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RANDOM BAND MATRICES

Pൺඎඅ Bඈඎඋൺൽൾ

Abstract

We survey recent mathematical results about the spectrum of random band matri-
ces. We start by exposing the Erdős–Schlein–Yau dynamic approach, its application
to Wigner matrices, and extension to other mean-field models. We then introduce ran-
dom band matrices and the problem of their Anderson transition. We finally expose a
method to obtain delocalization and universality in some sparse regimes, highlighting
the role of quantum unique ergodicity.

Contents

1 Introduction 2777

2 Mean-field random matrices 2780

3 Random band matrices and the Anderson transition 2787

4 Quantum unique ergodicity and universality 2793

1 Introduction

This note explains the interplay between eigenvectors and eigenvalues statistics in random
matrix theory, when the considered models are not of mean-field type, meaning that the
interaction is short range and geometric constraints enter in the definition of the model.

If the range or strength of the interaction is small enough, it is expected that eigenval-
ues statistics will fall into the Poisson universality class, intimately related to the notion of
independence. Another class emerged in the past fifty years for many correlated systems,
This work is supported by the NSF grant DMS#1513587.
MSC2010: 15B52.
Keywords: band matrices, delocalization, quantum unique ergodicity, Gaussian free field.
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2778 PAUL BOURGADE

initially from calculations on random linear operators. This random matrix universality
class was proposed by Wigner [1957], first as a model for stable energy levels of typical
heavy nuclei. The models he introduced have since been understood to connect to inte-
grable systems, growth models, analytic number theory and multivariate statistics (see e.g.
Deift [2017]).

Ongoing efforts to understand universality classes are essentially of two types. First, in-
tegrability consists in finding possibly new statistics for a few, rigid models, with methods
including combinatorics and representation theory. Second, universality means enlarging
the range of models with random matrix statistics, through probabilistic methods. For
example, the Gaussian random matrix ensembles are mean-field integrable models, from
which local spectral statistics can be established for the more general Wigner matrices,
by comparison, as explained in Section 1. For random operators with shorter range, no
integrable models are known, presenting a major difficulty in understanding whether their
spectral statistics will fall in the Poisson or random matrix class.

In Wigner’s original theory, the eigenvectors play no role. However, their statistics
are essential in view of a famous dichotomy of spectral behaviors, widely studied since
Anderson’s tight binding model P. Anderson [1958]:

(i) Poisson spectral statistics usually occur together with localized eigenstates,

(ii) randommatrix eigenvalue distributions should coincide with delocalization of eigen-
states.

The existence of the localized phase has been established for the Anderson model in any
dimension Fröhlich and Spencer [1983], but delocalization has remained elusive for all
operators relevant in physics. An important question consists in proving extended states
and GOE local statistics for one such model1, giving theoretical evidence for conduction
in solids. How localization implies Poisson statistics is well understood, at least for the
Anderson model Minami [1996]. In this note, we explain the proof of a strong notion of
delocalization (quantum unique ergodicity), and how it implies random matrix spectral
statistics, for the 1d random band matrix (RBM) model.

In this model, vertices are elements of Λ = J1; N Kd (d = 1; 2; 3) andH = (Hij )i;j 2Λ

have centered real entries, independent up to the symmetry Hij = Hj i . The band width
W < N /2 means

(1-1) Hij = 0 if ji � j j > W;

where j � j is the periodic L1 distance on Λ, and all non-trivial Hij ’s have a variance �2
ij

with the same order of magnitude, normalized by
P

j �
2
ij = 1 for any i 2 Λ. Mean-field

1GOE eigenvalues statistics appear in Trotter’s tridiagonal model Trotter [1984], which is clearly local, but
the entries need varying variance adjusted to a specific profile.
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models correspond to W = N /2. When W ! 1, the empirical spectral measure of H
converges to the semicircle distribution d�sc(x) = 1

2�
(4 � x2)1/2dx.

It has been conjectured that the random band matrix model exhibits the localization-
delocalization (and Poisson-GOE) transition at some critical band widthWc(N ) for eigen-
values in the bulk of the spectrum jEj < 2 � �. The localized regime supposedly occurs
for W � Wc and delocalization forW � Wc , where

(1-2) Wc =

8<: N 1/2 for d = 1;

(logN )1/2 for d = 2;

O(1) for d = 3:

This transition corresponds to localization length ` � W 2 in dimension 1, ` � eW 2 in
dimension 2.

H =
2W

0

0

˛

(Avjukj
2)(˛)

1 N

1/N

` � W 2

Figure 1: Conjectural behavior of the RBM model for d = 1. For any eigenvalue
j�k j < 2 � �, the rescaled gap N�sc(�k)(�k+1 � �k) converges to an exponential
random variable forW � N 1/2, and the Gaudin GOE distribution forW � N 1/2.
The associated eigenvector uk is localized on ` � W 2 sites forW � N 1/2, it is flat
for W � N 1/2. Here (Avf )(˛) = (2n)�1

P
ji�˛j<n f (i) where 1 � n � W 2

is some averaging scale.

This review first explains universality techniques for mean-field models. We then state
recent progress in proving the existence of the delocalized phase for the random band ma-
trix model for d = 1, explaining how quantum unique ergodicity is proved by dynamics.
We finally explain, at the heuristic level, a connection between quantum unique ergodicity
for band matrices and the Gaussian free field, our main goal being to convince the reader
that the transition exponents in (1-2) are natural.

For the sake of conciseness, we only consider the orthogonal symmetry class corre-
sponding to random symmetric matrices with real entries. Analogous results hold in the
complex Hermitian class.
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2 Mean-field random matrices

2.1 Integrable model. The Gaussian orthogonal ensemble (GOE) consists in the prob-
ability density

(2-1)
1

ZN

e� N
4 Tr(H2)

with respect to the Lebesgue measure on the set on N �N symmetric matrices. This cor-
responds to all entries being Gaussian and independent up to the symmetry condition, with
off-diagonal entriesHij ∼ N�1/2N (0; 1), and diagonal entriesHi i ∼ (N/2)�1/2N (0; 1).

Our normalization is chosen so that the eigenvalues �1 6 : : : 6 �N (with associated
eigenvectors u1; : : : ; uN ) have a converging empirical measure: 1

N

PN
k=1 ı�i

! d�sc
almost surely. A more detailed description of the spectrum holds at the microscopic scale,
in the bulk and at the edge: there exists a translation invariant point process �1 Mehta and
Gaudin [1960] and a distribution TW1 (for Tracy and Widom [1994]) such that

NX
k=1

ıN�sc(E)(�k�E) ! �1;(2-2)

N 2/3(�N � 2) ! TW1;(2-3)

in distribution. Note that �1 is independent of E 2 (�2 + �; 2 � �).
Concerning the eigenvectors, for anyO 2 O(N ), from (2-1) the distributions ofOtHO

and H are the same, so that the eigenbasis u = (u1; : : : ; uN ) of H is Haar-distributed
(modulo a sign choice) on O(N ): Ou has same distribution as u. In particular, any uk

is uniform of the sphere S (N �1), and has the same distribution as N /kN k2 where N is
a centered Gaussian vector with covariance IdN . This implies that for any deterministic
sequences of indices kN 2 J1; N K and unit vectors qN 2 S (N �1) (abbreviated k; q), the
limiting Borel-Lévy law holds:

(2-4) N 1/2
huk ;qi ! N (0; 1)

in distribution. This microscopic behavior can be extended to several projections being
jointly Gaussian.

The fact that eigenvectors are extended can be formulated with less precision, and quan-
tified in different manners. For example, for the GOEmodel, for any small " > 0 and large
D > 0, we have

(2-5) P

�
kukk1 >

N "

p
N

�
6 N�D;



RANDOM BAND MATRICES 2781

whichwe refer to as delocalization (the aboveN " can also be replaced by some logarithmic
power).

Delocalization does not imply that the eigenvectors are flat in the sense of Figure 1, as
uk could be supported on a small fraction of J1; N K. A strong notion of flat eigenstates was
introduced by Rudnick and Sarnak [1994] for Riemannian manifolds: for any negatively
curved and compact M with volume measure �,

(2-6)
Z

A

j k(x)j
2�(dx) �!

k!1

Z
A

�(dx);

for any A � M. Here  k is an eigenfunction (associated to the eigenvalue �k) of the
Laplace-Beltrami operator, 0 6 �1 6 : : : 6 �k 6 : : : and k kkL2(�) = 1. This quan-
tum unique ergodicity (QUE) notion strengthens the quantum ergodicity from Shnirel’man
[1974], Colin de Verdière [1985], and Zelditch [1987], defined by an additional averaging
on k and proved for a wide class of manifolds and deterministic regular graphs Anan-
tharaman and Le Masson [2015] (see also Brooks and Lindenstrauss [2013]). QUE was
rigorously proved for arithmetic surfaces, Lindenstrauss [2006], Holowinsky [2010], and
Holowinsky and Soundararajan [2010]. We will consider a probabilistic version of QUE
at a local scale, for eigenvalues in the bulk of the spectrum (� > 0 is small and fixed).
By simple properties of the uniform measure on the unit sphere it is clear that the fol-
lowing version holds for the GOE: for any given (small) " > 0 and (large) D > 0, for
N > N0(";D), for any deterministic sequences kN 2 J�N; (1 � �)N K and IN � J1; N K
(abbreviated k; I ), jIN j > n, we have

(2-7) P

 ˇ̌̌̌
ˇX
˛2I

(uk(˛)
2

�
1

N
)

ˇ̌̌̌
ˇ > N "jI j1/2

N

!
6 N�D :

We now consider the properties (2-2), (2-3) (2-4), (2-5), (3-3) for the following general
model.

Definition 2.1 (Generalized Wigner matrices). A sequence HN (abbreviated H ) of real
symmetric centered random matrices is a generalized Wigner matrix if there exists C; c >
0 such that �2

ij := Var(Hij ) satisfies

(2-8) c 6 N�2
ij 6 C for all N; i; j and

X
j

�2
ij = 1 for all i .

We also assume subgaussian decay of the distribution of
p
NHij , uniformly in i; j; N , for

convenience (this could be replaced by a finite high moment assumption).
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2.2 Eigenvalues universality. The second constraint in (2-8) imposes the macroscopic
behavior of the limiting spectral measure: 1

N

PN
k=1 ı�i

! d�sc for all generalizedWigner
matrices. This convergence to the semicircle distribution was strengthened up to optimal
polynomial scale, thanks to an advanced diagrammatic analysis of the resolvent ofH .

Theorem 2.2 (Rigidity of the spectrum Erdős, Yau, and Yin [2012b]). LetH be a gener-
alized Wigner matrix as in Definition 2.1. Define k̂ = min(k;N +1�k) and k implicitly
by
R k

�2 d�sc =
k
N
. Then for any " > 0, D > 0 there exists N0 such that for N > N0 we

have

(2-9) P
�
j�k � kj > N� 2

3+"(k̂)� 1
3

�
6 N�D :

Given the above scale of fluctuations, a natural problem consists in the limiting distri-
bution. In particular, the (Wigner-Dyson-Mehta) conjecture states that (2-2) holds for ran-
dommatrices way beyond the integrable GOE class. It has been proved in a series of works
in the past years, with important new techniques based on the Harish-Chandra-Itzykson-
Zuber integral Johansson [2001] (in the special case of Hermitian symmetry class), the
dynamic interpolation through Dyson Brownian motion Erdős, Schlein, and Yau [2011]
and the Lindeberg exchange principle Tao and Vu [2011]. The initial universality state-
ments for general classes required an averaging over the energy level E Erdős, Schlein,
and Yau [2011] or the first four moments of the matrix entries to match the Gaussian ones
Tao and Vu [2011].

We aim at explaining the dynamic method which was applied in a remarkable variety
of settings. For example, GOE local eigenvalues statistics holds for generalized Wigner
matrices.

Theorem 2.3 (Fixed energy universality Bourgade, Erdős, Yau, and Yin [2016]). The
convergence (2-2) holds for generalized Wigner matrices.

The key idea for the proof, from Erdős, Schlein, and Yau [2011], is interpolation through
matrix Dyson Brownian motion (or its Ornstein Uhlenbeck version)

(2-10) dHt =
1

p
N

dBt �
1

2
Htdt

with initial conditionH0 = H , where (Bij )i<j and (Bi i/
p
2)i are independent standard

Brownian motions. The GOE measure (2-1) is the equilibrium for these dynamics. The
proof proceeds in two steps, in which the dynamics (Ht )t>0 is analyzed through comple-
mentary viewpoints. One relies on the repulsive eigenvalues dynamics, the other on the
matrix structure. Both steps require some a priori knowledge on eigenvalues density, such
as Theorem 2.2.
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First step: relaxation. For any t > N�1+", (2-2) holds:
PN

k=1 ıN�sc(E)(�k(t)�E) ! �1,
where we denote �1(t) 6 : : : 6 �k(t) the eigenvalues of Ht . The proof relies on the
Dyson Brownian motion for the eigenvalues dynamics Dyson [1962], given by

(2-11) d�k(t) =
deBk(t)

p
N

+

0@ 1

N

X
`¤k

1

�k(t) � �`(t)
�

1

2
�k(t)

1A dt

where the eBk/
p
2’s are standard Brownian motions. Consider the dynamics with a dif-

ferent initial condition x1(0) 6 : : : 6 xN (0) given by the eigenvalues of a GOE ma-
trix, and by taking the difference between these two equations we observe that ı`(t) :=

et/2(x`(t) � �`(t)) satisfy an integral equation of parabolic type Bourgade, Erdős, Yau,
and Yin [2016], namely
(2-12)
@tı`(t) =

X
k¤`

bk`(t)(ık(t) � ı`(t)); bk`(t) =
1

N (x`(t) � xk(t))(�`(t) � �k(t))
:

From Theorem 2.2, in the bulk of the spectrum we expect that bk`(t) � N /(k � `)2,
so that Hölder regularity holds for t � N�1: ık(t) = ık+1(t)(1 + o(1)), meaning
�k+1(t)��k(t) = yk+1(t)�yk(t)+o(N�1). Gaps between the �k’s and xk’s therefore
become identical, hence equal to the GOE gaps as the law of yk+1(t)�yk(t) is invariant in
time. In fact, an equation similar to (2-12) previously appeared in the first proof of GOE
gap statistics for generalized Wigner matrices Erdős and Yau [2015], emerging from a
Helffer-Sjöstrand representation instead of a probabilistic coupling. Theorem 2.3 requires
a much more precise analysis of (2-12) Bourgade, Erdős, Yau, and Yin [2016] and Landon,
Sosoe, and Yau [2016], but the conceptual picture is clear from the above probabilistic
coupling of eigenvalues.

Relaxation after a short time can also be understood by functional inequalities for rel-
ative entropy Erdős, Schlein, and Yau [2011] and Erdős, Yau, and Yin [2012a], a robust
method which also gives GOE statistics when averaging over the energy level E. In the
special case of the Hermitian symmetry class, relaxation also follows from explicit formu-
las for the eigenvalues density at time t Johansson [2001], Erdős, Péché, Ramı́rez, Schlein,
and Yau [2010], and Tao and Vu [2011].

Second step: density. For any t 6 N� 1
2 �",

NX
k=1

ıN�sc(E)(�k(t)�E) and
NX

k=1

ıN�sc(E)(�k(0)�E)

have the same distribution at leading order. This step can be proved by a simple Itô lemma
based on the matrix evolution Bourgade and Yau [2017], which takes a particularly simple
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form for Wigner matrices (i.e. �2
ij = N�1 + N�11i=j ). It essentially states that for any

smooth function F (H ) we have

(2-13) EF (Ht ) � EF (H0) = O(tN 1/2)

sup
i6j;06s6t

E
�
(N 3/2

jHij (s)
3
j +

p
N jHij (s)j)

ˇ̌
@3ijF (Hs)

ˇ̌�
where @ij = @Hij

. In particular, if F is stable in the sense that @3ijF = O(N ") with high
probability (this is known for functions encoding the microscopic behavior thanks to the
a-priori rigidity estimates from Theorem 2.2), then invariance of local statistics holds up
to time N� 1

2 �".
Invariance of local spectral statistics in matrix neighborhoods has also been proved by

other methods, for example by a reverse heat flow when the entries have a smooth enough
density Erdős, Schlein, and Yau [2011], or the Lindeberg exchange principle Tao and Vu
[2011] for matrices with moments of the entries coinciding up to fourth moment.

2.3 Eigenvectors universality. Eigenvalues rigidity (2-9) was an important estimate
for the proof of Theorem 2.3. Similarly, to understand the eigenvectors distribution, one
needs to first identify their natural fluctuation scale. By analysis of the resolvent ofH , the
following was first proved when q is an element from the canonical basis Erdős, Schlein,
and Yau [2009] and Erdős, Yau, and Yin [2012b], and extended to any direction.

Theorem 2.4 (Isotropic delocalization Knowles and Yin [2013b] and Bloemendal, Erdős,
Knowles, Yau, andYin [2014]). For any sequence of generalizedWigner matrices, ";D >

0, there exists N0(";D) such that for any N > N0 deterministic k and unit vector q,

P
�
huk ;qi > N� 1

2+"
�

6 N�D :

The more precise fluctuations (2-4) were proved by the Lindeberg exchange principle
in Knowles and Yin [2013a] and Tao and Vu [2012], under the assumption of the first four
(resp. two) moments ofH matching the Gaussian ones for eigenvectors associated to the
spectral bulk (resp. edge). This Lévy-Borel law holds without these moment matching
assumptions, and some form of quantum unique ergodicity comes with it.

Theorem 2.5 (Eigenvectors universality and weak QUE Bourgade and Yau [2017]). For
any sequence of generalized Wigner matrices, and any deterministic k and unit vector q,
the convergence (2-4) is true.

Moreover, for any " > 0 there existsD > 0 such that (3-3) holds.

The above statement is a weak form of QUE, holding for some small D = D(") al-
though it should be true for any large D > 0. Section 3 will show a strong from of QUE
for some band matrices.
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The proof of Theorem 2.5 follows the dynamic idea already described for eigenvalues,
by considering the evolution of eigenvectors through (2-10). The density step is similar:
with (2-13) one can show that the distribution of

p
N huk(t);qi is invariant up to time

t 6 N� 1
2 �". The relaxation step is significantly different from the coupling argument

described previously. The eigenvectors dynamics are given by

duk =
1

p
N

X
`¤k

deBk`

�k � �`

u` �
1

2N

X
`¤k

dt
(�k � �`)2

uk ;

where the eBk`’s are independent standard Brownian motions, and most importantly inde-
pendent from the eBk’s from (2-11). This eigenvector flow was computed in the context
of Brownian motion on ellipsoids Norris, Rogers, and Williams [1986], real Wishart pro-
cesses Bru [1989], and for GOE/GUE in G. W. Anderson, Guionnet, and Zeitouni [2010].

Due to its complicated structure and high dimension, this eigenvector flow had not been
analyzed. Surprisingly, these dynamics can be reduced to a multi-particle random walk
in a dynamic random environment. More precisely, a configuration � consists in d points
of J1; N K, with possible repetition. The number of particles at site x is �x . A configu-
ration obtained by moving a particle from i to j is denoted �ij . The main observation
from Bourgade and Yau [2017] is as follows. First denote zk =

p
N hq; uki, which is

random and time dependent. Then associate to a configuration � with jk points at ik , the
renormalized moments observables (the Nik are independent Gaussians) conditionally to
the eigenvalues path,

(2-14) ft;�(�) = E

 Y
k

z
2jk

ik
j �

!
/E

 Y
k

N
2jk

ik

!
:

Then ft;� satisfies the parabolic partial differential equation

1 2 i N

6
N (�i ��2)2

18
N (�i ��i+1)2

30
N (�i ��N �3)2

(2-15) @tft;�(�) = B(t)ft;�(�)

where
B(t)f (�) =

1

N

X
i¤j

2�i (1 + 2�j )
f (�ij ) � f (�)

(�i (t) � �j (t))2
:
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As shown in the above drawing, the generator B(t) corresponds to a random walk
on the space of configurations �, with time-dependent rates given by the eigenvalues dy-
namics. This equation is parabolic and by the scale argument explained for (2-12), ft;�

becomes locally constant (in fact, equal to 1 by normalization constraint) for t > N�1+".
This Hölder regularity is proved by a maximum principle.

2.4 Othermodels. The described dynamic approach applies beyond generalizedWigner
matrices. We do not attempt to give a complete list of applications of this method. Below
are a few results.

(i) Wigner-type matrices designate variations of Wigner matrices with non centered
Hi i ’s Lee, Schnelli, Stetler, and Yau [2015], or the normalization constraint in (2-8)
not satisfied (the limiting spectral measure may differ from semicircular) Ajanki,
Erdős, and Kruger [2017], or the Hij ’s non-centered and correlated Ajanki, Erdős,
and Kruger [2018] and Erdős, Kruger, and Schroder [2017]. In all cases, GOE bulk
statistics is known.

(ii) For smallmean-field perturbations of diagonalmatrices (the Rosenzweig-Portermodel),
GOE statistics Landon, Sosoe, andYau [2016] occurwith localizationBenigni [2017]
and von Soosten and Warzel [2017]. We refer to Facoetti, Vivo, and Biroli [2016]
for the physical meaning of this unusual regime.

(iii) Random graphs also have bulk or edge GOE statistics when the connectivity grows
fast enough with N , as proved for example for the Erdős–Renyi Erdős, Knowles,
Yau, and Yin [2012], Landon, Huang, and Yau [2015], Huang, Landon, and Yau
[2017], and Lee and Schnelli [2015] and uniform d -regular models Bauerschmidt,
Huang, Knowles, and Yau [2017]. Eigenvectors statistics are also known to coincide
with the GOE for such graphs Bourgade, Huang, and Yau [2017].

(iv) The convolution model D1 + U �D2U , where D1, D2 are diagonal and U is uni-
form on O(N ), appears in free probability theory. Its empirical spectral measure in
understood up to the optimal scale Bao, Erdős, and Schnelli [2017], and GOE bulk
statistics were proved in Che and Landon [2017].

(v) For ˇ-ensembles, the external potential does not impact local statistics, a fact first
shown when ˇ = 1; 2; 4 (the classical invariant ensembles) by asymptotics of or-
thogonal polynomials Bleher and Its [1999], Deift [1999], Deift and Gioev [2009],
Lubinsky [2009], and L. Pastur and M. Shcherbina [1997]. The dynamics approach
extended this result to any ˇ Bourgade, Erdős, and Yau [2014a,b]. Other methods
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based on sparse models Krishnapur, Rider, and Virág [2016] and transport maps Bek-
erman, Figalli, and Guionnet [2015] and M. Shcherbina [2014] were also applied to
either ˇ-ensembles or multimatrix models Figalli and Guionnet [2016].

(vi) Extremal statistics. The smallest gaps in the spectrum of Gaussian ensembles and
Wigner matrices have the same law Bourgade [2018], when the matrix entries are
smooth. The relaxation step (2-12) was quantified with an optimal error so that the
smallest spacing scale (N�4/3 in the GUE case Arous and Bourgade [2011]) can be
perceived.

The above models are mean-field, a constraint inherent to the dynamic proof strategy.
Indeed, the density step requires the matrix entries to fluctuate substantially: lemmas of
type (2-13) need a constant variance of the entries along the dynamics (2-10).

3 Random band matrices and the Anderson transition

In the Wigner random matrix model, the entries, which represent the quantum transition
rates between two quantum states, are all of comparable size. More realistic models in-
volve geometric structure, as typical quantum transitions only occur between nearby states.
In this section we briefly review key results for Anderson and band matrix models.

3.1 Brief and partial history of the random Schrödinger operator. Anderson’s ran-
dom Schrödinger operator P. Anderson [1958] on Zd describes a system with spatial struc-
ture. It is of type

(3-1) HRS = ∆+ �V

where ∆ is the discrete Laplacian and the random variables V (x), x 2 Zd , are i.i.d and
centered with variance 1. The parameter � > 0measures the strength of the disorder. The
spectrum of HRS is supported on [�2d; 2d ] + �supp(�) where � is the distribution of
V (0)

Amongst the many mathematical contributions to the analysis of this model, Ander-
son’s initial motivation (localization, hence the suppression of electron transport due to
disorder) was proved rigorously by Fröhlich and Spencer [1983] by a multiscale analysis:
localization holds for strong disorder or at energies where the density of states �(E) is very
small (localization for a related one-dimensional model was previously proved by Gold-
sheid, S. A. Molchanov, and L. Pastur [1977]). An alternative derivation was given in
Aizenman and S. Molchanov [1993], who introduced a fractional moment method. From
the scaling theory of localization Abraham, P. W. Anderson, Licciardello, and Ramakr-
ishnan [1979], extended states supposedly occur in dimensions d > 3 for � small enough,
while eigenstates are only marginally localized for d = 2.
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Unfortunately, there has been no progress in establishing the delocalized regime for the
random Schrödinger operator on Zd . The existence of absolutely continuous spectrum
(related to extended states) in the presence of substantial disorder is only known when Zd

is replaced by homogeneous trees Klein [1994].
These results and conjecture were initially for the Anderson model in infinite volume.

If we denote HN
RS the operator (3-1) restricted to the box J�N /2; N /2Kd with periodic

boundary conditions, its spectrum still lies on a compact set and one expects that the bulk
eigenvalues in the microscopic scaling (i.e. multiplied byN d ) converge to either Poisson
or GOE statistics (HN

RS corresponds to GOE rather than GUE because it is a real symmetric
matrix). Minami proved Poisson spectral statistics from exponential decay of the resolvent
Minami [1996], in cases where localization in infinite volume is known. For HN

RS, not
only is the existence of delocalized states in dimension three open, but also there is no
clear understanding about how extended states imply GOE spectral statistics.

3.2 Random band matrices: analogies, conjectures, heuristics. The band matrix
model we will consider was essentially already defined around (1-1). In addition, in the
following we will assume subgaussian decay of the distribution ofW d

2 Hij , uniformly in
i; j; N , for convenience (this could be replaced by a finite high moment assumption).

Although random band matrices and the random Schrödinger operator (3-1) are differ-
ent, they are both local (their matrix elements Hij vanish when ji � j j is large). The
models are expected to have the same properties when

(3-2) � �
1

W
:

For example, eigenvectors for the Anderson model in one dimension are proved to decay
exponentially fast with a localization length proportional to �2, in agreement with the anal-
ogy (3-2) and the Equation (1-2) when d = 1. For d = 2, it is conjectured that all states
are localized with a localization length of order exp(W 2) for band matrices, exp(��2) for
the Anderson model, again coherently with (3-2) and (1-2). For some mathematical jus-
tification of the analogy (3-2) from the point of view of perturbation theory, we refer to
Spencer [2012, Appendix 4.11].

The origins of Equation (1-2) first lie on numerical evidence, at least for d = 1. In
Casati, Molinari, and Izrailev [1990Apr] it was observed, based on computer simulations,
that the bulk eigenvalue statistics and eigenvector localization length of 1d random band
matrices are essentially a function of W 2/N , with the sharp transition as described be-
fore (1-2). Fyodorov and Mirlin gave the first theoretical explanation for this transition
Fyodorov and Mirlin [1991]. They considered a slightly different ensemble with complex
Gaussian entries decaying exponentially fast at distance greater thanW from the diagonal.
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Based on a non-rigorous supersymmetric approach Efetov [1997], they approximate rele-
vant random matrix statistics with expectations for a � -model approximation, from which
a saddle point method gives the localization/delocalization transition forW �

p
N . Their

work also gives an estimate on the localization length `, anywhere in the spectrum Fyo-
dorov and Mirlin [1991, equation (19)]: it is expected that at energy level E (remember
our normalization

P
j �

2
ij = 1 forH so that the equilibrium measure is �sc),

` � W 2(4 �E2):

Finally, heuristics for localization/delocalization transition exponents follow from the
conductance fluctuations theory developed by Thouless [1977], based on scaling argu-
ments. For a discussion of mathematical aspects of the Thouless criterion, see Spencer
[2012, 2010], and Wang [1992, Section III] for some rigorous scaling theory of local-
ization. This criterion was introduced in the context of Anderson localisation, and was
applied in Sodin [2010, 2014] to 1d band matrices, including at the edge of the spectrum,
in agreement with the prediction from Fyodorov and Mirlin [1991]. A different heuristic
argument for (1-2) is given in Section 3, for any dimension in the bulk of the spectrum.

3.3 Results. The density of states (E
�
N�1

P
k ı�k

�
) of properly scaled random band

matrices in dimension 1 converges to the semicircular distribution for any W ! 1, as
proved in Bogachev, S. A. Molchanov, and L. A. Pastur [1991]. This convergence was
then strengthened and fluctuations around the semicircular law were studied in Guionnet
[2002], G. W. Anderson and Zeitouni [2006], Jana, Saha, and Soshnikov [2016], and Li
and Soshnikov [2013] by the method of moments, at the macroscopic scale.

Interesting transitions extending the microscopic one (1-2) are supposed to occur at
mesoscopic scales �, giving a full phase diagram in (�;W ). The work Erdős and Knowles
[2015] rigorously analyzed parts of this diagram by studying linear statistics in somemeso-
scopic range and in any dimension, also by a moment-based approach.

The miscroscopic scale transitions (1-2) are harder to understand, but recent progress
allowed to prove the existence of localization and delocalization for some polynomial
scales in W . These results are essentially of four different types: (i) the localization side
for general models, (i i) localization and delocalization for specific Gaussianmodels, (i i i)
delocalization for general models. Finally, (iv) the edge statistics are fully understood by
the method of moments. Unless otherwise stated, all results below are restricted to d = 1.

(i) Localization for general models. A seminal result in the analysis of random band ma-
trices is the following estimate on the localization scale. For simplicity one can assume
that the entries of H are i.i.d. Gaussian, but the method from Schenker [2009] allows to
treat more general distributions.
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Theorem 3.1 (The localization regime for band matrices Schenker [2009]). Let � > 8.
There exists � > 0 such that for large enough N , for any ˛; ˇ 2 J1; N K one has

E

 
sup

16k6N

juk(˛)uk(ˇ)j

!
6 W �e�

j˛�ˇj

W � :

Localization therefore holds simultaneously for all eigenvectors whenW � N 1/8, which
was improved toW � N 1/7 in Peled, Schenker, Shamis, and Sodin [2017] for some spe-
cific Gaussian model described below.

(ii) Gaussian models with specific variance profile and supersymmetry. For some Gaus-
sian band matrices, the supersymmetry (SUSY) technique gives a purely analytic tech-
nique towards spectral properties. This approach has first been developed by physicists
Efetov [1997]. A rigorous supersymmetry method started with the expected density of
states on arbitrarily short scales for a 3d band matrix ensemble Disertori, Pinson, and
Spencer [2002], extended to 2d in Disertori and Lager [2017] (see Spencer [2012] for
muchmore about themathematical aspects of SUSY).More recently, thework T. Shcherbina
[2014b] proved local GUE local statistics for W > cN , and delocalization was obtained
in a strong sense for individual eigenvectors, whenW � N 6/7 and the first four moments
of the matrix entries match the Gaussian ones Bao and Erdős [2017]. These recent rigor-
ous results assume complex entries and hold for jEj <

p
2, for a block-band structure of

the matrix with a specific variance profile.
We briefly illustrate the SUSY method for moments of the characteristic polynomial:

remarkably, this is currently the only observable for which the transition at W �
p
N

was proved. Consider a matrixH whose entries are complex centered Gaussian variables
such that

E(HijH`k) = 1i=k;j=`Jij where Jij = (�W 2∆+ 1)�1
ij ;

and∆ is the discrete Laplacian on J1; N K with periodic boundary condition. The variance
Jij is exponentially small for ji � j j > W 1+", so that H can be considered a random
band matrix with band width W . Define

F2(E1; E2) = E (det(E1 �H ) det(E2 �H )) ; D2 = F2(E;E):

Theorem 3.2 (Transition at the level of characteristic polynomials T. Shcherbina [2014a]
and M. Shcherbina and T. Shcherbina [2017]). For any E 2 (�2; 2) and " > 0, we have

lim
N !1

(D2)
�1F2

�
E +

x

N�sc(E)
; E �

x

N�sc(E)

�
=

(
sin(2�x)

2�x
if N " < W < N

1
2 �"

1 if N 1
2+" < W < N

:
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Unfortunately, currently the local eigenvalues statistics cannot be identified from mo-
ments of characteristic polynomials: they require ratios which aremore difficult to analyze
by the SUSY method.

We briefly mention the key steps of the proof of Theorem 3.2. First, an integral rep-
resentation for F2 is obtained by integration over Grassmann variables. These variables
give convenient formulas for the product of characteristic polynomials: they allow to ex-
press the determinant as Gaussian-type integral. Integrate over the Grassmann variables
then gives an integral representation (in complex variables) of the moments of interest.
More precisely, the Gaussian representation for F2

�
E + x

N�sc(E)
; E �

x
N�sc(E)

�
, from T.

Shcherbina [2014a], is

1

(2�)N

1

detJ 2

Z
e

� W 2

2

Pn
j=�n+1 Tr(Xj �Xj �1)

2� 1
2

Pn
j=�n Tr(Xj +

iΛE
2 +i Λx

N�sc(E )2

nY
j=�n

det(Xj � i∆E/2)dXj ;

where N = 2n + 1, ∆E = diag(E;E), ∆x = diag(x;�x), and dXj is the Lebesgue
measure on 2 � 2 Hermitian matrices. This form of the correlation of characteristic poly-
nomial is then analyzed by steepest descent. Analogues of the above representation hold
in any dimension, where the matrices Xj ; Xk , are coupled in a quadratic way when k and
j are neighbors in Zd , similarly to the Gaussian free field.

Finally, based on their integral representations, it is expected that random bandmatrices
behave like � -models, which are used by physicists to understand complicated statistical
mechanics systems. We refer to the recent work M. Shcherbina and T. Shcherbina [2018]
for rigorous results in this direction.

(iii) Delocalization for general models. Back to general models with no specific distribu-
tion of the entries (except sufficient decay of the distribution, for example subgaussian),
the first delocalization results for random band matrices relied on a difficult analysis of
their resolvent.

For example, the Green’s function was controlled down to the scaleW �1 in Erdős, Yau,
and Yin [2012a], implying that the localization length of all eigenvectors is at least W .
Analysis of the resolvent also gives full delocalization for most eigenvectors, forW large
enough. In the theorem below,We say that an eigenvector uk is subexponentially localized
at scale ` if there exists " > 0, I � J1; N K, jI j 6 `, such that

P
˛ 62I juk(˛)j

2 < e�N " .
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Theorem 3.3 (Delocalized regime on average Erdős, Knowles, Yau, and Yin [2013]). As-
sume W � N 4/5 and ` � N . Then the fraction of eigenvectors subexponentially local-
ized on scale ` vanishes as N ! 1, with large probability.

This result when W > N 6/7 was previously obtained in Erdős and Knowles [2011], and
similar statements were proved in higher dimension.

Delocalization was recently proved without averaging, together with eigenvalues statis-
tics and flatness of individual eigenvectors. The main new ingredient is that quantum
unique ergodicity is a convenient delocalization notion, proved by dynamics.

To simplify the statement below, assume that H is a Gaussian-divisible , in the sense
that

p
WHij is the sum of two independent random variables, X + N (0; c), where c is

an arbitrary small constant (the result holds for more general entries).

Theorem3.4 (Delocalized regimeBourgade, Yau, andYin [2018]). AssumeW � N 3/4+a

for some a > 0. Let � > 0 be fixed.

(a) For any E 2 (�2 + �; 2� �) the eigenvalues statistics at energy level E converge to
the GOE, as in (2-2).

(b) The bulk eigenvectors are delocalized: for any (small) " > 0, (large) D > 0, for
N > N0(";D; �) and k 2 J�N; (1 � �)N K, we have

P
�
kukk1 > N� 1

2+"
�
< N�D :

(c) The bulk eigenvectors are flat on any scale greater than W . More precisely, for any
given (small) " > 0 and (large) D > 0, for N > N0(";D), for any deterministic
k 2 J�N; (1 � �)N K and interval I � J1; N K, jIN j > W , we have

(3-3) P

 ˇ̌̌̌
ˇX
˛2I

(uk(˛)
2

�
1

N
)

ˇ̌̌̌
ˇ > N�a+" jI j

N

!
6 N�D :

A strong form of QUE similar to (c) holds for random d -regular graphs Bauerschmidt,
Huang, and Yau [2016], the proof relying on exchangeability. For models with geometric
constraints, other ideas are explained in the next section.

Theorem 3.4 relies on a mean-field reduction strategy initiated in Bourgade, Erdős,
Yau, and Yin [2017], and an extension of the dynamics (2-15) to observables much more
general than (2-14), as explained in the next section. New ingredients compared to 3.4
are (a) quantum unique ergodicity for mean-field models after Gaussian perturbation, in a
strong sense, (b) estimates on the resolvent of the band matrix at the (almost macroscopic)
scale N�".
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The current main limitation of the method to approach the transitionWc = N 1/2 comes
from (b). These resolvent estimates are obtained by intricate diagrammatics developed in
a series of previous works including Erdős, Knowles, Yau, and Yin [2013], and currently
only proved for W � N 3/4.

(iv) Edge statistics. The transition in eigenvalues statistics is understood at the edge of
the spectrum: the prediction from the Thouless criterion was made rigorous by a subtle
method of moments. This was proved under the assumption that

p
2W (Hij )i6j are ˙1

independent centered Bernoulli random variables, but the method applies to more general
distributions. Remember that we order the eigenvalues �1 6 : : : 6 �N .

Theorem 3.5 (Transition at the edge of the spectrum Sodin [2010]). Let " > 0. If W >
N

5
6+", then (2-3) holds. If W 6 N

5
6 �", (2-3) does not hold.

For eigenvectors (including at the edge of the spectrum), localization cannot hold on less
than W / log(N ) entries as proved in Benaych-Georges and Péché [2014], also by the
method of moments.

4 Quantum unique ergodicity and universality

For non mean-field models, eigenvalues and eigenvectors interplay extensively, and their
statistics should be understood jointly. Localization (decay of Green’s function) is a use-
ful a priori estimate in the proof of Poisson statistics for the Anderson model Minami
[1996], and in a similar way we explain below why quantum unique ergodicity implies
GOE statistics.

4.1 Mean-field reduction. The method introduced in Bourgade, Erdős, Yau, and Yin
[2017] for GOE statistics of band matrices proceeds as follows. We decompose the 1d
band matrix from (1-1) and its eigenvectors as

H =

�
A B�

B D

�
; uj :=

�
wj

pj

�
;

where A is a W � W matrix. From the eigenvector equation Huj = �juj we have
(A�B� 1

D��j
B)wj = �jwj : The matrix elements ofA do not vanish and thus the above

eigenvalue problem features a mean-field random matrix (of smaller size). Hence one can
considers the eigenvector equationQewk(e) = �k(e)wk(e) where

(4-1) Qe = A � B�(D � e)�1B;
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e

(a) A simulation of eigenvalues of
Qe = A � B�(D � e)�1B , i.e. func-
tions e 7! �j (e). Here N = 12 and
W = 3. The �i ’s are the abscissa of the
intersections with the diagonal.

e�0�

(b) Zoom into the framed region of Fig-
ure (a), for large N;W : the curves �j
are almost parallel, with slope about 1�

N/W . The eigenvalues ofA�B�(D�

e)�1B and those of H are related by a
projection to the diagonal followed by a
projection to the horizontal axis.

Figure 2: The idea of mean-field reduction: universality of gaps between eigenval-
ues for fixed e implies universality on the diagonal through parallel projection. For
e fixed, we label the curves by �k(e).

and �k(e), wk(e) are eigenvalues and normalized eigenvectors. As illustrated below, the
slopes of the functions e 7! �k(e) seem to be locally equal and concentrated:

d
de
�k(e) � 1 �

1PW
˛=1wk(˛)2

(1 + o(1)) � 1 �
N

W
;

which holds for e close to �k . The first equality is a simple perturbation formula2, and the
second is true provided QUE for uk holds, in the sense of Equation (3-3) for example.

The GOE local spectral statistics holds for Qe in the sense (2-2) (it is a mean-field
matrix so results from Landon, Sosoe, and Yau [2016] apply), hence it also holds for H
by parallel projection: GOE local spectral statistics follow from QUE.

This reduces the problem to QUE for band matrices, which is proved by the same
mean-field reduction strategy: on the one hand, by choosing different overlapping blocks
A along the diagonal, QUE for H follows from QUE forQe by a simple patching proce-
dure (see section 3.3 for more details); on the other hand, QUE for mean-field models is

2The perturbation formula gives a slightly different equation, replacing wk by the eigenvector of a small
perturbation of H , but we omit this technicality.
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known thanks to a strengthening of the eigenvector moment flow method Bourgade and
Yau [2017] and Bourgade, Huang, and Yau [2017], explained below.

4.2 The eigenvector moment flow. Obtaining quantum unique ergodicity from the
regularity of Equation (2-15) (the eigenvector moment flow) is easy:

p
N hq; uki has lim-

iting Gaussian moments for any q, hence the entries of uk are asymptotically independent
Gaussian and the following variant of (3-3) holds for Qe by Markov’s inequality (wk is
rescaled to a unit vector): there exists " > 0 such that for any deterministic 1 6 k 6 W

and I � J1;W K, for any ı > 0 we have

(4-2) P

 ˇ̌̌X
i2I

jwk(˛)j
2

�
jI j

N

ˇ̌̌
> ı

!
6 N�"/ı2:

The main problem with this approach is that the obtained QUE is weak: one would like
to replace the above " with any large D > 0, as in (3-3). For this, it was shown in
Bourgade, Yau, andYin [2018] thatmuchmore general observables than (2-14) also satisfy
the eigenvector moment flow parabolic Equation (2-15).

These new tractable observables are described as follows (we now switch to matrices
of dimension N and spectrum �1 6 : : : 6 �N , eigenvectors u1; : : : ; uN , for comparison
with (2-14)). Let I � J1; N K be given, (q˛)˛2I be any family of fixed vectors, and
C0 2 R. Define

pij =
X
˛2I

hui ;q˛ihuj ;q˛i i ¤ j 2 J1; nK;
pi i =

X
˛2I

hui ;q˛i
2

� C0; i 2 J1; nK;
When the q˛’s are elements of the canonical basis and C0 = jI j/N , this reduces to

pij =
X
˛2I

ui (˛)uj (˛); (i ¤ j ) pi i =
X
˛2I

ui (˛)
2

�
jI j

N
; i 2 J1; N K;

and therefore the pij ’s becomes natural partial overlaps measuring quantum unique ergod-
icity.For any given configuration � as given before (2-14), consider the set of vertices V� =

f(i; a) : 1 6 i 6 n; 1 6 a 6 2�i g: Let G� be the set of perfect matchings of the
complete graph on V�, i.e. this is the set of graphs G with vertices V� and edges E(G) �

ffv1; v2g : v1 2 V�; v2 2 V�; v1 ¤ v2g being a partition of V�. For any given edge
e = f(i1; a1); (i2; a2)g, we define p(e) = pi1;i2 , P (G) =

Q
e2E(G) p(e) and

(4-3) ef �;t (�) =
1

M(�)
E

0@X
G2G�

P (G) j �

1A ; M(�) =

nY
i=1

(2�i )!!;
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1 i1 i2 i3 n

(a) A configuration � with N(�) = 6,
�i1 = 2, �i2 = 3, �i3 = 1.

1 i1 i2 i3 n

(b) A perfect matching G 2 G�. Here,
P (G) = pi1i1pi1i2p

2
i2i2

pi2i3pi3i1 .

where (2m)!! =
Q

k62m;k odd k. The following lemma is a key combinatorial fact.

Lemma 4.1. The above function ef satisfies the eigenvector moment flow Equation (2-15).

This new class of observables (4-3) widely generalizes (2-14) and directly encodes the L2

mass of eigenvectors, contrary to (2-14). Together with the above lemma, one can derive
a new strong estimate, (2-14) with some small " > 0 replaced by any D > 0. The mean-
field reduction strategy can now be applied in an efficient way: union bounds are costless
thanks to the new small N�D error term.

For d = 2; 3, the described mean-field reduction together with the strong version of the
eigenvector moment flow should apply to give delocalization in some polynomial regime,
such asW � N 99/100. However, this is far from the conjectures from (1-2). To approach
these transitions, one needs to take more into account the geometry of Zd .

4.3 Quantum unique ergodicity and the Gaussian free field. At the heuristic level,
the QUE method suggests the transition valuesWc from (1-2). More precisely, consider a
given eigenvector u = uk associated to a bulk eigenvalue �k . For notational convenience,
assume the model’s band width is 2W instead of W .

For 1 = (1; : : : ; 1) 2 Zd , define W = J1; N Kd \ (2W Zd +W 1). For any w 2 W ,
let Cw = f˛ 2 Zd : kw � ˛k1 6 W g be the cell of side length 2W around w.

LetXw =
P

˛2Cw
u(˛)2. Consider a set I , jI j = 2d , such that the cells (Cw)w2I form

an hypercube H of size (4W )d . Assume one can apply the strong QUE statement (3-3) to
a Schur complementQe of type (4-1) where A is now chosen to be the (4W )d � (4W )d

mean-field matrix indexed by the vertices from H . We would obtain, for any two adjacent
cells Cw ;Cv with w; v 2 I ,

(4-4)
X

˛2Cw

u(˛)2 =
X

˛2Cv

u(˛)2 + O

 
N "W

d/2

N d

!
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with overwhelming probability. By patching these estimates over successive adjacent
cells, this gives

X
˛2Cw

u(˛)2 =

�
W

N

�d

+ O

 
N "W

d/2

N d

!
�

�
N

W

�d

;

and therefore the leading order of
P

˛2Cw
u(˛)2 is identified (i.e. QUE holds) for W �

N
2
3 . This criterion, independent of the dimension d , is more restrictive than (1-2) and

omits the important fact that the error term in (4-4) has a random sign.
One may assume that such error terms are asymptotically jointly Gaussian and indepen-

dent for different pairs of adjacent cells (or at least for such pairs sufficiently far away).
We consider the graph with vertices W and edges the set of pairs (v;w) such that Cv

and Cw are adjacent cells. A good model for (Xw)w2W therefore is a Gaussian vector
such that the increments Xv � Xw are independent, with distribution N (0;W d/N 2d )

when (v;w) is an edge, and conditioned to (1)
P

(Xvi+1
� Xvi

) = 0 for any closed path
v1; v2; : : : ; vj ; v1 in the graph, (2) Xv0

= (W /N )d to fix the ambiguity about definition
of X modulo a constant. This model is simply the Gaussian free field, with density for
(Xv)v proportional to

e
� N2d

2W d

P
v∼w(xv�xw)2

:

As is well known, the Gaussian free field (Yv)v on J1; nKd with density e� 1
2

P
v∼w(yv�yw)2

conditioned to Yv0
= 0 has the following typical fluctuation scale, for any deterministic

v chosen at macroscopic distance from v0 (see e.g. Biskup [2017]):

(4-5) Var(Yv)
1/2

�

8<: n1/2 for d = 1;

(logn)1/2 for d = 2;

O(1) for d = 3:

We expect that quantum unique ergodicity (andGOE statistics by themean-field reduction)
holds when Var(Xv)

1/2 � E(Xv). With n = N /W , this means

W d/2

N d
Var(Yv)

1/2
�

W d

N d

i.e. W � N 1/2 for d = 1, (logN )1/2 for d = 2, O(1) for d = 3.

Acknowledgments. The author’s knowledge on this topic comes from collaborations
with Laszlo Erdős, Horng-Tzer Yau, and Jun Yin. This note reports on joint progress with
these authors.
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Abstract

Statistical inference from large-scale data can benefit from sources of heterogene-
ity. We discuss recent progress of the mathematical formalization and theory for ex-
ploiting heterogeneity towards predictive stability and causal inference in high-dimensional
models. The topic is directly motivated by a broad range of applications and we will
show an illustration from molecular biology with gene knock out experiments.

1 Introduction

In the advent of large data acquisition we expect that heterogeneity occurs within datasets.
The data are typically not realizations from independent and identically distributed ran-
dom variables, nor from a stationary process. We either know that the data come from
large-scale experimental perturbations, for example in many bio-molecular applications,
or one can empirically detect heterogeneity in terms of shifts, non-stationarities or cluster-
membership, for example in macroeconomics.

Rather than considering heterogeneity as a nuisance, one can exploit and use it to obtain
more insights and better predictions – in folklore: “Make heterogeneity your friend rather
than your enemy”. This line of thinking in the context of large-scale data seems “new”
Peters, Bühlmann, and Meinshausen [2016]: the foundations though are much older and
go back to Trygve Haavelmo in 1943 Haavelmo [1943], who received the Nobel Prize in
economics in 1989 “for his clarification of the probability theory foundations of econo-
metrics and his analyses of simultaneous economic structures”. Haavelmo has advocated
an invariance property across changing (heterogeneous) structures, technically in terms of
structural equation models, and this is nowadays adopted in the framework of causality
Pearl [2000, cf.].
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We discuss here the “reverse relation” where invariance can be extracted from data,
enabling predictive stability and towards inference of causal parameters. The correspond-
ing mathematical formulation and theory involve the combination of identifiability from
causal inference and techniques from high-dimensional statistical inference (the latter is
due to the dimensions of many modern datasets). The methodology and mathematical
problems are in close vicinity of applications: we will illustrate an ambitious example
of predicting gene knock out perturbations, a fundamental task in molecular-biology for
gaining insights into causal gene interactions and for prioritizing future biological experi-
ments.

2 The setting

We consider regression or classification problems with d -dimensional covariates (fea-
tures) X and a one-dimensional response variable of interest Y .

As a starting point, consider a linear model for n data points, being realizations from

Yi = XT
i ˇ0 + "i (i = 1; : : : ; n);

where the covariates Xi , the response Yi and the errors "i are random with E["i jXi ] = 0

and the d � 1 vector ˇ0 denotes the unknown true regression parameter of interest. (Be-
cause this true underlying parameter is of special interest, we denote it with an additional
superscript “0”). The most often used assumption is that the random variables Xi and "i

are independent from each other and both of them independent and identically distributed
(i.i.d.) across i = 1; : : : ; n, and hence (Yi ; Xi ); i = 1; : : : ; n; are i.i.d. as well. We often
use the short-hand notation for a linear model

Y = Xˇ0 + ”;(1)

where Y = (Y1; : : : ; Yn)
T ; ” = ("1; : : : ; "n)

T are n � 1 vectors and X = (X1; : : : ; Xn)
T

is the n � d design matrix.
Over the last 15 years, a huge amount of literature has been devoted to the problem of

estimating the unknown parameter vector ˇ0 in the high-dimensional sparse case where
d � n: some of the earlier references include Donoho [1993], Donoho and Johnstone
[1994], Tibshirani [1996], Chen, Donoho, and Saunders [2001], Greenshtein and Ritov
[2004], Bühlmann [2006], Meinshausen and Bühlmann [2006], Bunea, Tsybakov, and
Wegkamp [2007], Zou [2006], Zhao and Yu [2006], Candès and Tao [2007], Bickel, Ritov,
and Tsybakov [2009], and Koltchinskii [2009a,b], and see also the monographs Bühlmann
and van de Geer [2011], Giraud [2014], and Hastie, Tibshirani, and Wainwright [2015].
Furthermore, estimation of the parameter ˇ0 in the noiseless case is the same as com-
pressed sensing Donoho and Huo [2001], Donoho [2006], Candès, Romberg, and Tao
[2006], and Candès and Tao [2006, cf.], and this itself is a huge field by now.
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We will focus on the case where an i.i.d. assumption as above for the random variables
(Yi ; Xi ) (i = 1; : : : n) does not hold. This seems particularly relevant for large-scale “big”
data. In the advent of large data collection, it is often reasonable to assume that the data
exhibits “heterogeneity”. Loosely speaking, we mean by this that the data come from e.g.:
(i) different regimes, for example across time in applications such as economics, finance
or neuroscience; (ii) from different perturbations, for example in molecular biology; (iii)
from different sub-populations, for example in online advertisement or auction pricing. In
an abstract sense, we generalize the linear model from (1) to

(Ye;Xe) ∼ F e; e 2 E;(2)

where Ye is an ne � 1 vector, Xe an ne � d design matrix, e denotes an environment or a
sub-population from a space of environments E, and F e is the distribution depending on
environment e. Typically, we assume that the environments e 2 E are known (observed),
but see below for an example where they are unknown.

Example: Gene knock out perturbations in yeast Meinshausen, Hauser, Mooij, Peters,
Versteeg, and Bühlmann [2016].
Among the approximately 6’000 genes in yeast, 1’479 have been knocked out and a phe-
notypic response is measured. The space E corresponds to the different gene knock-out
perturbations. In the extreme case, every gene knock out corresponds to a single e and
the space E = f1; 2; : : : ; 1479g. One can also think to pool (some of) the different per-
turbations and the space E is then smaller. This example is discussed further in Section
5.4.

Example: Monetary policy in macro economics Pfister, Bühlmann, and Peters [2017].
The data are monthly observations of the Euro – Swiss Franc exchange rate over 18 years
and ninemacro economic variables such as GDP or inflation rate. The spaceE corresponds
to unknown time-dependent regimes. Although the environments e (the regimes) in E are
unknown, they are assumed to be present in the observed data.

Consider a space of (mostly unobserved) environments F , typically F � E being much
larger than the observed environments in E. In the examples above, F would be E but in
addition also including the gene perturbations or the future time-dependent regimes which
are not observed in the data. We are interested in the following problems.

1. Prediction for new scenarios or environments in F . When adopting a linear model,
consider the following objective:

ˇ� = argminˇ max
e2F

E[jY e
� (Xe)T ˇj2];

and how to infer ˇ� from data as in (2) from much fewer observed environments in
E. That is, we want to infer the parameter ˇ� which optimizes the worst case loss



2806 PETER BÜHLMANN

within a class of new unobserved scenarios in F . We will discuss in Section 5 (e.g.
Theorem 4) some cases for F .

2. Predicting unseen interventions or perturbations. Wewant to predict Y e when doing
a perturbation on some of the covariates Xe , for e 2 F corresponding to a new
perturbation which was not observed in the data. That is, in popular terms, a “what
if I do (perturb)” question: the answer to such a question is at the fundamental basis
of causal inference Pearl [2000] and Peters, Janzing, and Schölkopf [2017, cf.].

3. Finding stable structures. We also aim to find subsets of covariates S � f1; : : : ; dg

leading to (near) invariance in terms of the conditional distributionL(Y ejXe
S ) being

(nearly) constant across environments e 2 F .

All these three points above are closely related. When it comes to inference from finite
samples, the setting is usually high-dimensional since in each observed environment e,
the sample size ne is often not so large implying that the covariate dimension d � ne .
Therefore, the underlying mathematical developments involve high-dimensional statisti-
cal theory together with perturbation analysis in structural equation models (see (4)) for
analyzing heterogeneity.

3 Modeling heterogeneity and perturbations

We discuss here a general model for heterogeneous data as in (2). There is a d -dimension-
al covariate X , a q-dimensional hidden (latent) variable H , an r-dimensional “anchor”
variable A and a one-dimensional response Y . A discrete space of environments E =

f1; : : : ; mg mentioned before can be described with r = m anchor variables, each of
them being binary where Ak = 1 means that the corresponding environment is e = k

(k = 1; : : : ; m).
The involved variables (Y; X; H; A)T is a (1+d + q + r)-dimensional random vector

and each component is corresponding to a node in a directed graph describing the “struc-
ture” among the variables. The directed graph is qualitatively as follows:
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X

Y

H

A

The (bi-)directed arrows correspond to the structure of a structural equation model (see
below). There are structural relations among the components of X; H and A as well but
this is not visible in the displayed graph. Bi-directed arrow allow to exhibit directed cycles,
i.e., feedback loops. The variables in H are hidden confounders between X and Y which
makes it hard to identify effects from components Xj to Y which are not due to the hidden
confounding.

A quantitative model on the graph is given by a structural equation model: a linear
structural equation model is given below in (4) in its abstract form. To exemplify: the
equation for the response, which is of major interest since Y is the target one wants to
understand, reads

Y  
X

k2pa(Y )\fXg

ˇ0
kXk +

X
k2pa(Y )\fHg

ıkHk +
X

k2pa(Y )\fAg

˛kAk + "Y ;(3)

where pa(Y ) denotes the parental set of a variable Y in the directed graph, fXg denotes the
nodes corresponding to the random variables from the components of X (and analogously
for H; A), and "Y is an exogenous stochastic noise term. The directed arrow “ ” means
that the variable on the left hand side is a “direct function” or “caused” by the variables on
the right hand side: it can be replaced by the expression of “equality in distribution”. The
parameter ˇ0 is of special interest: in the literature it is called the direct causal effect Pearl
[2000, cf.], describing the direct effect from X to Y (see below). In fact, the causal param-
eter describes what happens when doing a perturbation/intervention on the X -variables,
see goal 2. in Section 2, and it is intrinsically related to invariance properties with respect
to perturbations Haavelmo [1943] and Peters, Bühlmann, and Meinshausen [2016]: we
will take up the latter point in Section 5. We note that an L2-projection does not lead to
ˇ0: argminˇ E[jY � XT ˇj2] ¤ ˇ0; thus, inferring ˇ0 from data is a more complicated
task than using standard regression methodology.
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Having displayed above the structural equation of the response Y , all other variables
have such a structural representation as well, for example

Xj  
X

k2pa(Xj )\fXg

�j;kXk +
X

k2pa(Xj )\fHg

j;kHk

+
X

k2pa(Xj )\fAg

˛j;kAk + �j YI (Y 2 pa(Xj )) + "j

We can represent the model in algebraic form as0@Y

X

H

1A = B

0@Y

X

H

1A + MA + ";(4)

where B is a (1 + d + r) � (1 + d + r) matrix, M a (1 + d + r) � r matrix and " a
stochastic noise vector of dimension (1+ d + r)� 1. We note that since A is an “anchor”
or a source node in the graph, it is exogenous and hence it appears on the right hand side
of (4) only.

Ofmain interest is the equation and dynamics for the responseY : if (I�B) is invertible,
see below, we can express Y and all other X; H as a function of A and ",0@X

Y

H

1A = (I � B)�1(" + MA):(5)

As mentioned above, the variable A can describe heterogeneity, and the formulation in (5)
is a useful representation for the perturbation effect of shift interventions, see Section 5.2.
The matrix (I � B) is invertible if the underlying structure (encoding zeroes in B) is a
directed acyclic graph; for cyclic graphs, one typically assumes an equilibrium solution of
the dynamical system when conditioning on " and A, for example requiring that the cycle-
product is strictly less than one (but we do not need such an equilibrium assumption).

3.1 Some special cases. Some special cases highlight the generality of the model in
(4).

Hidden confounding. This model has no “anchor” variable A but some hidden (unob-
served) confounders H . The directed graph looks as follows.

X Y

H
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The structural equation model is:

H = (H1; : : : ; Hq)
T uncorrelated with covariance matrix Iq

X  ΓH + "X ;

Y  XT ˇ0 + H T ı + "Y(6)

where all the components of "X ; "Y ; H are jointly independent, Γ is a d �q matrix and ˇ0

the d�1 regression vector. There is an implicit directionality assumption saying that there
are no structural directions from Y to some of the components of X (i.e.„ Y is “childless”).

We will argue that despite the hidden confounders H , one can estimate the causal co-
efficient vector ˇ0 when the setting is high-dimensional (among other conditions).

A prominent example for such a model are genome-wide association studies (GWAS).
The response variable Y is often a medical or disease status, the covariates X are ge-
netic biomarkers in terms of single nucleotide polymorphisms (SNPs) and the hidden con-
founders can come from various sources such as environment or unmeasured genetic pro-
files. The dimensionality of the SNPs is in the order of d = O(106) and a typical sample
size is in the range of O(103). It is a very high-dimensional setting with the interesting
additional information about direction: if there is an association between X and Y , it must
point from X to Y ; this, because the SNPs are genetic information and the medical status
cannot influence the genetics (although there are some exceptions with retroviruses like
HIV).

Instrumental variables regression. This is a very popular and well-studied model in
economics. The variables in A are called instruments and the directed graph looks as
follows.

X Y

H

A

In contrast to the general situation considered above, there are no directed arrows from
either X; Y or H to A, and there are no bi-directed arrows.
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The corresponding structural equation model is as in (4) with the constraint from the
directed graph above:

H = (H1; : : : ; Hq)
T from a distribution FH ;

A = (A1; : : : ; Ar)
T from a distribution FA;

X  ΓH + MA + "X ;

Y  XT ˇ0 + H T ı + "Y :(7)

A necessary condition for identifiability of ˇ0 is to have at least as many instruments
as covariates, i.e., r � d . More precisely, the condition rank(E[(AAT )]M T ) � d , is
necessary and sufficient; and this involves also that the coefficient matrix M is not “too
degenerate”.

4 Hidden confounding in high-dimensional settings

Consider here themodel in (6)with hidden confounder variables. Such hidden confounders
can also be thought as generating different regimes or environments in the data. In high-
dimensional settings, we assume that the regression parameter ˇ0 (with a causal interpre-
tation) is sparse.

When using the population least squares principle, we obtain

ˇLS = Σ�1
X Cov(Y; X) = ˇ0 + b;

b = Σ�1
X Γı;

where ΣX = Cov(X) = ΓΓT + Cov("X ).

Example: one hidden confounder (r = 1) and same noise terms for X : Cov("X ) =

�2
" I .

We obtain that the bias equals

b = Γ
ı

Λ2
max(Γ

T Γ) + �2
"

= Γ
ı

kΓk22 + �2
"

;

whereΛ2
max(ΓΓ

T ) denotes the maximal eigenvalue ofΓΓT (the only non-zero eigenvalue).
Suppose that the number of non-zero entries in Γ = m and that the non-zero entries in Γ

are not too small, i.e., kΓk22 � m!1 as d !1. Then,

kbk22 = O(m�1) as d !1:(8)

Thus, if the hidden variables have an effect which is sufficiently spread out, i.e. m being
large, the bias of population least squares (which ignores the hidden confounders) will
disappear in high dimensions.
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4.1 Sparse plus dense signals. The analysis above can be used as follows. We can
write the model by L2-projection as

Y = XT ˇLS + �; Cov(�; X) = 0;

and thus we can also write

Y = XT (ˇ0 + b) + �;(9)

with the bias term as above which is typically dense (under fairly natural conditions, see
above).

We assume to have observed data (Y;X) being i.i.d. realizations of (Yi ; Xi )

(i = 1; : : : n) from (6), also involving the unobserved H from i.i.d. realizations Hi

(i = 1; : : : ; n). The sample version of the model in (9) is as follows:

Y = X(ˇ0 + b) + �; � uncorrelated with X:

In the high-dimensional regime with d � n, we have a linear model with a signal being
a composition of a sparse ˇ0 and a dense b. Estimation of the sparse vector ˇ0 can be
done with a combination of `1- and `2 regularization, the Lava estimator Chernozhukov,
Hansen, Liao, et al. [2017]:

argminˇ;b

�
kY � X(ˇ + b)k22/n + �1kˇk1 + �2kbk

2
2

�
:

Note that for �2 = 1 we obtain the `1-regularized Lasso estimator, and analogously
�1 = 1 corresponds to the `2-regularized Ridge procedure (Tikhonov regularization).
The solution of this convex optimization problem is given by:

ˆ̌ = argminˇ

˚
kỸ � X̃ˇk22/n + �1kˇk1

	
;(10)

b̂ = (XTX+ n�2I )�1XT (Y � X ˆ̌):

Here, X̃ and Ỹ are given by K
1/2

�2
X and K

1/2

�2
Y respectively, where

K�2
= I � X(XTX+ n�2I )�1XT :

The representation in (10) leads to some consequences and insights. First, the compu-
tation can simply be done by an `1-norm regularization to a transformed problem with
response Ỹ and covariates X̃. Second, the mathematical properties of ˆ̌ can be studied
from the view point of the theory for `1-norm regularization (and compressed sensing):
there are two obstacles though, namely: (i) the underlying coefficient vector is sparse plus
dense, and a bias termwill be inherent in sparse approximation; (ii) the transformed design
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matrix X̃ has other restricted eigenvalues Bickel, Ritov, and Tsybakov [2009] and van de
Geer and Bühlmann [2009] than the original X and the transformed error "̃ = K

1/2

�2
is

correlated and possibly inflates.
The following result holds.

Theorem 1. Ćevid, Bühlmann, and Meinshausen [2018] Assume Gaussian variables
H; "X ; "Y in (6) with mean zero. In addition, assume condition (A) described below. De-
note by s0 = jsupp(ˇ0)j and assume that s0

p
log(d )/n = o(1) (d � n!1). Then, for

the Lava estimator in (10), there exist suitable values �1 and �2 such that with probability
tending to one as d � n!1:

k ˆ̌� ˇ0
k1 � C

�s0

Λ2
min(Σ)

q
log(d )/n;(11)

where 0 < C < 1 is a constant, �2 = Ej�j2 in (9) and Λ2
min(ΣX ) denotes the minimal

eigenvalue of ΣX = Cov(X) = ΓΓT + Cov("X ).

The assumption (A) below ensures that the bias term is asymptotically negligible. There
is a broader range of scenarios implying negligible bias, and a simple example is as fol-
lows.

(A) In model (6), the entries of the d �q matrix Γ are i.i.d. from an absolutely continuous
distribution w.r.t. Lebesgue measure, q < 1 is a fixed number, and "X has i.i.d.
components.

The parameter �2 can be chosen according to a spectral clustering property and �1 then
remains as the only tuning parameter as for the `1-norm regularization scheme with the
Lasso. The result in Theorem 1 is based on an analysis in the transformed model with Ỹ

and X̃ in (10): we can trade-off between the behavior of the singular values of X̃ and an
inflation of the transformed error K

1/2

�2
". It involves recent results about the behavior of

singular or spectral values in large random matrices.
The estimation strategy with the Lava estimator in (10) and its justification in Theo-

rem 1 for the hidden confounder model has major implications in practice, including also
the broad area of genome-wide association studies where accounting for sub-population
structure is important.

5 Predictive stability, invariance and causal regularization

We considered in Section 4 a problem where the direction of an association is known to
point from X to Y . Even when having confounding structure, one can then essentially
identify the causal regression effect in high-dimensional problems.
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For cases where the direction of an association is not known, one needs more to identify
the direction of an association and eventually the causal regression parameter ˇ0 in (3).
Heterogeneity and perturbations help towards identifiability of directions and causality.
Instrumental variable models as in (7), originating from economics Geary [1949], are now
popular in other fields as well. And indeed, if r = dim(A) � d = dim(X), they typically
lead to identifiability of the directed associations and causal parameter ˇ0 from X to Y .
The key idea relies on the fact that A and "Y are independent in the model (6): hence we
should choose a regression parameter ˇ such that

kE[A(Y �XT ˇ)]kq = 0 for some q � 1:(12)

For ˇ = ˇ0, the equality in (12) holds, and if A is sufficiently rich, necessarily requiring
that r � d , ˇ0 is the only solution satisfying (12).

But assuming a structure as in the instrumental variable model in (7) is often more an
uncertain bet than a realistic assumption. The model in (4) or (5) relaxes this restriction
substantially. In addition, we do not assume to have r � d (or more precisely that the
number of children ofA is larger or equal to d ). “Everything” is possible, including cycles,
except that the “anchor” A is exogenous (meaning that it is a source node in the graph).
In such a general setting, the causal parameter ˇ0 in (3) is typically not identifiable.

5.1 Causal regularization. It seems natural in general to have a soft version of the
constraint in (12). A regression method can be equipped with an additional regularization
term:

ˆ̌ = ˆ̌
 ;q = argminˇ2Rd

�
kY � Xˇk22/n + kAT (Y � Xˇ)/nk2q + �kˇk1

�
;(13)

where kˇk1 is a regularizer for high-dimensionality; typical choices are q = 2 or q =1.
Here A is the n � r matrix of the observed variables of A. For  = 0, we get the usual
penalized regression estimator while for  = 1 we enforce the finite-sample version of
the restriction in (12). The latter restriction might not be possible to be fulfilled for any
ˇ and thus,  = 1 might not be appropriate. The question then becomes: what are the
properties of such an estimator in (13) in general? We address this in the next section.

5.2 Predictive stability and invariance under shift interventions: the population
case. We consider the problem of predictive stability and invariance of residuals under
a class of shift interventions. For example: in the instrumental variable model in (7), the
residuals Y �Xˇ0 = Hı + "Y are invariant under any interventions/perturbations on X

which leave the structure and parameters in the structural equation model in (4) unchanged.
That is: the causal parameter leads to predictions whose errors remain invariant under
arbitrary perturbation scenarios on X .
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We want to understand such invariance and predictive stability in the general model
(4) or (5) where A are not instruments (they can point to X , H or Y ; and feedback cycles
are allowed). For this, we restrict ourselves to shift interventions. We consider shifts v, a
(1 + d + r)-dimensional vector being deterministic or random, which can act on any of
the variables Y; X; H (but not on A): the shifted random variables (Y v; Xv; H v; A) are
given as the solution of 0@Y v

Xv

H v

1A = B

0@Y v

Xv

H v

1A + v + MA + ":(14)

In the random case we assume that v is independent of " and A. A shift intervention v acts
as a shift vk on the component (Y; X; H )k (for all k where vk ¤ 0) and such shifts vk are
propagated through the SEM, changing the distribution of other components (Y; X; H )j

for j ¤ k. In the alternative form analogous to (5) we can write0@Y v

Xv

H v

1A = (I � B)�1(v + MA + "):(15)

We now consider a class of shifts of the form

C q
 = fv; v = Mı for some ı with kıkq � g:

Thus, C q
 includes shifts in the span of M which have at most a certain strength, measured

by the `q-norm of the coefficient vector ı in the representation of the shift. We then see
that the term v +MA in (14) or (15) becomes: v +MA = M (ı +A) which intrinsically
links the shift v to a perturbation of A of the form A + ı.

The following fundamental result connects some worst case risk to causal regulariza-
tion.

Theorem 2. Rothenhäusler, Bühlmann, Meinshausen, and Peters [2018] Consider the
model in (4) or (5)with (I�B) being invertible. Then, for any p; q � 1with p�1+q�1 =

1, and for any b 2 Rd :

max
v2C

q


E[jY v
�Xvbj2] = E[jY �Xbj2] + kE[A(Y �Xb)]k2p:

Theorem 2 has important consequences on predictive stability. First of all, since the
result holds for any b 2 Rd , we can consider the argmin on both sides of the equality:

b ;q = argminˇ2Rd max
v2C

q


E[jY v
�Xvbj2]

= argminˇ2Rd

�
E[jY �Xˇj2] + kE[A(Y �Xˇ)]k2p

�
:(16)
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Thus, the optimizer for the worst case risk within the class C
q
 equals exactly the one from

the regularized criterion for the non-shifted variables. The interpretation is as follows: the
shifted variables (Y v; Xv) can be associated to test data where some shift perturbations
have occurred, while the non-shifted variables (Y; X) are the ones from the non-perturbed
training data. Therefore, we obtain predictive stability and protection against some worst
case shifts on new test data.

The corner-point of the regularization on the right-hand side of (16) is with  = 1:
b1 is the parameter b in

I = fb; E[A(Y �XT b)] = 0g

which minimizes the squared error risk. All the elements of I lead to an interesting invari-
ance.

Theorem 3. Rothenhäusler, Bühlmann, Meinshausen, and Peters [ibid.] Consider the
model in (4) or (5) with (I � B) being invertible. Then:

b 2 I () Y �Xb
d
= Y v

�Xvb for all v in span(M ):

The result says that enforcing the constraint E[A(Y � XT b)] = 0 leads to invariance
of the error terms, and protection against any shifts in span(M ) is guaranteed.

5.3 Properties of high-dimensional anchor regression for finite samples. We con-
sider here the finite-sample estimator in (13). We make the following assumptions for the
high-dimensional setting.

(A1) A; X; Y are jointly Gaussian, and theminimal eigenvalue of Cov(X) satisfiesΛ2
min(Cov(X)) �

L > 0;

(A2) S0( ; q) = supp(b ;q) has cardinality s0( ; q) = o(
p
log(d )/n) (d � n!1);

The Gaussian assumption in (A1) is only for technical simplicity and extensions to sub-
Gaussian distributions are possible.

Theorem4. Rothenhäusler, Bühlmann, Meinshausen, and Peters [ibid.] Assume themodel
in (4) or (5) and that (A1)-(A2) hold. Consider the estimator in (13). Then, with probabil-
ity tending to one as d � n!1, we have that for any  � 0:

k ˆ̌ ;q � b ;qk1 � C �s0( ; q) (q 2 f2;1g);

for q = 2:� �
q

r max(log(r); log(d ))/n;

for q =1:� �
q
log(r)log(d )/n:
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where 0 < C < 1 is a constant. Furthermore, for the risk R(v; ˇ) = E[jY v � Xvˇj2]

with shift v, we have that

max
v2C

q


R(v; ˆ̌ ;q) � max
v2C

q


R(v; b ;q) + Cg(�)s0( ; q);

where g(�) = �2 for q = 2 and g(�) = � for q = 1, with � as specified above for
q 2 f2;1g. Note that maxv2C

q


R(v; b ;q) = minˇ maxv2C
q


R(v; b ;q).

For the case with high-dimensional anchors with r � n we should choose q = 1.
For small values of r = dim(A), q = 2 seems to be a more natural choice in terms of the
class C

q
 for protection or predictive stability, see Theorems 2 and 3.

5.4 Predicting single gene knock out experiments. As described in Sections 5.1–5.3,
the methodology and corresponding theory is tailored for predictive stability and predic-
tion of new unseen perturbations. A score for measuring the effect-strength of a perturba-
tion at covariateXj for the response Y is given by the parameter (b ;q)j in (16). Note that
for  =1 and in identifiable scenarios, (b=1)j = ˇ0

j equals the direct causal effect in
(3).

We summarize some findings for predicting single gene knock out experiments in yeast
(Saccharomyces cerevisiae)Meinshausen, Hauser, Mooij, Peters, Versteeg, and Bühlmann
[2016]. The observed data is for the expressions of 6170 genes in yeast, and there are
nobserv = 160 observational data points (from the system in steady state, without any
interventions, from wild-type yeast) and ninterv = 1479 interventional data points, each of
them corresponding to a single gene knock out experiment where a single strain has been
deleted. The response Y is the expression of (say) gene k, and the covariates correspond to
the expressions of all the genes without gene k, thus being of dimension d = 6170� 1 =

6169. Consider this encoding into response and covariates for all k = 1; 2; : : : ; 6170, that
is, the expression of each gene is once the response: and thus, we can predict the effect-
strength of a perturbation at each gene to another one. The model in (4) or (5) is used
with two environments corresponding to r = 2 binary components in A: A1 encodes the
observational data environments with 160 samples, A2 is encoding all interventional data
by (crudely) pooling all of them into a single environment with 1479 samples.

Holding out a random third (repeatedly three times) of the 1479 interventional samples
enables us to validate the predictions. We aim to predict a response Y under an interven-
tion at one of the covariates Xj in the hold-out data: the parameters for the prediction
are trained (estimated) based on the 160 observational and two thirds of the interventional
samples. Thanks to the hold-out data, we can then validate the performance of the predic-
tion. We consider binarized outcomes: if the prediction for Y is large (in absolute value),
we denote it as a predicted “positive” and otherwise as a predicted “negative”. Similarly
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Figure 1: Prediction of single gene perturbations. x-axis: number of false positives;
y-axis: number of true positives. Red (no hidden variables) and orange (including
hidden variables) lines are algorithms exploiting (near) invariance similarly as de-
scribed in Theorem 3. Other colored lines correspond to some competitor methods,
and the gray bars indicate random guessing. The figure is taken from Meinshausen,
Hauser, Mooij, Peters, Versteeg, and Bühlmann [2016].

for the true value in the hold-out observational data: if an intervention at a covariate has
a strong effect on Y , we denote it as “true”, otherwise as false. One can then validate
methods and algorithms in terms of their capacity to predict “true positives” (predicted
“positive” and actually being “true”) in relation to “false positives” (predicted “positive”
but actually being “false”). Figure 1 summarizes the results. The problem of correctly
predicting unseen gene interventions is very ambitious: we predict only a few strong in-
tervention effects, but the highest scoring predictions (the first 5 or 4, respectively) are all
correct (i.e., “true”).
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6 Conclusions

Large-scale data with heterogeneity from different environments or perturbations provides
novel opportunities for predictive stability and causal inference. The word “causal” is am-
bitious and perhaps a bit philosophical: in a nutshell, its meaning is to predict the outcome
of an unseen (in the data) perturbation, a policy or treatment. This fundamental prediction
problem is very different from the standard one where we want to predict an outcome from
roughly the same population fromwhich we have collected data. We are now just at the be-
ginning of new developments of methodology, algorithms and fundamental mathematical
understanding for statistical inference from heterogeneous large-scale data.
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PLANAR ISING MODEL AT CRITICALITY:
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Abstract

In this essay, we briefly discuss recent developments, started a decade ago in the
seminal work of Smirnov and continued by a number of authors, centered around the
conformal invariance of the critical planar Ising model on Z2 and, more generally, of
the critical Z-invariant Ising model on isoradial graphs (rhombic lattices). We also in-
troduce a new class of embeddings of general weighted planar graphs (s-embeddings),
which might, in particular, pave the way to true universality results for the planar Ising
model.

1 Introduction

The two-dimensional Ising model, introduced by Lenz almost a hundred years ago, does
not need an introduction, being probably the most famous example of a statistical me-
chanics system exhibiting the phase transition and the conformally invariant behavior at
criticality, as well as an inspiring structure of the correlation functions both at the critical
point and in a vicinity of it; e.g., see McCoy and Wu [1973] and Mussardo [2010]. More
recently, it became a playground for mathematicians interested in a rigorous understanding
of the conjectural conformal invariance of critical lattice systems, see Smirnov [2006].

What makes the planar (a priori, not necessarily critical) Ising model particularly feasi-
ble for such a mathematical treatment (in absence of the magnetic field) is the underlying
structure of s-holomorphic spinors (aka fermionic observables), essentially dating back
to the work of Onsager and Kaufman and reinterpreted several times since then, notably
by Kadanoff and Ceva [1971]. From the classical analysis (or probability theory) perspec-
tive, these s-holomorphic spinors can be thought of as counterparts of discrete harmonic
functions associated to random-walk-based systems. The main theme of this note is recent
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convergence results for the critical model based on an analysis of such observables in the
small mesh size limit.

The text should not be considered as a survey: certainly, many results and references
deserving to be mentioned in such a survey are missing. Its purposes are rather to give a
general informal description of the current state-of-the-art of the subject (from the personal
viewpoint of the author and to the best of his knowledge) for readers not interested in
technical details; to provide some references for those interested; and to indicate several
ongoing research directions and open questions.

I wish to thank my co-authors as well as many other colleagues for numerous helpful
discussions (centered at Geneva a decade ago, worldwide nowadays) of the planar Ising
model and for sharing their knowledge and ideas with others. Clearly, the progress de-
scribed below was achieved by collective efforts and it is a privilege to discuss the results
of hard work of a rather big community in this essay.

2 Discrete spinors and s-holomorphicity in the planar Ising model

2.1 Notation and the Kramers–Wannier duality. Below we consider the ferromag-
netic Ising model on faces of a graphG embedded into the complex plane C so that all its
edges are straight segments. One can also work with graphs embedded into Riemann sur-
faces but for simplicity we prefer not to discuss such a generalization here (see Chelkak,
Cimasoni, and Kassel [2017, Section 4] and references therein for more details). A spin
configuration � is an assignment of a ˙1 spin �u to each face of G, including the outer
face uout, with the spin �uout playing the role of boundary conditions. The probability mea-
sure P ı (the superscipt ı emphasizes the fact that the model is considered on faces of G)
on the set of spin configurations is given by

(2.1) P ı(�) = (Zı(G))�1 exp
�
ˇ
P

e Je�u�(e)�u+(e)

�
;

where ˇ > 0 is the inverse temperature, Je > 0 are fixed interaction constants, the sum-
mation is over unoriented edges of G (an edge e separates two faces u˙(e)), and Zı(G)

is the normalization constant called the partition function. Note that the spin of the outer
face uout of G plays the role of boundary conditions and one can always break the Z2

(spin-flip) symmetry of the model by assuming �uout = +1.
Abusing the notation slightly, we also admit the situation when Je = 0 along some

boundary arcs ofG, which means that the corresponding near-to-boundary spins do not in-
teract with �uout . We call these parts of the boundary ofG free arcs and use the namewired
arcs for the remaining parts, across which the inner spins interact with the same �uout = +1.
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We will use the name standard boundary conditions for this setup, see also Chelkak, Hon-
gler, and Izyurov [n.d.]. For simplicity, below we always assume that there exists at least
one wired arc.

We denote by G� the graph obtained from G by removing the edges along free parts
of the boundary and by Gı a graph dual to G with the following convention: instead of a
single vertex corresponding to uout we draw one vertex per boundary edge on wired arcs.
Combinatorially, all these vertices of Gı should be thought of as wired together (hence
the name) and, similarly, the vertices of G� along free parts of the boundary should be
thought of as a collection of ‘macro-vertices’, one per free arc. We assume that Gı is
also embedded into C so that all its edges are straight segments and denote by }(G) the
set of quads (vuv0u0) formed by pairs of (unoriented) dual edges (vv0) and (uu0) of G�

and Gı, respectively. We also denote by @}(G) the set of triangles (vuv0) and (uvu0)

arising instead of quads along free and wired boundary arcs, respectively, and set}(G) :=

}(G) [ @}(G). Finally, let Ω(G) � C be the polygon formed by all these quads and
triangles.

For an unoriented edge e ofG� (or, equivalently, an element of}(G)), we define xe :=

exp[�2ˇJe] and extend this notation to the elements of @}(G) by setting xe := 1 on free
arcs and xe := 0 on wired ones. For a subset C � }(G), denote x(C ) :=

Q
e2C xe and

let E(G) denote the set of all even subgraphs of G. There exists a trivial bijection of this
set and the set of spin configurations on faces of G: draw edges separating misaligned
spins. In particular, one sees that

(2.2) Zı(G) =
Q

e2}(G) x
�1/2
e � Z(G); where Z(G) :=

P
C 2E(G) x(C );

this is called the domain walls (or low-temperature) expansion of Zı(G). A remarkable
fact (first observed by van der Waerden) is that the same Z(G) also gives an expression
for the partition function Z�(G) of the Ising model on vertices of G�, provided that the
dual parameters ˇ� and J �

e satisfy the identity xe = tanh[ˇ�J �
e ]. Namely, the following

high-temperature expansion of Z�(G) holds true:

(2.3) Z�(G) = 2jV (G�)j
Q

e2}(G)(1�x2e )
�1/2 � Z(G); Z(G) =

P
C 2E(G) x(C ):

This link between the Ising models onGı andG� is called the Kramers–Wannier dual-
ity and it is not limited to the equality between the partition functions Zı(G) and Z�(G).
Nevertheless, it is worth mentioning that similar objects typically lead to different types
of sums in the two representations. E.g., in order to compute the expectation Eı[�u�u0 ]

similarly to (2.2) one should keep track of the parity of the number of loops in C sepa-
rating u and u0, while computing the expectation E�[�v�v0 ] amounts to the replacement
of E(G) in (2.3) by the set E(G; v; v0) of subgraphs of G in which v and v0 (but no other
vertex) have odd degrees. Also, note that the boundary conditions on Gı and G� are not
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fully symmetric: dual spins on different free arcs are not required to coincide, contrary to
the wired ones.

It is convenient to introduce the following parametrization �e of the weights xe:

(2.4) xe = exp[�2ˇJe] = tanh[ˇ�J �
e ] = tan 1

2
�e ; �e 2 [0; �

2
]:

Note that, if we similarly define ��
e so that tan 1

2
��

e = exp[�2ˇ�J �
e ], then ��

e = �
2

� �e .

