was in fact motivated more from the perspective of arithmetic ge-
ometry and the principle of unlikely intersections, as exposited in Zannier [2012]. The
moduli space Md of rational maps on P 1 of degree d > 1 is naturally an affine scheme
defined over Q Silverman [1998]. From Thurston’s Rigidity Theorem, we may deduce
that the postcritically finite maps lie in Md (Q), except for the 1-parameter families of
flexible Lattès examples. Furthermore, the postcritically finite maps form

(a) a Zariski dense subset of Md DeMarco [2016b, Theorem A], and

(b) a set of bounded Weil height in Md (Q), after excluding the flexible Lattès families
Benedetto, Ingram, Jones, and Levy [2014, Theorem 1.1].

It is then natural to ask which algebraic subvarieties V of Md also contain a Zariski-dense
subset of postcritically finite maps. The general form of the conjecture states that this is a
very special property of the variety V : it should hold if and only if V is itself defined by
critical orbit relations.

This type of question is reminiscent of some famous questions and conjectures in al-
gebraic and arithmetic geometry. To name a few, we may consider the Manin-Mumford
Conjecture about abelian varieties (now theorems of Raynaud [1983a,b]) or the multiplica-
tive version due to Lang [1960] – where a subvariety contains “too many” torsion points
if and only if it is itself a subgroup (or closely related to one) – and the André–Oort con-
jecture which is a moduli-space analogue Klingler and Yafaev [2014], Pila [2011], and
Tsimerman [2018]. In fact, our conjecture has been called the “Dynamical André–Oort
Conjecture” in the literature; however, unlike for the “Dynamical Manin–Mumford Con-
jecture” of Zhang (S.-W. Zhang [2006] and Ghioca, Tucker, and S. Zhang [2011]), there
is no overlap between the original conjecture and its dynamical analogue, at least not in
the setting presented here for critical orbits and the moduli space Md . On the other hand,
there are generalizations of each – of our critical orbit conjecture and of these geometric
conjectures – which do have overlap, and some of this is discussed in Section 5. Here I
state a sample result, from my recent joint work with N. M. Mavraki, extending the work
of Masser and Zannier [2010, 2014] and closely related to that of Ullmo [1998] and S.-W.
Zhang [1998a].

Theorem 1.3. DeMarco and Mavraki [2017] Let B be a quasiprojective algebraic curve
defined over Q. Suppose A ! B is a family of abelian varieties defined over Q which is
isogenous to a fibered product ofm � 2 elliptic surfaces overB . LetL be a line bundle on
Awhich restricts to an ample and symmetric line bundle on each fiberAt , and let ĥt be the
induced Néron-Tate canonical height on At , for each t 2 B(Q). Finally, let P : B ! A
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be a section defined over Q. Then there exists an infinite sequence of points tn 2 B for
which

ĥtn(Ptn) ! 0

if and only if P is special.

Of course, I have not given any of the definitions of the words in this statement, so
it is perhaps meaningless at first glance. My goal is merely to illustrate the breadth of
concepts that connect back to the dynamical statement of Conjecture 1.1 and the existing
proofs of various special cases. To make the analogy explicit: fixing a section P in A =

E1 �B � � � �B Em would correspond, in a dynamical setting, to marking m critical points
of a family of rational functions; the parameters t 2 B(Q) where ĥt (Pt ) = 0 correspond
to the postcritically finite maps in the family; and the “specialness” of P corresponds to
the family ft having at most one independent critical orbit. In Theorem 1.3, however, the
novelty is the treatment of parameters t with small (positive) height and not only height 0.

Outline. I begin by defining critical orbit relations in Section 2. Section 3 contains the
sketch of a proof of a theorem from Baker and DeMarco [2011] that inspired our formu-
lation of Conjecture 1.1 and many of the proofs that appeared afterwards, especially the
cases of treated in Baker and DeMarco [2013]. Section 4 brings us up to date with what is
now known about Conjecture 1.1. Finally, in Section 5, I discuss a generalization of the
conjecture which motivated Theorem 1.3 and related results.

Acknowledgments. Special thanks go to Matt Baker, Myrto Mavraki, Xiaoguang Wang,
and Hexi Ye for many interesting discussions and collaborations which led to the formu-
lation of Conjecture 1.1 and the work that I have done related to it. I would also like
to thank Khashayar Filom, Thomas Gauthier, Holly Krieger, and Nicole Looper for their
assistance in the preparation of these lecture notes.

2 Critical orbit relations

In this section we formalize the notion of dependent critical orbits to make Conjecture 1.1
precise.

Let ft be a nontrivial algebraic family of rational maps of degree d > 1, parameterized
by t in a quasiprojective, complex algebraic curveX . By passing to a branched cover ofX ,
we may assume that each of the critical points of ft can be holomorphically parameterized
by ci : X ! P 1, i = 1; : : : ; 2d � 2. A critical point ci is persistently preperiodic if it
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satisfies a relation of the form f n
t (ci (t)) = f m

t (ci (t)), with n 6= m, for all t . A pair of
non-persistently-preperiodic critical points (ci ; cj ) is said to be coincident if we have

(2-1) ci (t) is preperiodic for ft () cj (t) is preperiodic for ft

for all but finitely many t 2 X ; see DeMarco [2016a, Section 6]. If the relation (2-1)
holds for every pair of non-persistently-preperiodic critical points, then the bifurcation
locus of the family ft – in the sense ofMañé, Sad, and Sullivan [1983], Lyubich [1983] – is
determined by the orbit of a single critical point. That is, choosing any i 2 f1; : : : ; 2d �2g

for which ci is not persistently preperiodic, the sequence of holomorphic maps

ft 7! f n
t (ci (t)) : n � 1g

forms a normal family on an open set U � X if and only if the family fft g is J -stable on
U . (See McMullen [1994, Chapter 4], Dujardin and Favre [2008a, Lemma 2.3].)

Definition 2.1 (One independent critical orbit: weak notion). We say that an algebraic
family ft has at most one independent critical orbit if every pair of non-persistently-
preperiodic critical points is coincident.

The relation (2-1) is implied by a more traditional notion of critical orbit relation,
namely that there exist integers n; m � 0, so that

(2-2) f n
t (ci (t)) = f m

t (cj (t))

for all t . Because of the possibility of symmetries of ft , we cannot expect (2-1) to be
equivalent to (2-2). Examples are given in Baker and DeMarco [2013]. In that article, we
formulated a more general notion of orbit relation that accounts for these symmetries and
still implies coincidence. To define this, we let X be a smooth compactification of X , and
consider the family ft as one rational map defined over the function field k = C(X); it
acts on P 1

k̄
. A pair a; b 2 P 1(k) is dynamically related if the point (a; b) 2 P 1

k̄
� P 1

k̄
lies

on an algebraic curve

(2-3) V � P 1
k̄

� P 1
k̄

which is forward invariant for the product map

(f; f ) : (P 1
k̄
)2 ! (P 1

k̄
)2:

For example, if the point a is persistently preperiodic, then it is dynamically related to any
other point b, taking V = f(x; y) : f n(x) = f m(x)g to depend only on one coordinate.
The relation (2-2) implies that (ci ; cj ) are dynamically related, taking V = f(x; y) :

f n(x) = f m(y)g. But also, if f commutes with a rational function A of degree � 1,
then points a and b = A(a) are dynamically related by the invariant curve V = f(x; y) :

y = A(x)g.
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Definition 2.2 (One independent critical orbit: strong notion). We say that an algebraic
family ft has at most one independent critical orbit if every pair of critical points is dy-
namically related.

I expect the two notions of “one independent critical orbit” to be equivalent DeMarco
[2016a, Conjecture 6.1], but we can easily show:

Lemma 2.3. The strong notion implies the weak notion.

Proof. Let ft be a nontrivial algebraic family of rational maps, for t 2 X , and assume
that it has at most one independent critical orbit, in the strong sense. Let Ft = (ft ; ft ) on
P 1

C � P 1
C for all t 2 X . Assume that neither ci nor cj is persistently preperiodic. Then

there exists an algebraic curve V � P 1
k̄

� P 1
k̄
(defined over k = C(X), or perhaps a finite

extension) so that the specializations satisfy

F n
t (ci (t); cj (t)) 2 Vt

for all n and all but finitely many t . Note that Vt cannot contain the vertical component
fci (t)g � P 1 for infinitely many t : indeed, the bi-degree of the specialization Vt within
P 1

C � P 1
C is equal to the bi-degree (k; `) of V in P 1

k̄
� P 1

k̄
for all but finitely many t , the

curve Vt is invariant under (ft ; ft ) so a vertical component through ci (t) implies a vertical
component through f n

t (ci (t)) for all n, and there are only finitely many t where the orbit
of ci has length � `. Thus, for all but finitely many t , if ci (t) is preperiodic, then the
orbit of cj (t) is confined to lie in a finite subset, and so cj (t) will also be preperiodic. By
symmetry, the same holds when cj (t) is preperiodic, and the proof is complete.

One might ask why we only consider dynamical relations between pairs of critical
points and not arbitrary tuples of critical points (as was first formulated in Baker and De-
Marco [2013] and DeMarco [2016a]). In fact, the model-theoretic approach of Medvedev
[2007] and Medvedev and Scanlon [2014] implies that it is sufficient to consider only the
relations between two points.

Theorem 2.4. Medvedev [2007, Theorem 10], Medvedev and Scanlon [2014, Fact 2.25]
Suppose that f is a rational map of degree > 1, defined over a field k of characteristic
0, and assume that it is not conjugate to a monomial map, ˙ a Chebyshev polynomial, or
a Lattès map. Let

V � P 1
k̄

� � � � � P 1
k̄

be forward-invariant by the action of (f; : : : ; f ). Then each component of V is a compo-
nent of the intersection \

1�i�j �n

��1
i;j �i;j (V );

where �i;j is the projection to the product of the i -th and j -th factors in (P 1
k̄
)n.
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In the setting of non-trivial algebraic families ft , as in Conjecture 1.1, the monomials
and Chebyshev polynomials do not arise because they would be trivial, and the flexible
Lattès maps have all their critical points persistently preperiodic. Thus, we may apply
Theorem 2.4 and restrict our attention to dynamical relations among critical points that
depend only on two of the critical points at a time.

Even having narrowed our concept of dynamical relation to (2-3), depending on only
two points, we still do not have an explicit description of all possible relations. The arti-
cle Medvedev and Scanlon [ibid.] provides a careful and complete treatment of the case
of polynomials f , building on the work of Ritt [1922]. Their classification of invariant
curves for polynomial maps of the form (f; f ) appears as a key step in the proof of the
main theorem of my work with Baker and DeMarco [2013], where we prove special cases
of Conjecture 1.1.

The classifcation of invariant curves in P 1 � P 1 for a product of rational maps is still
an open problem. Works by Pakovich and Zieve (see, e.g., Pakovich [2016] and Zieve
[2007]) take steps towards such a classification. I posed the following question in De-
Marco [2016b, Conjecture 4.8], as this represents the form of all relations I know (includ-
ing for pairs of points that are not necessarily critical):

Question 2.5. Let ft be a non-trivial algebraic family of rational maps of degree >

1, parameterized by t 2 X , and suppose that a; b 2 P 1(k) are two non-persistently-
preperiodic points, for k = C(X). If a and b are dynamically related in the sense of
(2-3), then do there exist rational functions A; B of degrees � 1 defined over k̄ and an
integer ` � 1 so that

f `
ı A = A ı f `; f `

ı B = B ı f `; and A(a) = B(b)?

Note that A and B might themselves be iterates of f . It is known that if two rational
maps of degree > 1 commute, and if they aren’t monomial, Chebyshev, or Lattès, then
they must share an iterate Ritt [1923].

3 Proof strategy: heights and equidistribution

In this section, I present the sketch of a proof of a closely related result from Baker and
DeMarco [2011], one which initially inspired the formulation of Conjecture 1.1 and its
generalizations. The ideas in the proof given here have gone into the proofs of all of the
successive results related to Conjecture 1.1, though of course distinct technical issues and
complications arise in each new setting.

Before getting started, I need to introduce one important tool, the canonical height of a
rational function Call and Silverman [1993]. If f : P 1 ! P 1 is a rational map of degree
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d > 1, defined over a number field, then its canonical height function

ĥf : P 1(Q) ! R�0

is defined by
ĥf (˛) = lim

n!1

1

d n
h(f n(˛))

where h is the usual logarithmicWeil height onP 1(Q). It is characterized by the following
two important properties: (1) there exists a constant C = C (f ) so that jh � ĥf j < C and
(2) ĥf (f (˛)) = d ĥf (˛) for all ˛ 2 P 1(Q). As a consequence, we have ĥf (˛) = 0 if
and only if ˛ has finite forward orbit for f Call and Silverman [1993, Corollary 1.1.1].

Theorem 3.1. Baker and DeMarco [2011] Fix points a1; a2 2 C. Let ft (z) = z2 + t be
the family of quadratic polynomials, for t 2 C, and define

S(ai ) := ft 2 C : ai is preperiodic for ft g:

Then the intersection S(a1) \ S(a2) is infinite if and only if a1 = ˙a2.

Sketch of Proof. Step 1 is to treat the easy implication: assume that a1 = ˙a2 and deduce
that S(a1)\S(a2) is an infinite set. This uses a standard argument from complex dynam-
ics. For any given point a, we first observe that the family of functions ft 7! f n

t (a)g

cannot be normal on all of C. Indeed, for all t large, we find that f n
t (a) ! 1 as n ! 1,

while for t = a � a2, the point a is fixed by ft . In fact, via Montel’s Theorem on nor-
mal families, there must be infinitely many values of t for which a is preperiodic, and
therefore S(a) is infinite. If a1 = ˙a2, then ft (a1) = ft (a2) for all t , and therefore
S(a1) = S(a2).

The goal of Step 2 is to show that S(a1) \ S(a2) being infinite implies that a1 and a2

are coincident: we will see that S(a1) = S(a2). First assume that a1 and a2 are algebraic
numbers, and suppose K is a number field containing both a1 and a2. We define a height
function on P 1(K) associated to each ai . Indeed, for each t 2 K, we set

hi (t) := ĥft
(ai )

where ĥft
is the canonical height function of ft . In particular, we see that

hi (t) = 0 () t 2 S(ai ):

It turns out that hi is the height associated to a continuous adelic metric of non-negative
curvature on the line bundle O(1) on P 1 (in the sense of S. Zhang [1995]) and an adelic
measure (in the sense of Baker and Rumely [2006] and Favre and Rivera-Letelier [2006]).
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Therefore, wemay apply the equidistribution theorems of Baker andRumely [2010], Favre
and Rivera-Letelier [2006], and Chambert-Loir [2006] to see that the elements of S(ai )

are uniformly distributed with respect to a natural measure �i on P 1(C). More precisely,
given any sequence of finite subsets Sn � S(ai )which are Gal(K/K)-invariant and with
jSnj ! 1, the discrete probablity measures

�Sn
=

1

jSnj

X
s2Sn

ıs

on P 1(C) will converge weakly to �i . In particular, when S(a1) \ S(a2) is infinite, this
set – because it is Gal(K/K) invariant – will be uniformly distributed with respect to both
�1 and �2, allowing us to deduce that �1 = �2. Even more, by the nondegeneracy of
a pairing between heights of this form, we can also conclude that h1 = h2. Therefore
S(a1) = S(a2).

Step 2 will be complete if we can also treat the case where at least one of the ai is
not algebraic. In this setting, the smallest field K containing the ai and Q will have a
nonzero transcendence degree over Q, so we treat K as a function field. The arithmetic
equidistribution theorems (Baker and Rumely [2010], Favre and Rivera-Letelier [2006],
and Chambert-Loir [2006]) work just as well in this setting. However, the equidistribution
in question – of Galois-invariant subsets of S(ai ) becoming uniformly distributed with
respect to a natural measure �i – is no longer taking place on the Riemann sphere P 1(C).
Instead, we obtain a geometric convergence statement on a family of Berkovich projective
lines P1

v , one for each place v of the function field K. Nevertheless, one concludes from
equidistribution that if S(a1) \ S(a2) is infinite, then the heights h1 and h2 on P 1(K)

must coincide, and therefore

a1(t) is preperiodic for ft () a2(t) is preperiodic for ft

for all t 2 K. But if there is some element t of C where a1(t) is preperiodic, then that t

can be identified with an element of K, so in fact

a1(t) is preperiodic for ft () a2(t) is preperiodic for ft

for all t 2 C.
Step 3 is to show that coincidence implies an explicit relation between the two points a1

and a2. When a1 and a2 are both algebraic, a closer look at the definitions of the heights
hi reveals that the measure �i on P 1(C) is the equilibrium measure on the boundary of a
“Mandelbrot-like” set associated to the point ai . That is, we consider the sets

Mi = ft 2 C : sup
n

jf n
t (ai )j < 1g;
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and�i is the harmonic measure for the domain ĈnMi centered at1. (Note that if ai = 0,
thenMi is the usualMandelbrot setM , and�i is the bifurcationmeasure for the family ft .)
But even for non-algebraic points ai , having concluded from Step 2 that S(a1) = S(a2),
we see that M1 = M2; this is because the set Mi is obtained from the closure S(ai ) by
filling in the bounded complementary components. Now, just as in the original proof that
the Mandelbrot set M is connected, which uses a dynamical construction of the Riemann
map to Ĉ n M , we investigate the uniformizing map near 1 for the sets M1 = M2. The
injectivity of that map – built out of the Böttcher coordinates near 1 for the maps ft with
t large – allows us to deduce that ft (a1) = ft (a2) for all t large. Therefore, we have
a1 = ˙a2.

It is worth observing at this point, as was observed in Baker and DeMarco [2011],
that the proof of Theorem 3.1 gives a stronger statement. The arithmetic equidistribution
theorems allow us to treat intersections of points of small height and not only those of
height 0 (for the heights hi introduced in the proof). For example, the proof provides:

Theorem 3.2. Baker and DeMarco [ibid.] Fix points a1; a2 2 Q. Let ft (z) = z2 + t be
the family of quadratic polynomials, for t 2 C, and define

S(ai ) := ft 2 C : ai is preperiodic for ft g:

Then S(ai ) � Q, and the following are equivalent:

1. there exists an infinite sequence tn 2 Q for which h1(tn) ! 0 and h2(tn) ! 0;

2. the intersection S(a1) \ S(a2) is infinite;

3. S(a1) = S(a2);

4. �1 = �2; and

5. a1 = ˙a2.

The original motivation for statements like Theorem 3.2, and specifically the inclusion
of condition (1), includes the Bogomolov Conjecture, proved by Ullmo and Zhang Ullmo
[1998] and S.-W. Zhang [1998a], building on the equidistribution theorem of Szpiro, Ullmo,
and S. Zhang [1997]. I will return to this theme in Section 5.
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4 What is known

Agood deal of work has gone into proving Conjecture 1.1 and its generalizations in various
settings. Here, I mention some of the key recent developments. Most progress has been
made in the context of polynomial dynamics. One important advantage of working with
polynomials is that the conjecture itself is easier to state in a more precise form: the critical
orbit relations, in the sense of (2-3), have been classified, as discussed in Section 2. But
also, we have the advantage of extra tools: the uniformizing Böttcher coordinates of a
complex polynomial near 1 have proved immensely useful (as in Step 3 of the proof of
Theorem 3.1), and the height functions (as defined in Step 2 of Theorem 3.1) are easier
to work with. For example, the main theorem of Favre and Gauthier [2017] addresses an
important property of the dynamically-defined local height functions, used in their proof of
Conjecture 1.1 for families of polynomials; the analogous result fails for general families
of rational maps DeMarco and Okuyama [2017].

Conjecture 1.1 is trivially satisfied for polynomials in degree 2, where the moduli space
has dimension 1 and can be parameterized by the family ft (z) = z2 + t with t 2 C with
exactly one independent critical point at z = 0. There are infinitely many postcritically fi-
nite polynomials in this family. Furthermore, it is known that the postcritically finite maps
are uniformly distributed with respect to the bifurcation measure in this family (which is
equal to the equilibrium measure �M on the boundary of Mandelbrot set) Levin [1989].
In addition, Baker and Hsia proved an arithmetic version of the equidistribution theorem,
deducing that any sequence of Gal(Q/Q)-invariant subsets of the postcritically finite pa-
rameters is also uniformly distributed with respect to �M Baker and Hsia [2005].

In Baker andDeMarco [2013], we proved Conjecture 1.1 for families ft of polynomials
of arbitrary degree, parametrized by t 2 C with coefficients that were polynomial in t . In
degree 3, but for arbitrary algebraic families, the following result was obtained a few years
ago, independently by Favre-Gauthier and Ghioca-Ye.

Theorem 4.1. Favre and Gauthier [2016] and Ghioca and Ye [2016] Let X be an irre-
ducible complex algebraic curve in the space P3 ' C2 of polynomials of the form

fa;b(z) = z3
� 3a2z + b;

with critical points at ˙a. There are infinitely many t 2 X for which ft is postcritically
finite if and only if one of the following holds:

1. either a or �a is persistently preperiodic on X ;

2. there is a symmetry of the form

ft (�z) = �ft (z)

for all t 2 X and all z 2 C, and X = f(a; b) 2 C2 : b = 0g; or
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3. there exist non-negative integers n and m so that

f n
t (a(t)) = f m

t (�a(t))

for all t 2 X .

Furthermore, in each of these cases, the postcritically finite maps will be (arithmetically)
equidistributed with respect to the bifurcation measure on X .

Remark 4.2. Favre and Gauthier have recently announced a proof of Conjecture 1.1 for
families ft of polynomials in arbitrary degree, extending Theorem 4.1.

The proof of Theorem 4.1 has the same outline as the proof of Theorem 3.1. The idea is
to consider the two points at and�at for t 2 X and follow the same three steps. Step 1, the
“easy” implication, follows as before, with the additional input that any non-persistently-
preperiodic critical point along the curve X must be undergoing bifurcations Dujardin and
Favre [2008a, Theorem 2.5].

For Step 2, we assume that neither critical point is persistently preperiodic and that
there are infinitely many postcritically finite maps on X , and we aim to show coincidence
of the two points. There is one simplifying condition in the setting of Theorem 4.1: the
postcritically finite maps are algebraic points in P3, so X must itself be defined over Q.
Thus we can avoid the arguments needed for the transcendental case of Theorem 3.1. Nev-
ertheless, there are new difficulties that arise; for example, it is not obvious that the height
functions

h˙a(t) := ĥft
(˙at )

defined on X(Q) will satisfy the hypotheses of the existing arithmetic equidistribution
theorems. This is checked with some careful estimates near the cusps of X . Then one
can apply the equidistribution theorems of Yuan [2008], Thuillier [2005], and Chambert-
Loir [2006] and conclude that ha = h�a on X . In particular, we then have that a(t) is
preperiodic if and only if �a(t) is preperiodic, for all t 2 X .

Finally, one needs to deduce the explicit algebraic relations on the critical points, as in
Step 3 of Theorem 3.1. One strategy is provided in my work with Baker and DeMarco
[2013], to first produce an analytic relation between the critical points a and �a via the
Böttcher coordinates at infinity (similar to what was done for Theorem 3.1 but in a more
general setting). From there, we used iteration to promote the analytic relation to an alge-
braic relation which is invariant under the dynamics. This strategy is followed in Ghioca
and Ye [2016]; an alternative approach is given in Favre and Gauthier [2016]. To ob-
tain the explicit form of the relation, Baker and I used results of Medvedev and Scanlon
[2014], classifying the invariant curves for (f; f ) acting on P 1 � P 1 (over the function
fieldC(X)). The results of Favre-Gauthier and Ghioca-Ye for cubic polynomials simplify
the relations further to give the possibilities appearing in Theorem 4.1.
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One can also formulate a version of Conjecture 1.1 for tuples of polynomials or rational
maps, rather than a single family of rational maps. The following result answered a ques-
tion posed by Patrick Ingram, inspired by the result of André about complex-multiplication
pairs in the moduli space M1 � M1 ' C2 of pairs of elliptic curves André [1998].

Theorem 4.3. Ghioca, Krieger, Nguyen, and Ye [2017] Let X be an irreducible complex
algebraic curve in the space P2 � P2 ' C2 of pairs of quadratic polynomials of the form
ft (z) = z2 + t . If X contains infinitely many pairs (t1; t2) for which both ft1 and ft2 are
postcritically finite, then X is

1. a vertical line ft1g � C where ft1 is postcritically finite;

2. a horizontal line C � ft2g where ft2 is postcritically finite; or

3. the diagonal f(t; t) : c 2 Cg.

By contrast, in the case of pairs of elliptic curves, there is an infinite collection of modu-
lar curves inM1�M1, all of which contain infinitely many CM pairs. Thus, Theorem 4.3
tells us that there is no analogue of these modular curves in the quadratic family. To see
this, the authors prove an important rigidity property of the Mandelbrot set M : it is not
invariant under nontrivial algebraic correspondences. This rigidity was recently extended
to a local, analytic rigidity statement in Luo [2017]: Luo proved that any conformal iso-
morphism between domains U; V � C intersecting the boundary @M , sending U \ @M

to V \ @M , must be the identity.
For non-polynomial rational maps, Conjecture 1.1 is only known for some particular

families. For example, in the moduli space of quadratic rational maps M2 ' C2, for each
� 2 C, one may consider the dynamically-defined subvariety

Per1(�) = ff in M2 with a fixed point of multiplier �g;

where the multiplier of a fixed point is simply the derivative of f at that point Milnor
[1993]. (Similarly, one can define the algebraic curves Pern(�) for maps with a cycle of
period n and multiplier �, but one should take care in the definition when � = 1.) Observe
that the curve Per1(0) is defined by a critical orbit relation, the existence of a fixed critical
point. Thus, the curve Per1(0) coincides with the family of polynomials within M2; in
particular, it contains infinitely many postcritically finite maps.

Theorem 4.4. DeMarco, Wang, and Ye [2015] Fix � 2 C. The curve Per1(�) in the
moduli space of quadratic rational maps contains infinitely many postcritically finite maps
if and only if � = 0.

Remark 4.5. The analogous result for Per1(�) in the space of cubic polynomials was
obtained in Baker and DeMarco [2013]. The theorem is proved for curves Pern(�), for
every n, in the space of cubic polynomials in Favre and Gauthier [2016].
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All of these theorems are closely related to questions about the geometry of the bifur-
cation locus the family ft of rational maps, as seen in Step 3 in the proof of Theorem 3.1,
or the statement about the rigidity of the Mandelbrot set used to prove Theorem 4.3. In
the case of Per1(�), we should first pass to a double cover cPer1(�) where the two critical
points can be holomorphically and independently parameterized by c1 and c2. The bifur-
cation measure��

i of the critical point ci reflects the failure of the family ft 7! f n
t (ci (t))g

to be normal on cPer1(�). Let S(ci ) denote the set of parameters t where the critical point
ci is preperiodic. It is known that S(ci ) is uniformly distributed with respect to this mea-
sure ��

i for all � 2 C Dujardin and Favre [2008a,b]. The proof of Theorem 4.4 uses the
following two strengthenings of this equidistribution statement:

Theorem 4.6. DeMarco, Wang, and Ye [2015] For each � 2 C n f0g, we have ��
1 6= ��

2

on cPer1(�).
Theorem 4.7. DeMarco, Wang, and Ye [2015] and Mavraki and Ye [2015] For each
� 2 Q n f0g, we have arithmetic equidistribution of S(c1) and S(c2). That is, for any
infinite sequence tn in S(ci ), the discrete measures

1

jGal(Q(�)/Q(�)) � tnj

X
t2Gal(Q(�)/Q(�))�tn

ıt

converge weakly to the bifurcation measure ��
i on cPer1(�).

Remark 4.8. The height functions hi (t) := ĥft
(ci (t)) on cPer1(�) provided the first

examples of this type that are not adelic – in the sense of S. Zhang [1995], Baker and
Rumely [2010], and Favre and Rivera-Letelier [2006] – and therefore did not satisfy the
hypotheses of the existing equidistribution theorems. The article Mavraki and Ye [2015]
extends the equidistribution theorems of Baker and Rumely [2010], Favre and Rivera-
Letelier [2006], and Chambert-Loir [2006] for heights on P 1(Q) to the setting of quasi-
adelic heights.

Remark 4.9. Despite Theorem 4.6, it is not yet known if supp��
1 6= supp��

2 for all
� 2 C; see DeMarco, Wang, and Ye [2015, Question 2.4]. One can ask, much more
generally, about the bifurcation loci associated to independent critical points in algebraic
families ft in every degree and if they can ever coincide; see DeMarco [2016b, Question
2.5].

An assortment of results is known for other families of rational functions. For example,
in Ghioca, Hsia, and Tucker [2015], the authors treat maps of the form

ft (z) = g(z) + t



CRITICAL ORBITS AND ARITHMETIC EQUIDISTRIBUTION 1899

for t 2 C, where g 2 Q(z) is a rational function of degree> 2with a superattracting fixed
point at 1. They show the weaker form of the conjecture, deducing coincidence of the
critical orbits if there are infinitely many postcritically finite maps; this follows from an
equidistribution result associated to the dynamically-defined height functions on P 1(Q)

(similar to Step 2 in the proofs of Theorems 3.1 and 4.1).
Almost nothing is known about Conjecture 1.1 in the context of higher-dimensional

parameter spaces X , apart from the “easy” implication of the conjecture, as in Step 1 of
Theorem 3.1; see DeMarco [2016a]. A general form of the arithmetic equidistribution
theorem exists for higher-dimensional arithmetic varieties Yuan [2008], but the challenge
lies in understanding when a dynamically-defined height will satisfy the stated hypotheses;
see, e.g., Favre and Gauthier [2015] and Remark 4.8 above.

5 Arbitrary points

In this final section, I present some results about a generalization of Conjecture 1.1 that
connects with interesting results and questions about elliptic curves (or more general fam-
ilies of abelian varieties). As in Theorem 3.1, one can study the orbits of arbitrary points,
not only the critical orbits. This may seem less motivated in the context of studying com-
plex dynamical systems, as the critical points are the ones that induce bifurcations (in the
traditional dynamical sense), but the problem is quite natural from another point of view.

As an example, the following result was proved by Masser and Zannier, motivated by
a conjecture of Pink [2005]:

Theorem 5.1. Masser and Zannier [2010, 2012] Let Et be a non-isotrivial family of
elliptic curves over a quasiprojective curve B , so defining an elliptic curve E over the
function field k = C(B). Suppose that P and Q are non-torsion elements of E(k). There
are infinitely many t 2 B(C) for which Pt and Qt are both torsion on Et if and only if
there exist nonzero integers n and m so that nP + mQ = 0 on E.

Because the multiplication-by-m maps on an elliptic curve descend to rational maps on
P 1, and because the torsion points on the elliptic curve project to the preperiodic points
on P 1, Theorem 5.1 has a direct translation into a dynamical statement:

Theorem 5.2. Let ft be a family of flexible Lattès maps on P 1 parameterized by t 2 B ,
induced from an endomorphism of a non-isotrivial elliptic curve E over k = C(B). Fix
non-persistently-preperiodic points P; Q 2 P 1(k). Then there are infinitely many t 2 B

for which both Pt and Qt are preperiodic for ft if and only if there exist Lattès maps gt

and ht (also induced by endomorphisms of E) for which

gt (Pt ) = ht (Qt )
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for all t .

In fact, it was Theorem 5.1 that inspired Theorem 3.1 in the first place: Baker and I
were answering a question posed by Umberto Zannier. And compare the conclusion of
Theorem 5.2 to that of Question 2.5: note that the Lattès maps gt and ht will commute
with ft . Conjecture 1.1 is just a special case of conjectures presented in Ghioca, Hsia, and
Tucker [2015] or DeMarco [2016a], addressing algebraic families ft and arbitrary (non-
critical) pairs of marked points, and for which Theorems 5.1 and 5.2 are also a special
case:

Conjecture 5.3. Let ft : P 1 ! P 1 be a nontrivial algebraic family of rational maps
of degree d > 1, parametrized by t in a quasiprojective, complex algebraic curve X .
Suppose that a; b : X ! P 1 are meromorphic functions on a compactification X . There
are infinitely many t 2 X for which both a(t) and b(t) are preperiodic for ft if and only
if a and b are dynamically related.

When E is the Legendre family of elliptic curves, and the pointsP and Q lie in P 1(C),
X. Wang, H. Ye, and I gave a dynamical proof of Theorem 5.2, building on the same
ideas that went into the proof of Theorem 3.1. As in Theorem 3.2, we obtain the stronger
statement about parameters of small height, which does not follow from the proofs given
in Masser and Zannier [2010, 2012]. For algebraic points, our theorem can be stated as:

Theorem 5.4. DeMarco, Wang, and Ye [2016] Let Et = f(x; y) : y2 = x(x �1)(x � t)g

be the Legendre family of elliptic curves, with t 2 C n f0; 1g. Fix a; b 2 Q n f0; 1g. The
following are equivalent:

1. jTor(a) \ Tor(b)j = 1;

2. Tor(a) = Tor(b);

3. there is an infinite sequence ftng � Q so that ĥa(tn) ! 0 and ĥb(tn) ! 0;

4. �a = �b on P 1(C); and

5. a = b.

Here, Tor(a) = ft 2 C : (a;
p

a(a � 1)(a � t)) is torsion on Et g. The height ĥa(t) is
theNéron-Tate canonical height of the point (a;

p
a(a � 1)(a � t)) inEt for t 2 Qnf0; 1g,

so that ĥa(t) = 0 if and only if t 2 Tor(a). As in the theorems of the previous section,
the geometry of the “bifurcation locus” associated to the marked points a and b plays a
key role; the Gal(Q(a)/Q(a))-invariant subsets of Tor(a) are uniformly distributed with
respect to a natural measure �a. As in the dynamical examples, Theorems 3.2 or 4.1,
the measures �a at the archimedean places (the limiting distributions on the underlying
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complex curve) are sufficient to characterize the existence of a dynamical relation. It is
not known if this will be the case for all families of rational maps in Conjecture 5.3.

And this returns us, finally, to the statement of Theorem 1.3 from the Introduction.
That result proves a special case of a conjecture of S.-W. Zhang [1998b] from his ICM
lecture notes from exactly 20 years ago, which was posed as an extension of the Bogo-
molov Conjecture to non-trivial families of abelian varieties. The notion of a “special”
section is carefully defined in citeDM:variation, building on the work of Masser and Zan-
nier [2012, 2014]. Our proof was inspired by the combination of ideas presented here,
connecting dynamical orbit relations and equidistribution theorems with the geometry of
abelian varieties. These ideas are, in turn, closely related to the original proofs of Ullmo
and Zhang of the Bogomolov Conjecture Ullmo [1998] and S.-W. Zhang [1998a], relying
on the (arithmetic) equidistribution of the torsion points within an abelian variety defined
over Q Szpiro, Ullmo, and S. Zhang [1997]. We have not yet been able to give a purely
dynamical proof of Theorem 1.3, in the flavor of Theorems 3.1 and 5.4. Instead, we used
the work of Silverman [1992, 1994a,b] to provide the technical statements needed to show
that our height functions onB(Q) satisfy all the hypotheses needed to apply the arithmetic
equidistribution theorems of Thuillier and Yuan Thuillier [2005] and Yuan [2008]. Via the
equidistribution theorem, we were able to reduce the statement of Theorem 1.3 to a more
general form of Theorem 5.1 proved by Masser and Zannier [2014].
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NONHYPERBOLIC ERGODIC MEASURES
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Abstract

We discuss some methods for constructing nonhyperbolic ergodic measures and
their applications in the setting of nonhyperbolic skew-products, homoclinic classes,
and robustly transitive diffeomorphisms.

to Wellington de Melo in memoriam

1 The transitive and nonhyperbolic setting

Irrational rotations of the circle T 1 and Anosov maps of the two-torus T 2 are emblematic
examples of transitive systems (existence of a dense orbit). Small perturbations of Anosov
systems are also transitive. This property fails however for irrational rotations. Anosov
diffeomorphisms are also paradigmatic examples of hyperbolic maps and, by definition,
hyperbolicity persists by small perturbations. Our focus are systems which are robustly
transitive. In dimension three or higher, there are important examples of those systems
that fail to be hyperbolic. They are one of the main foci of this paper. A second focus is on
nonhyperbolic elementary pieces of dynamics. We discuss how their lack of hyperbolicity
is reflected at the ergodic level by the existence of nonhyperbolic ergodic measures. We
also study how this influences the structure of the space of measures. In this discussion,
we see how this sort of dynamics gives rise to robust cycles and blenders.
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Rams, A. Tahzibi, C. Vásques, and J. Yang for their useful comments and conversations.
MSC2010: primary 37D25; secondary 37D30, 28D20, 28D99.
Keywords: blender domination entropy, ergodic measure, heterodimensional cycle, homoclinic class,
hyperbolicity, Lyapunov exponents, partial hyperbolicity, transitivity.
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1.1 Paradigmatic examples. Let us start with an important class of examples, which
are also the simplest ones, called skew-products. Consider the space ΣN = f0; : : : ; N �

1gZ,N � 2, of bi-infinite sequences � = (�i )i2Z endowedwith the usual metric d (�; �)
def
=

2�n(�;�), wheren(�; �)
def
= inffj`j : �i ¤ �i for i = �`; : : : ; `g, and the shift map � : ΣN !

ΣN , �(�i )
def
= (� 0

i ), � 0
i

def
= �i+1. This map is transitive and has a dense subset of pe-

riodic points. Consider now a compact manifold K and a family of diffeomorphisms
f� : K ! K, � 2 ΣN , depending “nicely” on �. Associated to these maps we consider
the skew-product

(1-1) F : ΣN � K ! ΣN � K; F (�; x)
def
= (�(�); f�(x)):

The maps f� are called fiber maps. The simplest case occurs when f� = f�0 and then
the system is called a (one-)step skew-product. There is a differentiable version of this
model. Take (for instance) an Anosov diffeomorphism A : T 2 ! T 2 and fiber maps
fX : K ! K, X 2 T 2, depending “nicely” on X , and define

(1-2) Φ: T 2
� K ! T 2

� K; Φ(X; x)
def
= (A(X); fX (x)):

In many cases, these systems are an important source of nonhyperbolic and transitive
dynamics. It may happen that these systems fail to be transitive, for instance, when f� is
the identity for all �. However, their appropriate perturbations are robustly transitive and
nonhyperbolic examples, see Bonatti and Díaz [1996].

To continue with our discussion, we will introduce notions related to hyperbolicity
and ergodicity. In what follows, M denotes a closed compact Riemannian manifold and
Diff1(M ) the space of C 1-diffeomorphisms of M equipped with the C 1-uniform metric.
Given f 2 Diff1(M ), a closed set Λ is invariant if f (Λ) = Λ. A property is called
generic if there is a residual subset of diffeomorphisms satisfying it. The phrase “for
generic diffeomorphisms it holds” means “there is a residual subset of diffeomorphisms
such that...”.

1.2 Weak forms of hyperbolicity. Let f 2 Diff1(M ) and Λ be an f -invariant set. A
Df -invariant splitting over Λ, TΛM = E ˚ F , is dominated if there are constants C > 0

and � < 1 with1

jjDf �n
jFf n(x)

jj jjDf n
jEx

jj < C �n; for all x 2 Λ and n 2 N,

where jj � jj stands for the norm. The dimension of E is called the index of the splitting. A
special type of dominated splitting is the hyperbolic one, when E is uniformly contracting

1The order of the bundles is relevant: the first one is the “most contracting” one.
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(jjDf njEx
jj < C �n) and F is uniformly expanding (jjDf �njFf n(x)

jj < C �n). In such
a case, we write E = Es and F = Eu and call these bundles stable and unstable ones,
respectively.

A Df -invariant splitting TΛM = E1 ˚ � � � ˚ Er with several bundles is dominated if
for all j 2 f1; : : : ; r � 1g the splitting TM = E

j
1 ˚ Er

j+1 is dominated, where E
j
i

def
=

Ei ˚ � � � ˚ Ej , i � j . When studying dominated splittings it is important to consider
those with undecomposable bundles (i.e., the bundles cannot be decomposed further in
a dominated way). Such a splitting is uniquely defined and called the finest dominated
splitting of Λ, for details see Bonatti, Díaz, and Pujals [2003].

The set Λ is hyperbolic if there is a dominated splitting TΛM = Es ˚ Eu (one of these
bundles may be trivial). The index of a transitive hyperbolic set Λ is the dimension of its
stable bundle, denoted by ind(Λ). The set Λ is partially hyperbolic if there is a dominated
splitting TΛM = Es ˚ E ˚ Eu (at most one of the bundles Es; Eu may be trivial). For
instance, if in (1-2) the rates of expansion and contraction of the maps fX are “appropriate”
then T 2 � K is a partially hyperbolic set of Φ with a partially hyperbolic splitting with
three nontrivial directions whose intermediate direction E has dimension dim(K).

1.3 Oseledecs’ theorem and nonhyperbolicity. Ameasure� is f -invariant if�(A) =

�(f �1(A)) for every Borel set A. We denote byM(f ) the set of f -invariant probability
measures and equip it with the weak� topology. A measure � 2 M(f ) is ergodic if for
every set B with B = f �1(B) it holds �(B) 2 f0; 1g. We denote byMerg(f ) the subset
ofM(f ) of ergodic measures.

Given � 2 Merg(f ), by the Oseledecs Theorem (Oseledec [1968]) there are numbers
k = k(�) 2 f1; : : : ; dim(M )g and �1(�) < �2(�) < � � � < �k(�), called the Lyapunov
exponents of �, and a Df -invariant splitting F1 ˚ F2 ˚ � � � ˚ Fk , called the Oseledets
splitting of �, such that for �-almost every point x 2 M it holds

lim
n!˙1

1

n
log kDf n

x (v)k = �i (�); for every i 2 f1; : : : ; kg and v 2 Fi n f0̄g:

The dimension of Fj is the multiplicity of the exponent �j (�). The number of negative
exponents, counted with multiplicity, is the index of �, denoted ind(�). The measure � is
hyperbolic if �j (�) ¤ 0 for every j 2 f1; : : : ; kg. Otherwise, � is called nonhyperbolic.
If �j (�)(�) = 0 then the dimension of Fj (�) is the number of zero exponents of �. Let
js be the largest i with �i (�) < 0 and ju the smallest i with �i (�) > 0. Note that either
ju = js + 1 (if the measure is hyperbolic) or ju = js + 2 (otherwise). In this latter case,
we let jc = js + 1. We let Ecs def

= F1 ˚ � � � ˚ Fjs , Ec def
= Fjc , and Ecu def

= Fju ˚ � � � ˚ Fk .
In general, Ecs is not uniformly contracting and Ecu is not uniformly expanding.

Consider now � ergodic and the finest dominated splitting Tsupp(�)M = E1˚� � �˚Ek

over supp(�). By definition of domination, vectors in different bundles Ei have different
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exponents. Thus, every bundle Fj of the Oseledets splitting is contained in some Eij .
The latter inclusion may be proper and then the Oseledets splitting is not dominated. We
will see in Section 2.4 that the domination of the splitting and its type have dynamical
consequences.

1.4 Nonhyperbolic settings. The nonwandering set Ω(f ) of f is the set of points x

such that for every neighborhood U of x there is some n > 0 with f n(U )\ U ¤ ¿. The
setΩ(f ) is closed and f -invariant. WhenΩ(f ) is hyperbolic we say that f is hyperbolic.
A hyperbolic set is nontrivial if it contains some non-periodic orbit.

In the late 60s, Abraham and Smale exhibited open sets of diffeomorphisms consisting
of nonhyperbolic ones, thus proving the non-density of hyperbolic systems, Abraham and
Smale [1970]. Recall that the Kupka-Smale genericity theorem claims that periodic points
of generic diffeomorphisms are hyperbolic and their invariant manifolds meet transversely.
Note that the stable and unstable sets of nontrivial hyperbolic sets, in general, are not
manifolds and hence we cannot speak of general position of these sets. The construction in
Abraham and Smale [ibid.] shows an open set of diffeomorphisms such that the hyperbolic
structures of two hyperbolic sets do not fit together nicely: invariant stable and unstable
sets of (nontrivial) hyperbolic sets may not intersect “coherently”. These non-coherent
intersections are the germ of the notion of a robust heterodimensional cycle to be discussed
in Section 2.2.

1.5 Robustly nonhyperbolic transitive diffeomorphisms. The construction in Abra-
ham and Smale [ibid.] was followed by a series of examples of transitive diffeomorphisms
which fail to be hyperbolic, see Shub [1971] and Mañé [1978] which fit into the class of
systems nowadays called robustly nonhyperbolic transitive diffeomorphisms.

We say that f 2 Diff1(M ) is C 1-robustly transitive if it has a C 1-neighborhood N(f )

such that every g 2 N(f ) is transitive. We denote by RTN(M ) � Diff1(M ) the (open)
set of robustly transitive and nonhyperbolic diffeomorphisms. A typical feature of these
systems is the coexistence of saddles of different indices (dimension of the stable direc-
tion). These systems always exhibit a dominated splitting, Mañé [1982], Díaz, Pujals, and
Ures [1999], and Bonatti, Díaz, and Pujals [2003], but they may fail to be partially hyper-
bolic, Bonatti and Viana [2000]. These findings showed the necessity of weaker notions
of hyperbolicity such as partial hyperbolicity and dominated splitting, among others.

1.6 Hyperbolic flavors in nonhyperbolic dynamics. Although the examples described
above are nonhyperbolic they do exhibit some “hyperbolic features”. To start this discus-
sion, recall that the set of f invariant probability measures M(f ) is a Choquet simplex
whose extremal elements are the ergodic measures. Density of ergodic measures inM(f )
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implies that either M(f ) is a singleton or a nontrivial simplex whose extreme points are
dense (the Poulsen simplex). Sigmund addressed the natural questions of the density of the
ergodic measures in M(f ) and the properties of generic invariant measures. Assuming
that f is Axiom A (i.e., Ω(f ) is hyperbolic and the periodic points are dense in Ω(f )) he
proved that the periodic measures (and thus the ergodic ones) are dense inM(f ), Sigmund
[1970]. Here a measure is periodic if it is the invariant probability measure supported on a
periodic orbit. Moreover, the sets of ergodic measures and of measures with entropy zero
are both residual in M(f ). For an updated discussion and more references, see Gelfert
and Kwietniak [n.d.].

It is now pertinent to recall the foundational talk by Mañé about ergodic properties
of C 1-generic diffeomorphisms at the International Congress of Mathematicians of 1983,
Mañé [1984]. Mañé proved that ergodic measures of C 1-generic diffeomorphisms are
approached in the weak� topology by periodic (and hence hyperbolic) measures, Mañé
[1982]. Mañé’s view of generic measures of C 1-diffeomorphisms was completed and
substantially expanded in Abdenur, Bonatti, and Crovisier [2011] (see Abdenur, Bonatti,
and Crovisier [ibid., Theorem 3.8]). In this context, another important result is Abdenur,
Bonatti, and Crovisier [ibid., Theorem 3.5]: for every isolated transitive invariant set Λ
of a C 1-generic diffeomorphism every generic measure supported in Λ is ergodic, hyper-
bolic, and its support is Λ. These results support the principle that, in the ergodic level,
under a C 1-perspective hyperbolicity is somewhat widespread also in nonhyperbolic set-
tings. However, it may be not necessarily ubiquitous if the viewpoint is changed. For
instance, in the conservative setting nonhyperbolic dynamics can be robust (elliptic be-
havior in KAM theory) or locally generic (dichotomies all Lyapunov exponents are zero
versus hyperbolicity, Bochi [2002] and Bochi and Viana [2002]). This discussion leads
the following question

To what extent is the behavior of a generic dynamical system hyperbolic?

posed in Gorodetskiĭ, Ilyashenko, Kleptsyn, and Nalskiĭ [2005] and reformulated with
different flavors in the literature (see, for example, the program in Palis [2008] and the
conjectures in Pesin [2007]). In Gorodetskiĭ, Ilyashenko, Kleptsyn, and Nalskiĭ [2005]
there is taken an ergodic point of view and “hyperbolicity” means that all ergodic mea-
sures are hyperbolic. The results in Gorodetskiĭ, Ilyashenko, Kleptsyn, and Nalskiĭ [ibid.]
(see Section 3.1) inaugurated a fertile line of research about the construction of nonhyper-
bolic ergodicmeasures. Note that, by theKupka-Smale genericity theorem, nonhyperbolic
ergodic measures of generic diffeomorphisms have uncountable support. Also note that
the hyperbolicity of Ω(f ) implies the hyperbolicity of the ergodic measures. However,
the converse is false in general as there are examples of nonhyperbolic diffeomorphisms
whose all ergodic measures are hyperbolic. Nevertheless, all these examples are very
specific and easily breakable. Thus, one hopes that the “big majority” of nonhyperbolic
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systems must exhibit nonhyperbolic ergodic measures which “truly” detect the nonhyper-
bolic behavior: capturing the whole dynamics (large support), the entropy of the system
(large or positive entropy), and the number of nonhyperbolic directions (number of zero
exponents). We will discuss these points in the next sections.

The generic measures investigated in Abdenur, Bonatti, and Crovisier [2011] were not
studied in terms of their entropy2. There are several settings of nonhyperbolic chaotic sys-
tems which show “hyperbolic-like features from the entropy point of view”. To justify this
assertion, let us consider three-dimensional robustly nonhyperbolic transitive diffeomor-
phisms (see Section 1.5) with a partially hyperbolic splitting with one-dimensional central
direction. There are three types of such diffeomorphisms: (compact case) having a global
foliation consisting of circles tangent to the center direction (as the ones in Shub [1971],
corresponding to systems as in (1-2)), (mixed case) having at least one invariant (or pe-
riodic) circle tangent to the center direction, Bonatti and Díaz [1996], and (non-compact
case) without any invariant circle (certain derived from Anosov (DA) diffeomorphisms
in Mañé [1978]). By Cowieson and Young [2005], these diffeomorphisms always have
(ergodic) measures of maximal entropy (equal to the topological one).

We just discuss the “compact case”. For skew-products as in (1-2) where K = T 1,
the entropy of the diffeomorphism is equal to the entropy of the base map and there is
a C 1-open and dense subset of such systems having finitely many (ergodic) measures of
maximal entropy, all hyperbolic, F. Rodriguez Hertz, M. A. Rodriguez Hertz, Tahzibi, and
Ures [2012]. In some robustly transitive cases, there are exactly two such measures, Ures,
Viana, and J. Yang [n.d.]. The spirit of these results is summarized in the following rigidity
result in Tahzibi and J. Yang [n.d.] for partially hyperbolic diffeomorphisms with a central
foliation by circles: if there are high-entropy invariant measures with central Lyapunov
exponent arbitrarily close to zero then the dynamics is conjugate to an isometric extension
of an Anosov homeomorphism. This result, based on the invariance principle in Avila and
Viana [2010], holds for C 2-diffeomorphisms and involves some natural conditions such
as dynamical coherence, transitive Anosov diffeomorphism in the base, and existence of
global holonomies. See Díaz, Gelfert, and Rams [2017a] for results in the same spirit, just
assuming C 1-regularity, in the skew-product setting,

To conclude, we see how hyperbolic features can also be found in the topology of
Merg(f ). For instance, under certain conditions (isolation and homoclinic relations, see
Section 2.3) there are certain elementary components of the space of invariant measures
with the same index which are Poulsen simplices and in which ergodic measures are
entropy-dense (i.e., anymeasure can be approximated also in entropy by ergodic ones), see

2Quoting Mañé, Mañé [1984], “the generic elements of Merg(f ) fail to reflect the dynamic complexity
of f ”. More precisely, generic measures of C 1-generic diffeomorphisms supported on a transitive isolated set
have zero entropy, see Gelfert and Kwietniak [n.d., Theorem 8.1] and also Abdenur, Bonatti, and Crovisier [2011,
Theorem 3.1].
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Gorodetski and Pesin [2017]. Such elementary components are also studied in Bochi, Bon-
atti, and Gelfert [n.d.]. For an example where such components can be easier described,
assume that there is a partially hyperbolic splitting Es ˚ Ec ˚ Eu, where dim(Ec) = 1

(as in (1-1) when K = T 1). Then the index of any � 2 Merg(f ) is either dim(Es) or
dim(Es) + 1 and the exponent �E c(�) is the only exponent of � that can be zero. Thus,
the spaceMerg(f ), splits as

Merg(f ) = Mc
erg;<0(f ) [̇Mc

erg;0(f ) [̇Mc
erg;>0(f );

corresponding to the ergodic measures whose exponent �E c(�) is negative, zero, and posi-
tive, respectively. Under additional “transitive-like” hypotheses, the componentsMc

erg;<0(f )

andMc
erg;>0(f ) both have the above mentioned properties and, moreover, any element in

Mc
erg;0(f ) is approximated weak� and in entropy by measures in either of the other two,

see Díaz, Gelfert, and Rams [2017b]. Investigations in this direction can be also found in
Bonatti and Zhang [n.d.(b)].

2 Robustly nonhyperbolic dynamics

In this section, we review the main ingredients and tools that appear in our nonhyperbolic
setting. One general underlying theme is how, in our setting, nonhyperbolic dynamics
forces the existence of robust cycles. To establish this, the main object is the blender.
Recall first that, given f 2 Diff1(M ) and a hyperbolic set Λf of f , there is a C 1-
neighborhood N(f ) � Diff1(M ) such that every g 2 N(f ) has a hyperbolic set Λg

(called the continuation of Λf ) such that gjΛg
is is conjugate to f jΛf

and such that the
map g 7! Λg is continuous (this map is also uniquely defined). A special case occurs
when the set is a periodic orbit.

2.1 Blenders. In very rough terms, a blender is a “semi-local plug” providing a hyper-
bolic set whose stable set “behaves” as a manifold of dimension greater than its index.
Blenders were introduced in Bonatti and Díaz [1996], formalizing the arguments in Díaz
[1995], to construct new types of robustly transitive diffeomorphisms. Blenders were
also used in several contexts, for example generation of robust heterodimensional cycles
and tangencies, stable ergodicity, construction of nonhyperbolic measures, among others.
Each of these cases involves a specific type of blender. Here we follow the definition of
a geometrical blender introduced in Bochi, Bonatti, and Díaz [2016].

We need some preliminary ingredients. The set Di (M ) of i -dimensional (closed)
discs C 1-embedded in M is endowed with a natural distance, Bochi, Bonatti, and Díaz
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[ibid., Section 3.1]. Given a family of disks D in Di (M ) we denote by V�(D) its �-
neighborhood. The (non-empty) family D is strictly f -invariant if for every D 2 D

there is � > 0 such that the image f (D) of any disk D 2 V�(D) contains a disk of D.
We consider a transitive set Γ that is locally maximal in an open neighborhood V of it

and is simultaneously hyperbolic and also partially hyperbolic,

Γ =
\
n2Z

f n(V ); TΓM = Es
˚ Ewu

˚ Euu; Eu = Ewu
˚ Euu;

where each of the bundles Es; Ewu; Euu is nontrivial. The set Γ is a dynamical cu-blender
if there are a strictly f -invariant family of discs D � Di (M ), i = dim(Euu), � > 0, and
a strong unstable cone field Cuu around Euu such that every disc in V�(D) is contained in
V and tangent to Cuu.

An important property of blenders is that they are C 1-robust: If Γf is a dynamical
blender of f then for every g C 1-close to f the continuation Γg is also a blender. An im-
portant consequence of the definition of a blender is that its local stable manifoldW s

loc(Γf )

(i.e., the set of points whose forward orbits are contained in V ) intersects every disk of the
family D, see Bochi, Bonatti, and Díaz [2016, Section 3.4]. This property corresponds to
the assertion above “a blender is a hyperbolic set whose local stable manifold behaves as
a manifold of dimension dim(Es) + 1”.

2.2 Heterodimensional cycles. A pair of saddles of different indices, pf and qf , of
a diffeomorphism f are related by a heterodimensional cycle if their invariant manifolds
intersect cyclically. Suppose that ind(pf ) > ind(qf ). Then, due to dimension deficiency,
the intersection W u(pf ; f ) \ W s(qf ; f ) cannot be transverse, while, due to dimension
sufficiency (the sum of the dimensions of these manifolds is bigger than dim(M )), the
intersection W s(pf ; f ) \ W u(qf ; f ) can be transverse (indeed, this is what happens
“typically”). A (heterodimensional) cycle associated with transitive hyperbolic sets of
different indices is defined similarly, just replacing the saddles by the corresponding tran-
sitive hyperbolic sets. By the Kupka-Smale genericity theorem, cycles associated with
saddles cannot be robust, in our nonhyperbolic context they are ubiquitous and play a
fundamental role (see comments below). In the spirit of Abraham and Smale [1970], we
aim to get “robust cycles” and for that we need to consider cycles associated to nontriv-
ial hyperbolic sets. Two transitive hyperbolic sets of different indices of f , Λf and Γf ,
have a C 1-robust cycle if there is a neighborhood N(f ) � Diff1(M ) such that for every
g 2 N(f ) the invariant sets Λg and Γg intersect cyclically.

In the case when the saddles pf and qf satisfy ind(pf ) = ind(qf ) + 1, there are
g C 1-arbitrarily close to f having a pair of transitive hyperbolic sets Λg and Γg with a
robust cycle, see Bonatti and Díaz [2008]. However, these sets may be not related to the
saddles in the initial cycle. If some of these saddles have a nontrivial homoclinic class
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then one can take these sets such that Λg 3 pg and Γg 3 qg and say that the cycle is
C 1-stabilized, see Bonatti, Díaz, and Kiriki [2012, Theorem 1].

Let us explain the mechanism for robust cycles when dim(M ) = 3, ind(pf ) = 2,
and ind(qf ) = 1. The unfolding of the cycle generates a blender Γg and the saddle pg

is “related” to Γg . This relation has two parts: first, W s(pg ; g) intersects transversely
W u(Γg ; g) (this is possible by dimension sufficiency), second W u(pg ; g) contains a disk
of the family D and hence it intersects W s

loc(Γg ; g).

2.3 Homoclinic relations and classes. A pair of hyperbolic periodic saddles pf and
qf of a diffeomorphism f are homoclinically related if the invariant manifolds of the
orbits O(pf ) and O(qf ) intersect transversely in a cyclic way. In particular, two saddles
that are homoclinically related have the same index and their continuations (in a small
neighborhood) are also homoclinically related.

The homoclinic class of a saddle pf of f , denoted by H (pf ; f ), is the closure of the
transverse intersections of the stable and unstable manifolds of O(pf ). The hyperbolic
periodic points of f form a dense subset of H (pf ; f ). A homoclinic class is also a
transitive set. A homoclinic class H (pf ; f ) may contain saddles of indices different
from the one of pf (thus these saddles cannot be homoclinically related to pf ) and hence
may fail to be hyperbolic. In many relevant cases (as in the Axiom A case) the homoclinic
classes are the “elementary pieces of dynamics”, see Bonatti [2011, Sections 3 and 5] for
an in-depth discussion.

Let us recall some properties of homoclinic classes. The map pf 7! H (pf ; f ) is up-
per semi-continuous and hence this map is generically continuous. Also, C 1-generically,
two homoclinic classes are either disjoint or equal, Carballo, Morales, and Pacifico [2003].
To recall an even stronger version of this result, consider saddles pf and qf of f , then
there is a C 1-neighborhood N(f ) of f such that either it holds H (pg ; g) = H (qg ; g)

for every for C 1-generic g 2 N(f ) or H (pg ; g) \ H (qg ; g) = ¿ for every C 1-generic
g 2 N(f ), see for instance Abdenur, Bonatti, Crovisier, Díaz, and Wen [2007, Lemma
2.1]. In the first case, we say that pf and qf are C 1-persistently in the same homoclinic
class.

Consider an open set N � Diff1(M ) so that there is a saddle pf such that H (pf ; f )

contains a saddle qf with ind(pf ) = ind(qf ) ˙ 1 for every f 2 N. The connecting
lemma,Hayashi [1997], provides a dense subset D ofN such that pf and qf are involved
in a cycle for every f 2 D. SinceH (pf ; f ) is nontrivial, the stabilization of cycles above
gives an open and dense subsetO ofN such that every f 2 O has a robust cycle associated
to hyperbolic sets containing pf and qf .
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2.4 Weak forms of hyperbolicity and homoclinic classes. The existence of a domi-
nated splitting and its type provide important dynamical information. For instance, for
homoclinic classes of C 1-generic diffeomorphisms there is the dichotomy “existence of a
dominated splitting versus accumulation of the class by sinks or sources”, Bonatti, Díaz,
and Pujals [2003]. We highlight two results in this spirit.

The Oseledets splitting of an ergodic measure � may be non-dominated, but if it is
dominated then it has an extension to the whole support of �. Recall that any hyperbolic
measures whose Oseledets splitting is dominated is supported on the homoclinic class of
a point of ind(�) (this is a version of the Anosov closing lemma, see Crovisier [2011,
Proposition 1.4] based on Abdenur, Bonatti, and Crovisier [2011, Lemma 8.1]).

Proposition 2.1 (Cheng, Crovisier, Gan, Wang, and D. Yang [n.d., Proposition 1.4]).
There are the following possibilities for a nonhyperbolic homoclinic class H (pf ; f ) of a
C 1-generic diffeomorphism:
(i) Index-variability: H (pf ; f ) contains saddles with different indices.
(ii) All periodic points of H (pf ; f ) have the same index k. There are two cases:

(a) There is a dominated splitting TH(pf ;f )M = E ˚ F of index k. Moreover,
either E = Es is uniformly contracting or E has a dominated splitting E = Es ˚ Ec

where Es is uniformly contracting and Ec is one-dimensional.
(b) There is no dominated splitting of TH(pf ;f )M of index k.

Let us observe that all known examples ofC 1-generic nonhyperbolic homoclinic classes
fall into item i). In case ii.b) there are different sub-cases according to the different types
of dominated splittings, for details see Cheng, Crovisier, Gan, Wang, and D. Yang [ibid.,
Proposition 1.4].

3 Tools to build nonhyperbolicity

In this section, we present two methods for constructing nonhyperbolic ergodic measures
with uncountable support. In the first one, the measure is obtained as a limit of periodic
measures. The second one provides a set of positive entropy supporting only nonhyper-
bolic measures. We also discuss “mixed” methods.

3.1 GIKNmethod. We present the GIKN-method introduced in Gorodetskiĭ, Ilyashen-
ko, Kleptsyn, and Nalskiĭ [2005] guaranteeing the ergodicity (and non-triviality) of accu-
mulation points of a sequence of periodic measures.

Given a periodic point p of period �(p) of f , consider the periodic measure �O(p)

supported on the orbit O(p) of p. Consider a sequence of periodic points (pn)n of f

with increasing periods �(pn) and the measures �n = �O(pn). Assume that in this pro-
cess for every n there is a “large proportion” of points of O(pn+1) which are close to the
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previous orbit O(pn) (“shadowing part”). A careful selection of these proportion times
assures the convergence of �n, but without extra assumptions, there is a risk of obtain-
ing a periodic measure as a limit. Thus, in the construction, it is also assumed that at
each step there is also proportion of the orbit O(pn+1) that is far from the previous one
(“tail part”). A careful choice of the proportion of the “shadowing” and “tail” parts forces
that the limit measure is non-periodic. This involves some quantitative estimates. Given

; � > 0, we say that the periodic orbit O(p) is a (
; �)-good approximation of O(q) is
there are a subset Γ � O(p) and a (surjective) projection % : Γ ! O(q) such that: (i)
dist(f i (x); f i (%(x)) < 
 for every x 2 Γ and every 0 � i � �(q), (ii) #(Γ) � � � �(p),
and (iii) #(%�1(x)) is independent of x 2 O(q). Here #(A) denotes the cardinality of A.
The next result corresponds to Bonatti, Díaz, and Gorodetski [2010, Lemmas 2.3 and 2.5],
which reformulate Gorodetskiĭ, Ilyashenko, Kleptsyn, and Nalskiĭ [2005, Lemma 2 and
Section 8].

Lemma 3.1 (Nontrivial ergodic limit of periodic measures). Consider a sequence of peri-
odic orbits (pn)n of f with increasing periods. Suppose that there are sequences of strictly
positive numbers (
n)n and (�n)n such that for each n the orbit O(pn+1) is (
n; �n)-good
approximation of O(pn), where

1X
n=1


n < 1 and
1Y

n=1

�n > 0:

Then �O(pn) ! � in the weak� topology, where � is ergodic, non-periodic, and

supp(�) =
1\

k=1

0@ 1[
`=k

O(p`)

1A :

Assume now that there is a one-dimensional, Df -invariant, and continuous direction
field E defined on the whole space such that j�E (�n+1)j < ˛j�E (�n)j, for some ˛ 2

(0; 1). Then the limit measure satisfies �E (�) = 0 and thus is nonhyperbolic, see Bon-
atti, Díaz, and Gorodetski [2010, Proposition 2.7]. Note that if the periodic orbits are
constructed scattered throughout the whole manifold then the limit measure has full sup-
port. Note that the constructed measures have a somewhat repetitive pattern, as a result
the limit measure has zero entropy, see Kwietniak and Ła̧cka [n.d.] where this type of limit
measures are studied and general results are obtained.

3.2 The flip-flopmethod. Given a compact subsetK ofM and continuousmap' : K !

R we consider its Birkhoff averages defined by

'n(x)
def
=

1

n

n�1X
i=0

'(f i (x)); n 2 N; and '1(x)
def
= lim

n!1
'n(x);
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f

F + F �

D+

D�

D

f (D)

A) Flip-flop family

' > 0' < 0

pf

f `

f `

Λf

Df
F�

B) Flip-flop configuration

Figure 1: Flip-flops

provided this limit exists. In our setting, ' = log jjDf jE jj, where E is a continuous Df -
invariant line-field defined on K. Hence, '1(x) = 0 corresponds to �E (x) = 0. We
strive for a criterion implying that '1 is zero uniformly on some compact set of positive
entropy. For that we consider controlled averages and flip-flop families.

Let ˇ > 0, t 2 N, and T 2 N [ f1g. A point x 2 K is (ˇ; t; T )-controlled ifST
i=1 f i (x) � K and if there is a subset C � N of control times such that

� 0 2 C, T 2 C if T < 1, and C is infinite if T = 1, and
� given k < ` two consecutive times in C, then ` � k � t and j'`�k(f

k(x))j � ˇ: The
point x is controlled at all scales if there are sequences (ti ) of natural numbers and (ˇi ) of
positive numbers, with ti % 1 and ˇi & 0, such that x is (ˇi ; ti ; T )-controlled for every
i . The following holds, Bochi, Bonatti, and Díaz [2016, Lemma 2.2]: Assume that x 2 K

is controlled at all scales and denote by !(x) the !-limit set of x. Then '1(y) = 0 for
every y 2 !(x) and this limit is uniform on !(x).

We now introduce themain ingredient to get “controlled” orbits. A familyF = F+[̇F�

of compact subsets of K is called flip-flop if it satisfies the following properties (see Fig-
ure 1 A)):

� Let F + def
=

S
D2F+ D and F � def

=
S

D2F� D. There is ˛ > 0 such that

'(x�) < �˛ < 0 < ˛ < '(x+); for every x+ 2 F + and x� 2 F �.

� For every D 2 F there are compact sets D+, D� � D such that f (D+) 2 F+ and
f (D�) 2 F�. Moreover, there is a constant � > 1 such that

d (f (x); f (y)) � � d (x; y) for every x, y 2 D˙.

The following result relates flip-flop families to zero Birkhoff averages: Given any
D in a flip-flop family, there is x 2 D that is controlled at all scales and such that the
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restriction of f to !(x) has positive topological entropy, Bochi, Bonatti, and Díaz [ibid.,
Theorem 2.1]. By the variational principle for entropy, the set !(x) supports an ergodic
measure of positive entropy. Let us explain some ingredients of this result.

An F-segment of length T is a sequence D = fDi g
T
i=0 such that f (Di ) = Di+1, each

Di is contained in an element of F, and DT 2 F. Given ˇ > 0 and t � T , we say that D
is (ˇ; t)-controlled if there exists a set of control times C � f0; : : : ; T g containing 0 and
T such that j'`�k(f

k(x))j � ˇ for every x 2 D0 and every pair k < ` of consecutive
control times in C.

We now relate flip-flop families, Birkhoff averages, and entropy. First, we encode
orbits using their “itineraries”. Let � 2 N. Given x in F + [ F �, s = (sn) 2 f+; �gN ,
and T 2 N [ f1g, the point x follows the � -pattern s up to time T if f n+1(x) 2 F sn

for every 0 � n < T with n = 0 (mod �). Fix D 2 F, Bochi, Bonatti, and Díaz [ibid.,
Lemma 2.12], gives a sequence of F-segments (D+

k
), D+

k
= fDk

i g
T

+

k

i=0, such that Dk
0 � D

and every point inDk
0 is (ˇi ; ti ; T +

k
)-controlled for every i with 1 � i � k, where ˇi ! 0

and ti ! 1. For each k pick xk inDk
0 and let x1 2 D be any accumulation point of (xk).

By Bochi, Bonatti, and Díaz [ibid., Section 2.5.1], the point x1 is (ˇi ; ti ; 1)-controlled
for every i .

Fix any s 2 f+; �gN with dense � -orbit. For each k we select anF-segmentD+
k
whose

� -pattern is s, consider xk 2 Dk
0 , and a limit point x = x1. As!(x) �

T
i�0 f �� i (F +[

F �), we can define the projection � : !(x) ! f�;+gN , �(y) = s(y), where s(y) is the
itinerary of y (i.e., f � i (y) 2 F si (y)). The map � is continuous and satisfies � ı f � =

� ı � . Using that s has a dense orbit one gets that � is onto. Hence, the restriction of f �

to !(x) is semi-conjugate to the one-sided full-shift on 2 symbols and thus has positive
entropy.

Finally, we observe that Bonatti, Díaz, and Bochi [n.d.] introduces a criterion relaxing
the control at all scales-one, inspired by the GIKN-method and called control at any scale
with a long sparse tail. It guarantees that any weak� limit measure � of a sequence of
measures of the form �n(x0)

def
= 1

n

Pn�1
i=0 ıf i (x0)

, where ız is the Dirac measure at z, is
such that �-almost every point y has a dense orbit in the ambient space and '1(y) = 0.
Again, the “role of the tail” is to spread the support of the measure. The construction
implies that almost every ergodic measure � of the ergodic decomposition of � satisfiesR

' d� = 0, see Bonatti, Díaz, and Bochi [ibid., Theorem 1].

4 Building nonhyperbolic measures and sets

We discuss some applications of the tools provided in Section 3.
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4.1 Applications of the GIKN-method. We will see that there exist large (locally
residual) sets in the space of C 1-diffeomorphisms of any compact manifold of dimension
greater than 2 such that any diffeomorphisms in it has a nonhyperbolic ergodic measure
(with zero entropy) that is the limit of periodic ones. In some cases, these measures have a
zero exponent with multiplicity greater than 1. We start by discussing skew-products and
see how the ingredients there pass on to the differentiable setting.

4.1.1 Step skew-products. Consider a skew-product as in (1-1) with N = 2, F : Σ2 �

T 1 ! Σ2 � T 1, whose fiber maps are of the form f� = f�0 . The iterated function system
associated to f0 and f1, IFS(f0; f1), is the set of maps g of the form g = f�k�1

ı � � � ı f�0

for some (�0; : : : ; �k�1) 2 f0; 1gk and some k � 0. The (forward) orbit of a point x 2 T 1

for IFS(f0; f1) is O+(x)
def
= fg(x); g 2 IFS(f0; f1)g.

Theorem 4.1 (Gorodetskiĭ, Ilyashenko, Kleptsyn, and Nalskiĭ [2005, Theorem 2]). Let
F : Σ2 � T 1 ! Σ2 � T 1 be a step skew-product with fiber maps f0 and f1. Suppose that
the following hypotheses hold:
(i) (minimality) for every x 2 T 1 the orbit O+(x) is dense in T 1,
(ii) (expansion) for every x 2 T 1 there is g 2 IFS(f0; f1) with jg0(x)j > 1,
(iii) (attracting fixed point) there are g 2 IFS(f0; f1) and p 2 T 1 with g(p) = p and

jg0(p)j < 1.
Then F has a nonhyperbolic ergodic measure with full support.

Note that conditions (ii) and (iii) are open conditions and hence persistent by small
perturbations. Although condition (i) is, a priori, non-open, in Gorodetskiĭ, Ilyashen-
ko, Kleptsyn, and Nalskiĭ [ibid.] the authors provide an open set of pairs satisfying the
conditions in the theorem.

To prove this theorem it is constructed a sequence of periodic orbits O(pn) satisfying
Lemma 3.1 and whose fiber Lyapunov exponents goes to zero. Hence the limit measure �,
�O(pn) ! �, is ergodic and �c(�) = limn �c(�O(pn)) = 0 (as the Lyapunov exponents
are given by integrals �c(�O(pn)) =

R
log jf 0

�i
j d�O(pn)).

The systems in Theorem 4.1 admit smooth realizations and thus provide diffeomor-
phisms with nonhyperbolic measures with uncountable support. In Kleptsyn and Nalskiĭ
[2007] the methods above are used to get an open set of such systems.

To get some extra dynamical information behind the hypotheses of Theorem 4.1, let us
replace condition (iii) by the slightly more restrictive condition (iii’) f0 is Morse-Smale
with exactly two fixed points (say s attracting and n repelling). Byminimality, the unstable
set of the fixed point S = (0Z; s) of F accumulates to the stable set of N = (0Z; n).
We also have that the stable set of S = (0Z; s) meets the unstable set of N = (0Z; n).
Thinking of S and N as “hyperbolic saddles” of different indices, we have that S and N
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are involved in an “heterodimensional quasi-cycle”. This is the key observation to adapt
the constructions in Gorodetskiĭ, Ilyashenko, Kleptsyn, and Nalskiĭ [2005] to the setting
of homoclinic classes, see Section 4.1.3.

4.1.2 Multiple zero exponents in step skew-products. Theorem 4.1 was generalized
in Bochi, Bonatti, and Díaz [2014] replacing the circle fiber by any compact manifold M ,
obtaining skew-products with nonhyperbolic ergodic measures with full support in the
ambient space and whose fiber Lyapunov exponents are all equal to zero. The number of
considered fiber maps is large to guarantee a condition called maneuverability (assuming
N � 2 large). The property of full support is obtained by spreading the sequence of pe-
riodic points in the ambient space and using Lemma 3.1. Obtaining Lyapunov exponents
which are all equal to zero is much more delicate. First, in higher dimensions, fiber expo-
nents are not given by integrals (as in the one-dimensional case). Thus, the simultaneous
convergence of all Lyapunov exponents along the orbits to zero does not imply the same
property for the limit measure. A second problem is the loss of commutativity of products
of matrices in higher dimensions.

These difficulties are bypassed in Bochi, Bonatti, and Díaz [ibid.] considering the in-
duced skew-product on the flag bundle ofM , FM , defined as the set of the form (x; F1; : : : ; Fdim(M )),
where x 2 M , Fi is a subspace of TxM of dimension i , and F1 � � � � � Fdim(M ). To
each f 2 Diffr(M ), r � 2, there is associated the flag C r�1-diffeomorphism

Ff : (x; F1; : : : ; Fdim(M )) 7!
�
f (x); Df (x)(F1); : : : ; Df (x)(Fdim(M ))

�
and to the skew-product F with the fiber maps f0; : : : ; fN �1 the skew-product
FF : ΣN � FM ! : ΣN � FM with the fiber maps Ff0

; : : : ; FfN �1
. The maneuverability

condition implies the minimality of the flag iterated function system.
The natural projection from FM to M defines a fiber bundle. The projection of an FF -

invariant and ergodic probability measure � on ΣN � FM is an F -invariant and ergodic
measure�. The fibered Lyapunov exponents of � are given by linear functions of integrals
of continuousmaps (determinants). Hence these exponents vary continuously with respect
to �. Moreover, the exponents of � and � are related: all the Lyapunov exponents of � are
zero if and only if all the Lyapunov exponents of � are zero. This allows to recover the
continuity of the exponents, thus proving that all exponents of � are zero.

4.1.3 Nonhyperbolic ergodic measures in homoclinic classes. We now consider non-
hyperbolic homoclinic classes of C 1-generic diffeomorphisms and see that they support
ergodic nonhyperbolic measures. Some of the ingredients of Section 4.1.1 will reappear:
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Theorem 4.2 (Cheng, Crovisier, Gan, Wang, and D. Yang [n.d., Main Theorem]). There
is a residual subset R of Diff1(M ) such that every nonhyperbolic homoclinic class of
f 2 R supports ergodic nonhyperbolic measures.

To see how the above result arises let us start by considering the simplest case where
the class H (pf ; f ) contains a saddle qf with ind(pf ) ¤ ind(qf ), a property which is
called index-variability (of the class). In view of Section 2.3, we can assume that there are
an open set U and a residual subset R � Diff1(M ) such that H (pf ; f ) = H (qf ; f ) for
all f 2 U \ R. To H (pf ; f ) we associate its set ind(H (pf ; f )) of indices (i.e., k 2 N
such that here is a saddle qf 2 H (pf ; f ) with ind(qf ) = k). By Abdenur, Bonatti,
Crovisier, Díaz, and Wen [2007], this set is an interval in N. Thus, we can assume that
pf and qf have consecutive indices, say s + 1 and s, respectively. Since the homoclinic
class H (pf ; f ) is nontrivial one can replace these points by points homoclinically related
to them such that the eigenvalues of Df �(pf )(pf ) and Df �(qf )(qf ) are all real and all
have multiplicity one, see Abdenur, Bonatti, Crovisier, Díaz, and Wen [ibid., Proposition
2.3]. Thus, we will assume that pf and qf satisfy such properties.

We now review the arguments in Díaz and Gorodetski [2009] proving that every f 2

R \ U has a non-periodic nonhyperbolic ergodic measure supported on H (pf ; f ). As
observed in Section 2.3, there is a C 1-dense subset D of U such that every g 2 D has a
heterodimensional cycle associated to pg and qg . The fact that the saddles have real and
simple eigenvalues implies that the dynamics “associated” to the cycle is partially hyper-
bolic with a one-dimensional central direction E. This direction is contracting in a neigh-
borhood ofO(pf ) and expanding in a neighborhood ofO(qf ). The unfolding of this cycle
generates new saddles rh (also with real and simple eigenvalues) which are homoclinically
related to ph. The orbit of rh stays most of the time close to O(ph) (i.e., O(rh) shadows
O(ph) most of the time), but it stays also some prescribed time nearby O(qh) (this is the
tail part of O(rh)). A consequence of the “tail part” is that 0 < j�E (rh)j < j�E (ph)j.
As rh and ph are homoclinically related, the classes of qh and rh coincide and after a
new perturbation one can produce a cycle related to q' and r' . This gives an inductive
pattern for the creation of saddles in H (ph; h) and with decreasing Lyapunov exponents.
This provides a sequence of periodic orbits satisfying Lemma 3.1. In this construction,
we are in a setting similar to the one in Section 4.1.1, the points pf and qf playing the
roles of S and N , respectively. The difference between these constructions is that now
the generation of periodic points involves perturbations, while in Section 4.1.1 it does not.

In the construction above, we first identified a part of the ambient space where the
dynamics is partially hyperbolic and has a nonhyperbolic one-dimensional direction. This
implies that if the homoclinic class has a undecomposable central bundle of dimension
two then obtained measure cannot have full support in the class. On the other hand, if the
homoclinic class has a dominated splitting TH(p;f )M = F1 ˚ E ˚ F2 with dim(E) = 1
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and H (pf ; f ) has saddles of indices dim(F1) and dim(F1) + 1, then one can obtain
nonhyperbolic measures � with supp(�) = H (pf ; f ). To get limit measures � with
supp(�) = H (pf ; f ) one chooses the saddles rh whose tails have iterates close to qh but
also iterates scattered throughout the whole class, Bonatti, Díaz, and Gorodetski [2010].
By Lemma 3.1 one gets supp(�) = H (pf ; f ). This concludes the case when the class
has index-variability.

We now consider the general case without a priori assuming index-variability. This
will then complete the discussion of the proof of Theorem 4.2. The main idea is to recover
the index-variability by “changing” the indices of saddles in the class by perturbation and
then to fall into the previous case. Let us discuss the case (ii.a) in Proposition 2.1 where
all the saddles of H (pf ; f ) have index k and H (pf ; f ) has a dominated splitting E ˚F

adapted to ind(pf ) = k.
Recall that if Λ is a compact f -invariant set and G is a one-dimensional invariant

bundle over Λ that is not uniformly contracting, then there is an ergodic measure � such
that �G(�) � 0, see Crovisier [2011, Claim 1.7]. By Proposition 2.1, there are two
possibilities for the splittingE˚F overH (pf ; f ), eitherE = Es˚Ec (with dim(Ec) =

1) or E = Es. If the first possibility holds then, by the previous comment, we get an
ergodic measure � with �E (�) � 0. If �E (�) = 0 we are done. Otherwise, the measure
� is hyperbolic with a dominated splittingEs˚Ecu, Ecu = Ec˚F , and hence supp(�) is
contained in a homoclinic class of index k �1, contradicting that all saddles of H (pf ; f )

have index k. If the second possibility E = Es holds, we repeat the arguments above for
f �1 (the case F = Eu does not occur as H (pf ; f ) is not hyperbolic).

Finally, we mention that there is the following more general version of Theorem 4.2
(see Cheng, Crovisier, Gan, Wang, and D. Yang [n.d., Theorem A]). For a generic f 2

Diff1(M ), if pf is a saddle of index k and TH(pf ;f )M = E ˚ F is dominated, E not
uniformly contracting and dim(E) = k, and H (pf ; f ) does not contain saddles of index
k � 1 then there is an ergodic measure � supported in H (pf ; f ) such that �k(�) = 0.

Under these conditions, Wang [n.d., Theorem A] claims that for every � > 0 there is
a saddle q� homoclinically related to pf and such that j�k(q�)j < �. Then, after a small
C 1-perturbation, one can change its index and generate a cycle related the saddle qh of
index k � 1 and ph whose unfolding generates saddles of index k � 1 inside H (pg ; g).
Thus, we recover the index-variability scenario above.

4.1.4 Ergodic measures with multiple zero exponents. We now study generic homo-
clinic classes supporting nonhyperbolic ergodic measures with several zero exponents,
which corresponds to the results in Section 4.1.2 in the differentiable setting.
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As explained in Section 1.2, if the nonhyperbolic direction splits in a dominated way
into one-dimensional sub-bundles then nonhyperbolic measures have exactly one zero ex-
ponent. Thus, inwhat follows, we consider homoclinic classes having a higher-dimensional
and undecomposable central direction. More precisely, consider generic diffeomorphisms
f having a saddle pf whose homoclinic class have a dominated splitting TH(p;f )M =

E˚Ec˚F , where ind(pf ) = dim(E) = k and such that the class contains a saddle qf of
index dim(E˚Ec) andEc is undecomposable. By the results in Section 4.1.3, generically,
for each j with dim(E) < j � dim(E ˚ Ec) there is a nonhyperbolic ergodic measure
� with �j (�) = 0. Furthermore, Wang and Zhang [n.d., Corollary 1.1] claims that under
these conditions there is a nonhyperbolic ergodic measure such that �E c(�) = 0 (i.e.,
with dim(Ec) zero exponents) and also points out that the index-variability conditions are
necessary (see Wang and Zhang [ibid., Section 5]). The proof of this theorem is based
on the GIKN-method and all the comments in Section 4.1.2 about the difficulties to pass
from dimension one to higher dimensions apply here. To discuss this result, recall first
the extremely useful classical Franks’ lemma for C 1-dynamics: for every (small) pertur-
bation of the derivative of a diffeomorphism along a periodic orbit there is a small local
C 1-perturbation of the diffeomorphism with such a derivative along the orbit. This re-
sult shows the importance of understanding the “perturbations of the linear part” of the
dynamics.

A first ingredient in Wang and Zhang [ibid.] is Bochi and Bonatti [2012, Theorem 4.7]
about perturbations of linear cocycles. Consider matrices A1; : : : ; An 2 GL(n; R) such
that B = An ı � � � ı A1 has no dominated splitting of index i . Then there is an arbitrarily
small perturbations A0

i of these matrices such that the Lyapunov exponents of B 0 = A0
n ı

� � � ı A0
1 satisfy �i (B

0) = �i+1(B
0) and �j (B) = �j (B

0) if j 62 fi; i + 1g. Thus, one
gets a dynamics whose linear part has exponents of multiplicity two. A second argument
is the improvement of Franks’ lemma presented in Gourmelon [2016]: the perturbation
can be done preserving parts of stable and unstable manifolds. This allows to preserve
intersections of invariant manifolds throughout the perturbations.

We emphasize two ingredients in Wang and Zhang [n.d., Corollary 1.1]: i) a version
of Lemma 3.1, including a comparison of the “central” Lyapunov exponents and the pe-
riodic points “heteroclinic-like” related, and ii) similar to arguments in Section 4.1.2, the
exponents of the measures are linear functions of integrals of continuous maps, providing
continuity of the exponents with respect to the measures.

4.2 Applications of the flip-flop method: robust zeros. In comparison with the re-
sults presented in Section 4.1, in what follows we replace locally residual sets of C 1-
diffeomorphism by open ones and also obtain measures with positive entropy. Recall
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the definition of the set RTN(M ) of C 1-robustly transitive and nonhyperbolic diffeomor-
phisms in Section 1.5.

Theorem 4.3 (Bochi, Bonatti, and Díaz [2016, Corollary 1]). There is a C 1-open and
dense subset of RTN(M ) of diffeomorphisms with a nonhyperbolic ergodic measure with
positive entropy.

The proof of this result uses the method of controlling Birkhoff averages on sets of
positive entropy and relies on finding an appropriate flip-flop family. Themain ingredients
for that are heterodimensional cycles and blenders.

First, there is an open and dense subset of RTN(M ) consisting of diffeomorphisms
f having a saddle pf (assume that �(pf ) = 1) of index s + 1 and a blender Λf of
index s which are “heteroclinically related”: W u(pf ; f ) contains a disk of the strictly
f -invariant family of disks Df of the blender and W s(Λf ; f ) and W s(pf ; f ) have
transverse intersections. Indeed, this means that pf andΛf are involved in a robust cycle.
We can also assume that the eigenvalues of Df (pf ) are all real and all have multiplicity
one (recall Section 4.1.3). We can now identify heteroclinic orbits O1 (going from Λf

to pf ) and O2 (going from pf to Λf ) in such a way in a neighborhood of O1 [ O2 [

Λf [ O(pf ) the dynamics is partially hyperbolic with a one-dimensional center direction
E (that is contracting nearby pf and expanding nearby Λf ). See Figure 1 B).

The above flip-flop configuration yields flip-flop families associated to
' = log jjDf mjE jj and some power of f , Bochi, Bonatti, and Díaz [ibid., Section 4].
The flip-flop family F = F�[̇F+ is (roughly) defined as follows: F+ is the family of f -
invariant disks Df of the blender and F� is a small neighborhood of of W s

loc(pf ; f ). The
heteroclinic connection between the blender and the saddle implies that F is a flip-flop
family for some f `. Theorem 4.3 follows applying Section 3.2.

Denote byRTNc=1(M ) the open subset ofRTN(M )with a partially hyperbolicTM =

Es ˚ Ec ˚ Eu with three nontrivial bundles and dim(Ec) = 1. In Bonatti, Díaz, and
Bochi [n.d.] and Bonatti and Zhang [n.d.(a)] it is proved that C 1-open and densely in
RTNc=1(M ) the diffeomorphisms have nonhyperbolic ergodic measures with full sup-
port. The method in Bonatti, Díaz, and Bochi [n.d.] uses the control at all scales with a
long sparse tail criterion, while Bonatti and Zhang [n.d.(a)] uses a cocktail combining the
methods in Sections 3.1 and 3.2 and a version of the shadowing lemma in Gan [2002]. Fi-
nally, in a work in progress with Bonatti and Kwietniak (Ła̧cka announced a similar result
by different methods) we prove that these measures can be obtained with full support and
positive entropy.
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Abstract

We propose in these notes a list of some old and new questions related to quasi-
periodic dynamics. A main aspect of quasi-periodic dynamics is the crucial influence
of arithmetics on the dynamical features, with a strong duality in general between
Diophantine and Liouville behavior. We will discuss rigidity and stability in Dio-
phantine dynamics as well as their absence in Liouville ones. Beyond this classical
dichotomy between the Diophantine and the Liouville worlds, we discuss some uni-
fied approaches and some phenomena that are valid in both worlds. Our focus is
mainly on low dimensional dynamics such as circle diffeomorphisms, disc dynamics,
quasi-periodic cocycles, or surface flows, as well as finite dimensional Hamiltonian
systems.

In an opposite direction, the study of the dynamical properties of some diagonal
and unipotent actions on the space of lattices can be applied to arithmetics, namely to
the theory of Diophantine approximations. We will mention in the last section some
problems related to that topic.

The field of quasi-periodic dynamics is very extensive and has a wide range of
interactions with other mathematical domains. The list of questions we propose is
naturally far from exhaustive and our choice was often motivated by our research
involvements.

1 Arithmetic conditions

A vector ˛ 2 Rd is non-resonant if it has rationally independent coordinates: for all
(k1 : : : ; kd ) 2 Zd , the identity

Pd
i=1 ki ˛i = 0 implies ki = 0 for i = 1; : : : ; d ; otherwise,

it is called resonant.
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For 
; � > 0, we define the set DCd (
; �) � Rd of diophantine vectors with exponent
� and constant 
 as the set of ˛ = (˛1; : : : ; ˛d ) 2 Rd such that

(1-1) 8(k1; : : : ; kd ) 2 Zd ; j

dX
i=1

ki ˛i j �



(
Pd

i=1 jki j)�
;

we then set DCd (�) =
S


>0 DC (
; �), DCd =
S

�>0 DC (�). For each fixed � > d

and 
 small enough the set DC (
; �) has positive Lebesgue measure in the unit ball of
Rd and the Lebesgue measure of its complement goes to zero as 
 goes to zero. Thus the
sets DC (�), � > d and DCd have full Lebesgue measure in Rd . The set DCd is the set
of Diophantine vectors of Rd while its complement in the set of non-resonant vectors is
called the set of Liouville vectors.

For a translation vectors of T d defined as ˛ + Zd , ˛ 2 Rd , we say that it is resonant,
Diophantine or Liouville, if the Rd+1 vector (1; ˛) is resonant, Diophantine or Liouville
respectively.

2 Diffeomorphisms of the circle and the torus

For k 2 N [ f1; !g we define Diffk0(T d ) as the set of orientation preserving homeo-
morphisms of T d of class C k together with their inverse. To any f 2 Diff00(T d ) one
can associate its rotation set �(f ) := f

R
T (f̄ � id )d�; � 2 M(f )g mod Zd where

f̄ : Rd ! Rd is a lift of f and M(f ) is the set of all f -invariant probability mea-
sures on T d . Let T˛ : T d ! T d be the translation x 7! x + ˛, F k

˛ (T d ) = ff 2

Diffk0(T d ); �(f ) = f˛gg, Ok
˛(T

d ) = fh ı T˛ ı h�1; h 2 Diffk0(T d )g. We say that
f 2 Diff10 (T d ) is almost reducible if there exists a sequence (hn)n2N 2 (Diff10 (T d ))N

such that hn ı f ı h�1
n converges in the C 1-topology to T˛ . When d = 1, �(f ) is re-

duced to a single element and we denote by �(f ) this element. By Denjoy Theorem, any
f 2 Diffk0(T ) with k � 2, is conjugated by an orientation preserving homeomorphism to
T˛ . If furthermore ˛ is Diophantine and k = 1 then by Herman-Yoccoz theoremHerman
[1979], Yoccoz [1984] this conjugacy is smooth which amounts to F 1

˛ (T ) = O1
˛ (T ). It

is of course natural to try to extend this result to the higher dimensional situation where
f is an orientation preserving diffeomorphism of the d -dimensional torus T d . Unfortu-
nately, no Denjoy theorem is available in this situation and the only reasonable question
to ask for is the following

Question 1. Let f : T d ! T d be a smooth diffeomorphism of the torus T d = Rd/Zd

which is topologically conjugate to a translation T˛ : T d ! T d , x 7! x + ˛ with ˛

Diophantine. Is the conjugacy smooth?
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Notice that when d = 2, even if ˛ is Diophantine, F 1
˛ (T 2) is not equal to O1

˛ (T 2) or
O1

˛ (T d ) as is shown by taking projectivization of cocyles in SW 1(T ; SL(2; R)): such
cocycles have a uniquely defined rotation number, that can be chosen Diophantine, and
at the same time can have positive Lyapunov exponents (which prevents the projective
action to be conjugated to a translation) (cf. Herman [1983]). Analogously, by taking pro-
jectivization of cocycles in SW !(T ; SL(2; R)) and using Avila’s theory characterizing
sub-critical/critical cocycles and the Almost Reducibility Conjecture (see Section 5) one
can show that there exist elements of O1

˛ (T d ) which are not C 1- almost reducible and,
even if ˛ 2 T d is Diophantine, that the set O1

˛ (T d ) is not closed.
In a similar vein

Question 2. Let f : T d ! T d be a smooth diffeomorphism which is topologically
conjugate to the translation with ˛ non-resonant. Is it C 1-accumulated by elements of
O1

˛ (T d )? Is it C 1-almost reducible?

When d = 1 the first and the second part of the preceding question have a positive an-
swer. Yoccoz proved Yoccoz [1995b] that F 1

˛ (T ) = O1
˛ (T ) and it is proved in Avila and

Krikorian [n.d.(b)] that any smooth orientation preserving diffeomorphism of the circle is
C 1-almost reducible. The proof of this result uses renormalization techniques which at
the present time doesn’t seem to extend to the higher dimensional case. Still the situation
in the semi-local case might be more accessible.

Question 3. Same questions as in Questions 1 and 2 in the semi-local case that is for f

in some neighborhood of the set of rotations, independent of ˛.

If one assumes ˛ to be Diophantine and f to be in a neighborhood of T˛ that depends
on ˛ the answer to Question 1 is positive; this can be proved by standard KAM techniques.

3 Pseudo-rotations of the disc

A C k (k 2 N [ f1; !g) pseudo rotation of the disk D = f(x; y) 2 R2; x2 + y2 �

1g is a C k orientation and area preserving diffeomorphism of the disk D that fixes the
origin, leaves invariant the boundary @D of the disk and with no other periodic point than
the origin. Like in the case of circle diffeomorphisms one can define for such pseudo-
rotation a unique rotation number around the origin which is invariant by conjugation
(see for example Franks [1988b, Corollary 2.6] or Franks [1988a, Theorem 3.3]). Anosov
and Katok [1970] constructed in 1970, via approximation by periodic dynamics, ergodic
(for the area measure) and infinitely differentiable pseudo-rotations of the disk, providing
thus the first examples of pseudo-rotations which are not topologically conjugate to rigid
rotations. By a theorem of Franks and Handel [2012] a transitive area and orientation
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preserving diffeomorphism of the disk fixing the origin and leaving invariant the boundary
of the disk must be a pseudo-rotation.

3.1 Birkhoff rigidity conjecture. A famous question on pseudo-rotations attributed to
Birkhoff is the following.

Question 4. Is a real analytic pseudo-rotation of angle ˛ analytically conjugated to the
rotation R˛ of angle ˛ on the disc?

Addressing this question should involve the artihmetics of ˛. On one hand, Rüssmann
Rüssmann [1967] proved the following alternative for a Diophantine (in fact of Brjuno
type is sufficient) elliptic fixed point of a real analytic area preserving surface diffeomor-
phism f : either the point is surrounded by a positive measure set of invariant circles with
different Diophantine frequencies, or the map f is locally conjugate to a rotation in the
neighborhood of the fixed point. On the other hand, when the real analytic category is
relaxed to infinite differentiability, Anosov-Katok construction provides many counter-
examples to the preceding question (for Liouville ˛’s). We can thus divide the preceding
question into two questions

Question 5. Can one construct Anosov-Katok examples (viz. ergodic pseudo-rotations)
in the real analytic category? If possible, can one impose the rotation number to be any
non-Brjuno number?

Question 6 (Reducibility). Is it true that every C k , k = 1; !, pseudo-rotation of the disk
with diophantine rotation number ˛ C k-conjugated to a rigid rotation by angle ˛?

Notice that in the smooth category the answer to Question 5 is positive: for the first part
this is the existence of Anosov-Katok ergodic, even weakmixing, pseudo-rotations and for
the second part one can prove that for any Liouville number ˛, there exists weak mixing
pseudo-rotations as well as examples that are isomorphic to the rotation of frequency ˛

on the circle Fayad and Saprykina [2005] and Fayad, Saprykina, and Windsor [2007].
Together with Herman’s last geometric theorem, this gives in the C 1-case a complete
dichotomy between Diophantine and Liouville behavior.

Let F 1
˛ be the set of C 1 pseudo-rotations with rotation number ˛ and O1

˛ be the set
of h ı R˛ ı h�1 where h is a C 1 area and orientation preserving map of the disk fixing 0
and leaving invariant the boundary of the disk. A weaker question in the smooth case is :

Question 7. For ˛ diophantine is O1
˛ closed for the C 1-topology?

In fact, a more general question than Question 6 is the following:
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Question 8 (Almost reducibility). Is any C k-pseudo-rotation k = 1; !, f of the disk
with irrational rotation number ˛ almost reducible: there exists a sequence of area pre-
serving smooth map hn such that hn ı f ı h�1

n converges in the C k topology to R˛ (in
the analytic case this convergence should occur on a fixed complex neighborhood of the
disk)?

Question 6 has a positive answer in the local case (Rüssmann for k = !, Herman,
Fayad and Krikorian [2009a] for k = 1) that is when f is in some C k-neighborhood of
R˛ (the size of this neighborhood depending on the arithmetics of ˛). Thus, a positive
answer to Question 8 would imply a positive answer to Question 6. When k = 1, Ques-
tion 8 (hence Question 6) has a positive answer in the semi-local case Avila and Krikorian
[n.d.(b)] that is with the extra assumption that for some k and " independent of ˛, the
C k-norm of Df � id is less than ". In this situation one also has F 1

˛ \W � O˛
1, where

W is a neighborhood for the C 1-topology of the set of rigid rotations. The proof of the
result of Avila and Krikorian [ibid.] is based on renormalization techniques and on the fact
(proved in Avila, Fayad, Calvez, Xu, and Zhang [2015]) that if one has a control on theC 1-
norm of a pseudo-rotation f , the displacement maxD kf � idk polynomially compares
with the rotation number of f . Such a control is in general not true for diffeomorphisms
of the circle. It is thus natural to ask:

Question 9. Describe the set of smooth diffeomorphisms of the circle that are obtained
as the restriction on D of the dynamics of pseudo-rotations?

3.2 Rigidity times, mixing and entropy. A diffeomorphism of classC k , k 2 N[f1g,
is said to admitC k rigidity times (or for short isC k-rigid) if there exists a sequence qn such
that f qn converges to the Identity map in the C k topology. If we just know that the latter
holds in a fixed neighborhood of some point p, we say that f is C k locally rigid at p. All
the smooth examples on the disc or the sphere obtained by the Anosov-Katok method are
C 1-rigid by construction. Obviously, rigidity or local rigidity precludes mixing. Hence,
the following natural question was raised in Fayad and Katok [2004] in connection with
the smooth realization problem and the Anosov-Katok construction method.

Question 10. Is it true that a smooth area preserving diffeomorphism of the disc with zero
metric entropy is not mixing?

In the case of zero topological entropy, and in light of Franks and Handel result, the
question becomes

Question 11. Is it true that a smooth pseudo-rotation is not mixing?

Bramham [2015] proved that this is true if the rotation number is sufficiently Liouville;
indeed he proves in that case the existence of C 0-rigidity times. It was shown in Avila,
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Fayad, Calvez, Xu, and Zhang [2015] that real analytic pseudo-rotations (with no restric-
tion on the rotation number) are never topologically mixing. By a combination of KAM
results and control of recurrence for pseudo-rotations with Liouville rotation numbers, it
is actually shown that real analytic pseudo-rotations are C 1 locally rigid near their center.

Note that the following is not known, except in C 1 regularity where a positive answer
is given by Bochi [2002].

Question 12. Does there exist a smooth area preserving disc diffeomorphism that has
zero metric entropy and positive topological entropy?

The following question was raised by Bramham in Bramham [2015].

Question 13. Does every C k pseudo-rotation f admit C 0 rigidity times? The question
can be asked for any k � 1, k = 1 or k = !.

In the case k = ! or �(f ) Diophantine and k = 1, the latter question becomes
an intermediate question relative to the Birkhoff-Herman problem on the conjugability
of f to the rigid disc rotation of angle �(f ). In Avila, Fayad, Calvez, Xu, and Zhang
[2015] it was shown that for every irrational ˛, if an analytic pseudo-rotation of angle ˛

is sufficiently close to R˛ then it admits C 1-rigidity times.

Question 14. Given a fixed analyticity strip, does there exist � > 0 such that if a real
analytic pseudo-rotation is � close to the rotation on the given analyticity strip, then it is
rigid?

An a priori control on the growth of kDf mk for a pseudo-rotation is sufficient to deduce
the existence of rigidity times for larger classes of rotation numbers. If for example a
polynomial bound holds on the growth of kDf mk for a smooth pseudo-rotation, then the
existence of C 1 rigidity times would follow for any Liouville rotation number (see Avila,
Fayad, Calvez, Xu, and Zhang [ibid.]). In the case of a circle diffeomorphism f a gap in
the growth of these norms is known to hold between exponential growth in the case f has
a hyperbolic periodic point or a growth bounded by O(m2) if not Polterovich and Sodin
[2004]. Does a similar dichotomy hold for area preserving disc diffeomorphisms?

Question 15. Is there any polynomial bound on the growth of the derivatives of a pseudo-
rotation? Does every C 1 pseudo-rotation with Liouville rotation number admit C 0 (or
even C 1) rigidity times?

With Herman’s last geometric theorem, a positive answer to the second part of Ques-
tion 15 would imply that smooth pseudo-rotations, and therefore area preserving smooth
diffeomorphisms of the disc with zero topological entropy are never topologically mixing.

In the proof of absence of mixing of an analytic pseudo-rotation, Avila, Fayad, Calvez,
Xu, and Zhang [2015] uses an a priori bound on the growth of the derivatives of the iterates
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of a pseudo-rotation that is obtained via an effective finite information version of the Katok
closing lemma for an area preserving surface diffeomorphism f . This effective result
provides a positive gap in the possible growth of the derivatives of f between exponential
and sub-exponential.

In Fayad and Zhang [2017], an explicit finite information condition is obtained for area
preserving C 2 surface diffeomorphisms, that guarantees positive topological entropy.

Question 16. Find a finite information condition on the complexity growth of an area
preserving C 2 surface diffeomorphism that insures positive metric entropy.

Finally, inspired by Rüssmann and Herman’s last geometric theorem on one hand, and
the Liouville pseudo-rotations rigidity on the other, we ask the following

Question 17. Can a smooth area preserving diffeomorphism of a surface that has an
irrational elliptic fixed point be topologically mixing? Can it have an orbit that converges
to the fixed point?

4 Hamiltonian systems

A C 2 function H : (R2d ; 0) ! R such that DH (0) = 0 defines on a neighborhood of
0 a hamiltonian vector field XH (x; y) = (@yH (x; y); �@xH (x; y)) and its flow �t

H is a
flow of symplectic diffeomorphisms preserving the origin. We shall assume that 0 2 R2n

is an elliptic equilibrium point with H of the following form

(4-2) H (x; y) =

dX
j=1

!j (x
2
j + y2

j )/2 + O3(x; y);

where the frequency vector ! is non-resonant.
Alternatively we may take H a C 2 function defined on T d � Rd and consider its

Hamiltonian flow XH (�; r) = (@rH (�; r); �@� H (�; r)). If

(4-3) H (�; r) = h!0; ri + O(r2)

then the torus T d �f0g is invariant under the Hamiltonian flow and the induced dynamics
on this torus is the translation �t

H : � 7! � + t!0: Moreover this torus is Lagrangian with
respect to the canonical symplectic form d� ^ dr on T d � Rd . When ! is Diophantine
we say that this torus is a KAM torus.

The stability of an equilibrium or of an invariant quasi-periodic torus by a Hamiltonian
flow can be studied from three points of view. The usual topological or Lyapunov stability,
the stability in a measure theoretic or probabilistic sense which can be addressed by KAM
theory (Kolmogorov, Arnold, Moser), or the effective stability in which one is interested
in quantitative stability in time.
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4.1 Topological stability. Arnold conjectured that apart from two cases, the case of a
sign-definite quadratic part, and generically for d = 2, an elliptic equilibrium point is
generically unstable.

Conjecture 4.1 (Arnold). An elliptic equilibrium point of a generic analytic Hamiltonian
system is Lyapounov unstable, provided n � 3 and the quadratic part of the Hamiltonian
function at the equilibrium point is not sign-definite.

Despite a rich literature and a wealth of results in the C 1 smoothness (to give a list of
contributions would exceed the scope of this presentation), this conjecture is wide open
in the real analytic category, to such an extent that under our standing assumptions (real-
analyticity of the Hamiltonian and a non-resonance condition on the frequency vector) not
a single example of instability is known.

Question 18. Give examples of an analytic Hamiltonian that have a non-resonant elliptic
equilibrium (or a non-resonant Lagrangian quasi-periodic torus) that is Lyapunov unsta-
ble.

Question 19. Give examples of an analytic Hamiltonian that have a non-resonant elliptic
equilibrium (or a non-resonant Lagrangian quasi-periodic torus) that attracts an orbit
(distinct from the equilibrium or the torus itself).

In Fayad,Marco, and Sauzin [n.d.] an example is given of aGevrey regular Hamiltonien
on R6 that has a non-resonant fixed point at the origin and that has an orbit distinct from
the origin that converges to it in the future. In Kaloshin and Saprykina [2012] and Guardia
and Kaloshin [2014], Arnold diffusion methods are used to yield in particular orbits that
have ˛-limit or !-limit sets that are non-resonant invariant Lagrangian tori instead of a
single non-resonant fixed point.

Following Perez-Marco we ask:

Question 20. Is it true that a smoothHamiltonian flowwith a non-resonant elliptic equilib-
rium isolated from periodic points has a hedgehog (a totally invariant compact connected
set containing the origin)?

Regarding the additional stability features of elliptic fixed points in the case of two
degrees of freedom, we ask the following

Question 21. Is the iso-energetic twist condition the optimal condition for Lyapunov sta-
bility of an irrational elliptic equilibrium in two degrees of freedom?

A smooth example of an irrational equilibrium was constructed by F. Trujillo that sat-
isfies the Kolmogorov non degeneracy condition in d = 2 degrees of freedom and that
has diffusing orbits in some special energy levels.
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4.2 Beyond the classical KAM theory. An equilibrium (or an invariant torus) of a
Hamiltonian system is said to be KAM stable if it is accumulated by a positive measure
of invariant KAM tori, and if the set of these tori has density one in the neighborhood of
the equilibrium (or the invariant torus).

4.2.1 Weak transversality conditions. In classical KAM theory, an elliptic fixed point
is shown to beKAM-stable under the hypothesis that the frequency vector at the fixed point
is non-resonant (or just sufficiently non-resonant) and that the Hamiltonian is sufficiently
smooth and satisfies a generic non degeneracy condition of its Hessian matrix at the fixed
point. Further development of the theory allowed to relax the non degeneracy condition.
In Eliasson, Fayad, and Krikorian [2013] KAM-stability was established for non-resonant
elliptic fixed points under the (most general) Rüssmann transversality condition on the
Birkhoff normal form of the Hamiltonian. Similar results were obtained for Diophantine
invariant tori in Eliasson, Fayad, and Krikorian [2015].

4.2.2 Absence of transversality conditions.

Conjecture 4.2. [Herman] Prove that an elliptic equilibrium with a diophantine fre-
quency or a KAM torus of an analytic Hamiltonian is accumulated by a set of positive
measure of KAM tori.

Clearly, one can of course ask whether KAM stability also holds.
Conjecture 4.2 was was made by M. Herman in his ICM98 lecture (in the context of

symplectomorphisms). The conjecture is known to be true in two degrees of freedomRüss-
mann [1967], but remains open in general. It is shown in Eliasson, Fayad, and Krikorian
[2015] that an analytic invariant torus T0 with Diophantine frequency !0 is never isolated
due to the following alternative. If the Birkhoff normal form of the Hamiltonian at T0

satisfies a Rüssmann transversality condition, the torus T0 is accumulated by KAM tori of
positive total measure. If the Birkhoff normal form is degenerate, there exists a subvariety
of dimension at least d + 1 that is foliated by analytic invariant tori with frequency !0.

For Liouville frequencies, one does not expect the conjecture to hold.

Question 22. Give an example of an analytic Hamiltonian that has a non-resonant (Liou-
ville) elliptic equilibrium that is not is accumulated by a set of positive measure of KAM
tori.

In theC 1 category (or Gevrey), counter-examples to stability with positive probability
can be obtained: in 2 or more degrees of freedom for Liouville frequencies; and in 3
or more degrees of freedom for any frequency vector (Eliasson, Fayad, and Krikorian
[ibid.] for d � 4 and Fayad and Saprykina [2005] for d � 3). In the remaining case of
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Diophantine equilibrium with d = 2, Herman proved stability with positive probability
without any twist condition (see Fayad and Krikorian [2009a]).

4.3 Effective stability. Combining KAM theory, Nekhoroshev theory and estimates of
Normal Birkhoff forms, it was proven in Bounemoura, Fayad, and Niederman [2017] that
generically, both in a topological and measure-theoretical sense, an invariant Lagrangian
Diophantine torus of a Hamiltonian system is doubly exponentially stable in the sense that
nearby solutions remain close to the torus for an interval of time which is doubly expo-
nentially large with respect to the inverse of the distance to the torus. It is proven there
also that for an arbitrary small perturbation of a generic integrable Hamiltonian system,
there is a set of almost full positive Lebesgue measure of KAM tori which are doubly ex-
ponentially stable. These results hold true for real-analytic but more generally for Gevrey
smooth systems. Similar results for elliptic equilibria are obtained in Bounemoura, Fayad,
and Niederman [2015].

Question 23. Give examples of analytic or Geverey differentiable Hamiltonians that have
a Diophantine elliptic equilibrium with positive definite twist, that is not more than doubly-
exponentially stable in time. Show that this is generic.

Question 24. Give an example of an analytic Hamiltonian that has a non-resonant elliptic
equilibrium with positive definite twist that is not more than exponentially stable in time.

Question 25. Give an example of an analytic Hamiltonian that has a Diophantine elliptic
equilibrium that is not more than exponentially stable in time.

4.4 On invariant tori of convex Hamiltonians.

4.4.1 The ”last invariant curve” of annulus twist maps. A classic topic in Hamil-
tonian systems is that of the regularity of the invariant curves of annulus twist maps. A
celebrated result of Birkhoff states that such curves (if they are not homotopic to a point)
must be Lipschitz. Numerical evidence seems to indicate that invariant curves are always
at least C 1. After Mather and Arnaud we ask the following.

Question 26. Give an example of a C r , r 2 [2; 1)[ f!g; annulus twist map that has an
invariant C 0 but not C 1 curve with minimal restricted dynamics.

In Avila and Fayad [n.d.], a C 1 example is constructed, and Arnaud [2011] gives a C 1

example with an invariant C 0 but not C 1 curve having Denjoy type restricted dynamics.
Due to a result proved by Herman the problem can be reduced to finding a minimal

circle homeomorphism f such that f + f �1 is C r but f is only C 0.
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Question 27. Give an example of a C r , r 2 [2; 1)[ f!g; annulus twist map that has an
invariant C r curve that is not accumulated by other invariant curves.

4.4.2 On the destruction of all tori. Given the Hamiltonian H = 1
2

P
r2i on T d �Rd .

Question 28. What is the maximum of r for which it is possible to perturb H so that the
perturbed flow has no invariant Lagrangian torus that is the graph of a C 1 function.

By Herman, r � d + 2 � �, 8� > 0. We also know that r � 2d (see Pöschel [1982]).
In Cheng and L.Wang [2013], given any frequency !, a C 2d�� perturbation of H is given
that has no invariant Lagrangian torus with as unique rotation frequency vector !.

4.5 Birkhoff Normal Forms. Let H : (R2d ; 0) ! R be a real analytic hamiltonian
function admitting 0 as an elliptic non-resonant fixed point. One can always formally
conjugate H to an integrable hamiltonian: there exist a formal (exact) symplectic germ of
diffeomorphism g tangent to the identity and a formal seriesN 2 R[[r1; : : : ; rd ]] such that
g�XH = XB where B(x; y) = N (x2

1 +y2
1 ; : : : ; x2

d
+y2

d
). This B is unique and is called

the Birkhoff Normal Form (BNF). This formal object is an invariant of C k-conjugations
(k = 1; !). Birkhoff Normal Forms can be defined for C k (k = 1; !) symplectic dif-
feomorphisms admitting an invariant elliptic fixed point or even (in the case of symplectic
diffeomorphisms or hamiltonian flows) in a neighborhood of an invariant KAM torus (the
frequency must be then diophantine). Siegel [1954] proved that in general the conjugating
transformation could not be convergent and Eliasson asked whether the Birkhoff Normal
Form itself could be convergent. In the real analytic setting Pérez-Marco [2003] proved
that for any given non-resonant quadratic part one has the following dichotomy: either the
BNF always converges or it generically diverges. Gong [2012] provided an example of
divergent BNF with Liouville frequencies. In Krikorian [n.d.] it is proved that the BNF
of a real analytic symplectic diffeomorphism admitting a diophantine elliptic fixed point
(with torsion) is generally divergent.

Question 29. Let H be a real analytic Hamiltonian admitting the origin as a diophantine
elliptic fixed point and assume that its Birkhoff Normal Form defines a real analytic func-
tion. Is H real analytically conjugated to its Birkhoff Normal Form on a neighborhood
of the origin?

5 Dynamics of quasi-periodic cocycles

LetG be a Lie group (possibly infinite dimensional). A quasi-periodic cocycle of classC k ,
k 2 N [f1; !g is a map (˛; A) : T d �G ! T d �G of the form (˛; A) : (x; y) 7! (x+
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˛; A(x)y) where ˛ 2 T d (we assume ˛ to be non-resonant) and A : T d ! G is of class
C k . We denote the set of such cocycles (˛; A) by SW k(T d ; G) (or SW k

˛ (T d ; G)). The
iterates (˛; A)n of (˛; A) are of the form (n˛; A(n)) where (for n � 1) A(n) is the fibered
product A(n)(�) = A(�+(n�1)˛) � � � A(�+˛)A(�). Two cocycles (˛; A1) and (˛; A2) are
said to be C l -conjugated if there exists a map B : T d ! G (or B : Rd/N Zd ! G for
some N 2 N�) of class C l such that (˛; A2) = (0; B)ı(˛; A1)ı(0; B)�1 or equivalently
A2 = B(� + ˛)A1B(�)�1. The cocycle (˛; A) is said to be reducible if it is conjugated to
a constant cocycle and, when H is a subgroup of G, H -reducible if it is conjugated to an
H -valued (not necessarily constant) cocycle. We say that the cocycle is linear when the
group G is a group of matrices.

5.1 The case G = SL(2; R). Quasi-periodic SL(2; R)-valued cocycles play an impor-
tant role in the theory of quasi-periodic Schrödinger operators on Z of the form Hx :

l2(Z) ! l2(Z), Hx : (un)n2Z 7! (un+1 + un�1 + V (x + n˛)un)n2Z; indeed, the
(generalized) eigenvalue equation Hxu = Eu leads naturally to studying the dynamics
of a family of SL(2; R)-valued quasi-periodic cocycles depending on E, the so-called
Schrödinger cocycles. Many spectral objects or quantities – such as, resolvent sets (com-
plement of the spectrum), spectral measures, density of states, speed of decay of Green
functions... – of the family of operators Hx , x 2 T d , can be related to dynamical notions
or invariants for the associated family of Schrödinger cocycles – namely (in that order),
uniform hyperbolicity, m-functions, fibered rotation number, Lyapunov exponents... We
refer to Eliasson [1998], You [2018] for more details on this topic.

There are two important quantities associated to SL(2R)-valued quasi-periodic cocy-
cles which are invariant by conjugation1: the Lyapunov exponent L(˛; A)which measure
the exponential speed of growth of the iterates of the cocycle (˛; A) and the fibered ro-
tation number �(˛; A) which measures the average speed of rotation of non-zero vectors
in the plane under iteration of the cocycle. It is of course tempting to try and classify
SL(2; R)-cocycles according to these two invariants.

The case of real analytic cocycles with one frequency is particularly well understood.
In that situation, following A. Avila [2015], one can associate to any cocycle (˛; A) 2

SW !(T ; SL(2; R)) a natural family (˛; A") 2 SW !(T ; SL(2; C)) (" in some neighbor-
hood of 0) with A"(�) = A(�+"

p
�1). The function " 7! L(˛; A") plays a very important

role in the theory; Avila proved that it is an even convex continuous piecewise affine map
with quantized slopes in 2�Z (this is the phenomenon of “quantization of acceleration”)
and that the complex cocycle (˛; A") is uniformly hyperbolic if and only " is not a break
point of " 7! L(˛; A"). This analysis leads to the notions of critical, supercritical and
subcritical cocycles, where this last term refers to the fact that the function " 7! L(˛; A")

1for the rotation number one has to assume the conjugating map to be homotopic to the identity
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is zero on an neighborhood of " = 0. A cocycle (˛; A) 2 SW !(T ; SL(2; R)) (ho-
motopic to the identity) can thus have four distinct possible behaviors if one adds to the
three preceding ones uniform hyperbolicity. Moreover, the quantization of acceleration
allows to predict the possible transitions between these four regimes and to draw conse-
quences on the spectrum of Schrödinger operators such as for example the possibility of
co-existence of absolutely continuous or pure point spectrum for some type of potentials
(cf. Avila [ibid.] and for other examples Bjerklöv and Krikorian [n.d.]). The most strik-
ing global result on the dynamics of these cocycles is certainly the “Almost reducibility
conjecture” proved by Avila Avila [2010], Avila [n.d.] which asserts that any subcritical
cocycle in SW !(T ; SL(2; R)) is almost-reducible (in the analytic category, on a fixed
complex neighborhood of the real axis). By Hou and You [2012], You and Zhou [2013]
in the real analytic semi-local situation (viz. when A is close to a constant, this closeness
being independent of ˛) a cocycle (˛; A) is either uniformly hyperbolic or subcritical.

In the C 1 category, or for many-frequencies systems, our understanding of the dy-
namics of cocycles is much less complete. There are important reducibility or almost-
reducibility results (Dinaburg and J. G. Sinaĭ [1975], Eliasson [1992], Krikorian [1999a],
Krikorian [1999b], Krikorian [2001], Avila andKrikorian [2006],Puig [2004], Puig [2006],
Fayad and Krikorian [2009b], Avila, Fayad, and Krikorian [2011], Hou and You [2012],
You and Zhou [2013], Avila and Krikorian [2015]...) but they often involve diophantine
conditions and/or are of perturbative nature. Moreover, the semi-local version of the Al-
most reducibility conjecture has no reasonable equivalent in the smooth (or even Gevrey)
setting Avila and Krikorian [n.d.(c)]. Still, one can ask:

Question 30. Is the semi-local version of the Almost reducibility conjecture true for co-
cyles in quasi-analytic classes?

Let’s say that a cocycle is stable if it is not accumulated by non-uniformly hyperbolic
systems (with the same frequency vector on the base). Having in mind Avila’s classifica-
tion one can ask:

Question 31. Is every stable cocycle inSW k(T d ; SL(2; R)), k = 1; !, almost-reducible?

5.2 The symplectic case. Cocycles in SW k(T d ; Sp(2n; R)) are of interst when one
tries to understand the dynamics of a symplectic diffeomorphism in the neighborhood of
an invariant torus (they appear as linearized dynamics) or in the study of quasi-periodic
Schrödinger operators on strips Z � f1; : : : ; ng. For such cocycles one can define 2n

Lyapunov exponents (symmetric with respect to 0) and one fibered Maslov index which
plays the role of a fibered rotation number (cf. Xu [2016] and the references there).

We denote by SO(2; R) the set of symplectic rotations Rt =

�
(cos t)In �(sin t)In

(sin t)In (cos t)In

�
.
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Question 32. Let (˛; A) 2 SW 1(T ; Sp(2n; R)) homotopic (resp. non homotopic) to
the identity where ˛ 2 T is (recurrent) diophantine. Is it true that for Lebesgue almost all
t 2 R the following dichotomy holds: either the cocycle (˛; Rt A) is C 1-reducible (resp.
SO(2; R)-reducible) or its upper Lyapunov exponent is positive?

When n = 1 the answer is positive (Avila and Krikorian [2006] for the case homotopic
to the identity, Avila and Krikorian [2015] for the case non-homotopic to the identity). The
proof of this result is based on a renormalization procedure which works when the cocycle
has some mild boundedness property and on a reduction to this case based on Kotani
theory. In the case n � 2 such a Kotani theory was developed by Xu in Xu [2016], Xu
[2015]. Following the same strategy as in Avila and Krikorian [2006] one should be then
reduced to studying cocycles with values in the maximal compact subgroup of Sp(2n; R).
Unfortunately, one cannot conclude like in the case n = 1 since no reasonable a priori
notion of fibered rotation number can be defined for cocycles with values in non-abelian
compact groups (they can be defined a posteriori once one knows the cocycle is reducible;
see Karaliolios [2017], Karaliolios [2016] for related results).

5.3 The case G = Diff10 (T ). A cocycle (˛; A) 2 SW (T d ; SL(2; R)) naturally pro-
duces a projective cocycle (˛; Ā) 2 SW (T d ;Hom(S1)) where Hom(S1) is the group
of homographies acting on S1; namely Ā(x) � v = (A(x)v)/kA(x)vk. It is thus natural
to look at the more general case where the underlying group is the group of orientation
preserving diffeomorphisms of the circle. In that case one can still define a fibered ro-
tation number Herman [1983]. For the topological aspects of the theory of such quasi-
periodically forced circle diffeomorphisms see Bjerklöv and Jäger [2009].

Question 33 (Non-linear Eliasson Theorem). Let ˛ 2 T d be a fixed diophantine vector
and G = Diff10 (R/Z). Does there exist k0; "0 depending only on ˛ such that for any
(˛; A) 2 SW 1(T d ;Diff10 (R/Z)) of the form (˛; A)(x; y) = (x + ˛; y + ˇ + f (x; y))

with kf kC k0 � "0 and �(˛; A) diophantine, the cocycle (˛; A) is C 1-reducible?

When G = Hom(S1) the answer is positive and is (the C 1-version of) a theorem of
Eliasson [1992] which has many consequences in the theory of quasi-periodic Schrödinger
operators. If one allows "0 to depend on � then the result is true and is essentially a (gen-
eralization of a) theorem by Arnold. Its proof is classical KAM theory. In Krikorian, J.
Wang, You, and Zhou [n.d.] a result of rotations-reducibility is proved where "0 depends
on � but with considerably weaker assumption on ˛ thanKAM theory usually allows (com-
pare with Avila, Fayad, and Krikorian [2011], Fayad and Krikorian [2009b] for stronger
results in the case of linear cocycles).
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Fig 1. Degenerate saddle acting as a stopping point Fig 2. Non-degenerate saddle that causes asymmetry

6 Mixing surface flows

6.1 Spectral type. Area preserving surface flows provide the lowest dimensional set-
ting in which it is interesting to study conservative systems. Such flows are sometimes
called multi-valued Hamiltonian flows to emphasize their relation with solid state physics
that was pointed out by Novikov [1982]. Via Poincaré sections, these flows are related
to special flows above circle rotations or more generally above IETs (Interval exchange
transformations). One can thus view them as time changes of translation flows on surfaces.

Katok and then Kochergin showed the absence of mixing of area preserving flows on
the two torus if they do not have singularities Katok [1975] and Kočergin [1972].

The simplest mixing examples are those with one (degenerate) singularity on the two
torus produced by Kochergin in the 1970s Kočergin [1975]. Kochergin flows are time
changes of linear flows on the two torus with an irrational slope and with a rest point (see
Figure 1).

Multi-valued Hamiltonian flows on higher genus surfaces can also be mixing (or mix-
ing on an open ergodic component) in the presence of non-degenerate saddle type singular-
ities that have some asymmetry (see Figure 2). Such flows are called Arnol’d flows and
their mixing property, conjectured by Arnol’d in Arnold [1991], was obtained by Y. G.
Sinaĭ and Khanin [1992] and in more generality by Kochergin [2003, 2004]. Note that
Ulcigrai proved in Ulcigrai [2011] that area preserving flows with non-degenerate saddle
singularities are generically not mixing (due to symmetry in the saddles).

Question 34. Study the spectral type and spectral multiplicity of mixing flows on surfaces.
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By spectral type of a flow fT t g we mean the spectral type of the associated Koopman
operator Ut : L2(M; �) : f ! f ı T t .

It was proved in Fayad, Forni, and Kanigowski [2016] that Kochergin flows with a
sufficiently strong power like singularity have for almost every slope a maximal spectral
type that is equivalent to Lebesgue measure. The study of the spectral multiplicity of these
flows is interesting in its relation to the Banach problem on the existence of a dynamical
system with simple Lebesgue spectrum. It is probable however that the spectral multiplic-
ity of Kochergin flows is infinite. Mixing reparametrizations of linear flows with simple
spectrumwere obtained in Fayad [2005] and it would be interesting to study their maximal
spectral type following Fayad, Forni, and Kanigowski [2016].

Question 35. Is it true that Arnol’dmixing flows have in general a purely singular spectral
type?

Arnol’d conjectured a power-like decay of correlation in the non-degenerate asymmet-
ric case, but the decay is more likely to be logarithmic, at least between general regular
observables or characteristic functions of regular sets such as balls or squares. Even a
lower bound on the decay of correlations is not sufficient to preclude absolute continuity
of the maximal spectral type. However, an approach based on slowly coalescent periodic
approximations as in Fayad [2006]may be explored in the aim of proving that the spectrum
is purely singular.

6.2 Spectral type of related systems.

Question 36. Prove that all IET have a purely singular maximal spectral type.

It is known that almost every IET, namely those that are not of constant type, are rigid.
It follows that their maximal spectral type is purely singular. For the remaining IETs,
partial rigidity was proven by Katok and used to show the absence of mixing, but proving
that the spectral type is purely singular appears to be more delicate.

Question 37. Prove that on T 3 there exists a real analytic strictly positive reparametriza-
tion of a minimal translation flow that has a Lebesgue maximal spectral type.

The difference with the Kochergin flows is that such flows would also be uniquely
ergodic. Mixing real analytic reparametrizations of linear flows on T 3 were obtained in
Fayad [2002].

6.3 Multiple mixing. The question of multiple mixing for mixing systems is one of the
oldest unsolved questions of ergodic theory.

Question 38. Are all mixing surface flows mixing of all orders?
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Arnold and Kochergin mixing conservative flows on surfaces stand as the main and
almost only natural class of mixing transformations for which higher order mixing has not
been established nor disproved in full generality. Under suitable arithmetic conditions on
their unique rotation vector, of full Lebesguemeasure in the first case and of full Hausdorff
dimension in the second, it was shown in Fayad and Kanigowski [2016] that these flows
are mixing of any order, Kanigowski, Kuaaga-Przymus, and Ulcigrai [n.d.] for flows on
higher genus surfaces).

7 Ergodic theory of diagonal actions on the space of lattices and
applications to metric Diophantine approximation

The Diophantine properties of linear forms of one or several variables evaluated at integer
points are intimately related to the divergence rates of some orbits under some diagonal
actions in the space of (linear or affine) lattices of Rn. This link is due to what can be
called the Dani correspondence principle between the small values of the linear forms
on one hand and the visits to the cusp of certain orbits of certain diagonal actions on the
space of lattices (affine lattices in the case of inhomogeneous linear forms). The ergodic
study of diagonal and unipotent actions on the space of lattices provides indeed an efficient
substitute to the continued fraction algorithm that played a crucial role in the rich metric
theory of Diophantine approximations in dimension 1. There is a number of important
contributions to number theory related to this principle and to progress in the theory of
homogeneous actions for example the surveys Dani [1994], Hasselblatt and Katok [2002],
Einsiedler and Lindenstrauss [2006], Eskin [2010], and Marklof [2006, 2007]). We men-
tion here a list of questions related to the statistical properties of Kronecker sequences that
can be approached using this same principle. More details and questions can be found in
Dolgopyat and Fayad [2015].

7.1 Kronecker sequences. Aquantitativemeasure of uniform distribution ofKronecker
sequences is given by the discrepancy function: for a set C � T d let

D(˛; x; C; N ) =

N �1X
n=0

1C(x + k˛) � N volume(C)

where (˛; x) 2 T d � T d and 1C is the characteristic function of the set C.
Uniform distribution of the sequence x + k˛ on T d is equivalent to the fact that, for

regular sets C; D(˛; x; C; N )/N ! 0 as N ! 1. A step further is the study of the rate
of convergence to 0 of D(˛; x; C; N )/N .
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Already for d = 1, it is clear that if ˛ 2 T �Q is fixed, the discrepancy D(˛; x; C; N )

displays an oscillatory behavior according to the position of N with respect to the denom-
inators of the best rational approximations of ˛. A great deal of work in Diophantine
approximation has been done on giving upper and lower bounds to the oscillations of the
discrepancy function (as a function of N ) in relation with the arithmetic properties of
˛ 2 T d .

In particular, let
D(˛; N ) = sup

Ω2B
D(˛; 0;Ω; N )

where the supremum is taken over all sets Ω in some natural class of sets B, for example
balls or boxes.

The case of (straight) boxes was extensively studied, and properties of the sequence
D(˛; N ) were obtained with a special emphasis on their relations with the Diophantine
approximation properties of ˛: In particular, Beck [1994] proves that when B is the set of
straight boxes in T d then for arbitrary positive increasing function �(n)

(7-4)
X

n

1

�(n)
< 1 ()

D(˛; N )

(lnN )d �(ln lnN )

is bounded for
almost every ˛ 2 T d :

In dimension d = 1, this result is the content of Khinchine theorems obtained in the
early 1920’s, and it follows easily from well-known results from the metrical theory of
continued fractions (see for example the introduction of Beck [ibid.]). The higher dimen-
sional case is significantly more difficult and many questions that are relatively easy to
settle in dimension 1 remain open. We mention some here and refer to Beck [1994] and
Kuipers and Niederreiter [1974] for others.

Question 39. Is it true that lim sup D(˛;N )

lnd N
> 0 for all ˛ 2 T d?

Question 40. Is it true that there exists ˛ such that lim sup D(˛;N )

lnd N
< +1?

The above questions and results can be asked for balls and more general convex sets.

Question 41. Is it true that for any � > 0, for almost every ˛ 2 T d and for any convex
set C in T d

D(˛; 0; C; N )

N
d�1
2d

+�

is bounded?

The bound in (7-4) focuses on how bad can the discrepancy become along a subse-
quence of N , for a fixed ˛ in a full measure set. In a sense, it deals with the worst case
scenario and do not capture the oscillations of the discrepancy.
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Another point of view is to let (˛; x) 2 T d � T d be random and have limit laws that
hold for all N . By random we mean distributed according to a smooth density on the tori.
For d = 1, this was done by Kesten who proved in the 1960s that the discrepancies of the
number of visits of the Kronecker sequence to an interval, normalized by � lnN (where �

depends on the interval but is constant if the length of the interval is irrational) converges
to a Cauchy distribution.

One can ask whether Kesten’s convergence remains valid for a fixed x. Another ques-
tion is what happens in higher dimension? In particular :

Question 42. Is it true that there exists � > 0, such that when C is a generic box in T d

and ˛ is uniformly distributed on T d , then D(˛;0;C;N )

�(lnN )d converges in distribution to the
Cauchy law?

In Dolgopyat and Fayad [2012] this was proved when x and the box C are also random
(a shape is randomized by applying small deformations distributed according to a smooth
measure on the space of isometries). It was shown in Dolgopyat and Fayad [2014] that in
the case of a strictly convex shape C � T d one has D(˛;x;rC;N )

r
d�1
2 N

d�1
2d

converges in distribution

to a non standard law when (˛; x) 2 T d � T d and r > 0 are random. The convex set rC
is the rescaled set from C by factor r around some fixed point inside C.

A semialgebraic setC inT d is a set defined by a finite number of algebraic inequalities.
This includes a diverse collection of sets such as balls, cubes, cylinders, simplexes etc.
Following Dolgopyat and Fayad [ibid.] we ask

Question 43. Assume C is semialgebraic. Does there exist a sequence aN = aN (C) such
that D(˛;x;C;N )

aN
converges in distribution when (x; ˛) 2 �T d � T d are random.

One can study the fluctuations of the ergodic sums above toral translations for functions
other from characteristic functions. The following is interesting for its connection with
number theory as well as with the ergodic theory of some natural classes of dynamical
systems such as surface flows.

Question 44. Study the behavior of the ergodic sums
PN

n1=1 A(x + n˛) for functions A

that are smooth except for a finite number of singularities.

The fluctuations can be studied for fixed ˛ or x, as well as for random values. One
should then try to classify the fluctuations according to the type of the singularities : power,
fractional power, logarithmic (we refer toMarklof [2007] andDolgopyat and Fayad [2015]
for more details and questions).

7.2 Higher dimensional actions. Replacing theZ action by translationwithZk actions
(see we get following Dolgopyat and Fayad [2015]
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Question 45. Study the ergodic sums
Pm

j=1

PN
nj =1 A(x +

Pm
j=1 ˛j nj ),

with (x; ˛1; : : : ; ˛m) 2 (T d )m+1.

In the case where A = �I �jI j and �I the indicator of an interval we get the following
possible extension of Kesten’s theorem to the statistical behavior of linear forms.

Question 46. Show that as x 2 T and ˛ 2 T m are random

1

�(lnN )d

mX
j=1

NX
nj =1

A(x +

mX
j=1

˛j nj )

converges in distribution to a Cauchy law for some � > 0.

One can also investigate analogues of the Shrinking Targets Theorems of Dolgopyat,
Fayad, and Vinogradov [2017] for Zk actions.

Question 47. Let l; l̂ : Rd ! R; be linear forms with random coefficients, Q : Rd ! R
be a positive definite quadratic form. Investigate limit theorems, after adequate renormal-
ization, for the number of solutions to

(a) fl(n)gQ(n) � c; jnj � N ;

(b) fl(n)gjl̂(n)j � c; jnj � N ;

(c) jl(n)Q(n)j � c; jnj � N ;

(d) jl(n)l̂(n)j < c; jnj � N:
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Abstract

Subadditive cocycles are the random version of subadditive sequences. They play
an important role in probability and ergodic theory, notably through Kingman’s the-
orem ensuring their almost sure convergence. We discuss a variation around King-
man’s theorem, showing that a subadditive cocycle is in fact almost additive at many
times. This result is motivated by the study of the iterates of deterministic or random
semicontractions on metric spaces, and implies the almost sure existence of a horo-
function determining the behavior at infinity of such a sequence. In turn, convergence
at infinity follows when the geometry of the space has some features of nonpositive
curvature.

The aim of this text is to present and put in perspective the results we have proved with
Anders Karlsson in the article Gouëzel and Karlsson [2015]. The topic of this article is the
study, in an ergodic theoretic context, of some subadditivity properties, and their relation-
ships with dynamical questions with a more geometric flavor, dealing with the asymptotic
behavior of random semicontractions on general metric spaces. This text is translated
from an article written in French on the occasion of the first congress of the French Mathe-
matical Society Gouëzel, Sébastien [2017]. The proof of the main ergodic-theoretic result
in Gouëzel and Karlsson [2015] has been completely formalized and checked in the com-
puter proof assistant Isabelle/HOL Gouëzel, Sébastien [2016].

1 Iteration of a semicontraction on Euclidean space

In order to explain the problems we want to consider, it is enlightening to start with a more
elementary example, showing how subadditivity techniques can be useful to understand
a deterministic semicontraction. In the next section, we will see how these results can be
extended to random semicontractions.
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Definition 1.1. A transformation T on a metric space X is a semicontraction if it is 1-
Lipschitz, i.e., if d (T (x); T (y)) 6 d (x; y) for all x; y 2 X .

If T is a semicontraction, its iterates also are. Hence, for any points x and y, the
distance between T n(x) and T n(y) remains uniformly bounded, by d (x; y) (where we
write T n = T ı � � � ı T ). As a consequence, the asymptotic behavior of T n(x) (up to
bounded error) is independent of x.

In the Euclidean space Rd , the first examples of semicontractions are given by trans-
lations (where T n(x) tends to infinity as nv + O(1), where v is the translation vector)
and homotheties with ratio 6 1 (for which T n(x) remains bounded). The following theo-
rem, proved in 1981 in Kohlberg and Neyman [1981] under slightly stronger assumptions,
shows that these examples are typical since there always exists an asymptotic translation
vector. The proof we give is due to Karlsson [2001].

Theorem 1.2. Consider a semicontraction T : X ! X on a subset X of Euclidean space
Rd . Then there exists a vector v such that T n(x)/n converges to v for all x 2 X .

Note that the asymptotic behavior of T n(x)/n does not depend on x, therefore it suf-
fices to prove the theorem for one single point x. Translating everything if necessary, we
can assume 0 2 X and take x = 0 to simplify notations.

The proof relies crucially on the subadditivity properties of the sequenceun = d (0; T n(0)).

Definition 1.3. A sequence (un)n2N of real numbers is subadditive if uk+` 6 uk + u`

for all k; `.

The main property of such a sequence is given in the next lemma, due to Fekete.

Lemma 1.4. Let un be a subadditive sequence. Then un/n converges, to Inffun/n; n >

0g 2 R [ f�1g.

Proof. Fix a positive integer N . It follows from the subadditivity of u that ukN+r 6
kuN +ur . Writing an arbitrary integer n as kN + r with r < N , dividing by n and taking
the limit, we get lim supun/n 6 uN /N . Hence, lim supun/n 6 InffuN /N g. The result
follows as lim infun/n > InffuN /N g.

Recalling the notation un = d (0; T n(0)), we have

uk+` = d (0; T k+`(0)) 6 d (0; T k(0)) + d (T k(0); T k(T `(0)))

6 d (0; T k(0)) + d (0; T `(0)) = uk + u`;
(1-1)

where we used the semicontractivity of T k . Hence, Fekete’s Lemma shows that un/n

converges to a limit A > 0. At time n, the point T n(0) is close to the sphere of radius
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An centered at 0. If A = 0, this proves Theorem 1.2. However, if A > 0, we should
also prove the directional convergence of T n(0). For this, we will use times where the
sequence u is almost additive, given by the following lemma.

Lemma 1.5. Let " > 0. Consider a subadditive sequence un such that un/n ! A 2 R.
Then there exist arbitrarily large integers n such that, for all 1 6 ` 6 n,

(1-2) un > un�` + (A � ")`:

As u` is of magnitude A`, this inequality can informally be read as un > un�`+u` �ı,
where ı is small. It entails additivity of the sequence at all intermediate times between 1

and n, up to a well controlled error.

Proof. The sequence un � (A � ")n is equivalent to "n, and tends therefore to infinity. In
particular, there exist arbitrarily large times n which are records for this sequence, beating
every previous value. For such an n, we have for ` 6 n the inequality un�` � (A � ")(n �

`) 6 un � (A � ")n, which is equivalent to the result we claim.

For "i = 2�i , let us consider a corresponding sequence of times ni given by Lemma 1.5,
tending to infinity. Let hi be a norm-1 linear form, equal to �kT ni (0)k on T ni (0). Then,
for all ` 6 ni ,

hi (T
`(0)) = hi (T

`(0) � T ni (0)) + hi (T
ni (0)) 6 kT `(0) � T ni (0)k � kT ni (0)k

6 kT ni �`(0)k � kT ni (0)k = uni �` � uni
6 �(A � "i )`;

where the last inequality follows from (1-2). In the inequality hi (T
`(0)) 6 �(A � "i )`

that we just obtained, it is remarkable that every mention of ni has disappeared.
Let us now consider h a limit (weak or strong, as we are in finite dimension) of the

sequence hi , it is a norm-1 linear form. As "i tends to 0 with i , we deduce from the above
the following inequality:

(1-3) for every integer `, h(T `(0)) 6 �A`:

This inequality entails that T `(0) belongs to the half-space directed by h, at distance
A` from the origin. As it also has essentially norm A`, we deduce that it is essentially
pointing in the direction of h (see Figure 1). This shows the convergence of T `(0)/`.
If one wants a more explicit argument, one can for instance consider a cluster value v of
T `(0)/`. It is a vector of normA, satisfying h(v) = �A. As h has norm 1, this determines
uniquely v thanks to the strict convexity of the Euclidean norm. Therefore, T `(0)/` has
a unique cluster value, and it converges. This concludes the proof of Theorem 1.2.
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A`

k�k 6 (A + ")`

h(�) 6 �A`

Figure 1: T `(0) belongs to the intersection of the dashed areas

Remark 1.6. The proof has not used finite-dimensionality (if one replaces strong limits
with weak limits). Therefore, the result is still true in Hilbert spaces, or more generally in
uniformly convex Banach spaces.

Remark 1.7. Most of the proof is valid in a general Banach space: there always exists
a linear form h with norm at most 1 such that h(T `(0)) 6 �A` for all ` (this already
implies non-trivial results, for instance the sequence (T `(0))`>0 is contained in a half-
space if A > 0, as the linear form h is necessarily nonzero in this case). The only point
where the proof breaks is the last argument, relying on strict convexity of the norm.

One may wonder if this is a limitation of the proof, or if the proof captures all the
relevant information. In fact, the above theorem is wrong without convexity assumptions
on the norm. Let us describe quickly a counter-example due to Kohlberg and Neyman
[1981], in R2 with the sup norm. Let us fix the two vectors v+ = (1; 1) and v� = (1; �1),
both of norm 1. We define a continuous path 
 : R+ ! R2 starting from 0, of the form

(t) = (t; '(t)), by following the direction v+ during a time S0, then the direction v�

during a time S1 � S0, then the direction v+ during a time S2 � S1, and so on. One
can ensure that the angle between 
(t) and the horizontal line fluctuates between ��/4

et �/4. As the slopes of v+ and v� are 1, the path 
 is an isometry from R+ onto its
image. Let h(x1; x2) = x1 be the first coordinate. Then the map T : x 7! 
(jh(x)j + 1)

is a semicontraction, as a composition of 1-Lipschitz functions. One checks easily that
T n(0) = 
(n). Therefore, by construction, T n(0)/n does not converge.
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2 Horofunctions

Many interesting geometric spaces, which are not vector spaces, have semicontractions.
We would like to have a version of Theorem 1.2 for these spaces. The conclusion of
the theorem can not be of the form “T n(x)/n is converging” as division by n makes no
sense. It is always true that d (T n(x); x)/n converges to a limit A > 0, by subadditivity.
However, the meaning to give to directional convergence is less obvious. Such theorems
already exist in different contexts. Let us mention for instance the following Denjoy-Wolff
Theorem Denjoy [1926] and Wolff [1926]:

Theorem 2.1. Let T be a holomorphic map from the unit disk D in C into itself. Then,
either T has a fixed point in the disk, or T n(0) converges to a point on the unit circle.

This statement is indeed a particular case of the previous discussion, as a holomorphic
map of the unit disk if a semicontraction for the hyperbolic distance.

In the general case, the counter-example from Remark 1.7 shows that one can not hope
to have convergence at infinity in a strong sense without additional assumptions of ge-
ometric nature on the space. If we follow the proof of Theorem 1.2 in the context of a
general metric space, we see that it is possible to make sense of all arguments up to the
inequality (1-3), in terms of horofunctions.

Definition 2.2. Let (X; d ) be a metric space with a basepoint x0. For x 2 X , we say that
the function hx : y 7! d (x; y) � d (x; x0) is an internal horofunction. A horofunction is
an element of the closure of the set of internal horofunctions, for the topology of pointwise
convergence.

For every x 2 X , the internal horofunction hx vanishes at x0 and it is 1-Lipschitz.
Therefore, hx(y) belongs to the compact interval [�d (y; x0); d (y; x0)]. As a product of
compact spaces is compact for the topology of pointwise convergence (i.e., the product
topology), we deduce that the set X

B of horofunctions, endowed with the topology of
pointwise convergence, is a compact space in which the set X (seen as the set of inter-
nal horofunctions) is dense. A horofunction vanishes at x0 and is 1-Lipschitz, as these
properties are preserved by pointwise limits.

In the same way that we distinguish between a point x 2 X and the corresponding
internal horofunction, we will distinguish by the notations between an abstract point � 2

X
B and the corresponding horofunction h� .

Remark 2.3. In general,X is not an open subset ofX
B , contrary to the usual requirements

for compactifications. For instance, consider for X a countable number of rays R+, all
coming from the same point x0, with the graph distance. If a sequence converges to infinity
along one of the rays (say the raywith index i ), then the sequence of corresponding internal
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horofunctions converges to an (external) horofunction hi . When i tends to infinity, one
checks easily that hi tends to hx0

.
On the other hand, if the space is proper (i.e., every closed ball B(x; r) is compact) and

geodesic (between any two points x and y, there is a geodesic, i.e., a path isometric to the
segment [0; d (x; y)]), then X

B is a compactification of X in the usual sense.

One should think of external horofunctions as analogues of linear forms, but on general
metric spaces. In the case of Euclidean space, the two notions coincide exactly. In geomet-
ric terms, what is interesting is not so much the horofunction h itself, than the sequence
of horoballs fx : h(x) 6 cg it defines, for c 2 R. This is a kind of family of half-spaces,
increasing with c, defining a direction at infinity when c ! �1.

The notion of horofunction is exactly the one we need to extend the above proof of
Theorem 1.2 to a general metric space:

Theorem 2.4 (Karlsson [2001]). Let T be a semicontraction on a metric space (X; d )

with a basepoint x0. Then d (T n(x0); x0)/n converges to a limit A > 0. Moreover, there
exists a horofunction h such that, for all ` 2 N, we have h(T `(x0)) 6 �A`.

Proof. The proof is exactly the same as the proof of the inequality (1-3), if one replaces the
notion of linear form (which relied on the linearity of the underlying space) with the notion
of horofunction. Indeed, let us define A as in the proof of this theorem, by subadditivity.
Let "i = 2�i , and consider an increasing sequence ni such that, for all ` 6 ni , holds
d (x0; T ni x0) > d (x0; T ni �`x0) + (A � "i )`, thanks to Lemma 1.5. Then, we use the
internal horofunction based at T ni x0. It satisfies, for ` 6 ni ,

hT ni (x0)(T
`(x0)) = d (T ni (x0); T `(x0)) � d (T ni (x0); x0)

6 d (T ni �`(x0); x0) � d (T ni (x0); x0)

6 �(A � "i )`:

This shows that the set of horofunctions satisfying h(T `(x0)) 6 �(A�"i )` for all ` 6 ni

is nonempty. Moreover, it is compact, and decreases with i . As the set of horofunctions
is compact, the intersection of these sets is nonempty. Any element h of this intersection
satisfies h(T `(x0)) 6 �A` for all `, as desired. (In the case where the space X is second-
countable, the topology on X

B is metrizable, and one can just take for h any cluster value
of the sequence hT ni (x0).)

This theorem entails that T `(x0) is in the intersection of the ball of radius (A+")` and
of the half-space fh 6 �A`g for ` large enough, as in Figure 1, with the difference that
the shapes of the ball and the half-space depend on the geometry of (X; d ). Deciding if
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one can deduce from this statement a stronger convergence at infinity will thus depend on
X . For instance, this is true in a uniformly convex Banach space, thanks to Remark 1.6,
but this is false in R2 with the sup norm, by Remark 1.7.

One can therefore say that Theorem 2.4 decouples the dynamics from the geometry,
capturing all the information about iterations of semicontractions on metric spaces, and
reducing the question of convergence at infinity to a purely geometric question on the
geometric shape of horofunctions.

Example 2.5. An important class of metric spaces is the CAT(0) spaces, i.e., metric
spaces (they do not have to be manifolds) which have non-positive curvature in an ex-
tended sense, see Bridson and Haefliger [1999]. In such a space, there is a natural geomet-
ric notion of boundary at infinity, which turns out to be in bijection with external horofunc-
tions. Moreover, the horofunctions can be described with sufficient precision to extend the
argument given above in Euclidean space: If a sequence satisfies d (xn; x0)/n ! A > 0

and h(xn)/n ! �A where h is a horofunction, then xn converges to the point at infinity
corresponding to h. This applies to xn = T n(x0)when T is a semicontraction. We obtain
a generalization of Theorem 1.2 to a much broader class of metric spaces.

A weakness of the previous result is that it does not give much when A = 0. For
instance, it does not seem to reprove Theorem 2.1 of Denjoy and Wolff when A = 0

(while the convergence to a point on the boundary follows directly when A > 0, as the
disk with the hyperbolic distance is CAT(0) – and even CAT(�1)). In fact, one can fully
recover Theorem 2.1 from Theorem 2.4 thanks to the following lemma due to Całka Całka
[1984], for which we give a direct proof.

Lemma 2.6. Let T be a semicontraction of a proper metric space. Let x0 2 X . If there
exists a subsequence ni alongwhich d (x0; T ni x0) stays bounded, then the whole sequence
d (x0; T nx0) is bounded.

Proof. Let O be the orbit of x0. It has a cluster point x1 by assumption. Let B = O \

B(x1; 1). By properness, B is covered by a finite number of balls Bi = O \ B(xi ; 1/2),
with xi 2 O. For each i , choose ki > 0 such that T ki (xi ) 2 B(x1; 1/2), this is possible
as x1 is a cluster point of O. Then T ki (Bi ) � B as T is a semicontraction.

Consider now n > max ki . Then

T n(B) �
[

i

T n(Bi ) =
[

i

T n�ki (T ki Bi ) �
[

i

T n�ki B �
[

m<n

T m(B):

We deduce by induction that T n(B) �
S

m6maxki
T m(B). Hence,

S
n T n(B) is within

bounded distance of x0. Finally, x0 has an iterate that enters B . All its subsequent iterates
remain in the above set.
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Proof of Theorem 2.1 of Denjoy-Wolff. We endow the unit disk with the hyperbolic dis-
tance, for which any holomorphic map is a semicontraction.

Assume first that T n(0) stays bounded for this distance. Then

K =
\
n

[
m>n

fT m(0)g

is a nonempty compact set, satisfying T (K) = K. The set K is contained in a unique
ball of minimal radius (this is a general property of nonpositive curvature, see Bridson
and Haefliger [1999, Proposition 2.7]) that we denote by B(x; r). Then K = T (K) is
included in B(T (x); r) as T is a semicontraction. By uniqueness, x = T (x), and T has
a fixed point.

Assume now that T n(0) is unbounded. By Lemma 2.6, it tends to infinity in the hyper-
bolic disk, i.e., to the unit circle S1 in C. Moreover, Theorem 2.4 shows that the sequence
T n(0) stays in a horoball fx : h(x) 6 0g for some horofunction h. In this setting,
horoballs are Euclidean disks with 0 in their boundary and tangent to the unit circle. In
particular, the closure of such a horoball meets S1 at a unique point, to which T n(0)must
converge.

3 Iteration of random semicontractions

The problem of interest to us is the composition of random semicontractions. Let us de-
scribe it in the simplest case. Fix a metric space (X; d ) with a basepoint x0, consider
a finite number of semicontractions T1; : : : ; TI on X , and fix a probability measure P0

on f1; : : : ; I g, i.e., a sequence of positive real numbers pi > 0 with
P

pi = 1. Then
we can describe a left random walk Ln on X as follows. At time 0, let L0 = x0. Then,
choose randomly a semicontraction T (1) among T1; : : : ; TI , taking Ti with probability pi ,
and jump to L1 = T (1)(x0). Then, choose T (2) like T (1), independently of the choices
already made, and jump to L2 = T (2)(L1). And so on. Formally,

Ln = T (n)
ı � � � ı T (1)(x0);

where the T (k) are random semicontractions, chosen independently according to the dis-
tribution P0. We should write T (k) = T (k)(!) and Ln = Ln(!) where ! is a random
parameter, living in a probability space which parameterizes all objects we use (here, we
can take Ω = f1; : : : ; I gN with the probability measure P = P ˝N

0 ). As usual in probabil-
ity theory, we will not write explicitly the parameter ! to get simpler formulas (but it will
reappear in the more general context we will describe later on).

One can also consider a right random walk Rn given by

Rn = T (1)
ı � � � ı T (n)(x0):
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Its geometric meaning is less clear at first sight, but its convergence behavior is much
better as we will explain now. In general, Ln can be very far away from Ln�1, while

d (Rn; Rn�1) = d (T (1)
ı � � � ı T (n)(x0); T (1)

ı � � � ı T (n�1)(x0)) 6 d (T (n)(x0); x0);

where the last inequality follows from the fact that T (1) ı � � � ıT (n�1) is a semicontraction.
Therefore, Rn is within bounded distance of Rn�1. The random walk Rn makes bounded
jumps, contrary to Ln.

Example 3.1. The isometries of the hyperbolic disk are of three type: elliptic (with a fixed
point inside the disk), parabolic (with a unique fixed point on the boundary, the dynamics
is a rotation on horospheres centered at this point) and loxodromic (with two fixed points
on the boundary, one attractive and one repulsive). Assume that all Ti are loxodromic
isometries, with attractive fixed point �i . We expect that, independently of the position of
Ln�1, the map T (n) = Tin sends it close to its attractive point �in . Hence, the sequence
Ln should tend towards the circle at infinity, but alternate between different possible limit
points since, almost surely, in will take every value in f1; : : : ; I g infinitely often when
n tends to infinity. In particular, we should not expect Ln to converge typically. On the
other hand, in Rn, the map that is applied last is always T (1), so that Rn should be close
to �i1 , up to an error depending on the next terms in the sequence. As the maps we are
composing are contractions on the boundary (away from their repulsive fixed point), the
influence of the n-th map should be exponentially small. Therefore, Rn should typically
be a Cauchy sequence in D, and it should converge (to a random limit, that depends on the
random parameter !). In this geometric context, this heuristic description is correct (the
almost sure convergence of Rn to a limit point is due to Furstenberg, in a broader context).

We will consider a more general setting, encompassing the previous one, in which the
semicontractions we compose are not any more independent from each other.

Let us consider a spaceΩwith a probability measure P and a measurable map U which
preserves the measure (i.e., for every measurable subset B , we have P (U �1B) = P (B)).
We will moreover assume that U is ergodic: any measurable set B with U �1(B) = B

has measure 0 or 1. Finally, let us fix a map ! 7! T (!) associating to ! 2 Ω a semicon-
traction T (!) on the space (X; d ), in a measurable way. We also require an integrability
assumption: we will always assume

R
d (x0; T (!)x0) dP (!) < 1. Then we can define

“random walks” on (X; d ) as follows. Writing x0 for a basepoint in X , let Ln(!) =

T (U n�1(!))ı � � � ıT (!)(x0) and Rn(!) = T (!)ı � � � ıT (U n�1!)(x0). We will mainly
be interested inRn(!), since this is the walk for which one can expect convergence results,
as explained in Example 3.1. Therefore, let us write T n(!) = T (!) ı � � � ı T (U n�1!).

This setting is a generalization of the case of random compositions: It is recovered
by taking Ω = f1; � � � I gN and P = P N

0 and U the left shift (given by U ((!k)k2N) =
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(!k+1)k2N) and T ((!k)k2N) = T!0
. The non-independent case is in general more deli-

cate to study since several probabilistic tools do not apply any more (for instance, Fursten-
berg’s proof in Example 3.1 relies on the martingale convergence theorem, which does
not hold in this broader context).

The setting we have studied in Sections 1 and 2, of a single semicontraction, is also a
particular case of the general setting, taking Ω reduced to a point. We can ask how much
of the results proved in this particular case extend to the general situation.

The first result (asymptotic behavior of the distance to the origin) follows directly from
an ergodic theorem, Kingman’s Theorem, which is the analogue of Fekete’s Lemma in an
ergodic context. We will come back later to this statement, given below as Theorem 4.2.
This theorem readily implies the following:

Proposition 3.2. There exists A > 0 such that d (x0; T n(!)x0)/n ! A for almost ev-
ery !.

To go further and obtain a directional convergence, we would like the analogue of
Theorem 2.4, i.e., obtain for almost every ! a horofunction h! describing the asymptotic
behavior of the walk. This result is considerably more delicate. We have proved it in full
generality with Karlsson in Gouëzel and Karlsson [2015], after several partial results:

Theorem 3.3 (Karlsson andMargulis [1999]). Let " > 0. For almost every !, there exists
a horofunction h! such that all cluster values of the sequence h!(T n(!)x0)/n belong to
the interval [�A; �A + "].

Theorem 3.4 (Karlsson and Ledrappier [2006]). Assume moreover that all the maps
T (!) are isometries of X . For almost every !, there exists a horofunction h! such that
h!(T n(!)x0)/n ! �A.

Theorem 3.5 (Gouëzel and Karlsson [2015]). Without further assumptions, for almost
every !, there exists a horofunction h! such that h!(T n(!)x0)/n ! �A.

The last theorem realizes the full decoupling between dynamics and geometry that we
already explained in Section 2 for the dynamics of a single semicontraction: Assume
that, for A > 0, a sequence satisfying d (xn; x0) ∼ An and h(xn) ∼ �An converges
necessarily towards a point in a given geometric compactification of X (this is purely a
geometric property of X and its compactification). Then we deduce that, for almost every
!, the sequence T n(!)x0 converges in the compactification. This is for instance the case
when X is CAT(0), as explained in Example 2.5. However, we note that, in the CAT(0)
case, Theorem 3.3 is sufficient to obtain this convergence (see Karlsson and Margulis
[1999]), thanks to additional geometric arguments (that can be completely avoided if one
uses Theorem 3.5).
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These theorems have many applications in different contexts. For instance, if one ap-
plies them to isometries of the symmetric space associated to GL(d; R) (which is CAT(0),
so that any of the above theorems would suffice), one can recover Oseledets’ Theorem on
random products of matrices. One can also obtain a random version of the theorem of
Denjoy and Wolff (Theorem 2.1), or applications to operator theory, to Teichmüller the-
ory. This note is not devoted to applications, we refer the reader to the articles cited above.
We rather want to explore a little bit the proofs of these statements: contrary to the intu-
ition, they have nothing geometric, they rely exclusively on subadditivity arguments (just
like the proofs in Sections 1 and 2).

This is not completely true for the proof given by Karlsson and Ledrappier of The-
orem 3.4: they take advantage of the fact that the maps are isometries by arguing that
isometries act on the set of horofunctions. One can then use a cocycle on this space, which
is geometric in spirit. However, this is true for the proofs of Theorems 3.3 et 3.5, that we
will sketch in the next section.

Remark 3.6. Theorem 3.5 constructs a horofunction that satisfiesh!(T n(!)x0) 6 �An+

o(n), which is weaker than the conclusion of Theorem 2.4 giving h(T nx0) 6 �An in the
case of a single semicontraction. It is easy to see that it is impossible to get such a strong
conclusion in the random case: it would for instance imply that the points T n(!)x0 would
almost surely stay in a horoball. This is not the case if the T (!) can go in every direction,
for instance if one chooses on R uniformly between the translation of 2 and the translation
of �1 (we have chosen two vectors with different norms to ensure that A is nonzero).

4 Ergodic theory and subadditivity

The analogue of subadditive sequences in a dynamical setting is given by the notion of
subadditive cocycle (this terminology is very bad, as a subadditive cocycle is not a cocycle,
the word subcocycle would certainly be better, but it is too late to change).

Definition 4.1. Let (Ω; P ) be a probability space and U : Ω ! Ω an ergodic map
preserving the measure. A measurable function u : N � Ω ! R is a subadditive cocycle
if, for all k; ` and for almost every !,

u(k + `; !) 6 u(k; !) + u(`; U k!):

A subadditive cocycle is integrable if
R

u+(1; !) dP (!) < 1, where u+ is the positive
part of u.

Let us consider for instance a family of semicontractions T (!) depending measurably
on ! 2 Ω. Let u(n; !) = d (x0; T n(!)(x0)). This is a subadditive cocycle: for all k; `
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and !, we have

u(k + `; !) = d (x0; T k+`(!)x0) = d (x0; T k(!)(T `(U k!)(x0)))

6 d (x0; T k(!)(x0)) + d (T k(!)(x0); T k(!)(T `(U k!)(x0)))

6 d (x0; T k(!)(x0)) + d (x0; T `(U k!)(x0)) = u(k; !) + u(`; U k!);

where we used the triangular inequality to go from the first to the second line, and the
fact that T k(!) is a semicontraction to go from the second to the third line. This is pre-
cisely the same computation as for one single semicontraction in (1-1), with an additional
dependency on ! that has to be written correctly.

In the same way that results on subadditive sequences (Lemmas 1.4 and 1.5) were
instrumental in the proofs of Sections 1 and 2 on the behavior of one semicontraction, we
will be able to analyze the behavior of random semicontractions if we have sufficiently
precise tools on subadditive cocycles.

The first central result in this direction is Kingman’s Theorem, replacing in this context
Fekete’s Lemma 1.4.

Theorem 4.2 (Kingman [1968]). Let u be an integrable subadditive cocycle. There exists
A 2 [�1; 1) such that, almost surely, u(n; !)/n ! A. Moreover, if A > �1, the con-
vergence also holds in L1. Finally, A is the limit of the sequence
(
R

u(n; !) dP (!))/n, which is convergent by subadditivity.

Since d (x0; T n(!)(x0)) is a subadditive cocycle when the T (!) are semicontractions,
this result implies Proposition 3.2, i.e., the almost sure convergence of
d (x0; T n(!)(x0))/n.

There are many proofs of Kingman’s Theorem in the literature. The simplest one is
probably the proof of Steele [1989], that we will sketch now.

Proof sketch. Consider the measurable function f (!) = lim infu(n; !)/n. The subad-
ditivity of u implies that f (!) 6 f (U!) almost surely. We deduce thanks to Poincaré
recurrence theorem that f (!) = f (U!) almost everywhere. Indeed, by this theorem,
almost every point in Va = f �1([�1; a]) comes back infinitely often to Va under the
iteration of U . A point with f (!) < f (U!) would belong to Va for each rational a in
(f (!); f (U!)) but can only come back to it if it belongs to a 0 measure set.

The function f , which is almost everywhere invariant, is almost everywhere constant
by ergodicity, equal to someA 2 [�1;+1). Assume for instanceA > �1, and take " >

0. Fix also N > 0. For almost every !, there exists an integer n(!) with u(n(!); !) 6
n(!)(A+ "), by definition of the inferior limit. Given a point !, we define a sequence of
times as follows. Start from n0 = 0. If n(U n0!) > N (i.e., we have to wait too long to
see the almost realization of the liminf), we are not patient enough and we let n1 = n0+1.
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Otherwise, set n1 = n0 + n(U n0!), so that u(n1 � n0; U n0!) 6 (n1 � n0)(A + "). We
continue this construction by induction, therefore partitioning the integers into intervals
[ni ; ni+1 � 1]. On most of them, the value of u is bounded by (ni+1 � ni ) � (A + ") by
construction. On the other ones, we do not have a good control, but their frequency is very
small if N is large.

Combining these two estimates and using the subadditivity of u to bound u(ni ; !) by
the sum of the contributions of each individual interval, we obtain u(ni ; !) 6 ni � (A +

") + oN (1)ni . This is bounded by ni � (A + 2") if N is large enough. Finally, we obtain
lim supu(n; !)/n 6 A + 2" (first along the subsequence ni , then for any integer as two
consecutive terms of this sequence are separated at most by N ). Letting " tend to 0, we
finally get lim supu(n; !)/n 6 A = lim infu(n; !)/n. This concludes the proof of the
almost sure convergence.

One can note that this proof looks very closely like the proof of Fekete’s Lemma 1.4.
The difference is that, instead of using subadditivity always with respect to the same time
N (which almost realizes the liminf), one has to use a time which depends on the point
we are currently at. Apart from this, the two proofs can be written completely in parallel.

To prove Theorem 3.5, we need a substitute for Lemma 1.5 if we want to use the proof
strategy of Section 1. The direct analogue of this lemma in our context would be the
following statement:

Let " > 0. Let u be an integrable subadditive cocycle, such that u(n; !)/n ! A >

�1 almost everywhere. For almost every !, there exist arbitrarily large integers n such
that, for all 1 6 ` 6 n, we have u(n; !) > u(n � `; U `(!)) + (A � ")`.

However, this statement is wrong. Take for instance u(n; !) =
Pn�1

k=0 v(U k!) for
some function v (this is an additive cocycle, whose limit A is equal to

R
v). If the above

statement holds, then taking ` = 1 we get v(!) > A � ". Letting " tend to 0, we get
v(!) > A =

R
v almost everywhere, which is wrong if v is not almost surely constant.

This argument shows that any valid statement has to allow some fluctuations for each `.
At the same time, it is crucial for the application to semicontractions to have a statement
which controls all intermediate times between 1 and n. The main result of Gouëzel and
Karlsson [2015] is the following theorem, compatible with these two constraints.

Theorem 4.3. Let u be an integrable subadditive cocycle, such that u(n; !)/n ! A >

�1 almost everywhere. For almost every !, there exists a sequence ı` ! 0 and arbitrar-
ily large integers n such that, for all 1 6 ` 6 n, we have u(n; !) > u(n � `; U `(!)) +

(A � ı`)`.

In a setting of random semicontractions, applying this theorem to the subadditive co-
cycle u(n; !) = d (x0; T n(!)(x0)) and following the arguments of Section 2, we obtain
readily Theorem 3.5.
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Note that the subadditivity of u ensures that u(n; !) 6 u(n � `; U `(!)) + u(`; !).
As u(`; !) ∼ A` by Kingman’s theorem, an upper bound u(n; !) 6 u(n � `; U `(!)) +

(A+ ı`)` is automatic. The difficulty in Theorem 4.3 is that, instead, we are looking after
a lower bound, ensuring that the subadditive cocycle u is in fact almost additive at all
intermediate times between 1 and n, for some good times n.

To prove this theorem, a first idea is to try to use the concept of records, at the heart
of the proof of Lemma 1.5. It would work very well to prove the existence of infinitely
many times n for which u(n; !) > u(n � `; !) + (A � ı`)` for all intermediate time `.
Unfortunately, this is not the statement we are interested in: we do not want a statement
involving u(n�`; !), but rather u(n�`; U `(!)) since this is the quantity that is relevant
for the application to semicontractions. We need a different argument.

The proof of Theorem 3.3 by Karlsson and Margulis in Karlsson and Margulis [1999]
relied on a statement which is slightly weaker than Theorem 4.3. In the same context, they
show that, given " > 0, there exist almost surely a time k(!) and arbitrarily large integers
n such that, for all k(!) 6 ` 6 n, we have u(n; !) > u(n�`; U `(!))+(A�")`. This is
enough to prove Theorem 3.3 by following the proof in Section 2. At first, one could think
that this statement is very close to Theorem 4.3: a strategy to prove this theorem could be to
start from the statement of Karlsson and Margulis for "i = 2�i , and then apply some kind
of diagonal argument to obtain times n that work simultaneously for "0; "1; : : : ; "N (with
N arbitrarily large). The problem with this approach is that the theorem of Karlsson and
Margulis is not quantitative: it does not guarantee that there are many good times (and, in
fact, their proof gives a very small set of good times). Typically, there is no integer which
is good both for "0 and "1, ruining the diagonal argument!

If we want to use this kind of approach, we need large sets of good times, when " is
fixed. This is what we will do to prove Theorem 4.3. The notion of largeness we will use
is the (lower) asymptotic density

DensB = lim inf
N !1

Card(B \ f1; : : : ; N g)

N
:

The main steps in the proof are the following. Going to the natural extension if nec-
essary, we can assume that U is invertible. Then we define a new subadditive cocycle
ũ(n; !0) = u(n; U �n!0) (it is subadditive forU �1). Its interest is that, writing!0 = U n!,
then

u(n; !) � u(n � `; U `!) = ũ(n; !0) � ũ(n � `; !0):

In the right hand side term, the same point !0 appears in both instances of ũ. This will
make it possible to use some combinatorial arguments that do not work directly for u. The
price to pay is that good times for ũ are not good times for u: there is an additional change
of variables, which spoils the argument if the information on the set of good times is
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only qualitative, but which works if we have quantitative estimates in terms of asymptotic
density for the set of good times.

Then, we show that ũ has many good times, with the following lemmas:

Lemma 4.4. Let ı > 0. Then there exists C > 0 such that, for almost every !,

Densfn 2 N : 8` 2 [1; n]; ũ(n; !) � ũ(n � `; !) > (A � C )`g > 1 � ı:

Lemma 4.5. Let ı > 0 and " > 0. Then there exists an integer k such that, for almost
every !,

Densfn 2 N : 8` 2 [k; n]; ũ(n; !) � ũ(n � `; !) > (A � ")`g > 1 � ı:

The second lemma is essentially a more precise variant of the first one. Their proofs
are essentially combinatorial, and borrow some ideas to the proof by Steele of Kingman’s
Theorem that we have described above.

As the intersection of two sets with asymptotic density close to 1 still has an asymptotic
density close to 1, we will then be able to intersect the sets of good times produced by
these lemmas (and, in the case of Lemma 4.5, for different values of "), while keeping sets
with large density. This makes it possible to implement the diagonal argument alluded to
earlier. After a final change of variables to go back to u, we finally obtain Theorem 4.3.
The details are rather delicate and technical, the interested reader is referred toGouëzel and
Karlsson [2015] for a full proof and to Gouëzel, Sébastien [2016] for a computer-checked
formalization of the proof.
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Abstract

We report on recent results about the dimension and smoothness properties of self-
similar sets and measures. Closely related to these are results on the linear projections
of such sets, and dually, their intersections with affine subspaces. We also discuss
recent progress on the the Bernoulli convolutions problem.

1 Introduction

Consider a random walk (Xn)
1
n=0 on Rd , started from a point, and with the transitions

given byXn+1 = �nXn, where (�n) is an independent sequence of similarity maps, chosen
according to a common fixed distribution p.

The long term behavior of (Xn) depends on the scaling properties of the �n. If they are
expanding, there is no interesting limit. But the other cases are quite interesting. When the
�n are isometries, and act in some sense irreducibly on Rd , both a central limit theorem
and local limit theorem hold, i.e. (Xn � EXn)/n

d/2 converges in law to a Gaussian,
and Xn � EXn converges to Lebesgue measure on bounded open sets Tutubalin [1967],
Gorostiza [1973], Roynette [1974], and P. Varjú [2016]. Thus, the limiting behavior is
universal, and Xn spreads out “as much as possible”.

The remaining case, namely, when the �n contract, is our focus here. Then Xn con-
verges in law (without any normalization) to a measure �, which does not depend on the
starting pointX0, but very strongly depends on the step distribution p. An important case
is when p is finitely supported, in which case � is called a self-similar measure, and its
topological support, which is the set of accumulation points of any orbit of the semigroup
generated by suppp, is called a self-similar set.

Research supported by NSF grant 0901534, ISF grant 1409/11, and ERC grant 306494. Parts of the work was
carried out during a visit to Microsoft Research, Redmond, WA.
MSC2010: primary 28A80; secondary 37C45, 37F35, 11P70.
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Many mathematical problems surround self-similar sets and measures, and in this pa-
per we survey some of the recent progress on them. Perhaps the most natural problem is
to determine the dimension, and, if applicable, smoothness, of �. Although there is no
universal limiting distribution as in the CLT, a weaker universal principle is believed to
apply: namely, that � should be “as spread out as possible” given the constraints imposed
by the amount of contraction in the system, and given possible algebraic constraints, such
as being trapped in a lower-dimensional subspace. This principle – that in algebraic set-
tings, dynamical processes tend to spread out as much as the algebraic constraints allow
– has many counterparts, such as rigidity theorems for unipotent flows and higher rank
diagonal actions on homogeneous spaces (e.g. Ratner [1991b,a], Margulis and Tomanov
[1994], and Ratner [1995], see also Lindenstrauss [2010])), and stiffness of random walks
on homogeneous spaces (e.g. Bourgain, Furman, Lindenstrauss, and Mozes [2007] and
Benoist and Quint [2009]).

Self-similar sets and measures are also natural examples of “fractal” sets; they pos-
sesses a rich set of symmetries, and a natural hierarchical structure. This has motivated
a number of longstanding conjectures about the geometry of such sets and measures, and
specifically, about the dimension of their linear images and their intersections with affine
subspaces. Many of these conjectures are now confirmed, as we shall describe below.

Finally, we devote some time to the special case of Bernoulli convolutions, which is a
problem with strong number-theoretic connections. This problem also has seen dramatic
progress in the past few years.

Due to space constraints, we have omitted many topics, and kept to a minimum the
discussion of classical results, except where directly relevant. A more complete picture
can be found in the references.

The plan of the paper is as follows. We discuss the dimension problem for self-similar
sets and measures in Section 2;. The Bernoulli convolutions problem in Section 3; and
projections and slices in Section 4.

2 Self-similar sets and measures

Self-similar sets and measures are the prototypical fractals; the simplest example is the
middle-1/3 Cantor set and the Cantor-Lebesgue measure, which arise from the system of
contractions '0(x) = 1

3
x and '1(x) = 1

3
x+ 2

3
, taken with equal probabilities. In general,

self-similar sets and measures are made up of copies of themselves, just as the Cantor set
does. This is most evident using Hutchinson’s construction Hutchinson [1981], which we
specialize to our setting.

An iterated function system will mean a finite family Φ = f'i gi2Λ of contracting sim-
ilarity maps of Rd . A self similar set is the attractor of Φ, that is, the unique non-empty



DIMENSION THEORY OF SELF-SIMILAR SETS AND MEASURES 1969

compact set X = XΦ satisfying

(1) X =
[
i2Λ

'i (X)

The self-similar measure determined by Φ = f'i gi2Λ and a probability vector p =

(pi )i2Λ (which we think of as a measure on Φ) is the unique Borel probability measure
� = �Φ;p satisfying

(2) � =
X
i2Λ

pi � 'i�

where '� = � ı '�1 is the push-forward measure. When p is strictly positive, the topo-
logical support supp� of � is X .

A similarity has the form '(x) = rUx + b where r > 0, U is an orthogonal matrix,
and b 2 Rd . We call r the contraction, U the orthogonal part, and b the translation part
of ' , respectively. We say that Φ, X or � are self-homothetic if the 'i are homotheties,
i.e. the Ui are trivial; uniformly contracting if 'i all have the same contraction ratio; and
have uniform rotations if the 'i all have the same orthogonal parts. Also, Φ is algebraic
if all coefficients defining 'i are algebraic.

By definition, X and � are made up of smaller copies of themselves, and by iterating
the identities (1) and (2) one gets such a representation at arbitrarily small scales. For
a sequence i = i1 : : : in 2 Λn it is convenient to denote 'i = 'i1 ı : : : ı 'in and pi =
pi1 �pi2 �: : : �pin . Note that the contraction tends to 0 exponentially as n ! 1. For i 2 Λn,
we call 'iX and 'i� generation-n cylinders. These are the small-scale copies alluded to
above, with the corresponding representation X =

S
i2Λn 'iX and � =

P
i2Λn pi � 'i�.

The last identity shows that the definition above coincides with the earlier description
using random walks: For i 2 Λn, the diameter of the support of 'i� converges uniformly
to zero as n ! 1, so the identity� =

P
i2Λn pi �'i� implies that� is the limit distribution

of
P

i2Λn pi � ı'ix for every x 2 supp�. The last measure is just the distribution of the
random walk from the introduction, started from x.

2.1 Preliminaries on dimension. We denote by dim(�) the Hausdorff dimension for
sets, and the lower Hausdorff dimension of Borel probability measures, defined by

dim� = inffdimE : �(E) > 0g

Hs denotes s-dimensional Hausdorff measure. Absolute continuity (a.c.) is with respect
to Lebesgue measure.

There are many other notions of dimension which in general disagree, but for self-
similar sets and measures most of them coincide. Specifically, Falconer [1989] proved
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that self-similar sets have equal Hausdorff and box dimensions. For self-similar measures,
Feng and Hu [2009] proved that a self-similar measure is exact dimensional, meaning that
for ˛ = dim�, as r ! 0 we have

(3) �(Br(x)) = r˛(1+o(1)) for �-a.e. x

(non-uniformly in x).
With regard to smoothness of self-similar measures, in the special case of infinite con-

volutions it is a classical result of Jessen and Wintner [1935] that the measure is of pure
type, i.e. is either singular with respect to Lebesgue, or absolutely continuous with respect
to it. This is true for all self-similar measures, and is a consequence of Kolmogorov’s zero-
one law.

2.2 Similarity and Lyapunov dimension. In order to estimate the dimension of a set
or measure, one must construct efficient covers of it, or estimate the mass of sets of small
diameter. Self-similar sets and measures come equipped with the natural covers given
by the cylinder sets of a given generation, or of a given approximate diameter. Counting
cylinder sets, one arrives at the following estimates for the dimension:

• The similarity dimension is the unique s = s(Φ) � 0 satisfying
P
rs

i = 1, where
ri is the contraction constant of 'i .

• The Lyapunov dimension of Φ and a probability vector p = (pi )i2Λ is s(Φ; p) =
H (p)/�(p), where H (p) = �

P
pi logpi is the Shannon entropy of p, and

�(p) = �
P
pi log ri is the asymptotic contraction, i.e. Lyapunov exponent, of

the associate random product.

Note that s(Φ; p) is maximal when p = (rs
i )i2Λ (with s = s(Φ)), and then the similarity

and Lyapunov dimensions coincide: s(Φ; p) = s(Φ).
These estimates ignore the possibility of coincidences between cylinders. When cylin-

ders of the same generation intersect we say that the system has overlaps; it has exact
overlaps if there exist finite sequences i; j 2 Λ� such that 'i = 'j, or in other words, if
the semigroup generated by Φ is not freely generated by it. If this happens, then without
loss of generality we can assume that i; j have the same length n (otherwise replace them
with ij and ji), and if such pairs exist for some n, then they exist for all large enough n.

In this generality, Hutchinson [1981] was the first to show that dimX � s(Φ) and
dim� � s(Φ; p). Furthermore, these are equalities if we assume that there are only mild
overlaps. Specifically, Φ is said to satisfy the open set condition (OSC) if there exists an
open non-empty set U such that 'iU � U for all i 2 Λ and 'iU \ 'jU = ¿ for all
i ¤ j . A special case of this is when the first generation cylinders are disjoint, which
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is called the strong separation condition (SSC). The OSC allows overlaps, but it implies
that the overlaps have bounded multiplicity.

Theorem 2.1 (Hutchinson [ibid.]). Suppose Φ = f'i gi2Λ is an IFS in Rd satisfying the
OSC. Then dimXΦ = s(Φ) and dim�Φ;p = s(Φ; p) for every p. Furthermore, writing
s = s(Φ), we have 0 < Hs(X) < 1, and HsjXΦ

is equivalent to the self-similar measure
defined by p = (rs

i )i2Λ.

In fact, for s = s(Φ), Falconer [1989] showed that Hs(X) < 1 always holds. In
general Hs can vanish on X ; Schief [1994] (following some special cases Kenyon [1997]
and Bandt and Graf [1992]) showed that Hs(X) > 0 for s = s(Φ) is exactly equivalent
to the OSC.

It must be emphasized that the OSC allows only “minor” overlaps between cylinders,
and since dimX � d for X � Rd , by Theorem 2.1, the OSC implies s(Φ) � d . There
exist IFSs with s(Φ) > d , e.g. one can take an IFS Φn = f'i g

n
i=1 on R with 'i (x) =

1
2
x + i . The attractor is an interval, but s(Φn) = logn/ log 2. In any case, the dimension
d of the ambient space Rd is also an upper bound on dimension, so whether or not the
OSC holds, we have

dimX � minfd; s(Φ)g(4)
dim� � minfd; sp(Φ)g(5)

We say that X or � exhibits dimension drop if the corresponding inequality above is
strict. The principle way dimension drop occurs is if there are exact overlaps. Indeed,
suppose dimX < d and i; j 2 Λn are distinct with 'i = 'j. Let Φn = f' : u 2 Λng.
Then a short calculation shows that s(Φn) < s(Φ). SinceX is also the attractor of Φn, we
get dimX � minfd; s(Φn)g < minfd; s(Φ)g, and we have dimension drop.

2.3 The overlaps conjecture, and what we know about it. In this section we special-
ize to R, where exact overlaps are the only known mechanism that leads to dimension
drop. The next conjecture is partly folklore. It seems to have first appeared in general
form in Simon [1996].

Conjecture 2.2. In R, dimension drop occurs only in the presence of exact overlaps.

Thus, non-exact overlaps should not lead to dimension drop. By Theorem 2.1, we
know that minor overlaps can indeed be tolerated. Other examples come from parametric
families such as the f0; 1; 3g-problem, which concerns the attractor of the IFSΦ� = fx 7!

�x ; x 7! �x+1 ; x 7! �x+3g. There are only countably many parameters �with exact
overlaps, and Pollicott and Simon showed that for a.e. � 2 [ 1

3
; 1
2
], there is no dimension

drop, see also Keane, Smorodinsky, and Solomyak [1995].
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To go further we must quantify the amount of overlap. Define the distance d (�; �) be-
tween similarities '(x) = ax + b and '0(x) = a0x + b0 by

(6) d ('; '0) = jb � b0
j + j log a � log a0

j

Alternatively, one can take any left- or right-invariant Riemannian metric on the group of
similarities, or the operator norm on the standard embedding of the group into GL2(R).
These metrics are not equivalent, but are mutually bounded up to a power distortion, which
makes them equivalent for the purpose of what follows.

Given an IFS Φ = f'i gi2Λ of similarities, let

∆n = minfd ('i; 'j) : i; j 2 Λn ; i ¤ jg

There are exact overlaps if and only if∆n = 0 for some n (and hence all large enough n),
and contraction implies that 0 � ∆n � rn for some 0 < r < 1. However, the decay of∆n

generally need not be faster than exponential. We say that Φ is exponentially separated if
there is a constant c > 0 such that∆n � cn for all n.

Theorem 2.3 (Hochman [2014]). Let Φ be an IFS in R, let � = �Φ;p be the self-similar
measure, and write s = s(Φ; p). Then either dim� = minf1; sg, or else ∆n ! 0 super-
exponentially. The same statement holds for sets.1

Thus, exponential separation implies no dimension drop. We do not know of any IFS
without exact overlaps for which 1

n
log∆n ! 1, and it is conceivable that they simply

do not exist, which would prove the conjecture.

Corollary 2.4. Within the class of algebraic IFSs on R, Conjecture 2.2 is true.

Indeed, one can choose the metric so that d ('; ) is a polynomial in the coefficients
of '; , and then d ('i1 : : : 'in ; 'j1 : : :  jn

) is a polynomial of degree O(n) in the coeffi-
cients of the 'i . If these are algebraic, such an expression either vanishes, or is bounded
below by an exponential cn for some c > 0 (see Garsia’s Lemma 3.4 below).

When exact overlaps exist, one can get a better bound than the Lyapunov dimension
by taking the number of exact overlaps into account. Given Φ and p, let (�n)

1
n=1 be i.i.d.

elements of Φ with distribution p, and let �n = �n�n�1 : : : �1 be the associated random
walk on the similarity group. The random walk entropy of p is defined by

(7) hRW (p) = lim
n!1

1

n
H (�n)

1The statement for sets follows from the measure case applied to �Φ;p , with p chosen so that s(Φ; p) =
s(Φ). The same remark holds for many theorems in the sequel.
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whereH (�n) is the Shannon entropy of the discrete random variable �n. The limit exists
by sub-additivity, and ifΦ� is freely generated byΦ, then hRW (p) = H (p). Correspond-
ing to (5) we have the bound

dim� � minf1;
hRW (p)

�(p)
g

The following is a reasonable extension of Conjecture 2.2:

Conjecture 2.5. If � = �Φ;p is a self-similar measure on R then

dim� = minf1; hRW (p)/�(p)g:

The next theorem is proved by the same argument as Theorem 2.3. The statement first
appeared in P. Varjú [2016].

Theorem 2.6. Let Φ = f'i g be an IFS of similarities in R, and suppose that there is a
c > 0 such that for every i; j 2 Λn either 'i = 'j or d ('i; 'j) � cn. Let � = �Φ;p be the
self-similar measure for Φ. Then dim� = minf1; hRW (p)/�(p)g.

An important strengthening of these results is obtained by replacing Hausdorff dimen-
sion withLq-dimension. To define it, letDn denote the dyadic partition ofR into intervals
[k/2n; (k + 1)/2n), k 2 Z, and for q > 1 set

D(�; q) = lim
n!1

�
log

P
I2Dn

�(I )q

(q � 1)n

The limit is known to exist for self-similar measures Peres and Solomyak [2000], and for
such measures, dim� = limq&1D�(q). The function q 7! D(�; q) is non-increasing in
q, and has the following property: for every ˛ < D(�; q), there is a constant C such that
�(Br(x)) � C � r(1�1/q)˛ , for every x 2 R. This is in stronger than (3), which holds only
for �-a.e. x, and non-uniformly.

The Lq-analog of the Lyapunov dimension for a self-similar measure � = �Φ;p , is the
solution s = sq(Φ; p) of the equation

P
p

q
i jri j

(q�1)s = 1, where ri are the contraction
ratios of the maps in Φ. Note that if p = (r

s(Φ)
i )i2Λ, then sq(Φ; p) = s(Φ; p) = s(Φ), is

independently of q. We always haveD�(q) � sq(Φ; p).

Theorem 2.7 (Shmerkin [2016]). Let Φ = f'i g be an IFS on R and p = (r
s(Φ)
i ). Let

� = �Φ;p and s = s(Φ; p) = s(Φ). Then either D�(q) = s for all q > 1, or else
∆n ! 0 super-exponentially.

In particular, if Φ is exponentially separated, then for every t < minf1; s(Φ)g, there is
a C = C (t) > 0 such that �(Br(x)) � Cr t for all x 2 X and all r > 0.
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2.4 Some ideas from the proofs. The main idea is, very roughly, as follows. A self-
similar measure � on R can be written, locally, as a convolution of a scaled copy of itself
with another measure � whose “dimension” (in some finitary sense) is proportional to the
difference s(Φ; p)�dim�. But convolution is a smoothing operation, and��� has larger
dimension than � if the dimension of � is positive. Hence, if there were dimension drop,
at small scales � would be smoother than itself, which is impossible.

In order to give even a slightly more comprehensive sketch, some preparation is needed.
First, by “smoothing”, wemean that convolvingmeasures generally results inmore “spread
out” measures than we started with. The discussion below is very much in the spirit of ad-
ditive combinatorics, in which one asks when the sum A+B of two finite sets A;B � Z
is substantially larger than A. “Larger” is often interpreted as jA + Bj > C jAj where
C > 0 is fixed and the sets are large, as in Freiman’s theorem (e.g. Tao and Vu [2006]);
but in our setting we mean jA+Bj � jAj1+ı . Such a growth condition is closely related
to the work of several authors on the sum-product phenomenon, notably Bourgain [2003]
and Bourgain [2010]. The version used in Theorem 2.10 and presented below is from
Hochman [2014]. See also the remark at the end of the section.

We measure how “spread out” a measure is using entropy at a finite scale. Recall that
Dn is the level-n dyadic partition of R, whose atoms are the intervals [k/2n; (2 + 1)/2n).
The scale-n entropy of a probability measure � is the Shannon entropy H (�;Dn) =

�
P

I2Dn
�(I ) log2 �(I ) of � with respect to Dn. We refer to Cover and Thomas [2006]

for a more thorough introduction to entropy.
Scale-n entropy is a discretized substitute for dimension, and as a first approximation,

one can think of it as the logarithm of the number of atoms of Dn with non-trivial � mass.
In particular if � is exact dimensional, then

(8)
1

n
H (�;Dn) ! dim �

For m > n let H (�;DmjDn) = H (�;Dm) � H (�;Dn) be the conditional entropy, i.e.
the entropy increase from scale 2�n to 2�m. Assuming (8), we have

1

m � n
H (�;DmjDn) = dim � + o(1) as n ! 1 and m � n ! 1

In general, scale-n does not decrease under convolution,2 and for generic measures it
increases as much as possible, i.e. H (� � �;Dn) � H (�;Dn) + H (�;Dn) assuming
that the right hand side does not exceed one. There certainly are exceptions, even cases
in which H (� � �) � H (�). But for self-similar measures, some substantial entropy
increase must occur.

2Actually it could decrease but only by an additive constant, which is negligible with our 1/n-normalization.
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Theorem 2.8 (Hochman [2014]). For every " > 0 there exists ı > 0 such that the fol-
lowing holds. Let � be a self-similar measure on R with dim� < 1 � ", and let � be a
probability measure. Then for n large enough (depending on " and �, but not � ),

H (�;Dn) > "n H) H (� � �;Dn) > H (�;Dn) + ın

This is a consequence of a more general result3 describing the structure of pairs of
measures �; � for whichH (� ��;Dn) � H (�;Dn). It says, roughly, that in this case each
scale 2�i , 1 � i � n, is of one of two types: either � looks approximately uniform (like
Lebesguemeasure) on 2�i -balls centered at �-typical points; or � looks approximately like
an atomic measure on 2�i -balls centered at � -typical points. The theorem above follows
because self similar measures of dimension < 1 are highly homogeneous and don’t look
uniform on essentially any ball, while ifH (�;Dn) � "n then there is a positive propostion
of balls on which � does not look atomic. For the full statement see Hochman [ibid.].

We return to the proof of Theorem 2.3; we assume for contradiction that there is both
exponential separation and dimension drop. For simplicity, assume that all the maps in
Φ = f'i g have the same contraction ratio r , and given n write

n0 = bn log(1/r)c

so that Dn0 contains atoms of diameter roughly rn. For i 2 Λn the map 'i contracts by rn,
and all the generation-n cylinders appearing in the representation � =

P
i2Λn pi � 'i� are

translates of each other, so this identity can be re-written as a convolution

(9) � = �(n)
� Srn�

where �(n) =
P

i2Λn pi � ı'i (0), and Stx = tx is the scaling operator. Because Srn� is
supported on a set of diameter O(rn) = O(2�n0

), it contributes to scale-n0 entropy only
O(1), so

(10) H (�(n);Dn0) = H (�;Dn0) +O(1) = n0 dim�+ o(n)

Next, chop the measure �(n) into a convex combination

�(n) =
X

I2Dn0

wI � (�
(n)
I )

where �(n)
I is �(n) conditioned on I . Inserting this in (9) we get

(11) � =
X

I2Dn0

wI � �
(n)
I � Srn�

3For related work on entropy of convolutions, assuming less growth, see Tao Hochman [2014] and Madiman
[2008]. More closely related is Bourgain’s work on sumsets, Bourgain [2003] and Bourgain [2010].
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Since Φ is exponentially separated there is a constant a such that every pair of atoms
of �(n) is ran-separated, and so lie in different atoms of Dan0 . A direct calculation shows
that

H (�(n);Dan0) = �
X
i2Λn

pi logpi = nH (p) = n0 dim�+ "n

where " = H (p)�dim� � log(1/r) > 0 because of dimension drop. Combined with (10)
this gives

(12) H (�(n);Dan0 jDn0) = "n+ o(n)

By classical identities, this entropy is the average of the entropies of �(n)
I , so for a �-large

proportion of I 2 Dn0 ,

H (�
(n)
I ;Dan0 jDn0) �

"

2
n+ o(n)

Thus,

(a � 1)n0
� dim� = H (�;Dan0 jDn0)

�
X

I2Dn0

wI �H (�
(n)
I � Srn�;Dan0 jDn0)

=
X

I2Dn0

wI �H (�
(n)
I � Srn�;Dan0) � o(n)

� (a � 1)n0
� dim�+ ın � o(n)

where in the first inequality we plugged in the identity (11) and used concavity of the
entropy function, in the next line we eliminated the conditioning because �(n)

I � Srn� is
supported on O(1) atoms of Dn0 , and in the last line, we applied Theorem 2.8 together
with (12). This is the desired contradiction.

Theorem 2.7 is proved using a very similar philosophy, but with the Lq-dimension of
finite-scale approximations replacing entropy as the measure of smoothness. We refer the
reader to the original paper for details.

2.5 Higher dimensions. In higher dimensions, Conjecture 2.2 is false in its stated form.
To see this start with two IFSs, Φ1 andΦ2, on R with the same contraction ratios. Assume
that s(Φ1) > 1 and the attractor X1 of Φ1 is an interval, and the attractor X2 of Φ2

satisfies dimX2 = s(Φ2). We can also assume neither Φ1 nor Φ2 have exact overlaps.
Let Φ = Φ1 � Φ2 be the IFS consisting of all maps of the form x 7! ('(x);  (x)) with
' 2 Φ1 and  2 Φ2. Then Φ has attractor X1 � X2 of dimension dimX1 + dimX2 <

s(Φ1) + s(Φ2) = s(Φ), and Φ has no exact overlaps.
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In the example, there are horizontal lines intersecting X in an interval (a copy of X1)
and the family of such lines is preserved by Φ. It seems likely that this is the only new
phenomenon possible in higher dimensions. More precisely, let us say that a set X has
full slices on a linear subspace V � Rd , if dimX \ (V + a) = dimV for some a 2

Rd . Similarly we say that a measure � has full slices on V if the system f�V
x gx2Rd of

conditional measure on parallel translates of V satisfies dim�V
x = dimV for �-a.e. x.

Finally, we say that V is linearly invariant under Φ = f'i g if UiV = V for all i , where
Ui is the linear part of 'i . We say that V is non-trivial if 0 < dimV < d .

Conjecture 2.9. Let X = XΦ and � = �Φ;p be a self-similar measure in Rd . Then
dimension drop forX implies that either there are exact overlaps, or there is a non-trivial
linearly invariant subspace V � Rd on which X has full slices, and the analogous state-
ment holds for �.

Define a metric d on the similarity group Aff(Rd ) of Rd using any of the metrics
described after Equation (6).

Theorem 2.10 (Hochman [2015]). Let � = �Φ;p be a self-similar measure in Rd with
Lyapunov dimension s. Then at least one of the following holds:

• dim� = minfd; s(Φ)g.

• ∆n ! 0 super-exponentially.

• There is a non-trivial linearly invariant subspace V � Rd on which � has full
slices.

In particular, if the linear parts of the maps 'i act irreducibly on Rd then dimension drop
implies∆n ! 0 super-exponentially. If additionally fUi g generate a free group and have
algebraic entries, then there is no dimension drop.

The same holds for the attractor.

The analogous statements for Lq dimension are at present not established, but we an-
ticipate that some version of them holds, at least in the case where the linear parts of the
contractions are homotheties.

In dimension d � 3 the orthogonal group is non-abelian, and the random walk asso-
ciated to the matrices Ai may have a spectral gap. Then a much stronger conclusion is
possible:

Theorem 2.11 (Lindenstrauss and Varjú [2016]). Let U1; : : : ; Uk 2 SO(d ) and p =

(p1; : : : ; pk) a probability vector. Suppose that the operator f 7!
Pk

i=1 pif ı Ui on
L2(SO(d )) has a spectral gap. Then there is a numberer < 1 such that for every choice



1978 MICHAEL HOCHMAN

er < r1; : : : ; rk < 1, and for every a1; : : : ; ak 2 Rd , the self similar measure with weights
p for the IFS friUi + ai g

k
i=1 is absolutely continuous with respect to Lebesgue measure

on Rd .

Contrasting this statement with the previous corollary, in the former we get dim� = d

as soon as s(Φ) > d , whereas in the latter we get absolute continuity when the contraction
is close enough to 1, but miss part of the potential parameter range. It is not known if this
additional assumption is necessary for the conclusion.

2.6 Parametric families. Many classical problems in geometric measure theory in-
volve parametric families of IFSs, e.g. the Bernoulli convolutions and projection prob-
lems discussed below, and the f0; 1; 3g-problem mentioned earlier. In these problems one
wants to show that dimension drop is rare in the parameter space.

To set notation, suppose that fΦt gt2I is a parametric family of IFSs on R, so 't
i (x) =

ri (t)(x � ai (t)) where ri : I ! (�1; 1) n f0g and ai : I ! R are given functions. For
infinite sequences i; j 2 ΛN set

∆i;j(t) = lim
n!1

't
i1:::in

(0) � 't
j1:::jn

(0)

It is clear that if Φt has exact overlaps then there exist i; j 2 ΛN with ∆i;j(t) = 0, but
∆i;j may certainly vanish also when there are non-exact overlaps. However, under an
analyticity and non-degeneracy assumption, the zeros of ∆i;j(�) will be isolated, and the
function will grow polynomially away from its zeros.4 Furthermore, by a compactness
argument, the rate is uniform. Also, assuming analyticity, lower bounds on ∆i;j can be
translated to lower bounds for j't

i1:::in
(0) � 't

j1:::jn
(0)j, and hence for d ('t

i1:::in
; 't

j1:::jn
).

From these ingredients one obtains efficient covers of the set of parameters for which Φt

is not exponentially separated. The end result of this analysis is the following.

Theorem 2.12 (Hochman [2014]). Let I � R be a compact interval, let r : I ! (�1; 1)n

f0g and ai : I ! R be real analytic, and let Φt = f'i;t gi2Λ be the associated parametric
family of IFSs, as above. Suppose that

8i; j 2 ΛN ( ∆i;j � 0 on I () i = j ) :

Then the set of t 2 I for which there is dimension drop has Hausdorff and packing dimen-
sion 0.

4In contrast, the classical transversality method for parametric families depends on showing that∆i;j grows
linearly away from its zeros, i.e., it requires one to show that all zeros are simple. When this holds one often
gets stronger conclusions, e.g. absolute continuity of the measures outside a small (though generally not zero-
dimensional) set of parameters. But it is much harder to establish that the zeros are simple, and not always true.
For more information we refer to Peres, Schlag, and Solomyak [2000] and Peres and Schlag [2000]. A major
benefit of the method above is that polynomial growth is automatic.
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Analogous statements hold inRd , giving, under some assumptions, that the exceptional
parameters have dimension � d � 1. For details see Hochman [2015].

2.7 Further developments. The same questions can be asked about attractors of non-
linear IFSs. The only such case where a version of Theorem 2.3 is known is for linear
fractional transformations Hochman and Solomyak [2017]. Little is known beyond this
case.

Another natural problem is to extend the results to self-affine sets andmeasures, defined
in the same way but using affine maps rather than similarities. This area is developing
rapidly, and it seems likely that analogous results will be established there in the near
future.

Finally, we mention a result of Fraser, Henderson, Olson, and Robinson [2015], show-
ing that if a self-similar set in R does not have exact overlaps then its Assouad dimension
is one. This is a very weak notion of dimension, equal to the maximal dimension of any set
which is a Hausdorff limit of magnifications of X . It says nothing about dimX itself, but
it lends moral support to the idea that without exact overlaps, X is “as large as possible”.

3 Bernoulli convolutions

In the “supercritical” case s(Φ) > 1, Conjecture 2.2 has a stronger variant:

Conjecture 3.1. Let � = �Φ;p be a self-similar measure on R. If there are no exact
overlaps and5 s(Φ; p) > 1, then � is absolutely continuous with respect to Lebesgue
measure.

The main evidence supporting the conjecture comes from the study of parametric fam-
ilies, the primary example of which are Bernoulli convolutions. For 0 < � < 1 the
Bernoulli convolution with parameter � is the distribution �� of the real random vari-
able

P1

n=0 ˙�n, where the signs are chosen i.i.d. with P (+) = P (�) = 1
2
. The

name derives from the fact that �� can be written as the infinite convolution of the mea-
sures 1

2
(ı��n + ı�n), n = 0; 1; 2; : : :, but it is also a self-similar measure for the IFS

Φ� = f'˙1g, defined by assigning equal probabilities to each of the maps

(13) '˙1(x) = �x ˙ 1:

Let Λ = f˙1g. For i; j 2 Λn, the maps 'i; 'j contract by �n, so

d ('i; 'j) = j'i(0) � 'j(0)j = j

nX
k=0

(ik � jk)�
k
j

5By a theorem of Schief [1994], absolute continuity can fail in the “critical” case s(Φ; p) = 1.
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Hence, since ik � jk 2 f�2; 0; 2g, exact overlaps occur if and only if � is the root of a
polynomial in with coefficients �1; 0; 1. Write �(n)

�
for the distribution measure of the

finite sum
Pn

k=0 ˙�k .
The case � < 1

2
is simple from the point of view of dimension: Φ� satisfies the SSC

and dim �� = log�/ log(1/2). Also, �1/2 is uniform on [�2; 2].
Things are more interesting for � > 1

2
. Then the Lyapunov dimension is> 1, the attrac-

tor is an interval, and Φ� has overlaps. From Conjectures 2.2 and 3.1 one would expect
that �� is absolutely continuous (and dim �� = 1) unless there are exact overlaps. Thus,
we shall say that � is a.c.-exceptional or dim-exceptional, if �� is singular or dim �� < 1,
respectively. We denote the sets of these parameters by Eac and Edim.

It was Erdős who found the first, and so far only, exceptional parameters: if ��1 is a
Pisot number6 then � is a.c.-exceptional, and Garsia later showed that such � are also dim-
exceptional. Perhaps these are the only ones; some support for this is Salem’s theorem
that jb��(t)j ! 0 as t ! 1 if and only if ��1 is not Pisot Salem [1944].

3.1 Bounds on the size of the exceptional parameters. Much of the work on Bernou-
lli convolutions has focused on bounding the size of the set of exceptions. The work of
Erdős and Kahane implies that dim((a; 1) \ Eac) ! 0 as a % 1, and Erdős proved that
dim �� ! 1 as � ! 1 (see also Peres and Schlag [2000]).

A major step forward was the 1995 proof by Solomyak [1995] that �� is a.c. with
L2 density, for almost every � 2 ( 1

2
; 1). This was one of the early successes of the

transversality method. Some improvements, including some bounds on the dimension of
exceptions, were later obtained by Peres and Schlag [2000].

Theorem 2.12 leads to further improvements:

Theorem 3.2 (Hochman [2014]). dim �� = 1 outside a set of � of Hausdorff and packing
dimension 0.

Currently, these techniques don’t recover Solomyak’s theorem directly, but combined
with Fourier-theoretic information, Shmerkin managed to prove

Theorem 3.3 (Shmerkin [2014, 2016]). Outside a set of � of Hausdorff dimension 0, the
measure �� is absolutely continuous with density in Lp for all 1 � p < 1.

Here is the idea of the proof. Fix an integer k, and split the random sum as

(14)
1X

n=0

˙�n =
X

n=0 mod k

˙�kn +
X

n¤0 mod k

˙�n

6A Pisot number is an algebraic integer greater than one, all of whose conjugates lie in the interior of the unit
disk.
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The first term on the right has distribution ��k . Write ��k for the distribution of the second
term. Since the two series are mutually independent, we get �� = ��k � ��k . Next,
using an energy-theoretic argument, it is shown that the convolution will be absolutely
continuous provided that the Fourier transform b��k has power decay (i.e. jb��k (t)j �

t�c for some c = c(�) > 0) and dim ��k = 1. Now, a classical result of Erdős and
Kahane (see Peres, Schlag, and Solomyak [2000]) says that outside a zero-dimensional
set E 0 of parameters, the Fourier transform b��k indeed has power decay; on the other
hand, ��k is itself a parametric family of self-similar measures, and Theorem 2.12 implies
that there is dimension drop for a set E 00 of parameters of dimension zero. For � … E 00

we will have dim ��k = 1 whenever the Lyapunov dimension is � 1, which by a short
calculation happens when � 2 ((1/2)1�1/k ; 1). Thus, �� is absolutely continuous for
� 2 [(1/2)1�1/k ; 1] n (E 0 [E 00). Taking the union over k gives the claim.

In order to obtain densities in Lp , an analogous argument is carried out using Theo-
rem 2.7 instead of Theorem 2.3.

There remains a difference between Theorems 3.2 and 3.3. In the former, a parameter
is “good” if Φ� is exponentially separated, which gives new explicit examples, e.g. all
rational parameters. The set E 00 in the above is similarly explicit. But E 0 is completely
ineffective. Consequently, to get new examples of absolutely continuous �� requires other
methods, see Section 3.3.

3.2 Mahler measure. The Mahler measure of an algebraic number � is M� = jaj �Q
j�j>1 j�j where the product is over Galois conjugates � of �, and a is the leading coef-

ficient of its minimal polynomial. This is a standard measure of the size or complexity
of an algebraic number. It first appeared in connection with Bernoulli convolution in the
following lemma of Garsia:

Lemma 3.4 (Garsia [1962]). Let � > 1 be algebraic with conjugates �1; : : : ; �s ¤ �,
of which � lie on the unit circle. Let p(x) =

Pn
i=0 aix

i be an integer polynomial and
A = maxfjai jg. Then either p(�) = 0, or

jp(�)j �

Q
j�i j¤1 jj�i j � 1j

As(n+ 1)�
�Q

j�i j>1 j�i j

�n �
C�

As(n+ 1)�M n
�

In particular, any distinct atoms of the n-th approximation �(n)
�

of �� are separated by at
least C�((n+ 1)�M n

�
)�1.

Recently, Mahler measure has been related to the random walk entropy h� associated
to �� in Section 2.3:
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Theorem 3.5 (Breuillard and P. P. Varjú [2015]). There exists a constant c > 0 such that
for any algebraic number � 2 ( 1

2
; 1),

cminf1; logM�g � h� � minf1; logM�g

In particular, if � > minf2;M�g�c (for c a as in the theorem), then dim �� = 1. We do
not discuss the proof of the theorem here, the reader may consult Breuillard and P. P. Varjú
[ibid.].

3.3 Absolute continuity for algebraic parameters. By the identity �� = ��k � ��k ,
which follows from (14), �1/21/k = �1/2 � �1/2, hence, since �1/2 is the uniform measure
on an interval, �1/21/k is absolutely continuous. Garsia identified a less trivial class of
examples: those� such that��1 is an algebraic integer, � = 0 andM� = 2. Such numbers
are not roots of 0;˙1-polynomials, so

Pn
i=0 ˙�n takes 2n equally likely values, and by

Lemma 3.4 the values are c � 2�n-separated (for some c). This implies that �� = lim �(n)
�

is absolutely continuous. Until recently these were the only examples. We now have the
following, which gives many more. For example, it applies to every rational number close
enough to one in a manner depending on their denominator P. Varjú [2016, Section 1.3.1].

Theorem 3.6 (P. Varjú [ibid.]). For every " > 0 there is a c > 0 such such if � 2 ( 1
2
; 1)

is algebraic and satisfies

� > 1 � cminflogM�; (logM�)
�(1�")

g

Then �� is absolutely continuous with density in L logL.

The proof relies on the following, which goes back to Garsia:

Theorem 3.7 (Garsia [1963]). �� is absolutely continuous with density in L logL if and
only ifH (�

(n)

�
) = n �O(1).

The argument in Theorem 2.3 gives H (�
(n)

�
) = n � o(n); in order to get the O(1)

error required by Garsia’s theorem, Varjú proves two quantitative variants of the general
entropy-growth result underlying Theorem 2.8. Roughly speaking,7 the first shows that if
˛ is small enough, and measures �1; �2 satisfy H (�i ;Dn+1jDn) > 1 � ˛, then H (�1 �

�2;Dn+1jDn) > 1 � ˛2. The second is analogous to Theorem 2.8 but with ı = c".
Now, fixing N , split the series

PN
n=0 ˙�n into k = [log(N 2)] finite sums

P
n2Ii

˙�n

of distribution �(N;i)

�
respectively, so that �(N )

�
= �

(N;1)

�
� : : : � �

(N;k)

�
. If we can choose

7We have omitted many assumptions, logarithmic factors, and even then the entropy inequalities are false
using Shannon entropy; one must use spatially averaged entropy, see P. Varjú [2016].
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I1; : : : ; Ik so that H (�
(N;i)

�
;DN jDN �1) > 1 � ˛0, with ˛0 small, we can apply the first

entropy growth result iteratively, and getH (�
(N )

�
;DN jDN �1) > 1�˛2

logk

0 = O(1/N 2);
summing over 0 � N � M gives H (�

(M )

�
) = M � O(1), as desired. In order to find

I1; : : : ; Ik as above, one uses a similar argument, relying on the second entropy-growth
theorem to amplify the random walk entropy provided by Theorem 3.5. For more details,
we refer to the original paper.

3.4 Dimension results for other parameters. Let P be the set of polynomials with
coefficients 0;˙1 and set Pn = ff 2 P : degf � ng. Suppose that dim �� < 1.
Then by Theorem 2.3, ∆n ! 0 super-exponentially, i.e. there exist pn 2 Pn such that
pn(�) ! 0 super-exponentially. This does not force � to be algebraic, but using transver-
sality arguments or Jensen’s formula, one can find roots �n of pn such that j�n � �j ! 0

super-exponentially, so �n; �n+1 are super-exponentially close. If the roots of elements
of Pn were sufficiently (i.e. exponentially) separated, this would force the sequence �n to
stabilize, and � would be algebraic, in fact a root of some pn0

2 P . Thus, an affirmative
answer to the following problem would imply dim �� = 1 for all �without exact overlaps:

Question 3.8. Does there exist a constant c > 0 such that if ˛ ¤ ˇ are roots of (possibly
different) polynomials in Pn, then j˛ � ˇj > cn?

The best current bound, due to Mahler [1964], is of the form j˛ � ˇj > n�cn for some
constant c > 0. In order for this to be useful, one needs to get a similar rate for the decay
of ∆n in Theorem 2.3. This is essentially the content of the following:

Theorem 3.9 (Breuillard and P. P. Varjú [2016]). Suppose that dim �� < 1 for some
� 2 ( 1

2
; 1). Then there exist arbitrarily large n for which there is an algebraic number �

that is a root of a polynomial in Pn, such that

j� � �j < exp(�nlog log logn)

and
dim �� < 1:

Compared to the argument at the start of the section, notice that the numbers � are only
guaranteed to exist for infinitely many n, not all large enough n. Therefore, even though
the rate is better thanMahler’s bound, one cannot conclude that the approximants stabilize.
But, most importantly, the algebraic number � are guaranteed to be themselves exceptional
for dimension. The latter has a dramatic implication:

Theorem 3.10 (Breuillard and P. P. Varjú [ibid.]). Edim = Edim \ Q, where Q denotes
the algebraic closure of Q.
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This reduces the question of the dimension of Bernoulli convolutions to the algebraic
case. In particular, it is known that the Pisot numbers form a closed set, so if these were
shown to be the only algebraic parameters with dimension drop, these would be the only
exceptions altogether. Also, recall that Lehmer’s famous problem asks whether inffM� :

M� ¤ 1g > 1. If this were true, then Theorem 3.5 would imply that there is an " > 0

such that dim �� = 1 for every algebraic � 2 (1 � "; 1); combined with Theorem 3.10,
this gives:

Theorem 3.11 (Breuillard and P. P. Varjú [2016]). If the answer to Lehmer’s problem is
affirmative, then there is an " > 0 such that dim �� = 1 for every � 2 (1 � "; 1).

There is no known converse, but for a related result see Peres, Schlag, and Solomyak
[2000, Proposition 5.1].

Finally, using the information gained about algebraic approximants of exceptional pa-
rameters, Breuillard and Varjú have managed to find the first explicit transcendental pa-
rameters for which �� has full dimension; e.g. e; 1/ ln 2, and other natural constants. For
details see Breuillard and P. P. Varjú [2016].

4 Projection and slice theorems

A basic principle in (fractal) geometry is that projections of a set typically should be “as
large as possible”, and slices should be correspondingly small. By a projection of a set
we mean its image under an orthogonal projection �V to a linear subspace V , and by a
slice we mean its intersection with an affine subspace. The trivial bound for projections
is dim�VX � minfdimX; dimV g (because �V is Lipschitz and has range V ). The fol-
lowing theorem shows that this is generally the right bound, and that slices behave dually.
Let G(d; k) denote the manifold of k-dimensional linear subspaces of Rd .

Theorem 4.1 (Marstrand [1954], Mattila [1975]). Let E � Rd be Borel and 1 � k < d .
Then for a.e. V 2 G(d; k),

dim�VE = minfk; dimEg

If in addition dimE > k then8 �V (E) has positive k-dimensional volume for a.e. V 2

G(d; k), and for a.e. y 2 V with respect to the volume,

dimE \ ��1
V (y) � maxf0; dimE � kg

8Although unrelated to our discussion, it is worth mentioning that if dimE = k, then �V E will have
positive k-dimensional volume depending on whether it is rectifiable or purely unrectifiable. SeeMattila [1995].
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Kaufman, Falconer and Mattila (see e.g. Mattila [1995]) also bounded the dimension
of the set of exceptional V 2 G(d; k), e.g. for d = 2 and k = 1, if dimE < k the
exceptions have dimension � dimE, and if dimE > k it is at most 2 � dimE.

What these general results for generic directions fail to give is any information at all
about particular directions. For “natural”, well-structured sets, one would expect to be
able to be more precise. What one expects in such cases is that the projections will be
as large as possible unless there is some combinatorial or algebraic obstruction; and that
slices be correspondingly small.

In the coming discussion we restrict attention to self-similar sets in R2, where results
aremore complete. Wementionmeasures andmulti-dimensional analogues only occasion-
ally, since these require more assumptions. We also do not discuss results on randomly
generated fractals, for this see K. Rams M. S. [2015], Peres and M. Rams [2016], and
Shmerkin and Suomala [2017].

4.1 Dimension conservation. Heuristically, projections toV and slices in directionV ?

are complementary, in the sense that having a large image forces most slices to be small,
and vice versa. This is exactly true for finite-scale entropy, and combinatorial versions
can also be formulated. For dimension, this duality does not always hold. The following
“dimension conservation” result , a relative of the Ledrappier-Young formula, marked the
start of the current phase of research.

Theorem 4.2 (Furstenberg [2008]). LetX � Rd be a self-homothetic set. Then for every
V 2 G(d; k), we have

dim�VX + sup
y2V

dim(X \ ��1
V (y)) � dimX

For self-homothetic measures � there is in fact equality for �V�-a.e. y, and until
recently it was not known whether a similar phenomenon might hold also outside of ho-
motheties. It turns out that it does not:

Theorem4.3 (Rapaport [2016]). There exists a self-similarmeasure� onR2 with dim� >
1, uniform contractions and uniform dense rotations, such that for a denseGı set of direc-
tions V the conditional measures on translates of V are a.s. atomic, hence

dim�V�+ esssup
y∼�V �

dim���1(y) < dim�

Problem 4.4. For a self-similar set in R2 with dense rotations and dimension greater than
one, do all projections have positive length?
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4.2 Projections of self-homothetic sets. Self-homothetic self-similar sets X have the
special property that each projection �VX is also self-homothetic, being the attractor of
and IFSΦV = f'i;V (x) = rix+�V ai g. Assuming thatΦ has strong separation, and fixing
a self-similar measure onX , Theorem 2.12 applies to the parametric family fΦV gV 2G(2;1).
In the case dimX > 1 an argument similar to that in Theorem 3.3 also applies. All in all,
we get

Theorem 4.5 (Hochman [2014], Shmerkin [2015]). If X � R2 is self-homothetic then
dim�VX = minf1; dimXg for all but a zero dimensional set of V 2 G(2; 1). If also
dimX > 1, the projection will have positive length outside a set of V of dimension zero.

The reason no separation condition is needed is that a self-similar setX always contains
smaller self-similar sets of dimension arbitrarily close to dimX , and satisfying strong
separation and uniform contraction (Peres and Shmerkin [2009]), and it is enough to show
that these subsets have large projections.

More is true when the maps 'i are algebraic, by which we mean that the parameters
ri ; ai are algebraic. The conjecture that this is the case was raised by Furstenberg for the so-
called 1-dimensional Sierpinski gasket, first appearing in the work of Kenyon [1997]. The
next theorem follows from Corollary 2.4 and an argument (originally due to Solomyak)
showing that if the projected IFSΦV does not have exact overlaps, then it is exponentially
separated.

Theorem 4.6 (Hochman [2014]). If X is the attractor of an algebraic IFS consisting
of homotheties, then dim�VX = minf1; dimXg for all except at most countably many
V 2 G(2; 1), which are among the V which collapse cylinders, i.e. �V 'i = �V 'j for
some n and distinct i; j 2 Λn.

There certainly can exist exceptional directions, but they have not been entirely char-
acterized (a special case was analyzed by Kenyon [1997]). Currently, no analogous result
exists for the Lebesgue measure of the projection in the regime dimX > 1. Finally, note
that the result for measures seems to require strong separation, since for measures, there
is no analog of the trick of passing to a sub-self-similar set.

All statements above hold if instead of self-homothetic sets we allow IFSs whose or-
thogonal parts generate a finite group of rotations.

4.3 Projections of sets and measures with rich symmetries . Let Φ = f'i g be an IFS
in R2 with 'i (x) = riOix + ai , with 0 < r1 < 1, Oi an orthogonal matrix, and ai 2 R2.
We say thatΦ has irrational rotations if at least oneOi is an irrational rotation (has infinite
order). Notice that �V 'iX � �VX , and �V 'i , up to change of coordinates, is projection
to O�1

i V . Iterating this and using the fact that fO�1
i1
: : : O�1

in
V gi2Λ� is dense, we see that
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�VX contains subsets approximating every other projection �WX . This can be used to
prove that there are no exceptional directions:

Theorem4.7 (Peres and Shmerkin [2009], Nazarov, Peres, and Shmerkin [2012], Hochman
and Shmerkin [2011]). Let X � R2 be a self-similar set with dense rotations. Then
dim�VX = minf1; dimXg for every V . The same holds for self-similar measures assum-
ing the open set condition.

This was first proved for sets by Peres and Shmerkin [2009] for sets. Nazarov, Peres,
and Shmerkin [2012] proved an analog for measures assuming uniform rotations. Hoch-
man and Shmerkin [2011] proved the general version. See also Farkas [2016].

We briefly sketch the proof of Hochman-Shmerkin. A central ingredient is the method
of local entropy averages. Suppose that � is any probability measure on Rd . Let Dn(x)

denote the unique atom of Dn containing x and let

�x;n =
1

�(Dn(x))
�jDn(x)

Thus the sequence (�x;n)
1
n=1 is what you see when you “zoom in” to x along dyadic cells.

Theorem 4.8 (Hochman and Shmerkin [2011]). Let � be a Borel probability measure on
Rd , and V 2 G(d; k). If for some ˛ � 0 and m 2 N

(15) lim inf
N !1

1

N

NX
n=1

H (�x;n;Dn+m) � ˛

then dim�V � � ˛ �Od;k(1/m).

If� is self-similar with OSC, then�x;n is a piece (or a combination of boundedly many
pieces) of a cylinder measure of diameter approximately 2�n, and if there are dense ro-
tations, for �-a.e. x the rotations observed along the sequence (�x;n)

1
n=1 equidistribute

in the circle. Now, by Marstrand’s theorem, dim�V� = minf1; dim�g for a.e. line V ,
so by (8), for large enough m, with high probability over V we have 1

m
H (�V�;Dm) >

minf1; dim�g � ". This condition on V is essentially open, so (�x;n)
1
n=1 consists pre-

dominantly of measures that, after re-scaling by 2n, satisfy this inequality. Theorem 4.7
now follows from Theorem 4.8.

This method also gives the following, which was conjectured by Furstenberg:

Theorem 4.9 (Hochman and Shmerkin [ibid.]). Let Ya; Yb � [0; 1] be closed and in-
variant under x 7! ax mod 1, x 7! bx mod 1, and assume log a/ log b … Q. Then
dim�V (Ya �Yb) = minf1; dimYa + dimYbg for all V except the horizontal and vertical
directions.
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The methods also apply in non-linear cases. This has some overlap with the work of
Moreira on nonlinearly generated fractals, which predates all the results above, but does
not apply in the linear case. See Moreira [1998].

Problem 4.10. If Ya; Yb are as in the theorem, and dimYa � Yb > 1, does �V (Ya � Yb)

have positive Lebesgue measure for all V not parallel to the axes?

Surprisingly the analogous problem for products of self-similar measures has a negative
answer, see Nazarov, Peres, and Shmerkin [2012].

4.4 Slices . Dual to the projections problem is that of slices. When projections achieve
their maximal value, one might expect slices not to exceed their typical value. Furstenberg
[1970] conjectured this for non-vertical/horizontal slices of products as in Theorem 4.9.
Very recently two independent proofs of this emerged:

Theorem 4.11 (Shmerkin [2016], Wu [2016]). Let X = Ya � Yb be as in Theorem 4.9.
Then dim(X \ `) � maxf0; dimX � 1g for all lines ` � R2 not parallel to the axes.
Similarly if X is self-similar set with uniform contraction and uniform dense rotations,
the bounds holds for all `.