2.2 Spins-disorders formalism ofKadanoff andCeva. FollowingKadanoff andCeva
[1971], we now describe the so-called disorder insertions – the objects dual to spins un-
der the Kramers–Wannier duality. We also refer the interested reader to recent papers
of Dubédat, see Dubédat [2011] and Dubédat [2011]. Let m be even and v1; :::; vm be
a collection of vertices of G� (with the standard convention that each free arc should be
considered as a single vertex). Let us fix a collection of paths ~[v1;:::;vm] on G linking
these vertices pairwise and change the interaction constants Je to �Je along these paths
to get another probability measure on the spin configurations instead of (2.1). Note that
one can think of this operation as putting an additional randomweight exp[�2ˇJuu0�u�u0 ]

along  [v1;:::;vm] and treat this weight as a random variable, which we denote by�v1
:::�vm

(note that its definition implicitly depends on the choice of disorder lines). The domain
walls representation of the Ising model on Gı then gives

(2.5) Eı[�v1
:::�vm

] = x( [v1;:::;vm]) �
P

C 2E(G) x
[v1;:::;vm](C ) /Z(G);

where the weights x[v1;:::;vm] are obtained from x by changing xe to x�1
e on disorder lines

and the first factor comes from the prefactor in (2.2). More invariantly, one can consider
the sign-flip-symmetric Ising model on faces of the double-coverG[v1;:::;vm] ofG ramified
over the vertices v1; :::; vm (the spins at two faces of G[v1;:::;vm] lying over the same face
of G are required to have opposite values) and rewrite (2.5) as

Eı[�v1
:::�vm

] = Zı(G[v1;:::;vm]) /Zı(G)

=
P

C 2E(G;v1;:::;vm) x(C ) /Z(G) = E�[�v1
:::�vm

];(2.6)

where E(G; v1; :::; vm) stands for the set of subgraphs of G in which all v1; :::; vm (but no
other vertex) have odd degrees; the last equality is the classical high-temperature expan-
sion of spin correlations on G� mentioned above.

Vice versa, given an even n and a collection of faces u1; :::; un of G, one can write

Eı[�u1
:::�un

] =
P

C 2E(G) x[u1;:::;un](C ) /Z(G)

= Z�(G[u1;:::;un]) /Z�(G) = E�[�u1
:::�un

];(2.7)
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where the weights x[u1;:::;un] are obtained from x by putting additional minus signs on
the edges of [u1;:::;un] and Z�(G[u1;:::;un]) denotes the partition function of the spin-flip
symmetric Ising model on vertices of the double-cover G[u1;:::;un] of G ramified over
faces u1; :::; um, treated via the high-temperature expansion. Generalizing (2.6) and (2.7),
one has the following duality between spins and disorders:

Eı[�v1
:::�vm

�u1
:::�un

] = E�[�v1
:::�vm

�u1
:::�un

](2.8)

since both sides are equal to
P

C 2E(G;v1;:::;vn)
x[u1;:::;un](C ) /Z(G). Let us emphasize

that one needs to fix disorder lines in order to interpret these quantities as expectations
with respect to P ı and P �, respectively. Below we prefer a more invariant approach and
view uq’s as faces of the double-cover G[v1;:::;vn] and the expectation taken with respect
to the sign-flip symmetric Ising model defined on faces of this double-cover. To avoid
possible confusion, we introduce the notation

(2.9) h�v1
:::�vm

�u1
:::�un

i := Eı

G[v1;:::;vm] [�u1
:::�un

]

instead of (2.8). Considered as a function of both vp’s and uq’s, (2.9) is defined on a
double-cover Gm;n

[�;ı] of (G
�)m � (Gı)n and changes the sign each time when one of vp

turns around one of uq or vice versa; we call such functions spinors on Gm;n
[�;ı].

We also need some additional notation. Let Λ(G) := G� [ Gı be the planar graph
formed by the sides of quads from }(G) and let Υ(G) denote the medial graph of Λ(G).
In other words, the vertices of Υ(G) correspond to edges (uv) of Λ(G) or to corners
of G, while the faces of Υ(G) correspond either to vertices of G� or to vertices of Gı

or to quads from }(G). Denote by Υ�(G) a double-cover of Υ(G) which branches over
each of its faces (e.g., see Mercat [2001, Fig. 27] or Chelkak and Smirnov [2012, Fig. 6]).
Note that Υ�(G) is fully defined by this condition for graphs embedded into C but on
Riemann surfaces there is a choice that can be rephrased as the choice of a spin structure
on the surface. Belowwe discuss spinors onΥ�(G), i.e. the functions whose values at two
vertices of Υ�(G) lying over the same vertex of Υ(G) differ by the sign. An important
example of such a function is the Dirac spinor

(2.10) �c := & � exp[� i
2
arg(v(c) � u(c))]; where c = (u(c)v(c)) 2 Υ�(G);

u(c) 2 Gı, v(c) 2 G� and a global prefactor & : j& j = 1 is added to the definition for
later convenience. If G was embedded into a Riemann surface Σ, one should fix a vector
field on Σ with zeroes of even index to define the arg function (cf. Chelkak, Cimasoni,
and Kassel [2017, Section 4]), in the case Σ = C we simply consider a constant vector
field &2.

Given a corner c of G, we formally define �c := �v(c)�u(c), i.e.

(2.11) h�c�v1
:::�vm�1

�u1
:::�un�1

i := h�v(c)�v1
:::�vm�1

�u(c)�u1
:::�un�1

i:
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According to the preceding discussion of mixed spins-disorders expectations, for a given
collection $ := fv1; :::; vm�1; u1; :::; un�1g 2 (G�)m�1 � (Gı)n�1, the function (2.11)
locally behaves as a spinor onΥ�(G) but its global branching structure is slightly different
as the additional sign change arises when c turns around one of vp or uq . Let us denote the
corresponding double-cover of Υ(G) by Υ�

$ (G). Finally, define  c := �c�c , where �c

is defined by (2.10), and note that functions

(2.12) h c�v1
:::�vm�1

�u1
:::�un�1

i := �ch�c�v1
:::�vm�1

�u1
:::�un�1

i

do not branch locally (because of the cancellation of sign changes of�c and �c) and change
the sign only when c turns around one of the vertices vp or the faces uq . We denote the
corresponding (i.e., ramified over$ ) double-cover of Υ(G) by Υ$ (G).

2.3 S-holomorphicity. This section is devoted to the crucial three-term equation for
the functions (2.11), the so-called propagation equation for spinors on Υ�(G) (and also
known as the Dotsenko–Dotsenko equation, see Mercat [2001] and Chelkak, Cimasoni,
and Kassel [2017, Section 3.5]). To simplify the presentation, we introduce the follow-
ing notation: for a quad ze corresponding to an edge e of G, we denote its vertices,
listed counterclockwise, by v�

0(ze), vı
0(ze), v�

1(ze), and vı
1(ze), where v�

0(z); v
�
1(z) 2 G�

and vı
0(z); v

ı
1(z) 2 Gı (the choice of v�

0(z) among the two vertices ofG� is arbitrary). The
corner ofG corresponding to the edge (v�

p(ze)v
ı
q(ze)) of ze is denoted by cpq(ze) 2 Υ(G).

For shortness, we also often omit ze in this notation if no confusion arises.

Definition 2.1. A spinor F defined on Υ�(G) or, more generally, on some Υ�
$ (G) is

called s-holomorphic if its values at any three consecutive (onΥ�
$ (G)) corners cp;1�q(ze),

cpq(ze) and c1�p;q(ze) surrounding a quad ze 2 }(G) satisfy the identity

(2.13) F (cpq) = F (cp;1�q) cos �e + F (c1�p;q) sin �e ;

where �e stands for the parametrization (2.4) of the Ising model weight xe of e.

Remark 2.1. In fact, a straightforward computation shows that (2.13) implies the spinor
property: F (c[

pq) = �F (c]
pq) if c[

pq; c
]
pq 2 Υ�

$ (G) lie over the same corner cpq .
The key observation is that all the Ising model observables of the form (2.11), consid-

ered as functions of c 2 Υ�
$ (G), satisfy the propagation equation (2.13) (e.g., see Chelkak,

Cimasoni, and Kassel [ibid., Section 3.5]). In the recent research, this equation was mostly
used in the context of isoradial graphs, in which case the parameter �e has also a direct
geometric meaning, but in fact (2.13) is fairly abstract. In particular, Definition 2.1 does
not rely upon a particular choice (up to a homotopy) of an embedding of }(G) into C.
Contrary to (2.13), which was known for decades, the next definition first appeared in
the work of Smirnov on the critical Ising model on Z2, see Smirnov [2006] and Smirnov
[2010a].
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Definition 2.2. Let F be an s-holomorphic spinor on Υ�
$ (G). Then one can define a

functionHF on Λ(G) by specifying its increment around each quad from }(G) as

(2.14) HF (v�
p) �HF (vı

q) := (F (c]
pq))

2 = (F (c[
pq))

2

Note that, independently of$ ,HF is defined on Λ(G) and not on its double-cover.

Remark 2.2. Due to (2.13), one has (F (c00))
2+ (F (c11))

2 = (F (c01))
2+ (F (c10))

2.
Thus,HF is locally (and hence globally in the simply connected setup) well-defined.

A priori, the functionsHF do not seem to be natural objects for the study of correlations
in the Ising model but they turned out to be absolutely indispensable for the analysis of
scaling limits of such correlations in discrete approximations to general planar domains
initiated in Smirnov [2006] and Smirnov [2010a], see Section 3.3 below.

2.4 Pfaffian structure of fermionic correlators. Similarly to (2.11), one can consider
expectations containing two or more formal variables �c . We start with the following
observation: despite the fact that the quantities (2.9), viewed as functions on Gm;n

[�;ı], are
symmetric with respect to permutations of vp , as well as to those of uq , an additional sign
change appears if one exchanges (u(c)v(c)) and (u(d )v(d )); this can be viewed as a cu-
mulative result of a ‘half-turn’ of u(c) around v(d ) and a ‘half-turn’ of u(d ) around v(c).
In other words, the variables �c and �d anti-commute:

(2.15) h�d�c�v1
:::�vm�2

�u1
:::�un�2

i = �h�c�d�v1
:::�vm�2

�u1
:::�un�2

i

if one considers both sides as a function of (c; d ) 2 (Υ�
$ (G))[2], where (Υ�

$ (G))[2]

denotes the set (Υ�
$ (G))2 n f(c; d ) : c];[ = d ];[ or c];[ = d [;]g. More generally, given a

collection of vertices and faces$ = fv1; :::; vm�k ; u1; :::; un�kg, the quantities

(2.16) h�c1 :::�ck
O$ [�; � ] i := h�c1 :::�ck

�v1
:::�vm�k

�u1
:::�un�k

i

are anti-symmetric functions on (Υ�
$ (G))[k]; see Chelkak, Hongler, and Izyurov [n.d.]

for more precise definitions.
Another striking observation, which is also well known in the folklore for decades, is

that the correlations (2.16) satisfy the Pfaffian identities: for an even number of pairwise
distinct c1; :::; ck corners of G, one has

h�c1 :::�ck
O$ [�; � ] i � hO$ [�; � ] ik/2�1 = Pf

�
h�cr

�cs
O$ [�; � ] i

�
k
r;s=1 ;(2.17)

where the diagonal entries of the matrix on the right-hand side are set to 0.
One of the most transparent explanations of this Pfaffian structure comes from a re-

markable fact that the partition function Z(G) of the Ising model can be also written as
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the Pfaffian of some (real, anti-symmetric) matrix bK, which is a simple transform of the
famous Kac–Ward matrix KW(G; x) := Id � T, where

(2.18) Te;e0 =

(
exp[ i

2
(arg(e0) � arg(e))] � (xexe0)1/2 if e0 prolongates e,

0 otherwise,

and e; e0 are oriented edges of G. Namely (see Chelkak, Cimasoni, and Kassel [2017]
for more details, including the interpretation via a relevant dimer model on the so-called
Fisher graph GF, and Lis [2016] for a streamlined version of classical arguments),

bK = iU�J � KW(G; x) � U; where U = diag(�e); �e := & � exp[� i
2
arg(e)];

and J is composed of 2 � 2 blocks Je;e = Jē;ē = 0, Je;ē = Jē;e = 1, indexed by
pairs (e; ē) of oppositely oriented edges of G. Note the similarity between the defini-
tion of �e and (2.10): essentially, one can view the former as an arbitrarily chosen section
of the latter, considered on oriented edges of G instead of Υ(G).

In other words, the Hamiltonian of the Ising model can be rewritten as a quadratic
form in Grassmann variables �e (aka free fermions), whose (formal) correlators satisfy
Pfaffain identities by definition. Then one can check (e.g., see Chelkak, Cimasoni, and
Kassel [2017, Theorem 1.2]) that these correlators of �e admit essentially the same combi-
natorial expansions as the expectations (2.16). In fact, if all the vertices v(cr) and vp are
pairwise distinct, then all the expectations involved in (2.17) can be viewed as (formal)
correlators of some Grassmann variables �c obtained from �e by a local (namely, block
diagonal with blocks indexed by vertices ofG) linear change, see Chelkak, Cimasoni, and
Kassel [ibid., Section 3.4]. Therefore, the Pfaffian identities (2.17) hold true if all v(cr)

and vp are pairwise distinct and this assumption can be removed using the propagation
equation (2.13), which is satisfied (with respect to each of cr ) by both sides of (2.17).

3 Holomorphic observables in the critical model on isoradial graphs

3.1 Critical Ising model on isoradial graphs (rhombic lattices). We now focus on
the case when a weighted graphG is a part of a nice infinite grid, for instance a part of Z2.
For the homogeneous (i.e., all Je = 1) model on Z2, the Kramers–Wannier duality (2.4)
suggests that the value x = tan �

8
=

p
2 � 1 corresponds to the critical point of the

model and indeed a second order phase transition at ˇ = �
1
2
log(

p
2� 1) can be justified

in several ways. More generally, one can consider an arbitrary infinite tiling } of the
complex plane by rhombi with angles uniformly bounded from below, split the vertices of
the bipartite graph Λ formed by the vertices of these rhombi into two isoradial graphs Γ�

and Γı, and define the Ising model weights on Γ� by setting xe := tan 1
2
�e , where �e is the
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half-angle of the corresponding rhombus at vertices from Γ�. This model is called a self-
dual Z-invariant Ising model on isoradial graphs and it can be viewed as a particular point
in a family of the so-called Z-invariant Ising models studied by Baxter and parameterized
by an elliptic parameter k. Recently, it was shown byBoutillier, de Tilière andRaschel that,
similarly to the case of regular lattices, the Z-invariant Ising model on a given isoradial
graph exhibits a second order phase transition at its self-dual point k = 0, see Boutillier,
De Tilière, and Raschel [2016] and references therein for more details.

Below we are mostly interested in the following setup: letΩ � C be a bounded simply
connected domain and let Ωı = Ω(Gı) be a sequence of its polygonal discretizations on
isoradial graphs ofmesh size ı (in other words, the corresponding rhombic lattice is formed
by rhombi with side lengths ı) with ı ! 0. Below we use the notation V �(Ωı), V ı(Ωı),
V Λ(Ωı), V ˘(Ωı), V g(Ωı) and V g

$ (Ωı) for the sets of vertices of (Gı)�, (Gı)ı, Λ(Gı),
}(Gı), Υ(Gı) and Υ$ (Gı), respectively, and we always assume that the Ising model
weighs xe = tan 1

2
�e are chosen according to the geometry of these isoradial graphs, as

explained above. In particular, the reader can think of a sequence of discrete domains Ωı

drawn on square grids of mesh sizes ı ! 0 and the homogeneous Ising model with the
critical weight x =

p
2�1.

3.2 From Kadanoff–Ceva fermions to discrete holomorphic functions. As already
mentioned in Section 2.3, all the Ising model observables of the form

h cO$ [�; � ] i := �ch�cO$ [�; � ] i; $ = fv1; :::; vm�1; u1; :::; um�1g;

considered as functions of c 2 V g
$ (Ωı), always satisfy a three-term propagation equation,

which is obtained from (2.13) by multiplying each of the terms by the Dirac spinor (2.10).
For the critical Ising model on isoradial graphs, it admits a particularly nice interpretation
as the discrete holomorphicity of F$ (c). One has

�c = & � exp[� i
2
arg(v�(c) � vı(c))] = &ı1/2 � (v�(c) � vı(c))�1/2;

and a straightforward computation shows that (2.13) can be rewritten as

(3.1) h c00O$ [�; � ] i + h c11O$ [�; � ] i = h c01O$ [�; � ] i + h c10O$ [�; � ] i :

Taking the complex conjugate and using (v�(c)�vı(c)) � �c = &2ı � �c , one gets

(vı
0 � v�

0)Φ(c00) + (v�
1 � vı

0)Φ(c10) + (vı
1 � v�

1)Φ(c11) + (v�
0 � vı

1)Φ(c01) = 0;

whereΦ(c) := h cO$ [�; � ] i, which can be thought of as a vanishing discrete contour in-
tegral around a given rhombus. However, there exists an even better way to interpret (3.1),
adopted in Smirnov [2006], Smirnov [2010a] and further works. For z 2 V ˘

$ (Ωı), denote

(3.2) F$ (z) := h( c00(z)+  c11(z))O$ [�; � ] i = h( c01(z)+  c10(z))O$ [�; � ] i:
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It turns out that there exists a natural discrete Cauchy–Riemann operator @�
Λ (acting on

functions defined on V ˘(Ωı) and returning functions on V Λ(Ωı)) such that

(3.3) @�
ΛF$ = 0 in V Λ(Ωı) n fv1; :::; vm�1; u1; :::; un�1g :

More precisely, @�
Λ is the (formally) adjoint operator to

(3.4) [@ΛH ](z) :=
1

2

�
H (v�

1(z))�H (v�
0(z))

v�
1(z) � v�

0(z)
+
H (vı

1(z))�H (vı
0(z))

vı
1(z) � vı

0(z)

�
;

seeMercat [2001], Kenyon [2002], Chelkak and Smirnov [2011] andChelkak and Smirnov
[2012] for more details. One of the advantages of (3.3) is that we now have roughly the
same number of equations as the number of unknowns F (z) and do not need to keep track
of the fact that the values Φ(cpq) discussed above have prescribed complex phases (note
that the number of unknowns Φ(c) is roughly twice the number of vanishing elementary
contour integrals around rhombi). However, this information on complex phases is not
fully encoded by (3.3). In fact, a slightly stronger condition holds: for two rhombi z; z0

adjacent to the same c 2 V g
$ (Ωı),

(3.5) Pr[F$ (z); �cR] = Pr[F$ (z0); �cR];

where Pr[F ; �R] := ��1Re[�F ]. Actually, one can easily see from (3.1) that both sides
of (3.5) are equal to h cO$ [�; � ] i and it is not hard to check that the condition (3.5)
indeed implies (3.3), see Chelkak and Smirnov [ibid., Section 3.2].
Remark 3.1. In Chelkak and Smirnov [ibid.], the term s-holomorpicitywas introduced for
complex-valued functions F (z) defined on V ˘(Ωı) and satisfying (3.5), in particular to
indicate that such functions also satisfy (3.3). In view of (3.2), this is essentially the same
notion as the one introduced in Definition 2.1 for real-valued spinors defined on V �(Ωı).
Still, it is worth mentioning that (2.13) does not rely upon the very specific (isoradial)
choice of the embedding of Gı and the Ising weights, while (3.3) does; see also Chelkak,
Cimasoni, and Kassel [2017, Sections 3.5, 3.6] for a discussion of (3.5) in the general
case.
Remark 3.2. In breakthrough works Smirnov [2006], Smirnov [2010a], Duminil-Copin
and Smirnov [2012], Smirnov [2010b] of Smirnov on the critical Isingmodel (see alsoChelkak
and Smirnov [2012] and Hongler and Smirnov [2013]), discrete holomorphic fermions
were introduced in a purely combinatorial way, as a particular case of parafermionic ob-
servables, and the s-holomorphicity condition (3.5) was verified combinatorially as well
(e.g., see Smirnov [2010b, Fig. 5] or Chelkak and Smirnov [2012, Fig. 5]). Following this
route, more general spinor observables (3.2) were also treated combinatorially, and not
via the Kadanoff–Ceva formalism, in Chelkak and Izyurov [2013] and Chelkak, Hongler,
and Izyurov [2015].
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3.3 Boundary conditions and the key role of the functionHF . We now come back to
Definition 2.2 suggested in Smirnov [2006] and Smirnov [2010a] as a crucial tool for the
analysis of fermionic observables via boundary value problems for s-holomorphic func-
tions in Ωı . Let F = F ı be such a function and HF be defined via (2.14) from the
corresponding (see Remark 3.1) real-valued s-holomorphic spinor on V �(Ωı). A straight-
forward computation shows that, for each z 2 V ˘(Ωı), one has

(3.6) HF (v�
1)�HF (v�

0) = Re[ &2ı�1(F (z))2(v�
1�v�

0)] = Im[ı�1(F (z))2(v�
1�v�

0)];

HF (vı
1)�HF (vı

0) = Re[ &2ı�1(F (z))2(vı
1�vı

0)] = Im[ı�1(F (z))2(vı
1�vı

0)];

provided that the global prefactor in the definition (2.10) is chosen1 as & = ei �
4 . In other

words, the real-valued function HF turns out to be a proper discrete analogue of the ex-
pression

R
Im[(F (z))2dz]. Even more importantly,HF encodes the boundary conditions

of the Ising model in the form of Dirichlet boundary conditions. Namely, one can choose
an additive constant in its definition so that

(3.7) � HF = 0 and @�inH � 0 on all the wired boundary arcs,
� HF is constant and @�inH � 0 on each of the free boundary arcs,

where @�in stands for a discrete analogue of the inner normal derivative, see Chelkak
and Smirnov [2012] and Izyurov [2015]. In particular, the values of the s-holomorphic
spinor F at two endpoints of a free arc have the same absolute value (which, according
to (2.14), is equal to the square root of the value ofH on this free arc) and in fact one can
also match their signs by tracking the Dirac spinor (2.10) along the boundary; see Izyurov
[ibid.] and Chelkak, Hongler, and Izyurov [n.d.] for more details.

One can also check that, for$ = fv1; :::; vm�1; u1; :::; un�1g andHF$
obtained from

the s-holomorphic function F$ given by (3.2) (or, equivalently, from the s-holomorphic
spinor h�cO$ [�; � ]i), the following is fulfilled:

• the minimum ofHF in a vicinity of each of vp is attained at the boundary,

• the maximum ofHF in a vicinity of each of uq is attained at the boundary.

Imagine now that instead of a sequence of discrete s-holomorphic functions F ı on Ωı

we had a continuous holomorphic function f : Ω ! C such that the harmonic func-
tion hf :=

R
Im[(f (z))2dz] satisfied the conditions listed above. We could then hope

to identify f as a solution to such a boundary value problem in Ω, provided that this
solution is unique (up to a normalization to be fixed). This not necessarily true in full
generality (e.g., some degeneracy might appear in presence of several spins and several

1This is a matter of convenience. E.g., the notation in Hongler and Smirnov [2013], Hongler and Kytölä
[2013], Chelkak, Hongler, and Izyurov [2015] and Gheissari, Hongler, and Park [2013] corresponds to & = i .
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disorders in O$ [�; � ]) but there are enough situations in which a relevant uniqueness the-
orem ‘in continuum’ is fulfilled and thus one can hope to prove the convergence of F ı

to f as ı ! 0; see Section 4.1 and Chelkak, Hongler, and Izyurov [n.d.] for more details.

3.4 Smirnov’s sub-/super-harmonicity. The interpretation of s-holomorphic functionsF ı

as solutions to discrete boundary value problems described above is implicitly based on
the idea that one can think ofHF ı as of a discrete harmonic function on Λ(Ωı). However,
this cannot be true literally: the functions (F ı)2 are not discrete holomorphic, thus there is
no hope thatHF ı are exactly discrete harmonic. Nevertheless, there is a miraculous posi-
tivity phenomenon, first observed in Smirnov [2006] and Smirnov [2010a] on the square
grid and later generalized to the isoradial setup in Chelkak and Smirnov [2012].

Lemma 3.1 (see Smirnov [2010a, Lemma 3.8] and Chelkak and Smirnov [2012, Propo-
sition 3.6(iii)]). Let F be defined on quads surrounding a given vertex v 2 V Λ(Ωı) and
satisfy the s-holomorphicity identities (3.5). If HF is constructed via (3.6) (or, equiva-
lently, via (2.14)), then

(3.8) [∆�HF ](v) � 0 if v 2 V �(Ωı); and [∆ıHF ](v) � 0 if v 2 V ı(Ωı);

where the Laplacian operator ∆� (and, similarly,∆ı) is defined as

(3.9) [∆�H ](v) :=
P

v1:v1∼v tan �(vv1) � (H (v1)�H (v)):

It is easy to check that both discrete operators ∆� and ∆ı approximate the standard
Laplacian as ı ! 0 in a quite strong (local) sense; see Chelkak and Smirnov [2011] for de-
tails. Recall that, according toDefinition 2.2 the discrete subharmonic functionHF ı jV �(Ωı)

is pointwise (i.e., at any pair of neighboring vertices v�(c) and vı(c)) greater or equal
to the discrete superharmonic function HF ı jV ı(Ωı). Therefore, provided that the differ-
ence ıHF ı (v�(c) � ıHF ı (vı(c)) = (F ı(c))2 is small inside of Ωı , both ıHF ı jV �(Ωı)

and ıHF ı jV ı(Ωı) should have the same harmonic limit as ı ! 0.

Remark 3.3. Still, there is a question of how to show that F ı is small. In the pioneering
work Smirnov [2006] devoted to basic fermionic observables on Z2, this fact was de-
rived from monotonicity arguments and the magnetization estimate; see Smirnov [2010a,
Lemma A.1]. Shortly afterwards, an a priori regularity theory for functions HF were
developed in Chelkak and Smirnov [2012, Section 3]. These a priori estimates were later
applied to various Ising-model observables, in particular when no simple monotonicity
arguments are available.
Remark 3.4. It is commonly believed that one cannot directly generalize Lemma 3.1
for more general graphs or Ising-model weights xe = 1

2
tan �e: the existence of some
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Laplacians ∆� and ∆ı such that (3.8) holds true seems to be equivalent to the condi-
tions

P
v1:v1∼v arctan x(vv1) 2

�
2
+�Z, which lead to an isoradial embedding of (G�; Gı),

possibly with (2� + 4�Z) conical singularities at vertices.

4 Convergence of correlations

In this section we very briefly discuss the convergence results for correlation functions
(fermions, energy densities, spins etc) obtained during the last decade for the critical model
on Z2 (see also Remark 4.2 on the critical Z-invariant model). We refer the interested
reader to upcoming Chelkak, Hongler, and Izyurov [n.d.], see also Chelkak [2016a, Sec-
tion 4].

4.1 Convergence of s-holomorphic observables. As already mentioned above, tech-
niques developed in Chelkak and Smirnov [2012] essentially allow one to think of sub-
/super-harmonic functions H ı := ı�1HF ı as of harmonic ones. In particular, a uniform
boundedness of the family H ı on an open set implies that both H ı and the original ob-
servables F ı are equicontinuous on compact subsets of this open set.

Imagine now that we want to prove the convergence of (properly normalized) observ-
ables F ı

$ , $ = fv1; :::; vm�1; u1; :::; un�1g as ı ! 0. Assuming that the corresponding
functions H ı

$ are uniformly bounded away from vp’s and uq’s, the Arzelà–Ascolli theo-
rem ensures that, inside of Ωn$ , at least subsequential limitsH ı

$ ! h$ and F ı
$ ! f$

exist. Since the functions F ı
$ are discrete holomorphic, their limit f$ is a holomorphic

function and one also has h$ =
R
Im[(f$ (z))2dz]. Moreover, one can show that the

boundary conditions (3.7) survive as ı ! 0, see Chelkak and Smirnov [ibid., Remark 6.3]
and Izyurov [2015]. Clearly, h$ also inherits fromH ı

$ the semi-boundedness from below
near vp and from above near uq . Thus, only two questions remain:

(i) to show that f and h are uniquely characterized by the above properties;
(ii) to justify that the functions ı�1Hı are uniformly bounded away from$ .

In general (i.e., in presence of several disorders and spins in O$ [�; � ]), the uniqueness (i)
may fail. Fortunately, there exists a principal setup in which it holds true:

(4.1) F ı
$ (z) :=

ı�1h (z)�d �u1
:::�un�2

i

h�u1
:::�un�2

i
;  (z) :=  c00(z)+ c11(z) ;

where d and u1; :::; un�2 are assumed to approximate distinct points of Ω as ı ! 0.
(Recall also that the roles of spins and disorders are not fully symmetric since our standard
boundary conditions are not fully symmetric under the Kramers–Wannier duality). Note
that such functions F ı

$ have ‘standard’ discrete singularities at d , leading to a ‘standard’
singularity (simple pole with a fixed residue) of f$ at d .
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Finally, a useful trick allowing to deduce (ii) from (i) was suggested in Chelkak, Hon-
gler, and Izyurov [2015, Section 3.4]: if the functionsH ı

$ were unbounded, then one could
renormalize them in order to obtain non-trivial limits ef $ andeh$ =

R
Im[(ef $ (z))2dz], which would solve the same boundary value problem as f$

and h$ but without the pole at d , killed by such an additional renormalization. Due to (i),
this boundary value problem has no nontrivial solution, which gives a contradiction; see
also Chelkak, Hongler, and Izyurov [n.d.].

4.2 Fusion: from s-holomorphic observables to ", � and�. Once the convergence of
observables (4.1) is established, one can first use the Pfaffian structure (2.17) of fermionic
correlators to obtain the convergence of the quantities

(4.2)
h�c1 :::�ck

�u1
:::�un�k

i

h�u1
:::�un�k

i
= Pf

�
h�cr

�cs
�u1

:::�un�k
i

h�u1
:::�un�k

i

�k

s;r=1

:

In particular, the simplest case n � k = 0 allows one to study (see Hongler and Smirnov
[2013] and Hongler [2010]) the scaling limit of correlations of the energy density field,
defined for z 2 V ˘(Ωı) as

"z := �vı
0(z)

�vı
1(z)

�2� 1
2 = ˙ 2� 1

2�c00(z)�c11(z) = 2� 1
2 ��v�

0(z)
�v�

1(z)
:

Note that a careful analysis of the singularity of (4.1) as z ! d is required in order to
handle the next-to-leading term "z appearing in the fusion of two fermions �c�d .

In the same spirit, recursively analyzing the behavior of (4.2) near discrete singularities
as ck�s ! un�k�s , s = 0; :::; r�1, one obtains scaling limits of the ratios

(4.3) h�c1 :::�ck�r
�u�

n�k�r+1
:::�u�

n�k
�u1

:::�un�k�r
i � h�u1

:::�un�k
i
�1;

where u�
p 2 V �(Ωı) denotes one of the neighboring to up vertices of Γ�. The remaining

ingredient is the convergence of the denominators h�u1
:::�un�k

i, which do not contain
any discrete holomorphic variable. Such correlations were treated in Chelkak, Hongler,
and Izyurov [2015] using the following idea: fusing �d and �u1

in (4.1) one gets the
observable

h (z)�u�
1
�u2

:::�un�2
i � h�u1

:::�un�2
i
�1

and then analyzes its behavior (as that of a discrete holomorphic function in z) near the
vertex u�

1 ∼ u1. This analysis provides an access to the ratio

(4.4) h�uı
1
�u2

:::�un�2
i � h�u1

:::�un�2
i
�1;

where uı
1 ∼ u�

1 ∼ u1 can be any neighboring to u1 face of Ωı . The next-to-leading
term in the asymptotics of this ratio as ı ! 0 encodes the discrete spatial derivative
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of logh�u1
:::�un�2

i, which eventually allows one to identify its scaling limit by fusing
spins to each other and thus reducingn; see Chelkak, Hongler, and Izyurov [ibid.] andChelkak,
Hongler, and Izyurov [n.d.] for more details.

Remark 4.1. The above scheme allows one to prove the convergence of arbitrary correla-
tions of disorders, spins and fermions under standard boundary conditions in Ωı . In fact,
it can be further generalized to include (a) the (common) spin �uout of the wired bound-
ary arcs; (b) one or several disorders assigned to free boundary arcs; (c) fermions on the
boundary of Ωı . In particular, this allows one to handle an arbitrary mixture of ‘+’, ‘�’
and ‘free’ boundary conditions; see Chelkak, Hongler, and Izyurov [ibid.] for details.

Remark 4.2. The convergence results for s-holomorphic observables (4.1) and the energy
density correlations can be also proved in the isoradial setup ad verbum. Nevertheless,
the passage to (4.3) and, especially, the analysis of the spatial derivatives (4.4) of spin
correlations require some additional work. We believe that all the key ingredients can be
extracted from Dubédat [2015] but it is worth mentioning that such a generalization has
not appeared yet even for the honeycomb/triangular grids.

4.3 More CFT on the lattice. From the Conformal Field Theory perspective (e.g.,
see Mussardo [2010]), the scaling limits of correlations of fermions, spins, disorders and
energy-densities are those of primary fields (non-local ones in the case of  and �). It is
a subject of the ongoing research to construct the corresponding CFT, as fully as possible,
directly on the lattice level (and not in the limit as ı ! 0). Below we mention several
results and research projects in this direction:

– The analysis of general lattice fields (i.e., functions of several neighboring spins) was
started in Gheissari, Hongler, and Park [2013], though at the moment only their leading
terms, which converge to either 1; "; � or the spatial derivative of � in the scaling limit,
are treated.

– The action of the Virasoro algebra on such lattice fields was recently defined in Hon-
gler, Kytölä, and Viklund [2017], via the so-called Sugawara construction applied to dis-
crete fermions.

– An ‘infinitesimal non-planar deformation’ approach to the stress-energy tensor of the
Ising model on faces of the honeycomb grid was recently suggested in Chelkak, Glazman,
and Smirnov [2016].

We also believe that one can use s-embeddings (see Section 6) of weighted planar
graphs (G; x) to properly interpret an infinitesimal change of the Ising weights xe as a
vector-field in C, thus providing yet another approach to the stress-energy tensor.
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5 Interfaces and loop ensembles

In the 20th century, the (conjectural) conformal invariance of critical lattice models was
typically understood via the scaling limits of correlation functions, which are fundamental
objects studied by the classical CFT (e.g., see Mussardo [2010]), though see Aizenman
and Burchard [1999] and Langlands, Lewis, and Saint-Aubin [2000]. The introduction of
SLEs by Schramm (see Schramm [2000]), and later developments on CLEs (Conformal
Loop Ensembles, see Sheffield [2009], Sheffield andWerner [2012], Miller, Sheffield, and
Werner [2017] and references therein) provided quite a different perspective of studying
the geometry of either particular interfaces (e.g., domain walls in the critical Ising model)
– conjecturally converging to SLEs – or the full collection of interfaces – conjecturally
converging to CLEs – as Ωı ! Ω.

For the critical Ising model, both in its classical and the so-called random-cluster (or
Fortuin–Kastelen, see below) representations, the convergence of interfaces generated by
Dobrushin boundary conditions was obtained already in the pioneering work of Smirnov
(see Smirnov [2006, Theorem 1] and references therein) via the application of the so-
called martingale principle (e.g., see Smirnov [ibid., Section 5.2]) and the convergence
results for basic fermionic observables (see Smirnov [2010a] and Chelkak and Smirnov
[2012]). However, the improvement of the topology of convergence from that of func-
tional parameters (aka driving forces) in the Loewner equation to the convergence of
curves themselves required some additional efforts: the appropriate framework was pro-
vided in Kemppainen and Smirnov [2017]; see also Chelkak, Duminil-Copin, Hongler,
Kemppainen, and Smirnov [2014] and references therein. Basing on this framework, the
convergence of the full branching tree of interfaces in the FK-representation (announced
in Smirnov [2006] and Smirnov [2010a]) to CLE(16/3) was eventually justified by Kemp-
painen and Smirnov in Kemppainen and Smirnov [2015] and Kemppainen and Smirnov
[n.d.]. In parallel, an exploration algorithm aiming at the proof of the convergence of the
classical domain walls ensemble to CLE(3) was suggested in Hongler and Kytölä [2013]
and later, via the convergence of the so-called free arc ensemble established in Benoist,
Duminil-Copin, and Hongler [2016], this convergence to CLE(3) has also been justified
by Benoist and Hongler in Benoist and Hongler [2016]. Recently, another approach to
derive the convergence of the domain walls loop ensemble to CLE(3) from that of the
random cluster one to CLE(16/3) was suggested in Miller, Sheffield, and Werner [2017].

Certainly, it is absolutely impossible to provide details of these advanced developments
in a short note, thus we refer the interested reader to the original articles mentioned above
and hope that such a survey will appear one day. Below we only emphasize several in-
gredients coming from the complex analysis side and indicate the role played by the Ising
model observables discussed above.
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5.1 FK-Ising (random cluster) representation and crossing probabilities. Recall
that the random-cluster representation of the critical Ising model on Z2 (e.g., see Smirnov
[2006, Section 2.3]) is a probability measure on the configurations of edges of Γı (each
edge is declared open or closed), proportional to

(5.1) x
#closed edges
crit (1�xcrit)

#open edges
� 2#clusters ∼

p
2
#loops

;

where #clusters stands for the number of connected components in a given configuration
and #loops denotes the number of loops separating these clusters of vertices of Γı from
dual ones, living on Γ� (and formed by the edges of Γ� dual to the closed ones of Γı); e.g.,
see Smirnov [ibid., Fig. 3]. Through the Edward–Sokal coupling, it is intimately related
to the original spin model: to obtain a random cluster configuration from � , one tosses a
(biased according to the Ising weight xe) coin for each edge e of Γı connecting aligned
spins; and, inversely, tosses a fair coin to assign a ˙1 spin to each of the clusters of a given
random cluster configuration. In particular,

(5.2) Eı[�u1
:::�un

] = P FK[each cluster contains an even number of u1; :::; un]:

Remark 5.1. The fact that the probability measure (5.1) is proportional to
p
2
#loops relies

upon the duality of the graphs Γ� and Γı, as embedded into a sphere. Recall that we
consider all the vertices of Γı on wired arcs as a single ‘macro-vertex’ while in Γ� there
is one ‘macro-vertex’ for each of the free arcs, so this duality holds.

A particularly important application of the identity (5.2) (applied to disorders on Γ�

rather than to spins on Γı) appears in the quadrilateral setup, when there are two wired
(ab); (cd ) and two free (bc); (da) arcs on @Ωı . Namely, one has

(5.3) h�(da)�(bc)i = P FK[(da) $ (bc)] = %
�
P loops[(da) $ (bc)]

�
;

where %(p) := p � (p +
p
2(1�p))�1 and P loops ∼

p
2
#loops denotes the probability

measure on FK-Ising configurations, where only the loops lying inside of Ωı are counted.
In other words, in this self-dual setup the two wired arcs are not connected, similarly to
the free ones; cf. Remark 5.1. Note that, though P loops does not literally correspond to
any FK-Ising measure, it is absolutely continuous with respect to P FK, with the density
proportional to 1 + (

p
2 � 1) � 1[(da) $ (bc)].

5.2 Crossing estimates and tightness. When studying the convergence of random
curves ı as ı ! 0 (e.g., ı can be an interface generated by Dobrushin boundary con-
ditions, see Chelkak, Duminil-Copin, Hongler, Kemppainen, and Smirnov [2014], or a
branch of the FK-Ising tree, see Kemppainen and Smirnov [2015] and Kemppainen and
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Smirnov [n.d.], or a branch of the free arc ensemble, see Benoist, Duminil-Copin, and Hon-
gler [2016] and Benoist and Hongler [2016]), an important step is to establish the tightness
of this family in the topology induced by the natural metric on the space of curves con-
sidered up to reparametrizations. Departing from the classical results of Aizenman and
Burchard [1999], which appeared even before the introduction of SLE, Kemppainen and
Smirnov showed in Kemppainen and Smirnov [2017] that a very weak estimate on the
probability of an annulus crossing implies not only the tightness of ı themselves but
also the tightness of the corresponding random driving forces in the Loewner equations
and a uniform bound on exponential moments of these driving forces. Below we only
emphasize the following two points of the study of crossing estimates; see the original
article for more details.

� The annulus crossing estimate mentioned above (geometric Condition G in Kemp-
painen and Smirnov [ibid.]) was shown to be equivalent to a similar estimate on crossings
of general topological quadrilaterals (conformal Condition C in Kemppainen and Smirnov
[ibid.]), uniform in the extremal length of a quadrilateral. The latter is conformally invari-
ant by definition, which makes the framework developed in Kemppainen and Smirnov
[ibid.] extremely well-suited to the SLE theory.

� Provided suitable monotonicity (with respect to the position of the boundary and
the boundary conditions) arguments are available, it is enough to obtain the required
crossing estimates for two standard quadrilaterals only, with alternating (i.e., wired/free/
wired/free or ‘+/ � / + /�’, respectively) boundary conditions.

For the FK-Ising model, it is then enough to prove a uniform (in ı) lower bound for
the quantities (5.3). In fact, using techniques described in Section 4, one can even find
the limit of these correlations as ı ! 0 (see also Chelkak and Smirnov [2012, Theo-
rem 6.1] for a shortcut suggested earlier by Smirnov, which reduces (5.3) to the analysis
of basic s-holomorphic observables). A similar crossing estimate for the spin-Ising model
can be then easily deduced via the Edwards–Sokal coupling and another application of
the FKG inequality, see Chelkak, Duminil-Copin, Hongler, Kemppainen, and Smirnov
[2014, Remark 4] and Chelkak, Duminil-Copin, and Hongler [2016, Section 5.3] (a more
involved but self-contained argument can be found in Kemppainen and Smirnov [2017,
Section 4.2]).
Remark 5.2. In absence of the required monotonicity arguments, one can always use the
‘strong’ RSW-type theory developed for the critical FK-Ising model in Chelkak, Duminil-
Copin, and Hongler [2016] (basing, in particular, on techniques from Chelkak [2016b]) to
verify Condition C of Kemppainen and Smirnov [2017].

5.3 Martingale observables and convergence of interfaces. According to the clas-
sical martingale principle, aiming to describe the scaling limit of a single interface ı
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running in Ωı from a marked boundary point ı(0) = aı , one can (try to) find an observ-
ableM ı(z) = MΩı ;aı (z) such that, for each z 2 Ωı , the valueMΩını [0;t ];ı(t)(z) is a
martingale with respect to the filtration generated by ı [0; t ]. Provided that the scaling
limit M (z) of M ı(z) as ı ! 0 can be identified and the tightness conditions discussed
in the previous section are fulfilled, one thus gets a family (indexed by z 2 Ω) of martin-
galesMΩn [0;t ];(t)(z) for a (subsequential) limit  of ı , which is enough to identify its
law as that of SLE(�). Note, however, that some additional analysis is usually required
when working with more general SLE(�,�) curves in order to control their behavior on the
set of times when the corresponding Bessel process hits 0, see Kemppainen and Smirnov
[2015], Kemppainen and Smirnov [n.d.] and Benoist, Duminil-Copin, and Hongler [2016],
Benoist and Hongler [2016] for details.

The convergence results on correlation functions described above provide such martin-
gale observablesM ı(z), amenable to the analysis in the limit ı ! 0, for a huge variety
of setups, in both spin- and FK-representations of the model. E.g.,

� h (z)�ai/h�b�ai is a martingale for the domain wall (converging to SLE(3) as ı!

0, see Chelkak, Duminil-Copin, Hongler, Kemppainen, and Smirnov [2014]) generated by
Dobrishin (i.e., ‘�’ on (ab), ‘+’ on (ba)) boundary conditions;

� more generally, h (z)�ai/h�(bc)�ai is a martingale for the domain wall emanating
from a under ‘+/�/free’ boundary conditions (this interface converges, see Hongler and
Kytölä [2013] or Izyurov [2015], to the dipolar SLE(3,-3/2,-3/2), an important building
block of Benoist, Duminil-Copin, and Hongler [2016], Benoist and Hongler [2016]);

� h (z)�(ba)�(ab)i is amartingale for theFK-interface generated byDobrushin (wired
on (ab), free on (ba)) boundary conditions (this is the observable introduced by Smirnov
in Smirnov [2006], Smirnov [2010a] to prove the convergence of this interface to SLE(16/3)).

Remark 5.3. Following Smirnov [2006], Smirnov [2010a], Chelkak and Smirnov [2012],
Duminil-Copin and Smirnov [2012], these martingale observables are usually defined in
a purely combinatorial way in the existing literature (and not via the Kadanoff–Ceva for-
malism, cf. Remark 3.2). One of the advantages of this approach is that the martingale
property becomes a triviality. On the other hand, the origin of the crucial s-holomorphicity
property becomes less transparent.

5.4 Convergence of loop ensembles. As already mentioned above, we do not intend
to overview the details of Kemppainen and Smirnov [2015], Kemppainen and Smirnov
[n.d.] (convergence of the FK-Ising loop ensemble to CLE(16/3)) and of Benoist, Dumi-
nil-Copin, and Hongler [2016], Benoist and Hongler [2016] (convergence of the domain
walls ensemble to CLE(3)) in this essay and refer the interested reader to the original arti-
cles. In both projects, some iterative procedure is used: a branching exploration of loops
in the former (which is a prototype of the branching SLE-tree from Sheffield [2009]) and
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an alternate exploration of FK-Ising clusters and free arc ensembles (proposed in Hongler
and Kytölä [2013]) in the latter. Because of the hierarchial nature of these algorithms, the
following subtlety arises: even if the convergence of each of FK-interfaces to SLE(16/3)
curves is known, one still needs to control the behavior of its double points, which split
the current domain into smaller pieces to be explored (and also of the endpoints of arcs
constituting the free arc ensemble in Benoist, Duminil-Copin, and Hongler [2016]), in or-
der to guarantee that the exploration algorithm in discrete does not deviate too much from
the continuum one. This is done2 using the strong RSW theory developed in Chelkak,
Duminil-Copin, and Hongler [2016], which guarantees that all such ‘pivotal’ points in
continuum are the limits of those in discrete, uniformly in the shape of subdomains ob-
tained along the way and boundary conditions, cf. Remark 5.2.

6 Towards universality beyond isoradial graphs

As discussed above, the fundamental questions of convergence and conformal invariance
of the critical Ising model on the square grid are now relatively well understood, both
for correlation functions and loop ensembles. Moreover, a great part, if not all, of these
results can be generalized from Z2 to the critical Z-invariant model using the already
existing techniques. Nevertheless, this does not give a fully satisfactory understanding of
the universality phenomenon since the cornerstone ‘sub-/super-harmonicity’ Lemma 3.1
does not admit a direct generalization beyond the isoradial case, see Remark 3.4. E.g.,
even the convergence of Ising interfaces on doubly-periodic weighted graphs has never
been treated though the criticality condition on the weights in this case is well known;
see Cimasoni and Duminil-Copin [2013] and references therein.

The main purpose of this section is to discuss a new class of embeddings of generic
planar weighted graphs carrying the Isingmodel into the complex plane, with the emphasis
on an analogue of the ‘s-Lemma’ 3.1. Below we only sketch some important features of
the construction, details will appear elsewhere. Independently of our paper, a special class
of s-embeddings – circle patterns – was studied in Lis [2017] and the criticalitywas proven
in the case of uniformly bounded faces.

6.1 S-embeddings of weighted planar graphs. Below we adopt the notation of Sec-
tion 2. To construct a particular embedding intoC of a given planar weighted graph (G; x)
we choose a pair F1; F2 of s-holomorphic spinors on Υ�(G) and denote F := F1 + iF2.
For instance, one can imagine one of the following setups:

2The results of Kemppainen and Smirnov [2015] and Kemppainen and Smirnov [n.d.] can be made self-
contained though the current version relies upon Chelkak, Duminil-Copin, and Hongler [2016] (while checking
the required crossing estimates for the full tree of interfaces in the proof of Kemppainen and Smirnov [2015,
Theorem 3.4]) in order to lighten the presentation (S. Smirnov, private communication).
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• G is an infinite graph, F1; F2 are s-holomorphic everywhere on Υ�(G);

• G has the topology of a sphere, the condition (2.13) is relaxed on a ‘root’ quad (note
that F1; F2 cannot be s-holomorphic everywhere on Υ�(G));

• a finite graph G, the s-holomorphicity of F1; F2 is relaxed at the boundary.

Clearly, the propagation equation (2.13) still holds for the complex-valued spinor F and
hence one can define a complex-valued function S := HF on G� [ Gı by (2.14). We
interpret S as an embedding of G into C and call it s-embedding. Note that, similarly
to Russkikh [2016, Section 3.2], the function S can be also defined on z 2 }(G) by

(6.1) S(v�
p) � S(z) := cos � � F (cp;0)F (cp;1);

S(z) � S(vı
q) := sin � � F (c0;q)F (c1;q);

where the two corners cp;0 and cp;1 (resp., c0;q and c1;q) are chosen on the same sheet
of Υ�(G); these equations are consistent with (2.14) due to (2.13).

It is easy to see that (2.13) also implies the identity

jS(v�
0) � S(vı

0)j + jS(v�
1) � S(vı

1)j = jF (c00)j
2 + jF (c11)j

2

= jF (c01)j
2 + jF (c10)j

2 = jS(v�
0) � S(vı

1)j + jS(v�
1) � S(vı

0)j;(6.2)

which means that S(v�
0), S(vı

0), S(v�
1) and S(vı

1) form a tangential (though possibly non-
convex) quadrilateral in the plane. In fact, one can easily see thatS(z), if defined according
to (6.1), is the center of the circle inscribed into this quadrilateral.

Remark 6.1. (i) Let us emphasize that the parameters �e in the s-holomorphicity con-
dition (2.13) are defined as �e := 2 arctan xe and have no straightforward geometrical
meaning similar to isoradial embeddings discussed above (though see (6.3)).
(ii) One can easily check that the isoradial embedding of the critical Z-invariant model is
a particular case of the above construction in which F (c) = &ı1/2 � �c ; note that, in this
case, the Dirac spinor (2.10) satisfies the propagation equation (2.13).

A priori, there is no guarantee that the combinatorics of the s-embedding constructed
above matches the one of }(G), considered as an abstract topological (i.e., embedded
into C up to homotopies) graph: the images (S(v�

0)S(v
ı
0)S(v

�
1)S(v

ı
1)) of quads

(v�
0v

ı
0v

�
1v

ı
1)might overlap. Below we assume that this does not happen and, moreover, all

(S(v�
0)S(v

ı
0)S(v

�
1)S(v

ı
1)) are nondegenerate and oriented counterclockwise (exceptmaybe

the ‘root’ one). We call such S proper s-embeddings.
We now introduce a set of geometric parameters characterizing an s-embedding S up

to translations and rotations. For a quad (v�
0v

ı
0v

�
1v

ı
1) = z 2 }(G), let rz denote the radius
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of the circle inscribed into its image (S(v�
0)S(v

ı
0)S(v

�
1)S(v

ı
1)) and let

�zv�
p
:=

1

2
arg

S(vı
1�p) � S(v�

p)

S(vı
p) � S(v�

p)
; �zvı

q
:=

1

2
arg

S(v�
q) � S(vı

q)

S(v�
1�q) � S(vı

q)

be the half-angles of (S(v�
0)S(v

ı
0)S(v

�
1)S(v

ı
1)), note that �zv�

0
+�zvı

0
+�zv�

1
+�zvı

1
= �

and jS(v) � S(z)j = (sin�zv)
�1rz for each of the four vertices v = v�

0; v
ı
0; v

�
1; v

ı
1 . A

straightforward computation shows that

(6.3) tan �v�
0v�

1
=

 
cot�zvı

0
+ cot�zvı

1

cot�zv�
0
+ cot�zv�

1

!1/2
=

 
sin�zv�

0
sin�zv�

1

sin�zvı
0
sin�zvı

1

!1/2
;

where �e = 2 arctan xe is the standard parametrization of the Ising model weights.
Remark 6.2. It is worth mentioning that the construction of an s-embedding described
above is revertible. Namely, given a proper embedding S of (G�; Gı) into the com-
plex plane formed by non-degenerate tangential quads, one can define a complex-valued
spinor F (c) := (S(v�(c)) � S(vı(c)))1/2 on Υ�(G) and deduce from (6.2) that (2.13)
holds true for some �e (which must then coincide with (6.3)). In other words, given S,
one can find Ising weights xe = tan 1

2
�e on G and a pair F1; F2 of real-valued spinors

satisfying (2.13) with these �e such that S = HF .

6.2 S-subharmonicity. Miraculously enough, it turns out that the cornerstone
Lemma 3.1 actually admits a generalization to the setup described above, though not a
straightforward one, cf. Remark 3.4. LetH be a function defined in a vicinity of a given
vertex v� 2 G� or vı 2 Gı. We define its s-Laplacian∆SH as

[∆SH ](v�) :=
X

v�
1∼v�

av�v�
1
(H (v�

1)�H (v�)) +
X

vı∼v�
bv�vı(H (vı)�H (v�));

[∆SH ](vı) :=
X

v�∼vı
bvıv�(H (v�)�H (vı)) �

X
vı
1∼vı

avıvı
1
(H (vı

1)�H (vı));

where, for each quad (v�
0v

ı
0v

�
1v

ı
1) = z 2 }(G), one has

(6.4) av�
0v�

1
= av�

1v�
0
:= r�1

z sin2 �v�
0v�

1
; avı

0vı
1
= avı

1vı
0
:= r�1

z cos2 �v�
0v�

1
;

and, for each edge (v�vı) = (v�
0(z)v

ı
1(z)) = (v�

0(z
0)vı

0(z
0)) separating z; z0 2 }(G),

(6.5) bv�vı := avıvı
0(z)

�
r�1

z cot�zv�

cot�zv�+ cot�zvı

+ avıvı
1(z

0) �
r�1

z0 cot�z0v�

cot�z0v�+ cot�z0vı

and bvıv� := bv�vı , so that ∆S = ∆>
S is symmetric (though not sign-definite).
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Remark 6.3. For isoradial embeddings of graphs carrying the critical Z-invariant Ising
model one has av�

0v�
1
= ı�1 tan �v�

0v�
1
, avı

0vı
1
= ı�1 cot �v�

0v�
1
and bvıv� = 0, thus ∆S is

simply the direct sum of the two signed Laplacians ı�1∆� and �ı�1∆ı.

Lemma 6.1. Let S = HF1+iF2
be a proper s-embedding and a function HF be obtained

via (2.14) from a real-valued s-holomorphic spinor F defined onΥ�(G) in a vicinity of a
vertex v 2 Λ(G). Then, [∆SHF ] � 0. Moreover, [∆SHF ] = 0 if and only if F is a linear
combination of F1 and F2 on corners of G incident to v.

Proof. As in the isoradial case (see Chelkak and Smirnov [2012, Proposition 3.6(iii)]), we
are only able to check this by brute force though clearly a more conceptual explanation
of this phenomenon must exist. E.g., if one numbers the quads z1; :::; zn around v�

0 2 G�

counterclockwise and adopts the notation zs = (v�
0v

ı
s�1v

�
sv

ı
s ), cs = (v�

0v
ı
s ), and F (cs) =

˛ei(�1+:::+�s)�s with ˛ = exp[ iarg F (c0)] and �s = jF (cs)j > 0, then

av�
0v�

s
=

sin �s tan �s

�s�1�s sin�s

; avı
s�1vı

s
=

cos �s

�s�1�s sin�s

;(6.6)

bv�
0vı

s
=

cos �s

�s�1�s sin�s

+
cos �s+1

�s�s+1 sin�s+1
�

sin(�s+�s+1)

�2s sin�s sin�s+1
;(6.7)

and [∆SH ](v�
0) turns out to be a non-negative quadratic form in the variables F (cs):

[∆SHF ](v�
0) = Q

(n)
�1;:::;�n

(��1
0 F (c0); :::; �

�1
n�1F (cn�1)) � 0 ;

see Chelkak and Smirnov [ibid., p. 543] for the definition ofQ(n)
�1;:::;�n

. The case v 2 Gı

is similar.

Definition 6.2. We call a function defined on (a subset of) Λ(G) s-subharmonic if the
inequality∆SH � 0 holds true pointwise and s-harmonic if∆SH = 0 pointwise.

Remark 6.4. Though this is not fully clear at the moment, we hope that, at least in some
situations of interest (e.g., see Section 6.4 or Lis [2017]), s-subharmonic functions HF

obtained via (2.14) are a priori close to s-harmonic ones; recall that this is exactly the
viewpoint developed in Chelkak and Smirnov [2012, Section 3] for the critical Z-invariant
model. Also, note that extending the domain of definition ofHF to}(G) similarly to (6.1),
one can easily see that thus obtained functions satisfy the maximum principle.

6.3 Factorization of the s-Laplacian. An important feature of the isoradial setup is
the following factorization of the direct sum of ∆� and ∆ı, e.g. see Kenyon [2002] or
Chelkak and Smirnov [2011]:

(6.8) � ı�1(∆�+∆ı) = 16@�
ΛR@Λ = 16@�

ΛR@Λ ;
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where the Cauchy-Riemann operator @Λ is given by (3.4) and R := diagfrzgz2}(G); note
that one has rz = 1

4
ı�1jv�

1 �v�
0jjvı

1 �vı
0j in this special case. Since the s-Laplacian∆S is

not sign-definite (recall that, on rhombic lattices,∆S is the difference ı�1(∆� �∆ı)), the
factorization (6.8) cannot be generalized directly. However, there exists a way to rewrite3
it in the full generality of s-embeddings:

(6.9) ∆S = 16@�
SU

�1R@S = 16@�
SU

�1
R@S;

where

[@SH ](z) :=
�z

4

�
H (v�

0)

S(v�
0)�S(z)

+
H (v�

1)

S(v�
1)�S(z)

�
H (vı

0)

S(vı
0)�S(z)

�
H (vı

1)

S(vı
1)�S(z)

�
;

the prefactor �z is chosen so that [@S S](z) = 1, the operator @S is defined so that @SH =

@SH , and U := diag(�z)z2}(G). Moreover, the following is fulfilled:

Lemma 6.3. A real-valued function H1 is (locally) s-harmonic on Λ(G) if and only if
there exists (locally and hence globally in the simply conected setup) another real-valued
s-harmonic function H2 on Λ(G) such that @S(H1+iH2) = 0 on }(G). In other words,
s-harmonic functions are real parts of those lying in the kernel of @S.

Another straightforward computation shows that @SH = 0 if H is a constant and
that @SS = 0, which (together with the normalization @SS = 1) establishes some link of
the difference operator S with the standard complex structure on C. In addition, one can
check that @SLS = 0, where the real-valued function LS is defined on Λ(G), up to an
additive constant, by LS(v

�(c)) � LS(v
ı(c)) := jS(c)j2.

6.4 Doubly-periodic graphs. We now briefly discuss s-embeddings of doubly-perio-
dic graphs G carrying a critical Ising model. It was shown in Cimasoni and Duminil-
Copin [2013] that the criticality condition is equivalent to the existence of two periodic
functions in the kernel of the Kac–Ward matrix (2.18), which means (e.g., see Chelkak,
Cimasoni, and Kassel [2017]) the existence of two linearly independent periodic (real-
valued) spinors F1, F2 onΥ�(G). Thus, up to a global scaling and rotation (corresponding
to the multiplication of F by a constant), it remains to tune one complex-valued parame-
ter � in order to construct a periodic s-embedding S = HF1+�F2

ofG. The choice of �, in
particular, corresponds to the choice of the conformal modulus � of (the image under S of)
a fundamental domain of G. However, note that this dependence is not trivial: according
to (2.14), � = �(�) is the ratio of two quadratic polynomials constructed from F1 and F2.

3For rhombic lattices, one has a very special intertwinning identity @Λ = U @Λ(�Id�+ Idı).
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Using (6.6) and (6.7), one can check that the s-Laplacian∆S is essentially independent
of the choice of F : changing � results in the multiplication of all the coefficients of ∆S

by a constant. Nevertheless, the operator @S is much more sensitive to this choice. We
believe that the following picture is true4:

• Provided F1 and F2 are linearly independent, any choice of � 62 R leads either to a
proper s-embedding or to the conjugate of a proper s-embedding.

• The kernel of∆S in the space of periodic functions is two-dimensional.

• There exists a unique (up to conjugation) value � = �L such that the function LS

is periodic. For � ¤ �L, the kernel of @S in the space of periodic functions consists
of constants only. For � = �L, it coincides with the kernel of∆S and is spanned by
constants and LS.

• If � = �L, there exists a periodic (and hence bounded) function � onΛ(G) such that
the complex-valued function S2 + � is s-harmonic (i.e., both its real and imaginary
parts are s-harmonic, note that � = 0 for rhombic lattices).

Remark 6.5. The last claim reveals the rotational (and, eventually, conformal) symme-
try of the critical Ising model on (G; x), which must show up if the conformal modu-
lus � = �(�L) of the fundamental domain is tuned properly. Note that one should not
expect that s-harmonic functions on a general s-embedding S ofG behave like continuous
harmonic functions even on large scales, not to mention periodic or quasi-periodic fluc-
tuations. Indeed, as mentioned above, the operator ∆S is essentially independent of the
choice of � (and thus �(�)), hence in general one cannot hope for more than a skewed
rotational symmetry despite of Lemma 6.3 and the basic properties @S1 = @SS = 0 of
the Cauchy–Riemann type operator @S. Nevertheless, by analogy with usual discrete har-
monic functions, one can hope that some form of an invariance principle for s-harmonic
functions can be found.

7 Open questions

Above, we already indicated several promising research directions basing on the analysis
of s-holomorphic spinors, notably ‘CFT on the lattice level’ projects (see Section 4.3)
and the study of s-embeddings of planar graphs. Besides universality questions, one can
apply them to random maps (finite or infinite) carrying the Ising model, in an attempt to
understand their conformal structure in the large size limit (one of the most straightforward

4At the moment we do not have a full proof. However, let us mention that one can justify the missing
ingredients for s-embeddings close enough to isoradial ones using continuity arguments.
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setups is to interpret a random quandrangulation as }(G) and to work with the self-dual
Ising weights xsd =

p
2 � 1 on G�, Gı).

Another challenging research direction, which cannot be reduced to the analysis of s-
holomorphic observables and requires some other techniques to be developed, is a better
understanding of topological correlators, cf. Ikhlef, Jacobsen, and Saleur [2016]. E.g.,
one can consider the FK-Ising model with 2k marked points on the boundary ofΩı and al-
ternatingwired/free/.../wired/free boundary conditions, cf. (5.3). There is the Catalan num-
ber Ck of possible patterns of interfaces matching these marked points and only 2k�1 �

Ck correlations of disorders on free arcs to handle. The situation with domain walls is
even worse: no geometric information on those can be extracted directly in discrete: al-
ready in the simplest possible setup with four marked points and ‘+/� /+/�’ boundary
conditions, the only available way to prove the convergence of the crossing probabilities
is first to prove the convergence of interfaces to hypergeometric SLEs and then to do
computations in continuum, see Izyurov [2015].

Remark 7.1. In the context of double-dimer and CLE(4) loop ensembles, it was recently
demonstrated by Dubédat in Dubédat [2014] that topological correlators can be treated via
tau-functions associated with SL(2)-representations of the fundamental group of a punc-
tured domainΩı (see also Basok and Chelkak [n.d.]). This remarkable development raises
the following question: could one attack topological correlators corresponding to CLE(�),
� ¤ 4, replacing SL(2) by relevant quantum groups? If so, could one use the critical Ising
model, once again, as a laboratory to reveal and to analyze these structures in discrete?
Note also that a detailed understanding of such topological correlators would also pave the
way to a better understanding of the famous Coulomb gas approach to the critical lattice
models; see Nienhuis [1984] and Smirnov [2006, Section 5.3].

As discussed above, both the convergence of critical Ising correlation functions (to
CFT ones) and that of loop ensembles (to CLEs) as Ωı ! Ω are now understood in
detail. Moreover, a scaling limit �Ω(z), z 2 Ω, of the spin field f�ugu2V ı(Ωı) viewed
as a random distribution (generalized function) was constructed in the work of Camia,
Garban and Newman, see Camia, Garban, and Newman [2015]. This leads to natural
measurability questions: e.g., is it true that �Ω is (not) measurable with respect to the
nested CLE(3) – the limit of domain walls – and vice versa? In fact, Camia, Garban,
and Newman [ibid.] ensures the measurability of �Ω with respect to the limit of FK-Ising
clusters – CLE(16/3) – but the latter contains more information, cf. Miller, Sheffield, and
Werner [2017]. Also, one can wonder whether it is possible to construct the energy density
correlation functions out of these CLEs (e.g., via some regularized ‘occupation density’
of loops)? If so, one could then try to generalize such a construction to � ¤ 3 (note that
the Ising spin field � is more model-specific from the CLE perspective than the energy
operator " ∼ �3;1, cf. Dotsenko and Fateev [1984, p. 319]).
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We conclude this essay on the critical Ising model by a famous question on the super-
critical one: to prove that each fixed value x > xcrit gives rise to the CLE(6) as the scaling
limit of domain walls configurations. Note that a possible approach to this via the study
of massive theories was suggested in Makarov and Smirnov [2010, Question 4.8].
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Abstract

Percolation models describe the inside of a porous material. The theory emerged
timidly in themiddle of the twentieth century before becoming one of themajor objects
of interest in probability and mathematical physics. The golden age of percolation is
probably the eighties, during which most of the major results were obtained for the
most classical of these models, named Bernoulli percolation, but it is really the two
following decades which put percolation theory at the crossroad of several domains
of mathematics. In this broad review, we propose to describe briefly some recent
progress as well as some famous challenges remaining in the field. This review is not
intended to probabilists (and a fortiori not to specialists in percolation theory): the
target audience is mathematicians of all kinds.

1 A brief history of Bernoulli percolation

1.1 What is percolation? Intuitively, it is a simplistic probabilistic model for a porous
stone. The inside of the stone is described as a random maze in which water can flow.
The question then is to understand which part of the stone will be wet when immersed
in a bucket of water. Mathematically, the material is modeled as a random subgraph of
a reference graph G with (countable) vertex-set V and edge-set E (this is a subset of
unordered pairs of elements in V ).

Percolation on G comes in two kinds, bond or site. In the former, each edge e 2 E
is either open or closed, a fact which is encoded by a function ! from the set of edges to
f0; 1g, where !(e) is equal to 1 if the edge e is open, and 0 if it is closed. We think of
an open edge as being open to the passage of water, while closed edges are not. A bond
percolation model then consists in choosing edges of G to be open or closed at random.

This research was funded by an IDEX Chair from Paris Saclay, by the NCCR SwissMap from the Swiss
NSF and the ERC grant 757296 CRIBLAM. We thank David Cimasoni, Sébastien Martineau, Aran Raoufi and
Vincent Tassion for their comments on the manuscript.
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Site percolation is the same as bond percolation except that, this time, vertices v 2 V are
either open or closed, and therefore ! is a (random) function from V to f0; 1g.

The simplest and oldest model of bond percolation, called Bernoulli percolation, was
introduced by Broadbent and Hammersley [1957]. In this model, each edge is open with
probability p in [0; 1] and therefore closed with probability 1 � p, independently of the
state of other edges. Equivalently, the !(e) for e 2 E are independent Bernoulli random
variables of parameter p.

Probabilists are interested in connectivity properties of the random object obtained by
taking the graph induced by !. In the case of bond percolation, the vertices of this graph
are the vertices of G, and the edges are given by the open edges only. In the case of site
percolation, the graph is the subgraph of G induced by the open vertices, i.e. the graph
composed of open vertices and edges between them.

Let us focus for a moment on Bernoulli percolation on the hypercubic lattice Zd with
vertex-set given by the points of Rd with integer coordinates, and edges between vertices
at Euclidean distance 1 of each other. The simplest connectivity property to study is the
fact that the connected component of the origin is finite or not. Set �(p) for the probability
that the origin is in an infinite connected component of !. The union bound easily implies
that the probability that the origin is connected to distance n is smaller than (2dp)n (simply
use the fact that one of the less than (2d )n self-avoiding paths of length n starting from the
origin must be made of open edges only, as well as the union bound). As a consequence,
one deduces that �(p) = 0 as soon as p < 1/(2d ). This elementary argument was
described in the first paper Broadbent and Hammersley [ibid.] on percolation theory. On
Z2, Harris drastically improved this result in Harris [1960] by showing that �( 1

2
) = 0.

A slightly harder argument Hammersley [1959] involving Peierls’s argument (left to
the reader) shows that when d � 2 and p is close to 1, then �(p) is strictly positive. This
suggests the existence of a phase transition in the model: for some values of p, connected
components are all finite, while for others, there exists an infinite connected component
in !. One can in fact state a more precise result Broadbent and Hammersley [1957]. For
Bernoulli percolation on transitive1 (infinite) graphs, there exists pc(G) 2 [0; 1] such that
the probability that there is an infinite connected component in ! is zero if p < pc(G),
and one if p > pc(G) (note that nothing is said about what happens at criticality). This
is an archetypical example of a phase transition in statistical physics: as the parameter p

(which can be interpreted physically as the porosity of the stone) is varied continuously
through the valuepc(G), the probability of having an infinite connected component jumps
from 0 to 1.

1A graph is transitive if its group of automorphisms acts transitively on its vertices.
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Figure 1: A sampled configuration ! of Bernoulli bond percolation on the square
lattice Z2 for the values of the parameter p < 1/2, p = 1/2 and p > 1/2.

1.2 The eighties: the Golden Age of Bernoulli percolation. The eighties are famous
for pop stars like Michael Jackson and Madonna, and a little bit less for probabilists such
as Harry Kesten and Michael Aizenman. Nonetheless, these mathematicians participated
intensively in the amazing progress that the theory underwent during this period.

The decade started in a firework with Kesten’s TheoremKesten [1980] showing that the
critical point of Bernoulli bond percolation on the square lattice Z2 is equal to 1/2. This
problem drove most of the efforts in the field until its final solution by Kesten, and some
of the ideas developed in the proof became instrumental in the thirty years that followed.
The strategy is based on an important result obtained simultaneously by Russo [1978] and
Seymour and Welsh [1978], which will be discussed in more details in the next sections.

While the two-dimensional case concentrated most of the early focus, the model is, of
course, not restricted to the graph Z2. On Zd , Menshikov [1986] at the same time as
Aizenman and Barsky [1987] showed that not only the probability of being connected
to distance n is going to 0 when p < pc(Zd ), but that in fact this quantity is decaying
exponentially fast, in the sense that there exists c > 0 depending on p (and d ) such that

�n(p)
def
= Pp[0 is connected to distance n] � exp(�cn)

for every n � 1. This result, known under the name of sharpness of the phase transition,
provides a very strong control of the size of connected components. In particular it says
that, when p < pc , the largest connected component in a box of size n is typically of size
logn. It is the cornerstone of the understanding of percolation in the subcritical regime
p < pc , and as such, represents an important breakthrough in the field.
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Properties of the supercritical regime p > pc(Zd ) were also studied in detail during
this period. For instance, it is natural to ask oneself whether the infinite connected com-
ponent is unique or not in this regime. In 1987, Aizenman, Kesten, and Newman [1987]
showed that this is indeed the case2. The proof relied on delicate properties of Bernoulli
percolation, and did not extend easily to more general models. Two years later, Burton
and Keane proposed a beautiful argument Burton and Keane [1989], which probably de-
serves its place in The Book, showing by ergodic means that a large class of percolation
models has a unique infinite connected component in the supercritical regime. A conse-
quence of this theorem is the continuity of p 7! �(p) when p > pc(Zd ). Of course,
many other impressive results concerning the supercritical regime were obtained around
the same period, but the lack of space refrains us from describing them in detail.

The understanding of percolation at p = pc(Zd ) also progressed in the late eighties
and in the beginning of the nineties. Combined with the early work of Harris [1960] who
proved �(1/2) = 0 on Z2, Kesten’s result directly implies that �(pc) = 0. In dimension
d � 19, Hara and Slade [1990] used a technique known under the name of lace expansion
to show that critical percolation exhibits a mean-field behavior, meaning that the critical
exponents describing the phase transition are matching those predicted by the so-called
mean-field approximation. In particular, the mean-field behavior implies that �(pc) is
equal to 0. Each few years, more delicate uses of the lace-expansion enable to reduce the
dimension starting at which the mean-field behavior can be proved: the best know result
today is d � 11 Fitzner and van der Hofstad [2015].

One may wonder whether it would be possible to use the lace expansion to prove that
�(pc) is equal to 0 for every dimension d � 3. Interestingly, the mean-field behavior is
expected to hold only when d � 6, and to fail for dimensions d � 5 (making the lace
expansion obsolete). This leaves the intermediate dimensions 3, 4 and 5 as a beautiful
challenge to mathematicians. In particular, the following question is widely considered as
the major open question in the field.

Conjecture 1. Show that �(pc) = 0 on Zd for every d � 3.

This conjecture, often referred to as the “�(pc) = 0 conjecture”, is one of the problems
that Harry Kesten was describing in the following terms in his famous 1982 book Kesten
[1982]:

“ Quite apart from the fact that percolation theory had its origin in an honest applied
problem, it is a source of fascinating problems of the best kind a mathematician can wish
for: problems which are easy to state with a minimum of preparation, but whose solutions
are (apparently) difficult and require new methods. ”

2Picturally, in two dimensions, the infinite connected component has properties similar to those of Zd and
can be seen as an ocean. The finite connected components can then be seen as small lakes separated from the
sea by the closed edges (which somehow can be seen as the land forming finite islands).
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It would be unfair to say that the understanding of critical percolation is non-existent
for d 2 f3; 4; 5g. Barsky, G. R. Grimmett, and Newman [1991] proved that the probability
that there exists an infinite connected component in N � Zd�1 is zero for p = pc(Zd ).
It seems like a small step to bootstrap this result to the non-existence of an infinite con-
nected component in the full space Zd ... But it is not. More than twenty five years after
Barsky, G. R. Grimmett, and Newman [ibid.], the conjecture still resists and basically no
improvement has been obtained.

1.3 The nineties: the emergence of new techniques. Percolation theory underwent a
major mutation in the 90’s and early 00’s. While some of the historical questions were
solved in the previous decade, new challenges appeared at the periphery of the theory. In
particular, it became clear that a deeper understanding of percolation would require the
use of techniques coming from a much larger range of mathematics. As a consequence,
Bernoulli percolation took a new place at the crossroad of several domains of mathematics,
a place in which it is not just a probabilistic model anymore.

1.3.1 Percolation on groups. In a beautiful paper entitled Percolation beyond Zd ,
many questions and a few answers Benjamini and Schramm [1996] underlined the rel-
evance of Bernoulli percolation on Cayley graphs3 of finitely generated infinite groups by
proposing a list of problems relating properties of Bernoulli percolation to properties of
groups. The paper triggered a number of new problems in the field and drew the atten-
tion of the community working in geometric group theory on the potential applications of
percolation theory.

A striking example of a connection between the behavior of percolation and properties
of groups is provided by the following conjecture, known as the “pc < pu conjecture”.
Let pu(G) be the smallest value of p for which the probability that there exists a unique
infinite connected component is one. On the one hand, the uniqueness result Burton and
Keane [1989] mentioned in the previous section implies that pc(Zd ) = pu(Zd ). On the
other hand, one can easily convince oneself that, on an infinite tree Td in which each
vertex is of degree d + 1, one has pc(Td ) = 1/d and pu(Td ) = 1. More generally, the
pc < pu conjecture relates the possibility of infinitely many connected components to the
property of non-amenability4 of the underlying group.

3The Cayley graph G = G(G; S) of a finitely generated group G with a symmetric system of generators S

is the graph with vertex-setV = G and edge-set given by the unordered pairs fx; yg � G such that yx�1 2 S .
For instance, Zd is a Cayley graph for the free abelian group with d generators.

4G is non-amenable if for any Cayley graph G of G, the infimum of j@Aj/jAj on non-empty finite subsets
A of G is strictly positive, where @A denotes the boundary of A (i.e. the set of x 2 A having one neighbor
outside A) and jBj is the cardinality of the set B .



2852 HUGO DUMINIL-COPIN

Figure 2: A large connected component of ! for critical bond percolation on the
square lattice Z2 (simulation by Vincent Beffara).

Conjecture 2 (Benjamini-Schramm). Consider a Cayley graph G of a finitely generated
(infinite) group G. Then

pc(G) < pu(G) () G is non-amenable:

Themost impressive progress towards this conjecturewas achieved by Pak and Smirnova-
Nagnibeda [2000]who provided a group theoretical argument showing that any non-amenable
group possesses a multi-system of generators for which the corresponding Cayley graph
satisfies pc < pu. This is a perfect example of an application of Geometric Group Theory
to probability. Nicely enough, the story sometimes goes the other way and percolation
shed a new light on classical questions on group theory. The following example perfectly
illustrates this cross-fertilization.

In 2009, Gaboriau and Lyons [2009] provided a measurable solution to von Neumann’s
(and Day’s) famous problem on non-amenable groups. While it is simple to show that a
group containing the free group F2 as a subgroup is non-amenable, it is non-trivial to
determine whether the converse is true. Olšanskiĭ [1980] showed in 1980 that this is not
the case, butWhyte [1999] gave a very satisfactory geometric solution: a finitely generated
group is non-amenable if and only if it admits a partition into pieces that are all uniformly
bi-lipschitz equivalent to the regular four-valent tree T3. Bernoulli percolation was used
by Gaboriau and Lyons to show the measurable counterpart of this theorem, a result which
has many important applications in the ergodic theory of group actions.

1.3.2 Complex analysis and percolation. The nineties also saw a renewed interest
in questions about planar percolation. The impressive developments in the eighties of
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Conformal Field Theory, initiated by Belavin, Polyakov, and Zamolodchikov [1984], sug-
gested that the scaling limit of planar Bernoulli percolation is conformally invariant at
criticality. From a mathematical perspective, the notion of conformal invariance of the
entire model is ill-posed, since the meaning of scaling limit depends on the object under
study (interfaces, size of connected components, crossings, etc). In 1992, the observation
that properties of interfaces should also be conformally invariant led Langlands, Pouliot,
and Saint-Aubin [1994] to publish numerical values in agreement with the conformal in-
variance in the scaling limit of crossing probabilities; see Section 3.1 for a precise defi-
nition (the authors attribute this conjecture to Aizenman). The same year, the physicist
J. L. Cardy [1992] proposed an explicit formula for the limit of crossing probabilities in
rectangles of fixed aspect ratio.

These two papers, while numerical (for the first one) and physical (for the second one),
attracted many mathematicians to the domain. In 2001, Smirnov [2001] proved Cardy’s
formula for critical site percolation on the triangular lattice, hence rigorously providing
a concrete example of a conformally invariant property of the model. In parallel, a ma-
jor breakthrough shook the field of probability. In 2000, Schramm [2000] introduced a
random process, now called the Schramm-Loewner Evolution, describing the behavior of
interfaces between open and closed sites. Very shortly after Smirnov’s proof of Cardy’s
formula, the complete description of the scaling limit of site percolation was obtained, in-
cluding the description of the full “loop ensemble” corresponding to the interfaces border-
ing each connected component by Camia and Newman [2006], see Beffara and Duminil-
Copin [2013] for more references on this beautiful subject.

Smirnov’s theorem and the Schramm-Loewner Evolution share a common feature: they
both rely on complex analysis in a deep way. The first result uses discrete complex analy-
sis, i.e. the study of functions on graphs that approximate holomorphic functions, to prove
the convergence of certain observables of the model to conformal maps5. The second re-
visits Loewner’s deterministic evolutions (which were used to solve the Bieberbach con-
jecture) to construct random processes whose applications now spread over all probability
theory.

1.3.3 Discrete Fourier analysis, concentration inequalities... and percolation. The
end of the nineties witnessed the appearance of two important new problems regarding
Bernoulli percolation. Häggström, Peres, and Steif [1997] introduced a simple time dy-
namics in Bernoulli percolation obtained by resampling each edge at an exponential rate 1.
More precisely, an exponential clock is attached to each edge of the lattice, and each time

5Nicely enough, the story can again go the other way: Smirnov’s argument can also be used to provide an
alternative proof of Riemann’s mapping theorem Smirnov [n.d.].
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the clock of an edge rings, the state of the edge is resampled. It turns out that dynamical
percolation is a very interesting model which exhibits quite rich phenomena.

As mentioned above, it is known since Harris that �(1/2) = 0 on Z2. Since Bernoulli
percolation is the invariant measure for the dynamics, this easily implies that for any fixed
time t � 0, the probability that dynamical percolation at time t does not contain an infinite
connected component is zero. Fubini’s theorem shows a stronger result: with probability
1, the set of times at which the configuration contains an infinite connected component is
of Lebesgue measure 0. Nonetheless, this statement does not exclude the possibility that
this set of times is non-empty.

In 1999, Benjamini, Kalai, and Schramm [1999] initiated the study of the Fourier spec-
trum of percolation and its applications to the noise sensitivity of the model measuring
how much connectivity properties of the model are robust under the dynamics. This work
advertised the usefulness of concentration inequalities and discrete Fourier analysis for the
understanding of percolation: they provide information on the model which is invisible
from the historical probabilistic and geometric approaches. We will see below that these
tools will be crucial to the developments of percolation theory of dependent models.

We cannot conclude this section without mentioning the impressive body of works by
Garban, Pete, and Schramm [2011, 2013] and Garban, Pete, and Schramm [2017] describ-
ing in detail the noise sensitivity and dynamical properties of planar percolation. These
works combine the finest results on planar Bernoulli percolation and provide a precise de-
scription of the behavior of the model, in particular proving that the Hausdorff dimension
of the set of times at which there exists an infinite connected component is equal to 31/36.

At this stage of the review, we hope that the reader gathered some understanding of
the problematic about Bernoulli percolation, and got some idea of the variety of fields of
mathematics involved in the study of the model. We will now try to motivate the introduc-
tion of more complicated percolation models before explaining, in Section 3, how some of
the techniques mentioned above can be used to study these more general models. We refer
to G. Grimmett [1999] for more references.

2 Beyond Bernoulli percolation

While the theory of Bernoulli percolation still contains a few gems that deserve a solution
worthy of their beauty, recent years have revived the interest for more general percolation
models appearing in various areas of statistical physics as natural models associated with
other random systems. While Bernoulli percolation is a product measure, the states of
edges in these percolation models are typically not independent. Let us discuss a few
ways of introducing these “dependent” percolation models.
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2.1 From spin models to bond percolation. Dependent percolation models are often
associated with lattice spinmodels. Thesemodels have been introduced as discrete models
for real life experiments and have been later on found useful to model a large variety
of phenomena and systems ranging from ferromagnetic materials to lattice gas. They
also provide discretizations of Euclidean and Quantum Field Theories and are as such
important from the point of view of theoretical physics. While the original motivation
came from physics, they appeared as extremely complex and rich mathematical objects,
whose study required the developments of new tools that found applications in many other
domains of mathematics.

The archetypical example of the relation spin model/percolation is provided by the
Potts model and FK percolation (defined below). In the former, spins are chosen among a
set of q colors (when q = 2, the model is called the Ising model, and spins are seen as ˙1

variables), and the distribution depends on a parameter ˇ called the inverse temperature.
We prefer not to define the models too formally here and refer to Duminil-Copin [2017] for
more details. We rather focus on the relation between these models and a dependent bond
percolation model called Fortuin-Kasteleyn (FK) percolation, or random-cluster model.

FK percolation was introduced by Fortuin and Kasteleyn [1972] as a unification of
different models of statistical physics satisfying series/parallel laws when modifying the
underlying graph. The probability measure on a finite graph G, denoted by PG;p;q , de-
pends on two parameters – the edge-weight p 2 [0; 1] and the cluster-weight q > 0 – and
is defined by the formula

(1) PG;p;q [f!g] :=
pj!j(1 � p)jEj�j!jqk(!)

Z(G; p; q)
for every ! 2 f0; 1g

E;

where j!j is the number of open edges and k(!) the number of connected components in
!. The constant Z(G; p; q) is a normalizing constant, referred to as the partition function,
defined in such a way that the sum over all configurations equals 1. For q = 1, the model
is Bernoulli percolation, but for q ¤ 1, the probability measure is different, due to the
term qk(!) taking into account the number of connected components. Note that, at first
sight, the definition of the model makes no sense on infinite graphs (contrarily to Bernoulli
percolation) since the number of open edges (or infinite connected components) would be
infinite. Nonetheless, the model can be extended to infinite graphs by taking the (weak)
limit of measures on finite graphs. For more on the model, we refer to the comprehensive
reference book G. Grimmett [2006].

As mentioned above, FK percolation is connected to the Ising and the Potts models
via what is known as the Edwards-Sokal coupling. It is straightforward to describe this
coupling in words. Let ! be a percolation configuration sampled according to the FK
percolation with edge-weight p 2 [0; 1] and cluster-weight q 2 f2; 3; 4; : : : g. The ran-
dom coloring of V obtained by assigning to connected components of ! a color chosen
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uniformly (among q fixed colors) and independently for each connected component, and
then giving to a vertex the color of its connected component, is a realization of the q-state
Potts model at inverse temperature ˇ = �

1
2
log(1 � p). For q = 2, the colors can be

understood as �1 and +1 and one ends up with the Ising model.
The relation between FK percolation and the Potts model is not an exception. Many

other lattice spin models also possess their own Edwards-Sokal coupling with a dependent
percolation model. This provides us with a whole family of natural dependent percolation
models that are particularly interesting to study. We refer the reader to Chayes andMachta
[1997] and Pfister and Velenik [1997] for more examples.

2.2 From loop models to site percolation models. In two dimensions, there is another
recipe to obtain dependent percolation models, but on sites this time. Each site percolation
configuration on a planar graph is naturally associated, by the so-called low-temperature
expansion, with a bond percolation of a very special kind, called a loop model, on the dual
graph G� = (V �; E�), where V � is the set of faces of G, and E� the set of unordered
pairs of adjacent faces. More precisely, if ! is an element of f0; 1gV (which can be seen as
an attribution of 0 or 1 to faces of G�), define the percolation configuration � 2 f0; 1gE�

by first extending ! to the exterior face x of G� by arbitrarily setting !x = 1, and then
saying that an edge of G� is open if the two faces x and y of G� that it borders satisfy
!x ¤ !y . In physics terminology, the configuration � corresponds to the domain walls
of !. Notice that the degree of � at every vertex is necessarily even, and that therefore �

is necessarily an even subgraph.
But one may go the other way: to any even subgraph of G�, one may associate a perco-

lation configuration onV by setting+1 for the exterior face ofG�, and then attributing 0/1
values to the other faces of G� by switching between 0 and 1 when crossing an edge. This
reverse procedure provides us with a recipe to construct new dependent site percolation
models: construct first a loop model, and then look at the percolation model it creates.

When starting with the Ising model on the triangular lattice (which is indeed a site
percolation model: a vertex is open if the spin is +1, and closed if it is �1), the low-
temperature expansion gives rise to a model of random loops on the hexagonal lattice, for
which the weight of an even subgraph � is proportional to exp(�2ˇj�j). This loop model
was generalized by Domany, Mukamel, Nienhuis, and Schwimmer [1981] to give the loop
O(n)model depending on two parameters, an edge-weight x > 0 and a loop-weight n � 0.
It is defined on the hexagonal lattice H = (V ; E) as follows: the probability of � on H is
given by

�G;x;n[f�g] =
xj�jn`(�)

Z(G; x; n)

(where `(�) is the number of loops in �) if � is an even subgraph, and 0 otherwise.



SIXTY YEARS OF PERCOLATION 2857

Figure 3: Simulations by Vincent Beffara of the three-state planar Potts model ob-
tained from the FK percolation with parameter p < pc , p = pc and p > pc . On
the right, every vertex of the infinite connected component receives the same color,
therefore one of the colors wins over the other ones, while this is not the case at
criticality or below it.

From this loop model, one obtains a site percolation model on the triangular lattice
resembling FK percolation. We will call this model the FK representation of the dilute
Potts model (for n = 1, it is simply the Ising model mentioned above).

We hope that this section underlined the relevance of some dependent percolation mod-
els, and that the previous one motivated questions for Bernoulli percolation that possess
natural counterparts for these dependent percolation models. The next sections describe
the developments and solutions to these questions.

3 Exponential decay of correlations in the subcritical regime

As mentioned in the first section, proving exponential decay of �n(p) when p < pc

was a milestone in the theory of Bernoulli percolation since it was the key to a deep un-
derstanding of the subcritical regime. The goal of this section is to discuss the natural
generalizations of these statements to FK percolation with cluster-weight q > 1. Below,
we set �n(p; q) and �(p; q) for the probabilities of being connected to distance n and to
infinity respectively. Also, we define

pc(q)
def
= inffp 2 [0; 1] : �(p; q) > 0g;

pexp(q)
def
= supfp 2 [0; 1] : 9c > 0; 8n � 0; �n(p; q) � exp(�cn)g:

Exponential decay in the subcritical regime gets rephrased as pc(q) = pexp(q). Exactly
like in the case of Bernoulli percolation, the result was first proved in two dimensions, and
then in higher dimensions, so that we start by the former. Interestingly, both proofs (the
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two-dimensional one and the higher dimensional one) rely on the analysis of functions on
graphs (discrete Fourier analysis and the theory of randomized algorithms respectively).

3.1 Two dimensions: studying crossing probabilities.

Bernoulli percolation. Let us start by discussing Bernoulli percolation to understand
what is going on in a fairly simple case. It appeared quickly (for instance in Harris [1960])
that crossing probabilities play a central role in the study of planar percolation. For future
reference, let Hn;m(p) be the probability that there exists a crossing from left to right of
the rectangle [0; n] � [0; m], i.e. a path of open edges (of the rectangle) from f0g � [0; m]

to fng � [0; m], which can be written pictorially as follows

Hn;m(p)
def
= Pp

h
n

m

i
:

It is fairly elementary to prove that:

• there exists " > 0 such that if Hk;2k(p) < " for some k, then �n(p) decays expo-
nentially fast. In words, if the probability of crossing some wide rectangle in the
easy direction is very small, then we are at a value of p for which exponential decay
occurs. This implies that for any p > pexp, Hk;2k(p) � " for every k � 1.

• there exists " > 0 such that if H2k;k(p) > 1 � ", then �(p) > 0. Again, in words,
if the probability of crossing some wide rectangle in the hard direction tends to 1,
then we are above criticality. This implies that when p < pc ,H2k;k(p) � 1� " for
every k � 1.

In order to prove that the phase transition is sharp, one should therefore prove that there
cannot be a whole interval of values of p for which crossings in the easy (resp. hard)
direction occur with probability bounded away uniformly from 0 (resp. 1). The proof
involves two important ingredients.

The first one is a result due to Russo [1978] and Seymour and Welsh [1978], today
known as the RSW theory. The theorem states that crossing probabilities in rectangles
with different aspect ratios can be bounded in terms of each other. More precisely, it
shows that for any " > 0 and � > 0, there exists C = C ("; �) > 0 such that for every
p 2 ["; 1 � "] and n � 1,

Hn;n(p)
C

� H�n;n(p) � 1 � (1 � Hn;n(p))
C :

This statement has a direct consequence: if for p, probabilities of crossing rectangles
in the easy direction are not going to 0, then the same holds for squares. Similarly, if
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probabilities of crossing rectangles in the hard direction are not going to 1, then the same
holds for squares. At the light of the previous paragraph, what we really want to exclude
now is the existence of a whole interval of values of p for which the probabilities of
crossing squares remain bounded away from 0 and 1 uniformly in n.

In order to exclude this possibility, we invoke a second ingredient, which is of a very
different nature. It consists in proving that probabilities of crossing squares go quickly
from a value close to 0 to a value close to 1. Kesten originally proved this result by
hand by showing that the derivative of the function p 7! Hn;n(p) satisfies a differential
inequality of the form

(2) H0
n;n � c logn � Hn;n(1 � Hn;n):

This differential inequality immediately shows that the plot of the functionHn;n has an S

shape as on Figure 4, and that Hn;n(p) therefore goes from " to 1 � " in an interval of p

of order O(1/ logn). In particular, it implies that only one value of p can be such that
Hn;n(p) remains bounded away from 0 and 1 uniformly in n, hence concluding the proof.

In Bollobás and Riordan [2006b] proposed an alternative strategy to prove (2). They
suggested using a concept long known to combinatorics: a finite random system undergoes
a sharp threshold if its qualitative behavior changes quickly as the result of a small pertur-
bation of the parameters ruling the probabilistic structure. The notion of sharp threshold
emerged in the combinatorics community studying graph properties of random graphs, in
particular in the work of Erdős and Rényi [1959] investigating the properties of Bernoulli
percolation on the complete graph.

Historically, the general theory of sharp thresholds for discrete product spaces was de-
veloped by Kahn, Kalai, and Linial [1988] in the case of the uniform measure on f0; 1gn,
i.e. in the case of Pp with p = 1/2 (see also an earlier non-quantitative version by
Russo [1982]). There, the authors used the Bonami-Beckner inequality Beckner [1975]
and Bonami [1970] together with discrete Fourier analysis to deduce inequalities between
the variance of a Boolean function and the covariances (often called influences) of this
function with the random variables !(e). Bourgain, Kahn, Kalai, Katznelson, and Linial
[1992] extended these inequalities to product spaces [0; 1]n endowed with the uniform
measure (see also Talagrand [1994]), a fact which enables to cover the case of Pp for
every value of p 2 [0; 1].

Roughly speaking, the statement can be read as follows: for any increasing6 (boolean)
function f : f0; 1gE ! f0; 1g,

(3) Varp(f) � c(p)
X
e2E

Covp[f; !(e)]

log(1/Covp[f; !(e)])
;

6Here, increasing is meant with respect to the partial order on f0; 1gE defined by ! � !0 if !(e) � !0(e)
for every edge e 2 E. Then, f is increasing if ! � !0 implies f (!) � f (!0).
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where c is an explicit function of p that remains bounded away from 0 and 1 when p is
away from 0 and 1.

Together with the following differential formula (which can be obtained by simply
differentiating Ep[f])

(4)
d
dp

Ep[f] =
1

p(1 � p)

X
e2E

Covp[f; !(e)]

for the indicator function f of the event that the square [0; n]2 is crossed horizontally, we
deduce that

(5) H0
n;n �

4

c(p) log(1/maxe Covp[fn; !(e)])
� Hn;n(1 � Hn;n):

This inequality can be used as follows. The covariance between the existence of an open
path and an edge !(e) can easily be bounded by the fact that one of the two endpoints
of the edge e is connected to distance n/2 (indeed, for !(e) to influence the outcome of
fn, there must be an open crossing going through e when e is open). But, in the regime
where crossing probabilities are bounded away from 1, the probability of being connected
to distance n/2 can easily be proved to decay polynomially fast, so that in fact H0

n;n �

c logn � Hn;n(1 � Hn;n) as required.

FK percolation. What survives for dependent percolation models such as FK percola-
tion? The good news is that the BKKKL result can be extended to this context Graham
and G. R. Grimmett [2006] to obtain (3). Equation (4) is obtained in the same way by
elementary differentiation. It is therefore the RSW result which is tricky to extend.

While mathematicians are in possession of many proofs of this theorem for Bernoulli
percolation Bollobás and Riordan [2006b,a, 2010], Russo [1978], Seymour and Welsh
[1978], and Tassion [2014, 2016], one had to wait for thirty years to obtain the first proof
of this theorem for dependent percolation model.

The following result is the most advanced result in this direction. Let Hn;m(p; q) be
the probability that [0; n] � [0; m] is crossed horizontally for FK percolation.

Theorem 3.1. For any � > 0, there exists a constant C = C (�; "; q) > 0 such that for
every p 2 ["; 1 � "] and n � 1,

Hn;n(p; q)C
� H�n;n(p; q) � 1 � (1 � Hn;n(p; q))C :

A consequence of all this is the following result Beffara and Duminil-Copin [2012]
(see also Duminil-Copin and Manolescu [2016] and Duminil-Copin, Raoufi, and Tassion
[2018]).
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Figure 4: Left. The randomized algorithm is obtained as follows: pick a distance
k to the origin uniformly and then explore “from the inside” all the connected com-
ponents intersecting the boundary of the box of size k. If one of these connected
components intersect both 0 and the boundary of the box of size n, then we know
that 0 is connected to distance n, if none of them do, then the converse is true. Right.
The S shape of the function p 7! Hn+1;n(p). The function goes very quickly from
" to 1 � " (∆p(") is small).

Theorem 3.2. Consider the FK model with cluster weight q � 1. Then, for any p < pc ,
there exists c = c(p; q) > 0 such that for every n � 1,

�n(p; q) � exp(�cn):

3.2 Higher dimensions.

Bernoulli percolation. Again, let us start with the discussion of this simpler case. When
working in higher dimensions, one can still consider crossing probabilities of boxes but
one is soon facing some substantial challenges. Of course, some of the arguments of the
previous section survive. For instance, one can adapt the two-dimensional proof to show
that if the box [0; n]� [0; 2n]d�1 is crossed from left to right with probability smaller than
some constant " = "(d ) > 0, then �n(p) decays exponentially fast. One can also prove
the differential inequality (5) without much trouble. But that is basically it. One cannot
prove that, if the probability of the box [0; 2n]� [0; n]d�1 is crossed from left to right with
probability close to one, then �(p) > 0. Summarizing, we cannot (yet) exclude a regime
of values of p for which crossing probabilities tend to 1 but the probability that there exists
an infinite connected component is zero7.

7It is in fact the case that for p = pc and d � 6, crossing probabilities tend to 1 but �(pc) = 0. What we
wish to exclude is a whole range of parameters for which this happens.
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We are therefore pushed to abandon crossing probabilities and try to work directly with
�n. Applying the BKKKL result to �n implies, when p < pc , an inequality (basically)
stating

� 0
n � c logn � �n(1 � �n):

This differential inequality is unfortunately not useful to exclude a regime where �n would
decay polynomially fast. For this reason, we need to strengthen it. In order to do this,
we will not rely on a concentration inequality coming from discrete Fourier analysis like
in the two-dimensional case, but rather on another concentration-type inequality used in
computer science.

Informally speaking, a randomized algorithm associated with a boolean function f takes
! 2 f0; 1gE as an input, and reveals algorithmically the value of ! at different edges one
by one until the value of f(!) is determined. At each step, which edge will be revealed
next depends on the values of ! revealed so far. The algorithm stops as soon as the value
of f is the same no matter the values of ! on the remaining coordinates.

The OSSS inequality, originally introduced by O’Donnell, Saks, Schramm, and Serve-
dio [2005] as a step toward a conjecture of Yao [1977], relates the variance of a boolean
function to the influence and the computational complexity of a randomized algorithm for
this function. More precisely, consider p 2 [0; 1] and n 2 N. Fix an increasing boolean
function f : f0; 1gE �! f0; 1g and an algorithm T for f. We have

(OSSS) Varp(f) � 2
X
e2E

ıe(T)Covp[f; !(e)];

where ıe(T) is the probability that the edge e is revealed by the algorithm before it stops.
One will note the similarity with (3), where the term ıe(T) replaces �1 divided by the
logarithm of the covariance.

The interest of (OSSS) comes from the fact that, if there exists a randomized algorithm
for f = 1[0 connected to distance n] for which each edge has small probability of being
revealed, then the inequality implies that the derivative of Ep[f] is much larger than the
variance �n(1 � �n) of f. Of course, there are several possible choices for the algorithm.
Using the one described in Figure 4, one deduces that the probability of being revealed
is bounded by cSn/n uniformly for every edge, where Sn :=

Pn�1
k=0 �k . We therefore

deduce an inequality of the form

(6) � 0
n � c0 n

Sn
�n(1 � �n):

Note that the quantity n/Sn(p) is large when the values �k(p) are small, which is typically
the case when p < pc . In particular, one can use this differential inequality to prove the
sharpness of the phase transition on any transitive graph. Equation (6) already appeared
in Menshikov’s 1986 proof while Aizenman and Barsky [1987] and later Duminil-Copin
and Tassion [2016] invoked alternative differential inequalities.
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FK percolation. Asmentioned in the previous paragraph, the use of differential inequal-
ities to prove sharpness of the phase transition is not new, and even the differential inequal-
ity (6) chosen above already appeared in the literature. Nonetheless, the existing proofs
of these differential inequalities all had one feature in common: they relied on a special
correlation inequality for Bernoulli percolation known as the BK inequality, which is not
satisfied formost dependent percolationmodels, so that the historical proofs did not extend
easily to FK percolation, contrarily to the approach using the OSSS inequality proposed
in the previous section.

Indeed, while the OSSS inequality uses independence, it does not rely on it in a sub-
stantial way. In particular, the OSSS inequality can be extended to FK percolation, very
much like Graham and G. R. Grimmett [2006] generalized (4). This generalization en-
ables one to show (6) for a large class of models including dependent percolation models
or so-called continuum percolation models Duminil-Copin, Raoufi, and Tassion [2017b]
and Duminil-Copin, Raoufi, and Tassion [2017a]. In particular,

Theorem 3.3 (Duminil-Copin, Raoufi, and Tassion [2017c]). Fix q � 1 and d � 2.
Consider FK percolation on Zd with cluster-weight q � 1. For any p < pc , there exists
c = c(p; q) > 0 such that for every n � 1,

�n(p; q) � exp(�cn):

Exactly as for Bernoulli percolation, one can prove many things using this theorem.
Of special interest are the consequences for the Potts model (and its special case the Ising
model): the exponential decay of �n(p; q) implies the exponential decay of correlations
in the disordered phase.

The story of the proof of exponential decay of �n(p; q) is typical of percolation. Some
proofs first appeared for Bernoulli percolation. These proofs were then made more robust
using some external tools, here discrete analysis (the BKKKL concentration inequality or
the OSSS inequality), and finally extended to more general percolation models. The next
section provides another example of such a succession of events.

4 Computation of critical points in two dimensions

It is often convenient to have an explicit formula for the critical point of a model. In
general, one cannot really hope for such a formula but in some cases, one is saved by
specific properties of the model, which can be of (at least) two kinds: self-duality or exact
integrability.

4.1 Computation of the critical point using self-duality.
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Bernoulli percolation. One can easily guess why the critical point of Bernoulli perco-
lation on Z2 should be equal to 1/2. Indeed, every configuration ! is naturally associated
with a dual configuration !� defined on the dual lattice (Z2)� = ( 1

2
; 1
2
) + Z2 of Z2: for

every edge e, set
!�(e�)

def
= 1 � !(e);

where e� is the unique edge of the dual lattice crossing the edge e in its middle. In words,
a dual edge is open if the corresponding edge of the primal lattice is closed, and vice versa.
If ! is sampled according to Bernoulli percolation of parameter p, then !� is sampled
according to a Bernoulli percolation on (Z2)� of parameter p� := 1 � p. The value 1/2
therefore emerges as the self-dual value for which p = p�.

It is not a priori clear why the self-dual value should be the critical one, but armed with
the theorems of the previous section, we can turn this observation into a rigorous proof.
Indeed, one may check (see Figure 5) that for every n � 1,

Hn+1;n(
1
2
) = 1

2
:

Yet, an outcome of Section 3.1 is that crossing probabilities are tending to 0 when p < pc

and to 1 when p > pc . As a consequence, the only possible value for pc is 1/2.

FK percolation. The duality relation generalizes to cluster-weights q ¤ 1: if ! is sam-
pled according to a FK percolation measure with parameters p and q, then !� is sampled
according to a FK percolation measure with parameters p� and q� satisfying

pp�

(1 � p)(1 � p�)
= q and q� = q:

The proof of this fact involves Euler’s relation for planar graphs. Let us remark that readers
trying to obtain such a statement as an exercise will encounter a small difficulty due to
boundary effects on G; we refer to Duminil-Copin [2017] for details how to handle such
boundary conditions. The formulas above imply that for every q ¤ 0, there exists a unique
point psd(q) such that

psd(q) = psd(q)
� =

p
q

1 +
p

q
:

Exactly as in the case of Bernoulli percolation, one may deduce from self-duality some
estimates on crossing probabilities at p = psd(q), which imply in the very same way the
following theorem.

Theorem 4.1 (Beffara and Duminil-Copin [2012]). The critical point of FK percolation
on the square lattice with cluster-weight q � 1 is equal to the self-dual pointpq/(1+

p
q).
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Figure 5: Left. If [0; n+1]� [0; n] is not crossed from left to right, then the bound-
ary of the connected components touching the right side is a dual path going from
top to bottom. Right. The domain Ω with its boundary @Ω. The configuration !

corresponds to the interfaces between the gray and the white hexagons. The path 

runs from a to z without intersecting !.

4.2 Computation via parafermionic observables. Sometimes, no obvious self-duality
relation helps us identify the critical point, but one can be saved by a second strategy. In
order to illustrate it, consider the loop O(n) model with parameters x > 0 and n 2 [0; 2]

and its associated FK representation described in Section 2.2. Rather than referring to du-
ality (in this case, none is available as for today), the idea consists in introducing a function
that satisfies some specific integrability/local relations at a given value of the parameter.

Take a self-avoiding polygon on the dual (triangular) lattice of the hexagonal lattice;
see Figure 5. By definition, this polygon divides the hexagonal lattice into two connected
components, a bounded one and an unbounded one. Call the bounded one Ω and, by
analogy with the continuum, denote the self-avoiding polygon by @Ω.

Define the parafermionic observable introduced in Smirnov [2010b], as follows (see
Figure 5): for a mid-edge z in Ω and a mid-edge a in @Ω, set

F (z) = F (Ω; a; z; n; x; �)
def
=

X
!;�Ω

!\=¿

e�i�W (a;z)xj j+j!jn`(!)

(recall that `(!) is the number of loops in !), where the sum is over pairs (!; ) with ! a
loop configuration, and  a self-avoiding path from a to z. The quantityW (a; z), called
the winding term, is equal to �

3
times the number of left turns minus the number of right

turns made by the walk  when going from a to z. It corresponds to the total rotation of
the oriented path  .

The interest of F lies in a special property satisfied when the parameters of the model
are tuned properly. More precisely, if � = �(n) is well chosen (the formula is explicit but
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irrelevant here) and
x = xc(n)

def
=

1p
2 +

p
2 � n

;

the function satisfies that for any self-avoiding polygon C = (c0; c1; : : : ; ck = c0) on T
that remains within the bounded region delimited by @Ω,

(7)
I
C

F (z)dz
def
=

kX
i=1

(ci � ci�1)F ( ci�1+ci

2
) = 0:

Above, the quantity ci is considered as a complex number, in such a way that the previous
definition matches the intuitive notion of contour integral for functions defined on the
middle of the edges of the hexagonal lattice.

In words, (7) means that for special values of x and � , discrete contour integrals of
the parafermionic observable vanish. In the light of Morera’s theorem, this property is a
glimpse of conformal invariance of the model in the sense that the observable satisfies a
weak notion of discrete holomorphicity. This singles out xc(n) as a very peculiar value of
the parameter x.

The existence of such a discrete holomorphic observable at xc(n) did not really come
as a surprise. In the case of the loop O(n)model with loop-weight n 2 [0; 2], the physicist
Nienhuis [1982] predicted that xc(n) is a critical value for the loop model, in the following
sense:

• when x < xc(n), loops are typically small: the probability that the loop of the origin
is of length k decays exponentially fast in k.

• when x � xc(n), loops are typically large: the probability that the loop of the origin
is of length k decays slower than polynomially fast in k.

Physically, this criticality of xc(n) has an important consequence. As (briefly) mentioned
in Section 1.3.2, Bernoulli percolation and more generally two-dimensional models at
criticality are predicted to be conformally invariant. This prediction has a concrete im-
plication on critical models: some observables8 should converge in the scaling limit to
conformally invariant/covariant objects. In the continuum, typical examples of such ob-
jects are provided by harmonic and holomorphic solutions to Boundary Value Problems;
it is thus natural to expect that some observables of the loop O(n) model at criticality are
discrete holomorphic.

Remark 4.2. Other than being interesting in themselves, discrete holomorphic functions
have found several applications in geometry, analysis, combinatorics, and probability.

8Roughly speaking, observables are averages of random quantities defined locally in terms of the system.
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The use of discrete holomorphicity in statistical physics appeared first in the case of dimers
Kenyon [2000] and has since then been extended to several statistical physics models,
including the Ising model Chelkak and Smirnov [2011, 2012] (see also Duminil-Copin
and Smirnov [2012a] for references).

The definition of discrete holomorphicity usually imposes stronger conditions on the
function than just zero contour integrals (for instance, one often asks for suitable discretiza-
tions of the Cauchy-Riemann equations). In particular, in our case the zero contour inte-
grals do not uniquely determine F . Indeed, there is one variable F (z) by edge, but the
number of independent linear relations provided by the zero contour integrals is equal to
the number of vertices9. In conclusion, there are much fewer relations than unknown and
it is completely unclear whether one can extract any relevant information from (7).

Anyway, one can still try to harvest this “partial” information to identify rigorously the
critical value of the loopO(n)model. For n = 0 (in this case there is no loop configuration
and just one self-avoiding path), the parafermionic observable was used to show that the
connective constant of the hexagonal lattice Duminil-Copin and Smirnov [2012b], i.e.

�c
def
= lim

n!1
#fself-avoiding walks of length n starting at the origing

1/n

is equal to
p
2 +

p
2. For n 2 [1; 2], the same observable was used to show that at

x = xc(n), the probability of having a loop of length k decays slower than polynomially
fast Duminil-Copin, Glazman, Peled, and Spinka [2017], thus proving part of Nienhuis
prediction (this work has also applications for the corresponding site percolation model
described in Section 2.2).

Let us conclude this section by mentioning that the parafermionic observable defined
for the loop O(n)model can also be defined for a wide variety of models of planar statisti-
cal physics; see e.g. Ikhlef and J. Cardy [2009], Ikhlef, Weston, Wheeler, and Zinn-Justin
[2013], and Rajabpour and J. Cardy [2007]. This leaves hope that many more models
from planar statistical physics can be studied using discrete holomorphic functions. For
the FK percolation of parameter q � 4, a parafermionic observable was used to show that
pc(q) =

p
q/(+

p
q), thus providing an alternative proof to Beffara and Duminil-Copin

[2012] (this proof was in fact obtained prior to the proof of Beffara and Duminil-Copin
[ibid.]). Recently, the argument was generalized to the case q 2 [1; 4] in Computation of
the critical point for random-cluster models via the parafermionic observable [n.d.].

9Indeed, it is sufficient to know that discrete contour integrals vanish for a basis of the Z-module of cycles
(which are exactly the contours) on the triangular lattice staying in Ω to obtain all the relations in (7). A natural
choice for such a basis is provided by the triangular cycles around each face of the triangular lattice inside @Ω,
hence it has exactly as many elements as vertices of the hexagonal lattice in Ω.
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In the last two sections, we explained how the study of crossing probabilities can be
combined with duality or parafermionic observables to identify the critical value of some
percolation models. In the next one, we go further and discuss how the same tools can be
used to decide whether the phase transition is continuous or discontinuous (see definition
below).

5 The critical behavior of planar dependent percolation models

5.1 Renormalization of crossing probabilities. For Bernoulli percolation, we men-
tioned that crossing probabilities remain bounded away from 0 and 1 uniformly in the
size of the rectangle (provided the aspect ratio stays bounded away from 0 or 1). For
more complicated percolation models, the question is more delicate, in particular due to
the long-range dependencies. For instance, it may be that crossing probabilities tend to
zero when conditioning on edges outside the box to be closed, and to 1 if these edges are
conditioned to be open. To circumvent this problem, we introduce a new property.

Consider a percolation measure P (one can think of a FK percolation measure for in-
stance). Let Λn be the box of size n around the origin. We say that P satisfies the (poly-
nomial) mixing property if

(Mix) there exist c; C 2 (0; 1) such that for every N � 2n and every events A and B

depending on edges in Λn and outside ΛN respectively, we have that

jP [A \ B] � P [A]P [B]j � C ( n
N
)c

� P [A]P [B]:

This property hasmany implications for the study of the percolationmodel, mostly because
it enables one to decorrelate events happening in different parts of the space.

It is a priori unclear how one may prove the mixing property in general. Nonetheless,
for critical FK percolation, it can be shown that (wMix) is equivalent to the strong box
crossing property: uniformly on the states of edges outside of Λ2n, crossing a rectangle of
aspect ratio � included inΛn remains bounded away from 0 and 1 uniformly in n. Note that
the difference with the previous sections comes from the fact that we consider crossing
probabilities conditioned on the state of edges at distance n of the rectangle (of course,
when considering Bernoulli percolation, this does not change anything, but this is not the
case anymore when q > 1).

The mixing property is not always satisfied at criticality. Nevertheless, in Duminil-
Copin, Sidoravicius, and Tassion [2017] the following dichotomy result was obtained.

Theorem 5.1 (The continuous/discontinuous dichotomy). For any q � 1,

• either (wMix) is satisfied. In such case:
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– �(p; q) tends to 0 as p & pc;
– There exists c > 0 such that cn�1 � �n(pc ; q) � n�c :

– Crossing probabilities of a rectangle of size roughly n remain bounded away
from 0 and 1 uniformly in the state of edges at distance n of the rectangle;

– The rate of exponential decay of �n(p; q) goes to 0 as p % pc .

• or (wMix) is not satisfied and in such case:

– �(p; q) does not tend to 0 as p & pc;
– There exists c > 0 such that for every n � 1, �n(pc ; q) � exp(�cn);
– Crossing probabilities of a rectangle of size roughly n tend to 0 (resp. 1) when
conditioned on the state of edges at distance n of the rectangle to be closed
(resp. open);

– The rate of exponential decay of �n(p; q) does not go to 0 as p % pc .

In the first case, we say that the phase transition is continuous in reference to the fact
thatp 7! �(p; q) is continuous atpc . In the second case, we say that the phase transition is
discontinuous. Interestingly, this result also shows that a number of (potentially different)
definitions of continuous/discontinuous phase transitions sometimes used in physics are
in fact the same one in the case of FK percolation.

The proof of the dichotomy is based on a renormalization scheme for crossing probabil-
ities when conditioned on edges outside a box to be closed. Explaining the strategy would
lead us too far, and we refer to Duminil-Copin and Tassion [n.d.] and Duminil-Copin,
Sidoravicius, and Tassion [2017] for more details. Let us simply add that the proof is
not specific to FK percolation and has been extended to other percolation models (see for
instance Duminil-Copin, Glazman, Peled, and Spinka [2017] and Duminil-Copin and Tas-
sion [n.d.]), so one should not think of this result as an isolated property of FK percolation,
but rather as a general feature of two-dimensional dependent percolation models.

5.2 Deciding the dichotomy. As mentioned above, critical planar dependent percola-
tion models can exhibit two different types of critical behavior: continuous or discontin-
uous. In order to decide which one of the two it is, one needs to work a little bit harder.
Let us (briefly) describe two possible strategies. We restrict to the case of FK percola-
tion, for which Baxter [1973] conjectured that for q � qc(2) = 4, the phase transition is
continuous, and for q > qc(2), the phase transition is discontinuous; see Figure 6.

To prove that the phase transition is discontinuous for q > 4, we used a method going
back to early works on the six-vertex model Duminil-Copin, Gagnebin, Harel, Manolescu,
and Tassion [2016]. The six-vertex model was initially proposed by Pauling in 1931 in
order to study the thermodynamic properties of ice. While we are mainly interested in its
connection to the previously discussed models, the six-vertex model is a major object of
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Figure 6: Simulations, due to Vincent Beffara, of the critical planar Potts model with
q equal to 2, 3, 4, and 9 respectively. The behavior for q � 4 is clearly different
from the behavior for q = 9. In the first three pictures, each color seems to play
the same role, while in the last three, one color wins over the other ones. This is
coherent since the phase transition of the associated FK percolation is continuous
for q � 4 and discontinuous for q � 5.

study on its own right; we refer to Reshetikhin [2010] and Chapter 8 of Baxter [1989] (and
references therein) for the definition and a bibliography on the subject.

The utility of the six-vertex model stems from its solvability using the transfer-matrix
formalism. More precisely, the partition function of a six-vertex model on a torus of size
N times M may be expressed as the trace of the M -th power of a matrix V (depending
on N ) called the transfer matrix. This property can be used to rigorously compute the
Perron-Frobenius eigenvalues of the diagonal blocks of the transfer matrix, whose ratios
are then related to the rate of exponential decay �(q) of �n(pc ; q). The explicit formula
obtained for �(q) is then proved to be strictly positive for q > 4. We should mention that
this strategy is extensively used in the physics literature, in particular in the fundamental
works of Baxter (again, we refer to Baxter [ibid.]).

In order to prove that the phase transition is continuous for q � 4, one may use the same
strategy and try to prove that �(q) is equal to 0. Nevertheless, this does not seem so simple
to do rigorously, so that we prefer an alternative approach. The fact that discrete contour
integrals of the parafermionic observable vanish can be used for more than just identifying
the critical point. For q 2 [1; 4], it in fact implies lower bounds on �n(pc ; q). These
lower bounds decay at most polynomially fast, thus guaranteeing that the phase transition
is continuous thanks to the dichotomy result of the previous section. This strategy was
implemented in Duminil-Copin, Sidoravicius, and Tassion [2017] to complete the proof
of Baxter’s prediction regarding the continuity/discontinuity of the phase transition for the
planar FK percolation with q � 1.

Let us conclude this short review by mentioning that for the special value of q = 2,
the parafermionic observable satisfies stronger constraints. This was used to show that,
for this value of q, the observable is conformally covariant in the scaling limit Smirnov
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[2010a] (this paper by Smirnov had a resounding impact on our understanding of FK perco-
lation with q = 2), and that the strong RSW property is satisfied Duminil-Copin, Hongler,
and Nolin [2011]. This could be the object of a review on its own, especially regarding
the conjectures generalizing these results to other values of q, but we reached the end of
our allowed space. We refer to Duminil-Copin and Smirnov [2012a] for more details and
relevant references.

Remark 5.2. The strategy described above is very two-dimensional in nature since it
relies on planarity in several occasions (crossing probabilities for the dichotomy result,
parafermionic observables or transfer matrix formalism for deciding between continuity
or discontinuity). In higher dimensions, the situation is more challenging. We have seen
that even for Bernoulli percolation, continuity of �(p) had not yet been proved for dimen-
sions 3 � d � 10. Let us mention that for FK percolation, several results are nevertheless
known. One can prove the continuity of �(p; 2) Aizenman, Duminil-Copin, and Sidoravi-
cius [2015] using properties specific to the Ising model (which is associated with the FK
percolation with cluster-weight q = 2 via the Edwards-Sokal coupling). Using the mean-
field approximation and Reflection-Positivity, one may also show that the phase transition
is discontinuous if d is fixed and q � qc(d ) � 1 Kotecký and Shlosman [1982], or if
q � 3 is fixed and d � dc(q) � 1 Biskup and Chayes [2003]. The conjecture that qc(d )

is equal to 2 for any d � 3 remains widely open and represents a beautiful challenge for
future mathematical physicists.
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Abstract
The last twenty-or-so years have seen spectacular progress in our understanding of

the fine spectral properties of large-dimensional random matrices. These results have
also shown light on the behavior of various statistical estimators used in multivariate
statistics. In this short note, we will describe new strands of results, which show that
intuition and techniques built on the theory of random matrices and concentration
of measure ideas shed new light and bring to the fore new ideas about an arguably
evenmore important set of statistical tools, namelyM-estimators and certain bootstrap
methods. All the results are obtained in the large n, large p setting, where both the
number of observations and the number of predictors go to infinity.

1 Introduction

Randommatrices have a very long history in multivariate statistics, going as far back as
Wishart [1928]. Traditionally, they have been associated with problems arising from tech-
niques such as Principal Components Analysis (PCA) Pearson [1901], Hotelling [1933],
Anderson [1963], and Jolliffe [2002] or covariance matrix estimation where there is a nat-
ural focus on estimating spectral properties of large data matrices. We start by setting up
precisely the problem and reviewing some of those important results before moving on to
new statistical developments.

1.1 Setup. In most of this short review, we will be concerned with data stored in a
matrix X , with n rows and p columns. n denotes the number of observations of p dimen-
sional vectors available to the data analyst. The i -th row ofX is denotedX 0

i andXi 2 Rp

is referred to as the i -th vector of covariates. p, the dimension ofXi , is the number of mea-
surements per observation. If one works with financial data for instance Laloux, Cizeau,
The author gratefully acknowledges the support of grant NSF DMS-1510172. He would also like to thank

Peter Bickel and Elizabeth Purdom for numerous discussions on these and related topics over the years.
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Bouchaud, and M. Potters [1999], p may be the number of assets in one’s portfolio, n the
number of days where those assets are monitored andXi;j may be the daily return of asset
j on day i .

Traditional asymptotics. Traditionally, statistical theory has been concernedwith study-
ing the properties of estimators, i.e. functions of the data matrixX (and possibly other ran-
dom variables), as n ! 1whilep stayed fixed Anderson [1984] andHuber [1972] or was
growing slowly with n Portnoy [1984] and Mammen [1989]. While mathematically and
statistically interesting at the time, these sorts of problems are now really well-understood
and their asymptotic analysis essentially amounts to doing probabilistic perturbation anal-
ysis (see more generally van der Vaart [1998]).

Modern developments. However, in the last two decades, technological advances in
data collection have made it possible to work with datasets where both n and p are large:
in genomics, p may be of order tens of thousands or millions and hundreds of observa-
tions Ramaswamy et al. [2001], data collected from internet companies may have millions
of predictors Criteo [n.d.] and billions of observations, whereas financial data collected
daily on a few hundreds of companies would yield after a year a dataset with hundreds
of observations and hundreds of predictors Laloux, Cizeau, Bouchaud, and M. Potters
[1999].

The case for “large p, large n”. It is therefore now natural to study the so called
“large n, large p” setting Johnstone [2001, 2007] where p and n grow to infinity but
p/n ! � 2 (0;1). On a more mathematical note, the ratio p/n can be somewhat in-
formally seen as one measure of statistical difficulty of the problem. Fixing it amounts to
doing asymptotics while the difficulty of the statistical problem stays constant and hence
should (or at least could) yield asymptotic approximations of better quality than their tra-
ditional “fixed p, large n” counterparts. This is what we will see in some of the results
described below. Furthermore, in the “fixed p, large n” settings, many asymptotic op-
timality results are meaningful only when it comes to relative errors, however absolute
errors are typically infinitesimal and as such may not matter very much to applied statis-
ticians and data analysts. By contrast, we will see that in the “large p, large n” setting,
analyses predict substantial absolute differences between methods and as such may inform
practitioners in the decision of what methods to use.
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1.2 Modern random matrices. A key tool in multivariate statistics is the so-called
sample covariance matrix, usually denoted, for an n � p data matrix X ,

bΣ =
1

n � 1
(X � X̄)0(X � X̄) :

Here X̄ = 1nb�0, whereb� 2 Rp is the sample mean of the columns, i.eb� = X 01n/n. (We
use 0 to denote transposition throughout the paper; 1n denotes the vector whose entries
are all 1 in n dimension.). The p � p matrix bΣ therefore simply contains the empirical
covariances between the various observed covariates.

This matrix is of course at the heart of much of multivariate statistics as it is the funda-
mental building block of principal components analysis (PCA) - probably the most widely
used dimensionality reduction technique and the template for numerous modern variations
- variants such as canonical correlation analysis Anderson [1984], and also plays a key role
in the analysis of many supervised learning techniques.

To make things concrete, let us return to PCA. In that technique, practically speaking,
the observations fXig

n
i=1 are projected onto the eigenvectors of bΣ to perform dimension-

ality reduction and allow for visualization; see Hastie, R. Tibshirani, and Friedman [2009]
for a concrete introduction. A recurring question is how many dimensions should be used
for this projection Cattell [1966]. This in turn revolves around estimation of eigenvalues
questions.

Classical bulk results. To get a sense of the utility of large n, large p asymptotics in
this context, we can return to a classical result Marčenko and L. A. Pastur [1967], which
of course was later extended Wachter [1978], Silverstein [1995], Götze and Tikhomirov
[2004], Pajor and L. Pastur [2009], and El Karoui [2009] and says the following :

Theorem 1.1 (Marchenko-Pastur). Suppose Xi ’s are independent and identically dis-
tributed (i.i.d) random variables with mean 0 and covariance identity, i.e. cov (Xi ) =

E ((Xi � E (Xi ))(Xi � E (Xi ))
0) = Idp and mild concentration properties (see above

references for details). Suppose further that p/n ! � 2 (0; 1). Then the empirical distri-
bution of the eigenvalues ofbΣ is asymptotically non-random and converges weakly almost
surely to F� , a distribution whose density can be written

(1) f�(x) =

p
(b� � x)(x � a�)

2�x�
1a��x�b�

;

where b� = (1 +
p
�)2 and a� = (1 �

p
�)2.

This result already illustrates the great difference between modern (i.e. large n, large
p) asymptotics and the classical setting where p = o(n). In this latter case, the empirical
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Figure 1: Illustration of Marchenko-Pastur law and high-dimensional estimation
problem; n=500, p=200; Xi ∼ N(0; Idp), i.i.d

distribution of eigenvalues goes, under the assumption of the previous theorem, to a point
mass at 1; informally speaking all eigenvalues are consistently (loosely speaking correctly)
estimated. The above theorem clearly shows that it is not the case in the “large n, large p”
setting.

We can also illustrate the problem with a simple picture, comparing the histogram of
observed eigenvalues of bΣ with the population eigenvalues, i.e. those of cov (Xi ) = Σ.
See Figure 1, p. 2878.

This picture clearly illustrates the issue that the new paradigm of high-dimensional
statistics creates: even though elementary concentration bounds show that entry-per-entry,
i.e. in `1 norm, estimation of Σ by e.g. bΣ is near trivial in the setup we consider, estima-
tion of the spectrum of Σ may not be trivial. We refer the interested reader to El Karoui
[2008] and Bickel and Levina [2008] (and Chaudhuri, Drton, and Richardson [2007] in the
low-dimensional setting) for early work taking advantage of structure in the covariance
matrix to improve estimation and to the recent Bun, Bouchaud, and Potters [2017] for a
survey of applied random matrix theoretic work related to the questions we just discussed.
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Right edge results. In the context of PCA, it is natural to ask questions about the largest
eigenvalues of sample covariance matrices, as they could be used in a sequential testing
fashion to determine how many components to keep in PCA.

A seminal result in this area in statistics is due to Johnstone who showed, building up on
Tracy and Widom [1994b,a, 1996], the following remarkable result in Johnstone [2001].

Theorem 1.2 (Johnstone). Suppose Xi ’s are i.i.d N(0; Idp) and denote by l1 the largest
eigenvalue of (n � 1)bΣ. Then as p and n tend to infinity, while p/n ! � 2 (0;1), we
have

(2)
l1(bΣ) � �n�2;p

�n�2;p
H) TW1 ;

with

�n;p = (
p
n+

p
p)2 and �n;p =

�p
p +

p
n

� �
1

p
n
+

1
p
p

�1/3

:

Here TW1 is the Tracy-Widom distribution appearing in the study of the Gaussian Orthog-
onal Ensemble Mehta [1991] and Deift [1999] and H) denotes weak convergence.

In short, the largest eigenvalue of a sample covariance matrix computed from Gaus-
sian data with identity covariance has fluctuations of size n�2/3 around the edge of the
Marchenko-Pastur distribution and the law of these fluctuations is asymptotically Tracy-
Widom. Despite the fact that a great deal had been analytically known by statisticians
about these questions James [1964], Constantine [1963], and Muirhead [1982] for a num-
ber of years, both the scale and the nature of the fluctuations discovered by Johnstone in
his breakthrough paper came as a great surprise to the statistics community.

Johnstone’s work is also connected to Forrester [1993] and Johansson [2000]. Later
work extended Johnstone’s result in many directions: to cite a few, see Soshnikov [2002]
for results concerning the first k eigenvalues, for any fixed k, and relaxed distributional
assumptions, El Karoui [2003] for the case p/n tends to 0 or infinity at any rate, Baik,
Ben Arous, and Péché [2005] for the discovery of very important phase transitions under
low rank perturbation of Σ = Idp , El Karoui [2007] for the first result on general Σ and
Lee and Schnelli [2016] for recent and powerful extensions of great potential in statistics.

This line of research continues with deep and insightful papers Bloemendal, Knowles,
Yau, and Yin [2016] and has also benefited from progress in proving universality results -
see for instance Erdős and Yau [2012] and Tao and Vu [2012].

One’s enthusiasm for the broad applicability of such results in practice may nonethe-
less have been tempered by connections made with concentration of measure techniques
Ledoux [2001] and Boucheron, Lugosi, and Massart [2013] for instance in El Karoui and
Koesters [2011]. Those results implied that most of the results above were intimately
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linked to effectively geometric (and not probabilistic) assumptions made about the data
and that when these easy-to-check-on-the-data assumptions were violated, the results men-
tioned above did not hold.

Other directions. The problems discussed above are of course very linear in nature. As
such they have a broad reach beyond linear dimensionality reduction (see below and El
Karoui and Koesters [2011] for an example of a dimension-adaptive improvement of lin-
ear classification methods). Naturally, the reach of random matrix methods has extended
beyond the strictly linear setup. For instance, the beautiful paper Koltchinskii and Giné
[2000] studied the spectrum of so-called kernel randommatrices, i.e. matrices with entries
K(i; j ) = K(Xi ; Xj ) in the classical setting where p grows slowly with n. These results
are important for understanding kernel methods in Statistics, which generalize standard
methods to higher-dimensional spaces where the inner product between the de-facto ob-
servations is not the standard inner product anymore Wahba [1990] and Schölkopf and
Smola [2002]. These matrices have been well understood in the high-dimensional case
for quite a few years now El Karoui [2010] and Do and Vu [2013]. Random matrix re-
sults also have had interesting applications in randomized linear algebra and numerical
optimization, and have been useful in speeding up various algorithms or allowing them
to scale to very large data sizes - see for instance Achlioptas and McSherry [2007] and
Drineas, Kannan, and Mahoney [2006] and follow-up results. These results typically use
mathematically fairly coarse but very nice and broadly applicable bounds Tropp [2012] to
prove the reliability of the algorithms under study, a function of the fact that they have to
hold in a pretty general setting to be useful to practitioners.

2 Beyond covariance matrices: M-estimators

The previous section reviewed results in random matrix theory that could be useful for
tasks in exploratory data analysis and generally unsupervised learning. However, much of
statistics is concerned with the situation where one observes a scalar response, generically
denoted Yi 2 R, associated with the vector of predictors Xi 2 Rp . The simplest model
of relationship between the two is the linear model where

(linear-model) 8i ; 1 � i � n; Yi = X 0
iˇ0 + �i :

Here the data fYi ; Xig
n
i=1 are observed. The parameter of interest ˇ0 2 Rp is unobserved

and so are the errors �i 2 R. Typically, and in this short review, f�igni=1 are assumed to be
i.i.d from a certain distribution. The question the statistician faces is to estimate ˇ0. This
is often done by solving an optimization problem, i.e. using a so-called M-estimator: for
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a loss function ` chosen by the user, ˇ0 is estimated through

b̌
` = argminˇ2Rp

nX
i=1

`(Yi ;X
0
iˇ) :

In the context of the linear model described above, one often uses the less general formu-
lation

(3) b̌
� = argminˇ2Rp

nX
i=1

�(Yi �X 0
iˇ) :

These estimators and the related family of generalized linear models McCullagh and
Nelder [1989] are of fundamental importance in both theoretical and applied statistics and
statistical learning, in academia and industry Chapelle, Manavoglu, and Rosales [2014]
and Wood, Goude, and Shaw [2015].

2.1 Classical results: large n, small p. As such these estimators have received a great
amount of attention Relles [1968] and Huber [1973, 1981]. In the classical case, i.e. p
fixed and n ! 1, Huber [1973] showed, under mild conditions, that b̌� is asymptotically
normally distributed with mean 0 and covariance, if � is a random variable with the same
distribution as �i ’s mentioned in Equation (linear-model),

cov
�b̌

�

�
= (X 0X)�1 E

�
 2(�)

�
[E ( 0(�))]2

; where  = �0 :

This result is striking for at least two reasons : 1) the impact of the design matrix X , is
decoupled from that of the error distribution �; 2) finding the optimal estimator in this
class is fairly simple as one just needs to find the function  that minimizes E( 2(�))

[E( 0(�))]2
.

In fact, Huber carried out this program and showed that in low-dimension, when � has a
density f� , the optimal loss function is

�opt = � logf� :

In other words, themaximum likelihood estimator Fisher [1922] and Lehmann and Casella
[1998] is optimal in this context, when one seeks to minimize the variability of the estima-
tor.

Important work in the 70’s, 80’s and 90’s extended some of these results to various
situations where p was allowed to grow with n but p = o(n) - see for instance Portnoy
[1984, 1985, 1986, 1987], Mammen [1989], and Yohai [1974]. See also see Dümbgen,
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Samworth, and Schuhmacher [2011] for more recent results in the classical dimensional
framework and very interesting connections with the field of shape restricted estimation
Groeneboom and Jongbloed [2014].

2.2 Modern high-dimensional results: large n, large p. It is natural to ask similar
questions to those raised above in the modern context of large n, large p asymptotics, as
in fact was done as far back as Huber [1973].

Before we proceed, let us say that much effort was devoted in the last two decades in
statistics and statistical learning to understanding the properties of the estimators of the
form b̌

� = argminˇ2Rp

1

n

nX
i=1

�(Yi �X 0
iˇ) + �P (ˇ) ;

where P is a penalty function, for instance P (ˇ) = kˇk22 or P (ˇ) = kˇk1. However,
works in this line of investigation put rather stringent conditions on ˇ, such as dramatic
sparsity (i.e. only a fixed number of coefficients ofˇ0 are allowed to not be equal to zero as
p ! 1), which essentially turns these problems into rather classical ones; their analysis
depend essentially on well-understood methods, which nonetheless had to be adapted to
these specific problems. SeeBühlmann and van deGeer [2011] for a book-length survey of
this line of work. Let us also note that in truly large case applications Chapelle, Manavoglu,
and Rosales [2014], practitioners are not willing to make these stringent assumptions.

2.2.1 Behavior of the estimator. By contrast we make no such restrictions on ˇ0. We
focus on the unpenalized case for ease of presentation. To get a sense of results in this
context, let us recall the system obtained in El Karoui, Bean, Bickel, Lim, and Yu [2013].
Let us consider b̌ as in Equation (3). Suppose p/n ! � 2 (0; 1). For simplicity assume
that are Xi

i idv (0; Idp), with i.i.d entries and certain moment conditions - see El Karoui
[2013, 2018] for technical details - we have

Theorem 2.1. Under regularity conditions on f�ig and � (convex), kb̌
� � ˇ0k2 is asymp-

totically deterministic. Call r�(�) its limit and let ẑ� be a random variable with ẑ� =

� + r�(�)Z, where Z ∼ N(0; 1), independent of �, where � has the same distribution as
�i ’s. For c deterministic, we have

(4)
�
E ([prox(c�)]0(ẑ�)) = 1 � � ;

�r2� (�) = E
�
[ẑ� � prox(c�)(ẑ�)]2

�
:
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where by definition (see Moreau [1965]) for a convex function f R 7! R,

prox(f )(x) = argminy2R

�
f (y) +

1

2
(x � y)2

�
:

We note that the system generalizes easily to much more general setups (involving
penalization) - see El Karoui [2018]. In particular, the system (4) is quite sensitive to the
Euclidean geometry of the predictors, Xi ’s. For instance, if we had Xi = �iZi where
Zi ∼ N(0; Idp) and �i is an independent scalar “well-behaved” random variable with
E

�
�2i

�
= 1, a similar type of result would hold, but it would depend on the distribution

of �i and not only its second moment. In particular, r�(�) would change, despite the fact
that in both models, cov (Xi ) = Idp . As such, one cannot hope for strong universality
results in this context. See also Donoho and Montanari [2016] for another point of view
on this system.

We also note that the previous result can be generalized to the case where cov (Xi ) = Σ

by simple and classical rotational invariance arguments - see Eaton [2007] and El Karoui,
Bean, Bickel, Lim, and Yu [2013]. In the case where Xi ’s are Gaussian, El Karoui, Bean,
Bickel, Lim, and Yu [2013] also uses those to characterize the distribution of b̌

� � ˇ0 in
a non-asymptotic fashion.

Finally, the behavior of the residuals ei = Yi�X
0
i
b̌
� is very different in high-dimension

from what it is in low-dimension; see El Karoui, Bean, Bickel, Lim, and Yu [ibid.] and
follow-up papers for characterization. In particular, the residuals are not close in our frame-
work to the “true errors”, �i ’s, which is problematic as in many practical statistical meth-
ods - based on low-dimensional intuition - the residuals are used as proxies for those “true
errors”.

2.2.2 New loss functions. In light of the system (4), it is natural to ask which function
� minimizes r�(�), which is one measure of the inaccuracy of b̌

� as an estimator of ˇ0.
This question was investigated in Bean, Bickel, El Karoui, and Yu [2013]. The following
result is shown there.

Theorem 2.2. Suppose that � has a log-concave density, i.e. � logf� is convex. Suppose
r�(�) is the solution of (4). Then ifp2(x) = x2/2, the optimal loss function that minimizes
r�(�) over convex � functions is

�opt = (p2 + r
2
opt log�ropt

? f�)
�

� p2 :

where ropt = minfr : r2I�(r) = p/ng.
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In the theorem above, �r is the density of a mean 0 Gaussian random variable with
variance r2, ? denotes convolution, I�(r) is the Fisher information Lehmann and Casella
[1998] of �r ? f� and g�(x) = supy2R(xy � g(y)), is the Fenchel-Legendre dual of g
Hiriart-Urruty and Lemaréchal [2001].

The function �opt can be shown to be convex under the hypotheses of the theorem. It
depends of course on p/n, our proxy for the statistical difficulty of the problem. In other
words, this function quantifies the intuitively compelling notion that the loss function we
use in these M-estimation problems should be adapted to the statistical hardness of the
problem. Interestingly, the function in question is not the maximum likelihood estimator,
which is the usual method that is used to determine on statistical grounds the loss function
that should be used for a particular problem. We present a (limited) numerical comparison
of these new loss functions and the maximum likelihood estimator in Figure 2.

Finally, it should be noted that the impact of choosing a better loss function is not limited
to reducing uncertainty about the estimator. It also improves the quality of predictions, as
the standard measure of expected prediction error Hastie, R. Tibshirani, and Friedman
[2009] is closely tied to the size of E

�
kb̌

� � ˇ0k22

�
in the models we consider.

3 Bootstrap and resampling questions

Modern statistics is increasingly computational and as such many methods have been
devised to try to assess sampling variability of estimators through the use of simulations
and without relying on asymptotic analyses. In other words, there are numerical ways to
try to get at results such as those obtained in Theorems 1.2 and 2.1 for instance.

The most prominent of such methods is the bootstrap, proposed by Efron in the break-
through paper Efron [1979]. Numerous variants of the bootstrap have appeared since then,
and the bootstrap created an entire field of research, both theoretical and applied. See for
instance Bickel and Freedman [1981], Efron [1982], Davison and Hinkley [1997], Hall
[1992], and Efron and R. J. Tibshirani [1993] for classic references.

It is therefore natural to ask how the bootstrap performs in the modern high-dimen-
sional context. Before we present some results in this direction, let us give a very brief
introduction to the non-parametric bootstrap.

3.1 Non-parametric bootstrap and plug-in principle. As a so-called resamplingmethod,
the bootstrap seeks to re-use the data to assess for instance the variability of an estimator.
Concretely, suppose we have data fXig

n
i=1 2 Rp , assumed to be i.i.d. and we are inter-

ested in the fluctuation behavior of a statistic/function of the datab� = �(X1; : : : ; Xn). For
instance,b� could be the sample mean of the Xi ’s or the largest eigenvalue of the sample
covariance matrix of the Xi ’s.
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Figure 2: Numerical comparison of dimension-adaptive optimal loss and maximum
likelihood loss: case where f�(x) = e�jxj/2, a.k.a. double exponential errors.
We plot the ratio E

�
kb̌opt � ˇ0k2

�
/E

�
kb̌l1 � ˇ0k2

�
as a function of p/n. The

ratio is always less than 1 : �opt , which varies with p/n and is used to computeb̌opt , beats `1 loss, i.e. �(x) = jxj, the “optimal loss” in this context according
to maximum likelihood theory. The curve is obtained by estimating the expectation
through averaging over 1,000 independent simulations.

The non-parametric bootstrap uses the following algorithm :

• For b = 1; : : : ; B , repeat:

• Sample n times with replacement from fXig
n
i=1, to get bootstrapped dataset

Db = fX�
1;b
; : : : ; X�

n;b
g.

• Computeb�(X�)n;b = �(X�
1;b
; : : : ; X�

n;b
).

Then the empirical distribution of fb�(X�)n;bg
B
b=1

is used to assess the sampling variabil-
ity of the original statistic b� = �(X1; : : : ; Xn) for instance by computing the bootstrap
estimate of variance (i.e. the empirical variance of fb�(X�)n;bg

B
b=1

if the statistic is one-
dimensional), or more sophisticated functions of the empirical distribution.

This is the so-called plug-in principle: one considers that the bootstrap data-generating
process mimics the “true” (i.e. sampling from the population ) data-generating process and
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proceeds with bootstrap data as one would do with data sampled from the population. As
such the bootstrap offers the promise of uncertainty assessment for arbitrarily complicated
statistics without much need for mathematical understanding.

One natural question is of course to know when the bootstrap works (and what it means
for the bootstrap to work). The first such results appeared in the pioneering Bickel and
Freedman [1981]; nowadays, a common way to look at this problem is by looking at � as a
function over probability distributions -b� being � applied to the empirical distribution of
the data - and requiring � to be sufficiently smooth in an appropriate sense van der Vaart
[1998].

3.2 Bootstrapping regressionM-estimates. Because of the lack of closed formulae to
characterize the behavior of estimators such as b̌

� defined in Equation (3), the bootstrap
became early on an appealing tool to use for this task Shorack [1982] and questions re-
lated to the ones we raise in the high-dimensional setting were addressed in setting where
p/n ! 0 in Wu [1986] and Mammen [1989, 1993].

In ElKaroui and Purdom [n.d.], various results concerning the bootstrap in high-dimension
regression are presented. Bootstrapping as described above the observations f(Yi ; Xi )g

n
i=1

is called the pairs bootstrap in this setting. Elementary algebra shows that the pairs boot-
strap amounts to fitting weighted regression models, i.e for bootstrap weights fw�

i g,

b̌�
�;w = argminˇ2Rp

nX
i=1

w�
i �(Yi �X 0

iˇ) :

For instance, it is shown that (for precise technical details see El Karoui and Purdom
[ibid.]):

Theorem 3.1. Suppose weights (wi )ni=1 are i.i.d., E (wi ) = 1, have sufficiently many
moments and are bounded away from 0. LetXi

i idv N(0; Idp) and let v be a (sequence of)
deterministic unit vector.

Suppose b̌ is obtained by solving a least-squares problem, i.e �(x) = x2/2 and that the
linear model holds. Let us call var (�i ) = �2

� and corresponding bootstrapped estimatesb̌�
w .
If limp/n = � < 1 then asymptotically as n ! 1

pE
�
var

�
v0b̌�

w

��
! �2

�

24� 1

1 � � � E
�

1
(1+cwi )2

� �
1

1 � �

35 ;
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where c is the unique solution of

E
�

1

1 + cwi

�
= 1 � � :

We note that in the previous context, it is not complicated to show that

pvar
�
v0b̌�

! �2
�

�

1 � �
:

Therefore the type of bootstraps described above fails at the very simple task of estimating
the variance v0b̌, even for least squares. Figure 3 on p. 2896 gives a graphical illustration
of the problem, showing that the bootstrap overestimates the variance of our estimator.

El Karoui and Purdom [ibid.] contains many other results concerning other types of
bootstraps and other resampling techniques, such as the jackknife. In general, the results
show that even when classical bootstrap theory would suggest that the bootstrap should
work (i.e. the statistics of interest are sufficiently “smooth”), it does not work in high-
dimension, even when the statistician has very minimal requirements about what it means
to work. Problematically, various bootstraps can fail in many ways, yielding confidence
intervals with either too much or not enough coverage for instance. See El Karoui and Pur-
dom [ibid.] for details and relations to relevant literature as well as Bickel and Freedman
[1983] for an early take on closely related questions, with however different requirements
concerning bootstrap performance and analysis of a different kind of bootstraps.

3.3 Bootstrap and eigenvalues. It is also natural to wonder whether the bootstrap
would be able to “automatically discover” results such as Theorem 1.2 and adapt to phase
transitions such as the one discovered in Baik, Ben Arous, and Péché [2005]. Analysis
of the bootstrap for eigenvalues in low-dimension goes as far back as Beran and Srivas-
tava [1985] and Eaton and Tyler [1991]. In El Karoui and Purdom [2016], questions of
that type are investigated in high-dimension through a mix of theory and simulations, for
various statistics related to eigenvalues of random matrices. Many mathematical ques-
tions remain open; however the results are generally negative, in that typically bootstrap
confidence intervals do not have the right coverage probabilities. The only positive re-
sults about the bootstrap in that context are situations where the population covariance Σ
has very isolated eigenvalues, and the problem is hence effectively low-dimensional and
therefore of limited mathematical interest.

As such the bootstrap appears as of this writing to be a genuinely perturbation analytic
technique and hence to be poorly suited to the kind of problems discussed in this short
review.
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4 Conclusions

We have a presented a small overview of recent results in theoretical statistics focused
on the high-dimensional case, where the number of measurements per observations grows
with the number of observations.

Mathematical analysis in this setup reveals the breakdown of basic consistency results.
Furthermore, classical optimality results (based essentially on the likelihood principle) do
not hold, yielding results and methods that upended many practitioners’ intuition.

Interestingly, the analyses summarized above led the way to the proposal of new loss
functions outside of “standard” families and adapted to the statistical difficulty of the prob-
lem, as measured by p/n.

Finally, standard data-driven methods of uncertainty assessment such as the bootstrap
seem to completely break down in this setup, where they are most needed by practitioners
given the complexity of the problems.

As such the large n, large p setting is much more than just a technical hurdle for theo-
reticians but seems to call for a serious rethinking of tools used by statisticians, whether
they be involved in theory, methodology or applications.

Much mathematically stimulating work remains to be done to be able to develop im-
proved methods (both for estimation and uncertainty assessment) and improve our under-
standing of statistics in this still novel and challenging framework.
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Figure 3: Comparison of width of 95% confidence intervals of e0
1
b̌� forL2 loss:

�(x) = x2/2; e1 is the first canonical basis vector in Rp ; y-axis is the percent
increase of the average confidence interval width based on simulation (n = 500), as
compared to exact theoretical result for least squares; the percent increase is plotted
against the ratio � = p/n (x-axis). Shown are three different choices in simulating
the entries of the design matrixX : (1) Normal: Xi

i idv N(0; Idp) (2) Ellip. Normal:
Xi = �iZi with �i

i idv N (0; 1) and independently Zi
i idv N(0; Idp) and (3) Ellip.

Exp : Xi = �iZi with �i
i idv Exp(

p
2). The errors �i ’s are i.i.d N(0; 1)
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MULTISCALE ANALYSIS OF WAVE PROPAGATION IN
RANDOM MEDIA

Jඈඌඌൾඅංඇ Gൺඋඇංൾඋ

Abstract

Wave propagation in random media can be studied by multiscale and stochastic
analysis. We review some recent advances and their applications. In particular, in
a physically relevant regime of separation of scales, wave propagation is governed
by a Schrödinger-type equation driven by a Brownian field. We study the associated
moment equations and describe the propagation of coherent and incoherent waves. We
quantify the scintillation of the wave and the fluctuations of the Wigner distribution.
These results make it possible to introduce and characterize correlation-based imaging
methods.

1 Wave propagation in random media

In many wave propagation scenarios the medium is not constant, but varies in a compli-
cated fashion on a spatial scale that is small compared to the total propagation distance.
This is the case for wave propagation through the turbulent atmosphere, the Earth’s crust,
the ocean, and complex biological tissue for instance. If one aims to use transmitted or re-
flected waves for communication or imaging purposes it is important to characterize how
such microstructure affects and corrupts the wave.

Motivated by the situation described above we consider wave propagation through time-
independent complex media with a spatially varying index of refraction. Typically we can-
not expect to know the index of refraction pointwise so we model it as a realization of a
random process. When the index of refraction is a random process, the wave field is itself
a random process and we are interested in how the statistics of the random medium affects
the statistics of the wave field. The analysis of wave propagation in random media has a
long history. It was first dealt with phenomenogical models such as the radiative transfer
theory. The first mathematical papers were written in the 60’s by Keller [1964] who con-
nected radiative transport theory and random wave equations. In the review presented at
MSC2010: primary 35R60; secondary 35R30.

2895

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v4-p


2896 JOSSELIN GARNIER

the ICM by Papanicolaou [1998], the main focus was on wave transport and localization
(when random inhomogeneities are strong enough to trap wave energy in a bounded re-
gion). The book Fouque, Garnier, Papanicolaou, and Sølna [2007] gives the state of the
art about wave propagation in randomly layered media, that is a situation mathematically
tractable and physically relevant (especially in geophysics). In the recent years several
new features have emerged.
1) First statistical stability has become a central issue. Indeed the modeling of a complex
medium by a random medium involves ensemble averages. In some circumstances, such
as the turbulent atmosphere or the ocean, the medium may change (slowly) in time so that
ensemble averages can be experimentally achieved. This is not the case in other configura-
tions, such as seismology, in which the Earth is not moving although it can be considered
as a realization of a random medium to model uncertainty and lack of information. It
is then important to look for statistically stable quantities, that is to say, quantities that
depend on the statistics of the random medium that can be known or estimated, but not
on the particular realization that is inaccessible. To quantify statistical stability, variance
calculations are required, which are based on high-order moment analysis.
2) Motivated by statistical stability analysis and time-reversal experiments for waves in
random media, new methods for communication and imaging have been introduced that
are based on wave field correlations. The understanding and analysis of these methods
again require high-order moments calculations.
3) Following the analysis of wave field correlations, it was understood that information
about the medium could be extracted from wave correlations even when the illumination
is provided not by controlled sources, but by uncontrolled, opportunistic or ambient noise
sources.
A common feature of these recent developments is the analysis and use of wave field
correlations that reveal very rich information. Modern imaging techniques such as seis-
mic interferometry (see N. M. Shapiro, Campillo, Stehly, and Ritzwoller [2005], Schuster
[2009], and Wapenaar, Slob, Snieder, and Curtis [2010]) or coherent interferometric imag-
ing (see Borcea, Papanicolaou, and Tsogka [2005, 2006]) correlate wave field traces that
have been corrupted by the microstructure of the medium and use their space-time corre-
lation function for imaging.

1.1 Multiscale analysis. In its most common form, the analysis of wave propagation
in random media consists in studying the wave field solution of the scalar time-harmonic
wave equation (called the Helmholtz equation) with a randomly heterogeneous index of
refraction. Even though the scalar wave equation is simple and linear, the relation between
the statistics of the index of refraction and the statistics of the wave field is highly non-
trivial. In order to simplify and understand this relation, one can carry out a multiscale
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analysis that will transform the random Helmholtz equation into a mathematically tractable
yet physically relevant problem. This analysis is based on a separation of scales technique
and limit theorems (homogenization, diffusion-approximation, ...), in the framework set
forth by Asch, Kohler, Papanicolaou, Postel, and White [1991]. The wave propagation
problem can, indeed, be characterized by several length scales: the typical wavelength
(which depends on the source), the correlation radius of the medium, the typical propa-
gation distance. The bandwidth of the source and the relative amplitude of the medium
fluctuations may also play a role. Different scaling regimes (corresponding to different
physical configurations) can be analyzed when certain ratios between these length scales
go to zero or infinity. They lead to tractable and relatively easy to interpret asymptotic
results. Typically, the solution of the random Helmholtz equation can be shown to con-
verge to the solution of a deterministic or stochastic partial differential equation driven by
a Brownian field as in the situation addressed in Section 2. Stochastic calculus can then
be used to compute quantities of interest.

In the random travel time model, which is a special high-frequency regime in which
the wavelength is much smaller than the correlation radius of the medium, the fluctua-
tions of the medium affect only the phase of the wave, which satisfies a random eikonal
equation Borcea, Garnier, Papanicolaou, and Tsogka [2011] and Tatarskii [1961]. In the
random paraxial model in which the wavelength is smaller than the correlation radius of
the medium, backscattering can be neglected but there is significant lateral scattering as
the wave advances over long propagation distances and the wave field satisfies a random
Schrödinger-type equation Tappert [1977] and Uscinski [1977]. In the randomly layered
regime, the medium is only varying along the longitudinal direction (along the propaga-
tion axis), there is significant backscattering and the plane wave mode amplitudes satisfy
a system of ordinary random differential equations Fouque, Garnier, Papanicolaou, and
Sølna [2007]. In the radiative transport regime, in which the wavelength is of the same
order as the correlation radius of the medium, the angular distribution of the mean wave
energy satisfies a transport equation Ryzhik, Papanicolaou, and Keller [1996] and Sato
and Fehler [1998].

In this review paper we consider a scaling regime corresponding to long-range high-
frequency beam propagation and small-scale medium fluctuations giving negligible backscat-
tering. This is the so-called white-noise paraxial regime, as described by the Itô–Schrödinger
model, which is presented in Section 2. This model is a simplification of the random
Helmholtz equation since it corresponds to an evolution problem, but yet in the regime
that we consider it describes the propagated field in a weak sense in that it gives the cor-
rect statistical structure of the wave field. The Itô–Schrödinger model can be derived
rigorously from the random Helmholtz equation by a separation of scales technique in the
high-frequency regime (see Bailly, Clouet, and Fouque [1996] in the case of a randomly
layered medium and Garnier and Sølna [2008, 2009a,b] in the case of a three-dimensional
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random medium). It models many situations, for instance laser beam propagation Stro-
hbehn [1978], underwater acoustics Tappert [1977], or migration problems in geophysics
Claerbout [1985]. The Itô–Schrödinger model makes it possible to use Itô’s stochastic
calculus, which in turn enables the closure of the hierarchy of moment equations Fouque,
Papanicolaou, and Samuelides [1998] and Ishimaru [1997]. The equations for the first-
order and second-order moments are easy to solve. The equation for the fourth-order mo-
ments is difficult and only approximations or numerical solutions have been available for
a long time (see Fante [1975], Tatarskii [1971], and Uscinski [1985] and Ishimaru [1997,
Sec. 20.18]). In a special scaling regime, it is, however, possible to derive expressions for
the fourth-order moments as presented in Section 3.

The results on the higher-order statistics of the wave field open the mathematical anal-
ysis of important problems. Below we discuss a few applications, from the understanding
of physical conjectures such as star scintillation to the design of efficient correlation-based
imaging schemes in complex media. We believe that many more problems than those men-
tioned here will benefit from the results regarding the statistics of the wave field. In fact,
enhanced transducer technology and sampling schemes allow for using finer aspects of the
wave field involving second- and fourth-order moments and in such complex cases a rig-
orous mathematical analysis is important to support, complement, or sometimes disprove,
statements based on physical intuition alone.

1.2 A few conjectures. Star scintillation is a well-known paradigm, related to the obser-
vation that the irradiance of a star fluctuates due to interaction of the light with the turbulent
atmosphere. Experimental observations indicate that the statistical distribution of the ir-
radiance is exponential, with the irradiance being the square magnitude of the complex
wave field. In the physical literature it is a well-accepted conjecture that the statistics of
the complex wave field becomes circularly symmetric complex Gaussian when the wave
propagates through the turbulent atmosphere Valley and Knepp [1976] and Yakushkin
[1978], so that the irradiance is the sum of the squares of two independent real Gaussian
random variables, which has chi-square distribution with two degrees of freedom, that is
an exponential distribution. The mathematical proof of this conjecture has been obtained
in randomly layered media Fouque, Garnier, Papanicolaou, and Sølna [2007, Chapter 9]
but is still incomplete in three-dimensional random media Fouque, Papanicolaou, and
Samuelides [1998] and Garnier and Sølna [2014, 2016]. In Section 4 we report results
for the fourth-order moments that are consistent with the Gaussian conjecture.

Certain functionals of the wave field carry information about the medium and can be
characterized in some specific regimes Bal [2004], Bal and Pinaud [2010], Fannjiang
[2006], and Papanicolaou, Ryzhik, and Sølna [2007]. For instance, the Wigner distri-
bution (a transform in time-frequency analysis) is known to be convenient to study the
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solution of Schrödinger equation Gérard, Markowich, Mauser, and Poupaud [1997] and
Ryzhik, Papanicolaou, and Keller [1996]. An important issue is the so-called statistical
stability property: we look for functionals that become deterministic in the considered
scaling regime and that depend only on the statistics of the random medium and not on the
particular realization. The conjecture is that this can happen for well chosen functionals
in the limit of rapid decorrelation of the medium fluctuations. In Komorowski, Peszat,
and Ryzhik [2009] and Komorowski and Ryzhik [2012] the authors consider a situation
with rapidly fluctuating random medium fluctuations in which the Wigner distribution is
statistically stable. As shown in Bal [2004], however, the statistical stability also depends
on the initial data and can be lost for very rough initial data even with a high lateral diver-
sity as considered there. In Section 5 we present a detailed and quantitative analysis of
the stability of the Wigner distribution and derive an explicit expression of the coefficient
of variation of the smoothed Wigner distribution as a function of the smoothing parame-
ters, in the general situation in which the standard deviation can be of the same order as
the mean. This is a realistic scenario, which is not too deep into a statistical stabilization
situation, but which gives partly coherent but fluctuating wave functionals. These results
make it possible to quantify such fluctuations and how their magnitudes can be controlled
by optimal smoothing of the Wigner distribution.

1.3 Applications to communication and imaging. The understanding of the statistics
of the wave field is very important for applications to communication and imaging. Many
studies are driven by practical considerations or experimental observations.
1) The time-reversal experiments carried out by M. Fink and his group have motivated
many theoretical developments Fink, Cassereau, Derode, Prada, Roux, Tanter, Thomas,
and Wu [2000]. These experiments are based on the use of a special device called a time-
reversal mirror (TRM). A TRM is an array of transducers, that is to say, an array of sensors
that can be used as sources and as receivers. A time-reversal experiment has two steps.
In the first step, the TRM is used as an array of receivers. A wave is transmitted by a
point source far away from the TRM and is recorded by the TRM. In the second step, the
TRM is used as an array of sources. It transmits the time-reversed recorded signals. The
main observations are that i) the wave refocuses on the original source location, ii) refo-
cusing is enhanced when the medium is randomly scattering, and iii) the time-reversed
refocused wave is statistically stable, in the sense that the profile of the focal spot depends
on the statistical properties of the random medium, but not on its particular realization.
The phenomenon of focusing enhancement has been analyzed quantitatively Blomgren,
Papanicolaou, and Zhao [2002], Papanicolaou, Ryzhik, and Sølna [2004], and Fouque,
Garnier, Papanicolaou, and Sølna [2007]. Statistical stability of time-reversal refocus-
ing for broadband pulses is usually qualitatively proved by the fact that the time-reversed
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refocused wave is the superposition of many frequency-dependent components that are un-
correlated, which gives the self-averaging property by the law of large numbers Blomgren,
Papanicolaou, and Zhao [2002] and Papanicolaou, Ryzhik, and Sølna [2004]. For narrow-
band pulses the analysis of the statistical stability phenomenon involves the evaluation of a
fourth-order moment of the Green’s function of the random wave equation. This problem
has been addressed in Ishimaru, Jaruwatanadilok, and Kuga [2007] by using the circular
complex Gaussian assumption without rigorous justification. It is, however, possible to
prove that the fourth-order moments satisfy Isserlis formula (i.e. they can be expressed in
terms of sums of products of second-order moments) and to give a detailed analysis of the
statistical stability of the time-reversed refocused wave Garnier and Sølna [2016].

2) Wavefront-shaping-based schemes Vellekoop and Mosk [2007] have attracted a lot
of attention in recent years. The primary goal is to focus monochromatic light through a
layer of strongly scattering material. This is a challenging problem as multiple scattering
of waves scrambles the transmitted light into random interference patterns called speckle
patterns Goodman [2000]. By using a spatial light modulator (SLM) before the scatter-
ing medium (a device that can modulate the intensity and/or the phase profile of the light
beam), it is possible to focus light as first demonstrated in Vellekoop and Mosk [2007].
Indeed, the elements of the SLM can impose prescribed phase shifts, and an optimization
scheme makes it possible to choose the phase shifts so as to maximize the intensity trans-
mitted at one target point behind the scattering medium. The optimal phase shifts are the
opposite phases of the field emitted by a point source at the target point and recorded in
the plane of the SLM Mosk, Lagendijk, Lerosey, and Fink [2012]. In other words, the
wavefront-shaping optimization procedure is equivalent to phase conjugation or time re-
versal. Moreover, it has been shown that the speckle memory effect Feng, Kane, Lee, and
Stone [1988] and Freund, Rosenbluh, and Feng [1988] allows to focus on a neighboring
point close to the original target point Vellekoop and Mosk [2007], which opens the way
to the transmission of spatial patterns Popoff, Lerosey, Fink, Boccara, and Gigan [2010].
This phenomenon can be quantified by fourth-order moments calculations as shown in
Garnier and Sølna [2017].

3) In imaging in complex media, when the propagation distance is large enough, the
cross correlations of the recorded signals play an important role. This is because the mean
(or coherent) field vanishes while the correlations carry information about the medium
through which the waves propagate (see Section 3 in the random paraxial regime). The
mathematical analysis aims at two goals. First one needs to understand how information
about the medium is encoded in the wave field correlations. Second one needs to determine
how this information can be extracted in a statistically stable way. This requires detailed
fourth-order moment calculations. These calculations help determining imaging functions
that can operate in scattering media (see Borcea, Garnier, Papanicolaou, and Tsogka [2011]
and Garnier [2016] for instance).
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4) Intensity correlations is a recently proposed scheme for communication and imaging
in the optical regime. Indeed, in optics only intensities (i.e. the square moduli of the com-
plex envelopes of the wave fields) can be recorded. Intensity correlation-based imaging is
a promising scheme for communication and imaging through relatively strong clutter. By
using the correlation of the intensity or speckle for different incoming angles, or different
positions of the source, or different output angles, one can get spatial information about
the source Newman and Webb [2012]. The idea of using the information about the statis-
tical structure of speckle to enhance signaling is very interesting and corroborates the idea
that modern schemes for communication and imaging require a mathematical theory for
analysis of high-order moments.

5) In conventional imaging the waves are generated by an active array of sources and
after propagation through the medium they are recorded by an array of receivers (that can
be collocated or not with the array of sources). In passive imaging, only receiver arrays
are used and the illumination is provided by unknown, uncontrolled, asynchronous, or
opportunistic sources. From a theoretical point of view the cross correlations between
the recorded signals carry information about the medium through which the waves propa-
gate, as we explain in Section 6. Therefore they play an important role in passive imaging
and they can be used for travel-time tomography and reflector imaging Garnier and Pa-
panicolaou [2016]. From an applied point of view the emergence of correlation-based
imaging using ambient seismic noise has had a profound impact in seismology, as can be
seen in the work of M. Campillo and co-workers N. M. Shapiro, Campillo, Stehly, and
Ritzwoller [2005]. The use of seismograms generated by earthquakes was previously the
only way to image the Earth. With correlation-based imaging, the seismic noise recorded
by a distributed network of sensors on the surface of the Earth can provide a lot of in-
formation about its structure. Beyond seismology, there are many new, emerging areas
for correlation-based imaging methods, in passive synthetic aperture radar or in optical
speckle intensity correlations for communications and imaging. We introduce and explain
one of these methods called ghost imaging in Section 7.

2 The white-noise paraxial model

In this section we describe how to derive the mathematically tractable Itô-Schrödinger
model from the wave equation in a random medium. We consider the three-dimensional
scalar wave equation:

(1)
1

c2( Ex)

@2u

@t2
(t; Ex) � ∆ Exu(t; Ex) = F (t; Ex); t 2 R; Ex 2 R3:
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Here the source emits a time-harmonic signal with frequency ! and it is localized in the
plane z = 0:

(2) F (t; Ex) = ı(z)f (x)e�i!t , with Ex = (x; z) 2 R2
� R;

and the speed of propagation is spatially heterogeneous

(3)
1

c2( Ex)
=

1

c2o

�
1 + �( Ex)

�
;

where � is a zero-mean stationary random process with ergodic properties.
The time-harmonic field û such that u(t; Ex) = û( Ex)e�i!t is solution of the random

Helmholtz equation

(@2z +∆?)û +
!2

c2o

�
1 + �(x; z)

�
û = �ı(z)f (x);

where ∆ Ex = ∆? + @2z . The function �̂ (slowly-varying envelope of a plane wave going
along the z-axis) defined by

(4) û(x; z) =
ico

2!
ei !z

co �̂
�
x; z

�
satisfies

(5) @2z�̂ +

�
2i

!

co

@z�̂ +∆?�̂ +
!2

c2o
�

�
x; z

�
�̂

�
= 2i

!

co

ı(z)f (x):

In the paraxial regime “� � `c ; ro � z” (which means, the wavelength � = 2�co/! is
much smaller than the correlation radius `c of the medium and the radius ro of the source,
which are themselves much smaller than the propagation distance z) the forward-scattering
approximation in direction z is valid and �̂ satisfies the Itô-Schrödinger equation Garnier
and Sølna [2009a]

(6) dz�̂ =
ico

2!
∆?�̂ dz +

i!

2co

�̂ ı dB(x; z); �̂(z = 0;x) = f (x);

where ı stands for the Stratonovich integral, B(x; z) is a Brownian field, that is a Gaussian
process with mean zero and covariance

(7) E[B(x; z)B(x0; z0)] = (x�x0)min(z; z0) with (x) =

Z
R

E[ �(0; 0)�(x; z)]dz:

Remark: Existence, uniqueness and continuity of solutions of the Itô–Schrödinger
model (6) are established in Dawson and Papanicolaou [1984]. The proof of the conver-
gence of the solution to (5) to the solution to (6) is in Garnier and Sølna [2009a]. A first
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proof in the case of layered media (i.e. when � � �(z)) can be found in Bailly, Clouet,
and Fouque [1996]. More precisely, the paraxial regime “� � `c ; ro � z” corresponds
to the scaled regime

! !
!

"4
; �(x; z) ! "3�

� x
"2

;
z

"2

�
; f (x) ! f

� x
"2

�
;

where " is a small dimensionless parameter, and the convergence in C([0; 1); L2(R2)) (or
in C([0; 1); H k(R2))) of the solution of the scaled version of (5) to the solution of the
Itô-Schrödinger Equation (6) holds in distribution when " ! 0. This result requires strong
mixing properties for the random process �. If, however, the process � has long-range
properties, in the sense that E[�(x; z)�(x0; z0)] = r(z�z0)(x�x0)with r(z) ∼ c˛jzj�˛

as jzj ! +1 and ˛ 2 (0; 1), then, under appropriate technical and scaling assumptions
Gomez and Pinaud [2017], the limiting equation is the fractional Itô-Schrödinger model
(6) in which B is a fractional Brownian field with Hurst index H = 1 � ˛/2 2 (1/2; 1),
i.e. a Gaussian field with mean zero and covariance

E[B(x; z)B(x0; z0)] = (x � x0)
c˛

2H (2H � 1)

�
z2H + z02H

� jz � z0
j
2H

�
:

In this case the stochastic integral in (6) can be understood as a generalized Stieljes integral
(as H > 1/2).

3 Statistics of the wave field

In this section we describe how to compute the moments of the wave field. By Itô’s
formula and (6), the coherent (or mean) wave satisfies the Schrödinger equation with ho-
mogeneous damping (for z > 0):

(8) @zE[�̂] =
ico

2!
∆?E[�̂] �

!2(0)
8c2o

E[�̂];

and therefore E
�
�̂(x; z)

�
= �̂0(x; z) exp(�z/Zsca), where �̂0 is the solution in the ho-

mogeneous medium. The coherent wave amplitude decays exponentially with the propa-
gation distance and the characteristic decay length is the scattering mean free path Zsca:

(9) Zsca =
8c2o

(0)!2
:

This result shows that any coherent imaging or communication method
fails in random media when the propagation distance is larger than the scattering mean

free path Garnier and Papanicolaou [2016].
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The mean Wigner distribution defined by

(10) Wm(x; �; z) =

Z
R2

exp
�

� i� � y
�
E

h
�̂

�
x+

y

2
; z

�
�̂

�
x �

y

2
; z

�i
dy

is the angularly-resolved mean wave energy density (the bar stands for complex conjuga-
tion). By Itô’s formula and (6), it solves the radiative transport equation

(11) @zWm +
co

!
� � rxWm =

!2

4(2�)2c2o

Z
R2

̂(�)
�
Wm(� � �) � Wm(�)

�
d�;

starting from Wm(x; �; z = 0) = W0(x; �), the Wigner distribution of the initial field f .
̂ is the Fourier transform of  and determines the scattering cross section of the radia-
tive transport equation. This result shows that the fields observed at nearby points are
correlated and their correlations contain information about the medium. Accordingly,
one should use local cross correlations for imaging and communication in random me-
dia Borcea, Papanicolaou, and Tsogka [2005] and Borcea, Garnier, Papanicolaou, and
Tsogka [2011].

In order to quantify the stability of correlation-based imaging methods, one needs to
evaluate variances of empirical correlations, which involves the fourth-order moment:

(12) M4(q1; q2; r1; r2; z) = E
h
�̂

�r1 + r2 + q1 + q2

2
; z

�
�̂

�r1 � r2 + q1 � q2

2
; z

�
� �̂

�r1 + r2 � q1 � q2

2
; z

�
�̂

�r1 � r2 � q1 + q2

2
; z

�i
:

By Itô’s formula and (6), it satisfies the Schrödinger-type equation

(13) @zM4 =
ico

!