The case dimX < 1/2 was proved by Furstenberg. He showed that if dimX \ ` =

˛, then there exists a stationary ergodic process Z = (xn; �n)
1
n=1 with xn 2 X and

�n 2 [0; 1], such that a.s. the line `(xn; �n) of slope �n through xn satisfies dim(X \

`(xn; �n)) = ˛, and the process (�n) has pure point spectrum. Thus �1 is uniform on
[0; 1], so in a.e. direction there is a pair x0; x00 2 X with x0 � x00 pointing in that direction.
This implies dimX � 1/2.

Wu’s proof is ergodic-theoretic and begins with the same construction. Now, if there
were a point � 2 X such that the distribution of �1 is uniform given x1 = �, this would give
a “bouquet” of ˛-dimensional slices passing through � and pointing in a 1-dimensional
set of directions, and imply dimX � 1 + ˛, the desired bound on ˛. To find such �,
first apply a classical theorem of Sinai to get a Bernoulli factor W of the process Z =

(xn; �n) exhausting the entropy, i.e. h(ZjW ) = 0. Let Pw denote the disintegration of
the distribution ofZ over w 2 W and letQw = E(x1jw) be the image of Pw inX . Next,
self-similarity gives an expanding conformal dynamics on X , and the process Z can be
constructed such that dimQw is proportional to h(ZjW ), hence dimQw = 0. Finally,
Θ = (�n) is a rotation and W is Bernoulli, so by the disjointness theory of Furstenberg
[1967],Θ is independent ofW , hence �1 is distributed uniformly conditioned onw. Thus,
there is a family of slices of dimension ˛, with uniformly distributed directions, passing
through the points of the zero-dimensional measure Qw . From this one can construct
(approximations of) the desired bouquets.
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Shmerkin’s proof is entirely different. Consider the self-similar case with the natural
self-similar measure� onX . It is a basic fact that if infq>1D(�V�; q) = ˛, then dim(X\

��1
V (y)) � dimX�˛ for all y. Thus the goal is to show that theLq dimension is maximal

in all directions. Now, �V� are not self-similar but it has a convolutions structure, because
all cylinders of a given generation in � differ only by translations. By an argument similar
to Theorems 2.7 and 2.12, we conclude that infq>1D(�V�; q) = minf1; dimXg for a
large set of V 2 G(2; 1). To extend this for all directions, one uses (among many other
things) unique ergodicity of a certain cocycle arising from the rotational symmetry of X .

Finally, Theorem 2.7 implies an Lq version of Theorem 4.6, which gives a dual result
for the slices, confirming another old conjecture of Furstenberg:

Theorem 4.12 (Shmerkin [2016]). Let X � R2 be a self-homothetic algebraic self-
similar measure. Then outside a countable set of directions, there are no exceptional
slices.
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RENORMALIZATION AND RIGIDITY

Kඈඇඌඍൺඇඍංඇ Kඁൺඇංඇ

Abstract

The ideas of renormalization was introduced into dynamics around 40 years ago.
By now renormalization is one of the most powerful tools in the asymptotic analysis
of dynamical systems. In this article we discuss the main conceptual features of the
renormalization approach, and present a selection of recent results. We also discuss
open problems and formulate related conjectures.

1 Renormalization Group in Statistical Mechanics and Critical
Phenomena

The ideas of renormalization and universality emerged in statistical mechanics in the
1960s in the works of L.Kadanoff, M.Fisher, A.Patashinski, V.Pokrovski, B.Widom, and
K.Wilson in connection with a problem of phase transitions and critical phenomena. As
parameters of physical system change the system may go through a dramatic change of its
behaviour. This phenomenon is called phase transition. The simplest examples are pro-
vided by lattice spin systems. When temperature T decreases the system changes from a
state of almost independent (statistically) spins to a highly correlated state. This transition
happens at a particular value of temperature T = Tcr , called the critical temperature. It
was discovered by physicists that at the critical temperature one can observe highly non-
trivial scaling invariant structures. Moreover, this scaling invariant structures have strong
universality properties. It means that their statistical properties and scalings exponents
do not depend on the details of the interaction, but only on global characteristics, such as
dimension, symmetries etc. Physicists also developed technical tools to calculate critical
exponents and other parameters of the asymptotic statistical objects. These tools were
based on the concept of renormalization group, or renormalization. The main idea is to
look at large and increasing chunks of a system, but also rescale them in order to deal
with objects of order 1. The transformation describing transition from one block size to
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the next one, typically constant time larger, is called renormalization group transforma-
tion. The core of the renormalization group theory is a concept of the renormalization
fixed point. It was realized that under the above procedure the system will converge to a
statistical state which is a fixed point of the renormalization transformation. If the temper-
ature T > Tcr the renormalization converges to a trivial, or Gaussian, fixed point, which
corresponds to the Central Limit Theorem (CLT) for statistically weakly depended spins.
The system should be renormalized by a factor N 1/2 where N is a number of spins in a
block. Thus the scaling exponent in this case is a trivial CLT exponent 
 = 2 � 1/2 = 1.
Interesting behaviour can be observed only at a critical temperature T = Tcr and at the
temperatures infinitesimally close to it. It turns out that at the critical point the system un-
der renormalization converges to a non-trivial statistical state which is also a fixed point
for renormalization group transformation but with non-trivial critical scaling exponent 
 .
In the case of 2D Ising model 
 = 7/4 which corresponds to a scaling N 7/8 instead of
Gaussian scaling N 1/2.

Next step of a conceptual picture is a discussion of a stability of the above fixed points.
One can linearize renormalization transformation near a fixed point and ask about the
number of unstable directions. It turns out that there exists a single non-trivial unstable
direction. According to the hyperbolic theory, it means that in the infinite-dimensional
space of systems there exists a co-dimension 1 stable manifold of systems converging to
a fixed point under renormalization. A one-parameter family of systems, parametrized by
the temperature, will typically intersect this stable manifold. Such an intersection point
corresponds to a critical temperature T = Tcr at which the system converges to the critical
renormalization fixed point. For temperatures T > Tcr the system will converge to a
trivial Gaussian fixed point which can be shown to be stable. For temperatures T >

Tcr and close to Tcr the system first comes close to a critical fixed point, and then goes
away following a one-dimensional unstable manifold corresponding to the unique unstable
direction.

This is a very brief sketch of the physical theory. I started with it to provide a histori-
cal background, and also to emphasize similarities with dynamical renormalization which
I discuss below. I finish this physical detour with a few remarks. Firstly, the wording
”renormalization group” is used less frequently in our days. In fact, one can speak of a
semi-group of iterates of the renormalization transformation. In what follows I use only
the word renormalization. Secondly, when I write above ”it was discovered”, ”it was
realized”, ”it turns out” etc, I mean statements established on the physical level. Mathe-
matically rigorous results in this direction are very few, and they are incredibly difficult
to prove. However, the conceptual picture described above is extremely simple and very
attractive. It provided a completely different point of view, and played a crucial role in
shaping of modern understanding of critical phenomena. Whenever physicists see a uni-
versal behaviour and universal numbers they immediately think about renormalization.



RENORMALIZATION AND RIGIDITY 1993

Thirdly, physical renormalization theory is much more sophisticated and elaborated than
the sketch above. It also provides tools to calculate things. That is why the 1982 Nobel
Prize in Physics was awarded to K.Wilson for his work on critical phenomena.

2 Dynamical Renormalization

In the context of the theory of dynamical systems renormalization was introduced by
M.Feigenbaum and P.Coullet, Ch.Tresser in the middle of the 70s (Feigenbaum [1978]
and Tresser and Coullet [1978]). Feigenbaum was playing around with two families of
unimodal maps, the logistic family and the sine family. He looked at the sequences of
the period-doubling bifurcations trying to find numerically the bifurcations parameter val-
ues. Feigenbaum observed that parameter values seems to converge exponentially fast to
a limiting value. To help with numerics he estimated the rate of the exponential conver-
gence. Astonishingly the rate looked the same for both families, �n+1 � �n ∼ Cı�n,
where ı = 4:669 : : : is the famous Feigenbaum constant. As I pointed out above, physi-
cists would look for a renormalization explanation when they come across universal num-
bers. Feigenbaum developed renormalization theory which explained the universality phe-
nomenon. He defined a renormalization transformation and showed numerically that it
has a non-trivial hyperbolic fixed point with essentially unique unstable direction. This
unique unstable eigenvalue is exactly equal to ı. A large block of spins is replaced by
an exponentially increasing sequence of iterates of a map. In the period-doubling case
the n-th step of the renormalization procedure, or, in other words, n-th iterate of a renor-
malization transformation, corresponds to 2n iterate of an original map. It turns out that
interesting dynamics for 2n iterate happens near the critical point, in fact, exponentially
close to it. Thus it makes sense to rescale a space variable so that the effective dynamics is
described in terms of order 1 maps. Next (n+1)-step requires iterating twice the rescaled
n-th step map, as well as an additional rescaling. What is described in words is exactly
period doubling transformation. Namely, consider the space of unimodal maps f (x) with
non-degenerate point of maximum at x = 0, and normalized in such a way that f (0) = 1.
Then the renormalization transformation can be defined in the following way:

(1) Rf (x) = � f̨ (f (�˛�1x)) ; ˛�1 = �f (1):

The concept of metrical universality was so revolutionary and novel for mathemati-
cians at the time that it was initially even difficult to make them believe in it. Shortly,
however, mathematicians realized the importance of the discovery. O.Lanford (Lanford
[1982]) gave the first rigorous computer-assisted proof of the existence of the Feigenbaum
fixed point with one unstable direction. Later E.Vul, Ya.Sinai and K.Khanin developed the
thermodynamic formalism for the Feigenbaum attractor (Vul, Sinai, and Khanin [1984]),
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important Epstein classes were introduced by H.Epstein(Epstein [1989]). However, a real
mathematical theory, so-called Sullivan-McMullen-Lyubich theory was developed only in
the 90s (Sullivan [1992], McMullen [1994], and Lyubich [1999]). In fact, the theory cov-
ers a much more general case. The accumulation points of period-doubling bifurcations
corresponds to a particular combinatorics of the so-called infinitely renormalizable maps.
For other combinatorial types the renormalization transformation can also be defined. On
the other hand, in this more general situation it does not make sense to speak about fixed
points of renormalization since the renormalization transformation itself changes at every
step. However, it still make sense to speak about convergence of renormalization. Namely,
consider two different analytic infinitely renormalizable unimodal maps T1 and T2 with
the same order of critical points, and the same combinatorics. It means that at every step
the same renormalization transformation is applied to both of them. Denote by f

(1)
n and

f
(2)

n the n-th step renormalization for T1 and T2 respectively. It follows from the Sullivan-
McMullen-Lyubich theory that kf

(1)
n � f

(2)
n k ! 1 as n ! 1 exponentially fast. At the

same time, changing of the combinatorial type results in an exponential instability. One
can show that there are no other unstable directions. In other words, the hyperbolicity of
renormalization with one unstable direction is valid in full generality. The set of maps
with a given combinatorial type form a stable manifold of co-dimension one. The fact that
this set of maps has a smooth manifold structure follows from general fact of the hyper-
bolicity theory. This is a kind of dream result for the renormalization ideology. Indeed,
it provides a full justification of the renormalization picture. The only drawback is the
requirement that the order of critical points is given by even integer numbers. At the same
time all the experts agree that similar result must hold for all orders greater than 1. While
the analyticity assumption can be significantly relaxed, currently there are almost no re-
sults on convergence of renormalization for maps with critical points of non-integer order.
In our opinion this is one of the central open problems in the theory of renormalization.
We shall discuss this problem in more details later.

Our brief discussion of renormalization for unimodal maps would be incomplete with-
out mentioning the paper by S. Davie on period-doubling for C 2+� maps (Davie [1996]),
another paper by M. Martens providing a construction of a large class of periodic point for
renormalization transformation (Martens [1998]), and a recent important paper by A. Avila
and M. Lyubich where a new approach to convergence of renormalization for unimodal
maps is developed (Avila and Lyubich [2011]).

Many aspects of the renormalization theory can be presented in a cleaner and easier way
in the case of circle homeomorphisms. This will be the main object in what we discuss
below. The problem for interval maps is very similar. However circle maps have several
advantages. Firstly, the combinatorial types are completely determined by the rotation
numbers. Infinitely renormalizable are simply maps with irrational rotation number. But
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most importantly, exponential instability in changing of a combinatorial type is obvious
in the circle case and is highly non-trivial fact for interval maps.

3 Renormalization and Rigidity for Circle Homeomorphisms

Let T be a homeomorphism of the unit circle S1 with irrational rotation number �. Al-
though renormalization can be defined for any homeomorphism, a meaningful theory re-
quires certain regularity. We shall either consider the case when T is a smooth diffeo-
morphism, or assume that T is smooth outside of a finite set of singular points. In this
section we discuss the case of one singularity. It can be either a critical inflection point,
for so-called critical circle maps, or a break point, that is a point where the first derivative
has a jump discontinuity.

To implement a general renormalization scheme one has to determine a sequence of
times such that an iterate of a initial point comes close to itself, and then rescale the space
coordinate. Let the continued fraction expansion for � be given by � = [k1; k2; : : : ; kn; : : : ],
where ki 2 N; i 2 N is a sequence of partial quotients. It is well known that denomi-
nators qn of convergents pn/qn = [k1; k2; : : : ; kn] correspond to a sequence of times
of closest returns for a linear rotation T� : x 7! x + � (mod 1). Moreover, T

q2n
� x0

converges to x0 from the right, and T
q2n�1
� x0 from the left. To define a sequence of

renormalization one has to fix a point x0, called a marked point, about which the renor-
malization will be defined, then for n-level renormalization consider a closed interval In

containing x0 with the end points xqn�1
= T qn�1x0 and xqn

= T qnx0. For simplicity
we assume that n is even, so In = [xqn�1

; xqn
]. The first return map from In into it-

self has two branches. The first one is given by T qn : [xqn�1
; x0] ! [xqn+qn�1

; xqn
],

the second branch corresponds to T qn�1 : [x0; xqn
] ! [xqn�1

; xqn+qn�1
]. Here and

below the trajectory of x0 is denoted by xi = T i x0; i 2 Z. Next we choose the n-
th level renormalized coordinate, denoted by z, such that the length of In in the coor-
dinate z will be order one. Usually z is defined by an affine change of variables such
that z(xqn�1

) = �1; z(x0) = 0. Hence, z(x) = (x � x0)/(x0 � xqn�1
). To sim-

plify notations we do not indicate dependence of the coordinate z on the renormalization
level n. Now we can define Rn(T ) as a pair of first return maps T qn�1 ; T qn expressed
in the renormalized coordinate z. Denote an = z(xqn

); �bn = z(xqn+qn�1
). Then

Rn(T ) = (fn(z); gn(z)); fn(z) : [�1; 0] ! [�bn; an]; gn(z) : [0; an] ! [�1; �bn],
where
(2)

fn(z) =
T qn(x0 + z(x0 � xqn�1

)) � x0

x0 � xqn�1

; gn(z) =
T qn�1(x0 + z(x0 � xqn�1

)) � x0

x0 � xqn�1

:
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A simple but important observation is that in order to find maps (fn+1; gn+1) one does not
need to know the original map T . Indeed, maps (fn+1; gn+1) are completely determined
by the maps (fn; gn). Since qn+1 = kn+1qn + qn�1, we have fn+1 = A�1

n+1 ı f
kn+1

n ı

gn ıAn+1; gn+1 = A�1
n+1 ıfn ıAn+1, where An+1 is a linear rescaling An+1(z) = �anz,

and an = fn(0). An integer number kn+1 is also determined by fn. It is just a number
of iterates of fn such that a trajectory of point (�1) reaches positive semi-axis. Namely,
f i

n (�1) < 0; i � kn+1 and f
kn+1+1

n (�1) > 0. The transformation from a pair (fn; gn)

to a pair (fn+1; gn+1) is called the renormalization transformation, and is denoted by R.
Note that maps gn+1 are obtained from fn by linearly rescaling the coordinates. Hence,
in most cases, it is enough to keep track only of a sequence of maps fn.

The main goal of the renormalization theory is to show that the renormalization trans-
formation is hyperbolic, and circle maps with the same irrational rotations numbers and
with the same local structure of their singular points belong to the same stable manifold for
R. In other words, renormalizations f

(1)
n ; f

(2)
n constructed from two such maps T1; T2

converge to each other with exponential rate. Moreover, the rate of convergence is uni-
versal. It means that it does not depend on the rotation number and the maps T1; T2, but
only on local characteristics of singular points. Circle maps which we consider below sat-
isfy the Denjoy property. Namely, they all topologically conjugate to the linear rotation
with the same rotation number. This allows us to formulate renormalization conjecture in
a more precise way. We shall consider two type of singularities: critical points of finite
order xcr and break points xbr . At a critical point the derivative T 0(xcr) = 0, and a map
T locally behaves like T (x) � T (xcr) ∼ A(x � xcr)jx � xcr j˛�1, where A > 0 and
˛ > 1 is the order of the critical point. At a break point xbr the first derivative of T has
a jump discontinuity. Namely, both one sided derivatives exist and both are positive, but
T 0(xbr�) ¤ T 0(xbr+). Parameter c =

p
T 0(xbr�)/T 0(xbr+) is called the size of a

break. We take square root in the formula for c to simplify some formulas below. When
we say above “local characteristics of singular points” we mean precisely parameters ˛

and c. Notice that both ˛ and c are smooth invariants. In other words, they are preserved
by smooth changes of variables.

We shall say that two circle maps T1 and T2 with the same irrational rotation number
are singularity equivalent if there exists a topological conjugacy � which is also a bijection
between the singular points of T1 and T2. Moreover, conjugated singular points are of the
same type (critical or break), and with the same value of parameters ˛ or c.

Renormalization Conjecture. Suppose circle homeomorphisms T1 and T2 have a finite
number of singular points and are singularity equivalent. Assume also that T1 and T2 are
C 2+˛-smooth outside of a set of singularity points. Then the renormalizations f

(1)
n ; f

(2)
n



RENORMALIZATION AND RIGIDITY 1997

constructed from the conjugated marked points converge to each other with a universal
exponential rate.

Although convergence of renormalizations is interesting in its own right, it is also di-
rectly related to the rigidity theory. In many cases convergence of renormalization implies
that two maps which a priori are only topologically conjugate are, in fact, smoothly conju-
gate to each other. Such an upgrade from topological equivalence to a smooth one is called
the rigidity. Below we discuss rigidity results in parallel with results on renormalization
convergence. In this section we consider only the unimodal setting, that is maps with a
single singularity which is either a critical point or a break point. In this case it is natural
to take the singularity point as a marked point for the renormalization construction. How-
ever, we start with the case of C 2+˛-smooth diffeomorphisms where the renormalization
picture is much simpler.

Linearization of circle diffeomorphisms. Since in the smooth setting linear rotations
form a distinguished class, rigidity in this case is usually discussed in terms of the lin-
earization problem. The main question here is when a smooth circle diffeomorhism with
irrational rotations number � is smoothly conjugate to a linear rotation T�. This problem
was first addressed in a classical paper by V.Arnold (Arnold [1961]). Arnold proved that
smooth (in fact, analytic) linearization holds for analytic circle diffeomorphisms close
to linear rotations, provided their rotation numbers are typical, i.e. satisfy certain con-
ditions of a Diophantine type. He also showed that smooth linearization cannot be ex-
tended to all irrational rotation numbers, and conjectured that local condition, that is
closeness to linear rotations, can be removed. Global result was proved by M.Herman
(Herman [1979]) and extended to a larger class of rotation numbers by J-C.Yoccoz (Yoc-
coz [1984a]). Although renormalization was not explicitly used by Herman and Yoccoz,
the linearization problem is closely related to the Renormalization Conjecture above. It is
easy to see that for linear rotations T� the renormalization fn(z) = an + z, where an =

[kn+1; kn+2; : : : ]. Hence, convergence of renormalization reduces to showing that in a
general case maxz2[�1;0] jf 0

n(z)� 1j ! 0 as n ! 1, and the convergence is fast enough.
Since f 0

n(z) = (T qn)0(x), the task is to prove that �n = maxx2S1 j log (T qn)0(x)j ! 0 as
n ! 1. This case is simpler than the case of maps with singularities since renormaliza-
tion converge to a “trivial fixed-point” given by a family of linear maps fa(z) = z + a.
What is much harder is to get sharp estimates for �n which are needed for rigidity results.
Indeed, even if we know that fn is �n-close to a linear family, after many iterates one
can lose control, and iterated maps may be not close to linear ones anymore. This may
and will happen when kn+1 are very large. Convergence rate for �n is related to a growth
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rate of the denominators qn. The following estimate was proved in Khanin and Teplinsky
[2009].

Lemma 3.1. Let T 2 C 2+˛(S1). Denote by ln = maxx2S1 jT qnx �xj. Then there exists
a constant C > 0 such the following estimate holds:

�n � C

�
l˛
n�1 +

ln

ln�1
l˛
n�2 +

ln

ln�2
l˛
n�3 + � � � +

ln

l0

�
It is easy to show that the sequence ln decays exponentially fast, and, uniformly in

n, the ratio ln/ln�k is exponentially small in k. It follows immediately that �n ! 0

exponentially fast as n ! 1. But, in fact, the lemma above gives much more. Its proof
is quite elementary. It is based on renormalization ideology and cross-ratio distortion
relations. Cross-ratio distortion methods were first used by Yoccoz (Yoccoz [1984b]) in
his study of analytical critical circle maps. As we will see below it is a powerful tool in
renormalization theory. The lemma above allows to prove the following sharp rigidity
result. Denote by Dı = f� : jq� � pj � C (�)q�1�ı ; 8p 2 Z; q 2 Ng. It is well known
that for any ı > 0 the set Dı has full Lebesgue measure.

Theorem 3.2. (Sinai and Khanin [1989] and Khanin and Teplinsky [2009])Let T 2

C 2+˛(S1); �(T ) 2 Dı , and ˛ > ı. Then T is C 1+˛�ı -smoothly conjugate to T�.

It is well known that C 1-rigidity cannot hold for typical rotation numbers when the
map T is only C 2-smooth. Hence C 2+˛ is a natural setting here. Note also that the
smoothness result above is sharp. For maps T of higher smoothness the best result is due
to Y. Katznelson and D.Ornstein (Katznelson and Ornstein [1989]).

Theorem 3.3. Let T 2 C k+˛(S1; k � 2; �(T ) 2 Dı , and k � 1 + ˛ � ı > 1. Then, for
any arbitrary small �, the map T is C k�1+˛�ı��-smoothly conjugate to T�.

Note extra � which has to be subtracted from the smoothness exponent which is not
necessary in the case k = 2. I was recently informed by D.Ornstein that he can now
improve the last result and remove � from the estimate above (Ornstein [2017]). Finally,
notice that C 1 linearization implies regularity of invariant measure for T . It is well known
that any circle homeomorphism with irrational rotation number is uniquely ergodic. In
other words, it has a unique invariant probability measure. This measure is absolutely
continuous with respect to the Lebesgue measure with a positive continuous density if
and only if the map T is C 1 linearizable.

I should also mention a closely related problem of simultaneous linearization of com-
muting circle diffeomorphisms. In this case one can speak about a higher rank action by
the group Zd where d is the number of diffeomorphisms. A conjecture by J. Moser stated
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that Herman theory can be extended to this setting in the following sense. Suppose a vec-
tor E� = (�1; : : : �d ), where �i ; 1 � i � d are the rotation numbers of commuting C 1

circle diffeomorphisms T1; : : : Td , is a Diophantine vector in the sense of simultaneous
rational approximations. Then the diffeomorphisms T1; : : : Td can be simultaneously lin-
earized, and the corresponding conjugacy is C 1 smooth. Moser proved a local version
of the above conjecture. The global result was proved in Fayad and Khanin [2009].

Summarizing, we see that in the case of smooth circle diffeomorphisms the conver-
gence of renormalization holds for all irrational rotation numbers. At the same time, the
rigidity results require conditions of a Diophantine type.

Critical circle maps. Convergence of renormalization for critical circle maps was stud-
ied by E. de Faria, W. de Melo (de Faria and de Melo [1999, 2000] and M. Yampolsky
(Yampolsky [2002] and Yampolsky [2001]). Although they used different approach, in
both cases analysis was based on a combination of real-analytic methods and methods
from the holomorphic dynamics. This required an assumption that the order of critical
points is given by odd integer numbers: ˛ = 3; 5; 7; : : : . In de Faria and de Melo [1999]
convergence of renormalization was proved in the C 1 setting for rotation numbers of
bounded type. Yampolsky developed a new approach based on parabolic renormalization
which allowed him to prove exponential convergence of renormalizations in the analytic
case C ! for all irrational rotation numbers. Below I formulate the result in the analytic
setting. Note that in the critical case we always choose a critical point as a marked point.

Consider a double-infinite sequence of natural numbers k = fki ; ki 2 N; i 2 Zg,
and form two irrational numbers �+ = [k1; k2; : : : ; kn : : : ]; �� = [k0; k�1; : : : ; k�n : : : ].
Denote by Ĝ a natural extension of a Gauss map G : � 7! ��1 (mod 1); � 2 [0; 1]. The
transformation Ĝ acts on pairs (��; �+) : Ĝ(��; �+) = (([�+

�1] + ��)
�1

; G�+), where
[�] denotes the integer part of a number. It is easy to see that Ĝ corresponds to the unit
shift of a sequence k. Denote by F˛ the space of pairs of commuting analytic functions
(f (z); g(z) with a critical point of the order ˛ at the origin. The following statements de-
scribing a hyperbolic horseshoe attractor for the renormalization transformation R follow
from the results in Yampolsky [2002].

� Fix ˛ = 2k + 1; k 2 N. Then for every irrational �+ 2 S1 there exists a smooth
co-dimension 1 manifold Γs(�+) which consists of pairs (f (z); g(z)) 2 F˛ with a “for-
ward” rotation number �+. Also, for every irrational �� 2 S1 there exists a smooth one-
dimensional manifold Γu(��) which consists of pairs (f (z); g(z)) 2 F˛ with a “back-
ward” rotation number ��. For every pair (�+; ��) 2 S1 � S1 the manifolds Γs(�+) and
Γu(��) intersect transversally at a unique point (f��;�+

(z); g��;�+
(z)).
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� A set A � F˛ which consists of all intersection points (f��;�+
(z); g��;�+

(z)) for
different pairs (��; �+) is a compact subset of F˛ invariant for the renormalization trans-
formation R :

R(f��;�+
(z); g��;�+

(z)) = (fĜ(��;�+)(z); gĜ(��;�+)(z)):

� The set A is a Cantor-type hyperbolic attractor for the renormalization transformation
R. At every point (f��;�+

; g��;�+
) 2 A the global stable and unstable manifolds are

precisely Γs(�+) and Γu(��).
� Let T be an analytic critical circle map with a critical point of the order ˛ and

with an irrational rotation number �. Denote �
(n)
+ = Gn� = [kn+1; kn+2; : : : ]; �(n)

� =

[kn; kn�1; : : : ; k1; 1; 1; : : : ]. Then k(fn; gn) � (f
�
(n)
� ;�(n)

+
; g�(n)

�;�(n)
+
)k ! 0 exponen-

tially fast as n ! 1.
Note that filling in the tail of �(n)

� with 1s is not essential since the family
(f��;�+

; g��;�+
) depends exponentially weakly on the tails of a sequence k. One can say

that all critical circle maps with the same irrational rotation number and the same order ˛

belong to the same stable manifold for renormalization transformation R. The analyticity
assumptions can and was substantially weakened. In Guarino and de Melo [2017] conver-
gence of renormalizations has been proved in the C 4 setting. However the condition of
odd integer orders of critical points is used in all existing results (apart from some pertur-
bative results for ˛ close to odd integers). At the same time there are no doubts that the
renormalization conjecture must be true for all orders ˛ > 1. This is still an open problem
of central importance.

We shall now discuss rigidity results for critical circle maps. We always consider a
particular conjugacy which maps a critical point into another critical point. It turns out
that critical maps are more rigid than diffeomorphisms. So-called robust rigidity result
was proved in Khanin and Teplinsky [2007].

Theorem 3.4. Let T1 and T2 be two analytical critical circle maps with the same order of
critical points, and with the same irrational rotation number � = �(T1) = �(T2). Then
T1 and T2 are C 1-smoothly conjugate to each other.

Note that C 1 rigidity holds for all irrational rotation numbers. Also note that the above
result is sharp. A.Avila (Avila [2013]) proved that it cannot be extended even on a level
of a modulus of continuity of the conjugacy between T1 and T2. In fact, the result in
Khanin and Teplinsky [2007] is more general. It says that as long as convergence of
renormalization is established, robust rigidity holds. In particular, in view of Guarino and
de Melo [2017], it can be applied to C 4 critical circle maps with the same odd order of
critical points.

To explain the mechanism of the robust rigidity we introduce a sequence of dynami-
cal partitions which are closely related to renormalization, and discuss geometry of these
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partitions. Let x0 be a marked point for renormalization. A partition �n(x0) of the n-th
level is a partition on qn�1 + qn intervals whose endpoints are given by a finite trajec-
tory of a point x0 : fxi = T i x0; 0 � i < qn�1 + qng. Denote ∆

(n)
0 a closed in-

terval with endpoints x0 and xqn
. It is easy to see that all the elements of the partition

�n(x0) belong to two sequences of closed intervals: ∆
(n�1)
i = T i∆

(n�1)
0 ; 0 � i < qn

and ∆
(n)
j = T j∆

(n)
0 ; 0 � j < qn�1. These two sequences do not intersect except at

their endpoints, and cover the whole unit circle. It turn out that in the case of critical
circle maps the geometry of partitions is uniformly bounded. Swiatek (Swiatek [1988])
showed that for any such T there exists a constant C > 1 such that for any two neigh-
bouring intervals ∆1;∆2 of a partition �n(x0) the ratio of their lengths is bounded by C :
C �1 � j∆1j/j∆2j � C . Moreover, a constant C is asymptotically universal. Namely,
there exists a constant C > 1 which depends only on the order of a critical point such that
the above estimate holds for all T if n is large enough. Note that in the diffeomorphism
case the geometry is unbounded. Obviously j∆

(n)
0 j/j∆

(n�1)
0 j ∼ k�1

n+1 and can be arbitrary
small for large kn+1. Due to the bounded geometry, one can show that in the critical case
when kn+1 is large renormalization fn(z) has a unique point of almost parabolic tangency
with the diagonal. Iterations near such points of almost tangency are very regular. This
fact together with convergence of renormalization is responsible for the robust rigidity.

For typical rotation numbers the conjugacy between two maps is C 1+ˇ ; 0 < ˇ < 1

smooth. It was first proved in de Faria and de Melo [2000] for rotation numbers of bounded
type and later extended to the Lebesgue typical case. Although I don’t know rigorous
results in this direction, it is expected that in general the smoothness of conjugacy cannot
be improved to C 2 or above even for rotation numbers of bounded type. This feature
makes the critical case substantially different from the case of smooth diffeomorphism.

Concluding, one can prove the renormalization conjecture in full generality under a
rather annoying condition on the order of critical points. The ”fixed point family” given
by the attractor A = f(f��;�+

(z); g��;�+
(z))g is highly non-trivial. Smooth C 1 rigidity

holds for all irrational rotation numbers.

Circle maps with breaks. Circle maps with breaks were introduced in Khanin and Vul
[1991]. One possible motivation for their study can be explained if we adopt a point of
view of generalized interval exchange transformations. It is well known that linear circle
rotations can be viewed as interval exchange transformations of two intervals. Imagine
now that the maps transforming two intervals are still smooth and monotone but are non-
linear. The endpoints will be still matched. However a condition of matching of the
derivatives of two branches of non-linear maps at the endpoints is rather unnatural. If the
derivatives are not matched then we get two break points with break sizes c1 and c2. In
fact, since both break points belong to a single trajectory, the renormalization for such
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maps is equivalent to renormalization for maps with one break point with a size of a break
c = c1c2.

The renormalization theory for maps with a single break point can be considered as
a one-parameter extension of the Herman theory where parameter is a size of a break c.
The value c = 1 corresponds to the diffeomorphisms case where, as we have seen above,
renormalization converge to a trivial fixed-family consisting of linear maps with slope 1.
In the break case renormalization converge to a space of Möbius transformations. The
renormalization transformation has a non-trivial Cantor-type hyperbolic attractor similar
to the critical case. Appearance of Möbius transformations is a conceptual fact. In the
holomorphic dynamics this fact is related to the Köbe principle. Here we give a real-
analytic explanation. Suppose we have a sequence of C 3-smooth one-dimensional maps
Ti ; 0 � i � n � 1 acting on intervals ∆i = [ai ; bi ]; 0 � i � n; Ti : ∆i ! ∆i+1.
For each interval ∆i define a relative coordinate zi (x) = (x � ai )/(bi � ai ). Assume
that all intervals ∆i are smaller than � and

Pn�1
i=0 j∆i j = O(1). Assume also that all

derivatives of Ti are uniformly bounded by a constant C > 1 and T 0
i (x) � C �1. Then

the function zn(z0) is order � close to a fractional-linear function. The proof is based on
a simple application of cross-ratio distortion estimates. If the maps Ti are only C 2+˛-
smooth than closeness above will be of the order �˛ . In terms of renormalization this
property implies that the renormalization (fn(z); gn(z)) are getting exponentially close
to the space of pairs of fractional-linear functions as n ! 1. It is also easy to see that
asymptotically as n ! 1 the limiting pairs (f (z); g(z)) must satisfy the commutativity
relation f ı g(c2x) = g ı f (x). Here there is a little twist. Since on every step of
renormalization the orientation changes, c is also changing to c�1, and back to c on the
next step. Thus for odd n the commutativity relation is replaced by f ı g(c�2x) =

g ı f (x). It is convenient to define cn = c(�1)n . Taking into account the commutativity
relations one can show that (fn(z); gn(z)) converges to invariant two-parameter family of
pairs of fractional-linear functions which can be written explicitly. It is possible to write
explicit formulas using geometrically define parameters an and bn. However it is more
convenient to replace bn by another parameter vn = (c � an)/bn � 1 which characterizes
the nonlinearity of the map fn(z). Let us define a family

(3) Fa;v;c(z) =
a + cz

1 � vz
; Ga;v;c(z) =

a(z � c)

ac + z(1 + v � c)

Then (fn(z); gn(z)) gets exponentially close to Fan;vn;cn
(z) = Gan;vn;cn

(z) as n ! 1.
The limiting family (3) is invariant for the renormalization transformation R. The action
of R on the parameter c is trivial: Rc = 1/c. The hyperbolic properties of R acting
on the two-dimensional plane of parameters (a; v) were studied in Khanin and Khmelev
[2003] and Khanin and Teplinsky [2013]. An important role is played by the special time-
reversible symmetry. Define an involution I (a; v; c) = ((c � 1 � v)/av; �v/c; 1/c).
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Then, R�1 = I ıRıI . Since R is essentially a two-dimensional transformation, the time-
reversible symmetry provides duality between stable and unstable directions. The results
proved in Khanin and Teplinsky [2013] are very similar to the convergence of renormal-
ization results for critical circle maps. Again, there exist smooth stable and unstable man-
ifolds Γs(�+) and Γu(��), in this case they both are one-dimensional, parametrized by
forward and backward rotation numbers �+ and �� respectively, and a hyperbolic attrac-
tor A which consists of all points of intersection between Γs(�+) and Γu(��). As in the
critical case, for any pair (�+; ��) the manifolds Γs(�+) and Γu(�) intersect transversally
in a single point. All Lyapunov exponents are uniformly bounded away from zero by a pos-
itive constant which depends only on c. The main difference with the critical case is that
the whole picture is now two-dimensional. Another, more conceptual, proof of the above
statement can be found in Khanin and Yampolsky [2015]. It is based on the following
idea. There is always one unstable direction for the renormalization transformation. This
direction is related to a change of a rotation number. The other direction must be stable
by the time-reversible symmetry. Together these two statements imply the hyperbolicity.

Although renormalization converge exponentially to the two-dimensional invariant fam-
ily, and renormalization dynamics restricted to this family is hyperbolic and well under-
stood, it is highly non-trivial to combine this two facts into the statement of global con-
vergence of renormalization. The main difficulty is a strongly unbounded geometry when
kn+1 are getting large. Assume that c > 1. Then for even n renormalization fn(z) will be
convex, and for odd n it will concave. Thus, when kn+1 is large and n is even the function
fn(z) has an almost parabolic tangency with the diagonal, like in the case of critical circle
maps. This is a good case of bounded geometry. However, when n is odd, function fn(z)

come close to the diagonal at a point z = 0 corresponding to the break point. One can
show that in this case f 0(�1) is close to c, and f 0(0) is close to 1/c. As a result, geome-
try is strongly unbounded. Namely, j∆

(n)
0 j/j∆

(n�1)
0 j ∼ c�kn+1/2 which decays extremely

fast as kn+1 ! 1. Recall, that in the diffeomorphisms case j∆
(n)
0 j/j∆

(n�1)
0 j ∼ k�1

n+1.
In the case c < 1 the situation is dual: the geometry is strongly unbounded for even n,
and bounded for odd n. Despite the above difficulty the following global convergence
result was proved in Khanin and Kocić [2014]. Consider two circle maps T1 and T2 with
a break of size c. Assume that they are C 2+˛ smooth outside of break points. Denote
f

(1)
n (z); f

(2)
n (z) renormalization for T1 and T2 respectively.

Theorem 3.5. For any c there exist a constant �(c) 2 (0; 1) such that for all T1 and T2

as above and all n large enough we have kf
(1)

n (z)� f
(2)

n (z)kC2[�1;0] � �(c)n, provided
�(T1) = �(T2).

Theorem 3.5 allows to prove the rigidity result for maps with breaks. Due to unbounded
geometry robust rigidity does not hold in this case (Khanin and Kocić [2013]). One has to
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impose certain restrictions for a growth rate of kn+1 for odd n in case c > 1, and even n in
the case c < 1. Assume that in both cases the corresponding sequence of kn+1 is bounded
by ��n

1 for large enough n of the right parity. Here �1 < 1 is an arbitrary constant greater
than �(c). Then the following result holds (Khanin, Kocić, and Mazzeo [2017]).

Theorem 3.6. Suppose � = �(T1) = �(T2) satisfies the above condition. Then T1 and
T2 are C 1-smoothly conjugate to each other.

In this theorem we again assumed that c(T1) = c(T2), and both T1 and T2 are C 2+˛

smooth outside of their break points. We have seen above that in the case of critical circle
maps C 1+ˇ rigidity holds for Lebesgue almost all rotation numbers. S.Kocic showed that
this is not the case for circle maps with breaks (Kocić [2016]). Of course C 1+ˇ rigidity
still holds for rotation numbers of bounded type, or if kn+1 grow slowly enough.

4 Critical behaviour and parameter dependence

The renormalization for maps with singularities is very different from the diffeomorphism
case. Using the statistical mechanics analogy we can say that it demonstrate the critical
behaviour. Non-trivial scalings and fractal, or, more precisely, multifractal, structure of
the renormalization attractor are just two of many manifestation of criticality.

Another feature is singularity of invariant measure. The singularity follows from Graczyk
and Swiatek [1993] in the case of critical circle maps and from Dzhalilov and Khanin
[1998] in the case of maps with a break point. Properties of invariant measure for maps
with several breaks were studied in Dzhalilov, Liousse, and Mayer [2009].

It was known that if breaks belong to the same trajectory and the product of their sizes is
equal to 1, then they can effectively compensate each other, and the invariant measure can
be absolutely continuous. For a while it was conjectured that in all other cases the invariant
measure is singular. Recently A. Teplinsky (Teplinsky [2018]) constructed interesting
example of a piecewise linear circle maps with four breaks where the invariant measure
is absolutely continuous, although the breaks do not compensate each other completely.

Another interesting property of critical behaviour is related to a parameter dependence.
For any circle homeomorphism it is natural to include it in a one-parameter family which
allows to change a rotation number. In can be done in different ways. Below we discuss
the simplest construction when a one parameter family is given by T!(x) = T (x) + !

(mod 1); ! 2 [0; 1]. An object of interest here is a function �(!). Obviously, �(!) = !

in the linear case T (x) = x. In a nonlinear case �(!) is a monotone, but not a strictly
monotone, function. It has flat pieces ! 2 I (p/q) = [a(p/q); b(p/q)] for all rational
0 � � = p/q < 1. These closed intervals I (p/q) sometimes are called mode-locking
intervals. On the contrary for any irrational 0 < � < 1 there exists a unique value ! =

!(�) corresponding to it. Denote by Iir a Cantor-type of “irrational” parameter values,
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that is parameter values corresponding to irrational rotation numbers. It follows from
the KAM theory that the set Iir has a positive Lebesgue measure provided T is smooth
enough. On the contrary, in the case of critical circle maps (Swiatek [1988]) and in the
case of circle maps with a break point (Khanin and Vul [1991]) L(Iir) = 0, where L is
the Lebesgue measure.

We next discuss how to define the notion of typical irrational rotation number in a one-
parameter family. Since the parameter space is equipped with the Lebesgue measure it
is natural to consider the conditional distribution on ! 2 [0; 1] under condition that the
rotation number is irrational. It is easy to define such a conditional distribution in the dif-
feomorphism case when L(Iir) > 0. In the other two cases it is much less straightforward.
A natural approach here is to consider a decreasing sequence of sets In; n 2 N such that
for ! 2 In the continued fraction expansion for the rotation number �(!) is longer than n.
Obviously \nIn = Iir . Since L(In) > 0 one can define the conditional distribution �n

under the condition ! 2 In. Then the conditional distribution under the condition ! 2 Iir

can be defined as �(T ) = limn!1 �n. Using the hyperbolicity of renormalization one
can proof that such a limit exists (Dolgopyat, Fayad, Khanin, and Kocic [2018]). Next one
can consider the measure �(T ) which is a pushforward of �(T ) by the map ! 7! �(!).
This measure provides a natural probability distribution on the irrational rotation numbers
in a one-parameter family T! . Although measure �(T ) depends on a map T its asymptotic
properties are universal. One way to see it is to consider pushforward of �(T ) by iterates
of the Gauss map G. It turns out that in the case of critical circle maps Gm�(T ) ! �˛

as m ! 1, where the limiting measure �˛ is already universal and depends only on the
order of a critical point ˛ (Dolgopyat, Fayad, Khanin, and Kocic [ibid.]). In the symbolic
representation corresponding to the continued fraction expansion the measure �˛ has a
Gibbs structure with a nice Hölder continuous potential. Note that in the diffeomorphism
case the corresponding measure � is absolutely continuous with the density 1

ln2
1

1+�
. The

statistical properties of measure � are very different from �˛ . One can show that a proba-
bility with respect to �˛ of � such that an entry kn in a continued fraction expansion for �

takes a large value kn = k decays as k�3 while in the diffeomorphism case it decays as
k�2.

Similar statements can be proved for circle maps with a break point. The only difference
is that in this case the sequence Gm�(T ) converges to a periodic orbit of the period two:
G2n�(T ) ! �e

c ; G2n+1�(T ) ! �o
c as n ! 1. This periodic orbit G�e

c = �o
c ; G�o

c =

�e
c is also universal and depends only on a break size c. Obviously, �e

c = �o
1/c

; �o
c = �e

1/c
.

In the case c > 1 a probability of large values of kn = k decays again as k�3 for odd n. For
even n the probability decays exponentially with k. In the case c < 1 the parity is opposite.
It looks plausible that for two families T1;! ; T2;! for typical “irrational” parameter values
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!1; !2 the conjugacy between T1;!1
and T2;!2

will be C 1+ˇ smooth provided �(T1;!1
) =

�(T2;!2
).

5 Beyond dimension one

All the results which we discussed above were one-dimensional. The combinatorics of
trajectories which is present in the one-dimensional setting either in terms of rotation num-
bers, or in terms of kneading sequences is a crucially important feature in the universality
phenomenon. This is especially true in the case of critical behaviour.

The multidimensional results are either related to the linear KAM regime (Mackay
[1982], Koch [1999], and Khanin, Lopes Dias, and Marklof [2007, 2006]), or to the cases
where one-dimensional structure is effectively present. By this I mean situations where dy-
namics is essentially one-dimensional with dissipation in other directions. This approach
goes back to the paper by Collet, Eckmann, and Koch [1981]. Important results related
to the geometry of embeddings of quasi one-dimensional attractors into two-dimensional
space were studied by De Carvalho, Lyubich, and Martens [2005] and by Gaidashev and
Yampolsky [2016].

Very important renormalization problems were studied in connection with critical in-
variant curves for area-preserving twist maps of a cylinder. An interesting and rich criti-
cal behaviour was discovered there by R.MacKay who also developed a renormalization
scheme for such maps (Mackay [1982]). Unfortunately most of the results in this direc-
tion are still not rigorous. Recently Koch, using computer-assisted methods, was able to
construct a corresponding fixed point for critical invariant curves with the golden mean
rotation number � =

p
5�1
2

(Koch [2008]). Although dynamics in this case is really two-
dimensional without dissipation, a footprint of the 1D case is still present through the
invariant curve.

In the KAM regime renormalization schemes are based on the multidimensional contin-
ued fraction algorithm (Khanin, Lopes Dias, and Marklof [2007, 2006]). One can consider
either a problem of constructing smooth invariant tori, or study the linearization problem
for smooth diffeomorphisms of the torus T d . In both cases, in addition to the coordi-
nate rescaling, on every step of the renormalization procedure one also have to implement
certain nonlinear coordinate changes. These coordinate changes are eliminating some non-
essential unstable direction. There are not essential precisely because they are related to
coordinate changes. In fact, in the KAM regime all the eigen-directions, even stable ones,
can be removed by means of proper coordinate changes. This fact can be seen as a renor-
malization explanation of a fast convergence of the linearization approximations in the
KAM setting.



RENORMALIZATION AND RIGIDITY 2007

It is well known that KAM type of results on linearization in the multidimensional case
require closeness of the corresponding maps to the linear ones. At the same time lineariza-
tion results in the one-dimensional case are global. One of the main difficulties is related
to Denjoy theory. In the 1D case we know when a diffeomorphism is topologically conju-
gated to a linear one, while in the multidimensional situation it is not the case. In certain
sense this is the only obstacle to global results. The following conjecture by R.Krikorian
states that the global rigidity results hold in any dimension.

Conjecture (R.Krikorian). Let T be a C 1 diffeomorphism of T d . Assume that T is
topologically conjugate to a linear translation T E! : Ex 7! Ex + E! (mod 1) Ex 2 T d with a
Diophantine rotation vector E! = (!1; : : : ; !d ). Then the conjugacy between T and T E! is
C 1 smooth.

It is obvious that in the presence of periodic orbits smooth linearization is virtually
impossible. In the above conjecture there are no periodic orbits for T since it is conjugate
to an irrational translation. Diophantine condition guarantees that there are also no orbits
which are too close to periodic ones. The conjecture basically says that there are no other
obstructions to smooth linearization.

It looks natural to propose the following generalization of the above conjecture. Let
M be a compact Riemannian manifold. Let T1 and T2 be C 1 diffeomorphisms of M .
Assume also that T1 and T2 satisfy the Diophantine property. Namely, there exists �; C >

0 such that for x 2 M and all n 2 N we have: dist(T n
1 x; x) � C n�� ; d ist(T n

2 x; x) �

C n�� .

Rigidity Conjecture. Suppose T1 and T2 are topologically conjugate. Then the conjugacy
is C 1 smooth.

Probably it is enough to require the Diophantine condition for only one of the maps T1

and T2.

6 Concluding remarks

We have seen above how the renormalization ideology can be implemented in several
dynamical problems. Although the conceptual picture is very simple and appealing the
proofs are quite difficult. A variety of different techniques is required in various settings.
At the same time the phenomenon seems to be extremely general. In all the cases stud-
ied we see the hyperbolicity of renormalization, and convergence of renormalization for
maps which are equivalent topologically and have the same structure of critical points.
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The renormalization behaviour is extremely rigid. The geometrical properties of trajec-
tories are completely determined by the backward and the forward rotation numbers and
parameters (like ˛ and c) characterizing the local behaviour near singular points.

Above we formulated a number of conjectures and discussed several open problem. As
we have emphasized repeatedly, the central open problem in renormalization theory is the
problem of convergence of renormalization for critical maps with an arbitrary order of
critical points. Below we formulate few more open problems.

Interesting problems on convergence of renormalization arise in the multimodal set-
ting when the map has several singular points. Consider for example the case of a map
T1 which has several break points ui with break sizes ci ; 1 � i � k. We shall present
below an heuristic argument behind the hyperbolicity of renormalization. According to
the Renormalization Conjecture, in order to have convergence of renormalization the sec-
ond map T2 should have the same rotation number and a matching structure of its break
points. Denote vi ; 1 � i � k the break points for T2. Matching means that their break
sizes are also ci ; 1 � i � k, and �1([ui ; ui+1] = �2([vi ; vi+1]; 1 � i < k, where
�1; �2 are probability invariant measures for T1 and T2 respectively. Changing the val-
ues of � and mi = �1([ui ; ui+1]; 1 � i < k correspond to a k-dimensional unstable
manifold. The task is to show that all other directions are stable. If there are no other
unstable directions then by fixing the values of � and mi ; 1 � i < k we put T1 and T2 on
the same stable manifold for renormalization transformation. In the case of k break points
one has (k + 1) smooth branches of renormalization. Like in the case of one break point,
all branches after rescaling will converge to the space of fractional-linear maps. Using k

commutativity conditions one can reduce the number of parameters to 2k. Renormaliza-
tion transformation corresponds to some inducing scheme. It is possible to use the Rauzy
induction. Indeed, at every step of renormalization the map can be viewed as a nonlinear
interval exchange transformation of (k + 1) intervals. However one can develop a dif-
ferent inducing scheme which is more suitable for our purposes (Khanin and Teplinsky
[2018]). This scheme corresponds to interchanges between k disjoint intervals, moreover,
each of them is subdivided onto two subintervals. More precisely, each break point is
surrounded by two intervals, one to the right and one to the left of it. These intervals are
mapped by proper iterates of T . The union of their images covers the initial collection of
intervals. On the next step of renormalization intervals get smaller and number of iterates
get larger. An inductive scheme of the above type can be constructed in such a way that
the renormalization transformation R will again have an explicit time-reversible symme-
try provided by an involution I (Khanin and Teplinsky [ibid.]). We have seen above that
such an involution exists in the case of one break. Of course the involution I is more
complicated in the multiple breaks case. It acts on the subset of R2k corresponding to
parameters of fractional-linear functions. It also acts on a finite set of combinatorial types.
In the case k = 1 it was just two combinatorial types related to a change of orientation.
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Interchanges of k subdivided intervals have a more complicated combinatorial structure.
Because of the time-reversible symmetry the number of stable and unstable directions are
the same. This means that as long as the existence of k unstable directions is established,
all other directions must be stable.

A simpler case of maps with k breaks under additional condition
Qk

i=1 ci = 1 was
considered in Cunha and Smania [2014, 2013]. In this case the renormalization converge
to the space of linear maps with different slopes. Cunha and Smania used the Rauzy
induction and proved convergence of renormalization and smooth rigidity. One can say
that inductive schemes of the Rauzy type have three different representations: the usual
one in the space of linear maps with slop 1, another one in the space of linear maps with
different slopes studied in Cunha and Smania [2014, 2013], and the third one in the space
of fractional-linear functions. Moreover, all three representations are hyperbolic.

Another interesting open problem is related to critical circle maps with asymmetric
critical points. Namely, the orders ˛1 to the right of the critical point and ˛2 to the left of
it are different. Since the maps in this case are not quasisymmetric the results of Yoccoz
(Yoccoz [1984b]) cannot be applied. We even do not know whether such maps are topo-
logically conjugate to linear rotations, although this should be expected. We believe that
the renomalization for such maps will behave in the following way. The geometry of the
dynamical partition �n will be strongly unbounded. The intervals ∆(n)

0 and ∆
(n�1)
0 will

be exponentially small with different exponents. However, their images ∆(n)
1 = T (∆

(n)
0 )

and ∆
(n�1)
1 = T (∆

(n�1)
0 ) will be already of the same order. In other words, a meaningful

renormalization theory can be developed near the critical value, rather than near the criti-
cal point. One can expect that renormalization will still converge within the universality
class.

This paper provides a relatively brief introduction into the theory of dynamical renor-
malization. It was certainly impossible to comment on all important contributions made
in this area in the last 40 years. Many important papers were not discussed above. The
reason for their omission is a lack of space rather than lack of respect.
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Abstract
We discuss some aspects of the topological dynamics of surface homeomorphisms.

In particular, we survey recent results about the dynamics on the boundary of invariant
domains, its relationship with the induced dynamics in the prime ends compactifica-
tion, and its applications in the area-preserving setting following our recent works
with P. Le Calvez.

1 Introduction

The dynamics of homeomorphisms of the circle S1 has been completely understood and
classified from the topological viewpoint since the early 20th century, with the classical
Poincaré rotation number as a key concept. If f : S1 ! S1 is an orientation-preserving
homeomorphism, the rotation number �(f ) 2 R/Z measures the asymptotic average
rotation of its orbits, and one has:

(i) If �(f ) = p/q 2 Q/Z then every nonwandering point is a fixed point of f q , and
all periodic points have the same least period. In particular, the !-limit and ˛-limit
sets of any point consist of fixed points of f q .

(ii) If �(f ) … Q/Z then there are no periodic points. Moreover, f is topologically
semi-conjugate to the rigid rotation by �(f ), and it is uniquely ergodic. In particular,
there is a unique minimal set. If f is sufficiently smooth, this semi-conjugation is
a conjugation.

On the other hand, the jump from dimension 1 to dimension 2 introduces new behavior
and rich dynamical phenomena which suggest that one cannot expect a general classifica-
tion. For instance, one may have coexistence of periodic orbits of arbitrary periods, posi-
tive topological entropy, different coexistent types of rotational behavior, mixing, among
several other phenomena that are not present in dimension 1.
A. K. acknowleges support by the German Research Council (Mercator fellowship, DFG-grant OE 538/9-1),
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Nevertheless, generalizations of the notion of rotation number have been useful in the
study of two-dimensional dynamics. As in dimension one, the general idea is to measure
the (asymptotic) average rotation of an orbit along a given homological direction of the
surface, by means of a lift to the universal cover or an isotopy. It is observed that the co-
existence of different types of rotational behavior often forces the existence of new types
of orbits, periodic orbits, positive topological entropy, and other dynamical phenomena.
The concept of rotation intervals for annulus homeomorphisms, motivated by the classical
Poincaré-Birkhoff theorem, has been useful to obtain generalizations and refined versions
of this result, in the context of twist maps Mather [1982a], area-preserving homeomor-
phisms, and even in the general setting Franks [1988] and Handel [1990]. The notion of
rotation set of a toral homeomorphism had a similar success Franks [1989] and Llibre and
MacKay [1991], and to a lesser extent its generalization to arbitrary surfaces of positive
genus Pollicott [1992] and Koropecki and Tal [2017]. In late years, a great deal of progress
has been made in understanding the dynamical consequences of rotation sets and intervals,
e.g. Le Calvez and Tal [2017], Dávalos [2016], Jäger [2009], Koropecki and Tal [2014],
Boyland, de Carvalho, and Hall [2016], Passeggi [2014], Addas-Zanata [2015], Kocsard
[2016], and Koropecki, Passeggi, and Sambarino [2016].

A different approach consists in studying the dynamics of a surface homeomorphism at
the boundary of an invariant domain. This is the focus of this article. To fix ideas, suppose
U is a simply connected open set in an orientable surface S , invariant by an orientation-
preserving homeomorphism f . Can one describe the dynamics of f j@ U in simple terms,
as in (i) and (ii) above? If @ U is a simple curve, this is clearly the case. However, often
@ U is far from being a curve. An illustrative example is given by Wada-type continua,
which are the common boundary of three or more disjoint topological disks. For inst-
snce the example in Figure 1 is nowhere locally connected and indecomposable, i.e. it
is not the union of two proper nonempty subcontinua. This type of continuum appears
frequently and robustly in smooth dynamics, for instance as a hyperbolic planar attrac-
tor Plykin [1974]. Another example, in a sense more drastic, is the pseudo-circle (see
Figure 2), which is hereditarily indecomposable. This means every subcontinuum is inde-
composable, and in particular it does not contain any arcs. The pseudo-circle may appear
as an attractor Herman [1986] and Boroński and Oprocha [2015], as an invariant set of an
area-preserving C 1 diffeomorphism Handel [1982], or even as the boundary of a Siegel
disk for a local holomorphic diffeomorphism Chéritat [2011]. Other relevant examples
are the hedgehogs that appear in holomorphic dynamics Pérez-Marco [1997].

There is no hope for a classification such as (i)-(ii) in the general setting. Most of the
rich dynamical dynamical phenomena that appear in dimension 2 can also appear simulta-
neously in the boundary of U . For instance, a connected hyperbolic attractor such as the
Plykin attractor in the sphere includes dense periodic points of arbitrary periods, positive
topological entropy, topological mixing, and yet it is the boundary of a simply connected
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Figure 1: Wada-type
continuum Figure 2: A pseudo-circle

domain. But it turns out that the presence of such rich dynamics in @ U is related to the
existence of attracting or repelling regions near @ U , and if one introduces some mild form
of recurrence near @ U the situation changes completely. This is particularly the case in
the area-preserving setting, which was the main motivation behind our joint works with
P. Le Calvez described below.

The idea of studying the dynamics of an invariant continuum by means of its comple-
mentary components was already present in the work of Cartwright and Littlewood [1951]
where they proved their celebrated fixed point theorem, and one of their key ideas was the
use of Caratheodory’s prime ends compactification and the prime ends rotation number.
This was further explored bymany authors (see for instanceMather [1981], Walker [1991],
Barge and Gillette [1991], Alligood and Yorke [1992], Ortega and Ruiz del Portal [2011],
and Hernández-Corbato, Ortega, and Ruiz del Portal [2012]). In the area-preserving set-
ting, one of the motivations for this approach is the conjecture (dating back to Poincaré)
that for a C r -generic symplectic surface diffeomorphism the periodic points are dense.
This is well known for r = 1 Pugh and Robinson [1983], but for r > 1 the usual local
perturbation techniques do not work well, and a completely different approach is needed.
Recent developments in symplectic topology led to a proof of the conjecture for any r

in the case of Hamiltonian diffeomorphisms Asaoka and Irie [2016]. The general case
remains open, but a relevant step is understanding the closures of invariant manifolds of
hyperbolic periodic points. The following result, proved first in the sphere Franks and Le
Calvez [2003] and later generalized to arbitrary surfaces Koropecki, Le Calvez, and Nas-
siri [2015] and Xia [2006] illustrates the usefulness of the topological study of boundaries
of invariant domains (see Section 2.5):

Theorem 1.1. For a C r -generic area-preserving diffeomorphism of a closed surface, the
set of all stable (or unstable) manifolds of hyperbolic periodic points is dense.
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Previous results by Mather [1981] showed that in the generic setting, the closures of
any two stable or unstable branches of a hyperbolic periodic point coincide. This also
relied on the use of prime ends.

If U ¨ R2 is an open simply connected set, the prime ends compactification cEU

is a way of compactifying U by adjoining a circle of prime ends bEU ' S1, in such a
way that the resulting space is homeomorphic to the closed unit disk D (see Section 2).
The most direct approach to define it is to consider a conformal Riemann uniformization
� : U ! D, and then define the compactification asU tS1 with the topology generated by
sets of the form ��1(V )[ (V \S1) where V is (relatively) open in D. If f : R2 ! R2 is
a homeomorphism such that f (U ) = U , then f jU always extends to a homeomorphism
fe : cEU ! cEU . The restriction of fe to the circle of of prime ends is an orientation-
preserving circle homeomorphism if f is orientation-preserving, and this allows us to
define a prime ends rotation number �(f; U ) by considering the Poincaré rotation number
of fe on the circle of prime ends. Onemay then try to describe the dynamics in @ U in terms
of the this rotation number, and hope to recover results such as (i) and (ii) above. This
transition from the prime ends to the boundary dynamics is a subtle problem, and there are
examples showing that one cannot hope to do it without any additional hypotheses (see
Figures 3 and 4).

However, when U has finite area and f is area-preserving, or more generally when
there is some mild form of recurrence near @ U , this approach has been more success-
ful: an argument due to Cartwright and Littlewood [1951] shows that if �(f; U ) = p/q

then there is a fixed point of f q in @ U (see Theorem 2.1 ahead). On the other hand,
Mather showed that under certain generic conditions for an area-preserving diffeomor-
phism, �(f; U ) is always irrational Mather [1981] (although he did not obtain any direct
consequences about the dynamics of f j@ U ). Finally, in recent joint works Koropecki,
Le Calvez, and Nassiri [2015, 2017], we obtained a more complete picture, which is very
similar to the situation for homeomorphisms of the circle. The results apply under a more
general local condition near @ U which we will call the boundary condition. The precise
definition is given in Section 2.2. We only mention here that this condition holds when-
ever f jU is nonwandering (in particular if f is area-preserving and U has finite area).
Summarizing some of the results from Koropecki, Le Calvez, and Nassiri [2015, 2017]
we may state the following:

Theorem 1.2. Suppose f : R2 ! R2 is orientation-preserving and leaves invariant an
open simply connected set U ¨ R2. Assume further that f has the boundary condition in
U . Then:

(1) If �(f; U ) = p/q 2 Q, then every nonwandering point of f j@ U is a fixed point of
f q , and all periodic points have the same least period. In particular ifU is bounded
then the !-limit and ˛-limit sets of any point in @ U consist of fixed points of f q .
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(2) If �(f; U ) … Q then there are no periodic points in @ U . Moreover, if U is un-
bounded, there are no periodic points in the complement of U .

The theorem is stated in R2 for simplicity, but similar results hold in more general
surfaces. Note that part (1) is identical to what happens for circle homeomorphisms. Part
(2) is only partially so, since examples such as Handel [1982] show that one cannot hope
to obtain a semiconjugation to an irrational rotation, except in some special cases (see
Section 3.4).

Note that this may be seen as a result about dynamics, without invoking prime ends.
For instance, we may state the following:

Corollary 1.3. Under the same hypotheses, if there is a fixed point of f in @ U then the
nonwandering points of f j@ U are all fixed points.

We remark that the claim about the nonwandering points of f j@ U is very strong. If U

is bounded, it implies that every orbit goes from the fixed point set to the fixed point set.
This leads to the following Koropecki, Le Calvez, and Nassiri [2017]:

Theorem 1.4. Suppose that f : R2 ! R2 is an area-preserving diffeomorphism, and U

is a bounded f -invariant open topological disk with a fixed point in its boundary. Then:

• The derivative of f at every fixed point in @ U has positive eigenvalues. In particu-
lar, there are no elliptic points in @ U .

• If there is no fixed point in @ U with an eigenvalue 1, then @ U is the union of (finitely
many) hyperbolic saddles together with saddle connections. In particular, @ U is
locally connected.

The same thing holds on any surface if f is isotopic to the identity, with a possible
exceptional case on the sphere (see Figure 5). A consequence of this fact is that under the
explicit C r -generic condition that f has no saddle connections and all periodic points are
either hyperbolic or elliptic, there are no periodic points in @ U . A similar result, with a
completely different proof (still unpublished), was also announced by Fernando Oliveira
several years ago.

As part of the proof of Theorem 1.2 we also obtain results about the topology of @ U .
Let us mention a particularly striking one. To simplify, assume that U is bounded, and
@ U is also the boundary of the unbounded connected component of R2 n U . In that
case, if �(f; U ) = p/q and f has the boundary condition in U , we show that there
are two possibilities: either f qj@ U = Id, or @ U is compactly generated in the annulus
A = R2 n fz0g where z0 2 U is any point. This means that there is a compact connected
set in the universal cover of A which projects onto @ U , and it is a restrictive condition.
For example, the pseudo-circle is not compactly generated, so we can state the following:
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Theorem 1.5. Suppose that f is area-preserving and K is an invariant pseudo-circle. If
there is a fixed point in K, then f jK = Id.

This is another instance of a general property that is seen in invariant boundaries in the
area-preserving setting: if the topology of the boundary is too wild in a certain way, then
its dynamics is forced to be trivial. The results on homotopical boundedness described in
Section 2.7 also reflect this observation.

2 Dynamics under a boundary condition

Instead of defining the prime ends compactification bymeans of a uniformizing conformal
map Milnor [2011] and Pommerenke [1992], one may use a purely topological definition,
which is more convenient and flexible in many situations. We summarize it here; more
details can be found, for instance, in Mather [1982b] or Koropecki, Le Calvez, and Nas-
siri [2015]. Most definitions in the literature assume that U is relatively compact, but
following Koropecki, Le Calvez, and Nassiri [ibid.] we do not make this assumption.

Let S be a surface (which is always assumed to be boundaryless, connected, orientable,
of finite genus and endowed with a metric) and U � S an open topological disk such that
S n U has more than one point. A cross-cut of U in S is the image of a simple arc

 : (0; 1) ! U that extends to an arc 
 : [0; 1] ! U joining two points1 of @ U , and such
that each of the two components of2 U n 
 has some boundary point in @ U n 
 . A cross-
section of U in S is any connected component of U n 
 for some cross-cut 
 of U in S .
Each cross-cut corresponds to exactly two cross-sections, which are topological disks.

A chain for U in S is a sequence C = (Dn)n2N of cross-sections such that Di � Dj

for all i � j � 1 and @U Di \ @U Dj = ¿ for all i ¤ j . If D is any cross-section of U ,
we say that the chain C divides D if Di � D for some i 2 N. If C0 = (D0

n)n2N is another
chain, we say that C divides C0 if C divides D0

n for each n 2 N. We say that C and C0 are
equivalent if C divides C0 and C0 divides C. A chain C is called a prime chain if C divides
C0 whenever C0 is a chain that divides C. An equivalence class of prime chains is called
a prime end of U .

For a cross-section D of U , we say that the prime end p divides D if some (hence any)
chain representing p divides D. We denote by EU D the set of all prime ends that divide
D, and by bEU the set of all prime ends of U . The prime ends compactification of U is
the set cEU = U t bEU , with the topology which has as a basis of open sets the family of
all open subsets of U together with all sets of the form D [ EU D for some cross-section
D of U . With this topology, cEU is homeomorphic to the closed unit disk D, and bEU

endowed with the restricted topology is homeomorphic to the unit circle S1.
1Often it is assumed that the two points are different; we do not make this assumption.
2For simplicity we abuse notation and denote by 
 both the parametrized arc and its image.
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A useful observation is that when U is relatively compact in S , every prime end has a
representative chain (Di )i2N such that the diameters of the cross-cuts @U Di tend to 0 as
i ! 1 (see Koropecki, Le Calvez, and Nassiri [ibid.]).

If f : S ! S is an orientation preserving homeomorphism, then f jU extends to an
orientation-preserving homeomorphism of the prime ends compactification, which we
denote by fe : cEU ! cEU . The prime ends rotation number of f in U , denoted
�(f; U ) 2 R/Z, is defined as the Poincaré rotation number of the homeomorphism of
the circle given by the restriction of fe to bEU ' S1.

2.1 Prime ends vs. boundary dynamics. Suppose U � S is an open topological
disk invariant by the orientation-preserving homeomorphism f . What can be said about
f j@ U in terms of the prime ends rotation number? In particular, is it true that there are
periodic points in @ U if and only if �(f; U ) is rational? The answer in general is no, in
both directions: The example in Figure 3 has no fixed points in @ U , but the prime ends
dynamics is a north pole-south pole map. On the other hand, the example in Figure 4
(see Walker [1991]) has fixed points in the boundary (every point in the outer circle is
fixed), but the prime ends dynamics is a (Denjoy) homeomorphism with irrational rotation
number.

U

Figure 3: �(f; U ) = 0, no fixed
points

U

Figure 4: �(f; U ) …

Q/Z

Both examples have attracting or repelling regions near the boundary, and this is not a
coincidence. If one excludes this behavior (for instance, if f is area-preserving and U has
finite area), the situation changes. To illustrate this fact, we begin with a result proved by
Cartwright and Littlewood. A cross-section D is trapping if it satisfies f (D) � D and
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@U D is disjoint from its own image. Note that this also implies clU f (D) � D. We also
say that a cross-cut is trapping if one of its corresponding cross-sections is trapping.

Theorem 2.1. If U is relatively compact and �(f; U ) = 0 then either there is a fixed point
in @ U or there are trapping cross-cuts arbitrarily close to @ U .

Note that if f is area-preserving in U then one cannot have any trapping cross-cuts, so
only the first case may hold.

Proof. Since �(f; U ) = 0 there exists a prime end p such that fe(p) = p. Since U

is relatively compact, one may choose a prime chain (Dn)n2N representing p such that
the diameters of the cross-cuts ˛n = @U Dn tend to 0 as n ! 1. If infinitely many of
these cross-cuts are trapping, then we have trapping cross-cuts arbitrarily close to @U U .
Thus we may assume that there exists i such that ˛n is non-trapping for all n � i . The
fact that p is fixed means (f (Dn))n2N is also a prime chain representing p. Thus there
is j0 such that Dj � f (Di ) for any j > j0. We claim that if j > j1 := minfi; j0g,
then f (˛j ) \ ˛j ¤ ¿. Indeed, assume on the contrary that f (˛j ) \ ˛j = ¿. Note
that Dj � f (Di ) \ Di . By the previous argument using f �1 instead of f , there is
k > j such that Dk � f �1(Dj ) \ Dj . In particular we have Dk [ f (Dk) � Dj �

Di \ f (Di ). This means that both components of U n ˛j intersect their own image by
f , and in particular letting D be the connected component of U n ˛j which does not
contain f (˛j ) one has D \ f (D) ¤ ¿. Since D is disjoint from @U f (D) = f (˛j ),
this implies that D � f (D). Note that U n D = clU D0, where D0 is the cross-section
determined by ˛j which is not D; thus f (clU D0) � clU D0, and since we assumed that
˛j is disjoint from f (˛j ), it follows that f (clU D0) � D0. This means that ˛j is trapping,
contradicting our assumption.

Thus ˛j \ f (˛j ) ¤ ¿ for all j > j1, and we may choose zj 2 ˛j \ f (˛j ) for each
j � j1. Since the diameter of ˛j tends to 0, we have d (zj ; f �1(zj )) ! 0 as j ! 1,
so any limit point of the sequence (zj )j �j1 is a fixed point in @ U .

In fact, what the proof of the previous theorem shows is that if p is a fixed prime end,
then either one may find a prime chain for p such that the corresponding cross-cuts are all
trapping and their diameters tend to 0, or every principal point of the prime end p is fixed
(and this is particularly the case when f is area-preserving). A principal point is a point
of @ U that is the limit of a sequence of cross-cuts with diameter tending to 0 bounding the
cross-sections of a prime chain of p. The set Π(p) of all principal points of p is relevant
because it can be characterized in the following alternative way. Consider the family F
of all arcs � : [0; 1) ! U such that limt!1� �(t) = p in the topology of cEU . The same
limit may fail to exist in the ambient space S (it will only exist if p is accessible), but
we may consider the limit set L(�) =

T
0�t<1 
([t; 1)). The principal set is equal to
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T
�2F L(�), and moreover it is realized as L(�) for some � Mather [1982b]. In particular

Π(p) is connected.
There have been other results regarding the realization of fixed points from fixed prime

ends under different hypotheses, e.g. Ortega and Ruiz del Portal [2011] and Alligood and
Yorke [1992] (see also Section 3). The converse of this result is more subtle, and was
proved recently in Koropecki, Le Calvez, and Nassiri [2015]. In order to state it we need
another definition.

2.2 The boundary condition. Note that a trapping cross-section can only occur if the
prime ends rotation number vanishes. Here we introduce a natural generalization of the
notion of trapping cross-section which poses no restrictions on the rotation number.

A (positive) strong boundary trapping region of U for f is an open set of the form
W =

S
D2F D with the following additional properties:

� F is a family of pairwise disjoint cross-sections of U ;
� The set fD 2 F : diam(@U D) > cg is finite for each c > 0;
� For each D 2 F there is D0 2 F such that f (D) � D0 and the cross-cuts ˛; ˛0

bounding D and D0 in U satisfy f (˛) \ ˛0 = ¿.
These conditions in particular imply that clU f (W ) � W . The second condition al-

ways holds if @U W is contained in a compact arc. The last item guarantees that when
one considers D and D0 as subsets of the prime ends compactification cEU , the closure
of D is mapped into D0. For instance, a single trapping cross-section is a strong boundary
trapping region.

We say that f has the boundary condition in U if there is a compact set K � U such
that, for each n 2 Z, U n K does not contain a set of the form @U W where W is a strong
boundary trapping region of U for f n.

The boundary condition is automatically satisfied if any of the following properties
hold:

� f is area-preserving and U has finite area;
� f is nonwandering in U ;
� there are no wandering cross-cuts of U ;
� the dynamics induced in the circle of prime ends is transitive.
One of the reasons this condition is useful is that it is local (it can be verified by exam-

ining f in a neighborhood of @ U ), and therefore enables the use of our results in different
settings by modifying f in a compact subset of U or outside of U . A particularly useful
case is when one wants to extend results to non-simply connected open sets. Most of our
results can be applied to isolated topological ends, and to do so one may use a surgery in
the open set to “cut away” everything outside a collar neighborhood of the topological end
and replace it by a fixed point.
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Many results in Koropecki, Le Calvez, and Nassiri [2015] are stated under a slightly
stronger condition called the @-nonwandering condition. However the only part of the
article where this condition is crucial (Lemma 4.6 about maximal cross-cuts) remains valid
if one assumes instead the boundary condition, and this is clear from the proof.

2.3 The irrational case. The proof of Theorem 1.2 requires a converse of Theorem 2.1.
Assume f : R2 ! R2 is an orientation-preserving homeomorphism and U = f (U ) ¨
R2 is an open topological disk.

Theorem 2.2 (Koropecki, Le Calvez, and Nassiri [ibid.]). If f has the boundary condition
in U and �(f; U ) ¤ 0 (mod Z), then Fix(f ) \ @ U = ¿. If U is unbounded, then
Fix(f ) � U .

To prove this we rely on a general result on translation arcs. An n-translation arc for f

is a simple arc ˛ joining a point z to f (z) such that the concatenation ˛�f (˛)�� � ��f n(˛)

is also a simple arc. As typical example is when ˛ is a fundamental domain of a stable
or unstable branch of a hyperbolic saddle. Such ˛ is an 1-translation arc (i.e. it is an
n-traslation arc for each n 2 N). A simplified version of the lemma on translation arcs
Koropecki, Le Calvez, and Nassiri [ibid., Theorem E] states the following:

Lemma 2.3. Under the hypotheses of the previous theorem, there exist N � 1 depending
only on the rotation number � = �(f; U ) and a compact subset K of U such that any
N -translation arc in R2 n K is disjoint from @ U .

The key is to prove this lemma is to compare the combinatorics of the orbits of cross-
cuts in ˛ \ U seen in the cyclic order of the circle of prime ends bEU (which corresponds
to the combinatorics of the rigid rotation by �(f; U ) on the circle) with their respective
positions in the linear order of the arc Γ = ˛ � f (˛) � � � � � f N (˛). Using these two
different approaches, if N is chosen sufficiently large, one is able to construct two simple
loops which have nonzero algebraic intersection number, which is not possible in a surface
of genus 0. In order to construct these simple loops, a fundamental step is to prove a
“maximal cross-cut lemma” Koropecki, Le Calvez, and Nassiri [ibid., Lemma 4.6], which
is the only part of Koropecki, Le Calvez, and Nassiri [ibid.] and Koropecki, Le Calvez,
and Nassiri [2017] where the boundary condition plays a role (see Koropecki, Le Calvez,
and Nassiri [2015, §4], Koropecki, Le Calvez, and Nassiri [2017], Koropecki, Le Calvez,
and Tal [2017, Lemma 5]).

To illustrate the usefulness of Lemma 2.3, one may easily prove a particular case of
Theorem 2.2, namely that there is no hyperbolic (saddle) fixed point in @ U . Suppose that
f is differentiable and p is a hyperbolic saddle. Because of the linear hyperbolic behavior
near p, for any given N one may find an arbitrarily small neighborhood V of p such that
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V n p is covered by N -translation arcs. If N is chosen as in Lemma 2.3, this means that
V cannot intersect U and therefore p is not on the boundary of U .

The proof of Theorem 2.2 in the general case requires considerably more work. The
main idea is to use a version of Brouwer’s arc translation lemma to show that if there is a
fixed point in @ U then one may find arbitrarily close to this fixed point an N -translation
arc intersecting @ U , thus contradicting Lemma 2.3. But this cannot be done directly in
R2; we need to work on a lift to the universal cover of R2 n X where X is a special set
of fixed points. For the details we refer the reader to Koropecki, Le Calvez, and Nassiri
[2015, §5]. We only mention here that an essential component of the proof is the existence
of maximally unlinked sets of fixed points.

A closed set X � Fix(f ) is maximally unlinked if it has the property that f jR2nX

is isotopic to the identity in R2 n X , and X is maximal among sets with this property
with respect to inclusion. The existence of maximally unlinked sets was established by
Jaulent [2014]. A stronger and more useful version of this result was recently obtained
by Béguin, Crovisier, and Le Roux [2016]. These results about maximally unlinked sets
in combination with the foliated version of Brouwer’s plane translation theorem due to
Le Calvez [2005] provide a powerful tool in two-dimensional dynamics, and led to many
advances in recent years. We mention in particular the forcing theory of Le Calvez and
Tal [2017], which produced several outstanding results in surface dynamics.

A version of Theorem 2.2 is also valid on an arbitrary surface, but one needs to make
a special exception on the sphere, where it is easy to construct an area-preserving home-
omorphism with an invariant disk U such that @ U looks like a hedgehog: it has a single
fixed point, with “hairs” which rotate around the fixed point with the combinatorics of an
irrational rotation (see Figure 5 ahead). This kind of example has irrational prime ends
rotation number but yet has a fixed point. It turns out that this is the only situation where
a periodic point may exist if the rotation number is irrational:

Theorem 2.4 (Koropecki, Le Calvez, and Nassiri [2015]). Let f be an orientation and
area-preserving homeomorphism of a closed orientable surface S , and U � S an open
f -invariant topological disk whose complement has more than one point and such that
�(f; U ) … Q/Z. Then one of the following holds:

(i) @ U is an inessential annular continuum without periodic points;
(ii) S is a sphere, U is dense in S , and S n U is a non-separating continuum with a

unique fixed point and no other periodic points.

Here by inessential continuum inS wemean a compact connected setK � S which has
a neighborhood D homeomorphic to a disk. By annular we mean that K is a decreasing
intersection of closed topological annuli A1 � A2 � � � � such that Ak+1 is essential in
Ak for each k. Equivalently, this means that K has a neighborhood A homeomorphic to
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the annulus A such that K is essential in A and A n K has exactly two components. Even
more general versions of Theorem 2.4 can be found in Koropecki, Le Calvez, and Nassiri
[2015, §6-7].

Note how this result not only gives us dynamical information (no periodic points, with
a single exception) but also topological information about the boundary. For instance, a
disk as in Figure 6 cannot happen in Theorem 2.4 since its boundary is not annular.

 

U

Figure 5: A hedgehog Figure 6: A homotopically unbounded disk

There is room for improvement in this case. We do not know much about the dynamics
in @ U when �(f; U ) is irrational and f is area-preserving, other than the fact that there
are no periodic points (with the exception given in Theorem 2.4). For example, what type
of minimal dynamics may appear in subsets of @ U ? Can one have more than one minimal
set in @ U when the map induced on the prime ends is minimal?

2.4 The rational case. We now consider part (i) of Theorem 1.2, which deals with the
case when the rotation number is rational. This is contained in Koropecki, Le Calvez, and
Nassiri [2017].

Instead of working in the plane, it is more convenient to work on the sphere, so we
assume f : S2 ! S2 andU � S2 is an invariant open topological disk withmore than one
point in its complement. This is equivalent to working in the plane, since the Cartwright-
Littlewood theoremCartwright and Littlewood [1951] guarantees that there is a fixed point
inS2nU , so by removing this point we are in a similar setting on the plane (and conversely,
one may compactify R2 with one point).

Theorem 2.5 (Koropecki, Le Calvez, and Nassiri [2017]). If f has the boundary condi-
tion in U and �(f; U ) = 0, then the nonwandering set of f j@ U is contained in Fix(f ).
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The proof of this result has several components. We only mention that it relies on
maximal isotopies Béguin, Crovisier, and Le Roux [2016], on a real prime ends rotation
number associated to these isotopies, and on the study of the dynamics of a lift of f to
the universal cover of A = S2 n fp; qg where p 2 U and q … U are fixed points of the
maximal isotopy. If Ũ is a lift of U n fpg to this covering space, then we are able to show
that every cross-cut of Ũ determined by a sufficiently small simple loop around a non-
fixed point has endpoints located in a single fundamental domain of the line of prime ends
(which can be thought as the universal cover of circle of prime ends ofU ). This essentially
tells us that Ũ cannot have “tongues” that come close to two different non-fixed points in
the same fiber of the covering map. Combining this with results from Brouwer-Le Calvez
theory this leads to a contradiction if some non-fixed point of @ U is nonwandering. But
even without that assumption, this argument is what allows us to show that, unless @ U

has many fixed points, there are strong restrictions on the topology of @ U . In particular,
this is how we prove results such as Theorem 1.5.

A version of this result for arbitrary surfaces is also proved in Koropecki, Le Calvez,
and Nassiri [2017], but only in the case where f is isotopic to the identity. The general
case remains open and seems to be related to the problem of homotopical boundedness
(see Section 2.7).

2.5 OnC r -generic area-preserving diffeomorphisms. Using surgery arguments, one
may also obtain a version of Theorem 2.4 for an invariant complementary domain (i.e. a
connected component of the complement of a continuum), which is not necessarily sim-
ply connected (see Koropecki, Le Calvez, and Nassiri [2015, §7]). This is particularly
useful for C r -generic area-preserving diffeomorphisms, since a variation of Mather’s ar-
guments Mather [1981] shows that rotation number associated to each topological end of
an invariant complementary domain is irrational. This leads to the following (Koropecki,
Le Calvez, and Nassiri [2015, Theorem B]):

Theorem 2.6. If f is a C r -generic area-preserving diffeomorphism (r � 1) and U is a
periodic complementary domain, then there are no periodic points in @ U . Moreover, @ U

is the union of finitely many pairwise disjoint annular continua.

The last claim says that in a way U ressembles a surface with boundary. The generic
condition required in this theorem can be given explicitly. The theorem holds whenever
the following properties hold:

• every periodic point is either hyperbolic or elliptic, and there are no saddle connec-
tions;
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• every neighborhood of an elliptic periodic point p contains a smaller neighborhood
of p bounded by finitely many subarcs of the stable and unstable manifolds of some
hyperbolic periodic point q, intersecting transversely.

Both conditions are C r -generic for any r � 1 Robinson [1970] and Zehnder [1973].
Theorem 2.6 is a key part of the proof of Theorem 1.1. Let us briefly explain the idea

behind that proof. For each area-preserivng diffeomorphism f we define the set Kf as
the closure of the union of all stable manifolds of hyperbolic periodic points of f . Our
aim is to prove that Kf = S for a C r -generic f .

Suppose that f satisfies the generic hypotheses listed above, and Kf ¤ S . Let U be a
connected component of S n Kf , which must be periodic since S n Kf is invariant and f

preserves area. Note that U cannot contain a periodic point, since it would then intersect
a stable manifold of some hyperbolic periodic point (due to the generic assumptions). We
claim that @ U also contains no periodic points. Suppose instead that there is a periodic
point p 2 @ U , and let C be the connected component of Kf containing p. Then the
connected component U0 of S n C containing U is a periodic complementary domain.
By Theorem 2.6 there is no periodic point in @ U0. But clearly p 2 @ U0, so this is a
contradiction.

Thus U is aperiodic and compact. By the main theorem of Koropecki [2010] this
means that either U = S = T 2 or U is an annular continuum. In the case that S = T 2

it is known that a C r -small perturbation creates a periodic point Addas-Zanata [2005,
Corollary 2]. On the other hand if U is annular continuum, then it is easy to see that U

must be homeomorphic to an annulus (otherwise it would contain a periodic point), and by
a generalization of the Poincaré–Birkhoff theorem Franks [1988] one may find aC r -small
perturbation which creates a periodic point in U .

Using the lower-semicontinuity of the map f 7! Kf in combination with these per-
turbative arguments one concludes that C r -generically such a set U cannot exist. See
Koropecki, Le Calvez, and Nassiri [2015, §8.5].

These results are useful for the study of dynamics of generic group actions on surfaces
which still needs to be explored. For instance, one can prove existence of dense orbits
for the semi-group generated by a pair of C r generic area-preserving diffeomorphisms
Koropecki and Nassiri [2010]. This is particularly useful as it has consequences on the in-
stability problem of symplectic dynamics in higher dimensions Nassiri and Pujals [2012].

2.6 The smooth setting. Let us say a few words about Theorem 1.4. Note that the fact
that there is a fixed point in @ U implies that �(f; U ) = 0 due to Theorem 2.2. Since U is
bounded, by a simple argument we may reduce the problem to the analogous statement on
the sphere with the additional assumption that �(f; U ) = 0. Suppose that f : S2 ! S2
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is an orientation-preserving and area-preserving C 1-diffeomorphism, and U � S2 is an
f -invariant open simply connected set with �(f; U ) = 0.

If p 2 @ U is a fixed point of f , we may then blow-up p to a disk B , bounded by a
circle C , where the dynamics corresponds to the map induced by Df (p) on the unit circle
by v 7! Df (p)v/ kDf (p)vk. Denoting by g the new map obtained in this way, it still
preserves a measure of full support on S2 nB . Moreover, @ U \C is a nonempty compact
invariant subset of C , so it should contain some recurrent point z. By Theorem 2.5, the
point z must be a fixed point of gjC . This means that Df (p) has a 1-dimensional invari-
ant subspace, with a positive eigenvalue. Since det(Df (p)) = 1, both eigenvalues are
positive as claimed in the first item of the theorem.

If f has no fixed point with eigenvalue 1 in @ U then all fixed points in @ U must
be hyperbolic saddles, and there are finitely many of them, p1; : : : ; pk . Theorem 2.5
implies that every point of @ U belongs to W s(pi )\W u(pj ) for some i; j . By a standard
argument using the fact that f is area-preserving, if Γ is a stable or unstable branch of pi

(i.e. a connected component of W s(pi ) n fpi g or W u(pi ) n fpi g) then Γ n fpi g is either
disjoint from @ U or contained in @ U . Thus @ U is a union of stable and unstable branches
of the points pi . To prove that these branches are saddle connections, we show that if
Γs;Γu are two branches in @ U such that Γs \Γu ¤ ¿ then Γs = Γu. Indeed, if this is not
the case then there exists some simple loop 
 bounded by the union of a compact subarc
of Γs and a compact subarc of Γu. Since this loop is contained in @ U , the set U must
be in one of the connected components of S2 n 
 . If D denotes the remaining connected
component, using the fact that f is area-preserving one may easily deduce that there exists
n > 0 such that f n(@ D) \ D ¤ ¿, which means that @ U \ D ¤ ¿ contradicting the
fact that U is disjoint from D. Hence @ U is a finite union of saddle connections as stated
in Theorem 1.4.

We mention that Theorem 1.4 is potentially useful to study certain families of area-
preserving maps, such as the standard family or conservative Hénon maps. These maps
can be extended to bi-holomorphisms of C2, and it is known that whenever this happens
saddle connections between periodic points cannot occur Ushiki [1980].

2.7 Homotopical boundedness. Consider an open topological disk U � S where S

is a closed orientable surface, invariant by a homeomorphism f : S ! S . The general
idea that certain topological properties of @ U force the presence of many fixed points
has already appeared in Section 2.4. When S is an arbitrary surface, a general question
inspired by the study of instability regions of area-preserving maps is the homotopical
boundedness of U . If S is endowed with a metric of constant curvature we define the
covering diameter D(U ) 2 R+ [ f1g as the diameter of any lift of U to the universal
covering space of S . It is not difficult to produce examples where this number is infinite
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(for instance, see Figure 6). However, in the case that f is isotopic to the identiy and area-
preserving (or more generally under a boundary condition) one can show that if D(U ) =

1 then the set of fixed points of f is essential.

Theorem 2.7 (Koropecki and Tal [2014, 2017]). If f is area-preserving, isotopic to the
identity, and its fixed point set is inessential, then there is a constant M independent of U

such that D(U ) � M .

If f is not isotopic to the identity the result may fail to be true, but we conjecture that
either D(U ) < 1 or Fix(f n) is essential for some n (which is likely to depend only on
the isotopy class of f ). The case where f is in a pseudo-Anosov isotopy class seems to
be easy to deal with (using a more direct argument), but the reducible case seems to need
a new approach.

The proof Theorem 2.7 relied on Brouwer-Le Calvez theory, but recently a surprisingly
simple proof was found using a “triple boundary lemma”, which in its simplest form can
be stated as follows:

Theorem2.8 (Koropecki, LeCalvez, and Tal [2017]). Supposef : S2 ! S2 is orientation-
and area-preserving and U1; U2; U3 are pairwise disjoint open f -invariant topological
disks. Then every x 2 @ U1 \ @ U2 \ @ U3 is a fixed point.

As an example of simple application of this theorem we state the following (which
complements Theorem 1.5):

Theorem 2.9 (Koropecki, Le Calvez, and Tal [ibid.]). If K � R2 is an invariant Wada-
type continuum and f is area-preserving then f njK is the identity for some n > 0.

We remark that the notion of homotopical boundedness can also be defined for non-
simply connected open sets, and results on the same line as Theorem 2.7 are available
Koropecki and Tal [2017].

3 Further results

3.1 Vanishing rotation numberswithout fixed points. Consider a bounded open topo-
logical disk U � R2 invariant by some orientation-preserving homeomorphism f . We
do not assume any additional condition on the dynamics. As we saw in Figure 3, even if
�(f; U ) = 0 it may be the case that Fix(f ) \ @ U = ¿. Theorem 2.1 tells us that this
implies that there are boundary traps arbitrarily cose to @ U ; but this can be improved to
the following statement, which is explicitly proved in Matsumoto and Nakayama [2011]
but attributed to Cartwright-Littlewood.
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Theorem 3.1. Suppose there is no fixed point in @ U and �(f; U ) = 0. Then the dynamics
induced by f on the circle of prime ends consists of alternating attracting and repelling
fixed points. Moreover, each attracting fixed prime end is attracting in the disk cEU , and
similarly for the repelling prime ends.

What this tells us is that for the induced map fe in cEU , a neighborhood of the circle
of prime ends is covered by the basins of alternating attracting and repelling prime ends
(see Figure 7). Although this is a beautiful result, it does not tell us anything about the
dynamics of f j@ U . In Koropecki and Passeggi [2017], the authors obtained a translation
to the boundary dynamics which tells us that this situation can only occur under very strict
conditions. A simplified version of the main result states the following:

Theorem 3.2. Suppose that �(f; U ) = 0 and Fix(f ) \ @ U = ¿. Then there exists a
finite pairwise disjoint family of rotational attractors and repellors (at least one of each)
such that @ U is contained in the union of their basins.

By a rotational attractor we mean an invariant non-separating continuum A which is a
topological attractor and has nonzero external rotation number (i.e. the prime ends rotation
number of the disk R2 [ f1g n A is nonzero).

Figure 7: Prime ends and boundary dynamics as in Theorems 3.1 and 3.2

It is also shown that f j@ U is topologically semiconjugate to a planar graph G where
each vertex is an attractor or repellor and every edge is contained in the intersection of
the basins of the corresponding vertices. Moreover, the semiconjugation extends to a
monotone map from a neighborhood of G (contained in the union of the basins of the
vertices) to a neighborhood of @ U . We refer to Koropecki and Passeggi [ibid., §5.5] for
further details. We only mention that a useful result introduced in that article, and essential
to the proof of Theorem 3.2, is a Poincaré-Bendixson type theorem for translation lines
Koropecki and Passeggi [ibid., Theorem A].
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3.2 Rotation sets. As mentioned in the introduction, a common approach to generalize
the notion of one-dimensional rotation number is to consider the rotation of orbits along
homological directions. We consider the particularly simple case of the annulusA = T 1�

R. Suppose that K � A is an essential continuum and f : A ! A is a homeomorphism
isotopic to the identity. Given a lift f̃ : R2 ! R2 to the universal cover and z 2 K, one
defines its rotation number as

�(f̃ ; z̃) = lim
n!1

(f̃ n(z̃) � z̃)1/n;

for any z̃ in the fiber of z, where (�)1 denotes the first coordinate. This limit may fail to
exist, and unlike in the circle, when it exists it generally depends on z. But considering
the set of all such possible limits when they exist, one may define the (pointwise) rotation
set �(f̃ ; K) � R associated to this lift. If K is a closed annulus, or more generally if K

is annular (i.e. separates A into exactly two components), then the rotation set is compact
and nonempty Handel [1990] and Koropecki [2016].

One may also define the rotation interval �(f̃ ; K) = [inf �(f̃ ; K); sup �(f̃ ; K)]. It is
natural then to ask whether having a rational element p/q in the rotation set or interval
implies that one must have a corresponding periodic point of f of period q in K. The first
result of this type is the classical Poincaré-Birkhoff theorem, which in a generalization
due to Franks [1988] states that if f is area-preserving and K is a closed annulus then
any rational element in its rotation interval is realized by a periodic point in K. Moreover,
even without the area-preserving assumption, the result holds for elements of the rotation
set Handel [1990] and Koropecki [2016].

If K � A is an essential continuum, we denote by U�(K) and U+(K) the two un-
bounded connected components of its complement (the latter being the one unbounded
from above). Of particular interest are continua which are minimal with respect to the
condition of being essential in A. We call these continua coboundaries, and they are char-
acterized by the property that @ U�(K) = K = @ U+(K). Such a continuum may fail to
be annular (as in Wada-type continua), but the continuum K 0 = A n (U�(K) [ U+(K)),
which can be thought as the “filling” of K, is annular and minimal with the property of
being annular and essential. Any continuum with the latter property is called a circloid.
Coboundaries and circloids are interesting because every essential continuum K contains
a coboundary, and if K is invariant it also contains an invariant coboundary, which in turn
has a corresponding invariant circloid.

Onemay then consider the (real) upper and lower prime ends rotation numbers ��(f̃ ; K)

and �+(f̃ ; K) ofK, which are defined in terms of the lift f̃ and lifts of the circles of prime
ends ofU˙(K)[f˙1g. See Koropecki [2016] formore details. The relationship between
these prime ends rotation numbers and the rotation set was studied in Matsumoto [2012]
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and Hernández-Corbato [2017], where it was proved that �˙(f̃ ; K) � �(f̃ ; K) when K

is an annular continuum (see also Franks and Le Calvez [2003]).

3.3 No Birkhoff-like behavior for area-preserving maps. A circloid with empty in-
terior is called a cofrontier. It is possible to produce an example of a cofrontier K where
rotation interval has more than one point. For instance the Birkhoff attractor Le Calvez
[1986] has a nontrivial interval as its rotation set (see also Boroński and Oprocha [2015]).
When this happens, in general the dynamics in the cofrontier is rich; for instance there
are infinitely many periodic points of arbitrarily large periods, uncountably many ergodic
measures Koropecki [2016]. Moreover, ifK is an attractor it implies that f jK has positive
topological entropy Passeggi, Potrie, and Sambarino [2017]. It is conjectured that this is
true even if K is not an attractor.

The results from Koropecki, Le Calvez, and Nassiri [2015] allow us to show that this
kind of behavior is not possible in the area preserving setting: the rotation set is always a
single point and coincides with the prime ends rotation numbers:

Theorem 3.3. Suppose that f is area-preserving and K � A is an essential cofrontier.
Then ��(f̃ ; K) = �+(f̃ ; K) and this number is the only element of �(f̃ ; K).

The proof of this fact is explained in Koropecki [2016, Theorem 2.8] in a more general
setting. This result also holds for arbitrary circloids (using the same argument combined
with Koropecki, Le Calvez, and Tal [2017], for instance).

3.4 A Poincaré-like result for decomposable circloids. In the setting of the previous
section, suppose that K � A is an f -invariant essential circloid whose boundary is de-
composable, i.e. it can be written as the union of two proper subcontinua. The dynamics
in a continuum of this type was studied in Jäger and Koropecki [2017], where the authors
obtained a general Poincaré-type result without any additional hypothesis:

Theorem 3.4. If K is an invariant essential circloid with decomposable boundary, then
�(f; K) has a single element ˛, and

• ˛ is rational if and only if there is a periodic point in K;
• ˛ is irrational if and only if f jK is monotonically semiconjugate to the correspond-
ing irrational rotation on the circle.

Moreover, the semiconjugation in the last item is unique up to post-composition with a
rotation.

The number ˛ of course coincides with ��(f; K) and �+(f; K). This result emphasizes
the fact that having points with different rotational behavior forces the topology of K to
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be complicated (which is a trait of indecomposable continua), something already noted in
Barge and Gillette [1991].
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GEOMETRY OF TEICHMÜLLER CURVES
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Abstract

The study of polygonal billiard tables with simple dynamics led to a remarkable
class of special subvarieties in the moduli of space of curves called Teichmüller curves,
since they are totally geodesic submanifolds for the Teichmüller metric.

We survey the knownmethods to construct of Teichmüller curves and exhibit struc-
ture theorems that might eventually lead towards the complete classification of Teich-
müller curves.

Introduction

The origin of the notion Teichmüller curve goes back to a remarkable discovery of Veech
[1989] who constructed billard tables where the trajectories of a bouncing billiard ball
have a remarkably simple dynamics, as simple as on a rectangular table. An unfolding
construction of the billiard table yields a flat surface, that is a compact Riemann surface
together with a flat metric and a finite number of cone-type singularities. Shearing such a
flat surface by elements in GL+

2 (R) provides a whole family of flat surfaces. Only rarely
is such an orbit closed in the moduli space ΩMg parametrizing flat surfaces. In this case
the image of the GL+

2 (R)-orbit in the moduli space of curves Mg is an algebraic curve,
called a Teichmüller curve.

The moduli space of curves is not a locally homogeneous space and thus does not
come naturally with a distinguished class of special algebraic subvarieties. Thanks to the
GL+

2 (R)-action, the moduli space of flat surfaces ΩMg inherits quite a bit of the proper-
ties of a homogeneous space. The special subvarieties there are affine invariant subman-
ifolds and the smallest of them are Teichmüller curves. Part of the beauty of studying
their geometry is reflected in the fact that Teichmüller curves admit a variety of different
characterizations that may roughly be phrased as follows.
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2 (R)-action, affine
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i) Teichmüller curves are immersed curves in the moduli space of curves Mg that are
totally geodesic for the Teichmüller metric.

ii) Teichmüller curves are the images in Mg of closed GL+
2 (R)-orbits in the moduli

space ΩMg of flat surfaces.

iii) Teichmüller curves are curves in Mg whose variation of Hodge structures contains a
rank two summand whose Kodaira-Spencer map is an isomorphism.

iv) Teichmüller curves are the images in Mg of two-dimensional subvarieties in strata
of ΩMg cut out by torsion and real multiplication.

In all likelihood, Teichmüller curves should not exist, maybe except for low genus exam-
ples, and examples derived from them. The torsion and real multiplication conditions are
just too restrictive. And yet they do exist!

The goal of this survey is to explain the above characterizations of Teichmüller curves
and to summarize the current state of knowledge on the classification and geometry of
Teichmüller curves.

1 Dynamically optimal billiard tables and flat surfaces

We start with a rational polygonal billiard table, that is, a planar polygon P all whose
angles are rational multiples of � . The trajectories of a single ball bouncing in such a P

might exhibit various types of long-term behavior. (If the trajectory hits a corner it just
ends there and subsequently we disregard this measure zero set of cases.) The trajectory
could be periodic. Second, trajectorymight be dense, more precisely uniformly distributed
all over the polygon, that is, visit every region with frequency proportional to the volume
of the region. Last, the trajectory might be dense in some region strictly smaller than the
whole polygon. For a rectangular table, the last possibility does not occur. Moreover
which of the two first cases occurs depends on the initial direction only, not on the start-
ing point. This simple trajectory behavior that rectangular tables exhibit is called Veech
dichotomy or optimal dynamics. Polygons tiled by a rectangular table also exhibit this
optimal dynamics.

Understanding whether a billiard table has optimal dynamics is simplified by perform-
ing the Katok-Zemlyakov unfolding construction Zemljakov and Katok [1975], as illus-
trated in Figure 1.

Instead of reflecting the trajectory at the boundary of the polygonwe reflect the polygon
and continue the trajectory by a straight line. Since the polygon is rational this process
ends with a finite number of reflection copies. Gluing them together gives a flat surface
(X; !), that is, a compact Riemann surface X together with a holomorphic one-form !
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Figure 1: A (�/2; �/5; 3�/10)-triangle unfolds to a double pentagon

that provides us with a flat metric j!j outside a finite number of cone-type singularities
where the angle is a multiple of 2� . The set of all flat surfaces fit into a moduli space
ΩMg with a natural forgetful map to the moduli space of curves Mg . This moduli space
is decomposed into strata

(1) ΩMg =
[
�

ΩMg(�)
�
� = (m1; : : : ; mn)

nX
i=1

mi = 2g � 2
�

;

according to the multiplicities � of the zeros of !.
In the example given in Figure 1 the surface has genus g(X) = 2 and one zero of cone

angle 6� at the point marked with a dot. It is a Veech surface in the stratum ΩM2(2).
The moduli space of flat surfaces ΩMg carries a natural action of GL+

2 (R) induced
by the linear action on planar polygons, see Figure 3. This action preserves the stratifica-
tion (1). Moreover, the straight line flow on (X; !) is dynamically optimal if and only if
it is dynamically optimal on A � (X; !) for any A 2 GL+

2 (R).
The initial observation of Veech [1989, 1991] was that if the GL+

2 (R)-orbit of (X; !)

is closed in its stratum ΩMg(�), then (X; !) has optimal dynamics. This is to say that
for each direction � one of two cases happen: Either all trajectories in the direction �

are uniformly distributed (hence dense) or the Veech surface is foliated in direction � by
closed geodesics and saddle connections between the saddle points, the zeros of !. (The
converse holds in low genusMcMullen [2005b], but it is false in general Smillie andWeiss
[2008].) Such a GL+

2 (R)-orbit is closed if there is a lattice Γ � SL2(R) stabilizing (X; !)

and the converse also holds Smillie and Weiss [2004]. Since the rotation images and the
homothety images of (X; !) are in the same fiber of the projection to Mg , the images
in Mg of closed GL+

2 (R)-orbits are of the form C = ΓnH ! Mg . They are immersed
algebraic (but non-complete) curves in the moduli space of curves.
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The action of GL+
2 (R) extends to an action on the moduli space Qg that parameterizes

half-translation surfaces (Y; q) consisting of a Riemann surface with a quadratic differ-
ential q and the above statements about images of orbits in Mg carry over verbatim. To
summarize:

Definition 1.1. A flat surface (X; !) or a half-translation surface (Y; q) with closed
GL+

2 (R)-orbit is called Veech surface and the image curve C ! Mg of this orbit is
called a Teichmüller curve.

The name Teichmüller curve reflects that images of GL+
2 (R)-orbits in the Teichmüller

space Tg of any (Teichmüller-) marked half-translation surface (Y; q) are Teichmüller
discs, i.e. discs ∆ ! Tg that are totally geodesic for the Teichmüller metric. By Teich-
müller’s fundamental theorems all such Teichmüller disc can be obtained as the orbits of
half-translation surfaces (Y; q).

In some sense it is not strictly necessary to discuss the case of half-translation sur-
faces. Associated with any half-translation surface (Y; q) there is a canonical GL+

2 (R)-
equivariant double cover construction � : X ! Y on which the quadratic differential
��q = !2 admits a square root. Consequently to each Teichmüller curve C ! Mg(Y )

generated by (Y; q) there is a Teichmüller curve C 0 ! Mg(X) in a moduli space of
somewhat larger genus, generated by a flat surface. Since most of the classification of
Teichmüller curves works using the cohomology of the Veech surfaces and hence abelian
differentials, we restrict ourselves from now on to Teichmüller curves generated by flat
Veech surfaces (X; !). (The reader might then check in each case at hand if the surface ad-
mits an involution that makes those surfaces arise as double coverings.) Also the itemized
characterizations in the introduction are equivalent only on this subclass of Teichmüller
curves.

The uniformizing group Γ is also called the Veech group of the Veech surface (X; !).
It can be characterized as the group of orientation-preserving homeomorphisms of X that
are affine when expressed in the flat charts of X n Z(!) provided by !. An important
invariant of Γ and thus of any Teichmüller curve is the trace field K = Q[tr(
); 
 2 Γ].

2 The list of known examples

The known examples of Veech surfaces and Teichmüller curves consist of a short list of
series, up to a natural notion of primitivity. We present all these series and come back in
the subsequent sections to the ideas behind their discovery.

A Veech surface (X; !) is called (geometrically) imprimitive if there is a (branched)
covering � : X ! Y such that ! = ��� for some one-form � on Y . Otherwise (X; !) is
called geometrically primitive. A Veech surface (X; !) is called algebraically primitive
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Figure 2: Veech surface with Veech group∆(5; 9; 1)

if the trace field has degree g = [K : Q]. Theorem 3.1 implies that algebraically prim-
itive implies geometrically primitive. All these properties are GL+

2 (R)-equivariant and
we abuse the corresponding notions also for the Teichmüller curves the Veech surfaces
generate.

The triangle group series. We currently know of a single series of primitive Teich-
müller curves generated by Veech surfaces of unbounded genera, containing infinitely
many algebraically primitive Teichmüller curves. This series is indexed by two param-
eters m; n 2 N [ 1 and constructed so that the Veech groups are the triangle groups
∆(m; n; 1). The family was discovered in Bouw and Möller [2010b] and contains the
original examples of Veech (n = 2 and n = 1) and those of his student (n = 3, Ward
[1998]), see Figure 2 for the case m = 5 and n = 9. Other polygonal presentations were
given in the work of Hooper [2013] and Wright [2013].

The Weierstraß family and the Prym family. The Weierstraß family is generated by
(nearly) L-shaped flat surfaces in the stratum ΩM2(2) of genus two as in Figure 3. The
family was discovered independently by Calta [2004] and McMullen [2003]. Veech sur-
faces generating all the Teichmüller curves in this series are given by side length param-
eters a = (0; �), c = (�; 0), b = (t; h), c + d = (w; 0) where t 2 N, w; h 2 N>0 and
where � = (e +

p
D)/2 for D = e2 + 4wh is a quadratic irrational number.
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Figure 3: An L-shaped table (Calta [2004] and McMullen [2003] and the GL+2 (R)-
action

The Prym family is generated by the S -shaped genus three surfaces and the X -shaped
genus four surfaces (in the strata ΩM3(4) and ΩM4(6)) in Figure 4, discovered by Mc-
Mullen [2006a]. The trace field has degree r = 2 in all cases.
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Figure 4: Veech surfaces in Prym family for g = 3 and g = 4 (McMullen [2006a])

The Gothic family. This is an infinite family of primitive Teichmüller curves discov-
ered by McMullen, Mukamel, and Wright [2017] in the stratum ΩM4(2; 2; 2). It is gen-
erated by Veech surfaces that resemble Gothic cathedrals (see Figure 5), again with trace
field of degree r = 2. Another infinite series, generated by Veech surfaces in the stra-
tum ΩM4(3; 3), has been announced by Eskin, McMullen, Mukamel and Wright.

The sporadic examples. There are two sporadic examples of Teichmüller curves. The
Veech surfaces are constructed as the unfolding of the (2�/9; �/3; 4�/9)-triangle (in the
stratumΩM3(3; 1), seeKenyon and Smillie [2000]) and as the unfolding of the (�/3; �/5; 7�/15)-
triangle (in the stratum ΩM4(6), see Vorobets [1996]).
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Figure 5: A Gothic Veech surface (McMullen, Mukamel, and Wright [2017])

3 Teichmüller curves and variations of Hodge structures

This section reveals the algebro-geometric nature of Teichmüller curves by two basic struc-
ture theorems. We also highlight similarities and differences to Shimura curves.

Theorem 3.1 (Möller [2006b]). If (X; !) is a Veech surface, then the Jacobian Jac(X)

contains an abelian subvariety Jac(X; !) of dimension r = [K : Q] with real multiplica-
tion by the trace field K, i.e. the endomorphism ring of Jac(X; !) is an order in K.

Here Jac(X; !) is the smallest abelian subvariety of Jac(X) whose tangent space con-
tains ! via the canonical identification TJac(X) Š Γ(X;Ω1

X ).
For a Veech surface (X; !) we let z1; : : : ; zn be the zeros of !, i.e. div(!) =

P
mi zi .

Theorem 3.2 (Möller [2006a]). For any i; j the divisor [zi � zj ] has finite order in
Jac(X; !).

To sketch the proof of the two theorems we consider the Teichmüller curve C ! Mg

generated by the Veech surface. After passing to a finite unramified (in the orbifold sense)
cover of C the universal curve over (a level cover of) Mg pulls back to a family of curves
f : X ! C that we may extend to a family of stable curves f : X ! C over a
complete curve C . The vector spaces H 1(X; Q) glue to a locally constant bundle VQ

over C . The Hodge bundle, the vector bundle with fiber H 0(X;Ω1
X ), is a subbundle of

(the extension to C of) the vector bundle VC . This vector bundle inclusion together with
a polarization stemming from the symplectic pairings on the fibers of f defines a weight
one variation of Hodge structures (VHS). The starting point for all theorems in this section
is the decomposition (as variation of Hodge structures)

(2) VQ = WQ ˚ MQ; where WK = L1 ˚ � � � ˚ Lr

over any Teichmüller curve. HereL1 is the rank-two locally constant subbundle generated
by Re(!) and Im(!), the tautological plane, and the Li are the Galois conjugates of L1
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over K. This decomposition follows from Deligne’s semisimplicity of VHS and since
the tautological plane is a sub-VHS essentially by definition of a Teichmüller curve as
GL+

2 (R)-orbit.
A Q-decomposition of VQ defines a splitting of the family of Jacobian varieties. More-

over, for any � 2 K the endomorphism ˚�i (�), with �i running over the real embeddings
ofK, defines a rational endomorphism of the family of abelian subvarieties corresponding
to WQ, which provides the real multiplication claimed in Theorem 3.1.

The locally constant subbundle L1 is special, since by construction its monodromy
representation is the standard representation of the uniformizing Fuchsian group Γ of C .
As a consequence, the period map from the universal cover of C to the upper half plane,
the period domain for such a rank two subsheaf, is an isomorphism. In particular, if we
let L be the (1; 0)-part of (the Deligne extension to C of) L1 then the Higgs field (also
known as the Kodaira-Spencer map), that is the derivative

(3) � : L ! L�1
˝ Ω1

C
(∆); (∆ = C n C )

of the period map, is an isomorphism. Those subbundles are called maximal Higgs, since
for those subbundles the degree of L attains its maximum value 1

2
degΩ1

C
(∆). The above

translation can also be read backwards: maximal Higgs subbundles have period maps
that are isomorphisms. Consequently, suppressing the omnipresent passages to finite un-
ramified covers, we can summarize the discussion by the following characterization of
Teichmüller curves in the language of complex geometry.

Proposition 3.3. A Teichmüller curve is a curve C ! Mg such that the VHS of the family
f : X ! C contains a rank two summand that is maximal Higgs. This maximal Higgs
summand is unique.

To illustrate the idea behind Theorem 3.2 note that the zeros z1; : : : ; zn on an individual
Veech surface can be transported along the whole family f : X ! C without colliding,
again by definition of GL+

2 (R)-action. Passing to an unramified cover of C we may
assume that they are the images of sections zi : C ! X. Using the theory of Néron
models one can show that a finite index subgroup of the group of sections extends to
the family of Jacobians. We may then project these sections to the family A ! C of
the abelian subvarieties whose fibers are Jac(X; !). But this family does not have any
non-zero sections. In fact, by the uniformization of the family A ! C , sections can be
identified with elements of H 1(C ; WQ). This cohomology group naturally has a weight
two Hodge structure and the sections provide elements of type (1; 1). The maximal Higgs
direct summand of WQ prohibits the existence of such non-zero elements.
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The two theorems can be recast to characterize Teichmüller curves purely using terms
from algebraic geometry, as observed by Alex Wright.

Proposition 3.4. A Teichmüller curve is the image in Mg of a two-dimensional suborb-
ifold M of a stratum ΩMg(�) such that for each point [(X; !)] 2 M the abelian variety
Jac(X; !) has real multiplication by an order in a field of degree dim(Jac(X; !)) and such
that for any two zeros z1; z2 of ! the difference z1 � z2 is torsion in Jac(X; !).

Shimura curves are also defined as totally geodesic curves, but in the moduli space of
Abelian varieties Ag (instead of Mg ) and for the Bergman-Siegel metric (instead of the
Kobayashi metric). Usually Shimura curves are moreover required to have a CM point,
and sometimes they are referred to as Kuga curves with this conditions relaxed. Shimura
curves can also be defined as stemming from a homomorphism of aQ-algebraic group into
the symplectic group by quotienting the corresponding real groups by maximal compact
subgroups and a lattice. Since Ag is a locally homogeneous space and since Shimura
curves are defined by group theory, there are plenty of Shimura curves. However, since
the Torelli-image of Mg in Ag is of large codimension for g ! 1, most of the Shimura
curves don’t intersect the Torelli-image. The classification of Shimura curve in (the Torelli-
image of)Mg is an open problem that ismorally similar to the classification of Teichmüller
curves, see e.g. Lu and Zuo [2014] for one of the latest results.

Shimura curves can also be characterized by a decomposition of the VHS like in (2),
but now the bundle MQ has to have unitary monodromy and now all the bundles Li have
to be maximal Higgs (rather than just one of them), but they are not necessarily all Galois
conjugates.

4 Constructing Veech surfaces and computing the Veech group

We revisit the known examples of primitive Teichmüller curves in the light of the previous
structure results and sketch their method of construction.

Veech’s and Ward’s original examples were constructed by exhibiting two elements in
the Veech group that jointly generate a Fuchsian triangle group. In the example of the dou-
ble pentagon in Figure 1 this is the triangle group generated by the rotation

� cos2�/5 sin2�/5
� sin2�/5 cos2�/5

�
and the vertical shear

�
1 0

2 cot�/5 1

�
. The latter element belongs to the Veech group since the

straight line flow in the vertical direction is periodic and the periodic orbits come in two
homotopy classes, each sweeping out a cylinder bounded by saddle connections. Both
cylinders have the same modulus equal to 2 cot�/5.

Expanding on the previous remark we note that Teichmüller curves are never com-
pact since any direction on the Veech surface admitting a saddle connection provides a
parabolic element in the Veech group that has this direction as an eigenvector. However,
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the Veech groups are in general not generated by elliptic and parabolic elements, as we will
prove in Section 7. In fact, none of the series of Teichmüller curves besides the original
examples of Veech and Ward was detected by computing the Veech group! Only recently
Mukamel [2017] gave an algorithm to compute the Veech group for a general Veech sur-
face. His basic idea is to associate to each Veech surface over a Teichmüller curve the
number of girth directions that contain a shortest saddle connection. This number pro-
vides a stratification of the GL+

2 (R)-orbit of a Veech surface, since the generic number of
girth directions is one. The algorithm proceeds by tracing along the spine of this stratifi-
cation (consisting of surfaces with two girth directions) and testing if the Veech surfaces
at vertices of the stratification are scissors congruent to each other.

The construction of the triangle group series started with the observation that families
of cyclic coverings have rank two summands in their cohomology whose monodromy
groups are triangle groups. However, these summands are not maximal Higgs in the sense
of (3). The problem is that at the points where the monodromy has finite order the family
of curves degenerates, but the period map can be continued over these points (after passing
to a finite cover). Luckily, if we consider triangle groups (m; n; 1), say with m; n odd
and coprime for simplicity, the group (Z/2)2 acts on the family of cyclic covers. The
quotient family still has the rank two summand in cohomology. Moreover, the fibers over
the orbifold points are now smooth and Proposition 3.3 applies.

The Weierstraß series consists of surfaces (X; !) 2 ΩM2(2) whose cohomology ad-
mits a self-adjoint endomorphism � 2 End(H 1(X; Z)) such that ��! = �! for some �

generating a fixed real quadratic extension K of Q. Such a map � defines an endomor-
phism of Jac(X), since it preserves the period lattice and it induces a consistent map on
the tangent space of Jac(X) as it preserves the line C � ! by definition and another com-
plex line by self-adjointness. The existence of such an endomorphism involves only the
periods of ! and can thus be checked to hold for surfaces of the form in Figure 3 with
the explicitly given parameters of the saddle connection vectors on the boundary. In the
minimal stratum the torsion condition is void and thus Proposition 3.4 implies that such
(X; !) are Veech surfaces.

For the Prym series the crucial observation is that the same argument as for the Weier-
straß series can be made for a four-dimensional part of cohomology that is
(anti-)invariant by an involution rather than for the whole H 1(X; Z).

For the Gothic series this observation is refined to work for endomorphisms acting on
an even smaller part of H 1(X; Z), the kernel of two projections to the first cohomology of
smaller genus curves, provided that the ambient variety without imposing the real multi-
plication endomorphism behaves like the stratum ΩM2(2) in a sense made precise in the
next section.
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5 Affine invariant manifolds

Recall that Teichmüller curves are images of closed GL+
2 (R)-orbits. The striking results

of Eskin and Mirzakhani [2013] and Eskin, Mirzakhani, and Mohammadi [2015] imply
that all the non-closed GL+

2 (R)-orbits have very nice closures: They are manifolds, affine
and R-linear in a natural ’period’ coordinate system, and more precisely quasi-projective
varieties by Filip’s results Filip [2016]. These orbit closures are thus called affine invariant
manifolds (AIM). Their classification is a very interesting question that created a lot of
recent activity. We refer e.g. to Apisa [2015], Aulicino and Nguyen [2016], and Eskin,
Filip, and Wright [n.d.] for some of the latest results and highlight here only the aspects
connected with the classification of Teichmüller curves.

Suppose some stratum ΩMg(�) contains an infinite number of algebraically primitive
Teichmüller curvesCi for i 2 N. The closure of their union is an AIMM by Eskin, Mirza-
khani, and Mohammadi [2015]. The main observation of Matheus and Wright [2015] is
that it is possible to spread out the decomposition information (2) from the union of the
Ci to all of M. Namely, they define a Hodge-Teichmüller plane over the moduli point
of (X:!) to be a C-rank-two subspace L � H 1(X; C) defined over R such that all its
GL+

2 (R)-translates intersect the (1; 0)-part of the cohomology in a one-dimensional sub-
space. By (2) each point over each Ci has g orthogonal Hodge-Teichmüller planes and by
a limiting argument each point of M has them. This leads to an immediate contradiction
in many cases, e.g. when the monodromy representation on H 1(X; C) over Teichmüller
curves generated by Veech surfaces that are torus covers can be shown to not have that
many Hodge-Teichmüller planes.

This idea was subsequently refined (by working with relative cohomology and by com-
puting the algebraic hull of GL+

2 (R)-cocycle for general AIM, hence in particular for
those containing an infinite number of Teichmüller curves) to yield the following optimal
(though ineffective) finiteness result.

Theorem 5.1 (Eskin, Filip, and Wright [n.d.]). Each stratum ΩMg(�) contains only a
finite number of Teichmüller curves with trace field of degree r > 2.

In each stratum ΩMg(�) there are only a finite number of AIMs Mi ’like ΩM2(2)’
such that all primitive Teichmüller curves with r = 2 are contained in one of these Mi .
Conversely, any such AIM ’likeΩM2(2)’ contains infinitely many Teichmüller curves with
r = 2.

To give a precise definition of an AIM ’likeΩM2(2)’ we recall that the tangent space of
a stratumΩMg(m1; : : : ; mn) at (X; !) ismodelled on the relative cohomologyH 1(X; Z(!); C),
where Z(!) = fz1; : : : ; zng is the zero set of !. The tangent space to an AIM M is by Es-
kin and Mirzakhani [2013] andWright [2015] a linear subspace T M � H 1(X; Z(!); C),
defined over a real number field K that generalizes the notion of the trace field. The rank
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of M is the integer 1
2
dimp(T M)where p : H 1(X; Z(!); C) ! H 1(X; C). It measures

(half of) the number of moduli of M discounting those that stem from moving the zeros
relative to each other. An AIM is ’like ΩM2(2)’ if it is rank two and K = Q.

The quest for the classification of primitive Teichmüller curves is thus reduced to de-
tecting the cases with exceptionally large trace field r > 2 (like most examples of the
triangle series) and the AIMs ’like ΩM2(2)’. Currently, we only know of the few exam-
ples mentioned in the previous section.

6 Finiteness and classification results

All presently known finiteness and classification results for Teichmüller curves are based
on the study of their cusps.

The classification of Teichmüller curves in the Weierstraß series and the Prym series
starts with listing all possible cusps, which amounts to a finite list of possible combina-
torics for the saddle connections and a list of possible length data compatible with real
multiplication by the order of a given discriminant D. The main problem is to detect
when two cusps lie on the same Teichmüller curve. Sometimes it is possible to spot this,
like for the cusps belonging to the horizontal and vertical direction in Figure 4. Spotting
enough of those direction changes to connect any pair of cusps is the tedious step in the
proof of the following theorem.

Theorem 6.1 (McMullen [2005a] and Lanneau and Nguyen [2014]). In ΩM2(2) there is
a unique primitive Teichmüller curve WD with real multiplication by the order of discrim-
inant D for each D ¤ 1 mod 8 and two such Teichmüller curves W ˙

D for each D � 1

mod 8.
The Prym series in g = 3 consists of a unique primitive Teichmüller curve WD(4) with

real multiplication by the order of discriminant D for each D � 0; 4 mod 8, it has two
components W ˙

D (4) for D � 1 mod 8 and is empty for D � 5 mod 8.

A similar result for the g = 4-series is known in some cases Lanneau and Nguyen
[2014] and the classification is open for Gothic curves. It would be very interesting to
find a more conceptual argument for the classification of connected components. This
classification is currently the only property of Teichmüller curves not accessible through
the viewpoint of modular forms, see Section 7 below.

Around the time of discovery, it was puzzling that ΩM2(2) contains infinitely many
primitive Teichmüller curves, while in ΩM2(1; 1) there was only a single such curve
known, the decagon in Veech’s original family. Given Theorem 3.2 this should no longer
come as a surprise: Finding two points z1 and z2 on a Riemann surface X whose differ-
ence is torsion is a very rare pick. It is equivalent to finding a map p : X ! P 1 with
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p�1(0) = fz1g and p�1(1) = fz2g. Pushing this condition to the cusp of a primitive
Teichmüller curve inΩM2(1; 1) amounts to detecting when ratios of sines at rational mul-
tiples of � belong to a quadratic number field. There are only finitely many possibilities
and examining these cases, McMullen showed in McMullen [2006b] that the decagon is
indeed the only example in ΩM2(1; 1).

Even if there are no torsion constraints, i.e. in the minimal strata ΩMg(2g � 2), there
are many other constraints imposed by cusps on the existence of a primitive Teichmüller
curve. We illustrate this in the smallest interesting case, the hyperelliptic connected com-
ponent of the stratum ΩM3(4). The fiber over the cusp of an algebraically primitive
Teichmüller curve is a projective line (by the real multiplication condition) and the limit
of the generating one-form is a stable differential !1 that we may normalize due to the
hyperelliptic involution to have simple poles at ˙xi for i = 1; 2; 3 with residues ˙ri and
a four-fold zero at zero. This amounts to the conditions

(4)
3X

i=1

ri xi+1xi+2 = 0 and
3X

i=1

ri xi (x
2
i+1 + x2

i+2) = 0 ;

where indices have to be read mod 3. We can moreover normalize r1 = 1 and x1 = 1.
Algebraically primitive implies that the ri are a Q-basis of a totally real cubic number
field K � R and we denote the two other real embeddings of K by � and � .

We now hint at two additional constraints. First, since the cusps lie on the boundary of
Hilbert modular threefolds, whose boundary has been computed in terms of cross-ratios
in Bainbridge and Möller [2012], the cross-ratio equation

(5) R
b1

23R
b2

13R
b3

23 = 1 ;
�
Rij =

�
xi + xj

xi � xj

�2�
holds, where bi are integers such that

P3
i=1 bi/si = 0, where fs1; s2; s3g is the Q-basis

of K trace dual to fr1; r2; r3g. Note that it is already a very restrictive property for a
Q-basis of K that the reciprocals of dual basis are Q-linearly dependent. Second, con-
siderations of the Harder-Narasimhan filtration of the Hodge bundle over the Teichmüller
curve imply that one of the two Galois conjugate forms also has to have a double zero in
common with !. This implies

(6)
3X

i=1

r�
i xi+1xi+2 = 0 :
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We strongly suspect that the solution stemming from Veech’s 7-gon

r2 = v2 + v � 2; r3 = v2
� 2; x2 = �v2

� v +1; x3 = v2 + v � 2; (v = 2 cos(2�/7))

is the unique solution in some K up to permutation of variables of the equations (4), (5).
and (6). However, the fact that equations are not algebraic, but involve Galois conjugates,
makes the geometry of the solution set more interesting. Currently, we can only show that
the set of solutions is finite. This is part of the following version of Theorem 5.1 for g = 3,
that has the advantage to be at least in theory algorithmically implementable.

Theorem 6.2 (Bainbridge, Habegger, and Möller [2016]). There are finitely many alge-
braically primitive Teichmüller curves in genus three.

The proof in the minimal stratum uses a variant of the theory of just likely intersections.
The rough statement of the main theorem of this theory is that all intersection points of
an algebraic subvariety Y of a multiplicative torus Gn

m with all subtori of dimension n �

dim(Y ) � 1 have bounded height, except for the anomalous locus Y an � Y consisting of
the subvarieties that intersect a translate of a subtorus of Gn

m in a larger subvariety than
expected from the naive dimension count. The subtori this theory is applied to are those
defined in (5), but the variant in Bainbridge, Habegger, and Möller [ibid.] uses coupled
equations in Gn

m and the additive group Gn
a .

7 Modular forms and Euler characteristics

The locus of abelian surfaces with real multiplication by an order of discriminant D is the
Hilbert modular surfaceXD = H2/(SL(oD ˚o_

D). By Theorem 3.1 the Torelli image of a
Teichmüller curve with quadratic trace field lands in XD . We can thus use modular forms
and other tools from number theory to approach the geometry of Teichmüller curves, e.g.
in the Weierstraß, Prym and Gothic series.

The vanishing locus of a Hilbert modular form of weight (k; `) descends to an algebraic
curve in XD . Not all curves on a Hilbert modular surface are the vanishing locus of a
Hilbert modular form, not even linearly equivalent to such a vanishing locus. However,
all the Teichmüller curves in the Weierstraß and the Prym series can be described using
Hilbert modular forms. Concretely, let �(m;m0)(z;u) be the restriction of the classical
Riemann theta function with characteristic m; m0 2

1
2
Z2/Z2 to z = (z1; z2) 2 H2, let

u = (u1; u2) be coordinates ofC2 that correspond to eigendirections of realmultiplication,
and let D2�(m;m0) =

@
@u2

�(m;m0)(z;u).
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Theorem 7.1 (Bainbridge [2007] and Möller and Zagier [2016]). The image of the Weier-
straß Teichmüller curve WD in XD is the vanishing locus of the Hilbert modular form

(7) D�(z) =
Y

(m;m0) odd

D2�(m;m0)(z)

of weight (3; 9). The orbifold Euler characteristic of WD is �(WD) = �
9
2
�(XD).

The Euler characteristic of Hilbert modular surfaces is explicitly computable, for fun-
damental discriminants D it is simply �(XD) = �Q(

p
D)(�1).

Note that the weight of the modular form D� is non-parallel, while in the literature
almost exclusively modular forms of parallel weight (k; k) appear. The reason for this
can be explained as follows. Teichmüller curves are geodesic for the Teichmüller metric
on Tg , which is the same as the Kobayashi metric. Images of Teichmüller curves are still
geodesic for the Kobayashi metric on the Hilbert modular surface XD and in fact also on
the moduli space of abelian surfaces A2. On XD , the Kobayashi metric is the supremum
of the Poincaré metrics on the two factors. In each point of the Teichmüller curve this
supremum is attained precisely for the first factor of H2. This is a restatement of the fact
that the maximal Higgs summand in Proposition 3.3 is unique.

The proof of Theorem 7.1 recasts in terms of modular forms the fact that the Abel-
Jacobi map based at a Weierstrass point embeds the Veech surface in its Jacobian as the
vanishing locus of a translate of the theta divisor. Consequently, the eigenform for real
multiplication has a zero at the Weierstrass point (i.e. the Veech surface belongs to the
stratum ΩM2(2)) if and only if the theta divisor has a tangent in an eigendirection for real
multiplication. This is expressed by the right hand side of (7).

There is an analogous theorem that expresses the Teichmüller curves in the Prym se-
ries as the vanishing locus of a determinantal expression in derivatives of theta functions
Möller [2014]. It also yields an expression of the Euler characteristics �(WD(4)) and
�(WD(6)) as a multiple (depending only on D mod 8) of �(XD). The proof refines the
above argument, using that the Prym-Abel-Jacobi image of a Veech surface (X; !) in the
Prym series is immersed in Jac(X; !).

8 Orbifold points and other connections to arithmetic geometry

Orbifold points of Teichmüller curves are, besides cusps and the Euler characteristic, the
last missing piece in determining their topology. Orbifold points provide an additional au-
tomorphism of the Jacobian, besides the real multiplication on Jac(X; !). Consequently,
orbifold points give points of complex multiplication (in the general sense, allowing endo-
morphism rings that are matrix rings). Recall that by proven versions of the André-Oort
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conjecture (see Edixhoven [2001]) Shimura curves in Hilbert modular surfaces are char-
acterized by having infinitely many CM points. On the other hand, a Teichmüller curve
is a Shimura curve at most for those generated by some torus covering Veech surfaces in
genus three and four. We will thus find only finitely many CM points and hence finitely
many orbifold points on a primitive Teichmüller curve.

Orbifold points are loosely connected to billiards. The unfolding construction (Fig-
ure 1) exhibits a Veech surface (X; !) arising from a dynamically optimal billiard table P

as X = [g2GgP for some finite group G generated by reflections. The index two sub-
group G0 � G that preserves the orientation belongs to the Veech group of (X; !). How-
ever, if the billiard table has right angles only, this group G0 might just consist of an
involution. E.g. for L-shaped billiard tables it gives the hyperelliptic involution, common
to all Veech surfaces in genus two rather than to special orbifold points. The locus of un-
foldings of billiard tables is a real codimension one submanifold of the Teichmüller curves
in this case.

Orbifold points on all but the most recently discovered series of Teichmüller curves
have been determined by Mukamel and by Torres-Teigell and Zachhuber.

Theorem 8.1 (Mukamel [2014] and Torres-Teigell and Zachhuber [2015, 2016]). The
orbifold points on the Weierstraß Teichmüller curve WD are a point of order five on W5

and h̃(�D) points of order two.
The orbifold points on the Prym Teichmüller curve WD(4) for D > 12 are H2(D)

points of order two and H3(D) points of order three.

Here h̃(�D) are generalized class numbers, e.g. h̃(�D) = h(�4D)/jo�
�4Dj for odd

discriminants D and H2(D) and H3(D) are representation number for D by quadratic
forms, with H2(D) = 0 if D is odd. For D � 12 there are a finite number of excep-
tional cases with orbifold points. A similar statement also holds for the Prym Teichmüller
curves WD(6), see Torres-Teigell and Zachhuber [2016].

We conclude this survey by addressing various aspects that emphasize the arithmetic
nature of Teichmüller curves. They are defined over number fields, since the existence
of the maximal Higgs subbundle L1 implies rigidity (Möller and Viehweg [2010] and
McMullen [2009]). Since maximal Higgs is a numerical condition, the Galois conjugate
of a Teichmüller curve is again a Teichmüller curve. This allows to search for natural
integral models over number rings for Teichmüller curves and to study the primes of bad
reduction of these models. Such models were computed in Bouw and Möller [2010a] and
many more in Kumar and Mukamel [2014], providing an interesting conjectural picture
of the bad primes.

Since Teichmüller curves are characterized by their uniformization, there is a natural
notion of modular forms for the Veech group. Since the universal covering of the map
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C ! XD of a Teichmüller curve to the Hilbert modular surface can be written as z 7!

(z; '(z)) for some holomorphic map ', there is, besides the usual automorphy factor (cz+

d ) also the twisted automorphy factor (c� '(z)+d � )where � is a generator of Gal(K/Q).
This leads to a theory of twisted modular forms, studied in Möller and Zagier [2016].
However, since the Veech group of a primitive Teichmüller curve is not arithmetic there
is no theory of Hecke operators on twisted modular forms. It is an open problem if there
is any replacement of the pivotal role usually played by Hecke eigenforms in this context.
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GROUP ACTIONS ON 1-MANIFOLDS: A LIST OF VERY
CONCRETE OPEN QUESTIONS
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Abstract

Over the last four decades, group actions on manifolds have deserved much at-
tention by people coming from different fields, as for instance group theory, low-
dimensional topology, foliation theory, functional analysis, and dynamical systems.
This text focuses on actions on 1-manifolds. We present a (non exhaustive) list of
very concrete open questions in the field, each of which is discussed in some detail
and complemented with a large list of references, so that a clear panorama on the
subject arises from the lecture.

From the very beginning, groups were recognized as mathematical objects endowed
with a certain “dynamics”. For instance, Cayley realized every group as a group of per-
mutations via left translations:

G �! P (G); g 7! Lg : G ! G; Lg(h) = gh:

For a finitely-generated groupG, this action has a geometric realization: We can consider
the so-called Cayley graph of G whose vertices are the elements of G, two of which f; g
are relied by an edge whenever g�1f is a generator (or the inverse of a generator). Then
G becomes a subgroup of the group of automorphisms of this graph.

In general, the group of such automorphisms is larger than the group G. A classical
result of Coxeter, Frucht, and Powers [1981] consists on a slight modification of this con-
struction so that the automorphisms group of the resulting graph actually coincides with
G. In fact, there are uncountably many such modifications, even for the trivial group. The
smallest nontrivial regular graph of degree 3 with trivial automorphism group is known as
the Frucht graph, and is depicted below.
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Figure 1: The Frucht graph.

Another modification of Cayley’s construction allows realizing every countable group
as a group of homeomorphisms of the Cantor set. Assume for a while that such a group
G is infinite, and endow the spaceM := f0; 1gG = f' : G ! f0; 1gg with the product
topology (metric). ThenM becomes a Cantor set, and G faithfully acts onM by shifting
coordinates: Lg(')(h) := '(g�1h): Despite of its apparent simplicity, this shift action is
fundamental in several contexts, and has attracted the attention of many people over the
last decades Boyle, Lind, and Rudolph [1988], Cohen [2017], Hochman [2010], and Popa
[2006b].

In the case where G is finite, one can modify the previous construction just by adding
extra coordinates to the space f0; 1gG on which the action is trivial. More interestingly,
there is a single “small” group of homeomorphisms of the Cantor set that contains all
finite groups. To properly define it, we see the Cantor set as the boundary at infinite @Γ
of a regular tree Γ of degree 3. Every proper, clopen ball in @Γ can be canonically seen
as the boundary at infinite of a rooted tree. We then consider the set of automorphisms
of @Γ that arise by cutting @Γ into finitely many clopen balls and sending them into the
pieces of another partition of @Γ into clopen balls (with the same number of pieces), so
that the restriction to each such ball is nothing but the canonical identification between
these pieces viewed as boundaries of rooted trees. This yields the so-called Thompson’s
groupV , which, amongmany remarkable properties, is finitely presented and simple. (See
Cannon, Floyd, and Parry [1996] for more on this.) It is easy to see that V contains all
finite groups.

Having realized every countable group as a group of homeomorphisms of a 0-dimen-
sional space, one can ask whether some restriction arises when passing to higher dimen-
sion. Certainly, there are number of other motivations for considering this framework,
perhaps the most transparent one coming from foliation theory. Indeed, to every group
action of a finitely-generated group by homeomorphisms of a manifoldM , one can asso-
ciate a foliation by the classical procedure of suspension as follows: Letting g1; : : : :gk be
a system of generators of G, we consider Sk , the surface of genus k, with fundamental
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group

�1(Sk) =

*
a1; : : : ; ak ; b1; : : : ; bk :

kY
i=1

[ai ; bi ] = id

+
:

In there, the generators ai are freely related, hence there is a homomorphism
� : �1(Sk) ! G sending ai into gi and bi into the identity. We then consider the product
space ∆ � M endowed with the action of �1(Sk) given by h(x; y) = (h̄(x); �(h)(y)),
where h̄ stands for the deck transformation on the Poincaré disc ∆ associated to h. The
quotient under this action is naturally a foliated, fibrated space with basis Sk and fiber
M , and the holonomy group of this foliation coincides with G. (See Candel and Conlon
[2000] for more on this construction.)

By the discussion above, and despite some remarkable recent progress Brown, Fisher,
and Hurtado [2016, 2017], it seems impossible to develop a full theory of groups acting
on manifolds. Here we restrict the discussion to the simplest case, namely, actions on
1-dimensional spaces. In this context, the ordered structure of the phase space allows
developing a very complete theory for actions by homeomorphisms, and the techniques
coming from 1-dimensional dynamics allow the same for actions by diffeomorphisms.
For each of such settings there are good references with very complete panoramas of the
developments up to recent years: see Deroin, Navas, and Rivas [2017] and Ghys [2001b]
and Navas [2011b], respectively. This is the reason why we prefer to focus on challenging
problems that remain unsolved, hoping that the reader will become motivated to work on
some of them.

1 Actions of Kazhdan’s groups

In 1967, Kazhdan introduced a cohomological property and proved that it is satisfied by
higher-rank simple Lie groups and their lattices, as for instance SL(n;Z) for n � 3 and
their finite index subgroups Každan [1967]. Since discrete groups satisfying this property
are necessarily finitely generated, he proved finite generation for these lattices, thus solv-
ing a longstanding question. Since then, the so-called Kazhdan’s property (T) has become
one of the most important tools for studying actions and representations of Lie groups.

Although Kazhdan’s original definition is somewhat technical, there is a more geomet-
ric property later introduced by Serre which turns out to be equivalent in the locally com-
pact setting: a group satisfies Serre’s property (FH) if every action by (affine) isometries
on a Hilbert space has an invariant vector. (See Bekka, de la Harpe, and Valette [2008]
and G. A. Margulis [1991] for a full discussion on this.)

Property (T) has very strong consequences for the dynamics of group actions in dif-
ferent settings; see for instance Bader, Furman, Gelander, and Monod [2007], Furman
[1999], Popa [2006a], Shalom [2006], and Zimmer [1984]. In what concerns actions on
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1-dimensional spaces, a classical result pointing in this direction, due to Watatani and
Alperin, states that every action of a group with property (T) by isometries of a real tree
has a fixed point. In a more dynamical framework, Witte–Morris proved in Witte [1994]
the following remarkable result: For n � 3, every action of a finite-index subgroup of
SL(n;Z) by orientation-preserving homeomorphisms of the interval (resp. the circle) is
trivial (resp. has finite image).

This theorem is even more remarkable because of its proof, which is amazingly elemen-
tary. However, it strongly relies on the existence of certain nilpotent subgroups inside the
lattice, which do not arise in other (e.g. cocompact) cases. Despite some partial progress
in this direction Lifschitz and Morris [2004, 2008] and Morris [2014] (see Morris [2011]
for a full panorama on this), the following question remains open.

Question 1. Does there exist a lattice in a higher-rank simple Lie group admitting a non-
trivial action by orientation-preserving homeomorphisms of the interval ?

Notice that the statement above doesn’t deal with actions on the circle. This is due to
a theorem of Ghys [1999], which reduces the general case to that on the interval: Every
action of a lattice in a higher-rank simple Lie group by orientation-preserving homeomor-
phisms of the circle has a finite orbit (hence a finite-index subgroup -which is still a lattice-
fixes some interval).

The question above can be rephrased in the more general setting of Kazhdan groups.

Question 2. Does there exist an infinite, finitely-generated Kazhdan group of circle home-
omorphisms ?

Question 3. Does there exist a nontrivial (hence infinite) Kazhdan group of orientation-
preserving homeomorphisms of the interval ?

A concrete result on this concerns actions by diffeomorphisms: If a finitely-generated
group of C 3/2 circle diffeomorphisms satisfies property (T), then it is finite Navas [2002,
2011b] (see Cornulier [2017] for the piecewise-smooth case). However, the situation is
unclear in lower regularity. For instance, the group G := SL(2;Z) Ë Z2 has the relative
property (T) (in the sense that for every action of G by isometries of a Hilbert space,
there is a vector that is invariant by Z2), yet it naturally embeds into the group of circle
homeomorphisms. Indeed, the group SL(2;Z) acts projectively on the 2-fold covering of
S1 -which is still a circle-, and blowing up an orbit one can easily insert an equivariant
Z2-action. However, no action of this group is C 1 smoothable Navas [2005, 2010a].

The example above can be easily modified as follows: Letting F2 � SL(2;Z) be a
finite-index subgroup, the semidirect product G := F2 Ë Z2 still has the relative property
(T) (with respect to Z2). Moreover, starting with a free group of diffeomorphisms of the
interval and using the blowing up procedure along a countable orbit, one can easily embed
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G into the group of orientation-preserving homeomorphisms of the interval. Because of
these examples, the answers to both Question 2 and 3 remain unclear.

There is a different, more dynamical approach to Question 1 above. Indeed, when
dealing with the continuous case, actions on the interval and actions on the real line are
equivalent. In the latter context, an easy argument shows that for every action of a finitely-
generated group G by orientation-preserving homeomorphisms of the real line without
global fixed points, one of the following three possibilities occurs:
(i) There is a � -finite measure � that is invariant under the action.
(ii) The action is semiconjugate to a minimal action for which every small-enough inter-
val is sent into a sequence of intervals that converge to a point under well-chosen group
elements, but this property does not hold for every bounded interval. (Here, by a semi-
conjugacy we roughly mean a factor action for which the factor map is a continuous, non-
decreasing, proper map of the real line.)
(iii) The action is semiconjugate to a minimal one for which the contraction property above
holds for all bounded intervals.

Observe that a group may have actions of different type. (A good exercise is to build
actions of F2 of each type.) In case (i), the translation number homomorphism g 7!

�([x; g(x)[) provides a nontrivial homomorphism from G into R. In case (ii), it is not
hard to see that, when looking at the minimal semiconjugate action, the map ' that sends
x into the supremum of the points y > x for which the interval [x; y] can be contracted
along group elements is an orientation-preserving homeomorphism of the real line that
commutes with all elements of G and satisfies '(x) > x for all x. Therefore, there is an
induced G-action on the corresponding quotient space R/∼, where x ∼ '(x), which is a
topological circle.

By the discussion above, case (i) cannot arise for infinite groups with property (T). As
a direct consequence of Ghys’ theorem stated above, case (ii) can neither arise for faithful
actions of lattices in higher-rank simple Lie groups. Hence, if such a group admits an
action (without global fixed points) on the real line, the action must satisfy property (iii).

Question 4. Does there exist an infinite, finitely-generated group that acts on the real line
all of whose actions by orientation-preserving homeomorphisms of the line without global
fixed points are of type (iii) ?

2 Cones and orders on groups

Groups of orientation-preserving homeomorphisms of the real line are left orderable, that
is, they admit total order relations that are invariant under left multiplication. Indeed,
such a group can be ordered by prescribing a dense sequence (xn) of points in the line,
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and letting f � g if the smallest n for which f (xn)¤g(xn) is such that f (xn)<g(xn).
Conversely, for a countable left-orderable group, it is not hard to produce an action on the
line. (See Deroin, Navas, and Rivas [2017] and Ghys [2001b] for more on this.) This may
fail, however, for uncountable groups with cardinality equal to that of Homeo+(R); see
Mann [2015].

The characterization above yields to a dynamical approach for the theory of left-orderable
groups (which goes back to Dedekind and Hölder). In this view, a useful idea indepen-
dently introduced by Ghys [2001a] and Sikora [2004] consists in endowing the space
LO(G) of all left-orders of a given left-orderable group G with the Chabauty topology.
(Two orders are close if they coincide over a “large” finite subset.) This provides a totally
disconnected, compact space, which is metrizable in case G is countable. (One can let
dist(�;�0) = 1/n, where n is the largest integer such that � and �0 coincide over the set
An of a prescribed exhaustion of G = [iAi by finite subsets.)

A result of Linnell establishes that spaces of left orders are either finite or uncount-
able Linnell [2011] (see also Clay, Mann, and Rivas [2017]). Left-orderable groups with
finitely many orders were classified by Tararin (see Deroin, Navas, and Rivas [2017] and
Kopytov and Medvedev [1996]): they are all solvable, the simplest examples being Z
and the Klein bottle group ha; b : bab = ai. In an opposite direction, for some classes
of groups G, it is known that no left order is isolated in LO(G): solvable groups with
infinitely many left orders Rivas and Tessera [2016], free groups Hermiller and Šunić
[2017], Kielak [2015], McCleary [1985], Navas [2010b], and Rivas [2012], free products
of groups Rivas [2012], and surface groups Alonso, Brum, and Rivas [2017]. The follow-
ing question remains, however, open.

Question 5. Does there exist a finitely-generated, amenable, left-orderable group having
an isolated order inside an infinite space of left orders ?

It is somewhat surprising that several classes of groups with infinitely many left orders
do admit isolated left orders. Constructions have been proposed by different authors using
quite distinct techniques: dynamical, group theoretical and combinatorial (see for instance
Dehornoy [2014], Dubrovina and Dubrovin [2001], Ito [2013, 2016, 2017], Matsumoto
[2017], and Navas [2011a]). However, the most striking examples remain the first ones,
namely, the braid groups Bn. To be more precise, let

Bn :=
˝
�1; : : : ; �n�1 : �i�i+1�i = �i+1�i�i+1; �i�j = �j�i for ji � j j � 2

˛
be the standard presentation ofBn. Denote ai := (�i � � � �n�1)

(�1)i�1 , where i 2 f1; : : : ; n�

1g. Building on seminal work of Dehornoy [2000], Dubrovina and Dubrovin showed in
Dubrovina and Dubrovin [2001] that Bn admits the disjoint decomposition

Bn =
˝
a1; : : : ; an�1i

+
[ ha�1

1 ; : : : ; a�1
n�1

˛+
[ fidg;
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where h�i+ stands for the semigroup generated by the corresponding set of elements. An
easy argument then shows that the order whose elements larger than the identity are those
in ha1; : : : ; an�1i+ is well defined, total and left invariant; more importantly, it is isolated,
since it is the only left order for which the elements a1; : : : ; an�1 are all larger than the
identity Linnell [2011].

Despite the apparent simplicity of the previous decomposition into finitely-generated
positive and negative cones, no elementary proof is available. Finding an elementary
approach is a challenging problem. The only nontrivial case that is well understood is that
of n = 3, where the decomposition is evident from the picture below.

Figure 2: The positive and negative cones of an isolated order on the Cayley graph of
B3 = ha; b : ba2b = ai with respect to the generators a := �1�2 and b := ��1

2 .

Notice that a general left-orderable groupG acts on LO(G) by conjugacy: given a left
order � and g 2 G, the conjugate of � under g is the left order �g for which f1 �g f2
if and only if gf1g�1 � gf2g

�1, which is equivalent to f1g�1 � f2g
�1.

Question 6. Does there exist a finitely-generated, left-orderable group for which the con-
jugacy action on its space of left orders is minimal (that is, all the orbits are dense) ?

It is not hard to show that free groups do admit left orders with a dense orbit under the
conjugacy action McCleary [1985] and Rivas [2012]. However, this action is not minimal.
Indeed, free groups are bi-orderable (that is, they admit left orders that are also invariant
under right multiplication), and a bi-order is, by definition, a fixed point for the conjugacy
action.
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The conjugacy action was brilliantly used by Morris [2006] to settle a question of Lin-
nell [2001], which was priorly raised -in the language of foliations- by Thurston [1974]:
Every finitely-generated, left-orderable, amenable group admits a nontrivial homomor-
phism into Z. Indeed, amenability provides an invariant probability measure for the con-
jugacy action. (Remind that one of the many definitions of amenability is that every action
on a compact space admits an invariant probability measure.) Then the key idea is that,
by the Poincaré recurrence theorem, left orders in the support of such a measure must sat-
isfy a certain recurrence property, which reads as an algebraic property that is close to the
Archimedean one (the so-called Conradian property; see Navas and Rivas [2009]). This
property allows obtaining the desired homomorphism. The next extension of the question
(also proposed by Linnell), which is reminiscent of the Tits alternative, remains open.

Question 7. Does there exist a finitely-generated, left-orderable group without free sub-
groups and admitting no nontrivial homomorphism into Z ?

It is worth stressing that a negative answer to Question 4 above would imply a negative
one to Question 7. Indeed, on the one hand, an action of type (i) provides a group ho-
momorphism into R (via translation numbers), hence into Z for finitely-generated groups.
On the other hand, as explained before, an action of type (ii) factors through a locally con-
tracting action on the circle, which implies the presence of a free subgroup by a theorem
of G. Margulis [2000] (see also Ghys [2001b]).

A closely related question is the following.

Question 8. Does there exist a finitely-generated, left-orderable groupG with no nontriv-
ial homomorphism into Z and trivial group of bounded cohomology H2

b
(G;R) ?

Again, a negative answer to Question 4 would also imply a negative one to this question.
Indeed, locally contracting actions on S1 are parameterized (up to semiconjugacy) by a
nontrivial cohomological class taking values in f0; 1g, according to a seminal work of
Ghys [1987] (see also Ghys [2001b]).

Besides these questions addressed for particular families of left-orderable groups, ob-
structions to left-orderability that go beyond torsion-freenes or the so-called unique prod-
uct property UPP (namely, for each finite subset of the group, there is at least one product
of two elements in this set that cannot be represented as another product of two elements
in the set) are poorly understood. Although this goes beyond the scope of this text (and
is one of the main lines of research of the theory of left-orderable groups), for specific
families of dynamically defined groups, this has wide interest. A particular question on
this was raised and nicely discussed by Calegari [2009].

Question 9. Is the group of orientation-preserving homeomorphisms of the 2-disk that are
the identity at the boundary left orderable ?
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Notice that the group in discussion is torsion free, due to a classical result of deKerékjártó
[1941] (see also Kolev [2006]). It is worth to stress that it is even unknown whether this
group satisfies the UPP.

3 Groups of piecewise-projective homeomorphisms

Groups of piecewise-affine homeomorphisms have been deeply studied in relation to Thomp-
son’s groups. Remind that Thompson’s group T is defined as the subgroup of (the pre-
viously introduced group) V formed by the elements that respect the cyclic order in @Γ,
the boundary of the homogeneous tree of degree-3. Besides, Thompson’s group F is the
subgroup of T formed by the elements that fix a specific point in @Γ (say, the left-most
point of the boundary of a clopen ball). Another realization arises in dimension 1: T (resp.
F ) is a group of orientation-preserving, piecewise-affine homeomorphisms of the circle
(rep. interval). Both groups are finitely presented Cannon, Floyd, and Parry [1996] and
have a dyadic nature, in the sense that the slopes of elements are integer powers of 2, and
break points are dyadic rationals. One of the most challenging questions on these groups
is the following.

Question 10. Is Thompson’s group F amenable ?

A beautiful result of Brin and Squier establishes that the group of piecewise-affine
homeomorphisms of the interval (henceF ) doesn’t contain free subgroups Brin and Squier
[1985]. However, despite much effort by several people over the last decades (which in-
cludes several mistaken announcements pointing in the two possible directions), Question
10 remains as a kind of nightmare for the mathematical community; see Ghys [2009].

Besides the well-known question above, the algebraic structure of certain groups of
piecewise-affine homeomorphisms, mainly generalizations of Thompson’s groups Stein
[1992], is quite interesting. A concrete problem on them deals with distorted elements. To
properly state it, remind that, given a group G with a finite generating system G, the word
length kgk of g 2 G is the minimum number of factors needed to write g as a product
of elements in G (and their inverses). An element of infinite order g 2 G is said to be
distorted if

lim
n!1

kgnk

n
= 0:

More generally, an element is said to be distorted in a general groupwhenever it is distorted
inside a finitely-generated subgroup of this group.

Distorted elements naturally appear inside nilpotent groups, and have been extensively
used to study rigidity phenomena of group actions on 2-manifolds Calegari and Freedman
[2006] and Franks and Handel [2006]. In the 1-dimensional setting, Avila proved that
irrational rotations are distorted (in a very strong way) in the group ofC1 diffeomorphism
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Avila [2008]. However, despite some partial progress Guelman and Liousse [2017], the
following question is open.

Question 11. Does the group of piecewise-affine circle homeomorphisms contain dis-
torted elements ?

Beyond the piecewise-affine setting, the group of piecewise-projective homeomorphisms
is a larger source of relevant examples of finitely-generated groups. In this direction, one
could ask whether examples yielding to an affirmative answer to Question 3 may arise
inside the group of piecewise-projective homeomorphisms of the line.

As a concrete example of an interesting group, remind that Thompson’s group T itself
has a natural piecewise-projective, non piecewise-affine realization (which goes back to
Thurston and, independently, to Ghys and Sergiescu): just replace dyadic rationals by
rationals via the Minkowsky mark function, and change piecewise-affine maps by maps
that are piecewise in PSL(2;Z).

Among the new examples of groups constructed via this approach, the most remarkable
is, with no doubt, the group GLM introduced by Lodha and Moore [2016], which -as a
group acting on the line- is generated by the homeomorphisms f; g; h below (notice that
f; g generate a group isomorphic -actually, conjugate- to Thompson’s group F ): f (t) :=
t + 1;

g(t) :=

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

t if t � 0;

t
1�t

if 0 � t �
1
2
;

3 �
1
t

if 1
2

� t � 1;

t + 1 if t � 1;

and h(t) :=

8<:
2t
1+t

if t 2 [0; 1];

t otherwise:

Among its many remarkable properties, GLM has no free subgroup (by an easy exten-
sion of Brin–Squier’s theorem mentioned above), it is non-amenable (due to prior work
of Ghys and Carrière [1985] and Monod [2013]), and has a finite presentation (this is the
main technical contribution of Lodha and Moore [2016]). Although it is not the first ex-
ample of a group with these properties (see Ol’shanskii and Sapir [2003]), it has several
other properties, as being torsion-free and of type F1 (a property which is much stronger
than being finitely presented; see Lodha [2014]). Recently, based on previous work relat-
ing smoothness with 1-dimensional hyperbolic dynamics in the solvable context Bonatti,
Monteverde, Navas, and Rivas [2017], this group was proven to be non C 1 smoothable
in Bonatti, Lodha, and Triestino [2017] (see Lodha [2017] for a related result concerning
a group closely related to T ). This is to be compared with a classical result of Ghys and
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Sergiescu, according to which T is topologically conjugate to a group of C1 diffeomor-
phisms Ghys and Sergiescu [1987]. The following general question becomes natural.

Question 12. What are the groups of piecewise-projective homeomorphisms of the inter-
val/circle that are topologically conjugate to groups of C 1 diffeomorphisms ?

4 The spectrum of sharp regularities for group actions

Regularity issues appear as fundamental when dealing with both the dynamical properties
of a given action and the algebraic constraints of the acting group. The original source
of this goes back to Denjoy’s classical theorem: Every C 2 circle diffeomorphism without
periodic points is minimal. The C 2 hypothesis or, at least, a derivative with bounded
variation, is crucial for this result. (The theorem is false in the C 1+˛ setting Herman
[1979] and Tsuboi [1995], and remains unknown for diffeomorphisms whose derivatives
are � -continous with respect to the modulus of continuity �(x) = jx log(x)j.) This is
the reason why, when dealing with group actions (and, more generally, codimension-1
foliations), such an hypothesis is usually made. Nevertheless, in recent years, many new
phenomena have been discovered in different regularities, thus enriching the theory.

One of the main problems to deal with in this direction is that of the optimal regularity.
This problem is twofold. On the one hand, one looks for the maximal regularity that can be
achieved, under topological conjugacy, of a given action. On the other hand, one asks for
the maximal regularity in which a given group can faithfully act by varying the topological
dynamics. A very concrete question in the latter direction is the following.

Question 13. Given 0 < ˛ < ˇ < 1, does there exist a finitely-generated group of
C 1+˛ diffeomorphisms of the circle/interval that does not embed into the group of C 1+ˇ

diffeomorphisms ?

There are concrete reasons for restricting this problem only to regularities between C 1

and C 2. On the one hand, Kim and Koberda have recently settled the analog of Question
13 for regularities larger than C 2, whereas the (discrete) Heisenberg group faithfully acts
by C 1+˛ diffeomorphisms for any ˛ < 1 Castro, Jorquera, and Navas [2014], but it does
not embed into the group of C 2 diffeomorphisms Plante and Thurston [1976]. On the
other hand, Thurston gave the first examples of groups that are non C 1 smoothable via
his remarkable stability theorem Thurston [1974] (see also Bonatti, Monteverde, Navas,
and Rivas [2017] and Navas [2010a]), while examples of groups of C 1 diffeomorphisms
that are non C 1+˛ smoothable arise in relation to growth of groups Navas [2008]. In
an opposite direction, every countable group of circle homeomorphisms is topologically
conjugate to a group of Lipschitz homeomorphisms, as it is shown below following the
arguments of Deroin, Kleptsyn, and Navas [2007] and Navas [2014].
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Example 1. Let G be a group with a finite, symmetric generating system G which acts by
homeomorphisms of a compact 1-manifoldM . Let Leb denote the normalized Lebesgue
measure onM . Given " > 0, let �̄� be the measure onM defined as

�̄" :=
X
f 2G

e�"kf kf�(Leb);

where kf k denotes the word-length of g (with respect to G). The measure �̄" has finite
mass for " large enough. Indeed,

�̄"(M ) =
X
n�0

e�n"
ˇ̌
S(n)

ˇ̌
�

X
n�0

e�n"
jGj

�
jGj � 1

�n�1
=

jGj

jGj � 1

X
n�0

�
jGj � 1

e"

�n

;

where jS(n)j stands for the cardinal of the set S(n) of elements having word-length equal
to n. Moreover, since for every g 2 G and all f 2 G it holds kgf k � kf k+1, we have

(1) g�(�̄") =
X
f 2G

e�"kf k(gf )�(Leb) � e"
X
f 2G

e�"kgf k(gf )�(Leb) = e"�̄":

Let �" be the normalization of �̄". The probability measure �" has total support and no
atoms. It is hence topologically equivalent to Leb (dimension 1 is crucial here; see Harri-
son [1975, 1979] for examples of non-smoothable homeomorphisms in higher dimension).
By a change of coordinates sending �" into Leb, relation (1) becomes, for each interval
I � M ,

jg�1(I )j = g�(Leb)(I ) � e"Leb(I ) = e"
jI j:

This means that, in these new coordinates, g�1 is Lipschitz with constant � e".

It is interesting to specialize Question 12 to nilpotent group actions. Indeed, these
actions are known to be C 1 smoothable Farb and Franks [2003], Jorquera [2012], and
Parkhe [2016], though they are non C 2 smoothable unless the group is abelian Plante
and Thurston [1976]. Moreover, the only settled case for Question 12 is that of a nilpotent
group, namely, the groupG4 of 4�4 upper-triangular matrices with integer entries and 1’s
in the diagonal. In concrete terms, G4 embeds into the group of C 1+˛ diffeomorphisms
of the interval for every ˛ < 1/2, though it does not embed for ˛ > 1/2 Jorquera, Navas,
and Rivas [2018]. (The case ˛=1/2 remains open; compare Navas [2013].)

5 Zero Lebesgue measure for exceptional minimal sets

Differentiability issues are crucial in regard to ergodic type properties for actions. It fol-
lows from Denjoy’s theorem quoted above that a single C 2 circle diffeomorphism cannot
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admit an exceptional minimal set, that is, a minimal invariant set homeomorphic to the
Cantor set. Although the mathematical community took some time to realize that these
sets may actually appear for group actions (the first explicit example appears in Sacksteder
[1964]), it is worth pointing out that these sets naturally arise, for instance, for Fuchsian
groups (and, more generally, for groups with a Schottky dynamics), as well as for cer-
tain semiconjugates of Thompson’s group T . The following question is due to Ghys and
Sullivan.

Question 14. LetG be a finitely-generated group of C 2 circle diffeomorphisms. Assume
thatG admits an exceptional minimal set Λ. Is the Lebesgue measure of Λ equal to zero ?

An important recent progress towards the solution of this question is made in Deroin,
Kleptsyn, and Navas [n.d.], where it is answered in the affirmative for groups of real-
analytic diffeomorphisms. Besides, an affirmative answer is provided, also in the real-
analytic context, to another important question due to Hector.

Question 15. LetG be a finitely-generated group of C 2 circle diffeomorphisms. Assume
that G admits an exceptional minimal set Λ. Is the set of orbits of intervals of S1 n Λ

finite ?

Beyond having settled these two questions in the real-analytic context, the main contri-
bution of Deroin, Kleptsyn, and Navas [ibid.] consists in proposing new ideas yielding to
structure results for groups of circle diffeomorphisms admitting an exceptional minimal
set (see Deroin, Filimonov, Kleptsyn, and Navas [2017] and the references therein for a
full discussion on this). Indeed, so far, positive answers to these questions were known
only in the expanding case (that is, whenever for every x 2 Λ there is g 2 G such that
Dg(x) > 1; see Navas [2004b]), and for Markovian like dynamics Cantwell and Conlon
[1989, 1988]. What is clear now is that, in the non expanding case, a certain Markovian
structure must arise (see Deroin [2017] for a precise result in this direction in the confor-
mal case). This view should also be useful to deal with the following classical question
(conjecture) of Dippolito [1978].

Question 16. LetG be a finitely-generated group of C 2 circle diffeomorphisms. Assume
that G admits an exceptional minimal set Λ. Is the restriction of the action of G to Λ

topologically conjugated to the action of a group of piecewise-affine homeomorphisms ?

It should be pointed out that Questions 14, 15 and 16 have natural analogs for codimension-
1 foliations. In this broader context, they all remain widely open, even in the (trans-
versely) real-analytic setting. However, the ideas and techniques from Deroin, Kleptsyn,
and Navas [n.d.] show that, also in this generality, structural issues are the right tools to
deal with them.
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6 Ergodicity of minimal actions

In case of minimal actions, a subtle issue concerns ergodicity (with respect to the Lebesgue
measure), that is, the nonexistence of measurable invariant sets except for those having
zero or full (Lebesgue) measure. The original motivation for this comes from a theorem in-
dependently proved by Katok and Hasselblatt [1995] and Herman [1979]: The action of a
C 2 circle diffeomorphism without periodic points is ergodic (with respect to the Lebesgue
measure). Notice that this result does not follow from Denjoy’s theorem (which only en-
suresminimality), sincewe know from the seminal work ofArnold [1961] that the (unique)
invariant measure may be singular with respect to the Lebesgue measure.

Katok’s proof is performed via a classical control of distortion technique, which means
that there is a uniform control on the ratio supDfn/ infDfn for the value of the deriva-
tives on certain intervals along a well-chosen sequence of compositions fn. This allows
transferring geometric data from micro to macro scales, so that the proportion of the mea-
sures of different sets remains controlled when passing from one scale to another. Clearly,
this avoids the existence of invariant sets of intermediate measure, thus proving ergodicity.

Herman–Katok’s theorem deals with an “elliptic” context, whereas several classical
ergodicity-like results (going back to Poincaré’s linearization theorem) hold in an hyper-
bolic context. One hopes that a careful combination of both techniques would yield to an
affirmative answer to the next question, also due to Ghys and Sullivan.

Question 17. Let G be a finitely-generated group of C 2 circle diffeomorphisms. If the
action of G is minimal, is it necessarily ergodic with respect to the Lebesgue measure ?

So far, an affirmative answer to this question is known in the case where the group
is generated by elements that are C 2 close to rotations Navas [2004b], for expanding
actions Navas [2004b] and Deroin, Kleptsyn, and Navas [2009], and for groups of real-
analytic diffeomorphisms which are either free Deroin, Kleptsyn, and Navas [n.d.] or have
infinitely many ends Alvarez, Filimonov, Kleptsyn, Malicet, Cotón, Navas, and Triestino
[2015]. It is worth pointing out that the C 2 regularity hypothesis is crucial here; see for
instance Kodama and Matsumoto [2013].

Again, Question 17 has a natural extension to the framework of codimension-1 folia-
tions, where it remains widely open.

7 Absolute continuity of the stationary measure

Due to the absence of invariant measures for general groups actions, a useful tool to con-
sider are the stationary measures, which correspond to probability measures that are in-
variant in mean. More precisely, given a probability distribution p on a (say, finitely
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generated) group G that acts by homeomorphisms of a compact metric spaceM , a proba-
bility measure � onM is said to be stationnary with respecto to p if for every measurable
subset A�M , one has

�(A) =
X
g2G

p(g)�(g�1(A)):

There are always stationary measures: this follows from a fixed-point argument or from
Krylov–Bogoliuvob’s argument consisting in taking means and passing to the limit in the
(compact) space of probabilities onM . A crucial property is that, in case of uniqueness
of the stationary measure (with respect to a given p), the action is ergodic with respect to
this measure Navas [2011b].

It is shown in Antonov [1984] and Deroin, Kleptsyn, and Navas [2007] that, for a group
of orientation-preserving circle homeomorphismsG acting minimally, the stationary mea-
sure is unique with respect to each probability distribution p on G that is non-degenerate
(i.e. the support of the measure generates G as a semigroup). Hence, the next problem
becomes relevant in relation to Question 17 above.

Question 18. Let G be a finitely-generated group of C 2 orientation-preserving circle dif-
feomorphisms. Does there exist a non-degenerate probability distribution onG for which
the stationary measure is absolutely continuous with respect to the Lebesgue measure ?

A classical argument of “balayage” due to Furstenberg [1971] solves this question for
lattices in PSL(2;R). However, this strongly relies on the geometry of the Poincaré
disk, and does not extend to general groups. Moreover, it is shown in Deroin, Klept-
syn, and Navas [2009] and Guivarc’h and Le Jan [1990] (see also Blachère, Haı̈ssinsky,
and Mathieu [2011]) that the resulting probability measure is singular with respect to the
Lebesgue measure for non cocompact lattices whenever the distribution p is symmetric
(i.e. p(g) = p(g�1) for all g 2 G) and finitely supported (and, more generally, for distri-
butions with finite first moment). This also holds for groups with a Markovian dynamics
for which there are non-expandable points (i.e. points x such that Dg(x) � 1 for all
g2G), as for instance (the smooth realizations of) Thompson’s group T . (Notice that, for
the canonical action of PSL(2;Z), the point [1 : 0] is non-expandable.)

Once again, Question 18 extends to the framework of codimension-1 foliations, where
it remains widely open. (Uniqueness of the stationary measure in this setting and, more
generally, in a transversely conformal framework, is the main content of Deroin and Klept-
syn [2007].)

A probability distribution on a group induces a random walk on it, many of whose
properties reflect algebraic features of the group and translate into particular issues of
the stationary measures. Remind that to every probability distribution one can associate a
“maximal boundary”, which, roughly, is a measurable space endowed with a “contracting”
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action having a unique stationary measure so that any other space of this type is a mea-
surable factor of it Furstenberg [1973]. The study of this Poisson–Furstenberg boundary
is one of the main topics in this area, and explicit computations are, in general, very hard
Erschler [2010]. In our framework, a valuable result in this direction was obtained by
Deroin, who proved in Deroin [2013] that for every group of smooth-enough circle diffeo-
morphisms with no finite orbit and whose action is locally discrete in a strong (and very
precise) sense, the Poisson–Furstenberg boundary identifies with the circle endowed with
the corresponding stationary measure provided the probability distribution on the group
satisfies a certain finite-moment condition. Extending this result to more general groups
is a challenging problem. In particular, the next question remains unsolved.

Question 19. Given a symmetric, finitely-supported, non-degenerate probability distribu-
tion on Thompson’s group T , does the Poisson–Furstenberg boundary of T with respect
to it identifies with the circle endowed with the corresponding stationary measure ?

Last but not least, random walks are also of interest for groups acting on the real line.
In this setting, a nontrivial result is the existence of a (nonzero) � -finite stationary mea-
sure for symmetric distributions on finitely-generated groups Deroin, Kleptsyn, Navas,
and Parwani [2013]. This is closely related to general recurrence type results for symmet-
ric random walks on the line. One hopes that these ideas may be useful in dealing with
Question 1, though no concrete result in this direction is known yet.

8 Structural stability and the space of representations

Another aspect in which differentiability issues crucially appear concerns stability. Re-
mind that, given positive numbers r � s, an action by C s diffeomorphisms is said to be
C r structurally stable if every perturbation that is small enough in the C s topology is C r

conjugate to it. (In the case s = 0, we allow semiconjugacies instead of conjugacies.)
Usually, structural stability arises in hyperbolic contexts, and the situation in an elliptic
type framework is less clear. The next question was formulated by Rosenberg more than
40 years ago (see for instance Rosenberg and Roussarie [1975]).

Question 20. Does there exist a faithful action of Z2 by C1 orientation-preserving circle
diffeomorphisms that is C1 structurally stable ?

A closely related question, also due to Rosenberg, concerns the topology of the space
of Z2-actions.

Question 21. Given r � 1, is the subset of Diffr+(S1)2 consisting of pairs of commuting
diffeomorphisms locally connected ?
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These two questions have inspired very deep work of many people, including Herman
and Yoccoz, who devoted their thesis to closely related problems. However, despite all
these efforts, they remain widely open. Among some recent progress concerning them,
we can mention the proof of the connectedness of the space of commuting C1 diffeomor-
phisms of the closed interval Bonatti and Eynard-Bontemps [2016] (which, in its turn, has
important consequences for codimension-1 foliations Eynard-Bontemps [2016]), and that
of the path connectedness of the space of commuting C 1 diffeomorphisms of either the
circle or the closed interval Navas [2014]. These two results apply in general to actions
of Zn.

In a non-Abelian context, several other questions arise in relation to the structure of
the space of actions. Among them, we can stress a single one concerning actions with an
exceptional minimal set, for which the results from Deroin, Kleptsyn, and Navas [n.d.]
point in a positive direction.

Question 22. Given a faithful action �0 of a finitely generated group G by C1 circle dif-
feomorphisms admitting an exceptional minimal set, does there exist a path �t of faithful
actions ofG that is continuous in the C1 topology and starts with �0 = � so that each �t

admits an exceptional minimal set for t < 1 and �1 is minimal ?

Quite surprisingly, structural stability is interesting even in the continuous setting. In-
deed, the dictionary between left orders and actions on the interval shows that such an
action is structurally stable if and only if a certain canonical left order arising from it is
isolated in whole the space of left orders. Similarly, an action on the circle is structurally
stable if and only if a natural “cyclic order” induced from it is an isolated point in the
corresponding space of cyclic orders (endowed with the appropriate Chabauty topology;
see Mann and Rivas [n.d.]). In this regard, we may ask the following. (Compare Question
5.)

Question 23. Let G be a finitely-generated group of circle homeomorphisms whose ac-
tion is C 0 structurally stable. Suppose that G admits infinitely many non semiconjugate
actions on the circle. Does G contain a free subgroup in two generators ?

9 Approximation by conjugacy and single diffeomorphisms

Some of the connectedness results discussed above are obtained by constructing paths
of conjugates of a given action. This idea is particularly simple and fruitful in very low
regularity. We next give a quite elementary example to illustrate this.
Example 2. As is well known, every circle homeomorphism has zero topological entropy.
In most textbooks, this is proved by an easy counting argument of separated orbits for
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such an f . However, to show this, we can also follow the arguments of Example 1 for
G = hf i and any " > 0. Indeed, the outcome is that f is topologically conjugate to a
Lipschitz homeomorphism with Lipschitz constant � e". By the invariance of entropy
under topological conjugacy and its classical estimate in terms of the logarithm of the
Lipschitz constant, we obtain that htop(f ) � ". Since this holds for all " > 0, we must
have htop(f ) = 0.

The naive argument above still works for groups of subexponential growth, as for in-
stance nilpotent groups Navas [2014]. Therefore, for all actions of these groups on 1-
manifolds, the geometric entropy (as defined by Ghys, Langevin, and Walczak [1988])
always equals zero. More interestingly, a similar strategy should be useful to deal with
groups of C 1 diffeomorphisms. Indeed, in this context, Hurder has shown in Hurder
[2000] that zero entropy is a consequence of the absence of resilient pairs, which means
that there are no elements f; g such that x<f (x)<f (y)<g(x)<g(y)<y for certain
points x; y. (Notice that the converse holds even for homeomorphisms, as is follows from
a classical counting argument.) The proof of this fact is quite involved, and one hopes for
an affirmative answer to the question below, which would immediately imply this result.

Question 24. LetG be a finitely-generated group of C 1 circle diffeomorphisms. Suppose
that G has no resilient pairs. Given " > 0, can G be conjugated (by a homeomorphism)
into a group of Lipschitz homeomorphisms for which the Lipschitz constants of the gen-
erators are all � e" ?

A particularly clarifying example on this concerns conjugates of C 1 diffeomorphisms
without periodic points (that is, with irrational rotation number), as explained below.

Example 3. Remind that every cocycle ' : M ! R with respect to a continuous map
f :M ! M is cohomologous to each of its Birkhoff means. Indeed, letting

 n :=
1

n

n�1X
i=0

Si'; where Sn' :=

n�1X
i=0

' ı f i and S0' := 0;

one easily checks the identity

' �
Sn'

n
=  n �  n ı f:

If f belongs to Diff1+(S1), we can specialize this remark to ' := log(Df ). Besides, if f
has irrational rotation number �, then an easy argument shows that Sn(logDf )/n ! 0.
Therefore,

 n ı f + logDf �  n �! 0:
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Adding a constant cn to  n, we may assume that  n coincides with logDhn for a C 1

diffeomorphism hn. The relation above then becomes logD(hnf h
�1
n )ıhn ! 0; which

shows that hnf h
�1
n converges to R� in the C 1 topology.

The argument above extends to actions of nilpotent groups, thus giving an affirmative
answer to Question 25 for these groups Navas [2014]. However, this idea strongly uses
the additive nature of the logarithm of the derivative, and it seems hard to directly extend it
to higher regularity. Despite this, one expects that the use of a Schwarzian-like derivative
(cocycle) would yield to an affirmative answer to the following question.

Question 25. Let f be a C 2 circle diffeomorphism of irrational rotation number �. Does
the set of C 2 conjugates of f contain the rotation R� in its C 2-closure ?

The discussion above reveals that many natural questions still remain unsolved for
single diffeomorphisms. Below we state two more of them.

Question 26. For which values of r > 1 there exists s � r such that for every C s circle
diffeomorphism f of irrational rotation number �, the sequence f qn converges to the
identity in the C r topology, where (qn) is the sequence of denominators of the rational
approximations of � ?

This question is inspired by a fundamental result of Herman [1979], according to which
one has the convergence f qn !Id in the C 1 topology for C 2 circle diffeomorphisms
of irrational rotation number (see also Navas and Triestino [2013] and Yoccoz [1984a]).
The answer to this question should consider a result of Yoccoz [1995], who constructed a
C1 circle diffeomorphism with irrational rotation number and trivial centralizer.

Question 27. Let f be a C 2 circle diffeomorphism of irrational rotation number �. Given
" > 0, let M" be the mapping torus of f over S1 � [0; "], that is, the surface obtained
by identifying (x; 0) ∼ (f (x); "). Let �(") 2 R/Z be such that M" corresponds to the
elliptic curve C/(Z + i�(")Z). Does �(") converges to � as " ! 0 ?

This question is due to Arnold. One hopes that recent progress on fine properties of
circle diffeomorphisms should lead to a positive solution of it.

10 Topological invariance of the Godbillon–Vey class

The group of circle diffeomorphisms supports a remarkable cohomology class, namely,
the Godbillon–Vey class, which is represented by the cocycle

(f; g) 7!

Z
S1
log(Df )D(logD(g ı f )):
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Notice that, though this formula requires two derivatives, it can be naturally extended to
C 3/2+" diffeomorphisms (just pass half of the derivative from right to left; see Hurder
and Katok [1990] and Tsuboi [1992]). However, no extension to C 1+˛ diffeomorphisms
is possible for ˛ small Tsuboi [1989, 1995].

According to a well-known result of Gelfand and Fuchs, the continuous cohomology of
the whole group ofC1 circle diffeomorphisms is generated by two classes: the Euler class
(which is the single generator in the C 1 setting), and the Godbillon–Vey class. Obviously,
the Godbillon–Vey class induces (by restriction) a class in H 2(G;R) for every group G
of C 3/2+" circle diffeomorphisms. We refer to Ghys [1989] and Hurder [2002] and the
references therein for a panorama on this, including a full discussion on the next open
question.

Question 28. Is the (restriction of the) Godbillon–Vey class invariant under topological
conjugacy for groups of C 2 diffeomorphisms ?

A first result in the positive direction was established by Raby, who proved invariance
under conjugacy byC 1 diffeomorphisms Raby [1988]. Very soon after that, an alternative
proof for this fact was proposed by Ghys and Tsuboi [1988]. Some years later, in Hurder
and Katok [1990]. Hurder and Katok proved invariance under conjugacies that are abso-
lutely continuous (with an absolutely continuous inverse); see Hilsum [2015] for a recent
result in the same direction.

Ghys–Tsuboi’s proof of Raby’s theorem is of a dynamical nature. Indeed, in the most
relevant cases of this framework, what it is proved is that C 1 conjugacies between groups
of C r diffeomorphisms are automatically C r provided r � 2. This applies for instance to
non-Abelian groups whose action is minimal.

It is not hard to extend Ghys–Tsuboi’s theorem to (bi-)Lipschitz conjugacies Navas
[2007, 2011b]. However, absolutely continuous conjugacies are harder to deal with.

Question 29. What are the groups of C 2 circle diffeomorphisms acting minimally for
which the normalizer inside the group of absolutely continuous homeomorphisms coin-
cides with that inside the group of diffeomorphisms ?

11 On groups of real-analytic diffeomorphisms

The real-analytic framework offers new problems of wide interest even in the classical con-
text. In this regard, remind that a celebrated result proved by Yoccoz [1984b] establishes
that every real-analytic circle homeomorphism is minimal provided it has an irrational ro-
tation number, thus extending Denjoy’s theorem to this setting. (The same holds for C1

homeomorphisms with non-flat singularities.) Ghys has asked whether this extends to the
case where singularities may also arise for the inverse of the map.
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Question 30. Does Denjoy’s theorem hold for circle homeomorphisms whose graphs are
real-analytic ?

In a cohomological setting, another question concerns the validity of Geldfand–Fuch’s
theorem in the real-analytic case.

Question 31. Is the continuous cohomology of the groupDiff!+(S1) of orientation-preserving,
real-analytic circle diffeomorphisms generated by the Euler and theGodbillon–Vey classes ?

A negative answer to this question would require the construction of a cocycle that
uses real-analyticity in a crucial way. This would be somehow similar to Mather’s ho-
momorphism defined on the group of C 1 circle diffeomorphisms with derivatives having
bounded variation. Remind that this is defined as

f 7!

Z
S1
[D(logDf )]reg;

where [D(logDf )]reg stands for the regular part of the signed measure obtained as the
derivative (in the sense of distributions) of the (finite total variation) function logDf ;
see Mather [1985]. Such a homomorphism cannot exist in other regularities, because the
corresponding groups of diffeomorphisms are known to be simple Mather [1974, 1975],
except for class C 2 Mather [1984]. By the way, though this is not related to real-analytic
issues, this critical case must appear in any list of selected problems on the subject.

Question 32. Is the group of orientation-preserving C 2 circle diffeomorphisms simple ?

Finally, we would like to focus on finitely-generated subgroups of Diff!+(S1). These
have a tendency to exhibiting a much more rigid behavior than groups of diffeomorphisms.
For example, though Thompson’s groups act byC1 diffeomorphisms, the groupF (hence
T ) does not faithfully act by real-analytic diffeomorphisms. One way to see this is by
looking at solvable subgroups: F contains such groups in arbitrary degree of solvability,
though solvable groups of real-analytic diffeomorphisms of either the interval or the circle
are matabelian Ghys [1993]. (See however Navas [2004a] for algebraic constraints that
apply to solvable groups of C 2 diffeomorphisms.)

Quite surprisingly, many algebraic issues that are known to hold or not to hold in the
setting of C1 diffeomorphisms are open in the real-analytic setting. For instance, it is
unknownwhether irrational rotations are distorted elements in Diff!+(S1). Amore striking
open question concerns the famous Tits alternative.

Question 33. Does the Tits alternative hold in Diff!+(S1) ? More precisely, does every
non-metabelian subgroup of this group contain a free subgroup ?
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We refer to Farb and Shalen [2002] for a partial result that reduces the general case to
that of the interval. Notice that F provides a negative answer to this question for groups
ofC1 diffeomorphisms because of the aforementioned Ghys–Sergiescu’sC1 realization
and Brin–Squier’s theorem.

Added in proof: Question 13 has been recently solved by Kim and Koberda [2017]. I
wish to thank Bassam Fayad and Sang-Hyun Kim for their remarks and corrections to an
earlier version of this text.
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ROBUST DYNAMICS, INVARIANT STRUCTURES AND
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Abstract
This text is about geometric structures imposed by robust dynamical behaviour.

We explain recent results towards the classification of partially hyperbolic systems in
dimension 3 using the theory of foliations and its interaction with topology. We also
present recent examples which introduce a challenge in the classification program
and we propose some steps to continue this classification. Finally, we give some
suggestions on what to do after classification is achieved.

1 Introduction

A major goal of dynamics is to be able to predict long term behaviour of a system via the
knowledge of the rules that govern the way it is transformed. In this context, whatever
can be said a priori of a system is relevant. It is important to search for conditions that can
be detected by observing the system evolve in a finite amount of time that will result in
consequences on the asymptotic behaviour of it. A beautiful example of this interaction
is Shub’s entropy conjecture (see e.g. Shub [2006]) which states that the knowledge of
how a manifold wraps around itself (action in homology, detectable in just one iterate) is
enough to find lower bounds on the complexity (entropy) of the system.

The unifying theme of this paper is the dynamical implications of invariant geometric
structures and the interaction of the latter with topological and geometric structures on
the phase space of the dynamical system. Hyperbolicity has been quite successful in the
following sense1:

• it is possible (via cone-fields) to detect if a system is hyperbolic (with given con-
stants) using only finitely many iterates,

The author was partially supported by CSIC group 618.
MSC2010: primary 37D30; secondary 37C20, 57R30.
Keywords: Differentiable dynamics, Partial hyperbolicity, foliations, topology of 3-manifolds.
1We refer the reader to Bowen [1975], Katok and Hasselblatt [1995], Shub [1987], and Franks [1982] for a

more complete mathematical and historical account of hyperbolic theory.

2081

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v3-p


2082 RAFAEL POTRIE

• hyperbolicity is strongly tied with robust dynamical behaviour, namely, structural
stability. (Hyperbolic maps are well known to be structurally (or Ω-)stable and the
converse direction is also known to hold in the C 1-topology.) This says that one
may expect hyperbolicity when the dynamical system, up to change of coordinates,
is stable under small perturbations,

• it is possible to obtain very precise dynamical information of hyperbolic systems
from the topological, symbolic and ergodic points of view,

• for globally hyperbolic systems (Anosov systems) and hyperbolic attractors there is
a strong (yet incomplete) classification theory from the topological point of view.

As hyperbolic systems fail to describe all systems one is lead to encounter, it is natural to
see what of this theory can extend to some weaker settings and weakenings of the notion
of hyperbolicity have appeared in many different ways in the literature since the early
70’s. The most ubiquitous generalisations of hyperbolicity are the notions of non-uniform
hyperbolicty and partial hyperbolicity.

The first notion is a relaxation from the point of view of uniformity which forbids to
detect this structure with information of finitely many iterates (though there are many im-
portant results that detect this property with positive probability in parametric families
of dynamics). Non-uniform hyperbolicity is a property of certain invariant measures and
provides very strong implications on the dynamics (see e.g. Sarig [2013] and references
therein). Even in the case of non-uniform hyperbolicity of ‘large measures’ (such as vol-
ume), this structure does not impose topological restrictions on the manifolds that admit
it Dolgopyat and Pesin [2002]. Let us remark that in the case of surfaces, there are some
soft ways (Ruelle inequality) to detect non-uniform hyperbolicity of certain measures and
this allows very strong description of dynamics of smooth diffeomorphisms of surfaces
(see e.g. the recent Buzzi, Crovisier, and Sarig [n.d.]).

Partial hyperbolicity, the main object of this article, has some advantages over non-
uniform hyperbolicity, though the study of its dynamics is far from being so developed2.
A diffeomorphism f : M ! M is said to admit a dominated splitting if it admits a Df -
invariant continuous splitting TM = E1 ˚ : : : ˚ E` with 2 � ` � dimM into non-trivial
subbundles and such that there exists N > 0 so that for any x 2 M and unit vectors
vi 2 Ei (x), vj 2 Ej (x) with i < j one has that:

kDf N vi k < kDf N vj k:

2There is an exception though, which is the case of surfaces where there is a quite complete understanding of
the dynamics implied by a dominated splitting Pujals and M. Sambarino [2009] (see also Gourmelon and Potrie
[n.d.]).
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This condition can be detected via cone-fields (and therefore, given the strength, N , by
knowing finitely many iterates of f , see e.g. Bonatti, Dı́az, and Viana [2005, Appendix
B] or Crovisier and Potrie [2015, Chapter 2]). It is easy to see that in some contexts, this
structure already imposes constraints on the topology of manifolds that can admit such
diffeomorphisms (e.g. in surfaces, the Euler characteristic must vanish).

A continuous Df -invariant bundle E is said to be uniformly contracted (resp. uni-
formly expanded) if there exists N > 0 so that for every unit vector v 2 E one has that:

kDf N vk < 1 (resp. kDf �N vk < 1 ).

If a diffeomorphism f : M ! M admits a dominated splitting of the form TM =

E1 ˚ E2 ˚ E3 (where E2 may be trivial) one says that:

• f is Anosov if E1 is uniformly contracted, E2 = f0g and E3 is uniformly expanded,

• f is strongly partially hyperbolic if both E1 is uniformly contracted and E3 is uni-
formly expanded.

• f is partially hyperbolic if either E1 is uniformly contracted or E3 is uniformly
expanded,

We typically put all the uniformly contracting bundles together and denote the resulting
bundle as Es (and symmetrically we denote Eu to the sum of all uniformly expanded
subbundles). The rest of the bundles are typically called center bundles and it is their
existence that makes this structure, on the one hand more flexible and ubiquituous, and on
the other, harder to understand.

As already explained, the study of Anosov systems from a topological point of view
is still incomplete, still some remarkable progress has been achieved, notably through the
work of Franks, Manning and Newhouse (see Hammerlindl and Potrie [2018, Section 3]
for a fast account with references). Anosov flows have received lot of attention, but even
in dimension 3 their classification is still far from complete (see e.g. the introductions of
Barbot and Fenley [2015b] and Beguin, Bonatti, and Yu [2016]). It may seem hopeless to
try to attack a classification of partially hyperbolic systems, even in dimension 3.

Pujals has proposed to try to classify strongly partially hyperbolic systems by com-
paring them with Anosov systems. This would yield relevant information in the quest
to understand its dynamics even if the understanding of Anosov systems is incomplete.
Later we will try to expand on this. The proposal was undertaken in the pioneering works
of Bonatti and Wilkinson [2005] and Brin, Burago, and Ivanov [2004] and Burago and
Ivanov [2008] and has spurred several results in the subject (see Carrasco, F. Hertz, J.
Hertz, and Ures [2018] and Hammerlindl and Potrie [2018] for recent surveys).
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The progress in this program has been intense and several unexpected features started
to appear Bonatti, Parwani, and Potrie [2016] and Bonatti, Gogolev, and Potrie [2016]
leading to the recent realisation of new features of strongly partially hyperbolic diffeo-
morphisms in dimension 3 in Bonatti, Gogolev, Hammerlindl, and Potrie [2017]. There is
still lot of work ahead, but several positive results give hope that a more precise program
can be attacked. We will survey these examples as well as the recent positive results in
Barthelmé, Fenley, Frankel, and Potrie [2017] and we refer the reader to Hammerlindl
and Potrie [2018] for a more complete account on the classification of strongly partially
hyperbolic systems in 3-manifolds with solvable fundamental group.

Acknowledgments. I thank the generosity and support of great mathematicians who I ad-
mire: C. Bonatti, E. Pujals, A. Wilkinson and specially S. Crovisier and M. Sambarino. I
was lucky to work with all my collaborators and students, I cannot explicitly acknowledge
all, but I am extremely grateful to each of them, what appears here is full of their contribu-
tions. A. Passeggi and A. Sambarino have shared the way since the very beginning. Nati
and Amalia make it worth it.

2 Robust dynamics

Partially hyperbolic dynamics arose as a natural generalisation of hyperbolicity Hirsch,
Pugh, and Shub [1977] and as a way to deal with some systems arising naturally in other
contexts such as frame flows in negatively curved manifolds Brin and Pesin [1974]. It
also provided examples of structurally stable higher dimensional Lie group actions on
manifolds. In analogy to the hyperbolic setting, these systems were shown to be robust and
enjoy some stability properties, at least in the case where they admit an invariant foliation
tangent to the center direction Berger [2010] and Hirsch, Pugh, and Shub [1977]. Also,
as in the case of hyperbolic systems, the strong bundles always integrate into invariant
foliations. We refer the reader to Bonatti, Dı́az, and Viana [2005] and Crovisier and Potrie
[2015] for recent expositions of these properties.

Structural stabilitywas early conjectured to imply hyperbolicity (Palis and Smale [1970])
and this was famously proven true by R. Mañé (Mañé [1982, 1988]) in the C 1-topology.
The ideas introduced by Mañé involved the use of dominated splittings and have since
allowed to characterise other robust dynamical behaviour.

A system is said to be transitive if it has a dense orbit. In Mañé [1982] it is shown that
a C 1-robustly3 transitive surface diffeomorphism must be Anosov (in particular, the sur-
face must be the torus!). These ideas were shown to extend to obtain (weaker) geometric

3i.e. its C 1 perturbations are transitive.
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structures in a series of works Dı́az, Pujals, and Ures [1999] and Bonatti, Dı́az, and Pujals
[2003].

Theorem 2.1 (Bonatti-Diaz-Pujals-Ures). Let f : M ! M be a robustly transitive
diffeomorphism. Then, f is volume hyperbolic4. In particular, for M a 3-dimensional
manifold, f is partially hyperbolic.

Parallel to the theory of robust transitivity, another theory deeply related to partial hy-
perbolicity was developed; it is the theory of stable ergodicity, we refer the reader to
Wilkinson [2010] for a survey of this theory. The analog of the above theorem also exists:
if a diffeomorphism is stably ergodic in dimension 3, then it is partially hyperbolic Bochi,
Fayad, and Pujals [2006]. These results are sharp, see the examples in Bonatti and Dı́az
[1996] and Bonatti and Viana [2000].

Theorem 2.1 imposes some restrictions on manifolds admitting robustly transitive (or
stably ergodic) diffeomorphisms; e.g. it is known that even-dimensional spheres cannot
admit a pair of transverse continuous sub-bundles (see e.g. footnote 1 in Avila and Bochi
[2012]) and othermanifoldsmay also have such obstructions. However, these obstructions
are far from being as sharp as in the case of surfaces. For instance, the following is still
an open problem:

Question 1. Is there a 3-manifold which does not admit robustly transitive (or stably er-
godic) diffeomorphisms? Does the sphere S3 admit robustly transitive (or stably ergodic)
diffeomorphisms? Are there robustly transitive diffeomorphisms of T 3 homotopic to the
identity?

This seems to be a difficult question. It was shown that the 3-sphere cannot admit
strongly partially hyperbolic systems Burago and Ivanov [2008]. For endomorphisms in
dimension 2 (which can be seen as a toy model for Question 1) a complete description of
topological obstructions for robust transitivity was recently obtained Lizana and Ranter
[2017]. In higher dimensions, even obstructions to the existence of Anosov diffeomor-
phisms are far from well understood (see Gogolev and Lafont [2016]).

The ultimate goal would be to provide a topological classification of partially hyper-
bolic systems which would allow to understand finer dynamical properties that they poses
and in that way deduce that if a system has some robust property then its dynamics can be
precisely understood.

4This is a weaker notion than partial hyperbolicity. It requires both extremal bundles to verify that the dif-
ferential uniformly expands/contracts the volume in the bundle, see e.g. Crovisier and Potrie [2015] for this and
more definitions. When the bundle is one-dimensional this implies that the bundle is uniformly expanded or
contracted.
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3 Examples

To the present, we know of the following mechanisms to construct examples (we refer the
reader to Crovisier and Potrie [2015, Section 3] for a rather large list of examples)

• Algebraic and geometric constructions. Including linear automorphism of tori and
nilmanifolds and geodesic and frame flows on negative curvature.

• Skew-products.

• Examples arising from h-transversalities, including Mañé type examples (Mañé
[1978]) and small C 1-perturbations of partially hyperbolic systems.

• Surgery constructions.

None of the four mechanisms is completely understood. Algebraic examples are not
even completely understood for the construction of Anosov diffeomorphisms and for ge-
ometric examples it is not completely clear which manifolds admit metrics of negative
curvature.

Skew products where the base is more hyperbolic than the fiber can be said to be well
understood, but when they work the other way around (the expansion and contraction is
seen in the fibers), this is just starting to be studied and several exciting examples are
starting to appear (see F. Hertz, J. Hertz, and Ures [2016], Farrell and Gogolev [2016],
and Gogolev, Ontaneda, and F. Hertz [2015]).

The concept of h-transversality was just recently introduced Bonatti, Gogolev, Ham-
merlindl, and Potrie [2017] though it appeared implicitly in several examples.

Surgery constructions are only partly understood for Anosov flows (see Franks and
Williams [1980], Handel and Thurston [1980], Goodman [1983], Fried [1983], Fenley
[1994], and Béguin, Bonatti, and Yu [2017]). For partially hyperbolic diffeomorphisms,
this kind of construction is in its infancy Gogolev [2018] and Bonatti and Wilkinson
[2005].

Question 2. Are there other ways to construct examples?

In the rest of this section we extend a bit on the last two kind of examples.

3.1 h-Transversalities. An h-transversality between two partially hyperbolic diffeo-
morphisms f; g : M ! M is a diffeomorphism h : M ! M which verifies that Dh(Eu

f
)

is transverse to Es
g ˚ Ec

g and Dh�1(Es
g) is transverse to Ec

f
˚ Eu

f
.

The key property of this condition is that if f is h-transverse to itself, then f n ı h will
be partially hyperbolic for large n (see Bonatti, Gogolev, Hammerlindl, and Potrie [2017,
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Section 2]) so it provides a nice way to construct new examples once one gets enough
control on the bundles of a partially hyperbolic diffeomorphism.

Using some detailed study of these bundles for certain Anosov flows (see Bonatti, Par-
wani, and Potrie [2016], Bonatti, Gogolev, and Potrie [2016], and Bonatti and Zhang
[2017]) in Bonatti, Gogolev, Hammerlindl, and Potrie [2017] we were able to construct a
large family of new partially hyperbolic examples. Several questions remain (see in par-
ticular Bonatti, Gogolev, Hammerlindl, and Potrie [ibid., Section 1.4]) but we emphasise
on some that involve the h-transversality itself:

Question 3. Describe the set of h-transversalities from an Anosov flow to itself. In par-
ticular, is it possible to construct h-transversalities from an Anosov flow to itself so that
h is isotopic to identity but not through h-transversalities?

If the last question admits a positive answer one could hope to construct partially hy-
perbolic diffeomorphisms isotopic to identity behaving very differently from an Anosov
flows (see the discussion after Theorem 5.7 and Barthelmé, Fenley, Frankel, and Potrie
[2017]).

Also, one can wonder if this notion may help creating new examples in higher dimen-
sions, this is completely unexplored territory.

3.2 Surgeries. A conjecture attributed to Ghys (see Dehornoy [2013]) asserts that every
transitive Anosov flow can be obtained (up to topological equivalence) from a given one
by performing a finite number of simple operations that consist essentially on making
finite lifts or quotients and surgeries (of Fried’s type Fried [1983]).

We can propose a very vague question in the setting of partially hyperbolic diffeomor-
phisms:

Question 4. If one add operations such as h-transversalities and some new type of surg-
eries to partially hyperbolic diffeomorphisms5, can one obtain a classification up to this
equivalence?

In particular, let us mention that we see all skew-products in dimension 3 as equivalent
(the surgery is well explained in Bonatti and Wilkinson [2005, Proposition 4.2]). Also,
the product of an Anosov in T 2 and the identity in the circle can be easily ‘surgered’ to
obtain the time one map of a suspension Anosov flow. On the other hand, we believe that
partially hyperbolic diffeomorphisms of DA-type should not be in the same equivalence
class as skew products (see Potrie [2015b] for evidence even if the question is not well
posed).

5One should also change topological equivalence by some ‘conjugacy modulo centers’ which should be
weaker than leaf conjugacy to allow non-dynamical coherence, see also Question 12.
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4 Partial hyperbolicity in other contexts

Here we give a small glimpse of other contexts on which one encounters partially hyper-
bolic dynamics. The choice of topics is certainly biased by the author’s interests.

4.1 Dynamics far from tangencies. We refer the reader to Crovisier and Potrie [2015]
for a more complete account on the relations between partial hyperbolicity and dynamics
far from homoclinic tangencies and Crovisier [2014] for a survey on its recent progress.
We wish to emphasise the following point though: homoclinic tangencies are a semilocal
phenomena, so the partial hyperbolicity obtained by being far from homoclinic tangencies
only holds on the chain-recurrent set. In this setting, it makes sense to work and try to
analyse the classes independently and so many global arguments (i.e. that depend on the
topology of the manifold, or the isotopy class of the diffeomorphism) are lost.

Probably the main remaining open question in this setting is the following:

Conjecture 1 (Bonatti [2011]). Generic diffeomorphisms far from homoclinic tangencies
have finitely many chain-recurrence classes.

See Pujals and M. Sambarino [2000], Crovisier, M. Sambarino, and D. Yang [2015],
Croviser, Pujals, and M. Sambarino [n.d.], and Crovisier [2013] for some progress in this
direction. A natural object of study thatmay combinewell global and geometric arguments
with the semi-local ones is the study of attractors, see Crovisier and Pujals [2015] and
Crovisier, Potrie, and M. Sambarino [2017].

4.2 Skew-products. Skew products appear everywhere, as iterated function systems,
as so called fast-slow dynamics or even as random perturbations of dynamics. The idea
is to couple some dynamics with a random, or chaotic behaviour in the base which typi-
cally can be modelled by a hyperbolic system. This way, one naturally obtains a partially
hyperbolic system (when the coupling is ‘more random’ that the dynamics on the fibres).

This point of view appears several places in the literature, for example in the notion of
fiber bunching introduced in Bonatti, Gómez-Mont, and Viana [2003] by extending ideas
of Ledrappier [1986] (see also Avila and Viana [2010]). Fiber bunching allows one to see
the fibered dynamics as a partially hyperbolic system and construct invariant holonomies
which are essentially lifts of strong stable and unstable manifolds to the fibered dynamics.

We have used this idea to give a somewhat different approach to the study of the Livšic
problem for non-conmutative groups Kocsard and Potrie [2016] (see Kalinin [2011] and
references therein for an introduction to the problem). This was later used also in recent
results such as Hurtado [2016] and Avila, Kocsard, and Liu [2017].
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4.3 Discrete subgroups of Lie groups. We refer the reader to Benoist [1997], Bridge-
man, Canary, Labourie, and A. Sambarino [2015], and Guéritaud, Guichard, Kassel, and
Wienhard [2017] and reference therein for a more detailed presentation of the subject. We
just mention here that in Bochi, Potrie, and A. Sambarino [2017] we re-interpreted an in-
teresting family of representations of certain groups into Lie groups, known as Anosov rep-
resentations and introduced by Labourie (and later extended to general word-hyperbolic
groups by Guichard and Wienhard) in terms of dominated splitting and partial hyperbol-
icity. We refer the reader to Bochi, Potrie, and A. Sambarino [ibid.] but we pose here the
following question which we believe to be in the same spirit as Theorem 2.1:

Question 5. Let Γ be a word hyperbolic group, G a semisimple Lie group and � : Γ ! G

a representations which is robustly6 faithful and discrete. Is it Anosov for some parabolic
of G? The same question makes sense if one demands � to be robustly quasi-isometric
and G of real rank � 2.

The question is open even for robustly quasi-isometric representations of the free group
in two generators into SL(3; R). This specific question can be posed in the language of
linear cocycles as follows:

Question 6. Let A0; B0 2 SL(3; R) be two matrices such that for every A; B close to
A0; B0 one has that the linear cocycle over the subshift of fA; B; A�1; B�1gZ which does
not allow products AA�1, A�1A, BB�1, B�1B verifies that it has positive Lyapunov ex-
ponents for every invariant measure. Does this linear cocycle admit a partially hyperbolic
splitting?

As in the case of Theorem 2.1 this question can be divided in two: show that periodic
orbits are uniformly hyperbolic at the period, and show that this is enough to obtain a
dominated splitting. The second part is Bochi, Potrie, and A. Sambarino [ibid., Question
4.10] and we were recently able to solve it Kassel and Potrie [n.d.].

5 Strong partial hyperbolicity in 3-manifolds

In this section we will be concerned with diffeomorphisms f : M ! M where M is a
3-dimensional closed manifold and f is a (strongly) partially hyperbolic diffeomorphism
admitting an invariant splitting of the form TM = Es ˚ Ec ˚ Eu into one-dimensional
bundles. For some of the progress in higher dimensionswe refer the reader toHammerlindl
and Potrie [2018, Section 14].

The topological study of these systems can be divided intro three main problems:

• to find topological obstructions for M to admit such diffeomorphisms,
6The topology in the space of representations is given by pointwise convergence.
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• to study the integrability of the center bundle,

• to classify these systems up to what happens in the center direction.

We present in this section the state of the art in these problems. It is relevant to remark
that in dimension 3 there is a quite advanced knowledge on the topology of closed mani-
folds (see e.g.Hatcher [n.d.]) and its interactions with geometry and foliations (we refer the
reader to Calegari [2007] for a nice account). This allows to pursue a one-by-one method-
ology to deal with classes of manifolds with increasing complexity. In higher dimensions,
different approaches need to be explored and one possibility is to start by making assump-
tions on the center foliations (in the spirit of Bonatti and Wilkinson [2005]) to work from
there instead of studying specific classes of manifolds.

5.1 Topological obstructions. In this section we are interested with the following:

Question 7. Which 3-manifolds support partially hyperbolic diffeomorphisms? If M ad-
mits a partially hyperbolic diffeomorphism, which isotopy classes of diffeomorphisms of
M admit partially hyperbolic representatives?

This question has a complete answer for 3-manifolds whose fundamental group has
subexponential growth. In Burago and Ivanov [2008] it is shown that if the fundamental
group ofM is abelian, then the action on the homology ofM has to be partially hyperbolic
(in Potrie [2015a, Appendix A] it is shown that it has to be strongly partially hyperbolic).
This in particular gives that manifolds such as S3 or S2 � S1 do not support partially
hyperbolic diffeomorphisms. This was extended in Parwani [2010] to manifolds with
subexponential growth of fundamental group obtaining a similar result. By now, we have
a complete classification of partially hyperbolic diffeomorphisms in 3-manifolds with (vir-
tually) solvable fundamental group (see Hammerlindl and Potrie [2014, 2015, 2018]) and
we know exactly which isotopy classes admit partially hyperbolic representatives.

On the other hand, in all generality, we do not even know which manifolds admit
Anosov flows. For example, the following question is open 7:

Question 8. Does every hyperbolic 3-manifoldM admit a finite lift supporting an Anosov
flow?

However, one can pose the following question in the spirit of Pujals’ conjecture:

7The classification of Anosov flows is completely open in hyperbolic 3-manifolds; when the manifold is
toroidal there has been important recent progress towards classification Barbot and Fenley [2013, 2015a,b],
Béguin, Bonatti, and Yu [2017], and Beguin, Bonatti, and Yu [2016].
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Question 9. If a 3-manifold M with exponential growth of fundamental group admits
a (transitive) strongly partially hyperbolic diffeomorphism, does it also (after finite lift)
admit a (topological)8 Anosov flow?

This question is still very far from being understood, but substantial progress has been
made in the case where one assumes that f is homotopic to identity. I expect the answer
to be yes at least in that case.

When M is Seifert then the answer to Question 9 is affirmative (see Hammerlindl,
Potrie, and Shannon [2017]). On the other hand, even in Seifert manifolds, recent exam-
ples Bonatti, Gogolev, and Potrie [2016] and Bonatti, Gogolev, Hammerlindl, and Potrie
[2017] show that several isotopy classes can be produced, but also one can find some
obstructions (see Bonatti, Gogolev, Hammerlindl, and Potrie [2017, Section 3.1]).

When M is toroidal and admits Anosov flows transverse to some tori, also several
classes of examples can be constructed, and the question of which isotopy classes admit
partially hyperbolic representatives is quite open (see Bonatti, Parwani, and Potrie [2016],
Bonatti, Gogolev, and Potrie [2016], Bonatti and Zhang [2017], and Bonatti, Gogolev,
Hammerlindl, and Potrie [2017]).

5.2 Integrability. The stable and unstable bundles of f are known to be (uniquely)
integrable into f -invariant foliations Ws and Wu. This is for dynamical reasons (see
Hirsch, Pugh, and Shub [1977] and Hammerlindl and Potrie [2018]).

However, the lack of regularity of Ec (it is just Hölder continuous) and the fact that
its dynamics is neither contracting or repelling makes its integrability a particular feature.
Now, we know several examples whereEc does not integrate into an f -invariant foliation.
See F. Hertz, J. Hertz, and Ures [2016] and Bonatti, Gogolev, Hammerlindl, and Potrie
[2017].

Rather than asking for integrability of Ec into an invariant foliation, one typically ask
whether f is dynamically coherent meaning that both Ecs = Es ˚ Ec and Ecu = Ec ˚

Eu integrate into f -invariant foliationsWcs andWcu. This implies the existence of an f -
invariant foliation Wc . This definition involves several subtleties (it is unknown whether
the existence of a f -invariant center foliation implies dynamical coherence, see Burns and
Wilkinson [2008] for discussions on this definition).

A fundamental result was proved by Burago and Ivanov [2008] providing the exis-
tence of branching foliations (a technical object, see Figure 1) for every strong partially
hyperbolic diffeomorphism in 3-manifolds. To many effects, these objects (see also Ham-
merlindl and Potrie [2018, Chapter 4]) replace dynamical coherence quite well and allow

8We remark that topological Anosov flows are conjectured to be orbit equivalent to true Anosov flows (Bon-
atti and Wilkinson [2005]).
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one to search for classification results. However, it makes sense to ask when do partially
hyperbolic diffeomorphisms are dynamically coherent.

Figure 1: Leaves of a branching foliation may merge.

We first review some results in this setting:

Theorem 5.1 (Brin, Burago, and Ivanov [2009], F. Hertz, J. Hertz, and Ures [2016], and
Potrie [2015a]). Let f : T 3 ! T 3 be a strong partially hyperbolic diffeomorphism.
Then, unless there is a torus tangent to Ecs or Ecu the diffeomorphism f is dynamically
coherent.

This result is proved by obtaining a precise analysis of the structure of the branching
foliations provided byBurago and Ivanov [2008] and use this structure to show that branch-
ing is not possible (and therefore the branching foliations are indeed foliations). We would
like to emphasise that part of the results obtained in Potrie [2015a] hold for general (not
necessarily strong) partially hyperbolic diffeomorphisms through the notion of almost dy-
namical coherence, an open and closed property, which has been also exploited in Fisher,
Potrie, and M. Sambarino [2014] and Roldán [2016].

The same ideas have been pushed into several new contexts by careful combination of
topological analysis of the manifolds in hand, comparison to some ‘model’ example and
giving some structure to the branching foliations. For instance, with A. Hammerlindl, we
were able to show the following results:

Theorem 5.2 (Hammerlindl and Potrie [2014]). If N is a non-toral nilmanifold and f :

N ! N is partially hyperbolic, then f is dynamically coherent.

Theorem 5.3 (Hammerlindl and Potrie [2015]). If M is a 3-manifold with (virtually) solv-
able fundamental group and f : M ! M is partially hyperbolic, then, unless there is a
torus tangent Ecs or Ecu the diffeomorphism f is dynamically coherent.
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These results respond affirmatively to a conjecture by Hertz-Hertz-Ures in such mani-
folds (see F. Hertz, J. Hertz, and Ures [2016] and Carrasco, F. Hertz, J. Hertz, and Ures
[2018]). This conjecture has been disproved recently in Bonatti, Gogolev, Hammerlindl,
and Potrie [2017] but there are still some cases where it can be studied:

Theorem 5.4 (Barthelmé, Fenley, Frankel, and Potrie [2017]). Let f : M ! M be a
strong partially hyperbolic diffeomorphism of a Seifert manifold M such that f is homo-
topic to identity. Then, f is dynamically coherent.

Seifert manifolds which admit transitive partially hyperbolic diffeomorphisms are, up
to finite cover, nilmanifolds or unit tangent bundles of higher genus surfaces (see Hammer-
lindl, Potrie, and Shannon [2017]). In the case of unit tangent bundles of higher genus sur-
faces, we have constructed in Bonatti, Gogolev, Hammerlindl, and Potrie [2017] examples
which are not dynamically coherent. The configuration responsible for this incoherence
is of global nature (see Figure 2), so it seems natural to ask:

Figure 2: The global index in certain periodic cs-leaves is negative. Unless c-curves
merge, there cannot be cancelation so this forces non-dynamical coherence.
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Question 10. For a higher genus surface S , if f : T 1S ! T 1S is a strong partially
hyperbolic diffeomorphism which induces9 a pseudo-Anosov mapping class in S then f

does not admit an f -invariant foliation tangent to Ec?.

We expect that the techniques used in Barthelmé, Fenley, Frankel, and Potrie [2017] to
classify partially hyperbolic diffeomorphisms of hyperbolic 3-manifolds with f -invariant
center foliations will allow to provide a positive answer to the previous question.

When the induced action of f on S is a Dehn-twist (c.f. the examples from Bonatti,
Gogolev, and Potrie [2016]) then it seems possible that this will imply that the diffeomor-
phism can be chosen to be dynamically coherent.

Question 11. Is there a connected component of partially hyperbolic diffeomorphisms
containing both dynamically coherent and non-dynamically coherent diffeomorphisms?

This question is related with the celebrated plaque expansivity conjecture (see Hirsch,
Pugh, and Shub [1977] and Berger [2010]) since plaque expansivity ensures stability of
the invariant foliation, and in case a connected component as in the question exists, it
would be natural to check for plaque expansivity in the boundary of dynamically coherent
ones.

5.3 Classification. When f : M ! M is a strong partially hyperbolic diffeomor-
phism which is dynamically coherent, the right notion of classification is given by leaf
conjugacy: f; g : M ! M dynamically coherent strong partially hyperbolic diffeomor-
phisms are said to be leaf conjugate if there exists a homeomorphism h : M ! M so
that h(Wc

f
(f (x))) = Wc

g(g(h(x))). This notion goes back to Hirsch, Pugh, and Shub
[1977] where a ‘local stability result’ was shown and was retaken in the thesis of Hammer-
lindl [2013] to show that some strong partially hyperbolic diffeomorphisms of T 3 are leaf
conjugate to linear automorphisms of tori. (Notice that this notion does not really require
dynamical coherence but the existence of an f -invariant center foliation.)

In this context, we have shown:

Theorem 5.5 (Hammerlindl and Potrie [2014, 2015]). If M is a manifold with (virtually)
solvable fundamental group and f : M ! M is a strong partially hyperbolic diffeo-
morphism with an f -invariant center foliation, then (up to finite lift and iterate) it is leaf
conjugate to an algebraic example.

In Hammerlindl and Potrie [2017] we further classify those f in such manifolds which
do not have an f -invariant center foliation.

9Every diffeomorphism of a Seifert manifold is homotopic to a diffeomorphism preserving the fibers and
therefore it has a well defined action on S up to homotopy.
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In Seifert manifolds, where (topological) Anosov flows are classified (Ghys [1984],
Barbot [1996], and Brunella [1993]) one can classify strong partially hyperbolic diffeo-
morphisms homotopic to identity.

Theorem 5.6 (Barthelmé, Fenley, Frankel, and Potrie [2017]). If f : M ! M is a strong
partially hyperbolic diffeomorphism homotopic to identity in a Seifert manifoldM , then, it
is dynamically coherent and leaf conjugate to (up to finite lifts and quotients) the geodesic
flow on a surface of negative curvature.

We remark that R.Ures has announced a similar result in T 1S which assumes that f

is isotopic to the geodesic flow through a path of partially hyperbolic diffeomorphisms (a
similar condition to the one studied in Fisher, Potrie, and M. Sambarino [2014]).

The results in Barthelmé, Fenley, Frankel, and Potrie [2017] deal with general partially
hyperbolic diffeomorphisms of 3-manifolds which are homotopic to identity. However,
there are some points where the precise knowledge of the topology of the manifold under
study allows us to give much stronger results.

For example, when M is a hyperbolic 3-manifold we use the existence of transverse
pseudo-Anosov flows to uniform foliations (Thurston [1997], Calegari [2000], and Fenley
[2002]) to obtain stronger properties and we deduce the following result (which gives a
positive answer to a classification conjecture from Carrasco, F. Hertz, J. Hertz, and Ures
[2018] for hyperbolic manifolds):

Theorem 5.7 (Barthelmé, Fenley, Frankel, and Potrie [2017]). Let M be a hyperbolic 3-
manifold and f : M ! M a dynamically coherent partially hyperbolic diffeomorphism,
then f is leaf conjugate10 to the time one map of a (topological) Anosov flow.

We make emphasis that this is the first result on classification of partially hyperbolic
diffeomorphisms on manifolds where we do not have a model a priori to compare our
partially hyperbolic diffeomorphism to.

This result should hold changing dynamical coherence by the existence of anf -invariant
foliation tangent to Ec . However, I expect that there will be non-dynamically coherent
examples in hyperbolic 3-manifolds since some arguments in this theorem resemble those
we use in Bonatti, Gogolev, Hammerlindl, and Potrie [2017] to show that certain exam-
ples are not dynamically coherent. These examples would be what we call ‘double trans-
lations’ as they act (in the universal cover11) as translation in both the center-stable and
center-unstable (branching) foliations.

Indeed, one can think about the following analogy: Let f : M ! M be a strong par-
tially hyperbolic diffeomorphism homotopic to the identity on a hyperbolic 3-manifold

10Technically, the time one map of a topological Anosov flow is not a partially hyperbolic diffeomorphism.
But the notion still makes sense.

11Here, we assume that we take a lift at bounded distance from the identity.
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M which is the suspension of a pseudo-Anosov diffeomorphism ' : S ! S . Then, the
fundamental group of M can be written as a semidirect product �1(S) Ì' Z. Moreover,
the lift of f at bounded distance from the identity in M̃ commutes with all deck transfor-
mations and translates the foliations. Then, we get a group Gf which is the direct product
of hf i and �1(M ).

If one looks at the examples of Bonatti, Gogolev, Hammerlindl, and Potrie [2017] one
has that the fundamental group of T 1S enters in a exact sequence 0 ! Z ! �1(T

1S) !

�1(S) ! 0 where the inclusion of Z is the center of the group. A lift g̃ of the diffeo-
morphism g : T 1S ! T 1S constructed in Bonatti, Gogolev, Hammerlindl, and Potrie
[ibid.] (which induces a pseudo-Anosov map in the base) will define a group Gg of diffeo-
morphisms of eT 1S generated by �1(T

1S) and g̃. Here, the role of f̃ in Gf is played by
the center of �1(T

1S) (which translates center stable and center unstable branching leafs)
while g̃ plays the role of the ‘semidirect product’ in the fundamental group of M above.

If such an f existed, the dynamics of these two groups in the ‘circle at infinity’ would
look quite alike. This suggests on the one hand that examples like this may exist in hyper-
bolic manifolds, and on the other hand, that it should be possible to answer Question 10
using similar ideas to the ones appearing in Theorem 5.7.

5.4 More questions. Several questions remain to be explored in the classification of
partially hyperbolic diffeomorphisms in dimension 3. We pose here those we feel are more
relevant or that we think might help address the problem of classification. We restrict to
the case of 3-manifolds M whose fundamental group is not virtually solvable in view of
Theorem 5.5. For simplicity we will assume throughout that everything is orientable (the
manifold, the bundles, and that f preserves all the orientations).

Even if a partially hyperbolic diffeomorphism is not dynamically coherent, the one-
dimensionality of the center direction allows to integrate the center bundle. However,
there may not exist a foliation tangent to it (the strongest integrability that can be ensured
beyond the existence of curves tangent to the center is the existence of branching foliations
Burago and Ivanov [2008]).

In the non-dynamically coherent examples of Bonatti, Gogolev, Hammerlindl, and
Potrie [2017] one sees that the space of center leafs is (naturally) homeomorphic to the
space of orbits of a geodesic flow in negative curvature (see Bonatti, Gogolev, Hammer-
lindl, and Potrie [ibid., Proposition 5.11]) and the dynamics of center leafs is governed by
the action of the mapping class of f in the ‘boundary at infinity’. This could be a general
phenomena:

Question 12. Let f : M ! M be a (transitive) partially hyperbolic diffeomorphism. Is
there (maybe up to finite cover) an Anosov flow �t on M and continuous degree 1 map
h : M ! M sending orbits of � to center leafs of f ?
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This question is proposing a way to classify dynamics as one could expect that the
isotopy class of f will force some dynamics on the center leafs. A related question (maybe
more basic, but probably difficult to approach directly) is:

Question 13. If f : M ! M is a (transitive) partially hyperbolic diffeomorphism, are
all center stable leafs cylinders or planes?

Proving this in the case isotopic to identity is an important step towards the proof of
Theorems 5.6 and 5.7, but as far as I am aware this problem has been never attacked
directly in general (see Zhang [2017] for a positive answer assuming that the dynamics is
neutral in the center direction).

The last two questions are definitely related, but they are independent as there are some
subtleties in the notions of dynamical coherence, leaf conjugacy, etc. For example I do
not know the answer to the following:

Question 14. If the center foliation of f is homeomorphic to the orbit foliation of an
Anosov flow, are all center stable leaves cylinders or planes?

I believe that a reasonable way to attack classification would be to try to understand
center leaves at infinity (to be able to avoid taking care of how they merge) and for this the
tool of universal circles has shown to be quite useful in other contexts (see e.g. Thurston
[1997], Calegari [2007], Fenley [2002], and Frankel [2015]).

6 Dynamical implications

We will ignore in this section the very important subject of conservative partially hyper-
bolic diffeomorphisms. They have been extensively treated in other recent surveys such as
Carrasco, F. Hertz, J. Hertz, and Ures [2018] and Wilkinson [2010] with different points
of view but great detail. We shall focus mostly on the subject of robust transitivity and
finitness or uniqueness of attractors for such systems.

In this direction, one can pose the following question which already appears in Potrie
[2014] (see also Bonatti, Gogolev, Hammerlindl, and Potrie [2017]):

Question 15. Is there an isotopy class of diffeomorphisms of a 3-manifoldM such that ev-
ery strongly partially hyperbolic diffeomorphism in this isotopy class is transitive? Chain-
recurrent?

In several isotopy classes, such as Anosov times identity on T 3 the answer is known
to be negative (see e.g. Bonatti and Guelman [2010] and Shi [2014]) for more surprising
examples). But one can still wonder about uniqueness of attractors, or minimalu-saturated
sets (c.f. Crovisier, Potrie, and M. Sambarino [2017]).
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Several isotopy classes of (strongly) partially hyperbolic diffeomorphisms seem to be
now ready for studying subtler dynamical properties. There has been quite some progress
in this directions, just to mention a few, we refer the reader to Bonatti and Viana [2000],
Buzzi, Fisher, M. Sambarino, and Vásquez [2012], Ures [2012], Climenhaga, Fisher, and
Thompson [2017], and Viana and J. Yang [2017] and references therein for advances in the
DA-case, Viana and J. Yang [2013] and Tahzibi and J. Yang [2016] for the skew-product
case and Saghin and J. Yang [2016] for the case of systems leaf conjugate to time one
maps of Anosov flows. In all cases it makes sense to try to understand how the entropy
behaves12, how many measures of maximal entropy (or equilibrium states) one may have,
physical measures, its statistical properties, its Lyapunov exponents, etc.