�
rr1

� rq1
+ rr2

� rq2

�
M4 +

!2

4c2o
U4(q1; q2; r1; r2)M4;

with the generalized potential

U4(q1; q2; r1; r2) = (q2 + q1) + (q2 � q1) + (r2 + q1) + (r2 � q1)

� (q2 + r2) � (q2 � r2) � 2(0):(14)

These moment equations have been known for a long time Ishimaru [1997]. Recently it
was shown Garnier and Sølna [2016] that in the regime “� � `c � ro � z” the fourth-
order moment can be expressed explicitly in terms of the function  . These results can be
used to address a wide range of applications in imaging and communication.
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4 The scintillation index

In this section we study the intensity fluctuations of the wave field solution of (6) and
characterize the scintillation index which quantifies the relative intensity fluctuations. It
is a fundamental quantity associated for instance with light propagation through the atmo-
sphere Ishimaru [1997]. It is defined as the square coefficient of variation of the intensity
Ishimaru [ibid., Eq. (20.151)]:

(15) S(x; z) =
E

�ˇ̌
�̂(x; z)

ˇ̌4�
� E

�ˇ̌
�̂(x; z)

ˇ̌2�2
E

�ˇ̌
�̂(x; z)

ˇ̌2�2 :

When the spatial profile of the source (or the initial beam) has a Gaussian profile,

(16) f (x) = exp
�

�
jxj2

r2o

�
;

and when “� � `c � ro � z”, the behavior of the scintillation index can be described
as follows Garnier and Sølna [2016].

Proposition 4.1. Let us consider the following form of the covariance function of the
medium fluctuations:

(x) = (0)̃
� x

`c

�
;

with ̃(0) = 1 and the width of the function ̃ is of order one. In the regime “� � `c �

ro � z” the scintillation index (15) has the following expression:

(17) S(x; z) = 1 �

exp
�

�
2jxj2

r2
o

�
ˇ̌̌

1
4�

R
R2 exp

�
2z

Zsca

R 1
0 ̃

�
v z

Zc
s
�
ds �

jvj2

4
+ iv �

x
ro

�
dv

ˇ̌̌2 :

In fact this result follows from the complete expressions of the second moment of the
intensity and the second moment of the field that are given in Garnier and Sølna [ibid.].
The scintillation index at the beam center x = 0 is a function of z/Zsca and z/Zc only,
where Zc = !ro`c/co is the typical propagation distance for which diffractive effects
are of order one, as shown in Garnier and Sølna [2009a, Eq. (4.4)]. It is interesting to
note that, even if the propagation distance is larger than the scattering mean free path, the
scintillation index can be smaller than one if Zc is small compared to Zsca.

In order to get more explicit expressions that facilitate interpretation of the results let
us assume that (x) is smooth and can be expanded as

(18) (x) = (0)
�
1 �

jxj2

`2c
+ o

� jxj2

`2c

��
; x ! 0:
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When scattering is strong in the sense that the propagation distance is larger than the scat-
tering mean free path z � Zsca, the expressions of the second moments of the field and
of the intensity can be simplified:

Γ(2)(x;y; z) := E
h
�̂

�
x+

y

2
; z

�
�̂

�
x �

y

2
; z

�i
=

r2o
R2

z

exp
�

�
jxj2

R2
z

�
jyj2

�2
z

+ i
!(0)z2x � y

2co`2c R2
z

�
;

Γ(4)(x;y; z) := E
hˇ̌

�̂
�
x+

y

2
; z

�ˇ̌2 ˇ̌
�̂

�
x �

y

2
; z

�ˇ̌2i
= jΓ(2)(x; 0; z)j2 + jΓ(2)(x;y; z)j2;

where the beam radius Rz is

(19) R2
z = r2o +

(0)z3

3`2c

and the correlation radius of the beam �z is

(20) �2
z =

4c2o`2c
!2(0)z

r2o + (0)z3

3`2
c

r2o + (0)z3

12`2
c

:

Note that the fourth-order moments satisfy the Isserlis formula (i.e. they can be expressed
in terms of sums of products of second-order moments), and therefore the scintillation
index S(x; z) is equal to one. This observation is consistent with the physical intuition
that, in the strongly scattering regime z/Zsca � 1, the wave field is conjectured to have
zero-mean complex circularly symmetric Gaussian statistics, and therefore the intensity is
expected to have exponential (or Rayleigh) distribution Fante [1975] and Ishimaru [1997].

5 Fluctuations of the Wigner distribution

In this section we give an explicit characterization of the signal-to-noise ratio of the Wigner
distribution. The Wigner distribution of the wave field is defined by

(21) W (x; �; z) =

Z
R2

exp
�

� i� � y
�
�̂

�
x+

y

2
; z

�
�̂

�
x �

y

2
; z

�
dy:

It can be interpreted as the angularly-resolved wave energy density (note, however, that it
is real-valued but not always non-negative valued). Its expectation satisfies the radiative
transport Equation (11). It is known that the Wigner distribution is not statistically stable,
and that it is necessary to smooth it (that is to say, to convolve it with a smoothing kernel) to
get a quantity that can be measured in a statistically stable way (that is to say, the smoothed
Wigner distribution for one typical realization is approximately equal to its expected value)
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Bal [2004] and Papanicolaou, Ryzhik, and Sølna [2007]. Our goal in this section is to
quantify this statistical stability.

Let us consider two positive parameters rs and �s and define the smoothed Wigner
distribution:

(22) Ws(x; �; z) =
1

(2�)2r2s �2s

“
R4

W (x�x0; � ��0; z) exp
�

�
jx0j2

2r2s
�

j�0
j2

2�2s

�
dx0d�0:

If we denote by �z the correlation radius of the field (given by (20) in the strongly scat-
tering regime), we may anticipate that rs and 1/�s should be of the order of �z to ensure
averaging. The coefficient of variation Cs of the smoothed Wigner distribution, which
characterizes its statistical stability, is defined by:

(23) Cs(x; �; z) =

p
E[Ws(x; �; z)2] � E[Ws(x; �; z)]2

E[Ws(x; �; z)]
:

An exact expression of the coefficient of variation of the smoothed Wigner distribution
can be derived in the regime “� � `c � ro � z” Garnier and Sølna [2016]. It involves
four-dimensional integrals and it is complicated to interpret it. This expression becomes
simple in the strongly scattering regime z � Zsca. We then get the following expression
for the coefficient of variation Garnier and Sølna [ibid.].

Proposition 5.1. In the regime “� � `c � ro � z”, if additionally z � Zsca and  can
be expanded as (18), then the coefficient of variation of the smoothed Wigner distribution
(22) satisfies:

(24) Cs(x; �; z)2 =

1
�2

s �2
z
+ 1

4r2
s

�2
z
+ 1

;

where �z is the correlation radius (20).

Note that the coefficient of variation becomes independent of x and �. Equation (24)
is a simple enough formula to help determining the smoothing parameters �s and rs that
are needed to reach a given value for the coefficient of variation:

• For 2�srs = 1, we have Cs(x; �; z) = 1.

• For 2�srs < 1 (resp. > 1) we have Cs(x; �; z) > 1 (resp. < 1); in other words,
the smoothed Wigner transform can be considered as statistically stable as soon as
2�srs > 1.
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The critical value rs = 1/(2�s) is indeed special. In this case, the smoothed Wigner
distribution (22) can be written as the double convolution of the Wigner distribution W of
the random field �̂(�; z) (defined by (21)) with the Wigner distribution

(25) Wg(x; �) =

Z
R2

exp
�

� i� � y
�
�̂g

�
x+

y

2

�
�̂g

�
x �

y

2

�
dy

of the Gaussian state

(26) �̂g(x) = exp
�

� �2s jxj
2
�
;

since we have
Wg(x; �) =

2�

�2s
exp

�
� 2�2s jxj

2
�

j�j2

2�2s

�
;

and therefore

(27) Ws(x; �; z) =
4�2s
(2�)3

“
R4

W (x � x0; � � �0; z)Wg(x
0; �0)dx0d�0;

for rs = 1/(2�s). It is known that the convolution of a Wigner distribution with a kernel
that is itself the Wigner distribution of a function (such as Wg) is nonnegative real valued
(the smoothed Wigner distribution obtained with the Gaussian Wg is called Husimi func-
tion) Cartwright [1976] and Manfredi and Feix [2000]. This can be shown easily in our
case as the smoothed Wigner distribution can be written as

(28) Ws(x; �; z) =
2�2s
�

ˇ̌̌ Z
R2

exp
�
i� � x0

�
�̂g(x

0)�̂(x � x0; z)dx0
ˇ̌̌2

;

for rs = 1/(2�s). From this representation formula of Ws valid for rs = 1/(2�s), we can
see that it is the square modulus of a linear functional of �̂(�; z). The physical intuition that
�̂(�; z) has circularly symmetric complex Gaussian statistics in strongly scattering media
then predicts that Ws(x; �; z) should have an exponential distribution, because the sum of
the squares of two independent real-valued Gaussian random variables has an exponential
distribution. This is indeed consistent with our theoretical finding that Cs = 1 for rs =

1/(2�s).
If rs > 1/(2�s), by observing that

exp
�

�
jxj2

2r2s

�
=

Z
R2

Ψ(x � x0) exp
�

� 2�2s jx0
j
2
�
dx0;

where the function Ψ is defined by

(29) Ψ(x) =
8�4s r2s

�(4�2s r2s � 1)
exp

�
�

2�2s jxj2

(4�2s r2s � 1)

�
;
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we find that the smoothed Wigner distribution (22) can be expressed as:
(30)

Ws(z;x; �) =

Z
R2

Ψ(x � x0)

�
2�2s
�

ˇ̌̌ Z
R2

exp
�
i� � x00

�
�̂g(x

00)�̂(x0
� x00; z)dx00

ˇ̌̌2�
dx0;

for rs > 1/(2�s). From this representation formula for Ws valid for rs > 1/(2�s), we can
see that it is nonnegative valued and that it is a local average of (28), which has a unit
coefficient of variation in the strongly scattering regime. That is why the coefficient of
variation of the smoothed Wigner distribution is smaller than one when rs > 1/(2�s).

6 Green’s function estimation with noise sources

The previous section has explained that the cross correlation of the wave field (or equiva-
lently the Wigner distribution which is its local Fourier transform) is a convenient way to
look at waves propagating in complex media. In this section we show that it is also useful
to study waves emitted by unknown noise sources. In Section 7 we will combine both sit-
uations and show that incoherent illumination can provide new paradigms and offer new
opportunities for imaging in complex media.

We aim to exhibit a relation between the cross correlation of the signals emitted by noise
sources and recorded by two sensors and the Green’s function between the sensors. The
Green’s function is the signal recorded by the second sensor when the first one transmits
a short (Dirac) pulse. The relation between the cross correlation of the recorded noise sig-
nals and the Green’s function is very important. Indeed, in standard imaging, an array of
sources transmits waves that are recorded by an array of receivers, that can be collocated
with the array of sources (called an active array). One then gets the matrix of Green’s
functions from the sources to the receivers, that can be processed for imaging purposes.
In ambient noise imaging, an array of receivers (called a passive array) records the waves
emitted by ambient noise sources. Under favorable circumstances, the matrix of cross
correlations of the signals recorded by the receivers gives the matrix of Green’s functions
between the receivers. In other words, the passive array data have been transformed into
active array data ! The fact that ambient noise illumination allows for Green’s function es-
timation and subsequent imaging opens fascinating perspectives. In seismology, it means
that information is present in the seismic noise recorded by networks of seismometers and
that it can be extracted by computing cross correlations.

We consider the solution u of the scalar wave equation in a three-dimensional inhomo-
geneous medium with propagation speed c( Ex):

(31)
1

c2( Ex)

@2u

@t2
� ∆ Exu = n(t; Ex):
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The term n(t; Ex) models noise sources. It is a zero-mean stationary (in time) random
process with autocorrelation function

(32)
˝
n(t1; Ey1)n(t2; Ey2)

˛
= F (t2 � t1)Γ( Ey1; Ey2):

Here h�i stands for statistical average with respect to the distribution of the noise sources.
The time distribution of the noise sources is characterized by the correlation function

F (t2 � t1), which is a function of t2 � t1 only because of time stationarity. The Fourier
transform F̂ (!) of the time correlation function F (t) is a nonnegative, even, real-valued
function proportional to the power spectral density of the sources:

(33) F̂ (!) =

Z
R

F (t)ei!t dt:

The spatial distribution of the noise sources is characterized by the autocovariance
function Γ( Ey1; Ey2). In this review paper we assume that the random process n is delta-
correlated in space:

(34) Γ( Ey1; Ey2) = K( Ey1)ı( Ey1 � Ey2);

although it is possible to address correlated noise sources, as shown in Bardos, Garnier,
and Papanicolaou [2008] and Garnier and Papanicolaou [2010]. The nonnegative valued
function K characterizes the spatial support of the sources.

The solution of the wave Equation (31) has the integral representation:

u(t; Ex) =

Z
R3

Z
R

n(t � s; Ey)G(s; Ex; Ey)dsd Ey;

where G(t; Ex; Ey) is the time-dependent Green’s function, that is to say, the fundamental
solution of the three-dimensional scalar wave equation:

1

c2( Ex)

@2G

@t2
� ∆ ExG = ı(t)ı( Ex � Ey):

The empirical cross correlation of the signals recorded at Ex1 and Ex2 for an integration
time T is

(35) CT (�; Ex1; Ex2) =
1

T

Z T

0

u(t; Ex1)u(t + �; Ex2)dt:

It is a statistically stable quantity, in the sense that for a large integration time T , the em-
pirical cross correlation CT is independent of the realization of the noise sources and it is
equal to its expectation. This is stated in the following proposition Garnier and Papanico-
laou [2009].
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Proposition 6.1. 1. The expectation of the empirical cross correlation CT (with respect
to the statistics or distribution of the sources) is independent of T :

(36)
˝
CT (�; Ex1; Ex2)

˛
= C (1)(�; Ex1; Ex2);

where the statistical cross correlation C (1) is given by

(37) C (1)(�; Ex1; Ex2) =
1

2�

Z
R3

Z
R

F̂ (!)K( Ey)Ĝ(!; Ex1; Ey)Ĝ(!; Ex2; Ey)e�i!� d!d Ey;

and Ĝ(!; Ex; Ey) is the time-harmonic Green’s function (i.e. the Fourier transform of
G(t; Ex; Ey)).

2. The empirical cross correlation CT is a self-averaging quantity:

(38) CT (�; Ex1; Ex2)
T !1
�! C (1)(�; Ex1; Ex2);

in probability (with respect to the distribution of the sources).

Equation (37) holds whatever the spatial support of the sources but it does not give a
simple relation between the cross correlation of the recorded noise signals and the Green’s
function. Such a relation emerges when the spatial support of the sources is extended. We
give below a simple statement when the noise sources are located on the surface of a ball
that encloses both the inhomogeneous region and the sensors, located at Ex1 and Ex2.

Proposition 6.2. We assume that the medium is homogeneous outside the ball B(0; D)

with center 0 and radius D, and that the sources are localized with a uniform density on
the surface of the sphere @B(0; L) with center 0 and radius L. If L � D, then for any
Ex1; Ex2 2 B(0; D), we have

(39)
@

@�
C (1)(�; Ex1; Ex2) = �

co

2

�
F � G(�; Ex1; Ex2) � F � G(��; Ex1; Ex2)

�
:

Proposition 6.2 can be found in Schuster [2009] and Wapenaar, Slob, Snieder, and
Curtis [2010]. The proof is based on the Helmholtz-Kirchhoff identity, which results from
the second Green’s identity and the Sommerfeld radiation condition. It is simple and
gives the desired result quickly, but it requires a full aperture illumination. Multiscale
analysis reveals that full aperture illumination is sufficient but not necessary for the cross
correlation to be related to the Green’s function Garnier and Papanicolaou [2016].

Proposition 6.2 shows that, when the noise sources surround the region of interest, then
the lag-time derivative of the cross correlation of the signals recorded at two observation
points is the Green’s function between these two points, up to a convolution (in time) with
the time covariance function of the noise sources and a symmetrization (which means
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that we get in fact the causal and the anti-causal Green’s functions). We can present an
illustration of this result when the medium is homogeneous with background velocity co

and the Green’s function is G(t; Ex;y) = 1
4�j Ex� Eyj

ı(t �
j Ex� Eyj

co
). If F (t) = �g00(t) with

g(t) = exp(�t2/4) (the prime stands for derivative), so that F̂ (!) = 2
p

�!2 exp(�!2),
then the cross correlation is by (39):

C (1)(�; Ex1; Ex2) =
co

8�j Ex1 � Ex2j

h
g0

�
� �

jEx1 � Ex2j

co

�
� g0

�
� +

j Ex1 � Ex2j

co

�i
:

The autocorrelation function is

C (1)(�; Ex1; Ex1) = �
1

4�
g00(�) :

These two functions can be seen in Figure 1: the autocorrelation function C (1)(�; Ex1; Ex1)

has the form of the second derivative of a Gaussian function, and the cross correlation
C (1)(�; Ex1; Exj ), j � 2, has two symmetric peaks with the form of the first derivative of a
Gaussian function and centered at the travel times ˙jEx1� Exj j/co. From the imaging point
of view, this means that the travel times between the sensors can be estimated from the
cross correlations of the noise signals and subsequently background velocity estimation
can be carried out tomographically.

7 An example of incoherent wave imaging in complex media: Ghost
imaging

In this section we study an imaging method called ghost imaging introduced in the op-
tics literature. It illustrates the fact that incoherent illumination can be beneficial for
correlation-based imaging in complex media. The experimental set-up proposed in Va-
lencia, Scarcelli, D’Angelo, and Shih [2005] and J. H. Shapiro and Boyd [2012] is plotted
in Figure 2. The waves are emitted by a noise (or partially coherent) source. A beam
splitter is used to generate two wave beams from this source:
- the “reference beam”, labeled À, propagates through a homogeneous or scattering medium
up to a high-resolution detector that measures the spatially resolved transmitted intensity.
- the “signal beam”, labeled Á, propagates through a homogeneous or scattering medium
and interacts with an object to be imaged. The total transmitted intensity is measured by
a bucket detector that measures the spatially integrated transmitted intensity.
This method is called ghost imaging because the high-resolution detector does not see the
object to be imaged, and nevertheless a high-resolution image of the object is obtained by
cross-correlating the two measured intensity signals. From the previous section we can an-
ticipate that something may indeed happen when cross correlating these signals because
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Figure 1: The configuration is shown in the plane (xy) in Figure a: the circles
are the noise sources and the triangles are the sensors (the distance between two
successive sensors is 5). The sources are randomly distributed on the surface of the
three-dimensional sphere with center at (0; 50; 0) and radius 40. Figure b shows
the cross correlation � ! C (1)(�; Ex1; Exj ) between the pairs of sensors ( Ex1; Exj ),
j = 1; : : : ; 5, versus the distance j Exj � Ex1j. For j � 2 the values have been
multiplied by 6 as the autocorrelation function (j = 1) takes larger values than the
cross correlation functions (j � 2). Here co = 1.
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Figure 2: The ghost imaging setup. A partially coherent source is split into two
beams by a beam splitter. The reference beam (labeled À) does not interact with the
object and its intensity is measured by a high-resolution detector. The signal beam
(labeled Á) interacts with the object to be imaged and its intensity is measured by a
bucket (single-pixel) detector. From Garnier [2016].

the cross correlation should be related to the Green’s function between the plane of the
high-resolution detector in reference path À (or the corresponding plane just before the
object in the signal path Á) and the plane of the bucket detector in Á. The relation is not,
however, clear when only spatially-integrated intensities are measured, which requires a
detailed analysis.

The object to be imaged is a mask modeled by a transmission function T (x). In the
experiments, the object is typically a double slit J. H. Shapiro and Boyd [2012]. The
source is located in the plane z = 0. The propagation distance from the source to the
high-resolution detector in the reference path À is L. The propagation distance from the
source to the object in the signal path Á is L as well, and the propagation distance from
the object to the bucket detector is L0. In each path the scalar wave (t; Ex) 7! uj (t; Ex),
j = 1; 2, satisfies the scalar wave equation:

(40)
1

cj ( Ex)2
@2uj

@t2
� ∆ Exuj = n(t;x)ı(z);

where cj ( Ex) is the speed of propagation in the medium corresponding to the j th path and
the forcing term (t;x) 7! n(t;x) models the source (identical for the two waves).

In the ghost experiment the source is typically a laser beam passed through a rotating
glass diffuser Valencia, Scarcelli, D’Angelo, and Shih [2005] and J. H. Shapiro and Boyd
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[2012]. We model it as

(41) n(t;x) = f (t;x)e�i!ot + c:c:;

where c:c: stands for complex conjugate, !o is the carrier frequency, and f (t;x) is the
complex-valued slowly varying envelope, whose Fourier transform (in time) has a typical
width that is much smaller than !o. It is assumed to be a complex-valued, zero-mean
stationary Gaussian process with the covariance function:

(42) hf (t;x)f (t 0;x0)i = F (t � t 0)Γ(x;x0);

with F (0) = 1 (with real-valued functions F andΓ). The width of the Fourier transform of
F is much smaller than !o. Note that the modeling is similar to the one used for correlation-
based imaging using ambient noise sources as discussed in the previous section. In this
framework the scalar wave fields uj , j = 1; 2, can be written in the form

uj (t; Ex) = vj (t; Ex)e�i!ot + c:c::

The detectors measure the intensities, i.e. the square moduli of the slowly varying en-
velopes vj , j = 1; 2. More exactly, the quantity that is measured by the high-resolution
detector is the spatially-resolved intensity in the plane z = L of the reference path À:

(43) I1(t;x) =
ˇ̌
v1

�
t; (x; L)

�ˇ̌2
:

The quantity that is measured by the bucket detector is the spatially-integrated intensity in
the plane z = L + L0 of the signal path Á:

(44) I2(t) =

Z
R2

ˇ̌
v2

�
t; (x; L + L0)

�ˇ̌2dx:

These two quantities are correlated and their cross correlation defines the ghost imaging
function:

CT (x) =
1

T

Z T

0

I1(t;x)I2(t)dt �

h 1

T

Z T

0

I1(t;x)dt
ih 1

T

Z T

0

I2(t)dt
i
:(45)

We consider the partially coherent case:

(46) Γ(x;x0) = Io exp
�

�
jx+ x0j2

2r2o
�

jx � x0j2

2�2
o

�
;

in which the source is assumed to have a Gaussian spatial profile with radius ro and a local
Gaussian correlation function with radius �o. This model is called Gaussian-Schell in the
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optics literature Mandel and Wolf [1995]. Note that we always have ro � �o (because Γ

is a positive kernel). The limit case �o ! 0 corresponds to fully incoherent illumination:
the field is delta-correlated in space. The limit case �o = ro in which

Γ(x;x0) = Io exp
�

�
jxj2

r2o
�

jx0j2

r2o

�
corresponds to fully coherent illumination: the spatial profile of the field is determinis-
tic (up to a random multiplicative factor) and has a Gaussian form with radius ro. The
following proposition shows that the ghost imaging function gives an image of the square
transmission function T 2 up to an integral operator whose kernel can be identified Garnier
[2016].

Proposition 7.1. If T ! 1, then the ghost imaging function converges in probability to

(47) C(x) =

Z
R2

H (x;y)T (y)2dy;

with the kernel given by

H (x;y) =
I 2

o �4
or4o

28�2L4

Z
R2

d˛

Z
R2

dˇ exp
�

�
�
j˛j

2 + jˇj
2
��
1 +

!2
or2o �2

o

4c2oL2

��
� exp

�
� i

!o

coL

�
�o(x+ y) � ˛ + ro(x � y) � ˇ

��
 � exp

�
�

!2
oL

4c2o

Z 1

0

2(0) � 
�
(�o˛ + roˇ)s

�
� 

�
(�o˛ � roˇ)s

�
ds

�
:(48)

If the medium is homogeneous along the two paths  = 0, then the kernel is

(49) H (x;y) =
I 2

o �2
or2o c4o

64!4
o�2

gi0R2
gi0

exp
�

�
jx � yj2

2�2
gi0

�
jx+ yj2

2R2
gi0

�
;

with

�2
gi0 =

2c2oL2

!2
or2o

+
�2

o

2
; R2

gi0 =
2c2oL2

!2
o�2

o

+
r2o
2

:(50)

Equation (50) shows that the resolution of the ghost imaging function is improved when
the source becomes less coherent (i.e., when �o decreases, the radius of the convolution
kernel �gi0 decreases). It also shows that imaging is possible provided the object to be
imaged (i.e. the support of the transmission function) is within the disk with radius Rgi0.
This radius increases when the source becomes less coherent (i.e., when �o decreases, Rgi0
increases).
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If the medium is random along the two paths and scattering is strong, in the sense that
the propagation distance is larger than the scattering mean free path L/Zsca � 1, then

(51) H (x;y) =
I 2

o �2
or2o c4o

64!4
o�2

gi1R2
gi1

exp
�

�
jx � yj2

2�2
gi1

�
jx+ yj2

2R2
gi1

�
;

with

�2
gi1 =

2c2oL2

!2
or2o

+
�2

o

2
+

8c2oL3

3!2
oZsca`2c

; R2
gi1 =

2c2oL2

!2
o�2

o

+
r2o
2

+
8c2oL3

3!2
oZsca`2c

;(52)

and the correlation radius of the medium `c is defined as in (18).
In the partially coherent case �o � ro, formula (52) shows that the resolution is im-

proved when the source becomes less coherent but it is degraded by scattering. Moreover,
the radius of the region that can be imaged increases when the source becomes less co-
herent and when scattering becomes stronger. In other words, scattering degrades the
resolution of the ghost imaging function, but it enhances the region that can be imaged.

In the limit case of a fully incoherent source �o ! 0 we have �2
gi1 ! �2

gi :=
2c2

oL2

!2
or2

o
+

8c2
oL3

3!2
oZsca`2

c
and R2

gi1 ! +1, which shows that the integral operator is then a convolution
with a Gaussian kernel with radius �gi.

In the limit case of a fully coherent source �o = ro, then �2
gi = R2

gi and

H (x;y) =
I 2

o r4o c4o
64!4

oR4
gi

exp
�

�
jxj2

R2
gi

�
jyj2

R2
gi

�
;

with R2
gi =

2c2
oL2

!2
or2

o
+

r2
o

2
+

8c2
oL3

3!2
oZsca`2

c
, which has a separable form. In this case we do not

get any image of the transmission function and the imaging function has a Gaussian form
with width Rgi whatever the form of the transmission function. This confirms that the
incoherence (or partial coherence) of the source is the key ingredient for ghost imaging.
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Abstract

We discuss recent results on asymptotically efficient estimation of smooth func-
tionals of covariance operator Σ of a mean zero Gaussian random vector X in a sepa-
rable Hilbert space based on n i.i.d. observations of this vector. We are interested in
functionals that are of importance in high-dimensional statistics such as linear forms
of eigenvectors of Σ (principal components) as well as in more general functionals of
the form hf (Σ); Bi; where f : R 7! R is a sufficiently smooth function and B is an
operator with nuclear norm bounded by a constant. In the case whenX takes values in
a finite-dimensional space of dimension d � n˛ for some ˛ 2 (0; 1) and f belongs
to Besov space Bs

1;1(R) for s > 1
1�˛ ; we develop asymptotically normal estimators

of hf (Σ); Biwith
p
n convergence rate and prove asymptotic minimax lower bounds

showing their asymptotic efficiency.

1 Introduction

LetX1; : : : ; Xn be i.i.d. random variables sampled from unknown distributionP� ; � 2 Θ:

Assume that the parameter space Θ is a subset of a linear normed space and the goal is to
estimate f (�) for a smooth functional f : Θ 7! R based on observations X1; : : : ; Xn:

Let L be the set of loss functions ` : R 7! R+ such that `(0) = 0; `(�t) = `(t); t 2 R;
` is convex and increasing on R+ and for some c > 0; `(t) = O(ecjt j) as t ! 1: Let Z
be a standard normal random variable.

Definition 1. An estimator Tn = Tn(X1; : : : ; Xn) will be called asymptotically efficient
with respect toΘn � Θ; n � 1 with convergence rate

p
n and (limit) variance �2

f
(�) > 0
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iff the following properties hold:

sup
�2Θn

sup
x2R

ˇ̌̌̌
P�

�
n1/2(Tn(X1; : : : ; Xn) � f (�))

�f (�)
� x

�
� PfZ � xg

ˇ̌̌̌
! 0;(1)

for all ` 2 L;

sup
�2Θn

ˇ̌̌̌
E�`

�
n1/2(Tn(X1; : : : ; Xn) � f (�))

�f (�)

�
� E`(Z)

ˇ̌̌̌
! 0 as n ! 1(2)

and

lim inf
n!1

inf
T̃n

sup
�2Θn

nE� (T̃n(X1; : : : ; Xn) � f (�))2

�2
f
(�)

� 1(3)

with the infimum in (3) being over all estimators T̃n:

A similar definition can be also used for more general models in which the data X (n)

is sampled from a distribution P (n)

�
; � 2 Θ as well as in the case of a sequence of smooth

functions fn : Θn 7! R:
The idea of asymptotically efficient estimation (initially understood as asymptotically

normal estimation with the smallest possible limit variance) goes back to Fisher [1922,
1925]. Fisher conjectured (“Fisher’s program”) that, under suitable regularity of statisti-
cal model, the maximal likelihood method would yield asymptotically efficient estimators
with the optimal limit variance being the reciprocal of the Fisher information. The difficul-
ties with implementing Fisher’s program became apparent in the early 50s when Hodges
developed a well known counterexample of a superefficient estimator in a regular statis-
tical model. The development of contemporary view of asymptotic efficiency is due to
several authors, in particular, to Le Cam and Hàjek (LeCam [1953] and Hájek [1972]). For
regular finite-dimensional models, asymptotically efficient estimators of smooth functions
f (�) could be obtained from the maximum likelihood estimator �̂ using the DeltaMethod:
for a continuously differentiable function f; f (�̂)�f (�) = hf 0(�); �̂ ��i+oP (n

�1/2);

implying that n1/2(f (�̂) � f (�)) is asymptotically normal N (0; �2
f
(�)) with the limit

variance �2
f
(�) = hI (�)�1f 0(�); f 0(�)i; I (�) being the Fisher information matrix. The

optimality of the limit variance is usually proved using convolution and local asymptotic
minimax theorems (Hàjek, Le Cam). It could be also proved using van Trees inequality
(see Gill and Levit [1995]) leading to bounds similar to (3).

Due to slow convergence rates of estimation of infinite-dimensional parameters in
nonparametric statistics, it becomes important to identify low-dimensional features of
these parameters that admit asymptotically efficient estimation with parametric

p
n-rate.
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Such features are often represented by smooth functionals of infinite-dimensional parame-
ters. Early references on asymptotically efficient estimation of smooth functionals include
Levit [1975, 1978] and Ibragimov and Khasminskii [1981] with a number of further pub-
lications for the last decades on estimation of linear, quadratic and more general smooth
functionals and with connections to extensive literature on efficiency in semiparametric
estimation (see Bickel, Klaassen, Ritov, and Wellner [1993], Giné and Nickl [2016] and
references therein). Ibragimov, Nemirovski and Khasminskii in Ibragimov, Nemirovski,
and Khasminskii [1986] and Nemirovski in Nemirovski [1990, 2000] systematically stud-
ied the problem of estimation of general smooth functionals of unknown parameter of
Gaussian shift model. In this model (also known as Gaussian sequence model), the pa-
rameter of interest is a “signal” � 2 Θ;whereΘ is a bounded subset of a separable Hilbert
space. Given an orthonormal basis fek : k � 1g of H; the data consists of observations
Xk = h�; eki+ �Zk ; k � 1; where fZkg are i.i.d. N (0; 1) r.v. and � is a small parameter
characterizing the level of the noise (we will set � := n�1/2). In Ibragimov, Nemirovski,
and Khasminskii [1986] and Nemirovski [1990, 2000], two different notions of smooth-
ness of a functional f were used, with control of the derivatives either in the operator
norm, or in the Hilbert–Schmidt norm (of multilinear forms). The complexity of estima-
tion problem was characterized by the rate of decay of Kolmogorov diameters of set Θ
defined as dm(Θ) := infL�H;dim(L)�m sup�2Θ k� � PL�k; m � 1; PL being the orthog-
onal projection on subspace L: Assuming that dm(Θ) . m�ˇ ; m � 1 for some ˇ > 0;

it was proved that efficient estimation (with a somewhat different definition of efficiency
than Definition 1) of a smooth functional f on H is possible for smoothness parameter
s > s(ˇ); where s(ˇ) is a threshold depending on the rate of decay ˇ of Kolmogorov
diameters. The estimation method was based on Taylor expansions of f (�) around an
estimator �̂ with an optimal nonparametric rate, which allowed to reduce the problem
to estimation of polynomial functions on H: Nemirovski [1990, 2000] also proved that
efficient estimation is impossible for some functionals f of smoothness s < s(ˇ):

More recently, estimation problems for functionals of unknown parameters have been
studied in various models of high-dimensional statistics, including semi-parametric effi-
ciency of regularization-based estimators (such as LASSO) van de Geer, Bühlmann, Ri-
tov, and Dezeure [2014], Javanmard and Montanari [2014], C.-H. Zhang and S. S. Zhang
[2014], Janková and van de Geer [2016] as well as minimax optimal rates of estimation
of special functionals (in particular, linear and quadratic) Cai and Low [2005b], Cai and
Low [2005a], Collier, Comminges, and Tsybakov [2017].

In this paper, we are primarily interested in the problem of estimation of smooth func-
tionals of unknown covariance operator Σ based on a sample of size n of i.i.d. mean zero
Gaussian random variables with covariance Σ: In this problem, the maximum likelihood
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estimator is the sample covariance Σ̂: By standard Hàjek-LeCam theory, plug-in estima-
tor h(Σ̂) is an asymptotically efficient estimator of a smooth functional h(Σ) in the finite-
dimensional case. The problem of asymptotically efficient estimation of general smooth
functionals of covariance operators in high-dimensional setting (when the dimension d
of the space is allowed to grow with the sample size n) has not been systematically stud-
ied. However, there are many results on asymptotic normality in this type of problems.
In the 80s–90s, Girko developed asymptotically normal (but hardly asymptotically effi-
cient) estimators of many special functionals of covariance matrices in high-dimensional
setting (see Girko [1987], Girko [1995] and references therein). Central limit theorems
for so called linear spectral statistics tr(f (Σ̂)) have been studied in random matrix theory
with a number of deep results both in the case of high-dimensional sample covariance (or
Wishart matrices) and in other random matrix models such as Wigner matrices, see, e.g.,
Bai and Silverstein [2004], Lytova and Pastur [2009]. However, these results do not have
straightforward statistical implications since tr(f (Σ̂)) does not “concentrate” around the
corresponding population parameter (with the exception of some special functionals of
this form such as log-determinant log det(Σ) = tr(logΣ); for which log det(Σ̂) (with a
simple bias correction) provides an asymptotically normal estimator (see Girko [1987] and
Cai, Liang, and Zhou [2015])). More recent references include Fan, Rigollet, and Wang
[2015] where optimal error rates in estimation of several special functionals of covariance
under sparsity assumptions were studied and Gao and Zhou [2016] where Bernstein-von
Mises type theorems for functionals of covariance were proved.

In what follows, B(H) is the space of bounded linear operators in a separable Hilbert
space H: B(H) is usually equipped with the operator norm denoted by k � k: Let Bsa(H)

be the subspace of bounded self-adjoint operators. Denote by C+(H) the cone of self-
adjoint positively semi-definite nuclear operators in H (the covariance operators). We
use notation A� for the adjoint operator of A; rank(A) for the rank of A; tr(A) for the
trace of a trace class operator A; and kAkp for the Schatten p-norm of A : kAk

p
p :=

tr(jAjp); jAj = (A�A)1/2; p 2 [1;1]: In particular, kAk1 is the nuclear norm, kAk2

is the Hilbert–Schmidt norm and kAk1 = kAk is the operator norm of A: The inner
product notation h�; �i is used for the inner product in the underlying Hilbert space H; for
the Hilbert–Schmidt inner product between the operators and also for linear functionals
on the spaces of operators (for instance, hA;Bi; where A is a bounded operator and B is a
nuclear operator, is a value of such a linear functional on the space of bounded operators).
Given u; v 2 H; u ˝ v denotes the tensor product of vectors u and v : (u ˝ v)x :=

uhv; xi; x 2 H: Notation A � B means that operator B � A is positively semi-definite.
We also use the following notations: given a; b � 0; a . b means that a � cb for a

numerical constant c > 0; a & b is equivalent to b . a; a � b is equivalent to a . b

and b . a: Sometimes, constants in the above relationships depend on some parameter(s).
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In such cases, the signs .; & and � are provided with subscripts: a . b means that
a � cb for a constant c > 0:

2 Effective rank and estimation of linear functionals of principal
components

LetX be a centered Gaussian random variable in a separable Hilbert space H with covari-
ance operator Σ = E(X ˝X) and let X1; : : : ; Xn be a sample of n independent observa-
tions of X: The sample covariance operator is defined as Σ̂ := n�1

Pn
j=1Xj ˝ Xj : In

the finite-dimensional case, it is well known that the operator norm error kΣ̂ � Σk could
be controlled in terms of the dimension d = dim(H) of the space H: In particular (see,
e.g., Vershynin [2012]), for all t � 1 with probability at least 1 � e�t

(4) kΣ̂ � Σk . kΣk

�r
d

n

_ d

n

_r
t

n

_ t

n

�
;

which implies EkΣ̂�Σk � kΣk

�q
d
n

_
d
n

�
: These bounds are sharp if the covariance op-

erator is isotropic (Σ = cI for a constant c > 0), or, more generally, it is of isotropic type,
meaning that c1I � Σ � c2I for some constants 0 < c1 � c2 < 1 (it is assumed that
c; c1; c2 are dimension free). The last condition holds, for instance, for well known spiked
covariance model introduced by Johnstone [2001] (see also Johnstone and Lu [2009] and
Paul [2007]). If the space H is infinite-dimensional (or it is finite-dimensional, but the
covariance operator Σ is not of isotropic type), bound (4) is no longer sharp and other
complexity parameters become relevant in covariance estimation problem. In particular,
Vershynin [2012] suggested to use in such cases so called effective rank r(Σ) := tr(Σ)

kΣk
in-

stead of the dimension. Clearly, r(Σ) � rank(Σ) � dim(H): The next result was proved
by Koltchinskii and Lounici [2017a] and it shows that r(Σ) is a natural complexity param-
eter in covariance estimation (at least, in the Gaussian case).

Theorem 1. The following expectation bound holds:

(5) EkΣ̂ � Σk � kΣk

�r
r(Σ)
n

_ r(Σ)
n

�
:

Moreover, for all t � 1; the following concentration inequality holds with probability at
least 1 � e�t :

(6)
ˇ̌̌
kΣ̂ � Σk � EkΣ̂ � Σk

ˇ̌̌
. kΣk

��r
r(Σ)
n

_
1

�r
t

n

_ t

n

�
:
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Note that bounds (5) and (6) were proved in Koltchinskii and Lounici [2017a] in a more
general setting of estimation of covariance operator of a Gaussian random variable in a
separable Banach space with effective rank defined as r(Σ) := (EkXk)2

kΣk
: These bounds

show that the “relative operator norm error” kΣ̂�Σk

kΣk
is controlled by the ratio r(Σ)

n
and that

condition r(Σ) = o(n) is necessary and sufficient for the operator norm consistency of
the sample covariance. In view of these results, it became natural to study concentration
and normal approximation properties of various statistics represented by functionals of
sample covariance in a dimension free framework in which the effective rank r(Σ) is
allowed to be large (although satisfying the condition r(Σ) = o(n); which ensures that Σ̂
is a small perturbation ofΣ). This was done in Koltchinskii and Lounici [2016] in the case
of bilinear forms of spectral projection operators of Σ̂ (empirical spectral projections) and
in Koltchinskii and Lounici [2017c,b] in the case of their squared Hilbert–Schmidt error.
It turned out that naive plug-in estimators (such as bilinear forms of empirical spectral
projections) are not

p
n-consistent (unless r(Σ) = o(n)) due to their substantial bias

and bias reduction becomes crucial for asymptotically efficient estimation. We briefly
discuss below the approach to this problem developed by Koltchinskii and Lounici [2016],
Koltchinskii, Löffler, and Nickl [2017].

Let �(Σ) be the spectrum of Σ and let �(Σ) = sup(�(Σ)) = kΣk be its largest eigen-
value. Let g(Σ) := dist(�(Σ); �(Σ) n f�(Σ)g) be the gap between �(Σ) and the rest
of the spectrum. Suppose �(Σ) has multiplicity 1 and let P (Σ) = �(Σ) ˝ �(Σ) be the
corresponding one-dimensional spectral projection. Here �(Σ) is the unit eigenvector cor-
responding to �(Σ) (defined up to its sign). Given u 2 H; our goal is to estimate the linear
functional h�(Σ); ui based on i.i.d. observationsX1; : : : ; Xn sampled fromN (0; Σ) (note
that the value of this functional is also defined only up to its sign, so, essentially, we can
estimate only its absolute value). If �(Σ̂) denotes a unit eigenvector of sample covariance
Σ̂ that corresponds to its top eigenvalue �(Σ̂) = kΣ̂k; then h�(Σ̂); ui is the plug-in esti-
mator of h�(Σ); ui:Without loss of generality, we assume in what follows that �(Σ̂) and
�(Σ) are properly aligned in the sense that h�(Σ̂); �(Σ)i � 0 (which allows us indeed to
view h�(Σ̂); ui as an estimator of h�(Σ); ui). It was shown in Koltchinskii and Lounici
[2016], that the quantity

b(Σ) = bn(Σ) := EΣh�(Σ̂); �(Σ)i2 � 1 2 [�1; 0]

characterizes the size of the bias of estimator h�(Σ̂); ui: In particular, the results of Koltchin-
skii and Lounici [2016] and Koltchinskii, Löffler, and Nickl [2017] imply that h�(Σ̂); ui

“concentrates” around the value
p
1 + b(Σ)h�(Σ); ui rather than around the value of the

functional h�(Σ); ui itself. To state this result more precisely, consider the spectral repre-
sentation Σ =

P
�2�(Σ) �P� with eigenvalues � and corresponding orthogonal spectral
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projections P�: Define

C (Σ) :=
X

�¤�(Σ)

(�(Σ) � �)�1P� and �2(Σ;u) := �(Σ)hΣC (Σ)u;C (Σ)ui:

For u 2 H; r > 1; a > 1 and �0 > 0; define the following class of covariance operators
in H : S(r; a; �0; u) :=

n
Σ : r(Σ) � r; kΣk

g(Σ)
� a; �2(Σ;u) � �2

0

o
: Note that additional

conditions on r; a; �0; u might be needed for the class S(r; a; �0; u) to be nonempty.

Theorem 2. Let u 2 H; a > 1 and �0 > 0: Suppose that rn > 1 and rn = o(n) as
n ! 1: Then

sup
Σ2S(rn;a;�0;u)

sup
x2R

ˇ̌̌̌
PΣ

�p
n(h�(Σ̂); ui �

p
1 + b(Σ)h�(Σ); ui)

�(Σ;u)
� x

�
� PfZ � xg

ˇ̌̌̌
! 0

and, for all ` 2 L;

sup
Σ2S(rn;a;�0;u)

ˇ̌̌̌
EΣ`

�p
n(h�(Σ̂); ui �

p
1 + b(Σ)h�(Σ); ui)

�(Σ;u)

�
�E`(Z)

ˇ̌̌̌
! 0 asn ! 1:

It was also proved in Koltchinskii, Löffler, and Nickl [2017] that b(Σ) �
r(Σ)

n
: This

implies that the “bias” (
p
1 + b(Σ)�1)h�(Σ); ui of estimator h�(Σ̂); ui is asymptotically

negligible (of the order o(n�1/2)) if r(Σ) = o(
p
n); which yields the following result:

Corollary 1. Let u 2 H; a > 1 and �0 > 0: Suppose that rn > 1 and rn = o(
p
n) as

n ! 1; and that S(r; a0; � 0
0; u) ¤ ¿ for some r > 1; a0 < a; � 0

0 > �0: Then h�(Σ̂); ui

is an asymptotically efficient estimator of h�(Σ); ui with respect to S(rn; a; �0; u) with
convergence rate

p
n and variance �2(Σ;u):

On the other hand, it was shown in Koltchinskii, Löffler, and Nickl [ibid.] that, under
the assumptions rn = o(n) and rn

n1/2 ! 1 as n ! 1;

lim
n!1

sup
Σ2S(rn;a;�0;u)

PΣ

�
jh�(Σ̂); ui � h�(Σ); uij � ckuk

rn

n

�
= 1

for some constant c = c(a; �0) > 0; implying that h�(Σ̂); ui is not even
p
n-consistent

estimator of h�(Σ); ui when effective rank is larger than
p
n: Clearly, slower convergence

rate is due to a large bias of the estimator h�(Σ̂); ui when the complexity of the problem
becomes large (the effective rank exceeds

p
n), and bias reduction is crucial to construct

a
p
n-consistent estimator in this case. In Koltchinskii and Lounici [2016], a method of

bias reduction based on estimation of bias parameter b(Σ) was developed. For simplicity,
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assume that the sample size is even n = 2n0 and split the sample into two equal parts,
each of size n0: Let Σ̂(1); Σ̂(2) be the sample covariances based on these two subsamples
and let �(Σ̂(1)); �(Σ̂(2)) be their top principal components. Since for all u 2 H and for
i = 1; 2; h�(Σ̂(i)); ui “concentrates” around

p
1 + bn0(Σ)h�(Σ); ui and �(Σ̂(i)); i = 1; 2

are independent, it is not hard to check that h�(Σ̂(1)); �(Σ̂(2))i “concentrates” around
1+ bn0(Σ): Thus, b̂ := h�(Σ̂(1)); �(Σ̂(2))i � 1 could be used as an estimator of bn0(Σ): It
was proved in Koltchinskii and Lounici [2016] that b̂�bn0(Σ) = oP (n

�1/2) provided that
r(Σ) = o(n); and this led to a bias corrected estimator (1 + b̂)�1/2h�(Σ̂(1)); ui of linear
functional h�(Σ); ui; which was proved to be asymptotically normal with convergence
rate

p
n: This approach was further developed in Koltchinskii, Löffler, and Nickl [2017],

where a more subtle version of sample split yielded an asymptotically efficient estimator
of the functional h�(Σ); ui: Let m = mn = o(n) as n ! 1; m < n/3: Split the sample
X1; : : : ; Xn into three disjoint subsamples, one of size n0 = n0

n := n � 2m > n/3 and
two others of size m: Let Σ̂(1); Σ̂(2); Σ̂(3) be the sample covariances based on these three
subsamples and let �(Σ̂(j )); j = 1; 2; 3 be the corresponding top principal components.
Denote

d̂ :=
jh�(Σ̂(1)); �(Σ̂(2))ij

jh�(Σ̂(2)); �(Σ̂(3))ij1/2
and �̂ :=

�(Σ̂(1))

d̂ _ (1/2)
:

Theorem 3. Let u 2 H; a > 1 and �0 > 0: Suppose that rn > 1 and rn = o(n) as n !

1: Suppose also that S(r; a0; � 0
0; u) ¤ ¿ for some r > 1; a0 < a; � 0

0 > �0: Takem = mn

such that mn = o(n) and nrn = o(m2
n) as n ! 1: Then h�̂ ; ui is an asymptotically

efficient estimator of h�(Σ); ui with respect to S(rn; a; �0; u) with convergence rate
p
n

and variance �2(Σ;u):

The approach to bias reduction and efficient estimation described above is based on
rather special structural properties of the bias of empirical spectral projections. In the
following sections, we discuss amuchmore general approach applicable to broader classes
of problems.

3 Normal approximation bounds for plug-in estimators of smooth
functionals

Let f : R 7! R be a smooth function and let B be a nuclear operator in H: The goal
is to estimate functionals of the form hf (Σ); Bi;Σ 2 C+(H) based on i.i.d. observa-
tions X1; : : : ; Xn sampled from the Gaussian distribution with mean zero and covariance
operatorΣ:Wewill first consider a simple plug-in estimator hf (Σ̂); Bi: To study its prop-
erties, we will rely on several results on Fréchet differentiability of operator functions
Bsa(H) 3 A 7! f (A) 2 Bsa(H) with respect to the operator norm as well as on bounds
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on the remainders of their Taylor expansions. These results could be found in operator
theory literature (see, in particular, Aleksandrov and Peller [2016]).

We will need the definition of Besov spaces (see Triebel [1983] for more details). Con-
sider a C1 function w � 0 in R with supp(w) � [�2; 2]; satisfying the assumptions
w(t) = 1; jt j � 1 and w(�t) = w(t); t 2 R: Let w0(t) := w(t/2) � w(t); t 2 R
(implying that supp(w0) � ft : 1 � jt j � 4g). For wj (t) := w0(2

�j t); t 2 R; we
have supp(wj ) � ft : 2j � jt j � 2j+2g; j = 0; 1; : : : and also w(t) +

P
j �0wj (t) =

1; t 2 R: LetW;Wj ; j � 1 be functions in Schwartz space S(R) defined by their Fourier
transforms: w(t) = (FW )(t); wj (t) = (FWj )(t); t 2 R; j � 0: For a tempered dis-
tribution f 2 S0(R); define its Littlewood-Paley decomposition as the set of functions
f0 := f �W; fn := f �Wn�1; n � 1 with compactly supported Fourier transforms. By
Paley-Wiener Theorem, fn can be extended to an entire function of exponential type 2n+1

(for all n � 0). It is also well known that
P

n�0 fn = f with convergence of the series
in the space S0(R): Define Bs

1;1-Besov norm as

kf kBs
1;1

:=
X
n�0

2ns
kfnkL1(R); s 2 R

and let Bs
1;1(R) := ff 2 S0(R) : kf kBs

1;1
< +1g be the corresponding (inhomoge-

neous) Besov space. It is easy to check that, for s � 0; the series
P

n�0 fn converges
uniformly in R and the space Bs

1;1(R) is continuously embedded in the space Cu(R) of
all bounded uniformly continuous functions equipped with the uniform norm k � kL1(R):

It was proved by Peller [1985] that, for all f 2 B1
1;1(R); the mappingBsa(H) 3 A 7!

f (A) 2 Bsa(H) is Fréchet differentiable with respect to the operator norm (in fact, Peller
used homogeneous Besov spaces). Let Df (A;H ) = Df (A)(H ) denote its derivative
at A in direction H: If A 2 Bsa(H) is a compact operator with spectral representation
A =

P
�2�(A) �P� with eigenvalues � and spectral projections P�; then Df (A;H ) =P

�;�2�(A) f
[1](�;�)P�HP�; where f [1](�;�) := f (�)�f (�)

���
; � ¤ �; f [1](�;�) :=

f 0(�); � = � is Loewner kernel (there are also extensions of this formula for more general
operators with continuous spectrum with double operator integrals instead of the sums
Peller [2006] and Aleksandrov and Peller [2016]). If f 2 Bs

1;1(R) for some s 2 (1; 2];

then the first order Taylor expansion f (A + H ) = f (A) + Df (A;H ) + Sf (A;H )

holds with the following bound on the remainder: kSf (A;H )k .s kf kBs
1;1

kHks;H 2

Bsa(H) (see Koltchinskii [2017] for the proof fully based on methods of Aleksandrov
and Peller [2016]). Applying the Taylor expansion to f (Σ̂) and using the bound on the
remainder along with Theorem 1, we get that

f (Σ̂) � f (Σ) = Df (Σ; Σ̂ � Σ) + Sf (Σ; Σ̂ � Σ)
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with kSf (Σ; Σ̂ � Σ)k = oP (n
�1/2) provided that r(Σ) = o(n1�1/s): It is also easy to

check that
p
nhDf (Σ; Σ̂ � Σ); Bi = n�1/2

nX
j=1

hDf (Σ;Xj ˝Xj � Σ); Bi

is asymptotically normalN (0; �2
f
(Σ; B)); �2

f
(Σ;B) := 2kΣ1/2Df (Σ;B)Σ1/2k22;which,

along with asymptotic negligibility of the remainder, implies the asymptotic normality of
p
n(hf (Σ̂); Bi � hf (Σ); Bi) with the same limit mean and variance. Similar rather stan-

dard perturbation analysis (most often, based on holomorphic functional calculus rather
than on more sophisticated tools of Aleksandrov and Peller [2016]) has been commonly
used, especially, in applications to PCA, in the case of finite-dimensional problems of
bounded dimension, see, e.g., Anderson [2003]. It, however, fails as soon as the effective
rank is sufficiently large (above n1�1/s for functions of smoothness s 2 (1; 2]) since the
remainder Sf (Σ; Σ̂�Σ) of Taylor expansion is not asymptotically negligible. It turns out,
that in this case hf (Σ̂); Bi is still a

p
n-consistent and asymptotically normal estimator of

its own expectation hEΣf (Σ̂); Bi; but the bias hEΣf (Σ̂)�f (Σ); Bi is no longer asymp-
totically negligible. In fact, the bias is equal to hEΣSf (Σ; Σ̂ � Σ); Bi; which is upper
bounded by . kf kBs

1;1
kBk1(

r(Σ)
n

)s/2: This bound is sharp for typical smooth functions.
For instance, if f (x) = x2 and B = u˝ u; it is easy to check that

sup
kuk�1

jhEΣf (Σ̂) � f (Σ); u˝ uij � kΣk
2 r(Σ)
n
;

and the bias is not asymptotically negligible if r(Σ) � n1/2:Moreover, if r(Σ)
p

n
! 1; the

plug-in estimator hf (Σ̂); u˝ ui of hf (Σ); u˝ ui is not
p
n-consistent (for some u with

kuk � 1).
The next result (see also Koltchinskii [2017]) shows asymptotic normality (with

p
n-

rate) of hf (Σ̂); Bi as an estimator of its own expectation. Define

Gf;B(r ; a; �0) :=
n
Σ : r(Σ) � r; kΣk � a; �2

f (Σ;B) � �2
0

o
; r > 1; a > 0; �2

0 > 0:

Theorem 4. Let f 2 Bs
1;1(R) for some s 2 (1; 2] and let B be a nuclear operator. For

any a > 0; �2
0 > 0 and rn > 1 such that rn = o(n) as n ! 1;

(7)

sup
Σ2Gf;B(rn;a;�0)

sup
x2R

ˇ̌̌̌
PΣ

�
n1/2hf (Σ̂) � EΣf (Σ̂); Bi

�f (Σ;B)
� x

�
�PfZ � xg

ˇ̌̌̌
! 0 as n ! 1:

The proof of this result is based on the following simple representation

hf (Σ̂)�EΣf (Σ̂); Bi =
1

n

nX
j=1

hDf (Σ;Xj ˝Xj �Σ); Bi+ hSf (Σ; Σ̂�Σ)�EΣSf (Σ; Σ̂�Σ); Bi:
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For the first term in the right hand side, it is easy to prove a normal approximation bound
based on Berry-Esseen inequality. The main part of the proof deals with the second term,
the centered remainder of Taylor expansion hSf (Σ; Σ̂ � Σ); Bi � EhSf (Σ; Σ̂ � Σ); Bi:
For this term, the following bound was proved using Gaussian concentration inequality:
for all t � 1 with probability at least 1 � e�t ;

jhSf (Σ; Σ̂ � Σ) � ESf (Σ; Σ̂ � Σ); Bij(8)

.s kf kBs
1;1

kBk1kΣks

�� r(Σ)

n

�(s�1)/2_� r(Σ)

n

�s�1/2_� t

n

�(s�1)/2_� t

n

�s�1/2
�r

t

n
:

It implies that the centered remainder is of the order
�
r(Σ)

n

�(s�1)/2q
1
n
;which is o(n�1/2)

as soon as r(Σ) = o(n):

If Σ 2 Gf;B(rn; a; �0) with rn = o(n1�1/s); the bias hEΣf (Σ̂) � f (Σ); Bi is of the
order o(n�1/2) and plug-in estimator hf (Σ̂); Bi of hf (Σ); Bi is asymptotically normal
with

p
n-rate. The following corollary of Theorem 4 holds.

Corollary 2. Let f 2 Bs
1;1(R) for some s 2 (1; 2]: and let B be a nuclear operator. Let

a > 0; �2
0 > 0 and let rn > 1 be such that rn ! 1 and rn = o(n1� 1

s ) as n ! 1:

Suppose that Gf;B(r ; a
0; � 0

0) ¤ ¿ for some r > 1; a0 < a; � 0
0 > �0: Then hf (Σ̂); Bi

is an asymptotically efficient estimator of hf (Σ); Bi with respect to Gf;B(rn; a; �0) with
convergence rate

p
n and variance �2

f
(Σ;B):

Thus, as soon as rn = o(n1/2) and f is sufficiently smooth, the plug-in estimator is
asymptotically efficient. However, as we have already pointed out above, this conclusion
is not true if rn � n1/2 regardless of the degree of smoothness of f (even in the case of
function f (x) = x2). Moreover, not only asymptotic efficiency, but even

p
n-consistency

of the plug-in estimator does not hold in this case, and the problem of asymptotically
efficient estimation of functionals hf (Σ); Bi becomes much more complicated. In the
following sections, we outline a solution of this problem with the dimension of the space
rather than the effective rank playing the role of complexity parameter. The idea of our
approach is to try to find a function g on the space Bsa(H) of self-adjoint operators that
solves approximately the equation EΣg(Σ̂) = f (Σ) with an error of the order o(n�1/2):

If such solution g is sufficiently smooth, it could be possible to prove an analog of normal
approximation of Theorem 4 for estimator hg(Σ̂); Bi: Since the bias of this estimator is
asymptotically negligible, it would be possible to show asymptotic normality of hg(Σ̂); Bi

as an estimator of hf (Σ); Bi:
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4 Bootstrap Chain bias reduction and asymptotically efficient
estimation

Assume that d := dim(H) is finite (in what follows, d = dn could grow with n). It also
will be assumed that the covariance operatorΣ is of isotropic type. The following integral
operator on the cone C+(H) will be crucial in our approach:

T g(Σ) := EΣg(Σ̂) =

Z
C+(H)

g(S)P (Σ; dS);Σ 2 C+(H):

Here P (Σ; �) is the distribution of the sample covariance Σ̂ based on n i.i.d. observations
sampled from N (0; Σ): Clearly, P (Σ; �) is a rescaled Wishart distribution and P (�; �) is a
Markov kernel on the cone C+(H):We will call T the Wishart operator and view it as an
operator acting on bounded measurable functions on the cone C+(H) with values either
in R or in Bsa(H): Such operators are well known in the theory of Wishart matrices (see,
e.g., James [1961], Letac and Massam [2004]). To obtain an unbiased estimator g(Σ̂)
of f (Σ); one needs to solve the integral equation T g(Σ) = f (Σ);Σ 2 C+(H) (the
Wishart equation). Denoting B := T � I; I being the identity operator, one can write the
solution of the Wishart equation as a formal Neumann series g(Σ) = (I + B)�1f (Σ) =P1

j=0(�1)j Bjf (Σ):We will use its partial sums to define approximate solutions of the
Wishart equation:

fk(Σ) :=

1X
j=0

(�1)j Bjf (Σ);Σ 2 C+(H); k � 0;

with fk(Σ̂) for a properly chosen k being an estimator of f (Σ): Note that its bias is

EΣfk(Σ̂) � f (Σ) = (�1)kBk+1f (Σ);Σ 2 C+(H)

and, to justify this approach to bias reduction, one has to show that, for smooth enough
functions f and large enough value of k; hBk+1f (Σ); Bi is of the order o(n�1/2): Note
that a similar approach was recently discussed by Jiao, Han, and Weissman [2017] in
the case of a problem of estimation of smooth function of parameter of binomial model
B(n; �); � 2 [0; 1]: If �̂ denotes the frequency, then Tg(�) = E�g(�̂) is a Bernstein
polynomial approximation of function g and bounds on Bk+1f (�) were deduced in Jiao,
Han, and Weissman [ibid.] from some results of classical approximation theory (see, e.g.,
Totik [1994]).

We describe below our approach in Koltchinskii [2017] based on a Markov chain in-
terpretation of the problem. To this end, consider a Markov chain Σ̂(0) = Σ ! Σ̂(1) =

Σ̂ ! Σ̂(2) ! : : : in the cone C+(H) with transition probability kernel P (�; �): Note that
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for any t � 1; Σ̂(t) can be viewed as the sample covariance based on n i.i.d. observations
sampled from normal distribution N (0; Σ̂(t�1)); conditionally on Σ̂(t�1). In other words,
the Markov chain Σ̂(t); t = 0; 1; 2; : : : is an outcome of iterative parametric bootstrap
procedure and it will be called in what follows the Bootstrap Chain. By bound (4), con-
ditionally on Σ̂(t�1); with a high probability kΣ̂(t) � Σ̂(t�1)k . kΣ̂(t�1)k

q
d
n
; implying

that the Bootstrap Chain moves with “small steps”, provided that d = o(n): Now observe
that T kf (Σ) = EΣf (Σ̂

(k)) and, by Newton’s binomial formula,

(9) Bkf (Σ) = (T � I)kf (Σ) =

kX
j=0

(�1)k�j

 
k

j

!
T jf (Σ) =

= EΣ

kX
j=0

(�1)k�j

 
k

j

!
f (Σ̂(j )):

Note that to compute functionsBkf (Σ̂); k � 1 (which is needed to compute the estimator
fk(Σ̂)) one can use bootstrap: Bkf (Σ̂) = EΣ̂

Pk
j=0(�1)k�j

�
k
j

�
f (Σ̂(j+1)) since the

Bootstrap Chain now starts with Σ̂(0) = Σ̂; and it can be approximated by the average of
Monte Carlo simulations of

Pk
j=0(�1)k�j

�
k
j

�
f (Σ̂(j+1)):

Denote F (j ) := f (Σ̂(j )); j � 0 and ∆F (j ) := F (j + 1) � F (j ); j � 0: ThenPk
j=0(�1)k�j

�
k
j

�
f (Σ̂(j )) = ∆kF (0) is the k-th order difference of sequenceF (j ); j �

0 at j = 0 (in other words, the k-th order difference of function f on the Markov chain
fΣ̂(t)g). It is well known that, for a k times continuously differentiable function f in R
the k-th order difference ∆k

h
f (x); where ∆hf (x) := f (x + h) � f (x); is of the order

O(hk) as h ! 0: Since the chain fΣ̂(t)g moves with steps �

q
d
n
; it becomes plausible

that, on average,
Pk

j=0(�1)k�j
�

k
j

�
f (Σ̂(j )) would be of the order O((d

n
)k/2) for func-

tions of smoothness k: The justification of this heuristic will be discussed in some detail
in the next section and it is based on the development of certain integral representations
of functions Bkf (Σ); k � 1 that rely on properties of orthogonally invariant functions
on the cone C+(H): These representations are then used to obtain bounds on operators
Bkf (Σ) and on the bias EΣfk(Σ̂)�f (Σ) of estimator f (Σ); to study smoothness prop-
erties of functions Bkf (Σ) and fk(Σ) that allow us to prove concentration bounds on
the remainder hSfk

(Σ; Σ̂ � Σ); Bi of the first order Taylor expansion of hfk(Σ̂); Bi and,
finally, to establish normal approximation bounds for hfk(Σ̂) � f (Σ); Bi: This leads to
the following result.

For given d > 1; a > 0 and �2
0 > 0; let Sf;B(d ; a; �0) be the set of all covariance

operators in d -dimensional space H such that kΣk � a; kΣ�1k � a and �2
f
(Σ;B) � �2

0 :
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Theorem 5. Suppose that, for some ˛ 2 (0; 1); 1 � dn � n˛; n � 1: Let B = Bn be
a self-adjoint operator with kBk1 � 1: Let f 2 Bs

1;1(R) for some s > 1
1�˛

; and let
k be an integer number such that, for some ˇ 2 (0; 1]; 1

1�˛
< k + 1 + ˇ � s: Finally,

suppose that Sf;B(dn; a
0; � 0

0) ¤ ¿ for some a0 < a; � 0
0 > �0 and for all large enough

n: Then hfk(Σ̂); Bi is an asymptotically efficient estimator of hf (Σ); Bi with respect to
Sf;B(dn; a; �0) with convergence rate

p
n and variance �2

f
(Σ;B):

Note that for ˛ 2 (0; 1/2) and s > 1
1�˛

; we can set k = 0: In this case, fk(Σ̂) = f (Σ̂)

is a standard plug-in estimator (see also Corollary 2). For ˛ = 1
2
; the assumption s > 2 is

needed and, to satisfy the condition k + 1+ ˇ > 1
1�˛

= 2; we should choose k = 1: The
bias correction becomes nontrivial in this case. For larger values of ˛; more smoothness
of f and more iterations k in the bias reduction method are needed.

5 Wishart operators and orthogonally invariant functions

In this section, we outline our approach to the proof of Theorem 5 (see Koltchinskii [2017]
for further details). The idea is to represent function f in the form f (x) = x 0(x); x 2

R; where  is a smooth function in the real line. Consider now the functional g(Σ) :=

tr( (Σ)): Then, g is Fréchet differentiable with derivativeDg(Σ) =  0(Σ) and

(10) f (Σ) = Σ1/2Dg(Σ)Σ1/2 =: Dg(Σ):

The functional g(Σ) is orthogonally invariant which allowed us to develop integral repre-
sentations of functions BkDg(Σ) and use them to study analytic properties of functions
Bkf (Σ) and fk(Σ):

As in the previous section, we assume thatH is a finite-dimensional inner product space
of dimension dim(H) = d: Recall that T g(Σ) = EΣg(Σ̂);Σ 2 C+(H):We will view T
as an operator from the spaceL1(C+(H)) into itself,L1(C+(H)) being the space of uni-
formly bounded Borel measurable real valued functions on the coneC+(H):Alternatively,
T can be viewed as an operator from L1(C+(H);Bsa(H)) into L1(C+(H);Bsa(H))

(the space of uniformly bounded Borel measurable functions from C+(H) into Bsa(H)).
A function g 2 L1(C+(H)) is called orthogonally invariant iff, for all orthogo-

nal transformations U of H; g(UΣU�1) = g(Σ);Σ 2 C+(H): Any such function
g could be represented as a symmetric function ' of eigenvalues �1(Σ); : : : ; �d (Σ) of
Σ : g(Σ) = '(�1(Σ); : : : ; �d (Σ)): A typical example is orthogonally invariant func-
tion g(Σ) = tr( (Σ)) =

Pd
j=1  (�j (Σ)) for a function of real variable  : Denote

by LO
1(C+(H)) the subspace of all orthogonally invariant functions from L1(C+(H)):

Clearly, LO
1(C+(H)) is an algebra. It is easy to see that operators T and B = T � I map

the space LO
1(C+(H)) into itself.
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A function g 2 L1(C+(H);Bsa(H) is called orthogonally equivariant iff, for all
orthogonal transformations U; g(UΣU�1) = Ug(Σ)U�1;Σ 2 C+(H): A function g :

C+(H) 7! Bsa(H) will be called differentiable (continuously differentiable) in C+(H)

with respect to the operator norm iff there exists a uniformly bounded, Lipschitz and dif-
ferentiable (continuously differentiable) extension of g to an open set G; C+(H) � G �

Bsa(H): If g : C+(H) 7! R is orthogonally invariant and continuously differentiable in
C+(H) with derivativeDg; then it is easy to check thatDg is orthogonally equivariant.

We will use some simple properties of operators T and B = T � I acting in the space
LO

1(C+(H)) of uniformly bounded orthogonally invariant functions (and its subspaces).
These properties are well known in the literature on Wishart distribution (at least, in the
case of orthogonally invariant polynomials, see, e.g., Letac and Massam [2004]). Define
the following differential operator Dg(Σ) := Σ1/2Dg(Σ)Σ1/2 acting on continuously
differentiable functions in C+(H): It turns out that operators T and D commute (and, as
a consequence, B and D also commute).

Proposition 1. If g 2 LO
1(C+(H)) is continuously differentiable in C+(H) with a uni-

formly bounded derivative Dg; then, for all Σ 2 C+(H); DT g(Σ) = T Dg(Σ) and
DBg(Σ) = BDg(Σ):

Let W be the sample covariance based on i.i.d. standard normal random variables
Z1; : : : ; Zn in H (in other words, nW has standard Wishart distribution) and let W1, …,
Wk , …be i.i.d. copies of W: The next proposition provides representations of operators
T k and Bk that will be used in what follows.

Proposition 2. For all g 2 LO
1(C+(H)) and for all k � 1;

(11) T kg(Σ) = Eg(W
1/2

k
: : : W

1/2
1 ΣW

1/2
1 : : : W

1/2

k
)

and

(12) Bkg(Σ) = E
X

I�f1;:::;kg

(�1)k�jI jg(A�
IΣAI );

where AI :=
Q

i2I W
1/2

i : If, in addition, g is continuously differentiable in C+(H) with
a uniformly bounded derivativeDg; then

(13) DBkg(Σ) = E
X

I�f1;:::;kg

(�1)k�jI jAIDg(A
�
IΣAI )A

�
I ;

and, for all Σ 2 C+(H);

(14) DT kg(Σ) = T kDg(Σ) and DBkg(Σ) = BkDg(Σ):
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Finally,

BkDg(Σ) = DBkg(Σ) = E
� X

I�f1;:::;kg

(�1)k�jI jΣ1/2AIDg(A
�
IΣAI )A

�
IΣ

1/2
�
:(15)

Proof. Note that Σ̂ d
= Σ1/2W Σ1/2: It is easy to check that

W 1/2ΣW 1/2 = U�1Σ1/2W Σ1/2U

where U is an orthogonal operator. Since g is orthogonally invariant, we have

(16) T g(Σ) = EΣg(Σ̂) = Eg(W 1/2ΣW 1/2):

Recall that orthogonal invariance of g implies orthogonal invariance of T g and, by induc-
tion, of T kg for all k � 1: Then, also by induction, (16) implies that

T kg(Σ) = Eg(W
1/2

k
: : : W

1/2
1 ΣW

1/2
1 : : : W

1/2

k
):

For I � f1; : : : ; kg with jI j = card(I ) = j and AI =
Q

i2I W
1/2

i ; it follows that
T jg(Σ) = Eg(A�

IΣAI ): In view of (9), we easily get (12). If g is continuously dif-
ferentiable in C+(H) with a uniformly bounded derivative Dg; then (12) implies (13).
Finally, it follows from (13) that the derivatives DBkg; k � 1 are continuous and uni-
formly bounded in C+(H): Similar property holds for the derivativesDT kg; k � 1 (as a
consequence of (11) and the properties of g). Therefore, (14) follows from Proposition 1
by induction. Formula (15) follows from (14) and (13).

The following functions provide the linear interpolation between the identity operator
I and operators W 1/2

1 ; : : : ; W
1/2

k
:

Vj (tj ) := I + tj (W
1/2

j � I ); tj 2 [0; 1]; 1 � j � k:

Note that for all j = 1; : : : ; k; tj 2 [0; 1]; Vj (tj ) 2 C+(H): Let

R = R(t1; : : : ; tk) = V1(t1) : : : Vk(tk); L = L(t1; : : : ; tk) = Vk(tk) : : : V1(t1) = R�

and define

S = S(t1; : : : ; tk) = L(t1; : : : ; tk)ΣR(t1; : : : ; tk); (t1; : : : ; tk) 2 [0; 1]k ;

'(t1; : : : ; tk) := Σ1/2R(t1; : : : ; tk)Dg(S(t1; : : : ; tk))L(t1; : : : ; tk)Σ
1/2; (t1; : : : ; tk) 2 [0; 1]k :

The following representation is basic in the analysis of functions BkDg(Σ):
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Proposition 3. Suppose g 2 LO
1(C+(H)) is k + 1 times continuously differentiable

function with uniformly bounded derivativesDjg; j = 1; : : : ; k +1: Then the function '
is k times continuously differentiable in [0; 1]k and

(17) BkDg(Σ) = E

Z 1

0

� � �

Z 1

0

@k'(t1; : : : ; tk)

@t1 : : : @tk
dt1 : : : dtk :

Proof. For � : [0; 1]k 7! R; define finite difference operators

∆i�(t1; : : : ; tk) := �(t1; : : : ; ti�1; 1; ti+1; : : : ; tk) � �(t1; : : : ; ti�1; 0; ti+1; : : : ; tk):

Then∆1 : : :∆k� is given by the following formula

(18) ∆1 : : :∆k� =
X

(t1;:::;tk)2f0;1gk

(�1)k�(t1+���+tk)�(t1; : : : ; tk):

It is well known that, if � is k times continuously differentiable in [0; 1]k ; then

(19) ∆1 : : :∆k� =

Z 1

0

� � �

Z 1

0

@k�(t1; : : : ; tk)

@t1 : : : @tk
dt1 : : : dtk :

Formula (19) also holds for vector- and operator-valued functions �: Identities (15) and
(18) imply that

(20) BkDg(Σ) = E∆1 : : :∆k':

SinceDg is k times continuously differentiable and functions S(t1; : : : ; tk),R(t1; : : : ; tk)
are polynomials with respect to t1; : : : ; tk ; the function ' is k times continuously differen-
tiable in [0; 1]k : Representation (17) follows from (20) and (19).

Representation (17) implies a bound on kBkDg(Σ)k of the order O
��

d
n

�k/2�
:

Theorem 6. Suppose k � d � n and let g 2 LO
1(C+(H)) be a k+1 times continuously

differentiable function with uniformly bounded derivativesDjg; j = 1; : : : ; k + 1: Then
the following bound holds for some constant C > 0 :

(21) kBkDg(Σ)k � C k2 max
1�j �k+1

kDjgkL1
(kΣk

k+1
_kΣk)

�
d

n

�k/2

; Σ 2 C+(H):1

1Note that j -th derivative Dj g(Σ) can be viewed as symmetric j -linear form
Dj g(Σ)(H1; : : : ; Hj ); H1; : : : ; Hj 2 Bsa(H): The space of such j -linear forms M (H1; : : : ; Hj )
is equipped with operator norm: kM k := supkH1k;:::;kHj k�1 jM (H1; : : : ; Hj )j: The L1-norm
kDj gkL1 is then defined as kDj gkL1 := supΣ2C+(H) kDj g(Σ)k:



2938 VLADIMIR KOLTCHINSKII

The proof is based on deriving the following bound on the partial derivative @k'(t1;:::;tk)
@t1:::@tk

in (17):

@k'(t1; : : : ; tk)

@t1 : : : @tk

 � 3k2k(2k+1) max
1�j �k+1

kDj gkL1
(kΣk

k+1
_ kΣk)

kY
i=1

(1 + ıi )
2k+1ıi ;

(22)

where ıi := kWi � Ik: Substituting (22) in (17), using independence of r.v. ıi and bound
(4), one can complete the proof.

Representation (17) can be also used to study differentiability of function BkDg(Σ)
and to obtain bounds on the remainder of its Taylor expansion. In view of representation
(10) and properties of operators T ;B;D (see Proposition 2), this could be further used to
prove concentration bounds for the remainder of first order Taylor expansion hSfk

(Σ; Σ̂�

Σ); Bi; to prove normal approximation bounds for hfk(Σ̂) � EΣfk(Σ̂); Bi and bounds
on the bias hEΣfk(Σ̂) � f (Σ); Bi; leading to the proof of Theorem 5 (see Koltchinskii
[2017] for more details).

6 Open Problems

We discuss below several open problems related to estimation of smooth functionals of
covariance.

1: It would be of interest to study asymptotically efficient estimation of functionals
hf (Σ); Bi in a dimension-free framework with effective rank playing the role of com-
plexity parameter and in the classes of covariance operators not necessarily of isotropic
type. The question is whether a version of Theorem 5 holds for the class Gf;B(rn; a; �0)

(instead of Sf;B(dn; a; �0)) with rn � n˛; ˛ 2 (0; 1): The main difficulty is to under-
stand how to control k-th order difference

Pk
j=0(�1)k�j

�
k
j

�
f (Σ̂(j )) of smooth function

f along the trajectory of Bootstrap Chain in this case (compare with the approach outlined
in Section 5).

2: Another problem is to understand whether the smoothness threshold s > 1
1�˛

for
asymptotically efficient estimation of functionals hf (Σ); Bi is sharp (a similar problem
was solved in Ibragimov, Nemirovski, and Khasminskii [1986] and Nemirovski [2000] in
the case of Gaussian shift model).

3: It would be also of interest to study minimax optimal convergence rates of estimation
of functionals hf (Σ); Bi in the case when the nuclear norm of operator B is not bounded
by a constant. This includes, for instance, functionals tr(f (Σ)) (the case of B = I ). In
such problems, the

p
n-convergence rate no longer holds (see, for instance, the example

of estimation of log-determinant Cai, Liang, and Zhou [2015] for which the rate becomes
of the order �

q
n
d
). A more general problem is to study minimax optimal convergence
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rate of estimation of smooth orthogonally invariant functionals ofΣ: The Bootstrap Chain
bias reduction could be still relevant in such problems.

4: One more problem is to study estimation of smooth functionals under further “com-
plexity” constraints (such as smoothness or sparsity) on the set of possible covariance op-
erators. For instance, if S � C+(H) is a set of covariance operators and M is a family of
finite-dimensional subspaces of H; the complexity of S could characterized by quantities

dm(S;M) := inf
L2M;dim(L)�m

sup
Σ2S

kΣ � PLΣPLk; m � 1:

Assuming that the dimension d = dim(H) satisfies the condition d � n˛ for some ˛ > 0

and dm(S;M) . m�ˇ for some ˇ > 0; the question is to determine threshold s(˛; ˇ) such
that asymptotically efficient estimation is possible for functionals hf (Σ); Bi of smooth-
ness s > s(˛; ˇ) (and impossible for some functionals of smoothness s < s(˛; ˇ)).

5: Asymptotically efficient estimator hfk(Σ̂); Bi in Theorem 5 is based on an approx-
imate solution of Wishart integral equation T g(Σ) = f (Σ): The Wishart operator T is
well studied in the literature on Wishart distribution (see, e.g., James [1961], Letac and
Massam [2004]). In particular, it is known that zonal polynomials James [1961] are its
eigenfuctions. It would be of interest to study other approaches to regularized approxi-
mate solution of Wishart equation (and corresponding estimators of such functionals as
hf (Σ); Bi) that would use more directly the spectral properties of operator T (and could
require the tools from analysis on symmetric cones Faraut and Korányi [1994] and Gross
and Richards [1987]).
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CONCENTRATION OF RANDOM GRAPHS AND
APPLICATION TO COMMUNITY DETECTION
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Abstract
Random matrix theory has played an important role in recent work on statistical

network analysis. In this paper, we review recent results on regimes of concentration
of random graphs around their expectation, showing that dense graphs concentrate
and sparse graphs concentrate after regularization. We also review relevant network
models that may be of interest to probabilists considering directions for new random
matrix theory developments, and random matrix theory tools that may be of interest
to statisticians looking to prove properties of network algorithms. Applications of
concentration results to the problem of community detection in networks are discussed
in detail.

1 Introduction

A lot of recent interest in concentration of random graphs has been generated by problems
in network analysis, a very active interdisciplinary research area with contributions from
probability, statistics, physics, computer science, and the social sciences all playing a role.
Networks represent relationships (edges) between objects (nodes), and a network between
n nodes is typically represented by its n � n adjacency matrix A. We will focus on the
case of simple undirected networks, where Aij = 1 when nodes i and j are connected
by an edge, and 0 otherwise, which makes A a symmetric matrix with binary entries. It
is customary to assume the graph contains no self-loops, that is, Ai i = 0 for all i , but
this is not crucial. In general, networks may be directed (A is not symmetric), weighted
(the entries of A have a numerical value representing the strength of connection), and/or
signed (the entries of A have a sign representing whether the relationship is positive or
negative in some sense).

Viewing networks as random realizations from an underlying network model enables
analysis and inference, with the added difficulty that we often only observe a single re-
alization of a given network. Quantities of interest to be inferred from this realization
MSC2010: primary 05C80; secondary 05C85, 60B20.
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may include various network properties such as the node degree distribution, the network
radius, and community structure. Fundamental to these inferences is the question of how
close a single realization of the matrix A is to the population mean, or the true model, E A.
If A is close to E A, that is, A concentrates around its mean, then inferences drawn from
A can be transferred to the population with high probability.

In this paper, we aim to answer the question “When does A concentrate around E A?”
under a number of network models and asymptotic regimes. We also show that in some
cases when the network does not concentrate, a simple regularization step can restore
concentration. While the question of concentration is interesting in its own right, we espe-
cially focus on the implications for the problem of community detection, a problem that
has attracted a lot of attention in the networks literature. When concentration holds, in
many cases a simple spectral algorithm can recover communities, and thus concentration
is of practical and not only theoretical interest.

2 Random network models

Our concenrtation results hold for quite general models, but, for the sake of clarity, we
provide a brief review of network models, starting from the simplest model and building
up in complexity.

The Erdős–Rényi (ER) graph. The simplest random network model is the Erdős–Rényi
graph G(n; p) Erdős and Rényi [1959]. Under this model, edges are independently drawn
between all pairs of nodes according to a Bernoulli distribution with success probability p.
Although the ER model provides an important building block in network modeling and is
attractive to analyze, it almost never fits network data observed in practice.

The stochastic block model (SBM). The SBM is perhaps the simplest network model
with community structure, first proposed by Holland, Laskey, Leinhardt, and and [1983].
Under this model, each node belongs to exactly one of K communities, and the node
community membership ci is drawn independently from a multinomial distribution on
f1; : : : ; Kg with probabilities �1; : : : ; �K . Conditional on the label vector c, edges are
drawn independently between each pair of nodes i; j , with

P (Aij = 1) = Bci cj
;

where B is a symmetric K � K matrix controlling edge probabilities. Note that each
community within SBM is an ER graph. The main question of interest in network analysis
is estimating the label vector c from A, although model parameters � and P may also be
of interest.
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The degree-corrected stochastic blockmodel (DCSBM). While the SBMdoes incorpo-
rate community structure, the assumption that each block is an ER graph is too restrictive
for many real-world networks. In particular, ER graphs have a Poisson degree distribu-
tion, and real networks typically fit the power law or another heavy-tailed distribution
better, since they often have “hubs”, influential nodes with many connections. An ex-
tension removing this limitation, the degree-corrected stochastic block model (DCSBM)
was proposed by Karrer and Newman [2011]. The DCSBM is like an SBM but with each
node assigned an additional parameter �i > 0 that controls its expected degree, and edges
drawn independently with

P (Aij = 1) = �i �j Bci cj
:

Additional constraints need to be imposed on �i for model identifiability; see Karrer and
Newman [2011] and Zhao, Levina, and Zhu [2012] for options.

The latent space model (LSM). Node labels under the SBM or the DCSBM can be
thought of as latent (unobserved) node positions in a discrete space of K elements. More
generally, latent positions can be modeled as coordinates in Rd , or another set equipped
with a distance measure. The LSM Hoff, Raftery, and Handcock [2002] assumes that
each node i is associated with an unknown position xi and edges are drawn independently
between each pair of nodes i; j with probability inversely proportional to the distance
between xi and xj . If latent positions xi form clusters (for example, if they are drawn
from a mixture of Gaussians), then a random network generated from this model exhibits
community structure. Inferring the latent positions can in principle lead to insights into
how the network was formed, beyond simple community assignments.

Exchangeable random networks. An analogue of de Finetti’s theorem for networks,
due to Hoover and Aldous Hoover [1979] and Aldous [1981], shows that any network
whose distribution is invariant under node permutations can be represented by

Aij = g(˛; �i ; �j ; �ij );

where ˛, �i and �j are independent and uniformly distributed on [0; 1], and g(u; v; w; z)

= g(u; w; v; z) for all u; v; w; z. This model covers all the previously discussedmodels as
special cases, and the function g, called the graphon, can be estimated up to a permutation
under additional assumptions; see Olhede and Wolfe [2013], Gao, Lu, and Zhou [2015],
and Y. Zhang, Levina, and Zhu [2017].

Network models with overlapping communities. In practice, it is often more reason-
able to allow nodes to belong to more than one community. Multiple such models have



2946 CAN M. LE, ELIZAVETA LEVINA AND ROMAN VERSHYNIN

been proposed, including the Mixed Membership Stochastic Block Model (MMSBM)
Airoldi, Blei, Fienberg, and Xing [2008], the Ball-Karrer-Newman Model (BKN) Ball,
Karrer, and Newman [2011], and the OCCAM model Y. Zhang, Levina, and Zhu [2014].
MMSBM allows different memberships depending on which node the given node inter-
acts with; the BKN models edges as a sum of multiple edges corresponding to different
communities; and OCCAM relaxes the membership vector c under the SBM to have en-
tries between 0 and 1 instead of exactly one “1”. All of these models are also covered by
the theory we present, because, conditional on node memberships, all these networks are
distributed according to an inhomogeneous Erdős–Rényi model, the most general model
we consider, described next.

The inhomogeneous Erdős–Rényi model. All models described above share an impor-
tant property: conditioned on node latent positions, edges are formed independently. The
most general form of such a model is the inhomogeneous Erdős–Rényi model (IERM)
Bollobás, Janson, and Riordan [2007], where each edge is independently drawn, with
P (Aij = 1) = Pij , where P = (Pij ) = E A. Evidently, additional assumptions have to
be made if latent positions of nodes (however they are defined) are to be recovered from
a single realization of A. We will state concentration results under the IERM as generally
as possible, and then discuss additional assumptions under which latent positions can also
be estimated reliably.

Scaling. We have so far defined all the models for a fixed number of nodes n, but in
order to talk about concentration, we need to determine how the expectation Pn = E An

changes with n. Most of the literature defines

Pn = �nP

where P is a matrix with constant non-negative entries, and �n controls the average ex-
pected degree of the network, d = dn = n�n. Different asymptotic regimes have been
studied, especially under the SBM; see Abbe [2017] for a review. Unless �n ! 0, the av-
erage network degree d = Ω(n), and the network becomes dense as n grows. In the SBM
literature, the regime dn � logn is sometimes referred to as semi-dense; dn ! 1 but
not faster than logn is semi-sparse; and the constant degree regime dn = O(1) is called
sparse. We will elaborate on these regimes and their implications later on in the paper.

3 Useful random matrix results

We start from presenting a few powerful and general tools in random matrix theory which
can help prove concentration bounds for random graphs.
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Theorem 3.1 (Bai-Yin law Bai and Y. Q. Yin [1988]; see Füredi and Komlós [1981] an for
earlier result). Let M = (Mij )

1
i;j=1 be an infinite, symmetric, and diagonal-free random

matrix whose entries above the diagonal are i.i.d. random variables with zero mean and
variance �2. Suppose further thatE M 4

ij < 1. LetMn = (Mij )
n
i;j=1 denote the principal

minors of M . Then, as n ! 1,

(3-1)
1

p
n

kMnk ! 2 almost surely.

Theorem 3.2 (Matrix Bernstein’s inequality). LetX1; : : : ; XN be independent, mean zero,
n � n symmetric random matrices, such that kXi k � K almost surely for all i . Then, for
every t � 0 we have

P
n NX

i=1

Xi

 � t
o

� 2n exp
�

�
t2/2

�2 + Kt/3

�
:

Here �2 =
PN

i=1 E X2
i

 is the norm of the “matrix variance” of the sum.

Corollary 3.3 (Expected norm of sum of random matrices). We have

E
 NX

i=1

Xi

 . �
p
logn + K logn:

The following result gives sharper bounds on random matrices than matrix Bernstein’s
inequality, but requires independence of entries.

Theorem 3.4 (Bandeira-van Handel Bandeira and van Handel [2016] Corollary 3.6). Let
M be an n � n symmetric random matrix with independent entries on and above the
diagonal. Then

E kMk . max
i

� X
j

�2
ij

�1/2

+
p
logn max

i;j
Kij ;

where �2
ij = E M 2

ij are the variances of entries and Kij = kMij k1.

Theorem 3.5 (Seginer’s theorem Seginer [2000]). Let M be a n � n symmetric random
matrix with i.i.d. mean zero entries above the diagonal and arbitrary entries on the diag-
onal. Then

E kMk � Emax
i

kMi k2

where Mi denote the columns of M .
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The lower bound in Seginer’s theorem is trivial; it follows from the fact that the operator
norm of a matrix is always bounded below by the Euclidean norm of any of its columns.
The original paper of Seginer Seginer [2000] proved the upper bound for non-symmetric
matrices with independent entries. The present statement of Theorem 3.5 can be derived
by a simple symmetrization argument, see Hajek, Wu, and Xu [2016, Section 4.1].

4 Dense networks concentrate

If A = An is the adjacency matrix of a G(n; p) random graph with a constant p, then the
Bai-Yin law gives

1
p

n
kA � E Ak ! 2

q
p(1 � p):

In particular, we have

(4-1) kA � E Ak � 2
p

d

with probability tending to one, where d = np is the expected node degree.
Can we expect a similar concentration for sparser Erdős–Rényi graphs, where p is al-

lowed to decrease with n? The method of Friedman, Kahn, and Szemeredi [1989] adapted
by Feige and Ofek [2005] gives

(4-2) kA � E Ak = O(
p

d )

under the weaker condition d & logn, which is optimal, as we will see shortly. This
argument actually yields (4-2) for inhomogeneous random graphsG(n; (pij )) as well, and
for d = maxij npij , see e.g. Lei and Rinaldo [2015] and Chin, Rao, and V. Vu [2015].

Under a weaker assumption d = np � log4 n, Vu V. H. Vu [2007] proved a sharper
bound for G(n; p), namely

(4-3) kA � E Ak = (2 + o(1))
p

d;

which essentially extends (4-1) to sparse random graphs. Very recently, Benaych-Georges,
Bordenave, and Knowles [2017b] were able to derive (4-3) under the optimal condition
d � logn. More precisely, they showed that if 4 � d � n2/13, then

E kA � E Ak � 2
p

d + C

s
logn

1 + log(log(n)/d )
:

The argument of Benaych-Georges, Bordenave, and Knowles [ibid.] applies more gen-
erally to inhomogeneous random graphs G(n; (pij )) under a regularity condition on the
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connection probabilities (pij ). It even holds for more general random matrices that may
not necessarily have binary entries.

To apply Corollary 3.3 to the adjacency matrix A of an ER random graph G(n; p),
decompose A into a sum of independent random matrices A =

P
i�j Xij , where each

matrix Xij contains a pair of symmetric entries of A, i.e. Xij = Aij (ei e
T
i + ej eT

j ) where
(ei ) denotes the canonical basis in Rn. Then apply Corollary 3.3 to the sum of mean zero
matrices Xij � p. It is quick to check that �2 � pn and obviously K � 2, and so we
conclude that

(4-4) E kA � E Ak .
p

d logn + logn;

where d = np is the expected degree. The same argument applies more generally to
inhomogeneous random graphs G(n; (pij )), and it still gives (4-4) when

d = max
i

X
j

pij

is the maximal expected degree.
The logarithmic factors in bound (4-4) are not optimal, and can be improved by apply-

ing the result of Bandeira and van Handel (Theorem 3.4) to the centered adjacency matrix
A � E A of an inhomogeneous random graph G(n; (pij )). In this case, �2

ij = pij and
Kij � 1, so we obtain the following sharpening of (4-4).

Proposition 4.1 (Concentration of inhomogeneous random graphs). Let A be the adja-
cency matrix of an inhomogeneous random graph G(n; (pij )). Then

(4-5) E kA � E Ak .
p

d +
p
logn;

where d = maxi

P
j pij is the expected maximal degree.

In particular, if the graph is not too sparse, namely d & logn, then the optimal concen-
tration (4-3) holds, i.e.

E kA � E Ak .
p

d:

This recovers a result of Feige and Ofek [2005].
A similar bound can be alternatively proved using the general result of Seginer (Theo-

rem 3.5). If A is the adjacency matrix of G(n; p), it is easy to check that Emaxi kAi k2 .
p

d +
p
logn. Thus, Seginer’s theorem implies the optimal concentration bound (4-5) as

well. Using simple convexity arguments, one can extend this to inhomogeneous random
graphs G(n; (pij )), and get the bound (4-5) for d = maxij npij , see Hajek, Wu, and Xu
[2016, Section 4.1].
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One may wonder if Seginer’s theorem holds for matrices with independent but not
identically distributed entries. Unfortunately, this is not the case in general; a simple
counterexample was found by Seginer Seginer [2000], see Bandeira and vanHandel [2016,
Remark 4.8]. Nevertheless, it is an open conjecture of Latala that Seginer’s theorem does
hold if M has independentGaussian entries, see the papers Riemer and Schütt [2013] and
van Handel [2017a] and the survey van Handel [2017b].

5 Sparse networks concentrate after regularization

5.1 Sparse networks do not concentrate. In the sparse regime d = np � logn, the
Bai-Yin’s law for G(n; p) fails. This is because in this case, degrees of some vertices are
much higher than the expected degree d . This causes some rows of the adjacency matrix
A to have Euclidean norms much larger than

p
d , which in turn gives

kA � E Ak �
p

d:

In other words, concentration fails for very sparse graphs; there exist outlying eigenvalues
that escape the interval [�2; 2] where the spectrum of denser graphs lies according to
(3-1). For precise description of this phenomenon, see the original paper Krivelevich and
Sudakov [2003], a discussion in Bandeira and van Handel [2016, Section 4] and the very
recent work Benaych-Georges, Bordenave, and Knowles [2017a].

5.2 Sparse networks concentrate after regularization. One way to regularize a ran-
dom network in the sparse regime is to remove high degree vertices altogether from the
network. Indeed, Feige and Ofek [2005] showed that for G(n; p), if we drop all ver-
tices with degrees, say, larger than 2d , then the remaining part of the network satisfies
kA � E Ak = O(

p
d ) with high probability. The argument in Feige and Ofek [ibid.]

is based on the method developed by Friedman, Kahn, and Szemeredi [1989] and it is
extended to the IERM in Lei and Rinaldo [2015] and Chin, Rao, and V. Vu [2015].

Although removal of high degree vertices restores concentration, in practice this is a
bad idea, since the loss of edges associated with “hub” nodes in an already sparse network
leads to a considerable loss of information, and in particular community detection tends to
break down. A more gentle regularization proposed in Le, Levina, and Vershynin [2017]
does not remove high degree vertices, but reduces the weights of their edges just enough
to keep the degrees bounded by O(d ).

Theorem 5.1 (Concentration of regularized adjacency matrices). Consider a random
graph from the inhomogeneous Erdős–Rényi model G(n; (pij )), and let d = maxij npij .

Consider any subset of at most 10n/d vertices, and reduce the weights of the edges
incident to those vertices in an arbitrary way, but so that all degrees of the new (weighted)
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network become bounded by 2d . For any r � 1, with probability at least 1 � n�r the
adjacency matrix A0 of the new weighted graph satisfies

kA0
� E Ak � C r3/2

p
d:

Proving concentration for this kind of general regularization requires different tools.
One key result we state next is the Grothendieck-Pietsch factorization, a general and well-
known result in functional analysis Pietsch [1980], Pisier [1986], Tomczak-Jaegermann
[1989], and Pisier [2012] which has already been used in a similar probabilistic context
Ledoux and Talagrand [1991, Proposition 15.11]. It compares two matrix norms, the spec-
tral norm `2 ! `2 and the `1 ! `2 norm.

Theorem 5.2 (Grothendieck-Pietsch factorization). Let B be a k � m real matrix. Then
there exist positive weights �j with

Pm
j=1 �j = 1 such that

kBk1!2 � kBD
�1/2
� k � 2kBk1!2;

where D� = diag(�j ) denotes the m � m diagonal matrix with weights �j on the diago-
nal.

Idea of the proof of Theorem 5.1 by network decomposition. The argument in Feige
and Ofek [2005] becomes very complicated for handling the general regularization in The-
orem 5.1. A simpler alternative approach was developed by Le, Levina, and Vershynin
[2017] for proving Theorem 5.1. The main idea is to decompose the set of entries [n]� [n]

into different subsets with desirable properties. There exists a partition (see Figure 1c for
illustration)

[n] � [n] = N [ R [ C

such that A concentrates on N even without regularization, while restrictions of A onto
R and C have small row and column sums, respectively. It is easy to see that the degree
regularization does not destroy the properties of N , R and C. Moreover, it creates a new
property, allowing for controlling the columns of R and rows of C. Together with the
triangle inequality, this implies the concentration of the entire network.

The network decomposition is constructed by an iterative procedure. We first estab-
lish concentration of A in `1 ! `2 norm using standard probability techniques. Next,
we upgrade this to concentration in the spectral norm k(A � E A)N0

k = O(
p

d ) on an
appropriate (large) subset N0 � [n] � [n] using the Grothendieck-Pietsch factorization
(Theorem 5.2). It remains to control A on the complement of N0. That set is small; it
can be described as a union of a block C0 with a small number of rows, a block R0 with
a small number of columns and an exceptional (small) block (see Figure 1a). Now we
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n/d

n/d

n/2

n/2

N0

C0

R0

(a) First step

N0

C0

R0

N1

C1

R1

·
·
·

(b) Iterations

C

R
N

(c) Final decomposition

Figure 1: Constructing network decomposition iteratively.

repeat the process for the exceptional block, decomposing it into N1, R1, and C1, and so
on, as shown in Figure 1b. At the end, we set N = [iNi , R = [iRi and C = [iCi .
The cumulative error from this iterative procedure can be controlled appropriately; see Le,
Levina, and Vershynin [2017] for details.

5.3 Concentration of the graph Laplacian. So far, we have looked at random graphs
through the lens of their adjacency matrices. Another matrix that captures the structure
of a random graph is the Laplacian. There are several ways to define the Laplacian; we
focus on the symmetric, normalized Laplacian,

L(A) = D�1/2AD�1/2:

Here D = diag(di ) is the diagonal matrix with degrees di =
Pn

j=1 Aij on the diagonal.
The reader is referred to F. R. K. Chung [1997] for an introduction to graph Laplacians
and their role in spectral graph theory. Here we mention just two basic facts: the spectrum
of L(A) is a subset of [�1; 1], and the largest eigenvalue is always one.

In the networks literature in particular, community detection has been mainly done
through spectral clustering on the Laplacian, not on the adjacency matrix. We will discuss
this in more detail in Section 6, but the primary reason for this is degree normalization: as
discussed in Section 2, real networks rarely have the Poisson or mixture of Poissons degree
distribution that characterizes the stochastic block model; instead, “hubs”, or high degree
vertices, are common, and they tend to break down spectral clustering on the adjacency
matrix itself.

Concentration of Laplacians of random graphs has been studied by S. Yin [2008],
Chaudhuri, F. Chung, and Tsiatas [2012], Qin and Rohe [2013], Joseph and Yu [2016],
and Gao, Ma, A. Y. Zhang, and Zhou [2017]. Just like the adjacency matrix, the Lapla-
cian is known to concentrate in the dense regime d = Ω(logn), and it fails to concentrate
in the sparse regime. However, the reasons it fails to concentrate are different. For the
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adjacency matrix, as we discussed, concentration fails in the sparse case because of high
degree vertices. For the Laplacian, it is the low degree vertices that destroy concentration.
In fact, it is easy to check that when d = o(logn), the probability of isolated vertices is
non-vanishing; and each isolated vertex contributes an eigenvalue of 0 to the spectrum of
L(A), which is easily seen to destroy concentration.

Multiple ways to regularize the Laplacian in order to deal with the low degree vertices
have been proposed. Perhaps the two most common ones are adding a small constant to all
the degrees on the diagonal of D Chaudhuri, F. Chung, and Tsiatas [2012], and adding a
small constant to all the entries ofA before computing the Laplacian. Here we focus on the
latter regularization, proposed by Amini, Chen, Bickel, and Levina [2013] and analyzed
by Joseph and Yu [2016] and Gao, Ma, A. Y. Zhang, and Zhou [2017]. Choose � > 0

and add the same number �/n to all entries of the adjacency matrix A, thereby replacing
it with

(5-1) A� := A +
�

n
11T

Then compute the Laplacian as usual using this new adjacency matrix. This regularization
raises all degrees di to di + � , and eliminates isolated vertices, making the entire graph
connected. The original paper Amini, Chen, Bickel, and Levina [2013] suggested the
choice � = �d̄ , where d̄ is the average node degree and � 2 (0; 1) is a constant. They
showed the estimator is not particularly sensitive to � over a fairly wide range of values
away from 0 (too little regularization) and 1 (too much noise). The choice of � = 0:25

was recommended by Amini, Chen, Bickel, and Levina [ibid.] but this parameter can also
be successfully chosen by cross-validation on the network T. Li, Levina, and Zhu [2016].

The following consequence of Theorem 5.1 shows that regularization (5-1) indeed
forces the Laplacian to concentrate.

Theorem 5.3 (Concentration of the regularized Laplacian). Consider a random graph
drawn from the inhomogeneous Erdős–Rényi model G(n; (pij )), and let d = maxij npij .
Choose a number � > 0. Then, for any r � 1, with probability at least 1 � e�r we have

kL(A� ) � L(E A� )k �
C r2
p

�

�
1 +

d

�

�5/2

:

In the next section, we discuss why concentration of the adjacency matrix and/or its
Laplacian is important in the context of community detection, the primary application of
concentration in network analysis.
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6 Application to community detection

Concentration of random graphs has been of such interest in networks analysis primarily
because it relates to the problem of community detection; see Fortunato [2010], Golden-
berg, Zheng, Fienberg, Airoldi, et al. [2010], and Abbe [2017] for reviews of community
detection algorithms and results. We should specify that, perhaps in a slight misnomer,
“community detection” refers to the task of assigning each node to a community (typically
one and only one), not to the question of whether there are communities present, which
might be a more natural use of the term “detection”.

Most of the theoretical work linking concentration of random graphs to community
detection has focused on the stochastic block model (SBM), defined in Section 2, which
is one of the many special cases of the general IERM we consider. For the purpose of this
paper, we focus on the simplest version of the SBM for which the largest number of results
has been obtained so far, also known as the balanced planted partition model G(n; a

n
; b

n
).

In this model, there are K = 2 equal-sized communities with n/2 nodes each. Edges
between vertices within the same community are drawn independently with probability
a/n, and edges between vertices in different communities with probability b/n. The task
is to recover the community labels of vertices from a single realization of the adjacency
matrix A drawn from this model. The large literature on both the recovery algorithms
and the theory establishing when a recovery is possible is very nicely summarized in the
recent excellent review Abbe [2017], where we refer the reader for details and analogues
for a general K (now available for most results) and the asymmetric SBM (very few are
available). In the following subsections we give a brief summary for the symmetricK = 2

case which does not aim to be exhaustive.

6.1 Community detection phase transition. Weak recovery, sometimes also called
detection, means performing better than randomly guessing the labels of vertices. The
phase transition threshold for weak recovery was first conjectured in the physics literature
by Decelle, Krzakala, Moore, and Zdeborová [2011], and proved rigorously by Mossel,
Neeman, and Sly [2013, 2015, 2014], with follow-up and related work by Abbe, Bandeira,
and Hall [2016], Massoulié [2014], and Bordenave, Lelarge, and Massoulié [2015]. The
phase transition result says that there exists a polynomial time algorithmwhich can classify
more than 50% of the vertices correctly as n ! 1 with high probability if and only if

(a � b)2 > 2(a + b):

Performing better than random guessing is the weakest possible guarantee of performance,
which is of interest in the very sparse regime of d = (a+ b)/2 = O(1); when the degree
grows, weak recovery becomes trivial. This regime has been mostly studied by physicists
and probabilists; in the statistics literature, consistency has been of more interest.
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6.2 Consistency of community detection. Two types of consistency have been dis-
cussed in the literature. Strong consistency, also known as exact recovery, means labeling
all vertices correctly with high probability, which is, as the name suggests, a very strong
requirement. Weak consistency, or “almost exact” recovery, is the weaker and arguably
more practically reasonable requirement that the fraction of misclassified vertices goes to
0 as n ! 1 with high probability.

Strong consistency was studied first, in a seminal paper Bickel and Chen [2009], as
well as by Mossel, Neeman, and Sly [2014], McSherry [2001], Hajek, Wu, and Xu [2016],
and Cai and X. Li [2015]. Strong consistency is achievable, and achievable in polynomial
time, if ˇ̌̌̌

ˇr a

logn
�

s
b

logn

ˇ̌̌̌
ˇ >

p
2

and not possible if
ˇ̌̌p

a/n �
p

b/n
ˇ̌̌

<
p
2. In particular, strong consistency is normally

only considered in the semi-dense regime of d/ logn ! 1.
Weak consistency, as one would expect, requires a stronger condition than weak recov-

ery but a weaker one than strong consistency. Weak consistency is achievable if and only
if

(a � b)2

a + b
= !(1)

see for example Mossel, Neeman, and Sly [2014]. In particular, weak consistency is
achievable in the semi-sparse regime of d ! 1.

Partial recovery, finally, refers to the situation where the fraction of misclassified ver-
tices does not go to 0, but remains bounded by a constant below 0.5. More specifically,
partial recovery means that for a fixed " > 0 one can recover communities up to "n mis-
labeled vertices. For the balanced symmetric case, this is true as long as

(a � b)2

a + b
= O(1)

which is primarily relevant when d = O(1). Several types of algorithms are known to suc-
ceed at partial recovery in this very sparse regime, including non-backtracking walksMos-
sel, Neeman, and Sly [2013], Massoulié [2014], and Bordenave, Lelarge, and Massoulié
[2015], spectral methods Chin, Rao, and V. Vu [2015] and methods based on semidefinite
programming Guédon and Vershynin [2016] and Montanari and Sen [2016].

6.3 Concentration implies recovery. As an example application of the new concentra-
tion results, we demonstrate how to show that regularized spectral clusteringAmini, Chen,
Bickel, and Levina [2013] and Joseph and Yu [2016], one of the simplest and most popular
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algorithms for community detection, can recover communities in the sparse regime of con-
stant degrees. In general, spectral clustering works by computing the leading eigenvectors
of either the adjacency matrix or the Laplacian, or their regularized versions, and running
the k-means clustering algorithm on the rows of the n � k matrix of leading eigenvectors
to recover the node labels. In the simplest case of the balanced K = 2 model G(n; a

n
; b

n
),

one can simply assign nodes to two communities according to the sign of the entries of the
eigenvector v2(A

0) corresponding to the second smallest eigenvalue of the (regularized)
adjacency matrix A0.

Let us briefly explain how concentration results validate recovery from the regularized
adjacency matrix or regularized Laplacian. If concentration holds and the regularized
matrix A0 is shown to be close to E A, then standard perturbation theory (i.e., the Davis-
Kahan theorem, see e.g. Bhatia [1997]) implies that v2(A

0) is close to v2(E A), and in
particular, the signs of these two eigenvectors must agree on most vertices. An easy calcu-
lation shows that the signs of v2(E A) recover the communities exactly: the eigenvector
corresponding to the second smallest eigenvalue of E A (or the second largest of L(A))
is a positive constant on one community and a negative constant on the other. Therefore,
the signs of v2(A

0) recover communities up to a small fraction of misclassified vertices
and, as always, up to a permutation of community labels. This argument remains valid if
we replace the regularized adjacency matrix A0 with regularized Laplacian L(A� ).

Corollary 6.1 (Partial recovery from a regularized adjacency matrix for sparse graphs).
Let " > 0 and r � 1. Let A be the adjacency matrix drawn from the stochastic block
model G(n; a

n
; b

n
). Assume that

(a � b)2 > C (a + b)

where C is a constant depending only on " and r . For all nodes with degrees larger than
2a, reduce the weights of the edges incident to them in an arbitrary way, but so that all
degrees of the new (weighted) network become bounded by 2a, resulting in a new matrix
A0. Then with probability at least 1 � e�r , the signs of the entries of the eigenvector
corresponding to the second smallest eigenvalue of A0 correctly estimate the partition
into two communities, up to at most "n misclassified vertices.

Corollary 6.2 (Partial recovery from a regularized Laplacian for sparse graphs). Let " >

0 and r � 1. Let A be the adjacency matrix drawn from the stochastic block model
G(n; a

n
; b

n
). Assume that

(6-1) (a � b)2 > C (a + b)

where C is a constant depending only on " and r . Choose � to be the average degree of
the graph, i.e. � = (d1 + � � � + dn)/n. Then with probability at least 1 � e�r , the signs
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of the entries of the eigenvector corresponding to the second largest eigenvalue of L(A� )

correctly estimate the partition into the two communities, up to at most "n misclassified
vertices.

Figure 2: Three leading eigenvectors (from top to bottom) of the Laplacian (left) and
the regularized Laplacian (right). The network is generated from G(n; a

n ; b
n ) with

n = 50, a = 5 and b = 0:1. Nodes are labeled so that the first 25 nodes belong
to one community and the rest to the other community. Regularized Laplacian is
computed from A + 0:1d̄/n11T.

As we have discussed, the Laplacian is typically preferred over the adjacency matrix
in practice, because the variation in node degrees is reduced by the normalization factor
D�1/2 Sarkar and Bickel [2015]. Figure 2 shows the effect of regularization for the Lapla-
cian of a random network generated from G(n; a

n
; b

n
) with n = 50, a = 5 and b = 0:1.

For plotting purposes, we order the nodes so that the first n/2 nodes belong to one commu-
nity and the rest belong to the other community. Without regularization, the two leading
eigenvectors of the Laplacian localize around a few low degree nodes, and therefore do
not contain any information about the global community structure. In contrast, the second
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leading eigenvector of the regularized Laplacian (with � = 0:1d̄ ) clearly reflects the com-
munities, and the signs of this eigenvector alone recover community labels correctly for
all but three nodes.

7 Discussion

Great progress has been made in recent years, and yet many problems remain open. Open
questions on community detection under the SBM, in terms of exact and partial recovery
and efficient (polynomial time) algorithms are discussed in Abbe [2017], and likely by
the time this paper comes out in print, some of them will have been solved. Yet the focus
on the SBM is unsatisfactory for many practitioners, since not many real networks fit this
model well. Some of the more general models we discussed in Section 2 fix some of the
problems of the SBM, allowing for heterogeneous degree distributions and overlapping
communities, for instance. A bigger problem lies in the fixed K regime; it is not realis-
tic to assume that as the size of the network grows, the number of communities remains
fixed. A more realistic model is the “small world” scenario, where the size of commu-
nities remains bounded or grows very slowly with the number of nodes, the number of
communities grows, and connections between many smaller communities happen primar-
ily through hub nodes. Some consistency results have been obtained for a growing K, but
we are not aware of any results in the sparse constant degree regime so far. An even bigger
problem is presented by the so far nearly universal assumption of independent edges; this
assumption violates commonly observed transitivity of friendships (if A is friends with B
and B is friends with C, A is more likely to be friends with C). There are other types of
network models that do not rely on this assumption, but hardly any random matrix results
apply there. Ultimately, network analysis involves a lot more than community detection:
link prediction, network denoising, predicting outcomes on networks, dynamic network
modeling over time, and so on. We are a long way away from establishing rigorous the-
oretical guarantees for any of these problems to the extent that we have for community
detection, but given how rapid progress in the latter area has been, we are hopeful that
continued interest from the random matrix community will help shed light on other prob-
lems in network analysis.

References

Emmanuel Abbe (Mar. 2017). “Community detection and stochastic block models: recent
developments”. arXiv: 1703.10146 (cit. on pp. 2946, 2954, 2958).

http://arxiv.org/abs/1703.10146
http://arxiv.org/abs/1703.10146
http://arxiv.org/abs/1703.10146


RANDOM GRAPHS AND APPLICATION TO COMMUNITY DETECTION 2959

Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall (2016). “Exact recovery in the
stochastic block model”. IEEE Trans. Inform. Theory 62.1, pp. 471–487. arXiv: 1405.
3267. MR: 3447993 (cit. on p. 2954).

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing (2008). “Mixed
membership stochastic blockmodels”. Journal of Machine Learning Research 9.Sep,
pp. 1981–2014 (cit. on p. 2946).

David J. Aldous (1981). “Representations for partially exchangeable arrays of random
variables”. J. Multivariate Anal. 11.4, pp. 581–598. MR: 637937 (cit. on p. 2945).

Arash A. Amini, Aiyou Chen, Peter J. Bickel, and Elizaveta Levina (2013). “Pseudo-
likelihood methods for community detection in large sparse networks”. Ann. Statist.
41.4, pp. 2097–2122. MR: 3127859 (cit. on pp. 2953, 2955).

Z. D. Bai and Y. Q. Yin (1988). “Necessary and sufficient conditions for almost sure con-
vergence of the largest eigenvalue of a Wigner matrix”. Ann. Probab. 16.4, pp. 1729–
1741. MR: 958213 (cit. on p. 2947).

B Ball, B. Karrer, and M. E. J. Newman (2011). “An efficient and principled method for
detecting communities in networks”. Physical Review E 34, p. 036103 (cit. on p. 2946).

Afonso S. Bandeira and Ramon van Handel (2016). “Sharp nonasymptotic bounds on the
norm of randommatrices with independent entries”. Ann. Probab. 44.4, pp. 2479–2506.
MR: 3531673 (cit. on pp. 2947, 2950).

Florent Benaych-Georges, Charles Bordenave, and Antti Knowles (Apr. 2017a). “Largest
eigenvalues of sparse inhomogeneous Erdős–Rényi graphs”. arXiv: 1704.02953 (cit.
on p. 2950).

– (Apr. 2017b). “Spectral radii of sparse random matrices”. arXiv: 1704.02945 (cit. on
p. 2948).

Rajendra Bhatia (1997).Matrix analysis. Vol. 169. Graduate Texts inMathematics. Springer-
Verlag, New York, pp. xii+347. MR: 1477662 (cit. on p. 2956).

Peter J Bickel and Aiyou Chen (2009). “A nonparametric view of network models and
Newman–Girvan and other modularities”. Proceedings of the National Academy of Sci-
ences 106.50, pp. 21068–21073 (cit. on p. 2955).

Béla Bollobás, Svante Janson, and Oliver Riordan (2007). “The phase transition in in-
homogeneous random graphs”. Random Structures Algorithms 31.1, pp. 3–122. MR:
2337396 (cit. on p. 2946).

Charles Bordenave,Marc Lelarge, and LaurentMassoulié (2015). “Non-backtracking spec-
trum of random graphs: community detection and non-regular Ramanujan graphs”.
In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science—FOCS
2015. IEEE Computer Soc., Los Alamitos, CA, pp. 1347–1357. arXiv: 1501.06087.
MR: 3473374 (cit. on pp. 2954, 2955).

https://doi.org/10.1109/TIT.2015.2490670
https://doi.org/10.1109/TIT.2015.2490670
http://arxiv.org/abs/1405.3267
http://arxiv.org/abs/1405.3267
http://www.ams.org/mathscinet-getitem?mr=MR3447993
https://doi.org/10.1016/0047-259X(81)90099-3
https://doi.org/10.1016/0047-259X(81)90099-3
http://www.ams.org/mathscinet-getitem?mr=MR637937
https://doi.org/10.1214/13-AOS1138
https://doi.org/10.1214/13-AOS1138
http://www.ams.org/mathscinet-getitem?mr=MR3127859
http://links.jstor.org/sici?sici=0091-1798(198810)16:4%3C1729:NASCFA%3E2.0.CO;2-C&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(198810)16:4%3C1729:NASCFA%3E2.0.CO;2-C&origin=MSN
http://www.ams.org/mathscinet-getitem?mr=MR958213
https://doi.org/10.1214/15-AOP1025
https://doi.org/10.1214/15-AOP1025
http://www.ams.org/mathscinet-getitem?mr=MR3531673
http://arxiv.org/abs/1704.02953
http://arxiv.org/abs/1704.02953
http://arxiv.org/abs/1704.02953
http://arxiv.org/abs/1704.02945
http://arxiv.org/abs/1704.02945
https://doi.org/10.1007/978-1-4612-0653-8
http://www.ams.org/mathscinet-getitem?mr=MR1477662
https://doi.org/10.1002/rsa.20168
https://doi.org/10.1002/rsa.20168
http://www.ams.org/mathscinet-getitem?mr=MR2337396
http://arxiv.org/abs/1501.06087
http://arxiv.org/abs/1501.06087
http://arxiv.org/abs/1501.06087
http://www.ams.org/mathscinet-getitem?mr=MR3473374


2960 CAN M. LE, ELIZAVETA LEVINA AND ROMAN VERSHYNIN

T. Tony Cai and Xiaodong Li (2015). “Robust and computationally feasible community
detection in the presence of arbitrary outlier nodes”. Ann. Statist. 43.3, pp. 1027–1059.
MR: 3346696 (cit. on p. 2955).

Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas (2012). “Spectral clustering of
graphs with general degrees in the extended planted partition model”. In: Proceedings
of Machine Learning Research, pp. 1–23 (cit. on pp. 2952, 2953).

P. Chin, A. Rao, and V. Vu (2015). “Stochastic block model and community detection in
the sparse graphs : A spectral algorithmwith optimal rate of recovery”. In: Proceedings
of Machine Learning Research. Vol. 40, pp. 391–423 (cit. on pp. 2948, 2950, 2955).

Fan R. K. Chung (1997). Spectral graph theory. Vol. 92. CBMS Regional Conference Se-
ries in Mathematics. Published for the Conference Board of theMathematical Sciences,
Washington, DC; by the American Mathematical Society, Providence, RI, pp. xii+207.
MR: 1421568 (cit. on p. 2952).

AurelienDecelle, Florent Krzakala, CristopherMoore, and Lenka Zdeborová (2011). “Asymp-
totic analysis of the stochastic block model for modular networks and its algorithmic
applications”. Physical Review E 84.6, p. 066106 (cit. on p. 2954).

P. Erdős and A. Rényi (1959). “On random graphs. I”. Publ. Math. Debrecen 6, pp. 290–
297. MR: 0120167 (cit. on p. 2944).

Uriel Feige and Eran Ofek (2005). “Spectral techniques applied to sparse random graphs”.
Random Structures Algorithms 27.2, pp. 251–275. MR: 2155709 (cit. on pp. 2948–
2951).

Santo Fortunato (2010). “Community detection in graphs”. Phys. Rep. 486.3-5, pp. 75–
174. MR: 2580414 (cit. on p. 2954).

Joel Friedman, Jeff Kahn, and Endre Szemeredi (1989). “On the second eigenvalue of
random regular graphs”. In: Proceedings of the twenty-first annual ACM symposium
on Theory of computing. ACM, pp. 587–598 (cit. on pp. 2948, 2950).

Z. Füredi and J. Komlós (1981). “The eigenvalues of random symmetric matrices”. Com-
binatorica 1.3, pp. 233–241. MR: 637828 (cit. on p. 2947).

Chao Gao, Yu Lu, and Harrison H. Zhou (2015). “Rate-optimal graphon estimation”. Ann.
Statist. 43.6, pp. 2624–2652. MR: 3405606 (cit. on p. 2945).

Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou (2017). “Achieving
optimal misclassification proportion in stochastic block models”. J. Mach. Learn. Res.
18, Paper No. 60, 45. MR: 3687603 (cit. on pp. 2952, 2953).

Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, Edoardo M Airoldi, et al. (2010).
“A survey of statistical networkmodels”.Foundations and Trends inMachine Learning
2.2, pp. 129–233 (cit. on p. 2954).

Olivier Guédon and Roman Vershynin (2016). “Community detection in sparse networks
via Grothendieck’s inequality”.Probab. Theory Related Fields 165.3-4, pp. 1025–1049.
MR: 3520025 (cit. on p. 2955).

https://doi.org/10.1214/14-AOS1290
https://doi.org/10.1214/14-AOS1290
http://www.ams.org/mathscinet-getitem?mr=MR3346696
http://www.ams.org/mathscinet-getitem?mr=MR1421568
http://www.ams.org/mathscinet-getitem?mr=MR0120167
https://doi.org/10.1002/rsa.20089
http://www.ams.org/mathscinet-getitem?mr=MR2155709
https://doi.org/10.1016/j.physrep.2009.11.002
http://www.ams.org/mathscinet-getitem?mr=MR2580414
https://doi.org/10.1007/BF02579329
http://www.ams.org/mathscinet-getitem?mr=MR637828
https://doi.org/10.1214/15-AOS1354
http://www.ams.org/mathscinet-getitem?mr=MR3405606
http://www.ams.org/mathscinet-getitem?mr=MR3687603
https://doi.org/10.1007/s00440-015-0659-z
https://doi.org/10.1007/s00440-015-0659-z
http://www.ams.org/mathscinet-getitem?mr=MR3520025


RANDOM GRAPHS AND APPLICATION TO COMMUNITY DETECTION 2961

Bruce Hajek, Yihong Wu, and Jiaming Xu (2016). “Achieving exact cluster recovery
threshold via semidefinite programming”. IEEE Trans. Inform. Theory 62.5, pp. 2788–
2797. MR: 3493879 (cit. on pp. 2948, 2949, 2955).

Ramon van Handel (2017a). “On the spectral norm of Gaussian random matrices”. Trans.
Amer. Math. Soc. 369.11, pp. 8161–8178. MR: 3695857 (cit. on p. 2950).

– (2017b). “Structured random matrices”. Convexity and Concentration 161, pp. 107–
156 (cit. on p. 2950).

Peter D. Hoff, Adrian E. Raftery, andMark S. Handcock (2002). “Latent space approaches
to social network analysis”. J. Amer. Statist. Assoc. 97.460, pp. 1090–1098.MR: 1951262
(cit. on p. 2945).

Paul W. Holland, Kathryn Blackmond Laskey, Samuel Leinhardt, and and (1983). “Sto-
chastic blockmodels: first steps”. Social Networks 5.2, pp. 109–137. MR: 718088 (cit.
on p. 2944).

Douglas N Hoover (1979). “Relations on probability spaces and arrays of random vari-
ables”. Technical report, Institute for Advanced Study, Princeton, NJ 2 (cit. on p. 2945).

Antony Joseph and Bin Yu (2016). “Impact of regularization on spectral clustering”. Ann.
Statist. 44.4, pp. 1765–1791. MR: 3519940 (cit. on pp. 2952, 2953, 2955).

Brian Karrer andM. E. J. Newman (2011). “Stochastic blockmodels and community struc-
ture in networks”. Phys. Rev. E (3) 83.1, pp. 016107, 10. MR: 2788206 (cit. on p. 2945).

Michael Krivelevich and Benny Sudakov (2003). “The largest eigenvalue of sparse ran-
domgraphs”.Combin. Probab. Comput. 12.1, pp. 61–72.MR: 1967486 (cit. on p. 2950).

Can M. Le, Elizaveta Levina, and Roman Vershynin (2017). “Concentration and regu-
larization of random graphs”. Random Structures Algorithms 51.3, pp. 538–561. MR:
3689343 (cit. on pp. 2950–2952).

Michel Ledoux andMichel Talagrand (1991).Probability in Banach spaces. Vol. 23. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Re-
lated Areas (3)]. Isoperimetry and processes. Springer-Verlag, Berlin, pp. xii+480. MR:
1102015 (cit. on p. 2951).

Jing Lei and Alessandro Rinaldo (2015). “Consistency of spectral clustering in stochastic
block models”. Ann. Statist. 43.1, pp. 215–237. MR: 3285605 (cit. on pp. 2948, 2950).

Tianxi Li, Elizaveta Levina, and Ji Zhu (Dec. 2016). “Network cross-validation by edge
sampling”. arXiv: 1612.04717 (cit. on p. 2953).

Laurent Massoulié (2014). “Community detection thresholds and the weak Ramanujan
property”. In: STOC’14—Proceedings of the 2014 ACM Symposium on Theory of Com-
puting. ACM, New York, pp. 694–703. MR: 3238997 (cit. on pp. 2954, 2955).

Frank McSherry (2001). “Spectral partitioning of random graphs”. In: 42nd IEEE Sym-
posium on Foundations of Computer Science (Las Vegas, NV, 2001). IEEE Computer
Soc., Los Alamitos, CA, pp. 529–537. MR: 1948742 (cit. on p. 2955).

https://doi.org/10.1109/TIT.2016.2546280
https://doi.org/10.1109/TIT.2016.2546280
http://www.ams.org/mathscinet-getitem?mr=MR3493879
https://doi.org/10.1090/tran/6922
http://www.ams.org/mathscinet-getitem?mr=MR3695857
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
http://www.ams.org/mathscinet-getitem?mr=MR1951262
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
http://www.ams.org/mathscinet-getitem?mr=MR718088
https://doi.org/10.1214/16-AOS1447
http://www.ams.org/mathscinet-getitem?mr=MR3519940
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
http://www.ams.org/mathscinet-getitem?mr=MR2788206
https://doi.org/10.1017/S0963548302005424
https://doi.org/10.1017/S0963548302005424
http://www.ams.org/mathscinet-getitem?mr=MR1967486
https://doi.org/10.1002/rsa.20713
https://doi.org/10.1002/rsa.20713
http://www.ams.org/mathscinet-getitem?mr=MR3689343
https://doi.org/10.1007/978-3-642-20212-4
http://www.ams.org/mathscinet-getitem?mr=MR1102015
https://doi.org/10.1214/14-AOS1274
https://doi.org/10.1214/14-AOS1274
http://www.ams.org/mathscinet-getitem?mr=MR3285605
http://arxiv.org/abs/1612.04717
http://arxiv.org/abs/1612.04717
http://arxiv.org/abs/1612.04717
http://www.ams.org/mathscinet-getitem?mr=MR3238997
http://www.ams.org/mathscinet-getitem?mr=MR1948742


2962 CAN M. LE, ELIZAVETA LEVINA AND ROMAN VERSHYNIN

Andrea Montanari and Subhabrata Sen (2016). “Semidefinite programs on sparse random
graphs and their application to community detection”. In: STOC’16—Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of Computing. ACM, New York,
pp. 814–827. MR: 3536616 (cit. on p. 2955).

Elchanan Mossel, Joe Neeman, and Allan Sly (Nov. 2013). “A Proof Of The Block Model
Threshold Conjecture”. arXiv: 1311.4115 (cit. on pp. 2954, 2955).

– (July 2014). “Consistency Thresholds for the Planted Bisection Model”. arXiv: 1407.
1591 (cit. on pp. 2954, 2955).

– (2015). “Reconstruction and estimation in the planted partitionmodel”.Probab. Theory
Related Fields 162.3-4, pp. 431–461. MR: 3383334 (cit. on p. 2954).

Sofia C Olhede and Patrick J Wolfe (2013). “Network histograms and universality of
blockmodel approximation”. Proceedings of the National Academy of Sciences 111.41,
pp. 14722–14727 (cit. on p. 2945).

Albrecht Pietsch (1980). Operator ideals. Vol. 20. North-Holland Mathematical Library.
Translated from German by the author. North-Holland Publishing Co., Amsterdam-
New York, p. 451. MR: 582655 (cit. on p. 2951).

Gilles Pisier (1986). Factorization of linear operators and geometry of Banach spaces.
Vol. 60. CBMS Regional Conference Series in Mathematics. Published for the Confer-
ence Board of the Mathematical Sciences, Washington, DC; by the American Mathe-
matical Society, Providence, RI, pp. x+154. MR: 829919 (cit. on p. 2951).

– (2012). “Grothendieck’s theorem, past and present”. Bull. Amer. Math. Soc. (N.S.) 49.2,
pp. 237–323. MR: 2888168 (cit. on p. 2951).

Tai Qin and Karl Rohe (2013). “Regularized spectral clustering under the degree-corrected
stochastic blockmodel”. In:Advances in Neural Information Processing Systems, pp. 3120–
3128 (cit. on p. 2952).

Stiene Riemer and Carsten Schütt (2013). “On the expectation of the norm of random
matrices with non-identically distributed entries”. Electron. J. Probab. 18, no. 29, 13.
MR: 3035757 (cit. on p. 2950).

Purnamrita Sarkar and Peter J. Bickel (2015). “Role of normalization in spectral clustering
for stochastic blockmodels”. Ann. Statist. 43.3, pp. 962–990. MR: 3346694 (cit. on
p. 2957).

Yoav Seginer (2000). “The expected norm of randommatrices”.Combin. Probab. Comput.
9.2, pp. 149–166. MR: 1762786 (cit. on pp. 2947, 2948, 2950).

Nicole Tomczak-Jaegermann (1989). Banach-Mazur distances and finite-dimensional op-
erator ideals. Vol. 38. Pitman Monographs and Surveys in Pure and Applied Math-
ematics. Longman Scientific & Technical, Harlow; copublished in the United States
with John Wiley & Sons, Inc., New York, pp. xii+395. MR: 993774 (cit. on p. 2951).

Van H. Vu (2007). “Spectral norm of randommatrices”.Combinatorica 27.6, pp. 721–736.
MR: 2384414 (cit. on p. 2948).

http://www.ams.org/mathscinet-getitem?mr=MR3536616
http://arxiv.org/abs/1311.4115
http://arxiv.org/abs/1311.4115
http://arxiv.org/abs/1311.4115
http://arxiv.org/abs/1407.1591
http://arxiv.org/abs/1407.1591
http://arxiv.org/abs/1407.1591
https://doi.org/10.1007/s00440-014-0576-6
http://www.ams.org/mathscinet-getitem?mr=MR3383334
http://www.ams.org/mathscinet-getitem?mr=MR582655
https://doi.org/10.1090/cbms/060
http://www.ams.org/mathscinet-getitem?mr=MR829919
https://doi.org/10.1090/S0273-0979-2011-01348-9
http://www.ams.org/mathscinet-getitem?mr=MR2888168
http://www.ams.org/mathscinet-getitem?mr=MR3035757
https://doi.org/10.1214/14-AOS1285
https://doi.org/10.1214/14-AOS1285
http://www.ams.org/mathscinet-getitem?mr=MR3346694
https://doi.org/10.1017/S096354830000420X
http://www.ams.org/mathscinet-getitem?mr=MR1762786
http://www.ams.org/mathscinet-getitem?mr=MR993774
https://doi.org/10.1007/s00493-007-2190-z
http://www.ams.org/mathscinet-getitem?mr=MR2384414


RANDOM GRAPHS AND APPLICATION TO COMMUNITY DETECTION 2963

Shuhua Yin (2008). “Investigation on spectrum of the adjacency matrix and Laplacian ma-
trix of graph Gl”.WSEAS Trans. Syst. 7.4, pp. 362–372. MR: 2447295 (cit. on p. 2952).

Yuan Zhang, Elizaveta Levina, and Ji Zhu (Dec. 2014). “Detecting Overlapping Commu-
nities in Networks Using Spectral Methods”. arXiv: 1412.3432 (cit. on p. 2946).

– (2017). “Estimating network edge probabilities by neighbourhood smoothing”. Biome-
trika 104.4, pp. 771–783. MR: 3737303 (cit. on p. 2945).

Y. Zhao, E. Levina, and J. Zhu (2012). “Consistency of community detection in networks
under degree-corrected stochastic block models”. Annals of Statistics 40.4, pp. 2266–
2292 (cit. on p. 2945).

Received 2017-12-22.

Cൺඇ M. Lൾ
Dൾඉൺඋඍආൾඇඍ ඈൿ Sඍൺඍංඌඍංർඌ, Uඇංඏൾඋඌංඍඒ ඈൿ Cൺඅංൿඈඋඇංൺ, Dൺඏංඌ, Oඇൾ Sඁංൾඅൽඌ Aඏൾ, Dൺඏංඌ, CA 95616, U.S.A.
canle@ucdavis.edu

Eඅංඓൺඏൾඍൺ Lൾඏංඇൺ
Dൾඉൺඋඍආൾඇඍ ඈൿ Sඍൺඍංඌඍංർඌ, Uඇංඏൾඋඌංඍඒ ඈൿ Mංർඁංൺඇ, 1085 S. Uඇංඏൾඋඌංඍඒ Aඏൾ, Aඇඇ Aඋൻඈඋ, MI 48109, U.S.A.
elevina@umich.edu

Rඈආൺඇ Vൾඋඌඁඒඇංඇ
Uඇංඏൾඋඌංඍඒ ඈൿ Cൺඅංൿඈඋඇංൺ Iඋඏංඇൾ, 340 Rඈඐඅൺඇൽ Hൺඅඅ, Iඋඏංඇൾ, CA 92697, U.S.A.
rvershyn@uci.edu

http://www.ams.org/mathscinet-getitem?mr=MR2447295
http://arxiv.org/abs/1412.3432
http://arxiv.org/abs/1412.3432
http://arxiv.org/abs/1412.3432
https://doi.org/10.1093/biomet/asx042
http://www.ams.org/mathscinet-getitem?mr=MR3737303
mailto:canle@ucdavis.edu
mailto:elevina@umich.edu
mailto:rvershyn@uci.edu




Pඋඈർ. Iඇඍ. Cඈඇ. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 4 (2963–2990)

LIOUVILLE QUANTUM GRAVITY AS A METRIC SPACE AND
A SCALING LIMIT
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Abstract

Over the past few decades, two natural random surface models have emerged
within physics and mathematics. The first is Liouville quantum gravity, which has
its roots in string theory and conformal field theory from the 1980s and 1990s. The
second is the Brownian map, which has its roots in planar map combinatorics from the
1960s together with recent scaling limit results. This article surveys a series of works
with Sheffield in which it is shown that Liouville quantum gravity (LQG) with param-
eter  =

p
8/3 is equivalent to the Brownian map. We also briefly describe a series

of works with Gwynne which use the
p
8/3-LQG metric to prove the convergence

of self-avoiding walks and percolation on random planar maps towards SLE8/3 and
SLE6, respectively, on a Brownian surface.

1 Introduction

1.1 The Gaussian free field. Suppose that D � C is a planar domain. Informally, the
Gaussian free field (GFF) h on D is a Gaussian random variable with covariance function

cov(h(x); h(y)) = G(x; y) for x; y 2 D

where G denotes the Green’s function for ∆ on D. Since G(x; y) ∼ � log jx � yj as
x ! y, it turns out that it is not possible to make sense of the GFF as a function on D but
rather it exists as a distribution on D. Perhaps the most natural construction of the GFF
is using a series expansion. More precisely, one defines H 1

0 (D) to be the Hilbert space
closure of C 1

0 (D) with respect to the Dirichlet inner product

(1-1) (f; g)r =
1

2�

Z
D

rf (x) � rg(x)dx:
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One then sets

(1-2) h =
X

n

˛n�n

where (˛n) is a sequence of i.i.d. N (0; 1) random variables and (�n) is an orthonormal
basis of H 1

0 (D). The convergence of the series (1-2) does not take place in H 1
0 (D),

but rather in the space of distributions on D. (One similarly defines the GFF with free
boundary conditions on a given boundary segment L using the same construction but
including also the those functions can be non-zero onL.) Since the Dirichlet inner product
is conformally invariant, so is the law of the GFF.

The GFF is a fundamental object in probability theory. Just like the Brownian motion
arises as the scaling limit of many different types of random curves, the GFF describes
the scaling limit of many different types of random surface models Kenyon [2000], Ben
Arous and Deuschel [1996], Giacomin, Olla, and Spohn [2001], Rider and Virág [2007],
and Miller [2011]. It also has deep connections with many other important objects in
probability theory, such as random walks and Brownian motion Dynkin [1984b,a] and Le
Jan [2011] and the Schramm-Loewner evolution (SLE) Schramm [2000], Schramm and
Sheffield [2009, 2013], Sheffield [2016a], Dubédat [2009], Miller and Sheffield [2016a,b,c,
2017], and Duplantier, Miller, and Sheffield [2014].

1.2 Liouville quantum gravity. Liouville quantum gravity (LQG) is one of several
important random geometries that one can build from the GFF. It was introduced (non-
rigorously) in the physics literature by Polyakov in the 1980s as a model for a string A. M.
Polyakov [1981a,b] and A. Polyakov [1990]. In its simplest form, it refers to the random
Riemannian manifold with metric tensor given by

(1-3) eh(z)(dx2 + dy2)

where h is (some variant of) the GFF on D,  is a real parameter, z = x + iy 2 D, and
dx2 + dy2 denotes the Euclidean metric on D. This expression does not make literal
sense because h is only a distribution on D and not a function, hence does not take values
at points.

There has been a considerable effort within the probability community over the course
of the last decade or so to make rigorous sense of LQG. This is motivated by the goal
of putting a heuristic from the physics literature, the so-called KPZ formula Knizhnik,
A. M. Polyakov, and Zamolodchikov [1988] which has been used extensively to (non-
rigorously) derive critical exponents for two-dimensional lattice models, onto firm mathe-
matical ground. Another motivation comes from deep conjectures, which we will shortly
describe in more detail, which state that LQG should describe the large-scale behavior of
random planar maps.
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The volume form

(1-4) eh(z)dxdy

associated with the metric (1-3) was constructed in Duplantier and Sheffield [2011] by
regularizing h by considering its average h�(z) on @B(z; �) and then setting

(1-5) �


h
= lim

�!0
�2/2eh�(z)dxdy

where dxdy denotes Lebesguemeasure onD. We note that there is no difficulty inmaking
sense of the expression inside of the limit on the right hand side of (1-5) for each fixed
� > 0 since (z; �) 7! h�(z) is a continuous function Duplantier and Sheffield [ibid.]. The
factor �2/2 appears because the leading order term in the variance of h�(z) is log ��1.
In the case that h is a GFF on a domain D with a linear boundary segment L and free
boundary conditions along L, one can similarly construct a boundary length measure by
setting

(1-6) �


h
= lim

�!0
�2/4eh�(x)/2dx

where dx denotes Lebesgue measure on L. There is in fact a general theory of random
measures with the same law as�h, �h which is referred to asGaussianmultiplicative chaos
and was developed by Kahane [1985] in the 1980s; see Rhodes and Vargas [2014] for a
more recent review. (Similar measures also appeared earlier in Høegh-Krohn [1971].)

The regularization procedure used to define the area and boundary measures leads to
a natural change of coordinates formula for LQG. Namely, if h is a GFF on a domain D,
' : eD ! D is a conformal transformation, and one takes

(1-7) eh = h ı ' + Q log j'0
j where Q =

2


+



2

then the area and boundary measures defined byeh are the same as the pushforward of the
area and boundary measures defined by h. Therefore (D; h) and (eD;eh) can be thought
of as parameterizations of the same surface. Whenever two pairs (D; h) and (eD;eh) are
related as in (1-7), we say that they are equivalent as quantum surfaces and a quantum
surface is an equivalence class under this relation. A particular choice of representative is
referred to as an embedding. There are many different choices of embeddings of a given
quantum surface which can be natural depending on the context, and this is a point we
will come back to later. We note that when  ! 0 so that an LQG surface corresponds
to a flat, Euclidean surface (i.e., the underlying planar domain), the change of coordinate
formula (1-7) exactly corresponds to the usual change of coordinates formula.



2966 JASON MILLER

1.3 Random planar maps. A planar map is a graph together with an embedding into
the plane so that no two edges cross. Planar maps M1; M2 are said to be equivalent if
there exists an orientation preserving homeomorphism ' of R2 which takes M1 to M2.
The faces of a planar map are the connected components of the complement of its edges.
A map is a called a triangulation (resp. quadrangulation) if it has the property that all faces
have exactly three (resp. four) adjacent edges. The study of planar maps goes back to
work of Tutte [1962], who worked on enumerating planar maps in the context of the four
color theorem, and of Mullin [1967], who worked on enumerating planar maps decorated
with a distinguished spanning tree. Random maps were intensively studied in physics by
random matrix techniques, starting from Brézin, Itzykson, Parisi, and Zuber [1978] (see,
e.g., the reviewDi Francesco, Ginsparg, and Zinn-Justin [1995]). This field has since been
revitalized by the development of bijective techniques due to Cori and Vauquelin [1981]
and Schaeffer [1998] and has remained a very active area in combinatorics and probability,
especially in the last 20 or so years.

Since there are only a finite number of planar maps with n faces, one can pick one
uniformly at random. We will now mention some of the main recent developments in the
study of the metric properties of large uniformly random maps. First, it was shown by
Chassaing and Schaeffer that the diameter of a uniformly random quadrangulation with n

faces is typically of order n1/4 Chassaing and Schaeffer [2004]. It was then shown by Le
Gall that if one rescales distances by the factor n�1/4 Le Gall [2007] then one obtains a
tight sequence in the space of metric spaces (equipped with the Gromov-Hausdorff topol-
ogy), which means that there exist subsequential limits in law. Le Gall also showed that
the Hausdorff dimension of any subsequential limit is a.s. equal to 4 Le Gall [ibid.] and
it was shown by Le Gall and Paulin [2008] (see also Miermont [2008]) that every subse-
quential limit is a.s. homeomorphic to the two-dimensional sphere S2. This line of work
culminated with independent works of Le Gall [2013] and Miermont [2013], which both
show that one has a true limit in distribution. The limiting random metric measure space
is known as the Brownian map. (The term Brownian map first appeared in Marckert and
Mokkadem [2006].) We will review the continuum construction of the Brownian map in
Section 5.1. See Le Gall [2014] for a more in depth survey.

Building off the works Le Gall [2013] and Miermont [2013], this convergence has now
been extended to a number of other topologies. In particular:

• Curien and Le Gall proved that the uniform quadrangulation of the whole plane
(UIPQ), the local limit of a uniform quadrangulation with n faces, converges to the
Brownian plane Curien and Le Gall [2014].
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• Bettinelli andMiermont proved that quadrangulations of the diskwith general bound-
ary converge to the Brownian disk Bettinelli and Miermont [2017] (see also the ex-
tension Gwynne and Miller [2017c] to the case of quadrangulations of the disk with
simple boundary).

• Building on Bettinelli and Miermont [2017], it was shown in Gwynne and Miller
[2017d] and Baur, Miermont, and Ray [2016] that the uniform quadrangulation of
the upper half-plane (UIHPQ), the local limit of a uniform quadrangulation of the
disk near a boundary typical point, converges to the Brownian half-plane.

It has long been believed that LQG should describe the large scale behavior of random
planar maps (see Ambjørn, Durhuus, and Jonsson [1997]), with the case of uniformly
random planar maps corresponding to  =

p
8/3. Precise conjectures have also been

made more recently in the mathematics literature (see e.g. Duplantier and Sheffield [2011]
and David, Kupiainen, Rhodes, and Vargas [2016]).

One approach is to view a quadrangulation as a surface by identifying each of the quadri-
laterals with a copy of the Euclidean square [0; 1]2 which are identified according to bound-
ary length using the adjacency structure of the map. One can then conformally map the
resulting surface to S2 and write the resulting metric in coordinates with respect to the
Euclidean metric

(1-8) e�n(z)(dx2 + dy2):

The goal is then to show that �n converges in the limit as n ! 1 to
p
8/3 times a form

of the GFF. A variant of this conjecture is that the volume form associated with (1-8)
converges in the limit to the

p
8/3-LQG measure associated with a form of the GFF. One

can also consider other types of “discrete” conformal embeddings, such as circle packings,
square tilings, or the Tutte (a.k.a. harmonic, or barycentric) embedding. (See Gwynne,
Miller, and Sheffield [2017] for a convergence result of this type in the case of the so-
called mated-CRT map.)

In this article, we will focus on the solution of a version of this conjecture carried out
in Miller and Sheffield [2015b, 2016d,e, 2015a,c] in which it is shown that a

p
8/3-LQG

surface determines a metric space structure and if one considers the correct law on
p
8/3-

LQG surfaces then this metric space is an instance of the Brownian map.

Acknowledgments. We thank Bertrand Duplantier, Ewain Gwynne, and Scott Sheffield
for helpful comments on an earlier version of this article.
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2 Liouville quantum gravity surfaces

In order to make the connections between random planar maps and LQG precise, one
needs to make precise the correct law on GFF-like distributions h. Since the definitions of
these surfaces are quite important, we will now spend some time describing how to derive
these laws (in the simply connected case), first in the setting of surfaces with boundary and
then in the setting of surfaces without boundary. These constructions were first described
in Sheffield [2016a] and carried out carefully in Duplantier, Miller, and Sheffield [2014].

2.1 Surfaces with boundary. The starting point for deriving the correct form of the
distribution h is to understand the behavior of such a surface near a boundary typical
point, that is, near a point x in the boundary chosen from �h, for a general LQG surface
with boundary. To make this more concrete, we consider the domain D = D \ H, i.e.,
the upper semi-disk in H. Let h be a GFF on D with free (resp. Dirichlet) boundary
conditions on [�1; 1] (resp. @D n [�1; 1]). Following Duplantier and Sheffield [2011],
we then consider the law whose Radon-Nikodym derivative with respect to h is given by
a normalizing constant times �h([�1; 1]). That is, if dh denotes the law of h, then the
law we are considering is given by �h([�1; 1])dh normalized to be a probability measure.
From (1-6) this, in turn, is the same as the limit as � ! 0 of the marginal of h under the
law

(2-1) Θ�(dx; dh) = �2/4eh�(x)/2dxdh

where dx denotes Lebesgue measure on [�1; 1]. We are going to in fact consider the
limit Θ as � ! 0 of Θ� from (2-1). The reason for this is that in the limit as � ! 0,
the conditional law of x given h converges to a point chosen from �h. By performing
an integration by parts, we can write h�(x) = (h; �x

� )r where �x
� (y) = � logmax(jx �

yj; �) � eGx
� (z) and eGx

� is the function which is harmonic on D with Dirichlet boundary
conditions given by y 7! � logmax(jx � yj; �) on @D n [�1; 1] and Neumann boundary
conditions on [�1; 1]. In other words, �x

� is a truncated form of the Green’s function G

for ∆ on D with Dirichlet boundary conditions on @D n [�1; 1] and Neumann boundary
conditions on [�1; 1]. Recall the following basic fact about the Gaussian distribution: if
Z ∼ N (0; 1) and we weight the law of Z by a normalizing constant times e�Z , then the
resulting distribution is that of a N (�; 1) random variable. By the infinite dimensional
analog of this, we therefore have in the case of h that weighting its law by a constant times
exp(h�(x)/2) = exp((h; �x

� )r/2) is the same as shifting its mean by (/2)�x
� . That is,

underΘ� , we have that the conditional law of h given x is that ofeh+(/2)�x
� whereeh is

a GFF on D with free (resp. Dirichlet) boundary conditions on [�1; 1] (resp. @D n [�1; 1]).
Taking a limit as � ! 0, we thus see that the conditional law of h given x underΘ is given
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by that ofeh + (/2)G(x; �) whereeh is a GFF on D with free (resp. Dirichlet) boundary
conditions on [�1; 1] (resp. @D n [�1; 1]).

This computation tells us that the local behavior of h near a point chosen from �h is
described by that of a GFF with free boundary conditions plus the singularity � log j � j

(as the leading order behavior of G(x; y) is �2 log jx � yj for x 2 (�1; 1) and y close to
x). We now describe how to take an infinite volume limit near x in the aforementioned
construction. Roughly speaking, we will “zoom in” by adding a large constant C to h

(which has the effect of replacing �h with eC �h), centering so that x is at the origin, and
then performing a rescaling so that D \ H is assigned one unit of mass.

It is easiest to describe this procedure if we first apply a change of coordinates from D

to the infinite half-strip S+ = R+ � (0; �) using the unique conformal map ' : D ! S+

which takes �1 to 0, x to+1, and 1 to �i . Then the law ofeh = hı'�1+Q log j('�1)0j

is that ofbh + ( � Q)Re(�) wherebh is a GFF on S+ with free (resp. Dirichlet) boundary
conditions on @S+n[0; �i ] (resp. [0; �i ]). For each u � 0, leteAu be the average ofeh on the
vertical line [0; �i ]+u. For such a GFF, it is possible to check thateAu = eB2u+( �Q)u

where eB is a standard Brownian motion. Suppose that C > 0 is a large constant andehC = eh(� + �C ) + C where �C = inffu � 0 : eAu + C = 0g. Note that �C is a.s. finite
since ( � Q) < 0. As C ! 1, the law ofehC converges to that of a field on S whose
law can be sampled from using the following two step procedure:

• Take its average on vertical lines [0; �i ]+u to be given byAu whereAu for u > 0 is
given by B2u +( �Q)u where B is a standard Brownian motion and for u < 0 bybB�2u+( �Q)uwhere bB is an independent standard Brownianmotion conditioned
so that bB2s + (Q � )s � 0 for all s � 0.

• Take its projection onto the (�; �)r-orthogonal complement of the subspace of func-
tions which are constant on vertical lines of the form [0; �i ] + u to be given by the
corresponding projection of a GFF on S with free boundary conditions on S and
which is independent of A.

The surface whose construction we have just described is called a  -quantum wedge and,
when parameterized by H, can be thought of as a version of the GFF on H with free
boundary conditions and a � log j � j singularity with the additive constant fixed in a
canonical manner. The construction generalizes to that of an ˛-quantum wedge which is
a similar type of quantum surface except with a �˛ log j � j singularity. Quantum wedges
are naturally marked by two points. When parameterized by H, these correspond to 0 and
1 and when parameterized by S correspond to �1 and +1. This is emphasized with
the notation (H; h; 0; 1) or (S ; h; �1;+1).
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A quantum disk is the finite volume analog of a  -quantum wedge and, when param-
eterized by S , the law of the associated field can be described in a manner which is anal-
ogous to that of a  -quantum wedge. To make this more concrete, we recall that if B is
a standard Brownian motion and a 2 R, then eBt+at reparameterized to have quadratic
variation dt is a Bessel process of dimension ı = 2 + 2a. Conversely, if Z is a Bessel
process of dimension ı, then logZ reparameterized to have quadratic variation dt is a
standard Brownian motion with drift at = (ı �2)t/2. The law of the process A described
just above can therefore be sampled from by first sampling a Bessel process Z of dimen-
sion ı = 8/2, then reparameterizing (4/) logZ to have quadratic variation 2dt , and
then reversing and centering time so that it first hits 0 at u = 0. The law of a quantum disk
can be sampled from in the same manner except one replaces the Bessel process Z just
above with a Bessel excursion sampled from the excursion measure of a Bessel process of
dimension 4� 8/2. A quantum disk parameterized by S is marked by two points which
correspond to �1, +1 and is emphasized with the notation (S ; h; �1;+1). It turns
out that these two points have the law of independent samples from the boundary measure
when one conditions on the quantum surface structure of a quantum disk.

2.2 Surfaces without boundary. The derivation of the surfaces without boundary pro-
ceeds along the same lines as the derivation of the surfaces with boundary except one
analyzes the behavior of an LQG surface near an area typical point rather than a boundary
typical point. The infinite volume surface is the  -quantum cone and the finite volume
surface is the quantum sphere. In this case, it is natural to parameterize such a surface by
the infinite cylinder C = R � [0; 2� ] (with the top and bottom identified). The law of a
 -quantum cone parameterized by C can be sampled from by:

• Taking its average on vertical lines [0; 2�i ] + u to be given by Au where Au for
u > 0 is given by Bu + ( � Q)u where B is a standard Brownian motion and for
u < 0 by bB�u + ( � Q)u where bB is an independent standard Brownian motion
conditioned so that bBs + (Q � )s � 0 for all s � 0.

• Take its projection onto the (�; �)r-orthogonal complement of the subspace of func-
tions which are constant on vertical lines of the form [0; 2�i ]+u to be given by the
corresponding projection of a GFF on C and which is independent of A.

As in the case of a  -quantum wedge, it is natural to describe A in terms of a Bessel
process. In this case, one can sample from its law by first sampling a Bessel process Z of
dimension ı = 8/2, then reparameterizing (2/) logZ to have quadratic variation dt ,
and then reversing and centering time so that it first hits 0 at u = 0. A quantum sphere
can be constructed in an analogous manner except one replaces the Bessel process Z just
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above with a Bessel excursion sampled from the excursion measure of a Bessel process
of dimension 4 � 8/2.

The  -quantum cone parameterized by C can be viewed as a whole-plane GFF plus
� log j � j with the additive constant fixed in a canonical way. The ˛-quantum cone is
a generalization of this where the � log j � j singularity is replaced with a �˛ log j � j

singularity.
Quantum cones are naturally marked by two points. When parameterized by C, these

correspond to 0 and 1 and when parameterized by C correspond to �1 and+1. This is
emphasized with the notation (C; h; 0; 1) or (C ; h; �1;+1). It turns out that these two
points have the law of independent samples from the area measure when one conditions
on the quantum surface structure of a quantum sphere.

We note that a different perspective on quantum spheres was developed in David, Kupi-
ainen, Rhodes, and Vargas [2016] which follows the construction of Polyakov. The equiv-
alence of the construction in David, Kupiainen, Rhodes, and Vargas [ibid.] and the one
described just above was established in Aru, Huang, and Sun [2017]. (An approach simi-
lar to Aru, Huang, and Sun [ibid.] would likely yield the equivalence of the disk measures
considered in Huang, Rhodes, and Vargas [2015] and the quantum disk defined earlier.)

Finally, we mention briefly that are also some works which construct LQG on non-
simply connected surfaces David, Rhodes, and Vargas [2016] and Guillarmou, Rhodes,
and Vargas [2016].

3 SLE and Liouville quantum gravity

3.1 The Schramm-Loewner evolution. The Schramm-Loewner evolution (SLE) was
introduced by Schramm [2000] to describe the scaling limits of the interfaces in discrete
latticemodels in two dimensions, themotivating examples being loop-erased randomwalk
and critical percolation. We will discuss three variants of SLE: chordal, radial, and whole-
plane.

Chordal SLE is a random fractal curve which connects two boundary points in a simply
connected domain. It is most natural to define it first in H and then for other domains by
conformal mapping. Suppose that � is a curve inH from 0 to1which is non-self-crossing
and non-self-tracing. For each t � 0, let Ht be the unbounded component of H n �([0; t ])

and let gt : Ht ! H be the unique conformal map with gt (z) � z ! 0 as z ! 1. Then
Loewner’s theorem states that there exists a continuous function W : [0; 1) ! R such
that the maps (gt ) satisfy the ODE

(3-1) @t gt (z) =
2

gt (z) � Wt

; g0(z) = z
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(provided � is parameterized appropriately). The driving function W is explicitly given
by Wt = gt (�(t)). For � > 0, SLE� is the curve associated with the choice W =

p
�B

whereB is a standard Brownian motion. This form of the driving function arises when one
makes the assumption that the law of � is conformally invariant and satisfies the following
Markov property: for each stopping time � for �, the conditional law of g� (�j[�;1))� W�

is the same as the law of �. These properties are natural to assume for the scaling limits
of two-dimensional discrete lattice models.

The behavior of SLE� strongly depends on the value of �. When � 2 (0; 4], it describes
a simple curve, when � 2 (4; 8) it is a self-intersecting curve, and when � � 8 it is a space-
filling curve Rohde and Schramm [2005]. Special values of � which have been proved or
conjectured to correspond to discrete lattice models include:

• � = 1: Schynder woods branches Li, Sun,
and Watson [2017]

• � = 4/3: bipolar orientation branches
Kenyon, Miller, Sheffield, and Wilson
[2015, 2017]

• � = 2: loop-erased random walk Lawler,
Schramm, and Werner [2004a]

• � = 8/3: self-avoiding walks Lawler,
Schramm, and Werner [2004b]

• � = 3: critical Ising model Smirnov
[2010]

• � = 4: level lines of the GFF Schramm
and Sheffield [2009, 2013]

• � = 6: critical percolation Smirnov
[2001]

• � = 16/3: FK-Ising model Smirnov
[2010]

• � = 8: uniform spanning tree Lawler,
Schramm, and Werner [2004a]

• � = 12: bipolar orientations Kenyon,
Miller, Sheffield, and Wilson [2015,
2017]

• � = 16: Schnyder woods Li, Sun, and
Watson [2017]

Radial SLE is a random fractal curve in a simply connected domain which connects a
boundary point to an interior point. It is defined first in D and then in other domains by
conformal mapping. The definition is analogous to the case of chordal SLE, except one
solves the radial Loewner ODE

(3-2) @t gt (z) = �gt (z)
gt (z) + eiWt

gt (z) � eiWt

in place of (3-1). As in the case of (3-1), the radial Loewner ODE serves to encode a non-
self-crossing and non-self-tracing curve � in terms of a continuous, real-valued function.
For each t � 0, gt is the unique conformal map from the component of D n �([0; t ])
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containing 0 to D with g0
t (0) > 0. Radial SLE� corresponds to the case that W =

p
�B .

Whole-plane SLE is a random fractal curve which connects two points in the Riemann
sphere. It is defined first for the points 0 and 1 and then for other pairs of points by
applying a Möbius transformation. It can be constructed by starting with a radial SLE� in
C n (�D) from � to 1 and then taking a limit as � ! 0.

3.2 Exploring an LQG surface with an SLE. There are two natural operations that
one can perform in the context of planar maps (see the physics references in Duplantier
and Sheffield [2011]). Namely:

• One can “glue” together two planar maps with boundary by identifying their edges
along a marked boundary segment to produce a planar map decorated with a dis-
tinguished interface. If the two maps are chosen independently and uniformly at
random, then this interface will in fact be a self-avoiding walk (SAW). (See Sec-
tion 6.1 for more details.)

• One can also decorate a planar map with an instance of a statistical physics model
(e.g. a critical percolation configuration or a uniform spanning tree) and then explore
the interfaces of the statistical physics model. (See Section 6.2 for more details in
the case of percolation.)

If one takes as an ansatz that LQG describes the large scale behavior of random planar
maps, then it is natural to guess that one should be able to perform the same operations
in the continuum on LQG. In order to make this mathematically precise, one needs to
describe the precise form of the laws of:

• The field h which describes the underlying LQG surface and

• The law of the interfaces.

In view of the discussion in Section 2, it is natural to expect that quantum wedges, disks,
cones, and spheres will play the role of the former. In view of the conformal invariance
ansatz for critical models in two-dimensional statistical mechanics, it is natural to expect
that SLE-type curves should play the role of the latter.

Recall that LQG comes with the parameter  and SLE comes with the parameter �. As
we will describe below in more detail, it is important that these parameters are correctly
tuned. Namely, it will always be the case that

(3-3)  = min
�

p
�;

4
p

�

�
:

We emphasize that (3-3) states that for each  2 (0; 2), there are precisely two compatible
values of �: � = 2 2 (0; 4) and � = 16/2 > 4.



2974 JASON MILLER

We will now describe some work of Sheffield [2016a], which is the first mathematical
result relating SLE to LQG and should be interpreted as the continuous analog of the gluing
operation for planar maps with boundary. It is motivated by earlier work of Duplantier
from the physics literature Duplantier [1998, 1999a,b, 2000].

Theorem 3.1. Fix � 2 (0; 4) and let  =
p

�. Suppose that W = (H; h; 0; 1) is a
( � 2/)-quantum wedge and that � is an independent SLE� process in H from 0 to
1. Let D1 (resp. D2) be the component of H n � which is to the left (resp. right) of �.
Then the quantum surfaces D1 = (D1; h; 0; 1) and D2 = (D2; h; 0; 1) are independent
 -quantum wedges. Moreover, W and � are a.s. determined by D1; D2.

We first emphasize that the independence of D1; D2 in Theorem 3.1 is in terms of
quantum surfaces, which are themselves defined modulo conformal transformation. The
 -quantum wedges D1; D2 which are parameterized by the regions which are to the left
and right of � each have their own boundary length measure. Therefore for any point z

along �, one can measure the boundary length distance from z to 0 along the left or the
right side of � (i.e., using D1 or D2). One of the other main results of Sheffield [2016a]
is that these two quantities agree. An SLE� curve with � 2 (0; 4) therefore has a well-
defined notion of quantum length. Moreover, this also allows one to think of Sheffield
[ibid.] as a statement about welding quantum surfaces together.

The cutting/welding operation first established in Sheffield [ibid.] was substantially
generalized in Duplantier, Miller, and Sheffield [2014], in which many other SLE explo-
rations of LQG surfaces were studied. Let us mention one result in the context of an SLE�

process for � 2 (4; 8).

Theorem 3.2. Fix � 2 (4; 8) and let  = 4/
p

�. Suppose that W = (H; h; 0; 1)

is a (4/ � /2)-quantum wedge and that � is an independent SLE� process. Then the
quantum surfaces parameterized by the components ofHn� are conditionally independent
quantum disks given their boundary lengths. The boundary lengths of these disks which
are on the left (resp. right) side of � are in correspondence with the jumps of a �/4-stable
Lévy process L (resp. R) with only downward jumps. Moreover, L and R are independent.

The time parameterization of the Lévy processes L and R gives rise to an intrinsic
notion of time for � which in Duplantier, Miller, and Sheffield [ibid.] is referred to as the
quantum natural time.

There are also similar results for explorations of the finite volume surfaces by SLE
processes. We will focus on one such result here (proved in Miller and Sheffield [2015c])
which is relevant for the construction of the metric on

p
8/3-LQG.

Theorem 3.3. Suppose that  =
p
8/3 and that S = (C ; h; �1;+1) is a quantum

sphere. Let � be a whole-plane SLE6 process in C from �1 to +1 which is sampled
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independently of h and then reparameterized according to quantum natural time. Let Xt

be the quantum boundary length of the component Ct of C n �([0; t ]) containing +1.
Then X evolves as the time-reversal of a 3/2-stable Lévy excursion with only upward
jumps. For a given time t , the conditional law of the surface parameterized by Ct given
Xt is that of a quantum disk with boundary length Xt weighted by its quantum area and
the conditional law of the point �(t) is given by the quantum boundary length measure
on @Ct . Moreover, the surfaces parameterized by the other components of C n �([0; t ])

are quantum disks which are conditionally independent givenX j[0;t ], each correspond to a
downward jump of X j[0;t ], and have quantum boundary length given by the corresponding
jump.

4 Construction of the metric

In this section we will describe the construction of the metric on
p
8/3-LQG from Miller

and Sheffield [2015b, 2016d,e]. The construction is strongly motivated by discrete consid-
erations, which we will review in Section 4.1, before reviewing the continuum construc-
tion in Section 4.2.

4.1 The Eden growth model. Suppose that G = (V; E) is a connected graph. In
the Eden growth model Eden [1961] (or first-passage percolation Hammersley and Welsh
[1965]), one associates with each e 2 E an independent exp(1) weight Ze . The aim is
then to understand the random metric dFPP on G which assigns length Ze to each e 2 E.
Suppose that x 2 V . By the memoryless property of the exponential distribution, there
is a simple Markovian way of growing the dFPP-metric ball centered at x. Namely, one
inductively defines an increasing sequence of clusters Cn as follows.

• Set C0 = fxg.

• Given that Cn is defined, choose an edge e = fy; zg uniformly at random among
those with y 2 Cn and z … Cn, and then take Cn+1 = Cn [ fzg.

It is an interesting question to analyze the large-scale behavior of the clusters Cn on
a given graph G. One of the most famous examples is the case G = Z2, i.e., the two-
dimensional integer lattice (see the left side of Figure 1). It was shown by Cox and Durrett
[1981] that the macroscopic shape of Cn is convex but computer simulations suggest that
it is not a Euclidean ball. The reason for this is that Z2 is not sufficiently isotropic. In
Vahidi-Asl and Wierman [1990, 1992], Wiermann and Vahidi-Asl considered the Eden
model on the Delaunay triangulation associated with the Voronoi tesselation of a Poisson
point process with Lebesgue intensity on R2 and showed that at large scales the Eden
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Figure 1: Left: Eden model on Z2. Right: Eden model on a graph approximation of
p
8/3-LQG.

This serves as a discretization of QLE(8/3; 0).

growth model is well-approximated by a Euclidean ball. The reason for the difference
between the setting considered in Vahidi-Asl and Wierman [1990, 1992] and Z2 is that
such a Poisson point process does not have preferential directions due to the underlying
randomness and the rotational invariance of Lebesgue measure.

Also being random, it is natural to expect that the Eden growth model on a random
planar map should at large scales be approximated by a metric ball. This has now been
proved by Curien and Gall [2015] in the case of the planar dual of a random triangulation.
The Eden growth model on the planar dual of a random triangulation is natural to study
because it can be described in terms of a so-called peeling process, in which one picks an
edge uniformly on the boundary of the cluster so far and then reveals the opposing triangle.
In particular, this exploration procedure respects the Markovian structure of a random
triangulation in the sense that one can describe the law of the regions cut out by the growth
process (uniform triangulations of the disk) as well as the evolution of the boundary length
of the cluster. We will eventually want to make sense of the Eden model on a quantum
sphere which satisfies the same properties. In order to motivate the construction, we will
describe a variant of the Eden growth model on the planar dual of a random triangulation
which involves two operations we know how to perform in the continuum (in view of the
connection between SLE and LQG) and respects the Markovian structure of the quantum
sphere in the same way as described above. Namely, we fix k 2 N and then define an
increasing sequence of clusters Cn in the dual of the map as follows.

• Set C0 = fF g where F is the root face.
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• Given that Cn is defined, pick two edges e1; e2 on the outer boundary of Cn uni-
formly at random and color the vertices on the clockwise (resp. counterclockwise)
arc of the outer boundary of Cn from e1 to e2 blue (resp. yellow).

• Color the vertices in the remainder of the map blue (resp. yellow) independently
with probability 1/2. Take Cn+1 to be the union of Cn and k edges which lie
along the blue/yellow percolation interface starting from one of the marked edges
described above.

This growth process can also be described in terms of a peeling process, hence it respects
the Markovian structure of a random triangulation in the same way as the Eden growth
model. It is also natural to expect there to be universality. Namely, the macroscopic
behavior of the cluster should not depend on the specific geometry of the “chunks” that
we are adding at each stage. That is, it should be the case that for each fixed k 2 N, the
cluster Cn at large scales should be well-approximated by a metric ball.

4.2 QLE(8/3; 0): The Eden model on the quantum sphere. Suppose that (S; x; y) is
a quantum sphere marked by two independent samples x; y from the quantum measure.
We will now describe a variant of the above construction on S starting from x and targeted
at y, with SLE6 as the continuum analog of the percolation interface. Fix ı > 0 and let �0

be a whole-plane SLE6 on S from x to y with the quantum natural time parameterization
as in Theorem 3.2. Then Theorem 3.2 implies that:

• The quantum surfaces parameterized by the components of S n �0([0; ı]) which do
not contain y are conditionally independent quantum disks.

• The component C0 of S n �0([0; ı]) containing y has the law of a quantum disk
weighted by its quantum area.

• The conditional law of �0(ı) is given by the quantum boundary measure on @C0.

We now pick z1 from the quantum boundary measure on @C0 and then let �1 be a radial
SLE6 in C0 from z1 to y, parameterized by quantum natural time. Then it also holds that
the quantum surfaces parameterized by the components of C0 n �1([0; ı]) which do not
contain y are conditionally independent quantum disks, the componentC1 ofC0n�1([0; ı])

containing y has the law of a quantum disk weighted by its quantum area, and �1(ı) is
uniformly distributed according to the quantum boundary measure on @C1.

The ı-approximationΓı;x!y to QLE(8/3; 0) (quantum Loewner evolutionwith param-
eters 2 = 8/3 and � = 0; see Section 4.3 formore on the family of processes QLE(2; �))
from x to y is defined by iterating the above procedure until it eventually reaches y. One
can view Γı;x!y as arising by starting with a whole-plane SLE6 process � on S from x to
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y parameterized by quantum natural time and then resampling the location of the tip of �

at each time of the form kı where k 2 N. Due to the way the process is constructed, we
emphasize that the following hold:

• The surfaces parameterized by the components of S nΓı;x!y
t which do not contain

y are conditionally independent quantum disks.

• The surface parameterized by the component Ct of S nΓı;x!y
t which contains y on

its boundary is a quantum disk weighted by its area.

• The evolution of the quantum boundary length Xt of @Ct is the same as in the case
of �, i.e., it is given by the time-reversal of a 3/2-stable Lévy excursion.

That is, Γı;x!y respects theMarkovian structure of a quantum sphere. The growth process
QLE(8/3; 0) is constructed by taking a limit as ı ! 0 of the ı-approximation defined
above. All of the above properties are preserved by the limit.

Parameterizing an SLE6 by quantum natural time on a quantum sphere is the continuum
analog of parameterizing a percolation exploration on a random planar map according to
the number of edges that the percolation has visited. This is not the correct notion of time
if one wants to define a metric space structure since one should be adding particles to the
growth process at a rate which is proportional to its boundary length. One is thus led to
make the following change of time: set

D(t) =

Z t

0

1

Xu

du

and then let s(r) = infft � 0 : D(t) > rg. Due to the above interpretation, the time-
parameterization s(r) is called the quantum distance time. Let Γx!y be a QLE(8/3; 0)

parameterized by s(r) time. Then it will ultimately be the case that Γx!y
r defines a metric

ball of radius r , and we will sketch the proof of this fact in what follows.
Let (xn) be a sequence of i.i.d. points chosen from the quantum measure on S. For

each i ¤ j , we let Γxi !xj be a conditionally independent (given S) QLE(8/3; 0) from
xi to xj with the quantum distance parameterization. We then set dQ(xi ; xj ) be to be the
amount of time it takes for Γxi !xj to reach xj . We want to show that dQ(xi ; xj ) defines
a metric on the set (xi ) which is a.s. determined by S. It is obvious from the construction
that dQ(xi ; xj ) > 0 for i ¤ j , so to establish the metric property it suffices to prove that
dQ is symmetric and satisfies the triangle inequality. This is proved by making use of a
strategy developed by Sheffield, Watson, and Wu in the context of CLE4.