I close the paper with a question which I think points towards something we do not
really understand yet, and which is more important than the question itself:

Question 16. Let f : M ! M be in the boundary of robustly transitive diffeomorphisms.
Does there exist a center Lyapunov exponent for the maximal entropy measure of f which
vanishes?

It is natural to attack this question in the context of strongly partially hyperbolic dif-
feomorphisms with one-dimensional center, and it might be that the answer depends on
the class. Still, I hope that in the near future we will understand better the transition
between the interior of transitive diffeomorphisms and those admitting proper attractors
(some progress is in Abdenur, Crovisier, and Potrie [n.d.], see also Crovisier and Potrie
[2015, Section 5]).
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Abstract

We survey some results on non-uniform hyperbolicity, geometric pressure and
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sets for geometric coding trees for rational functions on the Riemann sphere. We dis-
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1 Thermodynamic formalism, introductory notions

Among founders of this theory are Sinaĭ [1972], Bowen [1975] and David Ruelle, who
wrote in Ruelle [1978]: “thermodynamic formalism has been developed since G.W. Gibbs
to describe [...] physical systems consisting of a large number of subunits”. In particular
one considers a configuration space Ω of functions Zn ! A on the lattice Zn with inter-
acting values in A over its sites, e.g. “spin” values in the Ising model of ferromagnetism.
One considers probability distributions on Ω, invariant under translation, called equilib-
rium states for potential functions on Ω.

Given a mapping f : X ! X one considers as a configuration space the set of trajec-
tories n 7! (f n(x))n2Z+

or n 7! Φ(f n(x))n2Z+
for a test function Φ : X ! Y .

The following simple fact Bowen [1975, Lemma 1.1] and Ruelle [1978, Introduction],
Przytycki and Urbański [2010, Introduction], resulting from Jensen’s inequality applied
to the function logarithm, stands at the heart of thermodynamic formalism.

Lemma 1.1 (Finite Variational Principle). For given real numbers �1; : : : ; �d , the func-
tion F (p1; : : : pd ) :=

Pn
i=1 �pi logpi +

Pd
i=1 pi�i defined on the simplex

f(p1; : : : ; pd ) : pi � 0;
Pd

i=1 pi = 1g attains its maximum value P (�1; : : : ; �d ) =

log
Pd

i=1 e
�i at and only at bpj = e�j

�Pd
i=1 e

�i
��1

:

We can read i 7! �i ; i = 1; : : : ; d as a potential function and bpi as the equilibrium
probability distribution on the finite space f1; : : : ; dg. P (�1; : : : ; �d ) is called the pres-
sure or free energy, see Ruelle [1978].

Let f : X ! X be a continuous mapping of a compact metric spaceX and � : X ! R
be a continuous function (the potential). We define the topological pressure or free energy
by

Definition 1.2.

(1-1) Pvar(f; �) = sup
�2M(f )

�
h�(f ) +

Z
X

� d�

�
;

where M(f ) is the set of all f -invariant Borel probability measures on X and h�(f ) is
measure theoretical entropy. Sometimes we writeM(f;X).
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Recall that h�(f ) = supA limn!1
1

n+1

P
A2An ��(A) log�(A), where the supre-

mum is taken over finite partitions A of X , where An :=
W

j=0;:::;n f
�j A. Notice that

this resembles the sum
Pn

i=1 �pi logpi in Lemma 1.1.
Topological pressure can also be defined in other ways, e.g. by (6-2), and then its equal-

ity to the one given by (1-1) is called the variational principle. This explains the notation
Pvar. Any � 2 M(f ) for which the supremum in (1-1) is attained is called equilibrium,
equilibrium measure or equilibrium state.

A model case is any map f : U ! Rn of class C 1, defined on a neighbourhood U
of a compact set X � Rn, expanding (another name: uniformly expanding or hyperbolic
in dimension 1) that is there exist C > 0; � > 1 such that for all positive integers n all
x 2 X and all v tangent to Rn at x,

(1-2) jjDf n(v)jj � C�n
jjvjj;

and repelling that is every forward trajectory sufficiently close to X must be entirely in
X . Not assuming the differentiability of f one uses the notion of distance expanding
meaning the increase of distances under the action of f by a factor at least � > 1 for pairs
of distinct points sufficiently close to each other. Repelling happens to be equivalent to
the internal condition: f jX being an open map, provided f is open on a neighbourhood
ofX , see Przytycki and Urbański [2010, Lemma 6.1.2]. Then the classical theorem holds,
here in the version from Przytycki and Urbański [ibid., Section 5.1]:

Theorem 1.3. Let f : X ! X be a distance expanding, topologically transitive contin-
uous open map of a compact metric space X and � : X ! R be a Hölder continuous
potential. Then, there exists exactly one measure �� 2 M(f;X), called the Gibbs mea-
sure, satisfying

(1-3) C <
��(f

�n
x (B(f n(x); r0))

exp(Sn�(x) � nP (�))
< C�1

where f �n
x is the branch of f �n mapping f n(x) to x (locally making sense, since f is a

local homeomorphism) and Sn�(x) :=
Pn�1

j=0 �(f
j (x)).

The measure �� is the only equilibrium state for �. It is equivalent to the unique �-
conformal measure m� , that is a forward quasi-invariant Borel probability measure m�

with Jacobian exp�(� � P (�)). Moreover, the limit P (�) = P (f; �) :=

limn!1
1
n
log

P
x2f �n(x0)

expSn�(x) exists and is equal to Pvar(f; �) for every x 2 X .

This P (�) is a normalizing quantity corresponding to P (�1; : : : ; �d ) in Lemma 1.1
and the sum in the definition of P (�) corresponds to the so called statistical sum over
the space Ωn of all admissible configurations over f0; 1; : : : ; n� 1g, as in the Ising model.
Compare to the tree pressure defined in Definition 6.2.
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So & : Σd ! Σd , the shift to the left on the space Σd = f(˛0; ˛1; : : : ) : ˛j 2

f1; : : : ; dgg, defined by &((˛n)) = (˛n+1), is an example where Theorem 1.3 holds. The
sets f �n

x (B(f n(x); r0) correspond to cylinders of fixed f˛j 2 f1; : : : ; dg; j = 0; : : : ; n�

1g. One can impose an admissibility condition: ˛i˛i+1 admissible if the pair has the digit 1
attributed in a defining 0,1 d�d matrix. Then one calls the system a one-sided topological
Markov chain.

The condition of openness of f can be replaced by a weaker one: the existence of a
finite Markov partition, see Przytycki and Urbański [2010].

The existence of a conformal measure follows from the existence of a fixed point in
the convex weakly*-compact set of probability measures for the dual operator to the trans-
fer (Perron-Frobenius-Ruelle) operator L divided by the norm, where for u : X ! R
continuous one defines

(1-4) L(u)(x) :=
X

y2f �1(x)

u(y) exp�(y):

Indeed, for every Borel set Y � X on which f is injective, denoting by IY indicator
function: 1 on Y , 0 outside Y , due to an approximation by continuous functions, one has
for every finite Borel measure � on X

(1-5) (L�(�))(Y )) =

Z
X

L(IY ) d� =

Z
f (Y )

exp� ı f j
�1
Y d�:

Hence the (positive) eigen-measurem� has Jacobian for (f jY )
�1 equal to exp(�ıf j�1

Y )/�,
hence f has Jacobian exp(��) multiplied by an eigenvalue � := expP (�).

The proof of the existence of an invariant Gibbs measure equivalent to m� is harder.
One first proves the existence of a positive eigenfunction u� for L and then defines �� =

u�m� . For a more complete introduction to this theory, see e.g. Przytycki and Urbański
[ibid.].

2 Introduction to dimension 1

Thermodynamic formalism is useful for studying properties of the underlying space X .
In dimension 1, for f real of class C 1+" or f holomorphic, for an expanding repeller X ,
considering � = �t := �t log jf 0j for t 2 R, (1-3) gives

��t
(f �n

x (B(f n(x); r0))) � exp(Sn�(x) � nP (�t )) �(2-1)
diamf �n

x (B(f n(x); r0))
t exp�nP (�t ):
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The latter follows from a comparison of the diameter with the inverse of the absolute value
of the derivative of f n at x, due to bounded distortion. Here, the symbol “�” denotes
that the mutual ratios are bounded by a constant.

When t = t0 is a zero of the function t 7! P (�t ), this gives

(2-2) ��t0
(B) � (diamB)t0

for all small balls B (the t0-Ahlfors measure property). We obtain the so-called Bowen’s
formula for Hausdorff dimension:

(2-3) HD(X) = t0:

Moreover, the Hausdorff measure of X in this dimension is finite and nonzero.
A model example of application is the proof of

Theorem 2.1. For fc(z) := z2 + c for an arbitrary complex number c 6= 0 sufficiently
close to 0, the invariant Jordan curve J (Julia set for fc) is a fractal, i.e. has Hausdorff
dimension bigger than 1.

Sketch of Proof. t0 > 1 yields HD(J ) = t0 > 1 by (2-2) (one does not need to use the
invariance of ��t0

).
The case t0 = 1 yields by (2-2) finite Hausdorff measure in dimension 1, i.e. the rec-

tifiability of J . To conclude that J is a circle and c = 0, one can use ergodic invariant
measures in the classes of harmonic ones on J from inside and outside. They must co-
incide. This relies on Birkhoff’s Ergodic Theorem, the heart of ergodic theory. This is
an “echo” of the celebrated Mostov Rigidity Theorem. See Sullivan [1982] and Przytycki
and Urbański [2010, Theorem 9.5.5].

In dimension 1 (real or complex), we call c a critical point if the derivative f 0(c) = 0.
The set of critical points will be denoted by Crit(f ).

In this survey, we allow for the presence of critical points and concentrate mainly on
two cases:

1. (Complex case) f is a rational mapping of degree at least 2 of the Riemann sphere
C. We consider f acting on its Julia set K = J (f ).

For entire ormeromorphicmaps see e.g. Barański, Karpińska, and Zdunik [2009, 2012],
compare Proposition 5.2.

2. (Real case) f is a generalized multimodal map defined on a neighbourhoodUK � R
of its compact invariant subsetK. We assume that f 2 C 2, is non-flat at all of its turning
and inflection critical points, satisfies the bounded distortion property for iterates, abbr.
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BD, see Przytycki and Rivera-Letelier [2014], is topologically transitive and has positive
topological entropy on K.

We assume that K is a maximal invariant subset of a finite union of pairwise disjoint
closed intervals bI = I 1 [ � � � [ I k � UK whose endpoints are in K. (This maximality
corresponds to the Darboux property, compare Przytycki and Rivera-Letelier [ibid., Ap-
pendix A] and Misiurewicz and Szlenk [1980, page 49].) We write (f;K) 2 ABD

+ , with
the subscript + to mark positive entropy. In place of BD one can assume C 3 (and write
(f;K) 2 A3

+), and assume that all periodic orbits in K are hyperbolic repelling. Indeed,
changing f outside K if necessary, one can get the corrected (f;K) in ABD

+ .
Recall the notions concerning periodic orbits: Parabolic means f n(p) = p with

(f n)0(p) being a root of unity. For j(f n)0(p)j = 1 the term indifferent periodic is used
and for j(f n)0(p)j > 1 the term hyperbolic repelling. If j(f n)0(p)j < 1 the orbit is called
hyperbolic attracting.

For the real setting, see Przytycki and Rivera-Letelier [2014], Gelfert, Przytycki, and
Rams [2016] and Przytycki [2018]. Examples are provided by basic sets in the spectral
decomposition de Melo and van Strien [1993].

Question. Are there any other examples?
Problem. Generalize the real case theory, see further sections, to the piecewise continu-

ous maps, that is allow the intervals I j to have common ends (see Hofbauer and Urbański
[1994] for some results in this direction).

In this survey, we compare equilibrium states to (refined) Hausdorff measures in the
complex case. For the real case, we refer the reader to Hofbauer and Keller [1993] and
the references therein.

3 Hyperbolic potentials

For general f : X ! X and � : X ! R as in Definition 1.2 the following conditions are
of special interest Inoquio-Renteria and Rivera-Letelier [2012],

1) P (f; �) > sup�,
2) P (f n; Sn�) > supX Sn� for an integer n,
3) P (f; �) > sup�2M(f )

R
� d�,

4) For each equilibrium state � for the potential �, the entropy h�(f ) is positive.
The conditions 2) – 4) are equivalent, see Inoquio-Renteria and Rivera-Letelier [ibid.,

Proposition 3.1]. Potentials � satisfying them have been called in Inoquio-Renteria and
Rivera-Letelier [ibid.] hyperbolic. The condition 1) has longer traditions, see Denker and
Urbański [1991]. The intuitive meaning is that no minority of trajectories carries the full
pressure.
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For every f : C ! C rational of degree at least 2 and � : J (f ) ! R Hölder
continuous, the following condition is also equivalent to 2) – 4), see Inoquio-Renteria and
Rivera-Letelier [2012]:

5) For each ergodic equilibrium state� for�, the Lyapunov exponent�(�) :=
R
log jf 0j d�

is positive, that is for �-a.e. x,

�(�) = �(x) := lim
n!1

1

n
log j(f n)0(x)j > 0:

The conditions 2)-5) are also equivalent in the real case for (f;K) 2 ABD
+ or (f;K) 2

A3
+ and all periodic orbits hyperbolic repelling. The arguments in Inoquio-Renteria and

Rivera-Letelier [ibid.] work. See also Li and Rivera-Letelier [2014b].

Theorem 3.1. Let f : C ! C be a rational mapping as above. If � is a Hölder contin-
uous hyperbolic potential on J (f ), then there exists a unique equilibrium state �� . For
every Hölder u : J (f ) ! R, the Central Limit Theorem (abbr. CLT) for the sequence of
random variables u ı f n and �� holds.

For a proof, see Przytycki [1990] and preceding Denker and Urbański [1991]. To find
this equilibrium one can iterate the transfer operator provingLn(11)/ expnP (f; �) ! u� .
The convergence is uniformly exp�

p
n fast and the limit is Hölder continuous, Denker,

Przytycki, and Urbański [1996]. Finally, define �� := u� �m� , as at the end of Section 1.

Remark 3.2. Given �� a priori, an efficient way to study it is an inducing method, see
Szostakiewicz, Urbański, and Zdunik [2015], i.e. the use of a return map A 3 x 7!

f n(x)(x) 2 A for A and n(x) adequate to �� . Then one proves even an exponential
convergence (with any u Hölder in place of 11), which yields exponential mixing, hence
stochastic laws for u ı f n for Hölder u, e.g. CLT, LIL, compare Sections 9 and 10. See
also Remark 5.4. The key feature is the exponential decay of ��(An), where An := fx 2

A : n(x) � ng.

See also Bruin and Todd [2008] for the real case, and stronger Li and Rivera-Letelier
[2014a] and Li and Rivera-Letelier [2014b] including also the complex case proving the
exponential convergence to u� , hence CLT and LIL. See also Szostakiewicz, Urbański,
and Zdunik [2014] for endomorphisms f of higher dimensional complex projective space,
where 1) is replaced by a stronger “gap” assumption.
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4 Non-uniform hyperbolicity in real and complex dimension 1

Here we discuss a set of conditions, valid in both the real and complex situations. Below
we concentrate on the case of complex rational maps with K = J (f ), only remarking
differences in the real case.
(a) CE. Collet-Eckmann condition. There exist �CE > 1 and C > 0 such that for every
critical point c in J (f ), whose forward orbit does not meet other critical points, for every
n � 0 we have

j(f n)0(f (c))j � C�n
CE :

Moreover, there are no parabolic (indifferent) periodic orbits.
(b) CE2(z0). Backward or second Collet-Eckmann condition at z0 2 J (f ). There
exist �CE2 > 1 and C > 0 such that for every n � 1 and every w 2 f �n(z0) (in a
neighbourhood of K in the real case)

j(f n)0(w)j � C�n
CE2:

(b’) CE2. The second Collet-Eckmann condition. CE2(c) holds for all critical points c
not in the forward orbit of any other critical point.
(c) TCE. Topological Collet-Eckmann condition. There exist M � 0; P � 1, r > 0

such that for every x 2 K there exists a strictly increasing sequence of positive integers
nj , j = 1; 2; : : : , such that nj � P � j and for each j (and discs B(�) below understood
in C or R)

(4-1) #f0 � i < nj : Compf i (x) f
�(nj �i)B(f nj (x); r)) \ Crit(f ) 6= ¿g � M;

where in general Compz V means for z 2 V the component of V containing z.
In the real case, one adds the condition that there are no parabolic periodic orbits, which

is automatically true in the case of complex rational maps.
(d) ExpShrink. Exponential shrinking of components. There exist �Exp > 1 and r >
0 such that for every x 2 K, every n > 0 and every connected component Wn of
f �n(B(x; r)) for the disc (interval) B(x; r) in C (or R), intersecting K

(4-2) diam(Wn) � ��n
Exp:

(e) LyapHyp (Lyapunov hyperbolicity). There is a constant �Lyap > 1 such that the Lya-
punov exponent �(�) of any ergodic measure � 2 M(f;K) satisfies �(�) � log�Lyap.
(f) UHP. Uniform Hyperbolicity on periodic orbits. There exists �Per > 1 such that every
periodic point p 2 K of period k � 1 satisfies

j(f k)0(p)j � �k
Per:
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We distinguish LyapHyp as the most adequate among these conditions to carry the
name (strong) non-uniform hyperbolicity.1

Theorem 4.1. 1. The conditions (c)–(f) and else (b) for some z0 are equivalent in the
complex case. In the real case, the equivalence also holds under the assumption of weak
isolation (see the definition below).

2. In the complex case, the suprema over all possible constants �Exp, �CE2 (supremum
over all z0), �Per and �Lyap coincide.

3. Both CE and CE2 imply (c)–(f).
4. If there is only one critical point in the Julia set in the complex case or if f is S -

unimodal onK = I in the real case, i.e. has just one turning critical point c and negative
Schwarzian derivative on I n fcg, then all conditions above are equivalent to each other.

For more details, see Przytycki, Rivera-Letelier, and Smirnov [2003], Rivera-Letelier
[2012] and Przytycki and Rivera-Letelier [2014].

Definition 4.2. (f;K) 2 A is said to be weakly isolated if there exists an open neigh-
bourhood U of K in the domain of f such that for every f -periodic orbit O(p) � U is
contained in K.

In the complex case, we can replace (4-1) by

deg
�
f nj

ˇ̌
Compx f

�nj (B(f
nj (x);r))

�
� M 0

for a constantM 0. In the real case, this condition is weaker than (4-1) since f mapping
Wn+1 into Wn may happen not surjective. It can have folds, thus truncating backward
trajectories of critical points acquired before when pulling back.

In the real case, the proof of CE)TCE can be found in Nowicki and Przytycki [1998].
For the complex case, we refer the reader to Przytycki and Rohde [1998].

The implication TCE)CE was proved in the complex case in Przytycki [2000, The-
orem 4.1]. The proof used the idea of the “reversed telescope” by Graczyk and Smirnov
[1998]. In the real case, this implication was proved for S -unimodal maps in Nowicki and
Sands [1998]. In presence of more than one critical point this implication may be false,
see Przytycki, Rivera-Letelier, and Smirnov [2003, Appendix C].

Question. Is this implication true for every (f;K) 2 ABD
+ with one critical point,

provided it is weakly isolated? See Definition 4.2. It seems that the answer is yes.

1Then all Hölder continuous potentials are hyperbolic, see Condition 5) in Section 3 and Inoquio-Renteria
and Rivera-Letelier [2012].
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Since the condition TCE is stated in purely topological terms (in the class of maps
without indifferent periodic orbits), it is invariant under topological conjugacy. So we
obtain the following immediate corollary.

Corollary 4.3. All equivalent conditions listed above are invariant under topological con-
jugacies between (f;K)’s).

Another proof of the topological invariance of CE in the complex case was provided
in Przytycki and Rohde [1999] with the use of Heinonen and Koskela criterion for quasi-
conformality, Heinonen and Koskela [1995].

Note that this topological invariance is surprising, as all the conditions except TCE are
expressed in geometric-differential terms. I do not know how to express CE for unimodal
maps of interval in the (topological-combinatorial) kneading sequence terms.

An important lemma used here has been an estimate of an average distance in the log-
arithmic scale of every orbit from Crit(f ), see Denker, Przytycki, and Urbański [1996].
Namely

Lemma 4.4.

(4-3)
nX

j=0

0
� log jf j (x) � cj � Qn

for a constantQ > 0 every c 2 Crit(f ), every x 2 K and every integer n > 0. Σ0 means
that we omit in the sum an index j of smallest distance jf j (x) � cj.

An order of proving the equivalences in Theorem 4.1 is
CE2(z0) )ExpShrink)LyapHyp)UHP)CE2(z0) and separately CE2(z0) ,TCE.
E.g. assumed UHP one proves CE2(z0) by “shadowing”, compare the beginning of Sec-
tion 6.

5 Geometric pressure and equilibrium states

We go back to topological pressure, Definition 1.2, but for � = �t log jf 0j, t 2 R in
the complex K = J (f ) or real cases, where � can attain the values ˙1 at the critical
points of f . See the beginning of Section 2. We call it the geometric pressure, because it
is useful in studying of geometry of the underlying space, e.g. as in (2-3) via equilibrium
states for all t .

The definition ofPvar(f;�t log jf 0j) in Definition 1.2 makes sense due to �(�) � 0 for
all � 2 M(f ), in particular due to the integrability of log jf 0j, see Przytycki [1993] and
Rivera-Letelier [2012, Appendix A] for a simpler proof. We conclude that it is convex
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P (t)
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P (t)
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P (t)

��sup

��inf

Figure 1: The geometric pressure: LyapHyp with t+ = 1,
LyapHyp with t+ < 1, and non-LyapHyp. This Figure is taken from Gelfert, Przy-
tycki, and Rams [2016], see notation in Remarks below.

and monotone decreasing. We start by defining a quantity occurring equal to P (t) =

Pvar(t) := Pvar(f;�t log jf 0j), to explain its geometric meaning, compare with Section 2.

Definition 5.1 (Hyperbolic pressure).

Phyp(t) := sup
X2H(f;K)

P (f jX ;�t log jf 0
j);

whereH (f;K) is defined as the space of all compact forward f -invariant (that is f (X) �

X ) hyperbolic subsets of K, repellers in R.

From this definition, it immediately follows that:

Proposition 5.2. (Generalized Bowen’s formula, compare (2-3)) The first zero t0 of t 7!

Phyp(K; t) is equal to the hyperbolic dimensionHDhyp(K) ofK, defined byHDhyp(K) :=

supX2H(f;K) HD(X):

For the discussion HDhyp(J (f )) vs HD(J (f )), see Lyubich [2014, Section 2.13].

Below we state Theorem 5.3 proved in Przytycki and Rivera-Letelier [2011] in the
complex setting and in Przytycki and Rivera-Letelier [2014] in the real setting. It extends
Bruin and Todd [2009] and Pesin and Senti [2008] and Iommi and Todd [2010]. See also
impressive Dobbs and Todd [2015].

Theorem 5.3. 1. Real case, Przytycki and Rivera-Letelier [2014]. Let (f;K) 2 A3
+

and let all f -periodic orbits in K be hyperbolic repelling. Then P (t) is real analytic on
the open interval bounded by the “phase transition parameters” t� and t+. For every
t 2 (t�; t+), the domain where

(5-1) P (t) > sup
�2M(f )

�t

Z
log jf 0

j d�;
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there is a unique invariant equilibrium state. It is ergodic and absolutely continuous with
respect to an adequate conformal measurem�t

with the density bounded from below by a
positive constant almost everywhere. If furthermore f is topologically exact on K (that
is for every V an open subset of K there exists n � 0 such that f n(V ) = K), then this
measure is mixing, has exponential decay of correlations and it satisfies the Central Limit
Theorem for Lipschitz gauge functions.

2. Complex case, Przytycki and Rivera-Letelier [2011]. The assertion is the same.
One assumes a very weak expansion: the existence of arbitrarily small nice, or pleasant,
couples and hyperbolicity away from critical points.

Remarks. 1) t� and t+ are called the phase transition parameters. Since P (0) =

htop(f ) > 0, t� < 0 < t+, they need not exist; we say then they are equal to �1 and/or
+1 respectively. P (t) is linear to the left of t� and to the right of t+, equal to t 7! �t�sup
where �sup := sup� �(�) and t 7! �t�inf, where �inf := inf� �(�), respectively. Of
course, P (t) is not real-analytic at finite t� and t+.

2) For f (z) = z2 � 2, f : [�2; 2] ! [�2; 2] (the Tchebyshev polynomial), we have
f (2) = 2; f 0(2) = 4; �(l) = log 2, where l is the normalized length measure. We have
P (t) = log 2 � t log 2 for t � �1 and P (t) = �t log 4 for t � �1, so t� = �1, P (t) is
non-differentiable at t� and for t = �1 there are two ergodic equilibrium states: Dirac at
z = 2 and l .

3) For any f non-LyapHyp, t+ = t0 < 1. However t+ < 1 can happen even for
f LyapHyp, see N. Makarov and Smirnov [2003] and Coronel and Rivera-Letelier [2013,
2015].

4) Notice that the condition (5-1) is similar to the condition 3) from Section 3. For
f LyapHyp and t > t+, no equilibrium state can exist, see Inoquio-Renteria and Rivera-
Letelier [2012].

5) For real f as in Theorem 5.3 satisfying LyapHyp and K = bI , we have t0 = 1

and for � log jf 0j we conclude that a unique equilibrium state exists which is a.c.i.m.(
that is: invariant absolutely continuous with respect to Lebesgue measure). In fact this
assertions hold even for t = t0 = t+ = 1 with very weak hyperbolicity properties
e.g. j(f n)0(f (c))j ! 1 for all c 2 Crit(f ), see Bruin, Rivera-Letelier, Shen, and van
Strien [2008] and Shen and van Strien [2014]. For the complex case, see Graczyk and
Smirnov [2009] and stronger Rivera-Letelier and Shen [2014].

Remark 5.4. In the proof of Theorem 5.3, we use (compare with the Remark 3.2) a return
map F (x) = f n(x) to a “nice” (Markov) domain. However unlike in Szostakiewicz,
Urbański, and Zdunik [2015], we do not use in the construction of this set the equilibrium
measure �� because we do not know a priori that it exists. The construction is geometric.
F is an infinite Iterated Function System, more precisely the family of all branches ofF �1
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is, see Mauldin and Urbański [2003] and Pesin [2014] and references therein, expanding
due to the “acceleration” from f to F . Then we consider an equilibrium state P for (F;Φ)
where Φ(x) :=

Pn(x)�1
j=0 �t (f

j (x)), and consider an equivalent conformal measure. We
propagate these measures to the Lai-Sang Young tower f(x; j ) : 0 � j < n(x)g and
project by (x; j ) 7! f j (x) to K.2

Stochastic properties of P stay preserved along the construction to �� . The analyticity
ofP (t) follows from expressingP (t) as zero of a pressure forF with potential depending
on two parameters and Implicit Function Theorem. The latter idea came from Stratmann
and Urbanski [2003].

Remark 5.5. For probability measures �n weakly* convergent to someb�, in presence of
critical points

R
log jf 0j d�n need not converge to

R
log jf 0j db�. Only upper semiconti-

nuity holds. Therefore, for t > 0, the equilibrium states for tn ! t need not converge to
an equilibrium state for t . A priori, the free energy in the Definition 1.2 can jump down.
However, a modification of this method to prove existence of equilibria works, see Dobbs
and Todd [2015].

Notice also that passing to a weak*-limit with averages of Dirac measures on
fx; : : : ; f n(x)g proves lim supn!1 supx2K

1
n
Sn(log jf 0j)(x) � �max. However an anal-

ogous inequality lim inf � � � � �inf is obviously false. These observations contribute to the
understanding of Lyapunov spectrum.

Remarks on the Lyapunov spectrum. Theorem 5.3 allows us to express the so-called
dimension spectrum for Lyapunov exponents with the use of Legendre transform, that is
for all ˛ > 0 and L(˛) := fx 2 K : �(x) = ˛g

(5-2) HD(L(˛)) =
1

j˛j
inf
t2R

(P (t) + ˛t) :

An ingredient isMañé’s equality

(5-3) HD(�) = h�(f )/�(�)

provided �(�) > 0, Przytycki and Urbański [2010], where HD(�) := supfHD(X) :

�(X) = 1g, applied to ��t
.

The equality (5-2) concerns regular x’s, where�(x) = limn!1
1
n
log j(f n)0(x)j exists.

It is also possible to provide formulas or at least estimates for Hausdorff dimension of the
sets of irregular points L(˛; ˇ) := fx 2 K : �(x) = ˛; �(x) = ˇg for lower and
upper Lyapunov exponents where we replace lim by lim inf and lim sup respectively. See

2For applications to decide the existence or nonexistence of a finite a.c.i.m. for maps of interval with flat
critical points or for entire or meromorphic maps depending on the P-integrability of the first return time, see
papers by N. Dobbs, B. Skorulski, J. Kotus, G. Świątek.
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Gelfert, Przytycki, and Rams [2010] and Gelfert, Przytycki, and Rams [2016] for this
theory in complex and real settings.

However, these papers give no information about the size of sets with zero (upper)
Lyapunov exponent. Note at least that if J (f ) 6= C then Leb2fx 2 J (f ) : �(x) > 0g =

0. This is so because �(x) > 0 implies there exists N � Z+ of positive upper density,
such that for n 2 N, (4-2) and (4-1) hold, see Levin, Przytycki, and Shen [2016, Section
3].

We do not know whether �(x) = �1 can happen for x not pre-critical, except there is
only one critical point inK, where �(x) > �1 follows from (4-3), see Gelfert, Przytycki,
and Rams [2010, Lemma 6].

For x being a critical value we can prove (in analogy to �(�) � 0):

Theorem 5.6 (Levin, Przytycki, and Shen [2016]). If for a rational function f : C ! C
there is only one critical point c in J (f ) and no parabolic periodic orbits, then�(f (c)) �

0.

For S -unimodal maps of interval this was proved by Nowicki and Sands [1998].

6 Other definitions of geometric pressure

Definition 6.1 (safe). See Przytycki and Urbański [2010, Definition 12.5.7]. We call
z 2 K safe if z …

S1

j=1(f
j (Crit(f ))) and for every ı > 0 and all n large enough

B(z; exp(�ın)) \
Sn

j=1(f
j (Crit(f ))) = ¿.

Notice that this definition implies that all points except at most a set of Hausdorff di-
mension 0, are safe.

Definition 6.2 (Tree pressure). For every z 2 K and t 2 R define

(6-1) Ptree(z; t) = lim sup
n!1

1

n
log

X
f n(x)=z; x2K

j(f n)0(x)j�t :

Compare with P (f; �) from Theorem 1.3. Under suitable conditions, e.g. for z “safe”
the limit exists, it is independent of z and equal to P (t). See Przytycki [1999], Przytycki,
Rivera-Letelier, and Smirnov [2003] and Przytycki and Urbański [2010] for the complex
case and Przytycki and Rivera-Letelier [2014] and Przytycki [2018] for the real case.

A key is to extend all trajectories Tn(x) = fx; : : : ; zg backward and forward by time
m � n to get an Iterated Function System for f n+m and to consider its limit set. Its
trajectories for time n “shadow” Tn(x). This proves Ptree(z; t) � Phyp(t). The opposite
inequality is immediate.
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(Similarly one proves Pvar(t) � Phyp(t). Given � with �(�) > 0 one captures a
hyperbolic X by Pesin-Katok method.)

For a continuous potential � : X ! R, consider

(6-2) Psep(f; �) := lim
"!0

lim sup
n!1

1

n
log

�
sup

Y

X
y2Y

expSn�(y)
�
;

where the supremum is taken over all (n; ")-separated sets Y � X , that is such Y that for
every distinct y1; y2 2 Y , �n(y1; y2) � ", where �n is the metric defined by �n(x; y) =

maxf�(f j (x); f j (y)) : j = 0; : : : ; ng.
For � = �t log jf 0j for positive t , in presence of critical points for f , Psep is always

equal to 1 by putting a point of a separated set at a critical point. So we replace it by
the tree pressure. One can however use infimum over (n; ")-spanning sets, thus defining
Pspanning(f; �). This is a valuable notion, often coinciding with other pressures. See Przy-
tycki [ibid.] for an outline of a respective theory. Let me mention only that this is equal
to P (f;�t log jf 0j) for t > 0 in the complex case if

Definition 6.3. f is weakly backward Lyapunov stable which means that for every ı > 0

and " > 0 for all n large enough and every disc B = B(x; exp�ın) centered at x 2 K,
for every 0 � j � n and every component V of f �j (B) intersecting K, it holds that
diamV � ".

This holds for all rational maps with at most one critical point whose forward trajectory
is in J (f ) or is attracted to J (f ), due to Theorem 5.6.

Question. Does backward weak Lyapunov stability hold for all rational maps?
Finally, periodic pressure PPer is defined as Ptree with x 2 Pern (periodic of period n)

rather than f n-preimages of z. In Przytycki, Rivera-Letelier, and Smirnov [2004], this
was proved for rational f (see also Binder, N. Makarov, and Smirnov [2003] for a class
of polynomials) on K = J (f ) that PPer(t) = P (t) provided

Hypothesis H. For every ı > 0 and all n large enough, if for a set P � Pern for all
p; q 2 P and all i : 0 � i < n dist(f i (p); f i (q)) < exp�ın, then #P � exp ın.

Question. Does this condition always hold? In particular, can large bunches of periodic
orbits exist with orbits exponentially close to a Cremer fixed point?

7 Geometric coding trees, limit sets, Gibbs meets Hausdorff

The notion of geometric coding tree, g.c.t., already appeared in the work Jakobson [1978],
where in the expanding case the finite-to-one property of the resulting coding was proved.
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It was used later in Przytycki [1985, 1986] and in a full strength in Przytycki, Urbański,
and Zdunik [1989, 1991] and papers following them. Similar graphs have since been
constructed to analyse the topological aspects of non-invertible dynamics, see for instance
Nekrashevych [2011] and Haïssinsky and Pilgrim [2009].

Definition 7.1. Let U be an open connected subset of the Riemann sphere C. Consider
a holomorphic mapping f : U ! C such that f (U ) � U and f : U ! f (U ) is
a proper map. Suppose that Crit(f ) is finite. Consider an arbitrary z 2 f (U ). Let
z1; z2; : : : ; zd be some of the f -preimages of z in U with d � 2. Consider smooth
curves 
j : [0; 1] ! f (U ), j = 1; : : : ; d , joining z to zj respectively (i.e. 
j (0) =

z; 
j (1) = zj ), intersections allowed, such that 
j \ f n(Crit(f )) = ¿ for every j and
n > 0.

For every sequence ˛ = (˛n)
1
n=0 2 Σd (shift space with left shift map & defined in

Section 1) define 
0(˛) := 
˛0 . Suppose that for some n � 0, for every 0 � m � n, and
all ˛ 2 Σd , curves 
m(˛) : [0:1] ! U are already defined. Suppose that for 1 � m � n

we have f ı 
m(˛) = 
m�1(&(˛)), and 
m(˛)(0) = 
m�1(˛)(1). Define the curves

n+1(˛) so that the previous equalities hold by taking respective f -preimages of curves

n. For every ˛ 2 Σd and n � 0 denote zn(˛) := 
n(˛)(1).

The graph T = T (z; 
1; : : : ; 
d ) with the vertices z and zn(˛) and edges 
n(˛) is
called a geometric coding treewith the root at z. For every ˛ 2 Σd the subgraph composed
of z; zn(˛) and 
n(˛) for all n � 0 is called an infinite geometric branch and denoted by
b(˛). It is called convergent if the sequence 
n(˛) is convergent to a point in clU . We
define the coding map z1 : D(z1) ! clU by z1(˛) := limn!1 zn(˛) on the domain
D = D(z1) of all such ˛’s for which b(˛) is convergent.

Denote Λ := z1(D(z1)). If the map f extends holomorphically to a neighbourhood
of its closure clΛ in C, then Λ is called a quasi-repeller, see Przytycki, Urbański, and
Zdunik [1989].

A set formally larger than clΛ is of interest, namelybΛ being the set of all accumulation
points of fzn(˛) : ˛ 2 Σd g as n ! 1. If our g.c.t. is in Ω being an RB-domain, see
Section 8, or f is just R ı g ıR�1 defined only on Ω, see Remarks below, then it is easy
to see that clΛ = bΛ. I do not know how general this equality is.

Remarks. Given a Riemann map R : D ! Ω to a connected simply connected do-
main Ω � C, (i.e. holomorphic bijection) we can consider a branched covering map,
say g(z) = zd on D, and f = R ı g ı R�1. Then, chosen z 2 Ω and 
j joining it
with its preimages in Ω (close to FrΩ) we can consider the respective tree T . Then in-
stead of considering R and its radial limit R, we can consider the limit (along branches)
z1 : Σd ! FrΩ. This provides a structure of symbolic dynamics useful to verify stochas-
tic laws.
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This is especially useful if considered measures come from @D viaR, rather than being
some equilibrium states for potentials living directly on FrΩ. This is the case of harmonic
measure ! which is the R�-image of a length measure l . We can consider the lift of l to
Σd via coding by the tree T 0 = R�1(T ) and next its projection by (z1)� to FrΩ.

Our g.c.t.’s are always available in presence of adequate holomorphic f , even in the
absence of Ω, i.e. in the absence of a Riemann map. The tree with the coding it induces
yields a discrete generalization/replacement of a Riemann map.

It was proved in Przytycki and Skrzypczak [1991] that D is the whole Σd except a
“thin” set. In particular, for a Gibbs measure � for a Hölder potential, z1(˛) exists for
�-a.e. ˛, hence the push forward measure (z1)�(�) makes sense. Moreover, our codings
�1 are always “thin”-to-one. This is a discrete generalization of Beurling’s Theorem
concerning the boundary behaviour of Riemann maps. “Thin” means of zero logarithmic
capacity type, depending on the properties of the tree (the speed of the accumulation of 
j

by critical trajectories; the speed does not matter if we replace “thin” by zero Hausdorff
dimension). In particular this coding preserves the entropies.

For appropriate � 2 M(&;Σd ) and  : Σd ! R with
R
 d� = 0, consider the

asymptotic variance (of course one can consider spaces more general than Σd )

(7-1) �2 = �2
� ( ) := lim

n!1

1

n

Z
(Sn )

2 d�:

Theorem 7.2. Let Λ be a quasi-repeller for a geometric coding tree for a holomorphic
map f : U ! C. Let � be a & -invariant Gibbs measure on Σd for a Hölder continuous
real-valued function � on Σd . Assume P (&; �) = 0. Consider � := (z1)�(�).

Then, for  := �HD(�)(log jf 0j ı z1)) � �, we have
R
 d� = 0.

If the asymptotic variance �2 = �2
� ( ) is positive, then there exists a compact f -

invariant hyperbolic repeller X being a subset of Λ such that HD(X) > HD(�). In
consequence HDhyp(Λ) > HD(�) (defined after (5-2)).

If �2 = 0 then  is cohomologous to 0. Then for each x; y 2 clΛ not postcritical, if
z = f n(x) = f m(y) for some positive integers n;m, the orders of criticality of f n at x
and f m at y coincide. In particular all critical points in clΛ are pre-periodic.

The latter condition happens only in special situations, see e.g. Theorem 7.3 below.
See Szostakiewicz, Urbański, and Zdunik [2015] for more details; � lives there directly
on J (f ), but it does not make substantial difference. See also Section 10.

Given a mapping f : X ! X , given two functions u; v : X ! R we call u cohomolo-
gous to v in class C if there exists h : X ! R belonging to C such that u� v = h ıf �h.
An important Przytycki, Urbański, and Zdunik [1989, Lemma 1] says that �2 = 0 above
implies cohomologous to 0 inL2(�) and often in a smaller class depending on (Livšic
type rigidity).



2122 FELIKS PRZYTYCKI

Notice that
R
 d� = �HD(�)�(�) �

R
� d� = �h�(f ) �

R
� d� = �h�(&) �R

� d� = P (&; �) = 0. Now, to prove Theorem 7.2 note 2�(�) � h�(f ) = h�(&) > 0,
see Przytycki and Urbański [2010, Ruelle’s inequality] (used also to 3))5) in Section 3)
and Przytycki [1985]. So considering the natural extension of (Σd ; �; &) (here two-sided
shift space) and Katok-Pesin theory, we find hyperbolicX with HD(X) � HD(�)� " for
an arbitrary " > 0. Compare comments on shadowing in Section 6.

� The positive �2 yields by Central Limit Theorem large fluctuations of the sumsPn�1
j=0  ı &j from n

R
 d� (here 0), allowing to find X with HD(X) > HD(�).

A special care is needed to get X � Λ, see Przytycki [2005] (originated in Przytycki
and Zdunik [1994]).

The above fluctuations were used by A. Zdunik to prove for constant �

Theorem 7.3 (Zdunik [1990]). Let f : C ! C be a rational mapping of degree d � 2.
If �2 > 0, then for �max(f ) the measure of maximal entropy (equal log d ), HD(J (f )) >
HD(�max(f )). Otherwise, f is postcritically finite with a parabolic orbifold, Milnor
[2006].

She proved in fact the existence of a hyperbolic X � J (f ) satisfying HD(X) >

HD(�max(f )), hence HDhyp(J (f )) > HD(�max(f )).
� In the �2 = 0 case, v : J (f ) ! R satisfying the cohomology equation log jf 0j =

v ıf � v+Const on J (f ) extends to a harmonic function beyond J (f ) (Livšic rigidity)
giving this equality on the union of real analytic curves containing J (f ) (called real case)
or to C. In Theorem 7.2 on Λ and for the extension beyond, in Theorem 7.3, the “orders”
of growth of � log j(f n)0j at x and of � log j(f m)0j at y must by cohomology equation be
equal to the “order” of growth of v at z, so theymust coincide (a phenomenon “conjugated”
to the presence of an invariant line field). This implies parabolic orbifold for Theorem 7.3.

Theorem 7.3 applied to a polynomial f with connected Julia set, by
HD(�max(f )) = 1Manning [1984], implies the following Zdunik’s celebrated result:

Theorem 7.4 ( Zdunik [1990]). For every polynomial f of degree at least 2, with con-
nected Julia set, eitherJ (f ) is a circle or an interval or else it is fractal, namelyHD(J (f )) >
1.

8 Boundaries, radial growth, harmonic vs Hausdorff

For polynomials with connected Julia set the measure �max(f ) coincides with harmonic
measure ! (viewed from 1). This led to another proof of Theorem 7.4, especially the
�2 = 0 part, see Zdunik [1991], in the language of boundary behaviour of Riemann map
and harmonic measure (compare also model Theorem 2.1 ).
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Theorem 7.4 has been strengthened from this point of view in Przytycki [2006], pre-
ceded by Przytycki and Zdunik [1994], as follows.

Theorem 8.1. Let f : C ! C be a rational map of degree at least 2 and Ω be a simply
connected immediate basin of attraction to an attracting periodic orbit (that is a connected
component of the set attracted to the orbit, intersecting it). Then, provided f is not a finite
Blaschke product in some holomorphic coordinates, or a two-to-one holomorphic factor
of a Blaschke product, HDhyp(FrΩ) > 1.

The novelty was to show how to “capture” a large hyperbolic X in FrΩ in the case it
was not the whole J (f ).

In fact the following “local” version of this theorem was proved in Przytycki [2006]

Theorem 8.2. Assume that f is defined and holomorphic on a neighbourhoodW of FrΩ,
where Ω is a connected simply connected domain in C whose boundary has at least 2
points. We assume that f (W \ Ω) � Ω, f (FrΩ) � FrΩ and FrΩ repels to the side of
Ω, that is

T1

n=0 f
�n(W \ clΩ) = FrΩ. Then either HDhyp(Fr(Ω)) > 1 or FrΩ is a

real-analytic Jordan curve or arc.

Ω with f as above has been called an RB-domain (repelling boundary), introduced in
Przytycki [1986] and Przytycki, Urbański, and Zdunik [1989]. Theorem 8.2 (at least the
�2 > 0 part) follows directly from Theorem 7.2. Let R : D ! Ω be a Riemann map and
g : W 0 ! D be defined by g := R�1 ı f ı R on W 0 = R�1(W \ Ω). We consider
a g.c.t. T = T (z; 
1; : : : ; 
d ) with z and 
j in W \ Ω, sufficiently close to FrΩ that
the definition makes sense, and with d = degf jW \Ω, (the situation is the same as in
Remarks in Section 7 above, but the order of defining f and g is different). Consider the
g.c.t. T 0 = R�1(T ). The function g extends holomorphically beyond the circle @D and
it is expanding. Hence � : Σd ! R defined by �(˛) = � log jg0j ı (R�1(z))1(˛) for
the tree T 0 is Hölder continuous. Let � = �� .

Note that here P (�) = 0, e.g. since by expanding property of g on @D there existsbl 2 M(g), equivalent to length measure l (a.c.i.m.). Then � is the lift ofbl to Σd with
the use of T 0. Note that our � = z1(�) is equal to b! = R�(bl) which is f -invariant,
equivalent to harmonic measures ! on FrΩ viewed from Ω.

Note that HD(b!) = 1 due to Mañé’s equality, (5-3), hb!(f ) = hbl(g), see Przytycki
[1985, 1986], and the equality of Lyapunov exponents

R
log jf 0j db! =

R
log jg0j dbl > 0.

The latter equality holds due to the equality for almost every � 2 @D:

(8-1) lim
r!1

log j(f n)0(R(r�))j � log j(gn)0(r�))

log(1 � r)
= lim

r!1

� log jR0(r�)j

log(1 � r)
= 0:
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The first equality is proved using f ıR = R ı g in D, first applying R close to @D, next
by iterating f applying R�1 well inside Ω, finally iterating g back. The latter equality
relies on the harmonicity of log jR0j allowing to replace its integral on circles by its value
at the origin. For details see Przytycki [1986]. Remind however that in fact HD(!) = 1

holds in general, see N. G. Makarov [1985].
The sketch of Proof of Theorem 8.2 for �2 > 0 is over. That �2 = 0 implies the

analyticity of FrΩ was already commented at the beginning of this Section.

9 Law of Iterated Logarithm refined versions

Applying Law of Iterated Logarithm (abbr. LIL) to  : Σd ! R the fluctuations of Sn 

from 0 which follow lead to, see Przytycki, Urbański, and Zdunik [1989] and Przytycki
and Urbański [2010],

Theorem 9.1. In the setting of Theorem 7.2 if �2 = �2
� ( ) > 0, for c(�) :=

p
2�2/�(�),

� := HD(�) and ˛c(r) := r� exp(c
p
log 1/r log log log 1/r)

1) �?H˛c
, that is singular with respect to the refined Hausdorff measure, Przytycki

and Urbański [ibid., Section 8.2] for the gauge function ˛c), for all 0 < c < c(�);
2) � � H˛c

, that is absolutely continuous, for all c > c(�).

Indeed, substituting in LIL n ∼ (log 1/rn)/�(�) for rn = j(f n)0(z)j�n, we get for
�-a.e. z

(9-1) lim sup
n!1

�(B(z; rn)

˛c(rn)
= 1 for 0 < c < c(�) and � � � = 0 for c > c(�):

This is called the Refined Volume Lemma, Przytycki, Urbański, and Zdunik [1989,
Section 4] and, the harder case: c > c(�), Przytycki, Urbański, and Zdunik [1991, Section
5].

We can apply the assertion of Theorem 9.1 for � = b! 2 M(f;FrΩ) equivalent to a
harmonic measure ! as Section 8.

This yields refined information about the radial growth of the derivative of Riemann
maps, following the proof of (8-1):

Theorem 9.2. Let Ω be a simply connected RB-domain in C with non-analytic boundary
and R : D ! Ω be a Riemann map. Then there exists c(Ω) > 0 such that for Lebesgue
a.e. � 2 @D

(9-2) G+(�) := lim sup
r!1

log jR0(r�)jp
log(1/1 � r) log log log(1/1 � r)

= c(Ω):

Similarly G�(�) := lim inf � � � = �c(Ω). Finally c(Ω) = c(b!) in Theorem 9.1.
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In fact Theorem 9.1 for � = b! and Theorem 9.2 hold for every connected, simply con-
nected open Ω � C, together with c(Ω) = c(b!). No dynamics is needed. Of course one
should add to both definitions ess sup over � 2 @D and over z 2 FrΩ (for c(z) = c(!)

calculated from (9-1), see Przytycki and Urbański [2010, Th. 8.6.1] ) respectively, since
in the absence of ergodicity these functions need not be constant. See Garnett and Mar-
shall [2005, Th. VIII.2.1 (a)] and references to Makarov’s breakthrough papers therein, in
particular N. G. Makarov [1985].

There is a universal Makarov’s upper bound CM < 1 for all c(Ω); c(b!)’s in (9-2).
The best upper estimate I found in literature is CM � 1:2326, Hedenmalm and Kayumov
[2007]. I proved in Przytycki [1989] a much weaker estimate, using a natural method
of representing log jR0j by a series of weakly dependent random variables leading to a
martingale on @D, thus satisfying LIL. Unfortunately consecutive approximations resulted
with looses in the final estimate.

For a holomorphic expanding repeller f : X ! X and a Hölder continuous potential
� : X ! X , the asymptotic variance for the equilibrium state � = �t0� for every t0 2 R
satisfies Ruelle’s formula (see Przytycki and Urbański [2010]):

(9-3) �2
�(� �

Z
� d�) =

d 2P (t�)

dt2

ˇ̌̌̌
t=t0

:

Question. Does (9-3) hold for all rational maps and hyperbolic potentials on Julia sets?
For all simply connected RB-domains, f : FrΩ ! FrΩ and � = b!?

For a simply connected RB-domain Ω for f and for � = � log jf 0j, if g(z) = zd

(e.g. Ω being the basin of 1 for a polynomial f ), one considers the integral means spec-
trum depending only on Ω,

(9-4) ˇΩ(t) := lim sup
r!1

1

j log(1 � r)j
log

Z
�2@D

jR0(r�)jt jd�j

which happens to satisfy ˇΩ(t) = t � 1 + P (t�)
logd

, see e.g. Przytycki and Urbański [ibid.,
Eq. (9.6.2.)].

For t0 = 0we have� = b! and the left hand side of (9-3) can bewritten as ( 1
2
log d )�2(logR0),

see (7-1) and (8-1), where

�2(logR0) := lim sup
r!1

R
@D j logR0(t�)j2 jd�j

�2� log(1 � r)j
:

So (9-3) changes to �2(logR0) = 2d2ˇΩ(t))
dt2

jt=0, compare Ivrii [2016]. It has an analytic,
non-dynamical, meaning. It is also related to the Weil-Petersson metric, see McMullen
[2008].
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10 Accessibility

Let us recall the following theorem from Przytycki [1994].

Theorem 10.1. Let Λ be a quasi-repeller for a geometric coding tree for a holomorphic
map f : U ! C. Suppose that

(10-1) diam(
n(˛)) ! 0; as n ! 1

uniformly with respect to ˛ 2 Σd . Then every good q 2 bΛ (defined in Section 7) is a
limit of a convergent branch b(˛). So q 2 Λ. In particular, this holds for every q with
�(q) > 0 and the local backward inviariance (explained below).

For the definition of “good”, see Przytycki [ibid., Definition 2.5]. It roughly says that
there are many integers n (positive lower density) for which f n properly map small do-
mains Dn;0 in U close to q onto large Dn � U , giving “telescopes” Telk with “traces”
Dnk ;0 � Dnk�1;0 � � � � � Dn1;0 � D0; for each k the choices may be different. A part
of this condition that Dn;0 � U can be called a “local backward invariance” of U along
the forward trajectory of q.

When U is an immediate basin of attraction of an attracting fixed point for a rational
map f or just an RB-domain then this theorem asserts that q is an endpoint of a continuous
curve in U . This is a generalization of the Douady-Eremenko-Levin-Petersen theorem
where q is a repelling periodic point and the domain is completely invariant, e.g. basin of
attraction to 1 for f a polynomial.

Due to this theorem we can prove that invariant measures of positive Lyapunov expo-
nents lift to Σd . More precisely, the following holds:

Corollary 10.2. Every non-atomic hyperbolic probability measure � (i.e. �(�) > 0), onbΛ, is the (z1)� image of a probability & -invariant measure � on Σd , assumed (10-1), T

has no self-intersections and else �-a.e. local backward invariance of U ,. In particular,
� exists for every RB-domain which is completely (i.e. backward) invariant.

Proof. (the lifting partmissing in Przytycki [ibid.] and Przytycki [2006]). By Theorem 10.1
� is supported on Λ i.e. on z1(D(z1)). The lift of � to �0 on the pre-image B 0 under
z1 of the Borel � -algebra of subsets of Λ can be extended to a & -invariant � on B the
Borel � -algebra of the subsets of Σd by using the fact that the set of at least triple points
(limit points of at least three infinite branches of T ) is countable, hence z�1

1 (x) of �-a.e
x contains at most 2 points. More precisely, let A1 be the set of points having one z1-
preimage, A2 two preimages. They are both f -invariant (except measure 0), so are their
z1-preimages A0

1 and A0
2 under & . We extend �0 by distributing conditional measures on

the two points preimages of points in A2 half-half and Dirac on one point preimages.
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This allows to conclude Theorem 9.1 (a part relying on CLT) and Theorem 7.2 for
equilibrium states for rational maps and Hölder potentials on J (f ) by lifting �� to Σd

as in Przytycki [ibid.]. However, this seems useless since the proof of CLT in Przytycki
[ibid.] is done directly on J (f ) (seemingly also for LIL, for which one should however
refer to the proofs in Przytycki, Urbański, and Zdunik [1989]) and there are direct proofs
of LIL in Li and Rivera-Letelier [2014b] and Szostakiewicz, Urbański, and Zdunik [2015].

Acknowledgments. Thanks to H. Hedenmalm, O. Ivrii, J. Rivera-Letelier, M. Sabok, M.
Urbański, and A. Zdunik for comments and corrections.
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QUANTITATIVE ALMOST REDUCIBILITY AND ITS
APPLICATIONS

Jංൺඇ඀ඈඇ඀ Yඈඎ (尤建功)

Abstract

We survey the recent advances of almost reducibility and its applications in the
spectral theory of one dimensional quasi-periodic Schrödinger operators.

1 Quasi-periodic operators, cocycles and systems

1.1 One dimensional quasi-periodic Schrödinger operators. One dimensional quasi-
periodic discrete time Schrödinger operators are operators defined on l2(Z) as

(1-1) (HV;!;�u)n = un+1 + un�1 + V (� + n!)un; 8n 2 Z;

where � 2 T d := (R/Z)d is called phase, V : T d ! R is called potential, rationally
independent ! 2 T d is called frequency(when ! is one dimensional, we will replace it
by ˛ to respect the traditional notation in literatures). The simplest but the most important
special case is the almost Mathieu operators(AMO), i.e., the three-parameter family:

(1-2) (H�;˛;�u)n = un+1 + un�1 + 2� cos 2�(� + n˛)un; 8n 2 Z:

Due to the rich backgrounds in quantum physics, quasi-periodic Schrödinger operators
especially the almost Mathieu operators have been extensively studied Last [2005]. In
1980’s, there was an almost periodic flu which already swept the world Simon [1982]. In
2000’s, people found that one can use ideas from the dynamical systems (mainly linear co-
cycles) to study the operators (1-1), and many important progresses have been made since
then (Avila [2008, 2015a], Avila and Krikorian [2006], Avila and Jitomirskaya [2009],
and Puig [2004]). This survey will focus on how almost reducibility is used to give a
systematical study of various delicate spectral properties of (1-1).

This work was partially supported by NNSF of China (11471155) and 973 projects of China (2014CB340701).
MSC2010: primary 37C55; secondary 37J40, 47B36.
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It is well known that H = HV;!;� is a bounded self-adjoint operator, its spectrum
ΣV;!;� is a compact perfect subset of R which is independent of � if ! is rationally in-
depentent. In the following, when no danger of confusion, we sometimes simply denote
HV;!;� and ΣV;!;� byH and Σ.

Given an operator H = HV;!;� and a � 2 l2(Z), we define a measure �� on Σ such
that

h�; f (H )�i =

Z
f (E)d��(E);

holds for any f 2 C 0(Σ), d� = d�e0 + d�e1 is called the spectral measure of H . And
the integrated density of states (IDS) N : R ! [0; 1] ofH is defined as

(1-3) N (E) :=

Z
T
d�(�1; E] d�:

N (E) is always monotone and continuous no matter what d� is. Any bounded connected
component of RnΣ is called a spectral gap of the operator HV;!;� . By Gap-Labelling
Theorem (Johnson and Moser [1982]), there is a unique k 2 Zd such that N (E) =

hk; !i mod Z for all E in a gap. In other words, the spectral gaps can be labelled by
k 2 Zd . We denote by Gk(V ) = (E�

k
(V ); E+

k
(V )) the gap with labelling k. If Gk(V )

is not empty for all k, we say all gaps ofH are open. When Σ is a Cantor set, we say the
operatorH has Cantor spectrum.

The continuous time quasi-periodic Schrödinger operators L = Lq;!;� are defined on
L2(R) as

(Lq;!;�y)(t) = �y
00

(t) + q(� + !t)y(t)(1-4)

where q : T d ! R, and ! 2 T d is rationally independent. It is known that Lq;!;� is self-
ajoint and unbounded, its spectrum is an unbounded perfect subset of R independent of � .
All concepts above for the discrete time Schrödinger operators can be defined similarly
for the continuous time quasi-periodic Schödinger operators.

The spectrum and spectral measure are two central subjects in spectral theory. For the
spectrum, people are mainly interested in the Lebesgue measure of Σ, Cantor spectrum,
homogeneity of the spectrum, opening gaps and gap estimates. For the spectral measure,
people are interested in the nature of the measure: when it is absolute continuous, when it
is singular continuous or pure point; if it is pure point, when it has Anderson localization
(pure point with exponential decay eigenfunctions) or dynamical localization. What is
the modulus of the continuity of IDS and the spectral measure? If the operator contains
parameters, the phase transition is also an important issue.
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1.2 Quasi-periodic cocycles and quasi-periodic linear systems. Note that (un)n2Z

is a formal solution of the eigenvalue equationHV;!;�u = Eu if and only if it satisfies�
un+1

un

�
= SV

E (� + n!) �

�
un

un�1

�
;(1-5)

where

SV
E (�) =

�
E � V (�) �1

1 0

�
2 SL(2;R):

The dynamical systems (!; SV
E ) defined on T d � R2 by

(1-6) (�; v) 7! (� + !; SV
E (�)v)

are called Schrödinger cocycles.
In general, an analytic quasi-periodic linear cocycle (!;A) on T d with coefficients in

Lie group G (its Lie algebra will be denoted by g) is defined by

T d
� RN

! T d
� RN(1-7)

(�; v) 7! (� + !;A(�) � v):

where A 2 C!(T d ;G), G will be usually taken as GL(N;R); Sp(2N;R). The iterate of
the cocycle is defined as

An(�) :=

(
A(� + (n � 1)!) � � �A(� + !)A(x); n � 0

A�1(� + n!)A�1(� + (n+ 1)!) � � �A�1(� � !); n < 0:

Let �1(�); �2(�); � � � ; �N (�) be the singular values of An(�). By Oseledets theory,

�i = lim
n!1

1

n
ln�i (�) d�; i = 1; � � � ; N

exsit and are same for almost all � . �i ’s are called Lyapunov exponents of (1-7), among
them L(!;A) = lim

n!1

1
n

R
Td ln kAn(�)kd� is the largest. When ! has been fixed, we

simply write L(A) for L(!;A). If A(�) are in SL(2;R), the two Lyapunov exponents
are ˙L(!;A). If furthermore A(�) 2 C!(T ;SL(2;R)), Avila [2015a] proved that

!(A) := lim
�!0

L(A�) � L(A)

2��
; where A� = A(� + i�);

exists and moreover it is an integer. The quantity !(A), called acceleration, plays an im-
portant role in Avila’s global theory of one frequency analytic quasi-periodic Schrödinger
cocycles (Avila [ibid.]).
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The cocycle (1-7) is said to be uniformly hyperbolic if there exists a continuous splitting
RN = Es(�) ˚Eu(�) such that for every n � 0,

jAn(�) vj � Ce�cnjvj; v 2 Es(�);

jAn(�)
�1vj � Ce�cnjvj; v 2 Eu(� + n!);

for some constants C; c > 0. Moreover, this splitting is invariant, i.e.,

A(�)Es(�) = Es(� + !); A(�)Eu(�) = Eu(� + !); 8 � 2 T d :

A cocycle is said to be non-uniformly hyperbolic if it is not uniformly hyperbolic and all
the Lyapunov exponents are not zero.

IfG = SL(2;R), another dynamical quantity, the rotation number can be defined. As-
sume that A 2 C (T d ; SL(2;R)) is homotopic to the identity. It introduces the projective
skew-product FA : T d � S1 ! T d � S1 with

FA(�;w) :=

�
� + !;

A(�)v

jA(�)vj

�
;

which is also homotopic to the identity. Thus we can lift FA to a map eF A : T d � R !

T d � R of the form FA(�; y) = (� + !; y +  � (y)), where for every � 2 T d ,  �

is Z-periodic. The map  : T d � T ! R is called a lift of A. Let � be any probability
measure onT d �Rwhich is invariant by eF A, and whose projection on the first coordinate
is given by Lebesgue measure. The number

�(!;A) :=

Z
Td �R

 � (y) d�(�; y) mod Z

which depends neither on the lift  nor on the measure �, is called the fibered rotation
number of (!;A) (see Herman [1983] and Johnson and Moser [1982] for more details).
It is known that �(!;A) 2 [0; 1

2
].

The continuous counterpart of quasi-periodic cocycles is the quasi-periodic linear sys-
tems, i.e., the ordinary differential equations

(1-8) ẋ = A(�)x; �̇ = !;

where A is assumed to be in a Lie algebra g. The eigenvalue equations of continuous
quasi-periodic Schrödinger operator

(Lq;!;�y)(t) = �y
00

(t) + q(� + !t)y(t) = Ey(t)(1-9)

are equivalent to the linear systems �
ẋ = VE;q(�)x

�̇ = !
(1-10)
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where

VE;q(�) =

�
0 1

q(�) �E 0

�
2 sl(2;R):

The Poincaré map of the flow of (1-8) in fact defines a quasi-periodic cocycle. In
converse, quasi-periodic cocycles close to constant can be embedded into the flow of quasi-
periodic linear systems (You and Zhou [2013]). So there are paralell concepts, methods
and theories for cocycles and systems.

Uniform hyperbolicity, the Lyapunov exponents, the rotation number and the accelera-
tion are important concepts and quantities in the study of the dynamics of quasi-periodic
cocycles and quasi-periodic linear systems. The central problems include positivity, conti-
nuity and regularity of the Lyapunov exponents, absolute continuity and Hölder continuity
of the rotation number. Avila’s acceleration is an important new index, its relation with
dynamics and spectral theory has not been sufficiently explored.

1.3 Relations between operators and dynamical systems. For simplicity, the Lya-
punov exponent, the rotation number and the IDS of (1-6) or (1-10) will be simply denoted
by L(E); �(E) and N (E) when V and ! are fixed. The spectral theory of (1-1) (respec-
tively (1-4)) are closely related to the dynamics of the one parameter family Schödinger
cocycles (1-6) (respectively (1-10)) where the energy E 2 R serves as parameter. Full
understanding of the one parameter family of dynamical systems (1-6) or (1-10) would
lead to a full understanding of the spectral theory of the Schrödinger operators (1-1) or
(1-4).

There are some classical relationships between the spectrum of (1-1) (respectively
(1-4)) and the dynamics of (1-6) (respectively (1-10)). It is known that E … Σ if and
only if the corresponding Schrödinger cocycle (!; SV

E (�)) is uniformly hyperbolic. IDS
is the average of the spectral measure, which relates transparently to the rotation number
by the formula N (E) = 1 � 2�(E) and relates to the Lyapunov exponent through the
Thouless formula

L(E) =

Z
log jE �E 0

j dN (E 0):

Moreover, by Kotani’s theory (Kotani [1984]), the absolutely continuous spectrum is the
essential closure of the energies E such that (!; SV

E ) has zero Lyapunov exponent. To
obtainmore precise information of the spectrum and the spectral measure, we need another
tool: almost reducibility, which has been proved to be very powerful. In this survey, we
will emphasize the applications of almost reducibility in the study of the spectral theory
of the quasi-periodic Schrödinger operators.
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2 Almost Reducibility

An analytic cocycle (!;A) defined in (1-7) is said to be reducible if it can be conjugated
to a constant cocycle, i.e., there exist B 2 C!(2T d ;G) and C 2 G such that

B(� + !)�1A(�)B(�) = C:

Similarly, an analytic quasi-periodic linear system defined in (1-8) is said to be reducible
if there exist B 2 C!(2T d ;G), C 2 g such that

@!B + BA � CB = C:

There are obstructions to the reducibility. The first obstruction is the presence of non-
uniformly hyperbolicity. The second obstruction comes from the arithmetic condition on
!. Usually, reducibility requires that ! is Diophantine, i.e.,

(2-1) min
l2Z

jhk; !i � l j >

�1

jkj�
; 0 ¤ k 2 Zd ;

with fixed 
; � > 1. Here (
; �) are called the Diophantine constants of !. Denote by
DC (
; �) the set of all (
; �)-type Diophantine ! andDC = [
;�>1DC (
; �) (DC is of
full measure). If ˛ 2 RnQ, let pn

qn
be the n�th continued fraction convergents of irrational

˛; then we define
ˇ(˛) = lim sup

n!1

ln qn+1

qn

:

ˇ(˛) measures how Liouvillean ˛ is. Obviously if ˛ 2 DC , then ˇ(˛) = 0.
A quasi-periodic cocycle is in general not reducible when ˛ is Liouvillean. A weaker

concept than reducibility is almost reducibility. An analytic cocycle (!;A) is said to be
almost reducible if there exist a sequence of conjugationsBn 2 C!

hn
(2T d ;G), a sequence

of constantmatricesAn 2 G and a sequence ofFn 2 C!
hn
(T d ; g) converging to zero inC!

topology, such that Bn conjugates (!;A) to (!;Ane
Fn(�)). (!;A) is called weak almost

reducible if hn ! 0, and strong almost reducible if hn ! h0 > 0. Some problems in the
spectral theory needs strong almost reducibility and even require very precise estimates on
Bn and Fn. Almost reducibility with more precise estimates is refered to as quantitative
almost reducibility. For applications in the spectral theory of Schrödinger operators, the
most interesting cases are G = SL(2;R) and g = sl(2;R).

Almost reducibility is useful and important since it prescribes a domain of applicability
of local theories of cocycles close to constant (Avila [2010]). Due to its importance in
the theory of dynamical systems and the spectral theory of quasi-periodic Schrödinger
operators, reducibility has received much attention.
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2.1 Perturbative reducibility. The rotation number of quasi-periodic linear system
or quasi-periodic cocycle plays an important role in reducibility theory and its application
to the the spectrum theory. We say that the rotation number � is rational with respect to
(w.r.t. for short) ! if � = 1

2
hk0; !i for some k0 2 Z2, and to be Diophantine w.r.t. !,

with constants 
; � > 1, if

min
l2Z

jhk; !i � 2� � l j �

�1

jkj�
; k 2 Z2:

We denote by DC!(
; �) the set of all such �. It is well known that the union DC! =

[
;�>1DC!(
; �) is a full measure subset of R.
The reducibility of quasi-periodic linear systems (1-10) and its applications in the spec-

tral theory were initiated by Dinaburg and Sinaĭ [1975], based on classical KAM the-
ory, they proved that if q is analytic and sufficiently small, then (1-10) is reducible for
�(E) 2 DC!(
; �). Dinaburg and Sinai’s reducibility result implies the existence of ab-
solutely continuous spectrum of the Schrödinger operator (1-4). The first breakthrough
was due to (Eliasson [1992]), who proved the following:

Theorem 2.1. Eliasson [ibid.] Suppose that ! 2 DC (�; 
) and q is analytic and suffi-
ciently small, then (1-10) is weak almost reducible for allE. Moreover (1-10) is reducible
if �(E) 2 DC! or rational w.r.t !.

The proof in Eliasson [ibid.] uses a crucial resonance-cancelation technique which was
introduced by Moser and Pöschel [1984] earlier. Eliasson [1992] work has profound im-
pact: Theorem 2.1 can describe the dynamical behavior for all parameters E, while the
classical KAM theory can only describe a positive measure set ofE. Theorem 2.1 implies
that, when the potential is analytic and small, the spectral measure of (1-9) is purely ab-
solutely continuous for all phases � , which shows that almost reducibility could play an
important role in the study of the spectrum of quasi-periodic Schrödinger operators. More-
over, the later non-perturbative and quantitative versions of Theorem 2.1 have been found
useful in the study of Cantor spectrum, gap estimates, Anderson localization, Hölder con-
tinuity of IDS and even more, which we will review separately in the following sections.

Theorem 2.1 holds for more general quasi-periodic cocycles A 2 C!(T d ;G) with
A close to some constant (Chavaudret [2013] and Krikorian [1999b,a]), even for finite
smooth case (Cai, Chavaudret, You, and Zhou [2017]). We remark that all the above
mentioned results are perturbative, i.e., the smallness of q depends on the frequencies !
through the Diophantine constants (
; �). The perturbative reducibility result is optimal
when d � 2 in the discrete case and d > 2 in the continuous case as shown by a counter-
example of Bourgain [2002]. However, when d = 2 in the continuous case and d = 1 in
the discrete case, one can expect more. In the following we shall restrict our attention to
these cases.
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2.2 Non-perturbative reducibility. The non-perturbative reducibility means that the
smallness of the perturbation does not depend on the Diophantine constants (
; �) of ˛.
The non-perturbative reducibility was first proved by Puig [2006] for Schrödinger co-
cycles (˛; SV

E (�)) with one frequency ˛ 2 RnQ. However, the proof, which is based
on Aubry duality (Aubry and André [1980] and Gordon, Jitomirskaya, Last, and Simon
[1997] and Anderson localization results of Bourgain and Jitomirskaya [2002a], doesn’t
work for the continuous linear systems. Hou and You [2012] gave a non-perturbative
version of Theorem 2.1 in the continuous case.

Theorem 2.2. Hou and You [ibid.] Let h > 0 and ! = (˛; 1) with ˛ 2 RnQ: Consider�
ẋ = (A+ F (�))x

�̇ = !
(2-2)

with A 2 sl(2;R) and F 2 C!
h
(T 2; sl(2;R)). Then there exists ı = ı(A; h) >

0 depending on A; h but not on ˛, such that system (2-2) is weak almost reducible if
supjIm� j<h jF (�)j < ı. Moreover (2-2) is reducible if! is Diophantine and �(E) 2 DC!

or rational w.r.t !.

Remark 2.1. By an embedding theorem of You and Zhou [2013], one sees that the same
result in Theorem 2.2 holds for SL(2;R) cocycles with one frequency.

We remark that Theorem 2.2 works for any ˛ 2 RnQ not merely Diophantine fre-
quency, its proof is based on KAM and Floquet theory. Before Hou and You [2012],
Avila, Fayad, and Krikorian [2011] proved that for any analytic SL(2;R) cocycles (˛;A)
which is close to constant, for any ˛ 2 RnQ, the cocycles are analytic rotations reducible
(analytic conjugacy to a cocycle with values in SO(2;R)) for full measure rotation num-
ber, their proof is based on “algebraic conjugacy trick” whichwas first developed by Fayad
and Krikorian [2009].

2.3 Strong almost reducibility andQuantitative almost reducibility. We remark that
in the above mentioned almost reducibility results, the convergence to constants occurs
on analytic strips of width going to zero. Breakthrough belongs to Avila and Jitomirskaya
[2010]. Based on almost localization and Aubry duality, Avila and Jitomirskaya [ibid.]
gave a non-perturbative strong almost reducibility result for Schrödinger cocycles with
a single frequency ˛ 2 DC and small potentials. Avila [2008] generalized the result to
ˇ(˛) = 0 with much more delicate estimates. Chavaudret [2013] proved a strong almost
reducibility result in the local regime for multiple Diophantine frequencies. However, as
wementioned, in spectral applications, we need quite delicate quantitative estimates, while
Chavaudret’s estimates are not enough to give interesting consequence in applications. Re-
cently, Leguil, You, Zhao, and Zhou [2017] gave another strong almost reducibility result
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with more precise estimates. As a consequence, several interesting spectral applications
were obtained. We will explain the applications in Section 3.

2.4 Global reducibility. In all the results above, we assume that the cocycle or system
is close to a constant. For cocycles not close to a constant, Kotani’s theory (Kotani [1984])
essentially asserts that there is an almost surely dichotomy between non-uniform hyper-
bolicity and L2 rotations-reducibility of the cocycles (˛; SV

E ). L2-conjugation can be
further proved to be smooth by a renormalization scheme developed by Avila and Kriko-
rian [2006, 2015] and Krikorian [2004]. Thus for any ˛ 2 RnQ, and for a:e:E 2 R;
(˛; SV

E ) is either analytically rotations reducible or non-uniformly hyperbolic (Avila and
Krikorian [2006] and Avila, Fayad, and Krikorian [2011]).

The real breakthrough is Avila’s global theory for one frequency analytic SL(2;R) co-
cycles Avila [2015a]. Avila classified (˛;A) 2 RnQ�C!(T ; SL(2;R)), which is not uni-
formly hyperbolic, into three classes according to the Lyapunov exopents and acceleration:
supercritical, subcritical and critical. A cocycle (˛;A) is supercritical, if L(˛;A) > 0, it
is called subcritical, if L(˛;A(z)) = 0 for jIzj � ı, it is called critical otherwise. We say
thatH is acritical if (˛; Sv

E ) is not critical for allE 2 Σ. The main result in Avila’s global
theory is the following:

Theorem 2.3. Avila [ibid.] Let ˛ 2 RnQ. Then for a (measure-theoretically) typical
analytic potential V 2 C!(T ;R), the operatorHV;˛;� is acritical.

Avila’s global theory is crucial in the study of the spectral theory of Schrödinger opera-
tors, especially when the potential is not small but the corresponding Schrödinger cocycles
are still in the subcritical region. The cornerstone in Avila’s global theory is his Almost
Reducibility Conjecture(ARC): subcriticity implies almost reducibility, which has been
solved completely by Avila [2010, n.d.(b)].

Theorem 2.4 (Avila [2010, n.d.(b)]). Let A 2 C!(T ;SL(2;R)). Then (˛;A) is strong
almost reducible if it is subcritical.

However, we remark that sometimes Avila’s global almost reducibility does not contain
sufficient estimates on the conjugations(since it deals with global cocycle directly). In
applications, we have to cook it with finer local quantitative almost reducibility results.

3 Applications to quasi-periodic Schrödinger operators

Quasi-periodic Schrödinger operators are mathematical models for many subjects in quan-
tum physics including quantum Hall effect and the nature of quasi-crystal. It is also a
subject to test the power of mathematical theories and methods, thus has attracted much
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attentions, which we refer to survey articles of Damanik [2017], Jitomirskaya [2007],
Marx and Jitomirskaya [2017], Last [2005], and Simon [1982]. In this survey we will
only present some of them which are closely related to the theory of almost reducibility,
readers are invited to consult the former references for other interesting results.

3.1 Spectrum of quasi-periodic Schrödinger operators. The spectrum Σ is one of
most important objects in the spectral theory of quasi-periodic Schrödinger operators.

3.1.1 Cantor spectrum. Cantor spectrumwas conjectured to be a generic phenomenon
for one dimensional almost periodic Schrödinger operator (Problem 6 of Simon [1982]).
There are few exceptions in this case (the so called finite gap potentials). In one frequency
case, there is no counter-examplewith big potential so far, but the recent work of Goldstein-
Schlag-Voda shows that finite gap happens for multi-frequency case (Goldstein, Schlag,
and Voda [2017]).

However, to prove the existence of Cantor spectrum is not an easy task. Eliasson [1992]
proved that for any given ! 2 DC (
; �), HV;!;� has Cantor spectrum for generic small
analytic potentials. His proof is based on Moser-Pöschel argument (Moser and Pöschel
[1984]) and the fact: if �(E) is rational w.r.t!, then (!; SV

E ) is reducible. Eliasson’s proof
applies to the cocycle case, however his proof is not constructive, which can not provide
any concrete example.

In the discrete case, the situation is better. Goldstein and Schlag proved that for any
fixed non-constant analytic potential, in the supercritical region, the spectrum is a Cantor
set for almost all ˛ 2 RnQ (Goldstein and Schlag [2011]). In C 0-topology, Avila-Bochi-
Damanik proved Cantor spectrum for any fixed totally irrational vector ! 2 T d and
generic V 2 C 0(T d ;R) (Avila, Bochi, and Damanik [2009]). In the case of C k-topology
(1 � k � 1 or even in analytic category), based on Avila [2011] and Goldstein and
Schlag [2011], one can prove that for generic ˛ 2 RnQ and generic V 2 C k(T ;R), the
spectrum ofHV;!;� is a Cantor set, one can consult footnote 1 of J. Wang, Zhou, and Jäger
[2016] for the outline of this proof.

The most remarkable progress is for almost Mathieu operator. AMO H�;˛;� has been
conjectured for a long time to have Cantor spectrum for irrational ˛ (consult a 1964 pa-
per of Azbel [1964]). This conjecture has been dubbed the Ten Martini Problem by Si-
mon [2000], after an offer of Kac [n.d.] in 1981. Since when it was posed, Ten Martini
Problem became the central problem in the spectral theory of quasi-periodic Schödinger
operators and attracted a lot of attentions. Finally, it was completely solved by Avila and
Jitomirskaya [2009] (see the references therein for partial advances). One main ingredient
of the proof is the reducibility: the cocycle cann’t be reducible to rotations for all E in an
interval.
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We should also mention the works by Sinaĭ [1987] and Y. Wang and Z. Zhang [2017]
where the Cantor spectrumwas proved forH�V;˛;� with sufficiently large � andC 2 cosine-
like V . So far, those are the only known concrete operators having Cantor spectrum.
Particularly, there is no concrete examples of Cantor spectrum in the continuous time case.
In a forthcoming paper, we will give more concrete examples of Cantor spectrum for both
discrete and continuous quasi-periodic Schrödinger operators based on reducibility (Hou,
Shan, and You [n.d.]).

3.1.2 All gaps are open. Certainly, one should not expect that all gaps are open for
all analytic quasi-periodic Schrödinger operators because of, as we mentioned before, the
existence of the finite gap potentials. But AMO is special. Motivated by Hofstadter’s
numerical result (Hofstadter [1976]), Kac [n.d.] raised the well-known question: Are all
possible spectral gaps of AMO open? The problem was named as the Dry Ten Martini
Problem by Simon [1982]. The Dry Ten Martini Problem was also named as Ten Martini
Conjecture by physicists, which has particular importance in quantum physics such as the
Integer QuantumHall effect. Someworks in physics have been done under the assumption
that the Dry Ten Martini Problem is true, see i.g. Osadchy and J. E. Avron [2001].

Obviously, Dry Ten Martini Problem automatically implies Ten Martini Problem. Cer-
tainly people want to solve this original problem of Kac. In the last thirty years, sub-
stantial progresses were made by Choi, Elliott, and Yui [1990], Puig [2004], Avila and
Jitomirskaya [2009, 2010]. However, the problem has not been completely solved for any
fixed �.

Recently, Avila, You, and Zhou [2016] gave a complete answer to the Dry Ten Martini
Problem for the non-critical case � ¤ 1 by quantitative almost reducibility.

Theorem 3.1. Avila, You, and Zhou [ibid.]H�;˛;� has all spectral gaps open for all irra-
tional ˛ and all � ¤ 1.

The strategy of Puig’s proof Puig [2004] is to prove that (˛; S�
E ) is reducible but it

cann’t be reduced to (˛; Id ) if N�;˛(E) is rational w.r.t ˛. Developing this idea, Avila
and Jitomirskaya solved the problem for ˛ 2 DC , and � ¤ 1 (Avila and Jitomirskaya
[2010]). However, if ˇ(˛) > 0 as in our case, one cann’t expect that the cocycle is still
reducible. However, we can show that the cocycle can not be almost reducible to (˛; Id )
with fast decay of kBnkhkFnkh. Once we have this, Theorem 3.1 can be proved by a
modified Moser-Pöschel argument. We finally remark that the Dry Ten Martini problem
has not been completely solved for � = 1.

3.1.3 Estimate of the spectral gaps. RecallGk , the spectral gaps with labelling k. The
well-known Dry Ten Martini Problem asks whether Gk is empty or not for AMO. Further
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problem is: how big the gaps are? More precisely, can we give any lower bound or upper
bound forGk? For AMO, Leguil, You, Zhao, and Zhou [2017] proved the following result
by quantitative almost reducibility:

Theorem 3.2. Leguil, You, Zhao, and Zhou [ibid.] For ˛ 2 DC, and for any 0 < � < 1,
there exist constants C = C (�; ˛; �) > 0, C̃ = C̃ (�; ˛), such that for all k 2 Znf0g,

C̃ ��̃jkj
� jGk(�)j � C��jkj; if 0 < � < 1;

C̃ ���̃jkj
� jGk(�)j � C���jkj; if 1 < � < 1;

where �̃ > 1 is a numerical constant, jGk(�)j denotes the length of Gk(�).

For general analytic potential, Leguil, You, Zhao, and Zhou [ibid.] also proved that
jGk(V )j � "

2
3

0 e
�rjkj for all k 2 Zd nf0g and any r 2 (0; h) if supj=xj<h jV (x)j < "0 is

small enough and ! 2 DC and V 2 C!
h
(T d ;R). Before Leguil, You, Zhao, and Zhou

[ibid.], Damanik and Goldstein [2014] have shown that jGk(V )j � �0e
� h

2 jkj. We remark
that the proof in Damanik and Goldstein [ibid.] is based on the localization argument,
which cannot be directly applied to the discrete case, while the proof in Leguil, You, Zhao,
and Zhou [2017] is based on reducibility, so it works equally well both for the continuous
time operators and discrete time operators. For more history on the study of the upper
bounds, one may consult Leguil, You, Zhao, and Zhou [ibid.] and the references therein.

In methodology, for estimating of the spectral gaps we need to analyze the behavior
of Schrödinger cocycle at the edge points of the spectral gaps, where the cocycles are
reducible to constant parabolic cocycles. The crucial points for the gap estmate are the
proof of the exponential decay of the off-diagonal element of the parabolic matrix and the
exponential growth of the conjugacy with respect to the labelling k. Furthermore, in order
to prove the decay rate to be uniform with respect to the labelling k, we need the strong
quantitative almost reducibility result, i.e. the cocycle is almost reducible in a fixed band,
with precise estimates on the conjugations and the off-diagonal element of the (reduced)
parabolic matrix (Leguil, You, Zhao, and Zhou [ibid.]).

3.1.4 Homogeneous spectrum. we say thatΣ is�-homogenuous if for anyE 2 Σ and
any 0 < � � diamΣ, we have jS \ (E � �; E + �)j > �� for � > 0. We say thatHV;˛;�

has homogenuous spectrum ifΣ is homogenuous. The homogeneity of the spectrum plays
an essential role in the inverse spectral theory of almost periodic potentials(refer to the
fundamental work of Sodin and Yuditskii [1995, 1997]).

The exponential decay of the spectral gaps can be used to prove the homogeneity of
the spectrum.
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Theorem 3.3 (Leguil, You, Zhao, and Zhou [2017]). Let ˛ 2 SDC 1. For a (measure-
theoretically) typical analytic potential V 2 C!(T ;R), the spectrum ΣV;˛ is �-homoge-
neous for some 0 < � < 1. Especially, the spectrum is homogenuous for small analytic
potentials.

Homogeneity of the spectrum ΣV;˛ in the subcritical regime is derived from the upper
bounds of the spectral gaps and Hölder continuity of the IDS (Leguil, You, Zhao, and
Zhou [ibid.]). While the homogeneity in supercritical region was proved by Damanik,
Goldstein, Schlag, and Voda [2015]. Together with Theorem 2.3, one sees that the homo-
geneity of the spectrum is a typical phenomenon for analytic Schrödinger operators when
˛ is strong Diophantine. We remark that, at least in the subcritical region, strong Dio-
phantine is not necessary (Leguil, You, Zhao, and Zhou [2017]), however some kind of
arithmetic property is necessary. After Leguil, You, Zhao, and Zhou [ibid.], Avila, Last,
Shamis, and Zhou [n.d.] proved that there exists a dense set of Liouvillean frequencies ˛
such that Σ�;˛ of AMO is not homogeneous.

3.2 The spectral measure, IDS and Lyapunov exponent. The nature of the spectral
measure, IDS and Lyapunov exponent are central subjects in the spectral theory of quasi-
periodic Schrödinger operators, while the study of Lyapunov exponents is also a central
subject in smooth dynamical systems.

3.2.1 Anderson localization. There are two important results concerning Anderson lo-
calization in supercritical regime. The first result belongs to Jitomirskaya [1999], who
proved that for almost Mathieu operator, H�;˛;� has Anderson localization for a.e. � if
j�j > 1 and ˛ 2 DC . Another result belongs to Bourgain and Goldstein [2000], who
proved that up to a typical perturbation of the frequency, Anderson localization holds
through the supercritical regime. Comparing the two results above, the result of Jito-
mirskaya [1999] is for fixed frequency and typical phases (depending on the frequency),
while Bourgain and Goldstein [2000] is for fixed phase and typical frequencies (depending
on the phase). Both results are proved by the positivity of the Lyapunov exponent, which
is classical method for studying the pure point spectrum of the Schrödinger operators.

At first glance, the reducibility has no business with the Anderson localization spec-
trum since the point spectrum corresponds to the non-uniformly hyperbolicity which is
definitely not almost reducible. Surprisingly, one can use reducibility to study the point
spectrum, even Anderson localization and dynamical localization. This idea was first

1SDC is the set of strong Diophantine numbers, i.e., there exist 
; � > 0 such that

(3-1) inf
j 2Z

jn˛ � j j �



jnj(log jnj)�
; 8 n 2 Znf0g:
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appeared in You and Zhou [2013], and completely built in Avila, You, and Zhou [2017].
The bridge is the Aubry duality (Aubry and André [1980] and Gordon, Jitomirskaya, Last,
and Simon [1997]): Suppose that the quasi-periodic Schrödinger operator (1-1) with one
frequency has an analytic quasi-periodic Bloch wave un = e2�in' (n˛ + �) for some
 2 C!(T ;C) and ' 2 [0; 1), then the Fourier coefficients of  (�) satisfy the following
long range operator:

(3-2) (bHV;˛;'x)n =
X
k2Z

Vkxn�k + 2cos2�(' + n˛)xn = Exn;

where Vk is the Fourier coefficients of V (�). The converse is also true. We remark that the
almost Mathieu family fH2� cos;˛;� g�>0 is self-dual. The reducibility of (˛; SV

E (�)) will
provide analytic quasi-periodic Bloch waves of the operator (1-1) and thus will provide
eigenfunctions for its dual operator, so the general philosophy is that the full measure
reducibility of (˛; SV

E (�)) will imply Anderson localization of the dual operator bHV;˛;'

for almost every phases. Let us mention a recent work by Avila, You, and Zhou [2017]
for the almost Mathieu operators as an example.

Theorem 3.4. Avila, You, and Zhou [ibid.] If j�j > eˇ(˛), then H�;˛;� has Anderson
localization for a.e. � .

Note thatH�;˛;� has purely absolutely continuous spectrum for all � if j�j < 1 (Avila
[2008], Avila andDamanik [2008], Avila and Jitomirskaya [2010], and Jitomirskaya [1999]),
and H�;˛;� has purely singular continuous spectrum for all � if 1 � j�j < eˇ(˛) (Avila,
You, and Zhou [2017], J. Avron and Simon [1982], and Gordon [1976]). Now one sees
the sharp phase transition scenario for three types of the spectral measure for a.e. � , and
solves a conjecture of Jitomirskaya [1995], which is the corrected version of a conjecture
by Aubry and André [1980]. We remark that based on localization method, before Avila,
You, and Zhou [2017], Avila and Jitomirskaya [2009] proved thatH�;˛;� has Anderson lo-
calization for a.e. � , if j�j > e16ˇ(˛)/9. More recently, Jitomirskaya and Liu [n.d.] proved
a refined result of Avila, You, and Zhou [2017] with precise description on the localized
phases and the hierarchical structure of eigenfunctions. We also refer to Jitomirskaya and
S. Zhang [2015] for another interesting phase transition result, valid for general analytic
potentials.

For the proof of Theorem 3.4, a new criterion (which reveals the fact that nice asymptot-
ical distribution of the eigenfunctions implies Anderson localization) for establishing the
purity of the point spectrum was developed in Avila, You, and Zhou [2017], which applies
to general ergodic family of operators (one may consult Jitomirskaya and Kachkovskiy
[2016] for another proof but with same spirit). Compared with traditional localization ar-
gument, the trade off is the loss of precise arithmetic control on the localization phases.
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However, by this approach, we indeed establish a kind of equivalence between full mea-
sure reducibility of Schrödinger cocycles and Anderson localization of the dual operators.
The methods developed in Avila, You, and Zhou [2017] has further applications. For ex-
ample, it can be used to study the spectral properties at the transition line � = eˇ (Avila,
Jitomirskaya, and Zhou [2018]). In a forthcoming paper, we even show that it can be used
to study the dynamical localization of the long-range operator and a family of Schrödinger
operators on l2(Zd ). Finally, we remark that it has been an open question for a long time
whether in the supercritical regime,HV;˛;� with fixed Diophantine ˛ has Anderson local-
iztion for a.e. phase (consult Eliasson [1997] for partial advances). Our method might
provide a way to study this problem when the potential is a trigonometric polynomial. In
this case, Equation (3-2) naturally defines a 2d -dimensional cocycles, while the full mea-
sure reducibility is easy to establish, the difficulty remains in the proof is the purity of the
point spectrum.

3.2.2 Absolutely continuous spectrum. Absolute continuity of the spectral measure
is a traditional territory of reducibility. If the cocycles (˛; SV

E ) are reducible for positive
measure of E 2 Σ, then the operator has absolutely continuous spectrum (Dinaburg and
Sinaĭ [1975]). Based on Theorem 2.1, Eliasson [1992] proved directly that the spectral
measureHV;˛;� is absolutely continuous spectrum if the potential V is small enough and
˛ 2 DC . Recently, Avila [2008] gave a new understanding of Eliasson’s result based on
Gilbert-Person’s subordinacy theory Gilbert and Pearson [1987]: �˛;�;V jB is absolutely
continuous for all � 2 R where B is the set of E 2 R such that the cocycle (˛; SV

E ) is
bounded. Thus to obtain purely absolutely continuous spectrum, one only needs to show
that �˛;�;V (ΣnB) = 0. Note that by reducibility, we can prove that An are bounded
for almost all E in the spectrum Σ. However the bounds are not uniform, the proof of
�˛;�;V (ΣnB) = 0 relies on the measure estimate of E 2 Σ for any given bound. Based
on this idea, Avila [2008] proved purely absolutely continuous spectrum for general one
frequency analytic Schödinger operators if the potential is small and ˇ(˛) = 0. Recent
breakthrough also belongs to Avila [n.d.(b)], he shows that almost reducibility actually
implies pure absolutely continuous spectrum. Together with Theorem 2.3 and formly men-
tioned Bourgain-Goldstein’s result (Bourgain and Goldstein [2000]), it implies that typical
one frequency analytic Schödinger operators don’t have singular continuous spectrum.

Concerning the absolutely continuous spectrum, we alsomention thewell knownKotani-
Last conjecture (Kotani and Krishna [1988]). It says that if an one-dimensional ergodic
Schrödinger operator has absolutely continuous spectrum, then its potential is almost peri-
odic. By periodic approximation, Avila [2015b] constructed non-almost periodic Schrödinger
operators with absolutely continuous spectrum both for the discrete and continuous cases.
Another independent work was due to Volberg and Yuditskii [2014], they constructed,
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by inverse spectral theory, counter-examples in the discrete case (see also the example
Damanik and Yuditskii [2016] for the continuous case). The reducibility theory can also
provide another approach to construct counterexamples in the continuous case (You and
Zhou [2015]). The idea is that reducibility theory and subordinacy theory ensures the
existence of ac spectrum, while time scaling make the potential non-almost periodic.

3.2.3 Continuity of Lyapunov exponent and IDS. By Thouless formula and the non-
negativity of L(E), one knows that N (E) is always Log-Hölder continuous and that
the Hölder continuity of L(E) is equivalent to the Hölder continuity of N (E). IDS is
the average of the spectral measure, in general it is more regular than the spectral mea-
sure, in fact it is always continuous. However, behavior of the Lyapunov exponents of
quasi-periodic cocycles is very complicated. They could be discontinuous in the space of
smooth SL(2;R) cocycles (Bochi [2002] and Furman [1997] for C 0 case, Y. Wang and
You [2013] for smooth case). Different from the smooth case, the Lyapunov exponent is
alway continuous in the space of analytic SL(2;C) cocycles (Bourgain [2005b], Bourgain
and Jitomirskaya [2002b], and Jitomirskaya, Koslover, and Schulteis [2009]), even in the
space of higher dimensional GL(d;C) cocycles (Avila, Jitomirskaya, and Sadel [2014]).
The continuity of Lyapunov exponents implies that the set of the cocycles with positive
Lyapunov exponent is open in analytic topology. Together with the denseness result by
Avila [2011], one knows that the set of quasi-periodic cocycles with positive Lyapunov
exponent is open and dense in analytic topology, but this result is not true in the space of
smooth quasi-periodic cocycles (Y. Wang and You [2015]).

One could expect the Hölder continuity in analytic case when the freqencies satisfy
some arithmetic conditions. In the supercritical region, Goldstein and Schlag [2001]
proved the Hölder continuity of L(E) if V (x) is analytic and ˛ is strong Diophantine.
You and S. Zhang [2014] generalized Goldstein-Schlag’s result to all Diophantine ˛ and
some weaker Liouvillean ˛, which shows that the Diophantine condition on ! is not nec-
essary for the Hölder continuity of L(E). However, some kind of arithmetic assumptions
on ˛ is neccessary (Bourgain [2005a]). Recently, Avila, Last, Shamis, and Zhou [n.d.]
proved that IDS ofH�;˛;� is not even weak Hölder if ˛ is extremely Liouvillean.

For Diophantine frequency, the modulus of the Hölder continuity is not very clear so
far. It is already known that it can not be better than 1

2
-Hölder. In the supercritical regime,

and if furthermore the potential V is in a small L1 neighborhood of a trigonometric poly-
nomial of degree d , then the IDS is ( 1

2d
� �)-Hölder for all � > 0 (Goldstein and Schlag

[2008]), and it is exactly 1
2
-Hölder for AMO (Avila [2008] and Avila and Jitomirskaya

[2010]). However, ( 1
2d

� �)-Hölder continuity is surely not optimal. By reducibility argu-
ment, we conjecture that the modulus of Hölder continuity of L(E) is at least 1

2N
, where

N is the acceleration of the Schrödinger cocycle (˛; SV
E (�)).
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For small analytic potentials, the reducibility argument was used by Hadj Amor [2009]
to prove the 1

2
-Hölder continuity of the IDS and the Lyapunov exponent if ! is Diophan-

tine. However when dealing with subcritical regime, her approach does not work since the
estimates need explicit dependence on the parameters. In fact, when reducing the global
potential to local regimes by Avila’s global theory, the explicit dependence of the parame-
ters is lost. Based on Thouless’s formula, Avila and Jitomirskaya [2010] developed a new
understanding of the problem. In order to prove that IDS is 1

2
Hölder, it is sufficient to

prove
L(E + i�) � L(E) � �1/2;

which relates to the growth of cocycles kAnkC0 . Thus in the almost reducible scheme,
one only needs to estimate the C 0 norm of kBnk and kFnk. By this method and Avila’s
global theory, one can show in the subcritical region for ˇ(˛) = 0, then IDS is 1

2
-Hölder

continuous (Avila [2008], Avila and Jitomirskaya [2010], Avila [n.d.(b)], and Leguil, You,
Zhao, and Zhou [2017]). The method also works for finite smooth potentials, recently Cai,
Chavaudret, You, and Zhou [2017] proved the 1

2
-Hölder continuity of IDS for operators

with finite smooth small potentials and Diophantine frequency.

3.2.4 Positivity of Lyapunov exponent. The positivity of L(E) is also a big issue.
Actually, it is difficult to compute. Herman [1983] proved that, by the subharmonicity
method, L(E) � ln j�j for almost Mathieu operator H�;˛;� with j�j > 1. By continuity
of Lyapunov exponent (Bourgain and Jitomirskaya [2002b]), it was further proved that

L(E) = maxf0; ln j�jg;

for E 2 Σ (consult Avila [2015a] for another elegant proof). Herman’s subharmonicity
trick also works for trigonometric polynomials �V (x)with large � (Herman [1983]). The
generalization to arbitrary one-frequency nonconstant real analytic potentials was given
by Sorets and Spencer [1991], who proved that if j�j � �0, then

(3-3) L(E) � ln j�j � C;

Here, C and � depend on V but not on ˛ (consult Bourgain [2005b], Bourgain and Gold-
stein [2000], Duarte and Klein [2014], Goldstein and Schlag [2001], and Z. Zhang [2012]
for simplified proofs and generalizations) .

Compared with the very precise estimate of L(E) for the almost Mathieu operators,
the formula (3-3) is too rough. Based on a generalized Thouless formula by Haro and Puig
[2013] and the large deviation theorem for identically singular cocycles, Duarte and Klein
[n.d.] showed that

L(E) = log�+

Z
jV (�) �

E

�
j d� +O(e�c(ln j�j)b

);
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where c > 0 and 0 < b < 1. Han and Marx [2018] further improved the bound to

L(E) = log�+

Z
jV (�) �

E

�
j d� +O(j�j

� 2
2N+1 );

where N = N (V ) is a large number. The proof of Han and Marx [ibid.] relies on estimat-
ing the acceleration of the cocycle which is defined by Avila [2015a]. In a forthcoming
paper, we will show that, based on almost reducibility and Aubry duality,

L(E) = log�+

Z
jV (�) �

E

�
j d� +O(�� 1

2d );

for trigonometric polynomial potentials of order d and sufficiently large �.
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Abstract

We review our works on the nonlinear asymptotic stability and instability of the
Couette flow for the 2D incompressible Euler dynamic. In the fits part of the work
we prove that perturbations to the Couette flow which are small in Gevrey spaces
Gs of class 1/s with s > 1/2 converge strongly in L2 to a shear flow which is
close to the Couette flow. Moreover in a well chosen coordinate system, the solution
converges in the same Gevrey space to some limit profile. In a later work, we proved
the existence of small perturbations inGs with s < 1/2 such that the solution becomes
large in Sobolev regularity and hence yields instability. In this note we discuss the
most important physical and mathematical aspects of these two results and the key
ideas of the proofs.
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1 Introduction and physical background

The theory of hydrodynamic stability at high Reynolds number started already in the 19th
century, with the likes of Stokes, Reynolds, Kelvin, Orr and others. Some of the first
early theoretical works were done by Rayleigh [1879/80, 1887/88, 1895/96], including for
example, the inflection point theorem of the spectral instability on inviscid planar shear
flows, and the exact solutions for Coutte flow in the absence of boundaries constructed
by Kelvin [1887] which showed linear stability independent of Reynolds number. These
solutions were later followed up by Orr [1907], Dikiĭ [1961], and Case [1960] to show lin-
earized stability of the inviscid Couette flow also in a channel. The early experiments of
Reynolds [1883] clearly showed instability at all high Reynolds number for flow in a pipe,
which although that linearized problem still to this day has not been conclusively solved,
seemed slightly in contradictionwithmost of the theoretical results of the time. Kelvin pro-
posed the solution to this ‘paradox’ (sometimes called the ‘Sommerfeld paradox’ Li and
Lin [2011]): although the fluid might be stable at all Reynolds numbers, as the Reynolds
number increases, the fluid becomes increasing sensitive to small perturbations. This phe-
nomena now often called subcritical transition and it is ubiquitous in 3D fluid mechanics
(as well as plasma physics). It has also been observed in cases with spectral instability
at high Reynolds number in the sense that the flows often go unstable at lower Reynolds
number than that predicted by linearized theory or in a way completely unrelated to the
unstable eigenvalues; see e.g. Drazin and Reid [1982], Schmid and Henningson [2001],
and Yaglom [2012] and the references therein for discussions on this effect in the physics
literature. In the case of linearized stability at all Reynolds number, we could then phrase
the following question: given a norm k � kX , and an initial perturbation ũ, we could look
for a 
 = 
(X) such that:

kũkX . Re�

) stability and linear-dominated behavior 8t;(1a)

kũkX � Re�

) (potential) nonlinear-dominated behavior and instability:(1b)

The exponent 
 is sometimes called the transition threshold. More recent insights show
that there are two interesting aspects of this effect:

• a/ The linearized problem may contain transient growth, and these could be trig-
gering nonlinear instabilities, especially if the growth becomes larger as Reynolds
number goes to infinity.

• b/ The dependence on on the stability thresholdmay depend strongly on the topology
in which one measures perturbations. It is this aspect that we will be reviewing here.

Modern research shows several fundamental differences between 2D and 3D hydro-
dynamic stability, both at the linear and nonlinear level. This is due to the fact that (A)
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the 3D linearized equations have a wider range of more extreme transient growth mech-
anisms than 2D and (B) 3D has a much more complicated structure of ‘resonances’, that
is, the weakly nonlinear structure is much more complicated (see below for more discus-
sion). Unlike what might be suggested by Squire’s theorem Squire [1933], as a result,
2D stability studies do not seem to give significant physical insight into 3D fluids in the
sense that theoretical or numerical results on 2D hydrodynamic stability give no specific,
direct information on 3D flows. However, many important physical applications are well-
approximated to leading order by 2D fluids, such as many atmospheric and oceanic phe-
nomena, so it is still important to give careful consideration to 2D fluids. Moreover, when
it comes to hydrodynamic stability questions, the dynamics of 2D fluids are significantly
simpler than 3D fluids in many ways, and hence it is reasonable to begin mathematical
studies with the former rather than the latter: a theorem about 2D flow in a channel does
not give much specific physical insight into 3D flow in a pipe, but the mathematics devel-
oped therein hopefully will. Indeed, this was clear in the works Bedrossian andMasmoudi
[2013] and Bedrossian, Masmoudi, and Vicol [2016] vs Bedrossian, Germain, and Mas-
moudi [2015a,b, 2017a]: the dynamics and nonlinear structures might be very different
in 2D and 3D, but nevertheless, the subsequent proofs all used certain mathematical tools
originally designed for the stability of 2D Euler in Bedrossian and Masmoudi [2013], or
at least used ideas heavily influenced by the insight obtained therein.

With the above discussions inmind, wewill focus in this paper on the 2D case, and even
mostly on the simpler case of infinite Reynolds number, e.g. the 2D incompressible Euler
equations (we will see that the inviscid problem is a reasonable place to start, even though
(1) is phrased in terms of Reynolds number). See Bedrossian, Germain, and Masmoudi
[2017b] for a review of the related 3D stability problems. Moreover, we are interested
in nonlinear questions, and progress has mostly only been made on one shear flow: the
Couette flow u = (y; 0) on (x; y) 2 T � R. In this case, the 2D Euler system in the
vorticity formulation with the background shear flow becomes:

(2)
�
!t + y@x! + U � r! = 0;

U = r?(∆)�1!; !(t = 0) = !in:

Here, (x; y) 2 T � R, r? = (�@y ; @x) and (U;!) are periodic in the x variable with
period normalized to 2� . The physical velocity is (y; 0) + U where U = (U x ; U y)

denotes the velocity perturbation and the total vorticity is �1 + !. In what follows, we
define the streamfunction  = ∆�1!.

We first state the result of Bedrossian and Masmoudi [2013] and then attempt to eluci-
date some of the interesting physical and mathematical concepts which are involved in the
proof. We then state the instability result of Deng and Masmoudi [2018] which shows the
criticality of the G1/2 space, namely the Gevrey space of class 2. It is worth noting that
this space appears here due to a nonlinear mechanism, not a linear one. The relationship
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with Landau damping in the Vlasov equations of plasma physics and the recent work of
Mouhot and Villani [2011] will also be discussed.

2 Linear dynamics

Linearizing the 2D Euler equations as written in (2) just means dropping the quadratic
term: �

@t! + y@x! = 0

∆� = !:
(3)

This is readily solved:

!(t; x; y) = !in(x � ty; y)b!(t; k; �) = b!in(k; �+ kt):(4)

From (4) we can see a linear-in-time transfer of enstrophy to high frequencies. Since∆�1

gains two derivatives, we should intuitively guess that Pk¤0� decays like hti�2 in L2.
This might seem circuitous for solving the linear problem, but let us follow Kelvin and
Orr and introduce the following change of variables:

z = x � ty(5a)
f (t; z; y) = !(t; z + ty; y) = !(t; x; y)(5b)
�(t; z; y) =  (t; z + ty; y) =  (t; x; y):(5c)

This is nothing more than rewinding by the linear propagator associated to the Couette
flow. From (3) we have

@tf = 0(6a)

@zz� + (@y � t@x)
2� = f;(6b)

which gives:

�̂(t; k; �) = �
f̂ (t; k; �)

k2 + j� � kt j2
= �

!̂in(k; �)

k2 + j� � kt j2
:(7)

From (7) we derive the fundamental decay-by-mixing estimate: for any � 2 [0;1) and
ˇ 2 [0; 2],

kP¤0�kH � .
1

htiˇ
kf kH �+ˇ =

1

htiˇ
k!inkH �+ˇ ;(8)
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where we are usingH � to denote the L2 Sobolev norm of order � . Due to

U x(t; x; y) = �@y (t; x; y) = �@y (�(t; x � ty; y)) = ((@y � t@x)�) (t; x � ty; y)

U y(t; x; y) = @x (t; x; y) = @x (�(t; x � ty; y)) = (@x�)(t; x � ty; y);

we get the inviscid damping predicted by Orr [1907]:

kP¤0U
x
kL2 . htikr�kL2 . hti�1

k!inkH3(9a)

kU y
kL2 . k@x�kL2 . hti�2

k!inkH3 :(9b)

This shows that on the linear level, we have the convergence (y + U x ; U y) ! (y+ <

U x
in > (y); 0) in L2 as time goes to infinity. Hence, the velocity field converges strongly

back to a shear flow but not back to the Couette flow. As discussed in the introduction,
Orr had a second observation from (7), which is that modes with �k > 0 undergo first a
transient growth in � before decaying. Indeed, the denominator (7) is minimal the time
t = �

k
, which Orr called the critical time. Therefore, if j�j >> jkj, the velocity field is

amplified by a large factor between t = 0 and the critical time t = �
k
. In physical terms,

this transient growth is due to the fact that the mode of the vorticity in question is initially
well-mixed, and then proceeds to unmix under the Couette flow evolution. See figure
(1) for how this mixing/un-mixing effect appears on each Fourier mode of the vorticity.
The relevance of the Orr mechanism to hydrodynamic stability has been debated over
the years; see e.g. Orr [1907], Boyd [1983], and Lindzen [1988] and Yaglom [2012]
for a detailed account of how the literature on the topic developed. However, our work
verifies the crucial importance of the Orr mechanism for nonlinear stability problems at
high Reynolds numbers in 2D fluid mechanics, or at least for the Couette flow.

Figure 1: A mode-by-mode visualization of the Orr mechanism: the arrows rep-
resent the background flow, while the stripes are the level sets of the function
eik(x�ty)+i�y with �/k � 1. Time increases from left to right, and the center
image is the critical time t = �/k. The full linearized solution is simply a super-
position of these tilting waves.
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3 Overview of the mathematical results

In this section we will summarize the results of Bedrossian and Masmoudi [2013] and
Deng and Masmoudi [2018] in the 2D Euler equations. Each has analogies in the Vlasov-
Poisson equations of kinetic theory. The original work of Mouhot and Villani proved
the nonlinear Landau damping in T d � Rd , as predicted by the linearized Vlasov (see
also Bedrossian, Masmoudi, and Mouhot [2016b]). These results are the analogue of the
positive stability results of Bedrossian and Masmoudi [2013] (Theorem 1 below), though
broadly speaking, Theorem 1 seems to require a much more subtle proof for several rea-
sons. For the instability results, something related to Theorem 2 below was proved previ-
ously for Vlasov-Poisson in Bedrossian [2016] in Sobolev spaces; both the proof and the
nature of the nonlinear behavior demonstrated by the solutions are different, but closely
related.

3.1 Stability result. The main result of Bedrossian and Masmoudi [2013] is the fol-
lowing, which shows that if one is willing to take Gevrey-1/2 regularity on the initial data,
the nonlinear 2D Euler equations display an inviscid damping essentially the same as that
predicted by Orr.

Theorem 1. For all 1/2 < s � 1, �0 > �0 > 0 there exists an �0 = �0(�0; �
0; s) � 1/2

such that for all � � �0 if !in satisfies

(10)
Z

T�R
(1 + jyj) � j!in(x; y)j dxdy � ";

Z
T�R

!in(x; y) dxdy = 0 and

k!ink
2
�0

=
X

k

Z
j!̂in(k; �)j

2
e2�0jk;�j

s

d� � �2;

then there exists f1 with
R
f1dxdy = 0 and kf1k�0 . � such that

(11) k!(t; x + ty +Φ(t; y); y) � f1(x; y)k�0 .
�2

hti
;

where Φ(t; y) is given explicitly by

Φ(t; y) =
1

2�

Z t

0

Z
T
U x(s; x; y)dxds = u1(y)t + �(t; y);(12)
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with u1 = @y@
�1
yy

1
2�

R
T f1(x; y)dx and j�(t; y)j . �2. Moreover, the velocity field U

decays as

k

Z
U x(t; x; �)dx � u1k�0 .

�2

hti
;(13a)

kU x(t) �

Z
U x(t; x; �)dxkL2 .

�

hti
;(13b)

kU y(t)kL2 .
�

hti2
:(13c)

The above result was extended to a uniform-in-Reynolds number statement about the
2D Navier-Stokes equations in Bedrossian, Masmoudi, and Vicol [2016] (note, that such
a statement is always strictly harder than an infinite Reynolds number result). This work
also shows that the mixing due to the Couette flow enhances the effect of the viscosity, an
effect which plays an important role in 3D as well Bedrossian, Germain, and Masmoudi
[2015a,b, 2017a]. These papers show that for 2D Couette flow, in Gevrey-2 regularity,
there is no subcritical transition. Note that in 3D, there is subcritical transition, even in
Gevrey-2 Bedrossian, Germain, and Masmoudi [2015b].

3.2 Instability result. It is known that the dynamics of Theorem 1 may not happen
in low regularities. In Lin and Zeng [2011a], time periodic solutions to Equation (2) are
constructed in Sobolev spacesH s where s < 3/2; for Vlasov-Poisson equations, the same
result was proved in Lin and Zeng [2011b] and, as mentioned before, Bedrossian [2016]
has proved instability in any Sobolev spaceH s .

The main result of Deng and Masmoudi [2018] fills the gap between these stability and
instability results, by proving instability of the 2D Couette flow in any Gevrey-s regularity
for s < 1/2. In fact something slightly stronger is proved, where Gevrey-s is replaced by
a log-corrected version of Gevrey-1/2.

Theorem 2. Let N0 = 9000, N1 = 60000, and denote log+(x) = log(2 + jxj). For a
function f : T � R ! R, define the Gevrey-type norm G� by

(14) kF k
2
G� =

X
k2Z

Z
R
e2�(k;�)

jbF (k; �)j2 d�; �(k; �) =
(jkj + j�j)1/2

(log+(jkj + j�j))N1
:

Then, for any sufficiently small " > 0, there exists a solution ! = !(t; x; y) to (2), such
that:

1. The initial data !(0) satisfies the assumptions (10), and that

(15) k!(0)kG� � ";
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2. At some later time T , the solution ! satisfies that

(16) kh@xi
N0!(T; x; y)kL2(T�R) �

1

"
:

4 The nonlinear dynamics: The toy model

In both of the theorems above, we are interested in understanding the weakly nonlinear
effects. It is a classical idea that transient growth in a linear problem can interact badly
with the nonlinearity to trigger instability, for instance see the discussion in L. N. Tre-
fethen, A. E. Trefethen, Reddy, and T. A. Driscoll [1993]. The basic mechanism is as
follows. Heuristically, in the weakly nonlinear regime we can imagine the solution as an
interacting superposition of waves undergoing linear shear. Through the nonlinear term,
each mode has a strong effect at its critical time during which it strongly forces the others,
potentially putting information into modes which have not yet reached their critical time
and are hence still growing. At a later time, these modes have a large effect and continue
to excite other growing modes and so forth, perpetuating a so-called self-sustaining ‘non-
linear bootstrap’ (see L. N. Trefethen, A. E. Trefethen, Reddy, and T. A. Driscoll [1993],
Baggett, T. A. Driscoll, and L. N. Trefethen [1995], Vanneste, Morrison, andWarn [1998],
and Vanneste [2001/02] and the references therein for discussions in the fluid mechanics
context). Since the measurable effect of a nonlinear interaction can occur long after the
event, this mechanism permits nonlinear echoes, in which the electric field of the plasma,
or kinetic energy of the fluid disturbance, is highly concentrated at specific times. These
spectacular displays of reversibility were captured experimentally for Vlasov, there known
as plasma echoes, in the work of Malmberg, Wharton, Gould, and O’Neil [1968]. The
analogous ‘Euler echoes’ were recently studied and observed both numerically Vanneste,
Morrison, andWarn [1998] and Vanneste [2001/02] and experimentally Yu and C. Driscoll
[2002] and Yu, C. Driscoll, and O’Neil [2005].

The careful analysis of plasma echoes in the Vlasov equations is crucial in the proof of
Mouhot and Villani [2011] (and also in Bedrossian, Masmoudi, and Mouhot [2016b,a]),
as these are the dominant weakly nonlinear effect that could lead to instability. Later,
the work of Bedrossian [2016] confirmed this viewpoint by constructing arbitrarily small
perturbations inH s (for any finite s) which give rise to arbitrarily many distinct nonlinear
oscillations in the electric field (similar to the experiments of Malmberg, Wharton, Gould,
and O’Neil [1968] but with arbitrarily long chains of echoes). This resonance is also used
to prove Theorem 2.
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Let us try to begin the analysis in the natural way, by first making the change
f (t; z; y) = !(t; z + ty; y). The nonlinear Euler equations then become (note the gratu-
itious cancellation)

@tf + r
?� � rf = 0(17a)

@zz� + (@y � t@x)
2� = f:(17b)

There are actually two immediate problems. First of all, the contribution of the velocity
field 1

2�

R 2�

0 @y�(t; z; y)dz will not decay, indeed, the linear problem leaves these modes
invariant. Hence, we will unavoidably have k@

j
yf k � �htij in general. This clearly

shows that for long-time estimates, we are working in the wrong coordinate system.
Even if we ignore this problem, we have another problem. In order to obtain inviscid

damping, the goal is simply to obtain uniform-in-time H s estimates on f . Imagine we
forget about the non-decaying modes and write (up to commutators that are not important
here):

(18)
1

2
@t khri

sf k
2
2 = hhri

sf; hri
s
�
Pk¤0r

?� � rf
�
i �

� hhri
sf; hri

sPk¤0r
?� � rf i + hhri

sf; Pk¤0 jrj r
?� � rhri

s�1f i + � � �

The second term we can pay regularity to get decay of the velocity field provided s is
large enough, however, it is far from clear how to obtain any kind of decay on the first term.
Indeed, getting decay from inviscid damping seems to always require more regularity than
we have; and it seems to require so much that even if we are willing to work in analytic
regularity via some kind of Cauchy-Kovalevskaya argument, it would still not be enough
to close any estimates.

Let us now look closer. Since we must pay regularity to deduce decay on the velocity u,
it is natural to consider the frequency interactions in the productu�rf with the frequencies
of u much larger than f . This leads us to study a simpler model

@tf = �u � rflo;(19)

where flo is a given function that we think of as much smoother than f . Let us just focus
on what should be the worst:

@tf = @vP¤0�@zflo:

This problem is linear on the Fourier side:

@t f̂ (t; k; �) =
1

2�

X
l¤0

Z
�

�(k � l)

l2 + j� � lt j2
f̂ (l; �)f̂lo(t; k � l; � � �) d�:
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Since flo weakens interactions between well-separated frequencies, let us consider a dis-
crete model with � as a fixed parameter:

@t f̂ (t; k; �) =
1

2�

X
l¤0

�(k � l)

l2 + j� � lt j2
f̂ (l; �)flo(t; k � l; 0):(20)

As time advances this system of ODEs will go through resonances or “critical times” given
by t = �

k
, at which time the k mode strongly forces the others. If j�j k�2 � 1 then the

critical time does not have a serious detriment. Henceforth only consider j�j k�2 > 1.
The scenario we are most concerned with is a high-to-low cascade in which the k mode
has a strong effect at time �/k that excites the k � 1 mode which has a strong effect at
time �/(k � 1) that excites the k � 2 mode and so on. Now focus near one critical time
�/k on a time interval of length roughly �/k2, namely Ik = [�/k � �/k2; �/k + �/k2]

and consider the interaction between the mode k and a nearby mode l with l ¤ k. If
one takes absolute values and retains only the leading order terms, then this reduces to the
much simpler system of two ODEs (thinking of flo = O(�)) which we refer to as the toy
model:

@tfR = �
k2

j�j
fNR;(21a)

@tfNR = �
j�j

k2 + j� � kt j2
fR;(21b)

where we think of fR as being the evolution of the k mode and fNR being the evolution of
a nearbymode l with l ¤ k. The factor k2/ j�j in the ODE for fR is an upper bound on the
strongest interaction a non-resonant mode, for example the k� 1mode, can have with the
resonant mode. It is important to note that if at the beginning of the interval Ik , we have
fR = fNR, then over the interval Ik , both fR and fNR are at most amplified by roughly
the same factor C ( �

k2 )
1+2C � (though they crucially are not amplified by the same amount

on the left and right parts of the interval). Taking the product of these amplifications
for k = E(

p
�); E(

p
�) � 1; :::; 1 yields a total amplification which is O(eC

p
�). This

indicates that unless there is some special structure or cancellation not taken into account,
the growth of high frequencies will cause a loss of Gevrey-2 regularity of the solution
as t ! 1. Therefore, in order to maintain control, the initial data must have at least
this much regularity to lose, and this is the origin of the requirement s > 1/2 (or at least
s � 1/2).

5 Proof of the stability result

Hence, we have two main challenges to overcome. The first is to choose a coordinate
system that is properly adapted to the shear flow which is mixing the solution. Note that
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this shear flow is changing in time and cannot be determined directly from the initial data.
We carry this out in Section 5.1 below. The next step is to get global-in-time, uniform
regularity estimates on the resulting f . To do this we will design a special norm with
which to measure the solution that accounts for the nonlinear Orr mechanism described
above.

5.1 Coordinate transform. The original equations in vorticity form are (2), and we
are trying essentially to prove that

!(t; x; y) ! f1 (x � ty � u1(y)t; y) ;

as t ! 1, where u1(y) is the correction to the shear flow determined by f1. From the
initial data alone, there is no simple way to determine u1; it is chosen by the nonlinear
evolution. In order to deal with this lack of information about how the final state evolves
we choose a coordinate system which adapts to the solution and converges to the expected
form as t ! 1. The change of coordinates used is (t; x; y) ! (t; z; v), where

z(t; x; y) = x � tv(22a)

v(t; y) = y +
1

t

Z t

0

< U x > (�; y)d�;(22b)

where we recall < w > denotes the average of w in the x variable (or equivalently in
the z variable), namely < w >= 1

2�

R
T wdx. The reason for the change y ! v is

not immediately clear, however v is named as such since it is an approximation for the
background shear flow. If the velocity field in the integrand were constant in time, then
we are simply transforming the y variables so that the shear appears linear. It will turn
out that this choice of v ensures that the Biot-Savart law is in a form amenable to Fourier
analysis in the variables (z; v); in particular, even when the shear is time-varying we may
still study the Orr critical times. In this light, the motivation for the shift in z is clear: as
suggested by the discussion in Section 2, we are eliminating the contribution of < U x >

and following the flow in the horizontal variable to guarantee compactness.
Define f (t; z; v) = !(t; x; y) and �(t; z; v) =  (t; x; y), hence

@t! = @tf + @tz@zf + @tv@vf; @x! = @zf; @y! = @yv (@vf � t@zf ) ;
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where

@tz = �y� < U x > (t; y)

@tv =
1

t

�
< U x > (t; y) �

1

t

Z t

0

< U x > (s; y)ds

�
@yv = 1 �

1

t

Z t

0

< ! > (s; y)ds

@yyv = �
1

t

Z t

0

@y < ! > (s; y)ds:

Expressing [@tv](t; v) = @tv(t; y), v0(t; v) = @yv(t; y) and v00(t; v) = @yyv(t; y), we
get the following evolution equation for f ,

@tf + [@tv]@vf + @tz@zf = �y@zf + v0 [@v� + @z�@vz � @z�@vz] @zf � v0@z�@vf:

Using the definition of @tz and the Biot-Savart law to transform< U x > to �v0@v < � >

in the new variables, this becomes

@tf � (v0@v(�� < � >)) @zf + ([@tv] + v
0@z�) @vf = 0:

The Biot-Savart law also gets transformed into:

f = @zz� + (v0)2 (@v � t@z)
2
� + v00 (@v � t@z)� = ∆t�:(23)

The original 2D Euler system (2) is expressed as8<: @tf + u � rz;vf = 0;

u = (0; [@tv]) + v
0r?

z;vP¤0�;

� = ∆�1
t [f ]:

(24)

It what follows we will write rz;v = r and specify when other variables are used. Next
we transform the momentum equation to allow us to express [@tv] in a form amenable to
estimates. Denoting ũ(t; z; v) = U x(t; x; y) and p(t; z; v) = P (t; x; y) we have by the
same derivation on f ,

@t ũ+ [@tv]@vũ+ @zP¤0� + v0
r

?P¤0� � rũ = �@zp:

Taking averages in z we isolate the zero mode of the velocity field,

@t ũ0 + [@tv]@vũ0 + v
0 < r

?P¤0� � rũ >= 0:(25)
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Finally, one can express v0 and [@tv] as solutions to a system of PDE in the (t; v) variables
coupled to (24) (see Bedrossian and Masmoudi [2013] for details):

@t (t(v
0
� 1)) + [@tv]t@vv

0 = �f0(26a)

@t [@tv] +
2

t
[@tv] + [@tv]@v[@tv] = �

v0

t
< r

?P¤0� � rũ >(26b)

v00(t; v) = v0(t; v)@vv
0(t; v):(26c)

Note that to leading order in �, one can express v0 �1 as a time average of �f0. Note also
that we have a simple expression for @vũ0 from the Biot-Savart law:

@vũ0(t; v) =
1

v0(t; v)
@yU

x
0 (t; y) = �

1

v0(t; v)
!0(t; y) = �

1

v0(t; v)
f0(t; v):(27)

Given a priori estimates on the system (24), (26), we can recover estimates on the original
system (2) by the inverse function theorem as long as v0 � 1 remains sufficiently small
(see Bedrossian and Masmoudi [ibid.] for details).

5.2 Construction of the toy model norm. For simplicity of notation in this section we
usually take �; k > 0 but the work applies equally well to �; k < 0. Note that modes
where �k < 0 do not have resonances for positive times. Keeping with the intuition from
the derivation of (21), in this section we will think of � as a fixed parameter and time
varying. Accordingly, in this section we will use Ik;� = [ �

k
�

�
2k(k+1)

; �
k
+ �

2k(k�1)
] to

denote any resonant interval with �/k2 � 1 (with the modification [� �
�
4
; 2�] if k = 1).

A key feature of the methods in Bedrossian and Masmoudi [ibid.] is how the toy model is
used to construct a norm which precisely matches the estimated worst-case behavior that
the reaction terms create, done by choosingwk(t; �) to be an approximate solution to (21).
First we have the following (easy to check) Proposition.

Proposition 1. Let � = t �
�
k
and consider the solution (fR(�); fNR(�)) to (21) with

fR

�
�

�
k2

�
= fNR

�
�

�
k2

�
= 1. There exists a constant C such that for all � < 1/2 and

�
k2 � 1,

fR(�) � C

�
k2

�
(1 + j� j)

��C �

�
�

k2
� � � 0;

fNR(�) � C

�
k2

�
(1 + j� j)

��C ��1

�
�

k2
� � � 0;

fR(�) � C
� �
k2

�C �

(1 + j� j)1+C � 0 � � �
�

k2
;

fNR(�) � C
� �
k2

�C �+1

(1 + j� j)C � 0 � � �
�

k2
:
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For the remainder of the paper we fix � such that 3/2 < (1 + 2C�) < 10.

Remark 1. It is important to notice that over the whole interval
�
�

�
k2 ;

�
k2

�
, both fR

and fNR are at most amplified by roughly the same factor C ( �
k2 )

1+2C � . Over the in-
terval [� �

k2 ; 0], fNR is amplified at most by C ( �
k2 )

1+C � and fR is amplified at most by
C ( �

k2 )
C � . Whereas, over the interval [0; �

k2 ], fNR is amplified at most by C ( �
k2 )

C � and
fR is amplified at most by C ( �

k2 )
1+C � . Near the critical time, the imbalance between

fNR and fR is the largest - in particular, the resonant mode fR is a factor of �
k2 less than

fNR at this time. However by the end of the interval, the total growth of the resonant and
non-resonant modes are comparable. The fact that fR and fNR are amplified the same
over that interval will simplify the construction of w.

On each interval Ik;� , growth of the resonant mode (k; �) will be modeled by wR and
the rest of the modes (which are non-resonant) will be modeled bywNR. By Proposition 1,
we will able to choose w such that the total growth of wR and wNR exactly agree.

The construction is done backward in time, starting with k = 1. For t 2 Ik;� and
� = t �

�
k
, we will choose (wNR; wR) such that over the interval Ik;� they approximately

satisfy (21):

(28)
@�wR � �

k2

�
wNR;

@�wNR � �
�

k2(1 + �2)
wR;

We first construct the non-resonant component wNR and then explain how we should
modify it over each interval Ik;� to construct wR.

Let wNR be a non-decreasing function of time with wNR(t; �) = 1 for t � 2�. For
k � 1, we assume thatwNR(tk�1;�)was computed. To computewNR on the interval Ik;� ,
we use the growth predicted by Proposition 1: for k = 1; 2; 3; :::; E(

p
�), we define

wNR(t; �) =
�
1 + ak;�jt �

�

k
j

��1�C �

wNR

��
k

�
; 8t 2 IL

k;� =
h
tk;�;

�

k

i
;

(29a)

wNR(t; �) =
�k2
�

h
1 + bk;�jt �

�

k
j

i �C �

wNR(tk�1;�); 8t 2 IR
k;� =

h�
k
; tk�1;�

i
:

(29b)

The constant bk;� is chosen to ensure that k2

�

�
1 + bk;�jtk�1;� �

�
k

j
�
= 1, hence for k � 2,

we have

bk;� =
2(k � 1)

k

�
1 �

k2

�

�
(30)
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and b1;� = 1 � 1/�. Similarly, ak;� is chosen to ensure k2

�

�
1 + ak;�jtk;� �

�
k

j
�
= 1,

which implies

ak;� =
2(k + 1)

k

�
1 �

k2

�

�
:(31)

Hence, wNR(
�
k
) = wNR(tk�1;�)

�
k2

�

�C �

and wNR(tk;�) = wNR(tk�1;�)
�

k2

�

�1+2C �

.
The choice of ak;� and bk;� was made to ensure that the ratio between wNR(tk;�) and

wNR(tk�1;�) is exactly
�

k2

�

�1+2C �

. Finally, we take wNR to be constant on the interval
[0; tE(

p
�);�], namely wNR(t; �) = w(tE(

p
�);�; �) for t 2 [0; tE(

p
�);�]: Note that we al-

ways have 0 � bk;� < 1 and 0 � ak;� < 4, but that ak;� and bk;� approach 0 when k
approaches E(

p
�). This will present minor technical difficulties in the sequel since this

implies that @tw vanishes near this time and hence a loss of the lower bounds in (28).
On each interval Ik;� , we define wR(t; �) by

wR(t; �) =
k2

�

�
1 + ak;�

ˇ̌̌
t �

�

k

ˇ̌̌�
wNR(t; �); 8t 2 IL

k;� =
h
tk;�;

�

k

i
;(32a)

wR(t; �) =
k2

�

�
1 + bk;�

ˇ̌̌
t �

�

k

ˇ̌̌�
wNR(t; �); 8t 2 IR

k;� =
h�
k
; tk�1;�

i
:(32b)

Due to the choice of bk;� and ak;� , we get thatwR(tk;�; �) = wNR(tk;�; �) andwR(
�
k
; �) =

k2

�
wNR(

�
k
; �).

To define the full wk(t; �), we then have

wk(t; �) =

8̂̂<̂
:̂
wk(tE(

p
�);�; �) t < tE(

p
�);�

wNR(t; �) t 2 [tE(
p

�);�; 2�] n Ik;�

wR(t; �) t 2 Ik;�

1 t � 2�:

(33)

Since wR and wNR agree at the end-points of Ik;� , wk(t; �) is Lipschitz continuous in
time. This completes the construction of w which appears in the J defined above (36).

The following lemma shows that the toy model predicts a growth of high frequencies
which amounts to a loss of Gevrey-2 regularity, which is the primary origin of the restric-
tion s > 1/2 in Theorem 1, though naturally the main application of the toy model is to
design the norm.

Lemma 1 (Growth of w). For � > 1, we have for � = 4(1 + 2C�),
1

wk(0; �)
=

1

wk(tE(
p

�);�; �)
∼

1

��/8
e

�
2

p
�:(34)

Here ∼ is in the sense of asymptotic expansion.
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Proof. Counting the growth over each interval implied by (33) gives the exact formula:

1

wk(0; �)
=
� �

N 2

�c
�

�

(N � 1)2

�c

:::
� �
12

�c

=

�
�N

(N !)2

�c

;

where c = 1 + 2C�. Recall Stirling’s formula N ! ∼
p
2�N (N /e)N , which implies

(wk(0; �))
�1/c ∼

�N

(2�N )(N /e)2N
∼

1

2�
p
�
e2

p
�

�p
�

N
e2N �2

p
�
� �

N 2

�N
�

and the result follows since the term between [::] is � 1 since
ˇ̌
N �

p
�
ˇ̌

� 1.

5.3 Main energy estimate. Our goal is to control solutions to (24) uniformly in a suit-
able norm as t ! 1. The key ideawe use for this is the carefully designed time-dependent
norm written as

kA(t;r)f k
2
2 =

X
k

Z
�

ˇ̌̌
Ak(t; �)f̂k(t; �)

ˇ̌̌2
d�:

The multiplier A has several components,

Ak(t; �) = e�(t)jk;�j
s

hk; �i�Jk(t; �):

The index �(t) is the bulk Gevrey�
1
s
regularity and will be chosen to satisfy

�(t) =
3

4
�0 +

1

4
�0; t � 1(35a)

�̇(t) = �
ı�

hti2q̃
(1 + �(t)); t > 1(35b)

where ı� � �0 � �0 is a small parameter that ensures �(t) > �0/2 + �0/2 and 1/2 <

q̃ � s/8 + 7/16 is a parameter chosen by the proof. The reason for (35a) is to account
for the behavior of the solution on the time-interval [0; 1]; see Bedrossian and Masmoudi
[2013] for this minor detail. The main multiplier for dealing with the Orr mechanism and
the associated nonlinear growth is

Jk(t; �) =
e�j�j

1/2

wk(t; �)
+ e�jkj

1/2

;(36)

wherewk(t; �)was constructed above and describes the expected ‘worst-case’ growth due
to nonlinear interactions at the critical times. What will be important is that J imposes
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more regularity on modes which satisfy t ∼ �
k
(the ‘resonant modes’) than those that do

not (the ‘non-resonant modes’). by controlled loss of regularity and is reminiscent of the
notion of losing regularity estimates used in e.g. Bahouri and Chemin [1994] and Chemin
andMasmoudi [2001]. One of the main differences is that here we have to be more precise
in the sense that the loss of regularity occurs for different frequencies during different time
intervals.

With this special norm, we can define our main energy:

E(t) =
1

2
kA(t)f (t)k22 +Ev(t);(37)

where, for some constants Kv , KD depending only on s; �; �0 fixed by the proof,

(38) Ev(t) = hti2+2s
k
A

h@vis
v0@v[@tv](t)k

2
2+

+ hti4�KD�
k[@tv](t)k

2
G�(t);��6 +

1

Kv

kAR(v0
� 1)(t)k22:

In a sense, there are two coupled energy estimates: the one onAf and the one onEv . The
latter quantity is encoding information about the coordinate system, or equivalently, the
evolution of the background shear flow. It turns out v0@v[@tv] is a physical quantity that
measures the convergence of the x-averaged vorticity to its time average and satisfies a
useful PDE. It will be convenient to get two separate estimates on [@tv] as opposed to just
one ([@tv] is essentially measuring how rapidly the x-averaged velocity is converging to
its time average).

By the well-posedness theory for 2D Euler in Gevrey spaces Bardos and Benachour
[1977], Ferrari and Titi [1998], Foias and Temam [1989], Levermore and Oliver [1997],
and Kukavica and Vicol [2009] we may safely ignore the time interval (say) [0; 1] by
further restricting the size of the initial data. See Bedrossian and Masmoudi [2013] for a
slightly more detailed discussion. The goal is next to prove by a continuity argument that
the energy E(t) (together with some related quantities) is uniformly bounded for all time
if � is sufficiently small. We define the following controls referred to in the sequel as the
bootstrap hypotheses for t � 1,

(B1) E(t) � 4�2;

(B2) kv0 � 1k1 �
3
4

(B3) ‘CK’ integral estimates (for ‘Cauchy-Kovalevskaya’):
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Z t

1

h
CK�(�) + CKw(�) + CKv;2

w (�) + CKv;2
�

(�) +

+K�1
v

�
CKv;1

w (�) + CKv;1
�

(�)
�
+K�1

v

2X
i=1

�
CCKi

w(�) + CCKi
�(�)

�#
d� � 8�2

The CK terms above that appear without theK�1
v prefactor arise from the time derivatives

ofA(t) and are naturally controlled by the energy estimates we are making. The others are
related quantities that are controlled separately in Proposition 6 below. These both will be
defined below when discussing the energy estimates.

Let IE be the connected set of times t � 1 such that the bootstrap hypotheses (B1-B3)
are all satisfied. We will work on regularized solutions for which we know E(t) takes
values continuously in time, and hence IE is a closed interval [1; T ?] with T ? > 1. The
bootstrap is complete if we show that IE is also open, which is the purpose of the following
proposition, the proof of which constitutes the majority of this work.

Proposition 2 (Bootstrap). There exists an �0 2 (0; 1/2) depending only on �; �0; s and
� such that if � < �0, and on [1; T ?] the bootstrap hypotheses (B1-B3) hold, then for
8 t 2 [1; T ?],

1. E(t) < 2�2,

2. k1 � v0k1 < 5
8
,

3. and the CK controls satisfy:

Z t

1

h
CK�(�) + CKw(�) + CKv;2

w (�) + CKv;2
�

(�) +

+ K�1
v

�
CKv;1

w (�) + CKv;1
�

(�)
�
+K�1

v

2X
i=1

�
CCKi

w(�) + CCKi
�(�)

�#
d� � 6�2;

from which it follows that T ? = +1.

The remainder of the section is devoted to the proof of Proposition 2, the primary step
being to show that on [1; T ?], we have

(39) E(t) +
1

2

Z t

1

h
CK�(�) + CKw(�) + CKv;2

w (�) + CKv;2
�

(�) +

+K�1
v

�
CKv;1

w (�) + CKv;1
�

(�)
�
+K�1

v

2X
i=1

�
CCKi

w(�) + CCKi
�(�)

�#
d� � E(1)+K�3
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for some constantK which is independent of � and T ?. If � is sufficiently small then (39)
implies Proposition 2. Indeed, the control k1 � v0k < 5/8 is an immediate consequence
of (B1) by Sobolev embedding for � sufficiently small.

To prove (39), it is natural to compute the time evolution of E(t),

d

dt
E(t) =

1

2

d

dt

Z
jAf j

2 dx +
d

dt
Ev(t)

The first contribution is of the form

1

2

d

dt

Z
jAf j

2 dx = �CK� � CKw �

Z
AfA(u � rf )dx;(40)

where the CK stands for ‘Cauchy-Kovalevskaya’ since these three terms arise from the
progressive weakening of the norm in time, and are expressed as

CK� = ��̇(t)k jrj
s/2Af k

2
2(41a)

CKw =
X

k

Z
@twk(t; �)

wk(t; �)
e�(t)jk;�j

s

hk; �i� e
�j�j

1/2

wk(t; �)
Ak(t; �)

ˇ̌̌
f̂k(t; �)

ˇ̌̌2
d�:(41b)

In what follows we define

J̃k(t; �) =
e�j�j

1/2

wk(t; �)
;(42a)

Ãk(t; �) = e�(t)jk;�j
s

hk; �i� J̃k(t; �):(42b)

Note that Ã � A and if jkj � j�j then A . Ã.
Strictly speaking, equality (40) is not quite rigorous since it involves a derivative of

Af , which is not a priori well-defined. To make this calculation rigorous, we have first
to approximate the initial data of (2) by (for instance) analytic initial data and use that the
global solutions of (2) stay analytic for all time (see Bardos and Benachour [1977], Foias
and Temam [1989], and Ferrari and Titi [1998]). Hence, we can perform all calculations
on these solutions with regularized initial data and then perform a passage to the limit to
infer that (39) still holds.

To treat the main term in (40), begin by integrating by parts, as in the techniques Foias
and Temam [1989], Levermore andOliver [1997], Kukavica andVicol [2009], andGerard-
Varet and Masmoudi [2015]

Z
AfA(u � rf )dx = �

1

2

Z
r � u jAf j

2 dx +

Z
Af [A(u � rf ) � u � rAf ] dx:

(43)
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Notice that the relative velocity is not divergence free:

r � u = @v[@tv] + @vv
0@z�:

The first term is controlled by the bootstrap hypothesis (B1). For the second term we pay
regularity and show that under the bootstrap hypotheses we have

kP¤0�(t)kG�(t);��3 .
�

hti2
:(44)

Therefore, by Sobolev embedding, � > 5 and the bootstrap hypotheses,ˇ̌̌̌Z
r � u jAf j

2 dx

ˇ̌̌̌
� kruk1kAf k

2
2 .

�

hti2�KD�/2
kAf k

2
2 .

�3

hti2�KD�/2
:(45)

To handle the commutator,
R
Af [A(u � rf ) � u � rAf ] dx, we use a paraproduct de-

composition (see e.g. Bony [1981] and Bahouri, Chemin, and Danchin [2011]). Precisely,
we define three main contributions: transport, reaction and remainder:Z

Af [A(u � rf ) � u � rAf ] dx =
1

2�

X
N �8

TN +
1

2�

X
N �8

RN +
1

2�
R;(46)

where (the factors of 2� are for future notational convenience)

TN = 2�

Z
Af

�
A(u<N/8 � rfN ) � u<N/8 � rAfN

�
dx

RN = 2�

Z
Af

�
A(uN � rf<N/8) � uN � rAf<N/8

�
dx

R = 2�
X

N 2D

X
1
8 N �N 0�8N

Z
Af [A(uN � rfN 0) � uN � rAfN 0 ] dx:

Here N 2 D =
˚
1
2
; 1; 2; 4; :::; 2j ; :::

	
and gN denotes the N -th Littlewood-Paley pro-

jection and g<N means the Littlewood-Paley projection onto frequencies less than N .
Formally, the paraproduct decomposition (46) represents a kind of ‘linearization’ for the
evolution of higher frequencies around the lower frequencies. The terminology ‘reaction’
is borrowed from Mouhot and Villani [2011].

To control the transport term, we use

Proposition 3 (Transport). Under the bootstrap hypotheses,X
N �8

jTN j . �CK� + �CKw +
�3

hti2�KD�/2
:
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The proof of Proposition 3 uses ideas from the works of Foias and Temam [1989],
Levermore and Oliver [1997], and Kukavica and Vicol [2009]. Since the velocity u is
restricted to ‘low frequency’, we will have the available regularity required to apply (44).
However, the methods of Foias and Temam [1989], Levermore and Oliver [1997], and
Kukavica and Vicol [2009] do not adapt immediately since Jk(t; �) is imposing slightly
different regularities to certain frequencies, which is problematic. Physically speaking,
we need to ensure that resonant frequencies do not incur a very large growth due to nonlin-
ear interactions with non-resonant frequencies (which are permitted to be slightly larger
than the resonant frequencies). Controlling this imbalance is why CKw appears in Propo-
sition 3.

Controlling the reaction contribution in (46) is one of the main tasks. Here we cannot
apply (44), as an estimate on this term requires u in the highest norm on which we have
control, and hence we have no regularity to spare. Physically, here in the reaction term
is where the dangerous nonlinear effects are expressed and a great deal of precision is
required to control them.

Proposition 4 (Reaction). Under the bootstrap hypotheses,

X
N �8

jRN j . �CK� + �CKw +
�3

hti2�KD�/2
+ �CKv;1

�
+ �CKv;1

w

+ �kh
@v

t@z

i
�1
�
@2z + (@v � t@z)

2
�  jrj

s/2

htis
A+

r
@tw

w
Ã

!
P¤0�k

2
2:(47)

TheCKv;1 terms are defined below in (51). The first step to controlling the term in (47)
involving � is Proposition 5. This proposition treats ∆t as a perturbation of @zz + (@v �

t@z)
2 and passes the multipliers in the last term of (47) onto f and the coefficients of∆t .

Physically, these latter contributions are indicating the nonlinear interactions between the
higher modes of f and the coefficients v0, v00 (which involve time-averages of f0 (26)).
Analogous lemmas have continued to play important roles in the theory.

Proposition 5 (Precision elliptic control). Under the bootstrap hypotheses,

kh
@v

t@z

i
�1
�
@2z + (@v � t@z)

2
�  jrj

s/2

htis
A+

r
@tw

w
Ã

!
P¤0�k

2
2

. CK� + CKw + �2
2X

i=1

CCKi
� + CCKi

w ;(48)
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where the ‘coefficient Cauchy-Kovalevskaya’ terms are given by

CCK1
� = ��̇(t)k j@vj

s/2AR
�
1 � (v0)2

�
k
2
2;(49a)

CCK1
w = k

r
@tw

w
AR

�
1 � (v0)2

�
k
2
2;(49b)

CCK2
� = ��̇(t)k j@vj

s/2 A
R

h@vi
v00

k
2
2;(49c)

CCK2
w = k

r
@tw

w

AR

h@vi
v00

k
2
2:(49d)

The next step in the bootstrap is to provide good estimates on the coordinate system
and the associated CK and CCK terms. The following proposition provides controls on
v0 � 1, the CCK terms arising in (49), the pair [@tv], v0@v[@tv] and finally all of the CKv;i

terms. The norm defined by AR(t) is stronger than that defined by A(t), which we use
to measure f . It turns out that we will be able to propagate this stronger regularity on
v0 � 1 due to a time-averaging effect, derived via energy estimates on (26). By contrast,
[@tv] is expected basically to have the regularity of ũ0 and hence even (50b) has s fewer
derivatives than expected. On the other hand, it has a significant amount of time decay,
which near critical times can be converted into regularity.

Proposition 6 (Coordinate system controls). Under the bootstrap hypotheses, for � suffi-
ciently small and Kv sufficiently large there is a K > 0 such that

kAR(v0
� 1)(t)k22 +

1

2

Z t

1

2X
i=1

CCKi
w(�)d� +

1

2

Z t

1

2X
i=1

CCKi
�(�)d� �

1

2
Kv�

2

(50a)

hti2+2s
k
A

h@vis
v0@v[@tv]k

2
2 +

1

2

Z t

1

CK
v;2
�

(�) + CKv;2
w (�)d� � �2 +K�3(50b)

hti4�KD�
k[@tv]k

2
G�(t);��6 � �2 +K�3(50c) Z t

1

CK
v;1
�

(�) + CKv;1
w (�)d� �

1

2
Kv�

2;(50d)
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where the CKv;i terms are given by

CKv;2
w (�) = h�i

2+2s
k

r
@tw

w

A

h@vis
v0@v[@tv](�)k

2
2(51a)

CK
v;2
�

(�) = h�i
2+2s(��̇(�))k j@vj

s/2 A

h@vis
v0@v[@tv](�)k

2
2(51b)

CKv;1
w (�) = h�i

2+2s
k

r
@tw

w

A

h@vis
[@tv](�)k

2
2(51c)

CK
v;1
�

(�) = h�i
2+2s(��̇(�))k j@vj

s/2 A

h@vis
[@tv](�)k

2
2:(51d)

Note that neither (50b) nor (50c) controls the other: at higher frequencies the former is
stronger than the latter and at lower frequencies the opposite is true. One of the advantages
of this scheme is that v0@v[@tv] satisfies an equation that is simpler than [@tv] and so is
easier to get good estimates on. Both (50b) and (50c) are linked to the convergence of the
background shear flow; in particular, they rule out that the background flow oscillates or
wanders due to nonlinear effects.

Finally we need to control the remainder term in (46). This is straightforward and is
detailed in Bedrossian and Masmoudi [2013].

Proposition 7 (Remainders). Under the bootstrap hypotheses,

R .
�3

hti2�KD�/2
:

Collecting Propositions 3, 4, 5, 6, 7 with (46) and (45), we have finally (39) for �
sufficiently small with constants independent of both � and T ?; hence for � sufficiently
small we may propagate the bootstrap control and prove Proposition 2.

6 Proof of the instability result

6.1 Ideas of the proof. The proof starts by performing the same coordinate change
(x; y) 7! (z; v), as defined in Equation (22a) and Equation (22b). Following the calcu-
lations of Section 5.1, this then gets rid of the badly behaving zeroth mode, and reduces
Equation (2) to a system for f , v0 � 1, and [@tv]. These are recorded in Equation (52)
∼ Equation (53) below, where for simplicity we denote h := v0 � 1, � := [@tv] and
g := (f; h; �):
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The goal is to find a solution (f; h; �) to the system

(52)

8̂̂̂̂
<̂
ˆ̂̂:
@tf = �� � @vf � (h+ 1)r?� � rf;

@th = ��@vh �
P0f + h

t
;

@t� = �
2�

t
� �@v� +

1

t
P0(f � @z�);

where the relevant quantities are defined as

(53)

(
� = P¤0∆

�1
t f;

∆t = @2z + (h+ 1)2(@v � t@z)
2 + (h+ 1)(@vh)(@v � t@z):

Moreover, for t 2 I we have

(54) t(h+ 1)@v�(t) + P0f (t) + h(t) = 0;

Z
R

h(t; v)

h(t; v) + 1
dv = 0:

6.1.1 The choice of data, and setup. We will construct (f; h; �) that satisfies the re-
quired instability assumptions. This solution will be constructed as the superposition of a
background solution (f ; h; �), and a perturbation (f �; h�; ��) (which is a second order
perturbation of a much smaller size but lower regularity). It turns out that (h; �) plays a
relatively less important role in the proof, so for simplicity, here we will consider f only.

The background solution f is guaranteed to exist by Theorem 1; we will assume it has
analytic regularity (i.e. s = 1 in Theorem 1), and has size "0 � ". More precisley, we
define the background solution g := (f ; h; �), which solves (52)∼(53) with initial data

(55) f (1; z; v) = "0 cos z � 'b(v); h(1; z; v) = �(1; z; v) = 0;

where
'b(v) = e�(C �1

0 v)18 :

By Theorem 1, we know that g exists on [1;+1), and satisfies the following properties,
where recall that all constants here depend on C0:

1. f and h are real-valued and even, � is real-valued and odd, and

(56) kf (t)kAC0
+ kh(t)kAC0

+ k�(t)kAC0
. "0; k�(t)kAC0�1

.
"0

t2
;

2. f and h converge as t ! 1,

(57) kf (t) � f1kAC0�1
.
"20
t
; kh(t) + P0f1kAC0�1

.
"0

t
;
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3. The limit f1 is close to the specific profile we choose, namely

(58)


f1 � "0 cos z � 'b(v)




AC0�1

. "20:

We also define the function � and the operator ∆t , corresponding to (f ; h; �), as in (53).
In practice we will think of f as only having low frequency components, as it is much
more regular than the perturbation f � we will construct.

The perturbation f � will be fixed by assigning the data at some time t = T0:

f �(T0) = "1 cos(k0z + �0v)'p(k0
p
�v);

where 'p is a suitable Schwartz function. The parameters ("0; k0; T0; �0; �) are related
by (where N2 = 30; N3 = 30000):

(59)
� = (log k0)�N2 ; ˛ = 1 + (log k0)�2N2 ; "0 = (log k0)�N3 ;

�0 =
2k20˛

�"0
; T0 =

2�0

2k0 + 1
:

Note that ˛�1 = �2 and "0 = �1000. For now it suffices to note that "1 � "0, and 2f �(T0)

is concentrated near only two frequencies, (k0; �0) and (�k0;��0), where (k0; �0) is
considered the high frequency mode compared to g. We also fix two times T1 2 [T0; 2T0]

and T2 � T0, define by

(60)
tm =

2�0

2m+ 1
; Tj = tkj

; 1 � j � 2;

k1 = (1 � �)k0; k2 = "
�1/40
0

p
�0

Note that k2 > k0 > k1 and T1 > T0 > T2. For simplicity we will assume all the ki ’s are
integers (otherwise take their integer parts).

6.1.2 The linearized system. Since "1 � "0, it is natural to first study the linearization
of (52)∼(53) at the background solution f . This linear system has the form @tf

0 = Lf 0,
where L is a linear operator and f 0(T0) = f �(T0). Following the observation made in
Bedrossian and Masmoudi [2013], we know L consists of two parts: the first one is a
“transport” part,

(61) LT f 0 = Φ � rf 0;

where Φ is a combination of the background solution, which has much higher regularity
than f 0 (and thus contributes low frequencies only), and moreover decays like t�2.
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The second one is a “reaction” term, which is responsible for the Orr growth mecha-
nism,

(62) LRf 0 = F � r∆t
�1f 0;

where F again comes from the background solution, but has no decay in time (one can
think Φ ∼ t�2F ); the operator ∆t

�1 is defined, up to some error terms, by

1∆�1
t F (t; k; �) =

1

(� � kt)2 + k2
bF (t; k; �);

Notice that, if one compares (61) and (62), say at a critical time t = �/k, and assume that
Φ ∼ t�2F , then LR dominates LT if t � k or equivalently t &

p
j�j, and LT dominates

LR if t .
p

j�j.
Our strategy is to show that the size of bf 0, say near (˙k0;˙�0), exhibits growth at crit-

ical times between T0 and T1 by the Orr mechanism, and in fact saturates the upper bound
proved in Bedrossian and Masmoudi [2013]. Note that this also explains the seemingly
strange choice of assigning data at t = T0 instead of t = 1, since we only know how to
saturate the optimal growth on [T0; T1].

Moreover, we need to go backwards from T0 and recover the control for f 0 at time
t = 1. There are two regimes here: when t is small (namely t � T2; note that T2 is
almost p

�0, see(60)), the transport term dominates, and the growth of f 0 can be easily
controlled by an energy-type inequality for transport equations. When t is large, namely
t 2 [T2; T0], the reaction term dominates and the situation will be much similar to what
happens on [T0; T1], except that only an upper bound is needed.

Summing up, we need to obtain a lower bound for f 0 on [T0; T1], and an upper bound
for f 0 on [T2; T0], of form

(63) jbf 0(T1;˙k0;˙�0)j & ec
p

�0"1; jbf 0(T2;˙k0;˙�0)j . ec0p�0"1;

for some suitable c > c0 > 0. This would then imply that f 0(T1) is large inHN , and that
f 0(T2) (and hence f 0(1)) is small in G�, upon choosing "1 appropriately. In both cases it
is crucial to obtain precise bounds on the size of bf 0 near frequency (˙k0;˙�0), which is
the next step of the proof.

6.1.3 Linear analysis, and a more precise toy model. We may now restrict the lin-
earized system to time t 2 [T2; T1], where the transport term plays essentially no role,
so we will focus on the reaction term only. Recall the expression in (62); for simplicity
we assume that F is independent of time and has only k = ˙1 modes, say bF (t; k; �) =

"01k=˙1'(�)/2 with a Schwartz function '.
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By (62), we then write down the equation

(64) @t
bf 0(t; k; �) =

Z
R

"0�/2

(� � t(k + 1))2 + (k + 1)2
b'(� � �)bf 0(t; k + 1; �) d�

�

Z
R

"0�/2

(� � t(k � 1))2 + (k � 1)2
b'(� � �)bf 0(t; k � 1; �) d�

for bf 0. In Bedrossian and Masmoudi [ibid.], the authors replaced the function ' on the
right hand side of (64) by the ı function, obtaining and ODE toy model which is essen-
tially an “envelope” of (64) and can be solved explicitly. This is perfect for obtaining
an upper bound for solutions to (64), but in order to get a lower bound a more accurate
approximation will be needed - which is precisely what we are able to obtain here, under
the assumption � � �0 and t 2 [T2; T1].

For simplicity, let us assume t ∼ T0; recall from (59) that T0 ∼
p
�0/"0. Since � � �0

due to the definition of f 0(T0), we know that (64) plays a significant role only near the
critical times �0/m, where m ∼ p

"0�0. We thus cut the time interval into subintervals,
each containing exactly one critical time. Define, see also (60),

tm =
2�0

2m+ 1
;

�0

m
2 [tm; tm�1] := Im;

then on each Im, according to (64), only the modes k = m ˙ 1 will be active (i.e. has
significant increments), since

1

(�0 � kt)2 + k2
.

1

t2
�

1

m2
; 8t 2 Im; k ¤ m:

We can therefore solve (64) approximately and explicitly1, obtaining an approximate re-
currence relation (see (59) for definition of parameters):
(65)

F f 0(tm�1; k; v) = F f 0(tm; k; v) + R +

8<:
0; k ¤ m˙ 1;

�
˛k20
m2

'(v) � F f 0(tm; m; v); k = m˙ 1;

after taking inverse Fourier transform in �, where the error term R is small in L2.
The recurrence relation (65) then plays the role of the toy model in Bedrossian and

Masmoudi [ibid.]. In fact, if we choose ' such that k'kL1 = 1, then this already suffices
1Note that this argument works precisely when t 2 [T2; T1]: when t si too small transport terms will come

in, and when t is too large the (m˙1)modes bf 0(t; m˙1; �)will grow too much and destroy the approximate
decoupling.
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to prove the upper bound on [T2; T0], since (65) essentially implies that

sup
k

kF f 0(tm; k; �)kL2 . max
�
1;
˛k20
m2

�
� sup

k

kF f 0(tm�1; k; �)kL2 ;

and thus by iteration,

(66) sup
k

kF f 0(T2; k; �)kL2 . "1

k0Y
m=k2

max
�
1;
˛k20
m2

�
∼ ec0p�0"1:

We turn to the lower bound for f 0 on [T0; T1]. If ' were identically 1, then in view of
the smallness of R, we can use the same argument to obtain that

sup
k

kF f 0(tm�1; k; �)kL2 & max
�
1;
˛k20
m2

�
� sup

k

kF f 0(tm; k; �)kL2 ;

and hence

(67) sup
k

kF f 0(T1; k; �)kL2 & "1

k1Y
m=k0

max
�
1;
˛k20
m2

�
∼ ec

p
�)"1:

Comparing (66) and (67) we obtain the desired inequality (63) by direct computations, due
to our choice of parameters.

Nevertheless ' cannot be identically 1, and moreover the error term R is not local. To
recover (67), in view of the factor '(v) on the right hand side of (65), we thus need to
localize v in the region where '(v) is equal or close to 1. This localization is achieved
by going back to physical space and performing an energy-type estimate for an L2 norm
with exponential weight in physical space.

6.1.4 Nonlinear analysis, and the Taylor expansion. Up to now we have only consid-
ered f 0, which is the solution to the linearized system @tf

0 = Lf 0. The full nonlinear
system (52)∼(53), in terms of f �, can be written as

(68) @f f
� = Lf � + N(f �; f �);

if, say, we consider only quadratic nonlinearities. Note that f 0 can also be regarded as the
first order term in a formal Taylor expansion of f �; we may write out the higher order
terms by f (1) = f 0 and

@tf
(n) = Lf (n) +

X
q1+q2=n�1

N(f (q1); f (q2)); f (n)(T0) = 0;
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Our next step is to prove that, in some sense, we have2

(69) (the size of f (n)) . (the size of f (1))n;

Since the size of f (1) is O("1), the bound (69) guarantees that the contribution of f (n)

with n � 2 will be negligible, and thus Theorem 2 follows from the estimates for f (1)

obtained above.
The proof of (69) follows from an inductive argument, where at each step we com-

bine the multilinear estimates for the nonlinear term N with the linear estimates for the
inhomogeneous equation

@tf = Lf + N;

which is proved in the same way as the linear homogeneous case. Here the main difficulty
is that f (n), being essentially the n-th power of f (1), is supported in Fourier space at (say)
the frequency (nk0; n�0). We thus need to run the arguments above for this particular
choice of frequency, instead of (k0; �0). Fortunately this just corresponds to changing
of parameters in the Orr growth mechanism, and most of the arguments above still go
through.

Finally, to avoid the divergence issue caused by doing the Taylor expansion directly,
we will close the whole proof by fixing some very large n0 and claiming that

f (1) + f (2) + � � � + f (n0)

is an approximate solution to (68), with error term so small that an actual solution to (68)
can be constructed by a perturbative argument on the interval [1; T1].

6.2 Further discussions. We mention two possible further questions related to Theo-
rem 2.

6.2.1 Asymptotic instability. Given Theorem 2, an immediate question is whether
asymtotic instability can also be proved for (2). We believe this can be done by repeatedly
applying the arguments in this paper.

Roughly speaking, we fix the background solution f and construct the perturbation
f � = f �

1 as in Theorem 2. Note that f �
1 and grows from some time T 1

0 to some later time
T 1
1 ; We now take f + f �

1 as the new background and construct a further perturbation f �
2

which grows from time T 2
0 to T 2

1 , and so on. We then pile up a sequence of perturbations
and define

f := f + f �
1 + f �

2 + � � � ;

2Note however that f (n) is supported at higher and higher frequencies, namely (nk0; n�0); thus this fact
cannot be captured by a bootstrap argument in a single Gevrey norm, and this formal Taylor expansion seems
necessary.
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which we expect to satisfy that

kf (1)kG� � "; lim
t!1

kh@xi
N0f (t)kL2 = +1:

The main difficulty here is to control the evolution of f �
1 after time T 1

1 ; we then have
to extend our arguments, which now covers only critical times �0/m with m & k0, to all
critical times up to m = 1. We believe that a suitable combination of the techniques used
in this paper and the weighted energy method used in Bedrossian and Masmoudi [2013]
should be the key to solving this problem.

6.2.2 Genericity. Another natural question is whether the Orr growth mechanism is
generic, i.e., whether the full upper bound of growth can be saturated for “most” solutions
in a suitable sense. To study this problem, we have to consider solutions with general
distribution in frequencies, instead of the f � we choose here, which essentially has only
two modes. In such cases we no longer have the simple decoupling as in Section 6.1.3, nor
the recurrence relation (65); the main challenge is thus to find a substitute to (65) and to
approximate (64), and it would be crucial to be able to separate the different components
of the solution that evolve differently. It seems that some further physical-space based
techniques will be needed.

Another challenge is the possible cancellations for the toy model (if we can find one)
in the generic case. This also depends on how well are different frequencies and different
physical space locations separated - if they are mixed together then we would have less
control of the solution.

References

Jeffrey S. Baggett, Tobin A. Driscoll, and Lloyd N. Trefethen (1995). “A mostly linear
model of transition to turbulence”. Phys. Fluids 7.4, pp. 833–838. MR: 1324952 (cit.
on p. 2162).

H. Bahouri and J.-Y. Chemin (1994). “Équations de transport relatives á des champs de
vecteurs non-lipschitziens et mécanique des fluides”. Arch. Rational Mech. Anal. 127.2,
pp. 159–181. MR: 1288809 (cit. on p. 2171).

Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin (2011). Fourier analysis and
nonlinear partial differential equations. Vol. 343. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidel-
berg, pp. xvi+523. MR: 2768550 (cit. on p. 2174).

C. Bardos and S. Benachour (1977). “Domaine d’analycité des solutions de l’équation
d’Euler dans un ouvert de Rn”. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4.4, pp. 647–
687. MR: 0454413 (cit. on pp. 2171, 2173).

https://doi.org/10.1063/1.868606
https://doi.org/10.1063/1.868606
http://www.ams.org/mathscinet-getitem?mr=MR1324952
https://doi.org/10.1007/BF00377659
https://doi.org/10.1007/BF00377659
http://www.ams.org/mathscinet-getitem?mr=MR1288809
https://doi.org/10.1007/978-3-642-16830-7
https://doi.org/10.1007/978-3-642-16830-7
http://www.ams.org/mathscinet-getitem?mr=MR2768550
http://www.numdam.org/item?id=ASNSP_1977_4_4_4_647_0
http://www.numdam.org/item?id=ASNSP_1977_4_4_4_647_0
http://www.ams.org/mathscinet-getitem?mr=MR0454413


THE ORR MECHANISM FOR THE 2D EULER DYNAMIC 2185

Jacob Bedrossian (May 2016). “Nonlinear echoes and Landau damping with insufficient
regularity”. arXiv: 1605.06841 (cit. on pp. 2160–2162).

Jacob Bedrossian, Pierre Germain, and Nader Masmoudi (June 2015a). “Dynamics near
the subcritical transition of the 3D Couette flow I: Below threshold case”. To appear in
Mem. Amer. Math. Soc. arXiv: 1506.03720 (cit. on pp. 2157, 2161).

– (June 2015b). “Dynamics near the subcritical transition of the 3D Couette flow II:
Above threshold case”. arXiv: 1506.03721 (cit. on pp. 2157, 2161).

– (2017a). “On the stability threshold for the 3D Couette flow in Sobolev regularity”.
Ann. of Math. (2) 185.2, pp. 541–608. MR: 3612004 (cit. on pp. 2157, 2161).

– (Dec. 2017b). “Stability of the Couette flow at high Reynolds number in 2D and 3D”.
arXiv: 1712.02855 (cit. on p. 2157).

Jacob Bedrossian and Nader Masmoudi (2013). “Inviscid damping and the asymptotic
stability of planar shear flows in the 2D Euler equations”. Publ. math. de l’IHÉS 1306,
pp. 1–106 (cit. on pp. 2157, 2160, 2167, 2170, 2171, 2177, 2179–2181, 2184).

Jacob Bedrossian, Nader Masmoudi, and Clément Mouhot (2016a). “Landau damping:
paraproducts and Gevrey regularity”. Ann. PDE 2.1, Art. 4, 71. MR: 3489904 (cit. on
p. 2162).

– (2016b). “Landau damping: paraproducts and Gevrey regularity”. Ann. PDE 2.1, Art.
4, 71. MR: 3489904 (cit. on pp. 2160, 2162).

Jacob Bedrossian, NaderMasmoudi, and Vlad Vicol (2016). “Enhanced dissipation and in-
viscid damping in the inviscid limit of the Navier-Stokes equations near the two dimen-
sional Couette flow”. Arch. Ration. Mech. Anal. 219.3, pp. 1087–1159. MR: 3448924
(cit. on pp. 2157, 2161).

Jean-Michel Bony (1981). “Calcul symbolique et propagation des singularités pour les
équations aux dérivées partielles non linéaires”. Ann. Sci. École Norm. Sup. (4) 14.2,
pp. 209–246. MR: 631751 (cit. on p. 2174).

John P Boyd (1983). “The continuous spectrum of linear Couette flowwith the beta effect”.
Journal of the atmospheric sciences 40.9, pp. 2304–2308 (cit. on p. 2159).

K.M. Case (1960). “Stability of inviscid plane Couette flow”. Phys. Fluids 3, pp. 143–148.
MR: 0128230 (cit. on p. 2156).

Jean-Yves Chemin and Nader Masmoudi (2001). “About lifespan of regular solutions of
equations related to viscoelastic fluids”. SIAM J. Math. Anal. 33.1, pp. 84–112. MR:
1857990 (cit. on p. 2171).

Yu Deng and Nader Masmoudi (2018). Long time instability of the couette flow in low
gevrey spaces. Preprint (cit. on pp. 2157, 2160, 2161).

L. A. Dikiĭ (1961). “The stability of plane-parallel flows of an ideal fluid”. Soviet Physics
Dokl. 5, pp. 1179–1182. MR: 0147072 (cit. on p. 2156).

http://arxiv.org/abs/1605.06841
http://arxiv.org/abs/1605.06841
http://arxiv.org/abs/1605.06841
http://arxiv.org/abs/1506.03720
http://arxiv.org/abs/1506.03720
http://arxiv.org/abs/1506.03720
http://arxiv.org/abs/1506.03721
http://arxiv.org/abs/1506.03721
http://arxiv.org/abs/1506.03721
https://doi.org/10.4007/annals.2017.185.2.4
http://www.ams.org/mathscinet-getitem?mr=MR3612004
http://arxiv.org/abs/1712.02855
http://arxiv.org/abs/1712.02855
https://doi.org/10.1007/s40818-016-0008-2
https://doi.org/10.1007/s40818-016-0008-2
http://www.ams.org/mathscinet-getitem?mr=MR3489904
https://doi.org/10.1007/s40818-016-0008-2
http://www.ams.org/mathscinet-getitem?mr=MR3489904
https://doi.org/10.1007/s00205-015-0917-3
https://doi.org/10.1007/s00205-015-0917-3
https://doi.org/10.1007/s00205-015-0917-3
http://www.ams.org/mathscinet-getitem?mr=MR3448924
http://www.numdam.org/item?id=ASENS_1981_4_14_2_209_0
http://www.numdam.org/item?id=ASENS_1981_4_14_2_209_0
http://www.ams.org/mathscinet-getitem?mr=MR631751
https://doi.org/10.1063/1.1706010
http://www.ams.org/mathscinet-getitem?mr=MR0128230
https://doi.org/10.1137/S0036141099359317
https://doi.org/10.1137/S0036141099359317
http://www.ams.org/mathscinet-getitem?mr=MR1857990
http://www.ams.org/mathscinet-getitem?mr=MR0147072


2186 JACOB BEDROSSIAN, YU DENG AND NADER MASMOUDI

P. G. Drazin and W. H. Reid (1982). Hydrodynamic stability. Cambridge Monographs on
Mechanics and Applied Mathematics. Cambridge University Press, Cambridge-New
York, pp. xiv+527. MR: 684214 (cit. on p. 2156).

Andrew B. Ferrari and Edriss S. Titi (1998). “Gevrey regularity for nonlinear analytic
parabolic equations”.Comm. Partial Differential Equations 23.1-2, pp. 1–16.MR: 1608488
(cit. on pp. 2171, 2173).

C. Foias and R. Temam (1989). “Gevrey class regularity for the solutions of the Navier-
Stokes equations”. J. Funct. Anal. 87.2, pp. 359–369. MR: 1026858 (cit. on pp. 2171,
2173, 2175).

David Gerard-Varet and Nader Masmoudi (2015). “Well-posedness for the Prandtl system
without analyticity or monotonicity”. Ann. Sci. Éc. Norm. Supér. 48.6, pp. 1273–1325
(cit. on p. 2173).

Lord Kelvin (1887). “Stability of fluid motion: rectilinear motion of viscous fluid between
two parallel plates”. Phil. Mag 24.5, pp. 188–196 (cit. on p. 2156).

Igor Kukavica and Vlad Vicol (2009). “On the radius of analyticity of solutions to the
three-dimensional Euler equations”. Proc. Amer. Math. Soc. 137.2, pp. 669–677. MR:
2448589 (cit. on pp. 2171, 2173, 2175).

C. David Levermore andMarcel Oliver (1997). “Analyticity of solutions for a generalized
Euler equation”. J. Differential Equations 133.2, pp. 321–339. MR: 1427856 (cit. on
pp. 2171, 2173, 2175).

Y. Charles Li and Zhiwu Lin (2011). “A resolution of the Sommerfeld paradox”. SIAM J.
Math. Anal. 43.4, pp. 1923–1954. MR: 2831254 (cit. on p. 2156).

Zhiwu Lin and Chongchun Zeng (2011a). “Inviscid dynamical structures near Couette
flow”. Arch. Ration. Mech. Anal. 200.3, pp. 1075–1097.MR: 2796139 (cit. on p. 2161).

– (2011b). “Small BGK waves and nonlinear Landau damping”. Comm. Math. Phys.
306.2, pp. 291–331. MR: 2824473 (cit. on p. 2161).

Richard S Lindzen (1988). “Instability of plane parallel shear flow (toward a mechanistic
picture of how it works)”. Pure and applied geophysics 126.1, pp. 103–121 (cit. on
p. 2159).

J. H. Malmberg, C. B. Wharton, R. W. Gould, and T. M. O’Neil (1968). “Plasma wave
echo experiment”. Physical Review Letters 20.3, pp. 95–97 (cit. on p. 2162).

Clément Mouhot and Cédric Villani (2011). “On Landau damping”. Acta Math. 207.1,
pp. 29–201. MR: 2863910 (cit. on pp. 2158, 2162, 2174).

William M’F Orr (1907). “The Stability or Instability of the Steady Motions of a Perfect
Liquid and of a Viscous Liquid. Part I: A Perfect Liquid”. In: Proceedings of the Royal
Irish Academy. Section A: Mathematical and Physical Sciences. Vol. 27. JSTOR, pp. 9–
68 (cit. on pp. 2156, 2159).

Lord Rayleigh (1879/80). “On the Stability, or Instability, of certain Fluid Motions”. Proc.
Lond. Math. Soc. 11, pp. 57–70. MR: 1575266 (cit. on p. 2156).

http://www.ams.org/mathscinet-getitem?mr=MR684214
https://doi.org/10.1080/03605309808821336
https://doi.org/10.1080/03605309808821336
http://www.ams.org/mathscinet-getitem?mr=MR1608488
https://doi.org/10.1016/0022-1236(89)90015-3
https://doi.org/10.1016/0022-1236(89)90015-3
http://www.ams.org/mathscinet-getitem?mr=MR1026858
https://doi.org/10.1090/S0002-9939-08-09693-7
https://doi.org/10.1090/S0002-9939-08-09693-7
http://www.ams.org/mathscinet-getitem?mr=MR2448589
https://doi.org/10.1006/jdeq.1996.3200
https://doi.org/10.1006/jdeq.1996.3200
http://www.ams.org/mathscinet-getitem?mr=MR1427856
https://doi.org/10.1137/100794912
http://www.ams.org/mathscinet-getitem?mr=MR2831254
https://doi.org/10.1007/s00205-010-0384-9
https://doi.org/10.1007/s00205-010-0384-9
http://www.ams.org/mathscinet-getitem?mr=MR2796139
https://doi.org/10.1007/s00220-011-1246-5
http://www.ams.org/mathscinet-getitem?mr=MR2824473
https://doi.org/10.1007/s11511-011-0068-9
http://www.ams.org/mathscinet-getitem?mr=MR2863910
https://doi.org/10.1112/plms/s1-11.1.57
http://www.ams.org/mathscinet-getitem?mr=MR1575266


THE ORR MECHANISM FOR THE 2D EULER DYNAMIC 2187

– (1895/96). “On the Stability or Instability of certain Fluid Motions (III.)” Proc. Lond.
Math. Soc. 27, pp. 5–12. MR: 1576484 (cit. on p. 2156).

– (1887/88). “On the Stability or Instability of certain Fluid Motions, II”. Proc. Lond.
Math. Soc. 19, pp. 67–74. MR: 1576885 (cit. on p. 2156).

Osborne Reynolds (1883). “An Experimental Investigation of the Circumstances Which
Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of
Resistance in Parallel Channels.” Proceedings of the Royal Society of London 35.224-
226, pp. 84–99 (cit. on p. 2156).

Peter J. Schmid and Dan S. Henningson (2001). Stability and transition in shear flows.
Vol. 142. Applied Mathematical Sciences. Springer-Verlag, New York, pp. xiv+556.
MR: 1801992 (cit. on p. 2156).

Herbert Brian Squire (1933). “On the stability for three-dimensional disturbances of vis-
cous fluid flow between parallel walls”. In: Proc. R. Soc. Lond. A. Vol. 142. 847. The
Royal Society, pp. 621–628 (cit. on p. 2157).

Lloyd N. Trefethen, Anne E. Trefethen, Satish C. Reddy, and Tobin A. Driscoll (1993).
“Hydrodynamic stability without eigenvalues”. Science 261.5121, pp. 578–584. MR:
1229495 (cit. on p. 2162).

J. Vanneste (2001/02). “Nonlinear dynamics of anisotropic disturbances in plane Couette
flow”. SIAM J. Appl. Math. 62.3, pp. 924–944. MR: 1897729 (cit. on p. 2162).

J Vanneste, PJ Morrison, and T Warn (1998). “Strong echo effect and nonlinear transient
growth in shear flows”. Physics of Fluids 10.6, pp. 1398–1404 (cit. on p. 2162).

AkivaM. Yaglom (2012).Hydrodynamic instability and transition to turbulence. Vol. 100.
Fluid Mechanics and its Applications. With a foreword by Uriel Frisch and a memorial
note for Yaglom by Peter Bradshaw. Springer, Dordrecht, pp. xii+600. MR: 3185102
(cit. on pp. 2156, 2159).

JH Yu and CF Driscoll (2002). “Diocotron wave echoes in a pure electron plasma”. IEEE
transactions on plasma science 30.1, pp. 24–25 (cit. on p. 2162).

JH Yu, CF Driscoll, and TM O’Neil (2005). “Phase mixing and echoes in a pure electron
plasma”. Physics of plasmas 12.5, p. 055701 (cit. on p. 2162).

Received 2018-02-25.

Jൺർඈൻ Bൾൽඋඈඌඌංൺඇ
jacob@cscamm.umd.edu
jacob@math.umd.edu

Yඎ Dൾඇ඀
yudeng@cims.nyu.edu

Nൺൽൾඋ Mൺඌආඈඎൽං
masmoudi@cims.nyu.edu

https://doi.org/10.1112/plms/s1-27.1.5
http://www.ams.org/mathscinet-getitem?mr=MR1576484
https://doi.org/10.1112/plms/s1-19.1.67
http://www.ams.org/mathscinet-getitem?mr=MR1576885
https://doi.org/10.1007/978-1-4613-0185-1
http://www.ams.org/mathscinet-getitem?mr=MR1801992
https://doi.org/10.1126/science.261.5121.578
http://www.ams.org/mathscinet-getitem?mr=MR1229495
https://doi.org/10.1137/S0036139900381420
https://doi.org/10.1137/S0036139900381420
http://www.ams.org/mathscinet-getitem?mr=MR1897729
https://doi.org/10.1007/978-94-007-4237-6
http://www.ams.org/mathscinet-getitem?mr=MR3185102
mailto:jacob@cscamm.umd.edu
mailto:jacob@math.umd.edu
mailto:yudeng@cims.nyu.edu
mailto:masmoudi@cims.nyu.edu




Pඋඈർ. Iඇඍ. Cඈඇ඀. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 3 (2185–2210)

QUANTITATIVE ESTIMATES FOR ADVECTIVE EQUATION
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Abstract

In these proceedings we are interested in quantitative estimates for advective equa-
tions with an anelastic constraint in presence of vacuum. More precisely, we derive
a quantitative stability estimate and obtain the existence of renormalized solutions.
Our main objective is to show the flexibility of the method introduced recently by
the authors for the compressible Navier-Stokes’ system. This method seems to be
well adapted in general to provide regularity estimates on the density of compress-
ible transport equations with possible vacuum state and low regularity of the transport
velocity field; the advective equation with degenerate anelastic constraint considered
here is another good example of that. As a final application we obtain the existence
of global renormalized solution to the so-called lake equation with possibly vanishing
topography.

1 Introduction

New mathematical tools allowing to encode quantitative regularity estimates for the con-
tinuity equation written in Eulerian form have been recently developed by the authors
[see Bresch and Jabin [2015] and Bresch and Jabin [2017a]] to answer two longstanding
problems: Global existence of weak solutions for compressible Navier–Stokes with ther-
modynamically unstable pressure or with anisotropic viscous stress tensor. These articles
provide a new point of view regarding the weak stability procedure (and more precisely
on the space compactness for the density) in compressible fluid mechanics compared to
what was developed mainly by P.–L. Lions and E. Feireisl et al.: See for example Feireisl
[2004], Feireisl and Novotný [2009], Lions [1996].
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Keywords: Quantitative regularity estimates, advective equation, degenerate anelastic constraint, vacuum
state, stability property, lake equations, vanishing topography, renormalized solutions.
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In the present work, we want to show the flexibility of the method introduced in Bresch
and Jabin [2015, 2017a] by focusing on quantitative stability estimates for advective equa-
tions with a vector field satisfying a degenerate anelastic constraint (linked to a non-
negative scalar function). The method itself introduces weights which solve a dual equa-
tion and allow to propagate appropriately weighted norms on the initial solution. In a
second time, a control on where those weights may vanish allow to deduce global and
precise quantitative regularity estimates. For a more general introduction to the method,
we refer interested readers to Bresch and Jabin [2017b].

The theory of existence and uniqueness for advection equations with rough force fields
is now quite extensive, and we refer among others to the seminal articles DiPerna and
Lions [1989], Ambrosio [2004], and to De Lellis [2007] and Ambrosio and Crippa [2014]
for a general introduction to the topic. But quantitative regularity estimates were first de-
rived on the Lagrangian formulation by G. Crippa and C. De Lellis in Crippa and De Lellis
[2008]. The main idea is to identity the ”good” trajectories where the flow has some regu-
larity and then proving that those good trajectories have a large probability, which strongly
inspired the Eulerian approach that we present here. This type of Lagrangian estimate is
also used for example in Bohun, Bouchut, and Crippa [2016], Bouchut and Crippa [2013],
Hauray, Le Bris, and Lions [2007] and Champagnat and Jabin [2010]. Note that quan-
titative regularity estimates for nonlinear continuity equations at the Eulerian level have
also been introduced in Belgacem and Jabin [2013], Belgacem and Jabin [2016] using a
nonlocal characterization of compactness in the spirit of Bourgain, Brezis, and Mironescu
[2001]. PDE’s with anelastic constraints are found in many different settings and we
briefly refer for instance to Klein [2005], Lipps and Hemler [1982], Durran [1989], Wil-
helmson and Ogura [1972], Masmoudi [2007], Feireisl, Málek, Novotný, and Straškraba
[2008] in meteorology, to Bresch and Métivier [2006], Lacave, Nguyen, and Pausader
[2014], and to Levermore, Oliver, and Titi [1996] for lakes and Perrin and Zatorska [2015],
to Lannes [2017] for the dynamics of congestion or floating structures, to Donatelli and
Feireisl [2017] for astrophysics and to Barré, Chiron, Goudon, and Masmoudi [2015] for
asymptotic regime of strong electric fields to understand the importance to study PDEs
with anelastic constraints especially the advective equation. As an application, we derive
a new existence result for the so-called lake equation with possibly vanishing bathymetry
which could vanish. The fact that we can obtain renormalized solutions in the vorticity
formulation is in particular a significant improvement compared to previous results such
as in Lacave, Nguyen, and Pausader [2014].

Let us now present more specifically the problem that we consider: LetΩ be a bounded
smooth domain in Rd with d = 1; 2 or 3. We study the following advective equation

(1) a (@t� + u � r�) = 0 in (0; T ) � Ω
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with a velocity field u such that

(2) div(au) = 0 in (0; T ) � Ω; a u � nj(0;T )�@Ω = 0:

where a is a given non-negative scalar function which depends only on the space variable
and is continuous on Ω. The initial condition is given by

(3) a�jt=0 = m0 in Ω:

To avoid assuming any regularity on a, we still need to impose additional conditions on a:
There exists a measurable non-negative function ˛(x), r > 1 and q > p� (with as usual
1/p� + 1/p = 1) s.t.

(4) ˛(x) � a(x); A(˛; a) =Z
Ω

�
jr˛1/p�

(x)jq + a(x) (j log˛(x)j + jr log˛(x)jr)
�
dx < 1:

Of course if a 2 W 1;p with p > 1 and a j log aj 2 L1 then we could just choose ˛ = ak

with k � 1. But (4) is far more general as in particular it does not require any regularity
on a away from its vanishing set.
An example. To illustrate the condition (4), assume that there exists a Lipschitz domain
O � Ω s.t. a = 0 on Oc and on O for some exponents k; l > 0

C�1 min((d (x; @O))k ; 1) � a(x) � C min((d (x; @O))l ; 1):

Then by taking ˛ = min((d (x; @O))� ; 1) with � > p�, we immediately satisfy (4).
Let us now consider a velocity field u such that (with a slight abuse of notation as kuka

is not a norm)

(5) kuka := kukL1
t L

p
a
+

Z T

0

Z
Ω

a(x) jru(t; x)j log
�
e + jr(u(t; x))j

�
dx dt < 1;

with p > 1 fixed and where the Lebesgue space Lq
t L

p
a and more generally the Sobolev

space Lq
t W

1;p
a are defined by the norms

kf kL
q
t L

p
a
:=







�Z

Ω

jf j
p a(x) dx

�1/p







Lq([0; T ])

< 1;

kf kL
q
t W

1;p
a

:=







�Z

Ω

(jf j
p + jrf j

p) a(x) dx

�1/p







Lq([0; T ])

< 1:



2188 DIDIER BRESCH AND PIERRE-EMMANUEL JABIN

Becausewe do not have direct bounds on divu or even onru as amay vanish, the standard
theory of renormalized solutions cannot be applied to provide regularity (compactness of
the solutions) or uniqueness. Concerning the boundary conditions on the velocity field,
the anelastic constraint (2) and the integrability assumption on the velocity field allow to
consider velocity fields satisfying the boundary condition in (2) in a weak sense, see for
instance Lacave, Nguyen, and Pausader [2014].

We propose here to extend the method introduced in Bresch and Jabin [2017b] to this
degenerate PDE system (1)–(3) through an appropriate three level weights control. This
helps to encode quantitative stability estimates when approaching the degenerate con-
straint by a non-degenerate one: a standard procedure when you want to approximate
a degenerate PDE. The conclusion will be existence of renormalized solution to the advec-
tive equations with degenerate anelastic constraint, as per

Theorem 1. We have stability and existence of renormalized solutions:
1. (Stability) For any C 1 sequences a", ˛", u" and a sequence of Lipschitz open domains
Ω" with

• a" is bounded from below, infΩ"
a" > 0, and we have the divergence condition

(6) div (a" u") = 0;

• a", ˛", u" satisfy (2) and (4)-(5) uniformly in ": sup"A(˛"; a")+ sup" ku"ka"
< 1,

• Ω" converges to Ω for the Hausdorff distance on sets and ka" � akL1(Ω"\Ω) ! 0

as " ! 0,

and for any sequence of initial data �0
" uniformly bounded in L1(Rd ) and compact in

L1(Rd ), consider the unique Lipschitz solution �" to

(7) a" (@t�" + u" � r�") = 0; in Ω";

with boundary condition

(8) a" u" � n = 0; on @Ω":

Then �" is compact in L1
t L

2
a"

and converges to a renormalized solution to (1) with (2).
2. (Existence) Let �0 be in L1(Ω) and (a; ˛; u) satisfy (2) and the bounds (4) and (5).
Then there exists a renormalized solution � of (1) with initial data (3).

We present a possible strategy at the end of the article to use our techniques to prove that
any weak solution is a renormalized solution and thus provide uniqueness of the solution;
the full argument would however go beyond the limited scope of these proceedings.
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The main ingredient to prove Theorem 1, is to obtain uniform regularity estimates on
". This is done in two steps: First introducing appropriate weights in Section 2 and then
propagating regularity in the next section. We can then construct a sequence of solutions
�" for the approximate coefficients a" and obtain the renormalized solution as the strong
limit. We conclude the manuscript by showing the existence of global renormalized equa-
tions for the lake equations and presenting also a formal derivation of the model from
compressible equation from Fluid Mechanics. Since our method is based on a doubling
of variable argument, we make abundant use of notations like ux = u(t; x) to keep track
of the physical variable (comparing ux and uy for x ¤ y) whereas the value of the time
variable is usually obvious.

2 Three-level weights procedure and properties

The estimates in this part hold for general coefficients with appropriate renormalized so-
lutions but will later be used with the approximate coefficients a", ˛" and the velocity
u".

As in Bresch and Jabin [ibid.], we introduce auxiliary equations that will help to identify
the appropriate trajectories where the flow has some regularity. In this paper, we do it in
three steps to control trajectories : where ˛ is very small, where juj is large and where
oscillations in the velocity field occur. More precisely, we define wa solution to

(9) @twa + u � rwa = �

ju � r˛j

˛
wa; wajt=0 = (˛(x))
 :

The weight wa controls which trajectories can get close to points where ˛ (and hence a)
are very small. Next we introduce wu solution to

(10) @twu + u � rwu = �wu ju(t; x)j
1 +

R t

0 jru(s; x)j ds

1 +
R t

0 ju(s; x)j ds
; wujt=0 = 1;

which controls trajectories going near points where juj is large. Finally we define our
main weight, controlling oscillations in the velocity field

(11) @tw + u � rw = �D w; wjt=0 = 1;

with
D = �

h M jr(˛ u)j

˛
+ (M jr˛j(x))�

jux
j
� + j˛x

j
���

i
for some constants �, � and �� (chosen later on) respectively such that � > 0, 1/�� =

1 � 1/� with p > � > 1.
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Observe that for general a, ˛ and u only satisfying (4)-(5), we are at this point incapable
of ensuring that there exist renormalized solutions to Eqs (9), (10), (11); in fact this would
only follow from a first application of our method.

However assuming that such solutions exist, we can easily investigate their properties,
summarized in the following

Lemma 2. Assume that (4) holds and that u satisfies (2) and (5). Then

• Consider wa a renormalized solution to (9). One has that

0 � wa(t; x) � (˛(x))

� (a(x))
 ;Z

Ω

a(x)wu(t; x) j logwa(t; x)j dx

� C 

�
(1 + kukL1

t L
p
a
) kr log˛kLr

a(Ω) + ka log˛kL1(Ω)

�
:

(12)

• Consider wu a renormalized solution to (10). One has that
(13)
0 � wu(t; x) �

1

1 +
R t

0 ju(s; x)j ds
;

Z
Ω

a(x) j logwu(t; x)j dx � CT kuka:

• Finally consider w a renormalized solution to (11). One has that

0 � w(t; x) � 1;Z
Ω

a(x)wa(t; x) j logw(t; x)j dx � C T + C kuk
�
L

p
a

kr˛1/p�

k
�
Lq

+ C

Z T

0

Z
Ω

a jruj log(e + jruj) dx dt:

(14)

Lemma 2 in particular shows that wu > 0 a-almost everywhere, that wa > 0 awu-
almost everywhere and finally that w > 0 awa-almost everywhere; and by the previous
points, wa > 0 and w > 0 a-almost everywhere as well.

Proof. 1) Estimates on wu.
1-1) Pointwise control. Since w = 1 identically at t = 0 andD � 0, one trivially has that
0 � w � 1. The other estimates are less straightforward and we start by proving them on
wu. Define

'(t; x) = � log(1 +
Z t

0

ju(s; x)j ds);
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and notice that

@t' + u � r' = �
ju(t; x)j

1 +
R t

0 ju(s; x)j ds
�
u(t; x) �

R t

0 rxu(s; x) �
u(s;x)

ju(s;x)j
ds

1 +
R t

0 ju(s; x)j ds
;

while '(t = 0; x) = 0. Therefore by (10), one has that

@t logwu + u � rx logwu � @t' + u � r':

By the maximum principle since logwu = ' at t = 0, we have that logwu � ' and by
taking the exponential

wu � e' =
1

1 +
R t

0 ju(s; x)j ds
:

1-2) A log-control on wu. Using again the equation (10), and since div(a u) = 0, we have
that

d

dt

Z
Ω

a(x) j logwu(t; x)j dx =

Z
Ω

a(x) ju(t; x)j
1 +

R t

0 jru(s; x)j ds

1 +
R t

0 ju(s; x)j ds
dx:

Therefore by the definition of 'Z
Ω

a(x) j logwu(t0; x)j dx = �

Z t0

0

Z
Ω

@t'(t; x)

�
a +

Z t

0

a(x) jru(s; x)j ds

�
dx dt:

Integrating by part in timeZ
Ω

a(x) j logwu(t0; x)j dx = �

Z t

0

Z
Ω

a @t'(t; x)

+

Z t0

0

Z
Ω

'(t; x) a(x) jru(t; x)j dx dt

�

Z
Ω

a(x)'(t0; x)

Z t0

0

jru(s; x)j ds dx:

Remark that the first term reads

0 � �

Z t

0

Z
Ω

a @t'(t; x) � kukL1
t L1

a
:
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Note that the second term in the right-hand side is negative. For the last term, we use the
well-known convex inequality, x y � x log(e + x) + ey for x; y � 0 to bound

�

Z
Ω

a(x)'(t0; x)

Z t0

0

jru(s; x)j ds dx

�

Z t0

0

Z
Ω

a(x)
�
jru(s; x)j log(e + jru(s; x)j) + ej'(t0;x)j

�
ds dx

�

Z t0

0

Z
Ω

a(x)

�
jru(s; x)j log(e + jru(s; x)j) + 1 +

Z t0

0

ju(r; x)j dr

�
ds dx;

again by the definition of '. HenceZ
Ω

a(x) j logwu(t0; x)j dx

� CT

�
kukL1

t L1
a
+

Z t0

0

Z
Ω

a(x) jru(s; x)j log(e + jru(s; x)j) dx ds

�
:

2) Estimates on wa.
2.1) Pointwise control on wa. We now turn to the estimate on wa. First note that

@t˛ + u � r˛ = u � r˛ � �
ju � r˛j

˛
˛;

and therefore, just as for wu, by the maximum principle logwa � 
 log˛ which leads to

wa(t; x) � (˛(x))


and the other inequality as ˛ � a.
1-2) A log-control on wa. We also follow the same strategy to bound j logwaj and obtain
in a straightforward manner, using Eq. (10) on wu, thatZ

Ω

a(x)wu(t0; x) j logwa(t0; x)j dx �


Z t0

0

Z
Ω

a(x)wu juj jr log˛j dx dt

+

Z
Ω

a j logwa(t = 0; x)j dx:

From the initial data on wa, wa(t = 0; x) = (˛(x))
 , we have thatZ
Ω

a j logwa(t = 0; x)j dx � 


Z
Ω

a j log˛j dx:



ANELASTIC DIVERGENCE CONSTRAINT 2193

Furthermore since a and ˛ do. not dependent on time, we also have thatZ t0

0

Z
Ω

a(x)wu juj jr log˛j dx dt �

Z
Ω

a(x) jr log˛j

Z t0

0

ju(t; x)j dt

1 +
R t

0 ju(s; x)j ds
dx

=

Z
Ω

a(x) jr log˛j

Z t0

0

@t log
�
1 +

Z t

0

ju(s; x)j ds

�
dt dx

=

Z
Ω

a(x) jr log˛j log
�
1 +

Z t0

0

ju(s; x)j ds

�
dx

By bounding the log polynomially and a Hölder estimate, we deduce thatZ
Ω

a(x)wu(t0; x) j logwa(t0; x)j dx dt � 
 k log˛kL1
a
+C� 
 kukL1

t L
p
a

kr log˛kL
1+�
a

;

for any � > 0. Choosing � s.t. 1 + � � r one has
(15)Z

Ω

a(x)wu(t0; x) j logwa(t0; x)j dx dt � 
 k log˛kL1
a
+ 
 kukL1

t L
p
a

kr log˛kLr
a
:

2) Estimates on w. The point wise estimate on w is straightforward due to the damping
term and the initial data. We now turn to the last estimate on logw. Following similar
calculations with Eqs. (11) and (9), we have that

d

dt

Z
Ω

a(x)wa(t; x) j logw(t; x)j dx �

Z
Ω

a(x)wa(t; x)D(t; x) dx:

Since wa(t; x) � (˛(x))
 , if 
 � ��, one has from the definition ofD in (11) that

d

dt

Z
Ω

a(x)wa(t; x) j logw(t; x)j dx �

�

Z
Ω

a(x)
�
M jr(˛u)j + (M jr˛j)�

juj
� (˛)
 + 1

�
dx:

We may simply boundZ
Ω

a(x) (M jr˛j)�
juj

� (˛)
 dx � C kr˛k
�
Lq kuk

�
L

p
a
;

with q > � and recalling the maximal function is bounded on Lq as q > 1. For the other
term, by the standard properties of the maximal function, one has thatZ T

0

Z
Ω

a(x)M jr(˛ u)j(t; x) dx dt � C

Z T

0

Z
Ω

M jr(˛ u)j(t; x) dx dt

� C

Z T

0

kjr(˛ u)(t; :)j kH1 dt;
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where H1 is the classical Hardy space. Since jr(˛u)j is always positive andΩ is bounded,
this Hardy norm reduces to a L logL estimate

k jr(˛ u)j kH1 ∼ C

�Z
Ω

jr(˛ u)j log(e + jr(˛ u)j) dx

�
:

This is of course slightly non-optimal as we are losing possible cancellations in r(˛ u),
but necessary here if we want to keep positive weights. Of course since r(˛ u) = ur˛+

˛ru, we have for example by the properties of the log and Hölder estimates thatZ
Ω

jr(˛u)j log(e + jr(˛u)j)) dx �C

Z
Ω

˛ jruj log(e + jruj) dx

+ C kuk
�
L

p
˛

kr˛1/p�

k
�
Lq ;

where one needs q > p�. Therefore since ˛ � a, we finally find thatZ
Ω

a(x)wa(t; x) j logw(t; x)j dx � C T + C kuk
�
L

p
a

kr˛1/p�

k
�
Lq

+ C

Z T

0

Z
Ω

a jruj log(e + jruj) dx dt:

(16)

3 Compactness and quantitative regularity estimates

We consider here any renormalized solution to our main equation (1) and prove that it
satisfies some quantified uniform regularity. As in the previous section those estimates
will be applied for our approximate coefficients a", ˛� as at this time we have not yet
obtained renormalized solution in the general case.

3.1 Regularity conditioned by the weights. The first step is to propagate an adhoc
semi-norms constructed with the weights, namely
Proposition 3. Assume that � is a renormalized solution to the transport equation in
advective form (1) with constraints (2). Let us define a corresponds to a on Ω and 0 on
Rd nΩ. Assume as well that we have renormalized solutions wa to (9), wu to (10) and w
to (11) with � large enough. One has that for any h and for q > p�Z

R2d

ax ay j�(t; x) � �(t; y)j

(h+ jx � yj)d
wa(t; x)wu(t; x)w(t; x)wa(t; x)wu(t; y) w(t; y) dx dy

�

Z
R2d

ax ay j�0(x) � �0(y)j

(h+ jx � yj)d
dx dy

+ C j log hj
1/2

k�kL1 (kuka + kuk
�
a) (1 + kr˛1/p�

kLq )� :
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Proof. We skip the bar on a to simplify calculations. Since � is a renormalized solution,
one has the non-linear identity

axay
h
@t j�

x
� �y

j + ux
� rxj�x

� �y
j + uy

� ry j�x
� �y

j

i
= 0:

Hence

@t (a
xay

j�x
� �y

jwx wx
a w

x
u w

y wy
a w

y
u)

+ axayux
� rx(j�

x
� �y

jwx wx
a w

x
u w

y wy
a w

y
u)

+ axayuy
� ry(j�

x
� �y

jwx wx
a w

x
u w

y wy
a w

y
u)

� �axay (Dx +Dy) j�x
� �y

jwx wx
a w

x
u w

y wy
a w

y
u :

Multiplying by (h+ jx � yj)�d and integrating by parts yields

d

dt

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u dx dy �

� d

Z
R2d

axay j�x � �y j

(h+ jx � yj)d+1
wx wx

a w
x
u w

y wy
a w

y
u

(u(t; x) � u(t; y)) �
x � y

jx � yj
dx dy

�

Z
Ω2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u (Dx +Dy) dx dy:

As usual the main issue is the commutator estimate. As ru is only controlled when inte-
grated against a, this is a more delicate issue. Indeed in principle ux � uy involves the
values of ru between x and y whereas we only have the values of a at x and y. It is
the reason why we need to introduce ˛, which has some regularity, and proceed with the
following decompositionˇ̌̌̌
(u(t; x) � u(t; y)) �

x � y

jx � yj

ˇ̌̌̌
�

1

˛x ˛y
˛x ˛y

ju(t; x) � u(t; y)j

� (˛x)�1 (˛y)�1
j˛x ux

� ˛y uy
j
˛x + ˛y

2

+ (˛x)�1 (˛y)�1
j˛x

� ˛y
j
˛x juxj + ˛y juy j

2
:
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By symmetry in x and y this leads to

d

dt

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u dx dy

� d

Z
R2d

axay j�x � �y j

(h+ jx � yj)d+1
wx wx

a w
x
u w

y wy
a w

y
u

j˛x ux
� ˛y uy

j
˛x + ˛y

˛x ˛y
dx dy(17)

+ d

Z
R2d

axay j�x � �y j

(h+ jx � yj)d+1
wx wx

a w
x
u w

y wy
a w

y
u

j˛x
� ˛y

j
˛x juxj + ˛y juy j

˛x ˛y
dx dy

�

Z
Ω2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wx
a w

y
u (Dx +Dy) dx dy:

We now appeal to the technical lemmas that have already been used in Bresch and Jabin
[2017b] to control the difference ux � uy .

Lemma 4. There exists C > 0 s.t. for any f 2 W 1;1(Rd ), one has

jf (x) � f (y)j � C jx � yj (Djx�yjf (x) +Djx�yjf (y));

where we denote

Dhf (x) =
1

h

Z
jzj�h

jrf (x + z)j

jzjd�1
dz:

A full proof of such well known result can for instance be found in Champagnat and
Jabin [2010] in a more general setting namely f 2 BV . Through a simple dyadic decom-
position, one may also immediately deduce that

(18) Dh f (x) � C M jrf j(x);

whereM denotes the usual maximal operator, and thus recovering the classical bound

(19) jf (x) � f (y)j � C jx � yj (M jrf j(x) +M jrf j(y)):
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Applying Lemma 4 to Eq. (17), we find, by symmetry in x and y that

d

dt

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u dx dy

� C

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj(˛ u)(x) +Djx�yj(˛ u)(y))
dx dy

˛x

+ C

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj˛(x) +Djx�yj˛(y))
juxj

˛y
dx dy

�

Z
Ω2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u (Dx +Dy) dx dy:

We recall the definition of the penalizationDx

Dx = �

�
M jr(˛ u)j(x)

˛x
+ (M jr˛j(x))�

jux
j
� + j˛x

j
���

�
with � > 0 chosen large enough. Since v w � v� + w�� , one has that

Djx�yj˛(x)
juxj

˛y
� (M jr˛j(x))�

jux
j
� + j˛y

j
���

:

By the bound (18) with some symmetry in x and y, and using � large enough, we therefore
obtain that

d

dt

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u dx dy

� C

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj(˛ u)(y) �Djx�yj(˛ u)(x))
dx dy

˛x
(20)

+ C

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj˛(y) �Djx�yj˛(x))
juxj

˛y
dx dy:
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Recalling now Lemma 2, we have that wx
a � ˛x . Therefore,Z

R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj(˛ u)(y) �Djx�yj(˛ u)(x))
dx dy

˛x
�

� Ck�kL1

Z
R2d

jDjx�yj(˛ u)(y) �Djx�yj(˛ u)(x)j

(h+ jx � yj)d
dx dy

� Ck�kL1

Z
Sd�1

Z
Rd

Z R

0

ˇ̌
D�(˛ u)(x + �w) �D�(˛ u)(x)

ˇ̌ d�

h+ �
d� dx dw;

by a direct change of variables to polar coordinates in y � x and where R is the diameter
of Ω. This leads to a square function type of estimates as by Cauchy-SchwartzZ

R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj(˛ u)(y) �Djx�yj(˛ u)(x))
dx dy

(˛x)�
�

� Ck�kL1

Z
Sd�1

j loghj
1/2

Z
Rd

 Z R

0

ˇ̌
D�(˛ u)(x + �w) �D�(˛ u)(x)

ˇ̌2 d�

h+ �

!1/2

dx dw:

We now recall the classical estimate (see for example the remark on page 159 in Stein
[1993])

Lemma 5. For any 1 < p < 1, any family L� of kernels satisfying for some s > 0

(21)Z
L� = 0; sup

�
(kL�kL1 + �s

kL�kW s;1) � CL; sup
�
��s

Z
jzjs jL�(z)j dz � CL:

Then there exists C > 0 depending only on CL above s.t. for any f in the Hardy space
H1(Ω)

(22)
Z

Rd

�Z 1

0

jL� ? f (x)j
2 d�

h+ �

�1/2

dx � C kf kH1 ;

whereas if f 2 Lp with 1 < p < 1

(23)
Z

Rd

�Z 1

0

jL� ? f (x)j
2 d�

h+ �

�p/2

dx � Cp kf k
p
Lp :
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Observe that obviously

D�f = L̄� ? jrf j; L̄�(x) =
1

� jxjd�1
Ijxj�� = ��d L̄(x/�)

with L̄(x) = 1
jxjd�1 Ijxj�1. Hence definingL�(x) = L̄�(x)� L̄�(x+�w), we can easily

check that L� satisfies the assumptions of Lemma 5. This proves thatZ
R2d

axay j�x � �y j

(h+ jx � yj)d+1
wx wx

a w
y wy

a (Djx�yj(˛ u)(y) �Djx�yj(˛ u)(x))
dx dy

˛x

� C k�kL1 j log hj
1/2

k jr(˛ u)j kH1(Ω):

We now follow the exact same steps as for the bound at the end of the proof of Lemma 2.
Note that here it would be easier to use the cancellations in r(˛u) by being more precise
in Lemma 4 and using an exact representation instead of a bound. For simplicity though,
here we have kept the more direct version of Lemma 4. Hence we have thatZ

Ω

jr(˛u)j log(e + jr(˛u)j) dx � C

Z
Ω

a jruj log(e + jruj) dx

+ C kuk
�
L

p
a

kr˛1/p�

k
�
Lq ;

where again one needs q > p�. This lets us conclude thatZ T

0

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
y wy

a

(Djx�yj(˛ u)(y) �Djx�yj(˛ u)(x))
dx dy dt

˛x
�(24)

� CT k�kL1 j log hj
1/2 [kuka + kuk

�
L

p
a

kr˛1/p�

k
�
Lq ]

We apply the same strategy to the other term in the bound (20). We again start using that
w

y
a � ˛y to obtain thatZ T

0

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj˛(y) �Djx�yj˛(x))
juxj dx dy dt

˛y
�

� k�kL1

Z
R2d

jDjx�yj˛(y) �Djx�yj˛(x)j

(h+ jx � yj)d

Z T

0

wx
u a

x
jux

j dt dx dy;
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since ˛ is independent of time. By Lemma 2, wu � 1/(1 +
R t

0 ju(s; x)j ds and henceZ T

0

wu(t; x) ju(t; x)j dt �

Z T

0

ju(t; x)j

1 +
R t

0 ju(s; x)j ds
dt

=

Z T

0

@t log
�
1 +

Z t

0

ju(s; x)j ds

�
dt

= log

 
1 +

Z T

0

ju(s; x)j ds

!
:

Choose now any � > 0 and bound

log

 
1 +

Z T

0

ju(s; x)j ds

!
� C�

 
1 +

Z T

0

ju(s; x)j ds

!�/(1+�)

;

so that by Hölder since 1 � 1/(1 + �) = �/(1 + �)Z T

0

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj˛(y) �Djx�yj˛(x))
juxj dx dy dt

˛y
�

� C� k�kL1 kukL1
t L1

a
j log hj

�/(1+�)�Z
R2d

jDjx�yj˛(y) �Djx�yj˛(x)j
1+�

(h+ jx � yj)d
dx dy

�1/(1+�)

:

We can now apply Lemma 5 for f 2 Lp , and find similarly thatZ
R2d

jDjx�yj˛(y) �Djx�yj˛(x)j
1+�

(h+ jx � yj)d
dx dy � C� j log hj

(1��)/2
kr˛k

1+�

L1+� :

This leads toZ T

0

Z
R2d

axay j�x � �y j

(h+ jx � yj)d+1
wx wx

a w
x
u w

y wy
a w

y
u

(Djx�yj˛(y) �Djx�yj˛(x))
juxj dx dy dt

˛y
(25)

� C� k�kL1 kukL1
t L1

a
j log hj

1/2
kr˛kL1+� :
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Choosing � small with 1 + � � q and combining (25) with (24) in (20), we finally
conclude that

d

dt

Z
R2d

axay j�x � �y j

(h+ jx � yj)d
wx wx

a w
x
u w

y wy
a w

y
u dx dy �

� C j log hj
1/2

k�kL1 (kuka + kuk
�
a) (1 + kr˛1/p�

kLq )� ;

thus proving the proposition.

3.2 Our explicit regularity estimate. By using a straightforward interpolation argu-
ment thanks to the previous controls obtained on the different weights wu, wa, w, we can
now state our main result

Theorem 6. Assume that (a; ˛) satisfy (4) and that (2) and (5) hold for u. Assume as
well that we have renormalized solutions wa to (9), wu to (10) and w to (11). Consider
now any renormalized solution to (1) and denote

k�0
kh =

1

j log hj

Z
Ω2d

axay j�0(x) � �0(y)j

(h+ jx � yj)d
dx dy:

Then

k�kh =
1

j log hj

Z
Ω2d

axay j�x � �y j

(h+ jx � yj)d
dx dy �

C

j log(k�0kh + j loghj�1/2)j1/2
;

for some constantC > 0 depending only on the bounds on k˛kL1(Ω), kuka and k�kL1((0;T )�Ω).

Proof. The proof relies on a appropriate decomposition of the domain playing with sets
constructed using intersection of the set fx; y j wu(t; x) > �; wu(t; y) > �g or its com-
plementary set with the set fx; y j wa(t; x) > �

0; wa(t; y) > �
0g and its complementary

set and with the set fx; y j w(t; x) > �00; w(t; y) > �00g and its complementary. More
precisely, we write

k�kh =

Z
Ω2d

j�x � �y j

(h+ jx � yj)d
ax ay dx dy =

4X
i=1

Z
Ii

j�x � �y j

(h+ jx � yj)d
ax ay dx dy

=

4X
i=1

Jj

with
I1 = fx; y j wu(t; x) < � or wu(t; y) < �g;



2202 DIDIER BRESCH AND PIERRE-EMMANUEL JABIN

I2 = fx; y j wu(t; x) > � and wu(t; y) > �g \ fx; y j wa(t; x) < �
0 or wa(t; y) < �

0
g

and denoting

I = fx; y j wu(t; x) > � and wu(t; y) > �g \ fx; y j wa(t; x) > �
0 and wa(t; y) > �

0
g;

with
I3 = I \ fx; y j w(t; x) < �00 or w(t; y) < �00

g;

and
I4 = I \ fx; y j w(t; x) > �00 and w(t; y) > �00

g:

Note that it is straightforward that

0 � J4 �
1

�2�02�002

Z
Ω2d

ax ay j�x � �y j

(h+ jx � yj)d
wx

aw
y
aw

x
uw

y
uw

xwydx dy:

Remark now that by symmetry, J1 is bounded by

0 � J1 � j log hj

Z
x; wu(t;x)��

ax(Kh ? aj�(t; x)j +Kh ? ja�j) dx;

where Kh(x) = (h+ jxj)�d/j log hj so kKhkL1 = 1. By Hölder estimateZ
x; wu(t;x)��

ax(Kk ? aj�(t; x)j +Kh ? ja�j) dx � Ck�kL1

Z
x; wu(t;x)��

a dx:

Now it suffices to note thatZ
x; wu(t;x)��

a dx �
1

j log �j

Z
x; wu(t;x)��

j logwu(t; x)j a(t; x) dx �
C

j log �j
kuka

to get an appropriate control. Similarly we get using properties of wu and wa

J2 �
C j log hj

�j log �0j
k�kL1

Z
Ω

axwx
u j logwx

a j

We end the proof with the same kind of estimate on J3 using properties of wa and w,
namely

J3 �
C j log hj

�0j log �00j
k�kL1

Z
Ω

axwx
a j logwx

j

Now using the bounds on awuj logwaj and awaj logwj and the uniform bounds on u and
˛, and using Proposition 3 we get

sup
t2[0;T ]

1

j log hj

Z
Ω2d

axay j�x � �y j

(h+ jx � yj)d
dx dy �

�
C

�2�02�002

h
k�0

kh + j log hj
�1/2

i
+ C

h 1

j log �j
+

1

�j log �0j
+

1

�0j log �00j

i
:
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Optimizing in �, �0, �00 (by choosing � in function of �0 and �0 in function of �00 and finally
�00 in function of ˛ and j loghj�1/2) we get the conclusion.

4 Stability and existence of renormalized solutions: Proof of
Theorem 1

4.1 Stability of renormalized solutions. Assume that we have been given sequences
a", ˛" and u" on a set Ω" which satisfy the assumptions specified in Theorem 1.

Since all terms are smooth, Eq. (7) has a unique Lipschitz solution �" for any given
initial data �0

" 2 L1(Ω"). This solution is then obviously automatically renormalized.
For the same reason we also trivially have solutions wa to Eq. (9) with ˛" and u" and
similarly for Eqs. (10) and (11). Of course while our solutions are smooth for a fixed ",
the main point is to derive and use uniform in " bounds to obtain appropriate limits.

First define ā" = a" on Ω" and extended by 0 on the whole of Rd . Proceed similarly
to define at the limit ā. Since a" is uniformly in L1, we can replace the convergence
ka" � akL1(Ω"\Ω) ! 0 and Ω" ! Ω in Hausdorff distance by the simple

kā" � ākL1(Rd ) �! 0:

From the uniform L1
t L

p
a"

estimate for u" provided by (5) and sup" ku"ka"
< 1, we can

extract a weak limit of ā1/p
" u" in the whole space Rd and from the strong convergence

of ā", identify the limit as ā u for some u 2 L1
t L

p
a :

ā
1/p
" u" �! ā1/p u in w � � L1

t L
p(Rd ); u 2 L1

t L
p
a ;

while for simplicity we still denote the extracted subsequence with ". Since
sup" k�0

" kL1(Rd ) < 1 then through renormalization sup" k�"kL1(R+�Rd ) < 1, we
may also extract a converging subsequence

�" �! � in w � � L1(R+ � Rd ):

For any � 2 W 1;1(R) with �(0) = 0, �(�") still solves (7) by the chain rule for smooth
functions. Choosing any test function  2 C1

c (Rd ), we deduce from (7) with the diver-
gence condition (6) and the boundary conditions (8) the weak formulation

d

dt

Z
Ω"

�(�") a"  (x) dx �

Z
Ω"

�(�") a" u" � rx dx = 0:
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The previous definition of ā" and �̄" actually implies that this weak formulation is equiv-
alent to the formulation in the whole space

(26)
d

dt

Z
Rd

�(�") ā"  (x) dx �

Z
Rd

�(�") ā" u" � rx dx = 0;

which is much simpler to use since the domain is now fixed. In that sense (26) implies the
boundary condition (8) on @Ω" if one imposes that ā" = 0 out of Ω". It is straightforward
to check that ā = 0 out of Ω at the limit. Thus to prove that � is a renormalized solution
to (1) with (2) on the limiting set Ω, it is now enough to pass to the limit in (26).

Let us now first prove compactness in space on �(�") for any smooth function �. This
is exactly where our approach proves its use: We have all required assumptions to apply
Theorem 6 and deduce from the compactness of �0

" and a" that

(27) lim sup
h!0

1

j log hj
sup

"
sup

t

Z
R2d

āx
" ā

y
"

j�x
" � �

y
" j

(jx � yj + h)d
dxdy �! 0:

Note now that

ax
" a

y
" (�

x
" � �y

" ) = (ax
" �

x
" � ay

" �
y
" )(a

y
" + ax

" )/2 + (ay
" � ax

" )(a
y
" �

y
" + ax

" �
x
" )/2

and that j(ax
" �

x
" � a

y
" �

y
" )j � C (ax

" + ay
" ) then get

jax
" �

x
" � ay

" �
y
" j

2
� C (ax

" a
y
" j�x

" � �y
" j + jay

" � ax
" j):

and therefore using (27) and compactness on a", by the Rellich criterion this implies lo-
cally in space compactness of a"�". Using the same procedure, it is possible to prove
space compactness of a"�(�"). We get compactness (in space and time) on a"�(�") us-
ing the renormalized equation which provides a control on @t (a"�(�")) allowing to use
Aubin-Lions Lemma. Thus, up to a subsequence, we deduce that a"�(�") converges al-
most everywhere and thus a1�1/p

" �(�") converges almost everywhere using the compact-
ness on a". As �" is uniformly bounded and therefore �(�") also, we get compactness
of a1�1/p

" �(�"). To conclude we just have to write �(�")a"u" = a
1�1/p
" �(�") a

1/p
" u"

and use the weak-star convergence of a1/p
" u" in L1

t L
p
x and the strong convergence of

a
1�1/p
" �(�") in L1

tL
q
x where 1/q + 1/p = 1.

4.2 Existence of renormalized solutions. To obtain existence of renormalized solu-
tions through a stability argument, it only remains to be able construct a sequence of ap-
proximations on which we may apply the previous stability argument.

In our case, given a, ˛ and u which satisfy (2), (4) and (5), the first question is whether
we can construct smooth a", ˛" and u" which still satisfy the previous estimates uniformly
in " and where a" is bounded from below on Ω.
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First define Ω̃" = f˛ > "g. On Ω̃", one has that a � ˛ > "; hence by (4), ˛ belongs to
a Sobolev space on a neighborhood of Ω̃" so that the boundary of Ω̃" is Lipschitz.

Define ã" = a on Ω̃" and a = " on Ω n Ω̃". Hence ã" may be discontinuous. Define
similarly ˜̨" = ˛ on Ω̃" and " outside. By the definition of Ω̃", ˜̨" does not jump on @Ω̃".

Note that ˜̨" satisfies (4) uniformly in ", i.e. sup"A(˜̨"; ã") < 1; as for example

ã" jr log ˜̨"j
r = a jr log˛j

r IΩ̃"
:

Choose now a smooth and non-negative function � s.t. �(�/") is a good approximation of
the Heaviside function with in particular �(�/") = 0 if � � " and �(�/") = 1 if � � 2 ".

Define then u";L = u
1+juj/L

�(˛/"). And observe that

ru";L =
ru

1 + juj/L
�(˛/") �

u

L (1 + juj/L)2
˝ ru �

u

juj

+
u

1 + juj/L
˝ r log˛

˛

"
�0(˛/")

=
ru

1 + juj/L
�(˛/") + U";L +D";L:

Since ˛
"
�0(˛/") is bounded uniformly and r log˛ 2 Lr

a, one has that kD";LkLr
a

� C L

for some given constantC independent of " andL. But note that r log˛ is independent of
" and L and hence equi-integrable in Lr

a while ˛
"
�0(˛/") converges to 0 in L1 as " ! 0.

Hence for a fixed L,D";L ! 0 as " ! 0 for L fixed.
Therefore we can connect L and " and choose L" s.t. kD";LkLr

a
! 0 as " ! 0. By

the same type of equi-integrability arguments, we can show thatZ
Ω

a jU";L"
j log(1 + jU";L"

j) dx �! 0; as " ! 0:

As a consequence u";L"
still satisfies sup" ku";L"

ka < 1. Hence since u";L"
vanishes

outside of Ω̃", it satisfies sup" ku";L"
kã"

< 1. We still need to correct the divergence and
for this we solve the following elliptic equation

div(arV") = �a Tr(U";L"
+D";L"

) in Ω̃"; V" = 0 on @Ω̃":

Since a is bounded from below in Ω̃" and @Ω" is Lipschitz, this equation is well posed
and we can extend V" to all Ω by taking V" = 0 in Ω n Ω̃". Furthermore by the previous
bounds on D";L"

and L";L"
, we have that V" converges to 0 in W 1;q

ã"
for some q > 1. In

dimension 2 for instance, the energy inequality would directly give this inH 1
ã"
.

We finally define ũ" = u";L"
+rV". From the construction, Eq. (6) holds for ã" and ũ".

The bounds in (4) and (5) are also satisfied uniformly in ": sup"A(˜̨"; ã")+sup" kũ"kã"
<

1. Finally ã", ˜̨" and ũ" all converge strongly.
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Of course those coefficients are not yet smooth but this last step is the easiest and we
only sketch it. By standard Sobolev approximation since ã" is now bounded from below,
one may find ˛" and ū" in C1(Ω) but close to ˜̨" and ũ" in the corresponding Sobolev
spaces so that (4) and (5) still hold with weight ã" uniformly in ".

One then approximates ã" by a" 2 C1(Ω), uniformly bounded and with a" � ". In
addition it is possible to choose kã" � a"kL1 small enough to obtain the uniform bounds
(4) and (5): sup"A(˛"; a") + sup" ku"ka"

< 1.
We finally correct u" = ū" + rV̄" as before to satisfy the divergence condition (6).

Once those approximated coefficients are constructed, we may directly apply our sta-
bility estimates to obtain at the limit a renormalized solution �.

4.3 Toward the uniqueness of weak solutions to (1). We conclude this section by
briefly sketching a possible strategy to obtain the uniqueness of Eq. (1) by proving, as in
the classical argument, that all weak solutions are also renormalized.

Since DiPerna and Lions [1989] this is usually performed by convolving Eq. (1) for
any weak solution � by some smooth kernel �" and showing that �"(a �) still solves (1)
with a right-hand side that is vanishing in L1. This commutator estimate would require
here that

(28)
Z
Ω

(u(t; x) � u(t; y)) � r�"(x � y) a(y)�(t; y) dy �! 0 in L1
tL

1
xas " ! 0:

One can then typically conclude by using Sobolev bounds on a. But since there is no a(y)
factor in the above integral and we only control ru in L1

a, this cannot work here.
A second issue arises since (28) also usually requires a control on divu which is again

unavailable.
Instead we would propose the following approach:

• Through a stability argument, obtain the existence of renormalized solutions to (9)
and (10).

• Show that the commutator estimate (28) for � = wa wu holds by using in particular
that wa � a
 . The exact calculations here should be reminiscent of what were in
essence other commutator estimates in the proof of Proposition 3.

• For any weak solution �, use the previous point to prove that � wa wu is also a
solution to (1) with the corresponding added right-hand side from (9) and (10).

• Prove a commutator estimate like (28) but where � is replaced by � wa wu.

There are obvious technical difficulties at each step and for this reason implementing such
a strategy is beyond the limited scope of these proceedings.
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5 An anelastic compressible equation coming from fluid mechanics

Let us present in this subsection a PDEs system occurring in fluid mechanics where the
advective equation appears with a possible degenerate anelastic constraint. Then we will
look more carefully on the two-dimensional in space lake equations where an advective
equation with transport velocity satisfying the anelastic constraint appears.
i ) The anelastic constraint from compressible isentropic Euler equations. This anelastic
constraint appears when the Mach (or Froude) number tends to zero starting the compress-
ible isentropic Euler equations with some heterogeneity F (bathymetry, stratification for
instance). More precisely consider the following system

@t�" + div(�"u") = 0

with
@t (�"u") + div(�"u" ˝ u") +

rp(�")

"2
=
�" rF

"2

and the pressure law p(�) = c�
 (with two constants c > 0 and 
 > 1) and where F is
given and depends on the space variable (it represents heterogeneities in the environment).
By letting formally " to zero we get the following limit anelastic system

a (@tu+ u � ru) + ar� = 0; div(au) = 0 where a =
�
 � 1

c 


�1/(
�1)

(F )1/(
�1):

Therefore the anelastic constraint div(au) = 0 actually accounts for the heterogeneity.

ii) The lake equations. This application concerns the so-called lake equation (under the
rigid lid assumption) with possible vanishing topography. The PDEs is valid on a two-
dimensional bounded domain Ω (the surface of the lake). This system reads

a(@tu+ u � ru+ rp) = 0 with div(au) = 0 in (0; T ) � Ω

with respectively the boundary condition and the initial data

au � nj(0;T )�@Ω = 0; aujt=0 = m0 in Ω

where a denotes the bathymetry and u = (u1; u2) is a two-dimensional vector field which
corresponds to the vertically averaging of the horizontal components of the velocity field
U = (U1; U2;W ) in a three dimensional basin. Note that such system has been studied by
Levermore, Oliver, and Titi [1996] in the non-degenerate case and by Bresch andMétivier
[2006], Lacave, Nguyen, and Pausader [2014] and Munteanu [2012] in the degenerate
case.
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By reducing Ω to the support of a, we may assume that the bathymetry a is strictly
positive in the domain Ω and possibly vanish on the shore @Ω. Introducing the relative
vorticity !R = curlu/a where curlu = @1u2 � @2u1, we check starting from the lake
equation and dividing by a inside the domain that

@t!R + u � r!R = 0 in (0; T ) � Ω; !Rjt=0 = !R
0 =

curlu0
a

in Ω

with
div(au) = 0; curlu = a !R; au � nj(0;T )�@Ω = 0:

Remark. The boundary condition on aumay be considered in a weak form if the boundary
of the domain is not Lipschitz (Ω reduced by the support of a for example).