Symmetry, the triangle inequality, and the fact that dQ is a.s. determined by S all fol-
low from the following stronger statement (taking without loss of generality x = x1 and
y = x2). Let Θ denote the law of (S; x; y;Γx!y ;Γy!x ; U ) where U is uniform in
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[0; 1] independently of everything else. LetΘx!y (resp.Θy!x) be the law whose Radon-
Nikodym derivative with respect to Θ is given by dQ(x; y) (resp. dQ(y; x)). That is,

dΘx!y

dΘ
= dQ(x; y) and

dΘy!x

dΘ
= dQ(y; x):

We want to show that Θx!y = Θy!x because then the uniqueness of Radon-Nikodym
derivatives implies that dQ(x; y) = dQ(y; x). Since Γx!y and Γy!x were taken to be
conditionally independent given S, this also implies that the common value of dQ(x; y)

and dQ(y; x) is a.s. determined by S.
The main step in proving this is the following, which is a restatement of Miller and

Sheffield [2015b, Lemma 1.2].

Lemma 4.1. Let � = UdQ(x; y) so that � is uniform in [0; dQ(x; y)] and let � = infft �

0 : Γx!y
� \ Γy!x

t ¤ ¿g. We similarly let � = UdQ(y; x) and � = infft � 0 :

Γx!y
t \Γy!x

� ¤ ¿g. Then theΘx!y law of (S; x; y;Γx!y j[0;� ];Γ
y!xj[0;� ]) is the same

as the Θy!x law of (S; x; y;Γx!y j[0;� ];Γ
y!xj[0;� ]).

Upon proving Lemma 4.1, the proof is completed by showing that the Θx!y condi-
tional law of Γx!y ;Γy!x given (S; x; y;Γx!y j[0;� ];Γ

y!xj[0;� ]) is the same as theΘy!x

conditional law of Γx!y ;Γy!x given (S; x; y;Γx!y j[0;� ];Γ
y!xj[0;� ]).

Lemma 4.1 turns out to be a consequence of a corresponding symmetry statement for
whole-plane SLE6, which in a certain sense reduces to the time-reversal symmetry of
whole-plane SLE6 Miller and Sheffield [2017], and then reshuffling the SLE6 as described
above to obtain a QLE(8/3; 0).

The rest of the program carried out in Miller and Sheffield [2016d,e] consists of show-
ing that:

• The metric defined above extends uniquely in a continuous manner to the entire
quantum sphere yielding a metric space which is homeomorphic to S2. Moreover,
the resulting metric space is geodesic and isometric to the Brownian map using the
characterization from Miller and Sheffield [2015a]. We will describe this in further
detail in the next section.

• The quantum sphere instance is a.s. determined by the metric measure space struc-
ture. This implies that the Brownian map possesses a canonical embedding into
S2 which takes it to a form of

p
8/3-LQG. This is based on an argument which is

similar to that given in Duplantier, Miller, and Sheffield [2014, Section 10].

4.3 QLE(2; �). The process QLE(8/3; 0) described in Section 4.2 is a part of a general
family of growth processes which are the conjectural scaling limits of a family of growth
models on random surfaces which we now describe.
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Figure 2: Left: DLA on Z2. Middle: DLA on a graph approximation of
p
2-LQG. This serves as

a discretization of QLE(2; 1). Right: Plot of (2; �) values for which QLE(2; �) is constructed in
Miller and Sheffield [2016f].

The dielectric breakdown model (DBM) Niemeyer, Pietronero, and Wiesmann [1984]
with parameter � is a family of models which interpolate between the Eden model and
diffusion limited aggregation (DLA). If �HARM (resp. �LEN) denotes the natural harmonic
(resp. length) measure on the underlying surface, then microscopic particles are added
according to the measure �

d�HARM

d�LEN

��

d�LEN:

In particular, � = 0 corresponds to the Eden model and � = 1 corresponds to DLA.
One can apply the tip-rerandomization procedure to SLE� or SLE�0 coupled with  -

LQG for other values of �; �0 and  provided � = 2 and �0 = 16/2. The resulting
process, which is called QLE(2; �) and is defined and analyzed in Miller and Sheffield
[2016f], is the conjectural scaling limit of �-DBM on a  -LQG surface where

� =
32

16
�

1

2
or � =

3

2
�

1

2
:

(The parameter  determines the type of LQG surface on which the process grows and the
value of � determines the manner in which it grows.) Special parameter values include
QLE(8/3; 0) and QLE(2; 1), the latter being the conjectural scaling limit of DLA on a
tree-weighted random planar map. See Figure 2. It remains an open question to construct
QLE(2; �) for the full range of parameter values.
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5 Equivalence with the Brownian map

In the previous section, we have described how to build a metric space structure on top
of

p
8/3-LQG. We will describe here how it is checked that this metric space structure is

equivalent with the Brownian map.

5.1 Brownian map definition. The Brownian map is constructed from a continuum
version of the Cori-Vauquelin-Schaeffer bijection Cori and Vauquelin [1981] and Scha-
effer [1998] using the Brownian snake. Suppose that Y : [0; T ] ! R+ is picked from
the excursion measure for Brownian motion. Given Y , we let X be a centered Gaussian
process with X0 = 0 and

cov(Xs; Xt ) = inffYr : r 2 [s; t ]g:

For s < t and [t; s] = [0; T ] n (s; t), we set

d ı(s; t) = Xs + Xt � 2max
�
min

r2[s;t ]
Xr ; min

r2[t;s]
Xr

�
:

Let T be the instance of the continuum random tree (CRT) Aldous [1991] encoded by Y

and let � : [0; T ] ! T be the corresponding projection map. We then set

dT (a; b) = minfd ı(s; t) : �(s) = a; �(t) = bg:

Finally, for a; b 2 T , we set

d (a; b) = inf

8<: kX
j=1

d ı
T (aj �1; aj )

9=;
where the infimum is over all k 2 N and a0 = a; a1; : : : ; ak = b in T . Quotienting by
the equivalence relation a Š b if and only if d (a; b) = 0 yields a metric space (S; d ). It
is naturally equipped with a measure � by taking the projection of Lebesgue measure on
[0; T ]. Finally, (S; d; �) is naturally marked by the points x and y which are respectively
given by the projections of t = 0 and the value of t at which X attains its infimum. The
space (S; d; �; x; y) is the (doubly marked) Brownian map and we denote its law by �2

SPH.
It is an infinite measure (since the Brownian excursion measure is an infinite measure). As
mentioned earlier, it follows from Le Gall and Paulin [2008] (see also Miermont [2008])
that (S; d ) a.s. has the topology of S2. Also, the law of (S; d; �; x; y) is invariant under
the operation of resampling x; y independently from �. The standard unit area Brownian
map arises by conditioning �2

SPH to have total area equal to 1. Equivalently, one can take
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the construction above and condition on the Brownian excursion Y to have length equal
to 1.

Variants of the Brownian map with other topologies are defined in a similar manner.
For example, the Brownian disk, half-plane, and plane are defined this way in Bettinelli
and Miermont [2017], Abraham and Gall [2015], Gall [2017], Baur, Miermont, and Ray
[2016], Gwynne and Miller [2017d], and Curien and Le Gall [2014].

5.2 The˛-stable Lévy net. Suppose that we have a doubly-markedmetric space (S; d; x; y)

which has the topology of S2. For each r 2 [0; d (x; y)], we define the filled metric ball
B�(x; r) to be the closure of the complement of the y-containing component ofSnB(x; r).
Themetric net of (S; d; x; y) is the closure of the union of @B�(x; r) over r 2 [0; d (x; y)].
It turns out that it is possible to give an explicit description of the law of the metric net of
the Brownian map and, as we will explain just below, this is one of the main ingredients
which characterizes its law.

t

Xt

C + Yt

t

Xt

Figure 3: Illustration of the construction of the ˛-stable Lévy net.

The ˛-stable Lévy net is defined as follows. Fix ˛ 2 (1; 2) and suppose that X is the
time-reversal of an ˛-stable Lévy excursion with only upward jumps (so that X has only
downward jumps). We define the height process Y associated with X to be given at time
t by the amount of local time that X j[t;T ] spends at its running infimum. Both X and Y

encode trees. Namely, associated with X is a looptree (as first constructed and defined by
Curien and Kortchemski Curien and Kortchemski [2014]) which is obtained by consider-
ing the graph of X and then replacing each of the downward jumps by a topological disk
that does not otherwise cross the graph of X and with the disks pairwise disjoint. Points
on the graph of X or the disk boundaries are considered to be equivalent if they can be
connected by a horizontal chord which lies entirely below the graph of X . The tree asso-
ciated with Y is defined by declaring two points on the graph of Y to be equivalent if they
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can be connected by a horizontal chord which lies entirely above the graph of Y . We can
then glue these two trees together as illustrated in Figure 3 to obtain the ˛-stable Lévy net.
The tree associated with X (resp. Y ) is the called the dual (resp. geodesic) tree of the Lévy
net instance.

Due to the construction, points on the geodesic tree which are identified with each
other all have the same distance to the root in the geodesic tree. Therefore every point
in the Lévy net has a well-defined distance to the root, hence one can talk about metric
balls which are centered at the root. It is not difficult to see that one can in fact associate
with each such metric ball a boundary length and that this boundary length evolves as
a so-called continuous state branching process (CSBP) as one reduces the radius of the
ball. In fact, the boundary lengths between any finite collection of geodesics evolve as
collection of independent CSBPs as the ball radius is reduced and this property essentially
characterizes the ˛-stable Lévy net (as it determines how the geodesics are glued together).

It is proved in Miller and Sheffield [2015a] that the law of the metric net of a sample
from �2

SPH is given by that of a 3/2-stable Lévy net. The following is a restatement of
Miller and Sheffield [ibid., Theorem 4.6].

Theorem 5.1. The doubly marked Brownian map measure �2
SPH is the unique infinite

measure on doubly-marked metric measure spaces (S; d; �; x; y) with the topology of S2

which satisfy the following properties:

1. The law of (S; d; �; x; y) is invariant under resampling x and y independently from
�.

2. The law of the metric net from x to y agrees with that of the ˛-stable Lévy net for
some value of ˛ 2 (1; 2).

3. For each fixed r > 0, themetricmeasure spacesB�(x; r) andSnB�(x; r) (equipped
with the interior internal metric and the restriction of �) are conditionally indepen-
dent given the boundary length of @B�(x; r).

The proof of Theorem 5.1 given in Miller and Sheffield [ibid.] shows that the assump-
tions necessarily imply that˛ = 3/2, which is whywe do not need tomake this assumption
explicitly in the statement of Theorem 5.1.

5.3 QLE(8/3; 0)metric satisfies the axioms which characterize the Brownian map.
To check that the QLE(8/3; 0) metric defined on the

p
8/3-quantum sphere defines an

instance of the Brownian map, it suffices to check that the axioms of Theorem 5.1 are
satisfied. The construction of the QLE(8/3; 0) metric in fact implies that the first and
third axioms are satisfied, so the main challenge is to check the second axiom. This is
one of the aims of Miller and Sheffield [2016d] and is closely related to the form of the
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evolution of the boundary length when one performs an SLE6 exploration on a quantum
sphere as described in Theorem 3.3.

Upon proving the equivalence of the QLE(8/3; 0) metric on a quantum sphere with
the Brownian map, it readily follows that several other types of quantum surfaces with
 =

p
8/3 are equivalent to certain types of Brownian surfaces. Namely, the Brown-

ian disk, half-plane, and plane are respectively equivalent to the quantum disk,
p
8/3-

quantum wedge, and
p
8/3-quantum cone Miller and Sheffield [2016d], Gwynne and

Miller [2017d], and Gall [2017].

6 Scaling limits

The equivalence of LQG and Brownian surfaces allows one to define SLE on a Brownian
surface in a canonical way as the embedding of a Brownian surface is a.s. determined by
the metric measure space structure Miller and Sheffield [2016e]. This makes it possible to
prove that certain statistical physics models on uniformly random planar maps converge to
SLE. The natural topology of convergence is the so-called Gromov-Hausdorff-Prokhorov-
uniform topology (GHPU) developed in Gwynne and Miller [2017d], which is an exten-
sion of the Gromov-Hausdorff topology to curve-decorated metric measure spaces. (We
note that a number of other scaling limit results for random planar maps decorated with
a statistical mechanics model toward SLE on LQG have been proved in e.g. Sheffield
[2016b], Kenyon, Miller, Sheffield, and Wilson [2015], Gwynne, Kassel, Miller, and Wil-
son [2016], and Li, Sun, and Watson [2017] in the so-called peanosphere topology, which
is developed in Duplantier, Miller, and Sheffield [2014].)

6.1 Self-avoiding walks. Recall that the self-avoiding walk (SAW) is the uniform mea-
sure on simple paths of a given length on a graph. The SAW on random planar maps
was important historically because it was used by Duplantier and I. Kostov [1988] and
Duplantier and I. K. Kostov [1990] as a test case of the KPZ formula Knizhnik, A. M.
Polyakov, and Zamolodchikov [1988]. It is a particularly natural model to consider as it
admits a rather simple construction. Namely, one starts with two independent uniformly
random quadrangulations of the disk with simple boundary, perimeter 2`, and m faces as
illustrated in the left side of Figure 4. If one glues the two disks along a boundary segment
of length 2s < 2`, then one obtains a quadrangulation of the disk with perimeter 2(` � s)

and 2m faces decorated by a distinguished path. Conditional on the map, it is not difficult
to see that the path is uniformly random (i.e., a SAW) conditioned on having m faces to
its left and right. In the limit as `; m ! 1, one obtains a gluing of two UIHPQ’s with
simple boundary.
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Figure 4: Two independent uniform quadrangulations of the disk with simple boundary, perimeter
2`, and m faces are glued together along a marked boundary arc of length 2s to produce a quad-
rangulation of the disk with a distinguished path of length 2s. The conditional law of the path is
uniform among all simple paths (i.e., a self-avoiding walk) conditioned on having m faces to its left
and right.

The main result of Gwynne and Miller [2017d] implies that the UIHPQ’s converge
to independent Brownian half-planes, equivalently independent

p
8/3-quantum wedges

together with their QLE(8/3; 0) metric. Proving the convergence of the SAW in this set-
ting amounts to showing that the discrete graph gluing of the two UIHPQ’s converges
to the metric gluing of the limiting Brownian half-plane instances along their boundaries.
This is accomplished in Gwynne and Miller [2016a]. Each Brownian half-plane instance
is equivalent to a

p
8/3-quantum wedge with its QLE(8/3; 0) metric. In order to iden-

tify the scaling limit of the SAW with SLE8/3, it is necessary to show that the conformal
welding of two such quantum wedges developed in Sheffield [2016a] is equivalent to the
metric gluing of the two

p
8/3-quantum wedges with their QLE(8/3; 0) metric as it is

shown in Sheffield [ibid.] that the interface is SLE8/3. This is the main result of Gwynne
and Miller [2016b]. Combining everything gives the convergence of the SAW on random
planar maps to SLE8/3 on

p
8/3-LQG.

6.2 Percolation. It is also natural to consider critical percolation on a uniformly random
planar map. The critical percolation threshold has been computed for a number of different
planar map types (see, e.g., Angel [2003] and Angel and Curien [2015]). The article
Gwynne and Miller [2017b] establishes the convergence of the interfaces of critical face
percolation on a uniformly random quadrangulation of the disk. This is the model in which
the faces of a quadrangulation are declared to be either open or closed independently with
probability 3/4 or 1/4 Angel and Curien [2015]. (The reason that the critical threshold is
3/4 and not 1/2 is because open faces are adjacent if they share an edge and closed faces
are adjacent if they share a vertex.) The underlying quadrangulation of the disk converges
to the Brownian disk Bettinelli and Miermont [2017] and Gwynne and Miller [2017c],
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Figure 5: Left: A quadrangulation of the disk with simple boundary. Right: Blue (resp. red)
quadrilaterals have been glued along two marked boundary arcs. Faces on the inside are colored
blue (resp. red) independently with probability 3/4 (resp. 1/4). The green path is the interface
between the cluster of blue (resp. red) quadrilaterals which are connected to the blue (resp. red)
boundary arc.

equivalently a quantum disk. The main result of Gwynne and Miller [2017b] is that the
percolation interface converges jointly with the underlying quadrangulation to SLE6 on
the Brownian disk. The proof proceeds in a very different manner than the case of the
SAW. Namely, the idea is to show that the percolation interface converges in the limit to
a continuum path which is a Markovian exploration of a Brownian disk with the property
that its complementary components are Brownian disks given their boundary lengths and
it turns out that this property characterizes SLE6 on the Brownian disk Gwynne andMiller
[2017a] (recall also Theorem 3.2).
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Abstract

Modern data analysis challenges require building complex statistical models with
massive numbers of parameters. It is nowadays commonplace to learn models with
millions of parameters by using iterative optimization algorithms. What are typical
properties of the estimated models? In some cases, the high-dimensional limit of a
statistical estimator is analogous to the thermodynamic limit of a certain (disordered)
statistical mechanics system. Building on mathematical ideas from the mean-field the-
ory of disordered systems, exact asymptotics can be computed for high-dimensional
statistical learning problems.

This theory suggests new practical algorithms and new procedures for statistical in-
ference. Also, it leads to intriguing conjectures about the fundamental computational
limits for statistical estimation.

1 Introduction

Natural and social sciences as well as engineering disciplines are nowadays blessed with
abundant data which are used to construct ever more complex statistical models. This
scenario requires new methodologies and new mathematical techniques to analyze these
methods. In this article I will briefly overview some recent progress on two prototypical
problems in this research area: high-dimensional regression and principal component anal-
ysis. This overview will be far from exhaustive, and will follow a viewpoint that builds on
connections with mean field theory in mathematical physics and probability theory (see
Section 5 for further context).
High-dimensional regression. We are given data points (y1;x1), …(yn;xn) that are
independent draws from a common (unknown) distribution. Here xi 2 Rd is a feature
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vector (or vector of covariates), and yi 2 R is a label or response variable. We would like
to model the dependency of the response variable upon the feature vector as

yi = h�0;xi i + wi ;(1-1)

where �0 2 Rd is a vector of parameters (coefficients), and wi captures non-linear de-
pendence as well as random effects. This simple linear model (and its variants) has an
impressive number of applications ranging from genomics Shevade and Keerthi [2003],
to online commerce McMahan et al. [2013], to signal processing D. L. Donoho [2006]
and Candès, Romberg, and Tao [2006].
Principal component analysis. We are given unlabeled data x1; : : : ;xn 2 Rd , that are
i.i.d. with zero mean and common covariance Σ � Efx1xT

1g. We would like to estimate
the directions of maximal variability of these data. Namely, denoting by �1 � �2 � � � � �

�n the ordered eigenvalues ofΣ and by v1(Σ), …, vn(Σ) the correspondent eigenvectors,
we would like to estimate v1(Σ); : : : ; vk(Σ) for k � d a fixed number. This task is a
fundamental component of dimensionality reduction and clustering Kannan, S. Vempala,
and Vetta [2004], and is often used in neuroscience Rossant et al. [2016] and genomics
Abraham and Inouye [2014].

2 High-dimensional regression

Since Gauss [2011], least squares has been the method of choice for estimating the param-
eter vector �0 in the linear model (1-1). Least squares does not make assumptions on the
coefficients �0, but implicitly assumes the errors wi to be unbiased and all of roughly the
same magnitude. In this is the case (for ‘non-degenerate’ features xi ), consistent estima-
tion is possible if and only if n/p � 1.

In contrast, many modern applications are characterized by a large amount of data,
together with extremely complex models. In other words, both n and p are large and
often comparable. The prototypical approach to this regime is provided by the following
`1 regularized least squares problem, known as the Lasso Tibshirani [1996] or basis pursuit
denoising Chen and D. L. Donoho [1995]:

�̂(�;y;X) � arg min
�2Rp

�
1

2n
ky � X�k

2
2 + �k�k1

�
:(2-1)

Here y = (y1; : : : ; yn) 2 Rn is the vector of response variables, and X 2 Rn�p is the
matrix whose i -th row is the i -th feature vector xi . Since the problem (2-1) is convex
(and of a particularly simple form) it can be solved efficiently. In the following, we will
drop the dependence of �̂ upon y;X unless needed for clarity.
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Figure 1: Mean square estimation error of the Lasso per dimension k�̂(�)��0k22/d ,
as a function of the regularization parameter �. Each point corresponds to a differ-
ent instance of the problem (2-1) with symbols representing the dimension d =
N 2 f100; 500; 1000; 2000g. The number of samples is n = dı, with ı = 0:64,
and the noise level �2 = 0:2 � n. The ‘true’ coefficients were generated with i.i.d.
coordinates �0;i 2 f0;+1;�1g and P (�0;i = +1) = P (�0;i = +1) = 0:064.

Over the last ten years, a sequence of beautiful works Candes and Tao [2007] andBickel,
Ritov, and Tsybakov [2009] has developed order-optimal bounds on the performance of
the Lasso estimator. Analysis typically assumes that the data are generated according to
model (1-1), with some vector �0, and i.i.d. noise (wi )i�n: to be concrete we will assume
here wi ∼ N(0; �2). For instance, if �0 has at most s0 non-zero elements, and under
suitable conditions on the matrix X , it is known that (with high probability)

k�̂(�) � �0k
2
2 �

C s0�
2

n
log d ;(2-2)

where C is a numerical constant.
This type of results give confidence in the use of the Lasso, and explain the origins of

its effectiveness. However, they are not precise enough to compare different estimators
with the same error rate or –say– different ways of selecting the regularization parameter
�. Also, they provide limited insight on the distribution of �̂(�), an issue that is crucial
for statistical inference.
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2.1 Exact asymptotics for the Lasso. In order to address these questions, a different
type of analysis makes probabilistic assumptions about the feature vectors xi , and derives
an asymptotically exact characterization of the high-dimensional estimator. In order to
state a result of this type for the case of the Lasso, it is useful to introduce the proximal
operator of the `1 norm (in one dimension):

�(y;˛) � argmin
x2R

n1
2
(y � x)2 + ˛jxj

o
:(2-3)

Explicitly, we have �(y;˛) = (jyj � ˛)sign(y). We also note that the following simple
consequence of the first-order stationarity conditions for problem (2-1) holds for any ˛ >
0:

�̂(�) = �
�
�̂
d
;˛

�
; �̂

d
(˛; �) � �̂(�) +

˛

n�
X T(y � X�̂(�)) :(2-4)

We say that a function  : Rd ! R is pseudo-Lipschitz function of order k (and write
 2 PL(k)) if j (x) �  (y)j � L(1 + (kxk2/

p
d )k�1 + (kyk2/

p
d )k�1)kx � yk2

for any x;y 2 Rd . Also recall that a sequence of probability distributions �n on Rd

converges in Wasserstein-k distance to � if and only if
R
 (x)�n(dx) !

R
 (x)�(dx)

for each  2 PL(k).

Theorem 1. Consider a sequence of linear models (1-1) indexed by n, with d = d (n) such
that limn!1 n/d (n) = ı 2 (0;1), and let � = �(n) be such that limn!1 �(n)/

p
n =

�0. Assume xi ∼ N(0; Id ) and wi ∼ N(0; �2) independent and that the empirical distri-
bution d�1

Pd
i=1 ı�0;i

converges in Wk to the law pΘ of a random variable Θ.
Let ˛�, �2� 2 R>0 be the unique solution of the pair of equations

� = ˛
n
1 �

1

ı
P

�
jΘ� + ��Zj � ˛�

�o
;(2-5)

�2� = �2
0 +

1

ı
E

˚�
�(Θ + ��Z;˛�) � Θ

�2	
;(2-6)

where expectation is with respect to Θ and Z ∼ N(0; 1) independent. Then, taking �̂ =

�̂
d
(˛; �), for any  : R2 ! R,  2 PL(k), we have, almost surely,

lim
n;d!1

1

d

dX
i=1

 (�0;i ; �̂
d
i ) = E

˚
 (Θ;Θ+ ��Z)

	
:(2-7)

The proof of this result Bayati andMontanari [2012] consists in introducing an iterative
algorithm that converges rapidly to �̂(�) and can be analyzed exactly. Of course, the
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existence of such an algorithm is of independent interest, cf. Section 4. Alternative proof
techniques have been developed as well, and are briefly mentioned in the next section. All
of these proofs take advantage in a crucial way of the fact that the optimization problem
(2-1) is convex, which in turn is a choice dictated by computational tractability. However,
for ı < 1, the cost function is not strongly convex (since the kernel of X has dimension
n(1 � ı), with high probability), which poses interesting challenges.

Remark 2.1. A first obvious use of Theorem 1 is to derive asymptotic expressions for
the risk of the Lasso. Using the stationarity condition (2-4) and choosing  (x; y) =

[x � �(y; ˛�)]
2, we obtain

lim
n;p!1

1

d
k�̂(�) � �0k

2
2 = E

˚�
�(Θ + ��Z;˛�) � Θ

�2	
:(2-8)

For applications, this prediction has the disadvantage of depending on the asymptotic em-
pirical distribution of the entries of �0, which is not known. One possible way to overcome
this problem is to consider the worst case distribution D. L. Donoho, Maleki, and Mon-
tanari [2011]. Assuming �0 has at most s0 = p" non-zero entries (and under the same
assumptions of the last theorem), this results in the bound

lim
n;p!1

1

d
k�̂(�) � �0k

2
2 �

M (")

1 �M (")/ı
�2
0 :(2-9)

WhereM (") is explicitly given in D. L. Donoho, Maleki, and Montanari [2011] and Mon-
tanari [2012], and behaves asM (") = 2" log(1/")+O(") for small ". This bound is tight
in the sense that there exists sequences of vectors �0 = �0(n) for which the bound holds
with equality.

Remark 2.2. Interestingly, Theorem 1 also characterizes the joint distribution of �̂
d
and

the true parameter vector. Namely �̂di is asymptotically Gaussian, with mean equal to the
true parameter �0;i and variance �2� . This is somewhat surprising, given that the Lasso
estimator �̂ = �(�̂

d
;˛�) is highly non-Gaussian (in particular is �̂i = 0 for a positive

fraction of the entries).
This Gaussian limit suggests a possible approach to statistical inference. In particular,

a confidence interval for �0;i can be constructed by letting Ji (c) = [�̂di � c��; �̂
d
i + c��].

The above theorem implies the following coverage guarantee

lim
n;d!1

1

d

nX
i=1

P
�
�0;i 2 Ji (c)

�
= 1 � 2Φ(�c) ;(2-10)
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whereΦ(x) �
R
e�t2/2dt/

p
2� is the Gaussian distribution function. In other words, the

confidence interval is valid on average Javanmard and Montanari [2014b].
Ideally, one would like stronger guarantees than in (2-10), for instance ensuring cov-

erage for each coordinate, rather than on average over coordinates. Results of this type
were proven in C.-H. Zhang and S. S. Zhang [2014], van de Geer, Bühlmann, Ritov, and
Dezeure [2014], and Javanmard and Montanari [2014a, 2015] (these papers however do
not address the regime n/d ! ı 2 (0;1)).

Remark 2.3. Theorem 1 assumes the entries of the design matrix X to be i.i.d. standard
Gaussian. It is expected this result to enjoy some degree of universality, for instance with
respect to matrices with i.i.d. entries with the same first twomoments and sufficiently light
tails. Universality results were proven in Korada and Montanari [2011], Bayati, Lelarge,
and Montanari [2015], and Oymak and Tropp [2015], mainly focusing on the noiseless
case � = 0 which is addressed by solving the problem (2-1) in the limit � ! 0 (equiva-
lently, finding the solution ofy = X� that minimizes k�k1). Classical tools of probability
theory, in particular the moment method and Lindeberg swapping trick are successfully
applied in this case.

Beyond matrices with i.i.d. entries, there is empirical evidence D. Donoho and Tan-
ner [2009] and heuristic results Tulino, Caire, Verdu, and Shamai [2013] and Javanmard
and Montanari [2014b] suggesting universality or (in some cases) generalizations of the
prediction of Theorem 1.

2.2 Generalizations and comparisons. When the data (yi ;xi ), 1 � i � n contain out-
liers, the sum of square residuals ky�X�k22 in Equation (2-1) is overly influenced by such
outliers resulting in poor estimates. Robust regression Huber and Ronchetti [2009] sug-
gests to use the following estimator instead (focusing for simplicity on the un-regularized
case):

�̂ = arg min
�2Rp

nX
i=1

�
�
yi � h�;xi i

�
;(2-11)

where � : R ! R is often chosen to be convex in order to ensure computational tractabil-
ity. For instance, Huber [1964, 1973] advocated the use of �(x) = �Huber(x; ) defined by
�Huber(x; c) = x2/2 for jxj � c and �Huber(x; c) = cjxj � c2/2 otherwise. Results analo-
gous to Theorem 1 were proven for robust estimators of the form (2-11) in Karoui [2013]
and D. Donoho and Montanari [2016], following earlier conjectures in El Karoui, Bean,
Bickel, Lim, and Yu [2013].

A second possibility for generalizing Theorem 1 is to modify the penalty function
�k�k1, and replacing it by f (�) for f : Rd ! R a convex function. General results
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in this setting were proven in Chandrasekaran, Recht, Parrilo, and Willsky [2012] and
Thrampoulidis, Oymak, and Hassibi [2015] via a different approach that builds on Gor-
don’s minimax theorem Gordon [1988].

Finally, let us emphasize that sparsity of �0 –while motivating the Lasso estimator
(2-1)– does not play any role in Theorem 1, which in fact holds for non-sparse �0 as
well. Given this, it is natural to ask what is the best estimate for any given �0. Under the
assumption of Theorem 1, it is natural to treat the (�i )i�d as i.i.d. draws with common
distribution pΘ. If this is the case, we can consider the posterior expectation estimator

�̂
Bayes

(y;X) � EpΘ

�
�

ˇ̌
y;X

�
:(2-12)

The analysis of this estimator requires introducing two functions associated with the scalar
problem of estimating Θ ∼ pΘ from observations Y =

p
sΘ+Z, Z ∼ N(0; 1):

I(s) � I (Θ;
p
sΘ+Z) ; mmse(s) = E

˚�
Θ � E(Θj

p
sΘ+Z)

�2	
;(2-13)

These two quantities are intimately related since dI
ds
(s) = 1

2
mmse(s) Stam [1959] and

Guo, Shamai, and Verdú [2005]. The following is a restatement of a theorem proved in
Reeves and Pfister [2016],

Theorem 2. Under the assumptions of Theorem 1, define the function �2 7! Ψ(�2) by

Ψ(�2) = I(��2) +
ı

2

�
log(ı�2) �

ı

2
+
ı�2

0

2�2

�
:(2-14)

If, for �2
0 > 0, �2 7! Ψ(�2) has at most three critical point and �2Bayes � argmin�2>0 Ψ(�2)

is unique, then

lim
n;d!1

1

d
E

˚�̂(y;X) � �

2

	
= mmse(��2

Bayes) :(2-15)

A substantial generalization of this theorem was proved recently in Barbier, Macris,
Dia, and Krzakala [2017], encompassing in particular a class of generalized linear models.

Notice that �Bayes must satisfy the following first-order stationarity condition (which is
obtained by differentiating Ψ( � )):

�2Bayes = �2 +
1

ı
mmse(��2

Bayes) :(2-16)

The form of this equation is tantalizingly similar to the one for the Lasso mean square
error, cf. Equation (2-6). In both case the right-hand side is given in terms of the error in
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estimating the scalarΘ ∼ pΘ from noisy observations Y = Θ+�Z. While Equation (2-6)
corresponds to the error of proximal denoising using `1 norm, the Bayes estimation error
appears in Equation (2-16).

2.3 Decoupling. A key property is shared by the Lasso and other convex estimators,
as well as the Bayes-optimal estimators of Section 2.2. It will also hold for the message
passing algorithms of Section 4 and it is sometimes referred to as ‘decoupling’. Notice that
Equation (2-7) of Theorem 1 can be interpreted as follows. By Equation (2-4), we can use
the estimate �̂ to construct new ‘pseudo-data’ �̂

d
with the following remarkable property.

Each coordinate of the pseudo-data �̂di is approximately distributed as a Gaussian noisy
observation of the true parameter �0;i .

This naturally raises the question of the joint distribution of k coordinates �̂d
i(1), …�̂

d
i(k)

.
Decoupling occurs when these are approximately distributed as observations of �i(1), …,
�i(k) with independent noise. For instance, in the case of Theorem 1, this can be formalized
as

lim
n;d!1

1

dk

dX
i(1);:::;i(k)=1

 (�0;i(1); : : : ; �0;i(k); �̂
d
i(1); : : : ; �̂

d
i(1)) =(2-17)

= E
˚
 (Θ1; : : : ;Θk ; Θ1 + ��Z1; : : : ;Θk + ��Zk)

	
;

where is a bounded continuous function and (Θ`)`�k ∼i id pΘ independent of (Z`)`�k ∼
N(0; 1). In this form, decoupling is in fact an immediate consequence of Equation (2-7),
but other forms of decoupling are proved in the literature. (And sometimes the model of
interest has to be perturbed in order to obtain decoupling.)

3 Principal component analysis

A standard model for principal component analysis assumes that the vectors x1; : : : ;xn

2 Rd are centered Gaussian, with covariance Σ = �0�T
0 + In, for �0 a fixed unknown

vector. Equivalently, if we let X 2 Rn�d be the matrix whose i -th row is the vector xi ,
we have X = u�T

0 + W , where u = (ui )i�n is a vector with i.i.d. entries ui ∼ N(0; 1),
and (Wij )i�n;j �d ∼ N(0; 1).

For the sake of simplicity, we shall consider here the symmetric version of this model.
The data consists in a symmetric matrix X 2 Rn�n, where

X =
�

n
�0�T

0 + W ;(3-1)
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where W is a noise matrix from the GOE(n) ensemble, namely (Wij )i<j �n ∼ N(0; 1/n)

are independent of (Wi i )i�n ∼ N(0; 2/n), and W = W T. We further assume � � 0 and
k�0kn

2/n ! 1 as n ! 1. This normalization is chosen to make the problem nontrivial
when � = Θ(1).

We are asked to estimate �0 2 Rn from a single observation of the matrix X . Spec-
tral methods are –by far– the best studied approach to this problem, and the asymptotic
spectral properties of X have been studied in exquisite detail across probability theory
and statistics Baik, Ben Arous, and Péché [2005], Baik and Silverstein [2006], Féral and
Péché [2007], Johnstone [2001], Paul [2007], Capitaine, Donati-Martin, and Féral [2009],
Benaych-Georges and Nadakuditi [2011, 2012], and Knowles and Yin [2013]. In particu-
lar, letting �̂

PCA
(X) denote the principal eigenvector of X , we have

lim
n!1

jh�̂
PCA

(X);�0ij

k�̂
PCA

(X)k2k�0k
=

(
0 if � � 1,
p
1 � ��2 if � > 1.

(3-2)

In other words, the spectral estimator achieves a positive correlation with the unknown
vector �0 provided � > 1: this phenomenon is known as the BBAP phase transition Baik,
Ben Arous, and Péché [2005].

From a statistical perspective, the principal eigenvector is known to be an asymptoti-
cally optimal estimator if no additional information is available about �0. In particular, it
is asymptotically equivalent to the Bayes-optimal estimator when the prior of �0 is uni-
formly distributed on a sphere of radius

p
n. However, in many problems of interest,

additional information is available on �0: exploiting this information optimally requires
to move away from spectral methods and from the familiar grounds of random matrix
theory.

3.1 Z2-synchronization. In some cases, all the entries of �0 are known to have equal
magnitude. For instance, in the community detection problem we might be required to
partition the vertices of a graph in two communities such that vertices are better connected
within each part than across the partition. Under the so-called stochastic block model
Decelle, Krzakala, Moore, and Zdeborová [2011] and Abbe [2017], the adjacency matrix
of the graph is of the form (3-1) (albet with Bernoulli rather than Gaussian noise) whereby
�0;i 2 f+1;�1g is the label of vertex i 2 [n]. Another motivation comes from group
synchronization Wang and Singer [2013], which is a relative of model (3-1) whereby the
unknowns �0;i are elements of a compact matrix group G . In the special case G = Z2 =

(f+1;�1g); � ), the resulting model is a special case of (3-1).
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Figure 2: Estimation accuracy (h�̂
Bayes

;�0i/n)2 within the Z2-synchronization
problem. Red circles: numerical simulations with the AMP algorithm (form ma-
trices of dimension n = 2000 and t = 200 iterations). Continuous thick blue line:
Bayes optimal estimation accuracy, cf. Theorem 3. Dashed blue line: other fixed
points of state evolution. Red line: Accuracy achieved by principal component anal-
ysis.

The following theorem follows from Deshpande, Abbe, and Montanari [2017] and
Montanari and Venkataramanan [2017] and provides an asymptotically exact characteriza-
tion of optimal estimation in the Z2-synchronization problem, with respect to the metric
in Equation (3-2).

Theorem 3. Consider the model (3-1) and let � 2 [0;1) denote the largest solution of

 = �
�
1 � mmse()

�
;(3-3)

where mmse( � ) is defined as in Equation (2-13), with pΘ = (1/2)ı+1 + (1/2)ı�1.
Then, there exists an estimator �̂

Bayes
: X 7! �̂

Bayes
(X) such that, almost surely,

lim
n!1

jh�̂
Bayes

(X);�0ij

k�̂
Bayes

(X)k2k�0k2

=
q
1 � mmse(�) :(3-4)

Further, this accuracy can be approximated within arbitrarily small (constant) additive er-
ror " by a polynomial-time message passing algorithm, cf. Section 4. Finally, no estimator
can achieve a better correlation than in Equation (3-4).
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This prediction is illustrated in Figure 2. Notice that it undergoes a phase transition at
the spectral threshold � = 1. For � < 1 no estimator can achieve a correlation that is
bounded away from zero.

Remark 3.1. Substantial generalizations of the last theorem were proved in several pa-
pers Barbier, Dia, Macris, Krzakala, Lesieur, and Zdeborová [2016], Lelarge and Miolane
[2016], and Miolane [2017]. These generalization use new proof techniques inspired by
mathematical spin glass theory and cover the case of vectors � whose entries have general
distributions pΘ, as well as the rectangular and higher rank cases.

In particularly, Theorem 3 holds almost verbatimly if �0 has i.i.d. entries with known
distribution pΘ such that

R
�2 pΘ(d�) = 1 and

R
�4 pΘ(d�) < 1. One important dif-

ference is that in this more general setting, Equation (3-3) can have multiple solutions,
and Barbier, Dia, Macris, Krzakala, Lesieur, and Zdeborová [2016], Lelarge and Miolane
[2016], and Miolane [2017] provide a way to select the ‘correct’ solution that is analogous
to the one in Theorem 2.

Remark 3.2. As in the linear regression problem, the fixed point Equation (3-3) points at
a connection between the high-dimensional estimation problem of Equation (3-1), where
we are required to estimate n bits of information �0;i 2 f+1;�1g, to a much simpler scalar
problem. The underlying mechanism is again the decoupling phenomenon of Section 2.3.
An alternative viewpoint on the same phenomenon is provided by the analysis of message
passing algorithms outlined in Section 4.

Remark 3.3. Replacing the minimum mean-square estimator EfΘjY g with the optimal
linear estimator bΘ(Y ) = aY in the definition of Equation (2-13) yields the general upper
bound (for EfΘ2g = 1) mmse(s) � 1/(1+ s). Substituting in Equations (3-3) and (3-4)
this yields in turn

lim
n!1

jh�̂
Bayes

(X);�0ij

k�̂
Bayes

(X)k2k�0k2

�

s�
1 �

1

�2

�
+

:(3-5)

We thus recover the predicted accuracy of spectral methods, cf. 3-2. It is not hard to
show that this inequality is strict unless the coordinates of �0 are asymptotically Gaussian.
Figure 2 compares the Bayes optimal accuracy of Theorem 3 with this spectral lower
bound.

While Theorem 3 states that there exists a message passing algorithm that essentially
achieves Bayes-optimal performances, this type of algorithms can be sensitive to model
misspecification. It is therefore interesting to consider other algorithmic approaches. One
standard starting point is to consider the maximum likelihood estimator that is obtained
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by solving the following optimization problem:

maximize hX ;��T
i ;

subject to � 2 f+1;�1g
n :

(3-6)

Semidefinite programing (SDP) relaxations provide a canonical path to obtain a tractable
algorithm for such combinatorial problems. A very popular relaxation for the present
case Goemans and Williamson [1995] and Nesterov [1998] is the following program in
the decision variable Q 2 Rn�n:

maximize hX ;Qi ;

subject to Q � 0 ;

Qi i = 1 for all i 2 f1; : : : ; ng :

(3-7)

The matrix Q can be interpreted as a covariance matrix for a certain distribution on the
vector � . Once a solutionQ� of this SDP is computed, we can use it to produce an estimate
�̂

SDP
2 f+1;�1gn in many ways (this step is called ‘rounding’ in theoretical computer sci-

ence). For instance, we can take the sign of its principal eigenvector: �̂ = sign(v1(Q�)).
There are many open questions concerning the SDP (Equation (3-7)). In particular Javan-
mard, Montanari, and Ricci-Tersenghi [2016] uses statistical physics methods to obtain
close form expression for its asymptotic accuracy, that are still unproven. On the positive
side, Montanari and Sen [2016] establishes the following positive result.

Theorem 4. Let X be generated according to the model (3-1) with �0 2 f+1;�1gn,
and denote by Q� the solution of the SDP (Equation (3-7)). Then there exists a rounding
procedure that produces �̂

SDP
= �̂

SDP
(Q�) 2 f+1;�1gn such that for any � > 1 there

exists " > 0 such that, with high probability

jh�̂
SDP
;�0ij

k�̂
SDP

k2k�0k2

� " :(3-8)

In other words, semidefinite programming matches the optimal threshold.

3.2 The computation/information gap and the hidden clique problem. It is worth
emphasizing one specific aspect of Theorem 3. Within the spiked matrix model (3-1),
there exists a polynomia- time computable estimator that nearly achieves Bayes-optimal
performances, despite the underlying estimation problem is combinatorial in nature: �0 2

f+1;�1gn.
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It is important to stress that the existence of a polynomial-time estimator for the problem
(3-1) is far from being the norm, when changing the distribution pΘ, and the signal-to-
noise ratio �. In certain cases, simple algorithms achieve nearly optimal performances.
In others, even highly sophisticated approaches (for instance SDP relaxations from the
sum-of-squares hierarchy Barak and Steurer [2014]) fail.

Developing a theory of which statistical estimation problems are solvable by polyno-
mial-time algorithms is a central open problem in this area, and a very difficult one. For
certain classes of problems, a bold conjecture was put forward on the basis of statistical
physics insights.

In order to formulate this conjecture in the context of model (3-1), it is useful to state
the following theorem fromMontanari and Venkataramanan [2017] that concerns the case
of a general distribution pΘ of the entries of �0.

Theorem 5. Consider –to be specific– model (3-1), with �0 having i.i.d. entries with
known distributionpΘ. AssumepΘ and� to be independent ofn and known, with

R
�2pΘ(d�) =

1. If
R
� pΘ(d�) = 0, further assume � > 1. Then there exists a polynomial time (message

passing) algorithm that outputs an estimator �̂
AMP

= �̂
AMP

(X) such that

lim
n!1

jh�̂
AMP

(X);�0ij

k�̂
AMP

(X)k2k�0k2

=
q
1 � mmse(AMP) :(3-9)

where mmse( � ) is defined as in Equation (2-13) and AMP is the smallest non-zero fixed
point of Equation (3-3).

Within the setting of this theorem, it is conjectured that Equation (3-9) is the optimal ac-
curacy achieved by polynomial time estimators Barbier, Dia, Macris, Krzakala, Lesieur,
and Zdeborová [2016], Lelarge and Miolane [2016], Lesieur, Krzakala, and Zdeborová
[2017], and Montanari and Venkataramanan [2017]. Together with Remark 3.1, this pro-
vides a precise –albeit conjectural– picture of the gap between fundamental statistical lim-
its (the Bayes optimal accuracy) and computationally efficient methods. This is sometimes
referred to as the information-computation gap. The same phenomenon was pointed out
earlier in other statistical estimation problems, e.g. in the context of error correcting codes
Mézard and Montanari [2009].

The hidden clique problem is the prototypical example of a statistical estimation prob-
lem in which a large information-computation gap is present, and it is the problem for
which this phenomenon is best studied. Nature generates a graph over n vertices as fol-
lows: a subset S � [n] of size jS j = k is chosen uniformly at random. Conditional on S ,
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for any pair of vertices fi; j g, an edge is added independently with probability

P
�
fi; j g 2 E

ˇ̌
S

�
=

(
1 if fi; j g � S ,
1/2 otherwise.

(3-10)

We are given one realization G such a graph, and are requested to identify the set S . In
order to clarify the connection with the rank-one plus noise model (3-1), denote by A the
+/� adjacency matrix of G. This is the n � n matrix whose entry i; j is Aij = +1 if
(i; j ) 2 E and �1 otherwise (in what follows, all matrices have diagonal entries equal to
+1). Then it is easy to see that

1
p
n

A = ��0�T
0 + W � W S;S ;(3-11)

�0 =
1

p
k
1S ; � =

k
p
n
;(3-12)

where W SS is the restriction of matrix W = W T to rows/columns with index in S
and (Wij )i<j ∼i id Unif(+1/

p
n;�1/

p
n). This model has a few differences with re-

spect to the one in Equation (3-1): (i) The noise is Radamacher instead of Gaussian;
(i i) The term W SS of noise is subtracted; (i i i) The distribution of the entries of �0 is
pΘ = (k/n)ı

1/
p

k
+ (1 � (k/n))ı0; hence, for � = k/

p
n fixed, pΘ depends on n. Of

these differences, only the last one is really important for our purposes, and changes some
qualitative features of the problem.

From a purely statistical point of view, the set S can be reconstructed with high prob-
ability provided that k � 2(1 + ") log2(n), by searching over all subsets of k vertices.
On the other hand, a variety of polynomial-time algorithms have been analyzed, including
Monte Carlo Markov Chain Jerrum [1992], spectral algorithms Alon, Krivelevich, and Su-
dakov [1998], message passing algorithmsDeshpande andMontanari [2015], semidefinite
programming relaxations in the Feige and Krauthgamer [2003] and sum-of-squares Barak,
Hopkins, Kelner, Kothari, Moitra, and Potechin [2016] hierarchies, statistical query mod-
els Feldman, Grigorescu, Reyzin, S. S. Vempala, and Xiao [2013]. Despite all of these
efforts, no polynomial-time algorithms is known to be effective with high probability for
k � n1/2�", suggesting the possibility of a large information/computation gap for the hid-
den clique problem. As shown in Deshpande andMontanari [2015], this is consistent with
the general picture emerging from statistical physics (although the hidden clique problem
does not fit in the setting of the conjecture mentioned above).
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4 Message passing algorithms

Message passing algorithms were already mentioned a few times in the previous pages
and provide one natural class of algorithms to deal with random structures. Also, they
are intimately connected to mean field approximations in statistical physics. Given an
undirected graph G = (V;E), we introduce the set of directed edges EE = f(i ! j ) :

(i; j ) 2 Eg (namely, for each edge (i; j ) 2 E, we introduce the two directed edges (i !

j ) and (j ! i)). A message passing algorithm operates on messages (�t
i!j )(i!j )2 EE

2

M EE taking values in a set M, with t a time index. Messages are updated according to local
rules:

�t+1
i!j = Ψ

(t)
i!j

�
�t

k!i : k 2 @i n j
�
;(4-1)

In other words, a message outgoing vertex i at time t+1 is a function of messages ingoing
the same vertex at time t , with the exception of the message along the same edge. Here
all edges are updated synchronously: asynchronous schemes are of interest as well.

Notice that rather than an algorithm, (4-1) describes a general class of dynamical sys-
tems: we did not specify what the updating function Ψ

(t)
i!j are, what is the space M in

which messages live, and not even what is the problem that we are trying to solve. We
only insisted on locality and the ‘non-backtracking information’ condition: these turn out
to be sufficient to lead to some interesting properties of the dynamical system (4-1) when
the underlying graph is a tree or locally tree-like Richardson and Urbanke [2008].

Special forms of the dynamics (4-1) are used for Bayesian inference Koller and Fried-
man [2009], decoding in digital communications Richardson and Urbanke [2008], and
combinatorial optimization Mézard and Montanari [2009]. To the best of my knowledge,
the first appearance an algorithm of the form (4-1) (and its analysis) dates back to Gallager
Ph.D. thesis on low-density parity check codes in the early sixties Gallager [1962]. As an
analytical tool, recursions of this type have been in use in physics at least since Bethe’s
work in the thirties Bethe [1935].

At first sight, message passing algorithms might seem immaterial to the problems dis-
cussed in the rest of this paper: typically these are not associated to a locally tree-like graph
(possibly with te exception of some sparse-graph versions of the hidden-clique problem
Deshpande and Montanari [2015]). Somewhat surprisingly, there exists a natural class of
algorithms whose datum is not a locally tree-like graph but a (dense) random matrix, and
which can be considered a close relative of message passing algorithms. In fact, they can
be thought as the limit of message passing algorithmwhen the average degree of the under-
lying graph diverges (see, for instance, Bayati and Montanari [2011]). These algorithms
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are known as approximate message passing: for the sake of simplicity we will briefly dis-
cuss them in the case in which the data consists of a matrix A ∼ GOE(n). The algorithm
operates on variables �̂

t
2 Rn�k where k is considered as fixad as n ! 1. This state is

updated according to

�̂
t+1

= Aft (�̂
t
) � ft�1(�̂

t�1
)BT

t ;

Bt =
1

n

mX
i=1

@ft

@�̂
t

i

(�̂
t

i ) :
(4-2)

Here ft : Rk ! Rk is a Lipschitz continuous function and we denote by ft (�̂
t
) 2 Rn�k

the matrix that is obtained by applying ft row-by-row to �̂
t
. The i -th row of �̂

t
is denoted

by �̂
t

i and, by convention, B0 = 0. Once again, Equation (4-2) does not specify the
update functions ft , nor the problem we are trying to solve: rather it define a class of
dynamical systems. However, special cases can be developed for Bayesian inference,
statistical estimation, optimization, and so on.

In the Bayesian case, the functions ft ( � ) take the form of conditional expectations
with respect to certain distributions, and the fixed point version of the iteration (4-2) dates
back to the work of Thouless, Anderson, Palmer (TAP) on mean field spin glasses Thou-
less, Anderson, and Palmer [1977]. Iterative solutions of the TAP equations were studied
among others in Bolthausen [2014]. The general (non-Bayesian) formulation was devel-
oped and analyzed in D. L. Donoho, Maleki, and Montanari [2009] and Bayati and Mon-
tanari [2011], with the original motivation being its application to compressed sensing.

Crucially, the recursion (4-2) admits an asymptotically exact characterization in the
limit n ! 1 with t fixed. This type of analysis is known as state evolution.

Theorem6. Consider the AMP iteration (4-2) with ft Lipschitz continuous,A ∼ GOE(n),
and deterministic initialization �̂

0
such that limn!1 f0(�̂

0
)Tf0(�̂0)/n = Σ0 2 Rk�k .

Define the sequenceΣt 2 Rk�k via the recursion:

Σt+1 = E
˚
ft (Σ

1/2
t g)ft (Σ

1/2
t g)

	
;(4-3)

where expectation is with respect to g ∼ N(0; Ik). Then, for any t and any test function
 : Rk ! R that is continuous and with at most quadratic growth at infinity, the following
holds almost surely

lim
n!1

1

n

nX
i=1

 (�̂
t

i ) = E
˚
 (Σ

1/2
t g)

	
:(4-4)
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A theorem of this typewas first proved in the case of the TAP equations for the Sherrington-
Kirkpatrick model in Bolthausen [2014] and then in general in Bayati and Montanari
[2011]. Generalizations have also been proved for matrices with non-i.i.d. entries Javan-
mard and Montanari [2013], non-Gaussian random matrices Bayati, Lelarge, and Monta-
nari [2015], non-separable functions ft Berthier, Montanari, and Nguyen [2017], invariant
matrix ensembles Schniter, Rangan, and Fletcher [2016], non-asymptotic settings Rush
and Venkataramanan [2016], non-deterministic initializations Montanari and Venkatara-
manan [2017].

This type of analysis is used to prove the algorithmic part of Theorem 3, as well as
algorithmic versions of the other theorems in this paper.

5 Context and conclusion

For the greatest part of the last century, mean field theory has been an important tool used
by physicists to understand the behavior of systems with a large number of degrees of
freedom Landau [1937]. Classical mean field theory describes homogeneous states, e.g.
the state of a fluid in which each molecule interacts with the average environment created
by all the other molecules. Starting in the late seventies, a new class mean-field ideas was
developed to deal with heterogeneous states, where all particles look statistically the same,
but typical configurations are highly heterogeneous, as is the case with disordered solids
and spin glasses Kirkpatrick and Sherrington [1978] and Parisi [1979]. This opened the
way to applying the same tools to a variety of probabilistic models without apparent con-
nection to physics, including combinatorial optimization and neural networks (seeMézard,
Parisi, and Virasoro [1987] for seminal papers in this direction).

Over the last few years, this circle of ideas has gone through a spectacular renaissance
for at least three reasons: (i) Mathematical methods have been developed to prove (part
of) physicists’ predictions Talagrand [2007], Panchenko [2013], and Ding, Sly, and Sun
[2015]; (i i) Structural insights from physics have unveiled new computational phenom-
ena; (i i i) New applications of these techniques have emerged within high-dimensional
statistics and machine learning, generating interest across several communities.

This brief overview focused on the last two points, and hopefully will provide the reader
with an entrypoint in this rapidly evolving literature.
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NONPARAMETRIC ADDITIVE REGRESSION

Bඒൾඈඇ U. Pൺඋ

Aൻඌඍඋൺർඍ

In this article we discuss statistical methods of estimating structured nonparametric
regression models. Our discussion is mainly on the additive models where the regres-
sion function (map) is expressed as a sum of unknown univariate functions (maps),
but it also covers some other non- and semi-parametric models. We present the state
of the art in the subject area with the prospect of an extension to non-Euclidean data
objects.

1 Introduction

Let Y be a scalar random variable and X � (X1; : : : ; Xd ) be a d -dimensional random
vector. Suppose that one has observations (Xi ; Yi ); 1 � i � n, that are independent
and identically distributed copies of (X; Y ). The regression problem in statistics is to
estimate the conditional mean f (x) � E(Y jX = x) using the observations (Xi ; Yi ).
The parametric approach to this problem is to assume that the true regression function f

belongs to a finite-dimensional model F . The simplest example of F is a linear model
F = ff (�; �) : � 2 Rd+1g, where f (x; �) = �0+�1x1+ � � �+�d xd . This is certainly re-
strictive excluding many important realities. The nonparametric approach, on the contrary,
is to allow the unknown f to lie in an infinite-dimensional function space. The problem
is clearly ‘ill-posed’ since one is given only a finite number of observations (Xi ; Yi ). One
way, called method of sieves, is to reduce F to a subspace Fn in such a way that the se-
quence of sieve spaces Fn grows as n increases and one searches for an estimator among
functions in Fn. Another way of solving the ill-posed inverse problem is through penal-
ization, putting more penalties for functions that are more complex to enforce smoothness

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (NRF-2015R1A2A1A05001753).
MSC2010: primary 62G08; secondary 62G20.
Keywords: Additive models, smooth backfitting, varying coefficient models, partially linear models,
errors-in variables, Hilbertian responses, Bochner integral.
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for the resulting estimator. The approach termed as ‘kernel smoothing’ has quite a dif-
ferent nature and is based on localization. It basically converts the infinite-dimensional
problem to solving locally finite-dimensional problems with the localization being finer
for larger sample size n. In this paper we discuss nonparametric regression, focusing on
kernel smoothing.

There is another problem of dimensionality. When the dimension d of X gets high,
all nonparametric estimation techniques fail theoretically. For instance, if F is a class of
functions with two continuous (partial) derivatives, then one cannot get an estimator f̂

that has a rate faster than n�2/(d+4) for kf̂ � f k2. Nonparametric methods fail practi-
cally as well when d is high. In the case of local kernel smoothing one basically takes
Xh(x) � f(Xi ; Yi ) : Xi are within distance h from xg for each x, where h > 0 is termed
as ‘window width’ or ‘bandwidth’, and then estimate f (x) using those (Xi ; Yi ) 2 Xh(x).
The practical difficulty one encounters here is that one cannot choose h small enough for a
fine local approximation of f since the number of (Xi ; Yi ) in Xh(x), which is asymptotic
to nhd , gets smaller very fast as h decreases when d is high. Note that one needs nhd � `

for the corresponding locally `-dimensional problem to be well-posed. This phenomenon,
referred to as ‘the curse of dimensionality’, is present in other nonparametric methods
such as sieves and penalization techniques.

Structured nonparametric models have been studied to circumvent the curse of dimen-
sionality. A structured nonparametric model is defined as a known function of lower-
dimensional unknown underlying functions, see Mammen and J. P. Nielsen [2003] for
discussion on generalized structured models. They typically allow reliable estimation
when a full nonparametric model does not work. The simplest example is the additive
model

(1-1) E(Y jX = x) = f1(x1) + � � � + fd (xd );

where fj are unknown univariate smooth functions. This model was first introduced by
Friedman and Stuetzle [1981]. Various nonparametric regression problems reduce to the
estimation of this model. Examples include nonparametric regression with time series
errors or with repeated measurements, panels with individual effects and semiparametric
GARCH models, see Mammen, Park, and Schienle [2014].

Three main techniques of fitting the model (1-1) are ordinary backfitting (Buja, Hastie,
and Tibshirani [1989]), marginal integration (Linton and J. P. Nielsen [1995]) and smooth
backfitting (SBF, Mammen, Linton, and J. Nielsen [1999]). A difficulty with the ordinary
backfitting technique is that the estimator of (1-1) is defined only when the backfitting
iteration converges, as its limit. It is known that the backfitting iteration converges under
rather strong conditions on the joint distribution of the covariates, see Opsomer and Rup-
pert [1997] and Opsomer [2000]. For marginal integration, the main drawback is that it
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does not resolve the dimensionality issue since it requires consistent estimation of the full-
dimensional density of X, see Y. K. Lee [2004]. Smooth backfitting, on the other hand, is
not subject to these difficulties. The method gives a well-defined estimator of the model
and the iterative algorithm converges always under weak conditions. Furthermore, it has
been shown for many structured nonparametric models that smooth backfitting estimators
have univariate rates of convergence regardless of the dimension d .

In this paper, we revisit the theory of smooth backfitting for the additive regression
model (1-1). We discuss some important extensions that include varying coefficient mod-
els, the case of errors-in-variables, some structured models for functional response and/or
predictors and a general framework with Hilbertian response. Our discussion is primarily
on the i.i.d. case where (Xi ; Yi ) are independent across 1 � i � n and identically dis-
tributed, and for Nadaraya-Watson (locally constant) kernel smoothing since the theory is
best understood under this setting.

2 Additive regression models

Let the distributions of Xj have densities pj with respect to the Lebesgue measure on R,
and X have a joint density p with respect to the Lebesgue measure on Rd . We assume
that pj are commonly supported on the unit interval [0; 1], for simplicity. In the original
theory of Mammen, Linton, and J. Nielsen [1999], it is assumed that the joint density p is
bounded away from zero on [0; 1]d . Here, we relax this condition to requiring only that
each marginal density pj is bounded away from zero on [0; 1].

2.1 SBF estimation. Let pjk denote the two-dimensional joint densities of (Xj ; Xk)

for 1 � j ¤ k � d . From the model (1-1) we get a system of d integral equations,

(2-1) fj (xj ) = E(Y jXj = xj ) �

dX
k¤j

Z 1

0

fk(xk)
pjk(xj ; xk)

pj (xj )
dxk ; 1 � j � d:

The smooth backfitting method is nothing else than to replace the unknown marginal re-
gression functions mj � E(Y jXj = �) and the marginal and joint densities pj and
pjk by suitable estimators, and then to solve the resulting system of estimated integral
equations. It is worthwhile to note here that the system of equations (2-1) only identi-
fies f+(x) �

Pd
j=1 fj (xj ), not the individual component functions fj . We discuss the

estimation of fj later in Section 2.3.
For simplicity, we consider Nadaraya-Watson type estimators of mj ; pj and pjk . For

a projection interpretation of SBF estimation, we use a normalized kernel scheme as de-
scribed below. The projection interpretation is crucial for the success of SBF estimation.
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Let K be a baseline symmetric, bounded and nonnegative kernel function supported on
[�1; 1] such that

R
K = 1. The conventional kernel weight scheme for the variable Xj

based on K is to give the weight Khj
(x � u) � h�1

j K((x � u)/hj ) to an observed value
u of Xj locally at each point xj 2 [0; 1], where hj > 0 is called the bandwidth and de-
termines the degree of localization for Xj . The normalized kernel function based on K is
defined by

(2-2) Khj
(xj ; u) =

�Z 1

0

Khj
(v � u) dv

��1

Khj
(xj � u); 0 � xj ; u � 1:

Then, it holds that Khj
(xj ; u) = Khj

(xj � u) for all (xj ; u) 2 [2hj ; 1 � 2hj ] � [0; 1] or
(xj ; u) 2 [0; 1] � [hj ; 1 � hj ]. Furthermore,Z 1

0

Khj
(xj ; u) dxj = 1; for all u 2 [0; 1];

�j;`(xj ) =

Z 1

�1

t`K(t) dt; for all xj 2 [2hj ; 1 � 2hj ];

j�j;`(xj )j � 2

Z 1

�1

jt j`K(t) dt; for all xj 2 [0; 1];

(2-3)

where and below �j;`(xj ) =
R 1
0 h�`

j (xj �u)`Khj
(xj ; u) du. We set Ij = [2hj ; 1�2hj ]

and refer to them as interior regions.
We write Xij for the j th entry of Xi . With the normalized kernel function Khj

(�; �) we
estimate the marginal and joint densities by

p̂j (xj ) = n�1
nX

i=1

Khj
(xj ; Xij ); p̂jk(xj ; xk) = n�1

nX
i=1

Khj
(xj ; Xij )Khk

(xk ; Xik):

Also, by Nadaraya-Watson smoothing we estimate mj by

m̂j (xj ) = p̂j (xj )
�1n�1

nX
i=1

Khj
(xj ; Xij )Yi :

Plugging these estimators into (2-1) gives the following system of backfitting equations
to solve for f̂ : f̂ (x) �

Pd
j=1 f̂j (xj ).

(2-4) f̂j (xj ) = m̂j (xj ) �

dX
k¤j

Z 1

0

f̂k(xk)
p̂jk(xj ; xk)

p̂j (xj )
dxk ; 1 � j � d:

We call it smooth backfitting equation. The system of equations (2-4) can identify only
the sum function f̂ (x) =

Pd
j=1 f̂j (xj ) as we discuss in Section 2.2.
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Define p̂(x) = n�1
Pn

i=1

Qd
j=1 Khj

(xj ; Xij ), the estimator of the joint density p.
Let H(p̂) denote the space of additive functions g 2 L2(p̂) of the form g(x) = g1(x1) +

� � �+gd (xd )where gj are univariate functions. Endowed with the inner product hg; �in =R
g(x)�(x)p̂(x) dx, it is a Hilbert space. By considering the Fréchet differentials of func-

tionals defined on H(p̂) and from the first property of (2-3), we may show that

(2-5) f̂ = argmin
g2H(p̂)

Z
[0;1]d

n�1
nX

i=1

(Yi � g(x))2
dY

j=1

Khj
(xj ; Xij ) dx

whenever a solution f̂ of (2-4) exists and is unique. To solve the system of equations (2-4)
the following iterative scheme is employed. First, initialize f̂

[0]
j for 1 � j � d . In the

r th cycle of the iteration, update f̂
[r�1]

j successively for 1 � j � d by

f̂
[r]

j (xj ) = m̂j (xj ) �
X

1�k�j �1

Z 1

0

f̂
[r]

k
(xk)

p̂jk(xj ; xk)

p̂j (xj )
dxk

�
X

j+1�k�d

Z 1

0

f̂
[r�1]

k
(xk)

p̂jk(xj ; xk)

p̂j (xj )
dxk :

(2-6)

2.2 Convergence of SBF algorithm. Here, we discuss the existence and uniqueness of
the solution of the backfitting Equation (2-4), and also the convergence of the backfitting
Equation (2-6).

Consider the subspaces of L2(p̂) defined by

L2(p̂j ) = fg 2 L2(p̂) : g(x) = gj (xj ) for some univariate function gj g:

Let �̂j : L2(p̂) ! L2(p̂j ) denote projection operators such that

(2-7) �̂j (g) =

Z
[0;1]d�1

g(x)
p̂(x)

p̂j (xj )
dx�j ;

where x�j for x equals (x1; : : : ; xj �1; xj+1; : : : ; xd ). Then, the system of equations (2-4)
can be written as

(2-8) f̂ = (I � �̂j )f̂ + m̂j ; 1 � j � d;

where we have used the convention that m̂j (x) = m̂j (xj ). The equivalence between (2-4)
and (2-8) follows from

(�̂j fk)(x) =
Z 1

0

fk(xk)
p̂jk(xj ; xk)

p̂j (xj )
dxk ; 1 � j ¤ k � d;
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which holds due to the first property of (2-3). Put

m̂˚ = m̂d + (I � �̂d )m̂d�1 + (I � �̂d )(I � �̂d�1)m̂d�2 + � � � + (I � �̂d ) � � � (I � �̂2)m̂1

and T̂ = (I � �̂d ) � � � (I � �̂1). Note that T̂ is a linear operator that maps H(p̂) to itself.
A successive application of (2-8) for j = d; d � 1; : : : ; 2; 1 gives

(2-9) f̂ = T̂ f̂ + m̂˚:

If (2-9) has a solution f̂ 2 H(p̂), then solving (2-9) is equivalent to solving (2-8) and
thus f̂ is also a solution of (2-8). To see this, consider a version of T̂ for which the index
j takes the role of the index d . Call it T̂j . Define a version of m̂˚ accordingly and call
it m̂˚;j . Then, it holds that �̂j T̂j = 0 and �̂j m̂˚;j = m̂j . Suppose that there exists
f̂ 2 H(p̂) that satisfies (2-9). If we exchange the roles of j and d , then the solution also
satisfies f̂ = T̂j f̂ + m̂˚;j . Since this holds for all 1 � j � d , we may conclude

�̂j f̂ = �̂j T̂j f̂ + �̂j m̂˚;j = 0 + m̂j ; 1 � j � d;

which is equivalent to (2-8).
The existence and uniqueness of the solution of (2-9) now follows if the linear operator

T̂ is a contraction. An application of Proposition A.4.2 of Bickel, Klaassen, Ritov, and
Wellner [1993] to the projection operators �̂j gives that H(p̂) is a closed subspace of
L2(p̂) and kT̂ kop < 1, under the condition that
(2-10)Z

[0;1]2

�
p̂jk(xj ; xk)

p̂j (xj )p̂k(xk)

�2
p̂j (xj )p̂k(xk) dxj dxk < 1 for all 1 � j ¤ k � d:

An analogue of (2-9) for the backfitting Equation (2-6) is

(2-11) f̂ [r] = T̂ f̂ [r�1] + m̂˚:

Assuming (2-10), we get from (2-9) that f̂ =
P1

j=1 T̂ j m̂˚. This and the fact that
T̂ f̂ [r�1] + m̂˚ = T̂ r f̂ [0] +

Pr�1
j=0 T̂ j m̂˚ give

(2-12) kf̂ [r]
� f̂ k2;n � kT̂ k

r
op

 
kf̂ [0]

k2;n +
1

1 � kT̂ kop
� km̂˚k2;n

!
;

where k � k2;n denote the induced norm of the inner product h�; �in defined earlier. The
following theorem is a non-asymptotic version of Theorem 1 of Mammen, Linton, and J.
Nielsen [1999].
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Tඁൾඈඋൾආ 2.1. Assume the condition (2-10). Then, it holds that the solution of the system
of equations (2-4) exists and is unique, and that the backfitting iteration (2-6) converges
to the solution.

The condition (2-10) holds with probability tending to one if pj are continuous and
bounded away from zero on [0; 1] and pjk are continuous and bounded above on [0; 1]2.
This follows since under these conditions there exists a constant 0 < C < 1 such that

sup
(xj ;xk)2[0;1]2

p̂jk(xj ; xk)
2

p̂j (xj )p̂k(xk)
� C

with probability tending to one. Thus, we can deduce that

(2-13) P
�
lim

r!1
kf̂ [r]

� f̂ k2;n = 0
�

! 1

as n ! 1. Below, we give a stronger result than (2-13) owing to Mammen, Linton,
and J. Nielsen [ibid.]. We make the following assumptions to be used in the subsequent
discussion.

(C1) The joint densities pjk are partially continuously differentiable and p is bounded
away from zero and infinity on [0; 1]d .

(C2) The bandwidths satisfy hj ! 0 and nhj hk/ logn ! 1 as n ! 1 for all 1 �

j ¤ k � d .

(C3) The baseline kernel function K is bounded, has compact support [�1; 1], is symmet-
ric about zero and Lipschitz continuous.

Define an analogue of H(p̂) as

H(p) � fg 2 L2(p) : g(x) = g1(x1) + � � � + gd (xd ); gj are univariate functions g

equipped with the inner product hg; �i =
R

g(x)�(x)p(x) dx and its induced norm k � k2.
We note that P

�
H(p̂) = H(p)

�
! 1 under the condition (C1)–(C3). This follows since

the conditions imply that there exist absolute constants 0 < c < C < 1 such that

ckgj k2 � kgj k2;n � C kgj k2

with probability tending to one. Now, define �j as �̂j with p̂ and p̂j being replaced by
p and pj , respectively. Let T = (I � �d ) � � � (I � �1). From (C1) we get that, for all
1 � j ¤ k � d ,Z

[0;1]2

�
pjk(xj ; xk)

pj (xj )pk(xk)

�2
pj (xj )pk(xk) dxj dxk < 1;
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so that T is also a contraction as a map from H(p) to itself. Furthermore, another applica-
tion of Proposition A.4.2 of Bickel, Klaassen, Ritov, andWellner [1993] gives that there is
an absolute constant 0 < c < 1 such that for any g 2 H(p) there exists a decomposition
g = g1 + � � � + gd with

(2-14) kgk2 � c

dX
j=1

kgj k2:

For such a decomposition and from successive applications of the Minkowski and Hölder
inequalities, we get

k(�̂j � �j )gk2 �

�

dX
k¤j

kgkk2

 Z �
p̂jk(xj ; xk)

p̂j (xj )pk(xk)
�

pjk(xj ; xk)

pj (xj )pk(xk)

�2
pj (xj )pk(xk) dxj dxk

!1/2

:

Using this and (2-14), we may prove k�̂j � �j kop = op(1) for all 1 � j � d and
thus kT̂ � T kop = op(1). This proves that there exists a constant 0 <  < 1 such that
P (kT̂ kop < ) ! 1 as n ! 1. The following theorem is an asymptotic version of
Theorem 2.1.

Tඁൾඈඋൾආ 2.2. (Mammen, Linton, and J. Nielsen [1999]). Assume the conditions (C1)–
(C3). Then, with probability tending to one, the solution of the system of equations (2-4)
exists and is unique. Furthermore, there exists a constant 0 <  < 1 such that

lim
n!1

P
�
kf̂ [r]

� f̂ k2 �  r(kf̂ [0]
k2 + (1 � )�1

km̂˚k2)
�
= 1:

2.3 Estimation of individual component functions. The component functions fj in
the model (1-1) are not identified, but only their sum f is. We need put constraints on fj

to identify them. There may be various constraints. We consider the constraints

(2-15)
Z 1

0

fj (xj )pj (xj ) dxj = 0; 1 � j � d:

With the constraints at (2-15) the model (1-1) is rewritten as

(2-16) f (x) = � + f1(x1) + � � � + fd (xd );

for � = E(Y ), and each fj is uniquely determined. The latter follows from (2-14) and
the fact that, for cj =

R 1
0 gj (xj )pj (xj ) dxj , we get

kgj k
2
2 = kgj � cj k

2
2 + jcj j

2
� kgj � cj k

2
2:
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For the estimators of fj we consider the following constraint.

(2-17)
Z 1

0

f̂j (xj )p̂j (xj ) dxj = 0; 1 � j � d:

For the estimation of fj that satisfy (2-15), the backfitting Equation (2-4) and the backfit-
ting Equation (2-6) are modified by simply putting m̂j � Ȳ in the place of m̂j , where Ȳ is
used as an estimator of �. Then, we may prove that, with probability tending to one, there
exists a solution (f̂j : 1 � j � d ) of the resulting backfitting equation that satisfies the
constraint (2-17). In this section, we discuss the asymptotic properties of the estimators
f̂j . The error of Ȳ as an estimator of � is of magnitude Op(n

�1/2), which is negligible
compared to nonparametric rates. In the subsequent discussion in this section, we assume
� = 0 and ignore Ȳ in the backfitting equation, for simplicity.

Put "i = Yi �
Pd

j=1 fj (Xij ) and

m̂A
j (xj ) = p̂j (xj )

�1n�1
nX

i=1

Khj
(xj ; Xij )"i ;

m̂B
j (xj ) = p̂j (xj )

�1n�1
nX

i=1

Khj
(xj ; Xij ) [fj (Xij ) � fj (xj )] ;

m̂C
jk(xj ) = n�1

nX
i=1

Z 1

0

[fk(Xik) � fk(xk)]Khj
(xj ; Xij )Khk

(xk ; Xik) dxk :

Then, from the backfitting Equation (2-4) we get

f̂j (xj ) � fj (xj ) = m̂A
j (xj ) + m̂B

j (xj ) + p̂j (xj )
�1
X
k¤j

m̂C
jk(xj )

�
X
k¤j

Z 1

0

h
f̂k(xk) � fk(xk)

i p̂jk(xj ; xk)

p̂j (xj )
dxk ; 1 � j � d:

(2-18)

The above equation is a key to deriving stochastic expansions of f̂j . To analyze the three
terms m̂A

j ; m̂B
j and m̂C

jk
in (2-18), we make the following assumptions.

(C4) The component functions fj are twice continuously differentiable.

(C5) EjY j˛ < 1 for ˛ > 5/2 and var(Y jXj = �) are continuous on [0; 1]

We also assume that hj are of order n�1/5, which is known to be optimal in univariate
smoothing.
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We write �` =
R 1

�1 t`K(t) dt and recall the definition of �j;` given immediately after
(2-3). Let rj denote a generic sequence of stochastic terms corresponding to m̂j such that

(2-19) sup
xj 2[2hj ;1�2hj ]

jrj (xj )j = op(n
�2/5); sup

xj 2[0;1]

jrj (xj )j = Op(n
�2/5):

Using the conditions (C1), (C3) and (C4) we may verify that, for 1 � j ¤ k � d ,

m̂B
j (xj ) = hj

�j;1(xj )

�j;0(xj )
f 0

j (xj ) + h2
j �2f 0

j (xj )
p0

j (xj )

pj (xj )
+

1

2
h2

j �2f 00
j (xj ) + rj (xj );

m̂C
jk
(xj )

p̂j (xj )
= h2

k�2

Z 1

0

f 0
k(xk)

@pjk(xj ; xk)/@xk

pj (xj )
dxk

+

Z 1

0

�
hk

�k;1(xk)

�k;0(xk)
f 0

k(xk) +
1

2
h2

k�2f 00
k (xk)

�
p̂jk(xj ; xk)

p̂j (xj )
dxk + rj (xj ):

(2-20)

Define

∆̃j (xj ) = h2
j �2f 0

j (xj )
p0

j (xj )

pj (xj )
+
X
k¤j

h2
k�2

Z 1

0

f 0
k(xk)

@pjk(xj ; xk)/@xk

pj (xj )
dxk ;

∆̂j (xj ) = f̂j (xj ) � fj (xj ) � m̂A
j (xj ) � hj

�j;1(xj )

�j;0(xj )
f 0

j (xj ) �
1

2
h2

j �2f 00
j (xj ):

(2-21)

Then, the equations at (2-18) and the expansions at (2-20) give

(2-22) ∆̂j (xj ) = ∆̃j (xj ) �
X
k¤j

Z
∆̂k(xk)

p̂jk(xj ; xk)

p̂j (xj )
dxk + rj (xj );

where we have used Z
m̂A

k (xk)
p̂jk(xj ; xk)

p̂j (xj )
dxk = op(n

�2/5)

uniformly for xj 2 [0; 1].
Now, we consider a system of equations for D̂ 2 H(p̂),

(2-23) D̂j (xj ) = ∆̃j (xj ) �
X
k¤j

Z
D̂k(xk)

p̂jk(xj ; xk)

p̂j (xj )
dxk ; 1 � j � d:

Arguing as in Section 2.2, solving this is equivalent to solving D̂ = T̂ D̂+∆̃˚, where ∆̃˚

is defined as m̂˚ with ∆̃j taking the roles of m̂j . Similarly, solving (2-22) is equivalent to
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solving for ∆̂ 2 H(p̂) such that ∆̂ = T̂ ∆̂ + ∆̃˚ + r˚ with r˚ being defined accordingly.
Then, under the condition (2-10) or with probability tending to one under the condition
(C1) it holds that ∆̂ = D̂ +

P1

r=0 T̂ rr˚. Since �̂j rk = op(n
�2/5) uniformly over [0; 1],

we get r˚ = r+ with the generic r+ such that r+(x) =
Pd

j=1 rj (xj ) for some rj that
satisfy (2-19). Also, from the observation that (I � �̂j ) � � � (I � �̂1)rj = op(n

�2/5)

uniformly over [0; 1] for all 1 � j � d , we have
1X

r=0

T̂ rr˚ = r˚ +

1X
r=1

T̂ rr˚ = r+:

This proves

(2-24) ∆̂ = D̂ + r+:

To identify the limit of D̂ we consider the system of integral equations for∆ 2 H(p),

(2-25) ∆j (xj ) = ∆̃j (xj ) �
X
k¤j

Z
∆k(xk)

pjk(xj ; xk)

pj (xj )
dxk ; 1 � j � d:

Again, arguing as in Section 2.2, solving (2-25) is equivalent to solving ∆ = T∆+∆˚,
where ∆˚ is defined as ∆̃˚ but with �̂j being replaced by �j . Since kT kop < 1 under
(C1), the latter equation has a unique solution ∆ =

P1

r=0 T r∆˚. A careful analysis of
the operators T and T̂ gives that (T̂ � T )

P1

r=1 T̂ r�1∆̃˚ = r+ and that

T

1X
r=2

r�2X
j=0

T j (T̂ � T )T̂ r�2�j ∆̃˚ = op(n
�2/5);

1X
r=1

T r(∆̃˚ � ∆˚) = op(n
�2/5)

uniformly over [0; 1]d . From these calculations it follows that D̂ = ∆ + r+. This with
(2-24) entails

(2-26) ∆̂ = ∆+ r+:

To get expansions for each component f̂j satisfying the constraint (2-17), we put the
following constraints on∆j .

(2-27)
Z

∆j (xj )pj (xj ) dxj = �2 h2
j

Z
f 0

j (xj )p
0
j (xj ) dxj ; 1 � j � d:

Then, using (2-17) and (2-26) with the definition of ∆̂j at (2-21), we may prove ∆̂j =

∆j + rj for 1 � j � d , establishing the following theorem.
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Tඁൾඈඋൾආ 2.3. Assume that the conditions (C1)–(C5) and that the bandwidths hj are
asymptotic to n�1/5. Then,

f̂j (xj ) = fj (xj )+ m̂A
j (xj )+hj

�j;1(xj )

�j;0(xj )
f 0

j (xj )+
1

2
h2

j �2f 00
j (xj )+∆j (xj )+ rj (xj );

where rj satisfy (2-19).

For fixed xj 2 (0; 1), all �j;1(xj ) = 0 for sufficiently large n, and (nhj )
1/2m̂A

j (xj )

are asymptotically normal with mean zero and variance

var(Y jXj = xj )pj (xj )
�1

Z
K2(u) du

. Thus, the asymptotic distributions of (nhj )
1/2(f̂j (xj ) � fj (xj )) of f̂j are readily

obtained from the stochastic expansion in the above theorem.
Although we have not discussed here, Mammen, Linton, and J. Nielsen [1999] also

developed a local linear version of the smooth backfitting technique. However, the original
proposal does not have easy interpretation as the Nadaraya-Watson estimator that we have
discussed, and its implementation is more complex than the latter. Mammen and Park
[2006] suggested a new smooth backfitting estimator that has the simple structure of the
Nadaraya-Watson estimator while maintaining the nice asymptotic properties of the local
linear smooth backfitting estimator.

2.4 Bandwidth selection and related models. In nonparametric function estimation,
selection of smoothing parameters is essential for the accuracy of the estimation. It is well
known that one should not choose these tuning parameters by minimizing a measure of fit,
such as the residual sum of squares n�1

Pn
i=1(Yi � f̂ (Xi ))

2, since it tends to choose hj

that give ‘overfitting’. Mammen and Park [2005] tackled this problem by deriving higher-
order stochastic expansions of the residual sum of squares and proposed a penalized least
squares method of choosing hj . They also proposed two plug-in bandwidth selectors that
rely on expansions of the average square errors n�1

Pn
i=1(f̂ (Xi )�f (Xi ))

2. J. P. Nielsen
and Sperlich [2005] considered a cross-validated bandwidth selector and discussed some
other practical aspects of the smooth backfitting algorithm.

A very important extension of the additive mean regression model at (1-1) or (2-16) is
to a generalized additive model,

(2-28) g(E(Y jX = x)) = f1(x1) + � � � + fd (xd );

where g is a known link function. This model accommodates discrete-type responses Y

such as Bernoulli and Poisson random variables. Yu, Park, and Mammen [2008] extended
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the idea of smooth backfitting to generalized additive models. The estimation of the ad-
ditive function f = f1 + � � � + fd based on observations of (X; Y ) involves a nonlinear
optimization problem due to the presence of the link g. To resolve the difficulty, Yu, Park,
and Mammen [ibid.] introduced the so called ‘smoothed likelihood’ and studied an inno-
vative idea of double iteration to maximize the smoothed likelihood. They proved that
the double iteration algorithm converges and developed a complete theory for the smooth
backfitting likelihood estimators of fj .

Varying coefficient models are another important class of structured nonparametric re-
gression models. The models arise in many real applications, see Hastie and Tibshirani
[1993], Yang, Park, Xue, and Härdle [2006] and Park, Mammen, Y. K. Lee, and E. R. Lee
[2015]. Their structure is similar to classical linear models, but they are more flexible
since the regression coefficients are allowed to be functions of other predictors. There are
two types of varying coefficient models that have been studied most. One type is to let
all regression coefficients depend on a single predictor, say Z: E(Y jX = x; Z = z) =

f1(z)x1 + � � � + fd (z)xd . The estimation of this type of models is straightforward. For
each given z, we may estimate f(z) � (f1(z); : : : ; fd (z)) by

f(z) = argmin
(�1;:::;�d )2Rd

nX
i=1

0@Yi �

dX
j=1

�j Xij

1A2

Kh(z; Zi ):

There have been a large body of literature on this model, see Fan and W. Zhang [1999]
and Fan and W. Zhang [2000], for example. The second type is to let different regression
coefficients be functions of different predictors, say Z � (Z1; : : : ; Zd ):

(2-29) E(Y jX = x;Z = z) = f1(z1)x1 + � � � + fd (zd )xd :

Fitting the model (2-29) is completely different from fitting the first type. The standard
kernel smoothing that minimizes

nX
i=1

0@Yi �

dX
j=1

�j Xij

1A2
dY

j=1

Khj
(zj ; Zij )

for each zwould give multivariate function estimators of fj (zj ) that also depend on other
values of predictors zk for k ¤ j . Yang, Park, Xue, and Härdle [2006] studied the esti-
mation of the latter model based on the marginal integration technique. Later, Y. K. Lee,
Mammen, and Park [2012b] extended the idea of smooth backfitting to estimating the
model.

Two limitations in the application of the model (2-29) are that the number of predictors
Xj should be the same as that of Zj and that in a modeling stage it is rather difficult
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to determine which predictors we choose to be the ‘smoothing variables’ Zj and which
to be ‘regressors’ Xj . Y. K. Lee, Mammen, and Park [2012a] removed the limitations
completely by studying a very general form of varying coefficient models. With a link
function g and a given set of d predictors, they introduced the model

(2-30) g(E(Y jX = x)) = x1

0@X
k2I1

f1k(xk)

1A+ � � � + xq

0@X
k2Iq

fqk(xk)

1A ;

where q � d and the index sets Ij are known subsets of f1; : : : ; dg and allowed to overlap
with each other, but not to include j . If each Ij consists of a single index different from
each other, then (2-30) reduces to the model (2-29), while taking X1 � 1, q = 1 and I1 =

f2; : : : ; dg gives the generalized additive model (2-28). Y. K. Lee, Mammen, and Park
[ibid.] proved that the component functions fjk are identifiable under weak conditions,
developed a powerful technique of fitting the model and presented its theory.

Other related works include Y. K. Lee, Mammen, and Park [2010], Y. K. Lee, Mam-
men, and Park [2014], Yu, Mammen, and Park [2011] and Y. K. Lee [2017], to list a few.
Among them, Y. K. Lee, Mammen, and Park [2010] considered the estimation of additive
quantile models, Y = f1(X1) + � � �+ fd (Xd ) + ", where " satisfies P (" � 0jX) = ˛ for
0 < ˛ < 1. They successfully explored the theory for both the ordinary and smooth back-
fitting by devising a theoretical mean regression model under which the least squares ordi-
nary and smooth backfitting estimators are asymptotically equivalent to the corresponding
quantile estimators under the original model. Y. K. Lee, Mammen, and Park [2014] further
extended the idea to the estimation of varying coefficient quantile models. Yu, Mammen,
and Park [2011] considered a partially linear additive model. They derived the semipara-
metric efficiency bound in the estimation of the parametric part of the model and proposed
a semiparametric efficient estimator based on smooth backfitting estimation of the additive
nonparametric part. Finally, Y. K. Lee [2017] studied the estimation of bivariate additive
regression models based on the idea of smooth backfitting.

3 Errors-in-variable additive models

In this section we consider the situation where the predictors Xj are not directly observed
in the additive model (1-1), but contaminated Zj = Xj +Uj with measurement errors Uj

are. Many people worked on errors-in-variables problems in nonparametric density and
regression estimation. A few notable examples include Carroll and Hall [1988], Stefanski
and Carroll [1990], Fan and Truong [1993], Delaigle, Hall, and Meister [2008], Delaigle,
Fan, and Carroll [2009], Delaigle and Hall [2016] and Han and Park [2018]. Among them,
Han and Park [ibid.] is considered as the first attempt dealing with errors-in-variables in
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structured nonparametric regression. In this section we outline the work of Han and Park
[ibid.] on the model (1-1) and discuss its extensions.

3.1 Normalized deconvolution kernel. Suppose that we observe Zij = Xij +Uij for
1 � i � n and 1 � j � d , where we assume that Ui � (Ui1; : : : ; Uid ) are independent
of Xi . We also assume that Uij are independent and have known densities. Write Zi =

(Zi1; : : : ; Zid ). The task is to estimate the mean regression function f = E(Y jX = �)

with the additive structure f (x) = f1(x1) + � � � + fd (xd ) using the contaminated data
(Zi ; Yi ); 1 � i � n. The very core of the difficulty is that the observed responses Yi forZi

near a point of interest, say x, may not contain relevant information about the true function
f (x) because of the measurement errors Ui � (Ui1; : : : ; Uid ). Thus, local smoothing of
Yi with a conventional kernel weighting scheme that acts on Zi fails.

In the estimation of a density p0 of a random variable X taking values in R, one uses
a special kernel scheme to effectively deconvolute irrelevant information contained in the
contaminated Z = X + U . For a baseline kernel function K � 0, define

(3-1) K̃h(u) =
1

2�

Z 1

�1

e�itu �K(ht)

�U (t)
dt;

where �W for a random variable W denotes the characteristic function of W . This kernel
has the so called ‘unbiased scoring’ property that

(3-2) E
�
K̃h(x � Z)jX

�
= Kh(x � X):

The property (3-2) basically tells that the bias of the deconvolution kernel density estima-
tor p̂0(x) = n�1

Pn
i=1 K̃h(x � Zi ) is the same as the ‘oracle’ estimator p̂0;ora(x) =

n�1
Pn

i=1 Kh(x � Xi ) that is based on unobservable Xi and the conventional kernel
scheme Kh.

In Section 2 we have seen that the first property of (2-3) is essential in the estimation
of the additive model (1-1). One may think of normalizing the deconvolution kernel as
defined at (3-1) as in (2-2) with K̃hj

(xj � u) taking the role of Khj
(xj � u). But, it turns

out that the resulting kernel violates the corresponding version of the unbiased scoring
property (3-2). Han and Park [ibid.] noted that

K̃hj
(xj � z) =

1

2�hj

Z 1

�1

e�it(xj �z)/hj
'K(t; xj ; hj )

�Uj
(t/hj )

dt;

where 'K(t; xj ; hj ) =
R 1
0 eit(xj �v)/hj Khj

(xj � v) dv. The basic idea was then to re-
placeKhj

(xj ��) in the definition of 'K(t; xj ; hj ) by the normalized kernelKhj
(xj ; �) as

defined at (2-2). The resulting kernel is not well-defined, however, for xj on the boundary
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region [0; hj ) [ (1 � hj ; 1]. To remedy this, Han and Park [2018] proposed a new kernel
scheme K̃?

hj
defined by

(3-3) K̃?
hj
(xj ; z) =

1

2�hj

Z 1

�1

e�it(xj �z)/hj
�K(t; xj ; hj )�K(t)

�Uj
(t/hj )

dt;

where �K(t; xj ; hj ) =
R 1
0 eit(xj �v)/hj Khj

(xj ; v) dv. Han and Park [ibid.] proved that
K̃?

hj
has both the properties of normalization and unbiased scoring under the following

condition (A1). Let bc denote the largest integer that is less than or equal to  , and K(`)

the `-th derivative of K.

(A1) There exist constants ˇ � 0 and 0 < c < C < 1 such that c(1 + jt j)�ˇ �

j�Uj
(t)j � C (1 + jt j)�ˇ for all t 2 R and for all 1 � j � d . For such constant ˇ

the baseline kernel K is bˇ+1c-times continuously differentiable and K(`)(�1) =

K(`)(1) = 0 for 0 � ` � bˇc.

Tඁൾඈඋൾආ 3.1. (Han and Park [ibid.]). Under the conditions (A1) and (C3), the integral
in (3-3) exists for all xj 2 [0; 1] and z 2 R. Furthermore,

R 1
0 K̃?

hj
(xj ; z) dxj = 1 for all

z 2 R and

E
�
K̃?

hj
(xj ; Zj )

ˇ̌
Xj = uj

�
= Khj

(xj ; �) � Khj
(uj ) for all xj ; uj 2 [0; 1]:

3.2 Theory of smooth backfitting. With the normalized and smoothed deconvolution
kernel K̃?

hj
introduced in Section 3.1, we simply replace p̂j ; p̂jk and m̂j in (2-4), respec-

tively, by

p̂?
j (xj ) = n�1

nX
i=1

K̃?
hj
(xj ; Zij );

p̂?
jk(xj ; xk) = n�1

nX
i=1

K̃?
hj
(xj ; Zij )K̃

?
hk
(xk ; Zik);

m̂?
j (xj ) = p̂?

j (xj )
�1n�1

nX
i=1

K̃?
hj
(xj ; Zij )Yi :

Define p̂?(x) = n�1
Pn

i=1

Qd
j=1 K̃?

hj
(xj ; Xij ) and �̂?

j as �̂j at (2-7) with p̂ and p̂j

being replaced by p̂? and p̂?
j , respectively. Let T̂ ? = (I � �̂?

d
) � � � (I � �̂?

1 ). We can
express the resulting backfitting equation as equations

(3-4) f̂ ? = (I � �̂?
j )f̂

? + m̂?
j ; 1 � j � d:
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As we argued in Section 2.2, solving this system of equations is equivalent to solving
f̂ ? = T̂ ?f̂ ? + m̂?

˚, where m̂?
˚ is defined as m̂˚ with �̂j and m̂j being replaced by �̂?

j

and m̂?
j , respectively. The corresponding version of the backfitting algorithm as at (2-11)

is given by f̂ ?[r] = T̂ ?f̂ ?[r�1] + m̂?
˚; r � 1. It holds that f̂ ?[r] converges to f̂ ? as

r ! 1 under the condition that
(3-5)Z

[0;1]2

"
p̂?

jk
(xj ; xk)

p̂?
j (xj )p̂

?
k
(xk)

#2

p̂?
j (xj )p̂

?
k(xk) dxj dxk < 1 for all 1 � j ¤ k � d:

An analogue of Theorem 2.2 also holds. Wemake the following additional assumptions
for this.

(A2) For the constant ˇ � 0 in the condition (A1), jtˇ+1�0
Uj

(t)j = O(1) as jt j ! 1

and
R

jtˇ �K(t)j dt < 1.

(A3) For the constant ˇ � 0 in the condition (A1), hj ! 0 and n(hj hk)
1+2ˇ/ logn !

1 as n ! 1 for all 1 � j ¤ k � d .

Tඁൾඈඋൾආ 3.2. (Han and Park [ibid.]). Assume the conditions (C1), (C3) and (A1)–(A3).
Then, with probability tending to one, the solution of the system of equations (3-4) exists
and is unique. Furthermore, there exists a constant 0 <  < 1 such that

lim
n!1

P
�
kf̂ ?[r]

� f̂ ?
k2 �  r(kf̂ ?[0]

k2 + (1 � )�1
km̂?

˚k2)
�
= 1:

Now we discuss the asymptotic properties of f̂ ? and its components. To identify the
individual components f̂ �

j , we use the constraints

(3-6)
Z 1

0

f̂ ?
j (xj )p̂

?
j (xj ) dxj = 0; 1 � j � d:

As in Section 2, we assume EY = 0 for simplicity so that f (x) = f1(x1) + � � �+ fd (xd )

with fj satisfying the constraints (2-15). We also set hj � h.
The asymptotic analysis of f̂ ?

j is much more complex than in the case of no measure-
ment error. To explain the main technical challenges, we note that

(3-7) f̂ ?
j � fj = ı̂j �

X
k¤j

�̂?
j (f̂

?
k � fk); 1 � j � d;

where ı̂j = m̂?
j � �̂?

j (f ). Since

�j (f ) =

Z
[0;1]d�1

E(Y jX = x)
p(x)

pj (xj )
dx�j = E(Y jXj = xj ) = mj ;
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ı̂j basically represent the errors of m̂?
j as an estimator ofmj . Each ı̂j corresponds to m̂A

j +

m̂B
j +p̂�1

j

P
k¤j m̂C

jk
in the nomeasurement error case. Consider the same decomposition

ı̂j = m̂?A
j + m̂?B

j + p̂?�1
j

P
k¤j m̂?C

jk
, where m̂?A

j ; m̂?B
j and

p̂?�1
j

P
k¤j m̂?C

jk
are defined in the same way as m̂A

j ; m̂B
j and p̂�1

j

P
k¤j m̂C

jk
, respec-

tively, withKhj
(xj ; Xij ) andKhk

(xk ; Xik) being replaced by K̃?
hj
(xj ; Zij ) and K̃?

hk
(xk ; Zik),

respectively. We have seen in Section 2 that the error components m̂B
j and m̂C

jk
of m̂j �

�̂j (f ) are spread, through the backfitting operation, into the errors of the other component
function estimators f̂k ; k ¤ j , to the first order. In the present case, the errors are of two
types. One type is for the replacement of Khj

with Xij by K̃?
hj

with contaminated Zij ,
and the other is for those one would have when one uses Khj

with Xij in the estimation
of f . The analysis of the first type is more involved. It has an additional complexity that
we need to analyze whether the first type of errors in m̂?B

j and m̂?C
jk

are spread into the
errors of f̂ ?

k
for k ¤ j , through the backfitting operation.

Han and Park [2018] solved this problem and proved the following theorem. To state
the theorem, let

�n(ˇ) =

8̂<̂
:
1 ˇ < 1/2p
log h�1 ˇ = 1/2

h1/2�ˇ ˇ > 1/2:

Also, let r?
j be generic stochastic terms such that

sup
xj 2[2hj ;1�2hj ]

jr?
j (xj )j = op(h

2); sup
xj 2[0;1]

jr?
j (xj )j = Op(h

2):

Tඁൾඈඋൾආ 3.3. (Han and Park [ibid.]). Assume the conditions (C1), (C3)–(C5), (A1) and
(A2). Assume also that nh3+4ˇ/ logn is bounded away from zero. Then, uniformly for
xj 2 [0; 1],

f̂ ?
j (xj ) = fj (xj ) + hj

�1;j (xj )

�0;j (xj )
f 0

j (xj ) +
1

2
h2

j �2f 00
j (xj ) + ∆j (xj )

+ r?
j (xj ) + Op

 r
logn

nh1+2ˇ
� �n(ˇ)

!
; 1 � j � d;

where ∆j are the same as those in Theorem 2.3.
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The rates of convergence of f̂ ?
j to their targets fj are readily obtained from Theo-

rem 3.3. For example, in case ˇ < 1/2 we may get

sup
xj 2[2hj ;1�2hj ]

jf̂ ?
j (xj ) � fj (xj )j = Op

�
n�2/(5+2ˇ)

p
logn

�
;

sup
xj 2[0;1]

jf̂ ?
j (xj ) � fj (xj )j = Op

�
n�1/(5+2ˇ)

�
by choosing h � n�1/(5+2ˇ). The uniform rate in the interior is known to be the optimal
rate that one can achieve in one-dimensional deconvolution problems, see Fan [1991]. For
other cases where ˇ � 1/2, see Corollary 3.5 of Han and Park [2018].

3.3 Extension to partially linear additive models. In this subsection we consider the
model

(3-8) Y = �>X+ f1(Z1) + � � � + fd (Zd ) + ";

where " is independent of the predictor vectors X � (X1; : : : ; Xp)
> and Z � (Z1; : : : ;

Zd )
>, � are unknown and fj are unknown univariate functions. We do not observeX and

Z, but the contaminatedX� = X+U andZ� = Z+V for measurement error vectorsU and
V. We assume that " is also independent of (U;V),U has mean zero and a known variance
ΣU and is independent of V, Vj are independent across j and have known densities, and
(U;V) is independent ofX and Z. Below, we outline the work of E. R. Lee, Han, and Park
[2018] that studies the estimation of � and fj in the model (3-8) based on independent
and identically distributed observations (X�

i ;Z�
i ; Yi ); 1 � i � n.

Let H be the space of square integrable functions g : Rd ! R such that g(z) =

g1(z1) + � � � + gd (zd ). Let Π(�jH) denote the projection operator onto H. Define � =

Π(E(Y jZ = �)jH) and �j = Π(E(Xj jZ = �)jH); 1 � j � p. We write � =

(�1; : : : ; �p)
>. Under the condition that D := E(X � �(Z))(X � �(Z))> is positive

definite, it holds that

(3-9) � = D�1E(X � �(Z))(Y � �(Z)) let
= D�1c:

If we observe Xi and Zi , then the estimation of � is straightforward from the Equa-
tion (3-9). If we observeZi andX�

i but notXi , thenwemay employ the standard technique
that corrects ‘attenuation effect’ due to the measurement errors Ui in the estimation of D,
see Liang, Härdle, and Carroll [1999].

In our setting where both Xi and Zi are not available, we may estimate � and � by
the technique we have discussed in Section 3.1 with the normalized deconvolution kernel
scheme. Call them �̂? and �̂?, respectively. A further complication here is that we may
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not use �̂?(Zi ) and �̂?(Zi ) in a formula for estimating � that basically replaces the ex-
pectations in (3-9) by the corresponding sample average, since Zi are not available. E. R.
Lee, Han, and Park [2018] successfully addressed this problem by observing the following
identities.

D =

Z
[0;1]d

E
�
(X�

� �(z))(X�
� �(z))>

ˇ̌̌
Z = z

�
pZ(z) dz � ΣU;

c =
Z
[0;1]d

E
�
(X�

� �(z))(Y � �(z))>
ˇ̌̌
Z = z

�
pZ(z) dz;

where pZ denote the joint density of Z. Using the normalized deconvolution kernel func-
tion K̃?

bj
introduced in Section 3.1 with bandwidth bj being possibly different from hj

that are used to estimate � and �, we may estimate D and c by

D̂ = n�1
nX

i=1

Z
[0;1]d

(X�
i � �̂?(z))(X�

i � �̂?(z))>

dY
j=1

K̃?
bj
(zj ; Z�

ij ) dz � ΣU;

ĉ = n�1
nX

i=1

Z
[0;1]d

(X�
i � �̂?(z))(Yi � �̂?(z))

dY
j=1

K̃?
bj
(zj ; Z�

ij ) dz:

These gives an estimator �̂ = D̂�1ĉ of � .
We may then estimate the additive function f = f1 + � � � + fd and its component fj

by applying the technique discussed in Section 3. In this application we takes Yi � �̂>X�
i

as responses and Z�
i as the contaminated predictor values. Since the rate of convergence

of the parametric estimator �̂ is faster than the nonparametric rate, as we will see in the
following theorem, the resulting estimators of f and its components fj have the same first-
order asymptotic properties as the corresponding oracle estimators that use Yi � �>X�

i as
responses. The asymptotic properties of the oracle estimators are the same as in Theo-
rem 3.3. Theorem 3.4 below demonstrates the best possible rates that �̂ can achieves in
the three ranges of ˇ, the index for the smoothness of measurement error distribution in the
condition (A1). To state the theorem for �̂ , we make the following additional assumptions.

(B1) E(X2
j j Z = �) are bounded on [0; 1]d .

(B2) For 1 � j � p, the component functions of the additive function �j are twice
continuously differentiable on [0; 1].

(B3) E(X � �(Z))(X � �(Z))> is positive definite.

(B4) There exist constants C > 0 such that EeuW � exp(C u2/2) for all u, for W =

Uj ; Xj and ".
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Tඁൾඈඋൾආ 3.4. (E. R. Lee, Han, and Park [ibid.]). Assume the condition (C1) holds for the
marginal and joint densities of Zj and Zjk for all 1 � j ¤ k � d . Also, assume the
conditions (C3), (A1), (A2) and (B1)–(B4) hold. Then, (i) �̂ � � = Op(n

�1/2) when ˇ <

1/2 if hj � n�˛1 and bj � n�˛2 with 1/4 � ˛2 < ˛1/(2ˇ) and maxf1/6; ˇ/2g < ˛1 <

1/(3 + 2ˇ); (ii) �̂ � � = Op(n
�1/2 logn) when ˇ = 1/2 if hj � bj � n�1/4

p
logn;

(iii) �̂ � � = Op(n
�1/(1+2ˇ)

p
logn) when ˇ > 1/2 if hj � bj � n�1/(2ˇ+4)(logn)1/4.

4 Hilbertian additive models

The analysis of non-Euclidean data objects is an emerging area in modern statistics. A
well-known and most studied example is functional data analysis. There have been a few
attempts for nonparametric models in this area. These include Dabo-Niang and Rhomari
[2009], Ferraty, Laksaci, Tadj, and Vieu [2011] and Ferraty, Van Keilegom, and Vieu
[2012]. They studiedNadaraya-Watson estimation of the full-dimensional regression func-
tion E(Y jX = �) without any structure when the response is in a separable Hilbert or
Banach space. The full-dimensional estimator suffers from the curse of dimensionality.
More recently, X. Zhang, Park, and Wang [2013], Han, Müller, and Park [2018] and Park,
Chen, Tao, and Müller [2018] considered the estimation of structured nonparametric mod-
els for functional data, but their studies were either for SBF methods applied to Y (t) for
each t or for models based on finite number of functional principal/singular components
of predictors and responses. Thus, the structured nonparametric models and the methods
of estimating them were actually for finite-dimensional Euclidean variables.

In this section we introduce an additive model with response taking values in a Hilbert
space and discuss briefly some statistical notions that lay the foundations for estimating
the model. This discussion is largely based on the recent work in progress by Jeon [2018].
Let Y be a random element taking values in a separable Hilbert space H. We confine our
discussion to the casewhere the predictorX = (X1; � � � ; Xd )

> takes values in [0; 1]d , how-
ever. This is mainly because SBF methods discussed in the previous sections require the
marginal and joint densities of Xj and (Xj ; Xk), which generally do not exist in infinite-
dimensional non-Euclidean cases. For the case where the predictors do not have densities,
one may employ ‘surrogate probability density functions’ as discussed in Delaigle and
Hall [2010]. Let us denote a vector addition and a real-scalar multiplication by ˚ and
ˇ, respectively. For Borel measurable maps fj : [0; 1] ! H as additive components, an
additive model for E(YjX) may be written as

(4-1) E(YjX) = f1(X1) ˚ � � � ˚ fd (Xd ):

Belowwe introduce the notion of Bochner integral, and then discuss briefly its applications
to some important statistical notions for the SBF theory.
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4.1 Bochner integration. Bochner integral is defined for Banach space-valued maps.
We start with the classical definition. Let (Z; A; �) be a measure space and B be a Banach
space with a norm denoted by k � k. We say a map m : Z ! B is �-simple if m =Ln

i=1 bi ˇ 1Ai
for bi 2 B and disjoint Ai 2 A with �(Ai ) < 1. In this case, the

Bochner integral ofm is defined byZ
m d� =

nM
i=1

bi ˇ �(Ai ):

Amapm : Z ! B is called �-measurable ifm is an almost everywhere limit of �-simple
maps. A �-measurable map m is called Bochner integrable if

R
kmkd� < 1. In this

case, the Bochner integral ofm is defined byZ
m d� = lim

n!1

Z
mn d�

for a sequence of �-simple mapsmn such thatmn ! m a:e: [�].
In statistical applications of Bochner integrals, themeasure� in ameasure space (Z; A; �)

is the distribution of a random variable. In the case of the additive maps fj in (4-1), � cor-
responds to PX�1

j where P is the probability measure of the probability space (Ω; F ; P )

where Xj is defined. The classical definition given above for �-measurable maps is not
appropriate since PX�1

j -measurability of fj is not equivalent to Borel-measurability of
fj . In the model (4-1), we implicitly assume that fj (Xj ) are random elements, i.e., Borel-
measurable with respect to F , as is usual in all statistical problems. For this reason we
assume in the model (4-1) that each fj is Borel-measurable with respect to the Borel � -
field of [0; 1].

The notion of Bochner integral may be extended to Borel-measurable maps. We intro-
duce it briefly here. We refer to Cohn [2013] for more details. For a Banach spaceB, a map
m : Z ! B is called simple if m takes only finitely many values. A map m : Z ! B
is called strongly measurable if m is Borel-measurable and m(Z) is separable. A map
m : Z ! B is called strongly integrable ifm is strongly measurable and

R
Z kmk d� < 1.

Ifm is strongly integrable, then there exists a Cauchy sequence of strongly integrable sim-
ple mapsmn such that limn;m!1

R
kmn �mmk d� ! 0 and limn!1 mn(z) = m(z) for

all z 2 Z. In this case,
R
m d� is defined as limn!1

R
mn d�.

4.2 Statistical properties of Bochner integrals. Since the notion of Bochner integral
is new in statistics, statistical properties of this integral have been rarely studied. There are
many statistical notions and properties one needs to define and derive to develop relevant
theory for estimating the model (4-1). It was only recent that Jeon [2018] studied such
basic ingredients. Below, we present two formulas regarding the notions of expectation
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and of conditional expectation that are essential in developing further theory for the SBF
estimation of (4-1).

Let B be a separable Banach space. Let Z andW be random elements taking values in
� -finite measure spaces (Z; A; �) and (W; B; �), respectively. We assume PZ�1 � �,
PW�1 � � and P (Z;W)�1 � � ˝ �, where PZ�1, PW�1 and P (Z;W)�1 are the
probability distributions of Z,W and (Z;W), respectively, so that there exist densities of
Z,W and (Z;W), denoted by pZ, pW and pZ;W, respectively. We first introduce a general
expectation formula, and then a conditional expectation formula, in terms of the densities
of Z,W and (Z;W).

Pඋඈඉඈඌංඍංඈඇ 4.1. (Jeon [ibid.]) Assume that f : Z ! B is a strongly measurable map
such that E(kf(Z)k) < 1. Then, E(f(Z)) =

R
Z f(z) ˇ pZ(z) d�.

Pඋඈඉඈඌංඍංඈඇ 4.2. (Jeon [ibid.]) Assume that pW 2 (0; 1) on W and that f : Z ! B is a
strongly measurable map such that E(kf(Z)k) < 1. Let g : W ! B be a map defined
by

g(w) =

(R
Z f(z) ˇ

pZ;W(z;w)
pW(w) d�; if w 2 DW

g0(w); otherwise

where DW = fw 2 W :
R

Z kf(z)k pZ;W(z;w) d� < 1g and g0 : W ! B is any strongly
measurable map. Then, g is strongly measurable and g(W) is a version of E(f(Z)jW).

4.3 Discussion. The additive regression model (4-1) for Hilbertian response have many
important applications. Non-Euclidean data objects often take values in Hilbert spaces.
Examples include functions, images, probability densities and simplices. Among them,
the latter two data objects have certain constraints. A density is non-negative and its inte-
gral over the corresponding domain where it is defined equals 1. A simplex data object,
(v1; � � � ; vD)> with vk > 0 for 1 � k � D and

PD
k=1 vk = 1, has similar constraints.

Analyzing such data objects with standard Euclidean regression techniques would give
estimates that are off the space where the data objects take values. The approach based
on the model (4-1) with the corresponding Hilbertian operations ˚ and ˇ would give a
proper estimate of the regression map that forces its values lie in the space of the data ob-
jects. It also avoids the curse of dimensionality when d is high. This way would lead us to
a powerful nonparametric technique that unifies various statistical methods for analyzing
non-Euclidean data objects.
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A SELECTIVE SURVEY OF SELECTIVE INFERENCE
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The idea of a scientist, struck, as if by lightning with a question, is far from
the truth. – Tukey [1980].

Abstract
It is not difficult to find stories of a crisis in modern science, either in the popular

press or in the scientific literature. There are likely multiple sources for this crisis.
It is also well documented that one source of this crisis is the misuse of statistical
methods in science, with the P -value receiving its fair share of criticism. It could be
argued that this misuse of statistical methods is caused by a shift in how data is used
in 21st century science compared to its use in the mid-20th century which presumed
scientists had formal statistical hypotheses before collecting data. With the advent of
sophisticated statistical software available to anybody this paradigm has been shifted
to one in which scientists collect data first and ask questions later.

1 The new (?) scientific paradigm

Figure 1: A simplified version of
the scientific method.

We are all familiar with a paradigm that does allow sci-
entists to collect data first and ask questions later: the
classical scientific method illustrated in Figure 1. A sci-
entist collects data D, generates questions of interest
Q(D), then collects fresh data D0 for confirmation and
perhaps to discover additional questions of interest. The
problem with this new paradigm is that it seeks to use
D to answer these questions and may not have access to
D0.

We pause here to note that Tukey used the term ques-
tion rather than the more precise term hypothesis which
statisticians might reasonably impute to be a statistical
hypothesis. Given the computing capabilities of modern

MSC2010: primary 62-02; secondary 62J15, 62J05, 62-07.

3037

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v4-p


3038 JONATHAN E. TAYLOR

statistical software, it is not really clear that data analy-
sis produces statistical hypotheses:

In practice, of course, hypotheses often emerge after the data have been ex-
amined; patterns seen in the data combine with subject-matter knowledge in
a mix that has so far defied description. – P. Diaconis “Theories of Data
Analysis” [n.d.]

We continue to distinguish a question Q from a statistical object such as a hypothesis
test, i.e. a pair (M; H0) with M a statistical model (a collection of distributions on some
measurable space) and H0 � M; or a pair (M; �) with � : M ! Rk a parameter for
which we might form a region or point estimate. An example of a Bayesian statistical
might be a triple (�; `; T ) with � a prior, ` a likelihood and T some functional of the
posterior. The transformation from questions to statistical objects is up to the scientist,
perhaps in partnership with a statistician.

Returning to the new paradigm in science, whether the statistics community feel that
this is the correct way to run experiments and advance a particular field of science, it is
difficult to ignore the fact that it is how (at least some) modern science is practiced. We
feel it is imperative to provide scientists with tools that provide some of the guarantees of
the classical methods but are applicable in this new paradigm. These are the problems that
the area of selective inference attempts to address. The term selective refers to the fact that
the results reported in a scientific study (e.g. P -values, confidence intervals) are selected
through some mechanism guided by the scientist. When the mechanism of selection is
known, it is often possible to mitigate this selection bias.

1.1 Two prototypical settings with many questions. We describe two prototypical
problems occurring in many modern scientific disciplines, from genomic studies to neuro-
science and many others. Both involve a response y 2 R (which we take to be real-valued
simply for concreteness) and a set of features X 2 Rp .

1.1.1 Large scale inference. Often of interest are the p questions

(1) QL
j : Is feature j associated with outcome y? 1 � j � p

This problem is often referred to as large-scale inference Efron [2012] (L for large) and
has brought about a renewed interest in empirical Bayes methodology and multiple com-
parisons in general.

A canonical experimental design in this problem samples n pairs IID from some law
F in a statistical model M. Having these pre-determined set of questions allows the
statistician, given the model M, to transform each question to a parameter in model M:
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QL
j 7! �L

j 2 RM where �L
j measures a marginal association between y and feature j

on M. Parameters in hand, the statistician can then use the formal methods of statistical
inference to “answer” these questions.

1.1.2 Feature selection in regression. The second problem also involves response y

and features X , though in this case the scientist seeks to build a predictive model of y

from X . At first glance, the natural questions are

(2) QR
j : Is feature j important when trying to predict y from X? 1 � j � p:

As is clear to any student after a course in linear regression (R for regression) the above
questions are ill posed. This point is emphasized in Berk, Brown, Buja, K. Zhang, and
Zhao [2013] which then posed the following questions

(3) Q̄R
j jE : Is feature j correlated with the residual when trying predict y from XEnj ?

Such questions are indexed by j 2 E; E � f1; : : : ; pg. These questions are also posed
before data collection as soon as the scientist decided to collect these p features to build
a predictive model for y from X .

These two problems have inspired much work in selective inference: with the large
scale inference problem drawing intense focus in the early part of the 21st century Efron
[2012] and Storey [2003] building on the seminal work of Benjamini and Hochberg [1995].
The regression problem is an area of more recent interest Berk, Brown, Buja, K. Zhang,
and Zhao [2013], Hurvich and Tsai [1990], Lee, D. L. Sun, Y. Sun, and J. E. Taylor [2016],
Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani [2014], andWasserman and Roeder
[2009] perhaps due to the added complexity of the set of possible questions under consid-
eration.

2 Selective inference

We now describe some proposed methods to address this new scientific paradigm. The
first set of methods, based on multiple comparisons, generally ignore the possible exis-
tence of D0 (formally equivalent to setting D0 = 0, a constant random variable) while
the conditional methods (of which the classical scientific method is one) do acknowledge
that D likely does not exist in a vacuum. A scientist probably will have run previous
experiments and will (subject to restrictions) run future experiments.

2.1 Multiple comparisons and simultaneous inference. Some of the earliest refer-
ences to selective inference Benjamini [2010] and Benjamini and Yekutieli [2005] come
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from the field of multiple comparisons in the large scale inference problem, particularly
through the extraordinarily influential work of Benjamini and Hochberg [1995] and its in-
troduction of the False Discovery Rate (FDR) as a more liberal error rate than the Family
Wise Error Rate (FWER).

The goal in multiple comparisons procedures is to construct procedures T that control
an error rate such as the FDR or FWER (defined below) over some statistical model. For
concreteness, suppose that in the large scale inference problem we have access to an esti-
mate Zj of association �j between feature j and response y we might take D = Z and
our statistical model to be

(4) ML = fN (�;Σ) : � 2 Rp;Σ 2 Rp�p
� 0; diag(Σ) = 1g

with Σ known or unknown (but hopefully estimable). In this problem, a multiple compar-
isons procedure is a map T : Rp ! f0; 1gp that makes a decision whether each hypothesis
H0;j is true or false. A procedure T that controls the FWER at level ˛ satisfies

(5) F WER(T; F ) = PF (V (T; Z) > 0) � ˛; 8F 2 ML

with

(6) V (T; Z) =
˚
j : �j ¤ 0; Tj (Z) = 1

	
the number of false positives the procedure T selected on outcomes Z where Tj (Z) = 1

signals a positive decision, i.e. that H0;j is false. When p = 1 and only one hypothesis
is under consideration, F WER reduces to Type I error, 0 for any F 62 H0. A test that
controls the Type I error at level ˛ satisfies

(7) PF (T (Z) = 1) � ˛; 8F 2 H0:

The FDR of procedure T is also expressible as an expectation under the law F . Note
that controlling FDR or FWER are marginal properties of each F 2 ML. This will be
contrasted below with conditional properties.

The prototypical example of a procedure that controls the FWER is the Bonferroni
procedure which uses a simple bound on the law of the largest (Zj )1�j �p:

(8) PF

�
max

1�j �p
jZj � �j j > t

�
� p � Φ̄(t); 8F 2 ML

with Φ̄ the tail of a standard normal random variable. Tighter approximations of the left-
hand valid over some M can be used to get an improvement over Bonferroni. This area
of research is sometimes referred to as simultaneous inference. The late 20th century
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saw its own golden era in research in this area Adler and J. E. Taylor [2007], Azaïs and
Wschebor [2009], Siegmund andWorsley [1995], J. Sun [1993], and Takemura and Kuriki
[2002] in which the feature space was modelled as approximating a continuum with Σ a
representation of the covariance function of some Gaussian process.

It is well known that bounds for the left hand side of (8) translate to (simultaneous)
coverage guarantees for confidence intervals for the �j . For example, suppose t is such
that some bound for the left hand side of (8) is less than ˛. Then,

(9) PF (9j : �j 62 [Zj � t; Zj + t ]) � ˛; 8F 2 ML:

This simultaneous approach was considered in Berk, Brown, Buja, K. Zhang, and Zhao
[2013]. Formally (considering X fixed) the authors set

(10) MPOSI = fN (�; In�n) : � 2 Rn
g :

and transform the questions Q̄R
j jE

7! �R
j jE

2 (Rn)� to parameters taken to be the linear
functionals

(11) �R
j jE (�) = eT

j (XT
E XE )�1XT

E �

where ej : RE ! R is projection onto the j coordinate. The authors of Berk, Brown,
Buja, K. Zhang, and Zhao [ibid.] then note that MPOSI can be embedded in a model of
the form ML indexed by (j; E) with j 2 E and E � f1; : : : ; pg and taking D to be
(some subset of) the collection of corresponding Z statistics. The authors propose finding
a bound better than Bonferroni using simulation.

We end this section with knockoffs Barber and Candes [2014], a different approach to
the regression problem within the framework of multiple comparisons. Being a regression
problem, questions must specify E. The knockoff setting fixes E = f1; : : : ; pg in which
case the questions of interest are

(12) Q̄F
j : Is feature j correlated with the residual when trying predict y from X�j ?

with F above standing for the full model. The authors consider X fixed and take D = y

and the statistical model to be

(13) MK =
˚
N (Xˇ; �2I ) : ˇ 2 Rp; �2 > 0

	
:

There is again a natural transformation from questions to statistical hypotheses Q̄F
j 7!

H0;j : ˇj = 0. The usual t or Z-statistics for the least-squares estimates in the above
regression model could be used to test each of these hypotheses. Rather than use this em-
bedding, the authors choose alternative statistics based on constructing a pseudo-feature



3042 JONATHAN E. TAYLOR

for each feature j constructing a procedure that controls (a slight modification of) the FDR.
Their demonstration of (modified) FDR control through counting processes has reinvigo-
rated methodological work in FDR and has led to, among other things, work on other more
adaptive procedures for FDR control Lei and Fithian [2016], Li and Barber [2015], Lei,
Ramdas, and Fithian [2017], and Barber and Ramdas [2017]. Other interesting work in
FDR control includes work on hierarchically arranged families of hypotheses Benjamini
and Bogomolov [2014].

The authors of Barber and Candes [2014] demonstrate empirically that this construc-
tion can be more powerful than the natural embedding based on the usual t or Z statis-
tics. The knockoffs framework has been extended Candes, Fan, Janson, and Lv [2016] to
settings under which the law of X is assumed known and it is feasible to construct swap-
exchangeable pseudo-features X̃ , expanding the applicability of knockoffs when such as-
sumptions are reasonable in which the questions Q̄F

j are transformed to hypotheses of
conditional independence.

2.2 Does this match science’s new paradigm? It seems that both the large-scale in-
ference problem as well as the regression problem can be embedded into multiple com-
parisons problems (though technical considerations certainly still remain). We have also
unfortunately ignored Bayesian methods up to this point, though we return to this briefly
below.

Recall our original goal: to provide tools for inference in a paradigm where people
collect data first and ask questions later. A quick look the examples show that the questions
were actually pre-determined1.

Not only were the questions pre-determined, the questions were formally transformed
to statistical objects. This transformation is what allows statisticians to apply the formal
methods of multiple comparisons to “answer” these questions. While these transforma-
tions of questions to statistical objects seem quite natural, they are not exhaustive. Why
not just let the scientist look at the data to generate their own questions and have them
pick the statistical objects for reporting?

2.3 Conditional inference. In this section, we describe a conditional approach to selec-
tive inference that allows the scientist to look at their data to generate questions of interest
and corresponding statistical objects for final reporting. We do not have to look far for an
example of the conditional approach. Indeed, our simple iteration of the scientific method
as presented in Figure 1 provides an example.

1Arguably, one exception to this is the simultaneous approach of Berk, Brown, Buja, K. Zhang, and Zhao
[2013] as it allows a researcher to choose which of some prespecified list of E to use in the report. But what
is the scientist to do if she discovers her chosen E (after inspection) was not in the list specified before the
analysis?
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(a) The scientist conditions on
(D; Q(D)) and must posit a model for
the law of D0jD.

(b) The scientist conditions on Q(D),
the minimal sigma algebra used to gen-
erate her statistical objects, and must
posit a model for the joint law of
(D; D0).

Figure 2: Two different conditional models.

2.3.1 The scientific method. Having collected data D, the scientist’s data analysis can
be represented as a function Q(D), quite literally the functions the scientist used in their
exploratory data analysis, typically in some statistical software package. At this point,
the scientist need not have attached any statistical model to the data as Q(D) are simply
patterns.

Based onQ(D), the scientist is free to posit a statistical modelM (subject to defending
this model to their peers) with corresponding statistical objects which will be used for
formal statistical inference on D0. As the results are only evaluated on D0 we can view D
as fixed, fixing Q(D) as well. This fixing of Q(D) allows the scientist to transform these
patterns into statistical objects such as hypothesis tests, point estimators or confidence
intervals.

Fixing D is equivalent to conditioning on it – any honest accounting of how D and
D0 came to be must acknowledge that D is random so there certainly exists some joint
distribution for (D; D0). Formal inference is applied only toD0 hence the scientist’s model
M is really a model for the law of D0jD. This fixing of D is illustrated in Figure 2a,
denoting fixed variables by yellow and variables modeled by the scientist in blue.

2.3.2 Conditional approach in general. If Q(D) is enough information for the scien-
tist to posit a model M for the law D0jD, it is often reasonable to assume it is enough
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information for the scientist to posit a model for the joint law of (D; D0). For example,
when both D and D0 are IID samples from some population then any model for D0 is
similarly a model for D. In this setting, if a model for D0 is defensible to their peers, the
same model must be certainly defensible for D.

Since it is Q(D) that led the scientist to the questions that were then transformed into
statistical objects, it is sufficient to only fix Q(D). This is the basis of the conditional ap-
proach to selective inference Bi, Markovic, Xia, and J. Taylor [2017], Fithian, D. Sun, and
J. Taylor [2014], and Lee, D. L. Sun, Y. Sun, and J. E. Taylor [2016]. Conditioning only
on Q(D) we apply the formal tools of statistical inference to the remaining randomness
in (D; D0). In turn, this means that the appropriate Type I error to consider is the selective
Type I error, requiring the conditional guarantee

(14) PF (T (D; D0) = 1jQ(D) = q) � ˛; 8F 2 H0:

Coverage for an interval estimate is replaced with the notion of selective coverage. This
setting is depicted in Figure 2b, in which onlyQ(D) is conditioned on. IfD0 is unavailable,
it is still possible to use these tools as long as the scientist is able to defend a model for
the law of D to their peers.

Conditioning on the event fQ(D) = qg transforms any model M for the joint law of
(D; D0) to a new model

(15) M�
q =

�
F � :

dF �

dF
(d; d 0) / 1fQ�1(q)g(d ); F 2 M

�
where q is the value ofQ(D) observed by the scientist. We should note that, as in Figure 2a,
the model itself has been selected after the scientist has observed the patterns Q(D).

What has this approach bought us? For one thing, we have freed the scientist from
the “natural” transformations of questions to statistical objects we saw in our discussion
of simultaneous methods. The scientist is free to transform the observed patterns into
statistical objects how they see fit.

Atwhat cost has this benefit come? The first cost is that conditional rather thanmarginal
guarantees are required. Conditional guarantees are generally stronger than marginal guar-
antees, though they may need stricter assumptions to hold. Exploration of the gap between
assumptions required for selective andmarginal guarantees is certainly an interesting prob-
lem.

A second cost is the cost of exploration itself. In the classical scientific method, the
scientist is faced with the cost of collecting a second data set D0 in order to apply the
formal methods of statistical inference. In Figure 2b the scientist is able to reuse some of
the data for inference. How much is available for reuse will depend very much on Q – if
this is the identity map, then clearly fixing Q(D) is equivalent to fixing D and no data
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remains after exploration. IfM = ff� : � 2 Θg is a parametric model, then the amount of
information for estimating � can be quantified by the Fisher information. The model M�

q

will have its own Fisher information, referred to as leftover Fisher information in Fithian,
D. Sun, and J. Taylor [2014]. Ideally, the scientist is able to explore their data in such a
way that they can discovering interesting questions while preserving leftover information.

3 Examples and implications of the conditional approach

In the setting of Figure 2b we allow the scientist to posit a model M after having observed
Q(D), though we require that the scientist posit a model for the joint law of (D; D0) rather
than the usual D0jD. The scientist, perhaps with the assistance of a statistician, will then
declare some statistical objects of interest defined on M: hypothesis tests, point estimates,
confidence intervals, etc.

To simplify our presentation we make the assumption that (D; D0) are (perhaps asymp-
totically) jointly Gaussian, implying that the patterns the scientist sees are formed by in-
specting some approximately linear statistic. As the Gaussian family is parametric, this
also implies there is a well-defined notion of leftover information. Of course, many statis-
tical models (and selection procedures) can be reduced (asymptotically) to this setting. We
acknowledge that allowing the scientist to view more complicated statistics, such as scat-
terplots does not obviously fit into this framework and certainly this is worthy of further
study. These two observations bring us to the first of several challenges in the conditional
setting.

Challenge 1 (Selective Central Limit Theorem). Without the effect of selection, there is
an extensive literature on uses of the CLT to justify approximations in statistical inference.
Sequences of models such as M�

q;n do not fit into this classical setting, though sometimes
uniform consistency in Lp and in an appropriate weak sense (i.e. avoiding the impossibil-
ity results of Leeb and Pötscher [2006]) along sequences of models Mn can be transferred
over to sequences M�

q;n Tian and J. E. Taylor [2015] and Markovic and J. Taylor [2016].
We acknowledge that these results are likely suboptimal.

Challenge 2 (Rich Interactive Selection). Scatterplots are standard tools in exploratory
analyses, as are other summaries. Are there realistic mechanisms to release similar infor-
mation to scientists that are not wasteful in leftover information?

3.1 The scientific method is inadmissible. Our first example makes a rather bold
claim. In this setting, the scientist has access to D0 and the mechanism by which Q(D) is
fixed is by fixing (or conditioning) on all of D. This is a finer sigma algebra than that of
Q(D), which means we are conditioning on more than we need to. Statistical objects con-
structed conditional on D are often inadmissible with concrete dominating procedures. A
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more precise statement in terms of hypothesis tests can be found in Theorem 9 of Fithian,
D. Sun, and J. Taylor [2014]. Though this theorem is stated in terms of data splitting
Cox [1975] in which D is part of a full data set and D0 the remaining data, it is clearly
applicable to the setting where a scientist collects fresh data D0.

For concreteness, consider a simple model for the file-drawer filter (in which only large
positive Z statistics are reported) along with a replication study. We can model this as

(D; D0) ∼ N

��
�

�

�
;

�
1 0

0 1

��
being suitably normalized sample means from some population and

(16) Q(D) =

(
1 D > 2

0 otherwise.

and the scientist has observed Q(D) = 1. The natural replication estimate is

�̂(D; D0) = D0:

It is evident that the sufficient statistic for � in M is (D + D0)/2. It is also clear that this
holds conditional on Q(D) as well. Hence, one can Rao-Blackwellize �̂

�̂RB(D + D0) = EF

�
D0

ˇ̌
Q(D); D + D0

�
:

Simple calculations show that for � � 2 the Rao-Blackwellized estimator is essentially
(D+D0)/2which has variance 1/2 compared to 1, the variance of �̂. Confidence intervals
for � and tests of hypotheses of the form H0 : � = �0 are also relatively straightforward
to construct in the conditional model

M�
1 =

�
F � :

dF �

dF
(d; d 0) / 1(2;1)(d ); F 2 M

�
Such procedures have been proposed in similar but not identical settings Cohen and Sack-
rowitz [1989] and Sampson and Sill [2005] inwhich follow-up dataD0 is available through
a designed experiment.

We see a clear gap in performance between the simple estimator arrived at following
the classical scientific method and one which conditions on less. We note that this state-
ment of inadmissibility is relative to the sigma algebra we condition on. If it is asserted
that the correct sigma algebra conditions on D then �̂ is in fact the UMVU and this domi-
nation disappears. It is argued in Bi, Markovic, Xia, and J. Taylor [2017] that the minimal
sigma algebra to condition is that generated by the patterns the scientist observed as this
is the sigma algebra with which the statistical objects is determined. This is very mildly
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in contrast to the formal theory laid out in Fithian, D. Sun, and J. Taylor [2014] which
presumes that Q(D) is already in the form of statistical objects, though the theory of itself
needs no essential change.

Often, it will be convenient to condition on more, perhaps to ensure that computations
are feasible. This is allowed for in the formal theory of Fithian, D. Sun, and J. Taylor
[ibid.] through a selection variable, and was used in the first (non-data splitting) condi-
tional approach to the regression problem in Lee, D. L. Sun, Y. Sun, and J. E. Taylor
[2016]. It is not hard to imagine exploratory analyses Q whose sigma algebra is simply
too complex to describe so that restricting models to events Q�1(q) may be computa-
tionally infeasible resulting in a costly waste of leftover information. This suggests the
seemingly uncontroversial principle of not using too complex an exploratory analysis to
generate questions. We see no reason a priori that more complex analyses will lead the
scientist to more interesting questions.

3.1.1 Dominating the scientific method in the regression problem. Figure 3 from
Tian and J. E. Taylor [2015] (which reproduces and extends an example in Fithian, D. Sun,
and J. Taylor [2014]) demonstrates inadmissibility in the regression setting in which the
LASSO R. Tibshirani [1996] is used to select variables. In this example, the total number
of samples is held fixed and the portion allocated to D and D0 varies. The vertical axis is
Type II error, the complement of statistical power. The horizontal axis is the probability
of the selection mechanism discovering all of the true effects in this regression problem,
meant to be a proxy for the quality of the patterns revealed to the scientist. We carried
out inference for partial correlations in the Gaussian model with features E selected by D.
This seems the natural model a scientist would use for D0 if they decided to replicate the
study, collecting only features E discovered in the pilot study. Other statistical objects are
certainly reasonable, such as the E coordinates of the full model (a subset of the targets in
model (13)) or the debiased LASSO targets Javanmard and Montanari [2013], T. Sun and
C.-H. Zhang [2012], and Dezeure, Bühlmann, Meier, and Meinshausen [2015] if n < p.
The curve labelled data splitting follows the classical scientific method, conditioning on
D. The curve labelled data carving conditions only on Q(D) but makes decisions about
exactly the same statistical objects as data splitting. It is clear that data carving dominates
data splitting with data splitting having Type II error of different magnitude to the data
carving curve and red curve. This red curve brings us to our next example.

3.2 Noisier is better? Randomized selection algorithms. The initial description of
Figure 1 had D0 as fresh data while pilot D was used to discover patterns Q(D). This
is an artificial constraint: the scientist uses D to discover patterns and simply must posit
a model for the joint law of (D; D0). Inference is then carried out after restricting this
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model to the event Q�1(q). In particular, D could be a randomized version of D0 with the
randomization chosen by the scientist perhaps with the assistance of a statistician Tian and
J. E. Taylor [2015]. Indeed, our file drawer replication study can easily be seen in this light:
let Z1 denote the pilot data and Z2 the replication data. We take D0 = (Z1 + Z2)/2 ∼
N

�
�; 1

2

�
and

DjD0 ∼ N

�
D0;

1

2

�
:

Unsurprisingly, by sufficiency, the law of DjD0 does not depend on the unknown � and
it is enough to consider the law of D0 after marginalizing over D. The statistical problem
can be reduced to inference in the model

(17) M�
q =

�
F � :

dF �

dF
(d 0) /

Z
1fQ(�)=qg(u)G(dujd 0); F 2 M

�
with G(�jd 0) the kernel representing the conditional law of D given D0.

Figure 3: Comparison of inference in additive
noise randomization vs. data carving.

It is apparent that the Radon-Nikodym
derivative or likelihood ratio relating F �

to its corresponding F will often be
a smooth function. In the case that
G(�jd 0) = ıd 0 , in which case D

a.s.
= D0,

this will in fact be an indicator function. In
the setting of Gaussian randomization, the
smoothness of this function can be directly
related to the leftover information, explain-
ing why both data carving and the additive
noise model in Figure 3 show an improve-
ment in power after addition of at least
some randomness into the pattern gener-
ation stage. With no randomization, the
(rescaled) leftover Fisher information can
rapidly approach 0 for some parameter val-
ues while the corresponding information

after randomization can be bounded below. In this sense some noise is better than no
noise, though Figure 3 demonstrates there is a tradeoff between quality of patterns and
statistical power.

The red curve in Figure 3 uses the same data generating mechanism as the LASSO
in the regression problem with D0 = y and D = y + ! with ! ∼ N (0; �2I ). The
curve traces out the Type II error and probability of screening as � varies. It seems as
if this particular randomization does better than data carving in this figure. However, as
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D and hence Q(D) differ between the two curves, a direct comparison of data carving
to the randomization above is somewhat difficult. In practice, there is no guarantee that
any two scientists given access to D will use the same Q or construct the same statistical
objects having observed the same Q(D). It is not hard to imagine settings where some
scientists know the “right” Q to use based on domain experience, or perhaps know the
“right” statistical objects to report having observed Q(D). Such scientists will likely be
able to extract more interesting answers from D0 and likely more money from funding
agencies than others. Identifying such scientists and / or modelling their behavior, or even
identifying the “right” statistical objects seems a daunting task which we decline to pursue.

3.3 Patterns divined from convex programs. The LASSO R. Tibshirani [1996] is a
popular algorithm used to discover important features in the regression context. Let us
remind the readers of the LASSO optimization problem

(18) ˆ̌
�(y; X) = argminˇ

1

2
ky � Xˇk

2
2 + �kˇk1:

It is well known that for large enough values of �, the solution will often be sparse. The
non-zero entries of ˆ̌(y; X; �) are a natural candidate for the “important” variables in
predicting y from X in a linear model. Further, the eventn

y : sign( ˆ̌�(y; X)) = s
o

can be described in terms of a set of affine inequalities Lee, D. L. Sun, Y. Sun, and J. E.
Taylor [2016]. This observation demonstrated that conditional inference in the regression
problem was feasible, yielding the polyhedral lemma subsequently used in Heller, Meir,
and Chatterjee [2017], R. J. Tibshirani, J. Taylor, Lockhart, and R. Tibshirani [2016], and
R. J. Tibshirani, Rinaldo, R. Tibshirani, and Wasserman [2015] among other places. The
assumption that X be fixed is not strictly necessary with suitable modification of the co-
variance estimate in the polyhedral lemma J. Taylor and R. Tibshirani [2017].

Challenge 3 (High Dimensional Selective Inference). High dimensional inference
Bühlmann and Geer [2011] is a very important topic given the sheer size of p in mod-
ern science. Rigorously addressing the conditional approach in this setting is certainly
challenging. While some results are available Markovic, Xia, and J. Taylor [2017] and
Wasserman and Roeder [2009] much work remains.

The LASSO has inspired many other convex optimization algorithms meant to eluci-
date interesting structure or patterns in D. A very short list might include Becker, Candès,
and Grant [2011], Chen, Donoho, and Saunders [1998], Ming and Lin [2005], and Yuan
and Lin [2007]. Many natural Q suggest themselves from such convex programs. Convex
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programs also lend themselves naturally to randomization by perturbation of the objective
function. While Section 2.3 describes the reason why we condition on Q(D), it is im-
portant to describe how we achieve this. Here we describe some of the approach of Tian,
Panigrahi, Markovic, Bi, and J. Taylor [2016] which gives a general idea of the how.

Consider the problem

(19) ˆ̌(D; !) = argminˇ2Rk `(ˇ;D) + P (ˇ) � !T ˇ +
�

2
kˇk

2
2

where ` is some smooth loss involving the data (not necessarily a negative log-likelihood),
P is some structure inducing convex function, � > 0 is some small parameter that is some-
times necessary in order to assure the program has a solution and ! ∼ G is a randomiza-
tion with G (typically having a smooth density g) chosen by the scientist. In terms of
Figure 2b the randomization ! can be modelled as part of the function Q and we are free
to take D = D0.

The KKT conditions of such a problem can be written as

(20) ! = r`(ˇ;D) + u + � � ˇ:

with (ˇ; u) required to satisfy

(21) u 2 @P (ˇ):

Suppose that the scientist seeks for patterns in the pair (ˇ; u) so that Q = Q(D; !) =

Q̄( ˆ̌(D; !); û(D; !)). It turns out that, in wide generality, there is a natural mechanism
through which we can condition on events expressed in terms of (ˇ; u). Geometrically,
if P is a seminorm given by the support function of convex set K, then the condition
condition is equivalent to (u; ˇ) 2 N (K) where N (K) is the normal bundle of K and the
integral necessary to restrict to the event of interest can be expressed through a change of
variables as
(22)
P (Q(D; !) = qjD) =

Z
N (K)

1fQ̄�1(q)g(u; ˇ) g(�(u; ˇ;D)) J�(u; ˇ;D) Hk(dˇ du):

where g is the density of !,

�(ˇ; u;D) = r`(ˇ;D) + u + � � ˇ

is the change of variables introduced by inverting the KKT conditions above and Hk is k-
dimensional Hausdorff measure onN (K) � R2k . See Tian, Panigrahi, Markovic, Bi, and
J. Taylor [ibid.] for further details and examples beyond the LASSO. With a little work,
expanding the Jacobian in the integrals in (22) yield objects closely related to integrals
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against the generalized curvature measures of K Schneider [1993]. Much of the work
cited above onGaussian processes and simultaneous inference also involve such geometric
objects through Weyl and Steiner’s tube formulae Adler and J. E. Taylor [2007].

In many cases of interest the rather complicated looking (22) can be expressed as

(23)
Z

K̄q

g (AD + Bo + �) do

for some � measurable with respect to Q(D; !) and some nice (often convex and poly-
hedral) K̄q � Rk where the variable of integration o is meant to stand for “optimization
variables”, i.e. the pair (u; ˇ) in (22). If we presume that the randomization used by the
scientist is Gaussian (e.g. data carving can be represented as asymptotically adding Gaus-
sian randomization Markovic and J. Taylor [2016]), then the likelihood ratio in the model
M�

q can be expressed as

(24) P (o 2 K̄qjD)

for some � measurable with respect to Q(D; !)where the pair (D; o) are jointly Gaussian
with mean and covariance determined by the mean and covariance of D, the pair (A; B)

and the covariance matrix of the randomization !.

3.4 Benjamini-Hochberg given access to replication data. Some selection algorithms
do not involve directly solving a (randomized) convex program such as (19) yet the ap-
propriate likelihood ratio can be described similarly. For instance, suppose D = Z ∼
N (�;Σ) and the selection algorithm involves taking the top k of the Z-statistics. A ran-
domized version might add ! ∼ N (0; �2I ) to Z before ranking. We can take the map
Q(Z; !) to return the identity of the top k and perhaps their signs. Formally this is an
example of (19) involved in finding the maximizer of the convex function that returns
the sum of the top k order statistics, an example of SLOPE Bogdan, Berg, Sabatti, Su,
and Candès [2015]. Let Ek denote the identity of these variables and sk their signs. The
selection probability can be expressed as

(25) P (o 2 D + C̄ (Ek ; sk) + �jD)

where C̄ (Ek ; sk) is the convex cone identifying the top k coordinates on Rp and their
signs.

Another example with such a representation is a version the Benjamini-Hochberg al-
gorithm in which D = Z ∼ N (�;Σ) and Q(D; !) identifies which effects are selected
by BH using suitably normalized “new” Z-statistics Z + ! as well as the ordering of
the non-rejected null Z-statistics Reid, J. Taylor, and R. Tibshirani [2017]. This allows a
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scientist to run the BH algorithm on a randomized version of their data, preserving some
information for a point estimate or perhaps an interval estimate. Recalling our file drawer
replication study, we see that this is mathematically equivalent to settingD to be pilot data
and D0 to be a replication study. While it is possible to construct intervals for the effects
of the variables selected by BH using only D Benjamini and Yekutieli [2005], it is not im-
mediately obvious how one might improve these intervals given replication data. Nor is it
clear how one might arrive at unbiased estimates of such parameters using only D, though
a simple generalization of our file drawer examples illustrates how to Rao-Blackwellize
the replicate unbiased estimate, or hypothesis tests and confidence intervals.

We mention this example to correct what seems to be a misconception in some of the
selective inference literature. The conditional approach is sometimes presented as subor-
dinate in a hierarchy of types of simultaneous guarantees Benjamini [2010] and Benjamini
and Bogomolov [2014]. This is not really the case, the algorithm we just described would
have a marginal FDR-control property as well as unbiased estimators of the selected ef-
fects arrived at through the conditional approach. In other words, the notion of simulta-
neous inference in the conditional approach is certainly a well-defined topic of research,
see Hung and Fithian [2016] for another example of use of the conditional approach in the
simultaneous setting.

Challenge 4 (Simultaneous Selective Inference). What kind of finite sample procedures
can be used to control FDR for a collection of hypotheses generated from Q(D)? If the
selection step has produced a small set of questions, is multiplicity correction still needed?

3.5 A tractable pseudo-likelihood. Let us restrict our attention to the case D = Z ∼
N (�;Σ) when the appropriate appropriate can be expressed as in (23). In this setting,
M�

q can be viewed as the marginal law of D under some joint Gaussian law for (D; o)

truncated to the event (23) with implied mean of (D; o) some affine function of �. This
truncated Gaussian law has normalizing constant

(26) P�(o 2 K̄q):

If this normalizing constant were known, the rich toolbox of exponential families would
be at our disposal. In Panigrahi, J. Taylor, and Weinstein [2016] we propose using a
smoothed version of a Chernoff or large deviations estimate of (26). As the sets K̄q are
often simple, it is possible to solve this optimization problem quickly. This optimization
procedure yields a composite or pseudo-MLE estimate that yields (approximately) condi-
tionally unbiased estimates of � in this setting. Investigation of the performance of this
estimator is a topic of ongoing research.

Having (approximately) normalized the likelihood ratio in modelM�
q it is apparent that

one may put a prior on � itself. This approach was developed in the univariate setting in
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Yekutieli [2012] in which there is often no need to approximate the normalizing constant.
Use of this approximation is considered in Panigrahi, J. Taylor, andWeinstein [2016]. One
may then use all of the advantages of the Bayesian paradigm in this conditional approach,
modulo the fact that the likelihood is only approximately normalized.

3.6 Combining queries: inferactive data analysis. We have alluded to scientists pos-
ing questions or queries ofD in terms of the solution to a randomized convex program. Of
course, a more realistic data analysis paradigm allows the scientist more complex queries.
Indeed, the result of one query may inspire a scientist to pose a new query, or perhaps
to spend some grant money to collect fresh data. A satisfactory theory of data analysis
should be able to handle such situations. Suppose we limit each query to those similar to
(23), allowing the results of one query to influence the following queries. Then, it is not
hard to see that, after two queries, the (unnormalized) appropriate likelihood ratio takes
the form

(27) P (o1 2 K̄q1
jD1) � P (o2 2 K̄(q1;q2)j(D1; D2))

where each oi represent the optimization variables in each query and P is some implied
joint Gaussian law for the triple (D1; D2; o1; o2) with D1 the data available at time 1,
(D1; D2) at time 2. Generalizing this to m queries is straightforward. We have named
this resulting formalism for inference after allowing a scientist to interact with their data
inferactive data analysis Bi, Markovic, Xia, and J. Taylor [2017].

Challenge 5 (In Silico Implementation of Inferactive Data Analysis). The approximate
pseudo-MLE is seen to be a separable convex optimization problem, yielding hope for
scaling up to a reasonable number of queries. In the limiting Gaussian model, the relevant
reference measures can formally be represented via generalizations of estimator augmen-
tation Tian, Panigrahi, Markovic, Bi, and J. Taylor [2016] and Zhou [2014]. Some small
steps have been taken in this direction but more work is definitely needed.

Other approaches to adaptive data analysis include Berk, Brown, Buja, K. Zhang, and
Zhao [2013] in the regression problem, as well as some very interesting work in appli-
cations of differential privacy to data analysis Dwork, Feldman, Hardt, Pitassi, Reingold,
and Roth [2014].
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rent and former students and colleagues from the Statistical Learning Group in the De-
partment of Statistics at Stanford run jointly with Trevor Hastie and Rob Tibshirani. The
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DIFFUSIVE AND SUPER-DIFFUSIVE LIMITS FOR RANDOM
WALKS AND DIFFUSIONS WITH LONG MEMORY

Bගඅංඇඍ Tඬඍඁ

Abstract

We survey recent results of normal and anomalous diffusion of two types of random
motions with long memory in Rd or Zd . The first class consists of random walks on
Zd in divergence-free random drift field, modelling themotion of a particle suspended
in time-stationary incompressible turbulent flow. The second class consists of self-
repelling random diffusions, where the diffusing particle is pushed by the negative
gradient of its own occupation time measure towards regions less visited in the past.
We establish normal diffusion (with square-root-of-time scaling and Gaussian limiting
distribution) in three and more dimensions and typically anomalously fast diffusion
in low dimensions (typically, one and two). Results are quoted from various papers
published between 2012-2017, with some hints to the main ideas of the proofs. No
technical details are presented here.

1 Random walks in divergence-free random drift field

1.1 Set-up and notation. Let (Ω; F ; �; �z : z 2 Zd ) be a probability space with an
ergodic Zd -action. Denote by E := fk 2 Zd : jkj = 1g the set of possible steps of a
nearest-neighbour walk on Zd , and let pk : Ω ! [0; s�], k 2 E, be bounded measurable
functions. These will be the jump rates of the RWRE considered (see (2) below) and
assume they are doubly stochastic,X

k2E

pk(!) =
X
k2E

p�k(�k!):(1)
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Given these, define the continuous time nearest neighbour random walk t 7! X(t) 2 Zd

as a Markov process on Zd , with X(0) = 0 and conditional jump rates

P!
�
X(t + dt) = x + k

ˇ̌
X(t) = x

�
= pk(�x!)dt;(2)

where the subscript ! denotes that the random walk X(t) is a Markov process on Zd

conditionally, with fixed ! 2 Ω, sampled according to � . The continuous time setup is
for convenience only. Since the jump rates are bounded this is fully equivalent with a
discrete time walk.

We will use the notation P! (�) and E! (�) for quenched probability and expectation.
That is: probability and expectation with respect to the distribution of the random walk
X(t), conditionally, with given fixed environment!. The notationP (�) :=

R
Ω P! (�) d�(!)

and E (�) :=
R
Ω E! (�) d�(!) will be used for annealed probability and expectation. That

is: probability and expectation with respect to the random walk trajectory X(t) and the
environment !, averaged out with the distribution � .

It is well known (and easy to check, see e.g. Kozlov [1985a]) that due to double stochas-
ticity (1) the annealed set-up is stationary and ergodic in time: the process of the environ-
ment as seen from the position of the random walker

�(t) := �X(t)!(3)

is a stationary and ergodic Markov process on (Ω; �) and, consequently, the random walk
t 7! X(t) will have stationary and ergodic annealed increments.

The local quenched drift of the random walk is

E!
�
dX(t)

ˇ̌
X(t) = x

�
=
X
k2E

kpk(�x!)dt =: '(�x!)dt:

It is convenient to separate the symmetric and skew-symmetric part of the jump rates: for
k 2 E, let sk : Ω ! [0; s�], vk : Ω ! [�s�; s�],

sk(!) :=
pk(!) + p�k(�k!)

2
; vk(!) :=

pk(!) � p�k(�k!)

2
:(4)

Note that from the definitions (4) it follows that

sk(!) � s�k(�k!) = 0; vk(!) + v�k(�k!) = 0:(5)

In addition, the bi-stochasticity condition (1) is equivalent toX
k2E

vk(!) � 0; �-a.s.(6)
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The second identity in (5) and (6) jointly mean that (vk(�x!))k2E;x2Zd is a stationary
sourceless flow (or, a divergence-free lattice vector field) on Zd . The physical interpreta-
tion of the divergence-free condition (6) is that the walk (2) models the motion of a particle
suspended in stationary, incompressible flow, with thermal noise.

In order that the walk t 7! X(t) have zero annealed mean drift we assume that for all
k 2 E Z

Ω

vk(!) d�(!) = 0:(7)

Our next assumption is an ellipticity condition for the symmetric part of the jump rates:
there exists another positive constant s� 2 (0; s�] such that for �-almost all ! 2 Ω and all
k 2 E

sk(!) � s�; �-a.s.(8)

Note that the ellipticity condition is imposed only on the symmetric part sk of the jump
rates and not on the jump rates pk . It may happen that �(f! : mink2E pk(!) = 0g) > 0,
as it is the case in some of the examples given in Section 1.4.

Finally, we formulate the notorious H�1-condition which plays a key role in diffusive
scaling limits. Denote for i; j = 1; : : : ; d , x 2 Zd , p 2 [��; �)d ,

Cij (x) :=

Z
Ω

'i (!)'j (�x!)d�(!); bC ij (p) := X
x2Zd

e
p

�1x�pCij (x):(9)

That is: Cij (x) is the covariance matrix of the drift field, and bC ij (p) is its Fourier-
transform.

ByBochner’s theorem, the Fourier transformbC is positive definite d�d -matrix-valued-
measure on [��; �)d . The no-drift condition (7) is equivalent to bC ij (f0g) = 0, for
all i; j = 1; : : : ; d . With slight abuse of notation we denote this measure formally asbC ij (p)dp even though it could be not absolutely continuous with respect to Lebesgue.

The H�1-condition is the following:Z
[��;�)d

0@ dX
j=1

(1 � cospj )

1A�1
dX
i=1

bC i i (p) dp < 1:(10)

This is an infrared bound on the correlations of the drift field, x 7! '(�x!) 2 Rd . It
implies diffusive upper bound on the annealed variance of the walk and turns out to be
a natural sufficient condition for the diffusive scaling limit (that is, CLT for the annealed
walk). We’ll see further below some other equivalent formulations of the H�1-condition
(10). Note that the H�1-condition (10) formally implies the no-drift condition (7).
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For later reference we state here the closely analogous problem of diffusion in diver-
gence-free random drift field. Let (Ω; F ; �; �z : z 2 Rd ) be now a probability space
with an ergodic Rd -action, and F : Ω � Rd ! Rd a stationary vector field which is
�-almost-surely C 1 and divergence-free:

divF � 0; �-a.s.(11)

The diffusion considered is

dX(t) = dB(t) + F (X(t))dt:(12)

The SDE (12) has unique strong solution, �-almost surely. The main question is the same
as in the case of the random walk (2): What is the asymptotic scaling behaviour and scal-
ing limit of X(t), as t ! 1? Under what conditions does the central limit theorem with
diffusive scaling and Gaussian limit distribution hold? Although the physical phenom-
ena described by (2)-(1) and (12)-(11) are very similar, the technical details of various
proofs are not always the same. In particular, PDE methods and techniques used for the
diffusion problem (12)-(11) are not always easily implementable for the lattice problem
(2)-(1). On the other hand, often restrictive local regularity conditions must be imposed
on the diffusion problem (12)-(11).

The results reported in this section refer mainly to the random walk problem (2)-(1).
The diffusion problem (12)-(11) will be tangentially mentioned in an example in Sec-
tion 1.5.3 and in the historical notes of Section 1.6.

1.2 The infinitesimal generator of the environment process. All forthcoming analy-
sis will be done in the Hilbert space H := ff 2 L2(Ω; �) :

R
Ω f (!)d�(!) = 0g: The

L2(Ω; �)-gradients and Laplacian are bounded operators on H:

rkf (!) := f (�k!) � f (!) ∆ := 2
X
k2E

rk = �
X
k2E

r�krk :

Note that ∆ is self-adjoint and negative. Thus, the operators j∆j
1/2 and j∆j

�1/2 are de-
fined in terms of the spectral theorem. The domain of the unbounded operator j∆j

�1/2

is

H�1 := f� 2 H : lim
�&0

(�; (�I � ∆)�1�)H < 1g:

The H�1-condition gets its name from the fact that (10) is equivalent to requesting that
for k 2 E,

vk 2 H�1:(13)
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We will also use the multiplication operatorsMk ; Nk : L2(Ω; �) ! L2(Ω; �), k 2 E,

Mkf (!) := vk(!)f (!); Nkf (!) := (sk(!) � s�)f (!):

The following commutation relations are direct consequences of (in fact, equivalent with)
(5) and (6) X

k2E

Mkrk = �
X
k2E

r�kMk ;
X
k2E

Nkrk =
X
k2E

r�kNk(14)

We will denote

S := �
s�

2
∆ +

X
k2E

Nkrk ;= S� A :=
X
k2E

Mkrk ;= �A�:

The infinitesimal generator L of the Markovian semigroup Pt : L2(Ω; �) ! L2(Ω; �)

of the environment process (3) is

L = �S + A:

Note that due to ellipticity (8) and boundedness of the jump rates the (absolute value of
the) Laplacian minorizes and majorizes the self-adjoint part of the infinitesimal generator:
s� j∆j � 2S � s� j∆j. The inequalities are meant in operator sense.

1.3 Helmholtz’s theorem and the stream tensor. In its most classical form Helm-
holtz’s theorem states that in R3 (under suitable conditions of moderate increase at infin-
ity) a divergence-free vector field can be realised as the curl (or rotation) of another vector
field, called the vector potential. Helmholtz’s theorem in our context is the following:

Proposition 1. Let v : Ω ! RE be such that vk 2 H, and assume that (5) and (6) hold.
(i) There exists a zero mean, square integrable, antisymmetric tensor cocycle H : Ω �

Zd ! RE�E,Hk;l(�; x) 2 H:

Hk;l(!; y) �Hk;l(!; x) = Hk;l(�x!; y � x) �Hk;l(�x!; 0);(15)
Hl;k(!; x) = H�k;l(!; x + k) = Hk;�l(!; x + l) = �Hk;l(!; x);(16)

such that

vk(�x!) =
X
l2E

Hk;l(!; x):(17)

The realization of the tensor fieldH is unique up to an additive termH 0
k;l

(!), not depend-
ing on x 2 Zd (but obeying the symmetries (16)).
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(ii) The H�1-condition (10)/ (13) holds if and only if the cocycle H in (i) is stationary.
That is, there exists h : Ω ! RE�E, with hk;l 2 H, such that

hl;k(!) = h�k;l(�k!) = hk;�l(�l!) = �hk;l(!);(18)

and

vk(!) =
X
l2E

hk;l(!):(19)

The tensor fieldH is realized as the stationary lifting of h: Hk;l(!; x) = hk;l(�x!).

The fact that v is expressed in (17) as the curl of the tensor fieldH having the symme-
tries (16), is essentially the lattice-version of Helmholtz’s theorem. Note that (16) means
that the stream tensor field x 7! H (!; x) is in fact a function of the oriented plaquettes of
Zd . In particular, in two-dimensions x 7! H (!; x) defines a height function with station-
ary increments, on the dual lattice Z2 + (1/2; 1/2), in three-dimensions x 7! H (!; x)

defines an oriented flow (that is: a lattice vector field) with stationary increments on the
dual lattice Z3 + (1/2; 1/2; 1/2). In Helmholtz’s theorem, if d > 2, there is much free-
dom in the choice of the gauge of H . The cocycle condition (15) is met by the Coulomb
gauge, which makes the construction essentially uniquely determined.

In Kozma and Tóth [2017] it was shown that for a RWRE (2) whose environment
satisfies conditions (1), (8) and (10) the central limit theorem holds, under diffusive scaling
and Gaussian limit with finite and nondegenerate asymptotic covariance, in probability
with respect to the environment. See Theorem 1 below.

In order to obtain the quenched version, that is central limit theorem for the displace-
ment X(t) at late times, with frozen environment, �-almost surely, we impose a slightly
stronger integrability condition on the stream-tensor-field,

h 2 L2+"(Ω; �);(20)

for some " > 0, rather than beingmerely square integrable. This stronger integrability con-
dition is needed in the proof of quenched tightness of the diffusively scaled displacement
t�1/2X(t). We will refer to the H�1-condition complemented with the stronger integra-
bility assumption (20) as the turbo-H�1-condition. In Tóth [n.d.] the quenched version of
the central limit theorem for the displacement of the random walker was proved under the
conditions (1), (8) and (10) and (20). See Theorem 3 below.

1.4 Examples. Bounded stream tensor: Let ((�ij (x))1�i<j�d )x2Zd , be a stationary and
ergodic (with respect to x 2 Zd ) sequence of bounded random variables (say,

ˇ̌
�ij (x)

ˇ̌
�
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1), and extend them to i; j 2 f1; : : : ; dg as �j i = ��ij , �i i = 0. Define for k; l 2 E,
x 2 Zd ,

Hk;l(x) := (k � ei )(l � ej )�ij (x + (k � ei � 1)ei/2 + (l � ej � 1)ej /2):

(This formula extends the random variables � to a tensor field, consistent with the symme-
tries (16)). Define vk(!) as in (17) and let sk(!) � s� � 2(d�1). This is themost general
construction of the case when h 2 L1(Ω; �). In particular, it covers those cases when the
random environment of jump probabilities admits a bounded cycle representation, cf. Ko-
zlov [1985a], Komorowski and Olla [2003], Deuschel and Kösters [2008], Komorowski,
Landim, and Olla [2012] (chapter 3.3). Due to Proposition 1 the H�1-condition (10)/(13)
holds.
Randomly oriented Manhattan lattice: Let ui (y), i 2 f1; : : : ; dg, y 2 Zd�1, be i.i.d.
randomvariables with the common distributionP (u = ˙1) = 1/2, and define for x 2 Zd

and k 2 E

vk(�x!) :=

dX
i=1

(k � ei )ui (x1; : : : ; xi�1;��xi ; xi+1; : : : ; xd );

One can easily compute the covariances (9): Cij (x) = ıi;j
Q
i 0 6=i ıxi0 ;0, and their Fourier

transforms bC ij (p) = ıi;j ı(pi ). From here it follows that in this particular model theH�1-
condition fails robustly (with power law divergence in (10)) in d = 2, fails marginally
(with logarithmic divergence in (10)) in d = 3, and holds if d � 4.�
2d
d

�
-vertex models on Zd : Let Ω be the set of all possible orientations of the edges

of Zd with the constraint that at all vertices the number of edges oriented towards the
site is equal to the number of edges oriented away, d out of 2d . In this way, locally
at every vertex

�
2d
d

�
configurations of orientations are possible and there is a very rigid

constraint on the configurations. Ω is a compact metric space and the group of translations
�z : Ω ! Ω, z 2 Zd , acts naturally on it. Let, for k 2 E, vk(!) = ˙1 be the orientation
of the edge 0k in the configuration ! 2 Ω, and pk(!) = 1 + vk(!). Any translation
invariant ergodic measure � onΩ realizes a model of our RWRE. The most natural choice
is the one when � is the unique weak limit of the uniform distribution of the allowed�
2d
d

�
-vertex configurations on the discrete torus (�L;L] � � � � � (�L;L], with periodic

boundary conditions, as L ! 1. In 2-dimensions this is the notorious (uniform) six-
vertex model. In this case - in 2-dimensions - the H�1-condition fails: the integral in (10)
is logarithmically divergent.

1.5 Scaling limits.
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1.5.1 Central limit theorem in probability w.r.t. the environment under the H�1

condition.

Theorem 1. (Source: Kozma and Tóth [2017])Conditions (1), (8), (10) are assumed. The
asymptotic annealed covariance matrix

(�2)ij := lim
t!1

t�1E (Xi (t)Xj (t))(21)

exists, and it is finite and non-degenerate. For any bounded and continuous function
f : Rd ! R,

lim
T!1

Z
Ω

ˇ̌̌̌
ˇ̌E! �f (T �1/2X(T ))

�
�

Z
Rd

e�
jyj2

2

(2�)
d
2

f (��1y)dy

ˇ̌̌̌
ˇ̌ d�(!) = 0:(22)

Theorem 1 is proved in Kozma and Tóth [ibid.], and, weak convergence in the sense of
(22) of all finite dimensional marginal distributions of t 7! T � 1

2X(T t), as T ! 1, to
those of a d -dimensional Brownian motion with covariance �2 is established. We sketch
the main points. Start with a most natural martingale decomposition

X(t) =

�
X(t) �

Z t

0

'(�(s))ds

�
+

Z t

0

'(�(s))ds =:M (t) + I (t):(23)

In this decompositionM (t) is clearly a square integrable martingale with stationary and
ergodic annealed increments. The main issue is an efficient martingale approximation of
the term I (t), à la Kipnis-Varadhan.

We rely on the following general result on Kipnis-Varadhan type of martingale ap-
proximation. Let �(t) be a stationary and ergodic Markov process on the probability
space (Ω; �), and L be the infinitesimal generator of its Markovian semigroup acting on
L2(Ω; �). Denote S := �(L+L�)/2, A := (L�L�)/2 and assume that the symmetric
part S is minorised and majorized by a postitive operatorD � 0: s�D � S � s�D, with
0 < s� � s� < 1. Further, denote

B� := (�I +D)�1/2A(�I +D)�1/2:

Theorem 2. (Source: Horváth, Tóth, and Vető [2012b], Kozma and Tóth [2017]) Assume
that there exist a dense subspace B � L2(Ω; �) and a linear operatorB : B ! L2(Ω; �)

which is essentially skew-self-adjoint on the core B and such that for any ' 2 B there
exists a sequence '� 2 L2(Ω; �) such that

lim
�!0

k'� � 'k = 0: and lim
�!0

kB�'� � B'k = 0:
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Then for any f 2 Dom(D�1/2) there exists a martingaleMf (t) (on the probability space
and with respect to the filtration of the Markov process t 7! �t ) such that

lim
t!1

t�1

Z
Ω

E!

 ˇ̌̌̌Z t

0

f (�(s))ds �Mf (t)

ˇ̌̌̌2!
= 0:

In plain and informal words: if the operator B = D�1/2AD�1/2 makes sense as a
densely defined unbounded skew-self-adjoint operator then integrals along the Markov
process trajectory of functions in H�1 � L2(Ω; �) defined in terms of the positive opera-
tor D are efficiently approximated with martingales, à la Kipnis-Varadhan. As shown in
Horváth, Tóth, and Vető [2012b], the condition of Theorem 2 is weaker than the graded
sector condition of Sethuraman, Varadhan, and H.-T. Yau [2000] (which in turn is weaker
than the strong sector condition of Varadhan [1995]).

In our particular case define B : H�1 ! H as

B := �
X
l2E

j∆j
�1/2

r�lMl j∆j
�1/2 :(24)

(Note that the operators j∆j
�1/2

r�l , l 2 E are bounded.) From the commutation relations
(14) it follows that the operator B is skew-symmetric on the dense subspace B := H�1. It
is not difficult to show that if h 2 L1 then B is a bounded operator and thus, its skew-
self-adjointness drops out for free. (This is essentially the same as Varadhan’s strong
sector condition, cf.Varadhan [ibid.]) On the other hand, if h … L1 then B is genuinely
unbounded and proving its (essential) skew-self-adjointness is far from trivial.

The main technical result in Kozma and Tóth [2017] is the proof of the fact that B is
in fact essentially skew-self-adjoint on H�1. By applying von Neumann’s criterion for
(skew-)self-adjointness this boils down to proving that the lattice PDE

∆Ψ(�; !) + V (�; !) � rΨ(�; !) = 0;(25)

does not have a non-trivial cocycle solution Ψ(x; !). Here now r and ∆ denote the
lattice gradient, respectively, the lattice Laplacian, V (x; !) = v(�x!) and Ψ(x; !) is a
zero mean cocycle to be determined.

1.5.2 Quenched central limit theorem under the turbo-H�1-condition.

Theorem 3. (Source: Tóth [n.d.]) Conditions (1), (8), (10), and (20) are assumed. For
any bounded continuous function f : Rd ! R,

lim
T!1

E!
�
f (T �1/2X(T ))

�
=

Z
Rd

e�
jyj2

2

(2�)
d
2

f (��1y)dy; �-a.s.

with the non-degenerate covariance matrix �2 given in (21).
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Theorem 3 is proved in Tóth [n.d.], and as in the case of Theorem 1, the weak conver-
gence of all finite dimensional distributions follows. The proof consists of three major
steps: (1) Proof of quenched tightness of the scaled displacement t�1/2X(t), as t ! 1.
(2) Construction of the harmonic coordinates for the walk. (3) Efficient estimate of the
discrepancy between the actual position of the walker and the approximating harmonic
coordinates.
Quenched tightness of t�1/2X(t): The proof relies on adapting Nash’s moment bound
on reversible diffusions with strictly elliptic and bounded dispersion coefficients, cf. Nash
[1958], to this type of non-reversible setup. The extension in the case of h 2 L1(Ω; �)

is essentially straightforward, following Osada [1983]. (Though, adaptation to the lattice
walk case needs some attention.) The extension to h 2 L2+"(Ω; �) is tricky. An integra-
tion over time and the Chacon-Ornstein ergodic theorem help. Full details can be found
in Tóth [n.d.]. This is the only part of the proof where the stronger integrability condition
(20) is used.
Harmonic coordinates: The idea of harmonic coordinates for random walks in random
environments originates in the classical works Kozlov [1979], G. C. Papanicolaou and
Varadhan [1981], Osada [1983], Kozlov [1985a]. Since then it had been widely used in
proving quenched central limit theorems, mostly for random walks among random con-
ductances. That is: in time reversible cases. See, however, Deuschel and Kösters [2008]
for a non-reversible application. The idea is very natural: find an Rd -valued L2(Ω; �),
zero mean random cocycle Θ(x; !), such thatX

k2E

pk(�x!) (k +Θ(!; x + k) � Θ(!; x)) = 0; �-a.s.(26)

If there exists a solution Θ to the equation (26) then the process t 7! Y (t) := X(t) +

Θ(!;X(t)) is a quenched martingale (that is, a martingale in its own filtration, with the
environment! 2 Ω frozen). It turns out that equation (26) is equivalent with the following
equation in H:

(I + B�)� = j∆j
�1/2 ';(27)

where ' 2 H�1 is given and � is to be determined. The operator B� on the left hand side
is exactly the adjoint of B from (24). Since it was proved that the operator B is skew-self-
adjoint it follows that I+B� is invertible and thus equation (27) has a unique solution. As
a consequence, equation (26) also has a unique solutionΘwhich is an Rd -valued cocycle,
as required.

Once the harmonic coordinates are constructed the quenched central limit theorem for
t�1/2Y (t) drops out via the martingale CLT, using ergodicity of the environment process
(3).
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Error bound: In order to obtain the quenchedCLT for the scaled displacement t�1/2X(t)

it remains to prove that for all ı > 0 and �-almost all ! 2 Ω,

lim
t!1

P!
�
jΘ(X(t))j > ı

p
t
�
= 0:

The key ingredients of this are the a priori quenched tightness of t�1/2X(t) proved in
the first main step, and a soft but nevertheless useful ergodic theorem for cocycles: Let
Ω � Zd 3 x 7! Ψ(!; x) 2 R be a zero-mean L2-cocycle. Then

lim
N!1

N�(d+1)
X

jxj�N

jΨ(x)j = 0; �-a.s.