Definition. Let (u0; !0
R) be such that

div(au0) = 0 in Ω; au0 � nj@Ω = 0

and
!0

R 2 L1(Ω); curlu0 = a !0
R:

A couple (v; !) is a global renormalized solution of the vorticity formulation of the lake
equation with initial condition (v0; !0) if

• !R 2 L1((0; T ) � Ω) and
p
au 2 L1(0; T ;L2(Ω))

• div(au) = 0 in (0; T ) � Ω and a u � nj(0;T )�@Ω = 0

• curlu = a !R in the distributional sense.

• For all � 2 W 1;1(R) with �(0) = 0, choosing  2 C1
c (Ω), then

d

dt

Z
Ω

�(!R) a (x) dx �

Z
Ω

�(!R) au � r dx = 0:

Using the stability process regarding the advective equation with anelastic constraint, we
can get the following result

Theorem 7. Let a be continuous on Ω and strictly positive in Ω. Assume that r
p
a 2

L2+(Ω) and that there exists � > 0 such that 1/a� 2 L1(Ω). Then there exists a global
renormalized solution of the vorticity formulation of the lake Equation.
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Constructing an approximate sequence of global renormalized solution in the sense of
the definition given above for (a"; ˛") constructed in the paper and in the whole space
R2 is an standard procedure since the coefficients and the domain are regular and the
approximate bathymetry is far from vacuum, see for instance Levermore, Oliver, and Titi
[1996], Lacave, Nguyen, and Pausader [2014], Bresch and Métivier [2006]. We get the
following bounds uniform with respect to the parameter "

(29) u" 2 L1(0; T ;L2
a(R

2)); !"
R 2 L1((0; T ) � R2):

Remark now that

curl(a"u") = u" � r
?a" + a" curlu" =

p
a"u" � r

?
p
a" + a

2
" !

"
R

and
div(a"u") = 0:

This is the system that we will use to get regularity on a"ru" required in the hypothesis
for the stability. Using the uniform bounds on !"

R and
p
a"u" and the uniform bound

r
p
a" 2 L2+(Ω), we get that

a"u" 2 L1(0; T ;W 1;p(Ω)) for some p > 1

Thus writing
a"ru" = r(a"u") � u" � ra"

we get that, uniformly in ",

(30) a"ru" 2 L1(0; T ;Lp(Ω)) for some p > 1:

On the other hand,Z
Ω

a" jru"j j log a"j dx �
1

�

Z
Ω

a"jru"j(log(e + a"jru"j) � log �) +
Z
Ω

1

a
�
"

:

for � > 0 chosen such that 1/a�
" 2 L1(Ω). By combining this with (30), we obtain a

uniform bound on Z T

0

Z
Ω

a" jru"j log(e + jru"j) dx dt;

leading to the uniform bound on u" for the quantity kuka"
recalling that we already control

u" uniformly in L1(0; T ;L2
a(Ω)). This allows then to use the stability procedure taking

˛ = ak
" for any k � 1 to get the conclusion of the Theorem.
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Remark. It is interesting to note that we get global renormalized solution instead of global
weak solution as in Lacave, Nguyen, and Pausader [2014]. In our result we use compact-
ness on the vorticity through quantitative regularity estimate compared to compactness
on the velocity field through the stream function equation and Aubin-Lions Lemma as
usually.
Remark. Let us observe that assuming a behaves dist(x; @Ω)k the first hypothesis in the
theorem asks for k > 1. The second hypothesis being satisfied. Of course we can gener-
alize for more general power k playing with parameters � using for instance that

a�u 2 L1(0; T ;W 1;p(Ω))

and also
a�

ru 2 L1(0; T ;Lp(Ω)) for some p > 1

if a�+1/2 2 L2+(Ω) and ra��1/2 2 L2+(Ω).

References

Luigi Ambrosio (2004). “Transport equation and Cauchy problem for BV vector fields”.
Invent. Math. 158.2, pp. 227–260. MR: 2096794 (cit. on p. 2186).

Luigi Ambrosio and Gianluca Crippa (2014). “Continuity equations and ODE flows with
non-smooth velocity”. Proc. Roy. Soc. Edinburgh Sect. A 144.6, pp. 1191–1244. MR:
3283066 (cit. on p. 2186).

Julien Barré, David Chiron, Thierry Goudon, and NaderMasmoudi (2015). “FromVlasov-
Poisson andVlasov-Poisson-Fokker-Planck systems to incompressible Euler equations:
the case with finite charge”. J. Éc. polytech. Math. 2, pp. 247–296. MR: 3426749 (cit.
on p. 2186).

Fethi Ben Belgacem and P-E Jabin (Nov. 2016). “Convergence of numerical approxima-
tions to non-linear continuity equations with rough force fields”. arXiv: 1611.10271
(cit. on p. 2186).

Fethi Ben Belgacem and Pierre-Emmanuel Jabin (2013). “Compactness for nonlinear con-
tinuity equations”. J. Funct. Anal. 264.1, pp. 139–168. MR: 2995703 (cit. on p. 2186).

AnnaBohun, François Bouchut, andGianluca Crippa (2016). “Lagrangian flows for vector
fields with anisotropic regularity”. Ann. Inst. H. Poincaré Anal. Non Linéaire 33.6,
pp. 1409–1429. MR: 3569235 (cit. on p. 2186).

François Bouchut and Gianluca Crippa (2013). “Lagrangian flows for vector fields with
gradient given by a singular integral”. J. Hyperbolic Differ. Equ. 10.2, pp. 235–282.
MR: 3078074 (cit. on p. 2186).

https://doi.org/10.1007/s00222-004-0367-2
http://www.ams.org/mathscinet-getitem?mr=MR2096794
https://doi.org/10.1017/S0308210513000085
https://doi.org/10.1017/S0308210513000085
http://www.ams.org/mathscinet-getitem?mr=MR3283066
https://doi.org/10.5802/jep.24
https://doi.org/10.5802/jep.24
https://doi.org/10.5802/jep.24
http://www.ams.org/mathscinet-getitem?mr=MR3426749
http://arxiv.org/abs/1611.10271
http://arxiv.org/abs/1611.10271
http://arxiv.org/abs/1611.10271
https://doi.org/10.1016/j.jfa.2012.10.005
https://doi.org/10.1016/j.jfa.2012.10.005
http://www.ams.org/mathscinet-getitem?mr=MR2995703
https://doi.org/10.1016/j.anihpc.2015.05.005
https://doi.org/10.1016/j.anihpc.2015.05.005
http://www.ams.org/mathscinet-getitem?mr=MR3569235
https://doi.org/10.1142/S0219891613500100
https://doi.org/10.1142/S0219891613500100
http://www.ams.org/mathscinet-getitem?mr=MR3078074


ANELASTIC DIVERGENCE CONSTRAINT 2211

JeanBourgain, HaimBrezis, and PetruMironescu (2001). “Another look at Sobolev spaces”.
In: Optimal control and partial differential equations. IOS, Amsterdam, pp. 439–455.
MR: 3586796 (cit. on p. 2186).

Didier Bresch and Pierre-Emmanuel Jabin (July 2015). “Global Existence of Weak Solu-
tions for Compresssible Navier–Stokes Equations: Thermodynamically unstable pres-
sure and anisotropic viscous stress tensor”. arXiv: 1507 . 04629 (cit. on pp. 2185,
2186).

– (2017a). “Global weak solutions of PDEs for compressible media: a compactness cri-
terion to cover new physical situations”. In: Shocks, singularities and oscillations in
nonlinear optics and fluid mechanics. Vol. 17. Springer INdAM Ser. Springer, Cham,
pp. 33–54. MR: 3675552 (cit. on pp. 2185, 2186).

– (2017b).Quantitative regularity estimates for compressible transport equations (cit. on
pp. 2186, 2188, 2189, 2196).

Didier Bresch and Guy Métivier (2006). “Global existence and uniqueness for the lake
equations with vanishing topography: elliptic estimates for degenerate equations”.Non-
linearity 19.3, pp. 591–610. MR: 2209290 (cit. on pp. 2186, 2207, 2209).

– (2010). “Anelastic limits for Euler-type systems”. Appl. Math. Res. Express. AMRX 2,
pp. 119–141. MR: 2719374.

Nicolas Champagnat and Pierre-Emmanuel Jabin (2010). “Well posedness in any dimen-
sion for Hamiltonian flowswith nonBV force terms”.Comm. Partial Differential Equa-
tions 35.5, pp. 786–816. MR: 2753620 (cit. on pp. 2186, 2196).

Gianluca Crippa and Camillo De Lellis (2008). “Estimates and regularity results for the
DiPerna-Lions flow”. J. Reine Angew. Math. 616, pp. 15–46. MR: 2369485 (cit. on
p. 2186).

Camillo De Lellis (2007). “Notes on hyperbolic systems of conservation laws and trans-
port equations”. In:Handbook of differential equations: evolutionary equations. Vol. III.
Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, pp. 277–382. MR: 2549371
(cit. on p. 2186).

Ron J. DiPerna and Pierre-Louis Lions (1989). “Ordinary differential equations, transport
theory and Sobolev spaces”. Invent. Math. 98.3, pp. 511–547. MR: 1022305 (cit. on
pp. 2186, 2206).

Donatella Donatelli and Eduard Feireisl (2017). “An anelastic approximation arising in
astrophysics”.Math. Ann. 369.3-4, pp. 1573–1597. arXiv: 1604.05860. MR: 3713551
(cit. on p. 2186).

Dale R. Durran (1989). “Improving the anelastic approximation”. Journal of the atmo-
spheric sciences 46.11, pp. 1453–1461 (cit. on p. 2186).

Eduard Feireisl (2004). Dynamics of viscous compressible fluids. Vol. 26. Oxford Lecture
Series inMathematics and its Applications. OxfordUniversity Press, Oxford, pp. xii+212.
MR: 2040667 (cit. on p. 2185).

http://www.ams.org/mathscinet-getitem?mr=MR3586796
http://arxiv.org/abs/1507.04629
http://arxiv.org/abs/1507.04629
http://arxiv.org/abs/1507.04629
http://arxiv.org/abs/1507.04629
http://www.ams.org/mathscinet-getitem?mr=MR3675552
https://doi.org/10.1088/0951-7715/19/3/004
https://doi.org/10.1088/0951-7715/19/3/004
http://www.ams.org/mathscinet-getitem?mr=MR2209290
http://www.ams.org/mathscinet-getitem?mr=MR2719374
https://doi.org/10.1080/03605301003646705
https://doi.org/10.1080/03605301003646705
http://www.ams.org/mathscinet-getitem?mr=MR2753620
https://doi.org/10.1515/CRELLE.2008.016
https://doi.org/10.1515/CRELLE.2008.016
http://www.ams.org/mathscinet-getitem?mr=MR2369485
https://doi.org/10.1016/S1874-5717(07)80007-7
https://doi.org/10.1016/S1874-5717(07)80007-7
http://www.ams.org/mathscinet-getitem?mr=MR2549371
https://doi.org/10.1007/BF01393835
https://doi.org/10.1007/BF01393835
http://www.ams.org/mathscinet-getitem?mr=MR1022305
https://doi.org/10.1007/s00208-016-1507-x
https://doi.org/10.1007/s00208-016-1507-x
http://arxiv.org/abs/1604.05860
http://www.ams.org/mathscinet-getitem?mr=MR3713551
http://www.ams.org/mathscinet-getitem?mr=MR2040667


2212 DIDIER BRESCH AND PIERRE-EMMANUEL JABIN

Eduard Feireisl, Josef Málek, Antonı́n Novotný, and Ivan Straškraba (2008). “Anelastic
approximation as a singular limit of the compressible Navier-Stokes system”. Comm.
Partial Differential Equations 33.1-3, pp. 157–176. MR: 2398223 (cit. on p. 2186).

Eduard Feireisl and Antonı́n Novotný (2009). Singular limits in thermodynamics of vis-
cous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel,
pp. xxxvi+382. MR: 2499296 (cit. on p. 2185).

Maxime Hauray, Claude Le Bris, and Pierre-Louis Lions (2007). “Deux remarques sur les
flots généralisés d’équations différentielles ordinaires”. C. R. Math. Acad. Sci. Paris
344.12, pp. 759–764. MR: 2340443 (cit. on p. 2186).

Rupert Klein (2005). “Multiple spatial scales in engineering and atmospheric low Mach
number flows”. M2AN Math. Model. Numer. Anal. 39.3, pp. 537–559. MR: 2157149
(cit. on p. 2186).

Christophe Lacave, Toan T. Nguyen, and Benoit Pausader (2014). “Topography influence
on the lake equations in bounded domains”. J. Math. Fluid Mech. 16.2, pp. 375–406.
MR: 3208722 (cit. on pp. 2186, 2188, 2207, 2209, 2210).

David Lannes (2017). “On the dynamics of floating structures”. Ann. PDE 3.1, Art. 11,
81. MR: 3645931 (cit. on p. 2186).

C. David Levermore, Marcel Oliver, and Edriss S. Titi (1996). “Global well-posedness
for the lake equations”. Physica D: Nonlinear Phenomena 98.2-4, pp. 492–509 (cit. on
pp. 2186, 2207, 2209).

Pierre-Louis Lions (1996). Mathematical topics in fluid mechanics. Vol. 1. Vol. 3. Ox-
ford Lecture Series in Mathematics and its Applications. Incompressible models, Ox-
ford Science Publications. The Clarendon Press, Oxford University Press, New York,
pp. xiv+237. MR: 1422251 (cit. on p. 2185).

Franik B Lipps and Richard S Hemler (1982). “A scale analysis of deep moist convection
and some related numerical calculations”. Journal of the Atmospheric Sciences 39.10,
pp. 2192–2210 (cit. on p. 2186).

Nader Masmoudi (2007). “Rigorous derivation of the anelastic approximation”. J. Math.
Pures Appl. (9) 88.3, pp. 230–240. MR: 2355456 (cit. on p. 2186).

Ionuţ Munteanu (2012). “Existence of solutions for models of shallow water in a basin
with a degenerate varying bottom”. J. Evol. Equ. 12.2, pp. 393–412. MR: 2923940
(cit. on p. 2207).

A. Novotný and I. Straškraba (2004). Introduction to the mathematical theory of compress-
ible flow. Vol. 27. Oxford Lecture Series in Mathematics and its Applications. Oxford
University Press, Oxford, pp. xx+506. MR: 2084891.

Charlotte Perrin and Ewelina Zatorska (2015). “Free/congested two-phase model from
weak solutions to multi-dimensional compressible Navier-Stokes equations”. Comm.
Partial Differential Equations 40.8, pp. 1558–1589. MR: 3355504 (cit. on p. 2186).

https://doi.org/10.1080/03605300601088799
https://doi.org/10.1080/03605300601088799
http://www.ams.org/mathscinet-getitem?mr=MR2398223
https://doi.org/10.1007/978-3-7643-8843-0
https://doi.org/10.1007/978-3-7643-8843-0
http://www.ams.org/mathscinet-getitem?mr=MR2499296
https://doi.org/10.1016/j.crma.2007.05.010
https://doi.org/10.1016/j.crma.2007.05.010
http://www.ams.org/mathscinet-getitem?mr=MR2340443
https://doi.org/10.1051/m2an:2005022
https://doi.org/10.1051/m2an:2005022
http://www.ams.org/mathscinet-getitem?mr=MR2157149
https://doi.org/10.1007/s00021-013-0158-x
https://doi.org/10.1007/s00021-013-0158-x
http://www.ams.org/mathscinet-getitem?mr=MR3208722
https://doi.org/10.1007/s40818-017-0029-5
http://www.ams.org/mathscinet-getitem?mr=MR3645931
http://www.ams.org/mathscinet-getitem?mr=MR1422251
https://doi.org/10.1016/j.matpur.2007.06.001
http://www.ams.org/mathscinet-getitem?mr=MR2355456
https://doi.org/10.1007/s00028-012-0137-3
https://doi.org/10.1007/s00028-012-0137-3
http://www.ams.org/mathscinet-getitem?mr=MR2923940
http://www.ams.org/mathscinet-getitem?mr=MR2084891
https://doi.org/10.1080/03605302.2015.1014560
https://doi.org/10.1080/03605302.2015.1014560
http://www.ams.org/mathscinet-getitem?mr=MR3355504


ANELASTIC DIVERGENCE CONSTRAINT 2213

Elias M. Stein (1993). Harmonic analysis: real-variable methods, orthogonality, and os-
cillatory integrals. Vol. 43. Princeton Mathematical Series. With the assistance of Tim-
othy S. Murphy, Monographs in Harmonic Analysis, III. Princeton University Press,
Princeton, NJ, pp. xiv+695. MR: 1232192 (cit. on p. 2198).

Robert Wilhelmson and Yoshimitsu Ogura (1972). “The pressure perturbation and the
numerical modeling of a cloud”. Journal of the Atmospheric Sciences 29.7, pp. 1295–
1307 (cit. on p. 2186).

Received 2017-11-16.

Dංൽංൾඋ Bඋൾඌർඁ
LAMA CNRS UMR 5127
Uඇංඏ. ඈൿ Sൺඏඈංൾ Mඈඇඍ-Bඅൺඇർ
Bൺඍ. Lൾ Cඁൺൻඅൺංඌ
73376 Lൾ Bඈඎඋ඀ൾඍ ൽඎ Lൺർ Fඋൺඇർൾ
didier.bresch@univ-smb.fr

Pංൾඋඋൾ-Eආආൺඇඎൾඅ Jൺൻංඇ
CSCAMM ൺඇൽ Dൾඉඍ. ඈൿ Mൺඍඁൾආൺඍංർඌ
Uඇංඏ. ඈൿ Mൺඋඒඅൺඇൽ Cඈඅඅൾ඀ൾ Pൺඋ඄ MD 20742 USA
pjabin@cscamm.umd.edu

http://www.ams.org/mathscinet-getitem?mr=MR1232192
mailto:didier.bresch@univ-smb.fr
mailto:pjabin@cscamm.umd.edu




Pඋඈർ. Iඇඍ. Cඈඇ඀. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 3 (2211–2232)

INTERFACE DYNAMICS FOR INCOMPRESSIBLE FLUIDS:
SPLASH AND SPLAT SINGULARITIES

Dංൾ඀ඈ Cඬඋൽඈൻൺ

Abstract
In this survey I report on recent progress in the study of the dynamics of the inter-

face in between two incompressible fluids with different characteristics. In particular
I focus on the formation of Splash and Splat singularities in two different settings:
Euler equations and Darcy’s law.

1 Introduction

We denote the interface in between two incompressible irrotational fluids in R2 by @Ω(t)

@Ω(t) = fz(˛; t) = (z1(˛; t); z2(˛; t)) j (˛; t) 2 (R;R+)g:

The interface separates the plane into two regions Ωj , with j = 1; 2. Each Ωj denotes
the region occupied by the two different fluids with velocities vj = (vj

1 ; v
j
2 ), different

constant densities �j , different constant viscosities �j and pressures pj . We assume that
the interface moves with the fluid i.e.

(@tz � vj ) � (@˛z)
? = 0 on @Ω

Taking into account surface tension � , we assume that the pressure satisfies p1 = p2(t)�

�K at @Ω(t), where K is the curvature of the interface K(z) =
z˛˛ �z?

˛

jz˛ j3
.

The fluids are assumed to be incompressible and irrotational (r �vi = 0, r �vi = 0 in
Ωi (t)). The vorticity will be supported on the free boundary curve z(˛; t) and it has the
form !(x; t) = $(˛; t)ı(x � z(˛; t)), i.e. the vorticity is a Dirac measure on z defined
by

hr
?

� v; �i =

Z
R
$(˛; t)�(z(˛; t))d˛;

We thank Tania Pernas for providing the figures for the paper. DC was partially supported by the grants
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Figure 1: Interface on the real line, in a periodic domain and a closed contour.

with �(x) being a test function.
We consider three possible scenarios:

• open curves vanishing at infinity: lim
˛!1

(z(˛; t) � (˛; 0)) = 0;

• periodic curves in the horizontal variable: z(˛ + 2k�; t) = z(˛; t) + 2k�(1; 0).

• closed curves: z(˛; t) is a 2�-periodic function in ˛.

Then z(˛; t) evolves with a velocity field coming from the Biot-Savart law, which can
be explicitly computed; it is given by the Birkhoff-Rott integral of the amplitude$ along
the interface curve:

BR(z;$)(˛; t) =
1

2�
PV

Z
(z(˛; t) � z(ˇ; t))?

jz(˛; t) � z(ˇ; t)j2
$(ˇ; t)dˇ;(1)

where PV denotes principal value.
We have

v2(z(˛; t); t) = BR(z;$)(˛; t) +
1

2

$(˛; t)

j@˛z(˛; t)j2
@˛z(˛; t);

v1(z(˛; t); t) = BR(z;$)(˛; t) �
1

2

$(˛; t)

j@˛z(˛; t)j2
@˛z(˛; t);

(2)

where vj (z(˛; t); t) denotes the limit velocity field obtained approaching the boundary
in the normal direction inside Ωj and BR(z;$)(˛; t) is given by Equation (1). This
provides us with the velocity field at the interface, from which we can subtract any term
in the tangential direction without modifying the geometric evolution of the curve

zt (˛; t) = BR(z;$)(˛; t) + c(˛; t)@˛z(˛; t):(3)
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A wise choice of c(˛; t), namely:

c(˛; t) =
˛ + �

2�

Z
T

@˛z(˛; t)

j@˛z(˛; t)j2
� @˛BR(z;$)(˛; t)d˛�

�

Z ˛

��

@˛z(ˇ; t)

j@˛z(ˇ; t)j2
� @ˇBR(z;$)(ˇ; t)dˇ;

allows us to establish the fact that the length of the tangent vector to z(˛; t) only depends
upon the variable t :

A(t) = j@˛z(˛; t)j
2:

which will be of help in obtaining the needed a priori estimates.
Next, in order to close the system, we consider the following two settings:

1. Euler equations:

�j

@vj

@t
+ �j (v

j
� r)vj = �rpj

� g�j e2 in Ωj ;(4a)

r � vj = 0 and r
?vj = 0 in Ωj ;(4b)

(@tz � vj ) � (@˛z)
? = 0 on @Ω;(4c)

p1
� p2 = ��K on @Ω:(4d)

2. Darcy’s law-Muskat problem:
�j

�
vj = �rpj

� g�j e2 in Ωj ;(5a)

r � vj = 0 in Ωj ;(5b)

(@tz � vj ) � (@˛z)
? = 0 on @Ω;(5c)

p1
� p2 = ��K on @Ω:(5d)

Here, j 2 f1; 2g, � > 0 is the surface tension coefficient, e2 is the second vector of a
Cartesian basis, g is the acceleration due to gravity and � the permeability of the medium.

The main goal of this survey is to review those local well-posed scenarios where ini-
tially the interface @Ω satisfies the chord-arc condition and later self-intersects at one point
in finite time. We call such a singularity a ”Splash”. Since Euler equations are reversible
in time, the aim is to prove a theorem of local existence starting from a Splash type sin-
gularity and choosing an initial data that opens the splash. The strategy of the proof for
the free boundary (i.e. when the upper fluid is replaced by a vacuum) Euler equations
enable us to extend the scenario to Splat-type singularities; that is, for those in which col-
lapse may occur along a curve. This was first proved in Castro, D. Córdoba, Fefferman,
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Gancedo, and Gómez-Serrano [2013] for irrotational flows without surface tension and
later extended in Castro, D. Córdoba, Fefferman, Gancedo, and Gómez-Serrano [2012] to
the case of � > 0 and for non-trivial vorticity Coutand and Shkoller [2014]. We studied
similar scenarios in the presence of viscosity; free boundary Navier-Stokes equations (see
Castro, D. Córdoba, Fefferman, Gancedo, and Gómez-Serrano [2015] and Coutand and
Shkoller [2015]) and the one-phase Muskat problem (see Castro, D. Córdoba, Fefferman,
and Gancedo [2016]). The strategy of the proof has to be different, since the equations
cannot be solved backwards in time due to the presence of viscosity. We succeed in prov-
ing Splash-type singularities for the viscous free boundary problem but surprisingly, see
D. Córdoba and Pernas-Castaño [2017], for the one-phase Muskat there are no Splat-type
singularities.

The Splash and Splat type singularity for the free boundary has the particularity that
the regularity of the interface is not lost, but the chord-arc ceases to be well defined at one
point. It is very important for the proof that no fluid exists between the two curves that
collapse. So the next step is to study the self-intersection of the interface in the presence of
a fluid between the curves. In this sense, Fefferman, Ionescu, and Lie [2016] showed that
the interface does not develop any self-intersections in finite time if the interface and the
velocity on the boundary remains bounded in C 4 and C 3 respectively. These regularity
spaces are not sharp. We discuss below a strategy to prove a splash-type singularity with
two fluids with lower regularity.

2 Euler equations

The dynamics of the interface satisfies

zt (˛; t) = BR(z;$)(˛; t) + c(˛; t)@˛z(˛; t):

Next, in order to close the system we apply Bernoulli’s law, which leads to an equation
relating the parametrization z(˛; t) with the amplitude$(˛; t).

Let us consider an irrotational flow satisfying the Euler equations

�(vt + vrv) = �rp � (0; g �);

and the incompressibility condition r � v = 0, and let � be such that v(x; t) = r�(x; t)

for x ¤ z(˛; t). Then we have the expression

�(�t (x; t) +
1

2
jv(x; t)j2 + gx2) + p(x; t) = 0:

where
�(x1; x2; t) =

�
�1; x 2 Ω1(t)

�2; x 2 Ω2(t) = R2 � Ω1(t):
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From the Biot-Savart law, for x ¤ z(˛; t), we get

�(x; t) =
1

2�
PV

Z
arctan

�x2 � z2(ˇ; t)

x1 � z1(ˇ; t)

�
$(ˇ; t)dˇ:

Let us define
Π(˛; t) = �2(z(˛; t); t) � �1(z(˛; t); t);

where �j (z(˛; t); t) denotes the limit obtained approaching the boundary in the normal
direction inside Ωj . It is clear that

@˛Π(˛; t) = (r�2(z(˛; t); t) � r�1(z(˛; t); t)) � @˛z(˛; t)

= (v2(z(˛; t); t) � v1(z(˛; t); t)) � @˛z(˛; t)

= $(˛; t):

We have

�2(z(˛; t); t) = IT (z;$)(˛; t) +
1

2
Π(˛; t)

�1(z(˛; t); t) = IT (z;$)(˛; t) �
1

2
Π(˛; t)

where

IT (z;$)(˛; t) =
1

2�
PV

Z
arctan

�z2(˛; t) � z2(ˇ; t)

z1(˛; t) � z1(ˇ; t)

�
$(ˇ; t)dˇ:

Then using Bernoulli’s law inside each domain and taking limits approaching the com-
mon boundary, one finds

�j (�j
t (z(˛; t); t) +

1

2
jvj (z(˛; t); t)j2 + gz2(˛; t)) + pj (z(˛; t); t) = 0;

and since
p1(z(˛; t); t) = p2(z(˛; t); t) � �K;

yields

Πt (˛; t) = �2A�@t (IT (z;$)(˛; t)) + c(˛; t)$(˛; t) + A�jBR(z;$)(˛; t)j2

+ 2A�c(˛; t)BR(z;$)(˛; t) � @˛z(˛; t) � A�

j$(˛; t)j2

4j@˛z(˛; t)j2
� 2A�gz2(˛; t)

+ �K:

where A� = �2��1

�2+�1
.



2216 DIEGO CÓRDOBA

Then by taking a derivative, we obtain the desired formula for $ , which reads as fol-
lows

$t (˛; t) = �2A�@tBR(z;$)(˛; t) � @˛z(˛; t)

� A�@˛(
j$ j2

4j@˛zj2
)(˛; t) + @˛(c $)(˛; t)

+ 2A�c(˛; t)@˛BR(z;$)(˛; t) � @˛z(˛; t)

+ 2A�g@˛z2(˛; t) + �@˛K:

(6)

In other words, we have obtained the Equations (3) and (6) for the evolution of the internal
wave.

Concerning the Cauchy problem for the internal wave problem (two-fluid interface
scenario); the system is locally well-posed as long as the surface tension is strictly positive
(see Lannes [2013b] and reference therein).

In Fefferman, Ionescu, and Lie [2016] it is shown that Splash-type singularities cannot
develop smoothly in the case of regular solutions of the two-fluid interface system. The
argument of the proof is based on two steps. First they prove that for a sufficient regu-
lar velocity field there exists a critical L1 bound for the measure of the vorticity in the
boundary, because$ satisfies a variant of Burgers equation. The second step is to obtain
a double exponential lower bound on the minimum distance in between the curves that
collapse under the assumptions of regular velocities and bounded$(˛; t). With a differ-
ent approach, similar results have been obtained by Coutand and Shkoller [2016] for the
vortex sheet.

2.1 Splash and Splat Singularities for the Free Boundary. If we consider one fluid in
a vacuum, a free boundary problem, then Splash and Splat type singularities can develop
in finite time (see Castro, D. Córdoba, Fefferman, Gancedo, and Gómez-Serrano [2013]).
Since the equations are time-reversible, the strategy of the proof is to establish a local
existence theorem from the initial data that has a splash or a splat singularity.

• Theorem [Splash and Splat]

1. Initial data exist in H k (for k sufficiently large) such that the solution to the
system (7) and (8) produces a Splash-type singularity.

2. Initial data exist in H k (for k sufficiently large) such that the solution to the
system (7) and (8) produces a Splat-type singularity.

We can also write the dynamics of the interface in terms of the free boundary z(˛; t)
and the amplitude of the vorticity$(˛; t) as before, but with �1 = 0 and p1 = 0:

(7) zt (˛; t) = BR(z;$)(˛; t) + c(˛; t)z˛(˛; t);
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Figure 2: A Splash type singularity.

$t (˛; t) = � 2BRt (z;$)(˛; t) � z˛(˛; t) �

� $2

4j@˛zj2

�
˛
(˛; t) + (c$)˛(˛; t)

+ 2c(˛; t)BR˛(z;$)(˛; t) � z˛(˛; t) � 2(z2)˛(˛; t)

+ �

�
z˛˛(˛; t) � z?

˛ (˛; t)

jz˛(˛; t)j3

�
˛

(8)

The first local existence results, for the free boundary incompressible Euler equations,
are due to Nalimov [1974], Yosihara [1982] and Craig [1985] for near equilibrium ini-
tial data. Local existence for general initial data in Sobolev spaces was first achieved
by Wu [1997] in 2d and in 3d Wu [1999], assuming initially the arc-chord condition.
For other variations and results see Alazard, Burq, and Zuily [2011], Ambrose and Mas-
moudi [2005], Christodoulou and Lindblad [2000], A. Córdoba, D. Córdoba, and Gancedo
[2010], Coutand and Shkoller [2007], Lannes [2005], Lannes [2013b], Lannes [2013a],
Lindblad [2005], Shatah and Zeng [2008b], Shatah and Zeng [2008a], Shatah and Zeng
[2011] and P. Zhang and Z. Zhang [2008].

We assume that between the curves that collapse there is no fluid, then we have no
control over the growth of the amplitude of the vorticity. The amplitude of the vorticity is
not even well-defined at the splash point. We use a conformal map with a complex square
root, for example

P (w) =
�
tan

�w
2

��1/2

; w 2 C;

to keep apart the self-intersecting points, taking the branch of the square root above passing
through the splash point such that its singular points (where P cannot be inverted) are
located outside the fluid. The evolution equations for the curve in the new coordinate
system has the following form

z̃(˛; t) = P (z(˛; t))
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and the new amplitude !̃:

z̃t (˛; t) = Q2(˛; t)BR(z̃; !̃)(˛; t) + c̃(˛; t)z̃˛(˛; t);(9)

!̃t (˛; t) = � 2BRt (z̃; !̃)(˛; t) � z̃˛(˛; t) � jBR(z̃; !̃)j2(Q2)˛(˛; t)

�

�Q2(˛; t)!̃(˛; t)2

4jz̃˛(˛; t)j2

�
˛
+ 2c̃(˛; t)BR˛(z̃; !̃) � z̃˛(˛; t)

+ (c̃(˛; t)!̃(˛; t))˛ � 2
�
P�1
2 (z̃(˛; t))

�
˛

(10)

+ �

�
Q3

jz̃˛(˛; t)j3
(z̃T

˛ HP
�1
2 z̃˛rP�1

1 � z̃˛ � z̃T
˛ HP

�1
1 z̃˛rP�1

2 � z̃˛)

�
˛

+ �

�
Q
z̃˛˛(˛; t) � z̃?

˛ (˛; t)

jz̃˛(˛; t)j3

�
˛

where

Q2(˛; t) =

ˇ̌̌̌
dP

dw
(P�1(z̃(˛; t)))

ˇ̌̌̌2
;

andHP�1
i denotes the Hessianmatrix ofP�1

i , which is the i -th (i = f1; 2g) component
of the transformation P�1.

This mapP transforms the splash into a closed curved whose chord-arc is well-defined.
We select an initial velocity that immediately separates the point of collapse. In the new
domain, the existence of solutions for Equations (9) and (10) is proven by using energy
estimates. In order to return to the original domain and obtain solutions to (7) and (8), it
is necessary to invert the map P .

The strategy of the proof enables us to extend the scenario to Splat-type singularities;
that is, for those in which collapse may occur along a curve.

2.2 Splash singularities for the internal wave. In this section, we discuss the possible
formation of singularities of an internal wave. If the vacuum is replaced by an incompress-
ible fluid with low density, then low-density fluid resists the collapse of the curves. If the
self-intersection still occurs, then we need to show a local existence in a lower regularity
space as in Fefferman, Ionescu, and Lie [2016] (which allows the fluid inside to escape
more easily) or to show that the interface losses regularity at the time of self-intersection.
Either way our previous analysis for the splash does not work for the case of an internal
wave and it demands new ideas.

Our program first consists in showing stationary splash singularities with two fluids.
The main idea here is to perturb a one-parameter family of exact stationary to the free
boundary Euler equations with no gravity. We use the implicit function theorem to con-
struct stationary solutions with a sufficiently small �1 that captures the splash point. Below
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Figure 3: Splat-type singularity
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Figure 4: Two fluids: internal waves

we sketch a brief description of the construction. This scenario could lead to an understand-
ing of the plausible low regularity dynamical splash singularity.

2.3 Stationary Splash singularity. In each domain, the fluid flow is governed by the
stationary, incompressible, irrotational Euler equations; that is, the respective velocities
vj and the corresponding pressures pj satisfy

�j (v
j

� r)vj = �rpj
� g�j e2 in Ωj ;(11a)

r � vj = 0 and r
?vj = 0 in Ωj ;(11b)

vj
� (@˛z)

? = 0 on @Ω;(11c)

p1
� p2 = ��K on @Ω:(11d)
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We assume that the interface satisfies periodicity conditions

z1(˛ + 2�) = z1(˛) + 2�; z2(˛ + 2�) = z2(˛)

and is symmetric with respect to the y-axis:

z1(�˛) = �z1(˛); z2(�˛) = z2(˛):

In particular, we will often restrict attention to one period of Ωk , where we assume the
interface has a splash point z�, i.e.

9˛� 2 (0; �) : z� = z(˛�) = z(�˛�); z0(˛�) = �z0(�˛�);

dividing Ω1 into two disjoint open sets Ωi
1 (i = 1; 2), having one boundary point in com-

mon; i.e.
Ω1 = Ω1

1 [ Ω2
1; Ω

1

1 \ Ω
2

1 = fz�g;

where Ω1
� is assumed to be bounded, while Ω2

� is unbounded. In particular, both Ωj
1

possess an outward cusp with a common tip at z�.
We use the hodograph transform with respect to the lower fluid to fix the parametriza-

tion, for details see D. Córdoba, Enciso, and Grubic [2016a], in order to transform the free
boundary problem into a problem on a fixed domain; in this case, the lower half-plane C�.
More precisely, we use the analytic function

w = � + i : Ω2 �! C�

(which can be shown to be a conformal bijection extending to a homeomorphism up to
the boundary, cf.D. Córdoba, Enciso, and Grubic [ibid.] Lemma 9.)) as an independent
variable instead of z = x + iy. Here, � is the potential of the flow, while  is the stream
function defined implicitly via

v = r� = r
? :

The parametrization is fixed by requiring

�(z(˛)) = ˛;  (z(˛)) = 0;

which implies a simple relation between the velocity of the lower fluid and the tangent
vector on the interface

v2 � z˛ = r� � z˛ = 1 ) 2BR(z; !) � @˛z + ! = 2:
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A stationary solution of the two-fluid system is reduced to finding 2�-periodic functions
!(˛) and z(˛) � (˛; 0) satisfying

2j@˛zj
2M (z) + � !(! � 2) = 2;(12a)
2BR(z; !) � @˛z + ! = 2;(12b)

BR(z; !) � @?
˛ z = 0;(12c)

whereM is given by

M (z) = �
2�2

�2 � �1
qK(z) � 2gz2 + 1 + 2�;

q := �
�2
, � := 2�1

�2��1
; K(z) is the curvature of the interface and � is a perturbation of the

constant arising in the pure capillary wave problem.
The problem can be simplified further by writing the velocity vector in terms of polar

coordinates
@˛z = j@˛zje

i� = eif ; f = � + i� : C� ! C;

where f is analytic in the lower half-plane and continuous up to the boundary. Since �
and � are 2�-periodic conjugate functions, on the interface they must be related by the
periodic Hilbert transform; i.e. �(˛) = H�(˛) and we can therefore take �(˛) as our
main unknown and consider z as a function of � via the integral operator

z(˛) = I (�)(˛) :=

Z ˛

��

e�H�(˛0)+i�(˛0)d˛0:(13)

As shown in D. Córdoba, Enciso, and Grubic [ibid.], the system (11)-(12) is then equiva-
lent to the following system of equations

q
�
1 +

�

2

�d�
d˛

+ sinhH� + ge�H� Im I (�) � �e�H�
�
�

4
eH�$($ � 2) = 0;(14a)

2BR(z;$) � @˛z +$ = 2;(14b)

where �(˛) and $(˛) are 2�-periodic functions, � is odd, $ is even and z := I (�) is
defined by (13) .

The above system depends on four constants q; �; " and g, where g represents the grav-
ity, � is the integration constant of the Bernoulli equation, q is related to the surface tension
coefficient via q := �

�2
, while

" :=
2�1

�2 � �1
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detects the presence of an upper fluid. On setting � to zero, the equations decouple and
we recover the capillary-gravity wave problem as studied in Akers, Ambrose, and Wright
[2014]. If, in addition, we set g = 0, we recover the pure capillary waves problem as
formulated by Levi-Civita (see e.g.Levi-Civita [1925] and Okamoto and Shōji [2001]),
namely;

Pure capillary waves problem 1. Find a 2�-periodic, analytic function f = � + i� on
the lower half-plane that satisfies

q
d�

d˛
= � sinhH�

on the boundary and tends to zero at infinity.

This problem admits a family of exact solutions depending on the parameter q. In fact,
Crapper [1957] has shown that the family of analytic functions

fA(w) := 2i log
1 + Ae�iw

1 � Ae�iw

has all the required properties. Parameter A depends on q via

q =
1 + A2

1 � A2
:

and it actually suffices to consider A � 0, since the transformation A 7! �A corresponds
to a translation ˛ ! ˛ + � . The corresponding wave profiles are given by

zA(˛) = ˛ +
4i

1 + Ae�i˛
� 4i:

where the constant has been chosen to have zA(˛) = (˛; 0) for A = 0. For sufficiently
large values of parameter A, these solutions can no longer be represented as a graph of a
function and eventually self-intersect. It is not hard to see that the curve zA does not have
self-intersections if and only if

A < A0 � 0:45467:

For A = A0, the curve zA(˛) exhibits a splash, while for A slightly larger than A0 the
curve intersects at exactly two points, and the intersection is transverse.

Since, for a sufficiently regular, non self-intersecting curve (e.g. if A < A0), the oper-
ator

A(z)(!) := 2BR(z; !) � z˛
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Figure 5: Interface at different values of the parameter A.

is a compact bounded linear operator from H 1 ! H 1 whose eigenvalues are strictly
smaller than 1 (in absolute value), the operator 1 + A(z) is invertible (see Baker, Meiron,
and Orszag [1982]). In previous work, A. Córdoba, D. Córdoba, and Gancedo [2010] and
A. Córdoba, D. Córdoba, and Gancedo [2011], in order to obtain a priori estimates, in the
case of a moving interface it was necessary to estimate the norms of 1+A(z) in terms of
the chord-arc and smoothness of z.

In particular, we can solve (14) for the corresponding vorticity !A by inverting 1 +

A(zA) and we can use the implicit function theorem on the system of equations (14) to
perturb around (�; g; �) = 0. The idea of perturbing Crapper waves to construct a more
general stationary interface was introduced in Akers, Ambrose, and Wright [2014] (see
also Ambrose, Strauss, and Wright [2016] and de Boeck [2014]). In D. Córdoba, Enciso,
and Grubic [2016a], we used the implicit function theorem to perturb the wave profiles of
the Crapper family for all values of the parameterA < A0 and thereby construct solutions
of (14) with the upper fluid present (i.e. �1 > 0) arbitrarily close to the splash. We define
an �-splash curve, for arbitrarily small � > 0, if

inf
˛<ˇ

jz(˛) � z(ˇ)j

minf˛ � ˇ; 1g
� �

.

• Theorem [Stationary almost-Splash singularities for two fluids] Let us fix the den-
sity of the second fluid �2 > 0 and consider any � > 0. For any sufficiently small
�1 � 0 and g, there is some positive surface tension coefficient � such that there
exists a periodic solution to the two-fluid problem (11) for which the interface @Ω
is an �-splash curve.

However, if the interface exhibits a splash singularity (e.g. if A = A0), in which case
the arc-chord condition fails and the domain Ω1 is no longer connected, with both con-
necting components exhibiting an outward cusp touching at the splash point, the operator
A(z) : H 1 ! H 1 is no longer compact and we cannot invert the operator as usual. But
again, in the case of one fluid; i.e. � = �1 = 0, we can take advantage of a suitable confor-
mal map that opens up the splash point for @Ω = fz(˛)g. The solution z is invertible and
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its inverse ! = �+ i is such that v = r� satisfies (11) with p1 = �1 = 0. Furthermore,
by perturbing and using again the implicit function theorem, we can prove:

• Theorem [Stationary Splash singularities for one fluid]
Let us fix the density of the second fluid �2 > 0 and assume that �1 = 0. Then for
any small enough g, there is some positive surface tension coefficient � such that
there exists a periodic solution to the system (11) for which the interface @Ω has a
splash singularity.

The geometry near the singular point suggests the use of an appropriate homogeneous
weighted Sobolev spaces (cf. works ofMaz’ya and Soloviev [2010]) with weights given in
powers of the distance to the splash point which we set at the origin z = 0. On parametriz-
ing the interface for simplicity around the origin as a graph, these spaces are defined as
follows: Let

wˇ (x) := jxj
ˇ

be the weight function for ˇ 2 R and x in some interval I 2 R containing the origin.
Then for k 2 N

u 2 W k
p;ˇ :() wˇ+j (x)@

j
xu 2 Lp; j � k:

We take wˇ to be a Muckenhaupt weight, in which case the Hilbert transform is bounded
on the weighted Lebesgue space Lp;ˇ = W 0

p;ˇ
. This is equivalent to requiring 0 <

ˇ + p�1 < 1. The first step is to show that

• A(z) : W k
p;ˇ

! W k
p;ˇ

is continuous.

However, we cannot expect 1 + A(z) to be invertible as it stans, since W k
p;ˇ

does not
take into account the order � of the cusp or equivalently the way in which the arc-chord
condition blows-up as we approach the singularity. We address this question by showing
that 1 + A(z) actually has values in a smaller Banach space; i.e. we aim to show

• 1 + A(z) : W 1
p;ˇ

! Xˇ;� continuous on a closed subspace Xˇ;� � W 1
p;ˇ

,

• 1 + A(z) : W 1
p;ˇ

! Xˇ;� invertible by using conformal maps.

Finally, after adjusting the Banach space for � , we show that we can use the implicit
function theorem on (14) defined on these new spaces (see D. Córdoba, Enciso, andGrubic
[2016b]).

• Theorem [Stationary Splash singularities for two fluids] Let us fix the density of the
second fluid �2 > 0. Then for any sufficiently small upper fluid density �1 � 0

and g, there is some positive surface tension coefficient � for which there exists a
stationary solution two-fluid Euler equations such that the interface @Ω has a Splash
singularity. The regularity of @Ω and$ is C 2 and C ˛ .



INTERFACE DYNAMICS FOR INCOMPRESSIBLE FLUIDS 2225

In a forthcoming paper, we are interested in applying the ideas outlined above to study
the dynamics in which a non-intersecting curve self-intersects in finite-time for the full
Euler equations.

Therefore, it is very appealing to try to formulate the problem within the framework
of weighted Sobolev space. The main tool consists of the apriori estimates for a carefully
chosen energy functional involving an H k-norm for the curvature and an H k+1/2-norm
for the vorticity with k 2 N sufficiently high coupled with some lower-order correction
terms.

We wish to generalize this approach to the case of weighted Sobolev spaces. Our first
goal is to prove a local existence theorem in the setting of weighted Sobolev spaces

Two related questions arise, which Sobolev spaces to use and how to generalize the
energy functional. In the dynamic case, it seemsmore natural to use the non-homogeneous
weighted Sobolev spaces V k

p;
 which, with respect to the power weight w
 , are defined as
follows

u 2 V k
p;
 :() w
 (x)@

j
xu 2 Lp; j � k:

Under certain conditions, these spaces are equivalent to homogeneous weighted Sobolev
spaces up to a polynomial. The spaces have to be chosen in such a way that A remains in-
vertible, but they also depend on how we generalize the energy functional. A first attempt
would be a naive generalization of the energy functional to spaces of the type V k

p;
 for non
self-intersecting interface. For instance, this approach implies

@kK 2 Lp;
 ) @k! 2 Lp;
�1/2 and Λ1/2@k! 2 Lp;
 ;

while some of the difficulties include the non-positivity of certain terms otherwise positive
in the non-weighted setting. In the second phase, we would need to correct the energy
functional to include the effects of the blow-up of the arc-chord when the interface self-
intersects.

3 Incompressible porous media equation-Darcy’s law

In this section, we consider the basic setting of two immiscible fluids in a porous media
having different densities and viscosities separated by a sharp interface which is modeled
by Darcy’s law. Tomodel the contact of a porous media with air, a dry region, one assumes
that the media on top has zero viscosity and density. This is the so called Muskat problem
(see Muskat [1934]), which has attracted a lot of attention over the last ten years. Saffman
and Taylor made the observation that the one phase version (one of the fluids has zero
viscosity) was also known as the Hele-Shaw cell equation (see Saffman and Taylor [1958]),
which, in turn, is the zero-specific heat case of the classical one-phase Stefan problem.
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Darcy’s law is the following momentum equation for the velocity v

(15)
�

�
v = �rp � (0; g �);

where p is the pressure, � is the dynamic viscosity, � is the permeability of the medium,
� is the liquid density and g is the acceleration due to gravity. Together with the incom-
pressibility condition r � v = 0, equation (15) implies that the flow is irrotational in each
domain Ωj . So again the vorticity is a Dirac measure on z and we have an expression of
the velocity, as in (2), in terms of z and the measure$ .

Then taking the limit in Darcy’s, law we obtain

(
�2

�
v2(z(˛; t); t) �

�1

�
v1(z(˛; t); t)) � @˛z(˛; t) =

= �(rp2(z(˛; t); t) � rp1(z(˛; t); t)) � @˛z(˛; t) � g(�2 � �1) @˛z2(˛; t)

= �@˛(p
2(z(˛; t); t) � p1(z(˛; t); t)) � g(�2 � �1) @˛z2(˛; t)

= �g(�2 � �1) @˛z2(˛; t) + �K˛;

since p2(z(˛; t); t) � p1(z(˛; t); t) = �K. Moreover

�2 + �1

2�
$(˛; t) +

�2 � �1

�
BR(z;$)(˛; t) � @˛z(˛; t) =

= �g(�2 � �1)@˛z2(˛; t) + �K˛;

so that

(16) $(˛; t) = �A�2BR(z;$)(˛; t) � @˛z(˛; t)

� 2�g
�2 � �1

�2 + �1
@˛z2(˛; t) +

2��

�2 + �1
K˛:

where A� = �2��1

�2+�1
.

For this setting, we consider here the following two scenarios; asymptotically flat at
infinity or periodic curves in the horizontal variable. The local well-posedness in Sobolev
spaces is guaranteed with � > 0 (see Ambrose [2014] and reference therein). With no
surface tension, the result turns out to be false for some initial data. Rayleigh and Saffman-
Taylor gave a condition that must be satisfied for the linearized model in order to have a
solution locally in time namely, that the normal component of the pressure gradient jump
at the interface has to have a distinguished sign (see Saffman and Taylor [1958], Ambrose
[2004] and A. Córdoba, D. Córdoba, and Gancedo [2011]). This is known as the Rayleigh-
Taylor condition RT (˛; t) and can be written as follows:

RT (˛; t) =
�2 � �1

�
BR(z;$)(˛; t) � @˛z(˛; t) + g(�2 � �1)@˛z1(˛; t) > 0:
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Using Hopf’s lemma, the Rayleigh-Taylor condition is satisfied for the one phase Muskat;
i.e. �1 = �1 = 0 (see Castro, D. Córdoba, Fefferman, and Gancedo [2016]). For the case
of equal viscosities, �1 = �2, this condition holds when the more dense fluid lies below
the interface.

For the Muskat problem, splash singularity cannot be developed in the case in which
�1 = �2 and �1 ¤ �2 , for more details see Gancedo and Strain [2014]. However, the
splash can be achieved with �1 = �1 = 0, i.e. the one-phase Muskat problem, where Ω1

corresponds to the dry region (see Castro, D. Córdoba, Fefferman, and Gancedo [2016]).
On the other hand, the presence of viscosity, �2 > 0 may prevent the existence of Splat
singularities (see D. Córdoba and Pernas-Castaño [2017]):

• Theorem [Splash and Non Splat for the one phase Muskat problem]

1. Initial data exist in H k such that the solution to the system (3) and (16) pro-
duces a Splash-type singularity with �1 = �1 = 0.

2. There are NO Splat-type singularities for the system (3) and (16) .

Sketch of the proof of the splash: Since the velocity is divergence free and irrotational
in Ω2 there exists harmonic functions  and � such that u = r� = r? . The strategy
is now to prove a local existence theorem from an almost splash configuration. We apply
the map P from the previous section to a new system of coordinates (x̃; ỹ) for which the
domain Ω2 has been transformed to a non-self-intersecting domain Ω̃.

Figure 6: Domains Ω and Ω̃ = P (Ω)

We define the new potential and a stream function in Ω̃ by

 ̃(x̃; ỹ; t) �  (P�1(x̃; ỹ); t); �̃(x̃; ỹ; t) � �(P�1(x̃; ỹ); t)
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and the new velocity is defined by

ṽ(x̃; ỹ; t) � r�̃(x̃; ỹ; t):

The boundary of the domain Ω̃ takes the form z̃(˛; t) = P (z(˛; t)), and then we can
extend our velocity to the whole space by taking !̃(x; t) = !̃(˛; t)ı(x̃ � z̃(˛; t)). Take
z̃(˛; t) and !̃(˛; t) to be the unknowns. TheMuskat equation in Ω̃without surface tension
takes the form

z̃t (˛; t) = Q2(˛; t)BR(z̃; !̃)(˛; t) + c̃(˛; t)z̃˛(˛; t)

!̃(˛; t) = �2BR(z̃; !̃)(˛; t) � z̃˛(˛; t) � 2g
�2

�2
@˛

�
P�1
2 (z̃(˛; t))

�
:

where

Q2(˛; t) =

ˇ̌̌̌
dP

dw
(z(˛; t))

ˇ̌̌̌2
:

We denote the energy Ek of the above system by

Ek(z̃; t) = kz̃k2
H k (t) + kF (z̃)k2L1(t) +

1

m(Q2R̃T )(t)
+

4X
l=0

1

m(ql)(t)
;

where the chord-arc condition F (z)(˛; ˇ; t) is defined as

F (z)(˛; ˇ; t) =
jˇj

jz(˛; t) � z(˛ � ˇ; t)j
8˛; ˇ 2 (��; �);

with

F (z)(˛; 0; t) =
1

j@˛z(˛; t)j
:

And

m(Q2R̃T )(t) = min
˛2T

Q2(˛; t)R̃T (˛; t); m(ql)(t) = min
˛2T

jz(˛; t) � ql
j:

where ql are the singular points of theP�1 conformal map and R̃T is the Rayleigh-Taylor
condition in the new domain. Then, the following estimate holds:

d

dt
Ek(t) � C (Ek(t))

p
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for k � 3. The constants C and p depend only on k. These a priori estimates will lead to
a local existence result for the contour equation in the tilde domain as long as the initial
curve is smooth and satisfies the chord-arc condition in Ω̃. So therefore we can prove a
local existence for an almost splash configuration in Ω2.

In order to finish the proof, we show the following proposition:

Proposition 3.1. Let x(˛; t) and y(˛; t) be two curves which satisfy the contour equation
in Ω̃(t). Then, the following estimate holds:

d

dt
kx � ykH1(t) � C ( sup

[0;T ]

E3(x; t) + sup
[0;T ]

E3(y; t))
p

kx � ykH1(t):

Above, E3(x; t) and E3(y; t) are given by local existence. The constants C and p are
universal.

Now instead of showing local existence backwards in time from a splash point, in the
transformed domain we prove local existence forward in time and show that the solutions
depend stably on the initial conditions. The velocity at the splash point forces the interface
to cross the branch in Ω̃ due to the Rayleigh-Taylor condition. By a perturbative argument
we can choose a smooth initial data close to a splash which in finite time self-intersects
for the one-phase Muskat problem.

Sketch of the proof of the no-splat: The presence of viscosity implies that the equation
has non-local parabolic behavior which will lead to an instant analyticity result for the
curve. The basic mechanism to prove the absence of splat singularities is to notice that,
at the critical time of splat formation, analyticity of the interface should still be retained.
Thus, the contradiction comes from the failure of the unique continuation of an analytic
function. This mechanism draws a clear line between the splash and splat scenarios since
in the former case a single point touch would not have contradicted analyticity.

Below we show the main estimates that provide instant analyticity into the strip

S(t) = f˛ + i� 2 C : ˛ 2 T ; j�j < �tg;

where we take the derivative in time of the following norm

kz̃k2
H k(S)

(t) = kz̃k2L2(S)(t) +
X
˙

Z
T

j@k
˛ z̃(˛ ˙ i�t; t)j2d˛;

and obtain

d

dt
kz̃k2

H k(S)
(t) � expC (kz̃k2

H k(S)
(t) + jjF (z̃)jjL1)

for a short time t .
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Now we need to show a control of the decay of the strip of the analyticity in the new
coordinate system as long as the curve remains smooth and the chord-arc condition is
satisfied. Let the curve z̃ be initially an analytic curve in the strip

S(t = 0) = f˛ + i� 2 C : ˛ 2 T ; j�j < h(0)g:

We obtain a priori estimates on the evolution of the norm kz̃k2
H k(S)

(t) on the strip

S(t) = f˛ + i� 2 C : ˛ 2 T ; j�j < h(t)g

in the following way

d

dt

X
˙

Z
T

j@k
˛ z̃j (˛ ˙ ih(t))j2d˛ � expCE(t)

� 10h0(t)

Z
T
Λ(@k

˛ z̃j )(˛)@k
˛ z̃j (˛)d˛

+ (expCE(t)h(t) +
h0(t)

10
+ expCE(t))kΛ

1
2 @k

˛ z̃k
2
L2(S):

where E(t) = (kz̃k2
H k(S)

(t) + jjF (z̃)jjL1) and the operator Λ is defined by 1Λ(f )� =

j�jbf . Choosing,
h(t) = exp(�10

Z t

0

G(r)dr)[

Z t

0

�10G(r) exp(10
Z r

0

G(s)ds)dr + h(0)]

where G(t) = expC (kz̃k2
H k(S)

(t) + jjF (z̃)jjL1)(t), we get the desired estimation.
Hence, we can conclude that our transformed curve z̃ is real-analytic into the strip S(t).

From the estimates this complex strip decays exponentially until a time that depends on
the regularity of the curve and the arc-chord condition. Thus, by applying P −1, we have
that the analytic curve self-intersects along an arc; therefore, we get a contradiction.
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Abstract
The aim of this note is to present some recent results on the structure of the singular

part of measures satisfying a PDE constraint and to describe some applications.

1 Introduction

We describe recent advances obtained by the authors and collaborators concerning the
structure of singularities in measures satisfying a linear PDE constraint. Besides its own
theoretical interest, understanding the structure of singularities of PDE-constrained mea-
sures turns out to have several (sometimes surprising) applications in the calculus of vari-
ations, geometric measure theory, and metric geometry.

Let A be a k’th-order linear constant-coefficient differential operator acting on RN -
valued functions, i.e.

Au :=
X

j˛j�k

A˛@˛u; u 2 C1(Ω;RN );

where A˛ 2 Rn ˝ RN are linear maps from RN to Rn and @˛ = @
˛1

1 : : : @
˛d

d
for every

multindex ˛ = (˛1; : : : ; ˛d ) 2 (N [ f0g)d .
The starting point of the investigation is the following:

Question 1.1. Let � 2 M(Ω; RN ) be an RN -valued Radon measure on an open set
Ω � Rd and let � be A-free, i.e. � solves the system of linear PDEs

(1-1) A� :=
X

j˛j�k

A˛@˛� = 0 in the sense of distributions.
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What can be said about the singular part1 of �?

In answering the above question a prominent role is played by thewave cone associated
with the differential operator A:

ΛA :=
[

j�j=1

kerAk(�) � RN with Ak(�) = (2� i)k
X

j˛j=k

A˛�˛;

where we have set �˛ := �
˛1

1 � � � �
˛d

d
.

Roughly speaking, ΛA contains all the amplitudes along which the system (1-1) is
not elliptic. Indeed if we assume that A is homogeneous, A =

P
j˛j=k A˛@˛ , then it

is immediate to see that � 2 RN belongs to ΛA if and only if there exists a non-zero
� 2 Rd n f0g such that �h(x � �) is A-free for all smooth functions h : R ! R. In other
words, “one-dimensional” oscillations and concentrations are possible only if the ampli-
tude (direction) belongs to the wave cone. For this reason the wave cone plays a crucial
role in the compensated compactness theory for sequences of A-free maps, see Murat
[1978, 1979], Tartar [1979], Tartar [1983], and DiPerna [1985], and in convex integra-
tion theory, see for instance Chiodaroli, De Lellis, and Kreml [2015], Chiodaroli, Feireisl,
Kreml, and Wiedemann [2017], De Lellis and Székelyhidi [2009, 2012], De Lellis and
Székelyhidi [2013], Székelyhidi and Wiedemann [2012], and Isett [2016] and the refer-
ences cited therein. However, all these references are concerned with oscillations only,
not with concentrations.

Since the singular part of a measure can be thought of as containing “condensed” con-
centrations, it is quite natural to conjecture that j�js-almost everywhere the polar vector
d�
dj�j

belongs toΛA. This is indeed the case and the main result of De Philippis and Rindler
[2016]:

Theorem 1.2. Let Ω � Rd be an open set, let A be a k’th-order linear constant-
coefficient differential operator as above, and let � 2 M(Ω;RN ) be an A-free Radon
measure on Ω with values in RN . Then,

d�

dj�j
(x) 2 ΛA for j�j

s-a.e. x 2 Ω.

1If not specified, the terms “singular” and “absolutely continuous” always refer to the Lebesgue measure.
We also recall that, thanks to the Radon-Nikodym theorem, a vector-valued measure � can be written as

� =
d�

dj�j
dj�j = gLd +

d�

dj�j
dj�js

where j�j is the total variation measure, g 2 L1
loc(R

d ) and Ld is the Lebesgue measure.



STRUCTURE OF PDE-CONSTRAINED MEASURES 2235

Remark 1.3. Theorem 1.2 is also valid in the situation

(1-2) A� = � for some � 2 M(Ω;Rn).

This can be reduced to the setting of Theorem 1.2 by defining

�̃ := (�; �) 2 M(Rd ;RN+n)

and Ã (with an additional 0’th-order term) such that (1-2) is equivalent to Ã�̃ = 0. It is
easy to check that ΛÃ = ΛA � Rn and that for j�j-almost every point d�

dj�j
is proportional

to d�
dj�̃j

.

One interesting feature of Theorem 1.2 is that it gives information about the directional
structure of � at singular points (the “shape of singularities”). Indeed, it is not hard to
check that for all “elementary” A-free measures of the form

(1-3) � = ��; where � 2 ΛA; � 2 M+(Rd );

the scalarmeasure � is necessarily translation invariant along directions that are orthogonal
to the characteristic set

Ξ(�) :=
˚

� 2 Rd : � 2 kerA(�)
	
:

Note that Ξ(�) turns out to be a subspace of Rd whenever A is a first-order operator. In
this case, the translation invariance of � in the directions orthogonal to Ξ(�) is actually
the best information one can get from (1-3).

In the case of operators of order k > 1, due to the lack of linearity of themap � 7! Ak(�)

for k > 1, the structure of elementary A-free measures is more complicated and not yet
fully understood.

In the next sections we will describe some applications of Theorem 1.2 to the following
problems:

• The description of the singular part of derivatives of BV- and BD-maps.

• Lower semicontinuity for integral functionals defined on measures.

• Characterization of generalized gradient Young measures.

• The study of the sharpness of the Rademacher’s theorem .

• Cheeger’s conjecture on Lipschitz differentiability spaces.

In Section 7 we will sketch the proof of Theorem 1.2.
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2 Structure of singular derivatives

Let f : R` ˝ Rd ! [0; 1) be a linear growth integrand with f (A) ∼ jAj for jAj large.
Consider the following variational problem:Z

Ω

f (ru) dx ! min; u 2 C1(Ω;R`) with given boundary conditions:

It is well known that in order to apply the Direct Method of the calculus of variations one
has to relax the above problem to a setting where it is possible to obtain both compactness
of minimizing sequences and lower semicontinuity of the functional with respect to some
topology, usually the weak(*) topology in some function space. Due to the linear growth
of the integrand the only easily available estimate on a minimizing sequence (uk) is an
a-priori bound on the L1-norm of their derivativesx:

sup
k

Z
Ω

jrukj dx < 1:

It is then quite natural to relax the functional to the space BV(Ω; R`) of functions of
bounded variation, i.e. those functions u 2 L1(Ω;R`) whose distributional gradient is a
matrix-valued Radon measure. A fine understanding of the possible behavior of measures
arising as derivatives is then fundamental to study the weak* lower semicontinuity of the
functional as well as its relaxation to the space BV.

In this respect, in Ambrosio and Giorgi [1988] Ambrosio and De Giorgi proposed the
following conjecture:

Question 2.1. Is the singular part of the derivative of a function u 2 BV(Ω;R`), which
is usually denoted by Dsu, always of rank one? Namely, is it true that

dDsu

djDsuj
(x) = a(x) ˝ b(x)

for jDsuj-a.e. x and some a(x) 2 R`, b(x) 2 Rd?

Their conjecture was motivated by the fact that this structure is trivially true for the so-
called jump part of Dsu (which is always of the form [u] ˝ n Hd�1 J , where J is the
Hd�1-rectifiable jump set, n is a normal on J , and [u] is the jump height in direction n);
see Ambrosio, Fusco, and Pallara [2000, Chapter 3] for a complete reference concerning
functions of bounded variations.

A positive answer to the above question was given by Alberti in Alberti [1993] with his
celebrated rank-one theorem. It was recognized quickly that this result has a central place
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in the calculus of variations and importance well beyond, in particular because it implies
that locally all singularities in BV-functions are necessarily one-directional. Indeed, after
a blow-up (i.e. magnification) procedure at jDsuj-almost every point, the blow-up limit
measure depends only on a single direction and is translation-invariant with respect to all
orthogonal directions. This is not surprising for jumps, but it is a strong assertion about all
other singularities in the Cantor part of Dsu, i.e., the remainder of Dsu after subtracting
the jump part.

While Alberti’s original proof is geometric in nature, one can also interpret the theorem
as a result about singularities in PDEs: BV-derivatives Du satisfy the PDE

curlDu = 0 in the sense of distributions,

which can be written with a linear constant-coefficient PDE operator A :=
Pd

j=1 Aj @j

as A� = 0 in the sense of distributions.
Besides its intrinsic theoretical interest, the rank-one theorem also has many appli-

cations in the theory of BV-functions, for instance for lower semicontinuity and relax-
ation Ambrosio and Dal Maso [1992], Fonseca and Müller [1993], and Kristensen and
Rindler [2010], integral representation theorems Bouchitté, Fonseca, and Mascarenhas
[1998], Young measure theory Kristensen and Rindler [2012] and Rindler [2014], and the
study of continuity equations with BV-vector fields Ambrosio [2004]. We refer to Ambro-
sio, Fusco, and Pallara [2000, Chapter 5] for further history.

At the the end of this section we will see that Alberti’s rank-one theorem is a straight-
forward consequence of Theorem 1.2. Let us also mention that recently a very short proof
of the Alberti rank-one theorem has been given by Massaccesi and Vittone in Massaccesi
and Vittone [2016].

In problems arising in the theory of geometrically-linear elasto-plasticity Suquet [1978],
Suquet [1979], and Temam and Strang [1980/81] one often needs to consider a larger space
of functions than the space of functions of bounded variations. Indeed, in this setting
energies usually only depend on the symmetric part of the gradient and one has to consider
the following type of variational problem:Z

Ω

f (Eu) dx ! min; u 2 C1(Ω;Rd ) with given boundary conditions;

where Eu = (ru + ruT )/2 2 (Rd ˝ Rd )sym is the symmetric gradient ((Rd ˝ Rd )sym
being canonically isomorphic to the space of symmetric (d � d )-matrices) and f is a
linear-growth integrand with f (A) ∼ jAj for jAj large. In this case, for a minimizing
sequence (uk) one can only obtain that

sup
k

Z
Ω

jEukj dx < 1
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and, due to the failure of Korn’s inequality in L1 Ornstein [1962], Conti, Faraco, and
Maggi [2005], and Kirchheim and Kristensen [2016], this is not enough to ensure that
supk

R
jrukj dx < 1. One then introduces the space BD(Ω) of functions of bounded

deformation, i.e. those functions u 2 L1(Ω;Rd ) such that the symmetrized distributional
derivative exists as a Radon measure, i.e.,

Eu :=
1

2
(Du + DuT ) 2 M(Ω; (Rd

˝ Rd )sym);

see Ambrosio, Coscia, and Dal Maso [1997], Temam [1983], and Temam and Strang
[1980/81]. Clearly, BV(Ω; Rd ) � BD(Ω) and the inclusion is strict Conti, Faraco, and
Maggi [2005] and Ornstein [1962]. Note that for u 2 BV(Ω;Rd ) as a consequence of
Alberti’s rank-one theorem one has

dEsu

djEsuj
(x) = a(x) ˇ b(x);

where aˇb = (a˝b+b ˝a)/2 is the symmetrized tensor product. One is then naturally
led to the following conjecture:

Question 2.2. Is it true that for every function u 2 BD(Ω) it holds that

dEsu

djEsuj
(x) = a(x) ˇ b(x)

for jEsuj-a.e. x and some a(x); b(x) 2 Rd?

Again, besides its theoretical interest, it has been well known that a positive answer of
the above question would have several applications to the study of lower semicontinuity
and relaxation of functionals defined on BD, see the next section, as well as in establishing
the absence of a singular part for minimizers, see for instance Francfort, Giacomini, and
Marigo [2015, Remark 4.8].

Let us conclude this section by showing how both a positive answer to Question 2.2 and
a new proof of Alberti’s rank-one theorem can easily be obtained by applying Theorem 1.2
to suitable differential operators:

Theorem 2.3. Let Ω � Rd be open. Then:

(i) If u 2 BV(Ω;R`), then

dDsu

djDsuj
(x) = a(x) ˝ b(x) for jDsuj-a.e. x and some a(x) 2 R`, b(x) 2 Rd .
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(ii) If u 2 BD(Ω), then

dEsu

djEsuj
(x) = a(x) ˇ b(x) for jEsuj-a.e. x and some a(x); b(x) 2 Rd .

Proof. Observe that � = Du is curl-free,

0 = curl� =
�
@i �

k
j � @j �k

i

�
i;j=1;:::;d ; k=1;:::;`

:

Then, assertion (i) above follows from

Λcurl =
˚

a ˝ � : a 2 R`; � 2 Rd
n f0g

	
;

which can be proved by an easy computation.
In the same way, if � = Eu, then � satisfies the Saint-Venant compatibility conditions,

0 = curl curl� :=

� dX
i=1

@ik�
j
i + @ij �k

i � @jk�i
i � @i i �

k
j

�
j;k=1;:::;d

:

It is now a direct computation to check that

Λcurl curl =
˚

a ˇ � : a 2 Rd ; � 2 Rd
n f0g

	
:

This shows assertion (ii) above.

3 Functionals on measures

The theory of integral functionals with linear-growth integrands defined on vector-valued
measures satisfying PDE constraints is central to many questions of the calculus of vari-
ations. In particular, their relaxation and lower semicontinuity properties have attracted
a lot of attention, see for instance Ambrosio and Dal Maso [1992], Fonseca and Müller
[1993, 1999], Fonseca, Leoni, and Müller [2004], Kristensen and Rindler [2010], Rindler
[2011], and Baı́a, Chermisi, Matias, and Santos [2013]. Based on Theorem 1.2 one can
unify and extend many of these results.

Concretely, let Ω � Rd be an open and bounded set and consider the functional

(3-1) F [�] :=

Z
Ω

f

�
x;

d�

dLd
(x)

�
dx +

Z
Ω

f 1

�
x;

d�s

dj�js
(x)

�
dj�j

s(x);

defined for finite vector Radonmeasures� 2 M(Ω;RN )with values inRN and satisfying

A� = 0 in the sense of distributions.
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Here, f : Ω � RN ! [0; 1) is a Borel integrand that has linear growth at infinity, i.e.,

jf (x; A)j � M (1 + jAj) for all (x; A) 2 Ω � RN .

We also assume that the strong recession function of f exists, which is defined as

(3-2) f 1(x; A) := lim
x0!x
A0!A
t!1

f (x0; tA0)

t
; (x; A) 2 Ω � RN :

The (weak*) lower semicontinuity properties of F depend on (generalized) convexity
properties of the integrand in its second variable. For this, we need the following definition:
A Borel function h : RN ! R is called Ak-quasiconvex (Ak =

P
j˛j=k A˛@˛ being the

principal part of A) if
h(F ) �

Z
Q

h(F + w(y)) dy

for all F 2 RN and all Q-periodic w 2 C1(Q;RN ) such that Akw = 0 and
R

Q
w dy =

0, where Q := (0; 1)d is the open unit cube in Rd ; see Fonseca and Müller [1999] for
more on this class of integrands. For A = curl this notion is equivalent to the classical
quasiconvexity as introduced by Morrey [1952].

It has been known for a long time that Ak-quasiconvexity of f (x; q) is a necessary
condition for the sequential weak* lower semicontinuity of F on A-free measures. As
for the sufficiency, we can now prove the following general lower semicontinuity theo-
rem, which is taken from Arroyo-Rabasa, Philippis, and Rindler [2017] (where also more
general results can be found):

Theorem 3.1. Let f : Ω � RN ! [0; 1) be a continuous integrand with linear growth
at infinity such that f is uniformly Lipschitz in its second argument, f 1 exists as in (3-2),
and f (x; q) is Ak-quasiconvex for all x 2 Ω. Further assume that there exists a modulus
of continuity ! : [0; 1) ! [0; 1) (increasing, continuous, !(0) = 0) such that

(3-3) jf (x; A) � f (y; A)j � !(jx � yj)(1 + jAj) for all x; y 2 Ω, A 2 RN .

Then, the functional F is sequentially weakly* lower semicontinuous on the space

M(Ω;RN ) \ kerA :=
˚

� 2 M(Ω;RN ) : A� = 0
	
:

Remark 3.2. As special cases of Theorem 3.1 we get, among others, the following well-
known results:

(i) For A = curl, one obtains BV-lower semicontinuity results in the spirit of Ambrosio
and Dal Maso [1992] and Fonseca and Müller [1993].
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(ii) For A = curl curl, the second order operator expressing the Saint-Venant compat-
ibility conditions, we re-prove the lower semicontinuity and relaxation theorem in
the space of functions of bounded deformation (BD) from Rindler [2011].

(iii) For first-order operators A, a similar result was proved in Baı́a, Chermisi, Matias,
and Santos [2013].

The proof of Theorem 3.1 essentially follows by combining Theorem 1.2 with the main
theorem of Kirchheim and Kristensen [2016], which establishes that the restriction of f 1

to the linear space spanned by the wave cone is in fact convex at all points of ΛA (in the
sense that a supporting hyperplane exists). In this way we gain classical convexity for f 1

at singular points, which can be exploited via the theory of generalized Young measures
developed in DiPerna and Majda [1987], Alibert and Bouchitté [1997], and Kristensen
and Rindler [2012] and also briefly discussed in the next section.

One can also show relaxation results, where f is not assumed to be Ak-quasiconvex in
the second argument and the task becomes to compute the largest weakly* lower semicon-
tinuous functional below F ; see Arroyo-Rabasa, Philippis, and Rindler [2017] for more
details.

4 Characterization of generalized Young measures

Youngmeasures quantitatively describe the asymptotic oscillations in Lp-weakly converg-
ing sequences. They were introduced in Young [1937, 1942a,b] and later developed into
an important tool in modern PDE theory and the calculus of variations in Tartar [1979],
Tartar [1983], Ball [1989], and Ball and James [1987] and many other works. In order
to deal with concentration effects as well, DiPerna & Majda extended the framework to
so-called “generalized” Young measures, see DiPerna and Majda [1987], Alibert and Bou-
chitté [1997], Kružı́k and Roubı́ček [1997], Fonseca, Müller, and Pedregal [1998], Sychev
[1999], and Kristensen and Rindler [2012]. In the following we will refer also to these
objects simply as “Young measures”. We recall some basic theory, for which proofs and
examples can be found in Alibert and Bouchitté [1997], Kristensen and Rindler [2012],
and Rindler [2011].

Let again Ω � Rd be a bounded Lipschitz domain. For f 2 C(Ω � RN ) we define

E(Ω;RN ) :=
˚

f 2 C(Ω � RN ) : f 1 exists in the sense (3-2)
	
:

A (generalized) Young measure � 2 Y(Ω;RN ) � E(Ω;RN )� on the open setΩ � Rd

with values in RN is a triple � = (�x ; �� ; �1
x ) consisting of

(i) a parametrized family of probability measures (�x)x2Ω � M1(RN ), called the os-
cillation measure;
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(ii) a positive finite measure �� 2 M+(Ω), called the concentration measure; and

(iii) a parametrized family of probability measures (�1
x )x2Ω � M1(SN �1), called the

concentration-direction measure,

for which we require that

(iv) the map x 7! �x is weakly* measurable with respect to Ld , i.e. the function x 7!

hf (x; q); �xi is Ld -measurable for all bounded Borel functions f : Ω � RN ! R,

(v) the map x 7! �1
x is weakly* measurable with respect to �� , and

(vi) x 7! hj qj; �xi 2 L1(Ω).

The duality pairing between f 2 E(Ω;RN ) and � 2 Y(Ω;RN ) is given as

˝̋
f; �

˛̨
:=

Z
Ω

˝
f (x; q); �x

˛
dx +

Z
Ω

˝
f 1(x; q); �1

x

˛
d��(x)

:=

Z
Ω

Z
RN

f (x; A) d�x(A) dx +

Z
Ω

Z
@BN

f 1(x; A) d�1
x (A) d��(x):

If (
j ) � M(Ω;RN ) is a sequence of Radon measures with supj j
j j(Ω) < 1, then
we say that the sequence (
j ) generates a Young measure � 2 Y(Ω;RN ), in symbols

j

Y
! �, if for all f 2 E(Ω;RN ) it holds that

f

�
x;

d
j

dLd
(x)

�
Ld Ω+ f 1

�
x;

d
 s
j

dj
 s
j j
(x)

�
j
 s

j j(dx)

�
*

˝
f (x; q); �x

˛
Ld Ω+

˝
f 1(x; q); �1

x

˛
��(dx) in M(Ω).

Here, 
 s
j is the singular part of 
j with respect to Lebesgue measure.

It can be shown that if (
j ) � M(Ω;RN ) is a sequence of measures with
supj j
j j(Ω) < 1 as above, then there exists a subsequence (not relabeled) and a Young

measure � 2 Y(Ω;RN ) such that 
j
Y
! �, see Kristensen and Rindler [2012].

When considering generating sequences (
j ) as above that satisfy a differential con-
straint like curl-freeness (i.e. the generating sequence is a sequence of gradients), the fol-
lowing question arises:

Question 4.1. Can one characterize the class of Youngmeasures generated by sequences
satisfying some (linear) PDE constraint?



STRUCTURE OF PDE-CONSTRAINED MEASURES 2243

In applications, such results provide valuable information on the allowed oscillations
and concentrations that are possible under this differential constraint, which usually consti-
tutes a strong restriction. Characterization theorems are of particular use in the relaxation
of minimization problems for non-convex integral functionals, where one passes from a
functional defined on functions to one defined on Young measures. A characterization
theorem then allows one to restrict the class of Young measures over which to minimize.
This strategy is explained in detail (for classical Young measures) in Pedregal [1997].

The first general classification results are due to Kinderlehrer and Pedregal [1991,
1994], who characterized classical gradient Young measures, i.e. those generated by gra-
dients of W1;p-bounded sequences, 1 < p � 1. Their theorems put such gradient Young
measures in duality with quasiconvex functions. For generalized Young measures the
corresponding result was proved in Fonseca, Müller, and Pedregal [1998] (also see Kała-
majska and Kružı́k [2008]) and numerous other characterization results in the spirit of
the Kinderlehrer–Pedregal theorems have since appeared, see for instance Kružı́k and
Roubı́ček [1996], Fonseca and Müller [1999], Fonseca and Kružı́k [2010], and Benešová
and Kružík [2016].

The characterization of generalized BV-Young measures, i.e. those � generated by a
sequence (Duj ) of the BV-derivatives of maps uj 2 BV(Ω;R`)) was first achieved
in Kristensen and Rindler [2012]. A different, “local” proof was given in Rindler [2014],
another improvement is in Kirchheim and Kristensen [2016, Theorem 6.2]. All of these
arguments crucially use Alberti’s rank-one theorem.

The most interesting case beyond BV is again the case of functions of bounded defor-
mation (BD), which were introduced above: In plasticity theory Suquet [1978], Suquet
[1979], and Temam and Strang [1980/81], one often deals with sequences of uniformly
L1-bounded symmetric gradients Euj := (ruj + ruT

j )/2. In order to understand the
asymptotic oscillations and concentrations in such sequences (Euj ) one needs to charac-
terize the (generalized) Young measures � generated by them. We call such � BD-Young
measures and write � 2 BDY(Ω), since all BD-functions can be reached as weak* limits
of sequences (uj ) as above.

In this situation the following result can be shown, see De Philippis and Rindler [2017]:

Theorem 4.2. Let � 2 Y(Ω; (Rd ˝ Rd )sym) be a (generalized) Young measure. Then,
� is a BD-Young measure, � 2 BDY(Ω), if and only if there exists u 2 BD(Ω) with˝

id; �x

˛
Ld

x +
˝
id; �1

x

˛
(�� Ω)(dx) = Eu

and for all symmetric-quasiconvex h 2 C((Rd ˝ Rd )sym) with linear growth at infinity,
the Jensen-type inequality

h

�˝
id; �x

˛
+

˝
id; �1

x

˛ d��

dLd
(x)

�
�

˝
h; �x

˛
+

˝
h#; �1

x

˛ d��

dLd
(x):
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holds at Ld -almost every x 2 Ω, where h# is defined via

h#(A) := lim sup
A0!A
t!1

h(tA0)

t
; A 2 (Rd

˝ Rd )sym:

One application of this result (in the spirit of Young’s original work Young [1942a,b,
1980]) is the following: For a suitable integrand f : Ω�(Rd ˝Rd )sym ! R, theminimum
principle

(4-1)
˝̋
f; �

˛̨
! min; � 2 BDY(Ω).

can be seen as the extension-relaxation of the minimum principle

(4-2)
Z
Ω

f (x; Eu(x)) dx +

Z
Ω

f 1

�
x;

dEsu

djEsuj
(x)

�
djEsuj ! min

over u 2 BD(Ω). The point is that (4-2) may not be solvable if f is not symmetric-
quasiconvex, whereas (4-1) always has a solution. In this situation, Theorem 4.2 then
gives (abstract) restrictions on the Young measures to be considered in (4-1). Another
type of relaxation involving the symmetric-quasiconvex envelope of f is investigated
in Arroyo-Rabasa, Philippis, and Rindler [2017] within the framework of general linear
PDE side-constraints.

The necessity part of Theorem 4.2 follows from a lower semicontinuity or relaxation
theorem like the one in Rindler [2011]. For the sufficiency part (which is quite involved),
one first characterizes so-called tangent Young measures, which are localized versions of
Young measures. There are two types: regular and singular tangent Young measures, de-
pending on whether regular (Lebesgue measure-like) effects or singular effects dominate
around the blow-up point. We stress that the argument crucially rests on the BD-analogue
of Alberti’s rank-one theorem, see Theorem 2.3 (ii). Technically, in one of the proof steps
to establish Theorem 4.2 we need to create “artificial concentrations” by compressing sym-
metric gradients in one direction. This is only possible if we know precisely what these
singularities look like.

A characterization results for Young measures under general linear PDE constrainsts
is currently not available (there is a partial result in the work Baı́a, Matias, and Santos
[2013], but limited to first-order operators and needing additional technical assumptions).
The reason is that currently not enough is known about the directional structure of A-free
measures at singular points.
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5 The converse of Rademacher’s theorem

Rademacher’s theorem asserts that a Lipschitz function f 2 W1;1(Rd ; R`) is diffferen-
tiable Ld -almost everywhere. A natural question, which has attracted considerable atten-
tion, is to understand how sharp this result is. The following questions have been folklore
in the area for a while:

Question 5.1 (Strong converse of Rademacher’s theorem). Given a Lebesgue null set
E � Rd is it possible to find some ` � 1 and a Lipschitz function f 2 W1;1(Rd ; R`)

such that f is not differentiable in any point of E?

Question 5.2 (Weak converse of Rademacher’s theorem). Let � 2 M+(Rd ) be a
positive Radon measure such that every Lipschitz function is differentiable �-almost ev-
erywhere. Is � necessarily absolutely continuous with respect to Ld?

Clearly, a positive answer toQuestion 5.1 implies a positive answer toQuestion 5.2. Let
us also stress that in answeringQuestion 5.1, an important role is played by the dimension `

of the target set, see point (ii) below, while this does not have any influence onQuestion 5.2,
see Alberti and Marchese [2016]. We refer to Alberti, Csörnyei, and Preiss [2005, 2010b]
and Alberti and Marchese [2016] for a detailed account on the history of these problems
and here we simply record the following facts:

(i) For d = 1 a positive answer to Question 5.1 is due to Zahorski [1946].

(ii) For d � 2 there exists a null set E such that every Lipschitz function f : Rd ! R`

with ` < d is differentiable in at least one point of E. This is was proved by Preiss
in Preiss [1990] for d = 2 and later extended by Preiss and Speight in Preiss and
Speight [2015] to every dimension.

(iii) For d = 2 a positive answer to Question 5.1 has been given by Alberti, Csörnyei
and Preiss as a consequence of their deep result concerning the structure of null sets
in the plane Alberti, Csörnyei, and Preiss [2005, 2010b,a]. Namely, they show that
for every null set E � R2 there exists a Lipschitz function f : R2 ! R2 such that
f is not differentiable at any point of E.

(iv) For d � 2 an extension of the result described in point (iii) above, i.e. that for every
null set E � Rd there exists a Lipschitz function f : Rd ! Rd such that f is not
differentiable at any point of E, has been announced in 2011 by Jones [2011].

Let us now show how Question 5.2 is related to Question 1.1. In Alberti and Marchese
[2016, Theorem 1.1] Alberti & Marchese have shown the following result:
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Theorem 5.3 (Alberti–Marchese). Let � 2 M+(Rd ) be a positive Radon measure.
Then, there exists a vector space-valued �-measurable map V (�; x) (the decomposability
bundle of �) such that:

(i) Every Lipschitz function f : Rd ! R is differentiable in the directions of V (�; x)

at �-almost every x.

(ii) There exists a Lipschitz function f : Rd ! R such that for �-almost every x and
every v … V (�; x) the derivative of f at x in the direction of v does not exist.

Thanks to the above theorem, Question 5.2 is then equivalent to the following:

Question 5.4. Let � 2 M+(Rd ) be a positive Radon measure such that V (�; x) = Rd

for �-almost every x. Is � absolutely continuous with respect to Ld?

The link between the above question and Theorem 1.2 is due to the following result,
again due to Alberti & Marchese, see Alberti and Marchese [2016, Corollary 6.5] and De
Philippis and Rindler [2016, Lemma 3.1]2.

Lemma 5.5. Let � 2 M+(Rd ) be a positive Radon measure. Then the following are
equivalent:

1. The decomposability bundle of � is of full dimension, i.e.V (�; x) = Rd for �-almost
every x.

2. There exist Rd -valued measures �1; : : : ; �d 2 M(Rd ;Rd ) with measure-valued
divergences div�i 2 M(Rd ;R) such that � � j�i j for 1 = 1; : : : ; d and3

(5-1) span
�
d�1

dj�1j
(x); : : : ;

d�d

dj�d j
(x)

�
= Rd for �-a.e. x.

With the above lemma at hand, a positive answer to Question 5.4 (and thus to Ques-
tion 5.2) follows from Theorem 1.2 in a straightforward fashion:

Theorem 5.6. Let � 2 M+(Rd ) be a positive Radon measure such that every Lipschitz
function is differentiable �-almost everywhere. Then, � is absolutely continuous with re-
spect to Ld .

2In the cited references the results are stated in terms of normal currents. By the trivial identifications of
the space of normal currents with the space of measure-valued vector fields whose divergence is a measure it is
immediate to see that they are equivalent to our Lemma 5.5

3Note that since � � j�i j for all i = 1; : : : ; d , in item (ii) above all the Radon-Nikodym derivatives d�i

dj�i j

i = 1; : : : ; d exist for �-a.e. x.
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Proof. Let � be a measure such that V (�; x) = Rd for �-almost every x an let �i be the
measures provided by Lemma 5.5 (ii). Let us consider the matrix-valued measure

� :=

0B@�1

:::

�d

1CA 2 M(Rd ;Rd
˝ Rd ):

Note that div� 2 M(Rd ;Rd ), where div is the row-wise divergence operator. Since, by
direct computation,

Λdiv =
˚

M 2 Rd
˝ Rd : rankM � d � 1

	
;

Theorem 1.2 and Remark 1.3 imply that rank
� d�
dj�j

�
� d � 1 for j�js-almost every point.

Hence, by (5-1), � is singular with respect to j�js . On the other hand, since � � j�i j for
all i = 1; : : : ; d , we get �s � j�js . Hence, we conclude �s = 0, as desired.

Let us conclude this section by remarking that the weak converse of Rademacher’s
theorem, i.e. a positive answer to Question 5.2, has some consequences for the structure
of Ambrosio–Kirchheim metric currents Ambrosio and Kirchheim [2000], see the work
of Schioppa [2016b]. In particular, it allows one to prove the top-dimensional case of the
flat chain conjecture proposed by Ambrosio and Kirchheim in Ambrosio and Kirchheim
[2000].

6 Cheeger’s conjecture

Among the many applications of Rademacher’s theorem, it allows one to pass from “non-
infintesimal” information (the existence of certain Lipschitz maps) to infinitesimal infor-
mation. For instance, one can easily establish the following fact:

There is no bi-Lipschitz map f : Rd ! R` if d ¤ `.

Indeed, if this were the case, Rademacher’s theorem would imply (at a differentiability
point) the existence of a bijective linear map from Rd to R` with d ¤ `.

While the above statement is an immediate consequence of the theorem on the invari-
ance of dimension (asserting that there are no bijective continuous maps from Rd to R`

if d ¤ `), the point here is that the almost everywhere result allows to pass from a non-
linear statement (the existence of a bi-Lipschitz map) to a linear one, whose rigidity can
be proved by elementary methods.

This line of thought has been adopted in the study of rigidity of several metric structures.
For instance, the natural generalization of Rademacher’s theorem in the context of Carnot
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groups, which was established by Pansu in Pansu [1989], allows one to show that there are
no bi-Lipscitz embeddings of a Carnot group into R` if the former is non-commutative.

The fact that (a suitable notion of) differentiability of Lipschitz functions allows to
develop a first-order calculus on metric spaces and in turn to obtain non-embedding results
has been recognised by Cheeger in his seminal paper Cheeger [1999] and later studied by
several authors.

Let us briefly introduce the theory of Cheeger as it has been axiomatized by Keith
in Keith [2004]. Note that it is natural to generalize Rademacher’s theorem to the setting
ofmetric measure spaces sincewe need to talk about Lipschitz functions (ametric concept)
and almost everywhere (a measure-theoretic concept).

Let (X; �; �) be a metric measure space, that is, (X; �) is a separable, complete metric
space and � 2 M+(X) is a positive Radon measure on X . We call a pair (U; ') such that
U � X is a Borel set and ' : X ! Rd is Lipschitz, a d -dimensional chart, or simply
a d -chart. A function f : X ! R is said to be differentiable with respect to a d -chart
(U; ') at x0 2 U if there exists a unique (co-)vector df (x0) 2 Rd such that

(6-1) lim sup
x!x0

jf (x) � f (x0) � df (x0) � ('(x) � '(x0))j

�(x; x0)
= 0:

Definition 6.1. A metric measure space (X; �; �) is a Lipschitz differentiability space if
there exists a countable family of d (i)-charts (Ui ; 'i ) (i 2 N) such that X =

S
i Ui and

any Lipschitz map f : X ! R is differentiable with respect to every (Ui ; 'i ) at �-almost
every point x0 2 Ui .

In this terminology, themain result of Cheeger [1999] asserts that every doublingmetric
measure space (X; �; �) satisfying a Poincaré inequality is a Lipschitz differentiability
space.

In the same paper, Cheeger conjectured that the push-forward of the reference mea-
sure � under every chart 'i has to be absolutely continuous with respect to the Lebesgue
measure, see Cheeger [ibid., Conjecture 4.63]:

Question 6.2. For every d -chart (U; ') in a Lipschitz differentiability space, does it
hold that '#(� U ) � Ld?

Some consequences of this fact concerning the existence of bi-Lipschitz embeddings of
X into some RN are detailed in Cheeger [ibid., Section 14], also see Cheeger and Kleiner
[2006, 2009].

Let us assume that (X; �; �) = (Rd ; �E; �)with �E the Euclidean distance and � a pos-
itive Radon measure, is a Lipschitz differentiability space when equipped with the (single)
identity chart (note that it follows a-posteriori from the validity of Cheeger’s conjecture
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that no mapping into a higher-dimensional space can be a chart in a Lipschitz differen-
tiability structure of Rd ). In this case the validity of Cheeger’s conjecture reduces to the
validity of the (weak) converse of Rademacher’s theorem, which we stated above in The-
orem 5.6.

One can also prove the assertion of Cheeger’s conjecture directly. Indeed, from the
work of Bate [2015], and Alberti and Marchese [2016] an analogue of Lemma 5.5 for
'#(� U ) in place of� follows, see also Schioppa [2016a,b]. This allows one to conclude
as in the proof of Theorem 5.6 to get:

Theorem 6.3. Let (X; �; �) be a Lipschitz differentiability space and let (U; ') be a
d -dimensional chart. Then, '#(� U ) � Ld :

The details can be found in De Philippis, Marchese, and Rindler [2017].
We conclude this section by mentioning that the weak converse of Rademacher’s theo-

rem also has some consequences concerning the structure of measures on metric measure
spaces with Ricci curvature bounded from below, see Kell and Mondino [2016] and Gigli
and Pasqualetto [2016].

7 Sketch of the proof of Theorem 1.2

In this section we shall give some details concerning the proof of Theorem 1.2. For sim-
plicity we will only consider the case in which A is a first-order homogeneous operator,
namely we will assume that � satisfies

A� =

dX
j=1

Aj @j � = 0 in the sense of distributions.

Note that in this case we have

ΛA =
[

j�j=1

kerA(�); A(�) = A1(�) = 2� i
dX

j=1

Aj �j :

Let

E :=

�
x 2 Ω :

d�

dj�j
(x) … ΛA

�
;

and let us assume by contradiction that j�js(E) > 0.
Employing a fundamental technique of geometric measure theory, one can “zoom in”

around a generic point ofE. Indeed, one can show that for j�js-almost every point x0 2 E



2250 GUIDO DE PHILIPPIS AND FILIP RINDLER

there exists a sequence of radii rk # 0 such that

w*-lim
k!1

(T x0;rk )#�

j�j(Brk
(x0))

= w*-lim
k!1

(T x0;rj )#�
s

j�js(Brk
(x0))

= P0�;

where T x;r : Rd ! Rd is the dilation map T x;r(y) := (y � x)/r , T
x;r
# denotes the

push-forward operator4, � 2 Tan(x0; j�j) = Tan(x0; j�js) is a non-zero tangent measure
in the sense of Preiss [1987],

�0 =
d�

dj�j
(x0) … ΛA;

and the limit is to be understood in the weak* topology of Radon measures (i.e. in duality
with compactly supported continuous functions). Moreover, one easily checks that

dX
j=1

Aj

d�

dj�j
(x0) @j � = 0 in the sense of distributions.

By taking the Fourier transform of the above equation, we get

[A(�)�0] �̂(�) = 0; � 2 Rd :

where �̂(�) is the Fourier transform of � in the sense of distributions (actually, � does not
need to be a tempered distribution, hence some care is needed, see below for more details).
Having assumed that �0 … ΛA, i.e. that

A(�)�0 ¤ 0 for all � ¤ 0,

this implies supp �̂ = f0g and thus � � Ld . The latter fact, however, is not by itself a
contradiction to � 2 Tan(x0; j�js). Indeed, Preiss [ibid.] provided an example of a purely
singular measure that has only multiples of Lebesgue measure as tangents (we also refer
to O’Neil [1995] for a measure that has every measure as a tangent at almost every point).

The above reasoning provides a sort of rigidity property for A-measures: If, for a con-
stant polar vector �0 … ΛA and a measure � 2 M+(Rd ), the measure �0� is A-free, then
necessarily � � Ld . However, as we commented above, this is not enough to conclude.
In order to prove the theorem we need to strengthen this rigidity property (absolutely con-
tinuity of the measures �0� with �0 … ΛA) to a stability property which can be roughly
stated as follows:

A-free measures � with j�j
�˚

x : d�
dj�j

(x) 2 ΛA

	�
� 1 have small singular part.

4That is, for any measure � and Borel set B , [(T x;r )#� ](B) := �(x + rB)
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In this respect note that since �0 … ΛA implies that A(�)�0 ¤ 0 for � ¤ 0, one can
hope for some sort of “elliptic regularization” that forces not only � � Ld but also

�k :=
(T x0;rk )#�

j�js(Brk
(x0))

� Ld ;

at least for small rk . This is actually the case: Inspired by Allard’s strong constancy
lemma in Allard [1986], we can show that the ellipticity of the system at the limit (i.e.
that A(�)�0 ¤ 0) improves the weak* convergence of (�k) to convergence in the total
variation norm, i.e.

(7-1) j�k � �0�j(B1/2) ! 0:

Since the singular part of �k is asymptotically predominant around x0, see (7-2) below,
this latter fact implies that

j�s
k � �0�j(B1/2) ! 0;

which easily gives a contradiction to � � Ld and concludes the proof.
Let us briefly sketch how (7-1) is obtained. For � 2 D(B1), 0 � � � 1, consider the

measures �0��k , where

�k :=
(T x0;rk )#j�js

j�js(Brk
(x0))

;

and note that, since we can assume that for the chosen x0 it holds that

(7-2)
j�ja(Brk

(x0))

j�js(Brk
(x0))

! 0; �

Z
Brk

(x0)

ˇ̌̌̌
d�

dj�j
(x) �

d�

dj�j
(x0)

ˇ̌̌̌
dj�j

s(x) ! 0;

we have that

(7-3) j�0��k � ��kj(Rd ) � j�0�k � �kj(B1) ! 0:

Using the A-freeness of �k (which trivially follows from the one of �) we can derive an
equation for ��k :

(7-4)
dX

j=1

Aj �0@j (��k) =

dX
j=1

Aj @j (�0��k � ��k) +

dX
j=1

Aj �k@j �:

Since we are essentially dealing with a-priori estimates, in the following we treat measures
as if they were smooth L1-functions; this can be achieved by a sufficiently fast regulariza-
tion, see De Philippis and Rindler [2016] for more details.
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Taking the Fourier transform of equation (7-4) (note that we are working with com-
pactly supported functions) we obtain

(7-5) A(�)�0b��k(�) = A(�)cVk(�) + cRk(�);

where

(7-6) Vk := �0��k � ��k satisfies jVkj(Rd ) ! 0

and

(7-7) Rk :=

dX
j=1

Aj �k@j � satisfies sup
k

jRkj(Rd ) � C:

Scalar multiplying (7-5) by A(�)P0, adding b��k to both sides and rearranging the terms,
we arrive to

b��k(�) =
A(�)�0A(�)cVk(�)

1 + jA(�)�0j2
+

A(�)�0 � cRk(�)

1 + jA(�)�0j2
+

b��k(�)

1 + jA(�)�0j2

=: T0(Vk) + T1(Rk) + T2(��k);

(7-8)

where

T0[V ] = F �1
�
m0(�)V̂ (�)

�
;

T1[R] = F �1
�
m1(�)(1 + 4�2

j�j
2)�1/2R̂(�)

�
;

T2[u] = F �1
�
m2(�)(1 + 4�2

j�j
2)�1û(�)

�
;

and we have set

m0(�) := (1 + jA(�)�0j
2)�1A(�)�0A(�);

m1(�) := (1 + jA(�)�0j
2)�1(1 + 4�2

j�j
2)1/2A(�)�0;

m2(�) := (1 + jA(�)�0j
2)�1(1 + 4�2

j�j
2):

We now note that since �0 … ΛA, by homogeneity there exists c > 0 such that jA(�)�0j �

cj�j (this is the ellipticity condition we mentioned at the beginning). Hence, the sym-
bols mi , i = 1; 2; 3, satisfy the assumptions of the Hörmander–Mihlin multiplier theo-
rem Grafakos [2014, Theorem 5.2.7], i.e. there exists constants Kˇ > 0 such that

j@ˇ mi (�)j � Kˇ j�j
�jˇ j for all ˇ 2 Nd .
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This implies that T0 is a bounded operator from L1 to L1;1 and thus, thanks to (7-6), we
get

(7-9) kT0(Vk)kL1;1 � C jVkj(Rd ) ! 0:

Moreover,

(7-10) hT0(Vk); 'i = hVk ; T �
0 (')i ! 0 for every ' 2 D(Rd ):

where T �
0 is the adjoint operator of T0. We also observe

T1 = Qm1
ı (Id � ∆)�1/2 and T2 = Qm2

ı (Id � ∆)�1;

where Qm1
and Qm2

are the Fourier multipliers operators associated with the symbols m1

and m2, respectively. In particular, again by the Hörmander–Mihlin multiplier theorem,
these operators are bounded from Lp to Lp for every p 2 (1; 1). Moreover, (Id�∆)�s/2

is a compact operator from5 L1
c(B1) to Lq for some q = q(d; s) > 1, see for instance De

Philippis and Rindler [2016, Lemma 2.1]. In conclusion, by (7-7) and supk j��kj(Rd ) �

C ,

(7-11)
˚
T1(Rk) + T2(��k)

	
k2N

is pre-compact in L1(B1).

Hence, combining equation (7-8) with (7-9), (7-10) and (7-11) implies that

��k = uk + wk ;

where uk ! 0 in L1;1, uk

�
* 0 in the sense of distributions and (wk) is pre-compact in

L1(B1). Since ��k � 0,
u�

k := maxf�uk ; 0g � jwkj;

so that the sequence (u�
k
) is pre-compact in L1(B1). Since uk ! 0 in L1;1, Vitali’s con-

vergence theorem implies that u�
k

! 0 in L1(B1) which, combined with uk

�
* 0, easily

yields that uk ! 0 in L1(B1), see De Philippis and Rindler [ibid., Lemma 2.2]. In con-
clusion, (��k) is pre-compact in L1(B1). Together with (7-1) and the weak* convergence
of �k to �0�, this implies

j�k � �0�j(B1/2) ! 0;

which concludes the proof.
5Here we denote by L1

c(B1) the space of L1-functions vanishing outside B1.
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LONG TIME EXISTENCE RESULTS FOR SOLUTIONS OF
WATER WAVES EQUATIONS

Jൾൺඇ-Mൺඋർ Dൾඅඈඋඍ

Abstract

We present in this talk various results, obtained during the last years by several
authors, about the problem of long time existence of solutions of water waves and
related equations, with initial data that are small, smooth, and decaying at infinity.
After recalling some facts about local existence theory, we shall focusmainly on global
existence theorems for gravity waves equations proved by Ionescu–Pusateri, Alazard–
Delort and Ifrim–Tataru. We shall describe some of the ideas of the proofs of these
theorems, and mention as well related results.

1 The water waves equations

Consider an incompressible and irrotational fluid, of constant density equal to one, in a
vertical gravity field of intensity g. Assume that at time t , the domain occupied by the
fluid is

Ωt = f(x; z) 2 Rd � R;�H0 < z < �(t; x)g;

where �(t; �) : Rd ! R is such that infx2Rd �(t; x) > �H0, and either H0 2]0;+1[

(for a fluid of finite depth) orH0 = +1 (for an infinite depth fluid).
The velocity U in the fluid solves in Ω = f(t; x); x 2 Ωtg the incompressible Euler

equations

@tU + U � rx;zU = �rx;zp � gez

divU = 0
(1)

where ez is the vertical unit vector and p the pressure inside the fluid. Moreover, the
normal velocity at the bottom satisfies U � ezjz=�H0

= 0 (when H0 < +1) or U ! 0

From joint work with Thomas Alazard. Partially supported by the ANR project 13-BS01-0010-02 “Analyse
asymptotique des équations aux dérivées partielles d’évolution”.
MSC2010: primary 76B15; secondary 35Q35, 35B40, 35S50.
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when z goes to �1 (if H0 = �1). Finally, the free surface is driven by the velocity of
the fluid at each point of the interface z = �(t; x), which is translated by

(2) @t�(t; x) =

q
1 + jrx�(t; x)j

2
U (t; x; z) � njz=�(t;x);

where n is the unit outward normal vector to Ωt at (x; �(t; x)). Moreover, the pressure
above the fluid is equal to the constant atmospheric pressure, that we may take equal to
zero. At the interface z = �(t; x), the pressure of the fluid will be given by

(3) pjz=�(t;x) = �� div

 
rx�q

1 + jrx�j
2

!
;

where the constant � � 0 is the surface tension. Since, as the fluid is also assumed to
be irrotational, curlU = 0, one may express the velocity U from a potential Φ by U =

r(x;z)Φ. The incompressibility implies ∆(x;z)Φ = 0 and the Euler equation (1) allows
one to write an equation for Φ:

(4) @tΦ+
1

2
jr(x;z)Φj

2 + gz = �p:

Moreover, one has the boundary condition at the bottom

@zΦjz=�H0
= 0 (for finite depth)

r(x;z)Φ ! 0 if z ! �1 (for infinite depth)
(5)

and, expressing U = r(x;z)Φ in (2), one gets

(6) @t�(t; x) =

q
1 + jrx�(t; x)j

2
@nΦ(t; x; z) on z = �(t; x);

denoting by @n the outwards normal unit derivative at the free interface. The Craig-Sulem-
Zakharov formulation of the water waves system, given in Zakharov [1968] and Craig and
Sulem [1993] (see also the book of Lannes [2013b]) is obtained expressing in (4), (6), the
potential Φ from its boundary data. More precisely, denote by  the restriction of Φ to
the interface z = �(t; x). Then Φ solves the elliptic boundary values problem

∆(x;z)Φ = 0

Φjz=�(t;x) =  

@zΦjz=�H0
= 0

(7)

(or, for the last condition, r(x;z)Φ ! 0 when z ! �1 in the case of infinite depth). One
denotes by G(�) the Dirichlet-Neuman operator defined by

(8) G(�) =

q
1 + jrx�j

2@nΦjz=�(t;x);
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where Φ solves (7). Plugging this information in (4) restricted to z = �(t; x), (6), and
using (3), one obtains for (�;  ) the system

@t� = G(�) 

@t = �g� �
1

2
jrx j

2 +

�
G(�) + rx� � rx 

�2
2(1 + jrx�j

2)
+ � div

 
rx�q

1 + jrx�j
2

!
:

(9)

This is the system we intend to study below, in the case of pure gravity water waves, i.e.
when g > 0 and � = 0.

2 The question of local existence

The question of existence of local in time solutions for system (9) (when � = 0 and the
fluid depth is infinite) with data in Sobolev spaces remained open for a long time, and was
fully answered in 1997 by Sijue Wu in the seminal paper Wu [1997] when x belongs to R
and in Wu [1999] when x is in R2. As in the subsequent sections we shall be interested
mainly in the one dimensional problem, we assume for the rest of this section that the
space variable x belongs to R. The difficulty in order to prove local existence may be
seen in the following way: if one writes (9) under the form

(10) @t

h
�
 

i
= A(�;  )

h
�
 

i
;

where A is a pseudo-differential operator with coefficients with limited smoothness, de-
fined by

(11) A(�;  )
h
�̇

 ̇

i
=

1

2�

Z
eix�M (x; �)

h ˆ̇�(t;�)
ˆ̇
 (t;�)

i
d�;

then the matrix symbolM (x; �) (that depends on (�;  )) has eigenvalues whose real part
may go to infinity with j�j. This instability prevents one from getting energy inequalities.

A way to overcome this difficulty, and to prove local existence for a restricted class of
energy data, has been introduced by Nalimov [1974] (for infinite depth fluids) and Yosi-
hara [1982] for finite depth ones. See also the work of Craig [1985]. The local existence
of solutions for arbitrary Sobolev initial data has been established for infinite depth fluids
by Wu [1997, 1999]. Actually, her work is not limited to an interface given by a graph
z = �(t; x), but allows upper boundaries forΩt given by any non self-intersecting smooth
curve. The method used by the above authors was relying on the Lagrangian formulation
of the water waves system, and has been at the origin of a lot of works concerning re-
lated models (like for instance the capillary-gravity wave equations, where � in (9) is non
zero) with finite or infinite depth, both for localized or unlocalized initial data. We cite in



2262 JEAN-MARC DELORT

particular results of local existence of Ambrose [2003], Ambrose and Masmoudi [2005],
Coutand and Shkoller [2007]. At the same time, a more geometric approach to study
free boundary value problems has been developed by Christodoulou and Lindblad [2000],
Lindblad [2005] and in a series of papers of Shatah and Zeng [2008b,a, 2011].

On the other hand, Lannes [2005] introduced an Eulerian approach to local existence,
expressing the problem in terms of a “good unknown” ! instead of  . Such a “good
unknown” had been introduced in the framework of free boundary problems by Alinhac
[1986, 1988]. For water waves equations (in any dimension, andwith eventually a bottom),
Lannes showed that the system, written in terms of (�; !), is a quasi-linear hyperbolic
equation, for which Sobolev energy estimates are available and provide local existence of
solutions.

This new unknown was later implemented by Alazard and Métivier [2009] in a parad-
ifferential framework. Let us describe how it may be defined for problem (9) in one space
dimension. Recall that the paraproduct Tab Bony [1981] of a bounded function a and a
tempered distribution b may be defined by

bTab(�) =
Z
�1+�2=�

�(�1; �2)â(�1)b̂(�2) d�1d�2;

where � is a smooth function satisfying

j@
˛1
�1
@
˛2
�2
�(�1; �2)j � C (1 + j�1j + j�2j)�˛1�˛2 ;

supported for j�1j � (1 + j�2j)/10, equal to one for j�1j � (1 + j�2j)/100 for instance.
Then if a is in L1 and b is in a Sobolev space H s , the paraproduct Tab belongs to H s ,
whatever the value of s. Let us introduce:

Definition 1. For � inH s(R),  such that jDxj
1
2 2 H s(R), with s large enough, set

(12) B(�) 
def
=
G(�) + (@x�)(@x )

1 + (@x�)2
:

One defines the good unknown ! by

(13) ! =  � TB(�) �:

Using this good unknown, and a paralinearization of the Dirichlet-Neuman operator
due to Alazard and Métivier [2009], Alazard, Burq, and Zuily [2014, 2016, 2011a] and
Alazard, Burq, and Zuily [2011b] proved local existence theorems for (9) (with or without
surface tension) under weaker regularity assumptions on the Cauchy data than in previous
works.
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Finally, let us mention a last approach to local existence theory, encompassing in some
way the Lagrangian formulation and the use of a good unknown, proposed by Hunter,
Ifrim, and Tataru [2016], that relies on the introduction of new quantities defined as bound-
ary values of holomorphic functions.

3 Global existence with small decaying data

Once local existence of solutions to system (9) is established, it is natural to ask the ques-
tion of long time existence for small smooth enough initial data that have some decay at
infinity. Up to the last but one section, we discuss this problem for (9) in infinite depth,
when the surface tension � is equal to zero, and space dimension d is equal to one or two,
postponing to the last section references to other models (finite depth, presence of surface
tension terms, etc).

One checks easily that the solution of (9) with � = 0 linearized on the zero solution,
with decaying initial data, hasL1 norm that isO(t�

d
2 )when t goes to infinity, in d space

dimension, because of the dispersive effect. The first breakthrough concerning long time
existence of solutions is due to Wu [2009] who proved that, in one space dimension, for
smooth decaying Cauchy data of small size �, the solution exists over a time interval of
length ec/� for some positive constant c. For two space dimensions, the stronger decay rate
of solutions of the linearized equation makes expect better results. Actually Wu [2011]
and Germain, Masmoudi, and Shatah [2012b] proved that then solutions are global if the
data are smooth, small, and decaying enough. Moreover, there is scattering Germain,
Masmoudi, and Shatah [ibid.], i.e. the solutions of the nonlinear problem have the same
asymptotics as solutions of the linearized equation on the zero state when time goes to
infinity.

The main result we report on here concerns, in one space dimension, global existence
of solutions for small, smooth, decaying Cauchy data, and modified scattering. This result
has been obtained independently by Ionescu and Pusateri [2015b], using a combination of
the Lagrangian and the Eulerian formulations of the equations, and by Alazard and Delort
[2015a,b], through the Eulerian formulation and the good unknown introduced above. An
alternative approach, based on the “holomorphic coordinates” of Hunter, Ifrim and Tataru,
has also been proposed by Ifrim and Tataru [2016].

We state below the result of Alazard and Delort [2015a]. We compare it next with the
statements of Ionescu and Pusateri [2015b] and Ifrim and Tataru [2016].

Theorem 2. Fix 
 2 R �
1
2
N a large enough number, s; s1 in N such that s1 �

s
2
+ 


and s � s1 is large enough. There is �0 > 0 and for any � 2]0; �0[, any couple (�0;  0) of
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functions satisfying for any integer 0 � p � s1,

(x@x)
p�0 2 H s�p(R); jDxj

1
2 (x@x)

p 0 2 H s�p� 1
2 (R)

jDxj
1
2 (x@x)

p
�
 0 � TB(�0) 0

�0
�

2 H s�p(R);
(14)

with the norms in the above spaces smaller or equal to one, the evolution problem (9)
(in one space dimension, with � = 0 and infinite depth) with initial data  jt=1 = � 0,
�jt=1 = ��0, has a unique solution, continuous with values in the set of functions satisfying
(14), defined on the whole interval [1;+1[. Moreover, if we define u = jDxj

1
2 + i�, we

have the following asymptotics when t goes to infinity:

(15) u(t; x) =
�

p
t
˛�

�x
t

�
exp

�
i t

4jx/t j
+
i�2

64

j˛�(x/t)j
2

jx/t j5
log t

�
+ �t�

1
2 ���(t; x);

where (˛�)�2]0;1] is a bounded family of functions of C (R) \ L1(R), � is positive and
k�(t; �)kL1 is bounded for t � 1.

Remark: The asymptotics (15) show that the global solution displays a modified scat-
tering, where the phase of oscillation of linear solutions is modulated by an extra loga-
rithmic term. This term, that becomes significant for times t such that log t � ��2, is
responsible of the new difficulties arising in one dimensional problems versus two dimen-
sional ones.

Let us compare the above result with the ones of Ionescu and Pusateri [2015b] and
Ifrim and Tataru [2016].

In the first of these references, a similar result of global existence is obtained under
a weaker decay condition on the initial data, namely conditions of the form (14) have to
be imposed only for 0 � p � 1. Moreover, one assumes the smallness of a “Z-norm”,
that controls kj�jˇ û0(�)1j�j�1kL1 , for some ˇ > 0, where u0 = jDxj

1
2 0 + i�0. This

norm plays a key role in the proof of the optimal decay of the solution and of the modified
scattering.

The result of Ifrim and Tataru is expressed from slightly different unknowns than (�;  )
above. Actually, these authors introduceZ, a parameterization of the boundary, chosen in
such a way that it is the boundary value of some holomorphic function in the fluid domain,
and Q, the boundary value of another holomorphic function in the fluid, whose real part
coincides with the velocity potential at the boundary. They assume that a Sobolev norm of�
Z(t; ˛) � ˛

�
jt=0 andQ(t; ˛)jt=0, involving essentially at most six derivatives, is small

and that anH 1 norm of the action of x@x on an expression of these quantities is also small
at the initial time. They obtain then global existence and modified scattering.

The proofs of the results of global existence of Alazard and Delort [2015a], Ifrim and
Tataru [2016], and Ionescu and Pusateri [2015b] might differ in their technical details, but
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the difficulties that have to be overcome are essentially the same. In the rest of that report,
we shall try to describe them in a non technical way, usingmost of the time some simplified
toy models instead of the full equation (9). We shall use the formulation of the equation
in terms of � and the good unknown !, following Alazard and Delort [2015a,b], but will
make also frequent references to the works Ionescu and Pusateri [2015b] and Ifrim and
Tataru [2016].

4 Quadratic terms. Normal forms

Consider first a model equation of the form�
Dt � p(Dx)

�
u = N (u)

ujt=1 = �u0
(16)

whereDt = 1
i
@
@t
,Dx = 1

i
@
@x
, p(�) is a real valued elliptic Fourier multiplier andN (u) is

a nonlinearity vanishing at least at order two at zero. The water wave system, linearized
at the zero state, may be expressed in terms of u = jDxj

1
2 + i�, as (Dt � jDxj

1
2 )u = 0,

so that (16) is a model for that system if we take p(�) = j�j
1
2 .

Assume first thatN is semi-linear and at least cubic at zero, in that sense that it satisfies
an estimate

(17) kN (u)kH s � Ckuk
2
L1kukH s

for any s > 0 for instance. Then the Sobolev energy inequality associated to (16) writes

(18) ku(t; �)kH s � ku(1; �)kH s + C

Z t

1

ku(�; �)k2L1ku(�; �)kH s d�:

If one assumes that, in addition, one has some a priori estimate for ku(t; �)kL1 � B�t�
1
2

(as the one we expect according to (15)), we deduce by Gronwall inequality a bound

(19) ku(t; �)kH s � Cku(0; �)kH s tCB
2�2 ;

i.e. a control of the Sobolev norm that is not uniform, but given in terms of an arbitrary
small power of t (if � is small). As we shall see, a bound of this type will be sufficient for
our goals.

On the other hand, in the system (9) we are really interested in, the nonlinearity is
quadratic, and not cubic. For the toy model (16), this would mean assuming, instead of
(17), kN (u)kH s � CkukL1kukH s , so that (19) would be replaced by

ku(t; �)kH s � Cku(0; �)kH s exp[CB�
p
t ]
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which is useless if one wants to study solutions on time intervals of length larger than
��2. The way to actually obtain estimates of the form (19), including for a quadratic
nonlinearity, is well known in the semi-linear case: this is the normal forms method of
Shatah [1985], that allows to reduce a quadratic nonlinearity to a cubic one. (We refer
also to the more recent developments of that method introduced in the work of Germain,
Masmoudi, and Shatah [2012a]. See also the Bourbaki seminar of Lannes [2013a] and
references therein.) For quadratic nonlinearities, N (u) = u2 for instance, the idea of the
method is to look for a new unknown � = u + E(u; u), where E(u; u) is a quadratic
expression of the form

(20) E(u; u) =
1

2�

Z
eix(�1+�2)m(�1; �2)û(�1)û(�2) d�1d�2;

chosen in such a way that

(21) (Dt � p(Dx))� = Ñ (�)

for a new nonlinearity Ñ vanishing at third order at zero. A direct computation using (16)
shows that one has to take

(22) m(�1; �2) =
�
p(�1) + p(�2) � p(�1 + �2)

��1

in order to achieve that. The transformation u ! � will then be bounded on H s spaces
if, for large frequencies �1; �2, one has a bound of the form

(23) jm(�1; �2)j � C min(j�1j; j�2j)N0

for some fixed N0. In that way, if s is large enough relatively to N0, kE(u; u)kH s �

Ckuk2H s , which shows that u ! � is a diffeomorphism from a neighborhood of zero to
its image. For the toy model (16) with p(�) = j�j

1
2 , it is easy to see that an estimate

of the form (23) holds for large frequencies. For small ones, a degeneracy happens, but,
in the case of the water waves system (9), it will be compensated by the fact that in the
nonlinearity, operators whose symbols vanish at � = 0 act on u.

In the case of the water waves system (9), one would like to perform as well a similar
normal formsmethod in order to eliminate quadratic terms. The difficulty is that, (9) being
quasi-linear, (16) is not a convincing model for it, as the nonlinearity there depends only
on u, and not on first order derivatives of u. On the other hand, if one replaces N (u) by
a quadratic term of the form uDxu, and tries to eliminate it looking for a new unknown
� = u+E(u; u), one would have to expressE by (20), but with a symbolm(�1; �2) given
by

m(�1; �2) =
�
p(�1) + p(�2) � p(�1 + �2)

��1
�2
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which loses one derivative, so that k�kH s is only estimated from kukH s+1 . A way to
circumvent that difficulty, that appears already in the work of Ozawa, Tsutaya, and Tsut-
sumi [1997], is to try to combine the normal forms construction with the idea used to get
quasi-linear energy inequalities. In order to explain that, we have to make appeal to a
more accurate model than (16). We have seen in Section 2 that, in order to avoid losses of
derivatives in energy estimates, it is convenient to write the water waves equation in terms
of the unknowns (�; ! =  �TB(�) �). More precisely, if one introducesU =

h
�+T˛�

jDx j
1
2 !

i
,

where ˛ is some explicit function of u = jDxj
1
2 + i�, vanishing at u = 0, one may write

system (9) under the form

(24) @tU +

"
0 �jDxj

1
2

jDxj
1
2 0

#
U +Q(u)U + S(u)U + C (u)U = G

where we used the following notation:
� The right hand side G is a semi-linear cubic term. This means that it will satisfy for

s � � � 1 estimates of the following form:

(25) kGkH s � C (kukC�)kuk
2
C� kU kH s :

Such a term satisfies thus bounds of the form (17) (with theL1 norm replaced by a Hölder
norm). If we write the Sobolev energy inequality associated to (24), and forget the contri-
butions ofQ;S;C , we would thus get

(26) kU (t; �)kH s � kU (t; �)kH s + C

Z t

1

ku(�; �)k2C� kU (�; �)kH s d�:

Combinedwith an a priori bound ku(�; �)kC� = O(�t�
1
2 ), this would give for kU (t; �)kH s

an estimate of the form (19).
� The term C (u)U is a cubic contribution given in terms of a paradifferential operator

of order one C (u): this means that

(27) C (u)v =
1

2�

Z
eix�c(u; x; �)v̂(�) d�

where u ! c(u; x; �) is a quadratic map with values in the set of functions of (x; �)
satisfying bounds of the form

(28) j@
ˇ

�
c(u; x; �)j � C (kukC�)kuk

2
C� h�i1�ˇ

for some fixed � > 0 independent of ˇ, and that moreover the Fourier transform with
respect to x of x ! c(u; x; �), that we denote by ĉ(u; �; �), is supported for j�j � j�j. The
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paraproduct recalled in Section 3 is a special case of the above definition, corresponding
to the case when c(u; x; �) does not depend on �. When one computes the time derivative

(29) @tkU (t; �)k2L2 = 2<h@tU;U i;

the contribution to the right hand side coming from theC (u)U term in (24) may be written
as

(30) h
�
C (u) + C (u)�

�
U;U i:

Because of the explicit form of the operator C (u), one may check that C (u) + C (u)� is
of order zero. (This reflects the fact that the equation (24) one reduced to using the good
unknown is hyperbolic). Taking into account that operators of order zero are bounded on
L2, and that u ! C (u) vanishes at order two at zero, one gets for (30) an upper bound
in kuk2C� kU kL2 . Since the same reasoning may be done replacing in (29) L2 norms
by Sobolev ones, we see that the term C (u)U in (24) would also generate in an energy
inequality a contribution bounded from above by the right hand side of (26).

� The termsQ(u)U and S(u)U are quadratic contributions, withQ(u) a paradifferen-
tial operator of order one, linear in u, and S(u) a smoothing operator. These contributions
have to be eliminated by normal forms. As S(u)U is a semi-linear term, it may be elimi-
nated essentially using a quadratic correction of the form (20), up to some technical issues
that we do not discuss here. On the other hand,Q(u)U is a quasi-linear contribution, and
as we have seen above, a brutal elimination could give rise to an unbounded normal forms
transformation. But again, as in (30), only the operatorQ(u) +Q(u)� plays a role in an
energy inequality, and by the hyperbolic structure of equation (24), such an operator is of
order zero instead of one. Consequently, trying to eliminate only this term from the right
hand side of (24), one may construct, including in this quasi-linear framework, a change
of unknown U ! � = U + E(u)U , where E is bounded on H s , and such that �, and
thus U , will obey an estimate of the form (26). One has thus reduced morally to a cubic
nonlinearity.

We may summarize this in the following statement:

Proposition 3. There is a bounded linear map U ! � = U + E(u)U , going from a
neighborhood of zero in H s to a neighborhood of zero in H s , when u is in a ball of C �
and 1 � � � s, that transforms equation (24) for U into

(31) @t� +

"
0 �jDxj

1
2

jDxj
1
2 0

#
� + L(u)� + C (u)� = Γ;

whereC (u) is as in (24), Γ is a cubic semi-linear term, andL(u) is linear in u and satisfies
<hL(u)�; �iH s = 0.
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The normal forms method outlined above does not eliminate the whole quadratic part
of the nonlinearity, but only those terms in it that give nonzero contributions to the energy.
Because of that, one might think that it should be possible to perform the normal form
procedure on the Sobolev energy itself instead of the equation. Such an approach has
been performed by Hunter, Ifrim, Tataru, and Wong [2015] and used by Hunter, Ifrim,
and Tataru [2016] in order to give another proof of the almost global existence result of
Wu [2009]. They applied next the samemethod, that does not require the paralinearization
of the equation, in their proof of the global existence result Ifrim and Tataru [2016]. Notice
that similar ideas, (combined with an a priori paralinearization) are used in Delort [2009,
2012, 2015] for quasi-linear Klein-Gordon equations on some compact manifolds. Such
an approach is particularly convenient when one studies a Hamiltonian system and wants
to keep track of the Hamiltonian structure all along a normal forms reduction procedure.

On the other hand, the elimination of the contributions of the quadratic part of the non-
linearity to the energy, as a first step towards the proof of a global existence result, is
performed by Ionescu and Pusateri [2015b] using the transformation in Lagrangian coor-
dinates of Wu [2009], Totz and Wu [2012].

5 Global existence: bootstrap procedure

We shall discuss from now on the proof of the global existence result of Theorem 2 on a
model equation. If p(�) is some elliptic Fourier multiplier, consider

(32) (Dt � p(Dx))u = N (u)

with N (u) a cubic nonlinearity of the form

(33) N (u) = ˛3u
3 + ˛1juj

2u+ ˛�1juj
2ū+ ˛�3ū

3;

where ˛j are complex numbers, with ˛1 real. Of course, equation (32) is a simplification
of the real system we are studying, but it is a convincing prototype of the problem after the
normal forms procedure of the preceding section has been performed in order to reduce to
a cubic nonlinearity. The fact that it is semi-linear instead of quasilinear just brings some
inessential technical simplifications at this level. Let us introduce the Klainerman vector
field

(34) Z = tDt + 2xDx

that satisfies when p(�) = j�j
1
2

[Dt � p(Dx); Z] = Dt � p(Dx)
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so that Zu solves

(35) (Dt � p(Dx))(Zu) = N (u) +ZN (u):

The key of global existence (and modified scattering) is the proof of the following boot-
strap assertion:

Proposition 4. There are positive constants A;B;K; s0 and �0 2]0; 1] such that, for any
s � s0, any � 2]0; �0[, any u0 inH s(R) satisfying

ku0kH s + kx@xu0kL2 � �;

for any solution u of (32) with initial u0 that exists over some interval I = [1; T ], and
satisfies for any t in I ,

(A) ku(t; �)kH s + kZu(t; �)kL2 � A�tK�
2

(B) ku(t; �)kL1 �
B�
p
t
;

(36)

then, for t in the same interval I , one has actually

(A0) ku(t; �)kH s + kZu(t; �)kL2 �
A

2
�tK�

2

(B 0) ku(t; �)kL1 �
B�

2
p
t
:

(37)

Remarks: � In the water waves system we are interested in, the quasi-linear nature of
the problem makes that one has to control some derivatives of Zu in L2 and of u in L1,
i.e. one has to replace in (A), (A0), kZu(t; �)kL2 by kZu(t; �)kH� for some � satisfying
1 � � � s, and in (B), (B 0), ku(t; �)kL1 by ku(t; �)kC� for some � with 1 � � � s.
This does not bring any essential new difficulty.

� In the statement of Theorem 2, we were assuming that the initial data admitted the
action of a large number of iterates of (x@x), which would correspond in the model (32)
above to make act a large number of vector fields Z. This was due to the fact that in
Alazard and Delort [2015a] some non optimal choice was made in the proof of L1 esti-
mates. On the other hand, in the work of Ionescu and Pusateri [2015b] and of Ifrim and
Tataru [2016], only one vector field has to be used. Below, inspired by Ifrim and Tataru
[2016, 2015a], we shall adopt an optimal point of view that allows one to use only one
vector field in the analysis of model (32), following the method of Alazard and Delort
[2015a].

Proposition 4 implies immediately the global existence result in Theorem 2 when com-
bined with local existence theory.
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The fact that (A) and (B) imply (A0) is essentially trivial for the model equation (32).
Actually, writing the energy inequality for (32) and (35), one gets

(38) ku(t; �)kH s + kZu(t; �)kL2 � C
h
ku(1; �)kH s + kZu(1; �)kL2

+

Z t

1

�
kN (u(�; �))kH s + kZN (u(�; �))kL2

�
d�
i
:

As N is cubic in (u; ū), the right hand side of (38) is bounded from above by
(39)

C
h
ku(1; �)kH s + kZu(1; �)kL2 +

Z t

1

ku(�; �)k2L1

�
ku(�; �)kH s + kZu(�; �)kL2

�
d�
i
:

Plugging (36) into (39), choosing A large enough and then �0 small enough in function of
A;B , one deduces estimate (A0).

Of course, in the case of system (9) (with d = 1, infinite depth and � = 0), the
proof of the corresponding inequality is much more technical, as one has to cope with
the difficulties explained in Sections 2 and 4 in the case of Sobolev energy inequalities.
Estimates inL2 forZu instead ofu are performed in a similar way, using the new unknown
! and a normal form in order to get rid of the quadratic part of the nonlinearity.

The remaining step, in order to complete the proof of Theorem 2, is to show that (B 0)

holds for solutions of the equation under assumptions (A) and (B).

6 Optimal decay estimates

The key point in order to prove the enhanced decay estimate (B 0) from (A) and (B), both
in the case of the simplified model (32) or for the true water waves equation, is to derive
from the PDE an ODE whose analysis will provide the wanted L1 bounds, as well as the
asymptotics of the solution.

Several approaches have been used by different authors in order to do so. Ionescu and
Pusateri [2015b] work in Fourier space in order to get an ODE for the Fourier transform
of the solution. Ifrim and Tataru [2016] use a wave packets description of the solution,
for which they obtain an ODE, working thus in phase-space variables. The approach in
Alazard and Delort [2015a] relies on the rewriting of the PDE under study in a semi-
classical framework, with a Planck constant h = 1

t
, so that the ODE one looks for is

obtained as the semi-classical limit of the quantum problem provided by the PDE. This is
the method we present below, blending the approach of Alazard and Delort [ibid.] (which
was not optimal regarding to phase-space decomposition) with some of the ideas of Ifrim
and Tataru [2016, 2015a]. Let us introduce:
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Definition 5. Let ı 2 [0; 1
2
], m 2 R. We denote by Sm

ı
(R � R) the space of smooth

functions (h; x; �) ! ah(x; �), defined for h in ]0; 1], (x; �) in R�R, satisfying estimates

(40) j(h@h)

@˛x@

ˇ

�
ah(x; �)j � Ch�ı(˛+ˇ)

h�im:

If a is in Sm
ı
(R � R), we define its Weyl-quantization by the formula

(41) OpWh (a)v =
1

2�h

Z
ei(x�y) �

h a
�x + y

2
; �
�
v(y) dyd�

for v in S(R). We denote by H s
sc(R) the space of families of functions v = (vh)h2]0;1]

such that, if we define

(42) kvhkH s
h
= kOpWh (h�i

s)vhkL2 = khhDxi
svhkL2 ;

one has
kvkH s

sc
def
= sup
h2]0;1]

kvhkH s
h
< +1:

Then OpWh (a) acts from H s
sc to H s�m

sc . Consider now a solution u to equation (32) and
define a new function v(t; x), related to u through

(43) u(t; x) =
1

p
t
v
�
t;
x

t

�
:

Set h = 1
t
. Then v solves the equation

(44)
�
Dt � OpWh (x� + p(�))

�
v = h[˛3v

3 + ˛1jvj
2v + ˛�1jvj

2v̄ + ˛�3v̄
3
�
:

Let us introduce the set

(45) Λ = f(x; �) 2 R2; x + p0(�) = 0g:

The basic idea is that this set carries the most important part of the solution, so that one
may deduce an ODE from (44) restricting the symbol x� + p(�) to Λ, and showing that
the error one generates in that way decays like an integrable power of t when t goes to
infinity.

A key point is that, in the case p(�) = j�j
1
2 corresponding to the linearized water

waves in our model (32), Λ is a graph: there is a smooth function ' : R� ! R, given by
'(x) = �

1
4jxj

such that

(46) Λ = f(x; �) 2 R2; � = d'(x)g:
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We shall ignore in the rest of this discussion the technicalities related to the behaviour
of ' at zero or infinity and shall do like if v where spectrally supported on a compact
subset of R � f0g, i.e. we shall assume (abusively) that v = OpWh (�(�))v for some � in
C1
0 (R � f0g). We take next 
 in C1

0 (R), equal to one close to zero, and define, inspired
by Ifrim and Tataru [2015a],

(47) vΛ = OpWh
�


�x + p0(�)

p
h

��
v; vΛc = v � vΛ

where the choice of the width
p
h in the cut-off function is the optimal one. Then our aim

is to get for vΛ an ordinary differential equation.

Proposition 6. Let v be a solution of (44). Assume that for t in some interval [1; T ] the
a priori estimates (36) hold true. Then, if we define !(x) = xd'(x) + p(d'(x)), vΛ
solves

(48) (Dt � !(x))vΛ = h
�
˛3vΛ

3 + ˛1jvΛj
2vΛ + ˛�1jvΛj

2v̄Λ + ˛�3v̄
3
Λ

�
+OL1(�h1+ı);

where ı is a small positive number.

Idea of proof: The proof of the proposition relies on the following facts. First, the con-
tribution vΛc defined in (47) will have better estimates than v: this follows from the fact
that by definition

(49) vΛc = OpWh

�

1

�x + p0(�)
p
h

�x + p0(�)
p
h

�
v ' OpWh

�

1

�x + p0(�)
p
h

��
(
p
hLv)

where 
1(z) = (1�
(z))
z

and L = 1
h
OpWh (x+p

0(�)). It turns out that L may be expressed
from the Klainerman vector fieldZ and the equation, so that an a priori bound of the form
(A) in (36) implies that

(50) kLvkL2 = O(h�K�2)

and thus kvΛc kL2 = O(h
1
2 �K�2). As the cut-off 
1 in (49) localizes essentially in a strip

of frequencies of size h 1
2 , a semiclassical Sobolev inequality provides estimates of the

form kvΛc kL1 = O(�h
1
4 �K�2). This allows to replace in the right hand side of (44) v

by vΛ, up to contributions to the remainder. One may also perform such a replacement in
the left hand side using some commutation arguments, ending up with an equation of the
form

(51)
�
Dt � OpWh (x� + p(�)

�
vΛ

= h
�
˛3vΛ

3 + ˛1jvΛj
2vΛ + ˛�1jvΛj

2v̄Λ + ˛�3v̄
3
Λ

�
+O(�h

5
4 �ı):
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Finally, as d
d�

(x� +p(�)) = x+p0(�) vanishes on Λ, and as this set may be represented
using (46), one may write through a Taylor expansion at � = d'(x),

(52) x� + p(�) = xd'(x) + p(d'(x)) +O((� � d'(x))2):

Since we have restricted our considerations to the case of � staying in a compact subset
of R� (which is equivalent to x staying in a compact subset of R� when (x; �) is close to
Λ), one may rewrite this as

x� + p(�) = !(x) +O((x + p0(�))2):

Recalling the definition (47) of vΛ, we deduce from that

(53) OpWh (x� + p(�))vΛ = !(x)vΛ

+ term in OpWh
�
(x + p0(�))2

�
OpWh

�


�x + p0(�)

p
h

��
v:

The last term above may be written, up to remainders, as

(54)
p
hOpWh

�
x + p0(�)

p
h



�x + p0(�)

p
h

��
OpWh (x + p0(�))v„ ƒ‚ …

=hLv

:

Combining with (50), and the fact that the localization of vΛ allows one to estimate L1

norms from h� 1
4 times Sobolev ones, we obtain that the L1 norm of (54) is O(�h

5
4 �ı)

for some small ı > 0, so that the last term in (53) may be incorporated in the remainder
(48). Plugging (53) in (51), one gets (48). 2

End of proof of Theorem 2: As explained at the end of Section 5, to conclude the proof of
the theorem, one has to show that, for a solution u of (33), the a priori bounds (36) imply
(37). We have already seen that that (A0) holds and we are left with showing the L1

estimate (B 0). As we have seen that vΛc enjoys good a priori bounds, one has to obtain a
uniform bound for the solution vΛ of the ODE (48). Performing a normal form, one may
reduce (48) to an equation

(55) (Dt � !(x))f = h˛1jf j
2f +OL1(�h1+ı); h =

1

t
;

where f is a new unknown related to vΛ in such a way that a uniform control of f is
equivalent to a uniform control of vΛ. As we assumed that ˛1 in (33) is real, if there were
no remainder in �t�1�ı in (55), one would get immediately that @t jf j

2 = 0, whence the
uniform control of f . Since theO(�t�1�ı) remainder in (55) is integrable, one may show
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that such a uniform control still holds for the solution of (55). If one makes this reasoning
keeping track of the dependence of the constants onA;B , one may prove that (B 0) follows
from (A); (B). Moreover, the analysis of the ODE provides as well the asymptotics of the
solution when t goes to +1.

This outline of proof concerns the simplified model (32). In the case of the water
waves system, the general strategy of the last part of the proof is similar. The fact that the
coefficient ˛1 in (33) is real (that plays a crucial role above) is a “null condition” in the
sense of Christodoulou-Klainerman, that holds true because of the structure of the water
waves system. 2

7 Further results

Our goal in this section is to discuss further results of long time existence, concerning
equation (9) under different assumptions.

We consider first the case of initial data that decay in space. We have discussed up to
now, for such data, equation (9) when g > 0; � = 0 and the depth of the fluid is infinite.
We give here references to other global existence results, under other assumptions.

Water waves in infinite depth. We consider gravity waves (g > 0; � = 0) in infinte
depth, as in Theorem 2. In that statement, and in the results of Ionescu and Pusateri [2015b]
and Ifrim and Tataru [2016], the assumptions of smallness of the initial data involve norms
that control the energy. It turns out that one may weaken these conditions: Wang [2015a]
proved a global existence result for the gravity water waves equation in one space dimen-
sion, for infinite depth fluids, when the initial data (�; jDxj

1
2 ) belongs to some homoge-

neous Sobolev space that contains functions with infinite energy.

Capillary and capillary-gravity waves in infinite depth. Consider first equation (9) with
g = 0 and � > 0, still for a two dimensional fluid of infinite depth, (i.e. x in (9) varies
in R). For small, smooth and decaying initial data, global existence has been proved
independently by Ifrim and Tataru [2017] and by Ionescu and Pusateri [2015a]. As far as
we know, no (almost) global existence result is known for solutions of the full capillary-
gravity problem ((9) with g > 0; � > 0) in infinite depth, when the space dimension is
equal to one. On the other hand, the similar problem in two space dimensions (i.e. for
three dimensional fluids) has been solved by Deng, Ionescu, Pausader and Pusateri. They
proved global existence for small smooth decaying data in Deng, Ionescu, Pausader, and
Pusateri [2015].

Water waves in finite depth. Much less results are known concerning global existence
of solutions when one works with a fluid of finite depth. The only results we are aware of
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concern the case of two space dimensions (three dimensional fluids) with g > 0; � = 0 or
g = 0; � > 0 in (9). Wang studied Wang [2017b, 2015b, 2017a] the existence of global
solutions for small, smooth, decaying initial data.

To finish this section, let us also discuss related results of long time existence, when one
considers small but not necessarily decaying initial data. In this case, one cannot expect
to use dispersion in order to get a longer existence time than the one that holds in general
for a quadratic non linear hyperbolic equation with small data of size �, namely T� ∼ ��1.
Nevertheless, we have seen in Section 4 that a normal forms procedure may allow one to
reduce essentially the equation to a cubic one, and so allows to expect an existence time
T� bounded from below by c��2.

For fluids of infinite depth, such a property has been proved in the case of gravity waves
(g > 0; � = 0) by Totz and Wu [2012] in one space dimension and by Totz [2015] in two
space dimensions. In the case of capillary waves (g = 0; � > 0) in one space dimension,
a similar result has been obtained by Ifrim and Tataru [2017] and by Ionescu and Pusateri
[2015a]. When one considers a constant non zero vorticity, a lower bound in c��2 for the
time of existence of solutions has been shown by Ifrim and Tataru [2015b], still in one
space dimension.

Regarding finite depth fluids, Harrop-Griffiths, Ifrim, and Tataru [2017] have proved a
c��2 lower bound for the existence time, in the gravity waves case (g > 0; � = 0) in one
space dimension.

The above results apply in particular when one considers initial data that are periodic
in space, i.e. defined on the circle. In such a case, better results may be obtained under
stronger assumptions. First, it is possible to construct special classes of global solutions.
Actually, Plotnikov and Toland [2001] (resp. Iooss, Plotnikov, and Toland [2005]) con-
structed, for the gravity waves system in finite (resp. infinite) depth, standing waves so-
lutions. For the full gravity-capilarity system in infinite depth, Alazard and Baldi [2015]
did the same. Later, Berti and Montalto [2017] built up time quasi-periodic solutions of
system (9) in infinite depth, and more recently Baldi, Berti, Haus, and Montalto [2017]
treated the same problem in finite depth.

The preceding results do not concern the Cauchy problem, as one constructs special
solutions. But combining some of the ideas of Alazard and Baldi [2015] and normal forms
methods, Berti and Delort [2017] proved that system (9), with even periodic initial data
of size �, has solutions defined up to time cN ��N for any N , when the parameters (g; �)
avoid an exceptional subset of zero measure.
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Abstract

The issue of symmetry and symmetry breaking is fundamental in all areas of sci-
ence. Symmetry is often assimilated to order and beauty while symmetry breaking is
the source of many interesting phenomena such as phase transitions, instabilities, seg-
regation, self-organization, etc. In this contribution we review a series of sharp results
of symmetry of nonnegative solutions of nonlinear elliptic differential equation asso-
ciated with minimization problems on Euclidean spaces or manifolds. Nonnegative
solutions of those equations are unique, a property that can also be interpreted as a
rigidity result. The method relies on linear and nonlinear flows which reveal deep and
robust properties of a large class of variational problems. Local results on linear insta-
bility leading to symmetry breaking and the bifurcation of non-symmetric branches of
solutions are reinterpreted in a larger, global, variational picture in which our flows
characterize directions of descent.

1 Introduction

Symmetries are fundamental properties of the laws of Physics. They impose constraints
on modeling phenomena and, at a more basic level, they serve as criteria of classification.
Inspired by his work in crystallography, Pierre Curie made an early attempt (in 1894) to
investigate the consequences of symmetries. Since then, symmetry has been an important
preoccupation for many scientists.

More intriguing than symmetry is the phenomenon of symmetry breaking, which asserts
that the state of a system may have less symmetries than the underlying physical laws.

Partially supported by the projects Kibord and EFI (J.D.) of the French National Research Agency (ANR),
and by the NSF grant DMS-1301555 (M.L.).
MSC2010: primary 35J20; secondary 49K30, 53C21.
Keywords: Symmetry, symmetry breaking, interpolation inequalities, Caffarelli–Kohn–Nirenberg
inequalities, optimal constants, rigidity results, fast diffusion equation, carré du champ, bifurcation,
instability.

2279

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v3-p


2280 JEAN DOLBEAULT, MARIA J. ESTEBAN AND MICHAEL LOSS

Among various considerations on the causes of the symmetries and what these symmetries
mean in physics, P. Curie wrote in Curie [1894] that

C’est la dissymétrie qui crée le phénomène.

In mathematical terms, “dissymétrie” shifts the attention to solutions which may have
less symmetries than the problem they solve. Symmetry breaking, especially spontaneous
symmetry breaking, has been an incredibly fruitful concept over the last century. It ap-
pears in mechanics (buckling instabilities), in particle physics, in the description of phase
transitions or complex dynamics, etc. One of the basic mechanisms is the bifurcation phe-
nomenon in nonlinear systems, which has to do with the stability analysis of symmetric
states.

Symmetry has attracted the attention ofmathematicians for diverse reasonswhich range
from assertions like “symmetry is beautiful” to practical motivations: symmetry simplifies
the search of solutions and makes their computation more tractable from a numerical point
of view by reducing the number of degrees of freedom.

Entropy methods have a long history in various fields of Science and in particular of
Mathematics. The notion of entropy that we shall consider here is inspired by results in the
theory of nonlinear PDEs and especially nonlinear diffusion equations. It borrows tools
from Kinetic Theory and from Information Theory. Other major sources of inspiration are
the carré du champ method used in the study of Semi-groups and Markov processes as
well as the rigidity (uniqueness) techniques in the Theory of Nonlinear Elliptic Equations.
In addition to the application to symmetry issues, one of our contributions was to rephrase
these two approaches in a common framework of parabolic equations and to emphasize
the role of the nonlinear diffusions in the search for optimal ranges and optimal constants
in related interpolation inequalities.

It is definitely out of reach to give even a partial account of all mathematical issues of
symmetry and symmetry breaking in this paper, so we shall focus on PDEs with two main
examples: the first one is the equation

� div
�
jxj

�ˇ
rw

�
= jxj

�

�
w2p�1

� wp
�

in Rd
n f0g ;

which has an interesting feature: there is a competition between nonlinearities and weights.
The solutions can be interpreted as critical points of an energy functional. Without weights,
solutions are radially symmetric (up to translations). With weights and in some regime of
the parameters ˇ, 
 and p, non-radial solutions are energetically more favorable. Since
we are interested in energy minimizers, as a particular sub-problem, understanding who
wins in the competition is a central question.
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Alternatively, we shall consider the equation

�∆' + Λ' = 'p�1 on M ;

where M is a sphere, a compact manifold or a cylinder. In that case, the geometric proper-
ties of the manifold replace the weight and compete with the scale induced by the param-
eter Λ. If there is enough space, in a precise sense that can be measured, then solutions
with less symmetry may have a lower energy.

These two equations, although very simple because the nonlinearities (and also the
weights in the case of the first equation) obey power laws, are not purely academic. For
one, the solutions (and the associated functional inequalities) are of direct interest for in-
stance in some models of fluid mechanics. More important is the fact that power laws
appear in many problems when scalings or blow-up methods are used to extract an asymp-
totic behavior. Hence, we expect that our model equations lie at the core of many nonlinear
or weighted problems. Finally, models involving power laws have the advantage that they
can be treated by using nonlinear flows and entropy methods. Indeed we are able to give
sharp results of rigidity for the equation, and symmetry results for the optimal functions
associated with related interpolation inequalities.

Because of the confluence of various branches of analysis such as non-linear diffusion
and the calculus of variations, and the fundamental nature of the above equations, we
believe that it is worth studying them in great detail, with sharp stability results and sharp
constants in the functional inequalities. Note that this amounts to establishing the exact
range of the parameters for which extremal functions are symmetric. Variational issues of
the symmetry and symmetry breaking will be detailed below.

Let us fix some notations and conventions. Throughout this paper, we shall use the
notation 2� := 2d

d�2
if d � 3, and 2� := 1 if d = 1 or 2. We shall say that a function is

an extremal function for an optimal functional inequality if equality holds in the inequality.
To simplify notations, parameters will be omitted whenever they are not essential for the
understanding of the strategy of proof. This paper is a review of various results which were
published in several papers (references will appear in the text) and are collected together
for the first time. The reader is invited to pay attention that some notations have been
redefined compared to the original papers.

2 Interpolation inequalities and flows on compact manifolds

2.1 Interpolation inequalities on Sd . Let us consider the inequality

(1) kruk
2
L2(Sd )

+
d

p � 2
kuk

2
L2(Sd )

�
d

p � 2
kuk

2
Lp(Sd )

8 u 2 H1(Sd ; d�)



2282 JEAN DOLBEAULT, MARIA J. ESTEBAN AND MICHAEL LOSS

where d� is the uniform probability measure induced by the Lebesgue measure on Sd �

Rd+1. Here the exponent p is such that 1 � p < 2 or 2 < p < 2�, or p = 2� if
d � 3. The case p = 2� corresponds to the usual Sobolev inequality on Sd or, using the
stereographic projection, to the Sobolev inequality in Rd . In the limit case as p ! 2, we
recover the logarithmic Sobolev inequality

(2) kruk
2
L2(Sd )

�
d

2

ˆ
Sd

juj
2 log

 
juj2

kuk2L2(Sd )

!
d� 8 u 2 H1(Sd ; d�) n f0g :

In (1) and (2), equality is achieved by any constant non-zero function. The value of the
optimal constants, d/(p�2) and d/2 is obtained by linearization: if ' is an eigenfunction
associated with the first positive eigenvalue of the Laplace-Beltrami operator on Sd , the
infimum of

(p � 2) kruk2L2(Sd )

kuk2Lp(Sd )
� kuk2L2(Sd )

and
2 kruk2L2(Sd )´

Sd juj2 log
�

juj2

kuk2

L2(Sd )

�
d�

;

respectively for p ¤ 2 and for p = 2, is achieved by u = 1 + " ' in the limit as " ! 0.
Inequality (1) has been established in Bidaut-Véron and Véron [1991] by rigidity meth-

ods, in Beckner [1993] by techniques of harmonic analysis, and using the carré du champ
method in Bentaleb [1993], Bakry and Ledoux [1996], and Demange [2008], for any
p > 2. The case p = 2 was studied in Mueller and Weissler [1982]. In Bakry and Émery
[1984, 1985a,b], D. Bakry and M. Emery proved the inequalities under the restriction

2 < p � 2# :=
2 d 2 + 1

(d � 1)2
:

Their method relies on a linear heat flow method which is presented below, as well as a
nonlinear flow which allow us to get rid of this restriction.

2.2 Flows and carré du champmethods onSd . We start by the linear heat flowmethod
of Bakry and Émery [1985b]. For any function � > 0 we define a generalized entropy
functional Ep and a generalized Fisher information functional Ip by

Ep[�] :=
1

p � 2

"�ˆ
Sd

� d�

� 2
p

�

ˆ
Sd

�
2
p d�

#
;
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E2[�] :=
1

2

ˆ
Sd

� log

 
�

k�kL1(Sd )

!
d�

if p ¤ 2 or p = 2, respectively, and

Ip[�] :=

ˆ
Sd

jr�
1
p j

2 d� :

With this notation, (1) and (2) amount to Ip[�] � d Ep[�] as can be checked using � =

jujp . Let us consider the heat flow

(3)
@�

@t
= ∆�

where∆ denotes the Laplace-Beltrami operator on Sd , and compute

d

dt
Ep[�] = � 2 Ip[�] and

d

dt
Ip[�] � � 2 d Ip[�]

where the differential inequality holds if p � 2#. Under this condition, we obtain that

d

dt

�
Ip[�] � d Ep[�]

�
� 0 :

On the other hand, �(t; �) converges as t ! 1 to a constant, namely
´

Sd � d� since d� is a
probabilitymeasure and

´
Sd � d� is conserved by (3). As a consequence, limt!1 (Ip[�] � d Ep[�]) =

0, which proves that Ip[�(t; �)] � d Ep[�(t; �)] is nonnegative for any t � 0 and completes
the proof. See Bakry and Émery [ibid.] for details. One may wonder whether the mono-
tonicity property is also true for some p > 2#. The following result contains a negative
answer to this question.

Proposition 1. Dolbeault, Esteban, and Loss [2017] For any p 2 (2#; 2�) or p = 2� if
d � 3, there exists a function �0 such that, if � is a solution of (3) with initial datum �0,
then

d

dt

�
Ip[�] � d Ep[�]

�
jt=0

> 0 :

The function �0 is explicitly constructed in Dolbeault, Esteban, and Loss [ibid.].
To overcome the limitation p � 2#, one can consider a nonlinear diffusion of fast

diffusion or porous medium type

(4)
@�

@t
= ∆�m :
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With this flow, we no longer have d
dt

Ep[�] = � Ip[�] but we can still prove that

d

dt

�
Ip[�] � d Ep[�]

�
� 0 ;

for any p 2 [1; 2�]. Proofs of the latter have been given in Demange [2008] and Dolbeault,
Esteban, and Loss [2014]. We also refer to Dolbeault, Esteban, Kowalczyk, and Loss
[2013] and Dolbeault, Esteban, and Kowalczyk [2014] for results which are more specific
to the case of the sphere, and further references therein. Except for p = 1 and p = 2�

with d � 3, there is some flexibility in the choice of m, which can be used to build deficit
functionals and improved inequalities: see Demange [2008] and Dolbeault, Esteban, and
Kowalczyk [2014]. Notice that �0 in Proposition 1 is a function related with the nonlinear
diffusion equation (4).

The case of Sd highlights the limitations of linear flows and shows the flexibility and
strength of nonlinear flows. At least for p < 2�, the optimal constant in (1) and (2) is
established by proving that the minimum of Ip[�]� d Ep[�] is 0. Earlier results in Bidaut-
Véron and Véron [1991], Bakry and Ledoux [1996], and Beckner [1993] can be reinter-
preted as a purely elliptic method, which goes as follows. A positive minimizer actually
exists by standard compactness arguments and any solution � satisfies an Euler-Lagrange
equation. By testing the equation with ∆�m, we observe that the solution is a constant
and, as a consequence, that � � 1 because of the normalization. We will rely on a similar
observation in the next two sections and refer to this method as the elliptic method.

Themethod applies not only tominimizers, but also to any positive solution of the Euler-
Lagrange equations. What we prove is a uniqueness result. Since constant functions are
solutions, this proves that there are no non-constant solutions. This is why it is called a
rigidity result.

Compared to Bidaut-Véron and Véron [1991], Bakry and Ledoux [1996], and Beckner
[1993], our approach provides a unified framework for p > 2 and p < 2 (which is not
covered in the above mentioned results). However, the main advantage of the method is
that it explains why a local result (the best constant is given by the linearization around
the constant functions) is actually global: Ip[�]� d Ep[�] is strictly monotone decreasing
under the action of the flow, unless the solution has reached the unique, trivial stationary
state.

2.3 Inequalities on compact manifolds. The nonlinear diffusion flow method applies
not only to spheres, but also to general compact manifolds. Without entering in the details,
let us state a result of Dolbeault, Esteban, and Loss [2014]. Earlier important references
are: Gidas and Spruck [1981], Bidaut-Véron and Véron [1991], Licois and Véron [1998],
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and Demange [2008], among many other contributions which are listed in Dolbeault, Es-
teban, and Loss [2014].

Let us assume that (M; g) is a smooth compact connected Riemannian manifold of
dimension d � 1, without boundary. We denote by dvg the volume element, by ∆ the
Laplace-Beltrami operator on M, by Ric the Ricci tensor and assume for simplicity that
volg(M) = 1. Let �1 be the lowest positive eigenvalue of �∆ and

�? := inf
u2H2 (M)

ˆ
M

h
(1 � �) (∆u)2 + � d

d�1
Ric(ru; ru)

i
dvg´

M jruj2 dvg

;

� =
(d � 1)2 (p � 1)

d (d + 2) + p � 1
:

Theorem 2. With the above notations, if 0 < � < �?, then for any p 2 (1; 2) [ (2; 2�),
the equation

�∆v +
�

p � 2

�
v � vp�1

�
= 0

has a unique positive solution in C 2(M), which is constant and equal to 1.

It has been shown in Dolbeault, Esteban, and Loss [ibid.] that nonlinear diffusion flows
provide a unified framework for elliptic rigidity and carré du champ methods. The com-
putations heavily rely on the Bochner-Lichnerowicz-Weitzenböck formula

1
2
∆(jrf j

2) = kHessf k
2 + r � (∆f ) � rf + Ric(rf; rf ) :

More general results can be established using the so-called CD(�; N ) condition (see
Bakry, Gentil, and Ledoux [2014] and references therein), but they are formal in most
of the cases covered only by nonlinear flows. In dimension d = 2, the Moser-Trudinger-
Onofri inequality replaces in a certain sense Sobolev’s inequality, and it is possible to ex-
tend themethod described above to cover this case: seeDolbeault, Esteban, and Jankowiak
[2017]. Bounded convex domains in Rd have also been considered in Dolbeault and
Kowalczyk [2017] in relation with the Lin-Ni conjecture (homogeneous Neumann bound-
ary conditions). Concerning unbounded domains, subcritical Gagliardo-Nirenberg have
been established in the case of the line in Dolbeault, Esteban, Laptev, and Loss [2014]
while Rényi entropy powers, which will be essential in Section 4, can be used in Rd to
get sharp interpolation inequalities: see Savaré and Toscani [2014], Toscani [2014], and
Dolbeault and Toscani [2016].
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3 Rigidity on cylinders and sharp symmetry results in critical
Caffarelli-Kohn-Nirenberg inequalities

In this section we use a nonlinear flow to prove rigidity results for nonlinear elliptic prob-
lems on non-compact manifolds: cylinders and weigthed Euclidean spaces. All results of
this section, and their proofs, can be found in Dolbeault, Esteban, and Loss [2016b].

3.1 Three equivalent rigidity results. Let us consider the spherical cylinder C :=

R � Sd�1 and denote by s 2 R and ! 2 Sd�1 the coordinates. Let ∆! denote the
Laplace-Beltrami operator on Sd�1.

Theorem 3. Let d � 2. For all p 2 (2; 2�) and 0 < Λ � ΛFS := 4 d�1
p2�4

, any positive
solution ' 2 H1(C) of

(5) � @2s ' � ∆! ' + Λ' = 'p�1 in C

is, up to a translation in the s-direction, equal to

'Λ(s) :=
�

p
2
Λ
� 1

p�2

�
cosh

�
p�2
2

p
Λ s
��� 2

p�2

8 s 2 R :

For any Λ > ΛFS, there are also positive solutions which do not depend only on s.

A similar rigidity result holds for non-spherical cylindersR�MwhereM is a compact
manifold, but in this case we cannot characterize the optimal set of parameters Λ with our
method: see Dolbeault, Esteban, and Loss [ibid.].

Let

ac :=
d � 2

2
and bFS(a) :=

d (ac � a)

2
p
(ac � a)2 + d � 1

+ a � ac :

By using the Emden-Fowler transformation

(6) v(r; !) = ra�ac '(s; !) with r = jxj ; s = � log r and ! =
x

r
;

Theorem 3 is equivalent to the following result.

Theorem 4. Assume that d � 2, a < ac and minfa; bFS(a)g < b � a + 1. Then any
nonnegative solution v of

(7) � r �
�
jxj

�2a
rv
�
= jxj

�b p
jvj

p�2 v in Rd
n f0g
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which satisfies
´

Rd
jvjp

jxjb p ; dx < 1, is, up to a scaling, equal to

v?(x) =
�
1 + jxj

(p�2) (ac�a)
�� 2

p�2

8 x 2 Rd :

If a < 0 and a < b < bFS(a), there are also positive solutions which do not depend only
on jxj.

Let us define ˛FS :=
q

d�1
n�1

and pick n and ˛ such that

n =
d � b p

˛
=

d � 2 a � 2

˛
+ 2 =

2p

p � 2
;

so that we also have p = 2n/(n � 2). Next we consider the diffusion operator

L w := ˛2

�
w00 +

n � 1

r
w0

�
�

1

r2
∆! w :

Then, with the change of variables

v(r; !) = w(r˛; !) 8 (r; !) 2 R+
� Sd�1 ;

Theorem 4 is equivalent to

Theorem 5. Assume that n > d � 2 and p = 2n/(n � 2). If 0 < ˛ � ˛FS, then any
nonnegative solution w(x) = w(r; !) with r 2 R+ and ! 2 Sd�1 of

(8) � L w = wp�1 in Rd
n f0g

which satisfies
´

Rd jxjn�d jwjp dx < 1, is equal, up to a scaling, to

w?(x) =
�
1 + jxj

2
�� n�2

2 8 x 2 Rd :

If ˛ > ˛FS, there are also solutions which do not depend only on jxj.

Let us complement these results with some remarks:
(i) If n is an integer, then (8) is the Euler-Lagrange equation associated with the standard
Sobolev inequality

� ˛2 ∆w = w
n+2
n�2 in Rn ;

where∆ denotes the Laplacian operator in Rn, but in the class of functions which depend
only on the first d � 1 angular variables.
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(ii) The conditions on the parameters in Theorems 3, 4 and 5 are equivalent:

0 < Λ � ΛFS () b�1
FS (b) � a < ac () 0 < ˛ � ˛FS :

(iii) Solutions of (3), (7) and (8) are stable (in a sense defined below) among non-symmetric
solutions, i.e., solutions which explicitly depend on !, if and only if the above condition
on the parameters is satisfied. Such a condition has been introduced in Catrina and Wang
[2001], but the sharp condition was established by V. Felli and M. Schneider in Felli and
Schneider [2003], and this is why we use the notation ΛFS, bFS and ˛FS (see Section 5.1).
Notice that stability is a local property while our uniqueness (rigidity) results are global.

3.2 Optimal symmetry range in critical Caffarelli-Kohn-Nirenberg inequalities. The
Caffarelli-Kohn-Nirenberg inequalities

(9)
�ˆ

Rd

jvjp

jxjb p
dx

�2/p

� Ca;b

ˆ
Rd

jrvj2

jxj2a
dx 8 v 2 Da;b

appear in Caffarelli, Kohn, and Nirenberg [1984], under the conditions that a � b � a+1

if d � 3, a < b � a + 1 if d = 2, a + 1/2 < b � a + 1 if d = 1, and a < ac where the
exponent

p =
2 d

d � 2 + 2 (b � a)

is determined by the invariance of the inequality under scalings. Here Ca;b denotes the
optimal constant in (9) and the space Da;b is defined by

Da;b :=
n

v 2 Lp
�
Rd ; jxj

�b dx
�
: jxj

�a
jrvj 2 L2

�
Rd ; dx

�o
:

These inequalities were apparently introduced first by V.P. Il’in in Ilin [1961] but are
more known asCaffarelli-Kohn-Nirenberg inequalities, according to Caffarelli, Kohn, and
Nirenberg [1984]. Up to a scaling and a multiplication by a constant, any extremal func-
tion for the above inequality is a nonnegative solution of (7). It is therefore natural to ask
whether v? realizes the equality case in (9). Let

C?
a;b :=

�´
Rd

jv?jp

jxjb p dx
�2/p

´
Rd

jrv?j2

jxj2a dx
= p

2
jSd�1

j
1� 2

p (a � ac)
1+ 2

p

 
2

p
� Γ

�
p

p�2

�
(p � 2) Γ

�
3p�2
2 (p�2)

�!p�2
p

:

It was proved in Felli and Schneider [2003] that whenever a < 0 and b < bFS(a), the
solutions of (7) are not radially symmetric: this is a symmetry breaking result, based on
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the linear instability of F [v] := C?
a;b

´
Rd

jrvj2

jxj2a dx �
� ´

Rd
jvjp

jxjb p dx
�2/p at v = v?. The

main symmetry result of Dolbeault, Esteban, and Loss [2016b] is

Corollary 6. Assume that d � 2, a < ac , and bFS(a) � b � a + 1 if a < 0. Then
Ca;b = C?

a;b
and equality in (9) is achieved by a function v 2 Da;b if and only if, up to a

scaling and a multiplication by a constant, v = v?.

In other words, whenever F [v] is linearly stable at v = v?, then v? is a global extremal
function for (9).

3.3 Sketch of the proof of Theorem 5. The case d = 2 requires some specific esti-
mates so we shall assume that d � 3 for simplicity. Let

(10) u
1
2 � 1

n = w () u = wp with p =
2n

n � 2
:

Up to a multiplicative constant, the right hand side in (9) is transformed into a general-
ized Fisher information functional

(11) I [u] :=

ˆ
Rd

u jDpj
2 d� where p =

m

1 � m
um�1 :

Here d� = jxjn�d dx, p is the pressure function, D p :=
�
˛ @p

@r
; 1

r
r!p

�
, and p0 = @p

@r

and r!p respectively denote the radial and the angular derivatives of p. The left hand
side in (9) is now proportional to a mass integral,

´
Rd u d�. In this section we consider

the critical case and make the choice m = 1 � 1/n.
After these preliminaries, let us introduce the fast diffusion flow

(12)
@u

@t
= Lum ; m = 1 �

1

n
;

where the operator L, which has been considered in Theorem 5, is such that Lw :=

� D� D w. The flow associated with (12) preserves the mass. At formal level, the key
idea is to prove that I [u(t; �)] is decreasing w.r.t. t if u solves (12), and that the limit is
I [wp

? ]. A long computation indeed shows that, if u is a smooth solution of (12) with the
appropriate behavior as x ! 0 and as jxj ! +1, then

d

dt
I [u(t; �)] � � 2

ˆ
Rd

K[p(t; �)]u(t; �)m d�
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where, with r = jxj, we have

(13) K[p] = ˛4

�
1 �

1

n

��
p00

�
p0

r
�

∆! p
˛2 (n � 1) r2

�2
+ 2˛2 1

r2

ˇ̌̌̌
r!p0

�
r!p

r

ˇ̌̌̌2
+ (n � 2)

�
˛2
FS � ˛2

� jr!pj2

r4
+ �? (n � d )

jr!pj4

r4

for some positive constant �?. Hence, if ˛ � ˛FS, then I [u(t; �)] is nonincreasing along the
flow of (12). However, regularity and decay estimates needed to justify such computations
are not known yet and this parabolic approach is therefore formal. As in Section 2.2, we
can instead rely on an elliptic method, which can be justified as follows.

If u0 is a nonnegative critical point of I under mass constraint, then

0 = I 0[u0] � Lum
0 =

dI [u(t; �)]

dt jt=0
� � 2

ˆ
Rd

K[p0]u1�n
0 d�

if u solves (12) with initial datum u0. Here I 0[u0] denotes the differential of I at u0.
With p0 = p(0; �), this proves that r!p0 = 0: p0 is radially symmetric. By solving
p00
0 � p0

0/r = 0, we obtain that p0(x) = a + b jxj2 for some constants a, b 2 R+. The
conclusion easily follows.

Proposition 7. Let w be a nonnegative solution of (8) and p = (n � 1)w� 2
n�2 . Under

the assumptions of Theorem 5, if ˛ � ˛FS, then K[p] = 0.

In practice, we prove that any solution of (5) on C has good decay properties as s !

˙1, by delicate elliptic estimates, which rely on the fact thatp = 2n/(n�2) < 2 d/(d �

2) is a subcritical exponent on the d -dimensional manifold C. This is enough to justify
all integrations by parts and prove as a consequence that a nonnegative solution of (8)
satisfies K[p] = 0: the conclusion follows as above. Notice that this amounts to test (8)
by Lw2 (n�1)/(n�2).

4 Rigidity and sharp symmetry results in subcritical
Caffarelli-Kohn-Nirenberg inequalities

In this section we consider a class of subcritical Caffarelli-Khon-Nirenberg inequalities
and extend the results obtained for the critical case. Most results of this section have been
published in Dolbeault, Esteban, Loss, and Muratori [2017], a joint paper of the authors
with M. Muratori.
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4.1 Subcritical Caffarelli-Kohn-Nirenberg inequalities. With the notation

kwkLq;
 (Rd ) :=

�ˆ
Rd

jwj
q

jxj
�
 dx

�1/q

; kwkLq(Rd ) := kwkLq;0(Rd ) ;

we define Lq;
 (Rd ) as the space fw 2 L1
loc(R

d n f0g) : kwkLq;
 (Rd ) < 1g. We shall
work in the space Hp

ˇ;

(Rd ) of functions w 2 Lp+1;
 (Rd ) such that rw 2 L2;ˇ (Rd ),

which can also be defined as the completion of D(Rd n f0g) with respect to the norm

kwk
2 := (p? � p) kwk

2
Lp+1;
 (Rd )

+ krwk
2
L2;ˇ(Rd )

:

Let us consider the family of subcritical Caffarelli-Kohn-Nirenberg interpolation inequal-
ities that can be found in Caffarelli, Kohn, and Nirenberg [1984] and which is given by

(14) kwkL2p;
 (Rd ) � Cˇ;
;p krwk
#
L2;ˇ(Rd )

kwk
1�#
Lp+1;
 (Rd )

8 w 2 Hp

ˇ;

(Rd ) :

Here the parameters ˇ, 
 and p are subject to the restrictions

(15) d � 2 ; 
 � 2 < ˇ <
d � 2

d

 ; 
 2 (�1; d ) ; p 2 (1; p?]

with

p? :=
d � 


d � ˇ � 2
and # =

(d � 
) (p � 1)

p
�
d + ˇ + 2 � 2 
 � p (d � ˇ � 2)

� :

The critical case p = p? determines # = 1 and has been dealt with in Section 3, so
we shall focus on the subcritical case p < p?. Here by critical we simply mean that
kwkL2p;
 (Rd ) scales like krwkL2;ˇ(Rd ) and Cˇ;
;p denotes the optimal constant in (14).
The limit case ˇ = 
 � 2 and p = 1, which is an endpoint for (15), corresponds to Hardy-
type inequalities: optimality is achieved among radial functions but there is no extremal
function: see Dolbeault, Esteban, Loss, and Tarantello [2009]. The other endpoint is
ˇ = (d � 2) 
/d , in which case p? = d/(d � 2): according to Catrina and Wang [2001]
(also see Section 5.1), either 
 � 0, symmetry holds and there exists a symmetric extremal
function, or 
 < 0, and then symmetry is broken but there is no extremal function. in all
other cases, the existence of an extremal function for (14) follows from standard methods:
see Catrina and Wang [2001], Dolbeault and Esteban [2012b], and Dolbeault, Muratori,
and Nazaret [2017] for related results.

When ˇ = 
 = 0, (14) is a Gagliardo-Nirenberg interpolation inequality which is
well known to be related to the fast diffusion equation @u

@t
= ∆um in Rd , not only for
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m = 1 � 1/d but also for any m 2 [1 � 1/d; 1). Here we generalize this observation to
the weighted spaces.

Symmetry in (14) means that the equality case is achieved by Aubin-Talenti type func-
tions

w?(x) =
�
1 + jxj

2+ˇ�

��1/(p�1)

8 x 2 Rd :

On the contrary, there is symmetry breaking if this is not the case, because the equality
case is then achieved by a non-radial extremal function. It has been proved in Bonforte,
Dolbeault, Muratori, and Nazaret [2017] that symmetry breaking holds in (14) if

(16) 
 < 0 and ˇFS(
) < ˇ <
d � 2

d



where
ˇFS(
) := d � 2 �

q
(
 � d )2 � 4 (d � 1) :

Under Condition (15), symmetry holds in the complement of the set defined by (16).

Theorem 8. Assume that (15) holds and that

(17) ˇ � ˇFS(
) if 
 < 0 :

Then the extremal functions for (14) are radially symmetric and, up to a scaling and a
multiplication by a constant, equal to w?.

This means that (16) is the sharp condition for symmetry breaking.

4.2 A rigidity result. Up to a scaling and a multiplication by a constant, the Euler-
Lagrange equation

(18) � div
�
jxj

�ˇ
rw

�
= jxj

�

�
w2p�1

� wp
�

in Rd
n f0g

is satisfied by any extremal function for (14). In the range of parameters given by (15)
and (17), our method establishes the symmetry of all positive solutions.

Theorem9. Assume that (15) and (17) hold. Then all positive solutions to (18) inHp

ˇ;

(Rd )

are radially symmetric and, up to a scaling, equal to w?.

This is again a rigidity result. Nonnegative solutions to (18) are actually positive by the
standard Strong Maximum principle. Theorem 8 is therefore a consequence of Theorem 9.
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4.3 Sketch of the proof of Theorem 9. Let us give an outline of the strategy of Dol-
beault, Esteban, Loss, and Muratori [2017]. As in the critical case, Inequality (14) for a
function w can be transformed by the change of variables

w(x) = v(r˛; !) ;

where r = jxj ¤ 0 and ! = x/r , in the new inequality

(19)
�ˆ

Rd

jvj
2p d�

� 1
2p

� K˛;n;p

�ˆ
Rd

jDvj
2 d�

�#
2
�ˆ

Rd

jvj
p+1 d�

� 1�#
p+1

with K˛;n;p = ˛�� Cˇ;
;p , � = #
2
+ 1�#

p+1
�

1
2p

and d� = jxjn�d dx. The condition for
the change of variables is

n =
d � ˇ � 2

˛
+ 2 =

d � 


˛
;

which reflects the fact that the weights are all the same in (19). It is solved by

˛ = 1 +
ˇ � 


2
and n = 2

d � 


ˇ + 2 � 

:

Inequality (19) is a Caffarelli-Kohn-Nirenberg inequality with weight jxjn�d in all terms,
and Dv :=

�
˛ @v

@s
; 1

s
r!v

�
. Notice that p? = n

n�2
, so that 2p? is the critical Sobolev

exponent associated with the fractional dimension n considered in (10).
With a generalized Fisher information I and the pressure function p defined by (11),

we consider the subcritical range m1 := 1�1/n < m < 1. If u is smooth solution of (12)
with sufficient decay properties, we obtain that I evolves according to

d

dt
I [u(t; �)] = � 2

ˆ
Rd

R[p(t; �)]u(t; �)m d� with R[p] := K[p] + (m � m1) (Lp)2;

where K is given by (13). We recover the result of the critical case of Section 3.3 by taking
the limit as m ! m1.

Inspired by tools of Information Theory and Savaré and Toscani [2014], Toscani [2014],
and Dolbeault and Toscani [2016], we introduce the generalizedRényi entropy power func-
tional

F [u] :=

�ˆ
Rd

um d�

��

with � =
2

n

1

1 � m
� 1 > 1
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and observe that F 00 has the sign of � H[u(t; �)] where

H[u] := (m � m1)

ˆ
Rd

ˇ̌̌̌
Lp �

´
Rd u jDpj2 um d�´

Rd um d�

ˇ̌̌̌2
d� +

ˆ
Rd

R[p]um d� :

Here F 0 denotes the derivative with respect to t of F [u(t; �)]. The computation requires
many integrations by parts. The fact that boundary terms do not contribute can be justified
if u is a nonnegative critical point, i.e., a minimizer of F 0 under mass constraint. Indeed,
the minimization of�ˆ

Rd

vp+1 d�

���1 ˆ
Rd

jDvj
2 d� with v = um�1/2

under the constraint that
´

Rd u d� =
´

Rd v2p d� takes a given positive value is equiva-
lent to the Caffarelli-Kohn-Nirenberg interpolation inequalities (14).

To make the argument rigorous, we can argue as in Section 3.3 by taking u as initial
datum and performing the computation of F 00 at t = 0 only. In other words, we are simply
testing the Euler-Lagrange equation satisfied by u with Lum. By elliptic regularity (the
estimates are as delicate as in the critical case and we refer to Dolbeault, Esteban, Loss,
and Muratori [2017] for details), we have enough estimates to prove that H[u] = 0 and
deduce that p(x) = a + b jxj2 for some real constants a and b.

4.4 Considerations on the optimality of the method. The symmetry breaking condi-
tion in (9) and (14) has been established by proving the linear instability of radial criti-
cal points, in Felli and Schneider [2003] and Bonforte, Dolbeault, Muratori, and Nazaret
[2017] respectively. This amounts to a spectral gap condition in a Hardy-Poincaré inequal-
ity: see Bonforte, Dolbeault, Muratori, and Nazaret [ibid.] for details. It is remarkable that
the symmetry holds whenever radial critical points are linearly stable and this deserves
an explanation. The solution of (12) is attracted by self-similar Barenblatt functions as
t ! +1. Since these Barenblatt functions are precisely the radial critical points of our
variational problem, the asymptotic rate of convergence is determined by the previous
spectral gap, in self-similar variables. It can be checked that the condition that appears
in the carré du champ method, which amounts to prove that a quadratic form has a sign,
is the same in the asymptotic regime as t ! +1 as the quadratic form which is used to
check symmetry breaking. Hence either symmetry breaking occurs, or the carré du champ
method shows that theRényi entropy power functional is monotone non-increasing, at least
in the asymptotic regime: see Dolbeault, Esteban, and Loss [2016a] for details. To con-
clude in the critical case, it is enough to observe that all terms in the expression of K[p]
in (13) are quadratic, except the last one, which has a sign and is negligible compared to
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the others in the asymptotic regime: the sign condition for K[p] away from the asymp-
totic regime is the same as when t ! +1. This explains why our method for proving
symmetry gives the optimal range in the critical case. In the subcritical regime, a similar
observation can also be done.

5 Bifurcations and symmetry breaking

The results of this section are taken mostly from Dolbeault, Esteban, Tarantello, and Ter-
tikas [2011], Dolbeault and Esteban [2012a], and Dolbeault and Esteban [2014].

5.1 Rigidity and bifurcations. Let us come back to the critical Caffarelli-Kohn-Nirenberg
inequality and consider the Emden-Fowler transformation (6). As noted in Catrina and
Wang [2001], Inequality (9) is transformed into the Gagliardo-Nirenberg-Sobolev inequal-
ity

kr'k
2
L2(C) + Λ k'k

2
L2(C) � �(Λ) k'k

2
Lp(C) 8 ' 2 H1(C)

where �(Λ) = C�1
a;b

ˇ̌
Sd�1

ˇ̌1�2/p . Here C := R � Sd�1 is a cylinder and, as in Section 2,
we adopt the convention that the measure on the sphere is the uniform probability measure.
The extremal functions are, up to multiplication by a constant, and dilation, solutions
of (5).

If we restrict the study to symmetric functions, that is, v(r) = ra�ac '(� log r) with
r = jxj, then the inequality degenerates into the simple Gagliardo-Nirenberg-Sobolev
inequality

kr'k
2
L2(R) + Λ k'k

2
L2(R) � �?(Λ) k'k

2
Lp(R) 8 ' 2 H1(R) :

Here we denote by
�?(Λ) = �?(1)Λ

p+2
2p

the optimal constant and notice that '?(s) =
�
1
2

p Λ cosh
�

p�2
2

p
Λ s
��2�1/(p�2) is an

optimal function, which is the unique solution of � '00 + Λ' = j'jp�2 ' on R, up to
translations. With this notation, we have �?(Λ) = k'?k

p�2
Lp(R). If we linearize

kr'k
2
L2(C) + Λ k'k

2
L2(C) � �?(Λ) k'k

2
Lp(C)

around ' = '?, V. Felli and M. Schneider found in Felli and Schneider [2003] that the
lowest eigenvalue of the quadratic form, that is, the lowest positive eigenvalue of the
Pöschl-Teller operator �

d2

ds2
+Λ+d � 1� (p � 1)'

p�2
? , is given by �1(Λ) = �

1
4
(p2 �
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4) (Λ � ΛFS), so that �1(ΛFS) < 0 if and only if

Λ > ΛFS := 4
d � 1

p2 � 4
:

See Lifchitz and Landau [1966, p. 74] for details. This condition is the symmetry breaking
condition of Theorem 3. The branch of non-radial solutions bifurcating fromΛ = ΛFS has
been computed numerically in Dolbeault and Esteban [2012a] and an example is shown
in Figure 1. By construction, we know that Λ 7! �(Λ) is increasing, concave, and we
read from Theorem 3 that the non-symmetric branch bifurcates from Λ = ΛFS, and is
such that �(Λ) < �?(Λ) if Λ > ΛFS. This simple scenario explains the symmetry and
symmetry breaking properties in (9), but is not generic as we shall see next in the case of
more complicated interpolation inequalities.

10 20 30 40

10

20

30

40

Λ

�(Λ)

�?(Λ)

ΛFS

�?(ΛFS)

Figure 1: Branches for p = 2:8, d = 5, � = 1.

5.2 Bifurcations, reparametrization and turning points. Let us consider the interpo-
lation inequality

(20)
�ˆ

Rd

jujp

jxjbp
dx

� 2
p

� Ca;b;�

�ˆ
Rd

jruj2

jxj2a
dx

�� �ˆ
Rd

juj2

jxj2 (a+1)
dx

�1��

with d � 1, p 2 (2; 2�) or p = 2� if d � 3, and � 2 (#(p); 1] with #(p) := d p�2
2p

.
The scaling invariance imposes p = 2 d/

�
d � 2 + 2 (b � a)

�
. As proved in Caffarelli,

Kohn, and Nirenberg [1984], the above inequalities hold with a finite constant Ca;b;� if
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a < ac = (d � 2)/2, and b 2 (a + 1/2; a + 1] when d = 1, b 2 (a; a + 1] when
d = 2 and b 2 [a; a + 1] when d � 3. Moreover, there exist extremal functions for the
inequalities (20) for any p 2 (2; 2�) and � 2 (#(p); 1) or � = #(p) and d � 2, with
ac � a > 0 not too large. On the contrary equality is never achieved for p = 2, or a < 0,
p = 2� and d � 3, or d = 1 and � = #(p; 1). The existence of extremal functions has
been studied in Dolbeault and Esteban [2012b]. We may notice that

0 � #(p) � � < 1 () 2 � p � p�(d; �) :=
2 d

d � 2 �
< 2� :

With the same conventions as in the previous subsection, the Emden-Fowler change of
variables (6) transforms (20) into the Gagliardo-Nirenberg-Sobolev inequality

(21)
�
kr'k

2
L2(C) + Λ k'k

2
L2(C)

��

k'k
2(1��)

L2(C) � �(�;Λ) k'k
2
Lp(C) 8 ' 2 H1(C)

onC := R�Sd�1, withΛ = (a�ac)
2 and�(�;Λ) = C�1

a;b;�

ˇ̌
Sd�1

ˇ̌1�2/p . Of course, the
case � = 1 corresponds to the critical case and, consistently, we write �(1;Λ) = �(Λ).

For � < 1, the Euler-Lagrange equation of an extremal function on C is

(22) � ∆' +
1

�

 
(1 � �)

kr'k2L2(C)

k'k2L2(C)

+ Λ

!
' �

kr'k2L2(C) + Λ k'k2L2(C)

� k'k
p

Lp(C)

'p�1 = 0 :

Up to the reparametrization

Λ 7! � =
1

�

h
(1 � �) t ['] + Λ

i
where t ['] :=

kr'k2L2(C)

k'k2L2(C)

and a multiplication by a constant, an extremal function ' for (21) solves (5). In other
words, we can use the set of solutions in the critical case � = 1 to parametrize the solutions
corresponding to � < 1.

Let us start with the symmetric functions. With an evident notation, we define�?(�;Λ)

as the optimal constant in the inequality corresponding to (21) restricted to symmetric
functions, i.e., functions depending only on s 2 R. If we denote by '?;� the function

'?;�(s) =

�
1

2
p � cosh

�
p�2
2

p
� s
��2

� 1
p�2

for any � > 0, then t ['?;�] is explicit and we can parametrize the set
˚�
Λ; �?(�;Λ)

�
:

Λ > 0
	
by
˚�

� � � (1 � �) t ['?;�]; �?(�)
�

: � > 0
	
. It turns out that the equation
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Λ = � � � (1 � �) t ['?;�] can be inverted, which allows us to obtain � = Λ�
�(Λ) and get

an explicit expression for

�?(�;Λ) = �?

�
Λ�

�(Λ)
�
= �?

�
Λ�

�(1)
�
Λ��

p�2
2p :

According to del Pino, Dolbeault, Filippas, and Tertikas [2010], a Taylor expansion around
'?;ΛFS shows that for any Λ > Λ�

FS, where

Λ�
FS := � �FS � (1 � �) t [uFS] ;

the function '?;� with � = Λ�
�(Λ) is linearly unstable, so that �(�;Λ) < �?(�;Λ).

The case of non-symmetric functions is more subtle because we do not know the exact
multiplicity of the solutions of (5) in the symmetry breaking range. There is a branch of
non-symmetric solutions of (22) which bifurcates from the branch of symmetric solutions
atΛ = Λ�

FS. This branch has been computed numerically inDolbeault and Esteban [2012a]
and a formal asymptotic expansion was performed in a neighborhood of the bifurcation
point in Dolbeault and Esteban [2014]. Because of the reparametrization of the solutions
of (22) by the solutions of (5), we can use the branch � 7! '� of non-symmetric extremal
functions for � > ΛFS to get an upper bound of �(�;Λ):

�(�;Λ) � �(�) for any � > ΛFS such that Λ = � � � (1 � �) t ['�] :

Actually, we deduce from the branch � 7! '� of non-symmetric extremal functions an
entire branch of non-symmetric solutions of (22) which is parametrized by � and deduce
a parametric curve B :=

˚�
Λ(�) := � � � (1� �) t ['�]; �(�)

�
: � > ΛFS

	
which can be

used to bound �(�;Λ) from above. If (Λ; �) 2 B, we have no proof that '� is optimal if
�(�) < �?(�;Λ), but at least we know that

�(�) =
�
kr'�k

2
L2(C) + Λ(�) k'�k

2
L2(C)

��

k'�k
2(1��)

L2(C) k'�k
�2
Lp(C) :

Some numerical results are shown in Figure 2.
The formal asymptotic expansion of Dolbeault and Esteban [ibid.] suggests that there

are only two possible generic scenarii:

(i) Either the curveB bifurcates to the right, that is,B is included in the regionΛ � Λ�
FS,

and Λ 7! �(�;Λ) is qualitatively expected to be as in Figure 1. We know that this
is what happens for � = 1 and expect a similar behavior for any � close enough
to 1. In this case, the region of symmetry breaking is characterized by the linear
instability of the symmetric optimal functions.
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Figure 2: Branches for p = 2:8, d = 5, � = 0:718. Left: the bifurcation point
(Λ�

FS; �?(�;Λ�
FS) is at the intersection of the horizontal and vertical lines. The area

enclosed in the small ellipse is enlarged in the right plot: the branch has a turning
point and �(�;Λ�

FS) < �?(�;Λ�
FS).

(ii) Or the curve B bifurcates to the left. For � � ΛFS > 0, small enough, the curve
� 7!

�
Λ(�); �(�)

�
satisfies Λ(�) < Λ�

FS and �(�) > �?(�;Λ(�)). In that case,
the region of symmetry breaking does not seem to be characterized by the linear
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instability of the symmetric optimal functions and we numerically observe a turning
point as in Figure 2 (right).

In Dolbeault, Esteban, Filippas, and Tertikas [2015], a priori estimates for branches with
� < 1 were deduced from the known symmetry results (later improved in Dolbeault,
Esteban, and Loss [2016b]). This further constrains B and the symmetry breaking region
and determines a lower bound for the value of Λ corresponding to a turning point of the
branch. There are many open questions concerning B and the set of extremal functions
when � < 1, but at least we can prove that the symmetry breaking range does not always
coincide with the region of linear instability of symmetric optimal functions.

5.3 Symmetry breaking and energy considerations. The exponent #(p) is the expo-
nent which appears in the Gagliardo-Nirenberg inequality

(23) kruk
2#(p)

L2(Rd )
kuk

2 (1�#(p))

L2(Rd )
� CGN(p) kuk

2
Lp(Rd )

8 u 2 H1(Rd ) :

By considering an extremal function for this inequality and translations, for any p 2

(2; 2�), one can check that

�(#(p);Λ) � CGN(p) 8Λ > 0 :

Lemma 10. Let d � 2. For any p 2 (2; 2�), if CGN(p) < �?(#(p);Λ
#(p)
FS ), there exists

Λs 2 (0;Λ
#(p)
FS ) such that �(#(p);Λ) = �?(#(p);Λ) if and only if Λ 2 (0;Λs].

The fact that the symmetry range is an interval of the form (0;Λs] can be deduced from
a scaling argument: see Dolbeault, Esteban, Loss, and Tarantello [2009] and Dolbeault,
Esteban, Tarantello, and Tertikas [2011] for details. The result is otherwise straightforward
but difficult to use because the value of CGN(p) is not known explicitly. From a numerical
point of view, it gives a simple criterion, which has been implemented in Dolbeault, Es-
teban, Tarantello, and Tertikas [2011]. Moreover, in Dolbeault and Esteban [2014], it has
been observed numerically that the condition CGN(p) < �?(#(p);Λ

#(p)
FS ) is equivalent

to a bifurcation to the left as in Figure 2.
For � and p � 2 small enough, the assumption of Lemma 10 holds. Let us consider the

Gaussian test function g(x) := (2�)�d/4 exp(�jxj2/4) in (20) and consider

h(p) :=
krgk2 �

L2(Rd )
kgk

2 (1��)

L2(Rd )

kgk2Lp(Rd )

1

�?(�;Λ�
FS)

with � = #(p) :
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A computation shows that limp!2+ h(p) = 1 and limp!2+
dh
dp

(p) < 0. For p � 2 > 0,
small enough, we obtain that

CGN(p) � h(p) < �?(�;Λ�
FS) :

A perturbation argument has been used in Dolbeault, Esteban, Tarantello, and Tertikas
[2011] to establish the following result.

Theorem 11. Let d � 2. There exists � > 0 such that for any p 2 (2; 2 + �),

�(�;Λ) < �?(�;Λ) if Λ�
FS � � < Λ < Λ�

FS and #(p) < � < #(p) + � :

5.4 An open question. The criterion considered in Lemma 10 is based on energy con-
siderations and provides only a sufficient condition for symmetry breaking. It is difficult
to check it in practice, except in asymptotic regimes of the parameters. The formal expan-
sions of the branch near the bifurcation points are based on a purely local analysis, and
suggest another criterion: either the branch bifurcates to the right and the symmetry break-
ing range is characterized by the linear instability of the symmetric optimal functions, or
the branch bifurcates to the left, and this is not anymore the case. Is such an observation,
which has been made numerically only for some specific values of p, true in general?
This seems to be true when � is close enough to #(p) and at least in this regime we can
conjecture that the symmetry breaking range is not characterized by the linear instability
of the symmetric optimal functions if and only if the branch bifurcates to the left.

An additional question, which corresponds to a limiting case, goes as follows. If � =

#(p), is the range of symmetry determined exactly by the value of the optimal constant
in (23), when it is below �?(�;Λ�

FS)? Numerically, this is supported by the fact that, in
this case, the curve B is monotone increasing as a function of Λ.

In the study of the symmetry issue in (9) and (14), the key tool is the nonlinear flow,
which extends a local result (linear stability) to a global result (rigidity). A similar tool
would be needed to answer the conjecture. In the case � = #(p), it would be crucial to
obtain a variational characterization of the non-symmetric solutions in the curve of non-
symmetric functions B and a uniqueness result for any given Λ.
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ON LARGE TIME BEHAVIOR OF GROWTH BY BIRTH AND
SPREAD

Yඈඌඁං඄ൺඓඎ Gං඀ൺ (儀我美一)

Abstract

This is essentially a survey paper on a large time behavior of solutions of some
simple birth and spread models to describe growth of crystal surfaces. The models
discussed here include level-set flow equations of eikonal or eikonal-curvature flow
equations with source terms. Large time asymptotic speed called growth rate is stud-
ied. As an application, a simple proof is given for asymptotic profile of crystal grown
by anisotropic eikonal-curvature flow.

1 Introduction

Equations describing front propagation or surface evolution are very important in various
fields of science and technology. Let Γt be a hypersurface in RN depending on time t ,
which describes, for example wave front or crystal surface. For simplicity, Γt is assumed
to be closed so that it is the boundary of some bounded open setDt . Let V be the normal
velocity of Γt in the direction of n, a unit normal vector field of Γt outward fromDt . The
evolution given by a constant speed is often called Huygens’ principle. Its explicit form
is

(1-1) V = � on Γt ;

where � is a constant. This is a famous eikonal equation. To describe evolution of crystal
surface, one has to consider anisotropy called kinetic anisotropy. It can be written

(1-2) V =M (n)� on Γt ;

This work was partly supported by Japan Society for the Promotion of Science (JSPS) through grants No.
26220702 (Kiban S), No. 17H01091 (Kiban A) and No. 16H03948 (Kiban B)..
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where M (n) is a given positive function defined on a unit sphere. The function M is
called a mobility. We refer this equation anisotropic eikonal equation. These equations
are equations for one parameter family fΓt g.

In modern materials sciences, one also has to consider the curvature effect. The evolu-
tion is given by

(1-3) V = aH + � on Γt

with a � 0, whereH is the (N � 1) times mean curvature in the direction of n, i.e.,H =

� divΓ n, where divΓ denotes the surface divergence. If � = 0 and a = 1, this equation is
known as the mean curvature flow equation, which stems from materials science, and has
been widely studied in mathematical community. Thus the equation (1-3) is often called
the eikonal-curvature flow equation if a > 0 and � ¤ 0.

In materials science, one has to consider another anisotropy not only kinetic anisotropy.
It is given as an anisotropic mean curvature or weighted mean curvature. Let 
 be a
given nonnegative function in RN which is positively homogeneous of degree one, i.e.,

(�p) = �
(p) for all � > 0, p 2 RN . The anisotropic mean curvatureH
 is defined at
least formally by

H
 = � divΓ �(n); �(p) = rp
 = (@
/@p1; : : : ; @
/@pN ) :

It is known as the first variation of the interfacial energy
R
Γ 
(n)dHN �1 with respect to

a variation of hypersurface Γ, where HN �1 denotes the N � 1 dimensional Hausdorff
measure. If 
(p) = jpj so that �(n) = n, H
 is nothing but standard H . A typical
anisotropic version of (1-3) is

(1-4) V =M (n) (aH
 + �) on Γt :

It is very fundamental to ask whether or not the initial value problem for these equations
is uniquely solvable. More precisely, the problem is that for a given initial data Γ0 find
fΓt gt>0 solving (1-4). If one considers the problem globally-in-time, the singularity may
develop for some smooth initial data even for (1-1). Thus one needs some weak notion of
the solution. A level-set formulation is by now standard to solve such a problem globally-
in-time. A level-set equation for (1-4) is the equation for u in RN � (0;1) such that each
level-set of u moves by (1-4). To fix the orientation, we take n = �ru/jruj, where r

denotes the spatial gradient, i.e., r = (@x1
; : : : ; @xN

), @xj
= @/@xj . For example, the

level-set equation for (1-1) and (1-3) are

ut � � jruj = 0;(1-5)

ut � jruj

�
a div

�
ru

jruj

�
+ �

�
= 0;(1-6)
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respectively, where ut = @u/@t . Unfortunately, level-set equations are highly degenerate
in parabolic sense because there is no diffusion in the direction of ru. Fortunately, there
is notion of viscosity solutions, (see e.g. Crandall, Ishii, and Lions [1992] and Y. Giga
[2006]), based on order-preserving structure to handle continuous but non C 1 solutions.
It turns out that such a notion is adjustable to this setting. Here are typical results. We
consider the initial value problem of the level-set equation for (1-4), namely,

(1-7)
ut �M (ru/jruj) (a div (�� (�ru/jruj)) + �) jruj = 0 in RN

� (0;1);

ujt=0 = u0:

We shall use a short-hand notation fu > `g, fu < `g, fu = `g to represent sets
f(x; t) j u(x; t) > `g, f(x; t) j u(x; t) < `g and f(x; t) j u(x; t) = `g, respectively.

Theorem 1.1. Assume that a � 0 and � 2 R and that M � 0 is continuous. Assume
that 
 is convex and 
(p) > 0 for p ¤ 0. Assume that u0 2 C (RN ) equals constant ˛
outside a ball. For 
 assume either

(a) (smoothness) 
 2 C 2
�
RN nf0g

�
or

(b) (crystalline) 
 is piecewise linear.

Then the following statements hold.
(Global solvability) The initial value problem for (1-7) admits a unique continuous viscos-
ity solution globally-in-time which equals ˛ outside some ball in each finite time interval
(0; T ).
(Uniqueness of level-sets) The set fu < `g (resp. fu > `g) depends only on fu0 < `g (resp.
fu0 > `g) and independent of the choice of u0. The set fu = `g is called the level-set flow
solution of (1-4) with initial data Γ0 = fu0 = `g.

The assumption at space infinity does not restrict application if one considers a closed
hypersurface. This statement for (a) was first proved by Chen, Y. Giga, and Goto [1991]
and simultaneously for the level-set mean curvature flow equation by Evans and Spruck
[1991] (corresponding the case a = 1, � = 0 in (1-3)); see e.g. Y. Giga [2006] for de-
tails of the theory as well as related references. The case (b) of crystalline is not a simple
generalization because the equation is nonlocal like total variation flow. A crystalline
curvature flow was first introduced by Angenent and Gurtin [1989] and independently by
Taylor [1991]; see also Gurtin [1993]. For N = 2, the statement in Theorem 1.1 was
proved by M.-H. Giga and Y. Giga [2001], where more general 
 is treated. For higher
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dimension N � 3, it is quite recent that this statement was proved by Y. Giga and Požár
[2016], Y. Giga and Požár [2018] based on the work of M.-H. Giga, Y. Giga, and Požár
[2013], M.-H. Giga, Y. Giga, and Požár [2014] in the sprit of M.-H. Giga and Y. Giga
[1998]. The crucial steps are comparison principle and approximation arguments to con-
struct a solution. Independently, A. Chambolle et al. Chambolle, Morini, and Ponsiglione
[2017], Chambolle, Morini, Novaga, and Ponsiglione [2017] proved such a result for “con-
vex” mobility but general convex 
 including (b) adjusting formulation based on distance
functions introduced first by Soner [1993].

If one looks the level-set equations, each level-set propagates by a given propagation
law or surface evolution equations. This is also considered as spreading effects. For exam-
ple, if one considers (1-5), each level-set spreads horizontally with velocity � . Consider a
crystal surface so that u is now the height of crystal. Assume that initially it is flat so that
u0 = 0. Then it does not grow just by spreading effect. One needs birth of crystal so that
crystal grows. There are two typical mechanism of growth of crystal surface, see Burton,
Cabrera, and Frank [1951]. One is the two-dimensional nucleation. The crystal surface
grows by external supply of crystal molecules for a flat surface. It grows by catching such
molecules. It is easy to catch molecules at the place where the crystal shape is not flat,
i.e., ru ¤ 0 because of existence of microscopic steps. However, in the place where the
surface is flat, there are no way to catch molecules unless there are step sources. At a very
initial stage of the two-dimensional nucleation the step source catches crystal molecules
so that a small disk-like island is formed at the step source on a flat face. Then this island
grows by spreading and there occurs another birth of small disk-like island. It results a
“wedding cake” consisting of several disks. This is a way of birth of new crystal surface
in the two-dimensional nucleation.

The other mechanism of crystal growth is the spiral growth which is more popular. As
pointed out in Burton, Cabrera, and Frank [ibid.], a pair of spirals opposite orientation
whose centers are very close essentially forms a small island just like two-dimensional
nucleation; see Ohtsuka, Tsai, and Y. Giga [2015], Smereka [2000], and Ohtsuka, Tsai,
and Y. Giga [2018] for recent developments.

There are several models describing birth and spread macroscopically (see Ohara and
Reid [1973]). If one fixes location of step source, it is of the form

(1-8) ut + F
�
ru;r2u

�
= r(x);

where ut +F is the left-hand side of the level-set equation (1-7) and r(x) � 0 is positive
where step source exists. The simplest model is

ut � � jruj = cI (x); I (x) =

�
1 x = 0

0 x ¤ 0
(1-9)
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with c > 0. This model is actually proposed by Schulze and Kohn [1999] to describe some
high-temperature superconductor by approximating spiral growth on a crystal surface.

Our goal in this paper is to study the large-time behavior of the solution. We are espe-
cially interested in proving the asymptotic speed or the growth rate

lim
t!1

u(x; t)/t

and its property. This is a very general question for partial differential equations of evolu-
tion type. There are by now several general theory for first order problems and some for
second order problems (see review article by Mitake and Tran [2017]) but our problem
is not covered by known theories like the weak KAM theory so far; see SubSection 2.3
and SubSection 5.1. The next result is a straightforward generalization of the result of Y.
Giga, Mitake, Ohtsuka, and Tran [n.d.].

Theorem 1.2 (Existence of asymptotic speed). Assume that r � 0 is Lipschitz (continu-
ous) and compactly supported. Assume the same assumption in Theorem 1.1 on (1-7) with
a � 0, � > 0 andM > 0. Assume further that 
 2 C 2(RN nf0g). Let u be the viscosity
solution of (1-8) having the same left-hand side as (1-7) with u0 = 0. Then the asymptotic
speed R = limt!1 u(x; t)/t , which is nonnegative, exists and the convergence is locally
uniform.

Let 1E denote the characteristic function of E, i.e.,

1E (x) =

�
1; x 2 E

0; otherwise.

If r"(x) is close to c1E in the sense r" = c�" �1E , where �" is the Friedrichs mollifier i.e.,
� 2 C1

c (RN ); 0 � � � 1;
R
� dx = 1 �(x) � 0 for jxj � 3/4 and �"(x) = "�N�(x/"),

one might expect the asymptotic speed R" for r" converges to c as " # 0. This is true for
the first order model like ut �� jruj = r(x). Unfortunately, this is not true in general for
the second-order models. The next result easily follows by the comparison principle from
similar results in Y. Giga, Mitake, and Tran [2016], where the case r = c1E is considered.
For this non-Lipschitz r , we do not know even the existence of asymptotic speed.

Theorem 1.3. Consider (1-8) with r = r" in the plane. Assume the left-hand side is the
same as (1-6) with a = � = 1 and that 
(p) = jpj, M (p) = jpj. Assume that E is a
closed square whose edge length is 2d with d 2 (1/

p
2; 1) so that E is not contained in

nor not contains a unit disk. Then 0 < lim inf"!0R" � lim sup"!0R" < c.

This is because of curvature effect of spreading. There are few literature on asymptotic
speed of second-order problems, for example, the work by Xin and Yu [2013], Xin and
Yu [2014] studied the turbulent flow speed for what is called G-equations.
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Our next concern is the asymptotic shape. For this purpose, we introduce a notion of
the support function WM of the polar of 1/M , i.e.,

WM (x) = sup fx � p j jpj � 1/ (M (p/jpj))g ; x 2 RN :

Its one sub level-set is often called the Wulff shape

WM =
˚
x 2 RN

j WM (x) � 1
	

=
\

jmj=1

˚
x 2 RN

j x �m � M (m)
	
:

Theorem 1.4 (Asymptotic profile). Let u be as in Theorem 1.2. Then

lim
�!1

u(�x; �t)/� = R (t �WM (x)/�)+

locally uniformly for (x; t) 2 RN � (0;1), where b+ = max (b; 0).

Remark 1.5. The results in Theorem 1.2 and Theorem 1.4 can be easily extended for
general bounded uniformly continuous initial data by simple comparison with constant
initial data. Thus R is independent of u0.

As a byproduct of our analysis, we give a simple new proof of anisotropic profile of
level-set flow of (1-4) when the shape is growing. Such a result is originally proved by
Ishii, Pires, and Souganidis [1999] a long time ago. From the point of (1-8), it is asymptotic
profile of the horizontal growth.

Theorem 1.6. Let Γt be the level-set flow solution in Theorem 1.1. Assume that 
 2

C 2
�
RN nf0g

�
. Assume that Γ0 strictly encloses (a(N � 1)/�)W
 up to translation.

Then Γt/t ! @WM as t ! 1 in the sense of the Hausdorff distance.

Note that our assumption for Γ0 is weaker than that of Ishii, Pires, and Souganidis
[ibid., Theorem 6.1] where they assured Γ0 encloses a sufficiently large ball. Note that
their proof based on characterization of limt!1 u(tx; t)works even when 
 is crystalline,
where u is in Theorem 1.1. For crystalline case evolution of a convex shape by (1-4) is
analyzed in M.-H. Giga and Y. Giga [2013], where the role of anisotropy inM and 
 is
clarified. We expect that all results in Theorem 1.2 – Theorem 1.6 can be extended to
crystalline 
 if appropriate stability holds (See SubSection 5.2).

This paper is organized as follows. In Section 2 we discuss the first-order model
while in Section 3 we discuss the second-order model and give a sketch of the proof of
Theorem 1.2. In Section 4 we prove Theorem 1.3, Theorem 1.4 and Theorem 1.6. In
Section 5 we discuss unscaled asymptotic profiles and open problems.
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2 First order models

We consider

(2-1) ut � � jruj = r(x)

or its anisotropic version

(2-2) ut � �M (�ru) = r(x);
�
M (p) :=M (p/jpj) jpj for p 2 RN

�
for a bounded upper semicontinuous function r . Here M is assumed to be continuous
and nonnegative and � > 0. If r is continuous, the standard theory of viscosity solutions
yields a unique global-in-time solution for any bounded uniformly continuous initial data.
However, if r is not continuous, typically r(x) = cI (x), the solution may not be unique.
We need to consider a kind of maximal solution which is formulated as an envelope so-
lution in Y. Giga and Hamamuki [2013]. If one applies this equation to describe height
of crystal surface by u, then it seems to be natural to consider a maximal solution; see
Schulze and Kohn [1999]. In fact, there exists a unique global-in-time envelope solution
for any such r when initial data u0 is bounded uniformly continuous as proved by Y. Giga
and Hamamuki [2013, Theorem 3.20]. Note thatM doesn’t need to be convex. We shall
discuss several explicit solutions.

2.1 Explicit solutions. We consider (2-1) with r(x) = cI (x), � > 0 with initial data
u0 = 0.

Proposition 2.1. Assume that � > 0.

(i) If c > 0, then uR(x; t) = R (t � jxj/�)+ for 0 � R � c is a viscosity solution of
(1-9) with uRjt=0 = 0. The solution uc is the unique envelope solution with zero
initial data.

(ii) If c � 0, then u � 0 is a viscosity solution of (1-9) with initial data ujt=0 = 0 (It
is actually the unique viscosity solution.)

Proof. (i) It is rather trivial to see that uR solves (1-9) except x = 0. At the origin
assume that uR � ' takes its maximum at

�
0; t̂

�
, t̂ > 0 for some C 1 function '.

Then 't

�
0; t̂

�
� R so that

't

�
0; t̂

�
� �

ˇ̌
r'

�
0; t̂

�ˇ̌
� cI (0) � R � c � 0:

Thus, uR is a subsolution. Note that at t = jxj/� , there is no way to touch from
above. The test from below at t = jxj/� yields that uR is a supersolution. We thus
conclude that uR is a solution.
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(ii) This is very easy to check, so the proof is safely left to the reader.

Its anisotropic version is as follows. We consider (2-2) with r(x) = cI (x).

Proposition 2.2. Assume that � > 0.

(i) If c > 0, then uR(x; t) = R (t �WM (x)/�)+ for 0 � R � c is a viscosity solution
of

(2-3) ut � �M (�ru) = cI (x)

with uRjt=0 = 0. The solution uc is the unique envelope solution starting from
zero.

(ii) If c � 0, then u � 0 is a viscosity solution of (2-3) with ujt=0 = 0.

The proof of this Proposition 2.2 is of course more involved. However, if one notices
thatM (rWM ) = 1, it is rather easy.

2.2 Asymptotic speed and profile. The next result is a special case of Hamamuki
[2013, Theorem 2.3]. For u : RN � (0;1) ! R, let u�(x; t) be a rescaled function
defined by

u�(x; t) = u(�x; �t)/� for � > 0:

Theorem 2.3. Assume that r � 0 is continuous and compactly supported. Let u be
the viscosity solution of (2-2) with initial data ujt=0 = 0. Let c = max r(x). Then
u� ! c (t �WM (x)/�)+ locally uniform as � ! 1.

Proof. The proof given in Hamamuki [ibid.] is studying relaxed upper and lower limit. We
here give a simple proof. Wemay assume that zero is a maximum point of r by translation.
We know the solution is Lipschitz independent of regularity of r if initial data is Lipschitz
(see e.g. Y. Giga and Hamamuki [2013]) since the Hamiltonian is coercive in the sense
thatM (p) ! 1 as jpj ! 1. Thus

˚
u�(x; t)

	
is equi-Lipschitz in RN � (0; T ). By the

Ascoli-Arzelà theorem for each sequence, there is a convergent subsequence u�i and limit
v such that v�i ! v locally uniformly (by diagonal argument) as � ! 1. By the stability
of viscosity solutions (see e.g. Y. Giga [2006]), v satisfies (2-3) with c = max r(x).

Fortunately, r�(x) � cI (x) for r�(x) = r(�x) so v must be the envelope solution of
(2-3) and it must be unique. Thus, the convergence u� ! v becomes full convergence
and v(x) = c (t �WM (x)/�)+.

This statement is not exactly contained in Theorem 1.4 where r is assumed to be Lips-
chitz. This asymptotic results yield asymptotic speed as a Corollary.
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Corollary 2.4. Under the same assumption of Theorem 2.3, the asymptotic speed

lim
t!1

u(x; t)/t = c

exists and it is equals to max r .

This is easy to prove by taking t = 1, � = t , x = x/t . Note that the asymptotic
speed is nothing but the maximum of r . For the first-order problem, the situation like
Theorem 1.3 does not occur.

2.3 Non-coercive case. For a coercive case, large-time behavior is well studied. It goes
back to the work of G. Namah and Roquejoffre [1999] and A. Fathi [1998]. It gives even
asymptotic expansion u(x; t) ∼ ct + w(x) in the sense for a given ball B

supx2B ju(x; t) � ct � w(x)j ! 0 as t ! 1:

Here w is a viscosity solution of a cell problem.

c �M (�rw) = r(x):

Solutions may not be unique because the set fx̂ j max r = r(x̂)g plays a role of Aubry set.
See Section 5. We do not touch this problem. We say the equation (1-8) of the form

ut + F (ru) = r(x)

is coercive if
lim

jpj!1
F (p) = �1:

We notice that if the problem is non-coercive, the large-time behavior is not well studied
although there are several works by Yokoyama, Y. Giga, and Rybka [2008], Y. Giga,
Liu, and Mitake [2012], Y. Giga, Liu, and Mitake [2014] related to crystal growth. For
example, if

(2-4) ut �
jruj

jruj + 1
= r(x);

it is not yet clear what the asymptotic speed is. Moreover, for a constant c > 0, the
uniqueness of a solution with r = cI (x) is not guaranteed. In fact, according to Y. Giga
and Hamamuki [2013, Example 5.15]

Uc(x; t) =

8̂<̂
:
ct �

c

1 � c
jxj (jxj � (1 � c)2t)��p

t �
p

jxj

�
+

�2

(jxj � (1 � c)2t)

is a unique envelope solution of (2-4) with r = cI (x) when c � 1. However, if c > 1

even an envelope solution may not be unique.
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3 Second order models

3.1 Models. We now consider the equation (1-8) for (1-7), namely

(3-1) ut �M (�ru) (a div (��(�ru)) + �) = r(x):

The major difference from (2-2) is that the curvature effect is included in spreading pro-
cess; see Figure 1 for the graph of u governed by (3-1). In particular, if the radius of island
is too small, it does not spread. In the two-dimensional nucleation, it is more realistic to
consider the case that the place of birth may depend on time, i.e., r may depend on t .
However, in this note we only consider the case when r is independent of time because it
is already complicated than what we expect. Moreover, if one uses this model to describe
the spiral growth, r must be independent of time and this is better approximation than
(2-2).

We first recall the well-posedness of the initial value problem for (3-1).

( , ) 
= ( )( + ) 

        (spreading) 

( ) (source term) 

support of  

Figure 1: The graph of u at time t solving (3-1)

Theorem 3.1 (Solvability). Assume the same hypotheses of Theorem 1.1 concerning a,
� ,M , 
 and u0. Assume that r is continuous and has compact support. Then the initial
value problem for (3-1) with ujt=0 = u0 admits a unique continuous viscosity solution u
globally-in-time which equals ˛ outside some ball in each finite time interval.

Proof. The proof for the case when 
 is C 2 outside the origin is by now standard and
well known as in the book of Y. Giga [2006]. However, the case when 
 is crystalline is
quite new even if r = 0, see Y. Giga and Požár [2016], Y. Giga and Požár [2018]. We
first prove the comparison principle. Suppose that u is viscosity subsolution and v is a
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viscosity supersolution as in Y. Giga and Požár [2016], Y. Giga and Požár [2018]. Then
we have to conclude that u � v if initially u � v. The definition for viscosity sub and
supersolution with r 6� 0 is not given there but it is obtained as a trivial modification. This
comparison principle can be proved along the line of Y. Giga and Požár [2016], Y. Giga
and Požár [2018] if one replaces doubling variable procedure with shift parameter � by

Φ� = u(x; t) � v(y; s) �
jx � y � �j2

2"
� S";ı(t; s);

where S";ı(t; s) should be

S";ı(t; s) =
jt � sj2

2"
+

ı

T � t
+

ı

T � s
;

in Y. Giga and Požár [2016], Y. Giga and Požár [2018] ı is taken to be equal to ". We fix
ı > 0 small enough as in M.-H. Giga and Y. Giga [1998] unrelated to ". We argue by
contradiction as in Y. Giga and Požár [2016], Y. Giga and Požár [2018] and end up with

2ı

T 2
�

ı�
T � t̂

�2 +
ı

(T � ŝ)2
� r(x̂) � r(ŷ);

where (x̂; t̂ ; ŷ; ŝ) is a maximum point of Φ� for small � depending on ". If " ! 0 with
� ! 0, we observe x̂ � ŷ ! 0 so we get a contradiction. Existence can be proved by
approximation as in Y. Giga and Požár [2016], Y. Giga and Požár [2018].

3.2 Radial case and its generalization. We consider the special case whenM = 
 . In
other words, kinetic anisotropy agrees with interfacial anisotropy. Moreover, assume that
r depends only on W
 (x), i.e., r(x) = h (W
 (x)), We postulate that the solution u(x; t)
only depends on W
 (x), i.e., u has the form

u(x; t) = U (W
 (x); t) :

Since we know that � (rW
 (x)) = x/jxj so that div � (W
 (x)) = N � 1 and 
(rW
 ) =

1,

(3-2) ut � 
(�ru) (a div (��(�ru)) + �) = h (W
 (x))

is reduced to

(3-3) Ut �
a(N � 1)

�
U� + �U� = h(�)
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if U = U (�; t) is a nonincreasing function with respect to �, i.e., U� � 0. The equation
for U is the same as in radial solution for isotropic case. The equation (3-3) is now linear
first order but non-coercive Hamilton-Jacobi equation with singularity.

To see that the asymptotic speed may not be maxh, we give a few examples. We rather
consider discontinuous h of the form

(3-4) h = c1[0;�0]:

Since the right-hand side is not continuous, we do not expect uniqueness of viscosity
solutions. We rather consider the maximal solution. We set a critical number

�� = a(N � 1)/�

and define

 0(�) = c f� + �� log j�� � a(N � 1)jg /� = c f� + �� log j�(� � ��)jg /�;

which solves �
�
a(N � 1)

�
+ �

�
@� = c for � ¤ ��:

Moreover, @� 0(0) = 0 as we expected.

Theorem 3.2. Consider (3-2) with (3-4) and ujt=0 = 0. Assume that 
 is C 2 outside the
origin or that 
 is crystalline with N = 2. Assume that � > 0, a > 0.

(i) If �0 < ��, then

u(x; t) =

�
min

˚
 (W
 (x))+ ; ct

	
for x with W
 (x) < ��

0 for x with W
 (x) � ��

with  (�) =  0(�) �  0(�0) is the maximal viscosity solution.

(ii) If �0 > ��, then

u(x; t) =

�
min

˚
ct; (ct �  (W
 (x)))+

	
for x with W
 (x) � ��

ct for x with W
 (x) < ��

is the maximal viscosity solution.

(iii) If �0 = ��, then
u(x; t) = ct1W


is the maximal viscosity solution.
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( , ) 

 0  = ( ) 

 

 

( , ) 

0 = ( ) 

 

 

Figure 2: The graph of u at time t

From this we see the growth speed depends on geometry where u takes maximum.
This is quite different from the first-order model. In fact in the case (i) u(x; t) is bounded
as t ! 1 and limt!1 u(x; t)/t = 0. In the case (ii) c = limt!1 u(x; t)/t for all
x 2 RN while in the case (iii) c = limt!1 u(x; t)/t for x 2 ��W
 while outside ��W


we observe that u(x; t) � 0. See Figure 2 for profiles of the graph of u at time t .
By the way, the function U (�; t) = min f (�); ctg solves (3-3) with (3-4) for � 2

(0; ��), t 2 R if �0 < �� while U (�; t) = min fct; ct �  (�)g solves (3-3) with (3-4) for
� > ��, t 2 R if �0 > �� in viscosity sense. If one omits the plus part symbol in (i), (i
i), then u is an entire viscosity solution, i.e., it solves (3-1) for all t 2 R, x 2 RN ; in the
case of (i) one has to exclude the place where � = ��.

The results in Theorem 3.2 is essentially proved in Y. Giga, Mitake, and Tran [2016],
where the isotropic case, i.e., 
(p) = jpj or W
 (x) = jxj is discussed. Theorem 3.2 is
a trivial extension of results in Y. Giga, Mitake, and Tran [ibid., Sect. 4] to anisotropic
case. For crystalline case, this result should be true. Although it is easy to see that the
proposed solution is a viscosity solution, to show the maximality we need some stability
of crystalline level-set equation which is so far not available for N � 3; see Section 5.2.
The case N = 2 is proved in M.-H. Giga and Y. Giga [2001].

3.3 Lipschitz bounds. We shall derive Lipschitz bounds in time and space for (3-1)
when the initial data u0 = 0 and r � 0 is Lipschitz. These are straightforward extension
of those in Y. Giga, Mitake, Ohtsuka, and Tran [n.d.], where the isotropic case is discussed.

Lemma 3.3 (Bound for time derivative). Assume the same hypotheses of Theorem 3.1
concerning a, � ,M , r . Assume that u0 = 0 and r � 0. Let u be the viscosity solution of
(3-1) in Theorem 3.1. Then u is Lipschitz in t and

0 � ut (x; t) � c := max
RN

r(x)
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for all x 2 RN and almost all t � 0.

Proof. Since v(x; t) = ct is a viscosity supersolution (see e.g. Y. Giga [2006]) andw � 0

is a viscosity supersolution of (3-1), by the comparison principle we easily see that

0 � u(x; t) � ct in RN
� [0;1)

For any given s > 0, both

us(x; t) := u(x; t + s) and u(x; t)

are viscosity solutions of (3-1). Since us(x; 0) � u(x; 0) = u0 = 0, by the comparison
principle we obtain

0 � (us
� u)(x; t) � sup

RN

(us
� u0)

ˇ̌̌̌
ˇ
t=0

� cs

which yields the desired estimate.

Lemma 3.4 (Bound for spatial derivative). Assume the same hypotheses of Lemma 3.3.
Assume furthermore that 
 2 C 2

�
RN nf0g

�
and that r is Lipschitz. Then u is spatially

Lipschitz and it gradient is essentially bounded. More precisely, itsL1-norm has a bound

krukL1(RN )(t) � K

with K independent of t 2 (0;1).

This can be proved by what is called Bernstein’s method. We first recall a simple matrix
inequality.

Lemma 3.5. Let A and B be real symmetric matrices. Assume that A is nonnegative
definite, i.e., A � 0. Then

(trAB)2 � tr(ABB) trA:

This follows from the Schwarz inequality�
tr(tab)

�2
� trt aa trt bb

for general real square matrices a, b by setting a = A1/2, b = A1/2B , where ta denotes
the transpose of a.

Formal proof of Lemma 3.4. We write (3-1) in the form of (1-8) with F = F (p;X).
Pretending that everything is smooth, we differentiate (1-8) in xk to get

ukt +

NX
`=1

@F

@p`

ukl +

NX
i;j=1

@F

@Xij

ukij = rk ;
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where we use a shorthand notation uk = @xk
u, uk` = @xk

@x`
u and so on. We multiply

uk and add from 1 to N to get differential inequality for w =
PN

k=1 u
2
k
/2 of the form

wt +

NX
`=1

@F

@p`

w` +

NX
`;i;j=1

@F

@Xij

(wij � uj`ui`) = rr � ru:

We set

aij = �
@F

@Xij

= aM (�p)
@2


@pi@pj

(�p) with p = ru:

By Lemma 3.5 we observe that

NX
i;j;`

aijuj`ui` �

0@X
i;j

aijuij

1A2

/
X

i

ai i �

0@X
i;j

aijuij

1A2

/A

with some constant A > 0 independent of p since
P

i ai i � A. We now obtain

wt +
X

`

@F

@p`

w` �
X
i;j

aijwij +

0@X
i;j

aijuij

1A2

/A � rr � ru:

Since the equation (1-8) is quasilinear, we observe thatX
i;j

aijuij = ut � �M (�ru) � r:

Since jut j � c and �M (p) � m0jpj with some constant m0 > 0, we see that0@X
i;j

aijuij

1A2

� (m0jruj � c)2 �
m0

2
jruj

2
� c2 if m0jruj > c:

Let ˇ0 be the largest zero of�m0

2
ˇ2

� c2
�
/A � krrkL1(RN )ˇ = 0:

We thus conclude that

wt +
X

`

@F

@p`

w` �
X
i;j

aijwij � 0 if jruj � max (ˇ0; c/m0) =: ˇ1:
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By the comparison principle (assuming that the space infinity is well controlled), we ob-
serve that w � ˇ2

1/2. We now obtain the desired bound K = ˇ1 at least formally.
To realize the idea, we fix time and approximate the equation so that the singularity

near ru = 0 zero is removed and that the problem is uniformly elliptic to get a smooth
solution. We have skipped all this procedure and have left the details to Y. Giga, Mitake,
Ohtsuka, and Tran [n.d.].

3.4 Existence of asymptotic speed. We are in position to prove the existence of asymp-
totic speed (Theorem 1.2). For this purpose, we check the motion of the top. We set

m(t) = supx2RN u(x; t):

Lemma 3.6. Assume the same hypothesis of Theorem 1.2. Then m(t) is subadditive and
R := limr!1m(t)/t exists and equals inft>0m(t)/t with R 2 [0;1).

Proof. Since v(x; t) = us(x; t)�m(s) is a subsolution of (3-1) with us(x; t) = u(x; t+s)

for s > 0 and since v(x; 0) � u(x; s)�m(t) � 0 = u(x; 0), by the comparison principle
we see that v(x; t) � u(x; t) in RN � (0;1). Take sup in both sides in x to get

m(t + s) �m(s) � m(t)

which implies the subadditivity. The other assertion follows by Fekete’s lemma (see e.g.
Barles [2013, p. 95] for the proof) for a subadditive function.

In this argument, we do not use Lipschitz bound so Lemma 3.6 is still valid for contin-
uous r . Also it applies to the case of crystalline.

Proof of Theorem 1.2. Since u � 0, if R = 0 in Lemma 3.6, the convergence

R = lim
t!1

u(x; t)/t

immediately follows with R = 0. We may assume that R > 0.
It suffices to prove that for a given ball B and " > 0 there exists T such that

u(x; t)/t � R � " for t > T; x 2 B:

Wemay assume that B includes supp r , the support of r . Assume that xt is the maximizer
ofu(x; t), i.e., u(xt ; t) = m(t). Since the support ofu is contained in some ball depending
only on t0 > 0 for t 2 (0; t0), the existence of xt is trivial. By a Lipschitz bound in
Equation (3-4), we see that

u(x; t)

t
�
u(x; t) � u(xt ; t)

t
+
m(t)

t
� �K

jx � xt j

t
+
m(t)

t
:
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If we admit that xt is in the convex hull of supp r as stated in the next lemma, we take T
large such thatm(t)/t � R� "/2 for t > T and 2K�1/T < "/2 to get u(x; t)/t � R� "

for t > T , x 2 B�1
. Note that almost the same argument is found in the proof of Barles

[ibid., Theorem 10.2].

Lemma 3.7. Assume the same hypotheses of Theorem 1.2. Let S denote the convex hull
of supp r . Then maxS u(�; t) � supSc u(�; t), where Sc denotes the complement of S in
RN . In particular, xt 2 S .

This is nontrivial because xt may not be a maximum point of r which is quite different
from the first-order case. Such a difference essentially comes from the monotonicity of
the geometric flow in the first-order case which determines the way of spreading. To see
that xt may not be a maximum point of r for the second-order case, it suffices to consider
r =

�
1B�1 (0)

+ 1
2
1B�2 (q)

�
� �" in R2 for isotropic case a = � = 1, 
(p) = jpj = M (p)

with �1 < �� � ", 1 = �� < �2 < 2� ", " 2 (0; 1) and jqj = 3. From the observation for
radial case the effect of 1B�1 (0)

will eventually negligible for large time and the maximum
is taken in B�2

(q). Moreover, supSc u � infS u may not hold.

Proof of Lemma 3.7. We set that c(t) = max@S u(�; t) and

w(x; t) = (c(t) � c0(t)�(x)/�)+ ; x 2 Sc ; t � 0

with
�(x) = dWM

(x; S) := inf fWM (x � y) j y 2 Sg:

Formally, it is clear that w solves ut � �M (�ru) = 0 in Sc � (0;1) with w = c(t)

on @S provided that the time derivative c0 � 0. This can be proved rigorously as in
Proposition 2.1 and Proposition 2.2. Since ut � 0, we see that c0 � 0. Since S is convex,
so is �. Thus w is a viscosity supersolution of (1-7) in Sc � (0;1). By a comparison
principle (see e.g. Y. Giga [2006]), we see that u � w in Sc � (0;1). This yields the
desired result.

4 Asymptotic profile

4.1 Limit equations. We shall prove Theorem 1.4 in the second-order case. A stronger
result for the first-order model is stated as Theorem 2.3.

Proof of Theorem 1.4. As in the first-order case, we may assume that the origin is con-
tained in the interior of supp r . As in the first-order case, u�(x; t) = u(�x; �t)/� has uni-
form Lipschitz bound (Lemmas 3.3, 3.4) in space-time, for each subsequence of � ! 1
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there is a converges subsequence u� and a limit v such that u�j ! v uniformly. More-
over, by the stability of viscosity solution v must solve (2-3) outside the origin. Note that
the second-order term disappears. At the origin by Theorem 1.2

u�(0; �t)/� ! Rt as � ! 1

locally uniformly in t . Thus v(0; t) = Rt . Since it is not difficult to show that

w(x; t) = R (t �WM (x))+

is the unique Lipschitz solution of (2-3) outside the origin with the Dirichlet boundary
condition w(0; t) = Rt , we conclude that v = w and the convergence becomes full
convergence. The proof is now complete.

4.2 Case of intermediate speed. Note that our limit function satisfies (2-3) but it is
not an envelope solution if R < c. Our Theorem 1.3 actually shows that there is an
intermediate case.

Proof of Theorem 1.3. We know by Y. Giga, Mitake, and Tran [2016] that there is an
intermediate case for the maximal solution of

(4-1) ut � jruj (div (ru/jruj) + 1) = c1E`

ifE` � R2 is a square of edge length 2`with ` 2

�
1/

p
2; 1

�
. For given d in Theorem 2.3,

we take " > 0 small so that 1E`1
� r" � 1E`2

so that `2 < d < `1 and `i 2�
1/

p
2; 1

�
(i = 1; 2). Let ui be themaximal solution of (4-1) with initial data ui jt=0 = 0

and ` = `i (i = 1; 2). We know lim supt!1 u1/t � c1 < c, lim inft!1 u2/t � c2 > 0

by Y. Giga, Mitake, and Tran [ibid.]. By comparison, u1 � u � u2 thus c2 � R" � c1
for sufficiently small ".

4.3 Asymptotic profile of large level set. We shall give a simple proof for
Theorem 1.6 based on Theorem 1.4. Let fEt gt�0 be an increasing family of bounded
closed sets which exhausts RN , i.e., for any compact set K there is t such that K � Et .
If fEt g is exhaustive,

q(x;E0) = inf ft � 0 j x 2 Et g :

is well defined for all x 2 RN . It is continuous if Et is continuous in t in Hausdorff
distance sense and strictly monotone in the sense that Et � infEs for s > t � 0.

For a given bounded closed set E0, let St be a level-set flow of (1-4) starting from
S0 = @E0. As is in Y. Giga [2006], we say that the open set Dt enclosed by St is called
an open evolution while Et = Dt [ St is called a closed evolution starting, respectively,
D0 and E0.
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Lemma 4.1. LetE0 = �W
 with � > ��(= a(N �1)/�). LetEt be the closed evolution
of (1-4) starting from E0. Then the function w�(x; t) = (t � q(x))+ with q = q(x;E0)

is a viscosity solution of (1-8) with r = 1E0
and wjt=0 = 0.

Proof. It is easy to see that w is a viscosity solution of (1-8) once q is a well-defined
continuous function. Since initially E0 � infEs for s > 0, the strict monotonicity Et1 �

intEt2 for t1 < t2 is clear by comparison. Upper semicontinuity of Et is trivial and left
lower semicontinuity follows from a general theory Y. Giga [ibid., Theorem 4.5.5]. The
right lower semicontinuity follows from the monotonicity, so Et is continuous in t in the
Hausdorff distance sense.

To show thatEt is exhaustive, we compare with a special solution of V = m0
(aH
 +

�) such that a constant m0 > 0 is taken so thatM (p) � m0
(p) for p 2 RN . Since this
equation has a self-similar growing solution (see Soner [1993], Gurtin [1993]) of the form
�(t)W
 with �(t) ! 1 as t ! 0 and since such a solution is a subsolution of of (1-4) in
the level-set sense, by comparison fEt g is exhaustive.

Proof of Theorem 1.6. We shall prove that

limt!1 q(tx)/t = WM (x)

locally uniformly in x 2 RN . There is a Lipschitz function r such that 0 � r � 1 and the
set fr = 1g equals �0W
 , �0 > ��, �0 < � and supp r � �W
 . By comparison, it is clear
that

w�0(x; t) � u(x; t) � w�(x; t);

where u is the solution of (3-1) with zero initial data. The estimate w�0 � u implies that
the asymptotic speed of u must be one. By Theorem 1.4 and u � w� , we see that

limt!1 u(tx; t)/t = (1 �WM (x)/�)+ � (1 � lim sup�
t!1q(tx)/t)+ ;

where lim sup� is a relaxed limit, i.e., it is defined as

lim sup�
t!1f (t; x) = limt!1 sup ff (s; y) j s � t; jy � xj � 1/tg:

This in particular implies that

(4-2) lim sup�
t!1q(tx)/t � WM (x)/� for x satisfying WM (x) � 1:

The other estimate is easy. It is easy to see that (�t + ˇ)@WM with ˇ > 0 is a level-set
supersolution of (1-4) (which is a solution of (1-2)). We take ˇ large enough so that ˇWM

includes �W
 . By comparison, Et � (�t + ˇ)WM since E0 = �W
 . This implies

lim inf�t!1q(tx)/t � WM (x)/�;
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where lim inf�t!1 f = � lim sup�
t!1(�f ). This implies limt!1 q(tx)/t =

WM (x)/� locally uniformly since WM (x) is positively homogeneous of degree one.
The estimate (4-2) implies that for any " > 0

(4-3) �WM;" � t�1Dt

for sufficiently large t , where WM;" =
˚
x 2 WM j dist(x;Wc

M ) > "
	
. Note that there is

no fattening in this setting (1-8) so that intEt = Dt . The estimate Et � (�t + ˇ)WM

implies

(4-4) t�1Et � �W"
M

for sufficiently large t , where W"
M = fx 2 Rn j dist(x;WM ) < "g.

For general Γ0, we compare with �W
 and �0W
 so that �W
 � Γ0 or Γ0 encloses
�0W
 for a suitable choice of �; �0 > ��. The desired results like (4-3) and (4-4) for
this initial data follows from comparison principle and behavior of solutions starting from
�W
 or �0W
 .

Remark 4.2. In Ishii, Pires, and Souganidis [1999, Theorem 6.1], a more general equa-
tion like

V = v1(n;A) + �M (n) � > 0;M > 0

is handled under the assumptions that v1 is monotone nondecreasing in the second funda-
mental form A in the direction of n and positively homogeneous of degree one in A, i.e.,
v1(n �A) = �v1(n;A), � > 0 not necessarily linear. This case can be handled in our
setting. The crucial step is to obtain a Lipschitz bound where we have used

�
X
i;j

@F

@Xij

Xij = ut � �M (�ru) � r:

Fortunately, this equality still holds if v1 satisfies the Euler equation, i.e.,
P

i
@f
@pi
pi = f

for homogeneous functions.

5 Unscaled asymptotic profile

5.1 Large time convergence of a solution. We next try to find an unscaled asymptotic
profile in the sense that we seek a function w such that for any ball B

(5-1) supx2B ju(x; t) �Rt � w(x)j ! 0;

as t ! 1. Here, (w;R) satisfies a stationary problem R + F (rw;r2w) = r(x) in Rn.
We emphasize here that, in general, solutions to this stationary problem are not unique
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even up to additive constants. See examples in Mitake and Tran [2017, Chapter 6] for
instance. Therefore, the convergence (5-1) is not trivial in general. Such a problem is
well studied in the first order model. It was started by Namah and Roquejoffre [1999] and
Fathi [1998]. The problem is especially well studied for the Hamilton-Jacobi equations
ut +H (x;ru) = 0 for convex HamiltonianH in a periodic setting. For RN setting, see
the work of H. Ishii [2008]. These results are based on approach by dynamical systems.
There is a PDE approach by Barles and Souganidis [2000] which covers some class of non
convex Hamiltonian. However, for the second-order problems less is known especially
parabolicity is degenerated. Recently, nonlinear adjoint method introduced by L. C. Evans
[2010] is adjusted to apply such a kind of problems of large time behavior by Cagnetti,
Gomes, Mitake, and Tran [2015]. This method allows some degenerate second order term
but it does not apply to our second model because the degeneracy depends on a solution.
The reader is referred to a recent nice survey by Mitake and Tran [2017] for more details
and references.

For the solutionu to the initial value problem of (3-1), what we know is thatu(x; t)�Rt
converges locally uniformly as t ! 1 to some function w by taking a subsequence be-
cause of Lipschitz bound. Moreover,w solvesR+F (rw;r2w) = r(x). However, such
an equation is not well studied even under periodic setting. Therefore, the full convergence
(5-1) is not yet known.

We finally point out that the asymptotic speed R is independent of the choice of initial
data but the profile may depend on the initial data in a nonlinear way. Therefore, a key
question here could be how w depends on u0. For the first order case with a convex
Hamiltonian, a representation formula for w is given by Davini and Siconolfi [2006],
where the values of initial data on the Aubry set and the infimum stability of viscosity
solutions essentially play a role. In second order case, this question is rather open even in
case when the equation is linear in r2w. Also, in first order case, if the Hamiltonian is
non-convex, then it is hard to study the structure of the above stationary problem and it is
rather open, as the weak KAM theory does not work well under such situation.

5.2 Some open problems. We conclude this paper to give a couple of open problems.

Problem 1. Show the full convergence (5-1) even if the equation is isotropic like

ut � (div (ru/jruj) + 1) jruj = r(x):

Study the uniqueness set for equation R+ F (rw;r2w) = r(x), the dependence of w in
(5-1) on the initial data u0 in the case of second order equations.

Problem 2. Show the existence of R when r is discontinuous. Study how R depends on r
both qualitatively and quantitively.
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In crystal growth problems, it is important to know how the growth rate depends on
configuration of sources, i.e., geometric configuration of E when r = c(x)1E with some
positive function depending on x; see Ohtsuka, Tsai, and Y. Giga [2015], Ohtsuka, Tsai,
and Y. Giga [2018] for spiral growth. Several examples are studied in Y. Giga, Mitake,
Ohtsuka, and Tran [n.d.].

Problem 3. How regular is the solution u when r � 0 is regular and initial data is zero?

These problems are very natural goals to derive unscaled asymptotic profile. The next
problems are related to crystalline flow.

Problem 4 (Crystalline flow). Prove that if uj is a viscosity solution of (3-1) with crys-
talline 
 , so is its locally uniform limit u as j ! 1.

This is only proved for N = 2 in M.-H. Giga and Y. Giga [2001]. The problem for
N � 3 is that definition in Y. Giga and Požár [2016], Y. Giga and Požár [2018] is not
stable under such a limiting procedure. Once this is settled, an explicit solution given in
Theorem 3.2 is also the maximal viscosity solution for crystalline case when N � 3.

Problem 5. It seems that the spatially Lipschitz bound should be true for crystalline
spreading law. Extend Lemma 3.4 to crystalline case.

If so, this would yield the existence of the asymptotic speed for crystalline case.
We conclude this paper by pointing out that there are several potential applications

of birth and spread models to other fields not limited in the field of crystal growth by
considering various spreading laws. In this paper, we consider the spreading law V =

M (n)(aH
 + �) but it is interesting to consider more general spreading law as V =

g(n;H
 ). For example, in Y. Giga, Mitake, Ohtsuka, and Tran [n.d.] formation of volcano
profile is explained by taking inverse curvature like flow as the spreading law. It is worth
to study above problems in these more general setting.

Acknowledgments. The author is grateful to Professor Hiroyoshi Mitake for valuable
comments.
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Abstract

I will review the setting and some of the recent results in the field of singular
stochastic partial differential equations (SSPDEs). Since Hairer’s invention of regular-
ity structures this field has experienced a rapid development. SSPDEs are non-linear
equations with random and irregular source terms which make them ill-posed in classi-
cal sense. Their study involves a tight interplay between stochastic analysis, analysis
of PDEs (including paradifferential calculus) and algebra.

1 Introduction

This contribution aims to give an overview of the recent developments at the interface
between stochastic analysis and PDE theory where a series of new tools have been put in
place to analyse certain classes of stochastic PDEs (SPDEs) whose rigorous understand-
ing was, until recently, very limited. Typically these equations are non-linear and the
randomness quite ill behaved from the point of view of standard functional spaces. In the
following I will use the generic term singular stochastic PDEs (SSPDEs) to denote these
equations.

The interplay between the algebraic structure of the equations, the irregular behaviour
of the randomness and the weak topologies needed to handle such behaviour provide a
fertile ground where new point of views have been developed and old tools put into work
in new ways Hairer [2014], Gubinelli, Imkeller, and Perkowski [2015], Otto and Weber
[2016], Kupiainen [2016], Bailleul and Bernicot [2016a], Bruned, Hairer, and Zambotti
[2016], Chandra and Hairer [2016], and Bruned, Chandra, Chevyrev, and Hairer [2017].

MSC2010: primary 60H15; secondary 35S50.
Keywords: Singular SPDEs, Rough paths, paraproducts, regularity structures, Kardar-Parisi-Zhang equation,
stochastic quantisation.
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2 Ways of describing a function

2.1 From ODEs to rough differential equations. The simpler setting we can discuss
is that of an ordinary differential equation perturbed by a random function in a non-linear
way. Consider the Cauchy problem for y : R+ ! Rd ,

(1)
�
ẏ(t) = "1/2f (y(t))�(t); t > 0;

y(0) = y0 2 Rd

where the dot denotes time derivative, f : Rd ! L(Rn;Rd ) is a family of smooth vector
fields in Rd (L(Rn;Rd ) are the linear maps form Rn to Rd ), � : R+ ! Rn is a smooth
centered Rm–valued Gaussian random function and " > 0 a small parameter.

If we are interested in the "! 0 limit of this equation we would better rescale it to see
some interesting dynamics going on. In term of the rescaled variable y"(t) = y(t/") the
equation has the form

(2)
�
ẏ"(t) = f (y"(t))�"(t); t > 0;

y"(0) = y0 2 Rd

where �"(t) = "�1/2�(t/"). If we assume that � is stationary, has fast decaying corre-
lations (e.g. exponentially fast) and independent components, then we can prove that �"

converges in law to a white noise � , that is the Gaussian random distribution with covari-
ance given by

E[�(t)�(s)] = ı(t � s):

This convergence takes place as random elements of the Hölder–Besov space1 C˛ =

B˛
1;1 for any ˛ < �1/2. Alternatively, and more in line with classical probability theory,

one could look at the integral function x"(t) =
R t

0 �"(s)ds and conclude that it converges
in the Hölder topology C˛+1 to the Brownian motion.

This procedure is reminiscent of homogenisation E [2011] but while there there are
essentially only two (or a finite number) of scales which play a fundamental role here all
the scales remain coupled also after the passage to the limit. Indeed one would now like
to argue that the solution y" of Equation (2) converges to the solution z of the ODE

(3)
�
ż(t) = f (z(t))�(t); t > 0;

z(0) = y0 2 Rd :

where � is the white noise on R. However we quickly realise that this equation is not
well posed. Indeed we cannot hope better regularity for z than C1+˛ (e.g. in the simple

1The choice of this space is not canonical for this convergence in law but will fit our intended applications,
other choices do not lead to substantial improvements in the arguments below.
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setting where f is constant) and in this situation the pointwise product of f (z) (still a
C1+˛ function) and the distribution � of regularity C˛ is not a well defined operation.

Remark 2.1. That this is not only a technical difficulty can be understood easily by con-
sidering the following example. Take f"(t) = "1/2 sin(t/") and g"(t) = "�1/2 sin(t/").
Then for any ˛ < �1/2, f" ! 0 in C˛+1 and g" ! 0 in C˛ but h"(t) := f"(t)g"(t) =

sin2(t/") = 1 � cos(2t/")/2 and h" ! 1 in C2˛+1. We see that the product cannot
be extended continuously in C˛+1 � C˛ as we would need to have a robust meaning for
Equation (3) in the framework of Hölder–Besov spaces.

This difficulty has been realised quite early in stochastic analysis and is at the origin of
the invention of stochastic calculus by Itō (and the independent work of Dœblin) and has
shaped ever since the study of stochastic processes, see e.g. Watanabe and Ikeda [1981]
and Revuz and Yor [2004]. Itō’s approach give a meaning to (3) by prescribing a certain
preferred approximation scheme (the forward Riemman sum) to the integral version of
the r.h.s. of the equation. The resulting Itō integral comes with estimates which are at the
core of stochastic integration theory. However the Itō integral in not the right description
for the limiting Equation (3). Indeed Wong and Zakai proved that the limit is given by
another interpretation of the product, that provided by the Stratonovich integral.

2.2 Reconstruction of a coherent germ. From a strictly analytic viewpoint, without
resorting to probabilistic techniques, Equation (3) should stand for a description of the pos-
sible limit points of the sequence (y")". Compactness arguments should provide methods
to prove limits exists along subsequence and under nice conditions we would hope to be
able to prove that there is only such a limit point, settling the problem of the convergence
of the whole sequence. This is the standard approach. Usually in PDE theory some refined
methods are put in place in order to establish some sort of compactness (e.g. convexity,
maximum principle, concentrated or compensated compactness, Young measures), others
maybe are needed to show uniqueness (e.g. entropy solutions, energy estimates, viscosity
solutions), see e.g. Evans [1990]. But here we are stuck at a more primitive level, we do
not have an effective description to start with, and this inability comes (as is fast to realise)
with the inability to obtain useful and general apriori bounds for the compactness step.

With the aim of identifying such a description we could think of constructing a good
local approximations of the function z. Around a given time s > 0 we imagine that z has
the behaviour obtained by freezing the vectorfield f at that given time: write the ODE in
the weak form and assume that for any smooth, compactly supported ' : R+ ! R we
have

(4)
ˇ̌̌̌Z

R
'�

s (t)(ż(t) � f (z(s))�(t))dt
ˇ̌̌̌

6 �
N (')
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where '�
s (t) := ��1'((t � s)/�) is a rescaled and centred version of ',N ('); 
 > 0 con-

stants not depending on � or s (we let z(t) = y0 and �(t) = 0 if t < 0). If � is a smooth
function then this bound implies Equation (3) since '� ! ı as �! 0, so this description
of z is as detailed as the ODE. On the other hand it has the fundamental advantage of
having decoupled the product f (z(t))�(t) into f (z(s))�(t). Equation (4) makes sense
even when � is a distribution and in particular in the case of the white noise we are look-
ing after. That this description is quite powerful is witnessed by Hairer’s reconstruction
theorem Hairer [2014].

Theorem 2.2 (Hairer’s reconstruction). Let 
 > 0, ˛ 2 R and G = (Gx)x2Rd be a
family of distributions in S0(Rd ) such that there exists a constant L(G) and a constant
N (') for which

(5) sup
x
jGx('

�
x )j 6 ��˛N (')L(G); � 2 (0; 1)

(6) jGy('
�
x ) �Gx('

�
x )j 6 �
N (')L(G)P (jx � yj/�); � 2 (0; 1)

where P is a continuous function with at most polynomial growth. Then there exists a
universal constant C
 and a unique distribution g = R(G) 2 S0(Rd ), the reconstruction
of G, such that

jg('�
x ) �Gx('

�
x )j 6 C
�


N (')L(G); � 2 (0; 1):

For the sake of the exposition I simplified a bit the setting and gave a slightly differ-
ent formulation of this results which can be appreciated independently of other details of
Hairer’s theory of regularity structures Hairer [ibid.]. We give here an idea of proof, with-
out pretension to make it fully rigorous. We call the family G a germ and the quantity
in the l.h.s. of Equation (6) the coherence of the germ G. The theorem states a relation
between coherent germs and distributions.

Proof. (sketch) Uniqueness. Assume g; g̃ are two possible reconstructions of G, then

jg('�
x ) � g̃('

�
x )j . �
 :

For any given test function 2 S(Rd )we let T� (y) =
R
 (x)'�

x (y)dx. Then T� !

 in S(Rd ) and g = g̃ since

j(g � g̃)( )j = lim
�!0
j(g � g̃)(T� )j . lim inf

�!0

Z
jg('�

x ) � g̃('
�
x )jj (x)jdx = 0:
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Existence. We follow an idea of Otto and Weber Otto and Weber [2016]. Introduce the
heat semigroup to perform a multiscale decomposition. Let Ti = P2�i where (Pt )t is the
heat kernel, then Ti+1Ti+1 = Ti for i > 0. Let

RNG(x) :=

Z
y;z

TN (x � y)TN (y � z)Gy(z);

where
R

y;z
denotes the integral in (y; z) over Rd � Rd . Note that if Gy(x) = f (x)

for some Schwartz distribution f 2 S0(Rd ) then RNG(x) =
R

y;z
TN (x � y)TN (y �

z)f (z) = f (TN+1(x � �)) ! f (x) in S0(Rd ). In general, in order to control the limit
R = limN !1 RN for more general germs we look at

(Rn+1G �RnG)(x) := AnG(x) + BnG(x);

where

AnG(x) :=
R

y;z
(Tn+1 � Tn)(x � y)(Tn + Tn+1)(y � z)Gy(z);

BnG(x) :=
R

y;z;r
Tn+1(x � r)Tn+1(r � y)Tn+1(y � z)(Gy(z) �Gr(z)):

Using (6) the terms BnG(x) can be estimated by jBnG(x)j . 2�n
N (')L(G), and they
can be resummed over n since 
 > 0. The terms AnG are localized at scale 2�n thanks to
the factor (Tn+1�Tn) and they behave as “orthogonal” contributions: once tested agains a
test function they can be estimated as jAnG( )j . k(Tn+1�Tn) kL12�˛nN (')L(G),
thanks to the Equation (5). From we deduce thatX

n

jAnG( )j . N (')L(G)
X

n

k(Tn+1 � Tn) kL12�˛n . N (')L(G)k kB˛
1;1
;

where B˛
1;1 is the Besov space with norm k kB˛

1;1
=

P
n>1 2

�˛nk∆n kL1 . From these
observations is easy to deduce that RNG ! RG as a distribution. In order to identify
RG we observe that, for fixed L > 0,

RLG(x) �RLGh(x) =

Z
y;z

TL(x � y)TL(y � z)(Gy(z) �Gh(z));

and if jx � hj ' 2�L we have jRLG(x) �RLGh(x)j . 2�L
 , while

RG(x) �Gh(x) = R(G �Gh)(x)

= RL(G �Gh)(x) +
X
n>L

An(G �Gh)(x) +
X
n>L

BnG(x)

It is not difficult to estimate jAn(G�Gh)( 
2�L

h
)j . 2�n
 and finally deduce that j(RG�

Gh)( 
2�L

h
)j . 2�L
 .
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Let us go back to our equation. Let Gs(t) = f (z(s))�(t) be our germ and consider its
coherence:

Gu('
�
s )�Gs('

�
s ) =

Z
t

'�(t�s)(f (z(u))�f (z(s)))�(t) = (f (z(u))�f (z(s)))�('�
s ):

Assuming that z 2 C˛+1 and that � 2 C˛ we have, for some polynomially growing P ,

jGu('
�
s ) �Gs('

�
s )j . �2˛+1

kzkC˛+1k�kC˛P ((u � s)/�):

We see that if 
 = 2˛�1 > 0we can meet the conditions of Theorem 2.2. In this case the
ODE can be replaced by the formulation (4) and the resulting theory coincides with the
theory of differential equations build upon the Young integral Young [1936] and P. K. Friz
and Hairer [2014].

This is not yet enough for us. White noise restrict the allowed values for ˛ in the range
˛ < 1/2 and in this case 2˛ � 1 < 0. In this case the description is not precise enough to
uniquely determine the distribution ż(t) using only the assumption z 2 C˛ . Going back
to the ODE and thinking about a Taylor expansion for the r.h.s. we come up with a refined
description of the solution given by the new germ:

Gs(t) = f (z(s))�(t) + f 0(z(s))f (z(s))

Z t

s

�(u)du;

where we denoted f 0 the gradient of f . Its coherence is given by (we let f2(z) =

f 0(z)f (z))

Gu('
�
s ) �Gs('

�
s ) =

�
f (z(u)) � f (z(s)) � f2(z(s))

R u

s
�(r)dr

�
�('�

s )

+[f2(z(u)) � f2(z(s))]
hR

t
'�(t � s)

�R t

s
�(r)dr

�
�(t)

i
:

In order to meet the conditions of the reconstruction theorem we can require

(7)
ˇ̌̌̌Z

t

'�(t � s)

�Z t

s

�(r)dr
�
�(t)

ˇ̌̌̌
. �2˛+1;

and

(8)
ˇ̌̌̌
f (z(u)) � f (z(s)) � f2(z(s))

Z u

s

�(r)dr
ˇ̌̌̌

. �2˛+2;

from which we see that jGu('
�
s ) � Gs('

�
s )j . �3˛+2. Provided ˛ > 3/2 we can re-

construct in a unique way a distribution g from this germ and verify the equation ż = g
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(at least in the weak sense). Equation (7) is a condition on �, Equation (8) one on z. In
particular, by Taylor expansion, this latter holds if the bound

(9)
ˇ̌̌̌
z(u) � z(s) � f (z(s))

Z u

s

�(r)dr
ˇ̌̌̌

. �2˛+2;

holds for z. This is a refinement of the Hölder assumption z 2 C˛+1. Building on these
basic observation is possible to develop a complete well–posedness theory showing that,
provided ˛ > �3/2 there is a continuous map Φ : Ξ 7! z taking the germ

Ξs(t) = (Ξ
(1)
s (t);Ξ

(2)
s (t)) =

�
�(t);

�Z t

s

�(r)dr
�
�(t)

�
satisfying jΞ(1)

s ('�
s )j . �˛ and jΞ(2)

s ('�
s )j . �2˛+1 to the unique Hölder function z

satisfying the relationˇ̌̌̌Z
R
'�

s (t)

�
ż(t) � f (z(s))�(t) � f2(z(s))

Z t

s

�(r)dr
�
dt

ˇ̌̌̌
. �3˛+2:

The original difficulties are here not completely solved, indeed the germΞ(2) is not apriori
well defined given that it contains a pointwise product between the distribution � and the
function

R �

s
�(r)dr . However in this new perspective we have accomplished a major step:

restricting the difficulty to a well defined quantity which can be analysed from the point of
view of stochastic analysis without any reference to the ODE problem and its non-linearity.

The map Φ is called Itō–Lyons map P. K. Friz and Hairer [2014]. Its regularity and
the fact that it provides an extension of the solution map for the classical ODE allows to
control the limit of the Equation (2) as "! 0. Indeed providedwe can show that the germ

(10) Ξ"
s(t) =

�
�"(t);

�Z t

s

�"(r)dr
�
�(t)

�
converges in the appropriate topology to Ξ then we can conclude that y" = Φ(Ξ") !

Φ(Ξ) = z.
In this generalisation however there is a catch. The limiting problem is now defined in

terms of amore complex objectΞ than the original white noise �. Any two sequences (�")"

and (�̃")" approximating � and lifted into germs Ξ" and Ξ̃" can converge to two limits Ξ
and Ξ̃ for whichΞ(1) = Ξ̃(1) = � butΞ(2) ¤ Ξ̃(2). In this case the corresponding solutions
y" and ỹ" to Equation (2) will in general converge to different limits z = Φ(Ξ); z̃ = Φ(Ξ̃).

2.3 From ODEs to PDEs. We have given an outlook of the use of Hairer’s reconstruc-
tion theorem in the analysis of a controlled ODE. The Itō–Lyons map has been invented
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and initially studied by Lyons T. Lyons [1998], T. Lyons and Qian [2002], T. J. Lyons,
Caruana, and Lévy [2007], and P. K. Friz and Hairer [2014] and is at the base of the the-
ory of rough paths (RPT). Lyons’ theory goes far beyond to the limit ˛ > �3/2 down to
any ˛ > �1. This full range corresponds to the subcritical regime where scaling dictates
that the noise is a perturbation of the first order differential operator @t . The reformulation
given here is essentially that introduced in the context of RPT by Davie Davie [2007] and
here reshaped in the language of Theorem 2.2. Functions satisfying conditions like eq. (9)
are called controlled paths in RPT and were introduced in Gubinelli [2004] in order to pro-
vide a nice analytical setting for a fixed point argument leading to the Itō–Lyons map and
moreover to decouple the reconstruction of germs from the construction of the fixpoint. In
the case of ODEs one can avoid the use of the reconstruction theorem by using the sewing
lemma Gubinelli [2004], Feyel and De La Pradelle [2006], and Feyel, de La Pradelle, and
Mokobodzki [2008]:

Lemma 2.3 (Sewing lemma). Let 
 > 0. Let G : R+ �R+ ! R a function such that

jG(s; t) �G(s; u) �G(u; t)j 6 LG jt � sj
1+
 ; s 6 u 6 t:

for some LG > 0. Then there exists a unique function g : R+ ! R such that

jg(t) � g(s) �G(s; t)j 6 C
LG jt � sj
1+


for a universal constant C
 .

Sewing and reconstruction are not equivalent. The sewing lemma combines in one
operation the reconstruction operated by Theorem 2.2 and the integration needed to pass
from ż and z.

Hairer’s regularity structure theory Hairer [2014] and P. K. Friz and Hairer [2014]
builds over Theorem 2.2 a vast generalisation of Lyons’ rough path theory and provides
a solution theory for a large class of subcritical parabolic SPDEs. A recent series of
three other papers Bruned, Hairer, and Zambotti [2016], Chandra and Hairer [2016], and
Bruned, Chandra, Chevyrev, and Hairer [2017] complete the construction of this theory
by “automatizing” the lifting of all the structures needed to deal with the various aspects of
the solution theory for a generic singular SPDE: the construction of the appropriate model
and regularity structure, the stochastic estimates and the identification of a suitable class
of regular equations which possess limits (i.e. that can be renormalized).

2.4 Paraproducts and the paracontrolled Ansatz. In Gubinelli, Imkeller, and Per-
kowski [2015] an alternative approach has been introduced to handle the difficult product



A PANORAMA OF SINGULAR SPDES 2337

in (3) by decoupling it according to a multiscale decomposition. Write

f (z(t))�(t) =
X

n;m>�1

Z
s;r

Kn(t � s)Km(t � r)f (z(s))�(r);

where we let (Kn)n>�1 to be kernels of Littlewood–Paley (LP) type which provide a res-
olution of a given distribution into “blocks” with specific frequency localization. See Ba-
houri, Chemin, and Danchin [2011] and Gubinelli and Perkowski [2015] for details on LP
decomposition, Besov spaces and for the paraproduct estimates discussed below. Writing
∆n for the operator of convolution with the kernel Kn we can decompose the product
of two distributions g; h as above into three contributions according to the case where
n 6 m � 1, jn �mj 6 1 and n > m+ 1:

gh = g < h+ g � h+ g = h;

where we let

g < h = h= g :=
X

n<m�1

(∆ng)(∆nh); g � h :=
X

jn�mj61

(∆ng)(∆nh):

These operators are well behaved in several function spaces. For illustrative purpose we
will use them mainly in the Hölder–Besov spaces C˛ = B˛

1;1 but other choices are
possible. The LP decomposition can be chosen in such a way that these operators can be
extended to bilinear bounded operators in Hölder–Besov spaces according to the following
estimates:

kg < hkC˛ . kgkL1khkC˛ ; ˛ 2 R;
kg < hkC˛+ˇ . kgkCˇkhkC˛ ; ˛ 2 R; ˇ < 0;

kg � hkC˛+ˇ . kgkCˇkhkC˛ ; ˛ + ˇ > 0:

We see that the resonant product g � h is defined only for functions whose sum of
regularities is positive while the paraproduct g < h is always well defined. Another key
observation is that the paraproduct does not improve the regularity of its r.h.s. while the
resonant product (when it is well defined) improves the regularity of its factor of lower
regularity.

Paraproducts and related operations were introduced by Bony and Meyer Bony [1981]
and Meyer [1981] for the use in the regularity theory of fully–nonlinear hyperbolic equa-
tion. It is not the aim of the present exposition to cover the vast literature these ideas
generated, which includes the calculus of paradifferential operators. The reader can refer
to Bahouri, Chemin, and Danchin [2011], Metivier [2008], Taylor [2000], Tao [2006], and
Alinhac and Gérard [1991] for some expositions on the results and applications of these
tools to PDEs.
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An basic result in the theory of paraproducts is Bony’s paralinearization Bony [1981],
Bahouri, Chemin, and Danchin [2011], and Gubinelli, Imkeller, and Perkowski [2015]
which in our context reads

(11) z 2 C2˛
7! Rf (z) := f (z) � f 0(z) < z 2 C2˛; ˛ > 0:

Moreover we have a commutator lemma proved in Gubinelli, Imkeller, and Perkowski
[2015].

Lemma 2.4. If ˇ + 
 + ı > 0 there exists a bounded trilinear operatorQ : Cˇ � C
 �

Cı ! C
+ı such that for smooth function g; h; l

Q(g; h; l) = (g < h) � l � g(h� l):

Going back to our ODE we can expand its r.h.s. as

ż = f (z)� = f (z) < � + f (z) = � + f (z) � �:

If we assume that � 2 C˛ and z 2 C1+˛ then f (z) < � 2 C˛ and f (z) ~ � 2 C2˛+1 (at
least when 2˛ + 1 > 0). The key idea is to perform a change of variables to encode the
heuristic that the more irregular contribution to ż comes from the paraproduct f (z) < �.
We formulate a paracontrolled Ansatz by introducing a new unknown z] 2 C2˛+2 such
that

(12) z = f (z) <X + z]; s

where X solves the equation Ẋ = �. Doing so gives

ż] = ż � f (z) < Ẋ � (@tf (z)) <X = f (z) � � + f (z) = � � (@tf (z)) <X:

From the paralinearization (11) and the commutator Lemma 2.4 follows that

f (z) � � = f 0(z)(z � �) +Q(f 0(z); z; �) +Rf (z) � �;

in the sense that the difference f (z)���f 0(z)(z��) is well defined as soon as 3˛+2 > 0.
Recalling (12) we can further simplify this expression into

f (z) � � = f 0(z)f (z)(X � �) + f 0(z)Q(f (z); X; �) + f 0(z)(z] � �)+

+Q(f 0(z); z; �) +Rf (z) � �

Finally our original ODE is transformed into the following equation for z]:

(13) ż] = f2(z)(X � �) + Ψ(z; z]; �)
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wherewe collected intoΨ all the less interesting contributionswhich arewell under control
(as the reader can check) assuming z; z]; � have regularities ˛ + 1; 2˛ + 2; ˛.

The problematic term X � � here plays the role of the term (7) in the rough path ap-
proach. The paracontrolled Ansatz (12), the role of the Equation (9). If we assume that
X � � 2 C2˛+1 (as scaling considerations and Equation (7) suggests) then Equation (13)
is a well defined differential equation (non-local, with some low order paradifferential
terms) which can be solved for z] 2 C2˛+2. Technically, in order for (13) to be an equa-
tion for z] 2 C2˛+2 we need to solve for z in (12) or to consider as unknown the system
(z; z]). Both approaches are possible provided small modifications are introduced in the
considerations above. For more details Gubinelli, Imkeller, and Perkowski [2015] and
Gubinelli and Perkowski [2015].

As a consequence we can identify the Itō–Lyons map Ψ as the map going from the
enhanced noise Ξ = (�; X � �) 2 C˛ � C2˛+1 to the solution z 2 C˛+1 via Z =

(z; z]) 2 C˛+1 � C2˛+2. As before this solution maps agrees with the solution of the
ODE whenever � is smooth and can be used to control the limit y" ! z provided we can
prove that the enhanced noise J (�") := (�"; (@

�1
t �") � �") converges in C˛ � C2˛+1 as

"! 0 (recall that the assumption 3˛ + 2 > 0 is in force here).
We record these basic relations into the following diagram:

�"
J
 ! Ξ"

Ψ
7�! Y" = (y"; y

]
") 7�! y"

"! 0
�
!

�
!

�
!

�
!

�  �[ Ξ
Ψ
7�! Z = (z; z]) 7�! z

2 2 2 2

C˛ C˛ � C2˛+1 C˛+1 � C2˛+2 C˛+1

The paracontrolled Ansatz transforms a problem of singular SPDEs into well–posed
PDE problem featuring some paradifferential operators. The major drawback is that cer-
tain equations are out of reach for this technique, essentially because we understand quite
poorly a systematic paradifferential development of generic non-linearities beyond the
first order. Higher–order paralinearization has been investigated long ago byCheminChemin
[1988a,b] and some higher–order commutators introduced in the work of Bailleul and Ber-
nicot Bailleul and Bernicot [2016b,a] but the technical advantage over regularity structures
tends to be less evident.

It should be remarked that the core of all these approaches (regularity structures, rough
paths theory or paracontrolled distributions) lies in three basic steps:

a) Transform the original equation into a well-posed analytical problem either via lift-
ing into regularity structures (that is constructing and manipulating local germs as in
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Sect. 2.2) or performing a change of variable by removing some leading order paradif-
ferential term (like in Sect. 2.4);

b) Analyze the resulting systems in terms of a finite family of basic non-linear functionals
Ξ of the given data (which could be stochastic or not), their are called, according to the
approach used, enhanced noise (in the paracontrolled approach) or model (in Hairer’s
regularity structures) or rough path (in Lyons’ RPT theory);

c) Construct the associated solution (Itō–Lyons) mapΨ and determine the relevant topolo-
gies on the enhanced noise Ξ with respect to which Ψ has nice continuity properties.

These three steps provide the analytical backbone around which other considerations can
be developed. For example, in problems related to scaling limits like those described by
Equation (2), one is led to study the probabilistic convergence of lifts Ξ" = J (�") of
smooth random fields �" to limiting enhanced noises Ξ in the appropriate topology. This
convergence will carry on to solutions of Equation (2) via the continuous solution map Ψ.

2.5 Ambiguities. Even in the situation where the approximation �" converges towards
a smooth object � but only in a very weak topology (likeC˛ in the setting described above,
with ˛ 2 (�3/2;�1/2)), it is not true that the solutions y" converge to the solution of the
ODE

ż = f (z)�:

Indeed if we assume that Ξ = lim" Ξ" exists we should have Ξ1 = � but in general
Θ = J (�) ¤ Ξ. Going back to the definition of the solution map we find out that if we
let � = Θ(2) � Ξ(2) we have y" ! z = Ψ(Ξ) where z satisfies

ż = f (z)� + f2(z)�:

A correction term appears in the formulation of the limiting problem, a relic of the limiting
procedure. This phenomenon has been studied in stochastic analysis McShane [1972] and
Sussmann [1991], in rough path theory for ODEs P. Friz and Oberhauser [2009] and P.
Friz, Gassiat, and T. Lyons [2015] but also in relation to some SPDEs Hairer and Maas
[2012]. Under certain conditions one can have � = 0 and � ¤ 0. In this case the final
result is a form of stochastic homogenisation and, from the point of view of the techniques
we discuss here, has been considered for certain SPDEs in Hairer, Pardoux, and Piatnitski
[2013].

2.6 Other approaches. Other possible frameworks for the analysis of singular SPDEs
have been developed recently. Bailleul and Bernicot Bailleul and Bernicot [2016a,b] intro-
duced a semigroup approach to paraproducts with the aim of extending the paracontrolled
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calculus to manifolds via invariant constructions. They also investigated higher order ver-
sions of the paracontrolled calculus as we already remarked. Kupiainen Kupiainen [2016]
and Kupiainen and Marcozzi [2017] introduced a renormalization group approach where
the solution is described at every scale by an effective equation which do not possess any
singularity. The main task of the analysis is to construct these effective description satisfy-
ing recursive equations. Finally Otto and Weber Otto and Weber [2016] use a semigroup
approach to decouple the singular products and identify a suitable family of stochastic
objects playing the role of enhanced noise. In their approach the necessary Schauder es-
timates are derived via an extension of the Krylov–Safanov kernel–free method and this
allows them to treat certain classes of quasi-linear equations. Following their pioneering
work Bailleul, Debussche and Hofmanová Bailleul, Debussche, and Hofmanová [2016]
used the paradifferential Ansatz to solve quasi-linear equations. A key idea of Otto and
Weber approach is the introduction of a parametric family of enhanced noises which take
into account themodulation of the parabolic regularisation effects given by the quasi-linear
nature of the equation. Transporting this idea in the paracontrolled framework Furlan and
the author Furlan and Gubinelli [2016] introduced a non–linear paraproduct and related
operator which allows to cover the results of Otto and Weber in the framework of para-
controlled distributions.

3 Weak universality

One motivation for the study of SSPDE is the phenomenon of weak universality. This
term refers to the fact that the large scale behaviour of certain classes of random PDEs
or other Markovian random fields with small non–linearities or small noise depends on
very few details of the exact model under consideration and that it can be described by
singular SPDEs. I will illustrate this phenomenon describing recent results of Hairer and
Quastel Hairer and J. Quastel [2015] on the convergence of a large class of 1+1 interface
growth models to the Kardar–Parisi–Zhang (KPZ) equation.

3.1 The Hairer–Quastel universality result. Consider a continuous growth model
Halpin-Healy and Zhang [1995] given by an height function h : R+ � R ! R solving
the equation

(14) @th = @2xh+ �F (@xh) + ı�;

where @t ; @x denote time and space derivatives, �; ı are parameters, � is a smooth space–
time Gaussian process and F an even polynomial. The various contributions in the r.h.s
accounts for various phenomena: smoothing of the surface (@2xh) (e.g. due to thermal fluc-
tuations), lateral growth mechanism (F (@xh)) and microscopic fluctuations in the growth
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rate (�). There are two interesting regimes in this equation: according to whether the
non-linearity dominates or the noise dominates the behaviour at scales of order 1:

a) Intermediate disorder regime (� = 1 and ı � 1) : the noise is small. In this case we
let " = ı2 and consider the rescaled field h̃"(t; x) = h(t/"2; x/") which satisfies

(15) @t h̃" = @2x h̃" + "
�2F ("@x h̃") + �";

where �"(t; x) = "�3/2�(t/"2; x/"). Formal Taylor expansion of the non-linear term
gives

(16) @t h̃" = @2x h̃" + "
�2F (0) +

1

2
F 00(0)(@x h̃")

2 + O("2(@x h̃")
4) + �";

b) Weak asymmetry (ı = 1 and � � 1) : the non–linearity is small. We let " = �2 and
consider h̃"(t; x) = "1/2h(t/"2; x/") which satisfies

(17) @t h̃" = @2x h̃" + "
�1F ("1/2@x h̃") + �";

where �" is define as in the intermediate disorder regime and Taylor expansion gives
now

(18) @t h̃" = @2x h̃" + "
�1F (0) +

1

2
F 00(0)(@x h̃")

2 + O("(@x h̃")
4) + �":

The parameter " has been chosen as a measure of the microscopic spatial scale. The ran-
dom field �" converges (under appropriate conditions on the covariance of �) to the space–
time white noise � = �(t; x) with covariance

E[�(t; x)�(s; y)] = ı(t � s)ı(x � y):

In both regimes and as " ! 0, one would like to argue formally that there are constant
c"; � such that the random field h"(t; x) = h̃"(t; x)� c"t converges to the solution of the
Kardar–Parisi–Zhang Kardar, Parisi, and Zhang [1986] equation

(19) @th = @2xh+
�

2
(@xh)

2 + �:

Unfortunately these heuristic considerations do not stand up to further scrutiny. First the
Taylor approximations turn out to be partially justified in the intermediate disorder regime
but not in the weak asymmetric one, second, and more importantly the KPZ equation is
strongly ill posed since the presence of the space time white noise imposes a very weak
regularity on h which makes the nonlinear term not well defined.
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3.2 KPZ universality. These problems has been open for very long time since the orig-
inal work of Kardar, Parisi and Zhang Kardar, Parisi, and Zhang [ibid.] in the ’80 where
they introduced the equation to describe the universality class of one dimensional growth
models. Their hypothesis was that a large class of models featuring the basic mechanisms
at work in Equation (14) must show characteristic universal large scale properties. This
conjecture is mathematically quite open, even if there have been recent important progress
to prove rigorously the existence of this KPZ universality class. For an introduction to
the mathematical literature the reader can consult the contribution of Quastel to the 2014
ICM J. D. Quastel [2014] or the lecture notes of Corwin Corwin [2012].

The universal object behind this universality class, the KPZ fixpoint has been described
recently by Matetski, Quastel and Remenik Matetski, J. Quastel, and Remenik [2016] via
exact formulas for its finite dimensional marginals. The KPZ Equation (19) itself does not
corresponds to this fixpoint. Kardar Parisi and Zhang introduced their equation as one of
many possible models whose large scale properties were universal. In this respect the KPZ
fixpoint is the large scale limit of the KPZ equation. Some rigorous results are available
which partially confirm this conjecture Spohn [2011], Amir, Corwin, and J. Quastel [2011],
Balázs, J. Quastel, and Seppäläinen [2011], and Borodin and Corwin [2014]. The large
scale limit of the KPZ equation should correspond to a vanishing viscosity and vanishing
noise limit, in the precise form

@tH� = �@2xH� +
1

2
(@xH�)

2 + �1/2�:

where � ! 0 J. Quastel [2012]. In this regime the function H� should converge to the
random field H described in Matetski, J. Quastel, and Remenik [2016].

Weak universality of KPZ stands for the fact that the KPZ Equation (19) itself can be
understood as a common limit to many models under the more restrictive conditions we
discussed before, namely weak asymmetry or intermediate disorder. The first mathemati-
cal result in this direction is due to Bertini and Giacomin Bertini and Giacomin [1997] in
1997. They showed that the integrated density field h" of a weakly asymmetric version
of the exclusion process on Z converges upon rescaling and appropriate recentering the
“solution” of the KPZ equation. As we already observed the KPZ equation is a singular
SPDE which is not classically well-posed. What Bertini and Giacomin really did was to
prove the convergence of the field �" = exp(h") to the unique positive solution � of the
stochastic heat equation (SHE)

(20) @t� = @2x� + ��

where the product �� is understood via Itō stochastic calculus. The SHE is a standard
SPDEwhich can be solved via standard tools (see e.g. the classic lecture notes ofWalshWalsh
[1986] for the solution theory in bounded domain). This exponential transformation to a
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linear PDE is called Hopf–Cole transformation and the convergence results of Bertini and
Giacomin justifies the fact that the correct notion of solution to the KPZ Equation (19)
should have the property that � = exp(h) satisfies the SHE, this is called the Hopf–Cole
solution.

3.3 A notion of solution for KPZ. After the Bertini and Giacomin convergence result
there were available a candidate solution (the Hopf–Cole solution) but not an equation yet!
The situation remained unclear until Hairer Hairer [2013] used the ideas and the tools of
rough path theory to formulate the KPZ equation as a well–posed SPDE. This first work
was instrumental to the development of the far reaching theory of regularity structures and
inspired the construction of alternative theories, like that of paracontrolled distributions.

I will sketch the solution theory for theKPZ equation in terms of paracontrolled distribu-
tions as described in Gubinelli and Perkowski [2017b]. We proceed like in the analysis of
the ODE by transforming the problem in order to obtain a formulation which is amenable
to standard techniques. In this respect we consider the model equation

@th" = @2xh" +
�

2
(@xh")

2 + �";

where �" is a smooth approximation of the white noise and for technical reasons we con-
sider it on the periodic domain T = R/(2�Z). This equation has smooth local solution
(fixing some nice initial condition), however as " ! 0 we loose all the useful estimates
since �" ! � only in as a space–time distribution (with parabolic regularity �3/2).

We split the unknown h" into four components as h" = X" + Y" + Z" + H" and let
X"; Y"; Z" be solutions of

LX" = �"; LY" =
�

2
(@xX")

2; LZ" =
�

2
(@xY")

2 + �@xX"@xY" + �@x(X" + Y")@xZ"

where L = @t �∆. Then the functionH" solves

(21) LH" =
�

2
(@xH")

2 +
�

2
(@xZ")

2 + �@x(X" + Y" +Z")@xH":

This transformation isolates the most singular contributions in the equation into the func-
tions X"; Y"; Z" which depends in an explicit fashion on the underlying noise �. The
regularisation properties of the heat semigroup allows to prove that X" is uniformly in
Ct C

1/2�� . In the following � denotes some arbitrarily small positive constant and Ct C
˛

denotes the space of continuous functions of time with values in C˛ . It can also be shown
that (@xX")

2 ! +1 as "! 0 (almost surely) and that there exists a constant C" ! +1

such that J(@xX")
2K = (@xX")

2�C" converges to a well defined random field inCt C
�1�� .

Here the notation J(@xX")
2K stands for the Wick product Janson [1997].
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This is an hint that our original formulation was not quite correct. In order to hope for
some well defined limit, we should renormalize the equation and consider instead

@th" = @2xh" +
�

2
[(@xh")

2
� C"] + �";

and accordingly redefine Y" as the solution to the equation

LY" =
�

2
[(@xX")

2
� C"] =

�

2
J(@xX")

2K:
After these changes one can show that Y" converges in Ct C

1�� . Similar problems arise
with the non-linear terms in the definition of Z". A priori other renormalizations are ex-
pected whenever we try tomultiply termswhose sums of regularities is not strictly positive.
In the following I will assume that these renormalization have been performed by a modi-
fication in the equation for Z" in such a way that Z" has a limit in Ct C

3/2�� and that the
Equation (21) maintains the same form. The reader interested in the details of the precise
renormalization procedure needed here can refer to the original paper of Hairer Hairer
[2013] or to Hairer [2014] and Gubinelli and Perkowski [2017b]. At this point it seems
that Equation (21) could be used to get uniform estimates forH" in Ct C

3/2�� , however a
crucial difficulty still remains, due to the product @xX"@xH". The sum of regularities is
barely negative: �1/2 � � for the factor @xX" and 1/2 � � for @xH". Note that

LH" = �@xX" = @xH" + �@xX" � @xH" + � � �

where from now on the dots (� � � ) means terms of higher regularity which do not pose
problems. Taking into account this expansion we introduce the paracontrolled Ansatz

H" = �Q" = @xH" +H
]
" ;

where LQ" = @xX". Using the approach described in Section 2.4 we can verify thatH ]
"

solves a parabolic equation of the form

LH ]
" = �2(@xH")(@xX" � @xQ") + � � �

for which well–posedness holds provided we give an off line definition of @xX" �@xQ" as
usual by now. At the end of the analysis one obtain, locally in time, a continuous solution
map

Ψ : Ξ" := (X"; Y"; Z"; @xX" � @xQ") 7! (H";H
]
" )

which allows to pass to the limit for (h")" as " ! 0 and obtain a random field h 2
Ct C

1/2�� provided we show that

Ξ" = (X"; Y"; Z"; @xX" � @xQ")! Ξ;
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in the appropriate topology. The limit random field h satisfies an equation which formally
can be written as (recall that C" ! +1!)

(22) @th = @2xh+
�

2
[(@xh)

2
�1] + �:

By itself this equation is purely formal. We have to resort to a description of h based on
our analysis above to make it precise. We know that

(23) h = X + Y +Z + �Q = @xH +H ]

where Ψ(Ξ) = (H;H ]) and then we have

[(@xh)
2
�1] = lim

"
[(@xh")

2
�C"] = J(@xX)2K+2@xX@x(Y +Z)+2(@xY )

2+2(@xZ)2

+2@x(X + Y +Z)@x(�Q = @xH +H ]) + (�@x(Q = @xH ) + @xH
])2;

where all the objects in the r.h.s. are well defined. In particular, from the limiting proce-
dure we see that we can understand the product @xX@x(Q = @xH ) via the commutator
lemma as

@xX@x(Q = @xH ) = @xX(@xQ = @xH ) + � � �

= @xX = (@xQ = @xH ) + @xH (@xX � @xQ) + � � � :

This representation gives a well defined meaning to the r.h.s. of the Equation (22) for all
the functions of the form (23) for any choice of (H;H ]) 2 Ct C

1/2�� � Ct C
3/2�� , not

necessarily satisfying the equation. However remark that this definition of [(@xh)
2 �1]

depends heavily on the enhancement Ξ which, as we have already seen above, cannot be
in general determined by the noise � but carries information about the limiting procedure.

3.4 Convergence to KPZ for the growth model. We now have a description for a
candidate limit to the Equation (15) or (17). We will stick to the weakly asymmetric
regime (17) since the intermediate noise regime (15) can be treated with a similar but
easier approach. The result of Hairer and Quastel is the following (Theorem 1.2 in Hairer
and J. Quastel [2015]).

Theorem 3.1. Let F be an even polinomial and (h̃")" a sequence of solutions of

@t h̃" = @2x h̃" + "
�1F ("1/2@x h̃") + �

("):

where �(") is a regularization of the space–time white noise via a nice smoothing kernel �
at scale ", namely �(") = �"�� with �"(t; x) = "�3/2�(t/"2; x/"). LetC0 be the constant

(24) C0 =

Z Z
(@xP � �)(t; x)dtdx
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where P is the heat kernel on T , moreover let �C0
be the Gaussian measure on R with

variance C0 and define the constants

(25) � =

Z
F 00(x)�C0

(dx); v =

Z
F (x)�C0

(dx):

Then there exists a further constant c such that random field

(26) h"(t; x) = h̃"(t; x) � (v/"+ c)t

converges in law to the Hopf–Cole solution of the KPZ equation.

Let us remark that the Hopf–Cole transformation which was the key tool in Bertini
and Giacomin analysis of the weakly asymmetric exclusion process is not applicable here,
despite the fact that the theorem can be formulated in terms of Hopf–Cole solution. Indeed
one can try to perform the change of variables �" = exp(h̃") but the resulting equation for
�" is as difficult as the original equation.

In the rest of this section we give some ideas on how the estimates needed to establish
Theorem 3.1 can be obtained in the paracontrolled setting described above. By performing
the transformation (26) we see that h" is a solution to

@th" = @2xh" + "
�1[F ("1/2@xh") � v] + �":

The naive approach of expanding the non-linearity around 0 does not really work since
soon one realizes that there are no useful estimates for @x h̃" in L1. Even for the linear
equation

@t X̃" = @2xX̃" + �":

the best one can have (from stochastic considerations) is k"1/2@xX̃"kL1 . "�� for some
arbitrarily small �. We can however mimic the paracontrolled decomposition and let h" =

X̃" + Ỹ" + Z̃" + H̃" where Ỹ"; Z̃"; H̃" will be fixed below. Now we have the possibility
to expand the non-linearity around the solution X̃" of the linear equation, giving

"�1F ("1/2@xh") = "�1[F ("1/2@xX̃") � v] + "
�1/2F 0("1/2@xX̃")@x(Ỹ" + Z̃" + H̃")

+
1

2
F 00("1/2@xX̃")[@x(Ỹ" + Z̃" + H̃")]

2 + O("1/2F 000("1/2@xX̃")[@x(Ỹ" + Z̃" + H̃")]
3)

The terms Ỹ" + Z̃" + H̃" will behave better than X̃" and the Taylor remainder is now
negligible in the limit thanks to the factor "1/2. The other terms can be cast in a form very
similar to that used for the KPZ equation by letting

Λ" = F 00("1/2@xX̃"); @xX̂" = "�1/2F 0("1/2@xX̃"); LỸ" = "�1[F ("1/2@xX̃") � v];
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LZ̃" = @xX̂"@x(Ỹ" + Z̃") +
1

2
Λ"(@xỸ")

2 +
1

2
Λ"@xỸ"@xZ̃":

With these definition the equation for H̃" becomes

LH̃" =

�
@xX̂" +

1

2
Λ"(@xỸ" + @xZ̃")

�
@xH̃" +

1

2
Λ"(@xH̃")

2 +
1

2
Λ"(@xZ̃")

2

+O("1/2F 000("1/2@xX̃")[@x(Ỹ" + Z̃" + H̃")]
3):

Comparing this equation with Equation (21) one can argue that the convergence can be
proven if we are able to show that

(Λ"; X̃"; @xX̂"; Ỹ"; Z̃")! (�;X; �@xX; Y;Z)

and some other relations coming from the paracontrolled Ansatz, needed to control the
product @xX̂"@xH̃". All these conditions could be in principle be established via a tour
de force of intricate computations involving Gaussian random fields. See Furlan and Gu-
binelli [2017] for similar estimate for weak universality in reaction diffusion equations via
paracontrolled analysis or Hairer and Quastel Hairer and J. Quastel [2015] for the estima-
tion of the stochastic terms in regularity structures.

Let us highlight the role of the constants �; v defined in (25). The constant � is the
limit of the random field Λ", indeed "1/2@xX̃"(t; x) is a Gaussian random variable whose
asymptotic variance do not go to zero and converges toC0 defined in Equation (24). From
this is natural to deduce that the average of Λ"(t; x) converges to

EΛ"(t; x) = EF 00("1/2@xX̃"(t; x))!

Z
F 00(x)�C0

(dx) = �:

Fluctuations around this average go to zero in Ct C
�� . As for v, its role is to center the

random field "�1F ("1/2@xX̃") so that its average is zero. Stochastic analysis then shows
that

"�1[F ("1/2@xX̃") � v]!
�

2
(@xX)

in Ct C
�1�� as "! 0.

3.5 Other weak universality results. Weak universality results in the context of KPZ
equation have been proven using a variety of techniques. Discrete versions of the Hopf–
Cole transformations allow to tackle the limit from the point of view of the SHE and prove
weak universality for certain classes of weakly asymmetric exclusion processes Bertini
and Giacomin [1997], Amir, Corwin, and J. Quastel [2011], Borodin and Corwin [2014],
and Corwin and Tsai [2017] and for the free energy of directed random polymers in the
intermediate disorder regime Alberts, Khanin, and J. Quastel [2010].
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The KPZ equation strictly speaking does not have an invariant probability measure but
it has an invariant measure given by the distribution of a two-sided geometric Brownian
motionwith a height shift given by Lebesguemeasure Funaki and J. Quastel [2015]. Based
on this invariant measure and on a stationary martingale problem formulation, Gonçalves
and Jara Gonçalves and Jara [2014] introduced another notion of solution which they
called energy solution of KPZ. This allowed to prove convergence to energy solutions for a
large class of particle system for which theHopf–Cole strategywas unavailable Gonçalves,
Jara, and Sethuraman [2015], Blondel, Gonçalves, and Simon [2016], and Diehl, Gu-
binelli, and Perkowski [2017]. In Gubinelli and Jara [2013] this notion was refined and
in Gubinelli and Perkowski [2017a] it has been shown to identify a unique solution which
essentially coincide with the Hopf–Cole solution.

Weak universality has been investigated also in the context of reaction diffusion equa-
tions in d = 2; 3 dimensions in Shen and Weber [2016], Mourrat and Weber [2017a],
Hairer and Xu [2016], Shen and Xu [2017], and Furlan and Gubinelli [2017], for d = 2

diffusion in random environment in Chouk, Gairing, and Perkowski [2017] and for the
non-linear wave equation with additive noise in d = 2 dimensions Gubinelli, Koch, and
Oh [2017].

4 Stochastic quantisation in three dimensions

The dynamical Φ4
3 model has been the first serious application of regularity structures

Hairer [2014]. This model corresponds formally to the SPDE

(27) @t' �∆' + '3
�1' = �

in T 3, where � is space–time white noise and ∆ the Laplacian on T 3. This equation
is also called stochastic quantisation equation (SQE) for a 3d scalar field with quadratic
interaction. It can be understood as the weak universal limit of certain reaction diffusion
equations (see Sect. 3.5) or as a stochastic dynamics which is reversible with respect to
the Φ4

3 Euclidean quantum field theory. This latter object can be described formally as the
probability measure � given by

�(d�) = Z�1 exp
�
�

Z
T3

(�(x)4 �1�(x)2)dx
�
�0(d�)

where �0 is the Gaussian measure on S0(T 3) with covariance (1 � ∆)�1. This formu-
lation is formal since � is not absolutely continuous wrt. �0 and has to be understood
rigorously via a limiting procedure involving a regularised exponent in the exponential
(the interaction). The construction of this measure has been one of the major successes
of constructive QFT Glimm [1968], Glimm and Jaffe [1973], and Feldman [1974] and
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is considered one serious toy model to test constructive renormalization procedures ever
since Rivasseau [1991], Benfatto, Cassandro, Gallavotti, Nicoló, Olivieri, Presutti, and
Scacciatelli [1980, 1978], and Gallavotti [1985]. One of the simplest construction of this
measure (still quite non-trivial) is given in Brydges, Fröhlich, and Sokal [1983].

The dynamical model is inspired by the idea of stochastic quantization introduced by
Parisi and Wu Parisi and Wu [1981]: define the measure � by constructing a stochastic
dynamics evolving in a fictious additional time variable.

Stochastic quantisation has various unexpected advantages. Physically it provides a
way to introduce a regularisation without breaking some fundamental symmetries of the
model being studied (for example the gauge symmetry Jona-Lasinio and Parrinello [1988],
Bertini, Jona-Lasinio, and Parrinello [1993], and Jona-Lasinio and Parrinello [1990]).
Mathematically it provides a solid ground where to attempt a controlled perturbation the-
ory (as we will see below). Indeed in the equation the random field � is exactly Gaussian
while under the measure � one can identify such “free” fields only resorting to renormal-
ization group ideas Gallavotti [1985].

Stochastic quantisation has been rigorously studied in two dimensions by Jona–Lasinio
and Mitter Jona-Lasinio and Mitter [1985], by Albeverio and Rœckner Albeverio and
Röckner [1991] and by Da Prato and Debussche Da Prato and Debussche [2003]. In three
dimensions solutions ' are distributions living in Ct C

�1/2��(T 3). The definition of the
non-linear terms is highly nontrivial and, unlike the KPZ equation, cannot be attacked
with RP techniques. Hairer’s solution of this problem (locally in time) showed the power
and fexibility of these new methods. A bit later Catellier and Chouk Catellier and Chouk
[2013] described an equivalent solution theory for (27) using a paracontrolled Ansatz. See
also Mourrat, Weber, and Xu [2016] for a simplified approach to the construction of the
stochastic terms. Kupiainen Kupiainen andMarcozzi [2017] showed thatWilsonian renor-
malization group can be adapted to deal with stochastic PDEs and provided yet another
solution theory.

Important results on the SQE are those of Mourrat and Weber Mourrat and Weber
[2016] which were able to extend the solution theory (using paracontrolled distributions)
globally in time (but still on the torus T 3) with a tour de force of estimates. They were
able to leverage the strong drift given by the cubic term to show that solutions of the SQE
“comes down from infinity” (that is, they forget the initial condition) in finite time. This
opens the way to a rigorous implementation of real stochastic quatisation by attempting to
prove that whatever the initial condition, solutions of (27) converges to � as time goes to
infinity. The problem is now quite well understood in the d = 2 case where Mourrat and
Weber proved global space–time existence (i.e. in the full plane) for the dynamics Mour-
rat and Weber [2017b] and where we now have a quite good understanding of the spectral
gap and the exponential convergence to equilibrium of the dynamics Tsatsoulis and We-
ber [2016]. The d = 3 case is less understood, due to the more intricate solution theory.
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However the work of Mourrat and Weber shows that on the microscopic scale the dynam-
ics is essentially dominated by perturbation theory around the linear equation and that the
relevant non–linear features can be taken into account by the large scales. This decompo-
sition is analogous to the approach put in place in constructive QFT to handle the “large
field problem” Benfatto, Cassandro, Gallavotti, Nicoló, Olivieri, Presutti, and Scacciatelli
[1980]. Dirichlet form description of the SQE has been investigated in d = 2; 3 R. Zhu
and X. Zhu [2017] and Röckner, R. Zhu, and X. Zhu [2017a,b].

5 Other results

Many other results have been obtained in the last few year for other type of SSPDEs. In
this section I will list some of the more interesting.

� Systems of KPZ–like equations have been studied by Funaki and Hoshino Funaki
and Hoshino [2016].

� The dynamic version of the Sine–Gordonmodel in d = 2 has been studied byHairer
and ShenHairer and Shen [2016]. In this model the regularity of the stochastic terms
depend on the value of a parameter and singularities have relation with the phase
transition of the 2d Coulomb gas.

� The techniques introduced to handle SSPDE can also be used to study unbounded
operators which are formally not well defined. Allez and Chouk Allez and Chouk
[2015] studied the Anderson Hamiltonian in d = 2, i.e. the unbounded operator on
L2(T 2) given by H = �∆+ � where � is a white noise in T 2. They observe that
the domain of this operator can be described quite effectively via a paracontrolled
Ansatz. Cannizzaro and Chouk Cannizzaro and Chouk [2015] introduced a singu-
lar martingale problem to describe the law of a diffusion with a random singular
drift. The generator of the martingale problem is a formal object which has to be
understood via paracontrolled calculus.

� A complex Ginzburg–Landau model has been studied by Hoshino Hoshino, Ina-
hama, and Naganuma [2017] and Hoshino [2017] using the ideas of Mourrat and
Weber to obtain global in time solutions.

� Non-linear dispersive and hyperbolic singular SPDEs have been studied by Debuss-
che and Weber Debussche and Weber [2016] on the torus T 2 and then extended to
the full space Debussche and Martin [2017] by Debussche and Martin. A nonlin-
ear hyperbolic wave equation in T 2 has been studied by Oh, Koch and the author
in Gubinelli, Koch, and Oh [2017].
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Abstract

In this survey, we review recent results in hyperbolic dynamical systems and in ge-
ometric inverse problems using analytic tools, based on spectral theory and microlocal
methods.

1 Introduction

We describe recent results in dynamical systems and inverse problems using analytic tools
based on microlocal analysis. These tools are designed to understand the long time dy-
namics of hyperbolic dynamical systems through spectral theory, and to solve transport
equations in certain functional spaces, even when the flow is not dissipative. They allow
for example to prove meromorphic extension of dynamical zeta functions in the smooth
setting (while it was only known in the real analytic setting before).

These tools can also be applied to geometric inverse problems such as geodesic X-ray
tomography and the boundary rigidity or lens rigidity problem, where one wants to deter-
mine a Riemannian metric from the length of its closed geodesics in the closed case, or
the Riemannian distance between boundary point in the case with boundary.

In Section 2, we review some recent results concerning the study of hyperbolic flows
and Ruelle resonances, while in Section 3 we discuss the boundary/lens rigidity problem
and the analysis of X-ray tomography in the curved setting.

2 Microlocal analysis for Anosov and Axiom A flows

2.1 Anosov and Axiom A flows. ConsiderX a non-vanishing smooth vector field on a
compact smooth manifold M (with or without boundary), generating a flow 't : M ! M.

MSC2010: 35-06.
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We define the maps
�˙ : M ! R˙

[ f˙1g

by the condition that (��(y); �+(y)) is the maximal interval of time where the flow 't (y)

is defined in M (we put �˙(y) = 0 if '˙t (y) is not defined for t > 0). We will call
trapped set K the closed set of points where this interval is R

K := fy 2 M; �+(y) = +1; ��(y) = �1g

and we shall call incoming tail Γ� and outgoing tail Γ+ the sets

Γ˙ := fy 2 M; ��(y) = �1g:

Note that when @M = ¿, we have Γ˙ = K = M. We say that K is a hyperbolic set for
the flow if there is a continuous flow-invariant splitting of TM over K

TKM = RX ˚Es ˚Eu

such that there are uniform constants C > 0; � > 0 satisfying

(2-1)
8y 2 K;8� 2 Es(y);8t � 0; jjd't (y)�jj � Ce��t

jj�jj

8y 2 K;8� 2 Eu(y);8t � 0; jjd't (y)�jj � Ce��jt j
jj�jj:

Here the norm is with respect to any fixed Riemannian metric on M. When K = M and
M is a closed manifold, we say that the flow of X is Anosov. When K is a compact set in
the interior Mı of M, we shall say that the flow is AxiomA, following the terminology of
Smale [1967]. By the spectral decomposition of hyperbolic flows Katok and Hasselblatt
[1995, Theorem 18.3.1 and Exercise 18.3.7], the non-wandering set Ω � K of 't decom-
poses into finitely many disjoint invariant topologically transitive sets Ω = [N

i=1Ωi for 't .
By Katok and Hasselblatt [ibid., Corollary 6.4.20], the periodic orbits of the flow are dense
in Ω. Each Ωi is called a basic set in the terminology of hyperbolic dynamical systems.
General Axiom A flows are defined by Smale [1967] and essentially consist in a finite
union of basic sets and fixed points for the flow (in that case X would have to vanish at
some points). For example, gradient flows of Morse-Smale type have finitely many fixed
hyperbolic points and are Axiom A as well.

2.2 Solving transport equations and continuation of the resolvent. The classical im-
portant objects for a flow as above are the periodic orbits and their length, the topological
entropy of the flow, the invariant measures, the ergodicity and mixing properties, and solv-
ing cohomological equations. In some sense, all these quantities or properties are related
to the transport equation

(2-2) (X � V )u = f
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where V 2 C 0 is a potential and u; f are functions or distributions.
For example, a periodic orbit 
 gives rise to a Dirac distribution ı
 given by hı
 ; f i =R



f solving the equation

Xı
 = 0:

We say that ı
 are invariant distributions for the flow (in fact they are invariant mea-
sures). The cohomological equation problem asks if f 2 C1(M) and hw; f i = 0 for all
w 2 D0(M) \ kerX , then f = Xu for some u 2 C1. The ergodicity and mixing of the
flow with respect to a smooth measure can be read from the L2 spectrum of X , and the
entropy appears also as a leading eigenvalue of some operator X � V for a well chosen
potential V .

For an Anosov or Axiom A flow, we can then ask when the equation (2-2) can be solved,
and in what spaces. A convenient way to analyse this is to view P := �X + V as a first
order differential operator and to define the resolvent

RP (�) := (P � �)�1 : L2(M) ! L2(M)

for Re(�) � 1. An explicit expression is given by the converging expression

RP (�)f (y) = �

Z 0

��(y)

e�t+
R 0

t V ('s(y))dsf ('t (y))dt

if Re(�) � 1 is large enough. However this operator can not be extended in � 2 C on
L2(M) when we reach its L2-spectrum. This is for example a problem in the study of
the cohomological equation (say when V = 0 and � is a smooth invariant measure forX )
since the equation Xu = f corresponds to the spectral value � = 0 and X has essential
spectrum on iR.

In the case of an Anosov flow, a major step was first made by Butterley and Liverani
[2007]. They proved that the resolvent of P admits a meromorphic extension to C on
certain functional spaces and that P has only discrete spectrum on those spaces. Another
proof of microlocal nature appeared later, first in the work of Faure and Sjöstrand [2011]
and then of Dyatlov and Zworski [n.d.]. Before we summarise these results, let us intro-
duce the dual Anosov decomposition

T �M = E�
0 ˚E�

s ˚E�
u ; with  

E�
0 (Eu ˚Es) = 0; E�

u(Eu ˚ RX) = 0; E�
s (Es ˚ RX) = 0:

and mention that we denote by H s(M) the usual L2-based Sobolev space when s 2 R.
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Theorem 1 (Butterley and Liverani [2007], Faure and Sjöstrand [2011], and Dyatlov and
Zworski [n.d.]). Let X be a smooth vector field generating an Anosov flow on a compact
manifold M, let V 2 C1(M) and let P = �X + V be the associated first-order differ-
ential operator.
1) There exists C0 � 0 such that the resolvent RP (�) := (P � �)�1 : L2(M) ! L2(M)

of P is defined for Re(�) > C0 and extends meromorphically to � 2 C as a family of
bounded operatorsRP (�) : C1(M) ! D0(M ). The poles are called Ruelle resonances,
the operator Π�0

:= �Res�0
RP (�) at a pole �0 is a finite rank projector and there exists

p � 1 such that (P � �0)
pΠ�0

= 0. The distributions in RanΠ�0
are called generalized

resonant states and those in RanΠ�0
\ ker(P � �0) are called resonant states.

2) There is C1 > 0 depending only on the constant � in (2-1) such that for each N 2

 [0;1), there exists a Hilbert space HN so that C1(M) � HN � H�N (M) and such
that RP (�) : HN ! HN is a meromorphic family of bounded operators in Re(�) >
C0 � C1N , and (P � �) : Dom(P ) \ HN ! HN is an analytic family of Fredholm
operators in that region with inverse given by RP (�).
3) For a resonance �0, the wave-front set of each generalized resonant state u 2 Ran(Π�0

)

is contained in E�
u .

In Butterley and Liverani [2007] the space HN is actually a Banach space, but we will
focus here rather on the works Faure and Sjöstrand [2011] and Dyatlov and Zworski [n.d.]
where HN is indeed a Hilbert space defined by HN = AN (L2(M)) where AN is a cer-
tain pseudo-differential operator in an exotic class. The operator AN is constructed as
AN = Op(aN ) where Op denotes a standard quantization procedure (see e.g. Zworski
[2012]) and aN 2 C1(T �M) is a symbol of the form aN (y; �) = exp(m(y; �) log j�j)

for j�j � 1, and m(y; �) is a homogeneous function of degree 0 in the fibers of T �M,
equal to �1 near E�

s and +1 near E�
u . Roughly speaking, a function in HN is in the clas-

sical Sobolev space HN (M) (microlocally) near E�
s and in the classical Sobolev space

H�N (M) nearE�
u . The behaviour outside the characteristic set f(y; �) 2 T �M; �(X) =

0g = E�
u ˚E�

s ofX has less importance. These HN spaces are called anisotropic Sobolev
spaces. Theorem 1 tells us that we can solve the transport equation (�X + V � �)u = f

in a well-posed fashion provided f; u are in a good anisotropic Sobolev space, except for
a discrete set of � where f needs to be in the finite codimension range. These types of
spaces were first introduced (or some Hölder version) for the case of hyperbolic diffeo-
morphisms, in the work of Blank, Keller, and Liverani [2002], Liverani [2005], Gouëzel
and Liverani [2006], Baladi and Tsujii [2007] and with a microlocal approach in Faure,
Roy, and Sjöstrand [2008]. We mention that there were previous important works on spec-
tral approaches of hyperbolic dynamical systems by Ruelle, Fried, Pollicott, Rugh, Kitaev,
etc, mostly in the case of real analytic diffeomorphisms and flows, but we won’t focus on
these aspects.
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In the Axiom A case, we proved in Dyatlov and Guillarmou [2016] a result in the same
spirit as Theorem 1. Our setting is a manifold M with boundary and a non-vanishing
vector field X with hyperbolic trapped set K � Mı, with a convexity condition on @M
(the boundary is strictly convex with respect to the flow lines of X ). We note that this
convexity is not really necessary and can be removed by the argument of Guillarmou,
Mazzucchelli, and Tzou [n.d., Section 2.2], for there is always a convex neighborhood
of K, even if @M is not convex. For such flows, the stable space Es over K extends
continuously over Γ� in a subbundle E� satisfying hyperbolic estimates similar to Es

(i.e. those in (2-1)), while Eu extends to Γ+ in a subbundle E+ satisfying hyperbolicity
estimates similar to Eu. In fact E� is simply the union of tangent spaces to the stable
manifolds of K while E+ is those for the unstable manifolds of K. We will also use the
dual spaces E�

˙
over Γ˙ defined by

E�
˙(E˙ ˚ RX) = 0:

We will write below WF(u) � T �M for the wave-front set of a distribution.

Theorem 2. Dyatlov and Guillarmou [2016] Let M be a manifold with boundary and X
a smooth non vanishing vector field so that its trapped set K is a compact hyperbolic set
in Mı. Then for each V 2 C1(M) the resolvent RP (�) = (P ��)�1 of P := �X +V

admits a meromorphic extension from Re(�) � 1 to � 2 C with poles of finite multiplicity
as a map C1

c (Mı) ! D0(Mı). The poles are called resonances and the generalized
eigenstates u 2 Ran(Res�0

(RP (�)) satisfy the following properties

supp(u) � Γ+; WF(u) � E�
+:

Moreover, for f 2 C1
c (Mı), we have RP (�)f 2 C1(M n Γ+) \H�N (M) for some

N > 0 depending only on Re(�), and WF(RP (�)f ) � E�
+.

Here again, the proof uses the construction of anisotropic Sobolev spaces, but new com-
plications come from the fact that the hyperbolicity is only on a compact subset of M. In
the proof, we extend the flow to a compact manifold with boundary and add some absorb-
ing and elliptic operators outside M. We notice that geodesic flows on closed negatively
curved manifolds are examples of Anosov flows. Similarly, examples of Axiom A flows
are given by geodesic flows on negatively curved non-compact manifold (M;g) satisfy-
ing the following conditions: there exists a strictly convex region M0 such that the map
 := R+ � @M0 ! M nM0 given by  (t; x) = expx(t�x) is a diffeomorphism if �x is
the unit normal to @M0 pointing outside M0. Convex co-compact hyperbolic manifolds
are such examples, but we can also consider asymptotically hyperbolic manifolds with
hyperbolic trapped set that are not necessarily negatively curved.
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For Morse-Smale gradient flows, Dang and Rivière [n.d.(b)] studied Ruelle resonances
using also a Faure-Sjöstrand approach, this is another (simpler) case of Axiom A flows. In
that case the Ruelle spectrum can be explicitly computed using a normal form for the flow
near a hyperbolic fixed point. We finally mention a forthcoming work of Bonthonneau
and Weich [n.d.] for cases where the flow is hyperbolic but the trapped set is not compact:
they show meromorphic extension of the resolvent of the geodesic flow in the case of finite
volume manifolds with hyperbolic cusps. They can therefore define Ruelle resonances
also in that setting.

2.3 Localisation of the spectrum and decay of correlations. We now assume that M
is closed, X generates an Anosov flow and that there is a smooth invariant measure �
for the flow 't , that is LX� = 0. In that case we formally have X� = �X and, for
P = �X , the resolvent RP (�) is analytic in Re(�) > 0. The constant functions belong
to kerX \C1(M), thus 0 is a resonance. It is easy to prove that there is no Jordan block
at � = 0. Ergodicity of � with respect to 't is equivalent to the fact that the only resonant
states with resonance � = 0 are the constants. Mixing of 't is equivalent to the fact that 0
is the only resonance on the imaginary line Re(�) = 0 (corresponding to the L2 spectrum
of X ). The correlation functions are defined for f1; f2 2 C1(M) by

C (f1; f2; t) := h'�
t f1; f2iL2(M;�):

Understanding the speed of mixing, when there is mixing, amounts to studying the be-
haviour of C (f1; f2; t) as t ! ˙1 for each observables f1; f2. It is easy to check that
the resolvent is related to the correlation functions via a Laplace transform:

(2-3) hRP (�)f1; f2i = �

Z 0

�1

e�tC (f1; f2; t)dt:

When the correlations have an asymptotic expansion of the form

(2-4) C (f1; f2; t) = hf1; f2i +

NX
j=1

kjX
k=0

e��j t tk˛j;k(f1; f2) + O(e��jt j)

as t ! �1, for some �j 2 C with Re(�j ) 2 (��; 0) with � > 0 and kj 2 N, one easily
get from (2-3) that hRP (�)f1; f2i has only finitely many poles in Re(�) > �� given by
the �j (and �j is a pole of order kj +1). It is a bit more difficult but still true to prove that
if hRP (�)f1; f2i has only finitely many poles in Re(�) > �� for each f1; f2 2 C1(M),
with a polynomial bound

jhRP (�)f1; f2ij � Cf1;f2
j�j

p
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for some constant Cf1;f2
(depending bilinearly on f1; f2) and some p 2 R independent

of fi , then an expansion of the form (2-4) holds true. This can be proved by some contour
deformation when writing the operator etX = '�

t in terms of resolvents, see for example
Nonnenmacher and Zworski [2015, Corollary 5]. We will call the constant � in (2-4) the
size of the essential spectral gap.

Using representation theory, an exponential decay of correlations of mixing for geo-
desic flow on hyperbolic surfaces was proved by Ratner [1987] and it was extended to
higher dimensions by Moore [1987]. In variable negative curvature for surfaces and more
generally for Anosov flows with stable/unstable jointly non-integrable foliations, expo-
nential decay of correlations was first shown by Dolgopyat [1998] and then by Liverani
for contact flows Liverani [2004]. In these work, an essential gap of size � > 0 is shown,
but � > 0 is not explicit.

Theorem 3 (Liverani [ibid.]). For each contact Anosov flow, there is an essential spectral
gap of positive size and the correlations decay exponentially fast.

Later, the work of Tsujii [2010] gave a quantitative value for the size � of the essen-
tial gap, and another proof appeared later in work of Nonnenmacher and Zworski [2015]
(where they extended this result to general normally hyperbolic trapped sets).

Theorem 4 (Tsujii [2010, 2012] and Nonnenmacher and Zworski [2015]). For contact
Anosov flows, there is an essential gap of size � for all � < �0, where

�0 =
1

2

�
lim inf
t!1

1

t
inf

y2M
log det(d't jEu(y))

�
More recently Tsujii proved that the contact assumption can be removed in dim 3, at

least generically.

Theorem 5 (Tsujii [n.d.]). On a manifold of dimension 3 admitting an Anosov flow, for
r � 3 there is an open dense set in C r of volume preserving Anosov flows that have an
essential gap, and thus are exponentially mixing.

For the billiard flow associated with a two-dimensional finite horizon Lorentz Gas
(the Sinai billiard flow with finite horizon), Baladi, Demers, and Liverani [2018] recently
proved an exponential decay of correlations and the existence of a non-explicit essential
gap. In the Axiom A case, we note the result of Naud [2005] for hyperbolic convex co-
compact surfaces and Stoyanov [2011, 2013] for more general cases proving an essential
spectral gap; both results use Dolgopyat method. The recent work of Bourgain and Dyat-
lov [n.d.] gives an essential gap of size 1/2+ � for some � > 0 on all convex co-compact
hyperbolic surfaces.
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For contact Anosov flows with pinching of the Lyapunov exponents (holding for exam-
ple in pinched negative curvature), Faure and Tsujii [2013, 2017] established the striking
fact that the Ruelle resonance spectrum has a band structure.

Theorem 6 (Faure and Tsujii [2013, 2017]). LetX be a contact Anosov flow on manifold
M. There is C > 0 such that for each � > 0 the resonance spectrum in jIm(�)j > C is
contained in the union over k 2 N0 of the bands

Bk := f� 2 C;Re(�) 2 [
�
k � �; 
+

k
+ �]g

where


+
k

:= lim
t!1

sup
y2M

1

t

�
�

1

2

Z t

0

div(X jEu
)('s(y))ds � k log

ˇ̌ˇ̌
(d't jEu(y))

�1
ˇ̌ˇ̌�1

�
;


�
k := lim

t!1
inf

y2M

1

t

�
�

1

2

Z t

0

div(X jEu
)('s(y))ds � k log

ˇ̌ˇ̌
d't jEu(y)

ˇ̌ˇ̌�
and div(X jEu

) := (@t log det d't jEu
)jt=0 > 0.

This band structure was first observed in related (but different) settings in the works by
Faure [2007], Faure and Tsujii [2015] and by Dyatlov [2015]. We note that only finitely
many bands Bk do not intersect except for geodesic flows in constant negative curvature
where the Lyapunov exponents are constants: in curvature �1, 
�

k
= 
+

k
= �

n
2

� k if
the dimension of the Riemannian manifold is n + 1. Actually, in that setting, the mani-
fold M is a quotient of hyperbolic space Hn+1 by a co-compact group Γ, and the Ruelle
resonance spectrum for the flow on SM has been (almost) completely characterised by
Dyatlov, Faure, and Guillarmou [2015]: there is a one-to-one correspondence between the
Ruelle resonances/resonant eigenstates with the spectrum/eigenfunctions of some Bochner
Laplacians on certain bundles over M .

Theorem 7 (Dyatlov, Faure, and Guillarmou [ibid.]). Let M be a compact hyperbolic
manifold of dimension n+1 � 2. Assume that � 2 C n

�
�

n
2

�
1
2
N0

�
. Denote by mX (�)

the multiplicity of � 2 C as a Ruelle resonance for the geodesic flow X on SM , and let
∆k = r�r be the rough Laplacian on the space of trace-free divergence-free symmetric
tensors of order k. Then for � 62 �2N, we have

mX (�) =
X
m�0

bm/2cX
`=0

dim ker
�
∆m�2` + (�+m+

n

2
)2 �

n2

4
�m+ 2`

�
and for � 2 �2N, we have

mX (�) =
X
m�0

m¤��

bm/2cX
`=0

dim ker
�
∆m�2` + (�+m+

n

2
)2 �

n2

4
�m+ 2`

�
:
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Reλ

Imλ

− 3
2− 5

2− 7
2

m = 0, ℓ = 0

m = 1, ℓ = 0

m = 2, ℓ = 0

m = 2, ℓ = 1

Figure 1: An illustration of Theorem 7 for n = 3. The red crosses mark exceptional points
where the theorem does not apply. Note that the points with m = 2; ` = 1 are simply the
points with m = 0; ` = 0 shifted by �2 (modulo exceptional points), as illustrated by the
arrow.

The first band (actually line) of Ruelle resonances appear at Re(�) = �
n
2
+ iR, they

correspond to the spectrum of the Laplacian on functions (m = ` = 0 in Theorem 7). In
dimension n+1 = 2, i.e. for surfaces, the statement is simpler since the space of trace-free
divergence-free tensors is finite dimensional. Then the resonance spectrum is simply�

� N0 +
[

1/4+r2
j

2�(∆)

(� 1
2
+ irj )

� [
(�N)

where �(∆0) denotes the spectrum of the Laplacian ∆0 acting on functions on ΓnH2 (for
the analysis of the special points �N/2, see Guillarmou, Hilgert, and Weich [n.d.(a)]).
In fact, in Dyatlov, Faure, and Guillarmou [2015], we show an explicit correspondence
between the resonant states and the eigenfunctions of ∆m�2` on M : for example, for the
first bandm = 0; ` = 0, the correspondence is given by the pushforward map (integration
in the fibers of SM )

�0� : kerHN (�X � �) ! ker(∆0 + �(n+ �)); �0�u(x) :=

Z
SxM

u(x; v)dv:

where HN is an anisotropic Sobolev space as in Theorem 1 with N � 1 large enough.
We call this a classical-quantum correspondence between the eigenspaces. A partial gen-
eralisation to all compact rank-1 locally symmetric spaces is done by Guillarmou, Hilgert,
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and Weich [n.d.(b)]. The case of the flow acting on sections of certain bundles is worked
out by Küster and Weich [n.d.].

In the case of convex co-compact hyperbolic manifolds, where the flow is Axiom A and
the Laplacian has continuous spectrum, the description of the Ruelle resonance spectrum
and the classical-quantum correspondence has been done completely in dimension 2 by
Guillarmou, Hilgert, and Weich [n.d.(a)], and outside the special points �

n
2

�
1
2
N in higher

dimension by Hadfield [n.d.].
In the analysis of the first band of resonances and resonant states for hyperbolic mani-

folds, we strongly use a differential operator U� : C1(SM ) ! C1(SM ;E�
s ) that is a

covariant derivative in the direction of the unstable space:

� 2 Eu(y); U�f (y)� := df (y)�;

recall that E�
s (Es ˚ RX) = 0 thus E�

s is a dual space to Eu. We prove that the reso-
nant states associated to the first band are characterised as the solutions u 2 D0(SM ),
Xu = ��u with U�u = 0 for the compact case, and with the additional condition
supp(u) � Γ+ for the convex co-compact case. Such distributions u can be lifted to
SHn+1 and are in one-to-one correspondence with distributions on @Hn+1 = Sn that
have a particular conformal covariance with respect to the group Γ. The correspondence
is done via pullback through the backward endpoint mapB� : SHn+1 ! @Hn+1 defined
byB�(y) := limt!+1 expx(�tv). Applying the Poisson transform to those distributions
we find eigenfunctions for ∆0 on Hn+1 that are Γ-equivariant, thus descend to ΓnHn+1.

In variable curvature or more generally contact flows, a similar covariant derivativeU�

can be defined, but the stable/unstable bundles are only Hölder continuous thus applying
U� to D0(SM ) does not make sense. In dimension dim(SM ) = 3, for contact flows, the
operator U� has C 2��(SM ) coefficients for all � > 0 by Hurder and Katok [1990]. The
first band of resonances has resonant states that are regular enough to apply U� and we
show with Faure that the rigidity U�u = 0 of resonant states in constant curvature still
holds in variable curvature.

Theorem 8 (Faure and Guillarmou [n.d.]). Let M be a smooth 3-dimensional compact
oriented manifold and let X be a smooth vector field generating a contact Anosov flow.
Assume that the unstable bundle is orientable. If �0 is a resonance of X with Re(�0) >
��min and if u is a generalised resonant state of P with resonance �0, then U�u = 0.
Here �min is the minimal expansion rate given by

�min := lim
t!+1

inf
z2M

�
1

t
log

ˇ̌̌
d't (z)jEs(z)

ˇ̌̌
= lim

t!+1
inf

z2M
�
1

t
log

ˇ̌̌
d'�t (z)jEu(z)

ˇ̌̌
:
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We also remark that for Morse-Smale flows, i.e. with finitely many hyperbolic fixed
points and finitely many hyperbolic periodic orbits, the Ruelle spectrum has been com-
puted explicitly by Dang and Rivière [n.d.(a)] (among other things dealt with in the arti-
cle).

2.4 Dynamical zeta functions. Consider a smooth vector fieldX on M andX : C1(M;E) !

C1(M;E) a first order differential operator on a bundle E satisfying

8f 2 C1(M);8u 2 C1(M;E); X(f u) = (Xf )u+ f (Xu):

Define the vector bundle E0 by

E0(x) = f� 2 T �
x M j hX(x); �i = 0g; x 2 M

and the linearized Poincaré map by

Px;t : E0(x) ! E0('t (x)); Px;t = (d't (x)
�1)T

jE0(x):

Next, the parallel transport ˛x;t : E(x) ! E('t (x)) is defined as follows: for each u 2

C1(M;E), we put ˛x;t (u(x)) = e�tXu('t (x)). Now, assume that 
(t) = 't (x0) is a
closed trajectory, that is 
(T ) = 
(0) for some T > 0. (We call T the period of 
 , and
regard the same 
 with two different values of T as two different closed trajectories. The
minimal positive T ] such that 
(T ]) = 
(0) is called the primitive period.) For such
closed orbit 
 , we define P
 = Px;T where x is any point on the closed orbit 
 , and
similarly ˛
 = ˛x;T . We can note that Tr(˛
 ) and j det(1 � P
 )j are independent of the
choice of x on the closed orbit.

Giulietti, Liverani, and Pollicott [2013], and then Dyatlov and Zworski [n.d.], show the
meromorphic extension of the zeta function for the flow and of the Ruelle zeta function
for Anosov flows. In the Axiom A case, this is proved by Dyatlov and Guillarmou [2016].

Theorem 9 (Giulietti, Liverani, and Pollicott [2013], Dyatlov and Zworski [n.d.], and
Dyatlov and Guillarmou [2016]). 1) Define for Re� � 1, the dynamical zeta function
for X

(2-5) ZX(�) :=
X




e��T
 T
]

 Tr(˛
 )

j det(I � P
 )j

where the sum is over all closed trajectories 
 inside M (resp. inside K) in the Anosov
case (resp. in the Axiom A case), T
 > 0 is the period of 
 , and T ]


 is the primitive
period. Then ZX(�) extends meromorphically to � 2 C. The poles of ZX(�) are the
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Ruelle resonances of X and the residue at a pole �0 is equal to Rank(Res�0
(�X� �)�1).

2) The Ruelle zeta function defined by

�(�) :=
Y

]

�
1 � exp(�T
](�))

�
; Re� � 1:

admits a meromorphic continuation to C both in the Anosov and the Axiom A case.

These results answer positively a conjecture of Smale. In the work Faure and Tsujii
[2015], Faure and Tsujii define a Gutzwiller-Voros dynamical zeta function associated to
the operator �X + 1

2
div(X jEu

) and show that its zeros in a band Re(�) > �C for some
C > 0 are located asymptotically close to the imaginary line as Im(�) ! 1, using their
band structure results of Theorem 6 (with the suitable potential added). This zeta function
is the natural generalisation of Selberg’s zeta function in variable curvature.

3 Boundary rigidity and X-ray tomography problems

The boundary and lens rigidity problems are inverse problems consisting in determin-
ing a Riemannian manifold (M;g) with boundary from boundary measurements on the
geodesic flow. As boundary data, we employ the boundary distance function

(3-1) ˇg := dg j@M�@M ;

where dg :M �M ! [0;1) is the Riemannian distance, and the lens data

�+g : @SM ! [0;1]; �g : @SM n Γ� ! @SM:

Here, SM denotes the unit tangent bundle, Γ� := fy 2 @SM j �+g (y) = +1g, the exit
time �+g (x; v) is the maximal non-negative time of existence of the geodesic 
x;v(t) =

expx(tv), and the scattering map �g(x; v) := (
x;v(�
+
g (x; v)); 
̇x;v(�

+
g (x; v))) gives the

exit position and “angle” of 
x;v . When �+g is everywhere finite, (M;g) is said to be
non-trapping. The boundary rigidity problem asks whether the boundary distance ˇg de-
termine (M;g) up to diffeomorphisms fixing @M . Analogously, the lens rigidity problem
asks whether the lens data (�+g ; �g) determine (M;g) up to diffeomorphisms fixing @M .
For simple Riemannian manifolds, that is, compact Riemannian balls with strictly convex
boundary and without conjugate points, these two rigidity problems are equivalent, since
the boundary distance and the lens data can be easily recovered from each another. When
the manifold has non-empty trapped set, non convex boundary or conjugate points, this
equivalence is not in general true. There are easy counter examples to boundary rigidity
when there are non-minimizing length geodesics (see C. B. Croke [1991]). We will say
that a metric is deformation lens rigid if any one-parameter family of metrics with the
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same lens data are isometric.

In the closed setting, there is a corresponding problem that consists in determining a
metric from the length of its closed geodesics, called the length spectrum. Here again there
are counter examples due to Vignéras [1980] of non-isometric hyperbolic surfaces with
same length spectrum. It is therefore more appropriate to ask wether the marked length
spectrum determine the metric, where the marking of the geodesics is made using free
homotopy classes (recall that in negative curvature there is a unique closed geodesic in
each free homotopy class).

One way to attack these problems is the consider the linearised problem, which consists
in analysing the kernel of the geodesic X-ray transform on symmetric tensors or order 2.
More generally, the X-ray on the bundle ˝m

S T
�M of symmetric tensors of orderm 2 N0

is defined in the case with boundary as

Im : C 0(M ;˝m
S T

�M ) ! L1
loc(G); Im(f )(
) :=

Z `


0

f (
(t))(˝m
̇(t))dt

where G denotes the set of geodesics 
 in SM with endpoints on the boundary @SM ,
thus having finite length `(
) < 1. In the closed case, a similar definition holds with
G being the set of closed geodesics and Im(f )(
) is defined as above but normalized by
1/`(
) so that it is an L1(G) function. It is easy to check that Im(Df ) = 0 if f 2

C 1(M ;˝m�1
S T �M ) satisfies f j@M = 0 andD is the symmetrised Levi-Civita covariant

derivative (the condition f j@M = 0 is obviously removed in the closed manifold setting).
In general, the best one can get is injectivity of Im on kerD�, i.e. divergence-free tensors,
which is called solenoidal injectivity.

3.1 Simple metrics. Simple manifolds were introduced by Michel [1981/82] and can
be defined as manifolds (M;g) that are a topological ball with strictly convex boundary
and so that g has no conjugate points. Their exponential map is a diffeomorphism at
each point x 2 M . In particular, there is a unique geodesic between each pair of points
x; x0 2 M , and this geodesic has length dg(x; x

0). Michel made the conjecture that two
simple manifolds (M;g1) and (M;g2) with same boundary distance ˇg1

= ˇg2
verify

that there is  : M ! M such that  �g2 = g1 and  j@M = Id. As mentionned above,
the boundary rigidity and lens rigidity questions are equivalent in that setting.

For negatively curved and non-positively curved cases, it was shown by Otal [1990b]
and C. B. Croke [1990] that the conjecture holds in dimension 2.
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Theorem 10 (C. B. Croke [1990] and Otal [1990b]). Two non-positively curved simple
surfaces with the same boundary distance are isometric via an isometry fixing the bound-
ary.

In fact, in these works, we notice that the boundary is even allowed to be non-convex.
The full conjecture in dimension 2 was later proved by L. Pestov and Uhlmann [2005],
using earlier works of Muhometov [1981] which allow to recover a conformal factor from
the boundary distance.

Theorem 11 (L. Pestov and Uhlmann [2005]). Two simple surfaces with the same bound-
ary distance are isometric via an isometry fixing the boundary. Moreover the scattering
map �g determines the conformal class of a simple manifold.

In higher dimension, little was known until recently. Burago and Ivanov [2010] proved
that metrics close to flat simple metrics are boundary rigid and Stefanov and Uhlmann
[2005] showed that generic simple metrics are boundary rigid. A more recent work due
to Stefanov, Uhlmann, and Vasy [n.d.(b)] solves Michel’s conjecture in the category of
non-positively curved simple metrics, they even show a local result near boundary points.

Theorem 12 (Stefanov, Uhlmann, and Vasy [ibid.]). Two simple manifolds in dimension
n � 3 which are non-positively curved and with the same boundary distance are isometric
via an isometry fixing the boundary. Moreover the boundary distance near a pointp 2 @M

determines the metric near p in M .

In Stefanov, Uhlmann, and Vasy [ibid.], the condition for rigidity is weaker than non-
positive curvature: it is asked that the manifolds are foliated by strictly convex hypersur-
faces.

The analysis of X-ray transform is the main tool in the proof of Theorem L. Pestov and
Uhlmann [2005] and Stefanov, Uhlmann, and Vasy [n.d.(b)]. These proofs are essentially
of analytic nature, contrary to C. B. Croke [1990], Otal [1990b], and Burago and Ivanov
[2010] where the method is more geometric. Let us quickly review some known results on
this linearised problem, that is the injectivity of the X-ray transform. For simple metrics,
I0 and I1 are known to be solenoidal injective, this was proved by Muhometov [1981]
for I0 and Anikonov and Romanov [1997] for I1. In dimension 2, the injectivity on I2
follows from L. Pestov and Uhlmann [2005] and the injectivity of Im form > 2 was only
proved recently by Paternain, Salo, and Uhlmann [2013]. In dimension n > 2 and for
m � 2, the injectivity of Im in non-positive curvature was proved by L. N. Pestov and
Sharafutdinov [1988]. The main tool that is used in these cases is an energy identity called
Mukhometov-Pestov identity. We will review it quickly in the next section. We also notice
that a local injectivity result (i.e. we consider the X-ray transform of a tensor only on an
open subset of geodesics) has been recently proved by Uhlmann and Vasy [2016] for I0
and Stefanov, Uhlmann, and Vasy [n.d.(a)] for I1 and I2 using new microlocal methods.
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Theorem 13 (Uhlmann and Vasy [2016] and Stefanov, Uhlmann, and Vasy [n.d.(a)]). Let
(M;g) be a Riemannian manifold of dimension n � 3, and assume that p 2 @M is such
that @M is strictly convex at p.
1) Let f 2 C1(M ) and assume that I0(f )(
) = 0 for all 
 passing through a small
neighborhood of Tp@M , i.e. 
 are short geodesics that are almost tangent to @M . Then
f = 0 near p.
2) Let f 2 C1(M ;˝m

S T
�M ) with m 2 f1; 2g such that f = u +Dv with vj@M = 0.

If Im(f )(
) = 0 for all 
 passing through a small neighborhood of Tp@M , then u = 0

near p.

This is the local result that allows Stefanov, Uhlmann, and Vasy [n.d.(b)] to prove
Theorem 12 through a layer stripping method. The proof uses the scattering calculus
of Melrose to analyse the normal operator I �

mIm. An artificial boundary is put near p in
order to make the local analysis a global one on a new manifold, and the normal operator
is somehow replaced by a localised one I �

m�Im for some well chosen function �(
). For
simple manifolds, the normal operator I �

mIm is a pseudo-differential operator of order �1

that is elliptic on kerD�, this is a quite helpful fact to analyse the Fredholm properties
and closed range properties of the operators of interest. The presence of conjugate points
would ruin this property. In Uhlmann and Vasy [2016], the localisation using the � in
I �

m�Im allows for example to avoid conjugate points since the geodesics almost tangent
to @M are short and thus free of conjugate points, showing that I �

m�Im is also pseudo-
differential. In dimension 3 there are enough directions to get ellipticity of I �

m�Im, which
is not the case in dimension n = 2, and in fact Uhlmann and Vasy [ibid.] show that this is
a strong enough ellipticity to obtain injectivity (full ellipticity in the scattering calculus of
Melrose).

3.2 Cases with trapped set, conjugate points or non-convex boundary. There are
three different ways a manifold can be not simple: it has non-empty trapped set, it has
non-convex boundary or pairs of conjugate points.

Trapped case. First, let us mention some recent results for the case with trapped set. In
Guillarmou [2017b], we address the case where the trapped set is a hyperbolic set for the
geodesic flow. For example, this condition is always satisfied in negative curvature. We
consider a manifold (M;g) with strictly convex boundary, hyperbolic trapped set and no
conjugate points. The simplest example is a hyperbolic cylinder with one closed geodesic.
We are able to show injectivity of the X-ray transform on tensors.

Theorem 14 (Guillarmou [ibid.]). Let (M;g) be a manifold with strictly convex bound-
ary, hyperbolic trapped set and no conjugate points. The ray transforms I0 and I1 are
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solenoidal injective. If in addition the curvature of g is non-positive, Im is solenoidal
injective for all m � 2. Such a manifold is deformation lens rigid.

This result shows in particular that all negatively curved manifold with strictly convex
boundary have solenoidal injective ray transform for all tensors and are deformation lens
rigid. The proof uses two steps, one is purely of dynamical system nature and is a Livsic
type result (although Livsic theorem is usually for integration on closed orbits). Here M
will typically be the unit tangent bundle SM of M , where the geodesic flow lives.

Theorem 15 (Guillarmou [2017b]). Let M be a manifold with boundary and X a non-
vanishing smooth vector field with trapped set K � Mı that is hyperbolic, and assume
that @M is strictly convex for the flow of X . If f 2 C1(M) vanishes to infinite order
at @M and satisfies

R


f = 0 for all integral curve 
 with endpoints on @M, then there

exists u 2 C1(M) such that Xu = f and uj@M = 0.

If I0f = 0 we deduce from some classical argument using the short geodesics near
@M that f vanishes at @M to infinite order, we can then apply Theorem 15 to get u 2

C1(SM ) such that Xu = ��
0 f with uj@SM = 0, where ��

0 : C1(M ) ! C1(SM )

is the pull-back by the projection �0 : SM ! M on the base of the fibration. The
Mukhometov-Pestov identity is the following identity: if dim(M ) = n, for each w 2

H 2(SM ) \H 1
0 (SM )

jjr
vXwjj

2
L2(SM ) = jjXr

vwjj
2
L2(sM ) + (n� 1)jjXwjj

2
L2(SM ) � hRr

vw;rvwiL2(SM ):

Here rvw = P vrw where r is the gradient for the Sasaki metric and P v is the orthogo-
nal projection on the vertical space kerd�0 with respect to the same metric, R is a natural
operator made from the Riemann curvature tensor. Applying to w = u, the left hand side
is 0 since rv��

0 = 0 and the quantity jjXrw jj2
L2 � hRrvw;rvwiL2(SM ) � 0 when

there are no conjugate points, using the index theory for the energy functional of curves.
This implies Xu = 0, thus f = 0. A similar argument works for I1, and also for higher
order tensors provided the curvature is non-positive.

We notice that a surface containing a flat cylinder is such that I0 has infinite dimen-
sional kernel (at least if I0 maps to the space of geodesics 
 with endpoints on the bound-
ary), thus the hyperbolicity condition on the trapped set is somehow a condition that might
be difficult to remove to get injectivity of X-ray in other trapped situations.

Using Theorem 14, we are able to show a “Pestov-Uhlmann” type result for surfaces.

Theorem16 (Guillarmou [ibid.]). Let (M1; g1) and (M2; g2) be two Riemannian surfaces
with strictly convex boundary, hyperbolic trapped set and no conjugate points. Assume
that @M1 = @M2 and that their scattering maps agree, i.e. �g1

= �g2
, then there is a

diffeomorphism :M1 ! M2 such that �g2 = e�g1 for some � 2 C1(M1) vanishing
at @M1.
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So far we are not able to prove that the lens data allows to determine the remaining
conformal factor � in Theorem 16, although we believe it does. However, in a work with
Guillarmou and Mazzucchelli [2016], we show a marked lens rigidity result for the same
class of Riemannian surface, that is the lens data in the universal cover (or equivalently
the boundary distance in the universal cover) determine the metric.

The proof of Theorem 16 is quite complicated and uses the approach of L. Pestov and
Uhlmann [2005], that mainly reduces the problem to showing solenoidal injectivity of I1
and surjectviity of I �

0 , the dual transform to I0 with respect to some natural measure on the
set G of geodesics. We already know from Theorem 14 that I0; I1 are solenoidal injective.
To prove surjectivity of I �

0 , the strategy is to prove that I �
0 I0 is a Fredholm operator. We

can check that
I �
0 I0 = �2�0�RX (0)��

0

where RX (�) = (�X � �)�1 is the resolvent of the flow studied in Theorem 2, ��
0 is

as above and �0� is its adjoint consisting in integration in fibers. In the paper Dyatlov
and Guillarmou [2016] with Dyatlov, we actually characterised the wave-front set of the
Schwartz kernel ofRX (�) using propagation of singularities with radial points. Basically,
writing RX (0) = �

R 0
�1

etXdt , and using that etX = '�
t is a Fourier integral operator

with well-known wave-front set, we already see that the conormal to the diagonal is in
the wave-front set (the contribution of t = 0 in the integral) as well as the graph of the
symplectic flow Φt = (d'�1

t )T on T �(SM ). Another component appears from long time
propagation, and that is where the propagation with radial point shows up, it is given by
E�

+ � E�
�. Using standard rules for composition of wave-front sets, applying the push-

forward �0� ˝ �0� to the Schwartz kernel of RX (0), everything in the wave-front disap-
pears except the conormal to the diagonal: this is a consequence of the no-conjugate points
assumption and the fact that E˙ is transversal to the vertical space kerd�0 � T (SM ) in
the characteristic set f� 2 T �(SM ); �(X) = 0g.

There are a couple of other rigidity results in the trapped case, due to C. B. Croke and
Herreros [2016] and C. Croke [2014]: in C. B. Croke and Herreros [2016] it is shown that
a 2-dimensional negatively curved or flat cylinder with convex boundary is lens rigid, and
C. Croke [2014] proved that the flat product metric on Bn � S1 is scattering rigid if Bn is
the unit ball in Rn.

Non-convex boundary. When the boundary is non-convex, there are also complica-
tions: the boundary distance is not a priori directly related to the lens data. In fact, it
is shown to be the case for simply connected surfaces with no conjugate points by Guil-
larmou, Mazzucchelli, and Tzou [n.d.]. It is probably not true in higher dimension due
to the fact that there are simply connected manifolds with boundary having geodesics
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with endpoints on @M and that are not length minimizing. The determination of the C1-
jet in that case is also more complicated since there does not exist small geodesics near
points in @M where @M is concave. This determination has however been proved by Ste-
fanov and Uhlmann [2009] in the non-trapping with no-conjugate points case (and certain
trapped cases). The injectivity of the X-ray transform for non-trapping manifolds with
no-conjugate points has been proved by Dairbekov [2006] and extended by Guillarmou,
Mazzucchelli, and Tzou [n.d.] to the case where the trapped set is a hyperbolic set not
intersecting the boundary.

Theorem 17 (Dairbekov [2006] and Guillarmou, Mazzucchelli, and Tzou [n.d.]). Assume
that (M;g) has no conjugate points and that its trapped set K does not intersect @SM ,
then I0 and I1 are solenoidal injective. Moreover Im is solenoidal injective if in addition
the curvature is non-positive.

Recall that the boundary rigidity results of Otal [1990b], C. B. Croke [1990] and Burago
and Ivanov [2010] do not involve convexity of the boundary. In Guillarmou, Mazzuc-
chelli, and Tzou [n.d.], we are recently able to extend L. Pestov and Uhlmann [2005],
Otal [1990b], and C. B. Croke [1990] to non-trapping manifolds with no conjugate points,
a class that is more general than simple manifolds.

Theorem 18 (Guillarmou, Mazzucchelli, and Tzou [n.d.]). 1) Let M be a simply con-
nected compact surface with boundary. If g1 and g2 are two Riemannian metrics on M
without conjugate points such that ˇg1

= ˇg2
, then there is a diffeomorphism  : M !

M such that  j@M = Id and  �g2 = g1.
2) Let (M1; g1) and (M2; g2) be two non-trapping, oriented compact Riemannian sur-
faces with boundary, without conjugate points, and with the same lens data. Then there
exists a diffeomorphism  :M1 ! M2 such that  �g2 = g1.

This result uses the method of Pestov-Uhlmann and a careful analysis near the glancing
trajectories to be able to show that I �

0 is a surjective operator. Working with the normal
operator I �

0 I0 in order to prove this property would not be a very good idea since this oper-
ator has problematic singularities due to glancing geodesics: it is not a pseudo-differential
operator anymore as in the simple manifold case. We thus have to consider a modified
normal operator that separates the glancing trajectories from the non-glancing ones. We
then show that the scattering map �g determines (M;g) up to conformal diffeomorphism.
The lens rigidity result in the non-simply connected case in Theorem 18 also uses some
unpublished work of Zhou [2011] done in his PhD thesis under Croke’s direction; this
work is based on a result of C. Croke [2005] on lens rigidity for finite quotients. We fi-
nally conjecture that Theorem 18 should be true also in higher dimension; this would be
a more general result than Michel’s conjecture.
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Conjugate points. Very little is known in cases with conjugate points. It is conjec-
tured that non-trapping manifolds should have injective X-ray transform, even when there
are conjugate points, but so far this conjecture remains open. There has been some recent
analysis of the normal operator I �

0 I0 by Stefanov and Uhlmann [2012], Monard, Stefanov,
and Uhlmann [2015], Bao and Zhang [2014] and Holman and Uhlmann [n.d.] who prove
that this is a Fourier integral operator under certain assumptions on the type of conjugate
points. In certain cases, this implies in dimension n � 3 that the kernel of I0 is finite
dimensional. We also note that the results of Uhlmann and Vasy [2016] deal with certain
cases with conjugate points in dimension n � 3, under the foliation by convex hypersur-
faces condition.

3.3 Closed manifolds. For closed Riemannian manifolds with Anosov geodesic flow,
the main result is due to Otal [1990a] and C. B. Croke [1991] who proved the following:

Theorem 19 (Otal [1990a] and C. B. Croke [1991]). Two closed Riemannian surface with
negative curvature and with the same marked length spectrum are isometric.

The method of proof is purely geometric: Otal proves first that the geodesic flows for
the two metrics are conjugate, and that the conjugation preserves the Liouville measure.
Then he uses a sequence of clever arguments based on Gauss-Bonnet formula for triangles
to show that the conjugation of the flows comes from an isometry. An extension to certain
manifolds with non-positive curvature has been obtained by C. Croke, Fathi, and Feldman
[1992].

For manifolds conformal one to each other, the fact that the marked length spectrum de-
termines the conformal factor has been proved by Katok [1988]; the proof is in dimension
2 but extends to higher dimension.

Maybe the first works on this topic were done by Guillemin and Kazhdan [1980a] and
Guillemin and Kazhdan [1980b], where they proved deformation rigidity of the length
spectrum in negative curvature for surfaces. This was extended by C. B. Croke and Shara-
futdinov [1998] in higher dimension and in the Anosov setting for surfaces by Paternain,
Salo, and Uhlmann [2014] and Guillarmou [2017a].

Theorem 20 (Guillemin and Kazhdan [1980a], C. B. Croke and Sharafutdinov [1998],
Paternain, Salo, and Uhlmann [2014], and Guillarmou [2017a]). 1) Let gs be a one-
parameter family of negatively curved metrics on a closed manifold M . If gs have the
same length spectrum for all small s 2 (��; �), then gs =  �

s g0 for some smooth family
of isometries  s for s small.
2) Let gs be a one-parameter family of metrics with Anosov flows on a closed surface M .
If gs have the same length spectrum for all small s 2 (��; �), then gs =  �

s g0 for some
smooth family of isometries  s for s small.
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These results are direct consequences of the solenoidal injectivity of the X-ray trans-
form I2, which is proved in negative curvature using Livsic theorem and a Mukhometov-
Pestov energy identity in the same spirit as what we explained above for manifolds with
boundary. For the Anosov case without negative (or non-positive) curvature assumption,
the methods of Paternain, Salo, and Uhlmann [2014] and Guillarmou [2017a] use surjec-
tivity of I �

1 and the complex structure of Riemann surfaces. The surjectivity of I �
1 consists

in the construction of invariant distribution by the flow that have prescribed first Fourier
coefficient in the Fourier decomposition in the fibers (that are circles). It is shown in Pater-
nain, Salo, and Uhlmann [2014] that surjectivity of I �

1 follows from solenoidal injectivity
of I1, and that it implies surjectivity of I �

2 using Max Noether theorem, which in turn
implies solenoidal injectivity of I2. The argument is extended in Guillarmou [2017a] to
prove solenoidal injectivity of Im for all m for surfaces with Anosov geodesic flows.

Theorem 21 (Guillarmou [ibid.]). If (M;g) is a closed surface with Anosov geodesic flow,
Im is solenoidal injective.

The microlocal approach for hyperbolic flows of Faure and Sjöstrand [2011] and Dyat-
lov and Zworski [n.d.] and Theorem 1 is strongly used by Guillarmou [2017a] to show that
the invariant distributions constructed in the surjectivity of I �

1 can be multiplied, through
a careful analysis of their wave-front sets (shown to be contained in E�

s [E�
u ).

We also mention that in the work Guillarmou [ibid.], we obtain new direct proofs of
the regularity theory for the Livsic cohomological equation Xu = f of Anosov flows,
including in Sobolev spaces (which was not done), extending some results of de la Llave,
Marco, and Moriyón [1986] and Journé [1986].
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Abstract

We review recent advances in understanding singularity and small scales forma-
tion in solutions of fluid dynamics equations. The focus is on the Euler and surface
quasi-geostrophic (SQG) equations and associated models.

1 Introduction

Fluids are all around us, and attempts to mathematically understand fluid motion go back
many centuries. Anyone witnessing a dramatic phenomena like tornado or hurricane or
even an everyday river flow or ocean wave breaking can easily imagine the complexity
of the task. There has been tremendous accumulation of knowledge in the field, yet it is
remarkable that some of the fundamental properties of key equations of fluid mechanics
remain poorly understood.

A special role in fluid mechanics is played by the incompressible Euler equation, first
formulated in 1755 Euler [1755]. Amazingly, it appears to be the second partial differen-
tial equation ever derived (the first one is wave equation derived by D’Alembert 8 years
earlier). The incompressible Euler equation describes motion of an inviscid, volume pre-
serving fluid; fluid with such properties is often called “ideal”. The Euler equation is a
nonlinear and nonlocal system of PDE, with dynamics near a given point depending on the
flow field over the entire region filled with fluid. This makes analysis of these equations
exceedingly challenging, and the array of mathematical methods applied to their study has
been very broad.

The basic purpose of an evolution PDE is solution of Cauchy problem: given initial
data, find a solution that can then be used for prediction of the modelled system. This is

This work has been supported by the NSF-DMS award 1712294.
MSC2010: primary 35Q35; secondary 76B03, 35L67.
Keywords: Euler equation, SQG equation, two-dimensional incompressible flow, small scale creation,
vorticity gradient growth, singularity formation, hyperbolic flow.
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exactly how weather forecasting works, or how new car and airplane shapes are designed.
Therefore, one of the first questions one can ask about a PDE is existence and uniqueness
of solutions in appropriate functional spaces. The PDE is called globally regular if there
exists a unique, sufficiently smooth solution for reasonable classes of initial data. On
the other hand, singularity formation - meaning that some quantities associated with fluid
motion become infinite - can indicate spontaneous creation of intense fluid motion. Sin-
gularities are also important to understand since they may indicate potential breakdown
of the model, may lead to loss of uniqueness and predictive power, and are very hard
to resolve computationally. More generally, one can ask a related and broader question
about creation of small scales in fluids - coherent structures that vary sharply in space and
time, and contribute to phenomena such as turbulence (see e.g. Eyink [2008] for further
references).

For the Euler equation, the global regularity vs finite time blow up story is very different
depending on the dimension. Let us recall that the incompressible Euler equation in a
domainD � Rd ; d = 2 or 3 with natural no penetration boundary conditions is given by

(1) @tu+ (u � r)u = rp; r � u = 0; u � nj@D = 0;

along with the initial data u(x; 0) = u0: Here u(x; t) is the vector field describing fluid
velocity, p is pressure, and n is the normal at the boundary @D: The equation (1) is just the
second Newton’s law written for ideal fluid. The difference between dimensions becomes
clear if we rewrite the equation in vorticity ! = curlu :

(2) @t! + (u � r)! = (! � r)u; !(x; 0) = !0(x);

along with Biot-Savart law which allows to recover u from !: For instance, in the case of
a smooth domain D � R2 one gets u = r?(�∆D)

�1! - where r? = (@x2 ;�@x1) and
∆D is the Dirichlet Laplacian. In the form (2), one can observe that the term (! � r)u on
the right hand side vanishes in dimension two. The resulting equation conserves the L1

norm and in fact any Lp norm of a regular solution, which helps prove global regularity.
This result has been known since 1930s works byWolibner [1933] and Hölder [1933]. We
will focus on the 2D Euler equation in Section 3 below. We note that another feature of
the Euler equation made obvious by the vorticity representation (2) (in any dimension) is
nonlocality: the inverse Laplacian in the Biot-Savart law is a manifestly nonlocal operator,
involving integration over the entire domain.

In three dimensions, the “vortex-stretching” term (! � r)u is present and can affect the
intensity of vorticity. Local well-posedness results in a range of natural spaces are well
known; one can consult Majda and Bertozzi [2002] or Marchioro and Pulvirenti [1994]
for proofs and further references. However, the global regularity vs finite time singularity
formation question remains open. In fact, this problem for the Euler equation is a close
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relative of the celebrated Clay Institute Millennium problem on the 3D Navier-Stokes
equation C. L. Fefferman [2006]. Indeed, the Navier-Stokes equation only differs from (1)
by the presence of a regularizing, linear term∆u on the right hand side modeling viscosity
(and by different boundary conditions if boundaries are present). The nonlinearity - the
principal engine of possible singular growth - is identical in both equations.

A host of numerical experiments sought to discover a scenario for singularity formation
in solutions of 3D Euler equation (see e.g. Bhattacharjee, Ng, and Wang [1995], Boratav
and R. B. Pelz [1994], E and Shu [1994], Grauer and Sideris [1991], Hou and R. Li [2006],
Kerr [1993], Larios, Petersen, Titi, and Wingate [n.d.], Ohkitani and Gibbon [2000], R.
Pelz and Gulak [1997], and Pumir and Siggia [1992], or a detailed review by Gibbon
[2008] where more references can be found). In the analytic direction, a complete review
would be too broad to attempt here. Let us mention the classical work of Beale, Kato,
and Majda [1984] on criteria for global regularity, papers Caflisch [1993] and Siegel and
Caflisch [2009] on singularities for complex-valued solutions to Euler equations, as well
as regularity criteria by Constantin, C. Fefferman, and Majda [1996] and by Hou and
collaborators Hou and R. Li [2006], Hou and C. Li [2005], and Deng, Hou, and Yu [2005]
which involve more subtle geometric conditions sufficient for regularity. See Constantin
[2007] for more history and analytical aspects of this problem.

There have been several recent developments in classical problems on regularity and
solution estimates for the fundamental equations of fluid mechanics. First, Hou and Luo
produced a new set of careful numerical experiments suggesting finite time singularity
formation for solutions of 3D Euler equation Luo and Hou [2014]. The scenario of Hou
and Luo is axi-symmetric. Very fast vorticity growth is observed at a ring of hyperbolic
stagnation points of the flow located on the boundary of a cylinder. None of the available
regularity criteria such as Constantin, C. Fefferman, and Majda [1996], Hou and R. Li
[2006], Deng, Hou, and Yu [2005], and Hou and C. Li [2005] seem to apply to scenario’s
geometry. The scenario has a close analog for the 2D inviscid Boussinesq system, for
which the question of global regularity is also open; it is listed as one of the “eleven great
problems of hydrodynamics” by V. I. Yudovich [2003]. More details on the scenario will
be provided in Section 2.

The hyperbolic stagnation point on the boundary scenario also leads to interesting phe-
nomena in solutions of the 2D Euler equation. The best known upper bound on the growth
of the gradient of vorticity, as well as higher order Sobolev norms, is double exponential
in time:

(3) kr!(�; t)kL1 � (1 + kr!0kL1)exp(Ck!0kL1 t)
:

This result has appeared explicitly in V. I. Yudovich [1962], though related bounds can be
traced back to Wolibner [1933]. The question whether such upper bounds are sharp has
been open for a long time. Kiselev and Šverák [2014] provided an example of smooth
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initial data in the disk such that the corresponding solution exhibits double exponential
growth in the gradient of vorticity for all times, establishing qualitative sharpness of (3).
The construction is based on the hyperbolic point at the boundary scenario, and will be
described in more detail in Section 3.

Further attempts to rigorously understand the Hou-Luo scenario involved construction
of 1D and 2D models retaining some of the analytical structure of the original problem.
We will discuss some of these models in Section 4.

The surface quasi-geostrophic (SQG) equation is similar to the 2D Euler equation in
vorticity form, but is more singular:

(4) @t! + (u � r)! = 0; u = r
?(�∆)�1+˛!; ˛ = 1/2; !(x; 0) = !0(x):

The value ˛ = 0 corresponds to the 2D Euler equation, while 0 < ˛ < 1
2
is called the

modified SQG range. The SQG and modified SQG equations come from atmospheric
science. They model evolution of temperature near the surface of a planet and can be
derived by formal asymptotic analysis from a larger system of rotating 3D Navier-Stokes
equations coupled with temperature equation through buoyancy force Held, Pierrehum-
bert, Garner, and Swanson [1995], Majda [2003], Pedlosky [1987], and Pierrehumbert,
Held, and Swanson [1994]. In mathematical literature, the SQG equation was first consid-
ered by Constantin, Majda, and Tabak [1994], where a parallel between the structure of the
SQG equation and the 3D Euler equation was drawn. The SQG and modified SQG equa-
tions are perhaps simplest looking equations of fluid mechanics for which the question of
global regularity vs finite time blow up remains open. The equation (4) can be considered
with smooth initial data, but another important class of initial data is patches, where �0(x)
equals linear combination of characteristic functions of some disjoint domainsΩj (0): The
resulting evolution yields time dependent regions Ωj (t). The regularity question in this
context addresses the regularity class of the boundary @Ωj (t) and lack of contact between
different components. Existence and uniqueness of patch solution for 2D Euler equation
follows from Yudovich theory Judovič [1963], Majda and Bertozzi [2002], andMarchioro
and Pulvirenti [1994]. The global regularity question has been settled affirmatively by
Chemin [1993] (Bertozzi and Constantin [1993] provided a different proof). For the SQG
andmodified SQG equations patch dynamics is harder to set up. Local well-posedness has
been shown by Rodrigo in C1 class Rodrigo [2005] and by Gancedo in Sobolev spaces
Gancedo [2008] in the whole plane setting. Numerical simulations by Córdoba, Fontelos,
Mancho, and Rodrigo [2005] suggest that finite time singularities – in particular forma-
tion of corners and different components touching each other – is possible, but rigorous
understanding of this phenomena remained missing. In Kiselev, Ryzhik, Yao, and Zla-
toš [2016], Kiselev, Yao, and Zlatoš [2017], we considered modified SQG and 2D Euler
patches in half-plane, with the no penetration boundary conditions. The initial patches
are regular and do not touch each other but may touch the boundary. We proved a kind
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z
u periodic in z

symmetry plane
for the reflection
(x, y, z)→ (x, y,−z)

u · n = 0 at ∂Ω

u

u

Figure 1: The initial data for Hou-Luo scenario

of phase transition in this setting: the 2D Euler patches stay globally regular, while for a
range of small ˛ > 0 some initial data lead to blow up in finite time. The blow up scenario
again involves a stagnation hyperbolic point of the flow on the boundary. This result will
be described in more detail in Section 5.

2 The 3D Euler equation and the 2D Boussinesq system: the
hyperbolic scenario

In Luo and Hou [2014] the authors study 3D axi-symmetric solutions of incompressible
Euler equation with roughly the initial configuration shown on Figure 1: only swirl u� is
initially non-zero, and it is odd and periodic in z variable.

One of the standard forms of the axi-symmetric Euler equations in the usual cylindrical
coordinates (r; �; z) is

@t

�
!�

r

�
+ ur@r

�
!�

r

�
+ uz@z

�
!�

r

�
= @z

�
(ru�)2

r4

�
(5a)

@t (ru
�) + ur@r(ru

�) + uz@z(ru
�) = 0 ;(5b)
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possible
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singularity?

x

z

Figure 2: The secondary flows in fixed � section

with the understanding that ur ; uz are given from !� via the Biot-Savart law which in the
setting of Hou-Luo scenario takes form

ur = �
@z 

r
; uz =

@r 

r
; L =

!�

r
; L = �

1

r
@r

�
1

r
@r 

�
�

1

r2
@2zz :

From (5), it is clear that the swirl will spontaneously generate toroidal rolls correspond-
ing to non-zero !� : These are the so-called “secondary flows”, Prandtl [1952]; its effect
on river flows was studied by Einstein [1926]. Thus the initial condition leads to the
(schematic) picture in the xz–plane shown on Figure 2, in which we also indicate the
point where a conceivable finite-time singularity (or at least an extremely strong growth
of vorticity) is observed numerically. In the three-dimensional picture, the points with
very fast growth form a ring on the boundary of the cylinder.

A somewhat similar scenario can be considered for the 2D inviscid Boussinesq system
in a half-space R+ = f(x; y) 2 R�(0;1)g (or in a flat half-cylinder S1�(0;1)), which
we will write in the vorticity form:

@t! + u1@x! + u2@y! = @x�(6a)
@t� + u1@x� + u2@y� = 0 :(6b)
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Figure 3: The 2D Boussineq singularity scenario

Here u = (u1; u2) is obtained from ! by the usual Biot-Savart law u = r?(�∆)�1!;

with appropriate boundary conditions on ∆; and � represents the fluid temperature or
density.

It is well-known (see e.g. Majda and Bertozzi [2002]) that this system has properties
similar to the 3D axi-symmetric Euler (5), at least away from the rotation axis. Indeed,
comparing (5) with (6), we see that � essentially plays the role of the square of the swirl
component ru� of the velocity field u, and ! replaces !�/r: The real difference between
the two systems only emerges near the axis of rotation, where the factors of r can conceiv-
ably change the nature of dynamics. For the purpose of comparisonwith the axi-symmetric
flow, the last picture should be rotated by�/2, after which it resembles the picture relevant
for (6), see Figure 3.

In both the 3D axi-symmetric Euler case and in the 2D Boussinesq system case the
best chance for possible singularity formation seems to be at the points of symmetry at the
boundary, which numerical simulations suggest are fixed hyperbolic points of the flow.
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3 The 2D Euler equation

A reasonable first step to understand the hyperbolic stagnation point on the boundary blow
up scenario is to consider the case of constant density in the Boussinesq system first. Of
course, this reduces the system to the 2D Euler equation:

(7) @t! + (u � r)! = 0; u = r
?(�∆D)

�1!; !(x; 0) = !0(x):

Here ∆D stands for Dirichlet Laplacian; such choice of the boundary condition corre-
sponds to no-penetration property u � nj@D = 0: Of course, for the 2D Euler equation so-
lutions are globally regular. Let us state this result, going back to 1930s Wolibner [1933]
and Hölder [1933].

Theorem 3.1. Let D � R2 be a compact domain with smooth boundary, and !0(x) 2

C 1(D)Then there exists a unique smooth solution!(x; t) of the equation (7) corrsponding
to the initial data !0, which moreover satisfies

(8) 1 + log
�
1 +

kr!(x; t)kL1

k!0kL1

�
�

�
1 + log

�
1 +

kr!0kL1

k!0kL1

��
exp(Ck!0kL1 t)

for some constant C which may depend only on the domainD:

A key ingredient of the proof is the Kato inequality Kato [1986]: for every 1 > ˛ > 0;

we have

(9) kru(x; t)kL1 � C (˛;D)k!0kL1

�
1 + log

k!(x; t)kC˛

k!0kL1

�
:

Note that the matrix ru consists of double Riesz transforms @2ij (�∆D)
�1!: Riesz trans-

forms are well known to be bounded on Lp; 1 < p < 1 (see e.g. Stein [1970]), but the
bound fails at the endpoints and we have to pay a logarithm of the higher order norm to
obtain a correct bound. It is exactly the extra log in (9) that leads to the double exponential
upper bound as opposed to the single one (see e.g. Kiselev and Šverák [2014] for more
details).

The question of whether such upper bounds are sharp has been open for a long time.
Judovič [1974] and V. I. Yudovich [2000] provided an example showing infinite growth
of the vorticity gradient at the boundary of the domain, by constructing an appropriate
Lyapunov-type functional. These results were further improved and generalized inMorgulis,
Shnirelman, and V. Yudovich [2008], leading to description of a broad class of flows with
infinite growth in their vorticity gradient. Nadirashvili [1991] proved a more quantitative
linear in time lower bound for a “winding” flow in an annulus. A variant of the exam-
ple due to Bahouri and Chemin [1994] provides singular stationary solution of the 2D
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Euler equation defined on T 2 with fluid velocity which is just log-Lipschitz in spacial
variables. Namely, if we set T 2 = [��; �) � [��; �); the solution is equal to �1 in the
first quadrant [0; �) � [0; �) and is odd with respect to both coordinate axes. Note that
the solution is just L1 but existence and uniqueness of solutions in this class is provided
essentially by Yudovich theory Judovič [1963]. The origin is a fixed hyperbolic point
of the fluid velocity, with x1 being the contracting direction, and the velocity satisfies
u1(x1; 0) =

4
�
x1 log x1+O(x1) for small x1: The trajectory starting at a point (x1; 0) on

a horizontal separatrix will therefore converge to the origin at a double exponential rate in
time. If a smooth passive scalar  initially supported away from the origin is advected by
a flow generated by singular cross, @x1 will grow at a double exponential rate in time
if  (x1; 0) is not identically zero. Of course, derivative growth does not make sense for
the singular cross solution itself since it is stationary and already singular. But this solu-
tion shows a blueprint of how double exponential growth can be conceivably generated
in smooth solution: it needs to approach the discontinuous configuration similar to the
singular cross, while at the same time the solution should be nonzero on the contracting
direction. This turns out to be hard to implement, especially without boundary.

In recent years, there has been a series of works byDenisov on this problem. In Denisov
[2009], he constructed an example with superlinear growth in vorticity gradient of the
solution in the periodic case. In Denisov [2015], he showed that for any time T , one
can arrange smooth initial data so that the corresponding solution will experience double
exponential burst of growth over [0; T ]: The example is based on smoothing out Bahouri-
Chemin example, abandoning odd symmetry to put a ripple on a separatrix, and controlling
the resulting solution over finite time interval.

In Kiselev and Šverák [2014], we proved

Theorem 3.2. Consider two-dimensional Euler equation on a unit diskD: There exists a
smooth initial data !0 with kr!0kL1/k!0kL1 > 1 such that the corresponding solution
!(x; t) satisfies

(10)
kr!(x; t)kL1

k!0kL1

�

�
kr!0kL1

k!0kL1

�c exp(ck!0kL1 t)

for some c > 0 and for all t � 0:

The theorem shows that double exponential growth in the gradient of vorticity can actu-
ally happen for all times, so the double exponential upper bound is sharp. As in Hou-Luo
blow up scenario, growth happens near a hyperbolic fixed point of the flow at the bound-
ary. The result has been generalized to the case of any compact sufficiently regular domain
with symmetry axis by Xu [2016]. The question of whether double exponential growth can
happen in the bulk of the fluid remains open; Zlatoš [2015] has improved the techniques
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behind Theorem 3.2 to construct examples of smooth solutions with exponential growth
of kr2!kL1 in periodic setting. The question of whether double exponential growth is
at all possible in the bulk of the fluid remains wide open.

A key step in the proof is understanding the structure of fluid velocity near the hyper-
bolic point. Let

D+ = fx 2 D jx1 � 0:g

We will choose the initial data that is odd in x1; and �1 � !0(x) < 0 for x 2 D+: Let us
set the origin of our coordinate system at the bottom of the disc, where interesting things
will be happening. Given the symmetry of !, we have

u(x; t) = �r
?

Z
D

GD(x; y)!(y; t) dy(11)

= �
1

2�
r

?

Z
D+

log
�

jx � yjjx̃ � ȳj

jx � ȳjjx̃ � yj

�
!(y; t) dy;(12)

where GD is the Green’s function of Dirichlet Laplacian and x̃ = (�x1; x2): For each
point (x1; x2) 2 D+, let us introduce the region

Q(x1; x2) = f(y1; y2) 2 D+ : x1 � y1; x2 � y2g;

and set

(13) Ω(x1; x2; t) = �
4

�

Z
Q(x1;x2)

y1y2

jyj4
!(y; t) dy1dy2:

Finally, for any 0 < 
 < �/2; let � be the usual polar angle coordinate of point x, and
denote

D


1 = fx 2 D+

j0 � � � �/2 � 
 g; D


2 = fx 2 D+

j
 � � � �/2g:

The following Lemma is crucial for the proof of Theorem 3.2.

Lemma 3.3. Suppose that !0 is odd with respect to x1: Fix a small 
 > 0: There exists
ı > 0 so that for all x 2 D



1 such that jxj � ı we have

(14) u1(x1; x2; t) = �x1Ω(x1; x2; t) + x1B1(x1; x2; t);

where jB1(x1; x2; t)j � C (
)k!0kL1 :

Similarly, for all x 2 D


2 such that jxj � ı we have

(15) u2(x1; x2; t) = x2Ω(x1; x2; t) + x2B2(x1; x2; t);

where jB2(x1; x2; t)j � C (
)k!0kL1 :
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Proof of the lemma is based on analysis of (11), full details can be found in Kiselev
and Šverák [2014]. The terms on the right hand sides of (14), (15) involving Ω can be
thought of as main terms in certain regimes. Indeed, observe that as support of the set
where !(x; t) � c > 0 approaches the origin, the size of Ω given by (13) may grow
as a logarithm of this distance. Thus Lemma 3.3 provides a sort of quantitative version
of Bahouri-Chemin log-Lipschitz singular flow for smooth setting. In the regime where
the Ω terms dominate, the flow trajectories described by (14), (15) are close to precise
hyperbolas. Another interesting feature of the formulas (14), (15) is a hidden comparison
principle: the influence regionQ(x1; x2) tends to be larger for points closer to the origin.
The comparison principle is not precise, but it turns out to be true up to Lipschitz errors.
This feature is key in the construction of the example with double exponential growth.

Let us now sketch the construction of such example. Fix small 
 > 0; and take � > 0

smaller than the corresponding value of ı from Lemma 3.3. We also take � sufficiently
small so that log ��1 is much larger than the constant C (
) from Lemma 3.3. Take the
initial data !0 such that !0(x1; x2) = �1 if x1 � �10; odd with respect to x1; and satisfy-
ing �1 � !0(x) � 0 for x 2 D+: This leaves certain ambiguity in how we define !0 in
the region close to x2 axis. As we will see, it does not matter for the construction exactly
how !0 is defined there.

The first observation is that with such choice of the initial data,

(16) Ω(x; t) � C log ��1

for every x 2 D+ with jxj � �: Indeed, due to incompressibility of the flow the measure
of the points x 2 D+ where !(x; t) > �1 does not exceed 2� for any time t: It is then
straightforward to show that even if all these points are pushed by the dynamics into the
region where the size of the kernel in (13) is maximal, the estimate (16) still holds.

Next, for 0 < x0
1 < x

00
1 < 1 we denote

(17) O(x0
1; x

00
1 ) =

˚
(x1; x2) 2 D+ ; x0

1 � x1 � x00
1 ; x2 � x1

	
:

We would like to analyze the evolution in time of the region O�10�: For this purpose, for
0 < x1 < 1 we let

(18) u1(x1; t) = min
(x1;x2)2D+ ; x2�x1

u1(x1; x2; t)

and

(19) u1(x1; t) = max
(x1;x2)2D+ ; x2�x1

u1(x1; x2; t) :

Define a(t) by

(20) a0 = u1(a; t) ; a(0) = �10
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and b(t) by

(21) b0 = u1(b; t) ; b(0) = �:

Let

(22) Ot = O(a(t); b(t)) :

We claim that !(x; t) = �1 for every x 2 Ot ; and every t � 0: Indeed, if this is
not the case, then there must exist some time s and a trajectory Φs(y) such that y … O0;

and Φs(y) 2 @Os for the first time. But the trajectory Φs(y) cannot enter Os through the
boundary of D due to the no-penetration boundary condition. It is also not hard to see it
cannot enter at the x1 = a(s) or x1 = b(s) pieces of @Os due to the definition of a(t); b(t)
and u; u: This leaves the diagonal x1 = x2: However, due to Lemma 3.3 and the estimate
(16), we have that

(23)
C log ��1 � C (
)

C log ��1 + C (
)
�

�u1(x1; x1; t)

u2(x1; x1; t)
�
C log ��1 + C (
)

C log ��1 � C (
)

for every t � 0 and x1 � �: Due to choice of �; we have that the ratio �u1/u2 on the
diagonal part of the boundary of Os is close to 1. Thus the vector field u points outside of
the region Os on the diagonal part of the boundary at all times and so the trajectory cannot
enter through the diagonal either.

Next, we are going to estimate how quickly a(t) approaches the origin. The constant
C below depends only on 
 and may change from line to line. By Lemma 3.3, we have

u1(b(t); t) � �b(t)Ω(b(t); x2(t)) � Cb(t);

for some x2(t) � b(t) ; (x2(t); b(t)) 2 D+ as k!(x; t)kL1 � 1 by our choice of the
initial datum !0. A straightforward calculation shows that

Ω(b(t); x2(t)) � Ω(b(t); b(t)) + C:

Thus we get

(24) u1(b(t); t) � �b(t)Ω(b(t); b(t)) � Cb(t):

Similarly,

u1(a(t); t) � �a(t)Ω(a(t); x̃2(t)) � �a(t)Ω(a(t); 0) + Ca(t):

These estimates establish a form of comparison principle, up to Lipschitz errors, of the
fluid velocities of the front and back of the region Oa(t);b(t):
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Now observe that

(25) Ω(a(t); 0) � �
4

�

Z
Ot

y1y2

jyj4
!(y; t) dy1dy2 +Ω(b(t); b(t)):

Since !(y; t) = �1 on Ot ; a direct estimate shows that the integral in (25) is bounded
from below by �(� log a(t) + log b(t)) for some � > 0: Applying the above estimates to
evolution of a(t) and b(t) we obtain

(26)
d

dt
(log a(t) � log b(t)) � � (log a(t) � log b(t)) + C:

Applying Gronwall lemma and choosing � small enough leads to log a(t) � exp(�t) log �:
To arrive at (10), it remains to note that we can arrange kr!0kL1 . ��10:

4 The one-dimensional models

One-dimensional models in fluid mechanics have a long history. We briefly review some
of the results most relevant to our narrative. In the context of modeling finite time blow
and global regularity issues, Constantin, Lax, and Majda [1985] considered the model

(27) @t! = !H!; !(x; 0) = !0(x);

where H is the Hilbert transform, H!(x; t) = 1
�
P:V:

R
R
!(y;t)
x�y

dy: The equation (27) is
designed to model the vortex stretching term on the right hand side of (2); the advection
term is omitted. Surprisingly, the model (27) is explicitly solvable due to special proper-
ties of Hilbert transform. Finite time blow up happens for a broad class of initial data -
specifically, near the points where !0(x) vanishes and the real part of H!0 has the right
sign.

A more general model has been proposed by De Gregorio [1990], De Gregorio [1996]:

(28) @t! + u@x! = !H!; ux = H!; !(x; 0) = !0(x):

This model includes the advection term. Amazingly, the question of whether the solutions
to (28) are globally regular or can blow up in finite time is currently open. Numerical
simulations appear to suggest global regularity Okamoto, Sakajo, andWunsch [2008], but
the mechanism for it is not well understood. Recently, global regularity near a manifold
of equilibria as well as other interesting features of the solutions of (28) have been shown
in Jia, Stewart, and Sverak [n.d.]. Variants of (28) and other related models appear in for
example Bauer, Kolev, and Preston [2016], Castro and Córdoba [2010], Elgindi and Jeong
[n.d.(c)], Escher and Kolev [2014], and Wunsch [2011], where further references can be
found.
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Already in Luo and Hou [2014], Hou and Luo proposed a simplified one-dimensional
model specifically designed to gain insight into the singularity formation process in the
scenario described in Section 2. This model is given by

@t! + u@x! = @x�;

@t� + u@x� = 0; ux = H!:(29)

Here as above H is the Hilbert transform, and the setting can be either periodic or the
entire axis with some decay of the initial data. The model (29) can be thought of as an
effective equation on the x2 = 0 axis in the Boussinesq case (see (6) and Figure 3) or
on the boundary of the cylinder in the 3D axi-symmetric Euler case. The model can be
derived from the full equations under certain boundary layer assumption: that !(x; t) is
concentrated in a boundary layer of width a near x2 = 0 axis and is independent of x2, that
is !(x1; x2; t) = !(x1; t)�[0;a](x2): Such assumption is necessary to close the equation
and reduces the half-plane Biot-Savart law to ux = H! in the main order; the parameter
a enters into the additional term that is non-singular and is dropped from (29). See Luo
and Hou [ibid.], Choi, Hou, Kiselev, Luo, Sverak, and Yao [2017] for more details. We
will call the system (29) the HL model.

The HL model is still fully nonlocal. A further simplification was proposed in Choi,
Kiselev, and Yao [2015], where the Biot-Savart law has been replaced with

(30) u(x; t) = �x

Z 1

x

!(y; t)

y
dy:

Here the most natural setting is on an interval [0; 1] with smooth initial data supported
away from the endpoints. The law (30) is motivated by the velocity representation in
Lemma 3.3 above, as it is the simplest one dimensional analog of such representation. This
law is “almost local” - if one divides u by x and differentiates, one gets local expression.
We will call the model (30) the CKY model.

For both HL and CKY models, local well-posedness in a reasonable family of spaces
(such as sufficiently regular Sobolev spaces) is not difficult to obtain. In Choi, Kiselev,
and Yao [ibid.], finite time blow up has been proved for the CKY model. The proof used
analysis of the trajectories and of the nonlinear feedback loop generated by the forcing
term @x� . We will sketch a very similar argument below. The proof does not provide a
detailed blow picture. In a later work Hou and Liu [2015], more precise picture of blow up
was established with aid of computer assisted proof. It shows self-similar behavior near
the origin properly matched with the outside region. For the original HL model, finite
time blow up has been proved in Choi, Hou, Kiselev, Luo, Sverak, and Yao [2017]. For
the model including the additional term obtained from the boundary layer assumption into
Biot-Savart law, finite time blow up has been proved in Do, Kiselev, and Xu [n.d.]. We
now sketch a variant of the blow up proof for the HL model (29).
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Let us consider an HL model on [0; L] with periodic boundary conditions. In this set-
ting, using the expression for periodic Hilbert transform, the Biot-Savart law becomes

ux(x) = H!(x) =
1

L
P:V:

Z L

0

!(y) cot[�(x � y)] dy;

where � = �/L: Integration leads to

(31) u(x) =
1

�

Z L

0

!(y) log j sin[�(x � y)]j dy:

The initial data will be chosen as follows: !0 is odd, which together with periodicity
implies that it is also odd with respect to x = L/2; and satisfies !0(x) � 0 if x 2

[0; L/2]: The initial density �0 is even with respect to both 0 and L/2; and satisfies � 0
0 �

0 for x 2 [0; L/2]: The solution, while it exists, will satisfy the same properties. The
symmetry assumptions on ! lead to the following version of the Biot-Savart law, which
can be verified by direct computation.

Lemma 4.1. Let ! be periodic with period L and odd at x = 0 and let u be defined by
(31). Then for any x 2 [0; 1

2
L],

(32) u(x) cot(�x) = �
1

�

Z L/2

0

K(x; y)!(y) cot(�y) dy;

where

(33) K(x; y) = s log
ˇ̌̌̌
s + 1

s � 1

ˇ̌̌̌
with s = s(x; y) =

tan(�y)
tan(�x)

:

Furthermore, the kernel K(x; y) has the following properties:

1. K(x; y) � 0 for all x; y 2 (0; 1
2
L) with x ¤ y;

2. K(x; y) � 2 and Kx(x; y) � 0 for all 0 < x < y < 1
2
L;

The key observation is a certain positivity property that will help us control the behavior
of trajectories Choi, Hou, Kiselev, Luo, Sverak, and Yao [2017].

Lemma 4.2. Let the assumptions in Lemma 4.1 be satisfied and assume in addition that
! � 0 on [0; 1

2
L]. Then for any a 2 [0; 1

2
L],

(34)
Z L/2

a

!(x)
�
u(x) cot(�x)

�
x
dx � 0:
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With these two lemmas, the rest of the proof proceeds as follows. Towards a contradic-
tion, let us assume that there exists a global solution (�; !) to (29) with the initial data as
described in the beginning of this section and denote A := �0(

1
2
L) > 0. Since �0 is as-

sumed to be increasing on [0; 1
2
L], we can choose a decreasing sequence xn in (0; 12L)with

n � 0 such that �0(xn) = [2�1 + 2�(n+2)]A. Note that x0 < 1
2
L since �0(x0) < �0( 12L).

For xn defined as above, let Φn(t) denote the characteristics of (29) originating from
xn, that is, let d

dt
Φn(t) = u(Φn(t); t) with Φn(0) = xn. Lemma 4.1 then implies the

following estimate on the evolution of Φn:

d

dt
Φn(t) = u(Φn(t); t) � �

2

�
tan(�Φn(t))

Z L/2

Φn(t)

!(y; t) cot(�y) dy(35)

� �
2�

�
Φn(t)Ωn(t);(36)

where for simplicity we have written

(37) Ωn(t) :=

Z L/2

Φn(t)

!(y; t) cot(�y) dy:

Introducing the new variable  n(t) := � logΦn(t), we may write (36) as

(38)
d

dt
 n(t) �

2�

�
Ωn(t):

Then for each n � 1; we have

d

dt
Ωn(t) =

Z L/2

Φn(t)

!(y; t)
�
u(y; t) cot(�y)

�
y
dy +

Z L/2

Φn(t)

�y(y; t) cot(�y) dy

�

Z Φn�1(t)

Φn(t)

�y(y; t) cot(�y) dy

� cot(�Φn�1(t))
�
�0(xn�1) � �0(xn)

�
= 2�(n+2)A cot(�Φn�1(t));

where in the second step we have used Lemma 4.2 and the fact that �x � 0 on [0; 1
2
L]. To

find a lower bound for the right hand side, note that for any fixed z 2 (0; 1
2
�), there exists

some constant c > 0 depending only on z such that cot(x) > cx�1 for any x 2 (0; z]. In
our situation, we have�Φn�1(t) � �Φ0(t) � �x0 <

1
2
� , and as a result there exists some

constant c0 > 0 depending only on � and x0 such that cot(�Φn�1(t)) � c0[Φn�1(t)]
�1.

This leads to the estimate

(39)
d

dt
Ωn(t) � 2�(n+2)c0Ae

 n�1(t):
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Once we have (38), (39), the proof of finite time blow is fairly straightforward. Details of
a similar argument can be found in Choi, Kiselev, and Yao [2015]. We can choose A large
enough to show inductively that  n(tn) � bn+ a for some suitably chosen a 2 R; b > 0

and an increasing sequence tn ! T < 1: This implies that � has to develop a shock at
x = 0 by time T - unless blow up happens before that in some other fashion (invalidating
regularity assumptions underlying our estimates such as integration by parts). In fact, the
informal flavor of bounds (38), (39) is that of F 00 � cecF differential inequality, leading
to dramatically fast growth.

5 The SQG patch problem: a blow up blueprint

Part of the difficulty in securing rigorous understanding of the Hou-Luo blow up scenario
for 3D axi-symmetric Euler or 2D inviscid Boussinesq equation lies in growth of!;which
destroys the estimate of error terms in Lemma 3.3. The error terms may no longer be of
smaller order than the main term. In fact, heuristic computations taking ! that behaves
approximately like some inverse power of x1 in a certain region near origin - an ansatz that
appears to be in agreement with the numerical simulations - indicate that the error terms
will now be of the same order as the main term obtained by integration over the bulk. In
this section, we discuss a different setting in which this situation is the case - the portion
of the Biot-Savart integral pushing the solution towards blow up has the same order as the
part pushing in the opposing direction. Nevertheless, the conclusion is finite time blow,
essentially due to presence of a parameter that can be used to overcome the error term.
The setting is that of modified SQG patch solutions in the half-plane.

Namely, let us in this section set D = R2
+ = f(x1; x2) j x2 � 0g: The Bio-Savart law

for the patch evolution on the half-planeD := R � R+ is

u = r
?(�∆D)

�1+˛!;

with∆D being the Dirichlet Laplacian onD, which can also be written as

(40) u(x; t) :=

Z
D

�
(x � y)?

jx � yj2+2˛
�

(x � ȳ)?

jx � ȳj2+2˛

�
!(y; t)dy

The case ˛ = 0 corresponds to the 2D Euler equation, while ˛ = 1/2 to the SQG equation;
the range 0 < ˛ < 1 is called modified SQG. Note that u is divergence free and tangential
to the boundary. A traditional approach to the 2D Euler (˛ = 0) vortex patch evolution,
going back to Yudovich (see Marchioro and Pulvirenti [1994] for an exposition) is via the
corresponding flow map. The active scalar ! is advected by u from Equation (40) via

(41) !(x; t) = !
�
Φ�1
t (x); 0

�
;
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where

(42)
d

dt
Φt (x) = u (Φt (x); t) and Φ0(x) = x:

The initial condition !0 for (40)-(42) is patch-like,

(43) !0 =

NX
k=1

�k�Ω0k
;

with �1; : : : ; �N ¤ 0 and Ω01; : : : ;Ω0N � D bounded open sets, whose closures Ω0;k are
pairwise disjoint and whose boundaries @Ω0k are simple closed curves. The question of
regularity of solution in patch setting becomes the question of the conservation of regular-
ity class of the patch boundary, as well as lack of self-intersection or collisions between
different patches.

One reason the Yudovich theory works for the 2D Euler equations is that for ! which is
(uniformly in time) in L1 \L1, the velocity field u given by Equation (40) with ˛ = 0 is
log-Lipschitz in space, and the flow map Φt is everywhere well-defined (see e.g. Majda
and Bertozzi [2002] and Marchioro and Pulvirenti [1994]). In our situation, when ! is
a patch solution and ˛ > 0, the flow u from Equation (40) is smooth away from the
patch boundaries @Ωk(t) but is only 1�˛ Hölder constinuous at @Ωk(t); which is exactly
where one needs to use the flow map. This creates significant technical difficulties in
proving local well-posedness of patch evolution in some reasonable functional space. For
the case without boundaries, local well-posedness has been proved in Rodrigo [2005] for
C1 patches and for Sobolev H 3 patches in Gancedo [2008] for 0 < ˛ � 1: A naive
intuition on why patch evolution can be locally well-posed for ˛ > 0 is that the below-
Lipschitz loss of regularity only affects the tangential component of the fluid velocity at
patch boundary. The normal to patch component, that intuitively should determine the
evolution of the patch, retains stronger regularity.

In presence of boundaries, the problem is harder. Intuitively, one reason for the difficul-
ties can be explained as follows. In the simplest case of half-plane the reflection principle
implies that the boundary can be replaced by a reflected patch (or patches) of the opposite
sign. If the patch is touching the boundary, then the reflected and original patch are touch-
ing each other, and the low regularity tangential component of the velocity field generated
by the reflected patch has strong influence on the boundary of the original patch near touch
points. Even in the 2D Euler case, the global regularity for patches in general domains
with boundaries is currently open (partial results for patches not touching the boundary or
with loss of regularity can be found in Depauw [1999], Dutrifoy [2003]). In the half-plane,
a global regularity result has been recently established in Kiselev, Ryzhik, Yao, and Zlatoš
[2016]:
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Theorem 5.1. Let ˛ = 0 and 
 2 (0; 1]. Then for each C 1;
 patch-like initial data !0,
there exists a unique global C 1;
 patch solution ! to (41), (40), (42) with !(�; 0) = !0.

In the case 1
24
> ˛ > 0 with boundary, even local well-posedness results are highly

non-trivial. The following result has been proved in Kiselev, Yao, and Zlatoš [2017] for
the half-plane.

Theorem 5.2. If ˛ 2 (0; 1
24
), then for each H 3 patch-like initial data !0, there exists a

unique local H 3 patch solution ! with !(�; 0) = !0. Moreover, if the maximal time T!
of existence of ! is finite, then at T! a singularity forms: either two patches touch, or a
patch boundary touches itself or losesH 3 regularity.

Wenote that one has to be careful in the definition of solutions in this case as trajectories
(42) may not be unique. Solutions can be defined in a weak sense by pairing with a test
function, or in an appealing geometric way by specifying evolution of patch boundary
with velocity (40) in the sense of Hausdorff distance; see Kiselev, Yao, and Zlatoš [ibid.]
for more details. The constraint ˛ < 1

24
appears due to estimates near boundary; it is not

clear if it is sharp.
On the other hand, in Kiselev, Ryzhik, Yao, and Zlatoš [2016], it was proved that for

any ˛ > 0; there exist patch-like initial data leading to finite time blow up.

Theorem 5.3. Let ˛ 2 (0; 1
24
). Then there are H 3 patch-like initial data !0 for which

the unique local H 3 patch solution ! with !(�; 0) = !0 becomes singular in finite time
(i.e., its maximal time of existence T! is finite).

Together, Theorems 5.1 and 5.3 give rigorous meaning to calling the 2D Euler equation
critical. In the half-plane patch framework ˛ = 0 is the exact threshold for phase transition
from global regularity to possibility of finite time blow up.

In what follows, we will sketch proof of the blow up Theorem Theorem 5.3. We
concentrate on the main ideas only; full details can be found in Kiselev, Ryzhik, Yao,
and Zlatoš [ibid.]. Let us describe the initial data set up.Denote Ω1 := ("; 4) � (0; 4),
Ω2 := (2"; 3) � (0; 3), and let Ω0 � D+ � R+ � R+ be an open set whose boundary
is a smooth simple closed curve and which satisfies Ω2 � Ω0 � Ω1. Here � is a small
parameter depending on ˛ that will be chosen later.

Let !(x; t) be the uniqueH 3 patch solution corresponding to the initial data

(44) !(x; 0) := �Ω0
(x) � �Ω̃0

(x)

with maximal time of existence T! > 0. Here, Ω̃0 is the reflection of Ω0 with respect to
the x2-axis. Then

(45) !(x; t) = �Ω(t)(x) � �Ω̃(t)(x)
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x1

x2

Ω2

Ω1

ε 3 4

4

3

2ε

Ω0

K(0)

3ε 2

Figure 4: The domains Ω1;Ω2;Ω0, and K(0) (with !0 = �Ω0
� �Ω̃0

).

for t 2 [0; T!), with Ω(t) := Φt (Ω0): It can be seen from (40) that the rightmost point
of the left patch on the x1-axis and the leftmost point of the right patch on the x1-axis
will move toward each other. In the case of the 2D Euler equations ˛ = 0, Theorem 5.1
shows that the two points never reach the origin. When ˛ > 0 is small, however, it
is possible to control the evolution sufficiently well to show that — unless the solution
develops another singularity earlier — both points will reach the origin in a finite time.
The argument yielding such control is fairly subtle, and the estimates do not extend to all
˛ < 1

2
, even though one would expect singularity formation to persist for more singular

equations. This situation is not uncommon in the field: there is plenty of examples with
the infinite in time growth of derivatives for the smooth solutions of 2D Euler equation,
while none are available for the more singular SQG equation Kiselev and Nazarov [2012].

To show finite time blow up, we will deploy a barrier argument. Define

(46) K(t) := fx 2 D+ : x1 2 (X(t); 2) and x2 2 (0; x1)g

for t 2 [0; T ], with X(0) = 3�: Clearly, K(0) � Ω(0): Set the evolution of the barrier by

(47) X 0(t) = �
1

100˛
X(t)1�2˛:

Then X(T ) = 0 for T = 50(3�)2˛: So if we can show that K(t) stays inside Ω(t) while
the patch solution stays regular, then we obtain that singularity must form by time T : the
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different patch components will touch at the origin by this time unless regularity is lost
before that.

The key step in the proof involves estimates of the velocity near origin. In particular,
u1 needs to be sufficiently negative to exceed the barrier speed (47); u2 needs to be suffi-
ciently positive in order to ensure thatΩ(t) cannot cross the barrier along its diagonal part.
Note that it suffices to consider the part of the barrier that is very close to the origin, on
the order ∼ �2˛: Indeed, the time T of barrier arrival at the origin has this order, and the
fluid velocity satisfies uniform L1 bound that follows by a simple estimate which uses
only ˛ < 1/2: Thus the patch Ω(t) has no time to reach more distant boundary points of
the barrier before formation of singularity.

Let us focus on the estimates for u1: For y = (y1; y2) 2 D̄+ = R+ � R+, we denote
ȳ := (y1;�y2) and ỹ := (�y1; y2):Due to odd symmetry, (40) becomes (we drop t from
the notation in this sub-section)

(48) u1(x) = �

Z
D+

K1(x; y)!(y)dy;

where

(49) K1(x; y) =
y2 � x2

jx � yj2+2˛„ ƒ‚ …
K11(x;y)

�
y2 � x2

jx � ỹj2+2˛„ ƒ‚ …
K12(x;y)

�
y2 + x2

jx + yj2+2˛„ ƒ‚ …
K13(x;y)

+
y2 + x2

jx � ȳj2+2˛„ ƒ‚ …
K14(x;y)

;

Analyzing (49), it is not hard to see that we can split the region of integration in the
Biot-Savart law according to whether it helps or opposes the bounds we seek. Define

ubad1 (x) := �

Z
R+�(0;x2)

K1(x; y)!(y)dy(50)

u
good
1 (x) := �

Z
R+�(x2;1)

K1(x; y)!(y)dy:(51)

The following two lemmas contain key estimates.

Lemma 5.4 (Bad part). Let ˛ 2 (0; 1
2
) and assume that ! is odd in x1 and 0 � ! � 1 on

D+. If x 2 D+ and x2 � x1, then

(52) ubad1 (x) �
1

˛

�
1

1 � 2˛
� 2�˛

�
x1�2˛
1 :

The proof of this lemma uses (49) and after cancellations leads to the bound

(53) ubad1 (x) � �

Z
(0;2x1)�(0;x2)

y2 � x2

jx � yj2+2˛
dy;
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which gives (52)
In the estimate of the good part, we need to use a lower bound on! that will be provided

by the barrier. Define

(54) A(x) := fy : y1 2 (x1; x1 + 1) and y2 2 (x2; x2 + y1 � x1)g :

Lemma 5.5 (Good part). Let ˛ 2 (0; 1
2
) and assume that ! is odd in x1 and for some

x 2 D+ we have ! � �A(x) on D+, with A(x) from (54). There exists ı˛ 2 (0; 1),
depending only on ˛, such that the following holds.

If x1 � ı˛ , then

u
good
1 (x) � �

1

6 � 20˛˛
x1�2˛
1 :

Here analysis of (49) leads to

u
good
1 (x) � �

Z
A1

y2 � x2

jx � yj2+2˛
dy„ ƒ‚ …

T1

+

Z
A2

y2 � x2

jx � yj2+2˛
dy„ ƒ‚ …

T2

;

with the domains

A1 := fy : y2 2 (x2; x2 + 1) and y1 2 (x1 + y2 � x2; 3x1 + y2 � x2)g ;

A2 := (x1 + 1; 3x1 + 1) � (x2; x2 + 1) :

The term T2 can be estimated by Cx1; since the region of integration A2 lies at a distance
∼ 1 from the singularity. A relatively direct estimate of the term T1 leads to the result of
the Lemma.

A distinctive feature of the problem is that estimates for the “bad” and “good” terms
appearing in Lemmas 5.4 and 5.5 above have the same order of magnitude x1�2˛

1 : This
is unlike the 2D Euler double exponential growth construction, where we were able to
isolate the main term. To understand the balance in the estimates for the “bad” and “good”
terms, note that the “bad” term estimate comes from integration of the Biot-Savart kernel
over rectangle (0; 2x1) � (0; x2); while the good term estimate from integration of the
same kernel over the region A1 above. When ˛ is close to zero, the kernel is longer
range, and the more extended nature of the region A1 makes the “good” term dominate.
In particular, the coefficient 1

˛

�
1

1�2˛
� 2�˛

�
in front of x1�2˛

1 in Lemma 5.4 converges to
to finite limit as ˛ ! 0; while the coefficient 1

6�20˛˛
in Lemma 5.5 tends to infinity. On

the other hand, when ˛ !
1
2
; the singularity in the Biot-Savart kernel is strong and getting

close to non-integrable. Then it becomes important that the “bad” term integration region
contains an angle � range near the singularity, while the “good” region only �

4
: For this
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reason, controlling the “bad” term for larger values of ˛ is problematic - although there is
no reason why there cannot be a different, more clever argument achieving this goal.

It is straightforward to check that the dominance of the “good” term over “bad” one
extends to the range ˛ 2 (0; 1

24
); and that in this range we get as a result

(55) u1(x; t) � �
1

50˛
x1�2˛
1

for x = (x1; x2) such that x1 � ı˛ and x1 � x2: A similar bound can be proved showing
that

(56) u2(x; t) �
1

50˛
x1�2˛
2

for x = (x1; x2) such that x2 � ı˛ and x1 � x2:

x1

x2

5
2

5
2

X(t0) 2

Ω3

K(t0)

I2

δα

I1

Figure 5: The segments I1 and I2 and the sets Ω3 and K(t0).

The proof is completed by a contradiction argument, where we assume that the barrier
K(t) catches up with the patch Ω(t) at some time t = t0 < T of first contact. Taking
� sufficiently small compared to ı˛ from Lemma 5.5, we can make sure the contact can
only happen on the intervals I1 and I2 along the boundary of the barrier K(t0) appearing
on Figure 5. But then bounds (55), (56) and the evolution of the barrier prescription (47)
lead to the conclusion that the barrier should have been crossed at t < t0; yielding a
contradiction; full details can be found in Kiselev, Ryzhik, Yao, and Zlatoš [2016]).
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6 Discussion

There are a fewmore recent papers that have contributed towards understanding the hyper-
bolic point blow up scenario. Two-dimensional simplified models of the 2D Boussinesq
system have been considered in Hoang, Orcan-Ekmekci, Radosz, and Yang [n.d.] and in
Kiselev and Tan [2018]. In both cases, the derivative forcing term in (6) is replaced by
a simpler sign-definite approximation �

x1
; and the Biot-Savart law is replaced by a sim-

pler version u = (�x1Ω(x; t); x2Ω(x; t)): In Hoang, Orcan-Ekmekci, Radosz, and Yang
[n.d.], Ω takes form similar to the 2D Euler example (13). In Kiselev and Tan [2018], Ω
is closely related but is also chosen to keep u incompressible. Both papers prove finite
time blow up, Hoang, Orcan-Ekmekci, Radosz, and Yang [n.d.] by a sort of barrier argu-
ment while the argument Kiselev and Tan [2018] deploys an appropriate Lyapunov-type
functional.

A very interesting recent work by Elgindi and Jeong takes a different approach El-
gindi and Jeong [n.d.(b)], Elgindi and Jeong [n.d.(a)]. In Elgindi and Jeong [n.d.(b)],
they look at a class of scale invariant solutions for the 2D Boussinesq system that sat-
isfy 1

�
u(�x; t) = u(x; t) and 1

�
�(�x; t) = �(x; t):Observe that this class allows velocity

and density that grow linearly at infinity. Also, the solution is not regular at the origin: for
example the vorticity is justL1: The setting is a sector which has size �

2
(and some results

can be generalized to other angles < �). First, they prove a local well-posedness theorem
in a class of solutions that includes scale invariant solutions; additional symmetry assump-
tions are needed for this result. Secondly, for such solutions, they obtain an effective
one-dimensional equation, some solutions of which are shown to blow up in finite time.
These are not the first examples of infinite energy solutions (see Childress, Ierley, Spiegel,
and Young [1989], Constantin [2000], and Sarria andWu [2015]). However in Elgindi and
Jeong [n.d.(b)] a procedure to cut off the solution at infinity while maintaining finite time
blow up property is carried out. This yields finite energy solutions leading to finite time
blow up - in the sense that

R T
0 kru(�; t)kL1 dt ! 1 at blow up time. The vertex of

the sector is a hyperbolic stagnation point of the flow, making connection to the Hou-Luo
scenario. In Elgindi and Jeong [n.d.(a)], related results are announced and partly proved
in the 3D axi-symmetric Euler case; here the domain is given by z2 � c(jxj2+ jyj2) with
a sufficiently small c: The finite time singularity formation in this setting remains open as
the effective one-dimensional system turns out to be more complex.

Themain challenge to analyzing smooth solutions to 2DBoussinesq and 3D axi-symmetric
Euler equations in this context stems from difficulties estimating the velocity produced by
Biot-Savart law with growing vorticity. It does not appear that there is a clear main term,
as in 2D Euler example, or a clear small parameter to play in the same order of magnitude
opposing terms, as in modified SQG patches. On the other hand, all model problems point
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to finite time blow up outcome in the original Hou-Luo scenario. The challenge is finding
enough controllable structures to carry through rigorous analysis.
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QUANTITATIVE PROPAGATION OF SMALLNESS FOR
SOLUTIONS OF ELLIPTIC EQUATIONS
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Abstract
Let u be a solution to an elliptic equation div(Aru) = 0 with Lipschitz coeffi-

cients in Rn. Assume juj is bounded by 1 in the ball B = fjxj � 1g. We show that if
juj < " on a set E �

1
2B with positive n-dimensional Hausdorf measure, then

juj � C "
 on
1

2
B;

where C > 0; 
 2 (0; 1) do not depend on u and depend only on A and the measure
of E. We specify the dependence on the measure of E in the form of the Remez type
inequality. Similar estimate holds for sets E with Hausdorff dimension bigger than
n � 1.

For the gradients of the solutions we show that a similar propagation of smallness
holds for sets of Hausdorff dimension bigger than n � 1 � c, where c > 0 is a small
numerical constant depending on the dimension only.

1 Introduction

This paper contains several quantitative results on propagation of smallness for solutions
of elliptic PDE. The results concern the logarithms of the magnitudes of the solutions
and their gradients. The techniques used in this paper were recently applied to estimates
of zero sets of Laplace eigenfunctions Logunov and Malinnikova [2018] and Logunov
[2018a,b].

The inspiration comes from the following useful fact from complex analysis: if f is
a holomorphic function on C, then log jf j is subharmonic. For this simple and powerful
fact there are no known direct analogs for real valued solutions of elliptic PDE on Rn,
A. L. was supported in part by ERC Advanced Grant 692616, ISF Grants 1380/13, 382/15 and by a Schmidt

Fellowship at the Institute for Advanced Study. E. M. was supported by Project 213638 of the Research Council
of Norway.
MSC2010: primary 58G25; secondary 35P99.
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except for the gradients of harmonic functions on R2, which can be identified with the
holomorphic functions. For a harmonic function u in Rn, n � 3, it is no longer true that
log jruj is necessarily subharmonic; it was shown by E. Stein that jrujp is subharmonic
when p � (n�2)/(n�1). However some logarithmic convexity properties for harmonic
functions still hold. One example is the classical three spheres theorem, which claims that
for solutions u to a reasonable uniformly elliptic equation Lu = 0 in Rn (one can think
that L = ∆) the following inequality holds

(1) sup
B

juj � C (sup
1
2 B

juj)
 (sup
2B

juj)1�
 ;

where B = fx 2 Rn : jxj � 1g, constants C > 0; 
 2 (0; 1) depend only on the elliptic
operator L and do not depend on u.

The three spheres theorem holds for linear uniformly elliptic PDE of higher order under
some smoothness assumptions on the coefficients (Sitnikova [1970]) as well as for some
non-linear elliptic equations (Capuzzo Dolcetta [2002]).

1.1 Three spheres theorem for wild sets. Throughout this paper Ω will be a bounded
domain in Rn and u will denote a solution of an elliptic equation in the divergence form
div(Aru) = 0 in Ω with Lipschitz coefficients. We will show that in the three spheres
theorem one can replace sup 1

2 B juj by the supremum over any set E with positive volume.
Let E and K be subsets of Ω such that the distances from E and K to @Ω are positive.

We assume that E has positive n-dimensional Lebesgue measure. We aim to prove the
following estimate

(2) sup
K

juj � C (sup
E

juj)
 (sup
Ω

juj)1�
 ;

where C > 0 and 
 2 (0; 1) are independent of u, but depend on Ω, A, the measure of E,
and the distances from K and E to the boundary of Ω.

If supΩ juj = 1 and supE juj = ", then (2) can be written as

(3) sup
K

juj � C "
 :

This inequality explains why the result is called propagation of smallness. Typically, we
start with some set, where we know that the solution is small, and then we make a conclu-
sion that it is also small on a bigger set.

The fact that the set E is allowed to be arbitrary wild, while the constants depend only
on its measure, seems to be useful for applications, see Apraiz, Escauriaza, Wang, and
Zhang [2014]. Further we will specify the dependence of constants on the measure in the
form of the Remez type inequality.
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1.2 Preceding results. The result that we prove is expected. We would like to mention
the preceding work in this direction. In the case of analytic coefficients the estimate (2)
was proved by Nadirašvili [1979], see also Vessella [1999]. The case of C 1-smooth co-
efficients remained open till now, but there were several attempts to prove it. Estimates,
weaker than (3), were obtained by Nadirašvili [1986] and Vessella [2000]. See also Malin-
nikova and Vessella [2012], where the case of solutions of elliptic equations with singular
lower order coefficients is treated. In the preceding results the exponent "
 in the right-
hand side of (3) was replaced by exp(�cj log "jp) for some p = p(n) < 1. We push p to
1 in this paper.

1.3 Remez type inequality. In this note we prove (2) in the setting of smooth coeffi-
cients, using the new results on the behavior of the doubling index of solutions to elliptic
equations presented in Logunov and Malinnikova [2018] and Logunov [2018a,b]. On the
way of proving (2) we obtain an interesting inequality for solutions of elliptic equations,
which reminds the classical Remez inequality for polynomials, the role of the degree is
now played by the doubling index.

Let Q be the unit cube. Assume u is a solution to div(Aru) = 0 with the doubling
index N = log sup2Q juj

supQ juj
. Then

(4) sup
Q

juj � C sup
E

juj

�
C

jQj

jEj

�CN

where C depends on A only, E is any subset of Q of a positive measure.
Note that if u is a harmonic polynomial in Rn, then one can replace N by the degree

of u. The doubling index for harmonic polynomials can be estimated from above by the
degree of the polynomial.

Garofalo and Lin [1986] proved almost monotonicity of doubling index for solutions of
second order elliptic PDEs and applied this result to prove unique continuation properties.
In particular, they showed that both juj2 and jruj2 are Muckenhoupt weights with pa-
rameters that depend on the maximal doubling index. This implies (4) with some implicit
power const(N ) in place of CN and with L2 norm in place of sup norm.

1.4 Propagation of smallness from sets with big Hausdorff dimension. The assump-
tion that E has positive n-dimensional Lebesgue measure can be relaxed. It is enough to
assume that the dimension of E is larger than n�1, see Malinnikova [2004] for the details
in the analytic case. We fix the Hausdorff content of E of some order n�1+ı with ı > 0

and obtain inequality (2). The main Lemma 4.2 gives an upper estimate for the Hausdorff
content of the set where the solution is small.
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1.5 Propagation of smallness for gradients. In Section 5 we prove a result for the
gradients of solutions of elliptic PDEs, which is new even for ordinary harmonic functions
in Rn; n � 3. Propagation of smallness for the gradients of solutions is better than for the
solutions themselves. More precisely, the inequality remains the same

(5) sup
K

jruj � C (sup
E

jruj)
 (sup
Ω

jruj)1�
 ;

but now the set E is allowed to be smaller. Namely, we show that there is a constant
c = c(n) 2 (0; 1) such that (5) is valid for sets E with Hausdorff dimension

dimH(E) > n � 1 � c:

We give the precise statement in Section 5.
Precaution. Wewarn the reader that the paper is not self-contained: sometimes we use

recent results, which are proved in other papers. Namely, we use the technique of counting
doubling indices developed in Logunov and Malinnikova [2018] and Logunov [2018a,b]
and in Section 5we rely on estimates for sublevel sets of the gradients of solutions obtained
in Cheeger, Naber, and Valtorta [2015].

1.6 Open questions. We propagate smallness (for gradients) from sets of Hausdorff
dimension bigger than n � 1 � c. It would be interesting to obtain quantitative estimates
for propagation of smallness from sets of Hausdorff dimension greater than n � 2. There
are qualitative stratification results for critical sets Cheeger, Naber, and Valtorta [ibid.]
and exponential estimates for the n � 2-dimensional Hausdorff measure of the critical set
Naber and Valtorta [2017] that suggest that n � 2 is the correct threshold.

Question 1. Is it true that the inequality (5) holds for sets E with dimH(E) > n � 2

and the constants can be chosen to depend only on the operator A, domainΩ, the distances
from E and K to the boundary of Ω and the Hausdorff content of E of order n � 2+ ı for
any ı > 0?

Such estimates would be related to a conjecture by Lin [1991] on the size of the critical
sets of solutions. For the sake of simplicity we formulate Lin’s conjecture for ordinary
harmonic functions, we also slightly modify the definition of the frequency.

Conjecture 1 (Fang-Hua Lin). Let u be a non-zero harmonic function in the unit ball
B1 � Rn, n � 3. Consider

N = log
supB1

jruj

supB1/2
jruj

Is it true that the Hausdorff measure

Hn�2(fru = 0g \ B1/2) � CnN 2
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for some Cn depending only on the dimension?
Recently Naber and Valtorta [2017] proved an exponential bound C N 2 for the Haus-

dorff measure of the critical set.
An interesting topic in the propagation of smallness which we don’t touch in this paper

is the dependence of the constants in (2) and (5) on the distance from the set E to the
boundary of Ω.

Question 2. Consider the inequality (5) with a set E of dimH(E) = n �1 and fixed K,
A and Ω. How do the constants C and 
 depend on the distance from E to the boundary
of Ω?

This question is connected to the quantitative version of the Cauchy uniqueness prob-
lem, see Lin [1991] for related results when E is a relatively open subset of the boundary.
The situation changes when we consider wild sets on the boundary of positive surface
measure. The following question is quite famous, it dates back to at least L. Bers. The
two-dimensional case is not difficult due to connections with complex analysis. The fact
that the question is open in higher dimensions shows that we still don’t understand well
the Cauchy uniqueness problem even for ordinary harmonic functions in the dimension
three or higher (which is quite embarrassing for the well-developed theory of elliptic PDEs
nowadays).

Conjecture 2. Assume that u is a harmonic function in the unit ball B1 � R3 and u is
C 1-smooth in the closed ball B1. Let S � @B1 be any closed set with positive area. Is it
true that ru = 0 on S implies ru � 0?

Usually this question is asked in the form of the Cauchy uniqueness problem, where
the condition ru = 0 is replaced by the condition that the Cauchy data (u; @u

@n
) are zero

on S . If one takes any Lebesgue point of S , then harmonicity of u and C 1-smoothness
automatically implies that all the derivatives of u of any order are zero at this point. Since
the area of Lebesgue points of S is the same as of S , one can also assume (in the question
above) that all the derivatives of u vanish at the boundary subset of positive area and the
question is whether the harmonic function u should be identically zero.

For the class C 1+"(B1) there is a striking counterexample Bourgain and Wolff [1990],
which however is not C 1-smooth up to the boundary. The attempts to construct C 2-
smooth counterexamples were not successful.

1.7 Estimates for Laplace eigenfunctions. Let (M; g) be a C 1 smooth closed Rie-
mannian manifold and let∆ denote the Laplace operator on M . Consider the sequence of
Laplace eigenfunctions '� on M with∆'� + �'� = 0:

We would like to make a remark that the Remez type inequality (4) for harmonic func-
tions implies the following bound for Laplace eigenfunctions, which was conjectured in
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Donnelly and Fefferman [1990]. For any subset E of M with positive volume the follow-
ing holds:

(6) sup
E

j'�j �
1

C
sup
M

j'�j

�
jEj

C jM j

�C
p

�

;

where C = C (M; g) > 1 does not depend on E and �. Note that
p

� corresponds to the
degree of the polynomial in Remez inequality.

Looking at the following example of spherical harmonics u(x; y; z) = <(x+ iy)n one
can see that L2 norm of restriction of u on the unit sphere is concentrated near the equator
very fast and juj is exponentially small on most of the unit sphere. This example shows
that a sequence Laplace eigenfunctions can be e�c

p
� small on a fixed open subset of the

manifold.
The proof of implication (4) H) (6) is a standard trick, we give a sketch of the proof

of the implication, which is not difficult.
The function u(x; t) = '�(x)e

p
�t is a harmonic function on the product manifold

M � R. The doubling index N of ' in any geodesic ball is smaller than C1

p
� (Donnelly

and Fefferman [1988]). Then the doubling index for u in any geodesic ball of radius
smaller than the diameter of M is also smaller than C2

p
�. One can apply (4) to u with

N=C2

p
� and get the bound (6) for '.

It seems that for negatively curved Riemannianmanifolds one can prove better versions
of (6). We don’t feel the curvature in our methods.

We would like to mention an outstanding recent result from the works by Bourgain and
Dyatlov [n.d.] and Dyatlov and Jin [n.d.].

Theorem 1.1 (Bourgain and Dyatlov [n.d.],Dyatlov and Jin [n.d.]). Under assumption
that (M; g) is a closed Riemannian surface with constant negative curvature the following
inequality holds for Laplace eigenfunctions on M . Given an open subset E of M there
exists c = c(E; M; g) > 0 such thatZ

E

'2
� � c

Z
M

'2
�:

The constant c does not depend on the eigenvalue �. Note that the situation on closed
surfaces of constant negative curvature is different from the case of the sphere.

A beautiful result Bourgain and Rudnick [2009] states that on a two dimensional torus
T 2 = R2/Z2 equipped with the standard metric the toral Laplace eigenfunctions '� sat-
isfy L2 lower and upper restriction bounds on curves. Namely, if S is a smooth curve on
T 2 with non-zero curvature and � > const(S), then

ck'�kL2(S) � k'�kL2(T 2) � C k'�kL2(S):
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In particular that implies that on a given smooth curve, which is not geodesic, only a finite
number of Laplace eigenfunctions can vanish.

A very interesting question that we don’t touch here is how L2 mass of Laplace eigen-
functions '� are asymptotically distributed on the manifold as � ! 1. In particular, for
negatively curved surfaces the quantum unique ergodicity conjecture states that asymptot-
ically the L2 mass of eigenfunctions is distrubed uniformly. We refer to Sarnak [2011],
Lindenstrauss [2006], Šnirelman [1974], Zelditch [1987, 2010], Zworski [2012], and Dy-
atlov and Jin [n.d.] for the results on ergodic properties of eigenfunctions.

Acknowledgments. This work was partly done when the second author held a one year
visiting position at the Department ofMathematics at Purdue University and it is a pleasure
to thank the department for its hospitality.

2 Preliminaries

2.1 Hausdorff content. Remind that the Hausdorff content of a set E � Rn is

C d
H(E) = inf

˚ X
j

rd
j : E � [j B(xj ; rj )

	
;

and the Hausdorff dimension of E is defined as

dimH(E) = inffd : C d
H(E) = 0g:

Clearly the Hausdorff content is sub-additive

C d
H(E1 [ E2) � C d

H(E1) + C d
H(E2):

It also satisfies the natural scaling identity, if �t is a homothety of Rn with coefficient t

then
C d

H(�t (E)) = td C d
H(E):

The advantage of the Hausdorff content over the corresponding Hausdorff measure is that
the former is always finite on bounded sets, it is bounded from above by diam(E)d . The
Hausdorff content of order n is equivalent to the Lebesgue measure.

2.2 Three spheres theorem for wild sets. We always assume that u is a solution of an
elliptic equation in divergence form in a bounded domain Ω � Rn,

(7) div(Aru) = 0;
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where A(x) = [aij (x)]1�i;j �n is a symmetric uniformly elliptic matrix with Lipschitz
entries,

(8) Λ�1
1 k�k

2
� hA�; �i � Λ1k�k

2; jaij (x) � aij (y)j � Λ2jx � yj:

Let m; ı; � be positive numbers. Suppose a set E � Ω satisfies

C n�1+ı
H (E) > m; dist(E; @Ω) > �:

Let K be a subset of Ω with dist(K; @Ω) > �. Our main result is the following.

Theorem 2.1. There exist C; 
 > 0, depending on m; ı; �; A;Ω only such that

sup
K

juj � C (sup
E

juj)
 (sup
Ω

juj)1�


for any solution u of div(Aru) = 0 in Ω.

2.3 Doubling index. We formulate several well-known lemmas connected to the three
spheres theorem (or monotonicity property of the frequency function of a solution). We
refer to Han and Lin [n.d.] for an introduction to the frequency function, which is almost
a synonym for the doubling index (the term ”‘frequency”’ will not be used in this paper).

Let B be a ball in Rn. Define the doubling index of a non-zero function u (defined in
2B) by

N (u; B) = log
sup2B juj

supB juj
:

It is a non-trivial fact that the doubling index of solutions to an elliptic second order PDE
in divergence form is almost monotonic in the following sense:

(9) N (tB) � N (B)(1 + c) + C

for any positive t � 1/2. Here as usual tB denotes a ball of radius t times the radius of
B with the same center as B , the constants c; C > 0 depend on A, but are independent
of u. Almost monotonicity of the doubling index implies the three spheres theorem. The
three spheres theorem related to the almost monotonicity property of the doubling index
was proved in the work Landis [1963]. Garofalo and Lin [1986] proved a sharper version
of the monotonicity property. In particular, the results of Garofalo and Lin [ibid.] imply
that if the elliptic operator is a small perturabtion of the Laplace operator, then c in (9)
can be chosen to be small (C is still big, but it is less important). We refer the reader to
Mangoubi [2013] and Logunov [2018a] for further discussion.
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For a cube Q in Rn let s(Q) denote its side length and let tQ be the cube with the
same center as Q and such that s(tQ) = ts(Q). Suppose that (20n)Q � Ω. We define
the doubling index of a function u in the cube Q by

(10) N (u; Q) = sup
x2Q;r�s(Q)

log
supB(x;10nr) juj

supB(x;r) juj
:

This is a kind of maximal version of the doubling index, which is convenient in the
sense that if a cube q is a subset of Q, then N (u; q) � N (u; Q). The definition implies
the following estimate. Let q be a subcube of Q and K = s(Q)

s(q)
� 2: Then

(11) sup
q

juj � cK�CN sup
Q

juj;

where N = N (u; Q) and c and C depend on n only.

3 Auxiliary lemmas

3.1 Estimates of the zero set. The doubling index is useful for estimates of the zero
set of solutions of elliptic equations. We will need the following known result.

Lemma 3.1 (Hardt and Simon [1989]). Let u be a solution to div(Aru) = 0 in Ω �

20nQ. For any N > 0 there exists CN , which is independent of u, but depends on A,N
and Ω, such that if N (u; Q) � N , then

(12) Hn�1(fu = 0g \ Q) � CN s(Q)n�1:

We will use only finiteness of CN and will apply it for N smaller than some numerical
constant.
Remark 3.2. One can ask what is the optimal upper bound. The harmonic counterpart of
the Yau conjecture suggests that there is a linear estimate:

Hn�1(fu = 0g \ Q)
?
� CΩ;AN:

The conjecture is open, but known in the case of analytic coefficients due to results by Don-
nelly and Fefferman [1988]. In the setting of smooth coefficients an exponential bound
(CN CN ) was proved in Hardt and Simon [1989], a recent result in Logunov [2018a] pro-
vides a polynomial upper bound CN ˛ , ˛ > 1 depends on the dimension.

The measure of the zero set can be also estimated from below. We assume that u and
Q are as in Lemma 3.1.



2418 ALEXANDER LOGUNOV AND EUGENIA MALINNIKOVA

Lemma 3.3. Let q be a subcube of Q and suppose that u has a zero in q. Then

(13) Hn�1(fu = 0g \ 2q)� cN sn�1(q);

where cN depends on A;Ω and N = N (u; Q).

Remark 3.4. The following much stronger version of this estimate is proved in Logunov
[2018b],

Hn�1(fu = 0g \ 2q)� csn�1(q)

where c depends on A;Ω only. We will use only the weak inequality (13) above, which is
not difficult (see for example Logunov and Malinnikova [2018]).

3.2 Estimate for sub-level sets. The following lemma gives an estimate for the size of
the set where a solution to an elliptic PDE is small in terms of the doubling index. We
note that the lemma below is qualitative, but not quantitative (in a sense that there is no
control of constants in terms of N ). The lemma will be further refined to a quantitative
version (Lemma 4.2).

Lemma 3.5. Let ı 2 (0; 1]; N > 0. Assume that u satisfies div(Aru) = 0 in (20n)Q,
supQ juj = 1 and N (u; Q) � N . Let

Ea = fx 2
1

2
Q : ju(x)j < e�a

g:

Then
C n�1+ı

H (Ea) � Me�ˇas(Q)n�1+ı ;

for some ˇ = ˇ(N; ı; A;Ω) and M = M (N; ı; A;Ω).

Proof. By c; C; �; c1; C1 : : : we will denote positive constants that depend on ı; A; andΩ
only, while constants cN , CN additionally depend on N .

Clearly, it is enough to prove the statement for a >> N and a >> 1. For small a the
inequality holds if we choose M large enough to satisfy the inequality. Without loss of
generality we may assume that N � 2.

Let K = [e�a/N ] where � > 0 is a sufficiently small constant to be specified later.
Partition 1

2
Q into Kn equal subcubes qi . We will assume that K > 4, then 4qi � Q. We

will estimate the number of cubes qi that intersect Ea.
Let qi be a cube with qi \ Ea ¤ ¿. So infqi

juj � e�a.
Assume first that u does not change sign in 2qi . Then by the Harnack inequality

sup
qi

juj � c1 inf
qi

juj � c1e�a:
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On the other hand by (11) we have

sup
qi

juj � c2K�C1N
�

c2

2
e�C1�a:

Now, we specify � = 1
2C1

. Then the two inequalities above cannot coexist for large a.
Hence if qi intersects Ea, then u changes sign in 2qi . Denote by S the set of cubes qi

such that u changes sign in 2qi . Note that

(14) C n�1+ı
H (Ea) � C2jS js(Q)n�1+ıK�n+1�ı :

Now, we will estimate jS j using the bounds for the size of the zero set of u. Note that
u has a zero in each 2qi for qi 2 S . Recall that 4qi � Q and each point in Q may be
covered only by a finite number of 4qi , depending only on the dimension. By Lemma 3.3

Hn�1(fu = 0g \ Q) � c3
X

S

Hn�1(fu = 0g \ 4qi ) � c4cN jS js(Q)n�1K�n+1:

On the other hand, by Lemma 3.1

Hn�1(fu = 0g \ Q) � CN s(Q)n�1:

We therefore have
jS j �

CN

c4cN

Kn�1:

Thus by (14)

C n�1+ı
H (Ea) � C3

CN

cN

K�ıs(Q)n�1+ı
� C4

CN

cN

e��ıa/N s(Q)n�1+ı ;

which is the required estimate with ˇ = �ı/N and M = C4CN c�1
N .

Remark 3.6. Note that the almost monotonicity of the doubling index implies that for
any subcube q of Q with 4

p
ns(q) < s(Q) one has N (u; 2q) � CN (u; Q) . Then

partitioning Q into a finite number of small cubes q and applying Lemma 3.5 to cubes 2q,
we obtain the following estimate

C n�1+ı
H (fx 2 Q : ju(x)j < e�a

g) � M1e�ˇas(Q)n�1+ı :

Remark 3.7. In Logunov [2018b,a] it was shown that one can choose cN independent of
N and CN = CN ˛ , where ˛ depends only on the dimension. Hence for N � 1,

C n�1+ı
H (fjuj < e�a

g \
1

2
Q) � CN ˛e�cıa/N s(Q)n�1+ı :

The optimal estimates for cN and CN will appear to be not necessary for the purposes of
this paper. In Lemma 4.2 we will prove a better bound for C n�1+ı

H (Ea) without using the
uniform lower bound for cN or polynomial bound for CN .
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3.3 Main tool. The following lemma will be severely exploited in the proof of main
results. See Section “Number of cubes with big doubling index” in Logunov [2018b] for
the proof of the lemma formulated below. We note that the definition of the doubling index
in Logunov [ibid.] is slightly different (but the proof remains the same).

Lemma A. Let u be a solution to div(Aru) = 0 in Ω. There exist positive constants
s0; N0; B0 that depend onA;Ω only such that ifQ is a cube with s(Q) < s0, (20n)Q � Ω,
andQ is divided intoBn equal subcubes withB > B0, then the number of subcubes q with
N (u; q) � max( 1

2
N (u; Q); N0) is less than Bn�1�c , where c depends on the dimension

n only.

Remark 3.8. If we are interested in sets of positive Lebesgue measure only, it would be
enough to apply this result with a weaker bound on the number of subcubes with large
doubling index, namely Bn�c , see the combinatorial lemma in Logunov and Malinnikova
[2018], which is simpler.

4 Proof of the Main result

4.1 Reformulations of Theorem 2.1. Clearly Theorem 2.1 is a local result. We formu-
late an equivalent local version.

Proposition 4.1. Let Ω be a bounded domain in Rn, A satisfy (8) and ı and m be pos-
itive. There exist C; 
 > 0, depending on A;Ω; m and ı such that the following holds.
Suppose that u is a solution to div(Aru) = 0 in Ω � (10n2)Q and letE �

1
20n

Q satisfy
C n�1+ı

H (E) � ms(Q)n�1+ı , then

sup
Q

juj � C (sup
E

juj)
 ( sup
(10n2)Q

juj)1�
 :

The constants 20n and 10n2 are for technical purposes only. One can replace them by
the constant 2 and the lemma above will remain true.

One can use the standard argument to deduce Theorem 2.1 from Proposition 4.1. We
give only a sketch without details. First, find a suitable cube Q with 20n2Q �� Ω and
C n�1+ı

H ( 1
20n

Q \ E) > 0. Second, apply Proposition 4.1. It shows that we can propagate
smallness from E onto the cube Q. Third, with the help of the three spheres theorem the
standard Harnack chain argument allows to propagate smallness from Q onto the whole
K �� Ω.

It remains to prove Proposition 4.1, which will follow from the next lemma. All the
main ideas of the paper are used in the proof of the lemma, reduction of the proposition to
the lemma will be given below and is not difficult.
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Lemma 4.2. Suppose that div(Aru) = 0 in (20n)Q and supQ juj = 1. Let N =

N (u; Q) � 1. Set as above

Ea = fx 2 Q : ju(x)j < e�a
g:

Then
C n�1+ı

H (Ea) < Ce�ˇa/N s(Q)n�1+ı ;

for some C; ˇ > 0 that depend on A; ı only.

Remark 4.3. This lemma with ı = 1 can be written as a version of Remez inequality (see
Remes [1936]) for solutions of div(Aru) = 0 and the role of the degree of a polynomial
is played by the doubling index:

sup
Q

juj � C sup
E

juj

�
C

jQj

jEj

�CN

whereC depends onA only, E is a subset ofQ of a positive measure andN = N (u; Q) is
defined by (10). Note that one can also replace the maximal version of the doubling index
N (u; Q) by log sup2Q juj

supQ juj
and the statement will remain true. The standard reduction, which

we omit, uses the monotonicity property of the doubling index.

4.2 Lemmas 3.5 and 4.2 imply Proposition 4.1. Consider two cases.
First case: N = N (u; 1

10n
Q) � 1. Here Lemma 3.5 is applicable for 1

10n
Q and since

C n�1+ı
H (E) > m we have

sup
E

juj � cm sup
1

10n Q

juj:

And by the three spheres (squares) theorem we know

sup
Q

juj � C ( sup
1

10n Q

juj)
 ( sup
(10n2)Q

juj)1�
 :

Second case: N = N (u; 1
10n

Q) � 1. Assume that C n�1+ı
H (E) = ms(Q)n�1+ı > 0,

juj < " on E and sup 1
10n Q juj = 1. We apply Lemma 4.2 in the cube 1

10n
Q with a =

j log "j. Then E � Ea and the lemma implies that

m < C "ˇ/N

and therefore
N � 
 j log "j;

where 
 = 
(C; m; ˇ).
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It is time to use the definition of the doubling index, see Section 2.3. There exists a ball
Br(x), x 2

1
10n

Q, r �
1

10n
s(Q) such that

log
sup

B10nr (x)

juj

sup
Br (x)

juj
� N � 1/100:

Note that B10nr(x) � Bp
ns(Q)(x) and Bp

ns(Q)(x) also contains Q. Then the mono-
tonicity of the doubling index (9) and the assumption N � 1 implies

log
sup

(10n2)Q

juj

sup
Q

juj
� log

sup
B10n

p
ns(Q)(x)

juj

sup
Bp

ns(Q)(x)

juj
� c1 log

sup
B10nr (x)

juj

sup
Br (x)

juj
� c2N � c2
 j log �j

Thus Proposition 4.1 follows. It remains to prove Lemma 4.2.

4.3 Proof of Lemma 4.2. Now, the ellipticity and Lipschitz constants (see (8)) Λ1 � 1

and Λ2 > 0 are fixed parameters and Q0 is the unit square in Rn. Numbers N > 1 and
a > 0 are variables. Let

m(u; a) = C n�1+ı
H fx 2 Q0 : ju(x)j < e�a sup

Q0

jujg;

and
M (N; a) = sup

�

m(u; a);

where the supremum is taken over all elliptic operators div(Ar�) and functionsu satisfying
the following conditions in 20nQ0:

(i) A(x) = [aij (x)]1�i;j �n is a symmetric uniformly elliptic matrix with Lipschitz
entries satisfying (8),

(ii) u is a solution to div(Aru) = 0 in 20nQ0,

(iii) N (u; Q0) � N .

Our aim is to show that

(15) M (N; a) � Ce�ˇa/N :

The constant ˇ > 0 will be chosen later and will not depend on N .
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We can always assume that
a/N � 1

by making the constant C sufficiently large. By Lemma 3.5 we can also assume that N is
sufficiently large, in particular N /2 � N0, where N0 is the constant from Lemma A.

The proof contains several steps. First, with the help of Lemma A we prove a recursive
inequality for M (N; a). Then we show how this inequality implies the exponential bound
(15) by a double induction argument on a; N .

Recursive inequality. We show that

(16) M (N; a) � B1�ıM (N/2; a � C1N logB) + B�ı�cM (N; a � C1N logB):

The constant C1 will be specified later; we choose B = B0 + 1 and c from Lemma A.
Fix a solution u to the elliptic equation div(Aru) = 0 with N (u; Q0) � N . Divide

Q0 into Bn subcubes q. Lemma A claims that we can partition cubes q into two groups:
a group of good cubes with N (u; q) � N /2 and a group of bad cubes with N /2 �

N (u; q) � N such that the number of all bad cubes is smaller than Bn�1�c (and the
number of all good cubes is smaller than the total number of cubes Bn). We have

m(u; a) �
X

q

C n�1+ı
H (fx 2 q : ju(x)j < e�a sup

Q0

jujg):

By Equation (11) we see that

(17) sup
q

juj � c1B�C1N sup
Q0

juj:

Since N is sufficiently large, we can forget about c1 above by increasing C1. We continue
to estimate m(u; a):

(18) m(u; a) �
X

q

C n�1+ı
H (fx 2 q : ju(x)j < e�aBC1N sup

q
jujg)

=
X
good q

+
X
bad q

C n�1+ı
H (fx 2 q : ju(x)j < e�ã sup

q
jujg)

where
ã = a � C1N logB:

Now, we estimate each sum individually. If q is a good cube, then

C n�1+ı
H (fx 2 q : ju(x)j < e�ã sup

q
jujg) � B�(n�1+ı)M (N /2; ã)
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Above we used the scaling property of C n�1+ı
H and the fact that the restriction of u to a

cube q corresponds to a solution of another elliptic PDE in the unit cube, the new equation
can bewritten in the divergence formwith some coefficientmatrix which satisfies the same
estimate (8).

Since the total number of good cubes is smaller than BnX
good q

� B1�ıM (N /2; ã)

We know that the number of bad cubes q is smaller than Bn�1�c . HenceX
bad q

� Bn�1�cB�(n�1+ı)M (N; ã) = B�c�ıM (N; ã):

Adding the inequalities for bad and good cubes and taking the supremum over u, we obtain
the recursive inequality (16) for M (N; a).

Recursive inequality implies exponential bound. We will now prove that

(19) M (N; a) � Ce�ˇa/N :

by a double induction on N and a. Without loss of generality we may assume N = 2l ,
where l is an integer number. Suppose that we know (19) for N = 2l�1 and all a > 0

and now we wish to establish it for N = 2l . By Lemma 3.5 and Remark 3.6 we may
assume l is sufficiently large. So we can say that Lemma 3.5 gives the basis for the
induction. For a fixed l we argue by induction on a with step C1N logB . Recall that B

is a sufficiently large number for which Lemma A holds. We will assume that a >> N ,
namely a > C0N logB , where C0 > 0 will be chosen later. For a < C0N logB the
inequality is true if C is large enough.

By the induction assumption we have

M (N; a � C1N logB) � Ce�ˇa/N+C1ˇ logB

and
M (N /2; a � C1N logB) � Ce�2ˇa/N+2C1ˇ logB :

Finally, we use the recursive inequality (16) and get

M (N; a) � CB1�ıe�2ˇa/N+2C1ˇ logB + CB�ı�ce�ˇa/N+C1ˇ logB :

Our goal is to obtain the following inequality

B1�ıe�2ˇa/N+2C1ˇ logB + B�ı�ce�ˇa/N+C1ˇ logB
� e�ˇa/N
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for a/N > C0 logB . Dividing by e�ˇa/N we reduce it to

B1�ı+2C1ˇ e�ˇa/N + B�ı�c+C1ˇ
� 1:

Now, recall that a/N > C0 logB and the above inequality follows from

B1�ı+2C1ˇ�C0ˇ + B�ı�c+C1ˇ
� 1:

The last inequality can be achieved with the proper choice of the parameters: B >

2; ı; c; C1 > 0 are fixed, we choose ˇ to be small enough so that the second term is
less than 1 � " and then choose large C0 to make the first term smaller than ". Thus the
inequality above holds for all sufficiently large a/N . As we mentioned above, for small
a/N the inequality (19) is true if we choose C to be large.

Remark 4.4. One can notice that the induction step is working for negative ı such that
�c < ı. However the induction basis step (Lemma 3.5) is not true for negative ı. For
instance, zeroes of harmonic functions in Rn are sets of dimension n � 1. But the induc-
tion basis step appears to be true for the gradients of solutions, which have better unique
continuation properties than the solutions.

5 Propagation of smallness for the gradients of solutions

5.1 Formulation of the result. As above we assume that u is a solution of an elliptic
equation (7) in divergence form in a bounded domain Ω � Rn and the coefficients satisfy
(8).

Theorem 5.1. There exists a constant c 2 (0; 1) that depends only on the dimension n

such that the following holds. Letm; ı; � be positive numbers and suppose setsE; K � Ω

satisfy
C n�1�c+ı

H (E) > m; dist(E; @Ω) > �; dist(K; @Ω) > �:

Then there exist C; 
 > 0, depending on m; ı; �;Λ1;Λ2;Ω only (and independent of u)
such that

sup
K

jruj � C (sup
E

jruj)
 (sup
Ω

jruj)1�
 :

5.2 Modifications of the proof. We shall use the notion of doubling index for jruj.
Let B = B(x0; r) be a ball in Rn. Define

N (ru; B) = log
sup2B jruj

supB jruj
:
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Assume r � 1. The doubling index is almost monotonic:

(20) N (ru; tB) � N (ru; B)(1 + c) + C

for t � 1/2. The constants c; C > 0 depend on Λ1;Λ2 (the ellipticity and Lipschitz
constants) and the dimension n. The monotonicity of the doubling index for jruj follows
from the three spheres theorem for the function ju(�) � u(x0)j and standard elliptic esti-
mates. A similar modification appeared in Cheeger, Naber, and Valtorta [2015], see also
Garofalo and Lin [1986]. We also need a modified doubling index for a cube Q:

N (ru; Q) = sup
x2Q;r�s(Q)

log
supB(x;10nr) jruj

supB(x;r) jruj
:

The proof of Theorem 5.1 is parallel to the proof of Theorem 2.1. We need to establish
analogs of Lemma A (induction step), Lemma 3.5 (basis of induction), and Lemma 4.2
(estimate of the Hausdorff content), where juj should be replaced by jruj. We formulate
such statements below.

Lemma B. There exist positive constants s0; N0; B0 that depend on Λ1;Λ2 and the di-
mension n only such that if Q is a cube with side s(Q) < s0 and Q is divided into
Bn equal subcubes with B > B0, then the number of subcubes q with N (ru; q) �

max( 1
2
N (ru; Q); N0) is less than Bn�1�c , where c 2 (0; 1) depends on the dimension n

only.

Lemma 5.2. Let Q0 be the unit cube in Rn. Suppose that div(Aru) = 0 in (20n)Q0,
supQ0

jruj = 1, and N (ru; Q0) � N0, then for

Ea = fx 2 Q0 : jru(x)j < e�a
g

we have
C n�2+ı

H (Ea) < Ce�ˇa

for some ˇ; C depending on N0, Λ1;Λ2, ı.

Lemma 5.3. Let Q0 be the unit cube in Rn. Suppose that div(Aru) = 0 in (20n)Q0

and supQ0
jruj = 1. Let a number N = N (ru; Q0) � 1. Set

Ea = fx 2 Q0 : jru(x)j < e�a
g:

There exists c 2 (0; 1) that depends only on the dimension n such that

C n�1�c+ı
H (Ea) < Ce�ˇa/N ;

for some C; ˇ > 0 that depend on Λ1;Λ2; ı; n only.

Only the proof of Lemma 5.2 requires modifications, the other changes are minor.
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5.3 Outline of changes. The reduction of Theorem 5.1 to Lemma 5.3 is not difficult
and remains the same as in Section 4. To prove Lemma 5.3 one has to replace the used
Lemma 3.5 by its analog for jruj (Lemma 5.2), which we prove below. The proof is based
on new results from Cheeger, Naber, and Valtorta [2015].

The proof of Lemma B repeats the proof of Lemma A (Logunov [2018b]). There
are two main ingredients in the proof: simplex lemma and hyperplane lemma from Lo-
gunov [2018a]. We don’t formulate those lemmas here, see Logunov [ibid.]. There are no
changes in the proof of hyperplane lemma, except that one has to subtract a constant from
the function.

To prove the simplex lemma we need a sharper version of the monotonicity property of
the doubling index as it was in the proof of the original simplex lemma. Namely, one has to
make c in inequality (20) a sufficiently small constant, depending only on the dimension.
One has tomake a linear change of coordinates such thatA(0) turns into the identity matrix
and Λ1 is close to 1 in a small neighborhood of the origin. After that one obtains a sharper
version of the three spheres theorem for u � u(0) as it is done in Logunov [ibid.]. Then
one should use standard elliptic estimates to provide smallness of c in (20).

To prove Lemma 5.3 one has to use the same induction argument as in Lemma 4.2. The
induction step remains the same, but one has to work with the doubling index for jruj in
place of juj and use Lemma B in place of Lemma A. Concerning the basis of induction,
which is Lemma 5.2, a different argument is needed, and we will use a result fromCheeger,
Naber, and Valtorta [2015], which estimates the size of the neighborhood of the effective
critical set. That would give us an analog of Lemma 3.5 for jruj, but now the dimension
of the set E will be allowed to be smaller than n �1, but bigger than n �2. Unfortunately,
the induction step works only for dimensions bigger n � 1 � c only and that is the main
obstacle for improvement towards n � 2.

5.4 Proof of Lemma 5.2. The lemma is a corollary from Theorem 1.17 (estimate of the
effective critical set) from Cheeger, Naber, and Valtorta [ibid.]. We warn the reader that
we formulate it below in our own notation and don’t bring the proof of Theorem 1.17.

Reformulation of Theorem 1.17 from Cheeger, Naber, and Valtorta [ibid.]. Let u be
as in Lemma 5.2. For any ı > 0 there exist positive constants C and c depending on
n;Λ1;Λ2; ı; N0 such that the following holds for all integer K. Partition the unit cube Q0

into Kn sub-cubes q with side length 1/K. We call q bad if

inf
q

jruj < c sup
2q

jruj:

Then the number of bad cubes q is not greater than CKn�2+ı .
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Now, we are ready to finish the proof of Lemma 5.2. We divide the unit cube Q0 into
Kn sub-cubes q with side length 1/K, the integer K will be chosen later.

The monotonicity of the doubling index implies

sup
q

jruj � c1K�C1N0�C1 sup
Q0

jruj = c1K�C1N0�C1 :

If q is not bad, then
inf
q

jruj � c2K�C1N0�C1 :

Given a > 0 we want to estimate the Hausdorff content C n�2+2ı
H of

Ea = fx 2 Q0 : jru(x)j < e�a
g:

We may assume a > 1. Now, we specify the choice of K. The K is smallest integer
number greater than 2 such that

e�a > c2K�C1N0�C1 :

So logK is comparable to a. And the set Ea is contained in the union of bad cubes of size
1/K. The number of bad cubes is not greater than CKn�2+ı . We therefore have

C n�2+2ı
H (Ea) � C2Kı

� C3e�c3a:

Replacing 2ı by ı we finish the proof.
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WELL-POSEDNESS, GLOBAL EXISTENCE AND DECAY
ESTIMATES FOR THE HEAT EQUATION WITH GENERAL

POWER-EXPONENTIAL NONLINEARITIES

Mඈඁൺආൾൽ Mൺඃൽඈඎൻ ൺඇൽ Sඅංආ Tൺඒൺർඁං

Abstract
In this paper we consider the problem: @t u � ∆u = f (u); u(0) = u0 2

expLp(RN ); where p > 1 and f : R ! R having an exponential growth at in-
finity with f (0) = 0: We prove local well-posedness in expL

p
0 (R

N ) for f (u) ∼
ejujq ; 0 < q � p; juj ! 1: However, if for some � > 0; lim inf

s!1

�
f (s) e��sp

�
>

0; then non-existence occurs in expLp(RN ): Under smallness condition on the ini-
tial data and for exponential nonlinearity f such that jf (u)j ∼ jujm as u ! 0;
N (m�1)

2 � p, we show that the solution is global. In particular, p � 1 > 0 suffi-
ciently small is allowed. Moreover, we obtain decay estimates in Lebesgue spaces for
large time which depend on m.

1 Introduction

In this paper we study the Cauchy problem:

(1-1)
�

@t u � ∆u = f (u);

u(0) = u0 2 expLp(RN );

where p > 1 and f : R ! R having an exponential growth at infinity with f (0) = 0:

As is a standard practice, we study (1-1) via the associated integral equation:

(1-2) u(t) = et∆u0 +

Z t

0

e(t�s)∆ f (u(s)) ds;

where et∆ is the linear heat semi-group. The Cauchy problem (1-1) has been extensively
studied in the scale of Lebesgue spaces, especially for polynomial type nonlinearities. It is
MSC2010: primary 35K58; secondary 35K15, 46E30, 35A01.
Keywords: Nonlinear heat equation, Existence, Non-existence, Orlicz spaces.
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known that in this case one can always find a Lebesgue space Lq; q < 1 for which (1-1)
is locally well-posed. See for instance Brezis and Cazenave [1996], Haraux and Weissler
[1982], and Weissler [1979, 1980].

By analogywith the Lebesgue spaces, which arewell-adapted to the heat equationswith
power nonlinearities (Weissler [1981]), we are motivated to consider the Orlicz spaces, in
order to study heat equations with power-exponential nonlinearities. Such spaces were
introduced by Birnbaum and Orlicz [1931] as a natural generalization of the classical
Lebesgue spaces Lq; 1 < q < 1. For this generalization the function xq entering in
the definition of Lq space is replaced by a more general convex function: in particular
exq

� 1.
For the particular case where f (u) ∼ ejuj2 ; u large, well-posedness results are proved

in the Orlicz space expL2(RN ): See Ibrahim, Jrad, Majdoub, and Saanouni [2014], Ioku
[2011], Ioku, Ruf, and Terraneo [2015], and Ruf and Terraneo [2002]. It is also proved
that if f (u) ∼ ejujs ; s > 2; u large then the existence is no longer guaranteed and in
fact there is nonexistence in the Orlicz space expL2(RN ): See Ioku, Ruf, and Terraneo
[2015]. Global existence and decay estimates are also established for the nonlinear heat
equation with f (u) ∼ ejuj2 ; u large. See Ioku [2011], Majdoub, Otsmane, and Tayachi
[2018], and Furioli, Kawakami, Ruf, and Terraneo [2017].

Here we consider the general case f (u) ∼ ejujq ; q > 1; u large. For such exponential
nonlinearities, the most adaptable space is the so-called Orlicz space expLp(RN ), p �

q > 1: We aim to study local well-posedness and look for the maximum power of the
nonlinearity in terms of the existence of solutions in these spaces. We also study the
global existence for small initial data and determine the decay estimates for large time.
For the global existence, we aim to allow f to behave like jujm�1u near the origin, with
m > 1 + 2/N : That is to reach the Fujita critical exponent 1 + 2/N .

The Orlicz space expLp(RN ) is defined as follows

expLp(RN ) =

�
u 2 L1

loc(R
N );

Z
RN

�
e

ju(x)jp

�p � 1
�

dx < 1; for some � > 0

�
;

endowed with the Luxembourg norm

kukexpLp(RN ) := inf
�

� > 0;

Z
RN

�
e

ju(x)jp

�p � 1
�

dx � 1

�
:

Since the space of smooth compactly supported functions C 1
0 (RN ) is not dense in the

Orlicz space expLp(RN ) (see Ioku, Ruf, and Terraneo [2015] and Ioku [2011]), we use
the space expL

p
0 (R

N ) which is the closure of C 1
0 (RN ) with respect to the Luxemburg
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norm k � kexpLp(RN ). It is known that Ioku, Ruf, and Terraneo [2015]
(1-3)

expL
p
0 (R

N ) =

�
u 2 L1

loc(R
N );

Z
RN

�
e˛ju(x)jp

� 1
�

dx < 1; for every ˛ > 0

�
:

It is easy to show that the linear heat semi-group et∆ is continuous at t = 0 in
expL

p
0 (R

N ): However, this is not the case in expLp(RN ):

In the sequel, we adopt the following definitions of weak, weak-mild and classical
solutions to Cauchy problem (1-1).

Definition 1.1 (Weak solution). Let u0 2 expL
p
0 (R

N ) and T > 0. We say that the
function u 2 C ([0; T ]; expL

p
0 (R

N )) is a weak solution of (1-1) if u verifies (1-1) in the
sense of distribution and u(t) ! u0 in the weak�topology as t & 0:

Definition 1.2 (Weak-mild solution). We say that u 2 L1(0; T ; expLp(RN )) is a weak-
mild solution of the Cauchy problem (1-1) if u satisfies the associated integral equation
(1-2) in expLp(RN ) for almost all t 2 (0; T ) and u(t) ! u0 in the weak� topology as
t & 0:

Definition 1.3 (expLp�classical solution). Let u0 2 expLp(RN ) and T > 0: A function
u 2 C ((0; T ]; expLp(RN ))\ L1

loc
(0; T ;L1(RN )) is said to be expLp�classical solu-

tion of (1-1) if u 2 C 1;2((0; T )�RN ), verifies (1-1) in the classical sense and u(t) ! u0

in the weak�topology as t & 0:

Weare first interested in the local well-posedness. SinceC 1
0 (RN ) is dense in expL

p
0 (R

N ),
we are able to prove local existence and uniqueness to (1-1) for initial data in expL

p
0 (R

N ).
We assume that the nonlinearity f satisfies

(1-4) f (0) = 0; jf (u) � f (v)j � C ju � vj(e� jujp + e� jvjp ); 8 u; v 2 R;

for some constants C > 0; p > 1 and � > 0. Our first main result reads as follows.

Theorem 1.4 (Local well-posedness). Suppose that f satisfies (1-4). Given any u0 2

expL
p
0 (R

N ) with p > 1; there exist a time T = T (u0) > 0 and a unique weak solution
u 2 C ([0; T ]; expL

p
0 (R

N )) to (1-1).

We stress that the density of C 1
0 (RN ) in expL

p
0 (R

N ) is crucial in the above Theorem.
In fact we have obtained the following non-existence result in expLp(RN ).

Theorem 1.5 (Non-existence). Let p > 1; ˛ > 0 and

(1-5) Φ˛(x) =

8̂<̂
:

˛
�

� log jxj

� 1
p

; jxj < 1;

0; jxj � 1:
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Assume that f : R ! R is continuous, positive on [0; 1) and satisfies

(1-6) lim inf
s!1

�
f (s) e��sp

�
> 0; � > 0:

ThenΦ˛ 2 expLp(RN )nexpL
p
0 (R

N ) and there exists ˛0 > 0 such that for every ˛ � ˛0

and T > 0 the Cauchy problem (1-1)with u0 = Φ˛ has no nonnegative expLp�classical
solution in [0; T ]:

The results of Theorems 1.4-1.5 are known for p = 2 in Ioku, Ruf, and Terraneo
[2015].

Our next interest is the global existence and the decay estimate. It depends on the
behavior of the nonlinearity f (u) near u = 0: The following behavior near 0 will be
allowed

jf (u)j ∼ juj
m;

where N (m�1)
2

� p: More precisely, we suppose that the nonlinearity f satisfies
(1-7)

f (0) = 0; jf (u) � f (v)j � C ju � vj

�
juj

m�1e�jujp + jvj
m�1e�jvjp

�
; 8u; v 2 R;

where N (m�1)
2

� p > 1, C > 0; and � > 0 are constants. Our aim is to obtain global
existence to the Cauchy problem (1-1) for small initial data in expLp(RN ). We have
obtained the following.

Theorem 1.6 (Global existence). Let N � 1; p > 1; such that N (p �1)/2 > p: Assume
that m � p (hence N (m � 1)/2 > p) and the nonlinearity f satisfies (1-7). Then,
there exists a positive constant " > 0 such that every initial data u0 2 expLp(RN ) with
ku0kexpLp(RN ) 6 "; there exists a weak-mild solution u 2 L1(0; 1; expLp(RN )) of
the Cauchy problem (1-1) satisfying

(1-8) lim
t�!0

ku(t) � et∆u0kexpLp(RN ) = 0:

Moreover, if m > 3/2 then there exists a constant C > 0 such that,

(1-9) ku(t)ka � C t�� ; 8 t > 0;

where

N (m � 1)

2
< a <

N (m � 1)

2

1

(2 � m)+
; a > N /2; and � =

1

m � 1
�

N

2a
> 0 :

Remarks 1.7.
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(i) The case N (p � 1)/2 � p will be investigated in a forthcoming paper.

(ii) Note that in the proof of the decay estimates, we require a > N /2which is compati-
ble with the other assumptions only if we impose the additional condition m > 3/2:

(iii) If only we want to prove global existence, we change the space of contraction that
is we omit the Lebesgue part and we do not need such a supplementary condition
on m.

Hereafter, k � kr denotes the norm in the Lebesgue space Lr(RN ); 1 � r � 1: We
mention that the assumption for the nonlinearity covers the cases

f (u) = ˙juj
m�1uejujp ; m � 1 +

2p

N
:

The global existence part of Theorem 1.6 is known for p = 2 (see Ioku [2011]). The
estimate (1-9) was obtained in Ioku [ibid.] for p = 2 and m = 1 + 4

N
: This is improved

in Majdoub, Otsmane, and Tayachi [2018] for p = 2 and any m � 1 + 4
N

: The fact that
estimate (1-9) depends on the smallest power of the nonlinearity f (u) is known in Snoussi,
Tayachi, and Weissler [2001] but only for nonlinearities having polynomial growth.

Using similar arguments as in Weissler [1980], we can show the following lower esti-
mate of the blow-up rate.

Theorem 1.8 (Blow-up rate). Assume that the nonlinearity f satisfies (1-4) with � > 0.
Let u0 2 Lp(RN )\L1(RN ) and u 2 C ([0; Tmax); Lp(RN )\L1(RN ) be the maximal
solution of (1-1). If Tmax < 1, then there exist two positive constants C1; C2 such that

�ku(t)kp

Lp(RN )\L1(RN )
� C1

ˇ̌
log(Tmax � t)j + C2; 0 � t < Tmax :

See Souplet and Tayachi [2016] and references therein for similar blow-up estimates
for parabolic problems with exponential nonlinearities.

The rest of this paper is organized as follows. In the next section, we collect some basic
facts and useful tools about Orlicz spaces. Section 3 is devoted to some crucial estimates
on the linear heat semi-group. The sketches of the proofs of Theorems 1.4 and 1.8 are done
in Section 4. Section 5 is devoted to Theorem 1.5 about nonexistence. Finally, in Section
6 we give the proof of Theorem 1.6. In all this paper, C will be a positive constant which
may have different values at different places. Also, Lr(RN ), expLr(RN ), expLr

0(R
N )

will be written respectively Lr , expLr and expLr
0.
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2 Orlicz spaces: basic facts and useful tools

Let us recall the definition of the so-called Orlicz spaces on RN and some related basic
facts. For a complete presentation and more details, we refer the reader to Adams and
Fournier [2003], Rao and Ren [2002], and Trudinger [1967].

Definition 2.1.
Let � : R+ ! R+ be a convex increasing function such that

�(0) = 0 = lim
s!0+

�(s); lim
s!1

�(s) = 1:

We say that a function u 2 L1
loc

(RN ) belongs to L�(RN ) if there exists � > 0 such thatZ
RN

�

�
ju(x)j

�

�
dx < 1:

We denote then

(2-1) kukL� = inf
�

� > 0;

Z
RN

�

�
ju(x)j

�

�
dx � 1

�
:

It is known that
�
L�(RN ); k � kL�

�
is a Banach space. Note that, if �(s) = sp; 1 �

p < 1, then L� is nothing else than the Lebesgue space Lp . Moreover, for u 2 L� with
K := kukL� > 0, we have�

� > 0;

Z
RN

�

�
ju(x)j

�

�
dx � 1

�
= [K; 1[ :

In particular

(2-2)
Z

RN

�

�
ju(x)j

kukL�

�
dx � 1:

We also recall the following well known properties.

Proposition 2.2. We have

(i) L1 \ L1 � L�(RN ) � L1 + L1.

(ii) Lower semi-continuity:

un ! u a.e. H) kukL� � lim inf kunkL� :

(iii) Monotonicity:
juj � jvj a.e. H) kukL� � kvkL� :
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(iv) Strong Fatou property:

0 � un % u a.e. H) kunkL� % kukL� :

(v) Strong and modular convergence:

un ! u in L�
H)

Z
RN

�(un � u)dx ! 0:

Denote by

L
�
0 (R

N ) =
n

u 2 L1
loc(R

N );

Z
RN

�

�
ju(x)j

�

�
dx < 1; 8 � > 0

o
:

It can be shown (see for example Ioku, Ruf, and Terraneo [2015]) that

L
�
0 (R

N ) = C 1
0 (RN )

L�

= the colsure of C 1
0 (RN ) in L�(RN ):

Clearly L
�
0 (R

N ) = L�(RN ) for �(s) = sp; p � 1, but this is not the case for any � (see
Ioku, Ruf, and Terraneo [ibid.]). When �(s) = esp

� 1, we denote the space L�(RN ) by
expLp and L

�
0 (R

N ) by expL
p
0 .

The following Lemma summarize the relationship betweenOrlicz and Lebesgue spaces.

Lemma 2.3. We have

(i) expL
p
0   expLp; p � 1.

(ii) expL
p
0 6,! L1, hence expLp 6,! L1; p � 1.

(iii) expLp 6,! Lr , for all 1 � r < p; p > 1.

(iv) Lq \ L1 ,! expL
p
0 , for all 1 � q � p. More precisely

(2-3) kukexpLp �
1

(log 2)
1
p

�
kukq + kuk1

�
:

Proof of Lemma 2.3. (i) Let u be the function defined by

u(x) =

�
� log jxj

�1/p

if jxj � 1;

u(x) = 0 if jxj > 1:

For ˛ > 0, we haveZ
RN

�
e

ju(x)jp

˛p � 1

�
dx < 1 () ˛ > N �1/p:

Therefore u 2 expLp and u 62 expL
p
0 .
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(ii) Let u be the function defined by

u(x) =

�
log (1 � log jxj)

�1/p

if jxj � 1;

u(x) = 0 if jxj > 1:

Clearly u 62 L1. Moreover, for any ˛ > 0, we haveZ
RN

�
e

ju(x)jp

˛p � 1

�
dx = jSN �1

j

Z 1

0

rN �1

�
(1 � log r)

1
˛p � 1

�
dr < 1;

where jSN �1j is the measure of the unit sphere SN �1 in RN . The second assertion
follows since expL

p
0 ,! expLp .

(iii) Let u be the function defined by

u(x) = jxj
� N

r if jxj � 1;

u(x) = 0 if jxj < 1:

Then u 2 expL
p
0 but u 62 Lr . Indeed, it is clear that u 62 Lr , and for ˛ > 0, we

have Z
RN

�
e

ju(x)jp

˛p � 1

�
dx =

jSN �1j

Nr

1X
k=1

1

(pk � r)k!˛pk
< 1:

(iv) Let u 2 Lq \ L1 and let ˛ > 0. Using the interpolation inequality

kukr � kuk
q/r
q kuk

1�q/r
1 � kukq + kuk1; q � r � 1;

we obtain Z
RN

�
e

ju(x)jp

˛p � 1

�
dx =

1X
k=1

1

k!˛pk
kuk

pk

Lpk

�

1X
k=1

1

k!˛pk
(kukq + kuk1)pk

= e
(kukq+kuk1)2

˛p � 1:

This clearly implies (2-3).

We have the embedding: expLp ,! Lq for every 1 < p � q. More precisely:
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Lemma 2.4. For every 1 � p � q < 1; we have

(2-4) kukq 6
�
Γ

�
q

p
+ 1

�� 1
q

kukexpLp ;

where Γ(x) :=
Z 1

0

�x�1e�� d�; x > 0:

The proof of the previous lemma is similar to that in Ruf and Terraneo [2002]. For
reader’s convenience, we give it here.

Proof of Lemma 2.4. Let K = kukexpLp > 0: Using the inequality

jxjpr

Γ(r + 1)
� ejxjp

� 1; r � 1; x 2 R;

we have Z
RN

(ju(x)j/K)pr

Γ(r + 1)
dx �

Z
RN

�
e(ju(x)j/K)p

� 1
�

dx � 1:

This leads to
kukpr � (Γ(r + 1))

1
pr K:

The result follows by taking r = q
p

� 1:

Remark 2.5. For �(s) = es � 1 � s, on can prove the following inequality

kukq � C (q)kukL� ; 2 � q < 1;

for some constant C (q) > 0 depending only on q.

We recall that the following properties of the functions Γ and B given by

B(x; y) =

Z 1

0

�1�x(1 � �)1�yd�; x; y > 0:

We have

(2-5) B(x; y) =
Γ(x + y)

Γ(x)Γ(y)
; 8 x; y > 0;

(2-6) Γ(x) � C > 0; 8 x > 0;

(2-7) Γ(x + 1) ∼
�x

e

�x p
2�x; as x ! 1;
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and

(2-8) Γ(x + 1) � Cxx+ 1
2 ; 8 x � 1:

The following Lemmas will be useful in the proof of the global existence.

Lemma 2.6. Let � > 0, 1 � p; q < 1 and K > 0 such that �q Kp � 1. Assume that

kukexpLp � K :

Then
ke�jujp

� 1kq � (�q Kp)
1
q :

Proof of Lemma 2.6. WriteZ
RN

�
e�jujp

� 1
�q

dx �

Z
RN

�
e� q jujp

� 1
�

dx

�

Z
RN

 
e

� q Kp jujp

kuk
p

expLp
� 1

!
dx

� � q Kp

Z
RN

 
e

jujp

kuk
p

expLp
� 1

!
dx � � q Kp;

where we have used the fact that e�s � 1 � � (es � 1), 0 � � � 1, s � 0 and (2-2).

Lemma 2.7. Let m � p > 1, a >
N (m�1)

2
, a > N

2
. Define

� =
1

m � 1
�

N

2a
> 0:

Assume that

(2-9) N >
2p

p � 1
;

and

(2-10) a <
N (m � 1)

2

1

(2 � m)+
:

Then, there exist r; q; (�k)
1
k=0

; (�k)
1
k=0

such that

(2-11) 1 � r � a :
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(2-12) q � 1 and
1

r
=

1

a
+

1

q
:

(2-13) 0 < �k < 1 and
1

q(pk + m � 1)
=

�k

a
+

1 � �k

�k

:

(2-14) p � �k < 1 :

(2-15)
N

2

�
1

r
�

1

a

�
< 1 :

(2-16) �
h
�k(pk + m � 1) + 1

i
< 1 :

(2-17) 1 �
N

2

�
1

r
�

1

a

�
� ��k(pk + m � 1) = 0 :

Moreover,

(2-18) �k �! 0 as k �! 1:

(2-19) �k �! 1 as k �! 1:

(2-20)
(pk + m � 1)(1 � �k)

p�k

(1 + �k) � k; 8 k � 1:

Remark 2.8. The assumption (2-10) together with a > N
2
implies that m > 3

2
.

Proof of Lemma 2.7. Note that the assumption (2-10) implies that � < 1. It follows that,
for all integer k � 0 one can choose �k such that

(2-21) 0 < �k <
1

pk + m � 1
min

�
m � 1;

1 � �

�

�
:
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Next, we choose �k such that

(2-22)
1 � �k

�k

=
2

N (pk + m � 1)
�

2�k

N (m � 1)
:

Finally, we choose q such that

(2-23)
1

q(pk + m � 1)
=

�k

a
+

1 � �k

�k

:

This leads to all remainder parameters.

We state the following proposition which is needed for the local well-posedness in the
space expL

p
0 .

Proposition 2.9. Let 1 � p < 1 and u 2 C ([0; T ]; expLp). Then for every ˛ > 0 there
holds �

e˛jujp
� 1

�
2 C ([0; T ];Lr); 1 � r < 1:

Proof of Proposition 2.9. Although the proof is similar to that given inMajdoub, Otsmane,
and Tayachi [2018], we give it here for completeness. Using the inequality

jex
� ey

j
r

� jerx
� ery

j ; x; y 2 R;

it suffices to consider only the case r = 1. Note that the proof for p = 2 was done in
Ibrahim, Jrad, Majdoub, and Saanouni [2014]. The case p = 1 follows by the inequalityˇ̌̌

ejxj�jyj
� 1

ˇ̌̌
� ejx�yj

� 1; x; y 2 R;

and property (v) in Proposition 2.2. The general case follows from the following lemmas.

Lemma 2.10. Assume that
vn ! v in expLp:

Then, for any ˛ > 0, we have

e˛jvn�vjp
� 1 ! 0 in L1:

Proof of Lemma 2.10. It suffices to consider the case v = 0 and ˛ = 1. For given 0 <

" � 1, there exists N � 1 such that kvnkexpLp � " for all n � N . By definition of the
norm k � kexpLp , there exists 0 < � = �n < " such thatZ

RN

�
ej

vn
�

jp
� 1

�
dx � 1; 8 n � N:
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By convexity argument, we deduce thatZ
RN

�
ejvnjp

� 1
�

dx =

Z
RN

�
e�p j

vn
�

jp
� 1

�
dx

�

Z
RN

�
ej" vn

�
jp

� 1
�

dx

� "

Z
RN

�
ej

vn
�

jp
� 1

�
dx

� ":

Lemma 2.11. Let 1 < p < 1 and v 2 expLp . Assume that

wn ! 0 in expLp:

Then, for any ˛ > 0, we have

e˛jwnjjvjp�1

� 1 ! 0 in L1:

Proof of Lemma 2.11. Write


e˛jwnjjvjp�1

� 1





L1
=

1X
k=1

˛k

k!

Z
jwnj

k
jvj

k(p�1) dx

�

1X
k=1

˛k

k!
kwnk

k
Lkp kvk

k(p�1)

Lkp

where we have used Hölder’s inequality with
1

k
=

1

kp
+

1

k p
p�1

:

Hence, using (2-4), we deduce that


e˛jwnjjvjp�1

� 1





L1
�

1X
k=1

˛k

k!
(k!)1/p(k!)1�1/p

kwnk
k
expLp kvk

k(p�1)
expLp

�

1X
k=1

�
˛kwnkexpLp kvk

p�1
expLp

�k

�
˛ kwnkexpLp kvk

p�1
expLp

1 � ˛ kwnkexpLp kvk
p�1
expLp

�! 0:
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Lemma 2.12. Let 1 < p < 1. Assume that

vn ! v in expLp:

Then,
ejvnjp

� ejvjp
! 0 in L1:

Proof of Lemma 2.12. Set wn = vn � v, then

ejvnjp
� ejvjp =

�
ejvjp

� 1
� �

ejwn+vjp�jvjp
� 1

�
+
�
ejwn+vjp�jvjp

� 1
�
:

Using the following elementary inequality

9 ˛ > 0 such that
ˇ̌̌
ja + bj

p
� jbj

p
ˇ̌̌

� ˛
�
jaj

p + jajjbj
p�1

�
; 8 a; b 2 R;

it follows that 


ejwn+vjp�jvjp
� 1





L1

�




e˛jwnjp+˛jwnjjvjp�1

� 1





L1
:

Let us write
e˛jwnjp+˛jwnjjvjp�1

� 1 = In + Jn +Kn;

where

In =
�
e˛jwnjp

� 1
� �

e˛jwnjjvjp�1

� 1
�

Jn =
�
e˛jwnjp

� 1
�

Kn =
�
e˛jwnjjvjp�1

� 1
�

By Lemma 2.11 and since wn ! 0 in expLp , v 2 expLp , we deduce that

In �! 0 in L1;

Jn �! 0 in L1;

Kn �! 0 in L1:

The proof of Lemma 2.12 is complete.

Combining Lemmas 2.10-2.11-2.12, we easily deduce the desired result; that is

e˛jujp
� 1 2 C ([0; T ];L1);

whenever u 2 C ([0; T ]; expLp). This finishes the proof of Proposition 2.9.
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A straightforward consequence is:

Corollary 2.13. Let 1 � p < 1 and u 2 C ([0; T ]; expLp). Assume that f satisfies
(1-4). Then for every p � r < 1 there holds

f (u) 2 C ([0; T ];Lr) :

Proof. Fix p � r < 1, 0 � t � T and let (tn) � [0; T ] such that tn ! t . Using Hölder’s
inequality, we obtain

kf (u(tn)) � f (u(t))kr � 2C ku(tn) � u(t)kr+

C kju(tn) � u(t)j(e� ju(tn)j
p

� 1 + e� ju(t)jp
� 1)kr

� 2C ku(tn) � u(t)kr + C ku(tn) � u(t)k2r��
ke�ju(tn)j

p

� 1k2r + ke�ju(t)jp
� 1k2r

�
� C ku(tn) � u(t)kexpLp

�
1 + ke�ju(tn)j

p

� 1k2r + ke�ju(t)jp
� 1k2r

�
;

where we have used Lemma 2.4 in the last inequality. From Proposition 2.9 we know
that ke�ju(tn)j

p
� 1k2r ! ke�ju(t)jp � 1k2r as n ! 1. It follows that kf (u(tn)) �

f (u(t))kr ! 0 which is the desired conclusion.

3 Linear estimates

In this section we establish some results needed for the proofs of the main theorems. We
first recall some basic estimates for the linear heat semigroup et∆: The solution of the
linear heat equation �

@t u = ∆u; t > 0; x 2 RN ;

u(0; x) = u0(x);

can be written as a convolution:

u(t; x) =
�
Gt ? u0

�
(x) :=

�
et∆u0

�
(x);

where

Gt (x) := G(t; x) =
e�

jxj2

4t

(4�t)
N
2

; t > 0; x 2 RN ;

is the heat kernel. We will frequently use the Lr �L� estimate as stated in the Proposition
below.
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Proposition 3.1. For all 1 � r � � � 1, we have

(3-1) ket∆'k� 6 t� N
2 ( 1

r � 1
� )

k'kr ; 8 t > 0; 8 ' 2 Lr :

The following Proposition is a generalization of Ioku [2011, Lemma 2.2, p. 1176].

Proposition 3.2. Let 1 6 q 6 p; 1 6 r 6 1: Then the following estimates hold:

(i) ket∆'kexpLp 6 k'kexpLp ; 8 t > 0; 8 ' 2 expLp:

(ii) ket∆'kexpLp 6 t� N
2q

�
log(t� N

2 + 1)
�� 1

p

k'kq; 8 t > 0; 8 ' 2 Lq :

(iii) ket∆'kexpLp 6 1

(log2)
1
p

h
t� N

2r k'kr + k'kq

i
; 8 t > 0; 8 ' 2 Lr \ Lq :

Proof of Proposition 3.2. We begin by proving (i). For any ˛ > 0; expanding the expo-
nential function leads toZ

RN

�
exp

ˇ̌̌̌
et∆'

˛

ˇ̌̌̌p
� 1

�
dx =

1X
k=1

ket∆'k
pk

pk

k!˛pk
:

Then by the Lpk � Lpk estimate of the heat semi-group (3-1), we obtain

Z
RN

�
exp

ˇ̌̌̌
et∆'

˛

ˇ̌̌̌p
� 1

�
dx 6

1X
k=1

k'k
pk

pk

k!˛pk

=

Z
RN

�
exp

ˇ̌̌'
˛

ˇ̌̌p
� 1

�
dx:

Therefore we obtain

ket∆'kexpLp = inf

(
˛ > 0;

Z
RN

 
exp

ˇ̌̌̌
et∆'

˛

ˇ̌̌̌p
� 1

!
dx � 1

)
6 inf

�
˛ > 0;

Z
RN

�
exp

ˇ̌̌'
˛

ˇ̌̌p
� 1

�
dx � 1

�
=k'kexpLp :

This proves (i).
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We now turn to the proof of (ii). Using (3-1) with q � p; we have

Z
RN

 
exp

ˇ̌̌̌
et∆'

˛

ˇ̌̌̌p
� 1

!
dx =

1X
k=1

ket∆'k
pk

pk

k!˛pk

6
1X

k=1

t� N
2 ( 1

q � 1
pk

)pk
k'k

pk
q

k!˛pk

= t
N
2

 
exp

 
t� N

2q k'kq

˛

!p

� 1

!
:

It follows that

ket∆'kexpLp � t� N
2q

�
log(t� N

2 + 1)
�� 1

p

k'kq :

This proves (ii).
We now prove (iii). By the embedding Lq \ L1 ,! expLp (2-3), we have

ket∆'kexpLp 6
1

(log 2)1/p

�
ket∆'k1 + ket∆'kq

�
:

Using the Lr � L1 estimate (3-1), we get

ket∆'kexpLp 6
1

(log 2)1/p

h
t� N

2r k'kr + k'kq

i
:

This proves (iii). The proof of the proposition is now complete.

As a consequence we have the following, the proof of which can be done as inMajdoub,
Otsmane, and Tayachi [2018].

Corollary 3.3. Let p > 1; N > 2p
p�1

; r > N
2

: Then, for every g 2 L1 \ Lr ; we have

ket∆gkexpLp � �(t) kgkL1\Lr ; 8 t > 0;

where � 2 L1(0; 1) is given by

�(t) =
1

(log 2)
1
p

min
�
t� N

2r + 1; t� N
2

�
log(t� N

2 + 1)
�� 1

p

�
:

Here we use kgkL1\Lq = kgk1 + kgkq :
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Proof of Corollary 3.3. We have, by Proposition 3.2 (ii) with q = 1,

(3-2) ket∆gkexpLp � t� N
2

�
log(t� N

2 + 1)
�� 1

p

kgk1:

Using Proposition 3.2 (iii) with q = 1, we get

(3-3) ket∆gkexpLp �
1

(log 2)
1
p

�
t� N

2r + 1
�h

kgkr + kgk1

i
:

Combining the inequalities (3-2) and (3-3), we obtain

(3-4) ket∆gkexpLp � �(t)
�
kgk1 + kgkr

�
:

By the assumption N > 2p
p�1

; r > N
2
, we can see that � 2 L1(0; 1):

We will also need the following result for the proofs.

Proposition 3.4. If u0 2 expL
p
0 then et∆u0 2 C ([0; 1); expL

p
0 ):

It is known that et∆ is aC 0�semigroup onLp:ByProposition 3.4, it is also aC 0�semigroup
on expL

p
0 : This is not the case on expLp: We have the following result.

Proposition 3.5. There exist u0 2 expLp and a constant C > 0 such that

(3-5) ket∆u0 � u0kexpLp > C; 8 t > 0:

The proof of the previous proposition uses the notion of rearrangement of functions
and can be done as in Majdoub, Otsmane, and Tayachi [2018].

4 Local well-posedness

In this section we prove the existence and the uniqueness of solution to (1-1) in
C ([0; T ]; expL

p
0 ) for some T > 0, namely Theorem 1.4. Throughout this section we

assume that the nonlinearity f : R ! R satisfies f (0) = 0 and

(4-1) jf (u) � f (v)j � C ju � vj

�
e� jujp + e� jvjp

�
; 8 u; v 2 R

for some constantsC > 0; � > 0 p � 1. We emphasize that, thanks to Corollary 2.13, the
Cauchy problem (1-1) admits the equivalent integral formulation (1-2). This is formulated
as follows.
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Proposition 4.1. Let T > 0 and u0 be in expL
p
0 . If u belongs to C ([0; T ]; expL

p
0 ), then

u is a weak solution of (1-1) if and only if u(t) satisfies the integral equation (1-2) for
any t 2 (0; T ).

Nowwe are ready to prove Theorem 1.4. The idea is to split the initial datau0 2 expL
p
0

into a small part in expLp and a smooth one. This will be done using the density of
C 1
0 (RN ) in expL

p
0 . First we solve the initial value problem with smooth initial data to

obtain a local and bounded solution v. Then we consider the perturbed equation satisfied
by w := u � v and with small initial data. Now we come to the details. For " > 0 to be
chosen later, we write u0 = v0 + w0, where v0 2 C 1

0 (RN ) and kw0kexpLp � ". Then,
we consider the two Cauchy problems:

(P1)

�
@t v � ∆v = f (v); t > 0; x 2 RN ;

v(0) = v0;

and

(P2)

�
@t w � ∆w = f (w + v) � f (v); t > 0; x 2 RN ;

w(0) = w0:

We first, prove the following existence result concerning (P1):

Proposition 4.2. Let v0 2 Lp \ L1. Then there exist a time T > 0 and a solution
v 2 C ([0; T ]; expL

p
0 ) \ L1(0; T ;L1) to (P1).

Proof of Proposition 4.2. We use a fixed point argument. We introduce, for any M > 0;

and positive time T the following complete metric space

Y(M; T ) :=
n

v 2 C ([0; T ]; expL
p
0 ) \ L1(0; T ;L1); kvkT � M

o
;

where kvkT := kvkL1(0;T ;Lp) + kvkL1(0;T ;L1); and kv0kLp\L1 = kv0kp + kv0k1.
Set

Φ(v)(t) := et∆v0 +

Z t

0

e(t�s)∆f (v(s)) ds:

We will prove that, for suitable M > 0 and T > 0; Φ is a contraction map from Y(M; T )

into itself.
First, since v0 2 Lp \ L1; then by Lemma 2.3 (iv), v0 2 expL

p
0 and by Proposi-

tion 3.4, et∆v0 2 C ([0; T ]; expL
p
0 ):Obviously et∆v0 2 L1(0; T ;L1): Second by (1-4),

f (v) 2 L1(0; T ; expL
p
0 ) whenever v 2 C ([0; T ]; expL

p
0 ) \ L1(0; T ;L1). Then, by

Proposition 3.4, we conclude that Φ(v) 2 C ([0; T ]; expL
p
0 ) \ L1(0; T ;L1).



2450 MOHAMED MAJDOUB AND SLIM TAYACHI

Now, for every v1; v2 2 Y(M; T ), we have thanks to (4-1),

kΦ(v1) � Φ(v2)kL1(0;T ;Lq) � C

Z T

0

kf (v1(s)) � f (v2(s))kq ds

� T kf (v1) � f (v2)kL1(0;T ;Lq)

� C T

�
e

�kv1k
p

L1
t (L1

x ) + e
�kv2k

p

L1
t (L1

x )

�
kv1 � v2kL1(0;T ;Lq)

where q = p or q = 1. Then, it follows that

kΦ(v1) � Φ(v2)kT � 2C T e�M p

kv1 � v2kT

� 2C T e�M p

kv1 � v2kT :(4-2)

Similarly we have

kΦ(v)kT � kv0kLp\L1 + C T e�M p

kvkT

� kv0kLp\L1 + 2CM e�M p

T:(4-3)

From (4-2) and (4-3) we conclude that for T > 0 and M > kv0kLp\L1 such that

2C e�M p

T < 1; kv0kLp\L1 + 2CM e�M p

T � M;

Φ is a contraction map on Y(M; T ). In particular, one can take M > kv0kLp\L1 and
T <

M�kv0kLp\L1

2MC e�Mp : This finishes the proof of Proposition 4.2.

Following similar arguments as in Majdoub, Otsmane, and Tayachi [2018] and using
Propositions 4.1-4.2, we end the proof of Theorem 1.4.

The solution constructed by the above Proposition can be extended to a maximal solu-
tion by well known argument. Moreover, if Tmax < 1; then lim

t!Tmax
ku(t)kLp\L1 = 1:

Let us now give the proof of the lower blow-up estimates.

Proof of Theorem 1.8. Let u0 2 Lp \ L1 and u 2 C ([0; Tmax); expL
p
0 ) be the maximal

solution of (1-1) given by Theorem 1.4 (or Proposition 4.2). To prove the lower blow-up
estimates we use an argument introduced by Weissler in Weissler [1981, Section 4 and
Remark (6)2]. See also Mueller and Weissler [1985, Proposition 5.3, p. 901]. Assume
that Tmax < 1: Then lim

t!Tmax
ku(t)kLp\L1 = 1: Consider u the solution starting at u(t)

for some t 2 [0; Tmax): If for some M

ku(t)kLp\L1 + 2CM e�M p

(T � t) � M;
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then T < Tmax: Therefore, for any M > 0;

ku(t)kLp\L1 + 2CM e�M p

(Tmax � t) > M:

Choosing M = 2ku(t)kLp\L1 it follows that

4C ku(t)kLp\L1e2p�ku(t)k
p

Lp\L1 (Tmax � t) > ku(t)kLp\L1 :

That is

e2p�ku(t)k
p

Lp\L1 � C (Tmax � t)�1;

for some positive constant C: Hence,

2p�ku(t)kp
Lp\L1 � � log(Tmax � t) + C:

Then

�ku(t)kp
Lp\L1 � �C1 log(Tmax � t) + C2

for some positive constants C1; C2: This completes the proof of Theorem 1.8.

We obtain the following concerning problem (P2):

Proposition 4.3. Let T > 0 and v 2 L1(0; T ;L1) given by Proposition 4.2. Let w0 2

expL
p
0 . Then for kw0kexpLp � ", with " > 0 small enough, there exist a time eT =eT (w0; "; v) > 0 and a solution w 2 C ([0;eT ]; expL

p
0 ) to problem (P2).

The proof of Proposition 4.3 uses the following lemma.

Lemma 4.4. Let v 2 L1 and w1; w2 2 expLp with kw1kexpLp ; kw2kexpLp � M for
some constant M > 0. Let p � q < 1, and assume that 2p�qM p � 1 where � is given
by (4-1). Then there exists a constant C > 0 such that


f (w1 + v) � f (w2 + v)





q

� C e2p�1�kvk
p
1




w1 � w2





expLp

:
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Proof of the Lemma 4.4. By the assumption (4-1) on f , we have


f (w1 + v) � f (w2 + v)





q
�

� C



jw1 � w2j

�
e2p�1�jw1jp+2p�1�jvjp + e2p�1�jw2jp+2p�1�jvjp

� 



q

� e2p�1�kvk
p
1

�
2C



w1 � w2





q
+ C




jw1 � w2j

�
e2p�1�jw1jp

� 1
� 




q

�
+ C e2p�1�kvk

p
1




jw1 � w2j

�
e2p�1�jw2jp

� 1
� 




q

� e2p�1�kvk
p
1

�
2C



w1 � w2





q
+ C




w1 � w2





2q




e2p�1�jw1jp
� 1





2q

�
+ C e2p�1�kvk

p
1




w1 � w2





2q




e2p�1�jw2jp
� 1





2q

� C e2p�1�kvk
p
1




w1 � w2





expLp

;

where we have used Hölder inequality, Lemma 2.4, Lemma 2.6 and the fact that (a +

b)p � 2p�1(ap + bp), for every a; b � 0 and any p � 1: This finishes the proof of
Lemma 4.4.

5 Non-existence

The following lemma is the key of the proof of Theorem 1.5.

Lemma 5.1. Let p > 1; ˛ > 0: Let Φ˛ be given by (1-5) and f , � > 0 be as in (1-6).
Then, there exists ˛0 > 0 such that for any ˛ � ˛0, " > 0 and r > 0, we haveZ "

0

Z
jxj<r

exp
�

�

�
et∆Φ˛

�p�
dx dt = 1 :

Proof of Lemma 5.1. Let B(a; �) denotes the open ball centered at a 2 RN and with
radius � > 0: Fix "; r > 0. For � = min

�
r; 1

4

�
, we have B(3x; jxj) � B(0; 1) for any

jxj < �. Therefore, for any jxj < �, it holds�
et∆Φ˛

�
(x) =

1

(4�t)N/2

Z
jxj<1

e�
jx�yj2

4t Φ˛(y) dy

�
˛

(4�t)N/2

Z
jy�3xj<jxj

e�
jx�yj2

4t

�
� log jyj

� 1
p

dy

� C˛

�
jxj2

t

�N/2

e� 9
4

jxj2

t

�
� log 4jxj

�1/p

:
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Let � = min
�
"; �2

�
. Then, for any 0 < t < �, we have B(0;

p
t) � B(0; �). HenceZ "

0

Z
jxj<r

exp
�

�

�
et∆Φ˛

�p�
dx dt �

Z �

0

Z
jxj<�

exp
�

�

�
et∆Φ˛

�p�
dx dt

�

Z �

0

Z
p

t
2 <jxj<

p
t

exp (�C �˛p log(4jxj)) dx dt

� C˛

Z �

0

t
N
2 � C �˛p

2 dt = 1;

for ˛ � ˛0 :=
�

N+2
C �

�1/p
: This finishes the proof of Lemma 5.1.

The proof of Theorem 1.5 follows similar arguments as in Ioku, Ruf, and Terraneo
[2015] and uses the previous Lemma.

6 Global Existence

This section is devoted to the proof of Theorem 1.6. The proof uses a fixed point argument
on the associated integral equation

(6-1) u(t) = et∆u0 +

Z t

0

e(t�s)∆(f (u))(s)ds;

where ku0kexpLp � ", with small " > 0 to be fixed later. The nonlinearity f satisfies
f (0) = 0 and

(6-2) jf (u) � f (v)j � C ju � vj

�
juj

m�1e�jujp + jvj
m�1e�jvjp

�
;

for some constants C > 0 and � > 0; p � 1 and m is larger than 1 + 2p
N

: From (6-2), we
obviously deduce that

(6-3) jf (u) � f (v)j � C ju � vj

1X
k=0

�k

k!

�
juj

pk+m�1 + jvj
pk+m�1

�
:

We will perform a fixed point argument on a suitable metric space. For M > 0 we intro-
duce the space

YM :=

�
u 2 L1(0; 1; expLp); sup

t>0
t�

ku(t)ka + kukL1(0;1;expLp) � M

�
;
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where a >
N (m�1)

2
� p and

� =
1

m � 1
�

N

2a
=

N

2

�
2

N (m � 1)
�

1

a

�
> 0:

Endowed with the metric d (u; v) = sup
t>0

�
t�

ku(t) � v(t)kr

�
, YM is a complete metric

space. This follows by Proposition 2.2.
For u 2 YM ; we define Φ(u) by

(6-4) Φ(u)(t) := et∆u0 +

Z t

0

e(t�s)∆(f (u(s)))ds:

By Proposition 3.2 (i), Proposition 3.1 and Lemma 2.4, we have

ket∆u0kexpLp � ku0kexpLp ;

and

t�
ket∆u0ka � t� t

� N
2

�
2

N (m�1) � 1
a

�
ku0k N (m�1)

2

= ku0k N (m�1)
2

� C ku0kexpLp ;

where we have used 1 � p �
N (m�1)

2
< a:

Let u 2 YM . Using Proposition 3.2 and Corollary 3.3, we get for q > N
2
,

kΦ(u)(t)kexpLp � ket∆u0kexpLp +

Z t

0




e(t�s)∆(f (u(s)))




expLp

ds

� ket∆u0kexpLp +

Z t

0

�(t � s)

�
kf (u(s))kL1\Lq

�
ds

� ket∆u0kexpLp + kf (u)kL1(0;1;(L1\Lq))

Z 1

0

�(s) ds

� ket∆u0kexpLp + C kf (u)kL1(0;1;(L1\Lq)):

Hence by Part (i) of Proposition 3.2, we get

kΦ(u)kL1(0;1;expLp) � ku0kexpLp + C kf (u)kL1(0;1;L1\Lq):

It remains to estimate the nonlinearity f (u) in Lr for r = 1; q: To this end, let us remark
that

(6-5) jf (u)j � C juj
m
�
e�jujp

� 1
�
+ C juj

m:
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By Hölder’s inequality and Lemma 2.4, we have for 1 � r � q and since m � p,

kf (u)kr � C kuk
m
mr + C kjuj

m(e�jujp
� 1)kr

� C kuk
m
mr + C kuk

m
2mrke�jujp

� 1k2r(6-6)

� C kuk
m
expLp

�
ke�jujp

� 1k2r + 1

�
:

According to Lemma 2.6, and the fact that u 2 YM , we have for 2q�M p � 1,

(6-7) kf (u)kL1(0;1;Lr ) � CM m:

Finally, we obtain

kΦ(u)kL1(0;1;expLp) � ku0kexpLp + CM m

� " + CM m:

Let u; v be two elements of YM : By using (6-3) and Proposition 3.1, we obtain

t�
kΦ(u)(t) � Φ(v)(t)ka � t�

Z t

0




e(t�s)∆(f (u(s)) � f (v(s)))





a
ds

� t�

Z t

0

(t � s)� N
2 ( 1

r � 1
a )

kf (u(s)) � f (v(s))kr ds

� C

1X
k=0

�k

k!
t�

Z t

0

(t � s)� N
2 ( 1

r � 1
a )

k(u � v)(juj
pk+m�1 + jvj

pk+m�1)krds;

where 1 � r � a: We use the Hölder inequality with 1
r
= 1

a
+ 1

q
to obtain

t�
kΦ(u)(t) � Φ(v)(t)ka � C

1X
k=0

�k

k!
t�

Z t

0

(t � s)� N
2 ( 1

r � 1
a )

ku � vka�

kjuj
pk+m�1 + jvj

pk+m�1
kqds;

� C

1X
k=0

�k

k!
t�

Z t

0

(t � s)� N
2 ( 1

r � 1
a )

ku � vka��
kuk

pk+m�1
q(pk+m�1)

+ kvk
pk+m�1
q(pk+m�1)

�
ds:
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Using interpolation inequality where 1
q(pk+m�1)

= �
a
+ 1��

�
; p � � < 1; we find

that

t�





Z t

0

e(t�s)∆ (f (u) � f (v)) ds






a

� C

1X
k=0

�k

k!
t�

Z t

0

(t � s)� N
2 ( 1

r � 1
a )

ku � vka

�

�
kuk

(pk+m�1)�
a kuk

(pk+m�1)(1��)
� + kvk

(pk+m�1)�
a kvk

(pk+m�1)(1��)
�

�
ds:

By Lemma 2.4, we obtain

t�





Z t

0

e(t�s)∆ (f (u) � f (v)) ds






a

� C

1X
k=0

�k

k!
t�

Z t

0

(t � s)� N
2 ( 1

r � 1
a )

ku � vkaΓ

�
�

p
+ 1

� (pk+m�1)(1��)
�

�

�
kuk

(pk+m�1)�
a kuk

(pk+m�1)(1��)
expLp + kvk

(pk+m�1)�
a kvk

(pk+m�1)(1��)
expLp

�
ds:

(6-8)

Applying the fact that u; v 2 YM in (6-8), we see that

t�





Z t

0

e(t�s)∆ (f (u) � f (v)) ds






a

� Cd (u; v)

1X
k=0

�k

k!
Γ

�
�

p
+ 1

� (pk+m�1)(1��)
�

M pk+m�1

� t�

�Z t

0

(t � s)� N
2 ( 1

r � 1
a )s��(1+(pk+m�1)�) ds

�
� Cd (u; v)

1X
k=0

�k

k!
Γ

�
�

p
+ 1

� (pk+m�1)(1��)
�

M pk+m�1

� B

�
1 �

N

2

�
1

r
�

1

a

�
; 1 � �

�
1 + (pk + m � 1)�

��
;

(6-9)

where the parameters a; q; r; � = �k ; � = �k are given by Lemma 2.7. For these param-
eters, using (2-5) and (2-6), we obtain that

(6-10) B

�
1 �

N

2

�
1

r
�

1

a

�
; 1 � �

�
1 + (pk + m � 1)�

��
� C:
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Moreover, using (2-18)-(2-19)-(2-20) together with (2-8) and (2-7) gives

(6-11) Γ

�
�k

p
+ 1

� (pk+m�1)(1��k)

�k

� C kk!:

Combining (6-9), (6-10) and (6-11) we get

t�





Z t

0

e(t�s)∆ (f (u) � f (v)) ds






a

� Cd (u; v)

1X
k=0

(C �)kM pk+m�1:

Hence, we get for M small,

t�





Z t

0

e(t�s)∆ (f (u) � f (v)) ds






a

� CM m�1d (u; v):

The above estimates show that Φ : YM ! YM is a contraction mapping. By Banach’s
fixed point theorem, we thus obtain the existence of a unique u in YM with Φ(u) = u:

By (6-4), u solves the integral equation (6-1) with f satisfying (6-2). The estimate (1-9)
follows from u 2 YM : This terminates the proof of the existence of a global solution to
(6-1) for N > 2p

p�1
.

We will now prove the statement (1-8). For q �
N
2
and q � p, we have

ku(t) � et∆u0kexpLp

�

Z t

0

ke(t�s)∆f (u(s))kexpLp ds

� C

Z t

0

ke(t�s)∆f (u(s))kpds + C

Z t

0

ke(t�s)∆f (u(s))k1 ds

� C

Z t

0

kf (u(s))kpds + C

Z t

0

(t � s)� N
2q kf (u(s))kq ds:(6-12)

Now, let us estimate kf (u(t))kr for r = p; q: We have

jf (u)j � C juj
me�jujp :

Therefore, we obtain

kf (u)kr � C kjuj
m(e�jujp

� 1 + 1)kr :

By using Hölder inequality and Lemma 2.4, we obtain

kf (u)kr � C kuk
m
2mrke�jujp

� 1k2r + kuk
m
mr

� C kuk
m
expLp

�
ke�jujp

� 1k2r + 1
�

:
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Using Lemma 2.6 we conclude that

(6-13) kf (u)kr � C kuk
m
expLp

�
(2�rM p)

1
2r + 1

�
� C kuk

m
expLp :

Substituting (6-13) in (6-12), we have

ku(t) � et∆u0kexpLp � C

Z t

0

�
kuk

m
expLp + (t � s)� N

2q kuk
m
expLp

�
ds

� C tkuk
m
L1(0;1; expLp) + C t1� N

2q kuk
m
L1(0;1; expLp)

� C1t + C2t1� N
2q ;

where C1; C2 are finite positive constants. This gives

lim
t�!0

ku(t) � et∆u0kexpLp = 0;

and proves statement (1-8).
Finally the fact that u(t) ! u0 as t ! 0 in the weak� topology can be done as in Ioku

[2011]. So we omit the proof here.
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INTERACTION OF SOLITONS FROM THE PDE POINT OF
VIEW

Yඏൺඇ Mൺඋඍൾඅ

Abstract
We review recent results concerning the interactions of solitary waves for sev-

eral universal nonlinear dispersive or wave equations. Though using quite different
techniques, these results are partly inspired by classical papers based on the inverse
scattering theory for integrable models.

1 Introduction

Pioneering numerical experiments of Fermi, Pasta, and Ulam [1955] in 1955, and of
Zabusky and Kruskal [1965] in 1965, revealed unexpected phenomena related to the in-
teractions of nonlinear waves1. Shortly thereafter, the inverse scattering theory and its
generalizations, developed by many influential mathematicians such as Ablowitz, Kaup,
Newell, and Segur [1974], Gardner, C. S. Greene, Kruskal, and Miura [1967], Gardner,
J. M. Greene, Kruskal, and Miura [1974], Lax [1968], Miura [1976], Miura, Gardner,
and Kruskal [1968], and Zakharov and Shabat [1971], provided a rigorous ground and a
unified approach to these observations. It led very rapidly to an accurate and deep un-
derstanding of remarkable properties of several universal nonlinear models, referred to as
completely integrable, such as for example, the Korteweg-de Vries equation, the one di-
mensional cubic Schrödinger equation and the sine-Gordon equation. It has created a very
active and inspiring field of research since then2. Among the most notable achievements
of this theory, we mention
MSC2010: primary 35B40; secondary 37K40, 35Q51, 35Q53, 35Q55, 35L71.
Keywords: soliton, multi-soliton, asymptotic behavior of solutions, elastic and non-elastic collisions,
nonlinear Schrödinger equation, generalized Korteweg-de Vries equation, semilinear wave equation.
1We refer to Chapter 8 of Dauxois and Peyrard [2010] for details on this discovery and on the relation between

the model considered in Fermi, Pasta, and Ulam [1955] and the KdV equation. It is quite rightly suggested in
Dauxois and Peyrard [2010] to recognize the work of M. Tsingou, contributor to the numerical computations of
Fermi, Pasta, and Ulam [1955].

2See for example Lamb [1980] and Chapter 7 of Dauxois and Peyrard [2010] for synthetic presentations of
the inverse scattering transform.
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(i) the existence of infinitely many conservation laws;

(ii) the purely elastic nature of the collision of any number of solitary waves, which
means that the interacting solitary waves recover their exact shape and velocity after
a collision. Solitary waves enjoying such remarkable property were called solitons3;

(iii) the decomposition into solitons, saying that from any solution should emerge in
large time a sum of nonlinear states, such as solitons, plus a dispersive part.

These rigorous mathematical facts are known to be physically relevant in numerous con-
texts, though sometimes under less extreme forms. For example, in several practical ap-
plications or for more elaborate nonlinear models, the collision of nonlinear waves is not
purely elastic and some loss of energy takes place during collisions4. This reveals that
the inverse scattering theory is restricted to models with specific algebraic structure and
despite many extensions to nearly integrable systems (see e.g. Kivshar and Malomed
[1989]), it cannot be applied to general nonlinear models.

In view of the beautiful achievements of the integrability theory but also of its inevitable
limitations, it appeared necessary to investigate similar questions for general nonlinear
models with solitary waves using tools from the theory of partial differential equations. In
these notes, we review some results on interactions of solitary waves obtained for models
that are not close to any known integrable equation, such as the generalized Korteweg-
de Vries equation, the nonlinear Schrödinger equation in any space dimension, the �4

equation and the nonlinear wave equation.
Mainly in the 80s, the solitary wave theory, proving existence, uniqueness, symmetry

and stability properties of nonlinear waves, was successfully developed using the elliptic
theory, ODE analysis and general variational arguments, at least for ground states (see
Section 3). More recently, asymptotic stability results appeared (see Section 4). Then,
energy type arguments extending the elliptic theory have allowed to consider several soli-
tary waves in weak interactions, i.e. cases where the soliton dynamics is only slightly
perturbed by the interactions. Pushing the perturbative analysis one step forward, some
examples of strong interactions have also been exhibited; the solitons are still distant, but
their dynamics is substantially modified by the interactions (see Section 5). Next, we re-
view the few recent cases where a version of the soliton resolution conjecture was proved
for non-integrable wave models in Section 6. Finally, we discuss in Section 7 some situa-
tions where collisions were proved to be inelastic.

This review points out that despite some impressive and surprizing recent progress,
notably on the soliton resolution conjecture, most of the questions raised above on the
interaction of solitary waves remain open for general nonlinear models.

3This term is now commonly used for solitary waves even in the non-integrable context.
4We refer to Craig, Guyenne, Hammack, Henderson, and Sulem [2006] for a discussion on this topic.
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2 Integrable equations

In this section, we briefly highlight some results from the inverse scattering theory that
inspired mathematical research much beyond their range of applicability.

2.1 KdV solitons and multi-solitons. For the Korteweg-de Vries equation5

(1) @tu+ @x(@
2
xu+ u2) = 0; (t; x) 2 R � R;

the inverse scattering transform led to a very striking property which is the existence of
exact multi-soliton solutions (see e.g. Hirota [1971], Miura [1976], and Whitham [1974]).

Let Q(x) = 3
2

cosh�2(x
2
) be the unique positive even solution of Q00 +Q2 = Q, and

for c > 0, let Qc(x) = cQ(
p
cx). Then, for any c > 0, � 2 R, the function defined by

u(t; x) = Qc(x � ct � �) is a solution of (1), called soliton, traveling with speed c.
Solutions containing an arbitrary number of such solitons (called multi-solitons) have

been obtained by the inverse scattering theory.

Theorem 1 (Multi-solitons for KdV, Hirota [1971] and Miura [1976]). LetK 2 N,K � 2.
Let 0 < cK < � � � < c1 and ��

1 ; : : : ; �
�
K 2 R. There exist �+

1 ; : : : ; �
+
K 2 R and an explicit

solution u of (1) such that

lim
t!˙1






u(t) �

KX
k=1

Qck

�
� � ckt � �˙

k

�





H1

= 0:

The most remarkable fact is that all the solitons recover exactly the same sizes and
speeds after the collision. Moreover, the values of �+

k
are explicit. It it interesting to recall

that the multi-soliton behavior, even in the simple case of two solitons, differs qualitatively
according to the relative sizes of the solitons. We refer to Lemma 2.3 in Lax [1968] for a
definition of the three Lax categories of two-solitons and to Zabusky and Kruskal [1965]
for a previous formal discussion. In particular, if their sizes are close (i.e. c1 ∼ c2), the
two solitons never cross, but rather repulse each other at a large distance (this is category
(c) in Lax [1968]). See Sections 7.1 to 7.3.

2.2 Decomposition into solitons for KdV. The multi-soliton behavior is fundamental
for general solutions of the KdV equation as shown by the following decomposition result.

Theorem 2 (Decomposition into solitons, Eckhaus and Schuur [1983] and Schuur [1986]).
Let u0 be aC 4 function such that for any j 2 f0; :::; 4g, for all x 2 R,

ˇ̌
(@ju0/@x

j )(x)
ˇ̌

.
5We refer to Chapter 1 of Dauxois and Peyrard [2010] for historical facts on this equation and its applications

to Physics.
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hxi�10: Let u be the solution of (1) corresponding to u0. Then, there exist K 2 N,
�1; : : : ; �K 2 R and c1 > � � � > cK > 0 such that, for all x > 0,

lim
t!+1

(
u(t; x) �

KX
k=1

Qck
(x � ckt � �k)

)
= 0:

This result has a rich history, see Ablowitz, Kaup, Newell, and Segur [1974], Cohen
[1979], Dauxois and Peyrard [2010], Dodd, Eilbeck, Gibbon, and Morris [1982], Eckhaus
and Schuur [1983], Kruskal [1974], Lax [1968], Schuur [1986], and Zabusky and Kruskal
[1965] and the references therein. Note that if some space decay is necessary to apply
the inverse scattering transform, the decay assumption on the initial data in the above
result is not optimal. Note also that the asymptotic behavior of the solution is described
for x > 0 (see results in Schuur [1986] for slight improvement). For the region x < 0,
see Deift, Venakides, and Zhou [1994], Eckhaus and Schuur [1983], and Schuur [1986]
and references therein.

Last, we mention that the modified KdV equation (i.e. the KdV equation with a cu-
bic nonlinearity) is also an integrable model that enjoys most of the properties of the KdV
equation, like the infinitely many conservation laws and the existence of pure multi-soliton
solutions (see e.g. Miura [1976]). Actually, it even has a richer family of exceptional solu-
tions: breather solutions (see Alejo and Muñoz [2013], Lamb [1980], and Wadati [1973])
and dipole solitons, i.e. special multi-solitons where solitons are distant like C log t (see
Gorshkov and Ostrovsky [1981], Karpman and Solovev [1981], and Wadati and Ohkuma
[1982]). This complicates any possible soliton resolution conjecture on this equation (see
Schuur [1986]).

2.3 One dimensional cubic NLS. The 1D cubic nonlinear Schrödinger equation

(2) i@tu+ @2xu+ juj
2u = 0; (t; x) 2 R � R;

is also an integrable equation, widely studied for its numerous physical applications and
remarkable mathematical properties. See e.g. Dauxois and Peyrard [2010], Deift and
Trubowitz [1979], Deift and Zhou [1993], Dodd, Eilbeck, Gibbon, and Morris [1982], Fad-
deev and Takhtajan [2007], Novokšenov [1980], Olmedilla [1987], Yang [2010], Zabusky
and Kruskal [1965], Zakharov and Manakov [1976], and Zakharov and Shabat [1971].

Here, we denote Q(x) =
p
2 cosh�1(x) the unique positive even solution of Q00 +

Q3 = Q, and for any c > 0, Q�(x) =
p
cQ(

p
cx). Then, for any c > 0, ˇ 2 R, � 2 R

and 
 2 R,

u(t; x) = Qc(x � ˇt � �)eiΓ(t;x); Γ(t; x) =
1

2
(ˇ � x) �

1

4
jˇj

2t + ct + 
;
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is a solitary wave of (2), moving on the line x = � + ˇt and also called soliton.
As the KdV equation, the 1D cubic NLS admits explicit multi-solitons. However, the

possible behaviors of multi-solitons is richer for NLS. In addition to multi-solitons distant
like Ct , which is the generic situation, the equation also admits multi-solitons where the
distance between some solitons is C log t (see Olmedilla [1987] and Zakharov and Shabat
[1971]; this requires solitons of exactly the same size, like for mKdV) and solutions where
some solitons are staying at a finite distance from each other for all time (see Yang [2010]
and Zakharov and Shabat [1971]). As for mKdV, the presence of such multi-solitons
complicates any general decomposition result but does not prevent it. For such questions,
we refer to the recent work Borghese, Jenkins, and McLaughlin [2016] and its references.

2.4 The sine-Gordon equation. The sine-Gordon equation

@2t u � @2xu+ sinu = 0; (t; x) 2 R � R;

was also widely studied as a physically relevant and completely integrable model (see
e.g. Dauxois and Peyrard [2010], Dodd, Eilbeck, Gibbon, and Morris [1982], and Lamb
[1980]). This equation has an explicit kink solution S(x) = 4 arctan(ex). It also has
other exceptional solutions, like time-periodic wobbling kinks (see Cuenda, Quintero, and
Sánchez [2011] and Segur [1983]), and breathers (see Lamb [1980]).

2.5 Other integrable models and nearly integrable models. For the derivative NLS
equation, we refer to Jenkins, J. Liu, Perry, and Sulem [2017] and its references. For the
KP-I equation, see Lamb [1980]. For integrable models set on the torus, see Kuksin [2000]
and references therein.

Several nearly integrable equations have also been studied in the context of the theory
of inverse scattering. We refer to Dauxois and Peyrard [2010], Deift and Zhou [2002],
Kivshar and Malomed [1989], and Yang [2010] and to the references therein.

2.6 Formal works and numerical simulations. Note that shortly after the develop-
ment of the inverse scattering and the discovery of explicit multi-solitons, other approaches
appeared, like in Ei and Ohta [1994], Gorshkov and Ostrovsky [1981], and Karpman
and Solovev [1981], to investigate possible multi-soliton behaviors for integrable or non-
integrable models. Such papers focus on the modulation equations of the parameters of the
solitons and lack the analysis of the error terms, but they aim at justifying formally multi-
solitons behaviors beyond any integrability property or proximity to integrable equations.
In particular, as for the rigorous results presented in Section 5 below, they are asymp-
totic results, restricted to cases where the distances between the various solitons are large
enough.
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Theoretical and numerical works have been developed in parallel. As mentioned in the
Introduction, the subject started with two fundamental numerical experiments presented
in Fermi, Pasta, and Ulam [1955] and Zabusky and Kruskal [1965]. Since then, there has
been an intense activity on studying solitary waves interactions from the numerical point
of view. We refer to Craig, Guyenne, Hammack, Henderson, and Sulem [2006] which
compares KdV multi-solitons, the water wave problem from the numerical point of view
and real experiments on waves generated in water tanks. For Klein-Gordon equations, we
refer to Ablowitz, Kruskal, and Ladik [1979]. We also refer to Bona, Pritchard, and Scott
[1980], Dauxois and Peyrard [2010], Hammack, Henderson, Guyenne, and Yi [2004], Li
and Sattinger [1999], Shih [1980], and Yang [2010] and references therein. One of the
main questions studied by numerical experiments is the elastic versus inelastic character
of the collisions of nonlinear waves.

3 Nonlinear models with solitary waves

In these notes, we consider four typical nonlinear models and work with the notion of
solution in the energy space.

3.1 The generalized Korteweg-de Vries equation. Consider the following 1D model,
for any integer p � 2,

(3) @tu+ @x(@
2
xu+ up) = 0; (t; x) 2 R � R:

As seen before, the case p = 2 corresponds to the KdV equation and p = 3 to the mKdV
equation, which are both completely integrable.

The mass and energyZ
u2(t);

Z �
1

2
u2x(t) �

1

p + 1
up+1(t)

�
are formally conserved for solutions of (3). We refer to Kenig, Ponce, and Vega [1993]
for the local well-posedness of the Cauchy problem in the energy spaceH 1 (see also Kato
[1983]). For 1 < p < 5, all solutions in H 1 are global and bounded, and the problem
is called sub-critical. For p = 5, the problem is mass critical (blow up solution do exist,
see Martel, Merle, and Raphaël [2014] and references therein) and p > 5 correspond to
the super-critical case. The notion of criticality corresponds to the scaling invariance of
equation (3): indeed, ifu(t; x) is solution then for any c > 0, uc(t; x) = c

1
p�1u(c

3
2 t; c

1
2 x)

is also solution and kuc(t)kL2 = c
1

p�1 � 1
4 ku(t)kL2 .
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Let Q be the unique (up to sign change if p is odd) non-trivial even solution of Q00 +

Qp = Q on R, explicitely given by

Q(x) =

�
p + 1

2

� 1
p�1

cosh� 2
p�1

�
p � 1

2
x

�
:

For c > 0, letQc(x) = c
1

p�1Q(c
1
2 x). Note that these formulas forQ andQc generalize

the previous ones given for p = 2 and p = 3. As before, solitary waves (also called
solitons by abuse of terminology) are solutions of (3) of the form u(t; x) = Qc(x�ct��),
for any c > 0 and � 2 R.

The orbital stability of solitons with respect to small perturbations in the energy space
H 1 is known in the sub-critical case.

Theorem 3 (Stability of the soliton for sub-critical gKdV Benjamin [1972], Bona [1975],
Cazenave and Lions [1982], and Weinstein [1985, 1986]). Let 1 < p < 5. For all � > 0,
there exists ı > 0; such that if ku0 � QkH1 � ı, then the solution u of (3) with initial
data u0 satisfies, for all t 2 R, ku(t; :+ �(t)) �QkH1 � �, for some function � .

In contrast, solitons are unstable in the critical and super-critical case p � 5. Note
that the instability phenomenon is quite different in the critical case (linear stability holds
and the nonlinear instability is related to the scaling parameter) and in the super-critical
case (linear exponential instability). See Bona, Souganidis, and Strauss [1987], Cazenave
[2003], Grillakis, Shatah, and Strauss [1987], Martel and Merle [2000], and Pego and
Weinstein [1992].

3.2 The nonlinear Schrödinger equation. Recall the nonlinear NLS equation

(4) i@tu � ∆u � juj
p�1u = 0; (t; x) 2 R � Rd :

We consider the case p > 1 for d = 1; 2, and 1 < p < d+2
d�2

for d � 3. For d = 1 and
p = 3, the model is completely integrable, as seen before. Note that, similarly as for the
gKdV equation, p = 1 + 4

d
corresponds to L2 criticality, while for d � 3, p = d+2

d�2

corresponds to Ḣ 1 criticality.
The mass, energy and momentumZ

ju(t)j2;

Z �
1

2
jru(t)j2 �

1

p + 1
ju(t)jp+1

�
; =

�Z
ru(t)ū(t)

�
are formally conserved for solutions of (4). We refer to Cazenave [2003], Ginibre and
Velo [1979], and Tao [2006] for the local well-posedness of the Cauchy problem in the
energy space H 1.
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We denote byQ the unique positive radially symmetricH 1 solution of∆Q+jQjp�1Q =

Q on Rd (the function Q is called the ground state; see existence and uniqueness results
in Berestycki and Lions [1983], Cazenave [2003], Kwong [1989], and Tao [2006]). For
c > 0, let Qc(x) = c

1
p�1Q(c

1
2 x). Note that this is a further generalization of the nota-

tion for gKdV, for any space dimension d � 1. For d � 2, ground states are no longer
explicit, but their properties are well-understood (see references above). Then, for any
c > 0, ˇ 2 Rd , � 2 Rd and 
 2 R, the function u defined by

u(t; x) = Qc(x � ˇt � �)eiΓ(t;x) where Γ(t; x) =
1

2
(ˇ � x) �

1

4
jˇj

2t + ct + 
;

is a traveling wave of (4), with speed ˇ.
The stability and instability properties of solitary waves of NLS are similar: stability

in the L2 sub-critical case, and instability in the critical and super-critical cases. We refer
to Cazenave [2003], Cazenave and Lions [1982], Grillakis [1990], Grillakis, Shatah, and
Strauss [1987], and Weinstein [1985] for details.

3.3 The �4 equation. We consider the �4 model (see e.g. Dauxois and Peyrard [2010]
and Manton and Sutcliffe [2004])

(5) @2t � � @2x� � � + �3 = 0; (t; x) 2 R � R:

Recall that the energy

E(�; @t�) =

Z
1

2
j@t�j

2 +
1

2
j@x�j

2 +
1

4

�
1 � j�j

2
�2

is formally conserved along the flow. The kink, defined by H (x) = tanh
�
x/

p
2
�

is the
unique (up to sign change), bounded, odd solution of the equation �H 00 = H � H 3 on
R. We recall that the orbital stability of the kink with respect to small perturbations in
the energy space has been proved in Henry, Perez, and Wreszinski [1982] using mainly
the energy conservation. This model is analogue to the sine-Gordon equation, but it is not
completely integrable and breathers solutions or woobling kinks are not expected to exist.

3.4 The energy critical nonlinear wave equation. For space dimensions d � 3, we
consider the following nonlinear wave equation,

(6) @2t u = ∆u+ juj
4

d�2u; (t; x) 2 R � Rd :

We denote
E(u; v) =

Z �
1

2
jruj

2 +
1

2
v2 �

1

6
juj

6

�
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so that the energy of a solution (u; @tu) of (6), defined byE(u; @tu), is formally conserved
by the flow. Concerning the Cauchy problem in Ḣ 1 � L2 for the energy critical wave
equation, we refer to Kenig and Merle [2008] and the references given therein. As before,
the notion of criticality is related to the scaling invariance: if u(t; x) is a solution, then for
any � > 0,

u�(t; x) =
1

�
d�2
2

u

�
t

�
;
x

�

�
is also solution and kru�kL2 = krukL2 :

Here, solitary waves are stationary solutions W 2 Ḣ 1 satisfying ∆W + jW j
4

d�2W = 0,
and traveling waves obtained as Lorentz transforms of such solutions. For ` 2 Rd , j`j <

1, we denote

W`(x) = W

  
1p

1 � j`j2
� 1

!
`(` � x)

j`j2
+ x

!
;

so that u(t; x) = W`(x � `t) is solution of (6). As for the NLS equation, we consider
only ground states solitary waves, i.e. solutions of the above elliptic equation explicitely
given by

W (x) =

�
1 +

jxj2

d (d � 2)

�� d�2
2

:

As solutions of the evolution equation (6), they are unstable with respect to perturbation
of the initial data with one direction of exponential instability (see Duyckaerts and Merle
[2008] and Grillakis [1990]).

4 Asymptotic stability

We recall briefly some results of asymptotic stability of solitons.

4.1 Asymptotic stability for gKdV solitons.

Theorem 4 (Asymptotic stability of the gKdV soliton in H 1, Martel and Merle [2001]).
Let p = 2; 3; 4. For any ˇ > 0, there exists ı = ı(ˇ) > 0 such that the following is true.
Let u0 2 H 1 be such that ku0 �QkH1 � ı. Then, the global solution u of (3) with initial
data u0 satisfies

lim
t!+1

ku(t) �Qc+(� � �(t))kH1(x>ˇt) = 0;

for some c+ > 0 with jc+ � 1j . ı and some C 1 function � such that lim+1 � 0 = c+.
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We refer to Pego and Weinstein [1994] for the first result of asymptotic stability of
gKdV solitons. Theorem 1 claims strong convergence inH 1 in the region x > ˇt . Strong
convergence in H 1(R) is never true since it would imply by stability that u is exactly a
soliton. The region where convergence is obtained in Theorem 1 is sharp since one can
construct a solution which behaves asymptotically as t ! +1 as the sum Q(x � t) +

Qc(x � ct), where 0 < c ¤ 1 is arbitrary (see Martel [2005], Miura [1976], and Wadati
and Toda [1972]). In particular, choosing c � 1, the H 1 norm of Qc(x � ct) is small,
and this soliton travels on the line x = ct . This explains the necessity of a positive ˇ
in the convergence result. We also refer to the survey Tao [2009]. For p = 4, the result
has been completed in Kenig and Martel [2009] and Tao [2007] showing that the residue
scatters in a Besov space close to the critical Sobolev space Ḣ�1/6. For p = 3, we refer
to Germain, Pusateri, and Rousset [2016] for a full asymptotic stability statement.

4.2 Asymptotic stability for NLS equations. In the context of the nonlinear Schrö-
dinger equation, pioneering results on asymptotic stability of traveling waves are Buslaev
and Perelman [1992, 1995] and Soffer and Weinstein [1990, 1992]. These papers initi-
ated the method of separating modes and using dispersive estimates with potential, under
assumptions on the spectrum of the linearized operator.

This question has then been extensively studied, for the NLS equation with or with-
out potential and for various nonlinearities, see e.g. Buslaev and Sulem [2003], Cuccagna
[2014], Gustafson, Nakanishi, and Tsai [2004], Nakanishi and Schlag [2011], Rodnian-
ski, Schlag, and Soffer [2005], Rodnianski, Schlag, and Soffer [2003], Schlag [2006], and
Schlag [2007, 2009] as typical papers, and their references. Most of these works require
specific assumptions, like spectral assumptions or suitable dispersive estimates for equa-
tions with unknown potential, a suitable Fermi Golden Rule or flatness conditions on the
nonlinearities at 0. It follows that no result of asymptotic stability is fully proved for any
pure power NLS equation without potential with stable solitons, except for the integrable
cubic 1D NLS treated in Cuccagna and Pelinovsky [2014].

In larger dimensions, or higher order nonlinearities, the solitons are unstable. The no-
tion of conditional asymptotic stability and the construction of center stable manifolds then
become relevant. For the focusing 3D cubic NLS equation (which is an Ḣ 1

2 critical equa-
tion with exponentially unstable solitons) the theory has been especially well-developed,
at least in the radial case, in Beceanu [2008, 2012], Costin, Huang, and Schlag [2012],
Nakanishi and Schlag [2011], Schlag [2006], and Schlag [2009]. In particular, spectral
assumptions implying the desired dispersive estimates for the linearized equation around
the soliton have been checked, first numerically and then rigorously by computer assisted
proof (see Costin, Huang, and Schlag [2012] and references therein).
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4.3 Asymptotic stability of the �4 kink. The asymptotic stability of the kinkH by the
�4 flow (5) is known in the case of odd perturbations in the energy space. Note that for
odd initial data, the corresponding solution of (5) is odd. Rewrite � = H + u. Then, one
has

(7) @2t u � @2xu � u+ 3H 2u+ 3Hu2 + u3 = 0; (t; x) 2 R � R:

Theorem 5 (Asymptotic stability of the kink by odd perturbations, Kowalczyk, Martel,
and Muñoz [2017]). There exists ı > 0 such that for any odd (u0; u1) 2 H 1 � L2 with
k(u0; u1)kH1�L2 � ı, the solution (u; @tu) of (7) with initial data (u0; u1) satisfies, for
any bounded interval I � R,

lim
t!˙1

k(u; @tu)(t)kH1(I )�L2(I ) = 0:

As for gKdV, if a solution u of (7) satisfies limt!+1 k(u; @tu)(t)kH1�L2 = 0, then
by orbital stability Henry, Perez, and Wreszinski [1982], u(t) � 0, for all t 2 R. Thus
the local result is in some sense optimal.

For previous related results, we refer to Kopylova and Komech [2011a,b] where the
asymptotic stability of the kink is studied for the 1D equation @2t u�@2xu+F (u) = 0, under
specific assumptions onF (not including the�4 model) and to Cuccagna [2008], where the
stability and asymptotic stability of the one dimensional kink for the �4 model, subject
to localized three dimensional perturbations is studied. We also refer the references in
Cuccagna [2008], Kopylova and Komech [2011a,b], and Kowalczyk, Martel, and Muñoz
[2017] for related works on scattering of small solutions to Klein-Gordon equations. See
also the review Kowalczyk, Martel, and Muñoz [2016-2017] and references therein.

4.4 Blow up profile for the critical wave equation. Recall that Kenig and Merle
[2008] provides a classification of all possible behaviors (blow up or scattering) of solu-
tions of (6) whose initial data (u0; u1) satisfies E(u0; u1) < E(W; 0). Next, Duyckaerts
and Merle [2008] studies the threshold case E(u0; u1) = E(W; 0) and constructs the sta-
ble manifold around W . Then, Duyckaerts, Kenig, and Merle [2011, 2012] proved the
following result for solutions slightly above the threshold.

Theorem 6 (Blow up profile for 3D critical NLW, Duyckaerts, Kenig, and Merle [2011,
2012]). Let d = 3. There exists ı > 0 such that if u is a solution of (6) blowing up in
finite time T > 0 and satisfying the bound

sup
[0;T )

�
kru(t)kL2 +

1

2
k@tu(t)kL2

�
� krW kL2 + ı;
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then

lim
t"T






(u(t); @t u(t)) � (v0; v1) �

 
1

�
1
2 (t)

W`

�
���(t)

�(t)

�
; �

1

�
3
2 (t)

(` � rW`)

�
���(t)

�(t)

�!





L2

= 0

for some � , � and ` 2 R3, j`j < 1 and (v0; v1) 2 Ḣ 1 � L2.

We see that the family f˙W`g is the universal blow up profile. We refer to the original
papers for more results and details.

We refer to Krieger, Nakanishi, and Schlag [2014, 2013] for classification results of
solutions with energy at most slightly above the one of the ground state, and to Krieger,
Schlag, and Tataru [2009] and Jendrej [2017] for contructions of solutions with prescribed
blow up rates (type II blow up). We also refer to Martel and Merle [2002], Martel, Merle,
and Raphaël [2014], and Merle and Raphael [2004, 2005] and references therein for pre-
vious results of blow up profile in the case of mass critical gKdV and NLS equations.
Concerning blow up, see also the review Raphaël [2014] and the references therein.

5 Asymptotic multi-solitons

In this section, we discuss results of existence of asymptotic multi-solitons for non-integrable
models, inspired by Theorem 1 and other explicit constructions of multi-solitons for inte-
grable models, but limited to one direction of time. In particular, these results are valid in
asymptotic situations where the distances between all the solitary waves are large enough.

5.1 Multi-solitons with weak interactions. As a rough idea, weak interaction means
that the trajectories of the solitary waves are not affected asymptotically.

Theorem 7 (Existence and uniqueness of gKdV multi-solitons, Martel [2005]). Let p =

2; 3, 4 or 5. Let K � 2, 0 < cK < � � � < c1, and �1; : : : ; �K 2 R. Let R =
PK

k=1Rk

where
Rk(t; x) = Qck

(x � �k � ckt):

There exists a uniqueH 1 solution of (3) such that limt!�1 ku(t)�R(t)kH1 = 0. More-
over, there exists � > 0 such that, for all t � 0, ku(t) � R(t)kH1 . e��jt j.

Such result shows that the multi-soliton behavior is universal, at least in one direction
of time. Observe that it says nothing about the behavior the solution as t ! +1. The
uniqueness statement in the energy space is relevant even in the integrable case since the
inverse scattering theory requires a priori more space decay. The stability of the multi-
soliton structure was studied in the sub-critical case in Martel, Merle, and Tsai [2002].
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We observe that a similar existence result also holds for the gKdV super-critical equa-
tion (p > 5), with a specific classification related to the exponential instability, see Com-
bet [2011] and Côte, Martel, and Merle [2011].

For the NLS equation, we recall the following existence result.

Theorem 8 (Existence of NLS multi-solitary waves, Côte, Martel, and Merle [2011], Mar-
tel and Merle [2006], and Merle [1990]). Let d � 1. Let p > 1 for d = 1; 2 and
1 < p < d+2

d�2
for d � 3. Let K � 2 and for any k 2 f1; : : : ; Kg, let ck > 0, ˇk 2 Rd ,

�k 2 Rd and 
k 2 R. Assume that, for any k 6= k0, ˇk 6= ˇk0 . Let R =
PK

k=1Rk where

Rk(t; x) = Qck
(x��k �ˇkt)e

iΓk(t;x) and Γk(t; x) =
1

2
(ˇk �x)�

1

4
jˇkj

2t+ckt+
k :

Then, there exist T0 2 R, � > 0 and an H 1 solution u of (4) such that, for all t � T0,
ku(t) � R(t)kH1 . e��jt j.

Uniqueness (for critical and sub-critical nonlinearities) or classification (for super-critical
nonlinearity) is an open problem. See Combet [2014] for multi-existence in the 1D super-
critical case.

Note that the construction of multi-solitons and the study of the stability of the sums of
multi-soliton has been extended to several other models, see e.g. Côte and Martel [2016]
and Côte and Muñoz [2014] for the case of the nonlinear Klein-Gordon equation, and
Ming, Rousset, and Tzvetkov [2015] for the water wave model.

For the 5D energy critical wave equation, the following existence result is proved in
Martel and Merle [2016].

Theorem 9 (Existence of NLW multi-solitary waves, Martel and Merle [ibid.]). Let d = 5.
LetK � 2, and for any k 2 f1; : : : ; Kg, let �k > 0, � k 2 R5, �k 2 f�1;+1g and `k 2 R5

with j`kj < 1. Assume that, for any k0 ¤ k, `k ¤ `k0 . Let R =
PK

k=1Rk where

Rk(t; x) =
�k

�
3
2

k

W`k

�
x � `kt � � k

�k

�
:

Assume that one of the following assumptions holds

(1) Two-solitons: K = 2

(2) Collinear speeds: For all k 2 f1; : : : ; Kg, `k = `ke1 where `k 2 (�1; 1).

Then, there exist T0 2  R and a solution u of (6) on (�1; T0] in the energy space such
that

lim
t!�1

krx;t (u(t) � R(t))kL2 = 0:
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5.2 Multi-solitons with strong interactions. We state a typical result where the strong
interactions between the traveling waves indeed affect their trajectories.

Theorem 10 (Two-solitary waves with logarithmic distance, Nguyen [2016]). Let d � 1.
Let

1 < p <
d + 2

d � 2
(p > 1 for d = 1; 2) and p ¤ 1 +

4

d
:

There exists a solution u of (4) such that jz1(t) � z2(t)j ∼ 2 log t as t ! �1 and

lim
t!�1







u(t) � e�i
(t)
X

k=1;2

Q(� � zk(t))








H1

= 0:

As discussed in Section 2.3, such solutions were already known in the integrable case
by the inverse scattering theory. The above result means that this behavior is universal
for general NLS equations, under the same restriction that the traveling waves have equal
scaling. The mass critical case p = 1+ 4

d
is excluded since it displays a special behavior

related to blow up and where the above behavior is visible only in rescaled variables,
as previously described in Martel and Raphael [2015]. For the gKdV equation, a result
similar to Theorem 10 is given in Nguyen [2017].

We mention a few other previous results of strong interactions: for the Hartree equa-
tion Krieger, Martel, and Raphaël [2009], for the energy critical wave equation Jendrej
[2016b,a] and Jendrej and Lawrie [2017], for the mass critical gKdV equation Combet
and Martel [2017b,a], and for the half-wave equation Gérard, Lenzmann, Pocovnicu, and
Raphaël [2018].

5.3 Soliton interaction with the background. Several papers deal with the question
of the interaction of a soliton with a changing background or an impurity. See Holmer and
Zworski [2007, 2008], Holmer, Marzuola, and Zworski [2007a], and Holmer, Marzuola,
and Zworski [2007b] for the interaction of a soliton of NLS with a Dirac mass or a slowly
varying potential, and Muñoz [2012b,a] for the interaction of a gKdV soliton with a slow-
ing variable bottom.

6 Decomposition into solitons for the energy critical wave equation

Here, we recall the few existing results of decomposition in solitons in non-integrable
cases. First, a complete result of decomposition into solitons for equation (6) was proved
in Duyckaerts, Kenig, and Merle [2013] for the radial 3D case.
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Theorem 11 (Soliton resolution for the 3D radial critical wave equation, Duyckaerts,
Kenig, and Merle [ibid.]). Let d = 3. Let u be a global radial solution of (6). Then,
there exist a solution vL of the linear wave equation, K 2 N, �k 2 f�1; 1g, �k > 0, such
that

lim
t!+1







(u(t); @tu(t)) �

0@vL(t) +

KX
k=1

�k

�
1
2

k
(t)
W

�
�

�k(t)

�
; @tvL(t)

1A






Ḣ1�L2

= 0;

and �1(t) � �2(t) � � � � � �K(t) � t , as t ! +1.

Note that the above result is in some sense more complete than for gKdV (Section 2.1),
since the residue is proved to scatter. A similar result holds for blow up solutions, provided
they exhibit type II blow up. The soliton resolution conjecture was later proved in the non-
radial case for a subsequence of time for the 3; 4 and 5D energy critical wave equation
in Duyckaerts, Kenig, and Merle [2016] and Duyckaerts, Jia, Kenig, and Merle [2017].
Note that a fundamental idea in the approach of Duyckaerts, Kenig, and Merle [2013]
is the introduction of the method of channels of energy for the linear wave equation (see
Theorem 16 for a typical result in 5D).

See similar results for the wave map problem in Côte [2015] and Côte, Kenig, Lawrie,
and Schlag [2015a,b].

7 Collision problem

Concerning the collision problem, we recall the discussion in Craig, Guyenne, Hammack,
Henderson, and Sulem [2006] on inelastic collisions. To study the collision problem, it
is natural to study the behavior as t ! +1 of the solutions constructed in Theorems 7,
8, 9. See Craig, Guyenne, Hammack, Henderson, and Sulem [ibid.], page 057106-4 for
suggesting this approach which seems more canonical than to study initial data with the
sum of two solitons initially distant.

7.1 Collision for the quartic gKdV equation I. We consider the quartic gKdV equa-
tion

(8) @tu+ @x(@
2
xu+ u4) = 0 (t; x) 2 R � R:

The article Martel and Merle [2011a] (see also Muñoz [2010] for generalization to any
gKdV equation) gives the first rigorous results concerning collision of solitons for a non-
integrable equation, and in particular the first proof of non-existence of pure two-soliton
solutions, in the case where one soliton is much smaller than the other one.
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Theorem 12 (Collision of solitons with very different size, Martel and Merle [2011a]).
Assume 0 < c � 1. Let u be the solution of (8) such that

lim
t!�1



u(t) �Q(� � t) �Qc(� � ct)




H1 ! 0:

(i) Global stability of the 2-soliton behavior. There exist c+1 ∼
c!0

1, c+2 ∼
c!0

c; �1, �2
such that the function w+ defined by

w+(t; x) = u(t; x) �Qc
+
1
(x � �1(t)) �Qc

+
2
(x � �2(t))

satisfies

lim
t!+1

kw+(t)kH1(x� c
10 t) = 0 and sup

t2R
kw+(t)kH1 . c

1
3 :

(ii) Inelasticity of the collision. Moreover, for t � 1,

c+1 � 1 & c
17
6 ; 1 �

c+2
c

& c
8
3 ; c

17
12 . kw+

x (t)kL2 + c
1
2 kw+(t)kL2 . c

11
12 :

The first part of the theorem means that the two solitons are preserved through the col-
lision, even the smallest one. Indeed, for c small, supt kw+(t)kH1 . c

1
3 � kQckH1 ∼

c
1
12 :

The second part of the theorem says that the sizes of the final solitons as t ! +1 are
slightly changed with respect to their original sizes as t ! �1, and that the residue does
not converge to zero. In particular, the solution is not a pure 2-soliton as t ! +1 in this
regime. Thus, the collision is not elastic.

7.2 Collision for the quartic gKdV equation II. A first intuition on the general prob-
lem of two solitons with almost same sizes comes from the explicit multi-solitons of the
integrable case. From LeVeque [1987], we have a sharp description of the behavior of the
multi-soliton of (1) satisfying

lim
t!˙1



u(t) �Qc1(� � c1t � �˙
1 ) �Qc2(� � c2t � �˙

2 )




H1 = 0;

in the special asymptotics where 0 < �0 = c2�c1
c1+c2

� 1, i.e. for nearly equal solitons.
Indeed, the following global in time estimate is proved for some explicit functions ck(t),
�k(t):

sup
t;x2R

ˇ̌
u(t; x) �Qc1(t)(x � �1(t)) �Qc2(t)(x � �2(t))

ˇ̌
. �2

0:
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Moreover, it is proved that mint2R(�1(t) � �2(t)) ∼ 2j ln�0j. This means that the min-
imum separation between the two solitons is large when �0 � 1. In particular, the two
solitons never cross and the solution has two maximum points for all time. The interaction
is repulsive, the solitons exchange their sizes and speeds at large distance and consequently
avoid the collision.

We now recall results from Mizumachi [2003] for the quartic gKdV equation. Let u be
a solution of (8) for which the initial data is close to the sumQ(x) +Qc(x + Y0), where
Y0 > 0 is large and 0 � c � 1 � exp(� 1

2
Y0), so that the quicker soliton can be initially

on the left of the other soliton. It follows from Mizumachi [ibid.] that the interaction of
the two solitons is repulsive: the two solitons remain separated for all positive time and
eventually u(t) behaves as

u(t; x) = Qc
+
1
(x � c+1 t � �+

1 ) +Qc
+
2
(x � c+2 t � �+

2 ) + w(t; x);

for large time, for some c+1 > c+2 close to 1 and w small in some sense. The situation
for almost equal solitons of the quartic (gKdV) is thus at the main order similar to the
one described in the integrable case in LeVeque [1987]. The analysis part in Mizumachi
[2003] relies on techniques from Hayashi and Naumkin [1998, 2001] and on the use of
spaces introduced in this context in Pego and Weinstein [1992].

Before presenting the main result from Martel and Merle [2011b], for simplicity, we
change variables. For c2 � c1 > 0 small, and any �1, �2, let u(t) be the unique solution
of (8) such that

lim
t!�1

ku(t) �Qc1(� � c1t � �1) �Qc2(� � c2t � �2)kH1 = 0:

Let
c0 =

c1 + c2

2
; �0 =

c2 � c1

c1 + c2
; y1 = �1

p
c0; y2 = �2

p
c0:

Then the function U (t; x) = c
�1/3
0 u(c

�3/2
0 t; c

�1/2
0 (x + t)) solves

(9) @tU + @x(@
2
xU � U + U 4) = 0; (t; x) 2 R � R;

and is the unique solution of (9) satisfying

lim
t!�1



U (t) �Q1��0
(� + �0t � y1) �Q1+�0

(� � �0t � y2)




H1 = 0:

The next result concerns the asymptotics �0 > 0 small.

Theorem 13 (Inelastic interaction of two nearly equal solitons, Martel and Merle [ibid.]).
Assume
0 < �0 � 1. Let U be the unique solution of (9) such that

lim
t!�1



U (t) �Q1��0
(� + �0t + Y0 + ln 2) �Q1+�0

(� � �0t � Y0 � ln 2)




H1 = 0;
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where Y0 = 1
2
j ln(�2

0/˛)j and ˛ = 12(10)2/3(
R
Q2)�1: Then the following holds.

(i) Global stability of the 2-soliton behavior. There exist �1; �2; y1; y2 such that

w(t; x) = U (t) �Q1+�1(t)(x � y1(t)) �Q1+�2(t)(x � y2(t))

satisfies j mint2R(y1(t) � y2(t)) � 2Y0j . �0 and

lim
t!+1

kw(t)kH1(x>� 9
10 t) = 0; sup

t2R
jw(t)kH1 . �

3
2

0 :

(ii) Inelasticity of the interaction.

lim
+1

�1 � �0 & �5
0; �0 � lim

+1
�2 & �5

0; lim inf
t!+1

kw(t)kH1 & �3
0:

It follows that no pure 2-soliton exists also in this regime. The proofs of Theorems 12
and 13 are based on the construction of a refined approximate solution of the two-soliton
problem for all t and x.

7.3 Collision for the quartic gKdV equation III. Still concerning the collision of
two solitons for the quartic gKdV equation, we recall from Martel and Merle [2015] the
following negative result.

Theorem 14 (Inelasticity of collision for gKdV, Martel and Merle [ibid.]). Let K � 2,
0 < cK < � � � < c1 = 1 and �1; : : : ; �K 2 R. Let u be the solution of (8) satisfying

lim
t!�1






u(t) �

KX
k=1

Qck
(� � ckt � �k)







H1

= 0:

Assume that
PK

k=2 (1 � ck)
2
< 1

16
. Then, u(t) is not an asymptotic multi-soliton as t !

+1. In particular, there exists no pure multi-soliton of (1) with the speeds c1; c2; : : : ; cK .

In the case of two solitons, the condition on the speeds reduces to 3
4
c1 < c2 < c1. In

contrast with Theorems 12 and 13, the result in Theorem 14 is not perturbative and the
explicit condition on the speeds seems technical. The strategy of the proof of Theorem 14
is to study the asymptotic behavior of u(t; x) for any t and for any large x (i.e. far from
the collision region, which seems impossible to describe in the general case) and to find
a contradiction with the fact that u is an asymptotic two-soliton in the two directions of
time. Being a proof by contradiction, it does not give further information on the collision.
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7.4 Collision for the perturbed integrable NLS equation. Let ˇ > 0 and 0 < c � 1.
Under the following assumptions for the perturbation jf (u)j .0 u

2, f (u) . jujq (q < 2),
it is proved in Perelman [2011], that there exists a solution u of

i@tu+ @2xu+ juj
2u+ f (juj

2)u = 0; (t; x) 2 R � R;

satisfying limt!�1



u(t)�eitQ�eiΓˇ(t;�)Qc(��ˇt)




H1 ! 0, and for which the small
soliton splits in two after the collision, in the following sense

u(t; x) ∼ eiΓ(t;x)Q(x � �(t)) +  +(t; x) +  �(t; x);

where  ˙ are solutions of (2) corresponding to the transmitted part and the reflected part
of the small soliton. The above estimate holds on large time intervals after the collision
depending on 1/c. The splitting means some strong form of inelasticity.

7.5 Collision for the 5D energy critical wave equation. In view of the results de-
scribed so far, it was natural to search a situation where a non-perturbative approach would
allow to treat all two-soliton collisions. In the case of the 5D energy critical wave equation,
we now recall from Martel and Merle [2017] a result showing the inelastic nature of the
collision of any two solitons, except the special case of same scaling and opposite signs.

Theorem 15 (Inelasticity of soliton collisions for NLW, Martel and Merle [ibid.]). Let
d = 5. For k 2 f1; 2g, let �1

k
> 0; y1

k
2 R5, �k 2 f˙1g, `k 2 R5 with j`kj < 1, and

W1
k (t; x) =

�k

(�1
k
)

3
2

W`k

�
x � `kt � y1

k

�1
k

�
:

Assume that `1 ¤ `2 and �1�1
1 + �2�

1
2 ¤ 0. Then, there exists a solution u of (6) in the

energy space such that

(i) Two-soliton as t ! �1

lim
t!�1

krt;xu(t) � rt;x (W1
1 (t) +W1

2 (t))kL2 = 0:

(ii) Dispersion as t ! +1. For all A > 0 large enough,

(10) lim inf
t!+1

kru(t)kL2(jxj>t+A) & A� 5
2 :

Note first that the solution constructed in Theorem 15 is a two-soliton asymptotically
as t ! �1 and that it does not necessarily exist for all t 2 R. However, by finite speed
of propagation and small data Cauchy theory, it is straightforward to justify that it can be
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extended uniquely as a solution of (6) for all t 2 R in the region jxj > jt j + A, provided
that A is large enough. Thus, the limit in (10) makes sense. Since the estimate (10) gives
an explicit lower bound on the loss of energy as dispersion as t ! +1, the solution u is
not a two-soliton asymptotically as t ! +1 and the collision is inelastic. Note that the
two-soliton could have any global behavior, like dislocation of the solitons and dispersion,
blow-up or a different multi-soliton plus radiation, but the property obtained is universal.

The only case left open by Theorem 15 corresponds to the dipole case. It is the first
result proving inelasticity rigorously without restriction on the relative sizes or speeds of
the solitons except an exceptional case.

The strategy of the proof is to construct a refined approximate solution of the two-
soliton problem for large negative times that displays an explicit dispersive radial part at
the leading order and then to propagate the dispersion for any positive time at the exte-
rior of large cones by finite speed of propagation and the method of channels of energy
from Duyckaerts, Kenig, and Merle [2013] and Kenig, Lawrie, and Schlag [2014]. To
finish, we recall such a typical result of channel of energy for the radial linear wave equa-
tion in 5D from Kenig, Lawrie, and Schlag [2014], Proposition 4.1 (see also Duyckaerts,
Kenig, and Merle [2012, 2013] and Kenig, Lawrie, B. Liu, and Schlag [2015]).

Theorem 16 (Exterior energy estimates for the 5D linear wave equation, Kenig, Lawrie,
and Schlag [2014]). Any radial energy solution UL of the 5D linear wave equation(

@2t UL � ∆UL = 0; (t; x) 2 R � R5;

ULjt=0 = U0 2 Ḣ 1; @tULjt=0 = U1 2 L2;

satisfies, for any R > 0,X
˙

�
lim sup
t!˙1

Z
jxj>jt j+R

�
j@tUL(t; x)j

2 + jrUL(t; x)j
2
�
dx

�
&

& k�?
R (U0; U1)k

2
(Ḣ1�L2)(jxj>R)

where �?
R (U0; U1) denotes the orthogonal projection of (U0; U1) onto the complement of

the plane spanf(jxj�3; 0); (0; jxj�3)g in (Ḣ 1 � L2)(jxj > R).
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Abstract

We report on recent results and a new line of research at the crossroad of two ma-
jor theories in the analysis of partial differential equations. The celebrated De Giorgi–
Nash–Moser theorem provides Hölder estimates and the Harnack inequality for uni-
formly elliptic or parabolic equations with rough coefficients in divergence form. The
theory of hypoellipticity of Hörmander provides general “bracket” conditions for reg-
ularity of solutions to partial differential equations combining first and second order
derivative operators when ellipticity fails in some directions. We discuss recent exten-
sions of the De Giorgi–Nash–Moser theory to hypoelliptic equations of Kolmogorov
(kinetic) type with rough coefficients. These equations combine a first-order skew-
symmetric operator with a second-order elliptic operator involving derivatives in only
part of the variables, and with rough coefficients. We then discuss applications to the
Boltzmann and Landau equations in kinetic theory and present a program of research
with some open questions.
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1 Introduction

1.1 Kinetic theory. Modern physics goes back to Newton and classical mechanics,
and was later expanded into the understanding of electric and magnetic forces were (Am-
père, Faraday, Maxwell), large velocities and large scales (Lorentz, Poincaré, Minkowski,
Einstein), small-scale particle physics and quantum mechanics (Planck, Einstein, Bohr,
Heisenberg, Born, Jordan, Pauli, Fermi, Schrödinger, Dirac, De Broglie, Bose, etc.). How-
ever, all these theories are classically devised to study one physical system (planet, ship,
motor, battery, electron, spaceship, etc.) or a small number of systems (planets in the Solar
system, electrons in a molecule, etc.) In many situations though, one needs to deal with an
assembly made up of elements so numerous that their individual tracking is not possible:
galaxies made of hundreds of billions of stars, fluids made of more than 1020 molecules,
crowds made of thousands of individuals, etc. Taking such large numbers into account
leads to new effective laws of physics, requiring different models and concepts. This pas-
sage from microscopic rules to macroscopic laws is the founding principle of statistical
physics. All branches of physics (classical, quantum, relativistic, etc.) can be studied from
the point of view of statistical physics, in both stationary and dynamical perspectives. It
was first done with the laws of classical mechanics, which resulted in kinetic theory, dis-
covered by Maxwell [1867] and Boltzmann [1872] in the 19th century after precursory
works by D. Bernoulli, Herapath, Waterston, Joule, König and Clausius.

Kinetic theory replaces a huge number of objects, whose physical states are described
by a certain phase space, and whose properties are otherwise identical, by a statistical
distribution over that phase space. The fundamental role played by the velocity (kinetic)
variables inacessible to observation was counter-intuitive, and accounts for the denomi-
nation of kinetic theory. The theory introduces a distinction between three scales: the
macroscopic scale of phenomena which are accessible to observation; the microscopic
scale of molecules and infinitesimal constituents; and an intermediate scale, loosely de-
fined and often called mesoscopic. This is the scale of phenomena which are not acces-
sible to macroscopic observation but already involve a large number of particles, so that
statistical effects are significant.

1.2 Main equations of kinetic theory. Maxwell wrote the first (weak) form of the evo-
lution equation known now as the Boltzmann equation: the unknown is a (non-negative)
density function f (t; x; v), standing for the density of particles at time t in the phase
space (x; v) (equipped with the reference Liouville measure dx dv); the equation, in mod-
ern writing and assuming the absence of external forces, is

(1.1)
@f

@t
+ v � rxf = Q(f; f ):
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The left-hand side describes the evolution of f under the action of transport with free
streaming operator. The right-hand side describes elastic collisions with the nonlinear
Boltzmann collision operator:

(1.2) Q(f; f ) =

=

Z
R3

Z
S2

B(v � v�; !)
�
f (t; x; v0)f (t; x; v0

�) � f (t; x; v)f (t; x; v�)
�
dv� d!:

Note that this operator is localized in t and x, quadratic, and has the structure of a tensor
product with respect to f (t; x; �). The velocities v0 and v0

� should be thought of as the
velocities of a pair of particles before collision, while v and v� are the velocities after
that collision: the formulas are v0 = v � hv � v�; !i ! and v0

� = v� + hv � v�; !i !.
When one computes (v; v�) from (v0; v0

�) (or the reverse), conservation laws of the mass,
momentum and energy are not enough to yield the result, with only 4 scalar conservation
laws for 6 degrees of freedom. The unit vector ! 2 S2 removes this ambiguity: in the
case of colliding hard spheres, it can be thought of as the direction of the line joining the
two centers of the particles. The kernel B(v � v�; !) describes the relative frequency of
vectors!, depending on the relative impact velocity v�v�; it only depends on themodulus
jv � v�j and the deflection angle � between v � v� and v0 � v0

�. Maxwell computed it
for hard spheres (B ∼ jv � v�j sin � ) and for inverse power forces: in the latter case the
kernel factorizes as the product of jv � v�j
 with a function b(cos �); Maxwell showed
that if the force is repulsive, proportional to r�˛ (r the interparticle distance), then 
 =

(˛ � 5)/(˛ � 1) and b(cos �) ' ��(1+2s) as � ! 0, where 2s = 2/(˛ � 1). In particular,
the kernel is usually nonintegrable as a function of the angular variable: this is a general
feature of long-range interactions, nowadays sometimes called “noncutoff property”.

The case ˛ = 5, 
 = 0 and 2s = 1/2 is called Maxwell molecules Maxwell [1867],
the case ˛ 2 (5;+1), 
 > 0 and 2s 2 (0; 1/2) is called hard potentials (without cut-
off), the case ˛ 2 [3; 5), 
 2 [�1; 0), 2s 2 (1/2; 1] is called moderately soft potentials
(without cutoff), and finally the case ˛ 2 (2; 3), 
 2 (�3; �1), 2s 2 (1; 2) is called very
soft potentials (without cutoff). The limits between hard and soft potentials (
 = 0) and
between moderately and very soft potentials (
 +2s = 0) are commonly taken as defining
the “hard” / “moderately soft” / “very soft” terminology in any dimension, for kernel of
the form B = jv � v�j
 b(cos �) with b(cos �) ' ��(1+2s).

In order to find the stationary solutions, that is, time-independent solutions of (1.2),
the first step is to identify particular hydrodynamic density functions, which make the
collision contribution vanish: these are Gaussian distributions with a scalar covariance
f (v) = � (2�T )�3/2 e�

jv�uj2

2T , where the parameters � > 0, u 2 R3 and T > 0 are
the local density, mean velocity, and temperature of the fluid. These parameters can be
fixed throughout the whole domain (providing in this case an equilibrium distribution),
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or depend on the position x and time t ; in both cases collisions will have no effect. As
pointed out in Maxwell’s seminar paper, and later proved rigorously at least in some set-
tings Bardos, Golse, and Levermore [1991, 1993] and Golse and Saint-Raymond [2004,
2005, 2009], the Boltzmann equation is connected to classical fluid mechanical equations
on �, u and T , and one leads to the other in certain regimes. This provides a rigorous con-
nexion between the mesoscopic (kinetic) level and the macroscopic level. At the other end
of the scales, a rigorous derivation of the Boltzmann equation frommany-body Newtonian
mechanics for short time and short-range interactions was obtained by Lanford [1975] for
hard spheres; see also King [1975] for an extension to more general short-range inter-
actions, and Gallagher, Saint-Raymond, and Texier [2013] and Pulvirenti, Saffirio, and
Simonella [2014] for re-visitation and extension of the initial arguments of Lanford and
King. Note however that at the moment the equivalent of Lanford theorem for the Boltz-
mann equation with long-range interactions is still missing, see Ayi [2017] for partial
progresses.

To summarise the key mathematical points: the Boltzmann equation is an integro-
(partial)-differential equation with non-local operator in the kinetic variable v. Moreover
for long-range interactions with repulsive force F (r) ∼ r�˛ , this non-local operator has
a singular kernel and shows fractional ellipticity of order 2/(˛ �1). The Boltzmann equa-
tion “contains” the hydrodynamic, and it is a fundamental equation in the sense that it is
derived rigorously, at least in some settings, from microscopic first principles. From now
on, we consider the position variable in R3 or in the periodic box T 3.

In the limit case s ! 1 (the Coulomb interactions), the Boltzmann collision operator
is ill-defined. Landau [1936] proposed an alternative operator for these Coulomb interac-
tions that is now called the Landau–Coulomb operator

Q(f; f ) =

= rv �

�Z
R3

P(v�v�)?

�
f (t; x; v�)rvf (t; x; v) � f (t; x; v)rvf (t; x; v�)

�
jv � v�j


+2 dv�

�
where P(v�v�)? is the orthogonal projection along (v � v�)

? and 
 = �3. It writes as

Q(f; f ) = rv �
�
A[f ]rvf + B[f ]f

�
(1.3)

with

8̂̂<̂
:̂

A[f ](v) =

Z
R3

�
I �

w

jwj
˝

w

jwj

�
jwj


+2 f (t; x; v � w) dw;

B[f ](v) = �

Z
R3

jwj

 w f (t; x; v � w) dw:

This operator is a nonlinear drift-diffusion operator with coefficients given by convolution-
like averages of the unknown. This is a non-local integro-differential operator, with second-
order local ellipticity. The resulting Landau equation (1.1)-(1.3) again “contains” the hy-
drodynamic. It is also considered fundamental because of its closed link to the Boltzmann
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equation for Coulomb interactions (note however that the equivalent to Lanford theorem
for the Landau equation is lacking, even at a formal level, see Bobylev, Pulvirenti, and
Saffirio [2013] for partial progresses). Because of the difficulty to handle the very singular
kernel of the Landau–Coulomb operator, it is common to introduce artificially a scale of
models by letting 
 vary in [�3; 1] (or even [�d; 1] in general dimension d ). The termi-
nology hard potentials,Maxwell molecules, soft potentials are used as for the Boltzmann
collision operator when 
 > 0, 
 = 0, 
 < 0 respectively. The terminology moderately
soft potentials corresponds here (since s = 1) to 
 2 (�2; 0).

1.3 Open problems and conjectures.

1.3.1 The Cauchy problem. The first mathematical question when studying the pre-
vious fundamental kinetic equations (Boltzmann and Landau equations) is the Cauchy
problem, i.e. existence, uniqueness and regularity of solutions. Short-time solutions have
been constructed, as well as global solutions close to the trivial stationary solution or with
space homogeneity: see Gualdani, Mischler, and Mouhot [2017] for some of the most re-
cent results and the references therein for the Boltzmann equation with short-range inter-
actions, see Alexandre, Morimoto, Ukai, Xu, and Yang [2012, 2011a] and Gressman and
Strain [2011] for the Boltzmann equation with long-range interactions, and see Guo [2002]
for the Landau equation. However the construction of solutions “in the large” remains a
formidable open problem. Since weak “renormalised” solutions have been constructed
by DiPerna and Lions [1989b] that play a similar role to the Leray [1934] solutions in
fluid mechanics, this open problem can be compared with the millenium problem of the
regularity of solutions to 3D incompressible Navier–Stokes equations.

1.3.2 Study of a priori solutions. Given that the Cauchy problem in the large seems
out of reach at the moment, Truesdell andMuncaster [1980] remarked almost 40 years ago
that: “Much effort has been spent toward proof that place-dependent solutions exist for
all time. […] The main problem is really to discover and specify the circumstances that
give rise to solutions which persist forever. Only after having done that can we expect to
construct proofs that such solutions exist, are unique, and are regular.” Cercignani then
formulated a precise conjecture on the entropy production along this idea in Cercignani
[1982]; its resolution lead to precise new quantitative informations on a priori solutions
of the Boltzmann and Landau equation (see Desvillettes and Villani [2005], Desvillettes,
Mouhot, and Villani [2011], Mouhot [2006], Gualdani, Mischler, and Mouhot [2017],
and Carrapatoso and Mischler [2017]). The proof of optimal relaxation rates in physical
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spaces, conditionnally to some regularity and moments conditions, is now fairly well un-
derstood for many interactions. The results obtained along this line of research can all be
summarised into the following general form:

Conditional relaxation. Any solution to the Boltzmann (resp. Landau) equation in
L1

x (T 3;L1
v(R

3; (1 + jvj)k dv)) (or a closely related functional space as large as pos-
sible) converges to the thermodynamical equilibrium with the optimal rate dictated by the
linearized equation.

Note however that an interesting remaining open question in this program is to obtain a
result equivalent to Gualdani, Mischler, andMouhot [2017] and Carrapatoso andMischler
[2017] in the case of the Boltzmann equation with long-range interactions (with fractional
ellipticity in the velocity variable).

1.3.3 Regularity conjectures for long-range interactions. In the case of long-range
interactions, the Boltzmann and Landau–Coulomb operators show local ellipticity pro-
vided the solution enjoys some pointwise bounds on the hydrodynamical fields

�(t; x) :=

Z
R3

f dv e(t; x) :=

Z
R3

f jvj
2 dv

and the local entropy h(t; x) :=
R

R3 f lnf dv. Whereas it is clear in the case of the
Landau–Coulomb operator, it was understood almost two decades ago in the case of the
Boltzmann collision operator Lions [1998], Villani [1999], and Alexandre, Desvillettes,
Villani, and Wennberg [2000a]. This had lead colleagues working on non-local operators
and fully nonlinear elliptic problems like L. Silvestre and N. Guillen and co-authors to
attempt to use maximum principle techniques à la Krylov and Safonov [1980] in order
to obtain pointwise bounds for solutions to these equations. These first attempts, while
unsuccessful, later proved crucial in attracting the attention of a larger community on this
problem. And these authors rapidly reformulated the initial goal into, again, conditional
conjectures on the regularity of the form:

Conditional regularity. Consider any solution to the Boltzmann equationwith long-range
interactions (resp. Landau equation) on a time interval [0; T ] such that its hydrodynamical
fields are bounded:

(1.4) 8 t 2 [0; T ]; x 2 T 3; m0 � �(t; x) � m1; e(t; x) � e1; h(t; x) � h1

where m0, m1, e1, h1 > 0. Then the solution is bounded and smooth on (0; T ].

Note that this conjecture can be strenghtened by removing the assumption that the
mass is bounded from below and replacing it by a bound from below on the total mass
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R
T3 �(t; x) dx � M0 > 0. Mixing in velocity through collisions combined with transport
effects indeed generate lower bounds in many settings, see Mouhot [2005], Filbet and
Mouhot [2011], Briant [2015a], and Briant [2015b]; moreover it was indeed proved for
the Landau equation with moderately soft potentials in Henderson, Snelson, and Tarfulea
[2017].

This conjecture is now been partially solved in the case of the Landau equation, when
the interaction is “moderately soft” 
 2 (�2; 0). This result has been the joint efforts
of several groups Golse, Imbert, Mouhot, and Vasseur [2017], Henderson and Snelson
[2017a], Henderson, Snelson, and Tarfulea [2017], and Imbert and Mouhot [2018], and
this is the object of the next section. It is currently an ongoing program of research in the
case of the Boltzmann equation with hard and moderately soft potentials, and this is the
object of the fourth and last section. The conjecture interestingly remains open in the case
of very soft potentials for both equations, and making progress in this setting is likely to
require new conceptual tools.

2 De Giorgi–Nash–Moser meet Hörmander

2.1 The resolution of Hilbert 19-th problem. The De Giorgi–Nash–Moser theory De
Giorgi [1956, 1957], Nash [1958], Moser [1960], and Moser [1964] was born out of the
attempts to answer Hilbert’s 19th problem. This problem is about proving the analytic
regularity of the minimizers u of an energy functional

Z
U

L(ru) dx, with u : Rd ! R

and where the Lagrangian L : Rd ! R satisfies growth, smoothness and convexity
conditions and U � Rd is some compact domain. The Euler–Lagrange equations for the
minimizers take the form

r �

h
rL(ru)

i
= 0 i.e.

dX
i;j=1

�
(@ij L)(ru)

�„ ƒ‚ …
bij

@ij u =

dX
i;j=1

bij @ij u = 0:

For instance L can be the Dirichlet energy L(p) = jpj2, or be nonlinear as for instance
L(p) =

p
1 + jpj2 for minimal surfaces. With suitable assumptions on L and the do-

main, the pointwise control of ru was known. However the existence, uniqueness and
regularity requires more: if u 2 C 1;˛ with ˛ > 0 then bij 2 C ˛ and Schauder estimates
Schauder [1934] imply u 2 C 2;˛ . Then a bootstrap argument yields higher regularity, and
analyticity follows from this regularity Bernstein [1904] and Petrowsky [1939].

Hence, apart from specific result in two dimensions Morrey [1938], the missing piece
in solving Hilbert 19th problem, in the 1950s, was the proof of the Hölder regularity ofru.
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The equation satisfied by a derivative f := @ku is the divergence form elliptic equation:

dX
i;j=1

@i

h
(@ij L)(ru)„ ƒ‚ …

aij

@j f
i
= r � (Arf ) = 0:

DeGiorgi [1957] and Nash [1958] independently proved this Hölder regularity of f under
the sole assumption that the symmetric matrix A := (aij ) satisfies the controls 0 < � �

A � Λ, and is measurable (no regularity is assumed). The proof of Nash uses what
is now called the “Nash inequality”, an L logL energy estimate, and refined estimates
on the fundamental solution. The proof of De Giorgi uses an iterative argument to gain
integrability, and an “isoperimetric argument” to control how oscillations decays when
refining the scale of observation. Moser later gave an alternative proof Moser [1960] and
Moser [1964] based on one hand on an iterative gain of integrability, formulated differently
but similar to that of De Giorgi, and on the other hand on relating positive and negative
Lebesgue norms through energy estimate on the equation satisfied by g := lnf and the
use of a Poincaré inequality; the proof of Moser had and important further contribution
in that it also proved the Harnack inequality for the equations considered, i.e. a universal
control on the ratio between local maxima and local minima.

Let us mention that the De Giorgi–Nash–Moser (DGNM) theory only considers ellip-
tic or parabolic equations in divergence form. An important counterpart result for non-
divergence elliptic and parabolic equations was later discovered by Krylov and Safonov
[1980]. The extension of the DGNM theory to hypoelliptic equations with rough coeffi-
cients that we present in this section requires the equation to be in divergent form. It is an
open problem whether the Krylov–Safonov theory extends to hypoelliptic non-divergent
equations of the form discussed below.

2.2 The theory of hypoellipticity. The DGNM theory has revolutionised the study of
nonlinear elliptic and parabolic partial differential equations (PDEs). However it remained
limited to PDEs where the diffusion acts in all directions of the phase space. In kinetic
theory, as soon as the solution is non spatially homogeneous, the diffusion or fractional
diffusion in velocity is combined to a conservative Hamiltonian dynamic in position and
velocity. This structure is called hypoelliptic. It can be traced back to the short note of
Kolmogoroff [1934]. The latter considered the combination of free transport with drift-
diffusion in velocity: the law satisfies what is now sometimes called the Kolmogorov
equation, that writes @t f + v � @xf = ∆vf on x; v 2 Rd in the simpler case. It is the
equation satisfied by the law of a Brownian motion integrated in time. Kolmogorov then
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wrote the fundamental solution associated with a Dirac distribution ıx0;v0
initial data:

G(t; x; v) =

 p
3

2�t2

!d

exp

(
�

3jx � x0 � tv0 + t(v � v0)/2j2

t3
�

jvj2

4t

)
:

The starting point of Hörmander’s seminal paper Hörmander [1967] is the observation
that this fundamental solution shows regularisation in all variables, even though the diffu-
sion acts only in the velocity variable. The regularisation in (t; x) is produced by the inter-
action between the transport operator v �rx and the diffusion in v. Hörmander’s paper then
proposes precise geometric conditions for this regularisation, called hypoelliptic, to hold,
based on commutator estimates. In short, given X0, X1, …, Xn a collection of smooth
vector fields on RN and the second-order differential operator L = 1

2

Pn
i=1 X2

i + X0,
then the semigroup etL� is regularising (hypoelliptic) as soon as the Lie algebra generated
by X0, …, Xn has dimension N throughout the domain of L.

Let us also mention the connexion with the Malliavin calculus in probability, which
gives a probabilistic proof to the Hörmander theorem in many settings, see Malliavin
[1978] as well as the many subsequent works, for instance Kusuoka and Stroock [1984],
Kusuoka and Stroock [1985], Bismut [1981], and Norris [1986].

2.3 Extending the DGNM theory to hypoelliptic settings. The main question of in-
terest here is the extension of the DGNM theory to hypoelliptic PDEs of divergent type.
Hypoelliptic PDEs of second order naturally split into two classes: “type I” when the oper-
ator is a sum of squares of vector fields (X0 = 0 in the Hörmander form described above),
and the “type II” such as the Kolmogorov above, where the operator combines a first-order
anti-symmetric operator with some partially diffusive second-order operator. Two main
research groups had already been working on the question. On the one hand, Polidoro
and collaborators Polidoro [1994], Manfredini and Polidoro [1998], Polidoro and Ragusa
[2001], Pascucci and Polidoro [2004], and Di Francesco and Polidoro [2006] had gener-
alised the DGNM theory to the “type I” equations and had obtained the improvement of
integrability for the “type II” equations, as well as the Hölder regularity when assuming
some continuity property on the coefficients. On the other hand, Wang and Zhang [2009,
2011] and Zhang [2011] had extended the proof of Moser for the “type II” equations to
obtain Hölder regularity, with intricate technical calculations that did not seem easy to ex-
port. Note also that the use of the DGNM theory in kinetic theory had also been advocated
almost a decade before in the premonitory lecture notes Villani [2003].

We present here the work Golse, Imbert, Mouhot, and Vasseur [2017] (see also the
two previous related preprints Golse and Vasseur [2015] and Imbert and Mouhot [2015])
that (1) provides an elementary and robust proof of the gain of integrability and Hölder
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regularity in this “type II” hypoelliptic setting, (2) proves the stronger Harnack inequality
for these equations (i.e. a quantitative version of the strong maximum principle).

Let us consider the following kinetic Fokker–Planck equation

(2.1) @t f + v � rxf = rv � (Arvf ) + B � rvf + s; t 2 (0; T ); (x; v) 2 Ω;

where Ω is an open set of R2d , f = f (t; x; v), B and s are bounded measurable coef-
ficients depending in (t; x; v), and the d � d real matrices A, B and source term s are
measurable and satisfy

(2.2) 0 < �I � A � ΛI; jBj � Λ; s essentially bounded

for two constants �, Λ > 0. Given z0 = (x0; v0; t0) 2 R2d+1, we define the “cylinder”
Qr(z0) centered at z0 of radius r that respects the invariances of the equation:
(2.3)

Qr(z0) :=
˚
(x; v; t) : jx � x0 � (t � t0)v0j < r3; jv � v0j < r; t 2

�
t0 � r2; t0

�	
:

The weak solutions to equation (2.1) on Ux � Uv � I , Ux � Rd open, Uv � Rd open,
I = [a; b] with �1 < a < b � +1, are defined as functions f 2 L1

t (I; L2
x;v(Ux �

Uv))) \ L2
x;t (Ux � I; H 1

v (Uv)) such that @t f + v � rxf 2 L2
x;t (Ux � I; H �1

v (Uv)) and
f satisfies the equation (2.1) in the sense of distributions.

Theorem 1 (Hölder continuity Golse, Imbert, Mouhot, and Vasseur [2017]). Let f be a
weak solution of (2.1) in Q0 := Qr0(z0) and Q1 := Qr1(z0) with r1 < r0. Then f is
˛-Hölder continuous with respect to (x; v; t) in Q1 and

kf kC ˛(Q1) � C
�
kf kL2(Q0) + kskL1(Q0)

�
for some ˛ 2 (0; 1) and C > 0 only depending on d , �, Λ, r0, r1 (plus z0 for C ).

In order to prove such a result, we first prove thatL2 sub-solutions are locally bounded;
we refer to such a result as an L2 � L1 estimate. We then prove that solutions are Hölder
continuous by proving a lemmawhich is a hypoelliptic counterpart of De Giorgi’s “isoperi-
metric lemma”. We moreover prove the Harnack inequality:

Theorem 2 (Harnack inequality Golse, Imbert, Mouhot, and Vasseur [ibid.]). If f is a
non-negative weak solution of (2.1) in Q1(0; 0; 0), then

(2.4) sup
Q�

f � C

�
inf
Q+

f + kskL1(Q1(0;0;0))

�
where Q+ := QR(0; 0; 0) and Q� := QR(0; 0; �∆) and C > 1 and R;∆ 2 (0; 1) are
small (in particular Q˙ � Q1(0; 0; 0) and they are disjoint), and universal, i.e. only
depend on dimension and ellipticity constants.
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Remark 3. Using the transformation Tz0
(x; v; t) = (x0 + x + tv0; v0 + v; t0 + t), we get

a Harnack inequality for cylinders centered at an arbitrary point z0 = (x0; v0; t0).

Our proof combines the key ideas of De Giorgi and Moser and the velocity averag-
ing method, which is a special type of smoothing effect for solutions of the free trans-
port equation (@t + v � rx)f = S observed for the first time in Agoshkov [1984] and
Golse, Perthame, and Sentis [1985] independently, later improved and generalized in
Golse, Lions, Perthame, and Sentis [1988] and DiPerna and Lions [1989a]. This smooth-
ing effect concerns averages of f in the velocity variable v, i.e. expressions of the formR

Rd f (x; v; t)�(v) dv with, say, � 2 C 1
c . Of course, no smoothing on f itself can be

observed, since the transport operator is hyperbolic and propagates the singularities. How-
ever, when S is of the form S = rv �(A(x; v; t)rvf )+s, where s is a given source term in
L2, the smoothing effect of velocity averaging can be combined with the H 1 regularity in
the v variable implied by the energy inequality in order to obtain some amount of smooth-
ing on the solution f itself. A first observation of this type (at the level of a compactness
argument) can be found in Lions [1994]; Bouchut [2002] had then obtained quantitative
Sobolev regularity estimates.

Our proof of the L2�L1 gain of integrability follows the so-called “De Giorgi–Moser
iteration”, see Golse, Imbert, Mouhot, and Vasseur [2017] where it is presented in both
the equivalent presentations of De Giorgi and of Moser. We emphasize that, in both ap-
proaches, the main ingredient is a local gain of integrability of non-negative sub-solutions.
This latter is obtained by combining a comparison principle and a Sobolev regularity esti-
mate following from the velocity averaging method discussed above and energy estimates.
We then prove the Hölder continuity through a De Giorgi type argument on the decrease
of oscillation for solutions. We also derive the Harnack inequality by combining the de-
crease of oscillation with a result about how positive lower bounds on non-negative solu-
tions deteriorate with time. It is worth mentioning here that our “hypoelliptic isoperimetric
argument” is proved non-constructively, by a contradiction method, whereas the original
isoperimetric argument of De Giorgi is obtained by a quantitative direct argument. It is
an interesting open problem to obtain such quantitative estimates in the hypoelliptic case.

3 Conditional regularity of the Landau equation

3.1 Previous works and a conjecture. The infinite smoothing of solutions to the Lan-
dau equation has been investigated so far in two different settings. On the one hand, it has
been investigated for weak spatially homogeneous solutions (non-negative in L1 and with
finite energy) see Desvillettes and Wennberg [2004] and the subsequent follow-up papers
Alexandre and El Safadi [2005], Huo, Morimoto, Ukai, and Yang [2008], Alexandre, Mo-
rimoto, Ukai, Xu, and Yang [2008], Alexandre and Elsafadi [2009], Morimoto, Ukai, Xu,
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and Yang [2009], Arsen’ev and Buryak [1990], Desvillettes [2004], Villani [1998], and
Desvillettes and Villani [2000a], and see also the related entropy dissipation estimates
in Desvillettes and Villani [2000b] and Desvillettes [2015], and see the analytic regular-
isation of weak spatially homogeneous solutions for Maxwellian or hard potentials in H.
Chen, Li, and Xu [2010]. Furthermore, Silvestre [2016b] derives an L1 bound (gain of
integrability) for spatially homogeneous solutions in the case of moderately soft poten-
tials without relying on energy methods. Let us also mention works studying modified
Landau equations Krieger and Strain [2012] and Gressman, Krieger, and Strain [2012]
and the work Gualdani and Guillen [2016] that shows that any weak radial solution to
the Landau–Coulomb equation that belongs to L3/2 is automatically bounded and C 2 us-
ing barrier arguments. On the other hand, the investigations of the regularity of classical
spatially heterogeneous solutions had been more sparse, focusing on the regularisation of
classical solutions see Y. Chen, Desvillettes, and He [2009] and Liu and Ma [2014].

The general question of conditional regularity hence suggests the following question
in the context of the Landau equation:

Conjecture 1. Any solutions to the Landau equation (1.1)- (1.3) (with Coulomb interac-
tion 
 = �3) on [0; T ] satisfying (1.4) is bounded and smooth on (0; T ].

An important progress has been made by solving a weaker version of this conjecture
when the exponent 
 2 (�2; 0), which corresponds to moderately soft potentials, i.e.

 +2s > 0 since here s = 1. We describe in this section the different steps and combined
efforts of different groups.

3.2 DGNM theory and local Hölder regularity. The first step was the work Golse,
Imbert, Mouhot, and Vasseur [2017] already mentioned. A corollary of the general regu-
larity theorem, Theorem 1, is the following:

Theorem 4 (Local Hölder regularity for the LE Golse, Imbert, Mouhot, and Vasseur
[ibid.]). Given any 
 2 [�3; 1], there are universal constants C > 0, ˛ 2 (0; 1) such
that any f essentially bounded weak solution of (1.1)- (1.3) in B1 � B1 � (�1; 0] satisfy-
ing (1.4) is ˛-Hölder continuous with respect to (x; v; t) 2 B 1

2
� B 1

2
� (� 1

2
; 0] and

kf kC ˛(B 1
2

�B 1
2

�(� 1
2 ;0]) � C

�
kf kL2(B1�B1�(�1;0]) + kf k

2
L1(B1�B1�(�1;0])

�
:

Note that this theorem includes the physical case of Coulomb interactions 
 = �3. The
adjective “universal” for the constants refers to their independence from the solution.

3.3 Maximum principles and pointwise bounds. This line of research originates in
the work of L. Silvestre both on the spatially homogeneous Boltzmann (SHBE) and Lan-
dau (SHLE) equations Silvestre [2016a, 2017]. These papers build upon the ideas of
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“nonlinear maximal principles” introduced in Constantin and Vicol [2012] in the case of
the Boltzmann collision operator, and upon the so-called “Aleksandrov–Bakelman–Pucci
Maximum Principle” in the case of the Landau collision operator, see for instance Caf-
farelli and Cabré [1995] and Caffarelli and Silvestre [2009].

The main result of Silvestre [2017] is:

Theorem 5 (Pointwise bound for the SHLE). Let 
 2 [�2; 0] (moderately soft potentials)
and f a classical spatially homogeneous solution to the Landau equation (1.1)- (1.3)
satisfying the assumptions (1.4). Then f . 1 + t�3/2 with constant depending only on
the bounds (1.4).

As noted by the author, this estimate implies quite straightforwardly existence, unique-
ness and infinite regularity for the spatially homogeneous solution. For the difficult case
of very soft potentials 
 2 [�3; 2), this paper includes a weaker result where the L1

bound depends on a certain weighted Lebesgue norms; unfortunately it is not yet known
how to control such norm along time. This conceptual barrier when crossing the “very soft
potentials threshold” is reminiscent of the situation for the Cauchy theory in Lebesgue and
Sobolev spaces of both the spatially homogeneous Boltzmannwith long-range interactions
Desvillettes and Mouhot [2009] and Landau equation Wu [2014].

The pointwise bounds estimates were then extended to the spatially inhomogeneous
case in Cameron, Silvestre, and Snelson [2017]. The main result in this latter paper is:

Theorem 6 (Pointwise bound for the LE). Let 
 2 (�2; 0] (moderately soft potentials
without the limit case) and f a bounded weak solution to the Landau equation (1.1)- (1.3)
satisfying the assumptions (1.4). Then f . (1 + t�3/2)(1 + jvj)�1 with constant de-
pending only on the bounds (1.4) (and not on the L1 norm of the solution). Moreover if
fin(x; v) � C0e�˛jvj2 , for some C0 > 0 and a sufficiently small ˛ > 0 (depending on

 and (1.4)), then f (t; x; v) � C1e�˛jvj2 with C1 > 0 depending only on C0, 
 and the
bounds (1.4).

The proof relies on using locally the Harnack inequality in Theorem 2 adapted to the
Landau equation and on devising a clever change of variable to track how this local es-
timate behaves at large velocities. The Gaussian bound is then obtained by combining
existing maximum principle arguments at large velocities (using that well-constructed
Gaussians provide supersolutions at large v) in the spirit of Gamba, Panferov, and Villani
[2009], and the previous pointwise bound for not-so-large velocities. Finally the authors
remarked that the Hölder regularity estimate of Theorem 4 can be made global using the
Gaussian decay bound.

3.4 Schauder estimates and higher regularity. Once the L1 norm and the Hölder
regularity is under control, the next step is to obtain higher-order regularity. The classical
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tool is the so-called Schauder estimates Schauder [1934]. The purpose of such estimates in
general is to show that the solution to an elliptic or parabolic equation whose coefficients
are Hölder continuous gains two derivatives with respect to the data (source term, initial
data). The gain of the two derivatives is obtained in Hölder spaces: C ı ! C 2+ı .

Two works have been obtained independently along this line of research. The first one
Henderson and Snelson [2017b] focuses on the use of combination of Hölder estimates,
maximum principles and Schauder estimates to obtain conditional infinite regularity for
solutions to the Landau equation with moderately soft potentials 
 2 (�2; 0). The second
one Imbert and Mouhot [2018] focuses on the use of these ingredients to “break the super-
criticality” of the nonlinearity for a toy model of the Landau equation. Both these works
develop, in different technical ways, Schauder estimates for this hypoelliptic equation.

The main result in Henderson and Snelson [2017b] is:

Theorem 7 (Conditional regularity for LE). Let 
 2 (�2; 0) (moderately soft potentials
without the limit case) and f a bounded weak solution to the Landau equation (1.1)- (1.3)
satisfying the assumptions (1.4) and fin(x; v) � C0e�˛jvj2 , for some C0 > 0 and a
sufficiently small ˛ > 0 (depending on 
 and (1.4)). Then f is smooth and its derivatives
have some (possibly weaker) Gaussian decay.

Note that (1) the regularity and decay bounds are uniform in time, as long as the bounds
(1.4) remain uniformly bounded in time, (2) further conditional regularity are given in
the paper for very soft potentials 
 2 [�3; �2] but they require higher L1

t;xL1
v moments

and the constants depend on time when 
 2 [�3; �5/2] in dimension 3, (3) a useful
complementary result is provided by Henderson, Snelson, and Tarfulea [2017] where a
local existence is proved in weighted locally uniform Sobolev spaces and the lower bound
on the mass is relaxed by using the regularity to find a ball where the solution is uniformly
positive: the combination of the two papers provide a conditional existence, uniqueness
and regularity result for soft potentials, conditionally to upper bounds on the local mass,
energy and entropy.

The work Imbert and Mouhot [2018] considers the toy model:

(3.1) @f + v � rxf = �[f ]rv (rvf + vf ) ; �[f ] :=

Z
Rd

f dv;

in x 2 T d , v 2 Rd , d � 1. This model preserves the form of the steady state, the ellip-
ticity in v, the non-locality, the bilinearity and the mass conservation of the LE. It how-
ever greatly simplifies the underlying hydrodynamic and the maximum principle structure.
Here H k(T d �Rd ) denotes the standard L2-based Sobolev space. The main result states
(note that solutions are constructed and not conditional here):



DE GIORGI–NASH–MOSER AND HÖRMANDER THEORIES 2499

Theorem 8. For all initial data fin such that fin/
p

� 2 H k(T d � Rd ) with k > d/2

and satisfying C1� � fin � C2�, there exists a unique global-in-time solution f of
(3.1) with initial data fin satisfying for all time t > 0: f (t)/

p
� 2 H k(T d � Rd ) and

C1� � f � C2� and f (t; �; �) 2 C 1.

Note that the initial regularity could be relaxed with more work. A key step of the proof
is the Schauder estimate. It gives the following additional information on this solution: the
hypoelliptic Hölder norm H˛ (defined below) of f /

p
� is uniformly bounded in terms

of the L2 norm of fin/
p

� for times away from 0. This norm is defined on a given open
connected set Q by

kgkH˛(Q) := sup
Q

jgj + sup
Q

j(@t + v � rx)gj + sup
Q

jD2
vgj + [(@t + v � rx)g]C0;˛(Q)

+ [D2
vg]C0;˛(Q)

where [�]C0;˛(Q) is a Hölder anisotropic semi-norm, i.e. the smallest C > 0 such that

8 z0 2 Q; r > 0 s.t. Qr(z0) � Q; kg � g(z0)kL1(Qr (z0)) � C r˛

where

Qr(z0) :=

�
z :

1

r
(z�1

0 ı z) 2 Q1

�
=
n
(t; x; v) : t0 � r2 < t � t0; jx � x0 � (t � t0)v0j < r3; jv � v0j < r

o
and rz := (r2t; r3x; rv) and z1 ı z2 := (t1 + t2; x1 + x2 + t2v1; v1 + v2).

The specific contribution of this work is the study of the Cauchy problem: the maxi-
mum principle provides Gaussian upper and lower bounds on the solution, and we then
provide energy estimates and a blow-up criterion à la Beale, Kato, and Majda [1984].
We then use the extensions of the DGNM and Schauder theories to control the quantity
governing the blow-up. We prove Hölder regularity through the method of Golse, Im-
bert, Mouhot, and Vasseur [2017]. We then develop Schauder estimates following the
method of Krylov [1996] (see also Polidoro [1994], Manfredini [1997], Di Francesco and
Polidoro [2006], Bramanti and Brandolini [2007], Lunardi [1997], Radkevich [2008], and
Henderson and Snelson [2017a]). New difficulties arise compared with the parabolic case
treated in Krylov [1996] in relation with the hypoelliptic structure and we develop trajec-
torial hypoelliptic commutator estimates to solve them and also borrow some ideas from
hypocoercivity Villani [2009] in the so-called gradient estimate.

Note that it would be interesting to give a proof of Schauder estimates for such hypoel-
liptic equations that is entirely based on scaling arguments in the spirit Simon [1997] (see
also the proof and use of such estimates in Hairer [2014]). This might indeed prove useful
for generalising such estimates to the integral Boltzmann collision operator, see the next
section.
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4 Conditional regularity of the Boltzmann equation

4.1 Previous works and a conjecture. Short time existence of solutions to (1.1)- (1.2)
was obtained in Alexandre, Morimoto, Ukai, Xu, and Yang [2010a] for sufficiently reg-
ular initial data f0. Global existence was obtained in Desvillettes and Mouhot [2009]
for moderately soft potentials in the spatially homogeneous case. In the next subsections,
we present the progresses made so far in the case of moderately soft potentials: the esti-
mate in L1 for t > 0 was obtained in Silvestre [2016a], the local Hölder regularity in
Imbert and Silvestre [2017], and finally the polynomial pointwise decay estimates in Im-
bert, Mouhot, and Silvestre [2018]. The bootstrap mechanism to obtain higher regularity
through Schauder estimates remains however unsolved at now.

Let us briefly review the existing results about regularisation. In Alexandre, Morimoto,
Ukai, Xu, and Yang [2010a], the authors prove that if the solution f has five derivatives
in L2, with respect to all variables t , x and v, weighted by (1 + jvj)q for arbitrarily large
powers q, and in addition the mass density is bounded below, then the solution f is C 1.
It is not known however whether these hypotheses are implied by (1.4). Note also the pre-
vious partial result Desvillettes andWennberg [2004] and the subsequent follow-up papers
Alexandre and El Safadi [2005], Huo, Morimoto, Ukai, and Yang [2008], Alexandre, Mo-
rimoto, Ukai, Xu, and Yang [2008], Alexandre and Elsafadi [2009], and Morimoto, Ukai,
Xu, and Yang [2009] in the spatially homogeneous case, with less assumptions on the
initial data.

Note that, drawing inspiration from the case of the Landau equation, in order for the
iterative gain of regularity in Henderson and Snelson [2017b] to work, it is necessary
to start with a solution that decays, as jvj ! 1, faster than any algebraic power rate
jvj�q . We expect the same general principle to apply to the Boltzmann equation, even the
appropriate Schauder type estimates for kinetic integro-differential equations to carry out
an iterative gain in regularity are not yet available.

Finally, we highlight the related results of regularisation for the Boltzmann equation
with long-range interactions Desvillettes [1995] and Y. Chen and He [2011, 2012], and
the related perturbative results for the Landau and (long-range interaction) Boltzmann
equation Guo [2002], Gressman and Strain [2011], Alexandre, Morimoto, Ukai, Xu, and
Yang [2010b, 2011b], Alexandre [2009], Wu [2014], and Alexandre, Liao, and Lin [2015].

The question of conditional regularity suggests the following conjecture in the context
of the Boltzmann equation with long-range interactions:

Conjecture 2. Any solutions to the Boltzmann equation (1.1)- (1.2) with long-range in-
teractions 
 2 (�3; 1], s 2 (0; 1), 
 + 2s 2 (�1; 1)) on [0; T ] satisfying (1.4) is bounded
and smooth on (0; T ].
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The rest of this section is devoted to describing the partial progresses made in the case
of, again, moderately soft potentials 
 + 2s > 0.

4.2 Maximum principle and pointwise L1 bound. This first breakthrough is due to
Silvestre [2016a]. This article draws inspiration from his own previous works on non-
local operators and the “nonlinear maximum principle” of Constantin and Vicol [2012].
It is based on a maximum principle argument for a barrier supersolution that is constant
in x; v and blowing-up as t ! 0+; it uses the decomposition of the collision and “can-
cellation lemma” going back to Alexandre, Desvillettes, Villani, and Wennberg [2000b],
the identification of a cone of direction for (v0 � v) is order to obtain lower bounds on
the f -dependent kernel of the elliptic part of the operator, and finally some Chebycheff
inequality and nonlinear lower bound on the collision integral. The main result is:

Theorem 9 (Pointwise bound for the BE Silvestre [2016a]). Let 
 2 [�2; 1], s 2 (0; 1)

with 
+2s > 0 (moderately soft potentials). Let f be a classical solution to the Boltzmann
equation (1.1)- (1.3) satisfying the assumptions (1.4). Then f � C (1 + t�ˇ ) with C > 0

and ˇ > 0 and constant depending only on 
 , s and the bounds (1.4).

Note that the paper also includes further results in the case of very soft potentials but
conditionally to additional estimates of the form L1

t;xL
p
v (1+ jvjq) for some p > 1, q > 0;

it is not known at present how to deduce the latter estimates from the hydrodynamic bounds
(1.4).

4.3 WeakHarnack inequality and local Hölder regularity. The second breakthrough
is the paper Imbert and Silvestre [2017]. In comparison to the Landau equation, the Boltz-
mann equation has a more complicated integral structure, that shares similarity with “fully
nonlinear” fractional elliptic operators. The main result proved is:

Theorem 10 (Local Hölder regularity for the BE Imbert and Silvestre [ibid.]). Given any

 2 (�3; 1] and s 2 (0; 1)with 
+2s > 0, there are universal constantsC > 0, ˛ 2 (0; 1)

such that any f essentially bounded weak solution of (1.1)- (1.2) in B1 � R3 � (�1; 0]

satisfying (1.4) is ˛-Hölder continuous with respect to (x; v; t) 2 B 1
2

� B 1
2

� (� 1
2
; 0],

where C > 0 and ˛ 2 (0; 1) are constants depending on the L1 bound of f and the
bounds (1.4).

The proof goes in two steps. The first step is a local L2 ! L1 gain of integrability,
following the approach of De Giorgi and Moser as reformulated in a kinetic context in
Pascucci and Polidoro [2004] and Golse, Imbert, Mouhot, and Vasseur [2017]. It requires
further technical work to formulate the De Giorgi iteration for such integro-differential
equations with degenerate kernels (see also the related works Kassmann [2009], Felsinger
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and Kassmann [2013], and Bux, Kassmann, and Schulze [2017]). The regularity mech-
anism at the core of the averaging velocity method is used, however under a different
presentation, by relying on explicit calculations on the fundamental solution of the frac-
tional Kolmogorov equation. In the second step of the proof, the authors establish a weak
Harnack inequality, i.e. an the local control from above of local L�

t;x;v averages with
� > 0 small by a local infimum multiplied by a universal constant. This inequality is
sufficient to deduce the Hölder regularity. Two different strategies are used depending on
whether s 2 (0; 1/2) or s 2 [1/2; 1). In the first case, they construct a barrier function
to propagate lower bounds as in the method by Krylov and Safonov for nondivergence
equations. In the second case, they use a variant of the isometric argument of De Giorgi
proved by compactness as in Golse, Imbert, Mouhot, and Vasseur [2017]. Again the regu-
larity of velocity averages plays a crucial role but is exploited by direct calculation on the
fundamental solution of the fractional Kolmogorov equation.

4.4 Maximum principle and decay at large velocities. Finally in the paper Imbert,
Mouhot, and Silvestre [2018], the nonlinear maximum principle argument of Silvestre
[2016a] is refined to obtain “pointwise counterpart” of velocity moments.

Let us recall that in order for an iterative gain of regularity similar to Henderson and
Snelson [2017b] and Imbert and Mouhot [2018] to work, it is necessary to start with a
solution that decays, as jvj ! 1, faster than any algebraic power rate jvj�q , and we
expect the same general to be true for the Boltzmann equation. The main result established
in this paper is:

Theorem 11 (Decay at large velocities for the BE Imbert, Mouhot, and Silvestre [2018]).
Given any 
 2 (�3; 1] and s 2 (0; 1) with 
 + 2s > 0, there are universal constants
C > 0, ˛ 2 (0; 1) such that for any f classical solution of (1.1)- (1.2) in T 3�R3� [0; T ]

satisfying (1.4) it holds for any q > 0: (i) pointwise polynomial decay is propagated: if
fin . (1+ jvj)�q then for all t > 0, x 2 T 3 then f (x; v; t) � C (1+ jvj)�q , (ii) if 
 > 0

all the polynomial moments are generated: f (x; v; t) � C 0(1+ t�ˇ )(1+ jvj)�q . All the
constants depend on 
 , s, q and the bounds (1.4).

The study of large velocity decay, known as the study of moments, is an old and im-
portant question in kinetic equations. The study of moments was initiated for Maxwellian
potentials (
 = 0) in Ikenberry and Truesdell [1956]. In the case of hard potentials (
 > 0),
Povzner identities Povzner [1962], Elmroth [1983],Wennberg [1996], and Bobylev [1997]
play an important role. For instance, Elmroth [1983] used them to prove that if moments
are initially bounded, then they remain bounded for all times. Desvillettes [1993] then
proved that only one moment of order s > 2 is necessary for the same conclusion to hold
true. It is explained in Wennberg [1996] and Mischler and Wennberg [1999] that even the
condition on one moment of order s > 2 can be dispensed with, in both (homogeneous)
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cutoff and non-cutoff case. These moment estimates were used by Bobylev [1997] in or-
der to derive (integral) Gaussian tail estimates. In the case of soft potentials, Desvillettes
[1993] proved for 
 2 (�1; 0) that initially bounded moments grow at most linearly with
time and it is explained in Villani [2002] that the method applies to 
 2 [�2; 0). The case
of measure-valued solutions is considered in Lu and Mouhot [2012].

However the extension of these integral moments estimates to the spatially inhomo-
geneous case is a hard and unclear question at the moment. The only result available
is Gualdani, Mischler, and Mouhot [2018, Lemma 5.9 & 5.11] which proves the propa-
gation and appearance of certain exponential moments for the spatially inhomogeneous
Boltzmann equation for hard spheres (or hard potentials with cutoff), however in a space
of the form W

3;1
x L1(1+ jvjq). Another line of research opened by Gamba, Panferov, and

Villani [2009] consists in establishing exponential Gaussian pointwise decay bymaximum
principle arguments (see also Bobylev and Gamba [2017], Alonso, Gamba, and Tasković
[2017], and Gamba, Pavlović, and Tasković [2017]). However these works rely on previ-
ously establishing exponential integral moments, therefore it is not clear how to use them
in this context.

We finally recall that the last part of the research program, the Schauder estimates, is
missing for the Boltzmann equation with moderately soft potentials, and is an interesting
open question for future researches.
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RESONANCES IN HYPERBOLIC DYNAMICS

Sඍඣඉඁൺඇൾ Nඈඇඇൾඇආൺർඁൾඋ

Abstract

The study of wave propagation outside bounded obstacles uncovers the existence
of resonances for the Laplace operator, which are complex-valued generalized eigen-
values, relevant to estimate the long time asymptotics of the wave. In order to un-
derstand distribution of these resonances at high frequency, we employ semiclassical
tools, which leads to considering the classical scattering problem, and in particular
the set of trapped trajectories. We focus on “chaotic” situations, where this set is a hy-
perbolic repeller, generally with a fractal geometry. In this context, we derive fractal
Weyl upper bounds for the resonance counting; we also obtain dynamical criteria en-
suring the presence of a resonance gap. We also address situations where the trapped
set is a normally hyperbolic submanifold, a case which can help analyzing the long
time properties of (classical) Anosov contact flows through semiclassical methods.

1 Introduction

Spectral geometry attemps to understand the connection between the shape (geometry) of a
smooth Riemannian manifold (M; g), and the spectrum of the positive Laplace-Beltrami
operator �∆ on this manifold. When M is compact, the spectrum is made of discrete
eigenvalues of finitemultiplicities (�2

k
)k�0, associatedwith an orthonormal basis of smooth

eigenfunctions (�k)k�0. What is the role of this spectrum? It allows to explicitly de-
scribe the time evolution of the waves waves, e.g. evolved through the wave equation
(@2t t � ∆)u = 0. The connection comes as follows: taking as any initial datum u(0) = 0,
@t u(0) = u0 2 L2(M ), the wave at any time t � 0 is given by the exact expansion

(1) u(t; x) =
� sin(tp�∆)

p
�∆

u0

�
(x) =

X
k�1

h�k ; u0i �k(x)
sin(t�k)

�k

; x 2 M; t � 0 :

Hence, any information on the eigenvalues and eigenfunctions allows to better character-
ize the evolved wave u(t).
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Figure 1: Scattering of a wave by obstacles Ω = [iΩi � Rd . Parallel lines
indicate incoming and outgoing wave trains (arrows indicate the direction of propa-
gation). The blue box indicates a ”detector”.

1.1 Scattering. In many physical experiments, the waves (or wavefunctions) are not
confined to compact domains, but can spread towards spatial infinity. The ambient man-
ifold (M; g) therefore has infinite volume, and in general its geometry towards infin-
ity is ”simple”. For instance, a physically relevant situation consists of the case where
M = Rd n Ω, with Ω an open bounded subset of Rd , representing a bounded ”obstacle”
(or a set of several obstacles). These obstacles will scatter an incoming flux of waves
arriving from a certain direction at infinity, resulting in a flux of outgoing waves propagat-
ing towards infinity along all possible directions (see Figure 1). In actual experiments, the
experimentalist can produce incoming waves with definite frequency and direction, and
can detect the outgoing waves, along one or several directions. Such an experiment aims
at reconstructing the shape of the obstacle, from the analysis of the outgoing waves.

1.2 Resonances. Our objective will not be this ambitious inverse problem, but we will
try characterize quantitatively this scattering phenomenon, assuming some geometric and
dynamical properties of the obstacles. This will imply a spectral study of the Laplacian�∆

on M (say, with Dirichlet boundary conditions on @Ω). Due to the infinite volume of M ,
the spectrum of�∆ is purely continuous onR+ with no embedded eigenvalues. However,
one can exhibit a form of discrete expansion resembling (1) by uncovering resonances (see
e.g. the incoming book Dyatlov and Zworski [2018] on scattering and resonances, or the
recent comprehensive review Zworski [2017]).

Let us assume that the initial datum u0 2 C 1
c (M ); its time evolution can be expressed

through Stone’s formula:

(2) u(t; x) =
1

2i�

Z
R

d� e�it� R(�)u0 ;

MSC2010: primary 81Q50; secondary 81Q20, 35P25, 37D20, 37D40, 81Q12.
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where R(�) is the resolvent operator (�∆ � �2)�1, first defined in the upper half-plane
Im� > 0, and then continued down to � 2 R as an operatorL2

comp ! L2
loc

. R(�) actually
admits a meromorphic extension from Im� > 0 to the full lower half-planeC� = fIm� <

0g (with a logarithmic singularity at � = 0 in even dimensions d ), with the possibility of
discrete poles f�k 2 C�g of finite multiplicities, called the resonances of the system.

This meromorphic extension encourages us to deform the contour of the above integral
towards a line C
 = �i
 + R, thereby collecting the contributions of the residues at the
�k . Assuming that all resonances have multiplicity 1, we obtain the expansion

(3) u(t) =
X

Im�k��


e�it�k Π�k
u0 + I (t; C
 ) ; where Π�k

=
1

2i�

I
�k

R(�) d�;

and I (t; C
 ) is the integral in (2) taken along the contour C
 .

Figure 2: Contour deformation uncovering resonances of �∆.

γ

k

Cγ

0

λ

Resonances come in symmetric pairs �k $ ��̄k (see Figure 2). Each �k corresponds
to a resonant stateuk 2 C 1

c (M ), which satisfies the equation�∆uk = �kuk and behaves
as ∼ ei�k jxj when jxj ! 1, so it diverges exponentially, showing that uk 62 L2(M ). If
Re�k > 0 the state uk is said to be purely outgoing; the complex conjugate function ūk(x)

corresponds to the dual resonance ��̄k of negative real part: it is purely incoming. The
resonant state uk allows to express the ”spectral projector” Π�k

(which acts L2
comp !

L2
loc

) as Π�k
u0 = hūk ; u0iuk (the bracket hūk ; u0i =

R
dx uk(x)u0(x) makes sense

since u0 has compact support).
Assuming we control the size of the remainder term (the contour integral I (t; C
 )),

the expansion (3) provides informations on the shape and intensity of the wave u(t; x),
particularly in the asymptotic t � 1: it can explain at which rate the wave leaks (disperses)
out of a given bounded region (say, a large ball B(R)), by providing some quantitative
bounds on u(t) �B(R). To control the remainder I (t; C
 ), one needs to control the size
of the truncated resolvent operator 1lB(R)R(�)1lB(R) for � 2 C
 , in particular the contour
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should avoid hitting resonances, which requires to control the location of the resonance
cloud in the vicinity of C
 .

1.3 Semiclassical regime. These arguments hint at our main objective: to determine,
as precisely as possible, the distribution of the resonances f�kg, and possibly also obtain
bounds on the meromorphically continued resolvent R(�). We will be mostly interested
in the high frequency regime jRe�j � 1, which we choose to rephrase as a semiclassical
regime with small parameter h � 1. To avoid having to deal with both signs of Re�, we
replace the wave equation by the half-wave equation, written in this semiclassical setting
as:

(4) ih@t u(t) = Phu(t); with the semiclassical operator Ph =
p

�h2∆ :

The small parameter 0 < h � 1 is usually called ”Planck’s constant”, since the above
equation has the form of a semiclassical Schrödinger equation (see below). Here h is just a
bookkeeping parameter: we will study the resonances zk = zk(h)

def
= h�k of the operator

Ph near some fixed energy E > 0 (typically E = 1 for the above half-wave equation),
indicating that Re�k ∼ h�1.

We will use the same notations when considering the ”true” semiclassical Schrödinger
equation, describing the evolution of a quantum particle on M , subject to an electric po-
tential V (x):

(5) ih@t u(t) = Phu(t); Ph = �h2∆+ V (x) ; V 2 C 1
c (M; R) :

The Schrödinger operator Ph also admits resonances zk(h) in the lower half-plane, ob-
tained as the poles of the resolvent (Ph � z)�1, meromorphically extended from fRez >

0; Imz > 0g to fImz < 0g; now the zk(h) depend nontrivially of h. In these semiclassical
notations, the time evolution operator now reads e�itPh/h, so each term hūk ; u0iuk in (3)
will evolve at a rate e�itzk/h, hence decay at a rate et Imzk/h. The deeper the resonance
(� the larger jImzkj), the faster this term will decay. We call �k(h)

def
= h

jImzk j
the lifetime

of the resonance. As we will see below, we will be mostly interested in resonances with
lifetimes bounded from below, �k � c > 0, which corresponds to studying the resonances
in strips of width fImzk = O(h)g.

1.3.1 Semiclassical evolution of wavepackets. This semiclassical regime allows us to
use the powerful machinery of semiclassical/microlocal analysis Zworski [2012], which
relates the Schrödinger evolution (4) with the evolution of classical particles through the
Hamiltonian flow 't

p on the phase space T �M 3 (x; �). This flow is generated by the
classical Hamiltonian p(x; �), given by the principal symbol of the operator Ph (in the
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Figure 3: Left: a wavepacket of wavelength h is scattered by an obstacle. Right:
scattering of classical trajectories (light rays following broken geodesics).

ρ
0

(t)ρ

u
0

u(t)

h

above examples p(x; �) = j�j, respectively p(x; �) = j�j2 + V (x)). To illustrate this
connection, we represent on the left of Figure 3 the propagation of a minimum-uncertainty
wavepacket u0(x) through the half-wave equation on M = Rd n Ω. The wavepacket
can be chosen for instance as a minimum-uncertainty Gaussian wavepacket, also called a
coherent state

u0(x) = Ch e�
jx�x0j2

2h ei�0�x/h:

This wavepacket is essentially localized in an h1/2-neighbourhood of the point x0, while
its semiclassical Fourier transform Fhu0(�) is localized in an h1/2-neighbourhood of the
momentum �0 (materialized by the red and pink arrows in the Figure); we say that this
state is microlocalized (or centered) on the phase space point �0 = (x0; �0). Heisenberg’s
uncertainty principle shows that the concentration of such a wavepacket is maximal, equiv-
alently the “uncertainty” in its position and momentum is minimal. For a given time win-
dow t 2 [0; T ], in the semicassical limit the evolved state u(t) = e�itPh/hu0 will remain
a microscopic wavepacket, centered at the point �(t) = 't (�0), where 't is the broken
geodesic flow shown on the figure. If we replace the hard obstacles by a smooth potential,
the geodesic flow will be replaced by the Hamiltonian flow 't

p .

1.3.2 Introducing the trapped set. In order to analyze the quantum scattering and its
associated resonances, it will be crucial to understand the corresponding classical dynam-
ical system, that is the scattering of classical particles induced by obstacles, potentials or
metric perturbations, as sketched on the right of Figure 3. In particular, the distribution of
resonances will depend on the dynamics of the trajectories remaining in a bounded region
of phase space for very long times. For a given energy value E > 0, we thus introduce
the set of points which are trapped forever in the past (resp. in the future, resp. in both
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time directions):

(6) Γ˙
E

def
= f� 2 p�1(E); 't

p(�) 6! 1; t ! �1g; KE = Γ+
E \ Γ�

E :

Our assumptions on the structure of M near infinity will always imply that the trapped
set KE is a compact subset of the energy shell p�1(E); this set is invariant through the
flow 't

p . The distribution of the resonances in the semiclassical limit will be impacted by
the dynamics of the flow 't

p on KE . The punchline of the present notes could be:

In the semiclassical regime, the distribution of the resonance fzk(h)g near
the energy E strongly depends on the structure of the trapped set KE , and of
the dynamical properties of the flow 't

p near KE .

1.4 Hyperbolicity. In these notes dedicated to “quantum chaos”, we will mostly focus
on systems for which the flow 't

p �KE
is hyperbolic (Section 5 will contain examples

of partial hyperbolicity). What does hyperbolicity mean? It describes the rate at which
nearby trajectories depart from each other: for a hyperbolic flow, they separate at an ex-
ponential rate, either in the past direction, or in the future, or (most commonly) in both
time directions. The trajectories are therefore unstable w.r.t. perturbations of the initial
conditions. More precisely, an orbit O(�0) = ('t (�0))t2R � p�1(E) is hyperbolic if
and only if, at each point � 2 O(�0), the 2d � 1-dimensional tangent space T�p�1(E)

splits into three subspaces,

T�p�1(E) = RXp(�) ˚ Eu(�) ˚ Es(�);

where Xp(�) is the Hamiltonian vector field generating the flow, Es(�) (resp. Eu(�))
is the stable (resp. unstable) subspace at �, characterized by the following contraction
properties in the future, resp. in the past:

(7) 9C; � > 0; 8t � 0; kd't
p �Es(�) k � C e��t ; kd'�t

p �Eu(�) k � C e��t :

The trapped set KE is said to be (uniformly) hyperbolic if each orbit O(�) � KE is hy-
perbolic, with the coefficients C; � being uniform w.r.t. � 2 KE . In general the unstable
subspaces Eu

� are only Hölder-continuous w.r.t. � 2 KE , even if the flow 't is smooth;
this poor regularity jumps to a smooth (actually, real analytic) dependence in the setting
of hyperbolic surfaces described in the next section. Such a uniformly hyperbolic flow
't

p �KE
satisfies Smale’s Axiom A; its long time dynamical properties have been studied

since the 1960s, using the tools of symbolic dynamics and the thermodynamical formal-
ism Bowen and Ruelle [1975]. Below we will use some ”thermodynamical” quantities
associated to the flow, namely the topological entropy and pressures. The Anosov flows
we will mention in the last section are particular examples of such Axiom A flows.
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Figure 4: Hyperbolicity of the orbit O(�), with the stable an unstable subspaces
transverse to the vector Xp(�).

−1

Eρ

Eu

ρ
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Φ(ρ)

Eu

Φ(ρ)

p(ρ)X  

p (E)
s

Φ(ρ)

ρ

2 Examples of hyperbolic flows

2.1 A single hyperbolic periodic orbit. The simplest example of hyperbolic set oc-
curs in the scattering by the union of two disjoint strictly convex obstacles in Rd : in that
case the trapped set is made of a single orbit bouncing periodically between the two ob-
stacles (see Figure 5). For this simple situation, the resonances of Ph = �h2∆ can be
computed very precisely in the semiclassical limit Ikawa [1983] and Gérard and Sjöstrand
[1987]; in dimension d = 2, in a small neighbourhood of the classical energyE = 1, they
asymptotically form a half-lattice:
(8)

z`;k(h) = E(h)+
2�hk

T
� ih�(1/2+ `)+O(h2); ` 2 N; k 2 Z; E(h) = 1+O(h) :

Here T is the period of the bouncing orbit, while � > 0 is the rate of unstability along

Figure 5: Left: the simplest case of hyperbolic set: scattering between two strictly
convex obstacles. Right: semiclassical resonances for this system

E

λ

0

h   /2

the orbit, meaning that kd'T
p �Eu(�) k = e�T . Obtaining such explicit formulas for the

resonances is specific to this very simple situation, but it already presents two interesting
features. First, the number of resonances in any rectangle R(E; C h; 
h) of the type (11)
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is uniformly bounded when h ! 0, and it is nonzero if 
 and C are large enough. Second,
if 
 < �/2 (and if h is small enough), the box R(E; C h; 
h) will be empty of resonances:
this is the first instance of a resonance gap connected with the hyperbolicity of the flow
on the trapped set.

2.2 Fully developed chaos: fractal hyperbolic trapped set. Beside hyperbolicity, the
second ingredient of “chaos” is the complexity of the flow, which can be characterized by
a positive topological entropy, indicating an exponential proliferation of long periodic
orbits:

(9) Htop('
t �K1

) = lim
T !1

1

T
log #f
 2 Per(K1); T � T
 � T + 1g ;

where Per(K1) denotes the set of periodic orbits in K1, and T
 is the period of the orbit 
 .
A simple example of system featuring such a chaotic trapped set is obtained by adding one
convex obstacle to the 2-obstacle example of the previous paragraph. Provided this third
obstacle is well-placed with respect to the other two (so that the three obstacles satisfy
a “no-eclipse condition”, like in Figure 6, left), the trapped trajectories at energy E =

1 form a hyperbolic set K1, which contains a countable number of periodic orbits, and
uncountably many nonperiodic ones. A way to account for this complexity is to construct
a symbolic representation of the orbits. Label each obstacle by a number ˛ 2 f0; 1; 2g;
then to each bi-infinite word � � � ˛�1˛0˛1˛2 � � � such that ˛i ¤ ˛i+1, corresponds a unique
trapped orbit in K1, which hits the obstacles sequentially in the order indicated by the
word. Periodic words correspond to periodic orbits, nonperiodic words to nonperiodic
orbits. This correspondence between words and orbits allows to quantitatively estimate
the complexity of the flow on K1. In turn, the strict convexity of the obstacles ensures
that all trapped orbits are hyperbolic, the instability arising at the bounces.

The trapped set K1 has a fractal geometry, which can be described by some fractal
dimension. It is foliated by the trajectories (which accounts for one ”smooth” dimension),
so its fractal nature occurs in the transverse directions to the flow, visible in its intersection
with a Poincaré section Σ � S�X (see Figure 6). This intersection KE \ Σ (represented
by the union of black squares) has the structure of a horseshoe; as the intersection of stable
(Γ�) and unstable (Γ+) manifolds, it locally has a “product structure”.

In space dimension d = 2, the dimension ofK1 can be expressed by using a topological
pressure. This pressure, a “thermodynamical” quantity of the flow, is defined in terms of
the unstable Jacobian of the flow, J u

t (�) = j det(d't �Eu(�))j. For a periodic orbit 
 of
period T
 , we denote J u(
) = J u

T

(�
 ), where �
 is any point in 
 . Now, for any s 2 R,

we may define the pressure as

(10) P (s) = P (s; 't �K1
) = lim

T !1

1

T
log

X
T �T
 �T+1

J u(
)�s ;
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Figure 6: Left: three convex obstacles on R2, leading to a fractal hyperbolic re-
peller. Right: intersection of KE with a Poincaré section Σ.
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Γ
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+

where the sum runs over all periodic orbits 
 2 Per(K1) of periods in the interval [T; T +1].
P (0) is equal to the topological entropy (9), which is positive. When increasing s, the
factors J u(
)�s decay exponentially when T ! 1, hence the hyperbolicity embodied
by these factors balances the complexity characterized by the large number of orbits. The
pressure P (s) is smooth and strictly decreasing with s, and one can show that P (1) < 0;
hence, it vanishes at a single value ı 2 (0; 1). In the 2-dimensional setting (for which
Eu/s(�) are 1-dimensional), the Hausdorff dimension ofK1 is given by Bowen’s formula:

dimK1 = 1 + 2ı () P (ı) = 0 :

The topological pressure will pop up again when studying resonance gaps, see Theorem 2.

2.3 An interesting class of examples: hyperbolic surfaces of infinite area. We have
mentioned above that one way to ”scatter” a wave, or a classical particle, was to modify the
metric on M in some compact neighbourhood. Because we are interested in hyperbolic
dynamics, an obvious way to generate hyperbolicity is to consider metrics g of negative
sectional curvature (giving M locally the surface the aspect of a “saddle”). Such a metric
automatically induces the hyperbolicity of the orbits, the instability rate being proportional
to the square-root of the curvature.

Such surfaces can be constructed Borthwick [2016] by starting from the Poincaré hyper-
bolic diskD = fz 2 C; jzj < 1g, equipped with the metric g = 4 dz dz̄

(1�zz̄)2
: the curvature is

then equal to �1 everywhere. The Lie group SL(2; R) acts on this disk isometrically. By
choosing a discrete subgroup Γ < SL(2; R) of the Schottky type, the quotientM = ΓnD
is a smooth surface of infinite volume, without cusps. On the left of Figure 6 we represent
the Poincaré disk, tiled by fundamental domains of such a Schottky subgroup Γ (the grey
area is one fundamental domain), the boundaries of the domains being given by geodesics
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Figure 7: Construction of a hyperbolic surfaceM = ΓnC of infinite volume. Left:
fundamental domains of the action of Γ on D. Right: representation of M .

on D (which corresond to Euclidean circles hitting @D orthogonally). On the figure we
also notice the accumulation of small circles towards a subset ΛΓ � @D, called the limit
set of the group Γ. This limit set is a fractal set of dimension ı = ıΓ 2 (0; 1).

On the right of the figure we plot the quotient surface M = Γ n D, composed of
a compact part (the ”core”) and of three “hyperbolic funnels” leading to infinity. The
trapped geodesics of M are fully contained in the compact core, they can be represented
by geodesics on D connecting two points of ΛΓ (red geodesic on the figure). On the
opposite, geodesics on D crossing @D nΛΓ correspond to transient geodesics on M (blue
geodesic on the figure) which start and end in a funnel. The trapped set can therefore be
identified as K1 � ΛΓ � ΛΓ � R, and its Hausdorff dimension dimK1 = 1 + 2ı.

The Laplace-Beltrami operator �∆M has a continuous spectrum on [1/4; 1), which
is usually represented by the values s(1 � s), for a spectral parameter s 2

1
2
+ iR. The

resolvent operator R(s) = (�∆M � s(1 � s))�1 can be meromorphically extended from
fRes > 1/2g to fRes < 1/2g. The resonances are given by a discrete set fskg in the half-
space fRes < 1/2g. A huge advantage of this model, is that these resonances are given
by the zeros of the Selberg zeta function

ZΓ(s)
def
=

Y

2Per�

1Y
m=0

(1 � e�(s+m)j
 j) ;

where Per� denotes the set of primitive periodic geodesics on M . This exact connection
between geometric data (lengths of the periodic geodesics) and spectral data (resonances
of �∆) is specific to the case of surfaces of constant curvature. Another particular feature
of the constant curvature is the fact that the stable/unstable directions Es/u(�) can be
defined at any point � 2 M , and depend smoothly on the base point �.



RESONANCES IN HYPERBOLIC DYNAMICS 2523

The identification of the resonances with the zeros of ZΓ(s) provides powerful tech-
niques to study their distribution, with purely ”classical” techniques, without any use of
PDEmethods. These zeros can be obtained by studying a 1-dimensional map on the circle,
called the Bowen-Series map, constructed from the generators of the group ΓNaud [2005].
This map induces a family of transfer operators Ls indexed by the spectral parameter; one
shows that these operators, when acting on appropriate spaces of analytic functions, are
nuclear (in the sense of Grothendieck), and that the Selberg zeta function can be obtained
as the Fredholm determinant ZΓ(s) = det(1 � Ls). The spectral study of the classical
transfer operatorsLs can therefore deliver informations on the resonance spectrum, which
are often more precise than what is achievable through PDE techniques.

3 Fractal Weyl upper bounds

3.1 Counting long living resonances. We are interested in the distribution of the res-
onances (�j ) (for �∆) or (zk(h)) (for Ph) in the lower half-plane. Because we want
to use these resonances in dynamics estimates as in (3), we will focus on the long living
resonances, such that Imzk(h) � �
h for some fixed 
 > 0, or equivalently such that
the corresponding lifetimes �k(h) � 1/
 > 0. We will also focus on resonances such
that Rezk lies in some small energy window [E � �; E + �]: this will allow us to connect
their distribution with the properties of the classical flow at energy E. Figure 8 sketches
the more precise spectral region we will study, centered at E > 0: we will count the
resonances in rectangles of the type

(11) R(E; C h; 
h) = [E � C h; E + C h] � i [0; 
h]; C; 
 > 0 independent of h:

In the present section, our main result is a fractal Weyl upper bound (see Theorem 1) for
the number of resonances in those rectangles. In the next section we will be especially
interested in situations for which such a rectangle contains no resonance, like in the rect-
angle R(E; C h; gh) of Figure 8: we will then speak of a (semiclassical) resonance gap
near the energy E.

3.2 Complex deformation of Ph: turning resonances into eigenvalues. For simplic-
ity we consider manifolds M which, outside some big ball B(R0/2), is equal to the Eu-
clidean space Rd n B(R0/2). To analyze the resonances of Ph in R(E; C h; 
h), a conve-
nient method consists in twisting the selfadjoint operatorPh into a nonselfadjoint operator
Ph;� , through a “complex deformation” procedure Aguilar and Combes [1971]. Outside
a large ball B(R0), the differential operator Ph;� is equal to �h2e�2i�∆, while it is equal
to the original Ph inside B(R0/2). In our applications the angle parameter � 2 (0; �/4)

will be assumed small. Through the twisting Ph ! Ph;� , the continuous spectrum has
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Figure 8: Resonances of a semiclassical operatorPh in the rectangleR(E; C h; 
h).
Right: spectrum of the twisted operator Ph;� .
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been tilted fromR+ to e�2i� R+, and by doing so has uncovered the resonances zj (h) con-
tained in this corresponding sector: these resonances have been turned into eigenvalues,
with eigenfunctions ũj 2 L2. For h > 0 small enough, the rectangle R(E; C h; 
h) will
be contained in the e�2i� sector, so we are lead to analyze the (discrete) L2 spectrum of
the nonselfadjoint semiclassical operator Ph;� inside this rectangle.

Let us analyze the twisted Schrödinger evolution. We have seen in Section 1.3 that a
wavepacketu�0

centered at a phase space point �0 is transported by the unitary Schrödinger
propagator e�itPh/h along the trajectory �(t) = 't

p(�0). The twisted propagator Ut
�
=

e�itPh;�/h also transports the wavepacket along the trajectory (�(t)), but the nonselfad-
joint character of Ph;� will have the effect to modify the norm of the wavepacket:

d

dt
ku(t)k2 =

2

h
Imhu(t); Ph;� u(t)i �

2Imp� (�(t))

h
ku(t)k2 ;

where p� is the principal symbol of Ph;� . When x(t) is outside B(R0), this symbol reads
p� (x; �) = e�2i� j�j2, so at the point �(t) its imaginary part is � sin(2�)E < 0. As a
result, the norm of u(t) decreases very fast: its norm is reduced to O(h1) as soon as �(t)

exits B(R0): the twisted propagator is strongly absorbing outside B(R0).

3.3 Resonances vs. classical trapped set. As explained before, the distribution of
resonances in rectangles R(E; C h; 
h) depend crucially on the dynamics of 't

p on the
trapped set KE . Let us explain more precisely how this connection operates, starting with
the simple case of a nontrapping dynamics.

3.3.1 Case of a nontrapping dynamics. If KE = ¿, any point �0 2 p�1(E) will
leave B(R0) within a finite time T0. As a result, a wavepacket u�0

microlocalized on �0

will be transported byUt
�
outside ofB(R0), and will be absorbed. Let us now assume that

vz 2 L2(M ) satisfies (Ph;� � z)vz = 0, for some z 2 R(E; C h; 
h). Elliptic estimates
show that vz can be decomposed as a sum of (normalized) coherent states centered inside



RESONANCES IN HYPERBOLIC DYNAMICS 2525

a small neighbourhood U (E) of p�1(E) \ T �B(R0):

(12) vz =

Z
U (E)

d�

(2�h)d
hu�; vzi u� + O(h1) :

Let us apply the propagator UT0

�
to the above equality. On the right hand side each

evolved wavepacket UT0

�
u� = O(h1) from the above discussion, while on the left

hand side we get UT0

�
vz = e�izT0/hvz . The equality between both sides contradicts

our assumption Imz � �
h. This argument shows that if KE = ¿, deeper rectangles
R(E; C h; 
hj log hj) are also empty of resonances Martinez [2002].

3.3.2 Fractal hyperbolic trapped set. Wenow consider a nontrivial hyperbolic trapped
set KE . In this cases resonances generally exist in R(E; C h; 
h), at least when C and 


are large enough. In Section 2 we have mentioned the case where KE is composed of a
single hyperbolic periodic orbit, for which one can derive explicit asymptotic expressions
for the resonances. In case of a more complex, fractal chaotic trapped set, we don’t have
any explicit expressions at our disposal. Yet, semiclassical methods provide upper bounds
for the number of resonances inside R(E; C h; 
h), in terms of the Minkowski dimension
of the trapped set KE .

Theorem 1 (Fractal Weyl upper bound). Assume the trapped set KE is a hyperbolic re-
peller of upper Minkowski dimension 1+2ı. Then, for any C; 
 > 0, there exits CC;
 > 0

and h0 such that

(13) 8h < h0; #Res(Ph) \ R(E; C h; 
h) � CC;
 h�ı :

TheMinkowski dimension is a type of fractal dimension, often called ”box dimension”.
Essentially, it indicates that the volumes of the �-neighbourhoods of KE (inside p�1(E))
decay as �2d�1�(1+2ı) when � ! 0.

The above theoremwas first proved in Sjöstrand [1990] (for wider rectangles), and then
refined by Sjöstrand and Zworski [2007], both in the case of smooth symbols p(x; �). The
case of Schottky hyperbolic surfaces was addressed by Zworski [1999] using semiclassical
methods, and generalized to hyperbolic manifolds of higher dimension in Guillopé, Lin,
and Zworski [2004] by using transfer operators. The case of scattering by N � 3 convex
obstacles was tackled in Nonnenmacher, Sjöstrand, and Zworski [2014], using quantum
monodromy operators (quantizations of Poincaré maps).

The bound (13) is called a fractal Weyl upper bound, by analogy with the selfadjoint
semiclassical Weyl’s law. Indeed, assume we add to Ph a confining potential Ṽ (x), so
that any energy shell p̃�1(E) is compact. The spectrum of P̃h is then discrete, and the
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following semiclassical Weyl’s law holds near noncritical energies E:
(14)
Spec(P̃h)\ [E � C h; E +C h] =

1

(2�h)d
Vol

�
p̃�1([E � C h; E +C h])

�
+O(h�d+1) :

The volume on the right hand side behaves as C VE h�d+1 for some VE > 0, while the
trapped set K̃E has dimension 1 + 2(d � 1), so the power in the above estimate agrees
with (13).

The result (13) and the above selfadjoint Weyl’s law differ on several aspects:

1. (13) is an upper bound, not an asymptotics. Numerical studies have suggested that
this upper bound should be sharp at the level of the order h�ı , at least if 
 is large
enough. Yet, proved lower bounds for the counting function are of smaller order
O(1), similar with the case of a single hyperbolic orbit. A counting function � h�ı

could already be called a fractal Weyl’s law.

2. If a more precise estimate should hold, what could be the optimal constant CC;
?
How does it depend on the depth 
? This question is related with the gap question
discussed in the next section.

This conjectural fractalWeyl’s law has been tested numerically on various chaotic systems,
with variable success: Schrödinger operator with a smooth potential Lin [2002], hyper-
bolic surfaces by Guillopé, Lin, and Zworski [2004] and Borthwick [2014], discrete time
analogues of scattering systems (quantized open maps) in Nonnenmacher and Zworski
[2007], and even experimentally in the case of the scattering by N disks, see Potzuweit,
Weich, Barkhofen, Kuhl, Stöckmann, and Zworski [2012].

3.3.3 Sketch of the proof of the Fractal Weyl upper bound. The spectrum of a non-
selfadjoint operator Q is notoriously harder to identify than in the selfadjoint case. To
study the spectrum of Q near some value z0, one method is to ”hermitize” the operator Q,
namely study the bottom of the spectrum of the positive operator (Q � z0)

�(Q � z0), or
equivalently the small singular values of the operator Q � z0; estimates on the number of
singular values will then, through Weyl’s inequalities, deliver upper bounds on the num-
ber of small eigenvalues of Q � z0. It is much more difficult to obtain lower bounds on
the number of eigenvalues: this difficulty explains the large gap between upper and lower
bounds.

In our problem, to obtain a sharp upper bound we need to twist again the operator
Ph;� , by conjugating it with an operator Gh obtained by quantizing a well-chosen escape
function g(x; �):

Ph;G
def
= e�GhPh;� eGh :
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Through this conjugation, the symbol of the operator can be expanded as

pG = p� � ihfp� ; gg + smal ler ;

where the Poisson bracket fp� ; gg represents the time derivative of g(�(t)). Using the
hyperbolicity of the flow, for any 
 > 0 it is possible to construct a function g such that
fp� ; gg(�) � 2
h as soon as dist(�; KE ) � h1/2: this function is called an “escape
function”, because it grows along the flow, strictly so outside of the neighbourhood

KE (h1/2)
def
= f� 2 p�1(E); dist(�; KE ) � h1/2

g:

As a result, ImpG(�) � �3/2
h for � outside KE (h1/2). The above hermitization tech-
niques imply that the eigenstates of Ph;G with eigenvalues z 2 R(E; C h; 
h) must be
concentrated in KE (h1/2). Applying the selfadjoint Weyl’s law (14) to this set (thickened
to an h-energy slab), and expressing its volume in terms of the Minkowski dimension of
KE , leads to the bound (13).

3.3.4 Improved fractal upper bounds on hyperbolic surfaces. Eventhough the dy-
namics of 't

p on KE is used to construct the escape function, the upper bound (13) only
depends on the geometry of KE , and not really on the flow 't

p itself. More recently,
finer techniques have been developed in the special case of hyperbolic surfaces, taking
into account more efficiently the dynamics on KE Naud [2014] and Dyatlov [2015]. In
this case the Minkowski dimension of KE is given by 1 + 2ı, with ı 2 (0; 1) the dimen-
sion of the limit set ΛΓ. The upper bound now has a threshold at the value 
th = 1�ı

2
,

which corresponds to the decay rate of a cloud of classical particles. For 
 � 
th (”deep
resonances”) the upper bound remains O(h�ı), but for 
 < 
th (“shallow resonances”)
the upper bound is of the form O(h�˛(
)), with ˛(
) < ı an explicit function, which
decreases when 
 & 0. Jakobson and Naud [2012] have actually conjectured that for

 < 
th and h small enough, the rectangle R(E; C h; 
h) should be empty of resonances.
This conjectured gap has not been confirmed numerically.

4 Dynamical criteria for resonance gaps

Let us now come to the question of resonance gaps. As explained in the introduction (see
(3)), in the case of the wave equation in odd dimension, a global resonance gap ensures
that the time evolved wave locally decays at a precise rate. Such a gap therefore reflects
the phenomenon of dispersion of the wave, which spreads (leaks) outside any given ball.
In the semiclassical setting, we have seen in Section 3.3.1 that this leakage is easy to
understand if the classical flow is nontrapping: in that case the leakage operates in a finite
time T0, following the classical escape of all trajectories.
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When there exist trapped trajectories, the explanation of this leakage is more subtle,
and requires to take into account the dynamics for long times. In the present situation, this
dispersion is induced by a combination of two factors: the hyperbolicity of the classical
flow on KE , and Heisenberg’s uncertainty principle, which asserts that a quantum state
cannot be localized in a phase space ball of radius smaller than h1/2.

Our main result, reproduced from Nonnenmacher and Zworski [2009], shows that
the rate of this dispersion can be estimated by a certain topological pressure of the flow
't

p �KE
(see (10)), which combines both the unstability of the flow with its complexity.

Theorem 2 (Pressure gap). Assume that the trapped set KE is a hyperbolic repeller, and
that the topological pressure P (1/2) < 0. Then, for any � > 0, C > 0, and for h > 0

small enough, the operator Ph has no resonance in the rectangle R(E; C h; (jP (1/2)j �

�)h).

According to our discussion in Section 2.2, the pressure P (1/2) can take either posi-
tive or negative values, respectively in the case of ”thick” or ”thin” trapped sets. So the
condition P (1/2) < 0 characterizes systems with a ”thin” enough trapped set. We notice
that this bound is sharp in the case KE consists in a single hyperbolic orbit (Section 2.1):
in dimension d = 2, the pressure P (1/2) = ��/2, which asymptotically corresponds to
the first line of resonances.

This pressure bound was proved by Patterson [1976] in the case of hyperbolic surfaces,
by showing that the zeros of the Selberg zeta function satisfy Resj � ı. In this case, the
negativity of the pressure is equivalent with the bound ı < 1/2 (see Section 2.3 for the
notations).

This pressure bound was proved in the case of scattering by N � 3 disks in R2, almost
simultaneously and independently by Ikawa [1988] and by Gaspard and Rice [1989] (al-
though the latter article does not satisfy the standards of mathematical rigour, it contains
the crucial ideas of the proof, and was the first one to identify the pressure). The method
used in Nonnenmacher and Zworski [2009], which we sketch below, relies on similar
ideas as these articles, carried out in the general setting of a Schrödinger operator Ph.

4.1 Evolution of an individual wavepacket. Our aim is to show that if vz is an eigen-
state of Ph;� with eigenvalue z � E, then Imz/h � P (1/2) + �. To do so we will study
the propagation of vz by the Schrödinger flow Ut

�
= e�itPh;�/h for long times (we will

need to push the evolution up to logarithmic times t ∼ C j log hj, with C > 0 independent
of h). From the decomposition (12) into wavepackets, we see that it makes sense to study
in a first step the evolution of individual wavepackets u�, centered at some point � in the
neighbourhood U (E).
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4.1.1 Hyperbolic dispersion of a wavepacket. Take a wavepacket u0 centered on a
point �0 2 KE ; its semiclassical evolution transports it along 't

p(�0), but also stretches
the wavepacket along the unstable direction Eu(�(t)), following the linearized evolu-
tion d't

p(�0).This spreading can be understood from a simple 1-dimensional toy model,
namely the Hamiltonian q(x; �) = �x� , generating the Hamiltonian flow x(t) = e�t x0,
�(t) = e��t �0, a clearly hyperbolic dynamics. The quantum evolution is generated by
Ph = �(x h

i
@x � ih/2); its propagator is a unitary dilation:

(15) e�itPh/hu0(x) = e�t�/2u0(e
�t�x) :

If we start from a the coherent stateu0(x) = Che� x2

2h centered at the origin, thewavepacket
at time t > 0 will have a horizontal (=unstable) width et�h1/2, while its amplitude will
be reduced by a factor e�t�/2. The dynamics has dispersed the wavepacket along Eu.

Let us come back to our flow 't
p , and assume for simplicity that all the orbits of KE

have the same expansion rate � > 0, in all unstable directions; this is the case for instance
for the geodesic flow in constant curvature � = ��2. In that case, the evolved wavepacket
u(t) spreads on a length ∼ et�h1/2 along the unstable directions. By the time

(16) TE =
j loghj

2�
; which we call the Ehrenfest time;

the wavepacket u(t) spreads on a distance ∼ 1 along the unstable manifold W u(�(t)), it
is no more microscopic but becomes macroscopic. Some parts of u(t) are now at finite
distance from KE ; after a few time steps they will exit the ball B(R0) and hence be ab-
sorbed by the nonunitary propagator (see the left of Figure 9 for a sketch of this evolution).

Figure 9: Left: evolution of a minimal-uncertainty wavepacket: the evolved state
stretches exponentially along the unstable directions. By the time TE the state
spreads outside a single cell Va. Right: sketch of the partition (Va), representing
only the elements covering KE .
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4.1.2 Introducing a quantum partition. In order to precisely estimate the decay of
ku(t)k, one needs to partition the phase space, such as to keep track of the portions of u(t)

which exit B(R0) (and are absorbed), and the ones which stay near KE . One cooks up a
finite partition (Va)a2A of the phase space T �M (making it more precise near KE ), and
quantizes the functions 1lVa

to produce a family of microlocal truncations Πa, satisfyingP
a2A Πa = IdL2 . The family (Πa)a2A is called a quantum partition.
We may insert this quantum partition at each integer step of the evolution: calling

U� = e�iPh;�/h, we have for any time N 2 N:

(U� )
N =

X
Ea=a0;��� ;aN

UEa; UEa = ΠaN
U� � � �Πa2

U�Πa1
U�Πa0

;

where we sum over all possible words Ea of length N + 1. We can control the action of
the truncated propagators UEa on our wavepacket. For times N < TE , the evolved state
u(N ) = UN

�
u0 is dominated by a single term UEa u0, where the word Ea is such that each

point �(j ) 2 Vaj
. Around the Ehrenfest time u(TE ) becomes macroscopic, so it is no

more concentrated inside a single set Va; the truncationsΠa will cut this state into several
pieces, each one carrying a reduced norm. At each following time step, the evolution
U� continues to stretch the pieces UEa u0 by a factor e� along the unstable directions,
so several truncations will again act nontrivially. The norms of the pieces UEa u0 can be
estimated by the decay of the amplitude of the wavepacket, similarly as in the linear model
(15) (there are now (d � 1) unstable directions):
(17)

kUEa u0k � exp
�

�
�(d � 1)

2
(N � TE )

�
ku0k + O(h1); N � TE ; Ea = a0 � � � aN :

For most words Ea, this bound is not sharp. For instance, the symbols aj corresponding
to partition elements Vaj

outside of B(R0) indicate that the state is absorbed fast, and
lead to O(h1) terms. As a result, for N > TE the nonnegligible pieces correspond to
words Ea such that almost all the elements Vaj

intersect the trapped set. Keeping only
those ”trapped” words, we obtain

UN
� u0 =

X
Ea trapped

UEa u0 + negligible ;

with each term bounded as in (17). A more careful analysis (involving a ”good” choice
of partition) shows that for long logarithmic times N = C j log hj, C � 1, the number
of relevant words is bounded above by exp(N (Htop + �)), where Htop is the topological
entropy (9), and � > 0 can be made arbitrary small by taking C large enough.

4.2 Evolving a general state. Take an eigenstate vz with eigenvalue z near E. Being
microlocalized near p�1(E), vz can be decomposed into wavepackets u� as in (12). By
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linearity, we find

UN
� vz =

1

(2�h)d

X
Ea trapped

Z
U (E)

d� hu�; vzi UEa u� + O(h1) ;

where each term UEa u� is bounded as in (17). Applying the triangle inequality, we find

kUN
� vzk �

Vol(U (E))

(2�h)d
eN (Htop+�)e�

�(d�1)
2 (N �TE) :

For a constant expansion rate, P (1/2) = Htop �
�(d�1)

2
, so the above bound can be recast

as h�ˇ eN (P (1/2)+�) for some ˇ > 0. Taking N = C j log hj with C large enough, we can
have hˇ � eN� , thereby giving a bound eN (P (1/2)+2�). This bound is nontrivial if P (1/2)

is negative. Using the fact that vz is an eigenstate of eigenvalue z � E, we get for such a
time N :

jeN Imz/h
j � eN (P (1/2)+2�)

H) Imz/h � P (1/2) + 2� :

4.3 Improving the pressure gap. In the case of a fractal hyperbolic repeller, the pres-
sure bound of Theorem 2 is believed to be nonoptimal, at least for generic hyperbolic
systems. Estimating ku(N )k by adding the norms of the terms UEau� does not take into
account the partial cancellations between these terms. Indeed, when N = C j log hj with
C � 1, many of those terms are almost proportional to each other, essentially differing
by complex valued prefactors. The norm of their sum is hence governed by a sum of many
complex factors, which is generally much smaller than the sum of their moduli.

Such partial cancellations (or “destructive interferences”) are at the heart of Dologopyat’s
proof of the exponential decay of correlations for Anosov flows Dolgopyat [1998], when
analyzing the spectrum of a family of transfer operators. Naud [2005] adaptedDolgopyat’s
method to show an improved high frequency resonance gap for the Laplacian on Schottky
hyperbolic surfaces, still working at the level of transfer operators. By a similar (yet, more
involved) method, Petkov and Stoyanov improved the high frequency resonance gap for
scattering by convex obstacles on Rd ; these authors managed to establish a semiclassi-
cal connection between the quantum propagator and a transfer operator, thereby applying
Dolgopyat’s method to the former. All the above works improve the pressure bound by
some small, not very explicit �1 > 0.

In the case of hyperbolic surfaces, a recent breakthrough was obtained by Dyatlov and
his collaborators. 2016 showed that a nontrivial gap for a hyperbolic surface with param-
eter ı 2 (0; 1) results from a fractal uncertainty principle (FUP), a new type of estimate



2532 STÉPHANE NONNENMACHER

in 1-dimensional harmonic analysis. This FUP states that if K � [0; 1] is a Cantor set of
dimension ı and K(h) its h-neighbourhood, then there exists ˇ > 0 such that

k1lK(h)Fh1lK(h)kL2!L2 � C hˇ ;

where Fh is the semiclassical Fourier transform. This estimate shows that a function u 2

L2(R) and its semiclassical Fourier transform cannot be both concentrated onK(h). This
FUP obviously holds when ı < 1/2, giving back the pressure bound. In a ground-breaking
work Bourgain and Dyatlov [2016] managed to prove this FUP in the full range ı 2 (0; 1),
thereby showing a resonance gap on any Schottky hyperbolic surface. The improved gap
is not very explicit, it is much smaller than the gap 1�ı

2
conjectured by Jakobson-Naud.

Although themethods of Dyatlov and Zahl [2016] strongly rely on the constant negative
curvature, it seems plausible to prove a resonance gap for any hyperbolic repeller in two
space dimensions. On the other hand, the extension of an FUP to higher dimensional
systems is at present rather unclear, partly due to the more complicated structure of the
trapped sets.

5 Normally hyperbolic trapped set

In this last section, we focus on a different type of trapped set. We assume that for some
energy window [E1; E2], the trapped set K = K[E1;E2] = [E2[E1;E2]KE is a smooth,
normally hyperbolic, symplectic submanifold of the energy slab p�1([E1; E2]). What
does this all mean? If K is a symplectic submanifold of T �M , at each point � 2 K

the tangent space T�(T
�M ) splits into T�K ˚ (T�K)?, where both are symplectic sub-

spaces. Normal hyperbolicity means that the flow 't
p is hyperbolic transversely to K:

the transverse subspace (T�K)? = Ẽs(�) ˚ Ẽu(�), such that d't
p �TK? contracts

exponentially along Ẽs(�), and expands along Ẽu(�) (see Figure 10). We denote by
J̃ u

t (�) = j det(d't
p �Ẽu

�
)j the normal unstable Jacobian.

5.1 Examples of normally hyperbolic trapped sets.

5.1.1 Examples in chemistry and general relativity. This dynamical situation may
occur in quantum chemistry, when modeling certain reaction dynamics. The reactants and
products of the chemical reaction are two parts of phase space, connected by a hyperbolic
“saddle” along two conjugate coordinates (x1; �1), similar with the linear dynamics of
Section 4.1.1, while the evolution of the other coordinates remains bounded Waalkens,
Schubert, and Wiggins [2008]. The trapped set K[E1;E2] is then a bounded piece of the
space fx1 = �1 = 0g.
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Figure 10: Sketch of a normally hyperbolic trapped set K.
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This dynamical situation also occurs in general relativity, namely when describing time-
like trajectories in the Kerr or Kerr-de Sitter black holes Wunsch and Zworski [2011] and
Dyatlov [2012]. The trapped set is a normally hyperbolicmanifold diffeomorphic toT �S2.
In this situation resonances are replaced by quasinormal modes, obtained by solving a gen-
eralized spectral problem P (z)u = 0. Yet, the semiclassical methods sketched below can
be easily adapted to this context.

5.1.2 From classical to quantum resonances. An original application of this dynam-
ical assumption concerns the study of contact Anosov flows. A flow �t defined on a
compact manifold M is said to be Anosov if at any point x 2 M , the tangent space TxM

splits into RΞ(x)˚ Eu(x)˚ Es(x), where Ξ(x) is the vector generating the flow, while
Es(x), Eu(x) are the stable/unstable subspaces, satisfying the properties (7). The as-
sumption that �t preserves a contact 1-form ˛, implies that the subspace Eu(x)˚ Es(x),
which forms the kernel of d˛(x), depends smoothly on x.

The long time properties of such a flow are governed by a set of so-called Ruelle-
Pollicott (RP) resonances f�k � C�g, which share many properties with the quantum
resonances we have studied so far. Considering two test functions u; v 2 C 1(M ), their
correlation function Cv;u(t)

def
=

R
M

dx v(x)u(�t (x)) �
R

dx v(x)
R

dx u(x) can be ex-
panded in terms of these RP resonances:

(18) Cv;u(t) =
X

Im�k��


e�i�k t
hv;Π�k

ui + Ou;v(e
�
t ) ;

Hence, if the RP resonances �k satisfy a uniform gap, the correlation decays exponentially
(one speaks of exponential mixing). Such a resonance gap has been first proved by Dol-
gopyat [1998] and Liverani [2004], while Tsujii [2010] proved an explicit bound for the
high frequency gap.
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Comparing (18) with (3), Faure and Sjöstrand [2011] had the idea to interpret the RP
resonances (or rather zk = h�k) as the “quantum resonances” of the “quantum Hamil-
tonian” Ph = �ihΞ. Notice that e�itPh/hu(x) = u(��t (x)). What do we gain from
this interpretation? The principal symbol of Ph, p(x; �) = �(Ξ(x)), generates on T �M

the symplectic lift of �t : 't
p(x; �) = (�t (x);Td�t (x)�1�). As opposed to the scattering

situation, each energy shell p�1(E) goes to infinity along the fibers of T �M . Hence, for
any energy E 2 R, the trapped set KE is given by the points � = (x; �) 2 p�1(E) such
that Td�t (x)�1� remains bounded when t ! ˙1. From the hyperbolicity structure, this
is possible only if � = E˛x . Hence, KE = f(x; � = E˛x); x 2 M g, a smooth sub-
manifold of p�1(E). It is easy to check that K = [E KE is symplectic, and normally
hyperbolic (the subspaces Ẽs/u are lifts of the subspaces Es/u of TM ). The resonances
of the quantum Hamiltonian Ph can thus be connected with the properties of this trapped
set.

The main difficulty when analyzing this classical dynamical problem as a “quantum
scattering” one Faure and Sjöstrand [ibid.], is to twist the selfadjoint operator Ph, such
as to transform the resonances into eigenvalues. This was done by constructing spaces
of anisotropic distributions Hm � D0(M ), such that Ph : Hm ! Hm has discrete spec-
trum in fImz � �mhg, made of ”uncovered” Ruelle-Pollicott resonances. We will not
detail this construction, which can also be presented as a twist of the operator Ph into a
nonselfadjoint operator Ph;m on L2(M ).

5.2 An explicit resonance gap for normal hyperbolic trapped sets. Let us come back
to our general setting, and start again to propagate minimum-uncertainty wavepackets u�

centered on a point � 2 K. Due to the normal hyperbolicity, the state e�itPh/hu� spreads
exponentially fast along the transverse unstable direction Ẽu. Similarly as what we did
in Section 3.3.3, one can twist the operator Ph by a microlocal weight Gh, such that the
twisted operatorPh;G is absorbing outside the neighbourhoodK(C h1/2). After a few time
steps, the evolved wavepacket will leak outside of this neighbourhood, and be partially
absorbed: their norms will decay at the rate

ke�itPh;G/hu�k � C J̃ u
t (�)

�1/2 ; t > 0:

If we call Λ̃min = lim inft!1
1
t
inf�2K log J̃ u

t (�) theminimal growth rate of the transverse
unstable Jacobian, for any � > 0 and t > t� large enough, the above right hand sides are
bounded by e�t(Λ̃min/2��). With more work, one can show that this uniform decay of
our individual wavepackets induces the same decay of any state microlocalized on K, in
particular of any eigenstate vz of Ph;G . One then obtains the following gap estimate for
the eigenvalues ofPh;G , or equivalently the resonances ofPh Nonnenmacher and Zworski
[2015]:
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Theorem 3 (Resonance gap, normally hyperbolic trapped set). Assume the trapped set
K = K[E�c;E+c] is normally hyperbolic, with minimal transverse growth rate Λ̃min. Then,
for any � > 0 and h > 0 small enough, the rectangle R(E; c; (Λ̃min/2� �)h) contains no
resonance.

Like in the case of Theorem 2 and its improvements, we also obtain a bound for the
truncated resolvent operator inside the rectangle, of the form k�(Ph �z)�1�k � h�ˇ , � 2

C 1
c (M ). When applying this result to the situation of Section 5.1.2 (mixing of contact

Anosov flows), we exactly recover Tsujii’s gap for the high frequency RP resonances.

In two of the settings presented above (the resonances of Kerr-de Sitter spacetimes Dy-
atlov [2016], respectively the Ruelle-Pollicott for contact Anosov flows Faure and Tsujii
[2013], the spectrum of resonances has been shown to enjoy a richer structure, provided
certain bunching conditions on the rates of expansion are satisfied. Namely, beyond the
first gap stated in the above theorem, resonances are gathered in a (usually finite) sequence
of parallel strips, separated by secundary resonance free strips. The widths of the strips are
expressed in terms of maximal and minimal expansion rates similar with Λmin. Besides,
the number of resonances along each of the strips satisfies a Weyl’s law, corresponding to
the volume of the h1/2 neighbourhood of K.
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Abstract
The vanishing viscosity problem consists of understanding the limit, or limits, of

solutions of the Navier-Stokes equations, with viscosity �, as � tends to zero. The
Navier-Stokes equations are a model for real-world fluids and the parameter � repre-
sents the ratio of friction, or resistance to shear, and inertia. Ultimately, the relevant
question is whether a real-world fluid with very small viscosity can be approximated
by an ideal fluid, which has no viscosity. In this talk we will be primarily concerned
with the classical open problem of the vanishing viscosity limit of fluid flows in do-
mains with boundary. We will explore the difficulty of this problem and present some
known results. We conclude with a discussion of criteria for the vanishing viscosity
limit to be a solution of the ideal fluid equations.

Introduction

The vanishing viscosity problem is a classical one in fluid dynamics. In its simplest form,
the question is to understand under which circumstances the behavior of real world fluids
can be well-approximated by that of ideal, or frictionless, fluids. Said differently, when
can small viscosity be realistically neglected? The purpose of this article is to discuss
some of the current knowledge concerning this problem.

More precisely, we will be focusing on incompressible Newtonian fluids. In addition,
we are specifically interested in the interaction of fluid flows with rigid boundaries. Fi-
nally, without ignoring the physics, we will be primarily concerned with the mathematical
treatment of this problem. We will ignore the important issues surrounding the computa-
tional modeling of such flows.

We begin our discussionwith the physical description of the small viscosity flow regime
and, in particular, with Ludwig Prandtl’s contributions. After discussing the discrepancy
between slightly viscous and non-viscous flow near a solid boundary, we will explore what
M.C.L.F. was partially supported by CNPq grant #306886/2014-6. H.J.N.L. was supported in part by CNPq

grant #307918/2014-9 and FAPERJ grant #E-26/202.950/2015.
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is known if this discrepancy propagates into the bulk of the fluid, and we conclude with
criteria under which the small viscosity limit may still be considered ideal, despite this
discrepancy.

Hereafter, viscosity is understood as the inverse of the Reynolds number, a non-dimensional
constant which parameterizes incompressible flow. Roughly, the Reynolds number cap-
tures the relative importance of inertia and friction, with large Reynolds number flows
dominated by inertia. It incorporates the scale and characteristic speed of interest, along
with the kinematic viscosity of the fluid.

1 L. Prandtl and boundary layers

“... the behaviour of a fluid of small viscosity � may, on account of boundary layer sep-
aration, be completely different to that of a (hypothetical) fluid of no viscosity at all.”
Acheson [p. 30 1990].

A fundamental part of the study of fluid motion is understanding the interaction of
fluids with solid objects. A natural point of departure for this discussion is the fact that
the interaction of incompressible flow with a solid object is completely different if the
flow has very small viscosity or none at all. This fact was observed in experiments, long
before a consensus physical theory for it became available, see Acheson [p. 264 ibid.].

The relevant physical theory was proposed in a 7.5-page paper delivered at the Third
ICM in Heidelberg, in 1904, by Ludwig Prandtl [1905]. At the time, Prandtl was a young
fluid dynamicist transitioning from the University of Hannover to Gottingen. This remark-
able short paper contains several new ideas, among which are the foundations of Boundary
Layer Theory. In this section we briefly present its main ideas. We refer the reader to the
classical text Schlichting [1960] for a broad discussion.

Prandtl assumes that a viscous fluid does not slip along the boundary, something which
was still controversial at the time. Further, Prandtl’s model describes the flow as two
separate, yet interacting parts: in one part, far from the boundary, the flow can be treated as
inviscid, and satisfies, in particular, the conservation laws of ideal fluid theory. The second
part, localized near the rigid boundary, is where viscous effects are important. Prandtl
refers to the region near the boundary as a transition or boundary layer and he suggests that,
within this layer, the tangential velocity varies rapidly in the normal direction, while the
normal velocity is slowly varying; together, they vanish at the boundary and interpolate the
inviscid flow in the bulk of the fluid domain. Prandtl derives a system of partial differential
equations which is an asymptotic model for the flow in the boundary layer; these equations
are now known as the Prandtl equations. Furthermore, he estimates the thickness of the
boundary layer as being of the order of the square-root of viscosity. Lastly, Prandtl notes
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that the boundary layer may separate, or detach, from the boundary and entrain into the
bulk of the flow, even for flows with small, yet positive, viscosity.

Let us be more precise. The standard mathematical model for incompressible viscous
flows is given by the �-Navier-Stokes equations, which we write as

(1-1)

8<: @tu+ (u � r)u = �rp + �∆u+ f; in (0;+1) � D;

divu = 0; in [0;+1) � D:

Above, D is the physical domain of the fluid, u = u(t; x) = (u1; u2; u3)(t; x) repre-
sents the fluid velocity at time t � 0 and at the point x 2 D, and p = p(t; x) is the scalar
pressure. The viscosity is � > 0, and f represents a given external force, which we assume
to vanish throughout this paper. The no slip boundary condition translates to

(1-2) u = 0 on (0;+1) � @D:

The equations for inviscid, or ideal, fluid flow are known as the Euler equations and
are given by setting � = 0 in (1-1). The boundary condition for the Euler equations in a
domain with boundary is the non-penetration boundary condition:

(1-3) u � n = 0 on (0;+1) � @D;

where n is the unit normal exterior to @D.
The mismatch between (1-2) and (1-3) is at the heart of the difficulty in addressing the

small viscosity problem.
For simplicity, let us assume that D is the two-dimensional half-plane H = fx =

(x; y) 2 R2 j y > 0g. Prandtl’s theory applies to situations where the flow u = (u; v)

can be described as a boundary layer flow uBL inside a layer of thickness ı = ı(�),
superimposed to a mainstream, inviscid flow U = (U; V ) at a distance greater than ı
from the boundary. Asymptotic matching may be used to derive an approximate model
for the behavior of the flow in the boundary layer. Rescaling the problem with respect to
ı and introducing the variable Y = y/ı yields ı =

p
� and leads to the boundary layer

equations below.
Let uP = (uP ; vP ). The Prandtl equations are given by

(1-4)

8̂̂̂̂
<̂
ˆ̂̂:
@tu

P + (uP � er)uP = �@xp
P + @2Y u

P ; in (0;+1) � H;

@Y p
P = 0; in [0;+1) � H;

fdivuP = 0; in [0;+1) � H;

where er = (@x ; @Y ) and fdivuP = er � uP .
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We expect that the solution u = (u; v) of (1-1) is well-approximated, for small � > 0,
by

(1-5) u = (u; v) ∼
�
U = (U; V ); if y >>

p
�;

uP = (uP ;
p
�vP ); if 0 < y <<

p
�:

The boundary conditions for the Prandtl solution should be:

(1-6) uP (t; x; 0) = (0; 0) and lim
Y !+1

uP (t; x; Y ) = (U (t; x; 0); 0); on (0;+1)�R:

In addition, since the Prandtl pressure is independent of the vertical variable Y we have,
taking the limit Y ! 1, that the Prandtl pressure is matched to the Euler pressure at the
boundary. Therefore,

pP (t; x; Y ) = pE (t; x; 0); in (0;+1) � H;

so that

(1-7) � @xp
P = (@tU + U@xU )ˇ̌

(t;x;0)

; in (0;+1) � H:

Finally, the initial data for the Prandtl equations is chosen so that the approximation in
(1-5) is verified at t = 0. We write:

(1-8) uP
0 (x; Y ) � uP (0; x; Y ):

In summary, given an initial flow u0, Prandtl’s boundary layer theory, therefore, is
based on the ansatz that the viscous flow whose initial velocity is u0 is well-approximated
by the inviscid flow with the same initial velocity, far from the boundary, superimposed
with an interpolating field near the boundary. As Prandtl himself notes, the agreement of
this theory with experiments happens only in very particular situations, such as special
laminar flows. The key observation is that the boundary layer is a thin region of intense
shear next to the boundary.

This theory is not valid, even for laminar flows, when boundary layer separation oc-
curs. This is when the boundary layer detaches from the boundary and affects the inviscid
downstream flow. It is the case with flow past a cylinder, flow past a finite flat plate, past
a corner, etc.

From a mathematical point-of-view, Prandtl’s boundary layer theory introduces two
natural questions. First, under which conditions are the Prandtl equations well-posed, and,
second, given solutions of Prandtl’s equations, when can the validity of the large Reynolds
number asymptotics be rigorously verified. These two questions are obviously related, but
much more is known regarding the former.
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The rigorous study of the Prandtl equations began with the work of O. Oleinik, in the
1960s, where the steady and time-dependent problems were studied, in several scenarios,
see for instance Oleĭnik [1963, 1966] and Oleĭnik and Samokhin [1999]. The following
result is particularly noteworthy.

Theorem 1.1. (O. A. Oleinik, 1967, Oleĭnik [1966]) Let uP
0 = uP (0; x; Y ) satisfy the

monotonicity condition @Y u
P
0 > 0 in H, and assume that U = U (t; x; 0) > 0 for all

t � 0, x 2 R. Then there exists a local, classical, solution of the Prandtl equations (1-4),
subject to the initial and boundary conditions (1-8), (1-6), with pressure given by (1-7).

The proof of this theorem is based on a clever time-dependent change of variables called
Crocco transform. The condition U = U (t; x; 0) > 0 is the “no back-flow” condition,
known to prevent boundary layer separation, as does the monotonicity condition. We
observe, however, that there is no proof that the Prandtl approximation holds under these
conditions. We refer the reader to Kelliher [2017] and Constantin, Kukavica, and Vicol
[2015] for a discussion of the inviscid limit in this context.

A different, energy-based proof of Oleinik’s theorem, still assuming the Oleinik mono-
tonicity condition and no back-flow, was obtained in Masmoudi and Wong [2015] and in
Alexandre, Y.-G. Wang, Xu, and Yang [2015], see also Kukavica, Masmoudi, Vicol, and
Wong [2014].

Well-posedness of Prandtl’s equations has also been studied in the analytic setting. R.
Caflisch and M. Sammartino studied flows in a half-plane and proved, see Sammartino
and Caflisch [1998b], that both Euler and Prandtl are locally well-posed for real ana-
lytic data. In Sammartino and Caflisch [1998a] they went on to show that, under the
assumption of real-analyticity of the initial Euler and Prandtl velocities, the solution of
the Navier-Stokes equations is well-approximated as in (1-5), assuming the initial data
for the Navier-Stokes equations satisfies the same asymptotics which, in certain contexts,
reads as u�

0 = u�
0(x; y) = uE

0 (x; y) + (uP
0 ;

p
�vP

0 )(x; Y ) + O(
p
�). In addition, results

on local well-posedness for Prandtl, assuming only tangential analyticity have been ob-
tained, see Lombardo, Cannone, and Sammartino [2003] and Kukavica and Vicol [2013].

The problem in the analytic setting is, therefore, well-understood. However, as pointed
out in Grenier, Guo, and Nguyen [2015], analytic regularity is too much to expect in
real-world flows. In Maekawa [2013, 2014] it was shown that the Prandtl approxima-
tion is valid if the initial vorticity is compactly supported away from the boundary. More
precisely, the author assumes that the Navier-Stokes and Euler initial velocities are the
same and their initial curl is supported far from the boundary and, additionally, the curl is
Sobolev regular. The author establishes local-in-time well-posedness for the Prandtl equa-
tions and shows that, in L1, the Prandtl approximation is valid. Note that, in particular,
the initial velocity is assumed to be analytic in a neighborhood of the boundary, but this
analyticity is lost at positive time and the author carefully estimates how.
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The mathematical difficulty in treating the Prandtl equations stems from the loss of one
derivative in x, which cannot be recovered due to lack of diffusion in the horizontal direc-
tion. One realization of this difficulty is the fact that the Prandtl equations have been shown
to be linearly ill-posed in Sobolev spaces, see Gérard-Varet andDormy [2010]. Finite-time
blow-up for smooth solutions of Prandtl’s equation goes back to E and Engquist [1997],
see also Kukavica, Vicol, and F. Wang [2017] for a more physically motivated example.

As we have already observed, the mismatch between the no-slip and non-penetration
boundary conditions is largely responsible for the difficulty in studying the vanishing vis-
cosity limit. Assuming settings for which Prandtl’s ansatz, that the difference between
viscous and inviscid flow is confined to a small region near the boundary, holds true then,
at small viscosity, this mismatch corresponds to the formation of a thin layer of intense
shear near the boundary. In Grenier, Guo, and Nguyen [2015] this was explored by ex-
plicitly connecting the validity of the Prandtl asymptotic model to the stability of viscous
shear flows. More precisely, the authors of Grenier, Guo, and Nguyen [ibid.] conjecture
that shear flows are typically unstable for the Navier-Stokes equations and, therefore, that
the Prandtl approximation does not hold in Sobolev spaces; their conjecture is the subject
of ongoing work, see Grenier, Guo, and Nguyen [2016].

In the shear layer discussed above, vorticity, the curl of velocity, tends to be very large.
If we consider, instead, the infinite Reynolds number limit, then the mismatch between
viscous and ideal flow boundary conditions will lead to a vortex sheet, understood as an
idealization of a thin region of intense shear, forming at the boundary. This was noted
more precisely in Kelliher [2008, 2017], where (a variant of) the result below was proved.

A word on notation: L2
� (D) refers to divergence-free vector fields whose components

are square-integrable. We recall that a vector field in L2
� (D) has a well-defined trace of

normal component at @D. In addition, if x = (x; y) then x? � (�y; x), and r? �

(�@y ; @x).
Fix T > 0 and assume D is connected and simply connected.

Proposition 1.2. (See Kelliher [2008, 2017].) For each � > 0, let u� 2 L2
� (D)\H 1

0 (D).
Assume that there exists v 2 L2

� (D) such that u� * v weakly in L2
� (D) as � ! 0, and

that the trace of v, at @D, is well-defined. Then, if !� � curlu� , it follows that

1. If D � R2, then !� * curl v � (v � �)�, weak-� (H 1(D))�, as � ! 0, where
� = n? and � is the 1-dimensional Hausdorff measure on @D.

2. If D � R3, then !� * curl v+ (v� n)�, weak-� (H 1(D))�, as � ! 0, where � is
the 2-dimensional Hausdorff measure on @D.

This result can be derived from Stokes’ theorem in a straightforward manner.
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Proposition 1.2 implies that, if u� * uE , with uE a solution of the Euler equations,
and if the trace of tangential component of uE is well-defined on @D, then a vortex sheet
will form on the boundary, with strength given by uE � � .

2 Vortex sheets in ideal fluid flow

As we have seen, in the vanishing viscosity limit, thin shear layers arise near the boundary
and are expected be unstable, detach and affect the bulk of the fluid. In these thin shear
layers vorticity is very intense and concentrated, and it is the nature of ideal flow that
vorticity can neither be created nor destroyed. An idealization of these thin shear layers
are the “Helmholtz surfaces of discontinuity” (see Prandtl [1905]), also known as vortex
sheets, which are surfaces across which the velocity field has a tangential discontinuity,
while the normal component is continuous. The tangential discontinuity of the flow is
read at the level of vorticity as a Dirac delta supported on the surface of discontinuity. In
this section we will discuss the evolution of vortex sheets in ideal fluids. We emphasize
that, at this point, the problems are purely mathematical, as no real-world fluid has zero
viscosity, nor do vortex sheets exist in nature.

2.1 Full plane. We will continue to carry out our discussion in two dimensions. We
introduce the vorticity ! � curlu = r? � u as a new dynamical variable. Taking the
curl � r?� of the Euler equations yields:

(2-1)

8<: @t! + (u � r)! = 0; in (0;+1) � D;
divu = 0; in [0;+1) � D;
curlu � r? � u = !; in [0;+1) � D:

The study of ideal fluid flow from the point-of-view of the evolution of vorticity is
called vortex dynamics. It is a particularly useful stance given that vorticity is transported.
This is true even in three dimensional space, although the transport is more complicated.
We note that, if D is a simply connected domain, then (2-1) is actually a closed evolution
equation for the dynamic variable !. In this case, the elliptic system formed by the last
two equations in (2-1) is explicitly solvable:

(2-2) u(t; �) = r
?(∆D

0 )�1!(t; �) � KD[!(t; �)];

where ∆D
0 is the homogeneous Dirichlet Laplacian on D. This is called the Biot-Savart

law and the kernel in the integral operatorKD[�] is theBiot-Savart kernelKD = KD(x; y).
Let u0 be a vector field which is irrotational on either side of a given, smooth, curve

C0 � R2 and such that there is a jump in the tangential component across C0. It is easy
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to see, in this case, that the vorticity !0 = curlu0 is a measure concentrated on the curve
C0, with density, or vortex sheet strength 
0 = [u0]C0

, that is, !0 = 
0ıC0
.

There are two points-of-view used to describe the evolution of a vortex sheet. One
gives rise to the explicit description, where we seek a time-dependent parameterization of
the curve of discontinuity of the flow. To begin with, we parameterize the initial curve and
assume that the vortex sheet structure is preserved under the flow, so that!(t; �) = 
tıCt

, a
reasonable assumption given that vorticity is transported by u = u(t; �). This ansatz leads
to the Birkhoff–Rott equations, derived explicitly by G. Birkhoff [1962], implicit in the
work of N. Rott [1956]. Using the identification R2 ∼ C, z = x + iy, the Birkhoff–Rott
equations are written as

(2-3)
@

@t
z(t;Γ) =

1

2�i
pv

Z
1

z(t;Γ) � z(t;Γ0)
dΓ0:

The parameter Γ is called the circulation variable.
TheBirkhoff–Rott equations encode both themotion of the sheet and the time-dependent

evolution of the density, or sheet strength, or yet, the magnitude of the jump in tangential
velocity across the sheet. The density can be recovered through 
t (�) = (@Γz(t; �))

�1.
The study of vortex sheet motion through the Birkhoff–Rott equations has a long his-

tory. As an idealization of intense thin shear layers, it is expected that vortex sheets de-
velop a complicated motion through spontaneous generation of small scales. This can be
illustrated by performing a periodic perturbation on a stationary flat vortex sheet and ob-
serving the exponentially growing modes that ensue, see Marchioro and Pulvirenti [1994].
The linear instability observed in the Birkhoff–Rott equations is called Kelvin-Helmholtz
instability and it manifests itself macroscopically as a tendency of the sheet to roll-up into
spirals.

In C. Sulem, P.-L. Sulem, Bardos, and Frisch [1981] short time existence was estab-
lished assuming the initial vortex sheet and sheet strength were real analytic, since real
analyticity implies exponential decay of high Fourier modes. In Moore [1978] and Moore
[1979] sophisticated asymptotic calculations were performed which suggested the appear-
ance of a singularity in finite time for analytic vortex sheets and, moreover, he described
the expected singularity as a blow-up in curvature. Moore’s calculations were rigorously
confirmed by Caflisch and Orellana [1986, 1989], who showed that, for an analytic pertur-
bation of amplitude O(") the time-of-existence is O(log "). For further work see Duchon
and Robert [1988] and Lebeau [2002]. The state-of-the-art result regarding ill-posedness
is due to S. Wu [2002, 2006].

An alternative point-of-view in the description of vortex sheet evolution is to embed
the discontinuity curve and density in a solution of the Euler equations, whose evolution
should carry the information along. In this implicit descriptionwemake no assumption on
the structure of the solution at future time. The tools used when taking this approach are
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PDE methods, and the relevant information is the regularity space in which the equations
are studied. From this standpoint a Dirac delta or a general bounded Radon measure are
indistinguishable. We refer to initial velocities whose curl is a bounded Radon measure
as vortex sheet initial data.

Let us proceed with a precise definition of a weak solution in a general fluid domain
D.

Definition 2.1. Let u0 2 L2
loc(D) and assume that !0 = curlu0 2 BM(D). The vector

field u = u(t; x) 2 L1
loc(R+;L

2
loc(D)) is a weak solution of the incompressible Euler

equations in D, (1-1) with � = 0, with initial data u0, if the following conditions hold.

1. For every divergence-free test vector fieldΦ = Φ(t; x) 2 C1
c (R+�D) the identity

below holds true:

(2-4)
Z +1

0

Z
D

f@tΦ � u+ [(u � r)Φ] � ug dxdt +
Z

D
Φ(0; x) � u0(x) dx = 0;

2. divu(t; �) = 0 in D0(R+ � D),

3. if @D ¤ ¿ then u � n = 0 in the trace sense on @D, a.e. t .

The study of weak solutions of the Euler equations with vortex sheet initial data was pio-
neered by R. DiPerna and A. Majda in a series of papers, see DiPerna and Majda [1987a,b,
1988], where they developed the framework and criteria to establish existence. J.-M. De-
lort [1991], proved the existence of a weak solution with vortex sheet initial data provided
the vorticity has a distinguished sign. Let us briefly recall Delort’s result, for D = R2,
and revisit the proof.

Theorem 2.2. (Delort [ibid.]) Let u0 2 L2
loc(R

2) and assume that !0 = curlu0 2

BMc;+(R2). Then there exists a weak solution in the sense of Definition 2.1.

The proof is obtained by means of a compensated compactness argument. We discuss
an alternative proof, given by Schochet [1995], which involves rewriting the weak formu-
lation in terms of vorticity and then symmetrizing the integration kernels which arise. This
has turned out to be a very useful technique, the source of a number of additional results.

The weak vorticity formulation is obtained by first multiplying, formally, the vorticity
equation (2-1) by a test function ' 2 C1

c (R+ � R2), then integrating by parts so as to
throw all derivatives onto the test function, thus findingZ

R+

Z
R2

[(@t')! + (u � r')!] dxdt +
Z

R2

'(0; x)!0(x) dx = 0:
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One then recalls that the velocity u can be recovered from the vorticity ! by means of the
Biot-Savart law (2-2) which, in the full plane, reads:

u = u(t; x) =
Z

R2

K(x � y)!(t; y) dy;

with

K(z) =
z?

2�jzj2
� r

?(∆�1):

Indeed, since divu = 0 it follows that u = r? and, therefore, ! = curlu = r? �

r? = ∆ . We then substitute u for the Biot-Savart law in the nonlinear term of
the weak vorticity formulation, we symmetrize with respect to x and y and use the anti-
symmetry of the kernel K to get:Z

R+

Z
R2

(u � r')! dxdt =
Z

R+

Z
R2

�Z
R2

K(x � y)!(t; y) dy
�

� r'(t; x)!(t; x) dxdt

=

Z
R+

Z
R2

�Z
R2

K(x � y)!(t; x) dx
�

� r'(t; y)!(t; y) dydt

�

Z
R+

Z
R2

Z
R2

H'(t; x; y)!(t; x)!(t; y) dxdydt;

where the auxiliary test functionH' is given by
(2-5)

H'(t; x; y) = K(x � y) �
(r'(t; x) � r'(t; y))

2
�

(x � y)?

jx � yj
�

r'(t; x) � r'(t; y)
4�jx � yj

:

With this notation the weak vorticity formulation becomesZ
R+

Z
R2

(@t')! dxdt +
Z

R+

Z
R2

Z
R2

H'(t; x; y)!(t; x)!(t; y) dxdydt(2-6)

+

Z
R2

'(0; x)!0(x) dx = 0:

The main advantage of this formulation is that it makes sense for any flow whose vor-
ticity is a bounded Radon measure which is continuous, that is, which does not contain an
atomic part. To see this one first observes that, for any test function ' 2 C1

c (R+ � R2),
the auxiliary test function H' is a bounded function on R+ � R2 � R2. In addition, H'

is discontinuous only on the set f(t; x; y) j x = yg. Now, if the measure !(t; �) is a con-
tinuous bounded measure on R2, then the tensor product !(t; �) ˝ !(t; �) is a continuous
bounded measure on R2 � R2, which can be integrated against H'(t; �; �). Moreover, if
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!n * ! weak-� in L1(R+;BM(R2)), and if, uniformly in n and t � 0, !n(t; �) does
not attribute mass to points (no atomic part, uniformly in n), that is, if

(2-7) sup
n

sup
t
sup
x

Z
B(x;r)

j!n(t; y)j dy ! 0 as r ! 0;

then the weak limit commutes with the nonlinearity.
To prove Delort’s theorem one chooses a smooth approximation of the initial data and

solves the Euler equations with the smooth initial data. This procedure yields a sequence of
exact solutions (un; !n = curlun) satisfying uniform bounds in
L1

loc(R+;L
2
loc(R

2)) for velocity and inL1(R+;L
1(R2)) for vorticity. The distinguished

sign of vorticity, together with the respective bounds above, yield the condition that!n(t; �)

does not attribute mass to points, uniformly in n, in the sense of (2-7). Thus, upon extract-
ing a weakly convergent subsequence, one can pass to the weak limit in all the terms of the
weak vorticity formulation (2-6). To conclude the proof one shows that (2-6) is equivalent
to items 1. and 2. in Definition 2.1.

We note in passing that it is a well-known fact that sequences of nonnegative bounded
Radon measures, uniformly bounded inH�1

loc , satisfy (2-7).
Delort obtained his existence result for an initial velocity in L2

loc(R
2) whose curl be-

longs toLp
c (R2)+BMc;+(R2), for some 1 < p � 1, that is, whose vorticity is such that

only the singular part is of distinguished sign. In Vecchi and S. Wu [1993] existence was
extended to p = 1 using the Dunford-Pettis theorem for uniformly integrable functions.

Versions of Delort’s theorem have been obtained for other approximations, such as
solutions of the Navier-Stokes equations in the full plane, see Majda [1993], numerical
approximations using the vortex blob method, see Liu and Xin [1995], approximations
generated by truncation, see Lions [1996] and by central difference schemes, see Lopes
Filho, Nussenzveig Lopes, and Tadmor [2000]. An alternative proof, highlighting the
compensated compactness aspect of the result, was given in Evans and Müller [1994].

It should be noted that a comparison between the Birkhoff–Rott (explicit) and weak
Euler (implicit) mathematical models for the evolution of vortex sheets was carried out in
Lopes Filho, Nussenzveig Lopes, and Schochet [2007], where it was shown that a weak
solution of the Euler equations whose vorticity is a Dirac delta on a curve of finite length
Ct and with density 
t is a solution of the Birkhoff–Rott equations if and only if the density
is integrable along the curve Ct . This establishes a restricted equivalence between the two
descriptions.

2.2 Domains with boundary. In view of the focus of this paper, it is necessary to con-
sider how vortex sheet initial data flow interacts with a rigid boundary. Delort [1991]
studied flows with vortex sheet initial data of distinguished sign in bounded domains with
smooth boundary, and he established existence of a weak solution in much the same way
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as for the full plane. Delort explored the fact that his proof, for the full plane, was local,
since the test vector fields were assumed to have compact support; this made it possible
to use the same proof for a bounded domain. However, ideal flows in bounded domains
must satisfy the non-penetration condition u � n = 0 on @D, see (1-3). This is a linear
condition for velocity (understood in the trace sense), which is trivially continuous with
respect to weak convergence in L1(R+;L

2
� (D)). Hence, using the same strategy as for

the full plane, namely smoothing out initial data and exactly solving the Euler equations,
with the smooth data, in the bounded domain D, yields a sequence of approximations un

which converge weak-� in L1(R+;L
2(D)), which are all tangent to D, so that the weak

limit satisfies the non-penetration condition in the trace sense.
The simplest two-dimensional fluid domain with a boundary is the half-plane, H �

R2
+ = fx = (x; y) jy > 0g. If we use the same arguments as Delort, but for the (un-

bounded) half-plane, we also obtain a weak solution with vortex sheet initial data assum-
ing the (singular part of the) initial vorticity is of distinguished sign. Now, the image
method is well-known in fluid dynamics as a means to extend to the full plane an ideal
fluid flow in a half-plane: one simply reflects the half-plane flow, by mirror-symmetry,
with respect to the boundary of the half-plane. In H this means that the first component of
the velocity field is even with respect to y, and the second is odd. This symmetry induces
the corresponding vorticity to be odd with respect to y, so that, necessarily, it must change
sign. If, however, one attempts to use the image method for the weak solution obtained
using Delort’s proof, one does not find a weak solution in the full plane, with this odd vor-
ticity. The reason is that the non-penetration condition along the boundary of H, y = 0,
is assumed only in the trace sense, and this is too weak for the image method to work.
This observation is at the heart of the main result in Lopes Filho, Nussenzveig Lopes, and
Xin [2001], where Delort’s theorem is extended to include flows whose vorticity is an
odd bounded Radon measure, single-signed on each side of a line, plus an arbitrary Lp

c

function, p � 1.

Theorem 2.3. (See Lopes Filho, Nussenzveig Lopes, and Xin [ibid.].) Let u0 2 L2(R2)

be a divergence-free vector field such that !0 = curlu0 2 BMc(R2)+Lp
c (R2), for some

p � 1. Assume that !0 is odd with respect to y and single-signed on H. Then there exists
a weak solution of the incompressible 2D Euler equations, in the sense of Definition 2.1,
with initial data (u0; !0).

A key point in the proof of Theorem 2.3 is the a priori estimate below, estabished
in Lopes Filho, Nussenzveig Lopes, and Xin [ibid.]. Fix T > 0, L > 0. There exists
C = C (T;L; ku0kL2k!0kBM) > 0 such that, if n = (0;�1), then

(2-8)
Z T

0

Z L

�L

jun
� n?

j
2(t; x; 0) dxdt � C:
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The new estimate (2-8) implies, together with the estimates with which Delort worked,
that, for any compact subset K � R2,

sup
n

Z T

0

�
sup
x2K

Z
B(x;r)

j!n(y; t)jdy
�
dt � C j log r j�1/2

! 0 as r ! 0:

This is a slightly weaker condition than (2-7), but still sufficient to pass to the limit in
the nonlinear term. Moreover, (2-8) makes it possible to establish the validity of the im-
age method for weak solutions in the half plane, since it allows one to prove that Delort-
type weak solutions actually satisfy a stronger notion of weak solution, called boundary-
coupled weak solution, for which the non-penetration condition is assumed in a stronger
way than simply the trace sense.

Let us now seek a weak vorticity formulation in a general bounded domain D with
boundary. Assume that D has k � 0 disjoint holes, so that @D = Γ0 [k

i=1 Γi , with Γ0

being the outer boundary and Γi , i = 1; : : : ; k being the boundaries of each of the holes.
We will need an analogue of the Biot-Savart law, that is, a means of writing the velocity in
terms of its curl. In domains with non-trivial topology, in order to recover velocity from
vorticity, it is necessary to assign the circulation around each hole, 
i :

(2-9) 
i �

Z
Γi

u � n?dS; i = 1; : : : ; k:

If the vector field u is divergence-free and its curl is a bounded Radon measure then
the circulation is well-defined. In fact, it is enough that divu 2 BM(D) and curlu 2

BM(D) for the entire tangential component u � n? to be a well-defined distribution on
@D, see Iftimie, Lopes Filho, Nussenzveig Lopes, and Sueur [2017]. An analogous fact
had already been noted previously by Chen and Frid [2003].

Wewill alsomake use of the harmonicmeasureswi , solutions of the following boundary-
value problem: 8<: ∆wi = 0; in D;

wi = ıi`; on Γ`; ` = 1; : : : ; k:

wi = 0; on Γ0:

Lastly, let Hi denote a basis of harmonic vector fields, so that each Hi is divergence-
free, curl-free, and the circulation of Hi around Γ` is ıi`.

With this notation we can express velocity in terms of vorticity and circulations.

Proposition 2.4. (See Iftimie, Lopes Filho, Nussenzveig Lopes, and Sueur [2017].) Let
! 2 BM(D) and fix 
i , i = 1; : : : ; k. If u 2 L2(D) is a divergence-free vector field such
that curlu = ! and for which the circulations of u around Γi are 
i , then

u = KD[!] +

kX
i=1

�

i +

Z
D
wi! dx

�
Hi :
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It is possible to express the weak velocity formulation in Definition 2.1 in terms of
vorticity, using the symmetrization technique. To this endwe observe that, up to a constant,
there is a one-to-one correspondence between scalar functions ' 2 C1

c (R+�D), constant
in a neighborhood of @D, with possibly different constants on each Γi , and test vector
fields Φ 2 C1

c (R+ � D), divergence-free, given through the map ' 7! Φ = r?'.
We introduce:

HD
' = HD

' (t; x; y) =
1

2

�
KD(x; y) � r'(t; x) +KD(y; x) � r'(t; y)

�
:

Let Y � f' 2 C1
c (R+ � D) j' is constant in a neighborhood of each Γi g, as in If-

timie, Lopes Filho, Nussenzveig Lopes, and Sueur [2017].

Proposition 2.5. (See Iftimie, Lopes Filho, Nussenzveig Lopes, and Sueur [ibid.].) For
all ' 2 Y, HD

' is bounded on R+ � D � D, continuous if x ¤ y and vanishes on
R+ � @(D � D), x ¤ y.

The main result in Iftimie, Lopes Filho, Nussenzveig Lopes, and Sueur [ibid.] is:

Theorem 2.6. The vector field u 2 L1
loc(R+;L

2(D)), such that

curlu = ! 2 L1(R+;BM(D))

and whose circulations around Γi are 
i , i = 0; : : : ; k, is a weak solution of the Euler
equations, with initial data u0 2 L2(D), if and only if the following identity holds, for all
' 2 Y: Z 1

0

Z
D
@t' ! dxdt �

Z 1

0


0(t)@t'(t; �)
ˇ̌
Γ0

dt(2-10)

+

kX
i=1

Z 1

0


i (t)@t'(t; �)
ˇ̌
Γi

dt +
Z

D
'(0; �)!0 dx � 
0(0)'(0; �)

ˇ̌
Γ0

+

kX
i=1


i (0)'(0; �)
ˇ̌
Γi
+

Z 1

0

Z
D

Z
D
HD

' (t; x; y)!(t; x)!(t; y) dxdydt

+

kX
i=1

Z 1

0

�

i +

Z
D
wi (y)!(t; y) dy

� Z
D
Hi (x) � r'(t; x)!(t; x) dxdt = 0:

If u0 2 L2(D), curlu0 = !0 2 BM+(D) then it follows immediately from Delort’s
theorem and Theorem 2.6 that identity (2-10) holds true for all ' 2 Y.

Now, for smooth flows, circulation around material curves – curves which are trans-
ported by the velocity field – is a conserved quantity; this is known as Kelvin’s circulation
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theorem. This includes circulation around the boundaries of the holes, Γi . Theorem 2.6
deals with non-smooth flows and highlights that, at this level of regularity, it is possible
that circulation may not be conserved.

Identity (2-10) is the weak vorticity formulation in a bounded domain. It is equivalent
to the weak formulation in Definition 2.1, yet it explicitly incorporates the possibility of
violation of Kelvin’s circulation theorem, something not apparent in the weak velocity
formulation (2-4).

We introduce a stronger notion of weak solution, adapted from Lopes Filho, Nussen-
zveig Lopes, and Xin [2001]. Let Y = f' 2 C1

c (R+ � D) j' is constant on each Γi g.

Definition 2.7. Let !0 2 BM(D) \ H�1(D) and 
i;0 2 R, i = 1; : : : ; k. We say that
(!; 
1; : : : ; 
k), ! 2 L1(R+;BM(D) \ H�1(D)), 
i 2 L1(R+), 
0(�) =

R
D ! +Pk

i=1 
i (�), is a boundary-coupled weak solution of the Euler equations in D, with initial
data !0, u0 = KD[!0] +

Pk
i=1

�

i;0 +

R
D wi!0

�
Hi , if, for every ' 2 Y, the identity

(2-10) holds true.

Assume that u is a weak solution which is a weak-� limit, in L1(R+;L
2(D)), of a

sequence fung of exact smooth solutions with initial data fun
0g tending to u0.

Theorem 2.8. (See Iftimie, Lopes Filho, Nussenzveig Lopes, and Sueur [2017].) If ! =

curlu 2 BMc;+(D) \H�1(D) then

1. 
i (t) � 
i;0;

2. If 
i is conserved, for all i = 1; : : : ; k, then the solution is boundary-coupled.

If!0 2 L1(D)\H�1(D) then 
i is conserved, i = 1; : : : ; k and the solution is boundary-
coupled.

The role of the conservation of circulation is to ensure that there is no vorticity concen-
tration on @D, that is, that !n does not attribute mass to the boundary, uniformly in n, see
(2-7).

Boundary-coupled weak solutions have additional interesting properties. The net force
exerted by the fluid on the boundary is defined, for smooth solutions, asZ

@D
pn dS;

where p = p(t; x) is the scalar pressure. Weak solutions, however, lack sufficient smooth-
ness to have a well-defined net force. A weak formulation of the net force, consistent with
the definition for smooth flows, can be shown to be a well-defined object if and only if
the weak solution is boundary-coupled, see Iftimie, Lopes Filho, Nussenzveig Lopes, and
Sueur [ibid.]. The same is true of the net torque.
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Aweak solution is said to satisfy the weak-strong uniqueness property if, given a strong
solution, any weak solution with the same initial data must coincide with it. It is noted in
Wiedemann [2017] that boundary-coupled weak solutions who satisfy an energy inequal-
ity also satisfy the weak-strong uniqueness property. Moreover, such boundary-coupled
weak solutions are, in fact, dissipative weak solutions, a notion introduced by P.-L. Lions
[1996].

We close this section by observing that, while it is clearly desirable to produce boundary-
coupled weak solutions, there is no analogue of (2-8), which was key to prove the exis-
tence of boundary-coupled weak solutions in the half-plane, for bounded domains. It
remains an open problem whether boundary-coupled weak solutions exist in bounded do-
mains, for vortex sheet initial data, even with a distinguished sign.

3 Vanishing viscosity limit and convergence criteria

In this section we return to the problem of vanishing viscosity, or the infinite Reynolds
number limit, in a bounded domain with rigid boundary. Here we are concerned with
the mathematical problem of whether a vector field which is a limit of vanishing viscos-
ity is, in some sense, a solution of the inviscid equations. Hindsight gathered from our
previous discussion suggests that, in view of the mismatch between the no slip (1-2) and
non-penetration (1-3) boundary conditions, the key issue is to control the production of
vorticity at the boundary as � ! 0.

Let us assume hereafter that D is a bounded, connected and simply connected domain
with smooth boundary. We will restrict our discussion to two dimensional fluid flow since,
from the point-of-view of rigorous mathematical analysis, the Euler and Navier-Stokes
equations are better understood in 2D. We will point out which, among the results we
will discuss, have extensions to 3D.

We begin by recalling the Lighthill principle, which relates the flux of vorticity through
the boundary to the tangential derivative of pressure. To see this we assume that the �-
Navier-Stokes equations are valid up to the boundary of the domain and we use the no slip
condition to deduce, formally, that

0 = rp� + �∆u� on R+ � @D:

Next note that∆u� = r?!� and take the inner product with n? to deduce that

(3-1)
@!�

@n
= �

1

�

@p�

@n?
; on (0;+1) � @D:
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The vorticity formulation of the �-Navier-Stokes equations is

(3-2)

8<: @t!
� + (u� � r)!� = �rp� + �∆!� ; in (0;+1) � D;

divu� = 0; in [0;+1) � D;

curlu� = !� ; in [0;+1) � D;

subject to the boundary condition (3-1), and given an initial data.
The Lighthill principle (3-1) was derived formally and it does not appear to be particu-

larly useful in general, since estimates on the tangential derivative of the pressure are not
usually available.

For certain flows with symmetry, however, (3-1) proves to be sufficient to establish the
vanishing viscosity limit. For two-dimensional flows with circular symmetry, see Matsui
[1994], Bona and J. Wu [2002], Lopes Filho, Mazzucato, and Nussenzveig Lopes [2008],
and Lopes Filho, Mazzucato, Nussenzveig Lopes, and Taylor [2008]. Flows with plane-
parallel symmetry were studied in Mazzucato and Taylor [2008], Mazzucato, Niu, and X.
Wang [2011], and Gie, Kelliher, Lopes Filho, Mazzucato, and Nussenzveig Lopes [2017]
and paralell-pipe flows were discussed in Mazzucato and Taylor [2011], Han, Mazzucato,
Niu, and X. Wang [2012], and Gie, Kelliher, Lopes Filho, Mazzucato, and Nussenzveig
Lopes [2017].

In general, if there is no mismatch, that is, if the Euler velocity happens to vanish at
the boundary at all times t > 0, then trivial energy estimates yield convergence of the
Navier-Stokes solutions to the inviscid solution as viscosity vanishes.

Let us discuss the general problem; we are interested in criteria for the vanishing viscos-
ity limit to hold, that is, conditions under which the limit of solutions of �-Navier-Stokes,
� ! 0, are solutions, in some sense, of the Euler equations. The baseline result of this
nature is known as the Kato condition, which we state below.

Fix T > 0.

Theorem 3.1. (Kato [1984].) Let u� 2 L1((0; T );L2
� (D)) \ L2((0; T );H 1

0 (D)) be a
Leray-Hopf solution of the �-Navier-Stokes equations in D � Rd , d = 2, 3, � > 0, with
initial data u0 2 L2

� (D), u0 � n = 0 on @D. Assume that there exists a smooth solution
u0 of the Euler equations in D, satisfying the non-penetration boundary condition, with
initial data u0. Then u� ! u0 strongly in L1((0; T );L2(D)) if and only if

(3-3) �

Z T

0

Z
Γ�

jDu�
j
2 dx ! 0 as � ! 0;

where Γ� is a region near the boundary of thickness O(�).

Remark 3.2. Kato proved the equivalence between vanishing viscosity and several other
statements. Among these, he showed that the Kato condition (3-3) holds if and only if
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u� * u0 weak-� in L1
loc(R+;L

2(D)), paving the way towards understanding the vanish-
ing viscosity limit as a weak limit.

The proof of the Kato criterion is by energy methods, with the necessity of (3-3) de-
riving immediately from the energy inequality for Leray-Hopf solutions of Navier-Stokes.
To show that (3-3) is sufficient Kato introduced the Kato correctors, which are certain
cut-off functions near the boundary. He then uses these correctors on the Euler solution,
“correcting it” at a distance ı, from the boundary. The error term is estimated using the
smoothness of the Euler solution. The choice ı = O(�) allows to estimate terms involving
Du� , which are not a priori bounded, provided (3-3) holds true.

The Kato criterion has been revisited by several authors. For instance, in Temam and X.
Wang [1997] and X. Wang [2001] the full gradient is replaced by the tangential derivative
along the boundary; in Kelliher [2007] the gradient is substituted by vorticity. It should be
noted that the “Kato layer” is not a physical boundary layer, only a mathematical device.

The key issue in what follows is the fact that the Kato criterion assumes the underly-
ing Euler flow to be smooth. It has been the main point of these notes that this is not
what is expected, typically, in the vanishing viscosity limit. We have argued that, due
to the mismatch between no slip and non-penetration boundary conditions, vortex sheets
arise naturally in the infinite Reynolds number limit. These structures are idealizations
of thin shear layers near the boundary. Experiments and the Prandtl asymptotic boundary
layer model suggest that these thin layers are unstable and may detach from the bound-
ary, entraining the bulk of the fluid. This justifies the study of the inviscid problem with
vortex sheet initial data. Now, solutions of the Euler equations with vortex sheet initial
data are far from smooth. Yet these nonsmooth solutions are precisely what is expected
at the vanishing viscosity limit! We conclude this discussion with a different criterion for
the vanishing viscosity limit to hold, in the two-dimensional case – one which allows the
limiting flow to have vortex sheet regularity.

Let D � R2 be a smooth, connected and simply connected, bounded domain.

Theorem 3.3. (See Constantin, Lopes Filho, Nussenzveig Lopes, and Vicol [2017].) Fix
T > 0. Let f�ng be a sequence of positive real numbers such that �n ! 0 and choose
u0 2 L2

� (D), u0 � n = 0 on @D.
Let un 2 L1(0; T ;L2(D)) \ L2(0; T ;H 1

0 (D)) be a Leray-Hopf solution of the �n-
Navier-Stokes equations, subject to the no slip boundary condition, and with initial data
u0.

Set !n = !n(t; �) = curlun � r? � un(t; �).
Suppose, additionally, that:

1. un * u1 weak-� in L1(0; T ;L2(D));

2. f!ng is uniformly bounded in L1(0; T ;L1
loc(D));
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3. For any K �� D we have

sup
n

Z T

0

�
sup
x2K

Z
B(x;r)

j!n(y; t)jdy
�
dt ! 0 as r ! 0:

Then u1 is a weak solution of the Euler equations in D with initial data u0.

Theorem 3.3 is inspired on a result contained in Constantin and Vicol [2017]. Its proof
is adapted from Schochet’s proof of Delort’s theorem, see Schochet [1995].

Assumptions 2. and 3. encode the expected behavior of vortex sheets, yet there is no
proof that they hold true along viscous approximations in general. In light of our previous
discussion, however, these are very natural hypotheses, in contrast with what is assumed
in the Kato criterion.

Items 2. and 3. are strictly local hypotheses; nothing is assumed about the behavior near
the boundary. Surprisingly, the limit flow u1 does satisfy the non-penetration boundary
condition, but only in the trace sense inL1((0; T );H�1/2(@D)); this highlights just how
unsatisfactory is the weak formulation. Of course, it is hopeless to obtain a boundary-
coupled weak solution in this way.

Acknowledgments. The authors wish to thank Dragoş Iftimie and Vlad Vicol for helpful
comments.
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THE TEICHMÜLLER TQFT
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Abstract

We review our construction of the Teichmüller TQFT. We recall our volume con-
jecture for this TQFT and the examples for which this conjecture has been established.
We end the paper with a brief review of our new formulation of the Teichmüller TQFT
together with some anticipated future developments.

1 Introduction

Topological QuantumField Theories (TQFT’s) were discovered and axiomatised byAtiyah
[1988], Segal [1988] and Witten [1988]. Following Witten’s suggestions in Witten [ibid.],
the first examples in 2+1 dimensions were constructed by Reshetikhin and Turaev [1990,
1991] and Turaev [1994] based on the representation theory of quantum groups at roots of
unity. The resultingWitten–Reshetikhin–TuraevTQFT (WRT-TQFT) has also been formu-
lated in pure topological terms in Blanchet, Habegger, Masbaum, and Vogel [1992, 1995]
and it was conjectured in Witten [1988] to be related to quantum conformal field theory
and geometric quantization of moduli spaces. It has been further developed in Tsuchiya,
Ueno, and Yamada [1989], Axelrod, Della Pietra, and Witten [1991], and Hitchin [1990]
and in a series of papers including the work of Laszlo who proved that the Hitchin and
the TUY connections agree in the closed surface case in Laszlo [1998]. The equivalence
of the geometric and combinatorial constructions has been finally verified in Andersen
and Ueno [2007a,b, 2012, 2015] by the first author of this paper jointly with Ueno and
exploited in Andersen [2013, 2006, 2008, 2010], Andersen and Himpel [2012], Andersen
and Jørgensen [2015], and Andersen, Himpel, Jørgensen, Martens, and McLellan [2017]
to establish some strong properties of the WRT-TQFT.

In parallel to the surgery based construction of the WRT-TQFT by Reshetikhin and
Turaev, there is the Turaev–Viro construction of the TV-TQFT in Turaev and Viro [1992],

Supported in part by the center of excellence grant “Center for quantum geometry of Moduli Spaces” DNRF95,
from the Danish National Research Foundation, Swiss National Science Foundation and the ESF-ITGP network.
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which is also a combinatorial construction, but it uses triangulations instead, and where
Reshetikhin and Turaev had to prove the invariance under the surgery presentation of their
construction, Turaev and Viro proved invariance under the Pachner 2-3, 3-2, 4-1 and 1-4
moves of theirs. It turned out that the TV-TQFT was the Hermitian endomorphism theory
of the WRT-TQFT.

Witten further proposed that quantum Chern–Simon theory for non-compact groups
should also exist as generalised TQFT’s with underlying infinite dimensional state vector
spaces in Witten [1991]. A series of papers on this subject have subsequently emerged in
the physics literature, including Bar-Natan and Witten [1991], Dimofte [2013], Dimofte,
Gaiotto, and Gukov [2014], Dimofte, Gukov, Lenells, and Zagier [2009], Dimofte and
Gukov [2013], Gukov and Murakami [2008], Gukov [2005], Hikami [2001, 2007], and
Witten [2011]. However, a mathematical definition of these theories has been lacking for
a long time.

In a series of papers Andersen and Kashaev [2014a,c, 2015, 2013, 2014b], the authors
of this paper, have provided a rigorous construction of such a TQFT, known as the Teich-
müller TQFT. Our construction uses combinatorics of ∆-complexes with fixed number
of vertices which we call triangulations and it builds on quantum Teichmüller theory, as
developed by Kashaev [1998], and Fock and Chekhov [1999], which produces unitary rep-
resentations of centrally extended mappings class groups of punctured surfaces in infinite-
dimensional Hilbert spaces. In this paper we shall first review our original formulation
presented in Andersen and Kashaev [2014a,c, 2015].

The central ingredients in quantum Teichmüller theory are, on the one hand, Penner’s
coordinates of the decorated Teichmüller space and the Ptolemy groupoid introduced in
Penner [1987] with applications summarised in Penner [2012] and, on the other hand, Fad-
deev’s quantum dilogarithm presented in Faddeev [1995] which finds its origins and appli-
cations in quantum integrable systems Faddeev, Kashaev, and Volkov [2001], Bazhanov,
Mangazeev, and Sergeev [2007, 2008], and Teschner [2007]. Faddeev’s quantum diloga-
rithm has already been used in formal state-integral constructions of perturbative invari-
ants of three manifolds in the works Hikami [2001, 2007], Dimofte, Gukov, Lenells, and
Zagier [2009], Dijkgraaf, Fuji, and Manabe [2011], and Dimofte [2013], but without ad-
dressing the important questions of convergence or triangulation independence.

There are further ingredients which we had to introduce in Andersen and Kashaev
[2014a] in order to lift quantum Teichmüller theory to a TQFT. The important one is the
weight function for tetrahedra, whose edges are labeled by dihedral angles of hyperbolic
ideal tetrahedra. It is not immediately clear what are the topological invariance properties
of our TQFT which depends on those dihedral angles. It turns out, however, the parti-
tion function of a given triangulation is invariant under certain Hamiltonian gauge group
action in the space of angles so that the corresponding symplectically reduced space is de-
termined by the total dihedral angles around edges and the first cohomology group of the
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(cusp) boundary. As a consequence, under the condition that the triangulation in question
is such that the second homology group of the complement of the vertices is trivial, the
partition function descends to a well defined function on an open convex subset of this
reduced angle space (corresponding to strictly positive angles). Furthermore, if we have
two triangulations admitting angle structures (which correspond to balanced edges with
total dihedral angles equal to 2�) and related by a Pachner 2-3 or 3-2 move, then the two
convex subsets intersect non-trivially and the two partitions functions agree on the overlap.
The additional fact that the partition functions depend analytically on the dihedral angles
implies that their common restriction to the overlap completely determines both of them
and it is in this sense that our TQFT is topologically invariant.

The partition functions of our TQFT take their values in the vector spaces of tempered
distributions over euclidian spaces which do not form a category, since it is not always
possible to multiply and push forward tempered distributions. Instead, they form what we
call a categroid that is the same as a category, except that we are allowed to compose not all
morphismswhich are composable in the categorical sense, but only a subset thereof (which
we review in Section 3). Symmetrically, the domain of our TQFT, the set of oriented
triangulated pseudo 3-manifolds, also forms only a categroid, due to the above mentioned
homological condition on triangulations.

We shall further review a version of the volume conjecture for the Teichmüller TQFT,
which states that the partition function decays exponentially fast in Planck’s constant with
the rate given by the hyperbolic volume of the manifold.

Interestingly, due to subsequent developments, we have now at least two formulations
of the Teichmüller TQFT. The original formulation, which is defined only for admissible
pseudo 3-manifolds (see Definition 3 below), and the new formulation, which does not
impose any restrictions on the topology of pseudo 3-manifolds. We will briefly discuss the
new formulation in the end of this paper, together with a number of future developments
which we anticipate.

The paper is organised as follows. In Section 2, we review the domain categroid, on
which our original formulation of the Teichmüller TQFT is defined, while the target cate-
groid is reviewed in Section 3. In Section 4, we review our TQFT functor between these
two categroids and state the main Theorem 3, proved in Andersen and Kashaev [ibid.],
which establishes the well definedness of the functor. In Section 5, we formulate the vol-
ume conjecture for the Teichmüller TQFT and describe a couple of examples for which
that conjecture has already been established. In the final Section 6, we briefly describe
the new formulation of the Teichmüller TQFT and anticipate a number of future develop-
ments.
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2 The topological domain categroid

In this section we set up the topological domain categroid on which our Teichmüller TQFT
is defined. Since, in its original formulation, this TQFT is distributional in nature, we
cannot use the full 3-dimensional bordism category of triangulated pseudo 3-manifolds
(with extra structures), and we consider a suitable sub-categroid of it as follows.

Let X be a triangulated pseudo 3-manifold, that is a CW-complex obtained by gluing
finitely many tetrahedra with ordered vertices along codimension one faces with respect
to order preserving simplicial maps.

For i 2 f0; 1; 2; 3g, we will denote by ∆i (X) the set of i -dimensional cells in X . For
any i > j , we also denote

∆j
i (X) := f(a; b) j a 2 ∆i (X); b 2 ∆j (a)g;

where the cell a, when considered as a CW-complex, is taken in the form of the standard
simplex without identifications on its boundary induced by gluings.

A shape structure on X is an assignment to each edge of each tetrahedron of X a posi-
tive number, ˛X : ∆1

3(X) ! R>0; called a dihedral angle such that the sum of the angles
at any three edges sharing a vertex of a tetrahedron is � . It is straightforward to see that
the dihedral angles at opposite edges of all tetrahedra are equal, so that each tetrahedron
acquires three dihedral angles associated to the three pairs of opposite edges which sum
up to � , see Figure 1. In other words, a shape structure provides each tetrahedron with the
geometric structure of an ideal hyperbolic tetrahedron. An oriented triangulated pseudo
3-manifold with a shape structure is called a shaped pseudo 3-manifold. We denote the
set of shape structures on X by S(X).

An edge is called balanced if it is internal and the sum of the dihedral angles around
it is 2� . An edge which is not balanced is called unbalanced. An angle structure on a
closed triangulated pseudo 3-manifold, introduced by Cassson [n.d.], Rivin [2003], and
Lackenby [2000], is a shape structure where all edges are balanced.

We will also consider the situation, where we are given a one dimensional sub-complex
Γ of ∆1(X), such that all univalent vertices of Γ are on the boundary of X (such a sub-
complex we will call an allowed one dimensional sub-complex Γ � X ).

We extend the shape structure by a real parameter called the level. This is an analog of
the framing in the context of the WRT-TQFT. Thus, a levelled shaped pseudo 3-manifold
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Figure 1: A tetrahedron with ordered vertices and dihedral angles.

is a pair (X; `X ) consisting of a shaped pseudo 3-manifold X and a level `X 2 R, and we
denote by LS(X) the set of all levelled shaped structures on X .

Two levelled shaped pseudo 3-manifolds (X; `X ) and (Y; `Y ) are called gauge equiva-
lent if there exists an isomorphism h : X ! Y of the underlying cellular structures and a
function

g : ∆1(X) ! R; gj∆1(@X) = 0;

such that the shape structures of X and Y and levels `X ; `Y are related by the formulae
stated in Definition 2 of Andersen and Kashaev [2014a]. As is explained in Section 2 of
Andersen and Kashaev [ibid.], this equivalence is induced by a Hamiltonian group action
corresponding to the Neumann–Zagier symplectic structure. In the particular caseX = Y

and the identity isomorphism, we get the notion of based gauge equivalence of levelled
shaped pseudo 3-manifolds. The set of based gauge equivalence classes of levelled shape
structures on X is denoted LSr(X) and we denote by Sr(X) the corresponding set of
based gauge equivalence classes of just shape structures (obtained by forgetting the level).

By removing the positivity condition in the definition of a shape structure, we define
a generalised shape structure on X , and we denote by S̃(X) the set of generalised shape
structures. Levelled generalised shaped structures as well as their gauge equivalence are
defined analogously. The space of based gauge equivalence classes of generalised shape
structures (respectively levelled generalised shaped structures) is denoted S̃r(X) (respec-
tivelyeLS r(X)). Remark that Sr(X) is an open convex subset of S̃r(X).

Let Ω̃X : S̃(X)! R∆1(X) be the map which associates to an edge e the sum of the
dihedral angles around e. The values of Ω̃X will be called (edge) weights. Due to gauge
invariance, Ω̃X induces a unique map Ω̃X;r : S̃r(X)! R∆1(X):

Let N0(X) be a sufficiently small tubular neighbourhood of ∆0(X). The boundary
@N0(X) is a two dimensional surface, which is possibly disconnected and possibly with
boundary, if @X ¤ ¿. Theorem 1 of Andersen and Kashaev [ibid.] states that the map
Ω̃X;r is an affine H 1(@N0(X);R)-bundle. The space S̃r(X) carries a Poisson structure
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whose symplectic leaves are the fibers of Ω̃X;r and which is identical to the Poisson struc-
ture induced by the H 1(@N0(X);R)-bundle structure. The natural projection map from
eLS r(X) to S̃r(X) is an affine R-bundle which restricts to the affine R-bundle LSr(X)

over Sr(X).
If h : X !Y is an isomorphism of cellular structures, then we get an induced Poisson

isomorphism h� : S̃r(Y )! S̃r(X) which is an affine bundle isomorphism with respect
to the induced group homomorphism

h� : H 1(@N0(Y );R)!H 1(@N0(X);R)

and which maps Sr(Y ) to Sr(X). Furthermore, h induces an isomorphism

h� : eLS r(Y ) ! eLS r(X)

of affine R-bundles covering the map h� : S̃r(Y ) ! S̃r(X) and which also mapsLSr(Y )

to LSr(X).
Let us now consider the 3-2 Pachner move illustrated in Figure 2. Let e be a balanced

edge of a shaped pseudo 3-manifold X and assume that e is shared by exactly three dis-
tinct tetrahedra t1; t2; t3. Let S be a shaped pseudo 3-submanifold of X composed of the
tetrahedra t1; t2; t3. Note that S has e as its only internal and balanced edge. There exists
another triangulation Se of the topological space underlying S such that the triangulation
of @S coincides with that of @Se , but which consists of only two tetrahedra t4; t5. We see
that this change has the effect of removing the edge e so that∆1(Se) = ∆1(S)nfeg. More-
over, there exists a unique shaped structure on Se which induces the same edge weights
as the shape structure of S . For shape variables (˛i ; ˇi ; 
i ) for ti (where ˛i are the angles
at e), the explicit map is given by

(1)
˛4 = ˇ2 + 
1 ˛5 = ˇ1 + 
2
ˇ4 = ˇ1 + 
3 ˇ5 = ˇ3 + 
1

4 = ˇ3 + 
2 
5 = ˇ2 + 
3:

We observe that the equation ˛1 + ˛2 + ˛3 = 2� implies that the angles for t4 and t5
sum up to � . Moreover the positivity of the angles for t1; t2; t3 implies that the angles for
t4 and t5 are also positive. On the other hand, it is not automatic that we can solve for
positive angles for t1; t2; t3 given the positive angles for t4 and t5. However if we have
two positive solutions for the angles for t1; t2; t3 for the same t4; t5, then they are gauge
equivalent and satisfy the equality ˛1 + ˛2 + ˛3 = 2� .

Definition 1. We say that a shaped pseudo 3-manifold Y is obtained from X by a shaped
3-2 Pachner move along the edge e if Y is obtained from X by replacing S by Se , and we
write Y = Xe .
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Figure 2: The 3-2 Pachner move

We observe from the above that there is a canonical map P e : S(X)!S(Y ); which
naturally extends to a map P̃ e : S̃(X)! S̃(Y ): We get the following commutative dia-
gram

(2)

Ω̃X (e)�1(2�)
P̃ e

�����! S̃(Y )??y ??y
Ω̃X;r(e)

�1(2�)
P̃ e

r
�����! S̃r(Y )??yproj ı Ω̃X;r

??yΩ̃Y;r

R∆1(X)nfeg
=

�����! R∆1(Y )

Moreover
P̃ e

r (Ω̃X;r(e)
�1(2�) \ Sr(X)) � Sr(Y ):

In particular, we observe that if Ω̃X;r(e)
�1(2�) \ Sr(X) ¤ ¿ then Sr(Y ) ¤ ¿, but the

converse is not necessarily true. The following theorem is proved in Section 2 of Andersen
and Kashaev [2014a].

Theorem 1. Suppose that a shaped pseudo 3-manifold Y is obtained from a shaped
pseudo 3-manifold X by a levelled shaped 3-2 Pachner move along the edge e. Then the
map P̃ e

r is a Poisson isomorphism, which is covered by an affine R-bundle isomorphism
fromeLS r(X)jΩ̃X;r (e)�1(2�) toeLS r(Y ).

Wealso say that a levelled shaped pseudo 3-manifold (Y; `Y ) is obtained from a levelled
shaped pseudo 3-manifold (X; `X ) by a levelled shaped 3-2 Pachner move if there exists
e 2 ∆1(X) such that Y = Xe and the levels are related by the formula stated just above
Definition 9 in Andersen and Kashaev [ibid.].
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Definition 2. A (levelled) shaped pseudo 3-manifold X is called a Pachner refinement
of a (levelled) shaped pseudo 3-manifold Y if there exists a finite sequence of (levelled)
shaped pseudo 3-manifoldsX = X1; X2; : : : ; Xn = Y such that for any i 2 f1; : : : ; n�

1g, Xi+1 is obtained from Xi by a (levelled) shaped 3-2 Pachner move. Two (levelled)
shaped pseudo 3-manifolds X and Y are called equivalent if there exist gauge equivalent
(levelled) shaped pseudo 3-manifoldsX 0 and Y 0 which are respective Pachner refinements
of X and Y .

In its original formulation, our Teichmüler TQFT is not defined on all levelled shaped
pseudo 3-manifolds. It is only guaranteed to be well defined on Sr(X) (since we need the
positivity of the angles to make certain integrals absolutely convergent) and whenH2(X�

∆0(X);Z) = 0. The latter condition guarantees that we can multiply the distributions for
all the tetrahedra and peform the necessary push forward of this product. We therefore
need the following definition.

Definition 3. An oriented triangulated pseudo 3-manifold is called admissible if
Sr(X) ¤ ¿ andH2(X � ∆0(X);Z) = 0.

The equivalence of admissible levelled shaped pseudo 3-manifolds also needs to be
such that all involved pseudo 3-manifolds are admissible, hence we introduce a stronger
notion of admissibly equivalence.

Definition 4. Two admissible (levelled) shaped pseudo 3-manifolds X and Y are called
admissibly equivalent if there exists a gauge equivalence h : X 0 !Y 0 of (levelled) shaped
pseudo 3-manifoldsX 0 and Y 0 which are respective Pachner refinements ofX and Y , such
that

∆1(X
0) = ∆1(X) [DX ; ∆1(Y

0) = ∆1(Y ) [DY

and
h(Sr(X

0) \ Ω̃X 0;r(DX )�1(2�)) \ Ω̃Y 0;r(DY )
�1(2�) ¤ ¿:

The corresponding equivalence classes are called admissible equivalence classes.

Theorem 2 (Andersen and Kashaev [2014a]). Suppose two (levelled) shaped pseudo 3-
manifolds X and Y are equivalent. Then there exist D � ∆1(X) and D0 � ∆1(Y ), a
bijection

i : ∆1(X) nD!∆1(Y ) nD0;

and a Poisson isomorphism

R : Ω̃X;r(D)�1(2�)! Ω̃Y;r(D
0)�1(2�);

covered by an affine R-bundle isomorphism

R̃ : eLS r(X)jΩ̃X;r (D)�1(2�) ! eLS r(Y )jΩ̃Y;r (D0)�1(2�);
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such that the following diagram is commutative

Ω̃X;r(D)�1(2�)
R

�����! Ω̃Y;r(D
0)�1(2�)??yproj ı Ω̃X;r

??yproj ı Ω̃Y;r

R∆1(X)nD i�

�����! R∆1(Y )nD0

:

Moreover, if X and Y are admissible and admissibly equivalent, then the isomorphism
R takes an open non-empty convex subset U of Sr(X) \ Ω̃X;r(D)�1(2�) onto an open
non-empty convex subset U 0 of Sr(Y ) \ Ω̃Y;r(D)�1(2�).

We observe that in the notation of Definition 4

D = ∆1(X) \ h�1(DY ); D
0 = ∆1(Y ) \ h(DX ):

Let us now recall the categroid of admissible levelled shaped pseudo 3-manifolds. To
this end we first need to recall the underlying category B where equivalence classes of lev-
elled shaped pseudo 3-manifolds form morphisms, the objects are triangulated surfaces,
and composition is given by gluings along the relevant parts of the boundaries by edge ori-
entation preserving and face orientation reversing CW-homeomorphisms with the obvious
composition of dihedral angles and addition of levels. Depending on the way we split the
boundary into a source and a target, one and the same levelled shaped pseudo 3-manifold
can be interpreted as different morphisms inB. Nonetheless, there is one canonical choice
defined as follows.

For a tetrahedron T = [v0; v1; v2; v3] in R3 with ordered vertices v0; v1; v2; v3, we
define its sign by

sign(T ) = sign(det(v1 � v0; v2 � v0; v3 � v0));

as well as the signs of its faces

sign(@iT ) = (�1)i sign(T ); i 2 f0; : : : ; 3g:

For a pseudo 3-manifold X , the signs of the faces of the tetrahedra of X induce a sign
function on the faces of the boundary of X ,

signX : ∆2(@X) ! f˙1g;

which permits to split the boundary of X into two subsets,

@X = @+X [ @�X; ∆2(@˙X) = sign�1
X (˙1);
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Figure 3: Face orientations

composed of equal numbers of triangles. For example, in the case of a tetrahedron T with
sign(T ) = 1, we have ∆2(@+T ) = f@0T; @2T g, and ∆2(@�T ) = f@1T; @3T g. In what
follows, unless specified otherwise, (the equivalence class of) a levelled shaped pseudo
3-manifold X will always be thought of as a B-morphism between the objects @�X and
@+X , i.e.

X 2 HomB(@�X; @+X):

We will also consider more general morphisms to be included in B, namely morphisms
as above, but where we add an allowed one dimensional sub-complexes as defined above.
This means that we allow objects where we have special marked vertices on the bound-
aries and when we compose such morphisms, we assume that all univalent vertices of the
sub-complexes, which are contained in the surfaces we glue on, match up pairwise, thus
resulting in an allowed one dimensional sub-complex in the morphism obtained by gluing.
In the equivalence relation, this one dimensional sub-complex should be carried all the
way through the equivalences specified in Definition 2 and 4, but in such a way that we
never perform any 3-2 Pachner moves on edges, which are part of the one-dimensional
sub-complex. In the rest of this paper we use the term levelled shaped pseudo 3-manifold
to mean any morphism of B (including also the morphisms we just added to B).

Our TQFT is not defined on the full category B, but only on the sub-categroid of ad-
missible equivalence classes of admissible morphisms.

Definition 5. The categroid Ba of admissible levelled shaped pseudo 3-manifolds is the
sub-categroid of the category of levelled shaped pseudo 3-manifolds whose morphisms
consist of admissible equivalence classes of admissible levelled shaped pseudo 3-manifolds.

Gluing in this sub-categroid is the one induced from the category B and it is only de-
fined for those pairs of admissible morphisms for which the glued morphism in B is also
admissible.
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There is a concise graphical presentation of pseudo 3-manifolds introduced in Andersen
and Kashaev [2014a]. To each tetrahedron T , it associates the graph

(3) T =
@0T @1T @2T @3T

where each of the four codimension one faces of T corresponds to a vertical half edge.
We connect the half edges according to the face identifications of the tetrahedra in a given
triangulated pseudo 3-manifold (in the case of non-empty boundary, the resulting graph
will also have open half edges). For example, the graphs for the pseudo 3-manifolds
representing the complements of the trefoil knot 31, the figure eight knot 41 and the 52-
knot are as follows

; and

All these examples correspond to 3-manifolds with one cusp, i.e. they are 1-vertex trian-
gulations with the vertex having a neighborhood homeomorphic to the cone over the torus.
As it will be seen below, our TQFT functor, up to overall orientation, can be written down
just based on such graphical presentation.

3 The target categroid

The target categroid for the Teichmüller TQFT is given by tempered distributions. They
form only a categroid since the kind of composition of distributions we have in mind is
not defined for all tempered distributions.

Recall that the space of (complex) tempered distributions S0(Rn) is the space of con-
tinuous linear functionals on the (complex) Schwartz space S(Rn). By the Schwartz pre-
sentation theorem (see e.g. Theorem V.10 p. 139 Reed and Simon [1972]), any tempered
distribution can be represented by a finite derivative of a continuous function with polyno-
mial growth, hencewemay informally think of tempered distributions as functions defined
on Rn. The integral formula

'(f ) =

Z
Rn

'(x)f (x)dx:

exhibits the inclusion S(Rn) � S0(Rn).

Definition 6. The categroid D has as objects finite sets and for two finite sets n;m the
set of morphisms from n to m is

HomD(n;m) = S0(Rntm):
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Denoting by L(S(Rn);S0(Rm)) the space of continuous linear maps from S(Rn) to
S0(Rm), we remark that we have an isomorphism

�̃ : L(S(Rn);S0(Rm))! S0(Rntm)

determined by the formula
'(f )(g) = '̃(f ˝ g)

for all ' 2 L(S(Rn);S0(Rm)), f 2 S(Rn), and g 2 S(Rm). This is the content of the
Nuclear theorem, see e.g. Reed and Simon [1972], TheoremV.12, p. 141. The reason why
we get a categroid rather than a category is because we cannot compose all composable (in
the usual categorical sense) morphisms, but only a subset thereof. The partially defined
composition in this categroid is defined as follows.

Let n;m; l be three finite sets, A 2 HomD(n;m) and B 2 HomD(m; l). According to
the tempered distribution analog of Theorem 6.1.2. in Hörmander [1969], associated to
the projections

�n;m : Rntmtl
! Rntm; �m;l : Rntmtl

! Rmtl ;

we have the pull back maps

��
n;m : S0(Rntm)! S0(Rntmtl) and ��

m;l : S0(Rmtl)! S0(Rntmtl):

By theorem IX.45 in Reed and Simon [1975] (see also Appendix B in Andersen and
Kashaev [2014a]), the product

��
n;m(A)��

m;l(B) 2 S0(Rntmtl)

is well defined provided the wave front sets of ��
n;m(A) and ��

m;l
(B) satisfy the following

transversality condition

(4) (WF(��
n;m(A)) ˚ WF(��

m;l(B))) \Zntmtl = ¿;

whereZntmtl is the zero section ofT �(Rntmtl). If we now further assume that��
n;m(A)��

m;l
(B)

continuously extends toS(Rntmtl)m as is defined inAppendix B ofAndersen andKashaev
[ibid.], then we obtain a well defined element

(�n;l)�(�
�
n;m(A)��

m;l(B)) 2 S0(Rntl):

Definition 7. For A 2 HomD(n;m) and B 2 HomD(m; l) satisfying condition (4) and
such that ��

n;m(A)��
m;l

(B) continuously extends to a well defined element of the dual of
S(Rntmtl)m, we define

AB = (�n;l)�(�
�
n;m(A)��

m;l(B)) 2 HomD(n; l):
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For any A 2 L(S(Rn);S0(Rm)), we have unique adjoint A� 2 L(S(Rm);S0(Rn))

defined by the formula
A�(f )(g) = A(ḡ)(f̄ )

for all f 2 S(Rm) and g 2 S(Rn).

4 The TQFT functor

We shall describe the Teichmüller TQFT functor F„ from Andersen and Kashaev [ibid.].
First we recall the definition of a �-functor in our context.

Definition 8. A functor F : Ba ! D is said to be a �-functor if

F (X�) = F (X)�;

where X� is X with opposite orientation, and F (X)� is the adjoint of F (X).

On the level of objects we define

F„(Σ) = ∆2(Σ); 8Σ 2 ObBa:

In order to define F„ on morphisms, we need a special function called Faddeev’s quan-
tum dilogarithm defined in Faddeev [1995].

Definition 9. Faddeev’s quantum dilogarithm is the function of two complex arguments
z and b defined for j Im zj < 1

2
jb + b�1j by the formula

Φb(z) := exp

 Z
C

e�2izw dw

4 sinh(wb) sinh(w/b)w

!
;

where the contour C runs along the real axis deviating into the upper half plane in the
vicinity of the origin, and extended by the functional equation

Φb(z � ib˙1/2) = (1 + e2�b˙1z)Φb(z + ib˙1/2)

to a meromorphic function for z 2 C.

It is easily seen that Φb(z) depends on b only through the combination „ defined by
the formula

„ :=
�
b + b�1

��2
:

In what follows, we assume that the complex parameter b is such that „ 2 R>0. This
assumption guarantees we get a unitary TQFT, but, in case of need, one can easily go to
arbitrary b 2 C n iR by analytic continuation.
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The value of F„ on a morphism (X;Γ) of Ba is given by the formula which singles out
the dependence on the level

F„(X;Γ) = ei� `X
4„ Z„(X;Γ) 2 S0

�
R∆2(@X)

�
;

where Z„(X;Γ) is the level independent part.
The value of Z„ on the morphism of Ba determined by a single tetrahedron T with

sign(T ) = 1 is an element
Z„(T; ˛T ) 2 S0(R∆2(T ))

given by the explicit formula

(5) Z„(T; ˛T )(x0; x1; x2; x3) = ı(x0 � x1 + x2)
e
2� i(x3�x2)

�
x0+

˛3

2i
p

„

�
+� i 'T

4„

Φb
�
x3 � x2 +

1�˛1

2i
p

„

�
where ı is Dirac’s delta-function supported at 0 2 R,

'T := ˛1˛3 +
˛1 � ˛3

3
�

2„ + 1

6
; ˛i :=

1

�
˛T (@0@iT ); i 2 f1; 2; 3g;

and
xi := x(@iT ); x : ∆2(@T ) ! R:

For a negative tetrahedron T̄ with sign(T̄ ) = �1 we set

Z„(T̄ ) = Z„(T )
�:

It is not hard to check that these assignments give tempered distributions provided ˛i > 0,
i = 1; 2; 3.

The value ofZ„ on arbitrary morphism (X;Γ) in Ba is given by composing all the dis-
tributions Z„(T ), where T runs over ∆3(X), according to the face identifications which
build X out of the disjoint union

X̃ :=
G

T 2∆3(X)

T:

By using the graphical presentation ofX described above, with the additional information
on the orientation of X , the prescription is as follows. One should label the thin edges
of the graph with variables xi , where i = 1; : : : ; j∆2(X)j, then take the product over
all tetrahedra of the expression (5) or its complex conjugate adapted to each tetrahedron
in accordance with the variables attached to its four faces and the dihedral angles, and
integrate over all real values of xi .
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Let us illustrate this with the example of the complement X of the knot 52 which is
represented by the diagram

x

z u w

vy

We denote T1; T2; T3 the left, right, and top tetrahedra respectively with their dihedral
angles ˛Ti

= 2�(ai ; bi ; ci ), such that ai + bi + ci = 1
2
, i = 1; 2; 3. We choose the

orientation so that all tetrahedra are positive, and we impose the conditions that all edges
are balanced (Γ = ¿) which correspond to two equations

2a3 = a1 + c2; b3 = c1 + b2:

We thus get by the definition of our TQFT that

(6) Z„(X) =

Z
R6

Z„(T1; ˛T1
)(z; u;w; x)Z„(T2; ˛T2

)(x; y; v; w)

�Z„(T3; ˛T3
)(y; v; u; z) d6(x; y; z; u; v; w);

where we observe that the integrand indeed extends to the dual of S(R6)6, thus it can
be pushed forward to a point, which is the precise meaning of the integral in (6). The
calculation in Section 11.6 of Andersen and Kashaev [2014a] gives

Z„(X) = �c1;b1
�b2;a2

�c3;b3
ei�c2

b(1�2a1)(1�2c2)

Z
2cb(a1�a3)+R

�52(x; �) dx;

where � := a1 � c1 + b2 � a3,

�a;b := e4� ic2
ba(a+b)e�� ic2

b(4(a�b)+1)/6; cb :=
i

2
p

„
=

i
2
(b + b�1);

and

(7) �52(x; �) := �52(x)e
4� icbx�;

�52(x) := e�i�/3

Z
R�i0

dz
ei�(z�x)(z+x)

Φb(z + x)Φb(z � x)Φb(z)
:

Returning now back to the case of a general X , we need to know that all the composi-
tions of the Z„(T; ˛T )’s are allowed in D. This is precisely the content of Theorem 9 in



2574 JØRGEN ELLEGAARD ANDERSEN AND RINAT KASHAEV

Andersen and Kashaev [2014a], which establishes that for admissible X , the wave front
sets of the distributions��

TZ„(T ), where�T : R∆2(X) ! R∆2(T ) is the natural projection
for each T 2 ∆3(X), are transverse and hence they can be multiplied and their product
can be pulled back to R∆2(X) and pushed forward along the projection from R∆2(X) to
R∆2(@X).

We emphasize that for an admissible pseudo 3-manifold X together with an allowed
sub-complex Γ of∆1(X), our TQFT functor provides us with the following well defined
real analytic function

F„(X;Γ) : LSr(X) \ Ω̃X;r(EΓ)
�1(2�)! S0(R@X );

where EΓ is the set of internal edges of X which are not in Γ. We note that if (X;Γ) is
admissibly equivalent to (X 0;Γ0), then Theorem 2 provides an explicit affine map from a
non-empty open convex subset of LSr(X) \ Ω̃X;r(EΓ)

�1(2�) to an open convex sub-
set of LSr(X

0) \ Ω̃X 0;r(EΓ0)�1(2�) and under this map the restrictions of F„(X;Γ)

and F„(X
0;Γ0) to these two non-empty convex open subsets agree. Since a real analytic

map defined on an open convex set of some Euclidian space is uniquely determined by
its restriction to any smaller non-empty open convex subset, we see that F„(X;Γ) and
F„(X

0;Γ0) uniquely determine each other on their domains of definition. It is in this sense
that our Teichmüller TQFT is well-defined on the set of equivalence classes of admissible
levelled shaped pseudo 3-manifolds.

For the case @X = ¿, we have S0(R@X ) = C and so, in this case, we simply get
a complex valued function on LSr(X) \ Ω̃X;r(EΓ)

�1(2�). In particular, the value of
the functor F„ on any fully balanced admissible levelled shaped 3-manifold is a complex
number, which is a topological invariant, in the sense that if two fully balanced admissible
levelled shaped 3-manifolds are admissibly equivalent, then F„ assigns one and the same
complex number to them. We recall that fully balanced means that all edges are balanced.

Our main Theorem 4 of Andersen and Kashaev [ibid.] now guarantees that this assign-
ment, in fact, gives a well-defined functor.

Theorem 3. For any „ 2 R>0, the above assignment defines a �-functor

F„ : Ba ! D

which we call the Teichmüller TQFT.

5 The volume conjecture for the Teichmüller TQFT

In this subsection we recall our conjecture from Andersen and Kashaev [ibid.] concerning
our Teichmüller TQFT F„, which, among other things, provides a relation to the hyper-
bolic volume in the asymptotic limit „ ! 0.
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Conjecture 1. LetM be a closed oriented compact 3-manifold. For any hyperbolic knot
K � M , there exists a smooth function JM;K(„; x) on R>0 � R which has the following
properties.

1. For any fully balanced shaped ideal triangulation X of the complement ofK inM ,
there exist a gauge invariant real linear combination of dihedral angles � and a
(gauge non-invariant) real quadratic polynomial of dihedral angles � such that

Z„(X) = ei �
„

Z
R
JM;K(„; x)e

� x�p
„ dx

2. The hyperbolic volume of the complement of K inM is recovered as the following
limit

lim
„!0

2�„ log jJM;K(„; 0)j = �Vol(M nK):

Remark 1. It is very important to notice that we in part (2) of this conjecture have a
negative sign on the right hand side, which differs from the volume conjecture of Kashaev
[1997]. In this case, the invariant exponentially decays (rather than grows) with the rate
being given by the hyperbolic volume.

In Andersen and Kashaev [2014a], we checked this conjecture for the first two hyper-
bolic knots.

Theorem 4. Conjecture 1 is true for the pairs (S3; 41) and (S3; 52) with

JS3;41(„; x) = �41(x); JS3;52(„; x) = �52(x);

where the functions �41(x) and �52(x) are given by

�41(x) =

Z
R�i0

Φb(x � y)

Φb(y)
e2�ix(2y�x) dy

and �52(x) is given in (7) above.

See also Andersen and Marzioni [2017] for a precise statement of the generalisation of
the above conjecture to the higher level generalisation of the Teichmüller TQFT and more
examples in Andersen and Nissen [2017]. Further, in Andersen and Malusà [2017] we
have presented the precise formulation of the AJ-conjecture for the Teichmüller TQFT.

6 Future perspectives

In the paper Andersen and Kashaev [2013] we have presented a new formulation of the
Teichmüller TQFT and a further higher level generalization of the theory, which we think
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of as a version of the complex quantum Chern-Simons theory Andersen and Kashaev
[2014b] (see also Andersen and Marzioni [2017]). Let us here briefly recall this new
formulation and state some predictions for the further perspectives for the Teichmüller
TQFT.

The main player behind the new formulation of the Teichmüller TQFT is the edge-face
tranform using the Weil–Gel’fand–Zak (WGZ) transformation, which we now recall.

We consider the following multiplier construction for a line bundle over the two torus.
We have the natural translation action of Z2 on R2 with the quotient Π := S2 where
S := R/Z. Consider the following multipliers

' : Z2
� R2

! U (1); '((m; n); (x; y)) = (�1)mne� i(nx�my);

which induce an action of Z2 on the trivial bundle R2 � C and we define

L = (R2
� C)/Z2

as a complex line bundle over Π.
We define the Weil–Gel’fand–Zak (WGZ) transformation

W : S(R)!C1(Π; L)

by the formula
(Wf )(x; y) = e� ixy

X
m2Z

f (x +m)e2� imy :

Proposition 1. The WGZ-transformation

W : S(R)!C1(Π; L)

is an isomorphism of Fréchet spaces with the inverse explicitly given by the formula

(W �1g)(x) =

Z 1

0

g(x; y)e�� ixy dy

for any g 2 C1(Π; L).

The same statement also holds for

W : S(R)!C1(Π; L�)

defined by
W (f )(x; y) = W (f )(x;�y):
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Guided by Equation (5), we define for any f 2 S(R) the associated tempered distribu-
tionH (f ) 2 S0(R4) as follows

H (f )(x0; x1; x2; x3) = ı(x0 + x2 � x1)f (x3 � x2)e
2� ix0(x3�x2);

which we consider as a continuous linear map

H (f ) : S(R2)! S0(R2)

via the formula
H (f )(g)(h) = H (f )(�̂�(g)�̌�(h)):

Here �̂; �̌ : R4 ! R2 are given by �̂(x0; x1; x2; x3) = (x1; x3) and �̌(x0; x1; x2; x3) =
(x0; x2). We now consider the following tensor extension of the WGZ-transform

W ˝W : S(R2)!C1(Π � Π; L� L)

defined by

W ˝W (h)(s; t; x; y) =

e�i(st+xy)
X

m1;m22Z

h(s +m1; x +m2)e
2�i(m1t+m2y):

and similarly
W ˝W : S(R2)!C1(Π � Π; L� � L�);

given by

W ˝W (h)(s; t; ; x; y) =

e��i(st+xy)
X

m1;m22Z

h(s +m1; x +m2)e
�2�i(m1t+m2y):

Consider now the maps

F : S5
!Π; �̃i : S5

!Π2; i = 1; 2;

given by
F (u; s; t; x; y) = (u; s + t + u � y);

�̃1(u; s; t; x; y) = (s + x; t + u; x + u; y � t � u)

and �̃2 is the map which projects away the first factor and onto the last four factors. We
then get that there exists a natural isomorphism

F �L˝ �̃�
1 (L� L) Š �̃�

2 (L� L):
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There is an obvious embedding

C1(Π2; L� L) � C1(Π2; L� � L�)�;

obtained by pointwise evaluation followed by integration over Π2. Thus we see that

(�̃2)�(F
�W (f )�̃�

1 (W ˝W )(g)) 2 C1(Π2; L� � L�)�

for any g 2 S(R2).
Let T : S3 !Π be given by T (x; y; z) = (y � x; z � y) and further E : S6 !Π by

E(x01; x02; x03; x12; x13; x23) = (x02 + x13 � x03 � x21; x02 + x13 � x01 � x23):

We also introduce the following two maps �i : S6 !Π2 , i = 1; 2, given by

�1(x01; x02; x03; x12; x13; x23) = T � T (x23; x03; x02; x12; x02:x01)

and
�2(x01; x02; x03; x12; x13; x23) = T � T (x23; x13; x12; x13; x03; x01):

Finally we further need the map P : S6 ! S5 given by

P (x01; x02; x03; x12; x13; x23)

= (x02 + x13 � x03 � x12; x13 � x23; x12 � x13; x03 � x13; x01 � x03)

It is elementary to verify that

E = F ı P and �i = �̃i ı P:

We now arrive at the important “edge-face transformation” as established in Andersen and
Kashaev [2013].

Theorem 5. The distribution
H (f ) 2 S0(R4)

and the section
E�W (f ) 2 C1(S6; E�L)

are related by the formula

H (f )(�̂�(g)�̌�(h)) = �
(6)
� (E�W (f )��

1 (W ˝W )(g)��
2 (W ˝W )(h))

for all g; h 2 S(R2).
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This theorem is the corner stone in understanding how to transform our original Teich-
müller TQFT, which is build from the fundamental distribution

F„(T ) 2 S0(R∆2(T ));

to our new formulation F„ of the Teichmüller TQFT, where the state variables live on the
edges instead and the fundamental object associated to a tetrahedron is the section

F„(T ) 2 C1(S∆1(T ); E�L):

Here we implicitly use the following notation

xij := x(vT (i)vT (j ))

for any x 2 S∆1(T ). Now, Theorem 5 simply tells us that the two distributions F„(T ) and
F„(T ) are related via the tensor square of the WGZ-transformW .

Let us recall the formula for F„(T ) from Andersen and Kashaev [ibid.]

F„(T ) = E�(g˛0;˛2
);

where, for two positive real numbers a and c satisfying a + c < 1/2, we let

ga;c = W ( ̃ 0
a;c);

 ̃ 0
a;c(s) := e�� is2 ̃a;c(s);

 ̃a;c(s) :=

Z
R
 a;c(t)e

�2� istdt;

and
 a;c(t) := Φ̄b(t � 2cb(a + c))e

�4� icba(t�cb(a+c))e�� ic2
b(4(a�c)+1)/6;

where we use the notation Φ̄b(x) := 1/Φb(x).
As it is described in Andersen and Kashaev [ibid.] we get a new formulation F„ of

the Teichmüller TQFT following the same lines as discussed above determining F„ on all
objects of Ba by a similar gluing construction.

However, this new formulation has several advantages. It allows us to extend the parti-
tion function to complex dihedral angles and as such it depends meromorphically on these
complexified angles. This allows us to actually establish that we do not need the condi-
tion of admissibility and that this new formulation F„ is well-defined on the full bordism
category B consisting of equivalence classes of levelled shaped pseudo 3-manifolds. We
stress that this means that the functor F„ is in fact invariant under all 2-3 and 3-2 Pachner
moves.
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By modifying the construction of the functor F„, we can further extend this functor to
a version which depends on a first cohomology class with coefficient in S (see Andersen
and Kashaev [2013]) and this generalised new version can be related to the original functor
F„ by integration over this first cohomology group.

We can use similar ideas (see also Andersen and Kashaev [ibid.]) to produce a mero-
morphic extension of F„ to complex angles and as such we can establish that this theory
is also invariant under all 2-3 and 3-2 Pachner moves as argued in Andersen and Kashaev
[ibid.]. Furthermore, via a certain gauge fixing technique also described in Andersen and
Kashaev [ibid.], we can extend the original theory F„ to be defined on the full bordism
category B, and we describe the precise relation between this extension of the original
formulation and the new one in Andersen and Kashaev [ibid.].
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SPECIAL GEOMETRY ON CALABI–YAU MODULI SPACES
AND Q-INVARIANT MILNOR RINGS

Aඅൾඑൺඇൽൾඋ Bൾඅൺඏංඇ

Abstract

The moduli spaces of Calabi–Yau (CY) manifolds are the special Kähler mani-
folds. The special Kähler geometry determines the low-energy effective theory which
arises in Superstring theory after the compactification on a CY manifold. For the
cases, where the CY manifold is given as a hypersurface in the weighted projective
space, a new procedure for computing the Kähler potential of the moduli space has
been proposed by Konstantin Aleshkin and myself. The method is based on the fact
that the moduli space of CY manifolds is a marginal subspace of the Frobenius man-
ifold which arises on the deformation space of the corresponding Landau–Ginzburg
superpotential. I review this approach and demonstrate its efficiency by computing
the Special geometry of the 101-dimensional moduli space of the quintic threefold
around the orbifold point.

1 Introduction

To compute the low-energy Lagrangian of the string theory compactified on a CYman-
ifold Candelas, Horowitz, Strominger, and Witten [1985], one needs to know the Special
geometry of the corresponding CY moduli space Candelas, Green, and Hübsch [1989],
Strominger [1990], Candelas, Green, and Hübsch [1990], and Candelas and de la Ossa
[1991].

More precisely, the effective Lagrangian of the vector multiplets in the superspace con-
tains h2;1 supermultiplets. Scalars from these multiplets take value in the target space M,
which is a moduli space of complex structures on a CY manifold and is a special Kähler
manifold. MetricGab̄ and Yukawa couplings �abc on this space are given by the following
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formulae in the special coordinates za :

Gab̄ = @a@b̄K; e�K = �i

Z
X

Ω ^ Ω̄;

�abc =

Z
X

Ω ^ @a@b@cΩ =
@3F

@za@zb@zc
;

where

za =

Z
Aa

Ω;
@F

@za
=

Z
Ba

Ω

are the period integrals of the holomorphic volume form Ω on X . Here Aa and Ba form
the symplectic basis in H3(X; Z).

We can rewrite the expression (1) for the Kähler potential using the periods as

e�K = �iΠΣΠ�; Π = (@F; z);

where matrix (Σ)�1 is an intersection matrix of cycles Aa; Ba equal to the symplectic
unit.

The computation of periods in the symplectic basis appears to be very non-trivial. It
was firstly performed for the case of the quintic CY manifold in the distinguished paper
Candelas, de la Ossa, Green, and Parkes [1991].
Here I present an alternative approach to the computation of Kähler potential for the case
where CY manifold is given by a hypersurface W (x; �) = 0 in a weighted projective
space. The approach is based on the connection of CY manifold with a Frobenius ring
which arises on the deformations of the singularity defined by the superpotential W0(x)

Lerche, Vafa, and N. P. Warner [1989], Martinec [1989], and Vafa and N. Warner [1989].
Let a CY manifold X be given as a solution of an equation

W (x; �) = W0(x) +

h2;1X
s=1

�ses(x) = 0

in some weighted projective space, where W0(x) is a quasihomogeneous function in C5

of degree d that defines an isolated singularity at x = 0. The monomials es(x) also have
degree d and are in a correspondence to deformations of the complex structure of X .

PolynomialW0(x) defines aMilnor ringR0. InsideR0 there exists a subringR
Q
0 which

is invariant under the action of the so-called quantum symmetry group Q that acts on C5

diagonally, and preserves W (x; �). In many cases dimR
Q
0 = dimH 3(X) and the ring



SPECIAL GEOMETRY ON CALABI–YAU MODULI SPACES 2587

itself has a Hodge structure R
Q
0 = (RQ

0 )0 ˚ (RQ
0 )1 ˚ (RQ

0 )2 ˚ (RQ
0 )3 in correspondence

with the elements of degrees 0; d; 2d; 3d .
Another important group is the subgroup of phase symmetriesG, which acts diagonally

on C5, commutes with the quantum symmetry Q and preserves W0(x). It acts naturally
on the invariant ring R

Q
0 , and this action respects the Hodge decomposition of R

Q
0 . This

allows to choose a basis e�(x) in each of the Hodge decomposition components of R
Q
0 to

be eigenvectors for the G group action.
On the ring R

Q
0 we introduce the invariant pairing �. The pairing turns the ring to a

Frobenius algebra Dubrovin [1992]. The pairing � plays an important for our construction
of the explicit expression for the volume of the Calabi-Yau manifold.

Using the invariant ring R
Q
0 and differentials D˙ = d ˙ dW0^ we construct two

Q�invariant cohomology groupsH 5
D˙

(C5)inv . These groups inherit the Hodge structure
from R

Q
0 . We can choose in H 5

D˙
(C5)inv the eigenbasises e�(x) d5x which are also

invariant under the phase symmetry action.
As shown in Candelas [1988], elements of these cohomology groups are in correspon-

dence with the harmonic forms of H 3(X). This isomorphism allows to define the an-
tilinear involution � on the invariant cohomology H 5

D˙
(C5)inv that corresponds to the

complex conjugation on the space of the harmonic forms of H 3(X).
It turns out, that in the basis e�(x) it reads

�e�(x) d5x = M �
�e�(x) d5x; M �

� = ıe��e� ;e�
A�

where e�(x) is the unique element of degree 3d in R
Q
0 , and ıe��e� ;e�

is 1 if e� � e� = e�

and 0 otherwise.
Having H 5

D˙
(C5)inv we define the relative invariant homology subgroups H

˙;inv
5 :=

H5(C5; W0 = L; ReL ! ˙1)inv inside the relative homology groups H5(C5; W0 =

L; ReL ! ˙1). To do this we will use the oscillatory integrals and their pairing with
elements of H 5

D˙
(C5)inv . Using this pairing we define a cycle Γ˙

� in the basis of relative
invariant homology to be dual to e�(x) d5x.

At last we define periods �˙
� (�) to be oscillatory integrals over the basis of cycles Γ˙

� .
They are equal to periods of the holomorphic volume form Ω on X in a special basis of
cycles of H3(X; C) with complex coefficients.

It follows from the phase symmetry invariance that in the chosen basis of cycles Γ˙
�

the formula for Kähler potential has the diagonal form:

e�K(�) =
X

�

(�1)j�j�+
� (�)A���

� (�):
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On the other hand, as shown in Aleshkin and A. Belavin [n.d.(a)], matrix A = diagfA�g

is equal to the product of the matrix of the invariant pairing � in the Frobenius algebra R
Q
0

and the real structure matrix M such that

e�K(�) =
X
�;�

�+
� (�)��� M �

� ��
� (�):

The real structure matrix is nothing but matrix M from (1). Using this we are able to
explicitly compute the diagonal matrix elements A� and to obtain the explicit expression
for the whole e�K .

2 The special geometry on the CY moduli space

It was shown in in Strominger [1990], Candelas, Green, and Hübsch [1989, 1990], and
Candelas and de la Ossa [1991] that the moduli spaceM of complex (or Kähler) structures
of a given CY manifold is a special Kähler manifold.
Namely on M there exist so-called special (projective) coordinates z1 � � � zn+1 and a holo-
morphic homogeneous function F (z) of degree 2 in z, called a prepotential, such that the
Kähler potential K(z) of the moduli space metric is given by

e�K(z) =

Z
X

Ω ^ Ω̄ = za
�

@F̄

@z̄ā
� z̄ā

�
@F

@za

To obtain this formula, we choose Poincare dual symplectic basises ˛a; ˇb 2 H 3(X; Z)

and Aa; Bb 2 H3(X; Z) and define the periods as

za =

Z
Aa

Ω; Fb =

Z
Bb

Ω:

Then using the Kodaira Lemma

@aΩ = kaΩ+ �a;

we can show that

Fa(z) =
1

2
@a(F (z));

where F (z) = 1/2zbFb(z).
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Therefore, according to the definition (2) metric Gab̄ = @a@̄b̄ K(z) is a special Kähler
metric with prepotential F (z) and with the special coordinates given by the period vector

Π =
�
F˛; zb

�
we write the expression for the Kähler potential as

e�K(z) = Π�Σ
��Π̄� ;

where Σ is a symplectic unit, which is an inverse intersection matrix for cycles Aa and
Bb .

Using formula (2), we can rewrite this expression in a basis of periods defined as inte-
grals over arbitarary basisis of cycles q� 2 H3(X; Z)

!� =

Z
q�

Ω :

Such that

e�K = !�C ��!̄� ;

where C �� is the inverse marix of the intersection of the cycles q�.
So to find the Kähler potential, we must compute the periods over a basis of cycles on

CY manifold and find their intersection matrix.

3 Hodge structure on the middle cohomology of the quintic

Now let us specialize to the case where X is a quintic threefold:

X = f(x1 : � � � : x5) 2 P 4
j W (x; �) = 0g;

and

W (x; �) = W0(x) +

100X
t=0

�t et (x); W0(x) = x5
1 + x5

2 + x5
3 + x5

4 + x5
5

and et (x) are the degree 5 monomials such that each variable has the power that is a non-
negative integer less then four. Let us denote monomials et (x) = x

t1
1 x

t2
2 x

t3
3 x

t4
4 x

t5
5 by its
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degree vector t = (t1; � � � ; t5). Then there are precisely 101 of suchmonomials, which can
be divided into 5 sets in respect to the permutation group S5: (1; 1; 1; 1; 1); (2; 1; 1; 1; 0);

(2; 2; 1; 0; 0); (3; 1; 1; 0; 0); (3; 2; 0; 0; 0). In these groups there are correspondingly 1, 20,
30, 30, 20 different monomials. We denote e0(x) := e(1;1;1;1;1)(x) = x1x2x3x4x5 to be
the so-called fundamental monomial, whichwill be somewhat distinguished in our picture.

For this CY dimH3(X) = 204 and period integrals have the form

!�(x) =

Z
q�

x5 dx1dx2dx3

@W (x; �)/@x4
=

Z
Q�

dx1 � � � dx5

W (x; �)
;

where q� 2 H3(X; Z) and the corresponding cycles Q� 2 H5(C5n(W (x; �) = 0); Z).
Cohomology groups of the Kähler manifold X possess a Hodge structure H 3(X) =

H 3;0(X) ˚ H 2;1(X) ˚ H 1;2(X) ˚ H 0;3(X). Period integrals measure variation of the
Hodge structure on H 3(X) as the complex structure on X varies with �.

This Hodge structure variation is in correspondence with a Frobenius ring which we
will now describe.

4 Hodge structure on the invariant Milnor ring

Now we will consider W0(x) as an isolated singularity in C5 and the associated with
it Milnor ring

R0 =
C[x1; � � � ; x5]

h@i W0i
:

We can choose its elements to be unique smallest degree polynomial representatives. For
the quintic threefold X its Milnor ring R0 is generated as a vector space by monomials
where each variable has degree less than four, and dimR0 = 1024.

Since the polynomial W0(x) is homogeneous one of the fifth degree it follows that
W0(˛x1; : : : ; ˛x5) = W0(x1; : : : ; x5) for ˛5 = 1. This action preserves W0(x) and is
trivial in the corresponding projective space and on X . Such a group with this action is
called a quantum symmetry Q, in our case Q ' Z5. Q obviously acts on the Milnor ring
R0.
We define a subring R

Q
0 to be a Q-invariant part of the Milnor ring

R
Q
0 := fe�(x) 2 R0 j e�(˛x) = e�(x)g; ˛5 = 1:
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R
Q
0 is multiplicatively generated by 101 fifth-degree monomials et (x) from (3) and con-

sists of elements of degree 0; 5; 10 and 15. The dimensions of the corresponding subspaces
are 1; 101; 101 and 1.
This degree filtration defines a Hodge structure on R

Q
0 . Actually, R

Q
0 is isomorphic to

H 3(X) and this isomorphism sends the degree filtration on R
Q
0 to the Hodge filtration on

H 3(X) Candelas [1988].
Let us denote �i

j̄
= gi k̄ �k̄j̄ as an extrinsic curvature tensor and gi k̄ is a metric for the

hypersurface W (x; �) = 0 in P 4. Then the isomorphism above can be written as a map
from R

Q
0 to closed differential forms in H 3(X):

1 ! Ωijk 2 H 3;0(X);

e�(x) ! e�(x(y))�l
ī
Ωljk 2 H 2;1(X) if j�j = 5;

e�(x) ! e�(x(y))�l
ī
�m

j̄
Ωlmk 2 H 1;2(X) if j�j = 10;

e�(x) = x3
1x3

2x3
3x3

4x3
5 ! �l

ī
�m

j̄
�

p

k̄
Ωlmp = �Ω̄ 2 H 0;3(X)

The details of this map can be found in Candelas [ibid.]. We also introduce the nota-
tion e�(x) for elements of the monomial basis of R

Q
0 , where � = (�1; � � � ; �5); �i 2

Z5
+; e�(x) =

Q
i x

�i

i and the degree of e�(x) � =
P

�i is equal to zero module 5. In
particular, � = (3; 3; 3; 3; 3); that is e�(x) is the unique degree 15 element of R

Q
0 .

The phase symmetry group Z5
5 acts diagonally on C5: ˛ � (x1; � � � ; x5) =

(˛1x1; � � � ; ˛5x5); ˛5
i = 1. This action preserves W0 =

P
i x5

i . The mentioned above
quantum symmetry Q is a diagonal subgroup of the phase symmetries. Basis fe�(x)g

consits of the eigenvectors of the phase symmetry and each e�(x) has a unique weight.
Note that the action of the phase symmetry preserves the Hodge decomposition.
Another important fact is that on the invariant ring R

Q
0 there exists a natural invariant

pairing turning it into a Frobenius algebra Dubrovin [1992]:

��� = Res
e�(x) e�(x)Q

i @i W0(x)
:

Up to an irrelevant constant for the monomial basis it is ��� = ı�+�;�. This pairing plays
a crucial role in our construction.
Let us introduce a couple of Saito differentials as in Aleshkin and A. Belavin [n.d.(a)] on
differential forms on C5 : D˙ = d ˙ dW0(x)^. They define two cohomology groups

H �
D˙

(C5). The cohomologies are only nontrivial in the top dimension H 5
D˙

(C5)
J
' R0.
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The isomorphism J has an explicit description

J (e�(x)) = e�(x) d5x; e�(x) 2 R0:

We see, thatQ = Z5 naturally acts onH 5
D˙

(C5) and J sends the elements ofQ-invariant
ring R

Q
0 to Q-invariant subspace H 5

D˙
(C5)inv . Therefore, the latter space obtains the

Hodge structure as well. Actually, this Hodge structure naturally corresponds to the Hodge
structure on H 3(X).

The complex conjugation acts on H 3(X) so that H p;q(X) = H q;p(X), in particular
H 2;1(X) = H 1;2(X). Through the isomorphism between R

Q
0 and H 3(X) the complex

conjugation acts also on the elements of the ring R
Q
0 as �e�(x) = p�e���(x); where

p�p��� = 1 and p� is a constant to be determined. In particular, differential form built
from the linear combinations e�(x) + p�e���(x) 2 H 3(X; R) is real.

5 Oscillatory representation and computation periods ��(�)

Relative homology groups H5(C5; W0 = L; ReL ! ˙1) have a natural pairing
with Q-invariant cohomology groups H 5

D˙
(C5)inv defined as

he�(x)d5x;Γ˙
i =

Z
Γ˙

e�(x)e
�W0(x)d5x; H5(C

5; W0 = L; ReL ! ˙1):

Using this we introduce two Q-invariant homology groups1 H
˙;inv
5 as quotient of

H5(C5; W0 = L; ReL ! ˙1) with respect to the subgroups orthogonal to
H 5

D˙
(C5)inv . Now we introduce basises Γ˙

� in the homology groups H
˙;inv
5 using the

duality with the basises in H 5
D˙

(C5)inv:Z
Γ˙

�

e�(x)e
�W0(x)d5x = ı��

and the corresponding periods

�˙
˛�(�) :=

Z
Γ˙

�

e˛(x)e
�W (x;�)d5x;

�˙
� (�) := �˙

0�(�)

1We are grateful to V. Vasiliev for explaining to us the details about these homology groups and their con-
nection with the middle homology of X .
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which are understood as series expansions in � around zero.
The periods �˙

� (�) satisfy the same differential equation as periods!�(�) of the holomor-
phic volume form onX . Moreover, these sets of periods span same subspaces as functions
of �. Therefore we can define cycles Q˙

� 2 H
˙;inv
5 such thatZ

Q˙
�

e�W (x;�)d5x =

Z
q�

Ω =

Z
Q�

d5x

W (x; �)
:

So the periods !˙
˛�(�) are given by the integrals over these cycles analogous to (5).

With these notations the idea of computation of periods A. Belavin and V. Belavin
[2016]

�˙
� (�) =

Z
Γ˙

�

e�W (x;�) d5x

can be stated as follows.
To explicitly compute �˙

� (�), first we expand the exponent in the integral (5) in � repre-
senting W (x; �) = W0(x) +

P
s �ses(x)

�˙
� (�) =

X
m

 Y
s

(˙�s)
ms

ms!

!Z
Γ˙

�

Y
s

es(x)
ms e�W0(x) d5x:

We note, that ��
� (�) = (�1)j�j�+

� (�); so we focus on ��(�) := �+
� (�):

For each of the summands in (5) the form
Q

s es(x)
ms d5x belongs to H 5

D˙
(C5)inv;

because it is Q�invariant. Therefore, we can expand it in the basis e�(x) d5x 2

H 5
D˙

(C5)inv: Namely we can find such a polynomial 4�form U; thatY
s

es(x)
ms d5x =

X
�

C�(m) e�(x) d5x + D+U:

In result we obtain for the integral in (5)Z
Γ˙

�

Y
s

es(x)
ms e�W0(x) d5x = C�(m):

So from (5) we have

��(�) =
X

m

 Y
s

�
ms
s

ms!

!Z
Γ
+
�

Y
s;i

x
P

s mssi

i e�W0(x) d5x:
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We can rewrite the sum in the exponent of xi as
P

s mssi = 5ni + �i ; �i < 5.
Therefore we need to compute the coefficients cm

� in the equationsY
x
5ni+�i

i d5x =
X

�

cm
� e�(x) d5x + D+U:

Note that

D+

�
1

5
x5n+k�4
1 f (x2; � � � ; x5) dx2 ^ � � � ^ dx5

�
=

=

�
x5n+k
1 +

�
n +

k � 4

5

�
x
5(n�1)+k
1

�
f (x2; � � � ; x5) d5x

Therefore in D+ cohomology we have

Y
i

x
5ni+�i

i d5x = �

�
n1 +

�1 � 4

5

�
x
5(n1�1)+�1

1

5Y
i=2

x
5ni+�i

i d5x; �i < 5:

By induction we obtainY
i

x
5ni+�i

i d5x = (�1)
P

i ni

Y
i

�
�i + 1

5

�
ni

Y
i

x
�i

i d5x; �i < 5:

where (a)n = Γ(a + n)/Γ(a).
Using (5) once again, we see that if any �i = 4 then the differential form is trivial and the
integral is zero. Hence, rhs of (5) is proportional to e�(x) and gives the desired expression.
Plugging (5) into (5) and integrating over Γ+

� we obtain the answer

��(�) = �+
� (�) =

X
ni �0

Y
i

�
�i + 1

5

�
ni

X
m2Σn

Y
s

�
ms
s

ms!
;

where

Σn = fm j
X

s

mssi = 5ni + �i g
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Further we will also use the periods with slightly different normalization, which turn out
to be convenient

�̂�(�) =
Y

i

Γ

�
�i + 1

5

�
��(�) =

X
ni �0

Y
i

Γ

�
ni +

�i + 1

5

� X
m2Σn

Y
s

�
ms
s

ms!
:

6 Computation of the Kähler potential

Pick any basis Q˙
� of cycles with integer or real coefficients as in (5). Then for the

Kähler potential we have the formula

e�K = !+
� (�)C ��!�

� (�)

in which the matrix C �� is related with the Frobenius pairing � as

�˛ˇ = !+
˛�(0)C

��!�
ˇ�(0):

The derivation of the last relation is given in Cecotti and Vafa [1991] and Chiodo, Iritani,
and Ruan [2014].

Let also T ˙ be the matrix that connects the cycles Q˙
� and Γ˙

� .
That is

Q˙
� = (T ˙)�

�Γ
˙
�

. Then M = (T �)�1T � is a real structure matrix, that is MM̄ = 1 and by construction
M doesn’t depend on the choice of basis Q˙

� : M is only defined by our choice of Γ˙
� .

In Aleshkin and A. Belavin [n.d.(a)] we deduced from (6) and (6) the formula

e�K(�) = �+
� (�)���M �

� ��
� (�) = ��A���� ;

where ��� = ��� = ı�;��� .
Now we show that the matrix A�� in (6) is diagonal. To do this we extend the action

of the phase symmetry group to the action A on the parameter space f�sg such that W =

W0 +
P

s �ses(x) is invariant under this new action. It easy to see that each es(x) has an
unique weight under this group action. ActionA can be compensated using the coordinate
tranformation and therefore is trivial on themoduli space of the quintic (implying that point
W = W0 is an orbifold point of the moduli space).

In particular, e�K =
R

X
Ω ^ Ω̄ is A invariant. Consider

e�K = ��A����
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as a series in �s and �t . Each monomial has a certain weight under A . For the series
to be invariant, each monomial must have weight 0. But weight of ���� equals to � � �

and due to non-degeneracy of weights of �� only the ones with � = � have weight zero.
Thus, (6) becomes

e�K =
X

�

A�
j��(�)j

2:

Moreover, the matrix A should be real and, because A = � � M; M M̄ = 1 and
��� = ı�+�;�; we have

A� A��� = 1:

Monodromy considerations. To fix finally the real numbers A� we use monodromy
invariance of e�K around �0 = 1: Pick some t = (t1; t2; t3; t4; t5) with jt j = 5 and let
�sjs¤t;0 = 0; . We will consider only the first order in �t .
Then the condition that period ��(�) contains only non-zero summands of the form�

m0

0 �t

implies that � = t + const � (1; 1; 1; 1; 1)mod 5. For each t from the table below the only
such possibilities are � = t and � = � � t 0 = (3; 3; 3; 3; 3)� t 0; where t 0 denotes a vector
obtained from t by permutation (written explicitly in the table below) of its coordinates.

Therefore, in this setting (6) becomes

e�K =

3X
k=0

akj�̂(k;k;k;k;k)j
2 + at j�̂t j

2 + a��t 0 j�̂��t 0 j
2 + O(�2

t );

here we use periods �̂ from (5) and denote at = At/
Q

i Γ((ti + 1)/5)2. And the coeffi-
cients ak ; k = 0; 1; 2; 3 are already known from Candelas, de la Ossa, Green, and Parkes
[1991]. This expression has to be monodromy invariant under the transport of �0 around
1. From the formula (5) we have

F1 = �̂k(�t ; �0) = gt �k F (a; b; a + b j (�0/5)
5) + O(�6

t );

F2 = �̂��t 0(�t ; �0) = g��t 0�t �1�a�b
0 F (1 � a; 1 � b; 2 � a � b j (�0/5)

5) + O(�6
t );

where gt ; g��t 0 are some constants. Explicitly for all different labels t
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t � � t 0 (a, b)
(2,1,1,1,0) (3,2,2,2,1) (2/5,2/5)
(2,2,1,0,0) (3,3,2,1,1) (1/5,3/5)
(3,1,1,0,0) (0,3,3,2,2) (1/5,2/5)
(3,2,0,0,0) (1,0,3,3,3) (1/5,1/5)

When �0 goes around infinity �
F1

F2

�
= B �

�
F1

F2

�
;

where

B =
1

is(a + b)

�
c(a � b) � ei�(a+b) 2s(a)s(b)

2e2�i(a+b)s(a)s(b) e�i(a+b)[e2�ia + e2�ib � 2]/2

�
:

Here c(x) = cos(�x); s(x) = sin(�x). It is straightforward to show the following

Proposition 1.

at j�̂t j
2 + a��t 0 j�̂��t 0 j

2 = at

Y
i

Γ

�
ti + 1

5

�2

j�t j
2 + a��t 0

Y
i

Γ

�
4 � ti

5

�2

j���t 0 j
2

is B-invariant iff at = �a��t 0 .

Due to symmetry we have a��t 0 = a��t in each case. From (6) it follows that the
product of the coefficients at j��j2 and j����j2 in the expression for e�K should be 1:

A��t 0

� At = a��t 0 � at

Y
i

Γ

�
ti + 1

5

�2

Γ

�
4 � ti

5

�2

= 1:

Due to reflection formula at = ˙
Q

i sin(�(ti + 1)/5) up to a common factor of � . The
sign turns out to be minus for Kähler metric to be positive definite in the origin. Therefore

A� = (�1)deg(�)/5
Y




�
�i + 1

5

�
:

Finally the Kähler potential becomes

e�K(�) =

203X
�=0

(�1)deg(�)/5
Y




�
�i + 1

5

�
j��(�)j

2;
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where 
(x) = Γ(x)
Γ(1�x)

.

7 Real structure on the cycles Γ˙
�

Let cycles 
� 2 H3(X) be the images of cycles Γ+
� under the isomorphism H

+;inv
5 '

H3(X).
Complex conjugation sends (2; 1)-forms to (1; 2)-forms. Similarly it extends to amapping
on the dual homology cycles 
�.

Lemma 1. Conjugation of homology classes has the following form: �
� = p�
���;

where � = (3; 3; 3; 3; 3) is a unique maximal degree element in the Milnor ring.

Proof. We perform a proof for the cohomology classes represented by differential forms.
For one-dimensional H 3;0(X) and H 0;3(X) it is obvious. Let

Ω2;1 := et (x)�l
ī
Ωljk 2 H 2;1(X):

Any element from H 1;2(X) is representable by a degree 10 polynomial P (x) as follows
from (4) as

Ω2;1 = Ω1;2 := P (x)�l
ī

�m
j̄
Ωlmk 2 H 1;2(X):

The group of phase symmetriesmodulo common factor acts by isomorphisms onX . There-
fore, it also acts on the differential forms. Lhs and rhs of the previous equation should have
the same weigth under this action, and weight of the lhs is equal �t modulo (1; 1; 1; 1; 1).
It follows that P (x) = pt e��t (x) with some constant pt .

Using this lemma and applying the complex conjugation of cycles to the formula (6) to
obtain

e�K =
X

�

A�
j��j

2 =
X

�

p2
�A�

j����j
2;

it follows that A� = ˙1/p�: Now formula (6) implies

p� =
Y




�
4 � �i

5

�
:
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8 Conclusion

I am grateful first of all to my coathor K. Aleshkin for the interesting collaboration.
This talk is based on the joint work with K. Aleshkin. Also I am thankful to M. Bershtein,
V. Belavin, S.Galkin, D. Gepner, A. Givental, M. Kontsevich, A. Okounkov, A. Rosly, V.
Vasiliev for the useful discussions. The work has been performed for FASO budget project
No. 0033-2018-0006.
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INTEGRABLE COMBINATORICS

Pඁංඅංඉඉൾ Dං Fඋൺඇർൾඌർඈ

Abstract
We explore various combinatorial problems mostly borrowed from physics, that

share the property of being continuously or discretely integrable, a feature that guaran-
tees the existence of conservation laws that often make the problems exactly solvable.
We illustrate this with: random surfaces, lattice models, and structure constants in
representation theory.

1 Introduction

In this note we deal with combinatorial objects, mostly provided by physical systems or
models. These are: random surfaces, lattice models, and structure constants. We will
illustrate how to solve the various problems, mostly of exact or asymptotic enumeration,
via a panel of techniques borrowed from pure combinatorics as well as statistical physics.
The tools utilized are: generating functions, transfer matrices, bijections, matrix integrals,
determinants, field theory, etc.

We have organized this collection of problems according to some common or analo-
gous properties, essentially related to their underlying symmetries. Among them the most
powerful is the notion of integrability. The latter appears under many different guises.
The first form is continuous: Existence of conservation laws, flat connections, commuting
transfer matrices, links to the Yang-Baxter equation, infinite dimensional algebra symme-
tries. The second form is discrete: Existence of discrete integrals of motion in discrete
time.

What kind of results did we obtain? Solving a system completely usually entails a
complete understanding of correlation functions within the model. This can be achieved
by explicit diagonalization of the transfer matrix or Hamiltonians, explicit computation of
generating functions, or derivation of complete systems of equations for averaged quan-
tities. As usual in statistical physics, one also investigates the asymptotic (or thermo-
dynamic) properties of the systems, leading to such results as asymptotic enumeration,
I acknowledge support by the Morris and Gertrude Fine foundation.
MSC2010: primary 05Axx; secondary 82B23, 05E05, 05E10, 82B41.
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identification of phases and their separations, identification of underlying field theoretical
descriptions of fluctuations.

One of the main features common to all the problems listed above is some kind of con-
nection to discrete paths or trees, the two simplest and most fundamental combinatorial
objects. The constructs of this note place these two main characters in new non-standard
contexts which shed some new light on their deep significance. Together they form the ba-
sis of the notion of combinatorial integrability, i.e. the properties shared by combinatorial
problems that connect them to discrete or continuous integrable systems.

The paper is organized as follows. In Section 2, we explore discretized models of
random surfaces, whether Lorentzian in 1+1 dimensions (Section 2.1), or Euclidian in
2 dimensions (Section 2.2). Both type of models display integrability respectively via
commuting transfer matrices and discrete integrals of motion, which allows to solve them
explicitly.

In Section 3, we first describe the 6 vertex model and its many combinatorial wonders
(Sect. 3.1), among which a description of Alternating Sign Matrices (ASM), and links to
special types of plane partitions, as well as the geometry of nilpotent matrix varieties.

Section 4 focuses on Lie algebraic structures with a description of Whittaker vectors
(Section 4.1) using path models, and of graded multiplicities in tensor products occurring
in inhomogeneous quantum spin chains with Lie symmetry (Section 4.2). The description
of the latter involves a construction of difference operators that generalize the celebrated
Macdonald operators, and can be understood within the context of polynomial representa-
tions of Double-Affine Hecke Algebras (DAHA), quantum toroidal algebras, and Elliptic
Hall Algebras (EHA).

Finally we gather some important open problems in Section 5, which we think should
shape the future of integrable combinatorics.

Acknowledgments. Much of the work described in this note is the fruit of collaborations
with various authors: R. Behrend, O. Golinelli, E. Guitter, C. Itzykson, R. Kedem, M.
Lapa, N. Reshetikhin, R. Soto Garrido, P. Zinn-Justin, J.-B. Zuber. I also benefited from
many important discussions with fellow mathematicians and physicists: O. Babelon, A.
Borodin, J.-E. Bourgine, I. Cherednik, I. Corwin, S. Fomin, M. Gekhtmann, M. Jimbo, R.
Kenyon, M. Kontsevich, Y. Matsuo, G. Musiker, A. Negut, A. Okounkov, V. Pasquier, M.
Shapiro, O. Schiffman, V. Retakh.

2 Random surfaces

2.1 1+1-dimensional Lorentzian triangulations and (continuous) integrability. Lorentzian
triangulations Di Francesco, Guitter, and Kristjansen [2000] are used as a discrete model
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for quantum gravity in one (space)+1 (time) dimension. Pure gravity deals with fluctua-
tions of such bare space-times, while matter theories include for instance particle systems
in interction defined on such space-times. General relativity expresses the relation be-
tween those fluctuations and in particular the associated fluctuations of the metric, area
and curvature of the space-time and the matter stress tensor. The model for a fluctuat-
ing 1+1D space-time is an arrangement of triangles organized into time slices as depicted
below:

time

space

Fluctuations of space are represented by random arrangements of triangles in each time
slice, while the time direction remains regular. These triangulations are best described in
the dual picture by considering triangles as vertical half-edges and pairs of triangles that
share a time-like (horizontal) edge as vertical edges between two consecutive time-slices.
We may now concentrate on the transition between two consecutive time-slices which
typically looks like:

(2-1)

with say i half-edges on the bottom and j on the top (here for instance we have i = 9 and
j = 10). To take into account the area and curvature of space-time, we may introduce a
Boltzmann weight g per triangle (i.e. per trivalent vertex in the dual picture) and a weight
a per pair of consecutive triangles in a time-slice pointing in the same direction (both
up or both down). The total weight of a configuration is the product of all local weights
pertaining ot it. It is easy to see that these weights correspond to a transfer operator T (g; a)

which describes the configurations of one time-slice with a total i of up-pointing triangles
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and j of down-pointing ones. The matrix element between states i and j reads:

T (g; a)i;j = (ag)i+j

Min(i;j )X
k=0

 
i

k

! 
j

k

!
a�2k (i; j � 0)

Equivalently, the double generating function for matrix elements of T (g; a) reads:

(2-2) fT (g;a)(z; w) =
X

i;j �0

T (g; a)i;j z
iwj =

1

1 � ga(z + w) � g2(1 � a2)zw

Thismodel turns out to provide one of the simplest examples of quantum integrable system,
with an infinite family of commuting transfer matrices. Indeed, we have:

Theorem 2.1 (Di Francesco, Guitter, and Kristjansen [2000]). The transfer matrices
T (g; a) and T (g0; a0) commute if and only if the parameters (g; a; g0; a0) are such that
'(g; a) = '(g0; a0) where:

'(g; a) =
1 � g2(1 � a2)

ag

This and the explicit generating function (2-2) were extensively used in Di Francesco,
Guitter, and Kristjansen [ibid.] to diagonalize T (g; a) and to compute correlation func-
tions of boundaries in random Lorentzian triangulations.

For suitable choices of boundary conditions, the dual random Lorentzian triangulations
introduced above may be viewed as random plane trees. This is easily realized by gluing
all the bottom vertices of successive parallel vertical edges (no interlacing with the neigh-
boring time slices). A typical such example reads:

Note that the tree is naturally rooted at its bottom vertex.
To summarize, we have unearthed some integrable structure attached naturally to plane

trees, one of the most fundamental objects of combinatorics. Note that in tree language
the weights are respectively g2 per edge, and a per pair of consecutive descendent edges
and per pair of consecutive leaves at each vertex (from left to right).
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2.2 2-dimensional Euclidian tessellations and (discrete) integrability. As opposed
to Lorentzian gravity, the 2D Euclidian theory involves fluctuations of both space and
time, allowing for space-times that look like random surfaces of arbitrary genus. Those
are discretized by tessellations. A powreful tool for enumerating those maps was provided
by matrix integrals, allowing to keep track of the area, as well as the genus via the size N
of the matrices (see Ref. Di Francesco, Ginsparg, and J. Zinn-Justin [1995] and references
therein). In a parallel way, the field-theoretical descriptions of the (critical) continuum
limit of two-dimensional quantum gravity (2DQG) have blossomed into a more complete
picture with identification of relevant operators and computation of their correlation func-
tions Di Francesco and Kutasov [1991]. This was finally completed by an understanding
in terms of the intersection theory of the moduli space of curves with punctures and fixed
genus Kontsevich [1991]. Remarkably, in all these approaches a common integrable struc-
ture is always present. It takes the form of commuting flows in parameter space. However,
a number of issues were left unadressed by the matrix/field theoretical approaches. What
about the intrinsic geometry of the random surfaces? Correlators must be integrated w.r.t.
the position of their insertions, leaving us only with topological invariants of the surfaces.
But how to keep track for instance of the geodesic distances between two marked points
of a surface, while at the same time summing over all surface fluctuations?

Answers to these questions came from a better combinatorial understanding of the struc-
ture of the (planar) tessellations involved in the discrete models. And, surprisingly, yet
another form of integrability appeared. Following pioneering work of Schaeffer [1997],
it was observed that all models of discrete 2DQG with a matrix model solution (at least
in genus 0) could be expressed as statistical models of (decorated) trees, and moreover,
the decorations allowed to keep track of geodesic distances between some faces of the
tessellations. Marked planar tessellations are known as rooted planar maps in combina-
torics. They correspond to connected graphs (with vertices, edges, faces) embedded into
the Riemann sphere. Such maps are usually represented on a plane with a distinguished
face “at infinity”, and a marked edge adjacent to that face. The degree of a vertex is the
number of distinct half-edges adjacent to it, the degree of a face is the number of edges
forming its boundary.

Consider the example of tetravalent (degree 4) planar maps with 2 univalent (degree 1)
vertices, one of which is singled out as the root. The Schaeffer bijection associates to each
of these a unique rooted tetravalent (with inner vertices of degree 4) tree called blossom-
tree, with two types of leaves (black and white), and such that there is exactly one black
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leaf attached to each inner vertex:

tree

root

root

map

This is obtained by the following cutting algorithm: travel clockwise along the bordering
edges of the face at infinity, starting from the root. For each traversed edge, cut it if and
only if after the cut, the new graph remains connected, and replace the two newly formed
half-edges by a black and a white leaf respectively in clockwise order. Once the loop is
traveled, this has created a larger face at infinity. Repeat the procedure until the graph has
only one face left: it is the desired blossom-tree, which we reroot at the other univalent
vertex, while the original root is transformed into a white leaf.

This bijection allows to keep track of the geodesic distance between the 2 univalent
vertices. Defining Rn(g) to be the generating function for maps with geodesic distance
� n between the two univalent vertices, we have the following recursion relation Bouttier,
Di Francesco, and Guitter [2003]:

(2-3) Rn(g) = 1 + gRn(g) (Rn+1(g) +Rn(g) +Rn�1(g))

easily derived by inspecting the environment of the vertex attached to the root of the tree
when it exists. It is supplemented by boundary conditionsR�1(g) = 0 and limn!1Rn(g) =

R(g) = 1�
p
1�12g

6g
, the generating function of maps with no geodesic distance constraint.

Equation (2-3), viewed as governing the evolution of the quantityRn(g) in the discrete
time variable n, is a classical discrete integrable system. By this we mean that it has a
discrete integral of motion, expressed as follows. The function �(x; y) defined by

(2-4) �(x; y) = xy(1 � g(x + y)) � x � y

is such that for any solution Sn of the recursion relation (2-3), the quantity �(Sn; Sn+1)

is independent of n. In other words, the quantity �(Sn; Sn+1) is conserved modulo (2-3).
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(This is easily shown by factoring �(Sn; Sn+1) � �(Sn�1; Sn).). This conservation law
gives in particular a relation of the form:

�(Rn(g); Rn+1(g)) = lim
m!1

�(Rm(g); Rm+1(g)) = �(R(g); R(g))

. It turns out that we can solve explicitly for Rn(g):

Theorem 2.2 (Bouttier, Di Francesco, and Guitter [ibid.]). The generating functionRn(g)

for rooted tetravalent planar maps with two univalent vertices at geodesic distance at most
n from each other reads:

Rn(g) = R(g)
(1 � x(g)n+1)(1 � x(g)n+4)

(1 � x(g)n+2)(1 � x(g)n+3)

where x(g) is the unique solution of the equation: x + 1
x
+ 4 = 1

gR(g)2
with a power

series expansion of the form x(g) = g +O(g2).

The form of the solution in Theorem 2.2 is that of a discrete soliton with tau-function
�n = 1 � x(g)n. Imposing more general boundary conditions on the equation (2-3) leads
to elliptic solutions of the same flavor. The solution above and its generalizations to many
classes of planar maps Di Francesco [2005] have allowed for a better understanding of the
critical behavior of surfaces and their intrinsic geometry. Recent developments include
planar three-point correlations, as well as higher genus results.

To summarize, we have seen yet another integrable structure emerge in relation to (dec-
orated) trees. This is of a completely different nature from the one discussed in Section 2.1,
where a quantum integrable structure was attached to rooted planar trees. Here we have a
discrete classical integrable system, with soliton-like solutions.

3 Lattice models

3.1 The six-vertex model and beyond. The Six Vertex (6V) model is the archetypical
example of 2D integrable lattice model. It is defined on domains of the square lattice Z2,
with configurations obtained by orienting all the nearest neigbor edges in such a way that
there are exactly to ingoing and two outgoing edges incident to each vertex in the interior
of the domain (ice rule). This gives rise to

�
4
2

�
= 6 local vertex configurations, to which

one usually attaches Boltzmann weights. The integrability of the model becomes manifest
if we parametrize these weights with rapidities (spectral parameters) that are derived from
the relevant R-matrix solution of the Yang-Baxter equation. This ensures that the system
has an infinite set of commuting transfer matrices, similarly to Section 2.1. This property
ensures that the transfer matrix is explicitly diagonalizable by means of Bethe Ansatz



2606 PHILIPPE DI FRANCESCO

2 3 4

5

6

910

11

12

1

7

8

0 10

0 001

00

00

0 0

0

01 1

0

0

0 0 0 0 0

0

0000

1

1 10

1

1

1

M  =0 variety
2

6V−DWBC

DPP

dense loop gas

ASM

RS

MRR

FPL qKZ

TSSCPP

... ...2n 4321

Figure 1: The combinatorial family of ASMs. From left to right: ASM, 6V-DWBC
and FPL , all in bijection; dense O(n) loop gas: its groundstate/limiting probability
vector satisfies the qKZ equation, the components measure FPL correlations (RS
conjecture); DPP: their refined evaluation matches that of ASMs; TSSCPP: their
refined enumeration matches a sum rule for qKZ solutions at generic q and zi = 1;
VarietyM 2 = 0: its degree/multidegree matches solutions of qKZ for q = 1.



INTEGRABLE COMBINATORICS 2607

techniques. Note that a certain limit of the transfer matrix yields the Hamiltonian of the
anisotropic XXZ spin chain.

A remarkable web of connections between many combinatorial objects relates to the
6V model, as shown in Figure 1. The configurations of the 6V model on a square grid of
size n with the so-called Domain Wall Boundary Conditions (DWBC) that all boundary
horizontal arrows are pointed towards the grid while all boundary vertical arrows point
outward, are in bijection with Alternating Sign Matrices (ASM), namely matrices with
entries in f�1; 0; 1g with alternance of 1’s and �1’s along each row and column, and with
row and column sums all equal to 1. This observation allowed Kuperberg [1996] to come
up with an elegant proof of the ASM conjecture for the number of n � n ASMs, soon
after the combinatorial proof of Zeilberger [1996]. Another bijection related the config-
urations of the 6V model with DWBC to so-called Fully Packed Loops (FPL) obtained
by coloring edges of the square grid in such a way that exactly 2 edges incident to each
inner vertex are colored, while every other boundary edge is colored. The colored edges
form closed loops or open paths connecting boundary edges by pairs (such a pattern of
connections is equivalent to non-crossing partitions or link patterns). The latter remark
prompted the celebrated Razumov and Stroganov [2004] conjecture that FPL configura-
tions with prescribed boundary edge connections form the Perron-Frobenius eigenvector
of the XXZ spin chain at its combinatorial point (when all Boltzmann weights are 1),
when expressed in the link pattern basis (in the O(n) model formulation of the spin chain),
later proved by Cantini and Sportiello [2011]. Among the many developments around
the conjecture, we used the link between the combinatorial problem and solutions of the
quantum Knizhnik-Zamolodchikov (qKZ) equation for the O(n) model Di Francesco and
P. Zinn-Justin [2005] and P. Zinn-Justin and Di Francesco [2008], which led us to con-
nections with the geometry of the variety of square zero matrices Di Francesco and P.
Zinn-Justin [2006]. Beyond bijections other sets of combinatorial objects have the same
cardinality An. These are the Totally Symmetric Self-Complementary Plane Partitions
(TSSCPP) on one hand and the Descending Plane Partitions (DPP) on the other. Both
classes of objects can be formulated as the rhombus tilings of particular domains of the tri-
angular lattice with particular symmetries. We found a proof Behrend, Di Francesco, and
P. Zinn-Justin [2012] and Behrend, Di Francesco, and P. Zinn-Justin [2013] of the Mills-
Robbins-Rumsey refined ASM-DPP conjecture Mills, Robbins, and Rumsey [1983] using
generating functions similar to (2-2), however no bijection is known to this day.

It turns out that, among other formulations, the 6V model with DWBC may be ex-
pressed as a model of osculating paths, namely non-intersecting paths with unit steps (1; 0)
and (0; 1), from the W border edges to the N border edges of the grid with allowed “kiss-
ing” or osculating vertices visited by two paths that do not cross. The latter path formu-
lation allows to predict the arctic curve phenomenon (i.e. the sharp separation between
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ordered and disordered phases) for random ASMs Colomo and Sportiello [2016] as well
as for random ASMs with a vertical reflection symmetry Di Francesco and Lapa [2018].

4 Lie algebras, quantum spin chains and CFT

In this section, we present combinatorial problems/approaches to algebra representation
theory.

4.1 Whittaker vectors and path models. Whittaker vectors Kostant [1978] are funda-
mental objects in the representation theory of Lie algebras expressed in terms of Cheval-
ley generators fei ; fi ; hi g

r
i=� and relations (here � = 1 for finite algebras, and � = 0 for

affine algebras). They are instrumental in constructing Whittaker functions, which are
eigenfunctions for the quantum Toda operators, namely Schroedinger operators with ki-
netic and potential terms coded by the root system of the algebra. Given a Verma module
V� = U(ffi g)j�iwith highest weight vector j�i, aWhittaker vector v�;� with parameters
�i is an element of the completion of V� (an infinite series in V�) that satisfies the relations
eiv�;� = �ivi for all i . It is unique upon a choice of normalization. In Ref.Di Francesco,
Kedem, and Turmunkh [2017] we developed a general approach to the computation of
Whittaker vectors by expanding them on the “words” of the form fi1fi2 � � � fik j�i for arbi-
trary ij 2 [�; r ] and k � 0. The latter are of course not linearly independent, but we found
some extremely nice and simple expression for their coefficients ci1;:::;ik in the expression
of v�;� =

P
k�0

P
i1;:::;ik2[�;r] ci1;:::;ik fi1fi2 � � � fik j�i (the normalization is chosen so

that the empty word has coefficient c0;0;:::;0 = 1). We made the observation that the set
of vectors of the form fi1fi2 � � � fik j�i is in bijection with the set of paths p 2 P on the
positive cone Q+ of the root lattice, from the origin to some root ˇ = (ˇi )i2[�;r] where
ˇi is the number of occurrences of fi in the vector (or of the letter i in the word). Indeed,
the steps of p are taken successively in the directions ik ; ik�1; :::; i1 in [�; r ]. We denote
by jpi = fi1fi2 � � � fik j�i. We have the following general result.

Theorem 4.1 (Di Francesco, Kedem, and Turmunkh [ibid.]). For finite or affine Lie al-
gebras, the Whittaker vector v�;� is expressed as:

v�;� =
X

ˇ2Q+

Y
i

�
ˇi

i

X
pathsp:0!ˇ

w(p)jpi

where the weight w(p) is a product of local weights:

w(p) =
Y


2Q�
+


 vertex of p

1

v(
)
; v(
) = (�+ �j
) �

1

2
(
 j
)
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This construction was shown in Di Francesco, Kedem, and Turmunkh [ibid.] to extend
to the A type quantum algebras Uq(slr+1) with local weights depending on both the
vertex and the direction of the step from the vertex.

This new formulation of Whittaker vectors yields a very simple proof for the fact that
the corresponding Whittaker function obeys the quantum Toda equation (classical case),
the Lamé-like deformed Toda equation (affine, non-critical case) or the q-difference Toda
equation (quantum case).

The q-Whittaker functions are known to be a degenerate limit of Macdonald polynomi-
als, when t ! 0 or1. This suggests to look for a possible path formulation of Macdonald
polynomials.

4.2 Fusion product, Q-system cluster algebra and Macdonald theory.

4.2.1 Graded characters and quantum Q-system. We now turn to the combinatorial
problem of finding the fusion coefficients Multq(˝KR

˝n˛;n
˛;n ;V�) for graded tensor prod-

uct decompositions of so-called Kirillov and Reshetikhin [1987] (KR) modules KR˛;n

(˛ 2 [1; r ];n 2 N) of a Lie algebra into irreducibles. The grading, inherited from the
loop algebra Feigin and Loktev [1999] (fusion product) turns out to have many equiv-
alent formulations: as energy of the corresponding crystal, as linearized energy in the
Bethe Ansatz solutions of the corresponding inhomogeneous isotropic XXX quantum spin
chain (the physical system at the origin of the problem, from which so-called fermionic
formulas for graded multiplicities were derived Hatayama, Kuniba, Okado, Takagi, and
Yamada [1999]). Recently, we have found yet another interpretation of this grading, as be-
ing provided by the canonical quantum deformation of the cluster algebra of the so-called
Q-system for the algebra Di Francesco and Kedem [2014].

The latter is a recursive system for scalar variablesQ˛;n ˛ = 1; 2:::; r , n 2 Z. For the
case of Ar it takes the form:

Q˛;n+1Q˛;n�1 = (Q˛;n)
2

�Q˛+1;nQ˛�1;n

with boundary conditions Q0;n = Qr+1;n = 1 for all n 2 Z. It is satisfied by the
KR characters Q˛;n = �KR˛;n

(x). This is a discrete integrable system: there exist r
algebraically independent polynomial quantities of theQ’s that are conserved modulo the
system, which we can view as describing evolution of the variablesQ˛;n in discrete time
nDi Francesco and Kedem [2010, 2018]. Taking advantage of this property, we were able
to solve such systems by means of (strongly) non-intersecting lattice paths (the solution
involves also a new continued fraction rearrangement theory Di Francesco and Kedem
[2010] and Di Francesco [2011a]).
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Such systems exist for all finite and affine algebras, and were shown to be particular
sets of mutations in some cluster algebras Kedem [2008] and Di Francesco and Kedem
[2009]. As such, they admit a natural quantization into a q-deformed, non-commutative
Q-system, coined the quantum Q-system. For the case Ar it reads:

Q˛;nQˇ;n+1 = q�˛;ˇ Qˇ;n+1Q˛;n(4-1)

q�˛;˛ Q˛;n+1Q˛;n�1 = (Q˛;n)
2

� q Q˛+1;nQ˛�1;n(4-2)

where �˛;ˇ = (C�1)˛;ˇ , C the Cartan matrix of the algebra, and with the boundary
conditionsQ0;n = Qr+1;0 = 1,Qr+2;n = 0 for all n 2 Z. The non-commuting variables
Q˛;n play the role of quantized KR characters. The path solutions of the classical Q-
system admit a non-commutative version using non-commutative continued fractions Di
Francesco and Kedem [2011].

For simplicity let us perform a change of variables. Define A = Qr+1;1 and the
degree operator ∆ such that ∆Q˛;n = q˛nQ˛;n ∆. Then the new variables M˛;n :=

q� 1
2 �˛;˛(n+r+1)Q˛;n∆

˛
r+1 are subject to the new “M-system”:

M˛;nMˇ;n+1 = qMin(˛;ˇ)Mˇ;n+1M˛;n(4-3)

q˛ M˛;n+1M˛;n�1 = (M˛;n)
2

�M˛+1;nM˛�1;n(4-4)

with boundary conditionsM0;n = 1 andMr+1;n = An∆.

Theorem 4.2. We have the following representation of the M-system via difference oper-
ators acting on the ring of symmetric functions of N = r + 1 variables (x1; :::; xN ):

(4-5) M˛;n =
X

I�[1;N ]

jI j=˛

xn
I

Y
i2I
j 62I

xi

xi � xj

ΓI

where xI =
Q

i2I xi , ΓI =
Q

i2I Γi , and Γi is the multiplicative q-shift operator on
the i -th variable: (Γi f )(x1; x2; :::; xN ) = f (x1; :::; xi�1; qxi ; xi+1; :::; xN ), and with
moreover A = x1x2 � � � xN , and ∆ = Γ1Γ2 � � �ΓN .

Let �n(q; x), n = fn˛;ng˛2[1;r];n2[1;k], x = (x1; :::; xN ), denote the graded charac-
ter: �n(q; x) =

P
� Multq(˝KR

˝n˛;n
˛;n ;V�)��(x), i.e. the generating function for graded

multiplicities, where the irreducible characters ��(x) = s�(x) are the Schur functions.

Theorem 4.3 (Di Francesco and Kedem [2018]). The graded character for the tensor
product ˝KR

˝n˛;n
˛;n reads

�n(q
�1; x) = q�a(n)

1Y
j=k

rY
˛=1

(M˛;j )
n˛;j � 1
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with a(n) = 1
2

P
i;j;˛;ˇ n˛;iMin(i; j )Min(˛; ˇ)nˇ;j �

1
2

P
i;˛ i˛ n˛;i .

The results above were so far only derived for the A case, but they can be extended to
B;C;D types Di Francesco and Kedem [n.d.].

4.2.2 From Cluster algebra to quantum toroidal and Elliptic Hall algebras. The
form of the difference operator (4-5) is reminiscent of the celebrated Macdonald opera-
tors Macdonald [1995], for which the Macdonald polynomials form a complete family of
eigenvectors. These were best understood in the context of Double Affine Hecke Alge-
bra Cherednik [2005], in the functional representation. We actually found that a certain
action of the natural SL2(Z) symmetry of DAHA produces the following generalized
Macdonald difference operators in the functional representation:

(4-6) M˛;n =
X

I�[1;N ]

jI j=˛

xn
I

Y
i2I
j 62I

txi � xj

xi � xj

ΓI

We note the relation M˛;n = limt!1 t�˛(N �˛) M˛;n. We may therefore identify the
quantum cluster algebra solution of the Q-system with the t ! 1 (so-called dual q-
Whittaker) limit of generalized Macdonald operators.

These operators allow to construct a representation of the so-called Ding–Iohara–Miki
Ding and Iohara [1997] andMiki [2007] (DIM) or quantum toroidal gl1 algebra as follows
Di Francesco and Kedem [2017b]. Introduce the currents:

(4-7) e(z) :=
q1/2

1 � q

X
n2Z

qn/2znM1;n and f(z) := e(z)
ˇ̌
q!q�1;t!t�1

as well as the series

(4-8)  ˙(z) :=

NY
i=1

(1 � q� 1
2 t(zxi )

˙1)(1 � q
1
2 t�1(zxi )

˙1)

(1 � q� 1
2 (zxi )˙1)(1 � q

1
2 (zxi )˙1)

2 C[[z˙1]]

Theorem 4.4 (Di Francesco and Kedem [ibid.]). The currents and series (e; f;  ˙) form
a level (0; 0) representation of the DIM algebra.

In particular, we have the following exchange relation:

g(z; w) e(z) e(w)+g(w; z) e(w) e(z) = 0; g(z; w) = (z�qw)(z� t�1w)(z�q�1tw)

In the t ! 1 limit this reduces to the Up
q(csl2) upper Borel subalgebra relation, while

the DIM relations go to some interesting degeneration, directly connected to the quantum
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Q-system cluster algebra Di Francesco and Kedem [2018, 2017b]. Algebra relations allow
in particular to derive a quantum determinant formula for M˛;n as a polynomial of the
Mn := M1;n’s. Let us introduce the currents m˛(z) :=

P
n2Z z

nM˛;n, and in particular
m(z) := m1(z) = limt!1 t1�N 1�q

q1/2 e(z), then:

Theorem 4.5 (Di Francesco and Kedem [2017a]).

(4-9) m˛(z) =

8<:
0@ Y

1�i<j �˛

�
1 � q

uj

ui

�1Am(u1)m(u2) � � �m(u˛)

9=;
ˇ̌̌̌
ˇ
(u1u2���u˛)n

where the subscript stands for the coefficient of (u1u2 � � �u˛)
n.

Note also that the function of u in (4-9) is a multi-current generating series. Let us
define Ma1;:::;a˛

to be the coefficient of ua1

1 � � �u
a˛
˛ in this series. There is a very nice

expression forMa1;:::;a˛
as a quantum determinant, involving a sum over Alternating Sign

Matrices. This is because the quantity
Q

i<j vi + �vj is the �-determinant �det(Vn) (as
defined byRobbins andRumsey [1986]) of theVandermondematrixVn := (vn�j

i )1�i;j �n.
We denote by ASMn the set of ASM of size n. The inversion number of an ASM is the
quantity I (A) =

P
i>k;j <` Ai;jAk;`. We also denote by N (A) the number of �1’s in A.

Let us also define the column vector v = (n � 1; n � 2; ::; 1; 0)t , and for each ASM A

we denote by mi (A) := (Av)i . Then we have the explicit formula, obtained by taking
� = �q for the �-determinant of the ˛ � ˛ Vandermonde matrix V˛:Y

1�i<j �˛

(vi � qvj ) =
X

A2ASM n

(�q)I (A)�N (A)(1 � q)N (A)
nY

i=1

v
mi (A)
i

Combining this with (4-9), we deduce the following compact expression for the quantum
determinant:

Theorem 4.6. The quantum determinant of the matrix
�
Maj +i�j

�
1�i;j �˛

reads:

Ma1;:::;a˛
=
ˇ̌̌�
Maj +i�j

�
1�i;j �˛

ˇ̌̌
q

(4-10)

=
X

A2ASM ˛

(�q)I (A)�N (A)(1 � q)N (A)
Y̨
i=1

Mai+˛�i�mi (A)(4-11)

Finally, we use a known isomorphism Schiffmann and Vasserot [2011] between the
Spherical DAHA with the Elliptic Hall algebra (EHA) to make the connection between
generalizedMacdonald operators and a functional representation of the EHADi Francesco
and Kedem [2017a]. From this connection, we obtain new algebraic relations between the
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operators M˛;n, inherited from the “skinny triangle” relations of Burban and Schiffmann
[2012].

To conclude, the results of this section are so far valid for the A type only. It would
be interesting to investigate the (t-deformed) algebraic structures hiding behind the B,C,D
cases as well.

5 Open problems

In this note, we described various instances of discrete or continuous integrability in combi-
natorial problems. A recurrent theme is the ability to rephrase said combinatorial problems
in terms of paths or trees.

Paths are very important objects. Equippedwith non-commutative weights, paths allow
to describe non-commutative monomials in finitely generated non-commutative algebras.
We have encountered a few instances of this in the present note. A crucial question remains
open: how to deal with families of non-intersecting non-commutative paths? We have
found specific answers in the cases where the non-commutativity is “under control”, e.g.
in the case of quantum path weights with specific q-commuting relations Di Francesco
[2011b]. More general non-commuting weighted paths can be described via the theory of
quasideterminants I. Gelfand, S. Gelfand, Retakh, and Wilson [2005], however it remains
to find a good theory for non-intersecting non-commutative paths, and perhaps a non-
commutative version of the Lindström-Gessel-Viennot (LGV) determinant formula.

Interacting paths are a combinatorial version of interacting fermions. Starting from
NILP, we can turn on some interaction, by for instance allowing paths to touch without
crossing (osculating paths) and attaching a contact energy to such instances. As shown
in the case of the 6V/ASM model, such interactions still allow for solving, together with
the machinery of integrable lattice models. As another indication, he so-called tangent
method for determining phase transitions in large random tilings (arctic curves) seems
to apply to interacting paths as well. The determinant form of the partition function for
the 6V model with DWBC would point to the fact that there should exist determinant
formulas for interacting paths that generalize LGV. It seems that a number of interacting
path problems are still open, and a systematic study is in order.
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Abstract
We present recent progress in theory of local conformal nets which is an operator

algebraic approach to study chiral conformal field theory. We emphasize representa-
tion theoretic aspects and relations to theory of vertex operator algebras which gives
a different and algebraic formulation of chiral conformal field theory.

1 Introduction

Quantum field theory is a vast area in physics and two-dimensional conformal field theory
has caught much attention recently. A two-dimensional conformal field theory decom-
poses into two chiral conformal field theories, and here we present mathematical studies
of a chiral conformal field theory based on operator algebras. It is within a scope of what
is called algebraic quantum field theory and our mathematical object is called a local con-
formal net.

The key idea in algebraic quantum field theory is to work on operator algebras gener-
ated by observables in a spacetime region rather than quantum fields. In chiral conformal
field theory, the spacetime becomes a one-dimensional circle and a spacetime region is
an interval in it, which is a nonempty, nondense, open and connected set in the circle, so
we deal with a continuous family of operator algebras parameterized by intervals. This is
what a local conformal net is.

Each operator algebra of a local conformal net acts on the same Hilbert space from the
beginning, but we also consider its representation theory on another Hilbert space. Such
a representation corresponds to a notion of a charge, and a unitary equivalence class of
a representation is called a superselection sector. In the Doplicher-Haag-Roberts theory
Doplicher, Haag, and Roberts [1971], a representation is realized with a DHR endomor-
phism of one operator algebra, and such an endomorphism produces a subfactor in the
sense of the Jones theory Jones [1983], Jones [1985]. Subfactor theory plays an important
MSC2010: primary 81T40; secondary 17B69, 18D10, 46L37, 81T05.
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role in this approach. It has revolutionized theory of operator algebras and revealed its
surprising deep relations to 3-dimensional topology, quantum groups and solvable lattice
models. Its connection to quantum field theory was clarified by Longo [1989] and it has
been an important tool also in conformal field theory since then.

Representation theory of a local conformal net gives a powerful tool to study chiral
conformal field theory. We present ˛-induction, a certain induction procedure for repre-
sentation theory of a local conformal net, and its use for classification theory.

A vertex operator algebra gives another axiomatization of a chiral conformal field
theory and it has started with the famous Moonshine conjecture Conway and Norton
[1979]. The axiomatic framework has been established in Frenkel, Lepowsky, and Meur-
man [1988] and we have had many research papers on this topic. This is an algebraic
axiomatization of Fourier expansions of a family of operator-valued distributions on the
one-dimensional circle. Since a local conformal net and a vertex operator algebra give
different axiomatizations of the same physical theory, it is natural to expect that they have
many common features. There have been many parallel results in the two theories, but a
precise relation between the two were not known until recently. We have established that
if a vertex operator algebra satisfies unitarity and an extra mild assumption called strong
locality, then we can construct the corresponding local conformal net and also recover the
original vertex operator algebra from the local conformal net. Strong locality is known
to be satisfied for most examples and we do not know any example of a vertex operator
algebra which does not have strong locality.

There are many open problems to study in the operator algebraic approach to chiral
conformal field theory. We present some of them in this article.

We refer a reader to lecture notes Kawahigashi [2015b] for more details with an exten-
sive bibliography.

This work was supported in part by Research Grants and the Grants-in-Aid for Scien-
tific Research, JSPS.

2 Algebraic quantum field theory and local conformal nets

In a common approach to quantum field theory such as the Wightman axioms, we deal
with quantum fields which are a certain kind of operator-valued distributions on the space-
time acting on the same Hilbert space together with a spacetime symmetry group. An
operator-valued distribution T applied to a test function f gives hT; f i which is an (often
unbounded) operator. Handling distributions, rather than functions, and unbounded oper-
ators causes technical difficulties, so an idea of algebraic quantum field theory of Haag-
Kastler is to study operator algebras generated by observables in a spacetime region. Let
T be an operator-valued distribution and f be a test function supported in O which is a
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spacetime region. Then hT; f i gives an observable in O (if it is self-adjoint). Let A(O)

be the von Neumann algebra generated by these observables. (A von Neumann algebra is
an algebra of bounded linear operators on a Hilbert space containing the identity operator
which is closed under the �-operation and the strong operator topology. This topology is
given by pointwise convergence on the Hilbert space.) We have a family fA(O)g of von
Neumann algebras. We impose physically natural axioms on such a family and make a
mathematical study of these axioms.

We apply the above general idea to 2-dimensional conformal field theory. We first con-
sider the 2-dimensional Minkowski space with space coordinate x and time coordinate
t . We have a certain restriction procedure of a conformal field theory on the Minkowski
space to the two light rays fx = ˙tg. In this way, we can regard one light ray as a kind
of spacetime though it has only one dimension. Then conformal symmetry can move the
point at infinity of this light ray, so our space should be now S1, the one-point compacti-
fication of a light ray. A spacetime region is now a nonempty nondense open connected
subset of S1 and such a set is called an interval. Our mathematical object is a family of von
Neumann algebras fA(I )g parametrized by an interval I � S1. We impose the following
axioms on this family.

1. (Isotony) For two intervals I1 � I2, we have A(I1) � A(I2).

2. (Locality) When two intervals I1; I2 are disjoint, we have [A(I1); A(I2)] = 0.

3. (Möbius covariance) We have a unitary representation U of PSL(2; R) on the
Hilbert space such that we haveU (g)A(I )U (g)� = A(gI ) for all g 2 PSL(2; R),
where g acts on S1 as a fractional linear transformation on R [ f1g and S1 X f�1g

is identified with R through the Cayley transform C (z) = �i(z � 1)/(z + 1).

4. (Conformal covariance) We have a projective unitary representation, still denoted
by U , of Diff(S1), the group of orientation preserving diffeomorphisms of S1, ex-
tending the unitary representation U of PSL(2; R) such that

U (g)A(I )U (g)� = A(gI ); g 2 Diff(S1);

U (g)xU (g)� = x; x 2 A(I ); g 2 Diff(I 0);

where I 0 is the interior of the complement of I and Diff(I 0) is the set of diffeomor-
phisms of S1 which are the identity map on I .

5. (Positive energy condition) The generator of the restriction of U to the rotation
subgroup of S1, the conformal Hamiltonian, is positive.

6. (Existence of the vacuum vector)We have a unit vectorΩ, called the vacuum vector,
such that Ω is fixed by the representation U of PSL(2; R) and (

W
I�S1 A(I ))Ω is
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dense in the Hilbert space, where
W

I�S1 A(I ) is the von Neumann algebra gener-
ated by A(I )’s.

7. (Irreducibility) The von Neumann algebra
W

I�S1 A(I ) is the algebra of all the
bounded linear operators on the Hilbert space.

Isotony is natural because a larger spacetime domain should have more observables.
Locality comes from the Einstein causality in the 2-dimensional Minkowski space that
observables in spacelike separated regions should commute with each other. Note that
we have a simple condition of disjointness instead of spacelike separation. Conformal
covariance represents an infinite dimensional symmetry. This gives a reason for the name
“conformal” field theory. The positive energy condition expresses positivity of the eigen-
values of the conformal Hamiltonian. The vacuum state is a physically distinguished state
of the Hilbert space. Irreducibility means that our Hilbert space is irreducible.

It is non-trivial to construct an example of a local conformal net. Basic sources of
constructions are as follows. These are also sources of constructions of vertex operator
algebras as we see below.

1. Affine Kac-Moody algebras Gabbiani and Fröhlich [1993], Wassermann [1998],
Toledano Laredo [1999]

2. Virasoro algebra Xu [2000a], Kawahigashi and Longo [2004a]

3. Even lattices Kawahigashi and Longo [2006], Dong and Xu [2006]

When we have some examples of local conformal nets, we have the following methods
to construct new ones.

1. Tensor product

2. Simple current extension Böckenhauer and Evans [1998]

3. Orbifold construction Xu [2000b]

4. Coset construction Xu [2000a]

5. Extension by aQ-systemLongo andRehren [1995], Kawahigashi and Longo [2004a],
Xu [2007]

The first four constructions were first studied for vertex operator algebras. The last one
was first studied for a local conformal net and later for vertex operator algebras Huang,
Kirillov, and Lepowsky [2015]. The Moonshine net, the operator algebraic counterpart
of the famous Moonshine vertex operator algebra, is constructed from the Leech lattice,
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an even lattice of rank 24, with a combination of the orbifold construction and a simple
current extension Kawahigashi and Longo [2006], for example. This is actually given
by a 2-step simple current extension as in Kawahigashi and Suthichitranont [2014]. The
Q-system in the last construction was first introduced in Longo [1994]. It is also known
under the name of a Frobenius algebra in algebraic literature.

Irreducibility implies that each A(I ) has a trivial center. Such an algebra is called
a factor. It turns out that each algebra A(I ) is isomorphic to the Araki-Woods factor
of type III1 because the split property automatically holds by Morinelli, Tanimoto, and
Weiner [2018] and it implies hyperfiniteness of A(I ). This shows that each single algebra
A(I ) contains no information about a local conformal net and what is important is relative
relation among A(I )’s.

3 Representation theory and superselection sectors

We now present representation theory of a local conformal net. Each algebra A(I ) of
a local conformal net fA(I )g acts on the same Hilbert space having the vacuum vector
from the beginning, but we also consider a representation of an algebra A(I ) on another
common Hilbert space (without a vacuum vector).

TheHaag dualityA(I 0) = A(I )0 automatically holds from the axioms, where the prime
on the right hand side denotes the commutant, and this implies that each representation
is represented with an endomorphism � of A(I ) for some fixed I . This is a standard
Doplicher-Haag-Roberts theory adapted to a local conformal net Fredenhagen, Rehren,
and Schroer [1989]. An endomorphism � produces �(A(I )) which is subalgebra of A(I )

and a factor, so it is called a subfactor. It is an object in the Jones theory of subfactors
Jones [1983]. The relative size of the subfactor �(A(I ))with respect to A(I ) is called the
Jones index [A(I ) : �(A(I ))]. It turns out that the square root [A(I ) : �(A(I ))]1/2 of the
Jones index gives a proper notion of the dimension of the corresponding representation of
fA(I )g Longo [1989]. The dimension dim(�) takes its value in the interval [1; 1].

It is important to have a notion of a tensor product of representations of a local confor-
mal net. Note that while it is easy to define a tensor product of representations of a group,
we have no notion of a tensor product of representations of an algebra. It turns out that a
composition of endomorphisms of A(I ) for a fixed I gives a right notion of a tensor prod-
uct of representations Doplicher, Haag, and Roberts [1971]. In this way, we have a tensor
category of finite dimensional representations of fA(I )g. The original action of A(I ) on
the Hilbert space is called the vacuum representation and has dimension 1. It plays a role
of a trivial representation. In the original setting of the Doplicher-Haag-Roberts theory
on the higher dimensional Minkowski space, the tensor product operation is commutative
in a natural sense and we have a symmetric tensor category. Now in the setting of chiral
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conformal field theory, the commutativity is more subtle, and we have a structure of braid-
ing Fredenhagen, Rehren, and Schroer [1989]. We thus have a braided tensor category of
finite dimensional representations.

We are often interested in a situation where we have only finitely many irreducible rep-
resentations and such finiteness is usually called rational. (This rationality is well-studied
in a context of representation theory of quantum groups at roots of unity in connection to
quantum invariants in 3-dimensional topology.) We have defined complete rationality for
a local conformal net, which means we have only finitely many irreducible representations
up to unitary equivalence and all of them have finite dimensions, and given its operator
algebraic characterization in terms of finiteness of the Jones index of a certain subfactor in
Kawahigashi, Longo, and Müger [2001]. (We originally assumed two more properties for
complete rationality, but they have been shown to be automatic by Longo and Xu [2004],
Morinelli, Tanimoto, and Weiner [2018], respectively.) This characterization is given by
only studying the vacuum representation. We have further proved that complete rational-
ity implies that the braiding of the representations is non-degenerate, that is, we have the
following theorem in Kawahigashi, Longo, and Müger [2001].

Theorem 3.1. The tensor category of finite dimensional representations of a completely
rational local conformal net is modular.

It is an important open problem to decide which modular tensor category arises as the
representation category of a completely rational local conformal net. The history of classi-
fication theory of factors, group actions and subfactors in theory of von Neumann algebras
due to Connes, Haagerup, Jones, Ocneanu and Popa culminating in Popa [1994] tells us
that as long as we have an analytic condition, generally called amenability, we have no
nontrivial obstruction to realization of algebraic invariants. This strongly suggests that
any modular tensor category is realized as the representation category of some local con-
formal net, because we now have amenability automatically. This conjecture has caught
much attention these days because of recent work of Jones. We turn to this problem again
in the next section.

4 Subfactors and tensor categories

In the Jones theory of subfactors, we study an inclusion N � M of factors. In the original
setting of Jones [1983], one considers type II1 factors, but one has to deal with type III
factors in conformal field theory. The Jones theory has been extended to type III factors
by Pimsner-Popa and Kosaki, and many algebraic arguments are nowmore or less parallel
in the type II1 and type III cases. For simplicity, we assume factors are of type II1 in this
section. We refer reader to Evans and Kawahigashi [1998] for details of subfactor theory.
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We start with a subfactor N � M . The Jones index [M : N ] is a number in the
interval [1; 1]. In this section, we assume that the index is finite. On the algebra M , we
have the left and right actions of M itself. We restrict the left action to the subalgebra
N , and we have a bimodule N MM . We make the completion of M with respect to the
inner product arising from the trace functional and obtain the Hilbert space L2(M ). For
simplicity, we still write N MM for this Hilbert space with the left action of N and the
right action of M . We make relative tensor powers such as N M ˝M M ˝N M ˝M � � �

and their irreducible decomposition gives four kinds of bimodules, N -N , N -M , M -N
and M -M . If we have only finitely many irreducible bimodules in this way, we say that
the subfactor N � M is of finite depth. In this case, finite direct sums of these irreducible
N -N (and M -M ) bimodules (up to isomorphism) give a fusion category. Note that the
relative tensor product is not commutative in general and we have no braiding structure.

If we have a free action of a finite group G on a factor M , we have a subfactor
N = M G � M . The index is the order of G and the fusion category of N -N bi-
modules is the representation category of G. There are other constructions of subfac-
tors from actions of finite groups and their quantum group versions give many interesting
examples of subfactors. If the index is less than 4, the set of all the possible values is
f4 cos2 �/n j n = 3; 4; 5; : : : g Jones [1983]. Classification of subfactors with index
less than 4 has been given in Ocneanu [1988] and this is well-understood today in terms
of quantum groups or conformal field theory. Such classification of subfactors has been
extended to index value 5 Jones, Morrison, and Snyder [2014] recently.

There are some exceptional subfactors which do not seem to arise from such construc-
tions involving (quantum) groups. The most notable examples are the Haagerup subfac-
tor Asaeda and Haagerup [1999], the Asaeda-Haagerup subfactor Asaeda and Haagerup
[ibid.] and the extendedHaagerup subfactor Bigelow, Peters, Morrison, and Snyder [2012]
in the index range (4; 5). (The first two were constructed along an extension of the line of
Ocneanu [1988] and the last one is based on the planar algebra of Jones.) Such a subfactor
produces an exceptional fusion category and then it produces an exceptional modular ten-
sor category through the Drinfeld center construction. (See Izumi [2000] for an operator
algebraic treatment of this.) Such a modular tensor category does not seem to arise from
a combination of other known constructions applied to the Wess-Zumino-Witten models.
The above three subfactors were found through a combinatorial search for a very narrow
range of index values. This strongly suggests that there is a huge variety of exceptional
fusion categories and modular tensor categories beyond what is known today. History
of classification theory of subfactors even strongly suggests that there is a huge variety
of exceptional modular tensor categories even up to Witt equivalence ignoring Drinfeld
centers, because it seems impossible to exhaust all examples by prescribing construction
methods.
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As explained in the previous section, we strongly believe that all such exceptional mod-
ular tensor categories do arise from local conformal nets. This would mean that there is
a huge variety of chiral conformal field theories beyond what is known today. For the
Haagerup subfactor, a partial evidence for this conjecture is given in Evans and Gannon
[2011].

5 ˛-induction, modular invariants and classification theory

We next present an important tool to study representation of a local conformal net. For
a subgroup H of another group G and a representation of H , we have a notion of an in-
duced representation of G. We have some similar notion for a representation of a local
conformal net. Let fA(I ) � B(I )g be an inclusion of local conformal nets and assume the
index [B(I ) : A(I )] is finite. For a a representation of fA(I )g which is given by an endo-
morphism � of a factor A(I ) for some fixed interval I , we extend � to an endomorphism
of B(I ). This extension depends on a choice of positive and negative crossings in the
braiding structure of representations of fA(I )g and we denote it with ˛˙

�
where ˙ stands

for the choice of positive and negative crossings. This gives an “almost” representation
of fB(I )g and it is called a soliton endomorphism. This induction machinery is called ˛-
induction. It was first introduced in Longo and Rehren [1995] and studied in detail in Xu
[1998], Böckenhauer and Evans [1998]. Ocneanu had a graphical calculus in a very dif-
ferent context involving the A-D-E Dynkin diagrams and the two methods were unified
in Böckenhauer, Evans, and Kawahigashi [1999], Böckenhauer, Evans, and Kawahigashi
[2000]. It turns out that the intersection of irreducible endomorphisms of B(I ) arising
from ˛+-induction and ˛�-induction exactly gives those corresponding the representa-
tions of fB(I )g by Kawahigashi, Longo, and Müger [2001], Böckenhauer, Evans, and
Kawahigashi [1999], Böckenhauer, Evans, and Kawahigashi [2000].

Let fA(I )g be completely rational in the above setting. Then fB(I )g is automati-
cally also completely rational. (The converse also holds.) The modular tensor category
of fA(I )g gives a (finite dimensional) unitary representation of SL(2; Z) from its braid-
ing. (The dimension of the representation is the number of irreducible representations of
fA(I )g up to unitary equivalence.) Define the matrix (Z��) byZ�� = dimHom(˛+

�
; ˛�

�)

where �; � denote endomorphisms of A(I ) corresponding to irreducible representations
of fA(I )g. Then we have the following in Böckenhauer, Evans, and Kawahigashi [1999].

Theorem 5.1. The matrixZ commutes with the above unitary representation of SL(2; Z).

Such Z also satisfies Z�� 2 f0; 1; 2; : : : g and Z00 = 1 where 0 denotes the vacuum
representation of fA(I )g. Such a matrix is called a modular invariant of the representation
of SL(2; Z). The number of modular invariants for a given local conformal net fA(I )g

is always finite and often quite limited. This gives the following classification method of
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all possible irreducible extensions fB(I )g for a given local conformal net fA(I )g. (Any
irreducible extension automatically has a finite index by Izumi, Longo, and Popa [1998].)

1. Find all possible modular invariants (Z��) for the modular tensor category arising
from representations of fA(I )g.

2. For each (Z��), determine all possible Q-systems corresponding to
L

Z0��.

3. Pick up only local Q-systems.

Consider a local conformal net fA(I )g. The projective unitary representation ofDiff(S1)

gives a representation of the Virasoro algebra and it gives a positive real number c called
the central charge. This is a numerical invariant of a local conformal net and the value of
c is in the set f1 � 6/n(n + 1) j n = 3; 4; 5; : : : g [ [1; 1). We now restrict ourselves
to the case c < 1. Let Virc(I ) be the von Neumann algebra generated by U (g) where
g 2 Diff(S1) acts trivially on I 0. This gives an extension fVirc(I ) � A(I )g. It turns
out fVirc(I )g is completely rational and we can apply the above method to classify all
possible fA(I )g. The modular invariants have been classified in Cappelli, Itzykson, and
Zuber [1987], and locality and a certain 2-cohomology argument imply that the extensions
exactly correspond to so-called type I modular invariants. We thus have a complete clas-
sification of local conformal nets with c < 1 as follows Kawahigashi and Longo [2004a].

Theorem 5.2. Any local conformal net with c < 1 is one of the following.

1. The Virasoro nets fVirc(I )g with c < 1.

2. Their simple current extensions with index 2.

3. Four exceptionals at c = 21/22; 25/26; 144/145; 154/155.

The four exceptionals correspond to the Dynkin diagrams E6 and E8. Three of them
are identified with certain coset constructions, but the remaining one with c = 144/145

does not seem to be related to any other known constructions so far. All these four are
given by an extension by a Q-system. Note that this appearance of modular invariants is
different from its original context in 2-dimensional conformal field theory.

6 Vertex operator algebras

A vertex operator algebra gives another mathematical axiomatization of a chiral confor-
mal field theory. It deals with Fourier expansions of operator-valued distributions, vertex
operators, on S1 in an algebraic manner.

Recall that we have a complete list of finite simple groups today as follows Frenkel,
Lepowsky, and Meurman [1988].
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1. Cyclic groups of prime order.

2. Alternating groups of degree 5 or higher.

3. 16 series of groups of Lie type over finite fields.

4. 26 sporadic finite simple groups.

The largest group among the 26 groups in the fourth in terms of the order is called the
Monster group, and its order is approximately 8 � 1053. This group was first constructed
by Griess. It has been known that the smallest dimension of a non-trivial irreducible
representation of the Monster group is 196883.

The next topic in this section is the j -function. This is a function of a complex number
� with Im � > 0 with the following expansion.

j (�) = q�1 + 744 + 196884q + 21493760q2 + 864299970q3 + � � � ;

where we set q = exp(2�i�).
This function has modular invariance property

j (�) = j

�
a� + b

c� + d

�
;

for �
a b

c d

�
2 SL(2; Z);

and this property and the condition that the top term of the Laurent series of q start with
q�1 determine the j -function uniquely except for the constant term.

McKay noticed that the first non-trivial coefficient of the Laurent expansion of the j -
function except for the constant term is 196884 which is “almost” 196883. Extending this
idea, Conway and Norton [1979] formulated the Moonshine conjecture as follows.

Conjecture 6.1. 1. We have some graded infinite dimensional C-vector space V =L1

n=0 Vn (dimVn < 1) with some natural algebraic structure and its automor-
phism group is the Monster group.

2. Each element g of the Monster group acts on each Vn linearly. The Laurent series
1X

n=0

(Tr gjVn
)qn�1

arising from the trace value of the g-action on Vn is a classical function called a
Hauptmodul corresponding to a genus 0 subgroup of SL(2; R). (The case g is the
identity element is the j -function without the constant term.)
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“Some natural algebraic structure” in the above conjecture has been formulated as a
vertex operator algebra in Frenkel, Lepowsky, and Meurman [1988] and the full Moon-
shine conjecture has been proved by Borcherds [1992]. The axioms of a vertex operator
algebra are given as follows.

Let V be a C-vector space. We say that a formal series a(z) =
P

n2Z a(n)z
�n�1 with

coefficients a(n) 2 End(V ) is a field on V , if for any b 2 V , we have a(n)b = 0 for all
sufficiently large n.

A C-vector space V is called a vertex algebra if we have the following properties.

1. (State-field correspondence) For each a 2 V , we have a field Y (a; z) =P
n2Z a(n)z

�n�1 on V .

2. (Translation covariance) We have a linear map T 2 End(V ) such that we have
[T; Y (a; z)] = d

dz
Y (a; z) for all a 2 V .

3. (Existence of the vacuum vector)We have a vectorΩ 2 V with TΩ = 0, Y (Ω; z) =

idV , a(�1)Ω = a.

4. (Locality) For all a; b 2 V , we have (z � w)N [Y (a; z); Y (b; w)] = 0 for a suffi-
ciently large integer N .

We then call Y (a; z) a vertex operator. (The locality axiom is one representation of the
idea that Y (a; z) and Y (b; w) should commute for z ¤ w.)

Let V be a C-vector space and L(z) =
P

n2Z Lnz�n�2 be a field on V . If the endo-
morphisms Ln satisfy the Virasoro algebra relations

[Lm; Ln] = (m � n)Lm+n +
(m3 � m)ım+n;0

12
c;

with central charge c 2 C, then we say L(z) is a Virasoro field. If V is a vertex algebra
and Y (!; z) =

P
n2Z Lnz�n�2 is a Virasoro field, then we say ! 2 V is a Virasoro

vector. A Virasoro vector ! is called a conformal vector if L�1 = T and L0 is diago-
nalizable on V , that is, V is an algebraic direct sum of the eigenspaces of L0. Then the
corresponding vertex operator Y (!; z) is called the energy-momentum field and L0 the
conformal Hamiltonian. A vertex algebra with a conformal vector is called a conformal
vertex algebra. We then say V has central charge c 2 C.

A nonzero element a of a conformal vertex algebra in Ker(L0 � ˛) is said to be a
homogeneous element of conformal weight da = ˛. We then set an = a(n+da�1) for
n 2 Z � da. For a sum a of homogeneous elements, we extend an by linearity.

A homogeneous element a in a conformal vertex algebra V and the corresponding field
Y (a; z) are called quasi-primary if L1a = 0 and primary if Lna = 0 for all n > 0.
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We say that a conformal vertex algebra V is of CFT type if we have Ker(L0 � ˛) ¤ 0

only for ˛ 2 f0; 1; 2; 3; : : : g and V0 = CΩ.
We say that a conformal vertex algebra V is a vertex operator algebra if we have the

following.

1. We have V =
L

n2Z Vn, where Vn = Ker(L0 � n).

2. We have Vn = 0 for all sufficiently small n.

3. We have dim(Vn) < 1 for n 2 Z.

Basic sources of constructing vertex operator algebras are affine Kac-Moody and Vira-
soro algebras due to Frenkel-Zhu and even lattices due to Frenkel-Lepowsky-Meurman.
Methods to construct new examples from known examples are a tensor product, a simple
current extension due Schellekens-Yankielowicz, orbifold construction due to Dijkgraaf-
Vafa-Verlinde-Verlinde, coset construction due to Frenkel-Zhu, and an extension by a Q-
system due to Huang-Kirillov-Lepowsky. These are parallel to constructions of local con-
formal nets, but constructions of vertex operator algebras are earlier except for the exten-
sion by a Q-system.

A representation theory of a vertex operator algebra is known as a theory of modules.
It has been shown by Huang that we have a modular tensor category for a well-behaved
vertex operator algebra. (The well-behavedness condition is basically the so-called C2-
cofiniteness.)

7 From a vertex operator algebra to a local conformal net and back

We now would like to construct a local conformal net from a vertex operator algebra V .
First of all, we need a Hilbert space of states, and it should be the completion of V with
respect to some natural inner product. A vertex operator algebra with such an inner product
is called unitary. Many vertex operator algebras are unitary, but also many others are non-
unitary. In order to have the corresponding local conformal net, we definitely have to
assume that V is unitary. We now give a precise definition of a unitary vertex operator
algebra.

An invariant bilinear form on a vertex operator algebra V is a bilinear form (�; �) on V

satisfying
(Y (a; z)b; c) = (b; Y (ezL1(�z�2)L0a; z�1)c)

for all a; b; c 2 V .
For a vertex operator algebra V with a conformal vector !, an automorphism g as a

vertex algebra is called a VOA automorphism if we have g(!) = !.
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LetV be a vertex operator algebra and supposewe have a positive definite inner product
(� j �), where we assume this is antilinear in the first variable. We say the inner product
is normalized if we have (Ω j Ω) = 1. We say that the inner product is invariant if there
exists a VOA antilinear automorphism � of V such that (� � j �) is an invariant bilinear
form on V . We say that � is a PCT operator associated with the inner product.

If we have an invariant inner product, we automatically have (Lna j b) = (a j L�nb)

for a; b 2 V and also Vn = 0 for n < 0. The PCT operator � is unique and we have
�2 = 1 and (�a j �b) = (b j a) for all a; b 2 V . (See Carpi, Kawahigashi, Longo, and
Weiner [n.d., Section 5.1] for details.)

A unitary vertex operator algebra V is a pair of a vertex operator algebra and a normal-
ized invariant inner product. It is simple if we have V0 = CΩ.

Now suppose V is a unitary vertex operator algebra. A vertex operator Y (a; z) should
mean a Fourier expansion of an operator-valued distribution on S1. For a test function
f with Fourier coefficients f̂n, the action of the distribution Y (a; z) applied to the test
function f on b 2 V should be

P
n2Z f̂nanb. In order to make sense out of this, we need

convergence of this infinite sum. To insure such convergence, we introduce the following
notion of energy-bounds.

Let (V; (� j �)) be a unitary vertex operator algebra. We say that a 2 V (or Y (a; z))
satisfies energy-bounds if we have positive integers s; k and a constant M > 0 such that
we have

kanbk � M (jnj + 1)s
k(L0 + 1)kbk;

for all b 2 V and n 2 Z. If every a 2 V satisfies energy-bounds, we say V is energy-
bounded.

We have the following Proposition in Carpi, Kawahigashi, Longo, and Weiner [ibid.].

Proposition 7.1. If V is a simple unitary vertex operator algebra generated by V1 and
F � V2 where F is a family of quasi-primary � -invariant Virasoro vectors, then V is
energy-bounded.

We now assume V is energy-bounded. Let H be the completion of V with respect to
the inner product. For any a 2 V and n 2 Z, we regard a(n) as a densely defined operator
on H . This turns out to be closable. Let f (z) be a smooth function on S1 = fz 2 C j

jzj = 1g with Fourier coefficients

f̂n =

Z �

��

f (ei� )e�in� d�

2�

for n 2 Z. For every a 2 V , we define the operator Y0(a; f ) with domain V by

Y0(a; f )b =
X
n2Z

f̂nanb
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for b 2 V . The convergence follows from the energy-bounds and Y0(a; f ) is a densely
defined operator. This is again closable. We denote by Y (a; f ) the closure of Y0(a; f )

and call it a smeared vertex operator.
We define A(V;(�j�))(I ) to be the von Neumann algebra generated by the (possibly un-

bounded) operators Y (a; f ) with a 2 V , f 2 C 1(S1) and supp f � I . The family
fA(V;(�j�))(I )g clearly satisfies isotony. We can verify that (

W
I A(V;(�j�))(I ))Ω is dense in

H . A proof of conformal covariance is nontrivial, but can be done as in Toledano Laredo
[1999] by studying the representations of the Virasoro algebra and Diff(S1). We also have
the vacuum vector Ω and the positive energy condition. However, locality is not clear at
all from our construction, so we make the following definition.

We say that a unitary vertex operator algebra (V; (� j �)) is strongly local if it is energy-
bounded and we have A(V;(�j�))(I ) � A(V;(�j�))(I

0)0 for all intervals I � S1.
A strongly local unitary vertex operator algebra produces a local conformal net through

the above procedure by definition, but the definition of strong locality looks like we as-
sume what we want to prove, and it would be useless unless we have a good criterion for
strong locality. The following theorem gives such a criterion Carpi, Kawahigashi, Longo,
and Weiner [n.d.].

Theorem 7.2. Let V be a simple unitary vertex operator algebra generated by V1 [ F

whereF � V2 is a family of quasi-primary � -invariant Virasoro vectors, thenV is strongly
local.

The above criteria applies to vertex operator algebras arising from the affine Kac-
Moody and Virasoro algebras. We also have the following theorem which we can apply
to many examples Carpi, Kawahigashi, Longo, and Weiner [ibid.].

Theorem 7.3. (1) Let V1; V2 be simple unitary strongly local vertex operator algebras.
Then V1 ˝ V2 is also strongly local.

(2) Let V be a simple unitary strongly local vertex operator algebra and W its subal-
gebra. Then W is also strongly local.

The second statement of the above theorem shows that strong locality passes to orbifold
and coset constructions, in particular.

For a unitary vertex operator algebra V , we write Aut(V ) for the automorphism group
of V . For a local conformal net fA(I )g, we have a notion of the automorphism group
and we write Aut(A) for this. We have the following in Carpi, Kawahigashi, Longo, and
Weiner [ibid.].

Theorem 7.4. Let V be a strongly local unitary vertex operator algebra and
fA(V;(�j�))(I )g the corresponding local conformal net. Suppose Aut(V ) is finite. Then
we have Aut(A(V;(�j�))) = Aut(V ).
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The Moonshine vertex operator algebra V \ is strongly local and unitary, so we can
apply the above result to this to obtain the Moonshine net. It was first constructed in
Kawahigashi and Longo [2006] with a more ad-hoc method.

For the converse direction, we have the following Carpi, Kawahigashi, Longo, and
Weiner [n.d.].

Theorem 7.5. Let V be a simple unitary strongly local vertex operator algebra and
fA(V;(�j�))(I )g be the corresponding local conformal net. Then one can recover the vertex
operator algebra structure on V , which is an algebraic direct sum of the eigenspaces of
the conformal Hamiltonian, from the local conformal net fA(V;(�j�))(I )g.

This is proved by using the Tomita-Takesaki theory and extending the methods in Fre-
denhagen and Jörß [1996]. Establishing correspondence between the representation the-
ories of a vertex operator algebra and a local conformal net is more difficult, though we
have some recent progress due to Carpi, Weiner and Xu. The method of Tener [2017] may
be more useful for this. We list the following conjecture on this. (For a representation of a
local conformal net, we define the character as Tr(qL0�c/24) when it converges for some
small values of q. We have a similar definition for a module of a vertex operator algebra.)

Conjecture 7.6. We have a bijective correspondence between completely rational local
conformal nets and simple unitary C2-cofinite vertex operator algebras. We also have
equivalence of tensor categories for finite dimensional representations of a completely
rational local conformal net and modules of the corresponding vertex operator algebra.
We further have coincidence of the corresponding characters of the irreducible represen-
tations of a completely rational local conformal net and irreducible modules of the corre-
sponding vertex operator algebra.

Recall that we have a classical correspondence between Lie algebras and Lie groups.
The correspondence between affine Kac-Moody algebras and loop groups is similar to
this, but “one step higher”. Our correspondence between vertex operator algebras and
local conformal nets is something even one more step higher.

Finally we discuss the meaning of strong locality. We have no example of a unitary
vertex operator algebra which is known to be not strongly local. If there should exist such
an example, it would not correspond to a chiral conformal field theory in a physical sense.
This means that one of the following holds: any simple unitary vertex operator algebra is
strongly local or the axioms of unitary vertex operator algebras are too weak to exclude
non-physical examples.
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8 Other types of conformal field theories

Here we list operator algebraic treatments of conformal field theories other than chiral
ones.

Full conformal field theory is a theory on the 2-dimensional Minkowski space. We ax-
iomatize a net of von Neumann algebras fB(I �J )g parameterized by double cones (rect-
angles) in the Minkowski space in a similar way to the case of local conformal nets. From
this, a restriction procedure produces two local conformal nets fAL(I )g and fAR(I )g.
We assume both are completely rational. Then we have a subfactor AL(I ) ˝ AR(J ) �

B(I � J ) which automatically has a finite index, and the study of fB(I � J )g is reduced
to studies of fAL(I )g, fAR(I )g and this subfactor. A modular invariant again naturally
appears here and we have a general classification theory. For the case of central charge
less than 1, we obtain a complete and concrete classification result as in Kawahigashi and
Longo [2004b].

A boundary conformal field theory is a quantum field theory on the half-Minkowski
space f(t; x) 2 M j x > 0g. The first general theory to deal with this setting was given
in Longo and Rehren [2004]. We have more results in Carpi, Kawahigashi, and Longo
[2013] and Bischoff, Kawahigashi, and Longo [2015]. In this case, a restriction procedure
gives one local conformal net. We assume that this is completely rational. Then we have
a non-local, but relatively local extension of this completely rational local conformal net
which automatically has a finite index. The study of a boundary conformal field theory
is reduced to studies of this local conformal net and a non-local extension. For the case
of central charge less than 1, we obtain a complete and concrete classification result as in
Kawahigashi, Longo, Pennig, and Rehren [2007] along the line of this general theory.

We also have results on the phase boundaries and topological defects in the opera-
tor algebraic framework in Bischoff, Kawahigashi, Longo, and Rehren [2016], Bischoff,
Kawahigashi, Longo, and Rehren [2015]. See Fuchs, Runkel, and Schweigert [2004] for
earlier works on topological defects.

A superconformal field theory is a version of Z2-graded conformal field theory having
extra supersymmetry. We have operator algebraic versions of N = 1 and N = 2 super-
conformal field theories as in Carpi, Kawahigashi, and Longo [2008] and Carpi, Hillier,
Kawahigashi, Longo, and Xu [2015] based on N = 1 and N = 2 super Virasoro algebras,
and there we have superconformal nets rather than local conformal nets. We also have re-
lations of this theory to noncommutative geometry in Kawahigashi and Longo [2005],
Carpi, Hillier, Kawahigashi, and Longo [2010], Carpi, Hillier, Kawahigashi, Longo, and
Xu [2015].
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9 Future directions

We list some problems and conjectures for the future studies at the end of this article.

Conjecture 9.1. For a completely rational local conformal net, we have convergent char-
acters for all irreducible representations and they are closed under modular transforma-
tions of SL(2; Z). Furthermore, the S -matrix defined with braiding gives transformation
rules of the characters under the transformation � 7! �1/� .

This conjecture was made in Gabbiani and Fröhlich [1993, page 625] and follows from
Conjecture 7.6.

We say that a local conformal net is holomorphic if its only irreducible representation
is the vacuum representation. The following is Xu [2009, Conjecture 3.4] which is the op-
erator algebraic counterpart of the famous uniqueness conjecture of the Moonshine vertex
operator algebra.

Conjecture 9.2. A holomorphic local conformal net with c = 24 and the eigenspace of
L0 with eigenvalue 1 being 0 is unique up to isomorphism.

A reason to expect such uniqueness from an operator algebraic viewpoint is that a set
of simple algebraic invariants should be a complete invariant as long as we have some
kind of amenability, which is automatic in the above case.

The following is an operator algebraic counterpart of Höhn [2003, Conjecture 3.5].

Conjecture 9.3. Fix a modular tensor category C and a central charge c. Then we have
only finitely many local conformal nets with representation category C and central charge
c.

From an operator algebraic viewpoint, the following problem is also natural.

Problem 9.4. Suppose a finite group G is given. Construct a local conformal net whose
automorphism group is G in some canonical way.

This “canonical” method should produce the Moonshine net if G is the Monster group.
We may have to consider some superconformal nets rather than local conformal nets to
get a nice solution.

Conformal field theory on Riemann surfaces has been widely studied and conformal
blocks play a important role there. It is not clear at all how to formulate this in our operator
algebraic approach to conformal field theory, so we have the following problem.

Problem 9.5. Formulate a conformal field theory on a Riemann surface in the operator
algebraic approach.



2632 YASUYUKI KAWAHIGASHI (河東泰之)

It is expected that the N = 2 full superconformal field theory is related to Calabi-Yau
manifolds, so we also list the following problem.

Problem 9.6. Construct an operator algebraic object corresponding to a Calabi-Yauman-
ifold in the setting of N = 2 full superconformal field theory and study the mirror symme-
try in this context.

The structure of a modular tensor category naturally appears also in the context of
topological phases of matters and anyon condensation as in Kawahigashi [2015a], Kawahi-
gashi [2017], Kong [2014]. (The results in Böckenhauer, Evans, and Kawahigashi [2001]
can be also seen in this context.) We list the following problem.

Problem 9.7. Relate local conformal nets directly with topological phases of matters and
anyon condensation.
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VARIATIONAL FORMULAE FOR THE CAPACITY INDUCED
BY SECOND-ORDER ELLIPTIC DIFFERENTIAL OPERATORS

Cඅൺඎൽංඈ Lൺඇൽංආ

Abstract
We review recent progress in potential theory of second-order elliptic operators

and on the metastable behavior of Markov processes.

There has been many recent progress in the potential theory of non-reversible Markov
processes. We review in this article some of these advances. In Section 1, we present
a brief historical overview of potential theory and we introduce the main notions which
will appear throughout the article. In Section 2, we present two variational formulae for
the capacity between two sets induced by second-order elliptic operators non necessarily
self-adjoint. In the following three sections we present applications of these results. In
Section 3, we discuss recurrence of Markov processes; in Section 4, we present a sharp
estimate for the transition time between two wells in a dynamical system randomly per-
turbed; and in Section 5, we prove the metastable behavior of this process.

1 Potential theory

We present in this section a brief historical introduction to the Dirichlet principle. The
interested reader will find in Kellogg [1967] a full account and references.
From Newton’s law of universal gravitation to Laplace’s equation. In 1687, Newton
enunciated the Law of universal gravitation which states that “every particle of matter
in the universe attracts every other particle with a force whose direction is that of the
line joining the two, and whose magnitude is directly as the product of their masses, and
inversely as the square of their distance from each other”. The magnitude F of the force
between two particules, one of mass m1 situated at x 2 R3 and one of mass m2 situated
at y 2 R3 is thus given by

(1.1) F = �
m1m2

kx � yk2
;
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where k(z1; z2; z3)k =
p
z21 + z22 + z23 stands for the Euclidean distance, and � for a

constant which depends only on the units used. In order to avoid the constant � we choose
henceforth the unit of force so that � = 1.

Once Newton’s gravitation law has been formulated, it is natural to calculate the force
exerted on a particle of unit mass by different types of bodies. Consider a body B oc-
cupying a portion Ω of the space R3. Assume that its density � at each point z 2 Ω is
well defined and that it is continuous and bounded as a function of z. By density at z we
mean the limit of the ratio between the mass of a portion containing z and the volume of
the portion, as the volume of the portion vanishes. By Equation (1.1), the force at a point
x 2 R3 is given by

(1.2) F (x) =

Z
Ω

z � x

kz � xk3
�(z) dz :

Note that the force is well defined in Ω because x 7! kxk�2 is integrable in a neighbor-
hood of the origin and we assumed the density � to be bounded. Equation (1.2) defines,
therefore, a vector field F = (F1; F2; F3) : R3 ! R3.

The force field F introduced in Equation (1.2) turns out to be divergence free in Ωc :

(1.3) (r � F )(x) :=

3X
j=1

(@xj
Fj )(x) = 0 ; x 2 Ωc ;

where @xj
represents the partial derivative with respect to xj . It is also conservative: Fix a

point x 2 R, and let 
 : [0; 1] ! R3 be a smooth, closed path such that 
(0) = 
(1) = x.
The integral of the force field along the cycle 
 is given byZ

F � d
 :=

3X
j=1

Z
Fj (
) d
j =

3X
j=1

Z 1

0

Fj (
(t)) 

0
j (t) dt = 0 :

As the force field is conservative and the space is simply connected [any two paths with
the same endpoints can be continuously deformed one into the other], we may associate a
potential V : R3 ! R to the vector field F . Fix a point x0 2 R3 and a constant C0, and
let

(1.4) V (x) = C0 +

Z
F � d
 ;

where 
 is a continuous path from x0 to x. The potential V is well defined because the
force field is conservative, and it is unique up to an additive constant. By requiring it to
vanish at infinity, it becomes

(1.5) V (x) = �

Z
R3

1

kz � xk
�(z) dz ;
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and it is called the Newton potential of the measure �(z) dz. Moreover, if we represent
by rV the gradient of V , rV = (@x1

V ; @x2
V ; @x3

V ),

(1.6) rV = F :

Hence, since the force field is divergence-free [Equation (1.3)],

(1.7) ∆V := r � rV = 0 on Ωc ;

which is known as Laplace’s differential equation.
This last identity provides an alternative way to compute the force field induced by a

body whose density is unknown. Let B be a body occupying a portion Ω of the space R3.
Assume that Ωc is a domain [open and connected] which has a smooth, simply connected
boundary, denoted by @Ω. Assume, further, that the force field F exerted by the body B

can be measured at the boundary ofΩ. Fix a point x0 2 @Ω, set V (x0) = 0, and extend the
definition of V to @Ω through Equation (1.4). By Equation (1.7), the potential V solves
the equation

(1.8)

(
(∆W )(x) = 0 ; x 2 Ωc ;

W (x) = V (x) ; x 2 @Ω :

To derive F , it remains to solve the linear equation (1.8) and to retrieve F from V by
Equation (1.6).

The problem of proving the existence of a function satisfying Equation (1.8) or of find-
ing it when it exists is known as the Dirichlet problem, or the first boundary problem of
potential theory.
Dirichlet’s principle. In 1850, Dirichlet proposed the following argument to prove the
existence of a solution to Equation (1.8). It is simpler to present it in the context of masses
distributed along surfaces. If mass points disturb, on may think in terms of charges since,
according to Coulomb’s law, two point charges exert forces on each other which are given
by Newton’s law with the word mass replaced by charge, except that charges may attract
or repel each other.

Consider a bounded domain Ω whose boundary, represented by @Ω, is smooth. Let
� be a surface density on @Ω. By Equation (1.5), the potential associated to this mass
distribution is given by

V (x) = �

Z
@Ω

1

kz � xk
�(z) �(dz) ;

where �(dz) stands for the surface measure. The surface density can be recovered from
the potential. By Theorem VI of Chapter VI in Kellogg [1967],

(1.9)
@V

@n+
(x) �

@V

@n�

(x) = � 4� �(x) ;
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where n+, resp. n�, represents the outward, resp. inward, pointing unit normal vector to
@Ω.

Denote by E(�) the potential energy of the mass distribution �. It corresponds to the
total work needed to assemble the distribution from a state of infinite dispersion, and it is
given by

E(�) =
1

2

Z
@Ω

V (x) �(x) �(dx) :

Since, by Equation (1.9), the surface density can be expressed in terms of the potential,
we may consider the energy as a function of the potential. After this replacement, as the
potential satisfies Laplace’s equation (1.7) on (@Ω)c , applying the divergence theorem, we
obtain that

E(V ) =
1

8�

Z
R3

krV (x)k2 dx :

It is a principle of physics that equilibrium is characterized by the least potential energy
consistent with the constraints of the problem. Thus, to prove the existence of a solution
of the differential equation (1.8), Dirichlet proposed to consider the variational problem

inf
f

Z
R3

k(rf )(x)k2 dx ;

where the infimum is carried over all smooth functions f : R3 ! R such that f = V on
@Ω.

Mathematicians objected to the argument at an early date, pointing that the infimum
might not be attained at an element of the class of functions considered. Weierstrass gave
an example showing that the principle was false, and in 1899, Hilbert provided conditions
on the surface, the boundary values and the class of functions f admitted, for which the
Dirichlet principel could be proved.
Condenser capacity. In electrostatics, the capacity of an isolated conductor is the the
total charge the conductor can hold at a given potential.

Let Ω1 � Ω2 be bounded domains with smooth boundaries represented by Σ1, Σ2,
respectively. Assume that the closure of Ω1 is contained in Ω2. Consider the potential
which is equal to 1 atΩ1, 0 atΩc

2, and which satisfies Laplace’s equation on R = Ω2 nΩ1.
Since V satisfies Laplace’s equation on (Σ1 [Σ2)

c , this potential can be obtained from a
surface distribution concentrated on Σ1 [ Σ2. The total mass [charge] on Σ1 is given byZ

Σ1

�(x) �(dx) = �
1

4�

Z
Σ1

@V

@n+
(x) �(dx) ;

where the last identity follows fromEquation (1.9) and from the fact that the inward deriva-
tive vanishes because V is constant in Ω1. The condenser capacity of Ω1 relative to Ω2 is
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given by

(1.10) cap(Ω1;Ω
c
2) = �

1

4�

Z
Σ1

@V

@n+
(x) �(dx) ;

The measure � = � (1/4�) (@V /@n+)(x) �(dx) on Σ1 is called the harmonic measure.
The capacity of Ω1 is obtained by letting Ω2 increase to Rd .

As the potential V is equal to 1 on Ω1 and 0 at Σ2, we may insert V (x) in the previous
integral, add the integral of the same expression over Σ2, and then use the divergence
theorem and the fact that V is harmonic on the annulus R = Ω2 nΩ1 to conclude that the
previous expression is equal to

1

4�

Z
R

k(rV )(x)k2 dx =
1

4�
inf
f

Z
R3

k(rf )(x)k2 dx ;

where the infimum is carried over all smooth functions f such that f = 1 on Ω1 and
f = 0 on Ωc

2. This latter formula provides a variational formula for the capacity defined
by Equation (1.10), called the Dirichlet principle.

In the next section, we present two variational formulae for the capacity induced by a
second-order elliptic operator which is not self-adjoint with respect to the stationary state
[as it is the case of the Laplace operator with respect to the Lebesgue measure]. We then
present some applications of the formulae.

2 Dirichlet and Thomson principles

In this section, we extend the notion of capacity to the context of general second order dif-
ferential operators not necessarily self-adjoint. We then provide two variational formulae
for the capacity, the so-called Dirichlet and Thomson principles. We will not be precise on
the smoothness conditions of the functions and of the boundary of the sets. The interested
reader will find in the references rigorous statements.

To avoid integrability conditions at infinity, we state the Dirichlet and the Thomson
principles on a finite cube with periodic boundary conditions. Fix d � 1, and denote by
T d = [0; 1)d the d -dimensional torus of length 1. Denote by a(x) a uniformly positive-
definite matrix whose entries ai;j are smooth functions: There exist c0 > 0 such that for
all x 2 T d , � 2 Rd ,

(2.1) � � a(x) � � c0 k�k2 ;

where � � � represents the scalar product in Rd .
Generator. Denote by L the generator given by

(2.2) Lf = r � (arf ) + b � rf ;
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where b : T d ! Rd is a smooth vector field. By modifying the drift b we could assume
the matrix a to be symmetric. We will not assume this condition for reasons which will
become clear in the next sections. There exists a unique Borel probability measure such
that �L = 0. This measure is absolutely continuous, �(dx) = m(x)dx, where m is the
unique solution to

(2.3) r � (a�
rm) � r � (b m) = 0 ;

where a� stands for the transpose of a. For existence, uniqueness and regularity conditions
of solutions of elliptic equations, we refer to Gilbarg and Trudinger [1977]. Let V (x) =

� logm(x), so that m(x) = e�V (x).
Throughout this section A, B represent two closed, disjoint subsets of T d

(2.4) which are the closure of open sets with smooth boundaries.

For such a set A, denote by �A(dx) the measure m(x)�(dx) on @A, where �(dx) repre-
sents the surface measure. Hence, for every smooth vector field ',I

@A

'(x) � nA(x)�A(dx) =

I
@A

'(x) � nA(x) e
�V (x) �(dx) ;

where nA represents the inward normal vector to @A.
We may rewrite the generator L introduced in Equation (2.2) as

Lf = eV
r �

�
e�V arf

�
+ c � rf ;

where c = b + a�rV . It follows from (2.3) that

(2.5) r � (e�V c) = 0 :

This implies that the operator c � r is skew-adjoint in L2(�): for any smooth functions f ,
g : T d ! R,

(2.6)
Z
f c � rg d� = �

Z
g c � rf d� ;

and that for any open setD with a smooth boundary,

(2.7)
I

@D

c � nD d�D =

Z
Td nD

eV
r � (e�V c) d� = 0 :

In view of Equation (2.6), the adjoint of L in L2(�), represented by L�, is given by

L�f = eV
r �

�
e�V a�

rf
�

� c � rf ;
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while the symmetric part, denoted by Ls , Ls = (1/2)(L + L�), takes the form

(2.8) Lsf = eV
r �

�
e�V asrf

�
:

where as stands for the symmetrization of the matrix a: as = (1/2)[a + a�].
Capacity. Recall that A, B are closed sets satisfying Equation (2.4). Let

Ω = T d
n (A [ B) :

Denote by h = hA;B , resp. h� = h�
A;B , the unique solutions to the linear elliptic equations

(2.9)

(
Lh = 0 on Ω,
h = �A on A [ B ,

(
L�h = 0 on Ω,
h� = �A on A [ B ,

where �C ,C � T d , represents the indicator function of the setC . The functions h, h� are
called the equilibrium potentials between A and B . A function f such that (Lf )(x) = 0

is said to harmonic at x. If it is harmonic at all points in some domain Ω, it is said to be
harmonic in Ω.

By analogy to the electrostatic definition (1.10) of the capacity of a set, define the
capacity between the sets A, B of T d as

(2.10) cap(A;B) :=

I
@A

arh � nA d�A ; cap�(A;B) :=

I
@A

a�
rh�

� nA d�A :

Since h = 1 at @A and h = 0 at @B , we may insert h in the integral and add the surface
integral of the same expression over @B . Applying then the divergence theorem, we obtain
that

cap(A;B) =

Z
Ω

rh � arh d� +

Z
Ω

h eV
r �

�
e�V arh

�
d� :

As rh vanishes onA[B , we may extend the integrals toT d . The integrand in the second
term can be written as h [Lh � c � rh]. Since c � r is skew-adjoint and h is harmonic on
(@A [ @B)c , we conclude that

(2.11) cap(A;B) =

Z
rh � arh d� ; cap�(A;B) =

Z
rh�

A;B � a�
rh�

A;B d� :

In the previous formulae, we may replace a, a� by their symmetric part as , and we may
restrict the integrals to Ω.

Lemma 2.1. Let A, B be two closed subsets satisfying the conditions (2.4). Then,

cap(A;B) = cap(B;A) = cap�(A;B) :
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Moreover,

(2.12) cap(A;B) =

I
@A

(arh+ h c) � nA d�A :

Proof. It is clear that cap(B;A) = cap(A;B) since hB;A = 1�hA;B as A\B = ¿. The
proof of Equation (2.12) is similar to the one which led from the definition of the capacity
to Equation (2.11). One has just to recall from Equation (2.5) that r � (e�V c) = 0.

We turn to the proof that cap(A;B) = cap�(A;B) It relies on the claim that

cap(A;B) =

Z
Td

˚
rh�

� arh � h� c � rh
	
d� =

Z
Td

˚
rh � a�

rh� + h c � rh�
	
d� :

To prove this claim, repeat the calculations carried out to derive Equation (2.12) to con-
clude thatZ

Td

rh�
� arh d� =

Z
Ω

rh�
� arh d� =

I
@A

arh � nA d�A +

Z
Ω

h� c � rh d� :

Since rh vanishes on A [ B , we may carry the second integral over T d . This proves
the first identity of the claim because the first term on the right hand side is equal to the
capacity between A and B .

The same computation inverting the roles of h and h� gives thatZ
Td

rh � a�
rh� d� = cap�(A;B) �

Z
Td

h c � rh� d� :

Compare this identity with the previous one. The left-hand sides coincide. As c �r is skew-
adjoint, the second terms on the right-hand sides are also equal. Hence, cap(A;B) =

cap�(A;B) because the first term on the right-hand side of the penultimate equation is
cap(A;B). The previous identity together with the fact that cap�(A;B) = cap(A;B)
yields the second identity of the claim.

Considering L� in place of L we obtain from the previous lemma that

(2.13) cap�(A;B) =

I
@A

�
a�

rh�
� h� c

�
� nA d�A

Variational formulae for the capacity. Let F be the Hilbert space of vector fields ' :

Ω ! Rd endowed with the scalar product h�; �i given by:

h'; i :=

Z
Ω

' � a�1
s  d� :
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Let F
 , 
 2 R, be the closure in F of the space of smooth vector fields ' 2 F such that

(2.14) r � (e�V ') = 0 ;

I
@A

' � nA d�A = � 
 :

Let C˛;ˇ , ˛, ˇ 2 R, be the space of smooth functions f : Ω ! R such that f � ˛ on
A and f � ˇ on B . For f 2 C˛;ˇ define

Ψf := as rf ; Φf := a�
rf � f c :

Note that

(2.15) hΨh;Ψhi =

Z
Ω

rh � as rh d� = cap(A;B) :

Lemma 2.2. For every ' 2 F
 and f 2 C˛;0 we have that

hΦf � ' ; Ψhi = 
 + ˛ cap(A;B) :

Proof. Fix ' 2 F
 and f 2 C˛;0. By definition of Φf ,

hΦf � ';Ψhi =

Z
Ω

�
a�

rf � f c � '
�

� rh d� :

Writing a� rf � rh as rf �arh, and integrating by parts, since f = ˛ on @A and f = 0

on @B , the previous term becomes

�

Z
Ω

�
f eV

r �
�
e�V arh

�
+ f c + '

�
� rh d� + ˛

I
@A

arh � nA d�A :

By definition, the last integral is the capacity between A and B , while the expression
involving f is equal to �f Lh. This expression vanishes because h is L-harmonic in Ω.
Hence, since h = �A on @A [ @B , by an integration by part, the previous expression is
equal Z

Ω

h eV
r � (e�V ') d� �

I
@A

' � nA d�A + ˛ cap(A;B) :

By Equation (2.14), this expression is equal to 
 + ˛ cap(A;B), as claimed.

Theorem 2.3 (Dirichlet principle). Fix two disjoint subsets A, B of T d satisfying Equa-
tion (2.4). Then,

cap(A;B) = inf
f 2C1;0

inf
'2F0

hΦf � ';Φf � 'i ;

and the infimum is attained for h? = (1/2)(h+ h�) and '? = Φh?
� Ψh .
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Proof. Fix f 2 C1;0 and ' 2 F0. By Lemma 2.2, applied with 
 = 0 and ˛ = 1, and by
Schwarz inequality,

cap(A;B)2 = hΦf � ' ; Ψhi
2

� hΦf � ' ; Φf � 'i hΨh;Ψhi :

ByEquation (2.15), the last term is equal to cap(A;B), so that cap(A;B) � hΦf �';Φf �

'i for every f in C1;0 and ' in F0.
Recall from the statement of the theorem the definition of h? and '?. SinceΦh?

�'? =

Ψh, by Equation (2.15), cap(A;B) = hΦh?
� '? ; Φh?

� '?i. Therefore, to complete the
proof of the theorem, it remains to check that h? belongs to C1;0, and '? to F0. It is easy
to check the first condition. For the second one, observe that

r � (e�V '?) =
1

2
e�V (L�h�

� Lh) �
1

2
(h+ h�)r � (e�V c) :

This expression vanishes on Ω by the harmonicity of h, h� and in view of Equation (2.5).
On the other hand,I

@A

'? � nA d�A =
1

2

I
@A

(a�
rh�

� h�c) � nA d�A �
1

2

I
@A

(arh+ h c) � nA d�A :

By Lemma 2.1 and identity Equation (2.13), the previous expression is equal to
(1/2)fcap�(A;B) � cap(A;B)g = 0, which completes the proof of the theorem.

Theorem 2.4 (Thomson principle). Fix two disjoint subsets A, B of T d satisfying Equa-
tion (2.4). Then,

1

cap(A;B)
= inf

'2F1

inf
f 2C0;0

hΦf � ' ; Φf � 'i :

Moreover, the infimum is attained at h? = (h � h�)/2 cap(A;B) and '? = Φh?
�

Ψh/cap(A;B).

Proof. Fix ' in F1 and f in C0;0. By Lemma 2.2 (applied with ˛ = 0 and 
 = 1), by
Schwarz inequality, and by Equation (2.15),

1 = hΦf �' ; Ψhi
2

� hΦf �' ; Φf �'i hΨh ; Ψhi = hΦf �' ; Φf �'i cap(A;B) :

By definition of h?, '?, Φh?
� '? = Ψh/cap(A;B), so that by Equation (2.15),

hΦh?
� '?;Φh?

� '?i = hΨh/cap(A;B) ; Ψh/cap(A;B)i = 1/cap(A;B) :

It remains to check that h? 2 C0;0, and '? 2 F1. It is easy to verify the first condition.
For the second one, observe that

'? =
� 1

2 cap(A;B)

n�
arh + h c

�
+

�
a�

rh�
� h� c

� o
:
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Therefore, 2 cap(A;B)r � (e�V '?) = � e�V [Lh+ L�h�] = 0 on Ω. Moreover,

� 2 cap(A;B)
I

@A

'? � nA d�A

=

I
@A

( arh+ hc ) � nA d�A +

I
@A

( a�
rh�

� h�c ) � nA d�A :

By Lemma 2.1 and Equation (2.13), the right-hand side is equal to
cap(A;B) + cap�(A;B) = 2 cap(A;B). This proves that '? belongs to F1, and com-
pletes the proof of the theorem.

Reversible case. In the reversible case, c = 0, a symmetric, the optimal flow ' in the
Dirichlet principle is the null one, so that

(2.16) cap(A;B) = inf
f 2C1;0

hΦf ;Φf i = inf
f 2C1;0

Z
Ω

rf � arf d� :

In the last identity we used the fact that Φf = Ψf = arf . We thus recover the Dirichlet
principle in the reversible context.

Similarly, in the reversible case, the optimal function f in the Thomson principle is the
null one, so that

1

cap(A;B)
= inf

'2F1

h' ; 'i ;

which is the Thomson’s principle in the reversible case.
We conclude this subsection comparing the capacity induced by the generator L with

the one induced by the symmetric part of the generator, Ls given by Equation (2.8).
Fix two disjoint subsets A, B satisfying Equation (2.4). Denote by caps(A;B), the

capacity between A and B induced Ls . Since h belongs to C1;0, by Equation (2.11) and
Equation (2.16),

caps(A;B) � cap(A;B) :
In the case of Markov chains taking value in a countable state-space, it is proved in

Lemma 2.6 of Gaudillière and Landim [2014] that if the generator satisfies a sector condi-
tion with constant C0,� Z

(Lf )g d�
�2

� C0

Z
(� Lf )f d�

Z
(� Lg)g d� ;

for all smooth functions f , g, then cap(A;B) � C0 caps(A;B).
Stochastic representation. The operators L and L� are generators of Markov processes
on T d with invariant measure �. More precisely, L is the generator of the solution of the
stochastic differential equation

(2.17) dXt =
˚

� a�
rV + r � a + cg(Xt ) dt +

p
2 as dWt ;
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whereWt is a standard d -dimensional Brownian motion,
p
2as represents the symmetric,

positive-definite square root of 2as , and r � a is the vector field whose j -th coordinate is
(r � a)j =

P
1�i�d @xi

ai;j . For L�, one has to replace the drift in Equation (2.17) by
� arV + r � a� � c.

Denote by C ([0;+1);T d ) the space of continuous functions X : [0;+1) ! T d

endowed with the topology of locally uniform convergence. Let fPx : x 2 T d g, resp.
fP �

x : x 2 T d g, be the probability measures on C ([0;+1);T d ) induced by the Markov
process associated to the generator L, resp. L�, starting from x.

Denote byHC , C a closed subset of T d , the hitting time of C :

HC = infft � 0 : Xt 2 C g :

Lemma 2.5. Let C be the closure of an open set with smooth boundary. Consider two
continuous functions b, f : T d ! R. Let u : T d ! R be given by

u(x) := Ex

h
b(X(HC )) +

Z HC

0

f (X(t)) dt
i
:

Then, u is the unique solution to

(2.18)

(
Lu = �f on T d n C ,
u = b on @C .

This result provides a stochastic representation for the harmonic functions h = hA;B ,
h� = h�

A;B introduced previously:

h(x) = Px [HA < HB ] ; h�(x) = P �
x [HA < HB ] :

Harmonicmeasure. In view of the definition (2.10) of the capacity, define the probability
measure � � �A;B as the harmonic measure on @A [ @B conditioned to @A as

d� : =
1

cap(A;B)
a�

rh�
� nA d�A :

Proposition 2.6. For each continuous function f : T d ! R,

(2.19) E�

h Z HB

0

f (Xt ) dt
i

=
1

cap(A;B)

Z
h� f d� :

Proof. Fix a continuous function f , and let ΩB = T d n B . Denote by u the unique
solution of the elliptic equation (2.18) with C = B , b � 0. In view of Lemma 2.5 and by
definition of the harmonic measure �, the left hand side of Equation (2.19) is equal to

1

cap(A;B)

I
@A

u [a�
rh�] � nA d�A :
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The integral of the same expression at @B vanishes because u vanishes on @B . Hence, by
the divergence theorem, this expression is equal to

1

cap(A;B)

Z
Ω

eV
r �

˚
e�V [a�

rh�]u
	
d� :

Since the equilibrium potential h� is harmonic on Ω, the previous equation is equal to

1

cap(A;B)

Z
Ω

rh� arud� +
1

cap(A;B)

Z
Ω

u c � rh� d� :

Consider the first term. Since rh� vanishes on A, we may extend the integral to ΩB =

T d n B . By the divergence theorem and since the equilibrium potential h� vanishes on
@B , this expression is equal to

�
1

cap(A;B)

Z
ΩB

h� eV
r �

˚
e�V aru

	
d� :

As Lu = �f on ΩB , this expression is equal to

1

cap(A;B)

Z
ΩB

h� c � rud� +
1

cap(A;B)

Z
ΩB

h� f d� :

Since the equilibrium potential h� vanishes on B , we may replace ΩB by T d in the last
integral.

Up to this point we proved that the left-hand side of Equation (2.19) is equal to

1

cap(A;B)

n Z
Td

h� f d� +

Z
ΩB

h� c � rud� +

Z
Ω

u c � rh� d�
o
:

Since rh� vanishes on A [ B and h� on B , we may extend the last two integrals to T d .
By Equation (2.6), the sum of the last two terms vanishes, which completes the proof of
the proposition.

Proposition 2.6 is due to Bovier, Eckhoff, Gayrard, and Klein [2001] for reversible
Markov chains. A generalization to non-reversible chains can be found in Beltrán and
Landim [2012b]. A Dirichlet principle, as a double variational formula of type inff supg

involving functions, was proved by Pinsky [1988a,b, 1995] in the context of diffusions.
It has been derived by Doyle [1994] and by Gaudillière and Landim [2014] for Markov
chains. TheDirichlet principle, stated in Theorem 2.3, appeared inGaudillière and Landim
[ibid.] for Markov chains and is due to Landim, Mariani, and Seo [2017] in the context
of diffusion processes. The Thomson principle, stated in Theorem 2.4, is due to Slowik
[2012] in the context of Markov chains and appeared in Landim, Mariani, and Seo [2017]
for diffusions.
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3 Recurrence of Markov chains

The capacity is an effective tool to prove the recurrence or transience of Markov processes
whose stationary state are explicitly known.

Consider the following open problem. Let X = f(Xk ; Yk) : k 2 Zg, be a se-
quence of independent, identically distributed random variables such that P [(X0; Y0) =

(˙1;˙1)] = 1/4 for all 4 combinations of signs. Given a random environmentX consider
the discrete-time random walk on Z2 whose jump probabilities are given by

(3.1) p
�
(j; k) ; (j + Yk ; k)

�
= p

�
(j; k) ; (j; k +Xj )

�
= 1/2 for all (j; k) 2 Z2 :

Denote by Zt = (Z1
t ; Z

2
t ) the position at time t 2 Z of the random walk. Equation (3.1)

states that in the horizontal line f(p; q) : q = kg Z only jumps from (j; k) to (j + Yk ; k)

for all j . In other words, on each horizontal line the random walk is totally asymmetric,
but the direction of the jumps may be differ from line to line. Similarly, on the vertical
lines f(p; q) : p = j g the random walk is totally asymmetric and only jumps from (j; k)

to (j; k +Xj ). It is not known if this random walk is recurrent or not [almost surely with
respect to the random environment].

Fix an environment X , and let PX
(j;k) be the distribution of the random walk Z which

starts at time t = 0 from (j; k). Denote by H+
0 the return time to 0: H+

0 = infft �

1 : Zt = 0g. The random walk is recurrent if and only if PX
0 [H+

0 = 1] = 0. Let
fBN : N � 1g be an increasing sequence of finite sets such that [NBN = Z2, and note
that

(3.2) PX
0 [H+

0 = 1] = lim
N !1

PX
0 [HBc

N
< H+

0 ] ;

whereHBc
N
stands for the hitting time of Bc

N .
In the context of discrete-time Markov chains evolving on a countable state-space the

capacity between two disjoint sets A, B is given by

cap(A;B) =
X
x2A

M (x)Px [HB < H+
A ] ;

where M represents the stationary state of the Markov chain and HB , resp. H+
A , the

hitting time of the set B , resp. the return time to the set A.
By the previous identity, the right-hand side of Equation (3.2) can be rewritten as

1

MX (0)
lim

N !1
capX

�
f0g ; Bc

N

�
;

whereMX represents the stationary state of the random walk. It is easy to show thatMX

does not depend on the environment and is constant,MX (z) = 1 for all z 2 Z2.
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In view of the Dirichlet principle, to prove that the random walk is recurrent, one needs
to find a sequence of functions fN in C1;0 and of vector fields 'N in F0 [with A = f0g

B = Bc
N and depending on the environment X ] for which hΦfN

� 'N ;ΦfN
� 'N i

vanishes asymptotically.
This has not been achieved yet. However, this is the simplest way to prove that the

symmetric, nearest-neighbor random walk on Z2 is recurrent [p((j; k); (j; k ˙ 1)) =

p((j; k); (j ˙ 1; k)) = 1/4]. In this case also M (z) = 1 for all z 2 Z2. Consider
BN = f�(N � 1); : : : ; N � 1g2, and set 'N = 0, fN (x) = 1� log jxjm/ logN , x 2 BN ,
where j0jm = 1, j(j; k)j = maxfjj j; jkjg. For these sequences,

hΦfN
� 'N ;ΦfN

� 'N i =
1

4

2X
j=1

X
x2Z2

[fN (x + ej ) � fN (x)]2 �
C0

logN
;

where fe1; e2g stands for the canonical basis ofR2 andC0 for a finite constant independent
of N . This proves that the 2-dimensional, nearest-neighbor, symmetric random walk is
recurrent.

4 Eyring-Kramers formula for the transition time

We examine in this section the stochastic differential equation (2.17) as a small perturba-
tion of a dynamical system ẋ(t) = F (x(t)), by introducing a small parameter � > 0 in
the equation.

To reduce the noise in Equation (2.17), we substitute
p
2 as in the second term of the

right-hand side by
p
2 � as . At this point, to keep the structure of the equation, we have to

replace in the first term a by � a. To avoid the term � a�rV to become small, we change
V to V /�. After these modifications the Equation (2.17) becomes

(4.1) dX�
t =

˚
� a�

rV + �r � a + c g (X�
t ) dt +

p
2 � as dWt :

The diffusionX�
t is a small perturbation of the dynamical system ẋ(t) = � [a� rV ](x(t))+

c(x(t)). For the equilibrium points of this ODE to be the critical points of V , we require
V to be a Lyapounov functional. This is the case if c � rV = 0 on T d .

The generator of the diffusion X�
t , denoted by L� , is given by

L�f = � eV /�
r �

˚
e�V /� arf

	
+ c � rf :

Let �� be the probability measure given by

(4.2) ��(dx) =
1

Z�

expf�V (x)/�g dx ;
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where Z� is the normalizing constant, Z� :=
R

Td expf�V (x)/�g dx. We have seen
in the previous section that �� is the stationary state of the process X�

t provided r �

(e�V /�c) = 0. Since c � rV vanishes, this equation becomes r � c = 0. We assume
therefore that

(4.3) c � rV = 0 and r � c = 0 on T d :

We examine the transition time in the case where V is a double well potential. Assume
that there exists an open set G � T d such that

(H1) The potential V has a finite number of critical points in G . Exactly two of them,
denoted bym1 andm2, are local minima. The Hessian of V at each of these minima
has d strictly positive eigenvalues.

(H2) There is one and only one saddle point between m1 and m2 in G , denoted by � . The
Hessian of V at � has exactly one strictly negative eigenvalue and (d � 1) strictly
positive eigenvalues.

(H3) We have that V (� ) < infx2@ G V (x).

Assume without loss of generality that V (m2) � V (m1), so that m2 is the global
minimum of the potential V in G . Denote by Ω the level set of the potential defined by
saddle point, Ω = fx 2 G : V (x) < V (� )g. Let V1, V2 be two domains with smooth
boundary containing m1 and m2, respectively, and contained in Ω:

(4.4) mi 2 Vi � fx 2 G : V (x) < V (� ) � �g

for some � > 0.
Denote by r2V (x) the Hessian of V at x. By Lemma 10.1 of Landim and Seo [2016b],

both [r2V a](� ) and [r2V a�](� ) have a unique (and the same) negative eigenvalue. De-
note by �� this common negative eigenvalue.

Let P �
x , x 2 T d , be the probability measure on C (R+;T d ) induced by the Markov

process X�
t starting from x. Expectation with respect to P �

x is represented by E�
x .

Theorem 4.1 (Eyring-Kramers formula). We have that

(4.5) E�
m1

[HV2
] = [1 + o�(1)] p eΛ/� ; where p =

2�

�

p
� det [r2V (� )]p
det [(r2V )(m1)]

and Λ = V (� ) � V (m1).

The term p is called the prefactor. It can be understood as the first-order term in the
expansion in � of the exponential barrier. Let E�

m1
[HV2

] = expfΛ(�)/�g. Theorem 4.1
states that Λ(�) = Λ + � logp + o(�).
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The proof of this theorem in the case c = 0 and a independent of x, a(x) = a, can
be found in Landim, Mariani, and Seo [2017]. Uniqueness of local minima and of saddle
points connecting the wells is not required there. The same argument should apply to the
general case under the hypotheses (2.1), (4.3), but the proof has not been written.

The 0-th order term in the expansion, Λ, can be obtained from Freidlin and Wentzell
large deviations theory of randomperturbations of dynamical systems Freidlin andWentzell
[1998]. The pre-factor p has been calculated rigorously for reversible diffusions by Sug-
iura [1995, 2001] [based on asymptotics of the principal eigenvalue and eigenfunction for
a Dirichlet boundary value problem in a bounded domain], and independently, Bovier,
Eckhoff, Gayrard, and Klein [2004] [based on potential theory]. We refer to Berglund
[2013] for a recent review.

In the context of chemical reactions, the transition time E�
m1

[HV2
] corresponds to the

inverse of the rate of a reaction. The so-called “Arrenhuis law” relates the rate of a reaction
to the absolute temperature. It seems to have been first discovered empirically by Hood
[1878]. van’t Hoff [1896] proposed a thermodynamical derivation of the law, and Arrhe-
nius [1889] physical arguments based on molecular dynamics. In the self-adjoint case, the
pre-factor p first appeared in Eyring [1935] and in more explicit form in Kramers [1940].
Bouchet and Reygner [2016] derived the formula in the non-reversible situation.

5 Metastability

We developed in these last years a robust method to prove the metastable behavior of
Markov processes based on potential theory. We report in this section recent developments
which rely on asymptotic properties of elliptic operators.

We first define metastability. Let Z�(t) be a sequence of Markov processes taking
values in some space E� . Let fE1

� ; : : : ;E
n
� ;∆�g be a partition of the set E� , and set E� =

E1
� [ � � � [ En

� .
Fix a sequence of positive numbers �� , and denote by bZ�(t) the processZ�(t) speeded-

up by ��: bZ�(t) = Z�(t ��). Denote by bP�;x , x 2 E� , the distribution of the processbZ�(t) starting from x. Let S = f1; : : : ; ng, S0 = f0g [ S , and let Υ� : E� ! S0 be the
projection given by

(5.1) Υ�(x) =

nX
j=1

j �
E

j
�
(x) :

Note that points in ∆� are mapped to 0. Denote by z�(t) the S0-valued process defined
by

z�(t) = Υ�(bZ�(t)) = Υ�(Z�(t��)) :

The process z�(t) is usually not Markovian.



2652 CLAUDIO LANDIM

Definition 5.1. [Metastability]. We say that the process Z�(t) is metastable in the time
scale �� , withmetastable setsE1

� ; : : : ;E
n
� if there exists aS -valued, continuous-timeMarkov

chain z(t) such that for all x 2 E� the bP�;x-finite-dimensional distributions of z�(t) con-
verge to the finite-dimensional distributions of z(t).

The Markov chain z(t) is called the reduced chain. Mind that the reduced chain does
not take the value 0. The sojourns of bZ�(t) at ∆� are washed-out in the limit. Of course,
the same processZ�(t)may exhibit different metastable behaviors in different time-scales
or even different metastable behaviors in the same time-scale but in different regions of
the space, inaccessible one to the other in that time-scale.

In some examples Jara, Landim, and Teixeira [2011], Jara, Landim, and Teixeira [2014],
and Beltrán, Chavez, and Landim [2017] the set S may be countably infinite. In these
casesΥ� is a projection fromE� to a finite set S� [f0g, where S� increases to a countable
set S , and we require #E�/#S� ! 0.

In the remaining part of this section we prove that under certain hypotheses the diffu-
sion X�

t is metastable. Some of these conditions are not needed, but they simplify the
presentation. The reader will find in the references finer results.

We assume from now on that the potential V fulfills the following set of assumptions.
There exists an open set G of T d such that

(H1’) The function V has a finite number of critical points in G . The global minima of V
are represented by m1; : : : ; mn. They all belong to G and they are all at the same
height: V (mi ) = V (mj ) for all i , j . The Hessian of V at each of these minima has
d strictly positive eigenvalues.

(H2’) Denote by f�1; : : : ; �`g the set of saddle points between the global minima. Assume
that all saddle points are at the same height and that the Hessian of V at these points
has exactly one strictly negative eigenvalue and (d�1) strictly positive eigenvalues.

(H3’) We have that V (�1) < infx2@ G V (x).

Denote by Ω the level set of the potential defined by the height of the saddle points:
Ω = fx 2 G : V (x) < V (�1)g. Let W1; : : : ;Wp be the connected components of Ω.
Assume that each of these sets contains one and only one global minima, so that p = n.
Denote by V1; : : : ;Vn domains with smooth boundaries satisfying Equation (4.4) for 1 �

i � n, and let

(5.2) V =

n[
j=1

Vj ; ∆ = T d
n V ; V̆j =

[
k:k 6=j

Vk :

Recall from Equation (4.5) the definition of Λ. Denote by bX�
t the process X�

t speeded-
up by �� = eΛ/� . This is the diffusion on T d whose generator, denoted by bL� , is given by



VARIATIONAL FORMULAE FOR THE CAPACITY 2653

bL� = �� L� . Denote by P �
x , resp. bP �

x , x 2 T d , the probability measure on C (R+;T d )

induced by the diffusionX�
t , resp. bX�

t , starting from x. Expectation with respect to P �
x , is

represented by E�
x .

Let S = f1; : : : ; ng, S0 = f0g [ S . Denote by Υ : T d ! S0 the projection given by
Equation (5.1) with E

j
� replaced by Vj , and let x�(t) be the S0-valued process defined by

x�(t) = Υ(bX�
t ) = Υ(X�(t��)) :

Note that x�(t) is not Markovian.
The proof of the metastable behavior of the diffusion X�

t is divided in four steps. We
first show that in the time scale �� the process X�

t spends a negligible amount of time in
the set∆. Then, we derive a candidate for the S -valued Markov chain which is supposed
to describe the asymptotic behavior of the process among the wells. In the third step, we
prove that the projection of the trace of bX�

t on V converges to the S -valued Markov chain
introduced in the second step. Finally, we show that the previous results together with an
extra condition yield the convergence of the finite-dimensional distributions of x�(t).
Step 1: The set ∆ is negligible. We first examine in the next lemma the time spent on
the set∆.

Lemma 5.2. For all t > 0,

(5.3) lim
�!0

sup
x2V

E�
x

h Z t

0

�∆(X(s��)) ds
i

= 0 :

Proof. Here is a sketch of the proof of this result which highlights the relevance of the
variational formulae for the capacity. Denote by cap�(A;B) the capacity between two
disjoint subsets A, B with respect to the diffusion X�

t .
Fix 1 � j � n and assume that x belongs to Vj . The time scale �� is of the order of the

transition timeH
V̆j

, where the V̆j has been introduced in Equation (5.2). The expectation
appearing in the statement of the lemma is therefore of the same order of

1

��

E�
x

h Z H
V̆j

0

�∆(X(s)) ds
i

∼
1

��cap�(Vj ; V̆j )

Z
Td

�∆ hVj ;V̆j
d�� ;

where last step follows fromProposition 2.6. It would be an identity if we had the harmonic
measure in place of the Dirac measure concentrated on x, but these expectations should
not be very different because x belongs to the basin of attraction ofmj . Since��(∆) ! 0,
the proof is completed if we can show, using the variational principles, that ��cap�(Vj ; V̆j )

converges to a positive value.
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Step 2: The reduced chain. The time-scale �� at which the process X�
t evolves among

the wells should be of the order of the transition time E�
mj

[H (V̆j ) ]. Hence, by Proposi-
tion 2.6,

�� ∼ E�
mj

�
H (V̆j )

�
∼

1

cap�(Vj ; V̆j )

Z
h

Vj ;V̆�
j
d� :

Since mj is a global minimum of V , the last integral is of order 1 because the harmonic
function h

Vj ;V̆�
j
is equal to 1 at Vj . We conclude that the time-scale �� should be of the

order cap�(Vj ; V̆j )
�1.

It is proved in Beltrán and Landim [2010, 2012b], in the context of Markov chains
taking values in a countable state space, that under certain assumptions

�j := lim
�!0

��

1

��(Vj )
cap�(Vj ; V̆j )

represents the holding time at j of the reduced chain. Moreover, in the reversible case,
the jump rates r(j; k) of the reduced chain are given by

r(j; k)= lim
�!0

1

2��(Vj )

n
cap�(Vj ; V̆j )+cap�(Vk ; V̆k)�cap�(Vj [Vk ; Vn[Vj [Vk ])

o
:

In the non-reversible case, the jump rates are more difficult to derive. By Beltrán and
Landim [2012b, Proposition 4.2], still in the context of Markov chains taking values in a
countable state space,

r(j; k) = �j lim
�!0

P
�

mj

�
H (Vk) < H

�
V n [Vj [ Vk ]

� �
;

where P
�

mj
represents the distribution of the process in which the well Vj has been col-

lapsed to the point mj . Estimates on the harmonic function appearing on the right-hand
of this equation are obtained by showing that this function solves a variational problem,
similar to the one for the capacity, and then that to be optimal, a function has to take a
precise value at the set Vj . We refer to Landim [2014] and Landim and Seo [2016b] for
details, where this program has been successfully undertaken for two different models.

Assume that one can compute the asymptotic jump rates through the previous formulae
or that one can guess by other means the jump rates of the reduced chain. Denote by L

the generator of the S -valued continuous-time Markov chain induced by these jump rates.
Let D(R+; E), E a metric space, be the space of E-valued, right-continuous functions
with left-limits endowed with the Skorohod topology, and let Qj , j 2 S , the measure on
D(R+; S) induced by the Markov chain with generator L starting from j .
Step 3: Convergence of the trace. We turn to the convergence of the trace process.
Recall that bX�

t represents the process X�
t speeded-up by �� . Denote by TV (t), t � 0, the
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total time spent by the diffusion bX� on the set V in the time interval [0; t ]:

TV (t) :=

Z t

0

�V (bX�
s) ds ;

Denote by fSV (t) : t � 0g the generalized inverse of TV (t):

SV (t) := supfs � 0 : TV (s) � tg :

Clearly, for all r � 0, t � 0,

(5.4) fSV (r) � tg = fTV (t) � rg :

It is also clear that for any starting point x 2 T d , limt!1 TV (t) = 1 almost surely.
Therefore, the random path fY�(t) : t � 0g, given by Y�(t) := bX�(SV (t)), is well
defined for all t � 0 and takes value in the set V . We call the process Y�(t) the trace ofbX�

t on the set V .
The process Y�(t) is Markovian provided the initial filtration is large enough. Indeed,

denote by fF 0
t : t � 0g the natural filtration of C (R+;T d ): F 0

t = �(Xs : 0 � s � t).
Fix x0 2 V and denote by fFt : t � 0g the usual augmentation of fF 0

t : t � 0g with
respect to P �

x0
. We refer to Section III.9 of Rogers and Williams [2000] for a precise

definition, and to Landim and Seo [2016a] for a proof of the next result which relies on
the identity (5.4).

Lemma 5.3. For each t � 0, SV (t) is a stopping time with respect to the filtration fFt g.

As SV (t) is a stopping time with respect to the filtration fFt g, Y�(t) is a V -valued,
Markov process with respect to the filtration Gt := FS(t). Let Ψ : V ! S be the
projection given by

Ψ(x) =

nX
j=1

j �Vj
(x) ;

and denote by y�(t) the S -valued process obtained by projecting Y�(t) with Ψ:

y�(t) = Ψ(Y�(t)) :

Note that the process y�(t) is not Markovian.
Denote byQ�

x , resp. Q�
x , x 2 V , the probabilitymeasure onD(R+;V), resp. D(R+; S),

induced by the process Y�(t), resp. y�(t), given that Y�(0) = x. Fix j 2 S , x 2 Vj . As
usual, the proof that Q�

x converges to Qj is divided in two steps. We first show that the
sequence Q�

x is tight and then we prove the uniqueness of limit points.
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Lemma 5.4. Assume that conditions (5.3) is in force. Suppose, furthermore, that

(5.5) lim
r!0

lim sup
�!0

max
1�j �n

sup
x2Vj

P �
x

�
H (V̆j ) � r ��

�
= 0 :

Then, for every 1 � j � n, x0 2 Vj , the sequence of measures Q�
x0

is tight. Moreover,
every limit point Q� of the sequence Q�

x0
is such that

(5.6) Q�
fx : x(0) = j g = 1 and Q�

fx : x(t) 6= x(t�)g = 0

for every t > 0.

A proof of this result for one-dimensional diffusions is presented in Landim and Seo
[2016a, Lemma 7.5]. Condition (5.5) asserts that in the time-scale �� , the processX�

t may
not jump instantaneously from one well to the other. We show in Section 8 of this article
that the probability P �

x [H (V̆j ) � r �� ] is bounded by the capacity between two sets for
an enlarged process. The proof of this lemma is thus reduced to an estimate of capacities.

The proof of uniqueness relies on the characterization of continuous-timeMarkov chains
as solutions of martingale problems. One needs to show that

(5.7) F (y(t)) �

Z t

0

(LF )(y(s)) ds

is a martingale underQ for all functions F : S ! R and all limit pointQ of the sequence
Q�

x0
.
We proved in Beltrán and Landim [2010, 2012b] that this property is in force in the

context of countable state spaces provided the mean jump rates converge and if each well
Vj has an element zj such that

(5.8) lim
�!0

sup
y2Vj ;y 6=zj

cap�(Vj ; V̆j )

cap�(fyg; fzj g)
= 0 :

The point zj is not special. Typically, if Equation (5.8) holds for a point zj in the well, it
holds for all the other ones. We refer to Beltrán and Landim [2010, 2012b] for details.

Condition (5.8) has been derived for Markov processes which “visit points”, that is, for
Markov processes which visit all points of a well before reaching another well. This is the
case of condensing zero-range processes Beltrán and Landim [2012a] and Landim [2014],
random walks in potential fields Landim, Misturini, and Tsunoda [2015] and Landim and
Seo [2016b], one-dimensional diffusions Landim and Seo [2016a], and for all processes
whose wells are reduced to singletons, as the inclusion processes Bianchi, Dommers, and
Giardinà [2017].
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We present here an alternative method to deduce Equation (5.7) which relies on certain
asymptotic properties of the elliptic operatorL� . Fix a functionF : S ! R, letG = LF ,
and let g : T d ! R be given by

g =

nX
i=1

G (i)�Vi
:

Assume that there exists a sequence of function g� : T d ! R such that

(P1) g� vanishes on Vc and converges to g uniformly on V ;

(P2) The Poisson equation bL�f = g� in T d has a solution denoted by f� . Moreover,
there exists a finite constant C0 such that

sup
0<�<1

sup
x2Td

jf�(x)j � C0 ; and lim
�!0

sup
x2V

ˇ̌
f�(x) � f (x)

ˇ̌
= 0 ;

where f : T d ! R is given by f =
P

1�i�n F (i)�Vi
.

The natural candidate for g� in conditions (P1) and (P2) is the function g itself. How-
ever, as the process is ergodic, the Poisson equation bL�f = b has a solution only if b
has mean zero with respect to �� . We need therefore to modify g to obtain a mean-zero
function. Denote by � the stationary state of the Markov chain whose generator is L. We
expect ��(Vi ) to converge to �i . Hence,

lim
�!0

E��
[g] = lim

�!0

nX
i=1

G (i)��(Vi ) =

nX
i=1

LF (i)�i = 0 :

A reasonable candidate for g� is thus g � r(�)�V1
, where r(�) = E��

[g]/��(V1).
Properties (P1), (P2) have been proved in Evans and Tabrizian [2016] and Seo and

Tabrizian [2017] for elliptic operators on Rd of the form L�f = eV /�r � (e�V /�arf )

and in Landim and Seo [2016a] for one-dimensional diffusions with periodic boundary
conditions. It is an open problem to prove these conditions in the context of interacting
particle systems.

Lemma 5.5. Fix 1 � j � n and x0 2 Vj . Assume that conditions (P1) and (P2) are in
force. Let Q� be a limit point of the sequence Q�

x0
satisfying Equation (5.6). Then, for

every F : S ! R, Equation (5.7) is a martingale under the measure Q�.

Proof. Fix 1 � j � n, x0 2 Vj and a function F : S ! R. Let f� : T d ! R be the
function given by assumption (P2). Then,

M�(t) = f�(bX�
t ) �

Z t

0

(bL�f�)(bX�
s) ds = f�(bX�

t ) �

Z t

0

g�(bX�
s) ds
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is a martingale with respect to the filtrationFt and themeasurebP �
x0
. Since fSV (t) : t � 0g

are stopping times with respect to Ft ,

cM �(t) = M�(SV (t)) = f�(Y�(t)) �

Z SV (t)

0

g�(bX�
s) ds

is a martingale with respect to the filtration Gt . Since g� vanishes on Vc , by a change of
variables,Z SV (t)

0

g�(bX�
s) ds =

Z SV (t)

0

g�(bX�
s)�V (bX�

s) ds =

Z t

0

g�(bX�(SV (s))) ds :

Hence, cM �(t) = f�(Y�(t)) �

Z t

0

g�(Y�(s)) ds

is a fGt g-martingale under the measure Q�
x0
.

By (P1) and (P2), g� , resp. f� , converge to g, resp. f , uniformly in V as � ! 0.
Hence, since Y�(s) 2 V for all s � 0, we may replace in the previous equation g� , f� by
g, f , respectively, at a cost which vanishes as � ! 0. Therefore,

cM �(t) = f (Y�(t)) �

Z t

0

g(Y�(s)) ds + o(1)

is a fGt g-martingale under the measure Q�
x0
.

Sincef andg are constant on each setVi , f (Y�(t)) = F (y�(t)), g(Y�(t)) = G (y�(t)).
By the second condition in Equation (5.6), Q� is concentrated on trajectories which are
continuous at any fixed time with probability 1. We may, therefore, pass to the limit and
conclude that F (y(t)) �

R t

0 (LF )(y(s)) ds is a martingale under Q�.

Theorem 5.6. Assume that conditions (P1), (P2), Equation (5.3), Equation (5.5) are in
force. Fix j 2 S and x0 2 Vj . The sequence of measures Q�

x0
converges, as � ! 0, to

the probability measure Qj .

Proof. The assertion is a consequence of Lemma 5.4, Lemma 5.5 and the fact that there is
only onemeasureQ onD(R+; S) such thatQ[x(0) = j ] = 1 and such that Equation (5.7)
is a martingale for all F : S ! R.

Step 4: The finite-dimensional distributions. By Landim, Loulakis, and Mourragui
[2017, Proposition 1.1], the finite-dimensional distributions of x�(t) converge to the finite-
dimensional distributions of y(t) if the process y�(t) converges in the Skorohod topol-
ogy to y(t) [Theorem 5.6], if in the time-scale �� the total time spent in ∆ is negligible
[Lemma 5.2] and if

lim
ı!0

lim sup
�!0

sup
x2V

sup
ı�s�2ı

P �
x [X

�(s��) 2 ∆] = 0 :
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This completes the argument. The convergence of the finite-dimensional distributions
of X�

t and sharp asymptotics for the transition time in the context of diffusions were first
obtained by Sugiura [1995, 2001]. The approach presented in this section to prove the
metastable behavior of aMarkov process has been proposed by Beltrán and Landim [2010,
2012b]. It has been successfully applied to manymodels quoted in this section. For further
reading on metastability, we refer to the books by Olivieri and Vares [2005] and by Bovier
and den Hollander [2015].
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Abstract

I will discuss, from a dynamical systems point of view, some recent attempts to
rigorously derive the macroscopic laws of transport (e.g. the heat equation) from de-
terministic microscopic dynamics.

1 The problem

In physics the world is described at different scales by seemingly very different laws. Once
the laws are specified, the problem of explaining their compatibility in spite of their ap-
parent differences becomes a mathematical one. Of course, it is possible to give heuristic
explanations, and plenty of them are available. Nevertheless, it turns out that the issue
is always very subtle, so that non rigorous explanations are often faulty and our naive
intuition is at loss.

In addition, in many instances one is interested in the behaviour of the world in a middle
ground, that is at intermediate scales, and to make accurate predictions in such a realm a
well grounded theory of how one scale merges in the next is necessary. An example of
this kind is given by the current development of nanotechnology in which the systems of
interest are mesoscopic: too large to apply easily the microscopic laws and too small for
the macroscopic laws to be valid without qualification.

Here we will consider the transition between the macroscopic scale (the one we are
used to) of the order of a meter and the microscopic (atomic) scale of the order of at most
10�9 meters.
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While, ultimately, the cross over from the microscopic to the macroscopic must entail
an understanding of the measurement process and of the semiclassical limit of Quantum
Mechanics, many issues can be treated also remaining in the purely classical realm. One
outstanding conceptual issue, going back to the ancient dispute between Zeno and Dem-
ocritus 2400 yeas ago, stems from the fact that the world around us looks like a continuum
(we describe it using partial differential equations); yet we are aware that it consists of
atoms, hence it is discrete in nature (as first conclusively proven by Einstein [1905] who
showed how Brownian motion, a mesoscopic phenomena, emerges from the microscopic
dynamics).

It should therefore be possible to start from an atomic description and derive, in some
appropriate limit that accounts for the difference in scales, a continuous description. In
order to carry out such a program the first task is to identify the microscopic quantities
that can be recognised and described macroscopically. It turns out that the microscopic
dynamics has some quantities that are locally conserved (e.g. mass, energy, momentum,
...) and these tend to evolve much slower than the other degrees of freedom, hence allow-
ing an evolution visible in the macroscopic time scale. In this article I will mainly discuss
the situation in which the microscopic dynamics is Hamiltonian and classical and the con-
served quantity is the energy. Hence the goal is to describe the energy evolution (energy
transport) on the macroscopic scale.

Starting with the work of Boltzmann we understand that the microscopic energy man-
ifests itself as thermal heat. The typical macroscopic law for heat transport is the Fourier
law (although important violations of such a law, connected to specific microscopic prop-
erties, have been discovered, e.g. Carbonium nanotubes).

For simplicity, we consider heat transport in homogenous non-conducting solids. This
implies that we have a constant density and there is no mass flow: the only quantity that
evolves is heat. The macroscopic definition of heat is the amount of energy that is needed
to change the temperature of a body and it is proportional to the temperature via the specific
heat per unit volume cv(T ). The Fourier law states that the heat flux J satisfies

J = ��̂rT

where T (x; t) is the temperature at point x and time t , and �̂ is the heat conductivity of the
material. The assumption that heat is a locally conserved quantity is tantamount to saying
that it satisfies a continuity equation:

cv(T )@t T = �divJ = div(�̂rT ):

In other words, setting �(T ) = �̂/cv(T ), often called diffusivity, we have

(1-1) @t T = �(T )∆T
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which is nothing else that the heat equation.
The mathematical problem mentioned above reads, in the present contest,

• Derive rigorously the heat equation from a Hamiltonian dynamics.

Such a problem is extremely hard, as is explained at length in the review Bonetto, J. L.
Lebowitz, and Rey-Bellet [2000]. Such a review is 17 years old, yet it is still actual since,
in spite of considerable efforts, little progress has been achieved in the intervening years.
Yet, little progress is not zero progress. In the following I will describe some of the math-
ematical work made in the last years. I start by making precise the kind of systems I want
to consider.

2 The models: general considerations

We describe here a very idealised model of a homogeneous, non-conducting solid. In
other words, the solid will look more or less the same at all places and the particles that
constitute it are not free to move very far from their rest position. This is the simplest
possible situation one can think of since the only quantity that can move around is the
energy.

The main feature of the problem is that there is a microscopic versus a macroscopic
world (and description). As we will restrict ourselves to the classical world (that is, we
are ignoring quantum effects) both world can be described by differential equations (either
ordinary, stochastic or partial) on Rn, for some n 2 N. In fact, the macroscopic world
and the microscopic one differ just in the scale. The distinction can be encapsulated in the
fact that a scaling parameter L becomes extremely large.

More precisely, since we are going to consider only models of solids, we can restrict
our discussion to microscopic models defined in a region ΛL = fx 2 Zd j L�1x 2 Λg

for some nice, fixed, region Λ � Rd .1 Accordingly, the region Λ stands for the macro-
scopic solid we want to consider, while ΛL is the corresponding region in the microscopic
description. Note that ΛL is discrete in nature as it is a subset of a lattice and it has size of
order L when measured in microscopic units.2 Note that the microscopic unitis are such
that the discrete nature of the system is evident at distances of order one, rather than at
distance L�1, as it happens in macroscopic units.

At each point x 2 ΛL we assume that there is a group of particles (atoms, molecules,
defects, ...) that are described by coordinates qx ; px 2 M�,3 where M� is the cotangent
bundle of an n� dimensional compact Riemannian manifold M . One can think of the qx

1 Of course we are mainly interested in the cases d = 1; 2; 3 (wires, membranes and solids).
2 The choice of a square lattice is immaterial, any other will do.
3 The fact that M� does not depend on x is part of our homogeneity hypothesis.
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as the displacement of particles from their equilibrium positions while the px are their mo-
menta (or velocities). The fact that qx belongs to a compactmanifold is our non conduction
hypothesis: particles are not free to move around the solid. That is, there is no convection.4
Accordingly, the microscopic system is described in a phase space ML = M

ΛL
� .

On the contrary the macroscopic description consists simply of a temperature field
T (x; t), x 2 Λ, t 2 R. Since the temperature is a function of the internal energy density
u of the body, the heat equation (1-1) can be written as

(2-1) @t u = div(�(u)ru):

Equation (2-1) describes the macroscopic dynamics, it remains to describe the micro-
scopic dynamics. Ideally we want a Hamiltonian dynamics, yet it is instructive to allow
also stochastic dynamics, since their study is easier and it might provide important ideas
to understand the deterministic case. Nevertheless, we will assume that the dynamics is
Markov. In other words, given any initial probability distribution P0, the distribution Pt

at time t is given by, for all f 2 C0(M; R),

(2-2) Et (f ) = E0(Lt f )

where Et , t � 0, is the expectation with respect to the probability measure Pt and Lt :

C0 ! C0 is a strongly continuous one parameter semigroup. Of course, in the case of a
Hamiltonian dynamics, calling �t the Hamiltonian flow, we will have Lt f = f ı �t .

To specify the dynamics we need to discuss also the initial conditions. While the initial
conditions of equation (2-1) are simply an initial energy profile u0(x), the initial condi-
tions for the microscopic model are a much more subtle issue, especially in the case of a
Hamiltonian dynamics. Indeed, Hamiltonian dynamics are reversible: for each trajectory
there exists an initial condition for which the trajectory is run backward (just take the final
configuration of the trajectory and reverse all the velocities). On the contrary the heat
equation (2-1) has no such property. So initial conditions must play an important role. To
address this problem we must be more specific about the type of dynamics we consider,
so we postpone the discussion momentarily (see (4-1) for details). For the time being we
require the bare minimum. First of all we consider random initial conditions, that is the
initial conditions are described by a non atomic measure P0. This corresponds to the nat-
ural fact that the exact positions and velocities of the microscopic particles (that in real
life applications may be of order 1023) cannot be known precisely and only a statistical
knowledge is possible.

Also, to connect to the macroscopic setting, we must say what we mean for the internal
energy ux of the body at site x. This can be done in several ways that are all essentially

4 Of course, one can achieve the same when M� = R2n� by introducing some strongly confining potential,
see Section 4.1, but for now let us keep things as simple as possible.
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equivalent, however they depend on the form of the dynamics which we have not yet
described precisely; so we postpone the definition to equation (3-3). However, whatever
the exact definition, we are interested in the measures �u;L defined as, for all ' 2 C1, 5

�u;L(') :=
1

Ld

X
x2ΛL

'(L�1x)ux(0) =
1

Ld

X
x2ΛL

ux(0)ıL�1x('):

Note that �u;L depends from the microscopic configurations and hence is a random vari-
able under P0. We then ask that there exists a smooth function u such that

lim
L!1

1

Ld

X
x2ΛL

ux(0)ıL�1x(') =

Z
Rd

u(x)'(x)dx

where the limits is meant almost surely with respect to P0. Thus, at time zero the micro-
scopic energy gives rise to a nice energy profile on the macroscopic scale.

We are finally able to specify in which sense the macroscopic dynamics should arise
from the microscopic one: for each ' 2 C1(Rd ; R), consider the measures

�u;L;t (') :=
1

Ld

X
x2ΛL

'(L�1x)ux(L
2t) =

1

Ld

X
x2ΛL

ux(L
2t)ıL�1x('):

The measure �u;L;t describes the energy density in the microscopic system at the micro-
scopic time L2t . The choice for this time scaling (called parabolic or diffusive scaling)
comes from the fact that equation (2-1) is invariant under such a scaling, so it presents
itself as the natural one. If the macroscopic dynamics must arise from the microscopic
dynamics, the we expect that P0-a.s.

lim
L!1

1

Ld

X
x2ΛL

ux(L
2t)ıL�1x(') =

Z
Rd

u(x; t)'(x)dx;

where u satisfies (2-1).
It turns out that the above limit is hard to justify even at the heuristic level, so, as a

preliminary step, one would be rather happy even proving its averaged version:6

(2-3) lim
L!1

1

Ld

X
x2ΛL

E0(ux(L
2t)ıL�1x(')) =

Z
Rd

u(x; t)'(x)dx:

5 To simplify matter we assume that the volume of Λ is one.
6 Note that here we abuse notation and use P0; E0 to designate, respectively, the measure and expectation

in path space determined by the initial measure (that we also called P0, hence the abuse). Of course, in the
deterministic case all is determined by the initial condition, but in the random case the measure in path space
describes also the randomness of the dynamics.
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These type of results are called hydrodynamic limits and have been first obtained in some
generality in the context of stochastic microscopic dynamics, Kipnis, Marchioro, and Pre-
sutti [1982], De Masi, Ianiro, Pellegrinotti, and Presutti [1984], Guo, Papanicolaou, and
Varadhan [1988], Varadhan [1993], and Olla, Varadhan, and Yau [1993]. For an overview
of the hydrodynamic limit see Spohn [1991].

I have thus specified what can be considered a satisfactory explanation of the emer-
gence of the macroscopic dynamics (2-1) from a microscopic model. Of course, this,
rather than being the end of the story, is just a starting point. In fact, what are really rele-
vant for physics and applications are the finite size effects. That is, the corrections to the
macroscopic law coming form the fact that the scale difference (L) is finite and not infi-
nite. This are the type of results that could prove relevant when working at the mesoscopic
scale (e.g, nanotechnology).

3 The models: microscopic dynamics

To make precise the model we have to specify the dynamics. Let us start from a Hamilto-
nian dynamics: this is the one physicists would ultimately like to study.

By our simplifying homegeneity hypothesis the local systems have all the same local
Hamiltonians

(3-1) h(q; p) =
1

2
hp; m�1pi + U (q)

for some strictly positive matrix m and smooth potential U . To simplify notation we
assume m = 1.7 The global Hamiltonian is the sum of the local Hamiltonians and of the
interaction between near by systems. For simplicity again we assume that the interaction
takes place only among nearest neighbors. Also, since we are considering the system as
a bunch of interacting systems, we expect the typical internal energy of a local system
(binding energy) to be much larger than the interaction energy. We are thus led to a global
Hamiltonian of the form

(3-2) H";L(q; p) =
X

x2ΛL

h(qx ; px) +
"

2

X
x2ΛL

X
ky�xk=1

V (qx ; qy)

where V (q; q0) = V (q0; q) is a symmetric smooth potential.
We can now specify what we mean by the internal energy at site x:

(3-3) ux = h(qx ; px) +
"

2

X
ky�xk=1

V (qx ; qy):

7 Note that we can always reduce to this situation by changing the definition of the scalar product.
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We added to the local Hamiltonian the interaction energy so that
P

x ux = H";L, thus the
ux account for all the energy in the system.

Remark 3.1. Note that we are considering the case of a body in isolation. In reality
the bodies are in contact with the exterior that can be thought as a thermal reservoir at
some given temperature. This is, of course, an extremely important problem but it has
several extra difficulties (for example, one has to decide a model for the thermal reservoir,
and this is the subject of many debates; the invariant measure of the dynamics is not
known explicitly, and even establishing its existence is a challenge, see Section 4.1 for
more details). Accordingly, to keep the exposition simple, we will not discuss boundary
conditions and we will only consider isolated bodies.

Let �t be the flow generated by (3-2) via the usual Hamilton equations

q̇ = @pH";L

ṗ = �@qH";L:
(3-4)

We have already mentioned that the semigroup (2-2) is defined asLt f = f ı�t . A simple
computation shows that the generator of Lt is given by

d

dt
Lt f jt=0 =: Xf =

X
x2ΛL

hpx ; @qx
f i � hrU (qx); @px

f i

� "
X

x2ΛL

X
ky�xk=1

h@qx
V (qx ; qy); @px

f i;

where we have used the symmetry of V .
The first problem in tackling the above dynamics is that we are interested in the prop-

erties of the system for a very long time (of order L2). At the moment the only dynamics
that are well understood for arbitrary long times are: a) completely integrable systems; b)
strongly chaotic systems. The first possibility is of course much simpler, unfortunately it
is very non generic. The interaction between different local systems will typically break
the complete integrability leading to a system that we have no tools to analyse.

Of course, one could consider very special global systems that are completely inte-
grable, for example a system in which all the potentials are quadratic (harmonic systems),
leading to linear Hamilton equations (3-4). Indeed the exploration of such systems started
a long time ago Rieder, J. Lebowitz, and E. Lieb [1967] and Lanford, J. L. Lebowitz,
and E. H. Lieb [1977] but it yields an anomalous diffusion due to the existence of many
conserved quantities beside the energy Zotos [2002]. This goes against the general con-
sensus that the only locally conserved quantity should be the energy. To ensure such a
fact one can introduce some stochasticity in the system (either in the interactions or in the
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local dynamics) and indeed several very interesting results have been obtained concerning
harmonics crystals with some randomness, see Olla and Sasada [2013], Basile and Olla
[2014], Jara, Komorowski, and Olla [2015], and Komorowski and Olla [2016, 2017] or
the review Basile, Bernardin, Jara, Komorowski, and Olla [2016] and references therein.

In general, the introduction of noise makes the problem much more tractable. If the
noise is sufficiently strong, then it is possible to establish the full hydrodynamic limit Olla,
Varadhan, and Yau [1993], Liverani and Olla [1996], and Fritz, Liverani, and Olla [1997],
but also for a very degenerate noise relevant partial results can be obtained Liverani and
Olla [2012].

The alternative is to consider strongly chaotic local dynamics. This point of view has
been first advocated in a precise manner by Gaspard and Gilbert [2008], in which they
propose to study a billiard typemodel inspired by Bunimovich, Liverani, Pellegrinotti, and
Suhov [1992].8 This is the point of view I wish to pursue: assume that the Hamiltonian
flow associate to the Hamiltonian h is strongly chaotic (an Anosov flow with exponential
decay of correlations).

Nevertheless, as we mentioned already, the introduction of a stochastic part in the dy-
namics is very instructive. To illustrate this we will consider the case in which the interac-
tion between nearby systems has a very strong random component. We will see that this
can be partially justified as a mesoscopic regime, see Theorem 5.1, but for the time being
it is just an heuristic tool. We assume that near by systems exchange their velocities and
that on each kinetic energy surface takes place a diffusion. To make the statement precise,
consider the vector fields

Yi;xf (q; p) = hyi (px); @px
f (q; p)i

Xx;yf = px@py
f � py@px

f

where the vectors fyi (p)g spans the tangent space of the kinetic energy surface fp̄ 2 Rd :

p̄2 = p2g at the point p. We then consider the semigroup generated by

X� = (1 � �)X + �S

S =
X

x2ΛL

X
i

Y 2
i;x +

X
x2ΛL

X
kx�yk=1

X2
x;y :(3-5)

Let L�;t be the semigroup generated by X� . Note that L0;t = Lt is the deterministic
dynamics, while L1;t is a purely stochastic (diffusive) dynamics that does not move the q

and preserves the kinetic energy
P

x p2
x . Thus, it reduces to a purely momenta dynamics

in which the positions do not play any role.
8 Billiards do not fall in the class of models described by (3-2) because the potential is not smooth as they

have hard-core interactions. However, they are Hamiltonian and morally similar. We will comment further on
hard core models in Section 5.2.
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4 Invariant measures, reversibility and currents

It is well known that a Hamiltonian flow leaves invariant the Liouville measuremL;E , that
is the uniform measure on the energy surface ML;E . This implies that the total energy is
an invariant quantity for the generatorsL�;t and the Liouville measuresmL;E are invariant.
Moreover, for " = 0, all the Liouville measuresmL;E ,E = (Ex), supported on the energy
surfaces ML;E = f(q; p) 2 ML;E : ux = Ex ;

P
x Ex = Eg, are invariant.

A satisfactory class of initial measures P0 we may wish to consider is given by

(4-1) E0(f ) = �(p; q)m
L;E

�

for some smooth integrable function � and energies
P

x E�
x = E. That is, we are allowed

to fix the energies (slow variables) but not the fast variables.
Note that

mL;E (f Sf ) = �
X

x2ΛL

X
i

mL;E ((Yi;xf )2) �
X

x2ΛL

X
kx�yk=1

((Xx;yf )2);

which implies

(4-2) mL;E (f � Sf ) = mL;E (Sf � f ):

On the contrary, since mL;E (f � f ı �t ) = mL;E (f ı ��t f ), we have

(4-3) mL;E (f Xf ) = �mL;E (f Xf ):

A semigroup, with the property (4-2) (that is, its generator is self-adjoint), is called
reversible.

Reversibility is an important property for Markov systems, which has many relevant
consequences Kipnis and Varadhan [1986]. Unfortunately, the generator of a deterministic
system is anti-selfadjoint (see (4-3)), which is as far as possible from reversible.

However, there exists a seemingly rather different definition of reversibility in the con-
text of flows. A definition which also has momentous consequences Gallavotti and Cohen
[1995]. We call a flow �t reversible if there exists an involution i : ML ! ML, that is
i ı i = id, such that

�t ı i = i ı ��t :

In the case of a Hamiltonian system it is trivial to check that the flow is reversible with
the involution i (q; p) = (q; �p).

Note that the macroscopic evolution associated to the equation (2-1) can also be seen
as a semigroup where the generator is Af = div(�(f )rf ).9 However such equation

9 Note that the (2-1) is really the equation for the density of a measure, so technically the semigroup here is
the adjoint of the one we were discussing above.
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is irreversible, where the word refers to the fact that backward dynamics is not well de-
fined.10 Thus the two different definitions of reversibility are yet another manifestation
of a long standing conundrum: the relation between microscopic reversibility and macro-
scopic irreversibility (or: how to explain the time arrow).

We are now ready to discuss another important issue: the current. The current simply
describes the change in energy of a local system. A direct computation yields, for all s < t ,

d

dt
E0(ux(t) j Fs) = E0(X�ux(t) j Fs) =

X
ky�xk=1

E0(jx;y(t) j Fs)

jx;y = (1 � �)
"

2

�
py@qy

V (qx ; qy) � px@qx
V (qx ; py)

�
+ �(p2

y � p2
x);

where Fs is the � -algebra determined by the variables fq(�); p(�)g��s . Note that jx;y =

�jy;x , so the total energy is conserved.
In the case � = 1, since the q do not evolve, the energies ux(t) differ from p2

x(t) only
by a constant, so we get a closed equation for the kinetic energy

d

dt
E0(p

2
x(t)) =

X
ky�xk=1

E0(p
2
y(t)) � E0(p

2
x(t)):

in this case the current is an exact discrete gradient. Also it is not hard to prove that the
measures �p2;L;t are tight, so for any convergent subsequence we have, for each ' 2 C1,

�p2;Lj ;t (') � �p2;L;0(') =

Z t

0

�p2;Lj ;t (∆') + O(L�1
j ):

The above, using the notation of (2-3), yields

@t u(x; t) = ∆u(x; t)

in the weak sense. This is an extreme manifestation of the fact that gradient currents are
easier to treat since a Laplacian is already implicit in the current. See Guo, Papanicolaou,
and Varadhan [1988] to see how to treat the general gradient case. When the current is not
of a gradient type (as in the case � 6= 1), then much more work is needed, see Varadhan
[1993].

The standard tools to deal with the non-gradient case (say � = 0) seem require two
facts:

10 In a sense the equation is irreversible if considered a deterministic equation (which is its physical meaning).
It is instead reversible, at least in the case �(f ) = �, if the associated semigroup is interpreted as the semigroup
describing a random process (Brownian motion). Sorry for the ambiguity.
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a) the well posedness of the Green-Kubo formula

(4-4) �" = ˇ2"2
Z 1

0

X
x2Zd

Eˇ (jx;x+1(t)j0;1(0)) dt;

for the infinite system at equilibrium with inverse temperature ˇ.

b) A spectral gap of order L�2 for the dynamics Lt in a region of size L.

Of course, the latter refers to stochastic systems where the gap is meant in L2 or in some
simple Sobolev space. In the deterministic case on such spaces there is no gap at all. Yet,
there can be exponential decay of correlations for smooth observables, Accordingly, it
is likely that any possible proof will require a decay of correlations of type e�CL�2t for
reasonable observables and the dynamics in a region of size L.

Accordingly, all the known approaches require a sharper, quantitative, information on
the rate of convergence in the formula (4-4). Note that, even assuming that the flow on
each energy surface of the local dynamics is Anosov, already the study of two interact-
ing systems is currently out of reach. Indeed, when two systems interact only the total
energy (and not the individual ones) is conserved. Hence, two interacting systems can be
viewed as a partially hyperbolic flowwith a three dimensional central direction. No result
whatsoever is currently available on the rate of mixing for such systems, let alone a larger
collection of interacting systems. See Bonatti, Dı́az, and Viana [2005] for an overview on
partially hyperbolic systems.

4.1 Other models.
Let us briefly discuss other possibile microscopic models. One possibility we already
mentioned is that M� = R2n� but the confinement is provided by a potential, these are
essentially anharmonic chains (we have already mentioned the harmonic case). The first
example of such a model goes back to Fermi, Pasta, and Ulam [1965]. The FPU models
have proven extremely difficult to investigate, even numerically Benettin, Livi, and Ponno
[2009], Benettin, Christodoulidi, and Ponno [2013], and Dauxois, Peyrard, and Ruffo
[2005]. However, the study of FPU models has shown that the route from microscopic to
macroscopic is much subtler than one can naively imagine and metastable states can play
an important role. From the rigorous point of view almost nothing is known, apart from
some zero energy density results that are not so relevant in the present context. On the
other hand, if one considers the case in which the system is not isolated but it is in contact
with external heat baths, then, in some cases, the existence of a stationary measure is
known Eckmann, Pillet, and Rey-Bellet [1999] and Eckmann and Hairer [2001] although
its properties are still not well understood.
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Another possibility is to consider hard core potential, e.g. billiards. This is also a
promising line of thought, very close in spirit to the one presented here. See Section 5.2
for details.

In the last years there have also been attempts to investigate models with mass transport,
but with independent particles that can exchange energy only interacting with some array
of localised systems, typically discs. Again such systems are in contact with reservoirs
that can emit and absorb particles. This are intriguing and illuminating models for which
is, at times, possible to establish the existence of a stationary measure and some of its
properties Eckmann and Young [2004, 2006], Collet and Eckmann [2009], and Yarmola
[2014].

In fact, there are many other relevant papers strictly connected to the matter at hand.
It is impossible to quote them all, here is a very partial selection Dolgopyat and Liverani
[2008], Dolgopyat, Keller, and Liverani [2008], Bricmont andKupiainen [2007], Lefevere
and Zambotti [2010], and Ruelle [2012].

5 A two steps strategy

By the above discussion, the purely deterministic case seems completely out of reach of
current techniques. It is thus necessary to try to devise a line of attack that deals with the
problems one at a time. The first, natural, idea is to leverage on our understanding of the
dynamics for " = 0. Of course, when " = 0 there is no exchange of energy, so we must
start to look at the case when " is “infinitesimally” small. One way to formalise precisely
such a situation is to investigate if some universal behaviour takes place for small ".

5.1 Soft core potentials.
This is the model we have discussed so far in the case � = 0. Only, now we define the
random variables EL;";x(t) = ux("

�2t) and consider the limit " ! 0, keeping fixed the
size of the system. In other words we look at the local energy when the interaction between
near by systems is very small, but rescale time in order to be able to see some evolution.

The choice of the scaling "�2 is due to the fact that, in equilibrium, the currents have
zero average, hence we expect the exchange of energy between near by systems to be due
to fluctuations. This means that, very naively, the variation of energy at site x and time t

can be thought as the sum of t zero average independent random variables of size ". By
the central limit theorem one then expects that a change of energy of order one takes place
only at time "�2.

The above super naive picture can indeed bemade rigorous in the special case of contact
Anosov flows. Indeed, it is known that contact Anosov flows exhibit exponential decay of
correlations Liverani [2004]. In the Hamiltonian (3-2), this corresponds to the requirement
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that the local Hamiltonian (3-1) be of the form h(q; p) = 1
2
hp; pi and that M is a compact

manifold of strictly negative curvature. Note that the requirement that the local dynamics
be a geodesic flow in negative curvature is not so artificial as it might appear at first sight.
Indeed there exists mechanical models for which this is exactly the case Hunt andMacKay
[2003]. We have the following result.

Theorem 5.1 (Dolgopyat and Liverani [2011]). For each L 2 N and n� � 3,11 the
process fEL;";x(t)gx2ΛL

, with initial conditions satisfying fEL;";x(0) = Ex > 0gx2ΛL
,

converges in law to a limit fEL;xgx2ΛL
satisfying the mesoscopic SDE

dEL;x =
X

jx�yj=1

b(EL;x ; EL;y)dt +
X

jx�yj=1

a(EL;x ; EL;y)dBx;y

EL;x(0) = ūx > 0

(5-1)

where b(EL;x ; EL;y) = �b(EL;y ; EL;x), a(EL;x ; EL;y) = a(EL;y ; EL;x) and Bx;y =

�By;x are independent standard Brownian motions.

The result includes the fact that the SDE is well posed, in the sense of the uniqueness of
the martingale problem, Stroock and Varadhan [2006]. To prove the latter it is necessary
to show that zero is unreachable. Indeed, if zero were reacheable, then the equation (5-1)
wold have to be supplemented by boundary conditions, since by definition energies are
positive. In turn, to prove unreachability of zero it is necessary to acquire precise informa-
tions on the form of the diffusion coefficient and drift. In Dolgopyat and Liverani [2011]
it is shown that b; a 2 C1((0; 1)2) and, for EL;x � EL;y ,

a(EL;x ; EL;y)
2 =

AEL;xp
2EL;y

+ O
�
E

3
2

L;xE�1
L;y

�
b(EL;x ; EL;y) =

An�

2
p
2EL;y

+ O
�
E

1
2

L;xE�1
L;y

�
;

Note that the only invariant measures for (5-1) are measures absolutely continuous w.r.t.
Lebesgue with density hˇ =

Q
x2ΛL

E
n�
2 �1

L;x e�ˇEL;x .
The SDE corresponds to a parabolic PDE with generator

(5-2) XL =
1

2h0

X
jx�yj=1

(@EL;x
� @EL;y

)h0b2(@EL;x
� @EL;y

):

We have thus a mesoscopic equations in which the evolution of all the degree of freedom,
apart from the energies, can be ignored. Even more remarkably, the generator XL, with
respect to the invariant measure, is reversible.

11 The Theorem should also be true for n� = 2, but it is harder to prove. Instead it does not make sense for
n� = 1, since in such a case the local Hamiltonian is completely integrable and the flow cannot be Anosov.
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This is a consequence of the microscopic reversibility of the flow. Indeed, the invo-
lution (q; p) ! (q; �p) that exchanges the direction of time, reduces to the identity in
the energy variables. Thus, we see not only how irreversibility arises (equations (5-1) are
irreversible in the sense that they display a time arrow: a distribution tends to equilib-
rium going forward in time, but not going backward), but we see also a non trivial rela-
tion between (deterministic) reversibility for the microscopic dynamics and (stochastic)
reversibility for the macroscopic one (which shows up already at the mesoscopic level).

The generator (5-2) is a dynamics only on the energies, so it has the same flavour as
S in (3-5). However, the associated current is not of gradient type. Yet, it is conceivable
that the study of the dynamics (5-1) is much easier than the study of the original determin-
istic dynamics. So it natural to try to perform the hydrodynamic limit on the mesoscopic
dynamics.

To this end, as we have already mentioned, it seems necessary to have a spectral gap
of size L�2 for the operator XL. At the moment it is unclear if such a fact holds true
or not, the problem stemming from the fact that at high energy the diffusion coefficient
vanishes. This is a consequence of the fact that at high energy near by systems (in the
original deterministic system) interact very little since the size of the potential is very
small compared with the available energy.

The situation improves if one starts from a systemwith some stochasticity as in Liverani
and Olla [2012]. Indeed, in Liverani and Olla [ibid.] is considered an anharmonic chain
with and energy preserving noise and we establish the same type of result as in (5-1) but
now

a(EL;x ; EL;y)
2 ∼ AExEL;y

b(EL;x ; EL;y) ∼ EL;x � EL;y :

For such a b the needed spectral gap has been established by Olla and Sasada [2013] com-
paringXL with the generator of the Kac model. This suffices to prove that the fluctuations
in equilibrium satisfy the heat equation Liverani, Olla, and Sasada [n.d.].

Hence there is a concrete hope to obtain the heat equation starting from a deterministic
dynamics via a two step procedure: first take a weak coupling limit to obtain a mesoscopic
equation involving only the energies, then perform the hydrodynamic limit on the latter
dynamics.

This is encouraging, yet a natural question arises: is there any relation between the
behaviour of the original model, possible for " very small, and the result of this two step
procedure? To answer precisely to such a question would be equivalent to solve our orig-
inal problem, however even an heuristic answer is not obvious.

A (non trivial) formal computation, see Bernardin, Huveneers, J. L. Lebowitz, Liverani,
andOlla [2015], shows that if �" is the diffusivity, as defined in (4-4), for the originalmodel
(that we assume finite) and �M the diffusivity of the mesoscopic dynamics (that can be
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proven finite), then

�" = "2�M + O("3)

�M = E0(a(E0; E1)
2) +

X
x

Z 1

0

E0 (b(E0; E1)(0)b(Ex ; Ex+1)(s)) ds:

This suggests that the mesoscopic dynamics captures the main effect of the energy trans-
port and that it is an effective approximation of the behaviour of the microscopic deter-
ministic dynamics.

If the above were true, then it should be possible to use the stochastic dynamics as a
first approximation of the long term statistical properties of the original dynamics well
beyond the time scale "�2, which is the time scale established by Theorem 5.1. This is an
intriguing possibility that leads to a rather vast research program.

5.2 Hard core potential. Before continuing the discussion on the possibility to extend
Theorem 5.1, it is worth to discuss a different possibility: hard core interactions. Indeed,
it is quite possible that the presence of hard core at the microscopic level does manifest
itself also at macroscopic level. For example it is likely that hard core interactions do not
manifest the property of a decreasing diffusion coefficient at high energies since when
there is a collision the velocities change dramatically also at high energies, contrary to the
case of soft interactions.

Unfortunately, while hard core interactions may cure a problem they come at a high
cost, since in such a case the discontinuity of the dynamics creates formidable technical
problems. Yet, it is certainly very important and instructive to investigate this alternative.

In this case, the unperturbed systems (corresponding to the Hamiltonian H0;L) would
consist of a region of size L filled by disjoint billiards domains each containing a ball that
can move freely apart for the elastic collision with the walls. In such a case the kinetic
energy of each ball is conserved and there is no transport of mass or of energy, see Figure 1.
To perturb the system, instead of introducing a potential, we shrink a bit the obstacles, so
that channels appear between the different tables. If the channels are large enough to
allow near by particles to collide, but not so large as to allow the particles to escape the
region in which they are confined, then we obtain a systems in which mass transport is
still impossible, but energy transport is allowed, see Figure 2.

Some systems of these type are known to be ergodic Bunimovich, Liverani, Pelle-
grinotti, and Suhov [1992] but, unfortunately, nothing is known about their mixing rate.
In particular it is unknown if the Green-Kubo formula is well defined. Yet, one can imi-
tate what has been done in the previous section: consider the limiting case in which the
interaction are extremely rare and rescale the time so that, in average, a particle has one
collision with another particle in a (macroscopic) unit time. This leads, again, to a two step
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1

Figure 1: Obstacles gray, particles black. Non interacting particles

Figure 2: Obstacles gray, particles black. Interacting particles
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route to the heat equation. This research program has been put forward in Gaspard and
Gilbert [2008] where the authors heuristically derive a mesoscopic equation describing
the evolution of the energy with generator

(5-3) XLf (u) =
1

2

X
x2ΛL

X
y2ΛL

kx�yk=1

Z �

��

[f (Rxy

�
u) � f (u)]�(�)d�

where R
xy

�
; x ¤ y is a clockwise rotation of angle � in the plane (ux ; uy). The generator

(5-3) is the analogous of (5-2) and describe a jump process. This generator is know to have
a spectral gap of order L�2, Grigo, Khanin, and Szász [2012] and Sasada [2015]. The
situation seems then very promising, unfortunately all attempts to derive rigorously (5-3)
have so far failed. Nevertheless, lately there has been some notable technical progresses
Baladi, Demers, and Liverani [2018], Dolgopyat and Nándori [n.d.], and Bálint, Nándori,
Szász, and Tóth [n.d.] and some relevant results on relatedmodels Bálint, Gilbert, Nándori,
Szász, and Tóth [2017] and Dolgopyat and Nándori [2016].

6 Partially hyperbolic Fast-slow systems and limit theorems

At the end of Section 5.1 we came to the conclusion that (5-1) might hold for much longer
times than "�2 and that this, if true, could help in establishing the Green-Kubo formula
and, ultimately, the heat equation. However, to investigate such a possibility is a non
trivial task. A task that is best accomplished proceeding by intermediate steps. This leads
us to the general problem of studying the long time validity of limit theorems in partially
hyperbolic fast-slow systems.

Fast-Slow systems are system in which there are two group of variables that evolve
accordingly to very different time scales. For example, the Hamiltonian (3-2), with M a
compact Riemannianmanifold in negative curvature and the local Hamiltonian (3-1) of the
form h(q; p) = 1

2
hp; pi, yields a dynamics in which the variables qx ; vx = (2ux)

�1/2px

vary on a microscopic time scale of order one, while the variable ux = 1
2
p2

x varies on
a timescale of order "�2. Partial hyperbolicity stems form the fact that for " = 0 the
system foliates in uniformly hyperbolic systems, so the dynamics in the central direction
is simply identity, and the central direction persists under perturbations Hirsch, Pugh, and
Shub [1977].

If we want to understand the behaviour of such systems for arbitrarily long times it is
best to start form the simplest possible example.
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6.1 The not so simple simplest example.
We start by defining the one parameter family of maps F" 2 C4(T 2; T 2)

(6-1) F"(x; z) = (f (x; z); z + "!(x; z));

where @xf (x; z) � � > 1 is an expanding map for all z. We then consider the dynamics
(xn; zn) = F n

" (x0; z0) with initial conditions

(6-2) E(g(x0; z0)) =

Z
T1

�(x)g(x; z̄0)dx ;

where z̄0 2 T 1, while � 2 C2(T 1; R+).
Let us compare this super simplified model with the Hamiltonian system (3-2). First

of all, (6-1) is in discrete time and not continuous time. This is technically much simpler,
but morally not so different.

More serious is the fact that the system is not time reversible and has no Hamiltonian
or symplectic structure. This makes it rather artificial, however a time reversible system
with some symplectic structure could be constructed using an Anosov map on the two
torus instead of an expanding map of the circle. Hence, we can consider our model as a
preliminary step toward a more realistic one.

Next, (6-1) has only two variables hence the question of taking the hydrodynamic limit
makes no sense.12 However, this model is intended only to explore the possibility to
control the statistical properties of (3-2) for a time longer than "�2. Of course, ultimately
this must be done with some uniformity on the number of degree of freedom, but if one
cannot do it with one degree of freedom it does not make much sense to think about large
systems.

On the bright side, (6-1) has a conserved quantity (z, which plays the role of the local
energy in (3-2)) for " = 0 and, for " small is a fast-slow system. The quantity "!, which
determines the change of the almost conserved quantity z, plays the role of the current.

The local dynamics depends on the conserved quantity z as the local hamiltonian dy-
namics in (3-2) depends on the local energy. The local dynamics f (�; z) have a strong
chaotic character similar to the hypothesis that the local, unperturbed, hamiltonian flows
is a contact Anosov flow (or, more generally, enjoys exponential decay of correlations),
hence the partial hyperbolicity. The initial conditions are very similar as one can fix ex-
actly the almost conserved quantity (slow variable) but must have a smooth distribution
for the fast variables, similarly to (4-1).

It is well known, Baladi [2000], that our hypotheses on (6-1) imply that
12 Nonetheless one can consider many of such systems weakly coupled, whereby reproducing a situation in

which it is possible to perform the hydrodynamic limit. In the simple case in which the fast dynamics does
not depend form the slow one, this has been done, obtaining indeed the heat equation, Bricmont and Kupiainen
[2013].
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1. for each z 2 T 1, f (�; z) has a unique SRB measure �z which is absolutely contin-
uous with respect to Lebesgue and has density h(�; z)

2. h 2 C2(T 2; R+).

The above facts take care of another apparent difference between (3-2) and (6-1): the
former has an explicit and natural invariant measure (Liouville). Now we know that, even
though not totally apparent, the same holds for (6-1). The measures �z will play the role
of the equilibrium measures.

However, there is a last issue: due to the reversibility and the hamiltonian structure in
(3-2) the average of the current is always zero. This is the reason why the evolution of the
energy happens on the time scale "�2 rather than on the scale "�1. In the present simplified
setting this would correspond to the conditions !̄(z) := �z(!(�; z)) = 0. Unfortunately,
this turns out to be a much harder problem. At the moment are available partially satisfac-
tory results only in the case !̄(z) ¤ 0. More precisely, in the case in which !̄ has only
finitely many non-degenerate zeroes. In this case the natural time scale in which the slow
variable evolves is "�1, however the problem of understanding the statistical properties
of the system for arbitrarily long times remain a non trivial challenge and its study is a
preliminary step to attack the, harder, case !̄ � 0.

To describe the existing results it is convenient to introduce the continuous paths

z"(t) = zb"�1tc + ("�1t � b"�1tc)(zb"�1tc+1 � zb"�1tc); t 2 [0; T ]:

The paths z" 2 C0([0; T ]; R) are random variables due to the randomness of the ini-
tial conditions. Since the fz"g are uniformly Lipschitz, they belong to a compact set in
C0([0; T ]; R), hence they have convergent subsequences. It is possible to show that all
the accumulation points z̄ must satisfy the ODE

˙̄z = !̄(z̄)

z̄(0) = z̄0

!̄(z) =

Z
T1

!(x; z)h(x; z)dx = �z(!(�; z)):

This type of results goes back, at least, to Anosov [1960] and Bogoliubov andMitropolsky
[1961] in the early ’60.

Next, let us consider the quantity �"(t) = "� 1
2 [z"(t) � z̄(t)]. These are the fluctuations

around the average. To discuss this case we need to recall that a function � 2 C0(T ) is
said to be a (continuous) coboundary (with respect to a map f : T ! T ) if there exists
ˇ 2 C0(T ) so that

� = ˇ � ˇ ı f:
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Two functions �1; �2 2 C0(T ) are said to be cohomologous (with respect to f ) if their
difference �2 � �1 is a coboundary (with respect to f ). We make the non-degeneracy as-
sumption that, for each z 2 T , the function !(�; z) is not cohomologous to a constant with
respect to fz . Note that in De Simoi and Liverani [n.d.] it is shown that this assumption
is in fact generic in C2.

A computation using the decay of correlations of the maps f (�; z) yields

E([�"(t) � �"(s)]
4) � C jt � sj

2:

Hence, by Kolmogorov criteria, the sequence is tight. It is possible to show that the accu-
mulation points � of �" satisfy

d� = !̄0(z̄(t))�(t)dt + σ̂(z̄(t))dB

�(0) = 0
(6-3)

where B is the standard Brownian, σ̂ > 0 is given by the Green-Kubo formula

σ̂(z)2 =�z (!̂(�; z)!̂(�; z)) + 2

1X
m=1

�z (!̂(f m
z (�); z)!̂(�; z)) ;

and we have used the notation fz(x) = f (x; z).
As the above equation has a unique solution, this identifies the limit.
This type of results are much more recent and, in the above form, have been obtained

by Dolgopyat and Kifer at the beginning of the new millenium, Dolgopyat [2005] and Y.
Kifer [2004], but see De Simoi and Liverani [2015] for a pedagogical exposition.

We have thus seen that z" is close to z̄ +
p

"�. On the other hand it is possible to show,
J. I. Kifer [1976], that z̄ +

p
"� is close to the solution z̃" of the stochastic differential

equation

d z̃" = !̄(z̃")dt +
p

"σ̂(z̃")dB

z̃"(0) = z̄0:
(6-4)

Thus the motion is described by an ODE with a small random noise of the type introduced
by Hasselmann [1976] to model climate and extensively studied by Ventcel and Freidlin
[1969] and Freidlin and Wentzell [2012] and J. I. Kifer [1974, 1977] and Y. Kifer [1981]
in the 70’s.

The above is the equivalent, in the present context, of Theorem 5.1. We can now pose
for the current model the question that we would like to answer in the previously described
context: what happens on time scales longer than "�1. A first result is the following:
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Theorem6.1 (De Simoi, Liverani, Poquet, andVolk [2017] Corollary 3.3). For anyˇ > 0,
˛ 2 (0; ˇ), " 2 (0; "0), and t 2 ["1/2000; "�˛], there exists Cˇ > 0 and a coupling Pc

between z"(t) and z̃"(t), such that:

Pc(jz" � z̃"(t)j � ") � Cˇ "1/2�ˇ :

The above result is based on a drastic sharpening of (6-3), which amounts to a local
central limit theorem with error term for the diffusion limit.

Theorem 6.2 (De Simoi and Liverani [n.d., Theorem 2.7]). For any T > 0, there exists
"0 > 0 so that the following holds. For any ˇ > 0, compact interval I � R, jI j � 1, real
numbers � > 0, " 2 (0; "0), t 2 ["1/2000; T ], we have:

E(�"(t; �) 2 "1/2I + �)
p

"
= Leb I

"
e��2/2σ2

t (z̄0)

σt (z̄0)
p
2�

#
+ O("1/2�ˇ ):

where the variance σ2
t (z) reads

σ2
t (z) =

Z t

0

e2
R t

s !̄0(z̄(r;z))dr σ̂2(z̄(s; z))ds:

Theorem 6.1 says that the deterministic dynamics remains close to the stochastic one
for a time of order almost "� 3

2 . Since (6-4) reaches at lest a metastable state in a time of
order "�1 ln "�1, Freidlin andWentzell [2012], it follows that also the deterministic system
must reach similar states. This control should be sufficient to start an investigation of the
even longer time properties of the system.

It turns out that current techniques to study the statistical properties of partially hyper-
bolic systems depend on the positivity or negativity of the central Lyapunov exponent.
So at the moment it is unclear in which generality the program can be completed. Here
we present the best available result, but before stating it is necessary to introduce some
notation.

We say that a Lipschitz path h of length T is admissible if for any s 2 [0; T ], @h(s) �

intΩ(h(s)),13 where, for z 2 T , we define the (non-empty, convex and compact) set

Ω(z) = f�(!(�; z)) j � is a fz-invariant probabilityg:

The last condition is:
13 For each s 2 [0; T ], @h(s) is the Clarke generalized derivative of h as the set-valued function:

@h(s) = hullf lim
k!1

h0(sk) : sk ! sg:

The set @h(s) is compact and non-empty (see Clarke, Ledyaev, Stern, and Wolenski [1998, Proposition 2.1.5])
and so is its graph.
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• there exists i 2 f1; � � � ; nZg so that for any z 2 T , there exists an admissible
(z; zi;�)-path. We can always assume, without loss of generality, that i = 1.

Observe that the above condition is trivially satisfied if nZ = 1.

Theorem 6.3 (De Simoi and Liverani [2016]Main Theorem). ThemapF" admits a unique
SRB measure �". This measure enjoys exponential decay of correlations for Hölder ob-
servables. More precisely: there exist C1; C2; C3; C4 > 0 (independent of ") such that,
for any ˛ 2 (0; 3] and ˇ 2 (0; 1], any two functions A 2 C˛(T 2) and B 2 Cˇ (T 2):

jLeb(A � B ı F n
" ) � Leb(A)�"(B)j � C1 sup

z
kA(�; z)k˛ sup

x
kB(x; �)kˇ e�˛ˇc"n;

where

c" =

(
C2"/ log "�1 if nZ = 1;

C3 exp(�C4"�1) otherwise.

The proof of the above results is based on the standard pair technique Dolgopyat [2005]
and Theorem 6.2, but also on a considerable sharpening of the large deviation results
previously obtained for uniformly hyperbolic dynamical systems, notably Y. Kifer [2009],
see De Simoi and Liverani [n.d.] for details.

Also note the extremely slow decay of correlations in the case in which more than one
sink is present. This is a well known phenomena: metastability. A phenomena widely
studied in stochastic equations like (6-4), see Freidlin and Wentzell [2012] and Olivieri
and Vares [2005], but seen here for the first time in a purely deterministic setting.

7 Final considerations

The previous sections show on the one hand that even establishing partial results for a
very simplified system entails a tremendous amount of work. On the other hand we have
shown that the research program of studying the dynamics of (3-2) is not totally hopeless,
especially if the arguments could be substantially simplified.

In particular, we have put forward the general philosophy of proving that a deterministic
dynamics behaves like a stochastic one for a time long enough for the stochastic dynamics
to exhibit some asymptotic property. This allows to deduce that the deterministic system
shares such asymptotic behaviour. This approach seems to be a powerful point of view
that can be applied to many other contexts.
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BOGOLIUBOV EXCITATION SPECTRUM FOR
BOSE–EINSTEIN CONDENSATES

Bൾඇඃൺආංඇ Sർඁඅൾංඇ

Abstract
We consider interacting Bose gases trapped in a box Λ = [0; 1]3 in the Gross–

Pitaevskii limit. Assuming the potential to be weak enough, we establish the validity
of Bogoliubov’s prediction for the ground state energy and the low-energy excitation
spectrum. These notes are based on a joint work with C. Boccato, C. Brennecke and
S. Cenatiempo.

1 Introduction

In the last two decades, since the first experimental realisations of Bose-Einstein con-
densates Anderson, Ensher, Matthews, Wieman, and Cornell [1995] and Davis, Mewes,
Andrews, Van Druten, Durfee, Kurn, and Ketterle [1995], the study of bosonic systems
at low temperature has been a very active field of research in physics (experimental and
theoretical) and also in mathematics.

Trapped Bose gases observed in typical experiments are well described as quantum
systems of N particles, interacting through a repulsive two-body potential with scatter-
ing length of the order N�1; this asymptotic regime is commonly known as the Gross-
Pitaevskii limit. If particles are confined in a box Λ = [0; 1]3 and we impose periodic
boundary conditions, the Bose gas in the Gross-Pitaevskii regime is described by the
Hamilton operator

(1-1) HN =

NX
j=1

�∆xj
+ �

NX
i<j

N 2V (N (xi � xj )) :

According to the bosonic statistics, (1-1) acts on theHilbert spaceL2(Λ)˝sN , the subspace
ofL2(ΛN ) consisting of all functions that are invariant with respect to permutations of the
The author gratefully acknowledges support from the NCCR SwissMAP and from the Swiss National Foun-

dation of Science through the SNF Grant “Dynamical and energetic properties of Bose-Einstein condensates”.
MSC2010: primary 81Q10; secondary 82B10, 35P05, 47A75.
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N particles. In (1-1), V is assumed to be non-negative, spherically symmetric, compactly
supported and sufficiently regular (in fact, the condition V 2 L3(R3) will suffice) and
� > 0 is a coupling constant that will be later supposed to be small enough (but fixed,
independent of N ). We denote by a0 the scattering length of �V , which is defined by the
requirement that the solution of the zero-energy scattering equation

(1-2)
h
�∆+

�

2
V (x)

i
f (x) = 0

with the boundary condition f (x) ! 1 as jxj ! 1, is given by f (x) = 1 � a0/jxj, for
jxj large enough (outside the range of V ). Equivalently, we can determine the scattering
length through

(1-3) 8�a0 = �

Z
V (x)f (x)dx :

It follows from the results of E. Lieb and Yngvason [1998] and of E. H. Lieb, Seiringer,
and Yngvason [2000] that the ground state energy EN of (1-1) is such that

(1-4) lim
N !1

EN

N
= 4�a0 :

Furthermore, the work of E. H. Lieb and R. Seiringer [2002], recently revised also in
Nam, Rougerie, and Seiringer [2016], implies that the ground state of (1-1) exhibits Bose-
Einstein condensation. In other words, if  N 2 L2(Λ)˝sN is the normalized ground state
of (1-1) and 
N denotes the one-particle reduced density associated with  N , which is
defined as the non-negative trace class operator on L2(Λ) with the integral kernel


N (x;y) =

Z
dx2 : : : dxN  N (x; x2; : : : ; xN ) N (y; x2; : : : ; xN )

then, as N ! 1,

(1-5) 
N ! j'0ih'0j

where '0(x) = 1 for all x 2 Λ is the zero-momentum mode. The convergence (1-5)
(which holds in any reasonable topology, for example with respect to the trace-class norm)
means that, in the ground state of (1-1), all particles are described by '0, up to a fraction
vanishing in the limit of large N . One should however stress the fact that (1-5) does not
imply that the product state '˝N

0 is a good approximation for the ground state of (1-1). In
fact, a simple computation shows that

(1-6) h'˝N
0 ;HN'

˝N
0 i =

(N � 1)

2
�bV (0)
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which is not compatible with (1-4). The point, which will often recur in these notes, is that,
because of the singular interaction, the ground state of (1-1) (and, in fact, all low-energy
states, as we will see below) develops a short scale correlation structure, varying on the
length scale N�1 (and therefore disappearing in the limit N ! 1), which is responsible
for lowering the energy from (1-6) to (1-4) (from (1-3) it is clear that 8�a0 < �bV (0)).

Equation (1-4) establishes EN to leading order. Our goal in these notes is to obtain
more precise information about the ground state energy and about low-energy excitations
of (1-1), determining them up to errors that vanish in the limit N ! 1.

Theorem 1.1. Let V 2 L3(R3) be non-negative, spherically symmetric and compactly
supported. Let the coupling constant � > 0 be small enough. Then we have

EN = 4�(N � 1)aN

�
1

2

X
p2Λ�

+

�
p2 + 8�a0 �

p
jpj4 + 16�a0p2 �

(8�a0)
2

2p2

�
+ O(N�1/4)(1-7)

where Λ�
+ = 2�Z3nf0g, and

(1-8) 8�aN = �bV (0)+

+

1X
k=1

(�1)k�k+1

(2N )k

X
p1;:::;pk2Λ�

+

bV (p1/N )

p2
1

 
k�1Y
i=1

bV ((pi � pi+1)/N )

p2
i+1

!bV (pk/N ) :

Furthermore, the spectrum ofHN �EN below a threshold � > 0 consists of eigenvalues
given, in the limit N ! 1, byX

p2Λ�
+

np

p
jpj4 + 16�a0p2 + O(N�1/4(1 + �3)) :(1-9)

Here np 2 N for all p 2 Λ�
+ and np 6= 0 for finitely many p 2 Λ�

+ only.

Remarks:

1) Taylor expanding the square root to third order, it is easy to check that the sum in
(1-7) is absolutely convergent and therefore that it gives a contribution of order one
to the ground state energy EN .

2) The k-th term in (1-8) is bounded by C k�k , for some constant C > 0. Hence,
the series is absolutely convergent and bounded uniformly in N , if � > 0 is small
enough.
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3) The expression (1-8) for 8�aN can be compared with the Born series for the un-
scaled scattering length a0, given by

(1-10) 8�a0 = �bV (0)+

+

1X
k=2

(�1)k�k+1

2k(2�)3k

Z
R3k

dp1 : : : dpk

bV (p1)

p2
1

 
k�1Y
i=1

bV (pi � pi+1)

p2
i+1

!bV (pk):

In particular, it is possible to show that the difference 4�(aN � a0)N remains
bounded, of order one, in the limit of large N . Notice, however, that it does not
seem to tend to zero; this means that, in (1-7), we cannot replace aN with a0. In
other words, at the level of precision of (1-7), the ground state energy is sensitive to
the finite size of the box and it cannot be simply expressed in terms of the infinite
volume scattering length a0.

The results of Theorem 1.1, in particular the expression (1-9) for the excitation spectrum,
have already been predicted by Bogolubov [1947]. In his work, Bogoliubov rewrote the
Hamilton operator (1-1) as

(1-11) HN =
X

p2Λ�

p2a�
pap +

�

2N

X
p;q;r2Λ�

bV (r/N )a�
p+ra

�
qapaq+r

using the formalism of second quantization. For every momentum p 2 Λ� = 2�Z3,
a�

p; ap are the usual creation and annihilation operators defined on the bosonic Fock space
F =

L
n�0L

2(Λ)˝sn and satisfying canonical commutation relations [ap; a
�
q ] = ıpq ,

[ap; aq ] = [a�
p; a

�
q ] = 0. Since low-energy states exhibit Bose-Einstein condensation,

we expect the operator a�
0a0 measuring the number of particles in the zero-momentum

state '0 to be of the order N and therefore much larger than the commutator [a0; a�
0 ] = 1.

Motivated by this observation, Bogoliubov decided to replace, in (1-11), all creation and
annihilation operators a�

0 ; a0 by
p
N and then to neglect all resulting terms with more than

two creation and annihilation operators associated with momenta different than zero. With
this approximation, Bogoliubov derived an Hamilton operator quadratic in creation and
annihilation operators a�

p; ap with p 6= 0 that he could diagonalize explicitly. Finally he
argued, following a hint of Landau, that certain expressions that appeared in his formulas
for the ground state energy and for the excitation spectrum were just first and second order
Born approximations of the scattering length, and thus he replaced them with a0; with this
final substitution he obtained essentially results equivalent to those stated in Theorem 1.1.

From the point of view of mathematical physics, the validity of the Bogoliubov approx-
imation has been first established by E. H. Lieb and Solovej [2002] in the computation of
the ground state energy of the one-component charged Bose gas. It was then proved by
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Giuliani and Seiringer [2009] in their derivation of the Lee-Huang-Yang formula for the
ground state energy of a Bose gas in a combined weak coupling and high density regime,
and by Seiringer [2011], Grech and Seiringer [2013], Lewin, Nam, Serfaty, and Solovej
[2015], Dereziński and Napiórkowski [2014], Pizzo [n.d.] in their analysis of the low-
energy spectrum of Bose gases in the mean field limit. More recently, the validity of
Bogoliubov prediction was established in Boccato, Brennecke, Cenatiempo, and Schlein
[n.d.(c)] for systems of N bosons interacting through singular potential, described by the
Hamiltonian (written like (1-11) in second quantized form)

(1-12) H
ˇ
N =

X
p2Λ�

p2a�
pap +

�

2N

X
p;q;r2Λ�

bV (r/N ˇ )a�
p+ra

�
qapaq+r

for a parameter ˇ 2 (0; 1). Notice that (1-12) interpolates between the mean-field regime
that is recovered for ˇ = 0 and the Gross-Pitaevskii limit, which corresponds to ˇ = 1.

In the rest of these notes, we are going to sketch the main ideas going into the proof of
Theorem 1.1; for more details, see Boccato, Brennecke, Cenatiempo, and Schlein [n.d.(a)].

2 Excitation Hamiltonian

The first step in the proof of Theorem 1.1 consists in factoring out the condensate to fo-
cus on its orthogonal excitations. We use here an idea from Lewin, Nam, Serfaty, and
Solovej [2015]. Since we expect that, for low-energy states, most particles occupy the
zero-momentum mode '0(x) = 1 for all x 2 Λ (for the ground state, this follows from
(1-5)), we write an arbitrary N -particle wave function  2 L2(Λ)˝sN as

 N = ˛0 '
˝N
0 + ˛1 ˝s '

˝(N �1)
0 + ˛2 ˝s '

˝(N �2)
0 + � � � + ˛N

where ˛j 2 L2
?
(Λ)˝sj , for all j = 0; 1; : : : ; N . Here, L2

?
(Λ) denotes the orthogonal

complement of the one-dimensional subspace spanned by '0 in L2(Λ). It is easy to check
that the choice of ˛0; : : : ; ˛N is unique, and that

PN
j=0 k˛j k2 = k N k2. Hence, with the

notation

F �N
+ =

NM
j=0

L2
?(Λ)

˝sj

for the truncated Fock space constructed over L2
?
(Λ), we can define a unitary map

UN : L2(Λ)˝sN ! F �N
+

 N ! f˛0; : : : ; ˛N g :

The mapUN allows us to focus on the orthogonal excitations of the condensate that are
described in the Hilbert space F �N

+ . Conjugating the Hamiltonian (1-1) with the unitary



2692 BENJAMIN SCHLEIN

map UN , we define an excitation Hamiltonian LN = UNHNU
�
N : F �N

+ ! F �N
+ . With

the notation N+ for the number of particles operator on F �N
+ , we find

UNa
�
paqU

�
N = a�

paq ;

UNa
�
pa0U

�
N = a�

p

p
N � N+ ;

UNa
�
0apU

�
N =

p
N � N+ap ;

UNa
�
0a0U

�
N = (N � N+) :

(2-1)

Applying these rules to theHamiltonian (1-1) written in second quantized form as in (1-11),
we arrive at

(2-2) LN = L
(0)
N + L

(2)
N + L

(3)
N + L

(4)
N ;

with (recall the notation Λ�
+ = 2�Z3nf0g)

L
(0)
N =

N � 1

2N
�bV (0)(N � N+) +

�bV (0)

2N
N+(N � N+) ;

L
(2)
N =

X
p2Λ�

+

p2a�
pap +

X
p2Λ�

+

�bV (p/N )a�
pap

�
N � N+

N

�

+
�

2

X
p2Λ�

+

bV (p/N )

"
a�

pa
�
�p

r
N � 1 � N+

N

N � N+

N
+ h.c.

#
;

L
(3)
N =

�
p
N

X
p;q2Λ�

+:p+q 6=0

bV (p/N )

"
a�

p+qa
�
�paq

r
N � N+

N
+ h.c.

#
;

L
(4)
N =

�

2N

X
p;q2Λ�

+;r2Λ�:r 6=�p;�q

bV (r/N )a�
p+ra

�
qapaq+r ;

(2-3)

where h.c. indicates the hermitian conjugate operator and where, in the notation L
(j )
N , the

label j 2 f0; 2; 3; 4g refers to the number of creation and annihilation operators.
Conjugation with UN extracts contributions from the quartic interaction in (1-11) and

moves them into the constant and the quadratic partsL
(0)
N andL

(2)
N of the excitation Hamil-

tonian. In the mean-field case considered in Seiringer [2011], Grech and Seiringer [2013],
Lewin, Nam, Serfaty, and Solovej [2015], Dereziński and Napiórkowski [2014], and Pizzo
[n.d.] (corresponding to the (1-12) with ˇ = 0), one can show that, after application ofUN ,
the cubic and quartic terms L

(3)
N and L

(4)
N are negligible on low-energy states, in the limit
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N ! 1. In this case, the low-lying excitation spectrum can therefore be determined diag-
onalizing the quadratic operator L

(2)
N . This is not the case in the Gross-Pitaevskii regime

considered here. Applying the unitary mapUN we factor out the condensate but we do not
remove the short scale correlation structure which, as explained after (1-6), still carries an
energy of order N . As a consequence, in the Gross-Pitaevskii regime, cubic and quartic
terms in LN are not negligible on low-energy states.

Notice that conjugation withUN can be interpreted as a rigorous version of the substitu-
tion proposed by Bogoliubov of all creation and annihilation operators a�

0 ; a0 associated
with zero momentum with factors of

p
N . The fact that L

(3)
N and L

(4)
N are not negligi-

ble means, therefore, that in the Gross-Pitaevskii regime the Bogoliubov approximation
cannot be justified. But then, why did Bogoliubov obtained the correct expressions for
the low-energy spectrum, the same expressions appearing in Theorem 1.1? The point is
that, when at the end of his computation Bogoliubov replaced, following the hint of Lan-
dau, first and second Born approximations with the full scattering length a0, he exactly
made up for the (non-negligible) contributions that are hidden in L

(3)
N and L

(4)
N and that

he neglected with his approximation.
It is clear that to obtain a rigorous proof of Theorem 1.1 we cannot neglect cubic and

quartic parts of the excitation Hamiltionian. Instead, to extract the important contribu-
tions from L

(3)
N and L(4), we need to conjugate LN with another unitary map, a map that

implements correlations among particles.

3 Generalized Bogoliubov Transformations

A strategy to implement correlations has been introduced in Benedikter, de Oliveira, and
Schlein [2015], a paper devoted to the study of the dynamics in the Gross-Pitaevskii
regime, for approximately coherent initial data in the bosonic Fock space. In that paper,
correlations were produced by unitary conjugation with a Bogoliubov transformation of
the form

(3-1) eT (�) = exp

241

2

X
p2Λ�

+

�p(a
�
pa

�
�p � apa�p)

35
for an appropriate real function � 2 `2(Λ�

+) (in fact, in Benedikter, de Oliveira, and
Schlein [ibid.] the problem is not translation invariant and therefore slightly more compli-
cated transformations were considered). Bogoliubov transformations are very convenient
because their action on creation and annihilation operators is explicitly given by

(3-2) eT �(�) aq
eT (�) = cosh(�q) aq + sinh(�q) a

�
�q :
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Unfortunately, Bogoliubov transformations of the form (3-1) do not preserve the number
of particles and therefore they do not leave the excitation Hilbert space F �N

+ invariant. To
solve this problem, we follow Brennecke and Schlein [n.d.] and we introduce, on F �N

+ ,
modified creation and annihilation operators defined, for any p 2 Λ�

+, by

b�
p = a�

p

r
N � N+

N
; and bp =

r
N � N+

N
ap :

Observing that, from (2-1),

(3-3) U �
N b

�
p UN = a�

p

a0
p
N
; U �

N bp UN =
a�
0

p
N
ap ;

we conclude that the modified creation operator b�
p creates a particle with momentum p

and, at the same time, it annihilates a particle from the condensate (i.e. a particle with mo-
mentum p = 0) while bp annihilate a particle with momentum p and creates a particle in
the condensate. In other words, b�

p creates and bp annihilates an excitation with momen-
tum p, preserving however the total number of particles. This is the reason why modified
creation and annihilation operators leave the excitation Hilbert space F �N

+ invariant, in
contrast with the standard creation and annihilation operators.

Using the modified field operators we can now introduce generalized Bogoliubov trans-
formations by defining, in analogy to (3-1),

(3-4) T (�) = exp

241

2

X
p2Λ�

+

�p(b
�
pb

�
�p � bpb�p)

35 :

By construction, T (�) : F �N
+ ! F �N

+ . The price we have to pay for replacing the origi-
nal Bogoliubov transformations (3-1) with their generalization (3-4) is the fact that there
is no explicit formula like (3-2) describing the action of T (�) on creation and annihilation
operators (because modified creation and annihilation operators do not satisfy canonical
commutation relations). Still, when we consider states exhibiting Bose-Einstein conden-
sation where a0; a�

0 '
p
N , we may expect from (3-3) that bp ' ap and b�

p ' a�
p and

therefore that (3-2) is approximately correct, even if we replace eT (�) by T (�). It is pos-
sible to quantify this last statement through the introduction of remainder operators. For
p 2 Λ�

+, we define dp; d
�
p by

T �(�) bp T (�) = cosh(�p) bp + sinh(�p) b
�
�p + dp;

T (�) b�
p T (�) = cosh(�p) b

�
p + sinh(�p) b�p + d�

p :
(3-5)
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Then it is possible to prove that, if � 2 `2(Λ�
+) with k�k2 small enough,

kd�
p �k �

C

N
k(N+ + 1)3/2�k;

kdp �k �
C

N
k(N+ + 1)3/2�k ;

(3-6)

for all � 2 F �N
+ . On states exhibiting condensation, the operator N+ is small; in this

case (3-6) can be use to show that the remainder operators dp; d
�
p are small (we gain a

factorN�1). The bounds (3-6) (and some more refined version) are discussed in Boccato,
Brennecke, Cenatiempo, and Schlein [n.d.(a), Section 7]; their proof is based on Boccato,
Brennecke, Cenatiempo, and Schlein [n.d.(b), Lemma 2.5] which is a translation to mo-
mentum space of Brennecke and Schlein [n.d., Lemma 3.2].

To implement correlations, the choice of the coefficients �p in (3-4) must be related
with the solution of the zero-energy scattering equation (1-2). More precisely, since we
are working on the finite box Λ = [0; 1]3, we consider the Neumann problem

(3-7)
h
�∆+

�

2
V (x)

i
f`(x) = �`f`(x)

on the ball jxj � N` with the normalization f`(x) = 1 on the boundary jxj = N`. We
find that the smallest Neumann eigenvalue �` is such that

�` =
3a0

N 3`3

h
1 + O

� a0
N`

�i
and that f` = 1 � w`, where

(3-8) 0 � w`(x) �
C�

jxj + 1
; jrw`(x)j �

C�

jxj2 + 1

for all jxj � N` (this confirms the intuition that f` is a small modification of the solution
of the zero energy scattering equation (1-2) which is given, for large jxj, by 1 � a0/jxj).
By scaling, we find that�

�∆+
�N 2

2
V (N:)

�
f`(N:) = �`N

2f`(N:)

on the ball jxj � `. Fixing ` < 1/2 (independently of N ), we can extend f`(Nx) = 1

and also w`(Nx) = 1 � f`(Nx) = 0 for all x 2 Λ with jxj > `. Hence, the maps
x ! w`(Nx) and x ! f`(Nx) can be expressed as Fourier series with coefficients
N�3bw`(p/N ) and, respectively, ıp;0 �N�3bw`(p/N ), for all p 2 Λ�. Here

bw`(z) =
1

(2�)3

Z
dx e�ix�zw`(x)
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is the Fourier transform of w` (as a compactly supported function on R3). For p 2 Λ�,
we define

(3-9) �p = �
1

N 2
bw`(p/N ) :

From (3-8), it is easy to check that

(3-10) j�pj � C�jpj
�2

for all p 2 Λ�
+. It follows that � 2 `2(Λ�

+), with k�k2 � C , uniformly inN . On the other
hand, it is important to notice that (3-10) does not provide enough decay in momentum to
estimate theH 1-norm of �. Since the decay of bw`(p/N ) kicks in for jpj & N , we obtain
that

(3-11) k�k2H1 =
X

p2Λ�
+

(1 + p2)j�pj
2

' CN :

From (3-5) and using the notationK =
P

p2Λ�
+
p2a�

pap for the kinetic energy operator,
it is easy to check that

T �(�)N+ T (�) ' N+ + k�k22 ;

T �(�)KT (�) ' K + k�k2H1 :
(3-12)

The uniform bound for k�k2 and the estimate (3-11) for the H 1-norm of � imply, there-
fore, that conjugation with T (�) only creates finitely many excitations of the condensates,
but also that these excitations carry a macroscopic energy, of order N (in (3-12) we only
consider the change of the kinetic energy but also the change of the potential energy is of
comparable size, leading to a net gain of orderN ). One can hope, therefore, that conjugat-
ing with T (�) we can preserve condensation and, at the same time, decrease the energy to
make up for the difference between (1-6) and the true ground state energy (1-7).

4 Renormalized Excitation Hamiltonian

We introduce the renormalized excitation Hamiltonian

(4-1) GN = T �(�)LNT (�) = T �(�)UNHNU
�
NT (�) : F �N

+ ! F �N
+

with � defined as in (3-9). The next proposition was proven in Boccato, Brennecke, Ce-
natiempo, and Schlein [n.d.(b)].
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Proposition 4.1. Let V 2 L3(R3) be non-negative, spherically symmetric and compactly
supported. Let the coupling constant � > 0 be small enough. Let GN be defined as in
(4-1). Then we can write

(4-2) GN = 4�a0N + HN + ıGN

where

HN =
X

p2Λ�
+

p2a�
pap +

�

2N

X
p;q2Λ�

+;r2Λ�:

r 6=�p;�q

bV (r/N )a�
p+ra

�
qapaq+r

is the restriction of (1-11) to F �N
+ and where the remainder operator ıGN

is such that, for
all ˛ > 0 there exists C > 0 with

(4-3) ˙ ıGN
� ˛HN + C�(N+ + 1)

as an operator inequality on F �N
+ .

To prove (4-2) we apply (3-5) to the operators L
(j )
N , j = 0; 2; 3; 4 in (2-3). It is clear

that we will generate terms that are not normally ordered (for this simplified discussion,
ignore the remainders dp; d

�
p ). To restore normal order, we generate terms of lower order

in creation and annihilation operators. Specifically, conjugating L
(2)
N we generate new

constant terms while conjugating L
(4)
N we generate new quadratic and new constant con-

tributions. The choice (3-9) of � guarantees that, on the one hand, the combination of old
and new constant terms reproduces, up to an error of order one, the correct ground state
energy (1-7) and, on the other hand, that there is a cancellation among quadratic terms that
allows us to bound everything in terms of HN and N+ (as indicated in (4-3)).

Noticing that, on F �N
+ , the kinetic energy operator K is gapped, we find N+ � CK �

CHN . The bound (4-3) implies therefore that, if � > 0 is small enough,

(4-4) CN+ � C �
1

2
HN � C � GN � 4�a0N � C (HN + 1) :

Hence, if the N -particle wave function  N 2 L2(Λ)˝sN is such that h N ;HN N i �

4�a0N + �, then we can write  N = U �
NT (�)�N , where the excitation vector �N =

T �(�)UN N 2 F �N
+ is such that

(4-5) h�N ;N+�N i � C h�N ;HN �N i � C (� + 1) :
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It is interesting to remark that (4-5) implies Bose-Einstein condensation in the sense of
(1-5), since

1 � h'0; 
N'0i = 1 �
1

N
h N ; a

�('0)a('0) N i =
1

N
hUN N ;N+UN N i

=
1

N
h�N ; T

�(�)N+T (�)�N i �
C

N
h�N ; (N+ + 1)�N i �

C (� + 1)

N

(4-6)

where we used the rules (2-1) and the bounds (3-12) and (4-5) (it is then easy to check
that (4-6) implies 
N ! j'0ih'0j first of all in the Hilbert-Schmidt topology but then
also with respect to the trace norm). Eq. (4-6) improves (1-5) (in the case of small �)
by giving a precise and optimal bound on the rate of the convergence of the one-particle
density matrix.

We can derive stronger bounds on the excitation vector �N associated with a normal-
ized N -particle wave function  N 2 L2(Λ)˝sN if, instead of imposing the condition
h N ;HN N i � 4�a0N + �, we require  N to belong to the spectral subspace of HN

associated with energies below 4�a0N + �. The proof of the next lemma can be found in
Boccato, Brennecke, Cenatiempo, and Schlein [n.d.(a), Section 4].

Lemma 4.2. Let V 2 L3(R3) be non-negative, spherically symmetric and compactly
supported. Let the coupling constant � > 0 be small enough. Let  N 2 L2(Λ)˝sN be
normalized and such that  N = 1(�1;EN +� ](HN ) N where 1I indicates the character-
istic function of the interval I � R. Then  N = U �

NT (�)�N , where the excitation vector
�N = T �(�)UN N 2 F �N

+ is such that

(4-7)
˝
�N ;

�
(N+ + 1)3 + (N+ + 1)(HN + 1)

�
�N

˛
� C (1 + �3)

uniformly in N .

With Lemma 4.2 we can go back to the renormalized excitation Hamiltonian and we
can show that several terms contributing to GN are negligible, in the limit of large N , on
low-energy states. The result is the next proposition, whose proof is given in Boccato,
Brennecke, Cenatiempo, and Schlein [ibid., Section 7].

Proposition 4.3. Let V 2 L3(R3) be non-negative, spherically symmetric and compactly
supported. Let the coupling constant � > 0 be small enough. Let GN be defined as in
(4-1). Then we can write

(4-8) GN = CGN
+ QGN

+ CN + VN + EGN
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where, using the notation �p = sinh(�p) and 
p = cosh(�p),

CN =
�

p
N

X
p;q2Λ�

+:

q 6=�p

bV (p/N )
�
b�

p+qb
�
�p(
qbq + �qb

�
�q) + h.c.

�
;

VN =
�

2N

X
p;q2Λ�

+;r2Λ�:

r 6=�p;�q

bV (r/N ) a�
p+ra

�
qapaq+r ;

(4-9)

and where

CGN
=

(N � 1)

2
�bV (0) +

X
p2Λ�

+

p2�2
p + �bV (p/N )

�
�p
p + �2

p

�
+

�

2N

X
p;q2Λ�

+

bV ((p � q)/N )�q
q�p
p

+
1

N

X
p2Λ�

h
p2�2p +

�

2N

�bV (�/N ) � �
�

p
�p

i
�

1

N

X
q2Λ�

�bV (q/N )�q

X
p2Λ�

+

�2
p

and
QGN

=
X

p2Λ�
+

Φp b
�
pbp +

1

2

X
p2Λ�

+

Γp (b�
pb

�
�p + b�

pb
�
�p)

with

Φp = (�2
p + 
2p)p

2 + �bV (p/N ) (
p + �p)
2 +

2�

N

p�p

X
q2Λ�

bV ((p � q)/N )�q

� (
2p + �2
p)
�

N

X
q2Λ�

bV (q/N )�q ;

Γp = 2p2�p
p + �bV (p/N )(
p + �p)
2 + (
2p + �2

p)
�

N

X
q2Λ�

bV ((p � q)/N )�q

� 2
p�p

�

N

X
q2Λ�

bV (q/N )�q :

Moreover, we have

(4-10) ˙ EGN
�

C

N 1/4

�
(N+ + 1)3 + (N+ + 1)(HN + 1)

�
:
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On the r.h.s. of (4-8) we have a constant and a quadratic term that can be easily diago-
nalized by means of a generalized Bogoliubov transformation. From (4-10) it follows that
the error term EGN

is negligible on low-energy states. There are, however, still two terms,
the cubic term CN and the quartic term VN in (4-9), whose contribution to the spectrum
cannot be easily determined and that are not negligible. This is the main difference be-
tween the Gross-Pitaevskii regime that we are considering here and regimes described by
the Hamilton operator (1-12), with parameter 0 < ˇ < 1, that were considered in Boccato,
Brennecke, Cenatiempo, and Schlein [n.d.(c)]. For ˇ < 1, the expectation for example of
the quartic interaction can be bounded by

h�;VN �i �
�

2N

X
p;q;r2Λ�

+

jbV (r/N ˇ )j kap+raq�kkaq+rap�k

�
C

N

X
p;q;r2Λ�

+

jbV (r/N ˇ )j

(q + r)2
(p + r)2kap+raq�k

2
� CN ˇ�1

h�;N+K�i

where we used the estimate

sup
q2Λ�

+

X
r2Λ�

+

jbV (r/N ˇ )j

(q + r)2
� CN ˇ :

Hence, for all ˇ < 1, the quartic and, similarly, also the cubic terms on the r.h.s. of (4-8)
are negligible in the limit N ! 1 and can be included in the error term EGN

. This
means that, for ˇ < 1, we can read off the spectrum of GN (and therefore, of the initial
Hamiltonian HN ), diagonalizing the quadratic operator on the r.h.s. of (4-8). This is not
the case for ˇ = 1.

5 Cubic Conjugation

It is not surprising that there are still important contributions hidden in the cubic and quartic
terms on the r.h.s. of (4-8). Already from Erdős, Schlein, and Yau [2008] and, more re-
cently, from Napiórkowski, Reuvers, and Solovej [n.d.], it follows that Bogoliubov states,
i.e. in our setting states of the form U �

NT (�)Ω for some � 2 `2(Λ�
+), can only approxi-

mate the ground state energy up to an error of order one, even after optimizing the choice
of the function �. To go beyond this resolution, we need to conjugate GN with a more
complicated unitary operator. Since Bogoliubov transformations are the exponential of
quadratic expressions in creation and annihilation operators, the natural guess is to use the
exponential of a antisymmetric cubic phase. In fact, a similar approach was introduced by
Yau and Yin [2009] to obtain a precise upper bound for the ground state energy of a dilute
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Bose gas in the thermodynamic limit, correct up to second order, in agreement with the
Lee-Huang-Yang formula. In our setting, we consider the operator

(5-1) S(�) = eA(�) = exp

0@ 1
p
N

X
r2PH ;v2PL

�r

�
b�

r+vb
�
�r(
vbv + �vb

�
�v) � h.c.

�1A
where, as above �v = sinh(�p); 
v = cosh(�p), and where we used the notation PH =

fp 2 Λ�
+ : jpj >

p
N g and PL = fp 2 Λ�

+ : jpj �
p
N g. Here, � 2 `2(Λ�

+) is the same
function defined in (3-9) entering the definition of the Bogoliubov transformation T (�).
With the operator (5-1), we can define a new, twice renormalized, excitation Hamiltonian

(5-2) JN = S�(�)GNS(�) = S�(�)T �(�)UNHNU
�
NT (�)S(�) : F �N

+ ! F �N
+ :

To study the operator JN , we start from the decomposition (4-8) of GN andwe analyze how
conjugation with S(�) acts on the different terms. The first remark is that, when we conju-
gate with S(�), the growth of the number of particles and of the energy remains bounded,
independently of N . More precisely, we show in Boccato, Brennecke, Cenatiempo, and
Schlein [n.d.(a), Section 4] that

S�(�) (N+ + 1)m S(�) � C (N+ + 1)m ;

S�(�) (HN + 1)(N+ + 1)S(�) � C (HN + 1)(N+ + 1) :
(5-3)

In particular, Eq. (5-3) implies that the error term EGN
on the r.h.s. of (4-8) remains

negligible, after conjugation with S(�). To conjugate the quadratic operator QGN
with

S(�), we observe first that

˙ [QGN
; A(�)] �

C
p
N

(N+ + 1)2 :

This bound, combined with the expansion

S�(�)QNS(�) = QN +

Z 1

0

ds e�sA(�) [QN ; A(�)] e
sA(�)

and with the first estimate in (5-3), implies that

(5-4) S�(�)QNS(�) = QN + E1

where the error operator E1 is such that ˙E1 � CN�1/2(N+ + 1)2. To conjugate the
cubic term CN on the r.h.s. of (4-8), we compute

(5-5) [CN ; A(�)] = Θ +eE2
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where

Θ =
2

N

X
r2PH ;v2PL

�
�bV (r/N ) + bV ((r + v)/N )

�
�r

�

h
�2

v + (
2v + �2
v ) b

�
vbv + 
v�v

�
bvb�v + b�

vb
�
�v

�i
and

˙eE2 � CN�1/2
�
(N+ + 1)3 + (HN + 1)(N+ + 1)

�
:

The term Θ on the r.h.s. of (5-5) is not small, but it is such that

˙ [Θ; A(�)] � CN�1/2(N+ + 1)2 :

Hence, expanding to second order, we conclude that

S�(�)CNS(�) = CN +
2

N

X
r2PH ;v2PL

�
�bV (r/N ) + bV ((r + v)/N )

�
�r

�

h
�2

v + (
2v + �2
v ) b

�
vbv + 
v�v

�
bvb�v + b�

vb
�
�v

�i
+ E2

(5-6)

where
˙E2 � CN�1/2

�
(N+ + 1)3 + (HN + 1)(N+ + 1)

�
:

To compute the action of S(�) on the quartic interaction VN , we proceed similarly (but
here we have to expand one contribution up to third order). We obtain that

S�(�)VNS(�) = VN �
1

p
N

X
r2PH
v2PL

�bV (r/N )
h
b�

r+vb
�
�r

�

vbv + �vb

�
�v

�
+ h.c.

i
�

1

N

X
r2PH
v2PL

�
�bV (r/N ) + bV ((r + v)/N )

�
�r(5-7)

h
�2

v + (
2v + �2
v ) b

�
vbv + 
v�v

�
bvb�v + b�

vb
�
�v

�i
+ E3

where ˙E3 � CN�1/4[(N+ + 1)3 + (HN + 1)(N+ + 1)]. The proof of (5-4), (5-6)
and (5-7) can be found in Boccato, Brennecke, Cenatiempo, and Schlein [n.d.(a), Sect. 8].
Combining these results with Proposition 4.3, we arrive at the following proposition.
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Proposition 5.1. Let V 2 L3(R3) be non-negative, spherically symmetric and compactly
supported. Let the coupling constant � > 0 be small enough. Let JN be defined as in
(5-2). Then we can write

(5-8) JN = CJN
+QJN

+ VN + EJN

with

CJN
:=

(N � 1)

2
�bV (0) +

X
p2Λ�

+

h
p2�2

p + �bV (p/N )�p
p + �
�bV (�/N ) � bf N;`

�
p
�2

p

i
+

�

2N

X
p;q2Λ�

+

bV ((p � q)/N )�q
q�p
p

+
1

N

X
p2Λ�

h
p2� 2

p +
�

2N

�bV (�/N ) � �
�

p
�p

i
and the quadratic term

QJN
=

X
p2Λ�

+

Fp b
�
pbp +

1

2

X
p2Λ�

+

Gp

�
b�

pb
�
�p + bpb�p

�
(5-9)

with

Fp = p2(�2
p + 
2p) + �

�bV (�/N ) � bf N;`

�
p
(
p + �p)

2;

Gp = 2p2�p
p + �
�bV (�/N ) � bf N;`

�
p
(
p + �p)

2
(5-10)

wherebf N;` is the Fourier series of x ! fN;`(x) = f`(Nx). Moreover, the error operator
EJN

is such that, on F �N
+ ,

(5-11) ˙ EJN
� CN�1/4

h
(HN + 1)(N+ + 1) + (N+ + 1)3

i
:

6 Diagonalization and Excitation Spectrum

Comparing (5-8) with the decomposition (4-8) for GN , we notice the absence of the cubic
term CN , achieved through conjugation with the cubic phase S(�). The quartic term VN

still appears on the r.h.s. of (5-8) but it is non-negative and therefore we do not worry
about it. To read off the excitation spectrum, we conjugate JN with a last Bogoliubov
transformation that diagonalize the quadratic operator QJN

. For p 2 Λ�
+, we define
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�p 2 R such that (remark that, for � > 0 small enough, it is clear that the coefficients
Fp; Gp defined in (5-10) satisfy jGp/Fpj < 1)

(6-1) tanh(2�p) = �
Gp

Fp

:

Using the coefficients �p , we define

MN = T �(�)JNT (�) = T �(�)S�(�)T �(�)UNHNU
�
NT (�)S(�)T (�) : F �N

+ ! F �N
+ :

From (5-10) and with the definition (3-9) of �, we find that � 2 H 1(Λ�
+) with norm

bounded uniformly in N . It follows from (3-12) that conjugation with T (�) can only
increase number of particles and energy by bounded quantities. This makes it easy to
control the action of T (�). We find (see Boccato, Brennecke, Cenatiempo, and Schlein
[n.d.(a), Section 5] for more details) that

MN = 4�(N � 1)aN +
1

2

X
p2Λ�

+

�
�p2

� 8�a0 +
p
p4 + 16�a0p2 +

(8�a0)
2

2p2

�
+
X

p2Λ�
+

p
jpj4 + 16�a0p2 a�

pap + VN + EMN

(6-2)

where
˙EMN

� CN�1/4[(HN + 1)(N+ + 1) + (N+ + 1)3] :

Theorem 1.1 now followsmaking use of themin-max principle to compare the eigenvalues
of MN (which coincide with those of the initial Hamiltonian (1-1)) with those of the
quadratic operator

DN = 4�(N � 1)aN +
1

2

X
p2Λ�

+

h
�p2

� 8�a0 +
p
p4 + 16�a0p2

i
+
X

p2Λ�
+

p
jpj4 + 16�a0 p2 a�

pap

applying the a-priori bound (4-7) to control the contribution of the error term EMN
. The

quartic interaction VN can be neglected in the lower bounds because of its positivity. To
prove that it can be neglected also in the proof of the necessary upper bounds, it is enough
to observe that, on the range of the spectral projection 1(�1;� ](DN ) (spanned by finitely
many eigenvectors of DN ), we have (see Boccato, Brennecke, Cenatiempo, and Schlein
[ibid., Section 6])

VN � CN�1(� + 1)7/2 :
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TRANSFER OPERATOR APPROACH TO 1D RANDOM BAND
MATRICES

Mൺඋංඒൺ Sඁർඁൾඋൻංඇൺ ൺඇൽ Tൺඍඒൺඇൺ Sඁർඁൾඋൻංඇൺ

Abstract

We discuss an application of the transfer operator approach to the analysis of the
different spectral characteristics of 1d random band matrices (correlation functions of
characteristic polynomials, density of states, spectral correlation functions). We show
that when the bandwidthW crosses the thresholdW = N 1/2, the model has a kind of
phase transition (crossover), whose nature can be explained by the spectral properties
of the transfer operator.

1 Introduction

Random band matrices (RBM) represent quantum systems on a large box in Zd with
random transition amplitudes effective up to distances of orderW , which is called a band-
width. They are natural intermediate models to study eigenvalue statistics and quantum
propagation in disordered systems as they interpolate between Wigner matrices and ran-
dom Schrödinger operators: Wigner matrix ensembles represent mean-field models with-
out spatial structure, where the quantum transition rates between any two sites are i.i.d.
random variables; in contrast, random Schrödinger operator has only a random diagonal
potential in addition to the deterministic Laplacian on a box in Zd .

In the simplest 1d case RBM H is a Hermitian or real symmetric N � N matrix with
independent (up to the symmetry condition) entriesHij such that

E
˚
Hij g = 0; Ef jHij j

2
g = (2W )�11ji�j j�W ;

i.e. H is a Hermitian matrix which has only 2W + 1 non zero diagonals whose entries
are i.i.d. random variables (up to the symmetry) and the sum of the variances of entries in
each line is 1.
Supported in part by NSF grant DMS-1700009.
MSC2010: 60B20.
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In a more general caseH is a Hermitian randomN �N matrix, whose entriesHjk are
independent (up to the symmetry) complex randomvariables withmean zero and variances
scaled as

(1.1) EfjHjkj
2
g =

1

W d
J
�

jj � kj

W

�
:

Here Λ is a box in Zd , jΛj = N , and J : Rd ! R+ is a function having the compact
support or decaying sufficiently fast at infinity and normalized in such a way that

W �d
X
k2Λ

J (jkj/W ) = 1;

and the bandwidth W � 1 is a large parameter.
The density of states � of a general class of RBM with W � 1 is given by the

well-known Wigner semicircle law (see Bogachev, Molchanov, and Pastur [1991] and
Molchanov, Pastur, and Khorunzhiĭ [1992]):

(1.2) �(E) = (2�)�1
p
4 �E2; E 2 [�2; 2]:

As it was mentioned above, a substantial interest to random band matrices is caused by
the fact that they have a non-trivial spatial structure like random Schrödinger matrices
(in contrast to classical random matrix ensembles), and furthermore RBM and random
Schrödingermatrices are expected to have some similar qualitative properties (for more de-
tails on these conjectures see Spencer [2012]). For instance, RBMcan be used tomodel the
celebrated Anderson metal-insulator phase transition in d � 3. Moreover, the crossover
for RBM can be investigated even in d = 1 by varying the bandwidth W .

The key physical parameter of RBM is the localization length ` , which describes the
length scale of the eigenvector  (E) corresponding to the energy E 2 (�2; 2). The
system is called delocalized if for all E in the bulk of spectrum ` is comparable with the
system size, ` ∼ N , and it is called localized otherwise. Delocalized systems correspond
to electric conductors, and localized systems are insulators.

In the case of 1d RBM there is a fundamental conjecture stating that for every eigen-
function  (E) in the bulk of the spectrum ` is of order W 2 (see Casati, Molinari, and
Izrailev [1990] and Fyodorov and Mirlin [1991]). In d = 2, the localization length is ex-
pected to be exponentially large inW , in d � 3 it is expected to be macroscopic, ` ∼ N ,
i.e. system is delocalized.

Notice that the global eigenvalue statistics for 1d RBM such as density of states does not
feel any difference between the regimeW �

p
N andW �

p
N (see (1.2)). Same situ-

ation with the central limit theorem for the linear eigenvalue statistics which was proved
in M. Shcherbina [2015] for anyW � 1 (see also Li and Soshnikov [2013] for CLT in the
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regime W �
p
N ). However, the questions of the localization length are closely related

to the universality conjecture of the bulk local regime of the random matrix theory. The
bulk local regime deals with the behaviour of eigenvalues of N �N random matrices on
the intervals whose length is of the order O(N�1). According to the Wigner – Dyson
universality conjecture, this local behaviour does not depend on the matrix probability
law (ensemble) and is determined only by the symmetry type of matrices (real symmetric,
Hermitian, or quaternion real in the case of real eigenvalues and orthogonal, unitary or
symplectic in the case of eigenvalues on the unit circle). In terms of eigenvalue statistics
the conjecture about the localization length of RBM in d = 1 means that 1d RBM in the
bulk of the spectrum changes the spectral local behaviour of random operator type with
Poisson local eigenvalue statistics (for W �

p
N ) to the local spectral behaviour of the

GUE/GOE type (for W �
p
N ). In particular, it means that if we consider the second

correlation function R2 defined by the equality

(1.3) E
n X
j1¤j2

'(�j1 ; �j2)
o
=

Z
R2

'(�1; �2)R2(�1; �2)d�1d�2;

where f�j g are eigenvalues of a random matrix, the function ' : R2 ! C is bounded,
continuous and symmetric in its arguments, and the summation is over all pairs of distinct
integers j1; j2 2 Λ, then in the delocalization regionW �

p
N

(1.4) (N�(E))�2R2

�
E +

�1

�(E)N
;E +

�2

�(E)N

�
�! 1 �

sin2(�(�1 � �2))

�2(�1 � �2)2
;

while in the localization region

(1.5) (N�(E))�2R2

�
E +

�1

�(E)N
;E +

�2

�(E)N

�
�! 1:

The conjecture on the crossover in RBM with W ∼
p
N is supported by physical deriva-

tion due to Fyodorov and Mirlin (see Fyodorov and Mirlin [1991]) based on supersym-
metric formalism, and also by the so-called Thouless scaling. However, there are only
a few partial results on the mathematical level of rigour. At the present time only some
upper and lower bounds for ` for the general class of 1d RBM are proved rigorously.
It is known from the paper Schenker [2009] that ` � W 8. Recently this bound was
improved in Peled, Schenker, Shamis, and Sodin [2016] toW 7. On the other side, for the
general Wigner matrices (i.e. W = N ) the bulk universality has been proved in Erdős,
Yau, and Yin [2012] and Tao and Vu [2011], which gives ` � W . By a development
of the Erdős-Yau approach, there were also obtained some other results, where the local-
ization length is controlled: ` � W 7/6 in Erdős and Knowles [2011] and ` � W 5/4



2708 MARIYA SHCHERBINA AND TATYANA SHCHERBINA

in Erdős, Knowles, Yau, and Yin [2013]. GUE/GOE gap distributions for W ∼ N was
proved recently in Bourgade, Erdős, Yau, and Yin [2017].

The study of the eigenfunctions decay is closely related to properties of the Green
function (H � E � i")�1 with a small ". For instance, if j(H � E � i")�1

i i j2 (without
expectation) is bounded for all i and all E 2 (�2; 2), then each normalized eigenvector
 ofH is delocalized on the scale "�1 in a sense that

max
i

j i j
2

� C"

and so  is supported on at least "�1 sites. In particular, if j(H � E � i")�1
i i j2 can be

controlled down to the scale " ∼ 1/N , then the system is in the complete delocalized
regime. Moreover, in view of the bound

Efj(H �E � i")�1
jk j

2
g ∼ C"�1 e�kj�kk/`

which holds for the localized regime, the problem of localization/delocalization reduces
to controlling

Efj(H �E � i")�1
jk j

2
g

for " ∼ 1/N . As will be shown below, similar estimates of EfjTr (H �E � i")�1j2g for
" ∼ 1/N are required to work with the correlation functions of RBM.

Despite many attempts, such control has not been achieved so far. The standard ap-
proaches of Erdős, Yau, and Yin [2012] and Erdős, Knowles, Yau, and Yin [2013] do not
seem to work for " � W �1, and so cannot give an information about the strong form of de-
localization (i.e. for all eigenfunctions). Classical moment methods, even with a delicate
renormalization approach Sodin [2011], could not break the barrier " ∼ W �1 either.

Another method which allows to work with random operators with non-trivial spatial
structures and breaks that barrier, is supersymmetry techniques (SUSY). It is based on the
representation of the determinant as an integral (formal) over the Grassmann variables.
Combining this representation with the representation of the inverse determinant as an
integral over the Gaussian complex field, SUSY allows to obtain the integral representa-
tion for the main spectral characteristics such as averaged density of states and correlation
functions, as well as forEfGjk(E+i")g, EfjGjk(E+i")j2g, etc. For instance, according
to the properties of the Stieljes transform, the second correlation function can be rewritten
in the form

R2(�1; �2) =(�N )�2 lim
"!0

Ef=Tr (H � �1 � i")�1
=Tr (H � �2 � i")�1

g

(1.6)

=(2i�N )�2 lim
"!0

E
n�

Tr (H � �1 � i")�1
� Tr (H � �1 + i")

�1
�

�

�
Tr (H � �2 � i")�1

� Tr (H � �2 + i")
�1
�o
;
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and since

EfTr (H � z1)
�1Tr (H � z2)

�1
g =

d 2

dz0
1dz

0
2

E
ndet(H � z1) det(H � z2))

det(H � z0
1) det(H � z0

2))

oˇ̌̌
z0=z

;

(1.7)

R2 can be represented as a sum of derivatives of the expectation of ratio of four determi-
nants. Besides, it is expected that if we set

z1 = E + i"/N + �1/N�(E); z2 = E + i"/N + �2/N�(E);(1.8)
z0
1 = E + i"/N + � 0

1/N�(E); z0
2 = E + i"/N + � 0

2/N�(E);

then the r.h.s. of (1.7) before taking derivatives is an analytic function in �1; �2; � 0
1; �

0
2.

Thus, to study the second correlation function, it suffices to study the ratio of four deter-
minants, which we call the second ”generalized” correlation functions

R+�
2 (z1; z

0
1; z2; z

0
2) = E

�
det(H � z1)det(H � z2)

det(H � z0
1)det(H � z0

2)

�
;(1.9)

R++
2 (z1; z

0
1; z2; z

0
2) = E

�
det(H � z1)det(H � z2)

det(H � z0
1)det(H � z0

2)

�
:

Similarly the derivative of the first ”generalized” correlation function

R1(z1; z
0
1) := E

ndet(H � z0
1)

det(H � z1)

o
gives the Stieltjes transform of of the density of states (the first correlation function).

Instead of eigenvalue correlation functions one can consider more simple objects which
are the correlation functions of characteristic polynomials:

(1.10) R0(�1; �2) = E
n
det(H � �1) det(H � �2)

o
; �1;2 = E ˙ �/N�(E):

Characteristic polynomials are the objects of independent interest because of their con-
nections to the number theory, quantum chaos, integrable systems, combinatorics, rep-
resentation theory and others. But in our context the main point is that from the SUSY
point of view correlation functions of characteristic polynomials correspond to the so-
called fermion-fermion (Grassmann) sector of the supersymmetric full model describing
the usual correlation functions (since they represent two determinants in the numerator
of (1.9)). They are especially convenient for the SUSY approach and were successfully
studied by the techniques for many ensembles (see Brézin and Hikami [2000], Brézin
and Hikami [2001], T. Shcherbina [2011], T. Shcherbina [2013], etc.). In addition, al-
though R0(�1; �2) is not a local object, it is also expected to be universal in some sense.



2710 MARIYA SHCHERBINA AND TATYANA SHCHERBINA

Moreover, correlation functions of characteristic polynomials are expected to exhibit a
crossover which is similar to that of local eigenvalue statistics. In particular, for 1d RBM
they are expected to have the same local behaviour as for GUE for W �

p
N , and the

different behaviour for W �
p
N . Besides, the analysis of R0(�1; �2) is much less

involved than that for R+�
2 (z1; z

0
1; z2; z

0
2), but on the other hand, this analysis allows to

understand the nature of the crossover in RBM when W crosses the threshold W ∼
p
N .

The derivation of SUSY integral representation is basically an algebraic step, and usu-
ally it can be done by the standard algebraic manipulations. SUSY is widely used in the
physics literature, but the rigorous analysis of the obtained integral representation is a real
mathematical challenge. Usually it is quite difficult, and it requires a powerful analytic
and statistical mechanics techniques, such as a saddle point analysis, transfer operators,
cluster expansions, renormalization group methods, etc. However, it can be done rigor-
ously for some special class of RBM.

There exist especially convenient classes of RBM, where the control of SUSY integral
representation becomes more accessible. One of themwas introduced in Disertori, Pinson,
and Spencer [2002]: it is (1.1) with Gaussian elements with variance

(1.11) EfjHjkj
2
g =

�
�W 2∆+ 1

��1

jk
;

where 4 is the discrete Laplacian on Λ with Neumann boundary conditions: for the case
d = 1,

(1.12) (�∆f )j =

�
�fj�1 + 2fj � fj+1; j ¤ 1; n;

�fj�1 + fj � fj+1; j = 1; n

with f0 = fn+1 = 0. It is easy to see that in 1d case Jjk � C1W
�1 expf�C2jj �kj/W g,

and so the variance of matrix elements is exponentially small when jj � kj � W .
Another class of convenient models are the Gaussian block RBMwhich are the special

class of Wegner’s orbital models (see Wegner [1979]). Gaussian block RBM are N � N

Hermitian block matrices composed from n2 blocks of the sizeW �W (N = nW ). Only
3 block diagonals are non zero:

H =

0BBBBBB@
A1 B1 0 0 0 : : : 0

B�
1 A2 B2 0 0 : : : 0

0 B�
2 A3 B3 0 : : : 0

: : B�
3 : : : :

: : : : : An�1 Bn�1

0 : : : 0 B�
n�1 An

1CCCCCCA :
Here A1; : : : An are independent W �W GUE-matrices with i.i.d. (up to the symmetry)
Gaussian entries with variance (1 � 2˛)/W , ˛ < 1

4
, and B1; : : : Bn�1 are independent

W �W Ginibre matrices with i.i.d. Gaussian entries with variance ˛/W .
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More precisely, H is Hermitian matrices with complex zero-mean random Gaussian
entries Hjk;˛ˇ , where j; k 2 Λ � Zd (they parameterize the lattice sites) and ˛; 
 =

1; : : : ; W (they parametrize the orbitals on each site), such that

(1.13) hHj1k1;˛1
1Hj2k2;˛2
2i = ıj1k2ıj2k1ı˛1
2ı
1˛2Jj1k1

with

(1.14) J = 1/W + ˛∆/W;

whereW � 1 and∆ is the discrete Laplacian on Λ (as in (1.11)). The probability law of
H can be written in the form

(1.15) PN (dH ) = exp
n

�
1

2

X
j;k2Λ

WX
˛;
=1

jHjk;˛
 j2

Jjk

o
dH:

This model is one of the possible realizations of the Gaussian RBM, for example for d = 1

they correspond to the band matrices with the bandwidth 2W + 1. Let us remark that for
this model N = nW , hence the crossover is expected for n ∼ W .

The main advantage of both models (1.11) and (1.13) – (1.14) is that the main spectral
characteristics such as density of states, R2, EfjGjk(E + i")j2g for these models can be
expressed via SUSY as the averages of certain observables of nearest-neighbour statis-
tical mechanics models on Λ, which makes the model easier. For instance, the detailed
information about the averaged density of states Gaussian RBM (1.11) in dimension 3
including local semicircle low at arbitrary short scales and smoothness in energy (in the
limit of infinite volume and fixed large band widthW ) was obtained in Disertori, Pinson,
and Spencer [2002]. The techniques of that paper were used in Disertori and Lager [2017]
to obtain the same result in 2d. The rigorous application of SUSY to the Gaussian block
RBM (1.13) – (1.14) was developed in T. Shcherbina [2014b], where the universality of
the bulk local regime for n = const was proved. Combining this approach with Green’s
function comparison strategy it has been proved in Bao and Erdős [2017] that ` � W 7/6

(in a strong sense) for the block band matrices with rather general element’s distribution.
The nearest-neighbour structure of the model also allows to combine the SUSY tech-

niques with a transfer operator approach.

2 The idea of the transfer operator approach

The supersymmetric transfer operator formalism was first suggested by Efetov (see Efe-
tov [1997]) and on a heuristic level it was adapted specifically for RBM in Fyodorov and
Mirlin [1994] (see also references therein). The rigorous application of the method to
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the density of states and correlation function of characteristic polynomials was done in
M. Shcherbina and T. Shcherbina [2016], M. Shcherbina and T. Shcherbina [2017], M.
Shcherbina and T. Shcherbina [2018], T. Shcherbina [n.d.]. The approach is based on
the fact that many nearest-neighbour statistical mechanics problems in 1d can be formu-
lated in terms of properties of some integral operator K that is called a transfer operator.
More precisely, the discussion above yields that for 1d RBM of the form (1.11) or (1.13)
– (1.14) the SUSY techniques helps to find a scalar kernel K0(X1; X2) and matrix kernels
K1(X1; X2), K2(X1; X2) (containing z1;2; z0

1;2 as parameters) such that

R0(�1; �2) = CN

Z
g0(X1)K0(X1; X2) : : :K0(Xn�1; Xn)f0(Xn)

Y
dXi ;

(2.1)

R1(z1; z
0
1) = W 2

Z
g1(X1)K1(X1; X2) : : :K1(Xn�1; Xn)f1(Xn)

Y
dXi ;

R2(z1; z
0
1; z2; z

0
2) = W 4

Z
g2(X1)K2(X1; X2) : : :K2(Xn�1; Xn)f2(Xn)

Y
dXi ;

where fXj g are Hermitian 2 � 2 matrices for the cases of R0, 2 � 2 matrices whose en-
tries depend on 2 spacial variables x1j ; y1j 2 R for the cases R1, and for the case of
R2 fXj g are vectors of dimensionality 70, whose components depend on 4 spacial vari-
ables x1j ; x2j ; y1j ; y2j 2 R, unitary 2 � 2 matrix Uj , and hyperbolic 2 � 2 matrix Sj ,
dXj means the standard measure on Herm(2) for R0, dXj = dxj1dyj1 for R1, and for
R2 dXj means the integration over dx1jdx2jdy1jdy2jdUjdSj with dU; dS being the
corresponding Haar measures.

Remark, that for the model (1.11) n = N , while for the block band matrix (1.13) –
(1.15) n is a number of blocks on the main diagonal.

The idea of the transfer operator approach is very simple and natural. Let K(X; Y ) be
the matrix kernel of the compact integral operator in ˚

p
i=1L2[X; d�(X)]. ThenZ

g(X1)K(X1; X2) : : :K(Xn�1; Xn)f (Xn)
Y

d�(Xi ) = (Kn�1f; ḡ)

=

1X
j=0

�n�1
j (K)cj ; with cj = (f; j )(g;  ̃j ):(2.2)

Here f�j (K)g1
j=0 are the eigenvalues of K ( j�0j � j�1j � : : : ),  j are corresponding

eigenvectors, and  ̃j are the eigenvectors of K�. Hence, to study the correlation function,
it is sufficient to study the eigenvalues and eigenfunctions of the integral operator with a
kernel K(X; Y ).

The main difficulties here are the complicated structure and non self-adjointness of the
corresponding transfer operators.
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In fact, since the analysis of eigenvectors of non self-adjoint operators is rather in-
volved, it is simpler to work with the resolvent analog of (2.2)

R˛ = (Kn�1
˛ f; ḡ) = �

1

2�i

I
L
zn�1(G˛(z)f; ḡ)dz; G˛(z) = (K˛ � z)�1;(2.3)

where ˛ = 0; 1; 2 and L is any closed contour which contains all eigenvalues of K˛ . For
any ˛ if we set

�� = �0(K˛); (�� ∼ 1);

then it suffices to choose L as L0 = fz : jzj = j��j(1 +O(n�1))g. However, it is more
convenient to choose L = L1 [ L2, where L2 = fz : jzj = j��j(1 � log2 n/n)g, and L1

is some contour in the domain between L0 and L2 which contains all eigenvalues of K˛
outside of L2. Then

(Kn�1
˛ f; ḡ) = �

1

2�i

I
L1

zn�1(G˛(z)f; ḡ)dz �
1

2�i

I
L2

zn�1(G˛(z)f; ḡ)dz;

and if we have a reasonable bound for kG˛(z)k (z 2 L2), then the second integral is small
comparing with j��jn�1, since

jzjn�1
� j��j

n�1e� log2 n:

Hence, it is natural to expect that the integral over L1 gives the main contribution to R˛ .

Definition 2.1. We shall say that the operator An;W is equivalent to Bn;W (An;W ∼
Bn;W ), if for some certain contour L1 (the choice of L1 depends on the problem)

((An;W � z)�1f; ḡ) = ((Bn;W � z)�1f; ḡ)(1 + o(1)); n;W ! 1;

with f; g of (2.2).

The idea is to find some K�˛ ∼ K˛ whose spectral analysis we are ready to perform.

3 Mechanism of the crossover for R0

As it was mentioned in Section 1, the simplest object which allows to understand the
crossover’s mechanism for the 1d RBM (1.11) is the correlation function of characteristic
polynomials R0. Using SUSY and the idea of the transfer operator approach, one can
write R0 (see M. Shcherbina and T. Shcherbina [2017]) as

R0

�
E +

�

N�(E)
; E �

�

N�(E)

�
= CN �W �4ndet�2J � (Kn�1

0� F� ; F̄�);(3.1)
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where (�; �) is a standard inner product inL2(Herm(2); dX) (i.e., 2�2Hermitian matrices),
with respect to the measure

dXj = d (Xj )11d (Xj )22d<(Xj )12d=(Xj )12;

CN is some �-independent constant, K0� : H ! H is the operator with the kernels

K�(X; Y ) =
W 4

2�2
F�(X) exp

n
�
W 2

2
Tr (X � Y )2

o
F�(Y ):(3.2)

where �̂ = diag f�;��g, Λ0 = E � I2, and F�(X) is the operator of multiplication by

F�(X) = F (X) � exp
n

�
i

2n�(E)
TrX�̂

o
(3.3)

with
F (X) = exp

n
�

1

4
Tr
�
X +

iΛ0

2

�2
+

1

2
Tr log

�
X � iΛ0/2

�
� C+

o
and some specific C+. Notice that the stationary points of F are

(3.4) a+ = �a� =
q
1 �E2/4 = ��(E):

The first step is to show that if we introduce the projection P˙ onto theW �1/2 logW -
neighbourhood of the “surface” X�(U ) = UDU � with D = diag fa+; a�g and U 2

Ů (2) := U (2)/U (1) � U (1), then in the sense of Definition 2.1

K0� ∼ P˙K0�P˙:(3.5)

Then, to study the operators P˙K0�P˙, we use the ”polar coordinates”. Namely, intro-
duce

t = (x1 � y1)(x2 � y2); p(x; y) =
�

2
(x � y)2;(3.6)

and denote by dU the integration with respect to the Haar measure on the group Ů (2).
Consider the space L2[R2; p] � L2[Ů (2); dU ]. The inner product and the action of an
integral operator in this space are

(f; g)p =

Z
f (x; y)ḡ(x; y)p(x; y) dx dy;

(3.7)

(Mf )(x1; y1; U1) =

Z
M (x1; y1; U1; x2; y2; U2)f (x2; y2; U2)p(x2; y2)dx2dy2dU2:



TRANSFER OPERATOR APPROACH TO 1D RANDOM BAND MATRICES 2715

Changing the variables

X = U �ΛU; Λ = diagfx1; x2g; x1 > x2; U 2 Ů (2);

we obtain thatK0� can be represented as an integral operator inL2[R2; p]�L2[Ů (2); dU ]

defined by the kernel

K0�(X; Y ) ! K0�(x1; y1; U1; x2; y2; U2);(3.8)

where

K0�(x1; y1; U1; x2; y2; U2) =

= t�1A1(x1; x2)A2(y1; y2)K�0�(t; U1; U2)(1 +O(n�1W �1/2));

A1;2(x1; x2) = (2�)�1/2e�W 2(x1�x2)
2/2ef1;2(x1)+f1;2(x2)(3.9)

(3.10) K�0�(t; U1; U2) :=

= W 2t � etW
2TrU1U

�
2 L(U1U

�
2 )�L/4�tW 2/2e�i��(�(U1)+�(U2))/n

�(U ) = TrU �LUL/2; L = diagf1;�1g;

and t is defined in (3.6). The concrete form of f1;2 in (3.9) is not important for us now. It
is important that they are analytic functions with stationary points a˙ (see (3.4)). The anal-
ysis of the resolvent of A1 and A2 allows us to show that only eigenfunctions localized in
theW �1/2 logW neighbourhood of a+ and a� give essential contribution in (2.2). More
precisely, the resolvent analysis of A1;2 allows to prove (3.5). Further resolvent analysis
gives

P˙K0�P˙ ∼ K�� ˝ A;(3.11)

K��(U1; U2) := K�0�(t
�; U1; U2) with t� = (a+ � a�)

2 = 4�2�(E)2;

A(x1; x2; y1; y2) = A1(x1; x2)A2(y1; y2):

Then from (2.3) and Definition 2.1 it is easy to obtain

R� = Cn(K
n�1
�� ˝ An�1f; ḡ)(1 + o(1)) = (Kn�1

�� f0; f0)(A
n�1f1; ḡ1)(1 + o(1));

where we used that both f; g asymptotically can be replaced by f0(U ) ˝ f1(x; y) with

(3.12) f0 � 1:



2716 MARIYA SHCHERBINA AND TATYANA SHCHERBINA

If we introduce

(3.13) D2 = R0(E;E);

then the above consideration yields

D�1
2 R0

�
E +

�

N�(E)
; E �

�

N�(E)

�
=

(Kn�1
��

f0; f0)

(Kn�1
�0 f0; f0)

(1 + o(1)):(3.14)

A good news here is that the operator K�0 is self-adjoint and his kernel depends only on
j(U1U

�
2 )12j2. By Vilenkin [1968], his eigenfunctions are associated Legendre polynomi-

als P j
k
. Moreover since K�0 is reduced by the space E0 � L2(U (2)) of functions which

depends only on jU12j2, and f0 2 E0, we can restrict our spectral analysis to E0. In this
space eigenfunctions of K�0 are Legendre polynomials Pj and it is easy to check that
correspondent eigenvalues have the form

�j = 1 � j (j + 1)/t�W 2 +O((j (j + 1)/W 2)2); j = 0; 1 : : :(3.15)

with t� of (3.11). Moreover, it follows from (3.10) that

K�� = K�0 � 2n�1�i��̂ + o(n�1);

where �̂ is the operator of multiplication by � of (3.10). Thus, the eigenvalues of K�� are
in the n�1-neighbourhood of �j . This implies that for W �2 � n�1 = N�1

j�1(K��)j � 1 �O(W �2); �0 = 1 � 2n�1�i�(�f0; f0) + o(n
�1)

Since
(�f0; f0) = 0;

we obtain that the numerator and the denominator of (3.14) tends to 1 in this regime.
To study the regime W �2 = Cn�1 = CN�1, observe that the Laplace operator ∆U

on U (2) is also reduced by E0 and has the same eigenfunctions as K�0 with eigenvalues

��
j = j (j + 1):

Hence, we can write K�� as

K�� ∼ 1 � n�1(C∆U � 2i���) ) (Kn�1
�� f0; f0) ! (e�C∆U +2i���̂f0; f0);

where

∆U = �
d

dx
x(1 � x)

d

dx
; x = jU12j

2:(3.16)
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And in the regimeW �2 � n�1 = N�1 we have Kn�1
�0 ! I in the strong vector topology,

hence
K�� ∼ 1 � n�12i��� ) (Kn�1

�� f0; f0) ! (e�2i���̂f0; f0)

and the numerator of (3.14) is given by the multiplication of f0 by e�2i���̂ , which gives
the same form as for the correlation function of the Wigner model.

The last result was proved in T. Shcherbina [2014a] with a different method:

Theorem 3.1 (T. Shcherbina [ibid.]). For the 1d RBM of (1.11) withW 2 = N 1+� , where
0 < � � 1, we have

(3.17) lim
n!1

D�1
2 R0

�
E +

�

N�(E)
; E �

�

N�(E)

�
=

sin(2��)
2��

;

i.e. the limit coincides with that for GUE. The limit is uniform in � varying in any compact
set C � R. Here �(x) and R0 are defined in (1.2) and (1.10), E 2 (�2; 2).

The regime W �2 � N�1 was studied in M. Shcherbina and T. Shcherbina [2017]:

Theorem 3.2. For the 1d RBM of (1.11) with 1 � W �
p
N /C� logN for sufficiently

big C�, we have

lim
n!1

D�1
2 R0

�
E +

�

N�(E)
; E �

�

N�(E)

�
= 1;

where the limit is uniform in � varying in any compact set C � R. HereE 2 (�2; 2), and
�(x), R0, andD2 are defined in (1.2), (1.10), and (3.13).

Remark 3.1. Although the result is formulated for �1 = ��2 = � in (1.8), one can prove
Theorem 3.2 for �1; �2 2 [�C;C ] � R by the same arguments with minor revisions. The
only difference is a little bit more complicated expressions forD2 and K� .

The regime W �2 = C�N
�1 is studied in T. Shcherbina [n.d.]:

Theorem 3.3. For the 1d RBM of (1.11) with N = C�W
2, we have

lim
n!1

D�1
2 R0

�
E +

�

N�(E)
; E �

�

N�(E)

�
= (e�C∆U �2�i��̂f0; f0);

where C = 1/t�C� with t� of (3.11), and the limit is uniform in � varying in any compact
subset of R. Here E 2 (�2; 2).
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4 Analysis of R1

In the case of R1 the transfer operator K1 of (2.2) has the form

K1 = A1(x1; x2)A2(y1; y2)Q̂; Q̂ :=

�
1 + L(x̄; ȳ)/W 2 �1/W 2

�L(x̄; ȳ) 1

�
(4.1)

with some explicit function L which does not depend on W and whose concrete form is
not important for us now. Operators A1;2 (the same as for R0) contain a large parameter
W in the exponent, hence only W �1/2- neighbourhood of the stationary point gives the
main contribution. The spectral analysis of A1 gives us that

A1 ∼ e�g+(E)/NA+; A2 ∼ A+;

A+(x; y) = (2�)�1/2W 2e�W 2(x�y)/2+c+(x2+y2)/2; c+ = 1 + a�2
+ ;

g+(E) = (�E + i
p
4 �E2)/2:(4.2)

Then since

�j (A+) =
�
1 +

2˛+

W
+
c+

W 2

��1/2�j

;(4.3)

˛+ =

r
c+

2

�
1 +

c+

2W 2

�1/2
;(4.4)

we obtain that the spectral gap for A1;2 is of the order W �1 � N�1, hence one could
expect that AN�1

1 converges in the strong vector topology to the projection

AN�1
1;2 ! �N�1

0 (A1) 0 ˝  �
0

where
A1 0 = �0(A1) 0; A�

1 
�
0 = �0(A1) 

�
0 :

The entryQ12 here is small hence the main order of our operator contains the Jordan cell.
A simple computation shows that if we just replace in (4.1)A1;2 byA+ andQ12 by 0, then
the answer will be wrong. Hence one should apply more refine analysis. An important
point of such analysis is an application of the ”gauge” transformation of K1 with matrix
T

K1 ! K1T = TK1T
�1 = A1A2Ŝ ; Ŝ = T Q̂T �1;(4.5)

T =

�
0 W �1/2

W 1/2 0

�
; Ŝ =

�
1 �L/W

�1/W 1 + L/W 2

�
:
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With this transformation it can be shown that for anyW

�0(K1T ) = e�g+(E)/N (1 +O(n�2)); j�1(K1T )j � 1 � c/W; c > 0:

Hence for any 1 � W � N we get that (K1T )
N�1 converges in the strong vector

topology to the projection (non-orthogonal) on the eigenvector, corresponding to �0(K1T ).
This gives

Theorem 4.1. LetH be 1d Gaussian RBM defined in (1.11) with N � C0W logW , and
let jEj � 4

p
2/3 � 1:88.

R1(E + �/N;E) ! e�g(E);
ˇ̌̌ @
@�

R1(E + �/N;E)
ˇ̌̌
�=0

� g+(E)
ˇ̌̌

� C/W:

The second relation implies that

(4.6) j�̄N (E) � �(E)j � C/W;

where �̄N (E) = R1(E) is the first correlation function, and �(E) is defined in (1.2).

Remark 4.1. The statement is expected to be true for all jEj < 2. The condition jEj �

4
p
2/3 � 1:88 is technical, and it can be removed by the proper deformation of the

integration contour in the integral representation.

Theorem 4.1 yields, in particular, that for gN (E + i") (the Stieltjes transform of the
first correlation function �̄N (E)) and g(E+ i") (the Stieltjes transform of �(E)) we have

(4.7) jḡN (E + i") � g(E + i")j � C/W

uniformly in any arbitrary small " � 0. As it was mentioned above, similar asymptotics
(with correction C/W 2) for RBM of (1.11) in 3d was obtained in Disertori, Pinson, and
Spencer [2002] and in 2d was obtained in Disertori and Lager [2017] (by the same tech-
niques), however their method cannot be directly applied to 1d case since it essentially
uses the Fourier analysis which is different in 1d. All other previous results about the
density of states for RBM deal with " � W �1 or bigger (for fixed " > 0 the asymp-
totics (4.7) follows from the results of Bogachev, Molchanov, and Pastur [1991]; Erdős
and Knowles [2011] gives (4.7) with " � W �1/3; Sodin [2011] yields (4.7) for 1d RBM
with Bernoulli elements distribution for " � W �0:99, and Erdős, Yau, and Yin [2012]
proves similar to (4.7) asymptotics with correction 1/(W")1/2 for " � 1/W ). On the
other hand, the methods of Erdős and Knowles [2011], Erdős, Yau, and Yin [2012] allow
to controlN�1Tr (E+ i"�HN )

�1 and (E+ i"�HN )
�1
xy for " � W �1 without expecta-

tion, which gives some information about the localization length. This cannot be obtained
from Theorem 4.1, since it requires estimates on Efj(E + i" �HN )

�1
xy j2g.
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5 Analysis of R2 for the block RBM

5.1 Sigma-model approximation for R2 for the block RBM. We start from the anal-
ysis of so-called sigma-model approximation for the model (1.13) – (1.14). Sigma-model
approximation is often used by physicists to study complicated statistical mechanics sys-
tems. In such approximation spins take values in some symmetric space (˙1 for Ising
model, S1 for the rotator, S2 for the classical Heisenberg model, etc.). It is expected that
sigma-models have all the qualitative physics of more complicated models with the same
symmetry (for more details see, e.g., Spencer [2012]). The sigma-model approximation
for RBM was introduced by Efetov (see Efetov [1997]), and the spins there are 4 � 4

matrices with both complex and Grassmann entries (this approximation was studied in
Fyodorov and Mirlin [1991], Fyodorov and Mirlin [1994]). Let us mention also the paper
Disertori, Spencer, and Zirnbauer [n.d.], where the average conductance for 1d Efetov’s
sigma-model for RBM was computed.

In the subsection we present rigorous results on the derivation of the sigma-model ap-
proximation for 1d RBM and the analysis of the model in the delocalization regime. The
results are published in M. Shcherbina and T. Shcherbina [2018].

To derive a sigma-model approximation for the model (1.13) – (1.14), we take ˛ in
(1.14) ˛ = ˇ/W , i.e. put

(5.1) J = 1/W + ˇ∆/W 2; ˇ > 0;

fix ˇ and n, and consider the limit W ! 1, for the generalized correlation functions

R+�

Wnˇ
(E; "; �) = E

�
det(H � z1)det(H � z2)

det(H � z0
1)det(H � z0

2)

�
;(5.2)

R++
Wnˇ

(E; "; �) = E
�
det(H � z1)det(H � z2)

det(H � z0
1)det(H � z0

2)

�
for � = (�1; �2; �

0
1; �

0
2).

Theorem 5.1. Given R+�

Wnˇ
of (5.2) ,(1.13) and (5.1), with any dimension d , any fixed ˇ,

jΛj, " > 0, and � = (�1; �̄2; �
0
1; �̄

0
2) 2 C4 (j=�j j < " � �(E)/2) we have, as W ! 1:

R+�

Wnˇ
(E; "; �) ! R+�

nˇ
(E; "; �);

@2R+�

Wnˇ

@� 0
1@�

0
2

(E; "; �) !
@2R+�

nˇ

@� 0
1@�

0
2

(E; "; �);(5.3)

where R+�

nˇ
(E; "; �) = CE;�

Z
exp

n ˜̌
4

X
StrQjQj�1 �

c0

2jΛj

X
StrQjΛ�;"

o
dQ;
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˜̌ = (2��(E))2ˇ, Uj 2 Ů (2), Sj 2 Ů (1; 1) = U (1; 1)/U (1) � U (1),

CE;� = eE(�1+�2��0
1��0

2)/2�(E); �(E) = (2�)�1
p
4 �E2;

andQj are 4�4 supermatrices with commuting diagonal and anticommuting off-diagonal
2 � 2 blocks

Qj =

 
U �
j 0

0 S�1
j

!�
(I + 2�̂j �̂j )L 2�̂j

2�̂j �(I � 2�̂j �̂j )L

��
Uj 0

0 Sj

�
;(5.4)

dQ =
Y

dQj ; dQj = (1 � 2nj;1nj;2) d�j;1d�j;1 d�j;2d�j;2 dUj dSj

with

nj;1 = �j;1�j;1; nj;2 = �j;2�j;2;

�̂j = diagf�j1; �j2g; �̂j = diagf�j1; �j2g; L = diagf1;�1g

Here �j;l , �j;l , l = 1; 2 are anticommuting Grassmann variables,

Str
�
A �

� B

�
= TrA � TrB;

and

Λ�;" = diag f" � i�1/�(E);�" � i�2/�(E); " � i� 0
1/�(E);�" � i� 0

2/�(E)g:

Theorem 5.2. Given R++
Wnˇ

of (5.2) ,(1.13) and (5.1), with any dimension d , any fixed ˇ,
jΛj, " > 0, and � = (�1; �2; �

0
1; �

0
2) 2 C4 (j=�j j < " � �(E)/2) we have, as W ! 1:

R++
Wnˇ

(E; "; �) ! eia+(�0
1+�

0
2��1��2)/�(E);

(5.5)

@2R++
Wnˇ

@� 0
1@�

0
2

(E; "; �) ! �a2+/�
2(E) � eia+(�0

1+�
0
2��1��2)/�(E); a+ = (iE +

p
4 �E2)/2:

Note that Q2
j = I for Qj of (5.4) and so the integral in the r.h.s of (5.3) is a sigma-

model approximation similar to Efetov’s one (see Efetov [1997]).
The kernel of the transfer operator for R

(�)
2 has a form

K
(�)
2 = F̂ Q̂F̂
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where F̂ and Q̂ are 6 � 6 matrix kernels, such that F̂�� are the operators of the multi-
plication by some function of U; S and Q̂�� = Q̂��(U1U

�
2 ; S1S

�1
2 ) are the ”difference”

operators.
After some asymptotic analysis K

(�)
2 and some ”gauge” transformation similar to (4.5) we

obtain that TK
(�)
2 T can be replaced by the 4 � 4 ”effective” matrix kernel

TK
(�)
2 T ∼ F̃ K̂0F̃ ;(5.6)

K̂0 =

0BB@
K K̃1 K̃2 K̃3

0 K 0 K̃2

0 0 K K̃1

0 0 0 K

1CCA ; F̃ = F

0BB@
1 F̃1 F̃2 F̃1F̃2

0 1 0 F̃2

0 0 1 F̃1

0 0 0 1

1CCA
where K = KU ˝KS ,

KU (U1; U2) ∼ ˇe�ˇ j(U1U
�
2 )12j2 ; KS (S1; S2) ∼ ˇe�ˇ j(S1S

�1
2 )12j2 ;

K̃i = K̃i (U1U
�
2 ;S1S

�1
2 ), F is an operator of multiplication by e'(U;S)/2n, and F̃1;2

are operators of multiplication by n�1'1;2(U; S) with some specific ', '1 and '2. An
important feature of K̃i that they satisfy the operator bound

jK̃i j � Cˇ�1(∆U +∆S );

where ∆U ;∆S are the Laplace operator on the correspondent groups (see e.g. (3.16) for
the definition of ∆U ). The bounds imply that for sufficiently smooth function f K̃if ∼
ˇ�1.

Similarly to Section 3 the idea is to show that in the regime ˇ � n

F̃ K̂0F̃ ∼ F̃ 2:

Then we get

R+�

n ˜̌
(E; "; �) =

C �
E

2�i

I
!A

zn�1(bG0(z)bf ;bg)dz + o(1) = C �
E (bF 2n�2bf ;bg) + o(1)

= C �
E

Z �
4n2F1F2 � 2)F 2ndUdS + o(1);

where

C �
E = e�g+(E)(�1+�

0
1��2��0

2)/�(E); g+(E) = (�E + i
p
4 �E2)/2:(5.7)

This relation allows us to prove
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Theorem 5.3. If n; ˇ ! 1 in such a way that ˇ > Cn log2 n, then for any fixed " > 0

and � = (�1; �2; �
0
1; �

0
2) 2 C4 (j=�j j < " � �(E)/2) we have

R+�

nˇ
!C �

E

� ı1ı2
˛1˛2

(e2c0˛1 � 1) �
ı1 + ı2

˛2
e2c0˛1 + e2c0˛1

˛1

˛2

�
;(5.8)

where ˛1 = " � i(�1 � �2)/2�(E); ˛2 = " � i(� 0
1 � � 0

2)/2�(E);(5.9)
ı1 = i(� 0

1 � �1)/2�(E); ı2 = i(�2 � � 0
2)/2�(E);

and C �
E is defined in (5.7).

Theorem 5.3 combinedwith Theorem 5.2 gives the GUE type behaviour for the spectral
correlation function:

Theorem 5.4. In the dimension d = 1 the behaviour of the sigma-model approximation
of the second order correlation function (5.2) of (1.13), (5.1), as ˇ � n, in the bulk of the
spectrum coincides with those for the GUE. More precisely, if Λ = [1; n] \ Z and HN ,
N = W n are matrices (1.13) with J of (5.1), then for any jEj <

p
2 (1.4) holds in the

limit first W ! 1, and then ˇ; n ! 1, ˇ � Cn log2 n.

5.2 Analysis of R2 for block RBM of (1.13)-(1.14). As it was mentioned in Section 2
in the case of R2 the transfer operator K2 is a 70 � 70 matrix whose entries depend on 8
spacial variables x1; x2; y1; y2; x0

1; x
0
2; y

0
1; y

0
2 2 R, two unitary 2�2matrixU;U 0, and two

hyperbolic 2�2matrix S; S 0, which acts in the direct sum of 70 Hilbert spacesL2(R4)˝

L2(Ů (2); dU ) ˝ L2(Ů (1; 1); dS), where dU; dS are integrations with respect to the
corresponding Haar measures. In general, the analysis of such operator is a very involved
problem, unless there is a possibility to take into account some special features of the
matrix kernel and to reduce it (in the sense of Definition 2.1) by some matrix kernel of
smaller dimensionality.

In the case of K2 the first observation is that it can be factorised as

K2 = F̂ Q̂ÂF̂ ;

where F̂ , Q̂ and Â are 70� 70matrix kernels, such that F̂�� are the operators of multipli-
cation by some function of U; S ,

Q̂�� = KUKSQ��(U (U 0)�;S(S 0)�1);

KU = ˛tWe�˛W t j(U (U 0)�)12j2 ; KS = ˛t̃We�˛W t̃ j(S(S 0)�1)12j2 ;

with t , t̃ defined similarly to (3.6) and functionsQ�� which do not depend on W , and

Â�� = A1(x1; x
0
1)A2(y1; y

0
1)A3(x2; x

0
2)A4(y2; y

0
2)A�;�(x̄; x̄

0; ȳ; ȳ0)
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with A1;2;3;4 being a scalar kernels similar to that for R0 (see (3.9)) and functions A��
which do not depend onW . It is straightforward to prove that onlyW �1/2 logW -neighbourhoods
of some stationary points in R8 give essential contributions. Further analysis shows that
after some ”gauge” transformation similar to (4.5) TK2T

�1 can be replaced (in the sense
of Definition 2.1) by 4 � 4 effective kernel of the form similar to (5.6).

Remark that the analysis justifies the physics conjecture that the behaviour of the ”gen-
eralized” correlation function R2 for the model (1.13) – (1.14) and of its sigma-model
approximation R�

2 of are very similar.
As a result we obtain (cf with Theorem 5.4)

Theorem 5.5. In the dimension d = 1 the behaviour of the second order correlation
function (1.6) of the model (1.13) – (1.14), asW � n, in the bulk of the spectrum coincides
with those for the GUE. More precisely, for any jEj <

p
2 (1.4) holds in the limitW;n !

1 with W / log2W > Cn.

The theorem is the main result of the paper M. Shcherbina and T. Shcherbina [n.d.].
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ON ‘CATEGORIES’ OF QUANTUM FIELD THEORIES

Yඎඃං Tൺർඁං඄ൺඐൺ

Abstract

We give a rough description of the ‘categories’ formed by quantum field theories.
A few recent mathematical conjectures derived from quantum field theories, some of
which are now proven theorems, will be presented in this language.

1 Introduction

Studies of quantum field theories (QFTs) by physicists have led to various mathematical
conjectures, some of which are investigated fruitfully by mathematicians. Existing mathe-
matical formulations of QFTs do not, however, explain how these conjectures are arrived
at in the first place. It seems to the author that more properties of QFTs as perceived by
physicists can be formalized in a way that a better part of the process itself of conjuring
of the conjectures become understandable to mathematicians.

For this purpose, it seems crucial to discuss not just individual QFTs but the interrela-
tionship among them. In other words, we need to discuss the ‘categories’ formed by QFTs
and possible operations in those categories. In this note, a rough description of these ‘cat-
egories’ will be given, and a few recent mathematical conjectures, some of which are now
proven theorems, will be phrased in this language.*
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*This note is an abridged but updated version of a longer review article intended for mathematicians, which
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2 The framework

2.1 QFTs for S-structured manifolds. A category of QFT exists for each fixed space-
time dimension d and a structure S on manifolds. Here, the structure S can be e.g. smooth
structure, Riemannian metric, conformal structure, spin structure, etc. We then denote by
Qd

S the category of QFT defined on S-structured manifolds of dimension d . (We consider
a Wick-rotated, Euclidean version of QFTs in this note.)

At the very basic level, an object Q 2 Qd
S assigns:

• a C-vector space HQ(N ) called the space of states to each (d � 1)-dimensional
S-structured manifold N without boundary,

• and the transition amplitude

(2-1) ZQ(M ) : HQ(N ) ! HQ(N 0)

to each d -dimensional S-structuredmanifoldM with the incoming boundaryN and
outgoing boundary N 0.

They are supposed to satisfy the standard axioms of Atiyah [1988] and Segal [2004], prop-
erly modified for the structure S. In particular, for an empty set we demand HQ(¿) = C,
and then if M is without boundary we simply have ZQ(M ) 2 C, called the partition
function.

Note that a QFT Q determines a functor from a suitable bordism category to the cate-
gory of vector spaces. Then Qd

S is a category formed by those functors, but as morphisms
we do not choose natural transformations between functors. We will come back to the
question of morphisms in Section 2.5.

Traditionally, a QFT for smooth manifolds is called a topological QFT (despite the
fact that smooth manifolds and topological manifolds can have interesting differences), a
QFT for Riemannian manifolds are simply called a QFT (without adjective), a QFT for
conformal structure is called a conformal field theory (CFT), etc.

If an S0 structure on amanifold can be obtained by forgetting some data of anS structure,
there is a functor Qd

S0 ! Qd
S , obtained by evaluating the partition function by forgetting

the additional structure on the manifold. For example, from Riemannian manifolds we
can extract a smooth manifold. Correspondingly, a QFT for smooth manifolds can be con-
sidered as a QFT for Riemannian manifolds. Using the traditional language, a topological
QFT is an example of a QFT.

From two objects Q1;2 2 Qd
S , one can form a product Q1 � Q2 2 Qd

S , such that the
partition function of Q1 � Q2 is simply ZQ1�Q2

(M ) = ZQ1
(M )ZQ2

(M ). We always
have a trivial QFT triv 2 Qd

S which is the identity of this product. This makes Qd
S a

monoidal category.
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2.2 Point operators of a QFT. Associated to a QFT Q 2 Qd
S is a vector space VQ,

called the space of point operators. An element of VQ was traditionally just called an
operator of the QFT. When S is the Riemannian structure, the Riemannian structure with
spin structure, the conformal structure, VQ has an action of the rotation group SO(d ), its
double cover Spin(d ), or the conformal group SO(d + 1; 1), respectively. Let us denote
by (VQ)inv the subspace invariant under these groups. Given a d -dimensional manifold
M and point operators 'i 2 (VQ)inv the QFT associates a complex number we denote as

(2-2) ZQ(M ;'1(x1)'2(x2) � � � 'n(xn)) 2 C

for distinct points xi 2 M , in a way multi-linear in 'i . This number is called the corre-
lation function or the n-point function of the theory. We can extend this construction to
arbitrary elements of VQ by considering a suitable bundle over M n.

In the traditional axiomatic quantum field theory, one considers M = Rd and these
are the (Euclidean version of) Wightman functions. In a unitary theory we impose the
reflection positivity.

When the structure S is the conformal structure, there is a natural isomorphism

(2-3) VQ ' HQ(Sd�1);

which is called the state operator correspondence. The action of the dilatation x 7! ax 2

Rd in the conformal group on VQ is usually written as a�∆. In a unitary theory ∆ is
positive semidefinite and gives a grading of VQ. Its eigenvalues are called the scaling
dimension. Take two operators '1;2 2 VQ with scaling dimension∆1;2. It can be argued
that the two-point function behaves as

(2-4) ZQ(M ;'1(x1)'2(x2)) . const.jx1 � x2j
�(∆1+∆2) when jx1 � x2j ! 0.

VQ has a structure of a certain generalized kind of an algebra. When d = 2, it is es-
sentially given by the axioms of the vertex operator algebras, but with both holomorphic
and antiholomorphic dependence. It should not be too difficult to write a similar set of
axioms for d > 2. The algebra structure is known to physicists under the name of operator
product expansion (OPE) algebra.

When the structure S is the Riemannian structure we can introduce a filtration on VQ

by R�0, still called the scaling dimension, by demanding that the above inequality holds.
In either case, it is a general feature of the n-point function that it diverges as the points

approach each other. This in particular means that the elements ofVQ are operator-valued
distributions, i.e. distributions which take values in the space of unbounded operators on
HQ(Rd�1). This makes their analysis rather complicated. In the standard algebraic QFT
approach, see e.g. Haag [1996], one instead considers the net of algebras of bounded oper-
ators constructed out of VQ. It should also be possible to construct such a net from a QFT
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in our sense. That said, in various other applications of QFTs to mathematics, n-point
functions themselves are used. For example, the Donaldson invariants are examples of
n-point functions of a suitable gauge theory, as interpreted by Witten [1988]. Because of
this, the author would like to keep VQ as part of the data defining a QFT.

2.3 Deformations of a QFT. Although we have not completely defined what a QFT
is, it should be possible to consider a family of QFTs parameterized by an arbitrary space
M. In the category Qd

S where S is the Riemannian structure, a fundamental fact is that
given Q0 2 Qd

S , one can construct a certain universal family of QFTs parameterized by
Mrelevant such that

• 0 2 Mrelevant corresponds to Q0

• T0Mrelevant ' the subspace of (VQ)inv whose scaling dimension is < d .

This family Mrelevant is called the family of relevant deformations of Q0.
The idea is that, given an element ' 2 the SO(d )-invariant part of VQ, we try to define

the deformed theory Q(�') for a small � by the formula

(2-5) ZQ(�')(M ) := “ZQ(M ; e
R

M �'(x)d�)”

where the right hand side is, at least in an extremely naive level, defined by expanding in
� and writing it in terms of a sum of the n-point functions of '(x). The singularities in the
integral need to be dealt with, and the convergence of the series needs to be proven. But
physicists think that it should be possible to make sense of it when the scaling dimension
∆ of ' is < d . The author believes that it should be possible to prove this by generalizing
results already available in the study of constructive QFT.

It is also a common belief among physicists that even when ∆ = d , the deformation
should always make sense as a formal power series in �. This part should also be prov-
able by generalizing results already available in the mathematical study of perturbative
QFTs.These deformations with∆ = d are called marginal deformations.

It also happens that for some subset of operators with ∆ = d one can have an actual
family, not just in the sense of formal power series. Such deformations are called exactly
marginal deformations, and are of great interest to physicists.

2.4 G-symmetric QFTs. Given a structure S and a group G, we can consider a new
structure S � G which means that the manifolds come with S structure together with a G-
bundle with connection. Let us introduce a special notation Qd

S (G) := Qd
S�G

, an object
of which is called a G-symmetric S-structured QFT.
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Given a homomorphism ' : G ! G0, we have a functor '� : Qd
S (G

0) ! Qd
S (G)

defined in an obvious manner. Similarly, given Q1 2 Qd
S (G1) and Q2 2 Qd

S (G2), we
have Q1 � Q2 2 Qd

S (G1 � G2).
We see that these categories behave like categories of spaces withG action. In the latter

case, we can sometimes construct from a spaceX withG�F action a quotient spaceX/G

with F action, if the action of G is sufficiently mild. There is a similar construction in the
categories of QFTs. Physicists call this operation the gauging of Q by G.

Namely, from a G � F -symmetric QFT Q 2 Qd
S (G � F ), one can sometimes gauge

G and construct Q/�G 2 Qd
S (F ). The idea is to define

(2-6) ZQ/�G(M; AF ) = “
Z

MG;M

ZQ(M; AG ; AF )d�”

where MG;M is the space of G-bundles with connections on the manifold M , d� is a
suitable measure on it, and AG 2 MG;M is a specific bundle with connection.

The problem is how to make this idea precise. WhenG is a finite group, or when d = 1

and G is compact, there is no problem, since MG;M is finite-dimensional and there is a
suitable measure. Otherwise it is an extremely hard problem. Making it precise when S
is the Riemannian structure, d = 4, Q = triv, G being a compact Lie group, is a big part
of one of the Millennium problems Jaffe and Witten [2006]. That said, physicists share
a broad consensus on the condition on d and Q for which the gauging by a compact Lie
group G makes sense. It is generally believed that there should not be a problem when
d = 2 or 3, that it is generically impossible when d � 5, and that a simple criterion on Q

is agreed upon when d = 4. It should also be noted that the gauged theory Q/�G, when
it exists, come in a family parameterized by what is called the gauge coupling constant,
with no distinguished origin in the parameter space.

The notation /�G is not at all standard but was coined for the purpose of this note. This
is supposed to give the impression that the gauging adds (‘+G’) the degrees of freedom of
the gauge fields but at the same time it reduces the degrees of freedom by dividing (‘/G’)
by the gauge group.

2.5 Submanifold operators andmorphisms of aQFT. In general, associated to aQFT
Q, we not only have the space of point operators V0

Q := VQ discussed already, but we
should also have the collection of line operators V1

Q, the collection of surface operators
V2

Q, …, up to the collection of codimension-1 operators Vd�1
Q . For example, a gauge

theory Q/�G naturally has line operators labeled by a representation R of G, such that
given an embedded circle C : S1 ! M we can consider

(2-7) ZQ/�G(M ;R(C )) := “
Z

MG;M

ZQ(M; A) tr HolR(C )d�”
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where Hol is the holonomy of the G-connection A. These are called the Wilson line
operators by physicists. In this case, the set of labels of Wilson lines is given by Rep(G),
and forms a tensor category.

From this example and others, it is reasonable to think that for a QFT Q, V0
Q of point

operators forms a kind of algebra,V1
Q of line operators forms a kind of tensor category,V2

Q

of surface operators forms a 2-category of some sort,…,Vd�1
Q of codimension-1 operators

forms a (d � 1) category. The codimension-1 operators are somewhat special, since a
codimension-1 locus N in the spacetime M can split M into two disconnected regions
M1 and M2. Therefore, we can think of a situation where we have a QFT Q1 on M1,
another QFT Q2 on Q2, and a codimension-1 operator X between the two. We consider
X to be a morphism from Q1 to Q2: X 2 Hom(Q1; Q2), and Vd�1

Q = Hom(Q; Q). A
codimension-2 locus can separate a codimension-1 region into two regions, supporting the
morphisms X; Y 2 Hom(Q1; Q2), respectively. Then such a codimension-2 operator is a
morphism betweenmorphisms, and objects inVd�2

Q are special cases: they are morphisms
between the trivial morphism in Hom(Q; Q). This relation goes down recursively to the
case of point operators. For topological QFTs, the resulting categorical structure of the
submanifold operators are discussed in the literature under the name of the fully-extended
topological QFTs, see e.g. Kapustin [2010], Freed [2013], and Carqueville, Meusburger,
and Schaumann [2016].

Note that, given a d 0-dimensional QFT Q0 and a d -dimensional QFT Q with d 0 < d ,
we can tautologically consider placing Q0 on a dimension-d 0 submanifold M 0 � M , by
defining

(2-8) ZQ(M ;Q0(M 0)) := ZQ(M )ZQ0(M 0):

In particular, take Q to be the trivial QFT trivd
S 2 Qd

S . We can place any Q0 2 Qd�1
S on

codimension-1 subspaces. In other words, any (d �1)-dimensional QFTQ0 is a morphism
from the trivial theory in dimension d to itself:

(2-9) Qd�1
S = Hom(trivd

S ; trivd
S ) = Vd�1

trivd
S

:

Therefore, a full understanding of the trivial theory in d dimensions in this sense entails a
full understanding of all QFTs in (d � 1)-dimensions.

2.6 Compactifications ofQFTs. In the discussions above of the submanifold operators,
we saw that QFTs in different spacetime dimensions are intimately related. There is also
another way to relate QFTs in different dimensions. Pick a QFT Q 2 Qd

S , and fix a d 0-
dimensional manifold M 0 with S-structure. Then, we define a (d � d 0)-dimensional QFT
QhM 0i by demanding

(2-10) ZQhM 0i(M ) = ZQ(M � M 0):
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This operation is called the compactification of Q by M 0 by physicists.

2.7 Anomalous and meta QFTs. So far we have been talking about what can be called
‘genuine’ QFTs Q, where the partition function ZQ(M ) takes values in C. There are,
however, many ‘anomalous’ QFTs whose partition function does not take values in C but
only in a one-dimensional C-vector space.

To specify a d -dimensional anomalous QFT Q̃ with structure S, one first needs to give
a rule assigning one-dimensional vector spaces to S-structured d -dimensional manifolds
M . This can conveniently done by taking a (d + 1)-dimensional QFT A 2 Qd+1

S whose
Hilbert space HA(M ) on any d -dimensional manifold M is one dimensional. Such a
theory A is called invertible, and we demand

(2-11) ZQ̃(M ) 2 HA(M ):

The (d + 1)-dimensional QFT A is called the anomaly of the anomalous d -dimensional
QFT Q̃. Equivalently, an anomalous d -dimensional theory Q̃ is a morphism from a trivial
(d + 1)-dimensional theory triv 2 Qd+1

S to an invertible theory A 2 Qd+1
S , i.e. Q̃ 2

Hom(trivd+1
S ; A). A genuine QFT is a special case where A is also trivial.

Once we make this generalization, it is an easy step to consider also meta QFTs in
d -dimensions: a meta QFT Q̂ is such that its partition function ZQ̂(M ) takes values
in a finite-dimensional Hilbert space HT (M ) of a (d + 1)-dimensional theory T . One
important example is the theory of conformal blocks of affine Lie algebras, for which T is
the 3d Chern-Simons theory; another is the 6d N=(2; 0) superconformal theories which
will be discussed below. Meta QFTs are called relative QFTs by mathematicians Freed
and Teleman [2012].

2.8 Supersymmetric QFTs. Mathematical conjectures often arose from the study of
supersymmetric QFTs, in various dimensions. In the framework of this note, a supersym-
metric QFT in d dimensions is a QFT for a particular structure S extending the Riemannian
structure. Similarly, a superconformal QFT in d dimensions is a QFT for a structure S
extending the conformal structure. For example, for d = 4, both supersymmetric and
superconformal QFTs come in four varieties, called N=1; 2; 3; 4 supersymmetric QFTs
and superconformal QFTs, respectively.

Unfortunately, it seems difficult to give a concise definition of what a supersymmetric
structure on a manifold is, because of the following reason. Let us first consider the case
of a superconformal structure. A QFT Q with a superconformal structure would have an
action of a superconformal group on its space VQ of point operators. The Lie algebra of
a superconformal group is a super Lie algebra such that its even component contains the
conformal algebra so(d +1; 1) and its odd component is in a spinor representation of the
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conformal group. The fact that the odd component is in a spinor representation is required
from the spin-statistics theorem of the unitary QFT. One can also argue that the super Lie
algebra in question is simple. Then it is straightforward to list all possible superconformal
algebras compatible with unitarity, and one finds that the maximum possible dimension
is d = 6 Nahm [1978]. Similarly, one finds that the maximum possible dimension for
supersymmetric structures is d = 11.

Therefore there is no hope of formulating the supersymmetric structures in a way analo-
gous to the Riemannian structure such that the formulation applies to arbitrary dimensions.
Their existence is accidental to low dimensions in an intrinsic way.

That said, for possible dimensions, d � 6 for superconformal theories and d � 11 for
supersymmetric theories, there are huge amount of literature on the physics side of the
community about the superconformal/supersymmetric structures on a manifold, under the
name of N-extended supergravity in various dimensions.

3 Examples

Currently, there are many examples of QFTs which are known to physicists. Broadly
speaking, there are three methods of constructions, with overlapping range of applicabili-
ties. Let us examine them in turn.

3.1 Honest constructions. One is to construct the required data so that they satisfy the
axioms. This is the only mathematically precise method at present. It should be mentioned
that even in this case we do not usually understand the full set of submanifold operators.

Topological theories: Many topological QFTs have been constructed in this manner.
2d topological QFTs are famously equivalent to Frobenius algebras. 3d Chern-Simons
theories for a compact group G can be rigorously constructed using the Turaev-Viro and
Reshetikhin-Turaev constructions. There are 4d topological QFTs as constructed by Crane
and Yetter, etc.

Conformal theories in two dimensions: In two dimensions, vertex operator algebras
capture the local properties of the holomorphic side of a conformal field theory, and there
are many mathematically rigorous discussions on them. Their behaviors on higher-genus
Riemann surfaces are governed by their conformal blocks, which have been studied for
many rational conformal field theories and also for some irrational conformal field theo-
ries. A full-fledged conformal field theory is obtained by consistently gluing the confor-
mal blocks on the holomorphic side and on the anti-holomorphic side. This aspects have
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also been discussed rigorously by Schweigert, Fuchs, Runkel and their collaborators, see
e.g. Schweigert, Fuchs, and Runkel [2006].

Invertible field theories: Invertible field theories are invertible objects in Qd
S . From

the mathematical point of view, these are the first objects one has to study in order to
understand Qd

S , but they got the attention of many physicists relatively recently, only in
the last 10 years. Physical studies are led by condensed-matter theorists e.g. Kitaev, Wen
and collaborators Kitaev [n.d.] and Chen, Gu, Liu, and Wen [2013]. A mathematical
exposition for the relativistic case can be found in e.g. Freed and Hopkins [2016].

It is now known that the group of the isomorphism classes of invertible field theories
in Qd

S (G), when G is a finite group, is given by Ed
S (BG), where E�

S is a generalized
cohomology theory and BG is the classifying group of G. Slightly more generally, one
can consider QFTs defined on d -dimensional manifolds M with S structure together with
a map f : M ! X to a space X up to homotopy. When S is the smooth structure,
the objects in Qd

S [X ] is known as homotopical sigma models and have been studied by
mathematicians, see e.g. Turaev [2010]. For any structure S, they should form a category
Qd

S [X ], and Qd
S (G) for a finite group G is an example where X = BG. The group of the

isomorphism classes of invertible field theories in Qd
S [X ] should then be given by Ed

S (X).

Free theories in any dimensions: In any spacetime dimensions, for the structure S be-
ing the Riemannian structure with or without spin structure, the free field theories can be
constructed rigorously. First is the free scalar field theories. This is a functor Bd from the
category of G-vector spaces to the category Qd (G) of d -dimensional QFT with Rieman-
nian structure with G symmetry. Pick a G-vector space V . To describe Bd (V ), we take a
d -dimensional Riemannian manifold M and a G-bundle P with connection A. We then
construct the associated vector bundle V �G P , whose covariant derivative we denote by
DA. Then we have a Laplacian 4A constructed from DA. Finally, the partition function
ZBd (V )(M; A) is defined in terms of the eigenvalues of 4A, and the n-point functions are
defined in terms of the Green function of 4A.

Second is the free fermion theories. This is a functor Fd again from the category of
G-vector spaces to the category Q̃d (G) of d -dimensional possibly-anomalous QFT with
Riemannian structure, spin structure and G symmetry. The partition function and the n-
point functions are defined in a similar manner as above, but by tensoring with the spinor
bundle of M and using the Dirac operator instead of the Laplacian. This is in general
an anomalous field theory with an associated anomaly A(Fd (V )) 2 Qd+1(G), whose
partition function is given by the eta invariant, see Dai and Freed [1994].
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3.2 Using path integrals. Another is to use the descriptions using the path integral.
This might have been the most common method among physicists until recently. The
rough idea goes as follows.

Traditional descriptions: To construct a d -dimensional QFT, we first pick a set of
fields. As an example, we first choose the spacetime dimension d , a compact Lie group
G and its representation R. We consider a G-bundle P with connection A on M , and a
section ' of the vector bundle P �G R on M . We then pick a polynomial L out of these
field variables and their derivatives. As an example let us take

(3-1) L[A; '] =
1

g2
jF j

2 +
1

2
jDA'j

2 + V(')

where F is the curvature of the G-connection A, DA is the covariant derivative with
respect to A, and V is a G-invariant polynomial on R, usually called the potential of the
system.

Then we try to specify the QFT using the field variables and L by means of the path
integral. In this example, we try to specify a QFT Q(G; R; V) 2 Qd by defining the
partition function as

(3-2) ZQ(G;R;V)(M ) := “
Z

MM;G;R

e�
R

M ?L(A;')d�”

where MM;G;R is the moduli space of G-bundles P with connections A together with the
section ', d� is an appropriate measure on it, and ? is the Hodge star on M .

Making this construction mathematically precise is an extremely difficult problem, and
forms the subject of the constructive quantum field theory. Despite these problems, physi-
cists have used this ill-defined construction to uncover many properties of QFTs. Also,
physicists have put the path integral on supercomputers by discretizing the spacetime and
approximating the integral by a sum, which has reproduced many experimental results to
reasonable accuracy.

In our language: In the language of this note, the theoryQ(G; R; V) above is described
as follows: we first consider a d -dimensional free scalar theory Bd (R), which we then
gauge to construct Q0 := Bd (R)/�G. V is then an element of the space of operators
of Bd (R)/�G, and can be used to deform the theory from Q0 to Q0(V). The result of
the deformation is Q(G; R; V) := (Bd (R)/�G)(V). The Standard Model of Particle
Physics is also an example of this construction, obtained by gauging SU(3)�SU(2)�U(1)
of a certain B4(R) � F4(R

0) and then by deforming it. Theoretical and experimental
high-energy physicists have spent an enormous amount of efforts to pin down what is the
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representations R and R0, and also what is the precise deformation which describes our
real world. Note that this includes the brain which is reading this sentence right now.

Traditionally, most physicists only considered QFTs of the form

(3-3) ((Bd (R) � Fd (R
0))/�G)(V)

for some G vector spaces R, R0 and an element V 2 (V0
(Bd (R)�Fd (R0))/�G

)inv. As such,
the aim of the constructive QFT was to make this QFT construction rigorous.

In a more modern point of view, however, not all of QFTs have this form. Still, the
gauging operation obtaining Q/�G from Q, or the deformation operation obtaining Q(V)

from Q, should make sense for Q, G and V satisfying appropriate conditions. Therefore,
the aim of the constructive QFT should be extended to include these more generalized
constructions.

3.3 Using String/M theory. The final method is to construct them using string theory
or M-theory. String theory and M-theory are examples of quantum gravity theories, and
fall outside of the categories of QFTs discussed in this note.

Quantum gravity theories: A quantum gravity theory is, in an extremely rough sense,
a QFTwhere we are supposed to perform the path integral over the space of the metric, not
just over the space of the connections and the sections of the associated vector bundles.

Making sense of the preceding sentence is even more difficult than making sense of the
path integral of a gauge theory as above. The latter is difficult but physicists believe that it
should be possible to carry it out for a large number of choices of d , G, R, V. The former
is so difficult that physicists only know a finite number of sensible examples. There are
a few in 10 dimensions, called string theories, and a unique one in 11 dimensions, called
the M theory. They are not obtained by performing the path integral over the space of the
metric. Rather, they are found accidentally. They are also all intimately related to each
other.

In this sense, from mathematicians’ point of view, they are even more ill-defined than
QFTs. Still, simply assuming their mere existence is extremely powerful, since various
QFTs can be realized and studied using string/M theory. The status might be compared
with that of Weil cohomology theories and Grothendieck motives when they were first
proposed: the assumption of their mere existence of these concepts allows one to explain
and give a unified viewpoint on many diverse phenomena.

6d N=(2; 0) theories: An important class of QFTs constructed from string theory is
the 6d N=(2; 0) theories. We start from a 10-dimensional string theory called the type
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IIB string theory, which roughly speaking assigns the partition function ZIIB(M ) to a ten-
dimensional manifold M . Now, pick a finite subgroup ΓG of SU(2) of type G = An,
Dn or E6;7;8. We define a 6d QFT SG as SG := IIBhC2/ΓGi, i.e. we define its partition
function for a 6-dimensional manifold M by

(3-4) ZSG
(M ) = ZIIB(M � C2/ΓG):

They are examples of 6d N=(2; 0) superconformal meta QFTs. There are no known de-
scriptions of these theories via path integrals. There is also a free 6d N=(2; 0) theory,
which can be considered as SU(1). It is strongly believed that SG for G = U(1), An, Dn

or E6;7;8 generate all 6d N=(2; 0) theories.

4 Four-dimensional N=2 supersymmetric theories

Now we would like to discuss the case of 4d N=2 supersymmetric and superconformal
theories in more detail. We denote the categories simply by Q and Qc . The latter is a
subcategory of the former.

4.1 Basic properties. We first recall the overall structure in this particular case.

• Given a compact Lie group G over C, there is a category Q(G) of 4d N=2 theories
with G symmetry.

• Given a homomorphism ' : H ! G, there is a functor '� : Q(G) ! Q(H ),
satisfying expected properties.

• There is a canonical object triv 2 Q(G) for any G, which behaves naturally under
the functors given above.

• GivenQ1 2 Q(G1) andQ2 2 Q(G2), we have an operation� such thatQ1�Q2 2

Q(G1 � G2).

• In particular, using the diagonal embedding G � G � G, we see that for Q1;2 2

Q(G) we have Q1 � Q2 2 Q(G). triv is the unit under this product operation.

• If an object Q 2 Q(F � G) satisfies certain properties, one can form Q/�/�/�G 2

Q(F ). It is known that Q/�/�/�G is a family of N=2 theories parameterized by a
neighborhood of the origin of (C�)n, where n equals the number of simple factors
of the Lie algebra g of G.
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Here we introduced an operation Q/�/�/�G distinct from the operation Q/�G: When Q/�/�/�G

can be formed, one can definitely also form Q/�G but it is only guaranteed to be in the
category of Riemannian QFTs, but not necessarily in the category ofN=2 supersymmetric
theories. Rather, one needs to define

(4-1) Q/�/�/�G := ([Q � Bd (gC) � Fd (gC ˚ gC)]/�G)(V)

where V is a specially chosen deformation, to guarantee that Q/�/�/�G is also N=2 super-
symmetric.

This is analogous to the following situation in geometry: one can consider categories
X(G) of Riemannian manifolds with G action. Then for an X 2 X(F � G), one can
often form X/G 2 X(F ). Now, consider subcategories HK(G) � X(G) formed by hy-
perkähler manifolds with hyperkähler G action. For a Y 2 HK(F �G), we can definitely
construct Y /G but this is only guaranteed to be 2 X(F ). To get an object in HK(G),
one needs to perform the hyperkähler quotient construction: Y ///G 2 HK(F ). There is
a deeper relationship between Q(G) and HK(G) which will be discussed below.

Before getting there, we introduce the simplest kinds of objects in Q(G). Given a
quaternionic vector space V with hyperkähler G action, we define a theory of free hyper-
multiplets based on V by the formula:

(4-2) Hyp(V ) = Bd (V ) � Fd (V ):

They are often just called hypers, and are known to be in the subcategory Qc(G) of super-
conformal theories.

4.2 Higgs branch functor and the slicing. So far in this note we only talked about
how to construct objects in the category of quantum field theories. Since this is an ill-
defined category, it is of little use to serious mathematicians. There are also functors from
these still-ill-defined categories to the well-defined categories. The Higgs branch functor
MHiggs : Q(G) ! HK(G) is one such example. We also introduce an associated concept
which we call ‘slicing’.

We only describe the Higgs branch functor at the level of objects, and we will not be
able to discuss how morphisms are mapped to morphisms. This is due to our lack of
understanding of the morphisms of Q(G) in the first place. The same comment applies to
two other functors introduced in Section 4.5. We will see that even with this rudimentary
understanding, we arrive at nontrivial statements.

The Higgs branch functor: This associates to a 4d N=2 supersymmetric theory Q 2

Q(G) a hyperkähaler manifoldMHiggs(Q) 2 HK(G), with the following basic properties:
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• MHiggs(Hyp(V )) = V ,

• For Q1 2 Q(G1) and Q2 2 Q(G2) we have MHiggs(Q1 � Q2) = MHiggs(Q1) �

MHiggs(Q2),

• For Q 2 Q(F � G), we have MHiggs(Q/�/�/�G) = MHiggs(Q)///G where on the
left hand side we perform the gauging and on the right hand side we perform the
hyperkähler quotient.

• When Q is N=2 superconformal, MHiggs(Q) is a hyperkähler cone.

• For a family Q of N=2 superconformal theories, MHiggs(Q) is locally constant.

The slicing: Let us now introduce the concept of the slicing. To do this, we first recall
the concept of the Slodowy slice. Consider gC and take a nilpotent element e in it. It
is known that we also have elements h; f 2 gC so that the triple (e; h; f ) defines a
homomorphism from su(2)C ! gC and then SU(2) ! G. We denote the commutant of
this SU(2) within G by Ge . We define the Slodowy slice Se at e by the formula

(4-3) Se := fe + x j [f; x] = 0; x 2 gCg:

The Slodowy slice Se has a natural action by Ge . In the various constructions below, the
results only depend on the conjugacy class of the nilpotent element e. Therefore there are
essentially finite possibilities of e for a given g, labeled by the nilpotent orbits.

Now, given a hyperkähler space X 2 HK(G), we can define a new hyperkähler space
X o e 2 HK(Ge), which is given as a complex manifold by the expression

(4-4) X o e := �C
�1(Se)

where �C : X ! gC is the complex part of the moment map of the G action. It is known
that we can give a hyperkähler structure. For e = 0, we simply have X o e = X . The
notation oe is also introduced for the sake of this exposition. It is simply chosen to vaguely
suggest the letter ‘s’.

Now, for any Q 2 Q(G), there is a QFT procedure we call the slicing of Q by e. In
the physics literature it is often called the nilpotent Higgsing or the partial closure of the
puncture. This results in a theory we denote by Q o e 2 Q(Ge). This affects the Higgs
branch in the expected way:

(4-5) MHiggs(Q o e) = MHiggs(Q) o e:

4.3 Examples. Let us now discuss examples of 4d N=2 theories.
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4d N=2 gauge theories: We already introduced the hypermultiplet Hyp(V ) 2 Q(G �

F ) for a quaternionic vector space V with hyperkähler action of G � F . Then we can
form a family of 4d N=2 theories

(4-6) Hyp(V )/�/�/�G 2 Q(F )

if the condition is right. These are called 4d N=2 gauge theories, and have been inten-
sively studied by physicists. We easily see that

(4-7) MHiggs(Hyp(V )/�/�/�G) = V ///G:

Minahan-Nemeschansky theories: These theories are N=2 superconformal theories
with E6;7;8 symmetries specified by a positive integer n:

(4-8) MN(Ei ; n) 2 Qc(Ei ); i = 6; 7; 8;

constructed using a variant of the type IIB theory called the F-theory. From this construc-
tion it is known that

(4-9) MHiggs(MN(Ei ; n)) = Minst
Ei ;n

where the right hand side is the centered framed instanton moduli space of the group Ei

on R4 with instanton number n.
This means that they are not an N=2 gauge theory of the form Hyp(V )/�/�/�G. If so, we

would have an equality

(4-10) Minst
Ei ;n = V ///G

meaning that there is an ADHM-like description for the instanton moduli spaces of excep-
tional groups. But this is almost surely impossible, since no such construction is known.

For n = 1 these theories were first studied by Minahan and Nemeschansky [1996,
1997] and are notable as one of the earliest examples of theories which are not gauge the-
ories, although they used a different argument against having a gauge theory description.
More recently, gauge theory descriptions which only manifest N=1 supersymmetry have
been found Gadde, Razamat, andWillett [2015], but they are not useful at present to study
its Higgs branch.

Class S theories: For this construction, we start from a 6d N=(2; 0) theory SG , and
compactify it on a two-dimensional surface Cg;n of genus g with n punctures. It is known
that by an appropriate trick the resulting 4d theory is N=2 supersymmetric and only de-
pends on the complex structure of Cg;n. We then have a family of 4d N=2 theory SG;g;n
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parameterized by Mg;n, the moduli space of Riemann surfaces of genus g with n punc-
tures. This is the class S theory, first introduced in Gaiotto [2012] and Gaiotto, Moore,
and Neitzke [2009], having the following properties:

• They are 2 Q(Gn), where G is the simply-connected compact Lie group of type g,
so that each factor of G is associated to a puncture of Cg;n.

• In particular, the family over Mg;n is such that when two points on Cg;n are ex-
changed, two factors of G in Q(Gn) are exchanged.

• They are 2 Qc(G
n), i.e. superconformal, when g = 0, n � 3, or g = 1, n � 1, or

g � 2.

• In a neighborhood of the boundary of Mg;n where the genus g surface Cg;n de-
generates to a connected sum of Cg0;n0 and Cg00;n00 such that g0 + g00 = g and
n0 + n00 = n + 2, we have the identification that

(4-11) SG;g;n = (SG;g0;n0 � SG;g0;n00)/�/�/�G:

Here, the gauging operation on the right hand side is performed in the following
manner. The connected sum is performed at a puncture of Cg0;n0 and another of
Cg00;n00 . Accordingly we have a chosen subgroup G for the first puncture and a
chosen subgroup G for the second puncture. We then perform the gauging with
respect to the diagonal subgroup of these two. The right hand side is a family over
Mg0;n0 � Mg00;n00 � U where U is a neighborhood of the origin of C�, which is
identified with the neighborhood of the said boundary of Mg;n.

• For any G, we always have the principal embedding SU(2) ! G and the corre-
sponding nilpotent element eprin. The commutant is trivial, Geprin = 1. Then we
have

(4-12) SG;g;n o eprin = SG;g;n�1:

Namely, by slicing a puncture of a class S theory by the principal nilpotent element
eprin, we can effectively remove the puncture.

From the properties listed above, it can be seen that SG;g;n can be constructed from
SG;0;3. For this reason a special abbreviation is introduced: TG := SG;0;3 2 Q(G3).
From the construction, it has a natural self-equivalence permuting three factors of G.
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4.4 Known overlaps among the examples. Now let us discuss some properties of the
theories TG and SG;g;n. First, it is known that TSU(2) = Hyp(V ˝C V ˝C V ), where V

is the defining representation of SU(2).
Second, for other G ¤ SU(2), no gauge theory description is known. Still, we can

slice it at three nilpotent elements e1;2;3 2 gC and consider the theory TG o e1; e2; e3. For
a suitable choice of e1;2;3, they are known to be equivalent to Hyp(V ) for a suitable V .
Here we only discuss one example.

Take G = su(N ). A nilpotent element in gC can be conveniently described by a
partition [ni ] of N . We take e = [N � 1; 1], for which Ge = U(1). Then we have

(4-13) TSU(N ) o e = Hyp(V ˝ W̄ ˝ X ˚ W̄ ˝ V ˝ X̄)

where V ' W ' CN have actions of SU(V ) and SU(W ) associated to the first and the
second punctures, and X is the standard one-dimensional representation of U(1) = Ge

associated to the third puncture sliced by e.
We also know the following equivalences:

MN(E6; N ) = TSU(3N ) o [N 3]; [N 3]; [N 3];(4-14)

MN(E7; N ) = TSU(4N ) o [2N; 2N ]; [N 4]; [N 4];(4-15)

MN(E8; N ) = TSU(6N ) o [3N; 3N ]; [2N; 2N; 2N ]; [N 6]:(4-16)

Note that by construction, on the right hand side are objects inQ(SU(3)�SU(3)�SU(3)),
Q(SU(2)�SU(4)�SU(4)), and Q(SU(2)�SU(3)�SU(6)), while on the left hand side
are objects in Q(E6), Q(E7), Q(E8). To write an equality, we use the homomorphism
SU(3)3 ! (SU(3)3/Z3) � E6, etc.

4.5 Two other functors. In this section we discuss two more functors from Qc(G).
One is the superconformal index functor ZSCI

p;q;t and another is the vertex operator algebra
functorVOA. Applied to a family of objects inQc(G), both give a locally constant result.

Superconformal index: The superconformal index functor ZSCI
p;q;t is a functor which

assigns to Q(G) a virtual representation of G � (C�)3. We describe it using C[[p; q; t ]]-
valued Weyl-invariant functions on the maximal torus T r � G, where (p; q; t) 2 (C�)3

and we also use variables z = (z1; : : : ; zr) 2 T r � G. We use standard abbreviations
zw =

Q
i zi

wi for a weight w = (w1; : : : ; wr) of G.
This functor was introduced inGadde, Rastelli, Razamat, andYan [2013]. The essential

idea was to identify a differential d : VQ ! VQ which satisfies d 2 = 0. Then ZSCI
p;q;t (Q)

is the cohomology H (VQ; d ). The elliptic Gamma function Γp;q(x) defined as follows
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will play an important role for this functor:

(4-17) Γp;q(x) =
Y

m;n�0

1 � x�1pm+1qn+1

1 � xpmqn
:

The basic properties of ZSCI
p;q;t are the following. First, the superconformal index of a

free hypermultiplet is given by

(4-18) ZSCI
p;q;t (Hyp(V )) =

Y
w:weights of V

Γp;q(t
1/2zw):

Second, ZSCI
p;q;t (Q1 � Q2) = ZSCI

p;q;t (Q1)Z
SCI
p;q;t (Q2). Third, for Q 2 Qc(F � G) we

have

(4-19) ZSCI
p;q;t (Q/�/�/�G) = (

1

Γp;q(t)Γ0
p;q(1)

)r 1

jWG j

Z
T r

ZSCI
p;q;t (Q)�

Y
˛:roots of G

1

Γp;q(z˛)Γp;q(tz˛)

rY
i=1

dzi

2�
p

�1zi

where z 2 T r � G and jWG j is the order of the Weyl group. The measure appearing
in (4-19) is an elliptic generalization of the Macdonald inner product and reduces to the
standard Macdonald measure when p = 0 up to a trivial rescaling.

The slicing affects the superconformal index in the followingmanner. Given a nilpotent
element e 2 gC , recall that there are f; h 2 gC such that they determine a homomorphism
SU(2) ! G, and Ge is the commutant of the image in G. We then decompose gC as

(4-20) gC =
M

d

Vd ˝ Rd

where Vd is the irreducible representation of dimension d of SU(2) and Rd is a represen-
tation of Ge . We then define

(4-21) Ke(z) =
Y
d

Y
w:weights of Rd

Γp;q(t
(d+1)/2zw)

for z taking values in the maximal torus of Ge . Then we have:

(4-22) ZSCI
p;q;t (Q o e)(z) = Ke(z)

�
K0(x)

�1ZSCI
p;q;t (Q)(x)

�
x!zth/2 :

Vertex operator algebra: Let us denote the category of vertex operator algebras with
a homomorphism from an affine algebra ĝ by V(G). The functor VOA associates to
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an object Q 2 Q(G) a vertex operator algebra VOA(Q) 2 V(G). This functor was
introduced in Beem, Lemos, Liendo, Peelaers, Rastelli, and van Rees [2015]. The essence
was to show that one can locate a nice subspace of VQ such that the OPE algebra structure
of VQ induces the structure of a vertex operator algebra on it.

Here we mostly use physicists’ notation for the vertex operator algebras. For a general
introduction to vertex operator algebras, see e.g. Frenkel and Ben-Zvi [2004] and Arakawa
[2018]. In the following, a VOA always stands for vertex operator super-algebra V =

˚nVn, Vn = Vn;+ ˚ Vn;�. The part V˙ = ˚nVn;˙ are called bosonic and fermionic,
respectively, and the subscript n is the eigenvalue of L0.

The basic features of this functor is as follows. First, for Q = Hyp(V ) 2 Qc(G), the
corresponding VOA(Q) is the symplectic boson VOA SB(V ) defined in the following
manner: SB(V ) is generated by SB(V )1/2;+ ' V , with the operator product expansion
given by

(4-23) v(z)w(0) '
hv; wi

z

for v; w 2 SB(V )1/2;+ ' V , where h�; �i is the symplectic pairing of the quaternionic
vector space V .

Second, we have VOA(Q1 � Q2) = VOA(Q1) ˝ VOA(Q2). Third, to describe
VOA(Q/�/�/�G), we define the quotient operation in the category of vertex operator alge-
bras. We start from an object V 2 V(G). We introduce a ghost VOA BC(G), generated
by fermionic fields bA in BC(G)1;� and cA in BC(G)0;� for A = 1; : : : ; dimg with the
OPE

(4-24) bA(z)cB(w) ∼
ıA

B

z � w
:

This has a subalgebra ĝ+2h_(g). Denote by J A
V and J A

ghost the affine g currents of V and
BC(G) respectively. We define

(4-25) jBRST(z) =
X

A

(cAJ A
V (z) +

1

2
cAJ A

ghost(z)):

Then d = jBRST,0 satisfies d 2 = 0 if the level of ĝ in V is �2h_(g). We then take the
subspace

(4-26) W � V ˝ BC(G)

defined by

(4-27) W =
\
A

Ker bA
0
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where J A
total = J A

V +J A
ghost. We can check that the differential d acts within W , and finally

we define

(4-28) V/G := H (W ; d ):

We then have the following statement: for Q 2 Qc(G), assume that Q/�/�/�G 2 Qc(G).
This implies the level of ĝ in V OA(Q) is �2h_(g), and we have VOA(Q/�/�/�G) =

VOA(Q)/G.
Third, the slicing by a nilpotent element e of an object V 2 V(g) is defined by the

quantum Drinfeld-Sokolov reduction: V o e := DS(V; e). Then we have VOA(Q o e) =

VOA(Q) o e.

4.6 Relation among the functors.

VOA to MHiggs: For a vertex operator algebra V 2 V(g), one can construct the asso-
ciated variety avarV , which is a holomorphic symplectic variety with G action Arakawa
[2012, 2018]. This is obtained by Spec of Zhu’s C2 algebra of the vertex algebra V. It is
believed that MHiggs(Q) = avarVOA(Q) in general Beem and Rastelli [2017].

VOA toZSCI
p=0;q=t : For a vertex operator algebraV 2 V(g), we can define its character

chV as a C[[q]]-valued function on G by the following formula:

(4-29) G 3 z 7! chV (z) =
X

n

qn(trVn;+
z � trVn;�

z):

It is known in general that

(4-30) chVOA(Q) = ZSCI
p=0;q=t (Q):

MHiggs to ZSCI
p=q=0;t=�2 : For a hyperkähler cone X 2 HKc(G), we can define its char-

acter chX as a C[[� ]]-valued function on G in the following manner. We decompose
the function ring C[X ] into the graded pieces C[X ]n, where the symplectic form on X is
normalized to have the grade +2. We then define

(4-31) G 3 z 7! chX(z) =
X

n

�n trC[X ]n z:

For many examples including Q = SG;g=0;n o e1; : : : ; en, it is known that

(4-32) chMHiggs(Q) = ZSCI
p=q=0;t=�2(Q):
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Summary of the functors: We summarize below the relationships of the functors dis-
cussed so far:

V

Cg;n
Q

Hyp(V )

SG;g;n

Q

ZSCI
p;q;t (Q)

MHiggs(Q)

VOA(Q)

avar

ZSCI
p=0;q;t (Q)

ZSCI
p=q=0;t=�2(Q)

ZSCI
p=0;q=t (Q)

ch

ch

4.7 Consequences. Let us see a few consequences of the whole setup.

Class S theories of type SU(2) : We already noted that

(4-33) SSU(2);0;4 = (TSU(2) � TSU(2))/�/�/�SU(2)

and also

(4-34) TSU(2) = Hyp(V ˝C V ˝C V )

where V is the defining 2-dimensional representation of SU(2).
By applying the functor MHiggs, we have

(4-35) MHiggs(SSU(2);0;4) = [Va ˝C Vb ˝C Vx ˚ Vy ˝C Vc ˝C Vd ]///SU(2):

Here, we put subscripts to various copies of V to distinguish them, and SU(2) used in the
quotient is the diagonal subgroup of SU(Vx) and SU(Vy). The right hand side clearly has
an action of

Q
i=a;b;c;d SU(Vi ). But from the left hand side, we see that there should also

be an action S4 permuting SU(Va;b;c;d ), which is not obvious from the right hand side.
The right hand side, when written as

(4-36) V ˝R R8///SU(V );

is the ADHM construction of the minimal nilpotent orbit of

SO(8) � [
Y

i=a;b;c;d

SU(Vi )]/Z2

and the S4 permutations of Vi ’s are given by elements of Aut(SO(8)).
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By applying the functor ZSCI
p;q;t , we have the equality

(4-37)

ZSCI(SSU(2);0;4)(a; b; c; d ) =
1

Γp;q(t)Γ0
p;q(1)

1

2

I
dz

2�
p

�1z

Y
˙

1

Γp;q(z˙2)Γp;q(tz˙2)

�
Y

˙˙˙

Γp;q(t
1/2a˙b˙z˙)

Y
˙˙˙

Γp;q(t
1/2c˙d ˙z˙)

where a, b, c, d are now thought of as 2 U(1) � SU(2). The left hand side should
be symmetric under an arbitrary permutation of a, b, c, d . This symmetry is however
nontrivial on the right hand side. This was pointed out from this physical argument in
Gadde, Pomoni, Rastelli, and Razamat [2010], and completely independently studied and
proved in a mathematical work van de Bult [2011].

By applying the functor VOA, we have the equality

(4-38) VOA(SSU(2);0;4) = SB[Va ˝C Vb ˝C Vx ˚ Vy ˝C Vc ˝C Vd ]/SU(2):

There is a simple physics argument that the left hand side is just ŝo(8)�2. Then the equality
above is a new free-field construction of this particular vertex operator algebra based on
the affine Lie algebra, which remains to be proven.

Class S theories of general type: In general, we have the relation

(4-39) SG;0;4 = (TG � TG)/�/�/�G;

where TG = SG;0;3 as we defined above. The left hand side is symmetric under G4

together with S4 permuting four factors of G. The right hand side is symmetric under G4,
but only a subgroup (S2 � S2) Ì S2 � S4 permuting four factors of G is manifest.

By applying the functors MHiggs or V OA, we are led to the following conjectures. Let
XG = MHiggs(TG), a hyperkähler cone with G3 action, and VG = VOA(TG), a vertex
operator algebra with a ĝ3 subalgebra. They satisfy the following:

• (XG � XG)///G is a hyperkähler cone with G4 action together with S4 permuting
four factors of G.

• (VG ˝ VG)/G is a vertex operator algebra with ĝ˚4 subalgebra with S4 permuting
four factors of ĝ.

• XG = avarVG .



ON ‘CATEGORIES’ OF QUANTUM FIELD THEORIES 2749

In addition, there is a way to determine ZSCI
p=0;q;t (TG) explicitly using the theory of

Macdonald polynomials. By taking a further limit q = t or q = 0, t = �2, we see the
properties

chXG(z1; z2; z3) =
X

�

Q
i=1;2;3 K0(zi )H �(zi )

KeprinH �(q
�)

(4-40)

chVG(z1; z2; z3) =
X

�

Q
i=1;2;3 K0(zi )��(zi )

Keprin��(q�)
(4-41)

where � runs over all irreducible representation of G, ��(z) is the character in that repre-
sentation, and H �(z) = N�H�(z) where H�(z) is the standard Hall-Littlewood polyno-
mial of type G and N� is a normalization constant so that H � is orthonormal under the
following measure:

(4-42) ı�� =
1

jWG j

Z
T r

H �(z)H �(1/z)
1

(1 � �2)r

Y
˛:roots of G

1 � z˛

1 � �2z˛

rY
i=1

dzi

2�
p

�1zi

:

Finally, we should have

XSU(3N ) o [N 3]; [N 3]; [N 3] = Minst
E6;N ;(4-43)

XSU(4N ) o [2N; 2N ]; [N 4]; [N 4] = Minst
E7;N ;(4-44)

XSU(6N ) o [3N; 3N ]; [2N; 2N; 2N ]; [N 6] = Minst
E8;N ;(4-45)

and

VSU(3) = (ê6)�6(4-46)

VSU(4) o [2; 2]; [14]; [14] = (ê7)�8(4-47)

VSU(6) o [3; 3]; [2; 2; 2]; [16] = (ê8)�12(4-48)

where the last three equations follow from the property of the Minahan-Nemeschansky
theory.

The properties satisfied by XG were already given in Moore and Tachikawa [2011]
in a slightly different language, as a 2d topological QFT taking values in the category
of holomorphic symplectic varieties. Such XG has now been constructed in Ginzburg
and Kazhdan [n.d.] and Braverman, Finkelberg, and Nakajima [2017] as holomorphic
symplectic varieties. The construction of the vertex operator algebras VG satisfying these
relations is also announced Arakawa [2018].
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Instantons and W-algebras: Finally a brief remark is made about the conjecture that
the direct sum HG := ˚nH �

G(Minst
G;n) of the equivariant cohomology of the instanton

moduli space of simply-laced group G has an action of the W-algebra of the correspond-
ing type, originally made in Alday, Gaiotto, and Tachikawa [2010], and now proved by
Schiffmann and Vasserot [2012], Maulik and Okounkov [2012], and Braverman, Finkel-
berg, and Nakajima [2014], from the point of view of the present note.

The essential point is that there is an another functor ZNek defined on Qc(G) taking
values in HG , such that a family of objects in Qc(G) parameterized by M is sent to a
section of an HG bundle over M. When M = Mg;n as in the class S theory, this has a
natural relationship with the theory of the 2d conformal blocks. A consideration in this
line of thought naturally leads to the conjecture that HG has to have the action of the W-
algebra of type G. More details can be found in the longer version of this article on the
author’s webpage.
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Abstract
Stochastic interface dynamics serve asmathematicalmodels for diverse time-dependent

physical phenomena: the evolution of boundaries between thermodynamic phases,
crystal growth, random deposition... Interesting limits arise at large space-time scales:
after suitable rescaling, the randomly evolving interface converges to the solution of
a deterministic PDE (hydrodynamic limit) and the fluctuation process to a (in general
non-Gaussian) limit process. In contrast with the case of (1 + 1)-dimensional mod-
els, there are very few mathematical results in dimension (d + 1); d � 2. As far
as growth models are concerned, the (2 + 1)-dimensional case is particularly inter-
esting: Dietrich Wolf in 1991 conjectured the existence of two different universality
classes (called KPZ and Anisotropic KPZ), with different scaling exponents. Here,
we review recent mathematical results on (both reversible and irreversible) dynamics
of some (2 + 1)-dimensional discrete interfaces, mostly defined through a mapping
to two-dimensional dimer models. In particular, in the irreversible case, we discuss
mathematical support and remaining open problems concerning Wolf’s conjecture on
the relation between the Hessian of the growth velocity on one side, and the univer-
sality class of the model on the other.

1 Introduction

Many phenomena in nature involve the evolution of interfaces. A first example is related
to phenomena of deposition on a substrate, in which case the interface is the boundary of
the deposed material: think for instance of crystal growth by molecular beam epitaxy or,
This work was partially funded by the ANR-15-CE40-0020-03 Grant LSD, by the CNRS PICS grant “Inter-

faces aléatoires discrètes et dynamiques de Glauber” and byMIT-France Seed Fund “Two-dimensional Interface
Growth and Anisotropic KPZ Equation”.
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closer to everyday experience, of the growth of a layer of snow during snowfall (see e.g.
Barabási and Stanley [1995] for a physicist’s introduction to growth phenomena). Another
example is the evolution of the boundary between two thermodynamic phases of matter.
Think of a block of ice immersed in water: the shape of the ice block, hence the water/ice
boundary, changes with time and of course the dynamics is very different according to
whether temperature is above, below or exactly at 0 ıC.

A common feature of these examples is that on macroscopic (i.e. large) scales the in-
terface evolution appears to be deterministic, while a closer look reveals that the interface
is actually rough and presents seemingly random fluctuations (this is particularly evident
in the snow example, since snowflakes have a visible size).

To try tomodel mathematically such phenomena, a series of simplifications are adopted.
First, the so-called effective interface approximation: the d -dimensional interface in (d +

1)-dimensional space is modeled as a height function h : x 2 Rd 7! hx(t) 2 R, where
hx(t) gives the height of the interface above point x at time t (think of d = 2 in the case of
snow falling on your garden, but d = 1 for instance for snow falling and sliding down on
your car window). This approximation implies that one ignores the presence of overhangs
in the interface. (More often than not, the model is discretized and Rd ;R are replaced by
Zd ;Z.) Secondly, in the usual spirit of statistical mechanics, the complex phenomena
leading to microscopic interface randomness (e.g. chaotic motion of water molecules in
the case of the ice/water boundary, or the various atmospheric phenomena determining
the motion of individual snowflakes) are simplified into a probabilistic description where
the dynamics of the height function is modeled by a Markov chain with simple, “local”,
transition rules.

We already mentioned that on macroscopic scales the interface evolution looks deter-
ministic: this means that rescaling space as ��1x, height as �h and time as ��˛t (we
will discuss the scaling exponent ˛ > 0 later) and letting � ! 0, the random function
�h��1x(�

�˛t) converges to a deterministic function �(x; t) that in general is the solution
of a certain non-linear PDE. This is called the hydrodynamic limit and is the analog of a
law of large numbers for the sum of independent random variables. When we say that
convergence holds, it does not mean it is easy to prove it or even to write down the PDE
explicitly. Indeed, as discussed in more detail in the following sections, above dimension
(d + 1) = (1 + 1) the hydrodynamic limit has been proved only for a handful of models,
and one of the goals of this review is to report on recent results for d = 2.

On a finer scale, the interface fluctuations around the hydrodynamic limit are expected
to converge, after proper rescaling, to a limit stochastic process, not necessarily Gaussian.
In some situations, but not always, this is described via a Stochastic PDE. Again, while
much is now known about (1+1)-dimensional models (for one-dimensional growth mod-
els and their relation with the so-called KPZ universality class, we refer to the recent
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reviews Corwin [2012] and Quastel [2012]), results are very scarce in higher dimension
and we will present some recent ones for d = 2.

Before entering into more details of the models we consider, it is important to distin-
guish between two very different physical situations. In the case of deposition phenom-
ena, the interface grows irreversibly and asymmetrically in one direction (say, vertically
upward). The same is the case for the ice/water example if temperature is not 0 ıC: for
instance if T > 0 ıC then ice melts and the water phase eventually invades the whole
space. In these situations, the Markov process modeling the phenomenon is irreversible
and the correct scaling for the hydrodynamic limit is the so-called hyperbolic or Eulerian
one: the scaling exponent ˛ introduced above equals 1. The situation is very different for
the ice/water example exactly at 0 ıC: in this case, the two coexisting phases are at thermal
equilibrium and none is a priori favored. If the ice block occupied a full half-space then
the flat water/ice interface would macroscopically not move and indeed a finite ice cube
evolves only thanks to curvature of its boundary. In terms of hydrodynamic limit, one
needs to look at longer time-scales than the Eulerian one: more precisely, one needs to
take time of order ��˛; ˛ = 2 (diffusive scaling).

We will discuss in more detail the Eulerian and diffusive cases, together with the new
results we obtained for some (2+1)-dimensional models, in Sections 2 and 3 respectively.
A common feature of all our recent results is that the interface dynamics we analyze can
be formulated as dynamics of dimer models on bipartite planar graphs, or equivalently of
tilings of the plane. See Figure 1 for a randomly sampled lozenge tiling of a planar domain.

Such models have a family of translation-invariant Gibbs measures, with an integrable
(actually determinantal) structure Kenyon [2009], that play the role of stationary states for
the dynamics.

2 Stochastic interface growth

In a stochastic growth process, the height function h(t) = fhx(t)gx2Zd evolves asym-
metrically, i.e. has an average non-zero drift, say positive. For instance, growth can
be totally asymmetric: only moves increasing the height are allowed. It is then obvious
that such Markov chain cannot have an invariant measure. One should look at interface
gradients rh(t) = fhx(t) � hx0(t)gx2Zd instead, where x0 is some reference site (say
the origin). Since the growth phenomenon we want to model satisfies vertical transla-
tion invariance, the transition rate at which hx jumps, say, to hx + 1 depends only on
the interface gradients (say, the gradients around x) and not on the absolute height h(t).
Therefore, the projection of the Markov chain h(t) obtained by looking at the evolution
of rh(t) is still a Markov chain. For natural examples one expects that given a slope
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Figure 1: A random, uniformly chosen, lozenge tiling of a hexagon Λ� of diameter
��1. As � ! 0, the corresponding random interface presents six “frozen regions”
near the corners and a “liquid region” inside the arctic circle Cohn, Larsen, and
Propp [1998].
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hx

x

Figure 2: In the corner-growth process, heights increase by 1, with transition rate
equal to 1, at local minima. Interpreting a negative gradient hx+1 �hx as a particle
and a negative one as a hole, the dynamics of the gradients is the TASEP: particles
try independently length-1 jumps to the right, with rate 1, subject to an exclusion
constraint (at most one particle per site is allowed).

� 2 Rd , there exists a unique translation-invariant stationary state �� for the gradients,
with the property that ��(hx+ei

�hx) = �i ; i = 1; : : : ; d . A very well known example is
the (1 + 1)-dimensional corner growth model: the evolution of interface gradients is just
the 1-dimensional Totally Asymmetric Simple Exclusion (TASEP), whose invariant mea-
sures are iid Bernoulli product measures labelled by the particle density �. See Figure 2.

If the initial height profile is sampled from �� (more precisely, the height gradients are
sampled from ��, while the height hx0 is assigned some arbitrary value, say zero), then
on average the height increases exactly linearly with time:

E��
(hx(t) � hx(0)) = v(�)t; v(�) > 0:(2-1)

Now suppose that the initial height profile is instead close to some non-affine profile �0,
i.e.

�h��1x

�!0
! �0(x); 8x 2 R:(2-2)

Then, one expects that, under so-called hyperbolic rescaling of space-time where x !

��1x; t ! ��1t , one has

�h��1x(�
�1t)

P
�!
�!0

�(x; t)(2-3)

where �(x; t) is non-random and solves the first order PDE of Hamilton-Jacobi type

@t�(x; t) = v(r�(x; t))(2-4)

with v(�) the same function as in (2-1). A couple of remarks are important here:
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• Unless v(�) is a linear function (which is a very uninteresting case), the PDE (2-4)
develops singularities in finite time. Then, one expects �(x; t) to solve (2-4) in the
sense of vanishing viscosity.

• Viscosity solutions of (2-4) are well understood when v(�) is convex, since they
are given by the variational Hopf-Lax formula. However, there is no fundamental
reason why v(�) should be convex (this will be an important point in next section).
Then, much less is known on the analytic side, aside from basic properties of exis-
tence and uniqueness.

• The example of the TASEP is very special in that invariant measures �� are explic-
itly known. One should keep in mind that this is an exception rather than the rule
and that most examples with known stationary measures are (1 + 1)-dimensional.
As a consequence, the function v(�) in (2-4) is in general unknown.

Next, let us consider fluctuations in the stationary process started from ��. On heuristic
grounds, one expects height fluctuations ĥx(t) with respect to the average, linear, height
profileE��

(hx(t)) = h�; xi+v(�)t to be somehow described, on large space-time scales,
by a stochastic PDE (KPZ equation) of the type Kardar, Parisi, and Zhang [1986]

@t (x; t) = �∆ (x; t) + hr (x; t);H�r (x; t)i + �(x; t);(2-5)

where:

• the Laplacian is a diffusion term that tends to locally smooth out fluctuations and
� > 0 is a model-dependent constant;

• the d�d symmetric matrixH� is the Hessian of the function v(�) computed at � and
h�; �i denotes scalar product in Rd . This non-linear term comes just from expanding
to second order1 the hydrodynamic PDE (2-4) around the flat solution of slope �.

• �(x; t) is a space-time noise that models the randomness of the Markov evolution.
It is well known that Eq. (2-5) is extremely singular if � is a space-time white
noise (Hairer’s theory of regularity structures Hairer [2014] gives a meaning to the
equation for d = 1 but not for d > 1). Since however we are interested in properties
on large space-time scales and since lattice models have a natural “ultraviolet” space
cut-off of order 1 (the lattice spacing), we can as well imagine that the noise is not
white in space and its correlation function has instead a decay length of order 1.
As a side remark, in the physics literature (e.g. Kardar, Parisi, and Zhang [1986],

1The first-order term hrv(�);r (x; t)i in the expansion is omitted because it can be absorbed into @t 

via a linear (Galilean) transformation of space-time coordinates.
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Wolf [1991], and Barabási and Stanley [1995]) the presence of a noise regularization
in space is implicitly understood, and explicitly used in the renormalization group
computations: this is the cut-off Λ = 1 that appears e.g. in Barabási and Stanley
[1995, App. B].

One should not take the above conjecture in the literal sense that the law of the space-
time fluctuation process ĥx(t) converges to the law of the solution of (2-5). Only the
large-scale correlation properties of the two should be asymptotically equivalent.

For (1 + 1)-dimensional models like the TASEP and several others, a large amount of
mathematical results by now supports the following picture2: starting say with the deter-
ministic condition hx(0) � 0, the standard deviation of hx(t) grows as tˇ ; ˇ = 1/3, the
space correlation length grows like t1/z , where z = 3/2 is the so-called dynamic exponent
and the fluctuation field ĥx(t) rescaled accordingly tends as t ! 1 to a (non-Gaussian)
limit process. We do not enter into any more detail for (1 + 1)-dimensional models of
the KPZ class here, see for instance the reviews Quastel [2012] and Corwin [2012]; let us
however note that this behavior is very different from the (Gaussian) one of the stochastic
heat equation with additive noise (called “Edwards-Wilkinson equation” in the physics
literature), obtained by dropping the non-linear term in (2-5).

On the other hand, for (d + 1)-dimensional models, d � 3, renormalization group
computations Kardar, Parisi, and Zhang [1986] applied to the stochastic PDE (2-5) suggest
that, if the non-linear term is sufficiently small (in terms of the microscopic growth model:
if the speed function v(�) is sufficiently close to an affine function) then non-linearity
is irrelevant, meaning that the large-scale fluctuation properties of the model (or of the
solution of (2-5)) are asymptotically the same as those of the stochastic heat equation:
these models belong to the so-called Edwards-Wilkinson universality class. There is very
recent mathematical progress in this direction: indeed, Magnen and Unterberger [2017]
states that for d � 3 the solution of (2-5) tends on large space-time scales to the solution of
the Edwards-Wilkinson equation, ifH� = �I with I the d �d identity matrix and � small
enough. See also Gu, Ryzhik, and Zeitouni [2017] where similar results are stated for
the d � 3 dimensional stochastic heat equation with multiplicative noise, that is obtained
from (2-5) via the Cole-Hopf transform.

The situation is richer in the borderline case of the critical dimension d = 2, to which
the next two sections are devoted.

2.1 (2 + 1)-dimensional growth: KPZ and Anisotropic KPZ (AKPZ) classes. For
(1 + 1)-dimensional models, the non-linear term in (2-5) equals v00(�)(@x (x; t))

2: mul-
tiplying  by a suitable constant, we can always replace v00(�) ¤ 0 by a positive constant.

2As (2-5) suggests, for the following to hold one needs v00(�) ¤ 0, otherwise the fluctuation process should
be described simply the linear stochastic heat equation with additive noise.
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The picture is richer for d > 1, and in particular in the case d = 2 we consider here. In
fact, one should distinguish two cases:

1. (Isotropic) KPZ class: det(H�) > 0 (strictly);

2. Anisotropic KPZ (AKPZ) class: det(H�) � 0.

According to whether a growth model has a speed function v(�) whose Hessian satisfies
the former or latter condition, the large-scale behavior of its fluctuations is conjectured to
be very different.

The isotropic KPZ class is the one considered in the original KPZ work Kardar, Parisi,
and Zhang [1986]. In this case, perturbative renormalization-group arguments3 suggest
that fluctuations of hx(t) (or of the solution (x; t) of (2-5)) grow in time like tˇ and that,
in the stationary states, fluctuations grow in space as Var��

(hx�hy) ∼ jx�yj2˛ , with two
exponents ˇ > 0; ˛ = 2ˇ/(ˇ+1) that are different from those of the Edwards-Wilkinson
equation: non-linearity is said to be relevant4. The Edwards-Wilkinson equation can be
solved explicitly and in two dimensions one finds ˛EW = ˇEW = 0 (growth in time and
space is only logarithmic; the stationary state is the (log-correlated) massless Gaussian
field). The values of ˛; ˇ for the isotropic KPZ equation cannot be guessed by pertur-
bative renormalization-group arguments and they are accessible only through numerical
experiments (see discussion below). Note that ˛ > 0means that stationary height profiles
are much rougher than a lattice massless Gaussian field.

TheAnisotropic KPZ case was analyzed later byWolf [1991] with the same renormal-
ization group approach and the result came out as a surprise: non-linearity turns out to be
non-relevant in this case, i.e., the growth exponents ˛; ˇ are predicted to be 0 as for the
Edwards-Wilkinson equation.

Let us summarize this discussion into a conjecture:

Conjecture 2.1. Let v(�) be the speed function of a (reasonable) (2 + 1)-dimensional
growth model. If det(H�) > 0 with H� the Hessian of v(�) computed at �, then height
fluctuations grow in time as tˇ for some model-independent ˇ > 0 and height fluctuations
in the stationary states grow as distance to the power 2ˇ/(ˇ+1). If instead det(H�) � 0,
then ˇ = ˛ = 0 and the stationary states have the same height correlations in space as a
massless Gaussian field.

3“perturbative” here means that, if we imagine that the non-linear term in (2-5) has a prefactor �, then one
expands the solution around the linear � = 0 case, keeping only terms up to orderO(�2).

4 The relation ˛ = 2ˇ/(ˇ + 1) is another way of writing a scaling relation between exponents that is
usually written as ˛ + z = 2 where z = ˛/ˇ . Here z is the so-called dynamic exponent that equals 3/2 for
one-dimensional KPZ models.
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Figure 3: Left: The time evolution of a positive bump under equation (2-6), when
det(H�) > 0. The height∆h of the bump is constant in time while its width grows
as t1/2. Right: a negative bump, on the other hand, develops a cusp and its height
decreases as 1/t . This figure is taken from Prähofer [2003].

Let us review the evidence in favor of this conjecture, apart from the renormalization-
group argument of Kardar, Parisi, and Zhang [1986] andWolf [1991] that does not provide
much intuition and seems very hard to be turned into a mathematical proof:

1. A somewhat rough but suggestive argument that sheds some light on Conjecture 2.1
is given in Prähofer [2003, Sec. 2.2]. One imagines that in the evolution of the
fluctuation field  there are two effects. Thermal noise adds random positive or
negative “bumps”, at random times, to the initially flat height profile; each bump
then evolve following the hydrodynamic equation, expanded to second order:

@t = hr (x; t);H�r (x; t)i:(2-6)

It is not hard to convince oneself that, under (2-6), if both eigenvalues of H� are,
say, strictly positive, then a positive bump grows larger with time and a negative
bump shrinks (the reverse happens if the eigenvalues ofH� are both negative). See
Figure 3. On the other hand, if det(H�) < 0 (so that the eigenvalues of H� have
opposite signs) then a positive bump spreads in the direction where the curvature of
v(�) is positive, but its height shrinks because of the concavity of v(�) in the other
direction (the same argument applies to negative bumps). Then, it is intuitive that
when det(H�) < 0 height fluctuations should grow slower with time than when
det(H�) > 0, where the effects of spreading positive bumps accumulate.

2. There exist some growth models that satisfy a so-called “envelope property”, say-
ing essentially that given two initial height profiles fh

(j )
x gx2Zd ; j = 1; 2, one

can find a coupling between the corresponding profiles fh
(j )
x (t)gx2Zd at time t
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such that the evolution started from the profile ȟ := fmax(h(1)x ; h
(2)
x )gx2Zd equals

ȟ(t) = fmax(h(1)x (t); h
(2)
x (t))gx2Zd . One example is the (2 + 1)-dimensional

corner-growth model analogous to that of Figure 2 except that the interface is two-
dimensional and unit cubes instead of unit squares are deposed with rate one on it.
For growth models satisfying the envelope property, a super-additivity argument
implies that the hydrodynamic limit (2-3) holds and moreover that the function v(�)
in (2-4) is convex Seppäläinen [2000] and Rezakhanlou [2002]. While for (2 + 1)-
dimensional models in this class the stationary measures �� and the function v(�)
cannot be identified explicitly, convexity implies (at least in the region of slopes
where v(�) is smooth and strictly convex) that det(H�) > 0: these models must be-
long to the isotropic KPZ class. The (2+1)-dimensional corner-growth model was
studied numerically in Tang, Forrest, and Wolf [1992] and it was found, in agree-
ment with Conjecture 2.1, that ˇ ' 0:24 (the numerics is sufficiently precise to rule
out the value 1/4 which was conjectured in earlier works). The same value for ˇ
is found numerically Halpin-Healy and Assdah [1992] from direct simulation of (a
space discretization of) the stochastic PDE (2-5) with det(H�) > 0.

3. For models in the AKPZ class there is no chance to get the hydrodynamic limit by
simple super-additivity arguments since, as we mentioned, v(�) would turn out to
be convex. On the other hand, as we discuss in more detail in next section, there
exist some (2 + 1)-dimensional growth models for which the stationary measures
�� can be exhibited explicitly, and they turn out to be of massless Gaussian type,
with logarithmic growth of fluctuations: ˛ = 0. For such models, one can prove
also that ˇ = 0 and one can compute the speed function v(�). In all the known
examples, a direct computation shows that det(H�) < 0, as it should according to
Conjecture 2.1.

Remark 2.2. Let us emphasize that, in general, it is not possible to read a priori, from
the generator of the process, the convexity properties of the speed function v(�), and there-
fore its universality class. This is somehow in contrast with the situation in equilibrium
statistical mechanics, where usually the universality class of a model can be guessed from
symmetries of its Hamiltonian. It is even conceivable, though we are not aware of any
concrete example, that there exist growth models for which the sign of det(H�) depends
on �.

2.2 Mathematical results for Anisotropic KPZ growth models. As we already men-
tioned, there are no results other than numerical simulations or non-rigorous arguments
supporting the part of Conjecture 2.1 concerning the isotropic KPZ class. Fortunately, the
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Figure 4: A perfect matching of the hexagonal lattice (left) and the corresponding
lozenge tiling (right). Near each lozenge vertex is given the height of the interface
w.r.t. the horizontal plane. For clarity let us emphasize that, while we draw only a
finite portion of the matching/tiling, one should imagine that it extends to a match-
ing/tiling of the infinite graph/plane.

situation is much better for the AKPZ class, which includes several models that are to
some extent “exactly solvable”.

Several of the AKPZmodels for which mathematical results are available have a height
function that can be associated to a two-dimensional dimer model (an exception is the
Gates-Westcott model solved by Prähofer and Spohn [1997]). Let us briefly recall here a
few well-known facts on dimer models (we refer to Kenyon [2009] for an introduction).
For definiteness, we will restrict our discussion to the dimer model on the infinite hexag-
onal graph but most of what we say about the height function and translation-invariant
Gibbs states extends to periodic, two-dimensional bipartite graphs (say, Z2). A (fully
packed) dimer configuration is a perfect matching of the graph, i.e., a subsetM of edges
such that each vertex of the graph is contained in one and only one edge in M ; as in
Figure 4, in the case of the hexagonal graph the matching can be equivalently seen as a
lozenge tiling of the plane and also as a monotone discrete two-dimensional interface in
three dimensional space. “Monotone” here means that the interface projects bijectively
on the plane x + y + z = 0. The height function is naturally associated to vertices of
lozenges, i.e. to hexagonal faces. We will use the dimer, the tiling or the height func-
tion viewpoint interchangeably. If on the graph we choose coordinates x = (x1; x2)

according to the axes e1; e2 drawn in Figure 4, it is easy to see that the overall slope
� = (�1; �2) of the interface must belong to the triangle T � R2 defined by the inequal-
ities 0 � �1 � 1; 0 � �2 � 1; 0 � �1 + �2 � 1. It is known that, given � in the interior
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Figure 5: Each particle (or horizontal lozenge) p is constrained between its four
neighboring particles p1; : : : p4. The three positions particle p can jump to (with
rate 1) in the Borodin-Ferrari dynamics are dotted.

of T , there exists a unique translation-invariant ergodic Gibbs state �� of slope �. That is,
�� is a (translation invariant, ergodic) probability measure on dimer configurations of the
infinite graph, such that the average height slope is � and such that, conditionally on the
configuration outside any finite domainΛ, the law of the configuration insideΛ is uniform
over all dimer configurations compatible with the outside (DLR condition). In fact, much
more is known: as a consequence of Kasteleyn’s theory Kasteleyn [1961], such measures
have a determinantal representation. That is, the probability of a cylindrical event of the
type “k given edges are occupied by dimers” is given by the determinant of a k�k matrix,
whose elements are the Fourier coefficients of an explicit function on the two-dimensional
torus f(z; w) 2 C2 : jzj = jwj = 1g Kenyon, Okounkov, and Sheffield [2006]. Thanks to
this representation, much can be said about large-scale properties of the measures ��. No-
tably, correlations decay like the inverse distance squared and the height function scales
to a massless Gaussian field with logarithmic covariance structure.

Now that we have a nice candidate for a (2 + 1)-dimensional height function, we go
back to the problem of defining a growth model that would hopefully be mathematically
treatable and shed some light on Conjecture 2.1. To this purpose, let us remark first of
all that, to a lozenge tiling as in Figure 4, one can bijectively associate a two-dimensional
system of interlaced particles. For this purpose, we will call “particles” the horizontal (or
blue) lozenges (the positions of the others are uniquely determined by these) and we note
that particle positions along a vertical column are interlaced with those of the two neigh-
boring columns. See Figure 5. A first natural candidate for a growth process would be
the following immediate generalization of the TASEP: each particle jumps +1 vertically,
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with rate 1, provided the move does not violate the interlacement constraints. Actually,
this is nothing but the three-dimensional corner-growth model. As we already mentioned,
this should belong to the isotropic KPZ class and its stationary measures �� should be
extremely different from the Gibbs measures ��, with a power-like instead of logarith-
mic growth of fluctuations in space. Unfortunately, none of this could be mathematically
proved so far.

In the work Borodin and P. L. Ferrari [2014], they considered instead another totally
asymmetric growthmodel where each particle can jump an unbounded distance n upwards,
with rate independent of n (say, rate 1), provided the interlacements are still satisfied after
the move. See Figure 5. The situation is then entirely different with respect to the corner-
growth process: the two processes belong to two different universality classes. If the
initial condition of the process is a suitably chosen, deterministic, fully packed particle
arrangement (see Fig. 1.1 in Borodin and P. L. Ferrari [ibid.]), it was shown that the
height profile rescaled as in (2-3) does converge to a deterministic limit �(�; t), that solves
the Hamilton-Jacobi equation (2-4) with

v(�) =
1

�

sin(��1) sin(��2)
sin(�(�1 + �2))

:(2-7)

A couple of remarks are important for the subsequent discussion:

• with the initial condition chosen in Borodin and P. L. Ferrari [ibid.], �(x; t) turns
out to be a classical solution of (2-4). That is, the characteristic lines of the PDE
do not cross at positive times (we emphasize that this is due to the specific form of
the chosen initial profile and not to the form of v(�)).

• An explicit computation shows that det(H�) < 0 for the function (2-7): this growth
model is then a candidate to belong to the AKPZ class.

As mentioned in Remark 2.2 above, let us emphasize that we see no obvious way to guess
a priori that the corner growth process and the “long-jump” one should belong to different
universality classes.

Various other results were proven in Borodin and P. L. Ferrari [ibid.], but let us mention
only two of them, that support the conjecture that this model indeed belongs to the AKPZ
class:

1. the fluctuations of h��1x(�
�1t) around its average value are of order

p
log 1/� (the

growth exponent is ˇ = 0) and, once rescaled by this factor, they tend to a Gaussian
random variable;

2. the local law of the interface gradients at time ��1t around the point ��1x tends to
the Gibbs measure �� with � = r�(x; t).
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Remark 2.3. The basic fact behind the results of Borodin and P. L. Ferrari [2014] is that
for the specific choice of initial condition, one can write Borodin and P. L. Ferrari [ibid.,
Th. 1.1] the probability of certain events of the type “there is a particle at position xi at
time ti ; i � k” as a k � k determinant, to which asymptotic analysis can be applied. The
same determinantal properties hold for other “integrable” initial conditions, but they are
not at all a generic fact.

Point (2) above clearly suggests that the Gibbs measures �� should be stationary states for
the interface gradients. In fact, this is a result I later proved:

Theorem 2.4. Toninelli [2017, Th. 2.4] For every slope � in the interior ofT , the measure
�� is stationary for the process of the interface gradients.

Recall that, as discussed above, the Gibbs measures �� of the dimer model have the
large-scale correlation structure of a massless Gaussian field and indeed Conjecture 2.1
predicts that stationary states of AKPZ growth processes behave likemassless fields. Most
of the technical work in Toninelli [ibid.] is related to the fact that, since particles can
perform arbitrarily long jumps with a rate that does not decay with the jump length, it is
not clear a priori that the process exists at all: one can exhibit initial configurations such
that particles jump to+1 in finite time (this issue does not arise in the work Borodin and
P. L. Ferrari [2014] where, thanks to the chosen initial condition, there is no difficulty in
defining the infinite-volume process). In Toninelli [2017] it is shown via a comparison
with the one-dimensional Hammersley process Seppäläinen [1996] that, for a typical initial
condition sampled from ��, particles jump almost surely a finite distance in finite time and
that, despite the unbounded jumps, perturbations do not spread instantaneously through
the system. This means that if two initial configurations differ only on a subset S of the
lattice, their evolutions can be coupled so that at finite time t they are with high probability
equal sufficiently far away from S (how far, depending on t ).

To follow the general program outlined above, once the stationary states are known, one
would like to understand the growth exponent ˇ for the stationary process. We proved the
following, implying ˇ = 0:

Theorem 2.5. Toninelli [2017, Th. 3.1] For every lattice site x, we have

lim sup
t!1

P��

�
jhx(t) � E��

(hx(t))j � u
p
log t

�
u!1
�! 0(2-8)

where

E��
(hx(t)) = v(�)t + hx; �i:(2-9)

To be precise:
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• in the statement of Toninelli [ibid., Th. 3.1] there is a technical restriction on the
slope �, that was later removed in joint work with Chhita, P. L. Ferrari, and Toninelli
[2017];

• the proof that the speed of growth v(�) in (2-9) is the same as the function v(�) in
(2-7), as it should, was obtained by Chhita and P. Ferrari [2017] and requires a nice
combinatorial property of the Gibbs measures ��.

With reference to Remark 2.3 above, it is important to emphasize that there is no known
determinantal form for the space-time correlations of the stationary process; for the proof
of (2-8) we used a more direct and probabilistic method.

Finally, it is natural to try to obtain a hydrodynamic limit for the height profile. Recall
that in Borodin and P. L. Ferrari [2014] such a result was proven for an “integrable” initial
condition that allowed to write certain space-time correlations, and as a consequence the
average particle currents, in determinantal form. On the other hand, convergence to the
hydrodynamic limit should be a very robust fact and not rely on such special structure. We
have indeed:

Theorem 2.6. Legras and Toninelli [2017, Th. 3.5 and 3.6] Let the initial height profile
satisfy (2-2), with �0 a Lipshitz function with gradient in the interior of T . Let one of the
following two conditions be satisfied:

• �0 is C 2 and the time t is smaller than T , the maximal time up to which a classical
solution of (2-4) exists;

• �0 is either convex or concave (in which case we put no restriction on t ).

Then, the convergence (2-3) holds, with �(x; t) the viscosity solution of (2-4).

The restriction to either small times or to convex/concave profile is due to the fact
that we have in general little analytic control on the singularities of (2-4), due to the non-
convexity of v(�). For convex initial profile, the viscosity solution of the PDE is given by
a Hopf variational form and this allows to bypass these analytic difficulties. Let us em-
phasize, to avoid any confusion, that even in the case of convex initial profile the solution
does in general develop singularities (shocks), i.e. discontinuities in space of the gradient
r�(x; t).

Open problem 2.7. Are height fluctuations still O(
p
log t) at the location of shocks?

Another important observation is the following. Given that we know explicitly the sta-
tionary states of the process and that the dynamics is monotone (i.e, if an initial profile
is higher than another, under a suitable coupling it will stay higher as time goes on), it is
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Figure 6: A perfect matching of the square lattice and the corresponding domino
tiling (dotted). See Chhita, P. L. Ferrari, and Toninelli [2017, Fig. 2] for the defini-
tion of “particles” and their interlacing relations, and Kenyon [2009] for the defini-
tion of the height function.

tempting to try to apply the method developed by Rezakhanlou [2001], that gives under
such circumstances convergence of the height profile of a growth model to the viscosity
solution of the limit PDE. The delicate point is however that Rezakhanlou [ibid.] crucially
requires that perturbations spread at finite speed through the system, so that one can ana-
lyze the evolution “locally”, in small enough windows where the profile can be approxi-
mated by one sampled from ��, with suitably chosen slope � that depends on the window
location. Due to unboundedness of particle jumps, however, the “finite-speed propaga-
tion property” might fail in our case and in any case it cannot hold uniformly for all initial
conditions. Most of the technical work in Legras and Toninelli [2017] is indeed devoted
to proving that one can localize the dynamics despite the long jumps. A crucial fact is
that we show that the growth process under consideration can be reformulated through a
so-called Harris-like graphical construction.

2.2.1 Extensions and open problems. There are various ways how the “lozenge tiling
dynamics with long particle jumps” of previous section can be generalized to provide other
(2 + 1)-dimensional growth processes in the AKPZ class. One such generalization was
given in Toninelli [2017, Sec. 3.1]. There, one starts with the observation that: (i) as
was the case for lozenge tilings, also domino tilings of Z2 (dominoes being 2 � 1 rectan-
gles, horizontal or vertical, see Figure 6) have a natural height function interpretation, and
(ii) a domino tiling can be bijectively mapped to a two-dimensional system of interlaced
particles (interlacement constraints are different than in lozenge case).
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This suggests a growth process where particles jump in an asymmetric fashion and the
transition rate is independent of the jump length, jumps being limited only by the inter-
lacement constraints. Then, the same results that were proven for the lozenge dynamics
(notably, stationarity of the Gibbs measures, logarithmic correlations in space in the sta-
tionary states (˛ = 0) and logarithmic growth of fluctuations in the stationary process
implying ˇ = 0) hold in this case too. The speed of growth v(�) for the domino dynam-
ics was later computed in a joint work with Chhita, P. L. Ferrari, and Toninelli [2017, Th.
2.3]: it turns out to be rather more complicated than (2-7), but it is still an explicit function
for which one can prove with some effort that the Hessian has negative determinant, in
agreement with Conjecture 2.1.

Finally, there is yet another class of driven two-dimensional interlaced particle systems,
that was introduced in Borodin, Bufetov, and Olshanski [2015]. While these have rather
a group-theoretic motivation, these processes can also be viewed as (2 + 1)-dimensional
growth models and actually the main result of Borodin, Bufetov, and Olshanski [ibid.] can
be seen as a hydrodynamic limit for the height function Borodin, Bufetov, and Olshanski
[ibid., Sec. 3.3]. Once again, direct inspection of the Hessian of the velocity function
shows that these models belong to the AKPZ class5, so these provide other natural can-
didates where Wolf’s prediction of logarithmic growth of fluctuations can be tested (the
logarithmic nature of fluctuation correlations is conjectured in Borodin, Bufetov, and Ol-
shanski [ibid.]; we are not aware of an actual proof).

In conclusion, there are now quite a few (2 + 1)-dimensional growth models in the
AKPZ class for which Wolf’s predictions in Conjecture 2.1 can be verified. There is how-
ever one aspect one may find rather unsatisfactory. Both for the lozenge tiling dynamics,
where the speed function turns out to be given by (2-7) and for its domino tiling general-
ization, where v(�) is a much more complicated-looking combination of ratios of trigono-
metric functions (see Chhita, P. L. Ferrari, and Toninelli [2017, Eq. (2.6)]) and also for
the interlaced particle dynamics of Borodin, Bufetov, and Olshanski [2015], one verifies
via brute-force computation that the Hessian ofH� of the corresponding velocity function
v(�) has negative determinant. The frustrating fact is that via the explicit computation one
does not see at all how the sign of the determinant the Hessian is related to the model being
in the Edwards-Wilkinson universality class! We are still far from having a meta-theorem
saying “if the exponents ˛ and ˇ are zero, then the determinant of the Hessian is negative”.
Up to now, we have essentially heuristic arguments and “empirical evidence” based on a
few mathematically treatable models.

5For the growth models of Borodin, Bufetov, and Olshanski [2015], the determinant of the
Hessian of the speed was computed by Weixin Chen, as mentioned in the unpublished work
http://math.mit.edu/research/undergraduate/spur/documents/2012Chen.pdf
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Open problem 2.8. It would be very interesting to prove that the Hessian of the velocity
function for the growth models just mentioned has negative determinant without going
through the explicit computation of the second derivatives. For recent progress in this
direction see Chhita and Toninelli [2018], where a complex-analytic argument is devised
to prove det(H�) < 0 for an AKPZ growth model.

2.2.2 Slow decorrelation along the characteristics. The results we discussed in Sec-
tions 2.2 and 2.2.1 (growth of fluctuation variance with time and spatial correlations in
the stationary state) concern fluctuation properties at a single time. Another question of
great interest is how fluctuations at different space-time points (xi ; ti ) are correlated. For
(1 + 1)-dimensional growth models in the KPZ class, the following picture has emerged
P. L. Ferrari [2008]: correlation decay slowly along the characteristic lines of the PDE
(2-4), and faster along any other direction. For instance, take two space-time points (x1; t1)
and (x2; t2); t1 < t2 and think of t2 large. If the two points are on the same characteristic
line, then the height fluctuations (divided by the rescaling factor tˇi = t

1/3
i ) will be almost

perfectly correlated as long as t2 � t1 � t2. If instead the two points are not along a char-
acteristic line, then correlation will be essentially zero as soon as t2 � t1 � t

1/z
2 ; z = 3/2.

It has been conjectured P. L. Ferrari [2008] and Borodin and P. L. Ferrari [2014] that a
similar phenomenon of slow decorrelation along the characteristic lines should occur for
(2 + 1)-dimensional growth. For the AKPZ models described in the previous sections, it
is still an open problem to prove anything in this direction. In the work Borodin, Corwin,
and Toninelli [2017] in collaboration with A. Borodin and I. Corwin, we studied a growth
model that depends on a parameter q 2 [0; 1): for q = 0 it reduces to the long-jump
lozenge dynamics of Borodin and P. L. Ferrari [2014] and Toninelli [2017], while if q ! 1

and particle distances are suitably rescaled the dynamics simplifies in that fluctuations
become Gaussian. In this limit, we were able to prove that, if height fluctuations are
computed along characteristic lines, their correlations converge to those of the Edwards-
Wilkinson equation and in particular they are large as long as t2 � t1 � t2. If correlations
are computed instead along a different direction, then they are essentially zero as soon as
t2 � t1 � t

1/z
2 , where z = 2 is the dynamic exponent of the Edwards-Wilkinson equation.

3 Interface dynamics at thermal equilibrium

Let us now move to reversible interface dynamics (we refer to Spohn [1993] and Funaki
[2005] for an introduction). We can imagine that the interface is defined on a finite subset
Λ� of Zd of diameter O(��1), say the cubic box [0; : : : ; ��1]d so that after the rescaling
x = ��1�, the space coordinate � is in the unit cube. We impose Dirichlet boundary
conditions, i.e., for x 2 @Λ� the height hx(t) is fixed to some time-independent value h̄x .



(2 + 1)-DIMENSIONAL INTERFACE DYNAMICS 2769

The way to model the evolution of a phase boundary at thermal equilibrium is to take a
Markov process with stationary and reversible measure of the Boltzmann-Gibbs form (we
absorb the inverse temperature into the potential V )

�Λ�
(h) / e�1/2

P
x∼y V (hx�hy)(3-1)

where the sum runs, say, on nearest neighboring pairs of vertices. Note that the potential
V depends only on interface gradients and not on the absolute height itself: this reflects
the vertical translation invariance of the problem (apart from boundary condition effects).
A minimal requirement on V is that it diverges to+1when jhx�hy j ! 1: the potential
has the effect of “flattening” the interface and suppressing wild fluctuations, in agreement
with the observed macroscopic flatness of phase boundaries. (Much more stringent con-
ditions have to be imposed on V to actually prove any result.) Note also that the measure
�Λ�

depends on the boundary height h̄�: if h̄� is fixed so that the average slope is � 2 Rd ,
i.e. �Λ�

(hx � hx+ei
) = �i ; i � d , then we write �Λ� ;�.

There are various choices of Markov dynamics that admit (3-1) as stationary reversible
measure. A popular choice is the heat-bath or Glauber dynamics: with rate 1, indepen-
dently, each height hx(t) is refreshed and the new value is chosen from the stationary
measure �Λ�

conditioned on the values of hy(t)with y ranging over the nearest neighbors
of x. Another natural choice, when the heights are in R rather than in Z, is a Langevin-
type dynamics where each hx(t) is subject to an independent Brownian noise, plus a drift
that depends on the height differences between x and its neighboring sites, chosen so that
(3-1) is reversible.

As we mentioned, under reasonable assumptions, a diffusive hydrodynamic limit is
expected:

�h��1x(�
�2t)

P
�!
�!0

�(x; t)(3-2)

where � is deterministic. Due to the diffusive scaling of time, the PDE solved by � will
be of second order and in general non-linear:

@t�(x; t) = �(r�(x; t))

dX
i;j=1

�i;j (r�(x; t))
@2

@xi
@xj

�(x; t):(3-3)

The factors � and �i;j have a very different origin, which is why we have not written
the equation in terms of the combination �̃i;j := ��i;j instead. The slope-dependent
prefactor � > 0 is called mobility and will be discussed in a moment. As for �i;j , let the
convex function � : � 2 Rd 7! �(�) 2 R denote the surface tension of the model at
slope � Funaki [2005], i.e. minus the limit as � ! 0 of 1/jΛ�j times the logarithm of the
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normalization constant of the probability measure (3-1) when �Λ�
= �Λ�;�

. Then, �i;j
denotes the second derivative of � w.r.t. the i th and j th argument. Convexity of � implies
that the matrix f�i;j (r�)gi;j=1;:::;d is positive definite, so the PDE (3-3) is of parabolic
type. We emphasize that the surface tension, hence �i;j , are defined purely in terms of the
stationary measure (3-1). All the dependence on the Markov dynamics is in the mobility
�. Remark also that one can rewrite (3-3) in the following more evocative form:

@t�(x; t) = ��(r�(x; t))
ıF [�(�; t)]

ı�(x; t)
(3-4)

where F [�(�)] =
R
dx �(r�) is the surface tension functional and ıF /ı� denotes its

first variation. In other words, the hydrodynamic equation is nothing but the gradient flow
w.r.t. the surface tension functional, modulated by a slope-dependent mobility prefactor.

Via linear response theory one can guess aGreen-Kubo-type expression for themobility
Spohn [1993]. This turns out to be given as6 (say that the heights hx are discrete, so
that the dynamics is a Markov jump process; the formula is analogous for Langevin-type
dynamics)

�(�) = lim
�!0

1

2jΛ�j
�Λ� ;�

24 X
x2Λ�

X
n

cnx(h)n
2

35(3-5)

�

Z 1

0

dt lim
�!0

1

jΛ�j

X
x;x02Λ�

X
n;n0

E�Λ�;�

h
cnx(h(0))n c

n0

x0 (h(t))n0
i

(3-6)

where cnx(h) is the rate at which the height at x increases by n 2 Z in configuration
h, E�Λ�;�

denotes expectation w.r.t. the stationary process started from �Λ� ;� and h(t)
denotes the configuration at time t . Note that the first term involves only equilibrium
correlation functions in the infinite volume stationary measure �� = limΛ!Zd �Λ� ;�

7.
The same is not true for the second one, which involves a time integral of correlations
at different times for the stationary process. These are usually not explicitly computable
even when �� is known. It may however happen for certain models that, by a discrete
summation by parts w.r.t. the x variable,

P
x

P
n c

n
x(h) is deterministically zero, for any

configuration h: one says then that a gradient condition is satisfied (a classical example is
symmetric simple exclusion). In this case (3-6) identically vanishes and one is in a much
better position to prove convergence to the hydrodynamic equation.

6One can express � also via a variational principle, see Spohn [2012].
7For models in dimension d � 2 the law of the interface does not have a limit as � ! 0, since the variance

of hx diverges as � ! 0. However, the law of the gradients of h does have a limit and the transition rates
cn

x(h) are actually functions of the gradients of h only, by translation invariance in the vertical direction.
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For the “Ginzburg-Landau (GL)” model Spohn [ibid.] where heights hx are continu-
ous variables and the dynamics is of Langevin type, if the potential V (�) is convex and
symmetric then, in any dimension d , the gradient condition is satisfied and moreover the
remaining average in the Green-Kubo formula is immediately computed, leading to a con-
stant mobility: �(�) = 1. In this situation, Funaki and Spohn [1997] proved convergence
of the height profile to (the weak solution of) (3-3) for the GLmodel, for any d � 1. (They
look at weak solutions because for d > 1 it is not known whether the surface tension of
the GL model is C 2 and the coefficients �i;j are well defined and smooth). Until recently,
to my knowledge, there was no other known interface model in dimension d > 1 where
mathematical results of this type were available.

Before presenting our recent results for (2 + 1)-dimensional interface dynamics let us
make two important observations:

• Not only for most natural interface dynamics in dimension d > 1 one is unable to
prove a hydrodynamic convergence of the type (3-2): the situation is actually much
worse. As (3-2) suggests, the correct time-scale for the system to reach stationarity
(measured either by Trel := 1/gap(L), with gap(L) denoting the spectral gap of the
generator, or by the so-called total variation mixing time Tmix) should be of order
��2 (logarithmic corrections are to be expected for the mixing time). On the other
hand, for most natural models it not even proven that such characteristic times are
upper bounded by a polynomial of ��1! For instance, for the well-known (2 + 1)-
dimensional SOS model at low temperature, the best known upper bound for Trel
and Tmix is a rather poor O(exp(��1/2+o(1))) Caputo, Lubetzky, Martinelli, Sly,
and Toninelli [2014, Th. 3].

• In dimension d = 1, naturalMarkov dynamics of discrete interfaces are provided by
conservative lattice gases on Z (e.g. symmetric exclusion processes or zero-range
processes), just by interpreting the number of particles at site x as the interface gra-
dient hx � hx�1 at x. Similarly, conservative continuous spin models on Z trans-
late into Markov dynamics for one-dimensional interface models with continuous
heights. Then, a hydrodynamic limit for the height function follows from that for
the particle density (see e.g. Kipnis and Landim [1999, Ch. 4 and 5] for the sym-
metric simple exclusion and for a class of zero-range processes, and for instance
Fritz [1989] for the d = 1 Ginzburg-Landau model). For d > 1, instead, there is
in general no obvious way of associating a height function to a particle system on
Zd . Also, for d = 1 there are robust methods to prove that the inverse spectral gap
is Trel = O(��2), see e.g. Kipnis and Landim [1999] and Caputo [2004].

3.1 Reversible tiling dynamics, mixing time and hydrodynamic equation. In this
section, I briefly review a series of results obtained in recent years in collaboration with
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rate = 1

Figure 7: The elementary updates for the Glauber dynamics of the lozenge tiling
model correspond to the rotation of three lozenges (equivalently, three dimers)
around a hexagonal face. The transition rate is 1 both for the update and the re-
verse one. Note that in the three-dimensional corner growth model only the forward
transition would be allowed.

Pietro Caputo, Benoît Laslier and Fabio Martinelli. In these works we study (2 + 1)-
dimensional interface dynamics where the height function fhxgx2Λ�

is discrete and is
given by the height function of a tiling model, either by lozenges or by dominoes, as ex-
plained in Section 2.2. In contrast with the (2 + 1)-dimensional Anisotropic KPZ growth
models described in Section 2.2, that are also Markov dynamics of tiling models, here we
want a reversible process because we wish to model interface evolution at thermal equi-
librium. A natural candidate is the “Glauber” dynamics obtained by giving rate 1 to the
elementary rotations of tiles around faces of the graph, see Figure 7 for the case of lozenge
tilings.

In terms of the height function, elementary moves correspond to changing the height
by ˙1 at single sites. Since all elementary rotations have the same rate, the uniform
measure over the finitely many tiling configurations in Λ� is reversible. As a side remark,
this measure can be written in the Boltzmann-Gibbs form (3-1) with a potential V taking
values 0 or+1. Let us also remark that, as discussed in Caputo, Martinelli, and Toninelli
[2012], this dynamics is equivalent to the zero-temperature Glauber dynamics of the three-
dimensional Ising model with Dobrushin boundary conditions.

In agreementwith the discussion of the previous section, if the tiled region is a reasonably-
shaped domain Λ� of diameter O(��1), one expects Trel and Tmix to be � ��2 and the
height profile to converge under diffusive rescaling to the solution of a parabolic PDE.
Until recently, however, all what was known rigorously was that Trel and Tmix are upper
bounded as O(��n) for some finite n > 2!

Open problem 3.1. This polynomial upper bound was proven in Luby, Randall, and Sin-
clair [2001] for the Glauber dynamics on either lozenge or domino tiling (the same proof
works for tilings associated to the dimer model on certain graphs with both hexagonal
and square faces, as shown in Laslier and Toninelli [2015a]). The method does not seem
to work, however, for general planar bipartite graphs. For instance, a polynomial upper
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bound for Trel or Tmix of the Glauber dynamics of the dimer model on the square-octagon
graph (see Fig. 9 in Kenyon [2009]) is still unproven.

Under suitable conditions, we improved this O(��n) upper bound into an almost opti-
mal one:

Theorem 3.2 (Informal statement). If the boundary height on @Λ� is such that the average
height under the measure �Λ�

tends to an affine function as � ! 0, then Tmix and Trel are
O(��2+o(1)) Caputo, Martinelli, and Toninelli [2012] and Laslier and Toninelli [2015a].

Later Laslier and Toninelli [2015b], we proved a result in the same spirit under the sole
assumption that the limit average height profile is smooth and in particular has no “frozen
regions” Kenyon [2009].

Let us emphasize that there are very natural domains Λ� such that the average equilib-
rium height profile in the � ! 0 limit does have “frozen regions”:

Open problem 3.3. Let Λ� be the hexagonal domain of side ��1, see Figure 1. Prove
that, for the lozenge tiling Glauber dynamics, Trel and/or Tmix areO(��2+o(1)). The best
upper bound that can be extracted from Wilson [2004] plus the so-called Peres-Winkler
censoring inequalities Peres and Winkler [2013] is O(��4+o(1)).

The proofs of the previously known polynomial upper bounds on the mixing time were
based on smart and rather simple path coupling arguments Luby, Randall, and Sinclair
[2001]. To get our almost optimal bounds Caputo, Martinelli, and Toninelli [2012] and
Laslier and Toninelli [2015a,b], there are at least two new inputs:

• our proof consists in a comparison between the actual interface dynamics and an
auxiliary one that evolves on almost-diffusive time-scales � ��2+o(1) and that es-
sentially follows the conjectural hydrodynamic motion where interface drift is pro-
portional to its curvature;

• to control the auxiliary process, we crucially need very refined estimates on height
fluctuation for the equilibrium measure �Λ`

on domains of mesoscopic size ` =

��a; 1/2 � a � 1, with various types of boundary conditions.

For the Glauber dynamics with elementary moves as in Figure 7, it seems hopeless
to prove a hydrodynamic limit on the diffusive scale. In particular, no form of “gradient
condition” is satisfied. Fortunately, there exists a more friendly variant of the Glauber dy-
namics, introduced in Luby, Randall, and Sinclair [2001], where a single update consists
in “tower moves” changing the height by the same amount ˙1 at n � 0 aligned sites, as in
Figure 8. The integer n is not fixed here, in fact transitions with any n are allowed but the
transition rate decreases with n and actually it is taken to equal to 1/n. It is immediate to
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Figure 8: A “tower move” transition with n = 4 and the reverse transition. The
transition rates equal 1/n = 1/4. Note that the height decreases by 1 at four points.

verify that this dynamics is still reversible w.r.t. the uniform measure. For this modified
dynamics, together with B. Laslier we realized in Laslier and Toninelli [2017] that a mi-
croscopic summation by parts implies that the term (3-6) in the definition of the mobility
vanishes, and actually we could explicitly compute �, that turns out to be non-trivial and
non-linear:

�(�) =
1

�

sin(��1) sin(��2)
sin(�(�1 + �2))

:(3-7)

Recall that, in contrast, the mobility of the Ginzburg-Landau model is independent of the
slope Spohn [1993]. Later, in Laslier and Toninelli [2015c, Th. 2.7], we could turn our
arguments into a full proof of convergence of the height profile to the solution of the PDE:

Theorem 3.4 (Informal statement). If the initial profile �0 is sufficiently smooth, one has
for every t > 0

lim
�!0

1

jΛ�j

X
x2Λ�

E
ˇ̌
�hx(�

�2t) � �(�x; t)
ˇ̌2

= 0;(3-8)

with �(x; t) the solution of (3-3)

(For technical reasons, we had to work with periodic instead of Dirichlet boundary
conditions). A couple of comments are in order:

• As the reader may have noticed, the function (3-7) is exactly the same as the “speed
function” v(�) of the growthmodel discussed in Section 2.2, see formula (2-7). This
is not a mere coincidence. Actually, one may see this equality as an instance of the
so-called Einstein relation between diffusion and conductivity coefficients Spohn
[2012].
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• Wementioned earlier that convergence of the height profile of the Ginzburg-Landau
model to the limit PDE has been proved Funaki and Spohn [1997] only in a weak
sense. In our case, instead, we have strong convergence to classical solutions of
(3-3) that exist globally because the coefficients �(�); �i;j (�) turn out to be smooth
functions of the slope.8

• A fact that plays a crucial role in the proof of the hydrodynamic limit is that the PDE
(3-3) contracts the L2 distance D2(t) =

R
dx(�(1)(x; t) � �(2)(x; t))2 between

solutions. I believe this is not a trivial or general fact: in fact, to prove contraction
Laslier and Toninelli [2015c], we use the specific form (3-7) of � and the explicit
expression of �i;j for the dimer model. (Note that if the mobility were constant, as
it is for the Ginzburg-Landau model,L2 contraction would just be a consequence of
convexity of the surface tension � ). I think it is an intriguing question to understand
whether the identities (see Laslier and Toninelli [ibid., Eqs. (6.19)-(6.22)]) leading
to dD2(t)/dt � 0 have any thermodynamic interpretation.

To conclude this review, let us mention that new dynamical phenomena, taking place
on time-scales much longer than diffusive, can occur at low temperature, for interface
models undergoing a so-called “roughening transition”. That is, up to now we considered
situations where the equilibrium Gibbs measure for the interface in a ��1 � ��1 box Λ�
scales to a massless Gaussian field as � ! 0 and in particular Var�Λ�

(hx) � log(1/�) if
x is, say, the center of the box. The interface is said to be “rough” in this case, because
fluctuations diverge as � ! 0. For some interface models, notably the well-known Solid-
on-Solid (SOS) model where the potential V in (3-1) equals T �1jhx � hy j and heights
are integer-valued and fixed to 0 around the boundary, it is known that at low enough
temperature T the interface is instead rigid, with lim sup�!0 Var�Λ�

(hx) < 1, while
the variance grows logarithmically at high temperature Fröhlich and Spencer [1981]. The
temperature Tr separating these two regimes is called “roughening temperature”.

In a work with Caputo, Lubetzky, Martinelli, Sly, and Toninelli [2014] we discovered
that rigidity of the interface can produce a dramatic slowdown of the dynamics, if the
interface is constrained to stay above a fixed level, say level 0:

Theorem3.5. Caputo, Lubetzky, Martinelli, Sly, and Toninelli [ibid.] Consider theGlauber
dynamics for the (2+1)-dimensional SOSmodel at low enough temperature, with 0 bound-
ary conditions on @Λ� and with the positivity constraint hx � 0 for every x 2 Λ� . Then,
the relaxation and mixing times satisfy

Tmix � Trel � c exp[c ��1](3-9)
8 The apparent singularity of the formula (3-7) for �(�) when �1 + �2 = 0 is not really dangerous: recall

from Section 2.2 that the slope � is constrained in the triangle T = f(�1; �2) : 0 � �1; �2; �1 + �2 � 1g so
that the mobility is C1 and strictly positive in the interior of T .
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for some positive, temperature-dependent constant c.

What we actually prove is that there is a cascade of metastable transitions, occurring
on all time-scales exp(��a), a < 0 � 1. Strange as this may look, these results do not
exclude that a hydrodynamic limit on the diffusive scale, as in (3-2)-(3-3), might occur.
That is, the rescaled height profile �h��1x(�

�2t) could follow an equation like (3-3), so
that at times � ��2 the profile would be macroscopically zero (because � � 0 is the
equilibrium point of the PDE (3-3) with zero boundary conditions) but smaller-scale height
fluctuations would need enormously more time, of the order Tmix � exp(��1), to relax
to equilibrium.

We are light years away from being able to actually prove a hydrodynamic limit for the
(2 + 1)-dimensional SOS model. The following open problem is given just to show how
little we know in this respect:

Open problem 3.6. Take the Glauber dynamics for the (2 + 1)-d SOS model at low tem-
perature, with initial condition � hx = 1 for every x 2 Λ� . Is it true that, for someN < 1,
at time t = 1/�N all rescaled heights � hx(t) are with high probability lower than, say,
1/2 (which is much larger than � log ��1, that is the typical value under the equilibrium
measure of maxx2Λ�

[� hx ])?
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