In 1-dimension this is a direct consequence of Birkhoff’s ergodic theorem. For d > 1,
however, the multidimensional unconditional ergodic theorem is invoked. See Tóth [n.d.]
for the proof.

1.5.3 Superdiffusive bounds when the H�1-condition fails. If the H�1-condition
(10)/(13) fails, or, equivalently, the conditions of part (i i ) of Proposition 1 don’t hold,
then there is no a priori upper bound on t�1E

�
jX(t)j2

�
and superdiffusive behaviour is

expected. There is no general statement like this, but there are particular interesting cases
studied. The fully worked out cases are, however, continuous-space diffusions on Rd

rather than random walks on Zd . Since d = 2 is the most interesting we only mention
the following two-dimensional example.

Let x 7! F (x) be a stationaryGaussian randomvector fieldwith covariancesKij (x) :=
E (Fi (0)Fj (x)) as follows

Kij (x) =
�
@2ij � ıi;j (@

2
11 + @

2
22)
�
V �G(x); bKij (p) = �

ıi;j �
pipj

jpj
2

�bV (p);(28)

where G(x) = log jxj is the two-dimensional (Laplacian) Green function and V : R2 !

R+ is a C1 approximate identity with fast decay and positive Fourier transform, bV (p) >

0. A good concrete choice could be V (x) = (2��2)�d/2 expf�jxj
2/(2�2)g, with some

� 2 (0;1). In plain words: F is the rotation (curl) of the two-dimensional Gaussian
free field, locally mollified by convolving with the convolution-square-root of V . As a
rotation, the vector fieldF is divergence-free, cf. (11). Define the diffusion in this random
drift field: t 7! X(t) 2 R2 as the unique strong solution of the SDE (12).

From (28) it appears that the H�1-condition fails marginally: the integral on the right
hand side of (10) diverges logarithmically. In Tóth and Valkó [2012] superdiffusive
bounds are proved for this diffusion in the rotation field of the two-dimensional Gaus-
sian free field, which look formally very similar to (38) in Section 2.4 below. This ex-
tends earlier results (with power-law divergences) of Komorowski and Olla [2002] to the
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marginal case of the two-dimensional Gaussian free field (with logarithmic divergences).
The random walk on the six-vertex model (see the third example in Section 1.4) behaves
phenomenologically similarly, but its superdiffusivity is not yet proved. Applying the
same methods as in Tóth and Valkó [2012] we obtain, however, superdiffusive bounds
for the variance of X(t) for the random walk on the randomly oriented Manhattan lattice
(second example in Section 1.4) in dimensions d = 2 (robust, power law) and d = 3

(marginal, logarithmic), cf. Ledger, Tóth, and Valkó [n.d.].

1.6 Historical notes. The problems of scaling limit of diffusions in divergence-free
random drift field (12)-(11) and that of the random walks in doubly stochastic random
environment (2)-(1) are closely related. Although the physical phenomena modelled are
very similar (tracer motion along the drift lines of incompressible turbulent flow), the
technical details of various proofs are not always the same. In particular, PDEmethods and
techniques used for the diffusion problem (12)-(11) are not always easily implementable
for the lattice problem (2)-(1). In the following list we give a summary of the main stations
in the probability literature along the almost forty years history of the subject. The list is
far from complete and contains only the probability results. See also the bibliographical
notes of chapters 3 and 11 of Komorowski, Landim, and Olla [2012].
1979: Kozlov, respectively, Papanicolaou and Varadhan, independently and in parallel
formulate the problem of scaling limits of diffusions in stationary random environment
and prove the first CLT for the self-adjoint case under strong ellipticity condition, Kozlov
[1979], G. C. Papanicolaou and Varadhan [1981].
1983: Osada proves quenched CLT for the diffusion (12) in divergence-free drift field
(11), when the the stream tensor is bounded, Osada [1983].
1985: Kozlov formulates the problem of random walk in doubly stochasic random en-
vironment (1)-(2). An annealed CLT is stated for the case when the jump probabilities
((pk(�x!))k2E)x2Zd are finitely dependent, Kozlov [1985a]. Double stochasticity (1)
and finite dependence of (p(�x!))x2Zd , jointly are rather restrictive conditions. Natural
examples are provided by a Bernoulli soup of bounded cycles.
1988: Oelschläger proves annealed invariance principle for the diffusion problem (12)-
(11), under the optimal H�1-condition, and local regularity condition imposed on the drift
field.
1996: Fannjiang and Papanicolaou consider the homogenisation for the parabolic problem
corresponding to (12)-(11), under H�1-condition, Fannjiang and G. Papanicolaou [1996].
1997: Fannjiang and Komorowski prove quenched invariance principle for the diffusion
(12)-(11), under the condition that h 2 Lp , with p > d , Fannjiang and Komorowski
[1997]
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2003: Komorowski and Olla prove annealed CLT for the random walk (2)-(1) when h 2

L1, by applying Varadhan’s strong sector condition, Komorowski and Olla [2003].
2008: Deuschel and Kösters prove quenched CLT for the random walk (2)-(1) when the
jump probabilities admit a bounded cyclic representation, Deuschel and Kösters [2008].
This condition implies h 2 L1 and thus the strong sector condition.
2012: Komorowski, Landim and Olla publish the proof of the CLT for the random walk
problem (2)-(1) in the case when h 2 Lp , p > d , Komorowski, Landim, and Olla [2012].
2017: Annealed CLT for the doubly stochastic RWRE problem (2)-(1) under the optimal
H�1-condition is proved in Kozma and Tóth [2017]. Quenched CLT under the additional
integrability condition (20) is proved in Tóth [n.d.].

2 Self-repelling Brownian polymers

2.1 Set-up and notation. We consider a self-repelling random process t 7! X(t) 2 Rd

which is pushed by the negative gradient of its own occupation time measure, towards
regions less visited in the past. In this order, fix an approximate identity V : Rd ! R+,
which is infinitely differentiable, decays exponentially fast at infinity, and is of positive
type:

bV (p) := (2�)�d/2

Z
Rd

eip�xV (x)dx � 0:(29)

As an example, take V (x) = (2��2)�d/2e�jxj
2/(2�2), bV (p) = e��2jpj

2/2.
Let X(t) be the unique strong solution of the stochastic differential equation

dX(t) = dB(t) �

�Z t

0

gradV (X(t) �X(u))du

�
dt:(30)

Denoting by `(t; �) the occupation time measure of the process X ,

`(t; A) := jf0 < s � t : X(s) 2 Agj ;(31)

where A � Rd is any measurable set, the SDE (30) is written in the alternative form

dX(t) = dB(t) � grad(V � `(t; �))(X(t))dt;(32)

which is more suggestive regarding the nature of the process t 7! X(t): it is indeed driven
by the negative gradient of an appropriate local regularization of its occupation time mea-
sure (local time). Following the terminology of the related probability literature we will
refer to the processX(t) defined in (30)/(32) as the self-repelling Brownian polymer. The
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main question is: What is the long time asymptotic behaviour or X? How does the self-
repulsion of the trajectory influence the long time scaling? The problem arose essentially
in parallel, but unrelated, in the physics (random walk versions) and probability (diffusion
versions) literature, cf. Amit, Parisi, and Peliti [1983], Obukhov and Peliti [1983], Peliti
and Pietronero [1987], Norris, Rogers, and Williams [1987], Durrett and Rogers [1992],
Cranston and Mountford [1996]. Mathematically non-rigorous, nevertheless strong and
compelling scaling arguments appearing in physics papers Amit, Parisi, and Peliti [1983],
Obukhov and Peliti [1983], Peliti and Pietronero [1987] convincingly suggest the follow-
ing dimension dependent asymptotic scaling behaviour, as t ! 1:

X(t) ∼

8̂<̂
:
t2/3 in d = 1; with non-Gaussian scaling limit;
t1/2(log t) in d = 2; with Gaussian scaling limit;
t1/2 in d � 3; with Gaussian scaling limit.

(33)

In d = 2, the value of the exponent  2 (0; 1/2] in the logarithmic correction is disputed.
However, there is good scaling reason to expect  = 1

4
. In the following sections we are

going to present the mathematically rigorous results related to the conjectures of (33).
In one-dimension, for some particular nearest-neighbour lattice walk versions of the

self-repellingmotion, the conjecture (in the first line of) (33) is fully settled. In Tóth [1995]
a limit theorem is proved for t�2/3X(t), with an intricate non-Gaussian limit distribution,
believed to be universally valid for the 1-d cases. In Tóth andWerner [1998] the presumed
scaling limit process t 7! X(t) is constructed and fully analysed. In this note we are not
going to cover those older results.

2.2 The environment process. Let

Ω :=
n
! 2 C1(Rd ! Rd ) : @k!l = @l!k ; k!kk;m;r < 1;

o
;

where the seminorms are, for k 2 f1; : : : ; dg, m 2 Nd , r 2 N,

k!kk;m;r := sup
x2Rd

(1 + jxj)�1/r
ˇ̌
@m1+���+md
m1;:::;md

!k(x)
ˇ̌
:

I plain words: Ω is the space of gradient vector fields on Rd , with all partial derivatives
increasing slower than any power of jxj.

It turns out that the process t 7! �(t; �) 2 Ω,

�(t; x) := grad(V � `(t; �))(X(t) + x)

is a Markov process on the state space Ω with almost surely continuous sample paths. We
allow for an initial profile �(0; �) 2 Ω. (This means an initial signed measure `(t; �) in
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(31).) The finite dimensional non-Markovian process t 7! X(t) 2 Rd is traded for the
infinite dimensional Markov process t 7! �(t) 2 Ω.

Next we define a Gaussian probability measure on Ω: the distribution of the gradient
of the Gaussian free field on Rd , locally regularised by convolving with the convolution-
square-root of V . This is the point where positive definiteness (29) of the self-interaction
potential V is essential. Let � be the Gaussian measure on Ω with zero mean and covari-
ances Kkl(y � x) :=

R
Ω !k(x)!l(y)d�(!),

Kkl(x);= �@klV �G(x); bKkl(p) = pkpl

jpj
2
bV (p):(34)

where G : Rd n f0g 7! R is the (Laplacian) Green function.
The group of translations �z : Ω ! Ω, z 2 Rd , acts naturally as �z!(x) := !(z + x),

and (Ω; F ; �; �z : z 2 Rd ) is ergodic.

Proposition 2. (Source: Tarrès, Tóth, and Valkó [2012], Horváth, Tóth, and Vető [2012a])
The Gaussian probability measure � , with zero mean and covariances (34) is stationary
and ergodic for the Markov process �(t).

This fact is consequence of the harmony between the two mechanisms driving the pro-
cess �: diffusion pushed by �(t; 0) and building up (gradient of) local time. Proposition 2
has two different proofs. In Tarrès, Tóth, and Valkó [2012] it is proved through careful
Itô-calculus. In Horváth, Tóth, and Vető [2012a] a functional analytic proof is presented.

Tilted Gaussian measures with nonzero constant expectation and the same covariances
as in (34) are also stationary and ergodic. We are not considering them because they
result in ballistic behaviour (that is: nonzero overall speed) of the motion X(t). We think
(though, don’t prove) that in d = 1; 2 these are the only stationary and ergodic probability
measures for the Markov process �(t). In d � 3, however, other stationary distributions
of totally different character do exist.

The forthcoming results are all valid in this stationary regime. That is: the initial �(0; �)
is sampled according to the distribution � . As in (23), the displacement of the random
walker X(t) will be decomposed as sum of a martingale with stationary and ergodic in-
crements and its compensator

X(t) =

�
X(t) �

Z t

0

'(�(s))ds

�
+

Z t

0

'(�(s))ds =:M (t) + I (t);(35)

where now ' : Ω ! Rd , 'l(!) = !l(0). The first term, M (t), in (35) is a square
integrable martingale with stationary and ergodic increments (on the probability space and
with respect to the natural filtration of the Markov process t 7! �(t)). So, that part is well
understood from start: it is diffusive and the martingale central limit theorem applies to it.
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In one and two dimensions superdiffusive lower bounds have been proved for the second
term, I (t), on the right hand side of (35), cf. Tarrès, Tóth, and Valkó [2012], Tóth and
Valkó [2012] and Theorem 4 below. On the other hand, in three and more dimensions an
efficient martingale approximation à la Kipnis-Varadhan holds for the compensator term,
I (t), on the right hand side of (35), cf. Horváth, Tóth, and Vető [2012a] and Theorem 5.

2.3 The infinitesimal generator of the environment process. All computations will
be performed in the Hilbert space H := ff 2 L2(Ω; �) :

R
Ω fd� = 0g. Scalar product

in the Hilbert space H will be denoted h�; �i. This is a Gaussian Hilbert space with its
natural grading:

H =

1M
n=1

Hn;(36)

where Hn is the subspace spanned by the n-fold Wick products
:!k1(x1); : : : ; !kn

(xn) : , kj 2 f1; : : : ; dg, xj 2 Rd .
The shift operators Uz : H ! H, Uzf (!) := f (�z!), z 2 Rd form a unitary

representation of Rd . Denote by rk , k 2 f1; : : : ; dg the infinitesimal generators: Uz =

e
Pd

k=1 zkrk and ∆ :=
Pd
k=1 r2

k
= �

Pd
k=1 r�

k
rk . Note that the shift operators and all

operators derived from them (e.g. rk , ∆) preserve the grading (36).
We will also use the creation and annihilation operators a�

l
: Hn ! Hn+1, al : Hn !

Hn�1 defined on Wick monomials as follows and extended by linearity.

a�
l :!k1(x1); :::; !kn

(xn) : = :!l(0); !k1(x1); :::; !kn
(xn) :

al :!k1(x1); :::; !kn
(xn) : =

nX
m=1

Klkm
(xm) :!k1(x1); :::;����

!km
(xm); :::; !kn

(xn) :

As suggested by notation the operators al and a�
l
are adjoints of each other and restricted

to any finite grade they are bounded:

kalkHn!Hn�1
=

�Z
Rd

jpj
�2p2

l
bV (p)dp

�1/2
p
n:

The infinitesimal generator L of the semigroup of the Markov process �(t), acting on
H, Ptf (!) := E

�
f (�(t))

ˇ̌
�(0) = !

�
is expressed in terms of the operators introduced

above, as

L = �
1

2
∆ +

dX
l=1

a�
l rl +

dX
l=1

rlal = �S + A+ + A�:(37)
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The proof of this form of the infinitesimal generator relies – beside usual manipulations
(integration by parts, etc.) – on directional derivative identities in the Gaussian Hilbert
space H (that is: elements of Malliavin calculus). For details see Tarrès, Tóth, and Valkó
[2012], Horváth, Tóth, and Vető [2012a]. The notation indicates that A+ : Hn ! Hn+1

while A� : Hn ! Hn+1, and clearly, S = S� � 0, A+ = �A�
�.

2.4 Scaling limits.

2.4.1 Superdiffusive bounds in d = 1 and d = 2. Let, for � > 0

bE(�) :=

Z 1

0

e��tE
�
jX(t)j2

�
dt:

Theorem 4. (Source: Tarrès, Tóth, and Valkó [2012], Tóth and Valkó [2012]) In d � 2,
the following bounds hold, with some constants 0 < c < C < 1, as � ! 0 :

in d = 1 : c�� 9
4 < bE(�) < C�� 5

2 ;

in d = 2 : c��2 log jlog�j < bE(�) < C��2 log j�j :

With some minimal regularity assumption on the asymptotic behaviour of
t 7! E

�
jX(t)j2

�
, as t ! 1, the bounds in Theorem 4 imply bounds on their Césaro

means,

in d = 1 : ct
5
4 <

1

t

Z t

0

E
�
jX(s)j2

�
ds < C t

3
2 ;

in d = 2 : ct log log t <
1

t

Z t

0

E
�
jX(s)j2

�
ds < C t log t:(38)

With some extra work the upper bounds can be improved to hold without Césaro averag-
ing, see e.g. Landim, Olla, and H. T. Yau [1998]. However, the loweer bounds are the
more interesting here. The bounds are consistent with but don’t quite match the asymp-
totic behaviour conjectured in (33). Nevertheless, robust superdiffusivity in d = 1 and
marginal superdiffusivity in d = 2 is at least established. Note also, that in d = 1, in
particular cases (of self-repelling lattice walks) the scaling t2/3X(t) has been rigorously
established, cf. Tóth [n.d.], Tóth and Werner [1998], Tóth and Vető [2008].

The proof of Theorem 4 follows the resolvent method of Landim, Olla, and H. T. Yau
[1998], Komorowski and Olla [2002], Landim, Quastel, Salmhofer, and H.-T. Yau [2004],
with new input in the variational computations for the 2-dimensional case.
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Due to the martingale decomposition (35) and stationarity of the process �(s), applying
a straightforward Schwarz inequality we obtainZ t

0

(t � s)h'; Pt'ids � 2˛2t � E
�
jX(t)j2

�
� 4

Z t

0

(t � s)h'; Pt'ids + 2˛2t;

where ˛2 := t�1E
�
M (t)2

�
is the variance rate of the first term,M (t), in the decomposi-

tion (35), which is a square integrable martingale with stationary increments. (The value
of ˛2 is explicitly computable but does not matter.) Hence,

��2
h';R�'i � 2˛2��2

� bE(�) � 4��2
h';R�'i + 2˛2��2;

where R� is the resolvent of the semigroup Pt . Thus, lower and upper bounds on bE(�)

reduce to lower and upper bounds on h';R�'i. The following variational formula, proved
in Landim, Olla, and H. T. Yau [1998], is valid in the widest generality for any contraction
semigroup Pt = etL, with infinitesimal generator L = �S + A:

h';R�'i = sup
 2H

˚
2h'; i � h ; (�I + S) i � hA ; (�I + S)�1A i

	
:(39)

The upper bounds in Theorem 4 are obtained simply by dropping the third (negative!) term
on the right hand side of (39). This is essentially for free. The lower bounds are obtained
by bounding from below the variational expression on the right hand side of (39), in the
subspace H1. This leads to a nontrivial variational problem in u : Rd 7! Rd (d = 1; 2).
In d = 2 the solution is tricky. For details see Tóth and Valkó [2012].

2.4.2 Diffusive limit in d � 3.

Theorem 5. (Source: Horváth, Tóth, and Vető [2012a]) In d � 3, the asymptotic covari-
ance matrix

(�2)ij := lim
t!1

t�1E (Xi (t)Xj (t))

exists, it is bounded and non-degenerate. For any bounded and continuous function f :

Rd ! R,

lim
T!1

Z
Ω

ˇ̌̌̌
ˇ̌E! �f (T �1/2X(T ))

�
�

Z
Rd

e�
jyj2

2

(2�)
d
2

f (��1y)dy

ˇ̌̌̌
ˇ̌ d�(!) = 0:(40)

Theorem 5 is proved in Horváth, Tóth, and Vető [ibid.], and weak convergence in the
sense of (40) of all finite dimensional marginal distributions of the diffusively scaled pro-
cess t 7! T � 1

2X(T t), as T ! 1, to those of a d -dimensional Brownian motion is estab-
lished. The proof relies on the efficient martingale approximation à la Kipnis-Varadhan of
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the integral term I (t) on the right hand side of (35). This is done by verifying the graded
sector condition of Sethuraman, Varadhan, and H.-T. Yau [2000]. The graded structure of
the Hilbert space H and of the infinitesimal generator L, cf. (37). Technical details to be
found in Horváth, Tóth, and Vető [2012a].

Acknowledgments. I thank Tomasz Komorowski and Stefano Olla for their help in clar-
ifying some points related to the historical backgrounds.
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THE METHOD OF HYPERGRAPH CONTAINERS
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Abstract

In this survey we describe a recently-developed technique for bounding the num-
ber (and controlling the typical structure) of finite objects with forbidden substructures.
This technique exploits a subtle clustering phenomenon exhibited by the independent
sets of uniform hypergraphs whose edges are sufficiently evenly distributed; more
precisely, it provides a relatively small family of ‘containers’ for the independent sets,
each of which contains few edges. We attempt to convey to the reader a general high-
level overview of the method, focusing on a small number of illustrative applications
in areas such as extremal graph theory, Ramsey theory, additive combinatorics, and
discrete geometry, and avoiding technical details as much as possible.

1 Introduction

Numerous well-studied problems in combinatorics concern families of discrete objects
which avoid certain forbidden configurations, such as the family of H -free graphs1 or the
family of sets of integers containing no k-term arithmetic progression. The most classical
questions about these families relate to the size and structure of the extremal examples;
for example, Turán [1941] determined the unique Kr -free graph on n vertices with the
most edges and Szemerédi [1975] proved that every set of integers of positive upper den-
sity contains arbitrarily long arithmetic progressions. In recent decades, partly motivated
by applications to areas such as Ramsey theory and statistical physics, there has been in-
creasing interest in problems relating to the typical structure of a (e.g., uniformly chosen)
member of one of these families and to extremal questions in (sparse) random graphs and
random sets of integers. Significant early developments in this direction include the semi-
nal results obtained by Erdős, Kleitman, and Rothschild [1976], who proved that almost all

JB is partially supported by NSF Grant DMS-1500121 and by the Langan Scholar Fund (UIUC); RM is par-
tially supported by CNPq (Proc. 303275/2013-8), by FAPERJ (Proc. 201.598/2014), and by ERC Starting Grant
680275 MALIG; WS is partially supported by the Israel Science Foundation grant 1147/14.
MSC2010: primary 05-02; secondary 05C30, 05C35, 05C65, 05D10, 05D40.
1A graph is H -free if it does not contain a subgraph isomorphic to H .
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triangle-free graphs are bipartite, by Kleitman and Winston [1982], who proved that there
are 2Θ(n3/2) C4-free graphs on n vertices, and by Frankl and Rödl [1986], who proved
that if p � 1/

p
n, then with high probability every 2-colouring of the edges of G(n; p)

contains a monochromatic triangle.
An important recent development in this area was the discovery that, perhaps surpris-

ingly, it is beneficial to consider such problems in the more abstract (and significantly
more general) setting of independent sets in hypergraphs. This approach was taken with
stunning success by Conlon and Gowers [2016], Friedgut, Rödl, and Schacht [2010], and
Schacht [2016] in their breakthrough papers on extremal and Ramsey-type results in sparse
random sets. To give just one example of the many important conjectures resolved by their
work, let us consider the random variable

ex
�
G(n; p); H

�
= max

˚
e(G) : H 6� G � G(n; p)

	
;

which was first studied (in the case H = K3) by Frankl and Rödl [1986]. The following
theorem was conjectured by Haxell, Kohayakawa, and Łuczak [1996, 1995] and proved
(independently) by Conlon and Gowers [2016] and by Schacht [2016].

Theorem 1.1. LetH be a graph with at least two edges and suppose thatp � n�1/m2(H),
where m2(H ) is the so-called 2-density2 of H . Then

ex
�
G(n; p); H

�
=

�
1 �

1

�(H ) � 1
+ o(1)

�
p

 
n

2

!
asymptotically almost surely (a.a.s.), that is, with probability tending to 1 as n ! 1.

It is not hard to show that ex
�
G(n; p); H

�
=
�
1 + o(1)

�
p
�

n
2

�
a.a.s. if n�2 � p �

n�1/m2(H) and so the assumption on p in Theorem 1.1 is optimal. We remark that in the
case when H is a clique even more precise results are known, due to work of DeMarco
and Kahn [2015, n.d.], who proved that if p � n�1/m2(H)(logn)2/(r+1)(r�2), then with
high probability the largest Kr+1-free subgraph of G(n; p) is r-partite, which is again
essentially best possible. We refer the reader to an excellent recent survey of Rödl and
Schacht [2013] for more details on extremal results in sparse random sets.

In this survey we will describe an alternative approach to the problem of understand-
ing the family of independent sets in a hypergraph, whose development was inspired
by the work in Conlon and Gowers [2016], Friedgut, Rödl, and Schacht [2010], and
Schacht [2016] and also strongly influenced by that of Kleitman and Winston [1982] and
Sapozhenko [2001, 2003, 2005]. This technique, which was developed independently by
Balogh, Morris, and Samotij [2015] and by Saxton and Thomason [2015], has turned out

2To be precise, m2(H ) = max
˚ e(F )�1

v(F )�2 : F � H; v(F ) > 3
	
.
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to be surprisingly powerful and flexible. It allows one to prove enumerative, structural,
and extremal results (such as Theorem 1.1) in a wide variety of settings. It is known as
the method of hypergraph containers.

To understand the essence of the container method, it is perhaps useful to consider
as an illustrative example the family Fn(K3) of triangle-free graphs on (a given set of) n

vertices. Note that the number of such graphs is at least 2bn2/4c, since every bipartite graph
is triangle-free.3 However, it turns out that there exists a vastly smaller family Gn of graphs
on n vertices, of size nO(n3/2), that forms a set of containers for Fn(K3), which means that
for every H 2 Fn(K3), there exists a G 2 Gn such that H � G. A remarkable property
of this family of containers is that each graph G 2 Gn is ‘almost triangle-free’ in the sense
that it contains ‘few’ triangles. It is not difficult to use this family of containers, together
with a suitable ‘supersaturation’ theorem, to prove Theorem 1.1 in the case H = K3 or to
show, using a suitable ‘stability’ theorem, that almost all triangle-free graphs are ‘almost
bipartite’. We will discuss these two properties of the family of triangle-free graphs in
much more detail in Section 2.

In order to generalize this container theorem for triangle-free graphs, it is useful to first
restate it in the language of hypergraphs. To do so, consider the 3-uniform hypergraph H
with vertex set V (H) = E(Kn) and edge set

E(H) =
˚
fe1; e2; e3g � E(Kn) : e1; e2; e3 form a triangle

	
:

We shall refer to H as the ‘hypergraph that encodes triangles’ and emphasize that (some-
what confusingly) the vertices of this hypergraph are the edges of the complete graph
Kn. Note that Fn(K3) is precisely the family I(H) of independent sets of H, so we may
rephrase our container theorem for triangle-free graphs as follows:

There exists a relatively small family C of subsets of V (H), each containing
only few edges of H, such that every independent set I 2 I(H) is contained
in some member of C.

There is nothing special about the fine structure of the hypergraph encoding triangles
that makes the above statement true. On the contrary, the method of containers allows one
to prove that a similar phenomenon holds for a large class of k-uniform hypergraphs, for
each k 2 N. In the case k = 3, a sufficient condition is the following assumption on the
distribution of the edges of a 3-uniform hypergraph H with average degree d : each vertex
of H has degree at most O(d ) and each pair of vertices lies in at most O(

p
d ) edges of

H. For the hypergraph that encodes triangles, both conditions are easily satisfied, since
each edge of Kn is contained in exactly n�2 triangles and each pair of edges is contained

3In particular, every subgraph of the complete bipartite graph with n vertices and bn2/4c edges is triangle-
free.
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in at most one triangle. The conclusion of the container lemma (see Sections 2 and 3)
is that each independent set I in a 3-uniform hypergraph H satisfying these conditions
has a fingerprint S � I of size O

�
v(H)/

p
d
�
that is associated with a set X(S) of size

Ω
�
v(H)

�
which is disjoint from I . The crucial point is that the set X(S) depends only

on S (and not on I ) and therefore the number of sets X(S) is bounded from above by
the number of subsets of the vertex set V (H) of size O

�
v(H)/

p
d
�
. In particular, each

independent set of H is contained in one of at most v(H)O(v(H)/
p

d) sets of size at most
(1 � ı)v(H), for some constant ı > 0. By iterating this process, that is, by applying the
container lemma repeatedly to the subhypergraphs induced by the containers obtained in
earlier applications, one can easily prove the container theorem for triangle-free graphs
stated (informally) above.

Although the hypergraph container lemma (see Section 3) was discovered only recently
(see Balogh, Morris, and Samotij [2015] and Saxton and Thomason [2015]), several theo-
rems of the same flavour (though often in very specific settings) appeared much earlier in
the literature. The earliest container-type argument of which we are aware appeared (im-
plicitly) over 35 years ago in the work of Kleitman andWinston [1980, 1982] on bounding
the number of lattices, and of C4-free graphs, which already contained some of the key
ideas needed for the proof in the general setting; see Samotij [2015] for details. Never-
theless, it was not until almost 20 years later that Sapozhenko [2001, 2003, 2005] made
a systematic study of containers for independent sets in graphs (and coined the name con-
tainers). Around the same time, Green and Ruzsa [2004] obtained (using Fourier analysis)
a container theorem for sum-free subsets of Z/pZ.

More recently, Balogh and Samotij [2011a,b] generalized the method of Kleitman and
Winston [1982] to count Ks;t -free graphs, using what could be considered to be the first
container theorem for hypergraphs of uniformity larger than two. Finally, Alon, Balogh,
Morris, and Samotij [2014a,b] proved a general container theorem for 3-uniform hyper-
graphs and used it to prove a sparse analogue of the Cameron–Erdős conjecture. Around
the same time, Saxton and Thomason [2012] developed a simpler version of the method
and applied it to the problem of bounding the list chromatic number of hypergraphs. In
particular, the articles Alon, Balogh, Morris, and Samotij [2014b] and Saxton and Thoma-
son [2012] can be seen as direct predecessors of Balogh, Morris, and Samotij [2015] and
Saxton and Thomason [2015].

The rest of this survey is organised as follows. In Section 2, we warm up by stating a
container lemma for 3-uniform hypergraphs, giving three simple applications to problems
involving triangle-free graphs and a more advanced application to a problem in discrete
geometry that was discovered recently by Balogh and Solymosi [n.d.]. Next, in Section 3,
we state the main container lemma and provide some additional motivation and discussion
of the statement and in Section 4 we describe an application to counting H -free graphs.
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Finally, in Sections 5–8, we state and discuss a number of additional applications, includ-
ing to multi-coloured structures (e.g., metric spaces), asymmetric structures (e.g., sparse
members of a hereditary property), hypergraphs of unbounded uniformity (e.g., induced
Ramsey numbers, "-nets), number-theoretic structures (e.g., Sidon sets, sum-free sets, sets
containing no k-term arithmetic progression), sharp thresholds in Ramsey theory, and
probabilistic embedding in sparse graphs.

2 Basic applications of the method

In this sectionwewill provide the reader with a gentle introduction to the containermethod,
focusing again on the family of triangle-free graphs. In particular, we will state a version
of the container lemma for 3-uniform hypergraphs and explain (without giving full details)
how to deduce from it bounds on the largest size of a triangle-free subgraph of the random
graph G(n; p), statements about the typical structure of a (sparse) triangle-free graph, and
how to prove that every r-colouring of the edges of G(n; p) contains a monochromatic
triangle. To give a simple demonstration of the flexibility of the method, we will also
describe a slightly more complicated application to a problem in discrete geometry.

In order to state the container lemma, we need a little notation. Given a hypergraph H,
let us write∆`(H) for the maximum degree of a set of ` vertices of H, that is,

∆`(H) = max
˚
dH(A) : A � V (H); jAj = `

	
;

where dH(A) =
ˇ̌˚

B 2 E(H) : A � B
	ˇ̌
, and I(H) for the collection of independent sets

of H.

The hypergraph container lemma for 3-uniform hypergraphs. For every c > 0, there
exists ı > 0 such that the following holds. Let H be a 3-uniform hypergraph with average
degree d > ı�1 and suppose that

∆1(H) 6 c � d and ∆2(H) 6 c �
p

d:

Then there exists a collection C of subsets of V (H) with

jCj 6
 

v(H)

v(H)/
p

d

!
such that

(a) for every I 2 I(H), there exists C 2 C such that I � C ,

(b) jC j 6 (1 � ı)v(H) for every C 2 C.
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In order to help us understand the statement of this lemma, let us apply it to the hy-
pergraph H that encodes triangles in Kn, defined in the Introduction. Recall that this
hypergraph satisfies

v(H) =

 
n

2

!
; ∆2(H) = 1; and dH(v) = n � 2

for every v 2 V (H). We may therefore apply the container lemma to H, with c = 1, to
obtain a collection C of nO(n3/2) subsets of E(Kn) (that is, graphs on n vertices) with the
following properties:

(a) Every triangle-free graph is a subgraph of some C 2 C.

(b) Each C 2 C has at most (1 � ı)e(Kn) edges.

Now, if there exists a container C 2 C with at least "n3 triangles, then take each
such C and apply the container lemma to the subhypergraph H[C ] of H induced by C ,
i.e., the hypergraph that encodes triangles in the graph C . Note that the average degree
of H[C ] is at least 6"n, since each triangle in C corresponds to an edge of H[C ] and
v(H[C ]) = jC j 6 e(Kn). Since (trivially) ∆`(H[C ]) 6 ∆`(H), it follows that we can
apply the lemma with c = 1/" and replace C by the collection of containers for I(H[C ])

given by the lemma.
Let us iterate this process until we obtain a collection C of containers, each of which

has fewer than "n3 triangles. How large is the final family C that we obtain? Note that we
apply the lemma only to hypergraphs with at most

�
n
2

�
vertices and average degree at least

6"n and therefore produce at most nO(n3/2) new containers in each application, where the
implicit constant depends only on ". Moreover, each application of the lemma shrinks a
container by a factor of 1 � ı, so after a bounded (depending on ") number of iterations
every container will have fewer than "n3 triangles (since ∆1(H) < n, then every graph
with at most "n2 edges contains fewer than "n3 triangles).

The above argument yields the following container theorem for triangle-free graphs.

Theorem 2.1. For each " > 0, there exists C > 0 such that the following holds. For
each n 2 N, there exists a collection G of graphs on n vertices, with

(1) jGj 6 nC n3/2

;

such that

(a) each G 2 G contains fewer than "n3 triangles;

(b) each triangle-free graph on n vertices is contained in some G 2 G.
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In order to motivate the statement of Theorem 2.1, we will next present three simple
applications: bounding the largest size of a triangle-free subgraph of the random graph
G(n; p), determining the typical structure of a (sparse) triangle-free graph, and proving
that G(n; p) cannot be partitioned into a bounded number of triangle-free graphs.

2.1 Mantel’s theorem in random graphs. The oldest result in extremal graph theory,
which states that every graph on n vertices with more than n2/4 edges contains a triangle,
was proved by Mantel [1907]. The corresponding problem in the random graph G(n; p)

was first studied by Frankl and Rödl [1986], who proved the following theorem (cf. The-
orem 1.1).

Theorem 2.2. For every ˛ > 0, there exists C > 0 such that the following holds. If
p > C/

p
n, then a.a.s. every subgraph G � G(n; p) with

e(G) >
�
1

2
+ ˛

�
p

 
n

2

!
contains a triangle.

As a simple first application of Theorem 2.1, let us use it to prove Theorem 2.2 under
the marginally stronger assumption that p � logn/

p
n. The proof exploits the following

crucial property of n-vertex graphs with o(n3) triangles: each such graph has at most�
1
2
+ o(1)

��
n
2

�
edges. This statement is made rigorous in the following supersaturation

lemma for triangles, which can be proved by simply applying Mantel’s theorem to each
induced subgraph of G with O(1) vertices.

Lemma 2.3 (Supersaturation for triangles). For every ı > 0, there exists " > 0 such that
the following holds. If G is a graph on n vertices with

e(G) >
�
1

4
+ ı

�
n2;

then G has at least "n3 triangles.

Applying Lemma 2.3with ı = ˛/2 and Theorem 2.1with " = "(ı) given by the lemma,
we obtain a family of containers G such that each G 2 G has fewer than "n3 triangles and
thus

e(G) 6
�
1 + ˛

2

� 
n

2

!
for every G 2 G. Since every triangle-free graph is a subgraph of some container, if
G(n; p) contains a triangle-free graph with m edges, then in particular e

�
G \G(n; p)

�
>
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m for some G 2 G. Noting that e
�
G \ G(n; p)

�
∼ Bin

�
e(G); p

�
, standard estimates on

the tail of the binomial distribution yield

P

�
e
�
G \ G(n; p)

�
>
�
1

2
+ ˛

�
p

 
n

2

!�
6 e�ˇpn2

;

for some constant ˇ = ˇ(˛) > 0. Therefore, taking a union bound over all containers
G 2 G and using the bound (1), we have (using the notation of Theorem 1.1)

(2) P

�
ex
�
G(n; p); K3

�
>
�
1

2
+ ˛

�
p

 
n

2

!�
6 nO(n3/2)

� e�ˇpn2

! 0

as n ! 1, provided that p � logn/
p

n. This gives the conclusion of Theorem 2.2
under a slightly stronger assumption on p. In Section 3, we show how to remove the extra
factor of logn.

We remark here that Theorem 2.2, as well as numerous results of this type that now exist
in the literature, cannot be proved using standard first moment estimates. Indeed, since
there are at least

�
bn2/4c

m

�
triangle-free graphs with n vertices and m edges, then letting Xm

denote the number of such graphs that are contained in G(n; p), we have

E[Xm] > pm

 
bn2/4c

m

!
=

 
(e/2 + o(1))p

�
n
2

�
m

!m

� 1

if m 6
�
e/2 + o(1)

�
p
�

n
2

�
= o(n2). This means that a first moment estimate would

yield an upper bound on ex
�
G(n; p); K3

�
that is worse than the trivial upper bound of�

1 + o(1)
�
p
�

n
2

�
.

2.2 The typical structure of a sparse triangle-free graph. A seminal theorem of
Erdős, Kleitman, and Rothschild [1976] states that almost all triangle-free graphs are bi-
partite. Our second application of Theorem 2.1 is the following approximate version of
this theorem for sparse graphs, first proved by Łuczak [2000]. Let us say that a graph G

is t -close to bipartite if there exists a bipartite subgraph G0 � G with e(G0) > e(G) � t .

Theorem 2.4. For every ˛ > 0, there exists C > 0 such that the following holds. If
m > C n3/2, then almost all triangle-free graphs with n vertices and m edges are ˛m-
close to bipartite.

We will again (cf. the previous subsection) prove this theorem under the marginally
stronger assumption that m � n3/2 logn. To do so, we will need a finer characterisation
of graphs with o(n3) triangles that takes into account whether or not a graph is close
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to bipartite. Proving such a result is less straightforward than Lemma 2.3; for example,
one natural proof combines the triangle removal lemma of Ruzsa and Szemerédi [1978]
with the classical stability theorem of Erdős [1967] and Simonovits [1968]. However, an
extremely simple, beautiful, and elementary proof was given recently by Füredi [2015].

Lemma 2.5 (Robust stability for triangles). For every ı > 0, there exists " > 0 such that
the following holds. If G is a graph on n vertices with

e(G) >
�
1

2
� "

� 
n

2

!
;

then either G is ın2-close to bipartite or G contains at least "n3 triangles.

Applying Lemma 2.5 with ı = ı(˛) > 0 sufficiently small and Theorem 2.1 with
" = "(ı) given by the lemma, we obtain a family of containers G such that every G 2 G is
either ın2-close to bipartite or

(3) e(G) 6
�
1

2
� "

� 
n

2

!
:

Let us count those triangle-free graphs H with n vertices and m edges that are not ˛m-
close to bipartite; note that each such graph is a subgraph of some container G 2 G.

Suppose first that G satisfies (3); in this case we simply use the trivial bound 
e(G)

m

!
6
 �

1
2

� "
� �

n
2

�
m

!
6 (1 � ")m

 
n2/4

m

!
for the number of choices for H � G. On the other hand, if G is ın2-close to bipartite,
then there is some bipartite G0 � G with e(G0) > e(G) � ın2. Since e(H \ G0) 6
(1 � ˛)m by our assumption on H , we bound the number of choices for H by 

e(G) � e(G0)

˛m

! 
e(G)

(1 � ˛)m

!
6
 

ın2

˛m

! �
n
2

�
(1 � ˛)m

!
6 2�m

 
n2/4

m

!
;

provided that ı = ı(˛) is sufficiently small. Summing over all choices of G 2 G and
using (1), it follows that if m � n3/2 logn, then there are at most

nO(n3/2)
� (1 � ")m

 
n2/4

m

!
�

 
bn2/4c

m

!
triangle-free graphs H with n vertices and m edges that are not ˛m-close to bipartite.
However, there are clearly at least

�
bn2/4c

m

�
triangle-free graphs H with n vertices and m
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edges, since every bipartite graph is triangle-free, so the conclusion of Theorem 2.4 holds
when m � n3/2 logn. We again postpone a discussion of how to remove the unwanted
factor of logn to Section 3.

2.3 Ramsey properties of sparse random graphs. A folklore fact that is presented
in each introduction to Ramsey theory states that every 2-colouring of the edges of K6

contains a monochromatic triangle. With the aim of constructing a small K4-free graph
that has the same property, Frankl and Rödl [1986] proved that if p � 1/

p
n, then a.a.s.

every 2-colouring of the edges of G(n; p) contains a monochromatic triangle. Ramsey
properties of random graphs were later thoroughly investigated by Rödl and Ruciński
[1993, 1994, 1995]; for example, they proved the following theorem.

Theorem 2.6. For every r 2 N, there exists C > 0 such that the following holds. If p �

C/
p

n, then a.a.s. every r-colouring of the edges of G(n; p) contains a monochromatic
triangle.

Wewill present a simple proof of this theorem that was discovered recently by Nenadov
and Steger [2016]. For the sake of simplicity, we will again use the marginally stronger
assumption that p � logn/

p
n. The proof exploits the following property of n-vertex

graphs with o(n3) triangles: the union of any bounded number of such graphs cannot
cover a

�
1 � o(1)

�
-proportion of the edges of Kn. This property is a straightforward

corollary of the following lemma, which can be proved by applying Ramsey’s theorem to
the colourings induced by all subsets of V (Kn) of size O(1).

Lemma 2.7. For every r 2 N, there exist n0 and " > 0 such that for all n > n0, every
(r+1)-colouring of the edges of Kn contains at least (r+1)"n3 monochromatic triangles.

Applying Theorem 2.1 with " = "(r) given by the lemma, we obtain a family of con-
tainers G such that every G 2 G has fewer than "n3 triangles. If G(n; p) does not have
the desired Ramsey property, then there are triangle-free graphs H1; : : : ; Hr such that
H1 [ : : :[Hr = G(n; p). It follows that G(n; p) � G1 [ : : :[Gr , where each Gi 2 G is
a container for Hi . Since each Gi has fewer than "n3 triangles, then Lemma 2.7 implies
that Kn n (G1 [ : : : [ Gr) contains at least "n3 triangles.4 Since each edge of Kn belongs
to fewer than n triangles, we must have e

�
Kn n (G1 [ : : : [ Gr)

�
> "n2. Consequently,

for each fixed G1; : : : ; Gr 2 G,

P
�
G(n; p) � G1 [ : : : [ Gr

�
= (1 � p)e(Knn(G1[���[Gr )) 6 (1 � p)"n2 6 e�"pn2

:

4To see this, consider an (r +1)-colouring of the edges of Kn that assigns to each edge e 2 G1 [ : : : [ Gr

some colour i such that e 2 Gi and assigns colour r + 1 to all edges of Kn n (G1 [ : : : [ Gr ).
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Taking a union bound over all r-tuples of containers, we conclude that

P
�
G(n; p) admits a ‘bad’ r-colouring

�
6 nO(n3/2)

� e�"pn2

! 0

as n ! 1, provided that p � logn/
p

n. As before, the unwanted factor of logn can be
removed with a somewhat more careful analysis that we shall discuss in Section 3.

2.4 An application in discrete geometry. In order to give some idea of the flexibility of
the container method, we will next present a somewhat more elaborate application of the
container lemma for 3-uniform hypergraphs, which was discovered recently by Balogh
and Solymosi [n.d.], to the following question posed by Erdős [1988]. Given n points
in the Euclidean plane R2, with at most three on any line, how large a subset are we
guaranteed to find in general position (i.e., with at most two on any line)? Füredi [1991]
proved that one can always find such a subset of sizeΩ

�p
n logn

�
and gave a construction

(which relied on the density Hales–Jewett theorem of Furstenberg and Katznelson [1991])
in which the largest such set has size o(n). Using the method of hypergraph containers,
Balogh and Solymosi obtained the following stronger upper bound.

Theorem 2.8. There exists a set S � R2 of size n, containing no four points on a line,
such that every subset of S of size n5/6+o(1) contains three points on a line.

The key idea of Balogh and Solymosi was to first construct a set P of points that con-
tains ‘few’ collinear quadruples, but such that every ‘large’ subset of P contains ‘many’
collinear triples. Then a random subset R of P of a carefully chosen density will typically
contain only o(jRj) collinear quadruples, since the density is not too large and there are
few collinear quadruples. On the other hand, every subset ofR with more than jRj5/6+o(1)

elements will still contain a collinear triple; this follows from the hypergraph container
lemma, as large sets contain many collinear triples and the density is not too small. Re-
moving one element from each collinear quadruple in R gives the desired set A.

Formally, we first define the following 3-uniform hypergraph H. We let V (H) = [m]3

(so the vertices are lattice points in R3) and let E(H) be the collection of triples of points
that lie on a common line. Thus, a subset of V (H) is in general position if and only if
it is an independent set of H. The following lemma was proved in Balogh and Solymosi
[n.d.].

Lemma 2.9 (Supersaturation for collinear triples). For every 0 <  < 1/2 and every
S � [m]3 of size at least m3� , there exist at least m6�4�o(1) collinear triples of points
in S .

We now repeatedly apply the hypergraph container lemma for 3-uniform hypergraphs
to subhypergraphs of H. Suppose that s > m8/3+o(1) and let S � [m]3 be an arbitrary
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s-element set. Lemma 2.9 gives

e
�
H[S ]

�
> s4/m6+o(1) and ∆2

�
H[S ]

�
6 ∆2(H) 6 m:

Moreover, it is not difficult to deduce that there exists a subhypergraph H0 � H[S ] with

v(H0) = jS j = s; e(H0) = s4/m6+o(1); and ∆1(H
0) = O

�
e(H0)/v(H0)

�
:

We may therefore apply the container lemma for 3-uniform hypergraphs to H0 to obtain a
collection C of at most exp

�
m3+o(1)/

p
s
�
subsets of S with the following properties:

(a) Every set of points of S in general position is contained in some C 2 C,

(b) Each C 2 C has size at most (1 � ı)jS j.

Starting with S = [m]3 and iterating this process for O(logm) steps, we obtain the fol-
lowing container theorem for sets of points in general position.

Theorem 2.10. For each m 2 N, there exists a collection C of subsets of [m]3 with

(4) jCj 6 exp
�
m5/3+o(1)

�
such that

(a) jC j 6 m8/3+o(1) for each C 2 C;

(b) each set of points of [m]3 in general position is contained in some C 2 C.

Now, let p = m�1+o(1) and consider a p-random subset R � [m]3, that is, each
element of [m]3 is included in R independently at random with probability p. Since [m]3

containsm6+o(1) sets of four collinear points5, it follows that, with high probability, jRj =

pm3+o(1) = m2+o(1) and R contains p4m6+o(1) = o(jRj) collinear 4-tuples. Moreover,
since jC j 6 m8/3+o(1) for each C 2 C, it follows from (4) and standard estimates on the
tail of the binomial distribution that with high probability we have jR \ C j 6 m5/3+o(1)

for every C 2 C. In particular, removing one element from each collinear 4-tuple in R

yields a set A � [m]3 of size m2+o(1) with no collinear 4-tuple and containing no set of
points in general position of size larger than m5/3+o(1). Finally, project the points of A to
the plane in such a way that collinear triples remain collinear, and no new collinear triple
is created. In this way, we obtain a set of n = m2+o(1) points in the plane, no four of
them on a line, such that no set of size greater than n5/6+o(1) = m5/3+o(1) is in general
position, as required.

5This is because there are O(m6/t4) lines in R3 that contain more than t points of [m]3.
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3 The key container lemma

In this section, we state a container lemma for hypergraphs of arbitrary uniformity. The
version of the lemma stated below, which comes from Morris, Samotij, and Saxton [n.d.],
differs from the statement originally proved by the authors of this survey Balogh, Morris,
and Samotij [2015, Proposition 3.1] only in that the dependencies between the various
constants have been made more explicit here; a careful analysis of the proof of Balogh,
Morris, and Samotij [ibid., Proposition 3.1] will yield this slightly sharper statement.6 Let
us recall that for a hypergraph H and an integer `, we write ∆`(H) for the maximum
degree of a set of ` vertices of H, that is,

∆`(H) = max
˚
dH(A) : A � V (H); jAj = `

	
;

where dH(A) =
ˇ̌˚

B 2 E(H) : A � B
	ˇ̌
, and I(H) for the collection of independent

sets of H. The lemma states, roughly speaking, that each independent set I in a uniform
hypergraph H can be assigned a fingerprint S � I in such a way that all sets with the
same fingerprint are contained in a single set C = f (S), called a container, whose size
is bounded away from v(H). More importantly, the sizes of these fingerprints (and hence
also the number of containers) can be bounded from above (in an optimal way!) by basic
parameters of H.

The hypergraph container lemma. Let k 2 N and set ı = 2�k(k+1). Let H be a
k-uniform hypergraph and suppose that

(5) ∆`(H) 6
�

b

v(H)

�`�1
e(H)

r

for some b; r 2 N and every ` 2 f1; : : : ; kg. Then there exists a collection C of subsets of
V (H) and a function f : P

�
V (H)

�
! C such that:

(a) for every I 2 I(H), there exists S � I with jS j 6 (k � 1)b and I � f (S);

(b) jC j 6 v(H) � ır for every C 2 C.

The original statement of the container lemma Balogh, Morris, and Samotij [ibid.,
Proposition 3.1] had r = v(H)/c for some constant c, since this choice of parameters
is required in most standard applications. In particular, the simple container lemma for
3-uniform hypergraphs presented in Section 2 is easily derived from the above statement
by letting b = v(H)/(2

p
d ) and r = v(H)/(6c), where d = 3e(H)/v(H) is the average

6A complete proof of the version of the container lemma stated here can be found in Morris, Samotij, and
Saxton [n.d.].
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degree of H. There are, however, arguments that benefit from setting r = o(v(H)); we
present one of them in Section 5.

Even though the property jC j 6 v(H)� ır that is guaranteed for all containers C 2 C
seems rather weak at first sight, it can be easily strengthened with repeated applications
of the lemma. In particular, if for some hypergraph H, condition (5) holds (for all `) with
some b = o(v(H)) and r = Ω(v(H)), then recursively applying the lemma to subhyper-
graphs of H induced by all the containers C for which e(H[C ]) > "e(H) eventually pro-
duces a collectionC of containers indexed by sets of sizeO(b) such that e(H[C ]) < "e(H)

for every C 2 C. This is precisely how (in Section 2) we derived Theorem 2.1 from the
container lemma for 3-uniform hypergraphs. For a formal argument showing how such
a family of ‘tight’ containers may be constructed, we refer the reader to Balogh, Morris,
and Samotij [2015].

One may thus informally say that the hypergraph container lemma provides a cover-
ing of the family of all independent sets of a uniform hypergraph with ‘few’ sets that
are ‘almost independent’. In many natural settings, these almost independent sets closely
resemble truly independent sets. In some cases, this is a straightforward consequence of
corresponding removal lemmas. Amore fundamental reason is that many sequences of hy-
pergraphs Hn of interest possess the following self-similarity property: For all (or many)
pairs m and n with m < n, the hypergraph Hn admits a very uniform covering by copies
of Hm. For example, this is the case when Hn is the hypergraph encoding triangles in Kn,
simply because every m-element set of vertices of Kn induces Km. Such self-similarity
enables one to use elementary averaging arguments to characterise almost independent
sets; for example, the standard proof of Lemma 2.3 uses such an argument.

The fact that the fingerprint S of each independent set I 2 I(H) is a subset of I is not
merely a by-product of the proof of the hypergraph container lemma. On the contrary, it
is an important property of the family of containers that can be often exploited to make
union bound arguments tighter. This is because each I 2 I(H) is sandwiched between
S and f (S) and consequently when enumerating independent sets one may use a union
bound over all fingerprints S and enumerate only over the sets I n S (which are contained
in f (S)). In particular, such finer arguments can be used to remove the superfluous log-
arithmic factor from the assumptions of the proofs outlined in Section 2. For example, in
the proof of Theorem 2.2 presented in Section 2.1, the fingerprints of triangle-free sub-
graphs of Kn form a family S of n-vertex graphs, each with at most C"n3/2 edges. Setting
m =

�
1
2
+ ˛

�
p
�

n
2

�
, this allows us to replace (2) with the following estimate:

(6) P
�
ex
�
G(n; p); K3

�
> m

�
6X

S2S

P
�
S � G(n; p) and e

��
f (S) n S

�
\ G(n; p)

�
> m � jS j

�
:
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Since the two events in the right-hand side of (6) concern the intersections ofG(n; p)with
two disjoint sets of edges of Kn, they are independent. If p � n�1/2, then jS j � p

�
n
2

�
and consequently, recalling that e(f (S)) 6

�
1+˛
2

��
n
2

�
, we may bound the right-hand side

of (6) from above by

X
S2S

pjS je�ˇpn2 6
X

s6C"n3/2

 �
n
2

�
s

!
�pse�ˇpn2 6

X
s6C"n3/2

 
e
�

n
2

�
p

s

!s

e�ˇpn2 6 e�ˇpn2/2

for some ˇ = ˇ(˛) > 0.
Finally, what is the intuition behind condition (5)? A natural way to define f (S) for

a given (independent) set S is to let f (S) = V (H) n X(S), where X(S) comprises all
vertices v such that A � S [ fvg for some A 2 E(H). Indeed, every independent set I

that contains S must be disjoint from X(S). (In reality, the definition of X(S) is – and has
to be – more complicated than this, and some vertices are placed in X(S) simply because
they do not belong to S .) Suppose, for the sake of argument, that S is a random set of b

vertices of H. Letting � = b/v(H), we have

(7) E
�
jX(S)j

�
6

X
A2E(H)

P
�
jA \ S j = k � 1

�
6 k � �k�1

� e(H):

Since we want X(S) to have at least ır elements for every fingerprint S , it seems reason-
able to require that

∆k(H) = 1 6
k

ı
� �k�1

�
e(H)

r
;

which is, up to a constant factor, condition (5) with ` = k. For some hypergraphs H
however, the first inequality in (7) can be very wasteful, since some v 2 X(S) may have
many A 2 E(H) such that A � S [ fvg. This can happen if for some ` 2 f1; : : : ; k � 1g,
there is an `-uniform hypergraph G such that each edge of H contains an edge of G; note
that e(G) can be as small as e(H)/∆`(H). Our assumption implies that I(G) � I(H) and
thus, letting Y (S) be the set of all vertices w such that B � S [ fwg for some B 2 E(G),
we have X(S) � Y (S). In particular, we want Y (S) to have at least ır elements for
every fingerprint S of an independent set I 2 I(G). Repeating (7) with X replaced by Y ,
H replaced by G, and k replaced by `, we arrive at the inequality

ır 6 ` � �`�1
� e(G) = ` � �`�1

�
e(H)

∆`(H)
;

which is, up to a constant factor, condition (5).
One may further develop the above argument to show that condition (5) is asymptoti-

cally optimal, at least when r = Ω(v(H)). Roughly speaking, one can construct k-uniform
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hypergraphs that have
�
(1�o(1))v(H)

m

�
independent m-sets for every m = o(b), where b is

minimal so that condition (5) holds, whereas the existence of containers of size at most
(1�ı)v(H) indexed by fingerprints of size o(b)would imply that the number of such sets
is at most

�
(1�")v(H)

m

�
for some constant " > 0.

4 Counting H -free graphs

How many graphs are there on n vertices that do not contain a copy of H? An obvious
lower bound is 2ex(n;H), since each subgraph of an H -free graph is also H -free. For non-
bipartite graphs, this is not far from the truth. Writing Fn(H ) for the family of H -free
graphs on n vertices, if �(H ) > 3, then

(8) jFn(H )j = 2(1+o(1))ex(n;H)

as n ! 1, as was first shown by Erdős, Kleitman, and Rothschild [1976] (when H is
a complete graph) and then by Erdős, Frankl, and Rödl [1986]. For bipartite graphs, on
the other hand, the problem is much more difficult. In particular, the following conjecture
(first stated in print in Kleitman and Winston [1982]), which played a major role in the
development of the container method, remains open.

Conjecture 4.1. For every bipartite graph H that contains a cycle, there exists C > 0

such that
jFn(H )j 6 2C ex(n;H)

for every n 2 N.

The first significant progress on Conjecture 4.1 was made by Kleitman and Winston
[ibid.]. Their proof of the case H = C4 of the conjecture introduced (implicitly) the
container method for graphs. Nevertheless, it took almost thirty years7 until their theorem
was generalized to the case H = Ks;t , by Balogh and Samotij [2011a,b], and then (a few
years later) to the case H = C2k , by Morris and Saxton [2016]. More precisely, it was
proved in Balogh and Samotij [2011b] and Morris and Saxton [2016] that

jFn(Ks;t )j = 2O(n2�1/s) and jFn(C2k)j = 2O(n1+1/k)

for every 2 6 s 6 t and every k > 2, which implies Conjecture 4.1 when t > (s � 1)!

and k 2 f2; 3; 5g, since in these cases it is known that ex(n; Ks;t ) = Θ(n2�1/s) and
ex(n; C2k) = Θ(n1+1/k).

Very recently, Ferber, McKinley, and Samotij [n.d.], inspired by a similar result of
Balogh, Liu, and Sharifzadeh [2017] on sets of integers with no k-term arithmetic pro-
gression, found a very simple proof of the following much more general theorem.

7An unpublished manuscript of Kleitman and Wilson from 1996 proves that jFn(C6)j = 2O(ex(n;C6)).
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Theorem 4.2. Suppose that H contains a cycle. If ex(n; H ) = O(n˛) for some constant
˛, then

jFn(H )j = 2O(n˛):

Note that Theorem 4.2 resolves Conjecture 4.1 for every H such that ex(n; H ) =

Θ(n˛) for some constant ˛. Ferber, McKinley, and Samotij showed moreover that the
weaker assumption that ex(n; H ) � n2�1/m2(H)+" for some " > 0 already implies that
the assertion of Conjecture 4.1 holds for infinitely many n; we refer the interested reader
to their paper for the details. Let us also note here that, while it is natural to suspect that
in fact the stronger bound (8) holds for all graphs H that contain a cycle, this is false for
H = C6, as was shown by Morris and Saxton [2016]. However, it may still hold for
H = C4 and it would be very interesting to determine whether or not this is indeed the
case.

The proof of Theorem 4.2 for general H is somewhat technical, so let us instead sketch
the proof in the case H = C4. In this case, the proof combines the hypergraph container
lemma stated in the previous section with the following supersaturation lemma.

Lemma 4.3. There exist constants ˇ > 0 and k0 2 N such that the following holds for
every k > k0 and every n 2 N. Given a graph G with n vertices and k � ex(n; C4) edges,
there exists a collection H of at least ˇk5 � ex(n; C4) copies of C4 in G that satisfies:

(a) Each edge belongs to at most k4 members of H.

(b) Each pair of edges is contained in at most k2 members of H.

The proof of Lemma 4.3 employs several simple but important ideas that can be used
in a variety of other settings, so let us sketch the details. The first key idea, which was first
used in Morris and Saxton [ibid.], is to build the required family H one C4 at a time. Let
us say that a collection H of copies of C4 is legal if it satisfies conditions (a) and (b) and
suppose that we have already found a legal collection Hm of m copies of C4 in G. Note
that we are done if m > ˇk5 � ex(n; C4), so let us assume that the reverse inequality holds
and construct a legal collection Hm+1 � Hm of m + 1 copies of C4 in G.

We claim that there exists a collection Am of ˇk5 � ex(n; C4) copies of C4 in G, any
of which can be added to Hm without violating conditions (a) and (b), that is, such that
Hm [ fC g is legal for any C 2 Am. (Let us call these good copies of C4.) Since m <

ˇk5 � ex(n; C4), then at least one element of Am is not already in Hm, so this will be
sufficient to prove the lemma.

To find Am, observe first that (by simple double-counting) at most 4ˇk � ex(n; C4)
edges of G lie in exactly k4 members of Hm and similarly at most 6ˇk3 � ex(n; C4) pairs
of edges ofG lie in exactly k2 members ofHm. Now, consider a random subsetA � V (G)
of size pn, where p = D/k2 for some large constant D. Typically G[A] contains about
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p2k �ex(n; C4) edges. After removing fromG[A] all saturated edges (i.e., those belonging
to k4 members of Hm) and one edge from each saturated pair (i.e., pair of edges that is
contained in k2 members of Hm), we expect to end up with at least

p2k � ex(n; C4) � 4ˇp2k � ex(n; C4) � 6ˇp3k3
� ex(n; C4) >

p2k � ex(n; C4)

2
> 2 � ex(pn; C4)

edges, where the first inequality follows since p = D/k2 and ˇ is sufficiently small,
and the second holds because ex(n; C4) = Θ(n3/2) and D is sufficiently large. Finally,
observe that any graph on pn vertices with at least 2 � ex(pn; C4) edges contains at least

ex
�
pn; C4

�
= Ω

�
p3/2

� ex(n; C4)
�

copies of C4. But each copy of C4 in G was included in the random subgraph G[A] with
probability at most p4 and hence (with a little care) one can show that there must exist at
least Ω

�
p�5/2 � ex(n; C4)

�
copies of C4 in G that avoid all saturated edges and pairs of

edges. Since p�5/2 = k5/D5/2 and ˇ is sufficiently small, we have found ˇk5 �ex(n; C4)

good copies of C4 in G, as required.
We now show how one may combine Lemma 4.3 and the hypergraph container lemma

to construct families of containers for C4-free graphs. Let ˇ and k0 be the constants
from the statement of Lemma 4.3 and assume that G is an n-vertex graph with at least
k � ex(n; C4) and at most 2k � ex(n; C4) edges, where k > k0. Denote by HG the 4-
uniform hypergraph with vertex set E(G), whose edges are the copies of C4 in G given
by Lemma 4.3. Since

v(HG) = e(G); e(HG) > ˇk5
� ex(n; C4); ∆1(HG) 6 k4; ∆2(HG) 6 k2;

and ∆3(HG) = ∆4(HG) = 1, the hypergraph HG satisfies the assumptions of the con-
tainer lemma with r = ˇk � ex(n; C4) and b = 2k�1/3 � ex(n; C4). Consequently, there
exist an absolute constant ı and a collection C of subgraphs of G with the following prop-
erties:

(a) every C4-free subgraph of G is contained in some C 2 C,

(b) each C 2 C has at most (1 � ı)e(G) edges,

and moreover

jCj 6
3bX

s=0

 
e(G)

s

!
6
�

e(G)

b

�3b

6 k4b 6 exp
�
8k�1/3 log k � ex(n; C4)

�
:

Note that we have just replaced a single container for the family of C4-free subgraphs of
G (namely G itself) with a small collection of containers for this family, each of which is
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somewhat smaller than G. Since every C4-free graph with n vertices is contained in Kn,
by repeatedly applying this ‘breaking down’ process, we obtain the following container
theorem for C4-free graphs.

Theorem 4.4. There exist constants k0 > 0 and C > 0 such that the following holds for
all n 2 N and k > k0. There exists a collection G(n; k) of at most

exp
�

C log k

k1/3
� ex(n; C4)

�
graphs on n vertices such that

e(G) 6 k � ex(n; C4)

for every G 2 G(n; k) and every C4-free graph on n vertices is a subgraph of some G 2

G(n; k).

To obtain the claimed upper bound on jG(n; k)j, note that if k � ex(n; C4) >
�

n
2

�
then

we may take G(n; k) = fKng, and otherwise the argument presented above yields

jG(n; k)j 6
ˇ̌
G
�
n; k/(1 � ı)

�ˇ̌
� exp

�
8k�1/3 log k � ex(n; C4)

�
:

In particular, applying Theorem 4.4 with k = k0, we obtain a collection of 2O(ex(n;C4))

containers for C4-free graphs on n vertices, each with O
�
ex(n; C4)

�
edges. This imme-

diately implies that Conjecture 4.1 holds for H = C4. The proof for a general graph H

(under the assumption that ex(n; H ) = Θ(n˛) for some ˛ 2 (1; 2)) is similar, though the
details are rather technical.

4.1 Turán’s problem in randomgraphs. Given that the problem of estimating jFn(H )j

for bipartite graphs H is notoriously difficult, it should not come as a surprise that deter-
mining the typical value of the Turán number ex

�
G(n; p); C4

�
for bipartite H also poses

considerable challenges. Compared to the non-bipartite case, whichwas essentially solved
by Conlon and Gowers [2016] and Schacht [2016], see Theorem 1.1, the typical behaviour
of ex

�
G(n; p); H

�
for bipartite graphs H is much more subtle.

For simplicity, let us restrict our attention to the case H = C4. Recall from Theo-
rem 1.1 that the typical value of ex

�
G(n; p); C4

�
changes from

�
1+ o(1)

�
p
�

n
2

�
to o(pn2)

when p = Θ(n�2/3), as was first proved by Haxell, Kohayakawa, and Łuczak [1995].
However, already several years earlier Füredi [1991] used the method of Kleitman and
Winston [1982] to prove8 the following much finer estimates of this extremal number for
p somewhat above the threshold.

8To be precise, Füredi proved that, if m > 2n4/3(logn)2, then there are at most (4n3/m2)m C4-free
graphs with n vertices and m edges, which implies the upper bounds in Theorem 4.5. For the lower bounds, see
Kohayakawa, Kreuter, and Steger [1998] and Morris and Saxton [2016].
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Theorem 4.5. Asymptotically almost surely,

ex
�
G(n; p); C4

�
=

8̂<̂
:
�
1 + o(1)

�
p
�

n
2

�
if n�1 � p � n�2/3;

n4/3(logn)O(1) if n�2/3 6 p 6 n�1/3(logn)4;

Θ
�p

p � n3/2
�

if p > n�1/3(logn)4:

Wewould like to draw the reader’s attention to the (somewhat surprising) fact that in the
middle range n�2/3+o(1) 6 p 6 n�1/3+o(1), the typical value of ex

�
G(n; p); C4

�
stays

essentially constant. A similar phenomenon has been observed in random Turán prob-
lems for other forbidden bipartite graphs (even cycles and complete bipartite graphs, see
Kohayakawa, Kreuter, and Steger [1998] and Morris and Saxton [2016]) as well as Turán-
type problems in additive combinatorics, see Dellamonica, Kohayakawa, Lee, Rödl, and
Samotij [2016b, n.d.]. It would be very interesting to determine whether or not a similar
‘long flat segment’ appears in the graph of p 7! ex

�
G(n; p); H

�
for every bipartite graph

H . We remark that the lower bound in the middle range is given (very roughly speaking)
by taking a random subgraph of G(n; p)with density n�2/3+o(1) and then finding9 a large
C4-free subgraph of this random graph; the lower bound in the top range is given by in-
tersecting G(n; p) with a suitable blow-up of an extremal C4-free graph and destroying
any C4s that occur; see Kohayakawa, Kreuter, and Steger [1998] and Morris and Saxton
[2016] for details.

Even though Theorem 4.4 immediately implies that ex
�
G(n; p); C4

�
= o(pn2) ifp �

n�2/3 logn, it is not strong enough to prove Theorem 4.5. A stronger container theorem
for C2`-free graphs (based on a supersaturation lemma that is sharper than Lemma 4.3)
was obtained in Morris and Saxton [2016]. In the case ` = 2, the statement is as follows.

Theorem 4.6. There exist constants k0 > 0 and C > 0 such that the following holds for
all n 2 N and k0 6 k 6 n1/6/ logn. There exists a collection G(n; k) of at most

exp
�

C log k

k
� ex(n; C4)

�
graphs on n vertices such that

e(G) 6 k � ex(n; C4)

for every G 2 G(n; k) and every C4-free graph on n vertices is a subgraph of some G 2

G(n; k).
9One easy way to do this is simply to remove one edge from each copy of C4. A more efficient method, used

by Kohayakawa, Kreuter, and Steger [1998] to improve the lower bound by a polylogarithmic factor, utilizes
a version of the general result of Ajtai, Komlós, Pintz, Spencer, and Szemerédi [1982] on independent sets in
hypergraphs obtained in Duke, Lefmann, and Rödl [1995]; see also Ferber, McKinley, and Samotij [n.d.].



THE METHOD OF HYPERGRAPH CONTAINERS 3097

Choosing k to be a suitable function of p, it is straightforward to use Theorem 4.6
to prove a slightly weaker version of Theorem 4.5, with an extra factor of logn in the
upper bound on ex

�
G(n; p); C4

�
. As usual, this logarithmic factor can be removed via a

more careful application of the container method, using the fact that the fingerprint of an
independent set is contained in it, cf. the discussion in Section 3; see Morris and Saxton
[ibid.] for the details. However, we are not able to determine the correct power of logn

in ex
�
G(n; p); C4

�
in the middle range n�2/3+o(1) � p � n�1/3+o(1) and we consider

this to be an important open problem. It would also be very interesting to prove similarly
sharp container theorems for other bipartite graphs H .

5 Containers for multicoloured structures

All of the problems that we have discussed so far, and many others, are naturally expressed
as questions about independent sets in various hypergraphs. There are, however, questions
of a very similar flavour that are not easily described in this way but are still amenable to
the container method. As an example, consider the problem of enumerating large graphs
with no induced copy of a given graph H . We shall say that a graph G is induced-H -free
if no subset of vertices of G induces a subgraph isomorphic to H . As it turns out, it is
beneficial to think of an n-vertex graph G as the characteristic function of its edge set. A
function g : E(Kn) ! f0; 1g is the characteristic function of an induced-H -free graph if
and only if for every set W of v(H ) vertices of Kn, the restriction of g to the set of pairs of
vertices of W is not the characteristic function of the edge set of H . In particular, viewing
g as the set of pairs

˚
(e; g(e)) : e 2 E(Kn)

	
, we see that if g represents an induced-H -

free graph, then it is an independent set in the
�

v(H)
2

�
-uniform hypergraph H with vertex

set E(Kn) � f0; 1g whose edges are the characteristic functions of all copies of H in Kn;
formally, for every injection ' : V (H ) ! V (Kn), the setn�

'(u)'(v); 1
�
: uv 2 E(H )

o
[

n�
'(u)'(v); 0

�
: uv … E(H )

o
is an edge of H. Even though the converse statement is not true and not every indepen-
dent set of H corresponds to an induced-H -free graph, since we are usually interested in
bounding the number of such graphs from above, the above representation can be useful.
In particular, Saxton and Thomason [2015] applied the container method to the hypergraph
H described above to reprove the following analogue of (8), whichwas originally obtained
by Alekseev [1992] and by Bollobás and Thomason [1995, 1997]. Letting F ind

n (H ) denote
the family of all induced-H -free graphs with vertex set f1; : : : ; ng, we have

jF ind
n (H )j = 2(1�1/col(H))(n

2
)+o(n2);
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where col(H ) is the so-called colouring number10 of H .
This idea of embedding non-monotone properties (such as the family of induced-H -

free graphs) into the family of independent sets of an auxiliary hypergraph has been used
in several other works. In particular, Kühn, Osthus, Townsend, and Zhao [2017] used it
to describe the typical structure of oriented graphs without a transitive tournament of a
given order. The recent independent works of Falgas-Ravry, O’Connell, Strömberg, and
Uzzell [n.d.] and of Terry [n.d.] have developed a general framework for studying various
enumeration problems in the setting of multicoloured graphs Falgas-Ravry, O’Connell,
Strömberg, and Uzzell [n.d.] and, more generally, in the very abstract setting of finite
(model theoretic) structures Terry [n.d.]. In order to illustrate some of the ideas involved
in applications of this kind, we will discuss the problem of counting finite metric spaces
with bounded integral distances.

5.1 Counting metric spaces. Let MM
n denote the family of metric spaces on a given

set of n points with distances in the set f1; : : : ; M g. Thus MM
n may be viewed as the set

of all functions d : E(Kn) ! f1; : : : ; M g that satisfy the triangle inequality d (uv) 6
d (uw) + d (wv) for all u; v; w. Since x 6 y + z for all x; y; z 2 fdM/2e; : : : ; M g, we
have

(9)
ˇ̌
MM

n

ˇ̌
>
ˇ̌̌̌��

M

2

�
; : : : ; M

�ˇ̌̌̌(n
2
)
=

�
M + 1

2

�(n
2
)

:

Inspired by a continuous version of the model suggested Benjamini (and first studied
by Kozma, Meyerovitch, Peled, and Samotij [n.d.]), Mubayi and Terry [n.d.] proved that
for every fixed even M , the converse of (9) holds asymptotically, that is, jMM

n j 6�
1 + o(1)

�˙
M+1

2

�(n
2
) as n ! 1. The problem becomes much more difficult, however,

when one allows M to grow with n. For example, if M �
p

n then the lower bound

ˇ̌
MM

n

ˇ̌
>
��

1

2
+

c
p

n

�
M

�(n
2
)

for some absolute constant c > 0, proved by Kozma, Meyerovitch, Peled, and Samotij
[n.d.], is stronger than (9). Balogh and Wagner [2016] proved strong upper bounds on
jMM

n j under the assumption that M � n1/3/(logn)4/3+o(1). The following almost op-
timal estimate was subsequently obtained by Kozma, Meyerovitch, Peled, and Samotij
[n.d.].

10The colouring number of a graph H is the largest integer r such that for some pair (r1; r2) satisfying
r1 + r2 = r , the vertex set of H cannot be partitioned into r1 cliques and r2 independent sets.
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Theorem 5.1. There exists a constant C such that

(10)
ˇ̌
MM

n

ˇ̌
6
��

1

2
+

2

M
+

C
p

n

�
M

�(n
2
)

for all n and M .

Here, we present an argument due to Morris and Samotij that derives a mildly weaker
estimate using the hypergraph container lemma. Let H be the 3-uniform hypergraph with
vertex set E(Kn) � f1; : : : ; M g whose edges are all triples

˚
(e1; d1); (e2; d2); (e3; d3)

	
such that e1; e2; e3 form a triangle in Kn but d�(1) + d�(2) < d�(3) for some permutation
� of f1; 2; 3g. The crucial observation, already made in Balogh andWagner [2016], is that
every metric space d : E(Kn) ! f1; : : : ; M g, viewed as the set of pairs

˚
(e; d (e)) : e 2

E(Kn)
	
, is an independent set of H. This enables the use of the hypergraph container

method for bounding
ˇ̌
MM

n

ˇ̌
from above. Define the volume of a set A � E(Kn) �

f1; : : : ; M g, denoted by vol(A), by

vol(A) =
Y

e2E(Kn)

ˇ̌̌n
d 2

˚
1; : : : ; M

	
: (e; d ) 2 A

oˇ̌̌
and observe that A contains at most vol(A) elements of MM

n . The following supersatura-
tion lemma was proved by Morris and Samotij.

Lemma 5.2. Let n > 3 and M > 1 be integers and suppose that A � E(Kn) �

f1; : : : ; M g satisfies

vol(A) =

��
1

2
+ "

�
M

�(n
2
)

for some " > 10/M . Then there exist m 6 M and a set A0 � A with jA0j 6 mn2, such
that the hypergraph H0 = H[A0] satisfies

e(H0) >
"m2M

50 logM

 
n

3

!
; ∆1(H

0) 6 4m2n; and ∆2(H
0) 6 2m:

It is not hard to verify that the hypergraph H0 given by Lemma 5.2 satisfies the assump-
tions of the hypergraph container lemma stated in Section 3 with
r = "n2M/(211 logM ) and b = O(n3/2). Consequently, there exist an absolute constant
ı and a collection C of subsets of A0, with

jCj 6 exp
�
O
�
n3/2 log(nM )

��
;

such that, setting AC = C [ (A n A0) = A n (A0 n C ) for each C 2 C, the following
properties hold:



3100 JÓZSEF BALOGH, ROBERT MORRIS AND WOJCIECH SAMOTIJ

(a) every metric space in A, viewed as a subset of E(Kn) � f1; : : : ; M g, is contained
in AC for some C 2 C, and

(b) jC j 6 jA0j � ır for every C 2 C.

Observe that

vol(AC ) 6
�

M � 1

M

�jA0nC j

vol(A) 6 e�ır/M vol(A)

6 e�ı"n2/(211 logM ) vol(A) 6
��

1

2
+

�
1 �

ı

212 logM

�
"

�
M

�(n
2
)

:

Since every metric space in MM
n is contained in E(Kn) � f1; : : : ; M g, by recursively

applying this ‘breaking down’ process to depth O(logM )2, we obtain a family of

exp
�
O
�
n3/2(logM )2 log(nM )

��
subsets of E(Kn)� f1; : : : ; M g, each of volume at most

�
M/2+10

�(n
2
), that cover all of

MM
n . This implies that

ˇ̌
MM

n

ˇ̌
6
��

1

2
+

10

M
+

C (logM )2 log(nM )
p

n

�
M

�(n
2
)

;

which, as promised, is only slightly weaker than (10).

6 An asymmetric container lemma

The approach to studying the family of induced-H -free graphs described in the previous
section has one (rather subtle) drawback: it embeds F ind

n (H ) into the family of indepen-
dent sets of a

�
v(H)

2

�
-uniform hypergraph withΘ(n2) vertices. As a result, the hypergraph

container lemma produces fingerprints of the same size as for the family of graphs with-
out a clique on v(H ) vertices. This precludes the study of various threshold phenomena
in the context of sparse induced-H -free graphs with the use of the hypergraph container
lemma presented in Section 3; this is in sharp contrast with the non-induced case, where
the container method proved very useful.

In order to alleviate this shortcoming, Morris, Samotij, and Saxton [n.d.] proved a ver-
sion of the hypergraph container lemma for 2-coloured structures that takes into account
the possible asymmetries between the two colours. We shall not give the precise state-
ment of this new container lemma here (since it is rather technical), but we would like to
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emphasize the following key fact: it enables one to construct families of containers for
induced-H -free graphs with fingerprints of size Θ(n2�1/m2(H)), as in the non-induced
case.

To demonstrate the power of the asymmetric container lemma, the following applica-
tion was given in Morris, Samotij, and Saxton [ibid.]. Let us say that a graph G is "-close
to a split graph if there exists a partition V (G) = A [ B such that e(G[A]) > (1� ")

�
jAj

2

�
and e(G[B]) 6 "e(G).

Theorem 6.1. For every " > 0, there exists a ı > 0 such that the following holds. Let G

be a uniformly chosen induced-C4-free graph with vertex set f1; : : : ; ng and m edges.

(a) If n � m � ın4/3(logn)1/3, then a.a.s. G is not 1/4-close to a split graph.

(b) If n4/3(logn)4 6 m 6 ın2, then a.a.s. G is "-close to a split graph.

Theorem 6.1 has the following interesting consequence: it allows one to determine the
number of edges in (and, sometimes, also the typical structure of) the binomial random
graphG(n; p) conditioned on the event that it does not contain an induced copy ofC4. Let
us denote by G ind

n;p(C4) the random graph chosen according to this conditional distribution.

Corollary 6.2. The following bounds hold asymptotically almost surely as n ! 1:

e
�
G ind

n;p(C4)
�
=

8̂<̂
:
�
1 + o(1)

�
p
�

n
2

�
if n�1 � p � n�2/3;

n4/3(logn)O(1) if n�2/3 6 p 6 n�1/3(logn)4;

Θ
�
p2n2/ log(1/p)

�
if p > n�1/3(logn)4:

Wewould like to emphasize the (surprising) similarity between the statements of Theo-
rem 4.5 and Corollary 6.2. In particular, the graph of p 7! e

�
G ind

n;p(C4)
�
contains exactly

the same ‘long flat segment’ as the graph of p 7! ex
�
G(n; p); C4

�
, even though the shape

of the two graphs above this range is quite different. We do not yet fully understand
this phenomenon and it would be interesting to investigate whether or not the function
p 7! e

�
G ind

n;p(H )
�
exhibits similar behaviour for other bipartite graphs H .

7 Hypergraphs of unbounded uniformity

Since the hypergraph container lemma provides explicit dependencies between the vari-
ous parameters in its statement, it is possible to apply the container method even when
the uniformity of the hypergraph considered is a growing function of the number of its
vertices. Perhaps the first result of this flavour was obtained by Mousset, Nenadov, and
Steger [2014], who proved an upper bound of 2ex(n;Kr )+o(n2/r) on the number of n-vertex
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Kr -free graphs for all r 6 (log2 n)1/4/2. Subsequently, Balogh, Bushaw, Collares, Liu,
Morris, and Sharifzadeh [2017] strengthened this result by establishing the following pre-
cise description of the typical structure of large Kr -free graphs.

Theorem 7.1. If r 6 (log2 n)1/4, then almost all Kr -free graphs with n vertices are
(r � 1)-partite.

Around the same time, the container method applied to hypergraphs with unbounded
uniformity was used to analyse Ramsey properties of random graphs and hypergraphs,
leading to improved upper bounds on several well-studied functions. In particular, Rödl,
Ruciński, and Schacht [2017] gave the following upper bound on the so-called Folkman
numbers.

Theorem 7.2. For all integers k > 3 and r > 2, there exists a Kk+1-free graph with

exp
�
C k4 log k + k3r log r

�
vertices, such that every r-colouring of its edges contains a monochromatic copy of Kk .

The previously best known bound was doubly exponential in k, even in the case r = 2.
Not long afterwards, Conlon, Dellamonica, La Fleur, Rödl, and Schacht [2017] used a
similar method to prove the following strong upper bounds on the induced Ramsey num-
bers of hypergraphs. Define the tower functions tk(x) by t1(x) = x and ti+1(x) = 2ti (x)

for each i > 1.

Theorem 7.3. For each k > 3 and r > 2, there exists c such that the following holds.
For every k-uniform hypergraph F on m vertices, there exists a k-uniform hypergraph
G on tk(cm) vertices, such that every r-colouring of E(G) contains a monochromatic
induced copy of F .

Finally, let us mention a recent result of Balogh and Solymosi [n.d.], whose proof is
similar to that of Theorem 2.8, which we outlined in Section 2.4. Given a family F of
subsets of an n-element set Ω, an "-net of F is a set A � Ω that intersects every member
of F with at least "n elements. The concept of an "-net plays an important role in computer
science, for example in computational geometry and approximation theory. In a seminal
paper, Haussler and Welzl [1987] proved that every set system with VC-dimension11 d

has an "-net of size O
�
(d/") log(d/")

�
. It was believed for more than twenty years that

for ‘geometric’ families, the log(d/") factor can be removed; however, this was disproved
by Alon [2012], who constructed, for each C > 0, a set of points in the plane such that
the smallest "-net for the family of lines (whose VC-dimension is 2) has size at least C/".

11The VC-dimension (VC stands for Vapnik–Chervonenkis) of a family F of subsets of Ω is the largest size
of a set X � Ω such that the set fA \ X : A 2 F g has 2jXj elements.
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By applying the container method to the hypergraph of collinear k-tuples in the k-
dimensional 2k2

� � � � � 2k2 integer grid, Balogh and Solymosi [n.d.] gave the following
stronger lower bound.

Theorem 7.4. For each " > 0, there exists a set S � R2 such that the following holds. If
T � S intersects every line that contains at least "jS j elements of S , then

jT j >
1

"

�
log

1

"

�1/3+o(1)

:

It was conjectured by Alon [2012] that there are sets of points in the plane whose small-
est "-nets (for the family of lines) contain Ω

�
1/" log(1/")

�
points.

8 Some further applications

There are numerous applications of the method of containers that we do not have space to
discuss in detail. Still, we would like to finish this survey by briefly mentioning just a few
of them.

8.1 List colouring. A hypergraph H is said to be k-choosable if for every assignment
of a list Lv of k colours to each vertex v of H, it is possible to choose for each v a colour
from the list Lv in such a way that no edge of H has all its vertices of the same colour.
The smallest k for which H is k-choosable is usually called the list chromatic number of
H and denoted by �`(H). Alon [1993, 2000] showed that for graphs, the list chromatic
number grows with the minimum degree, in stark contrast with the usual chromatic num-
ber; more precisely, �`(G) >

�
1/2 + o(1)

�
log2 ı(G) for every graph G. The following

generalisation of this result, which also improves the constant 1/2, was proved by Saxton
and Thomason [2015], see also Saxton and Thomason [2012, 2016].

Theorem 8.1. Let H be a k-uniform hypergraph with average degree d and∆2(H) = 1.
Then, as d ! 1,

�`(H) >
�

1

(k � 1)2
+ o(1)

�
logk d:

Moreover, if H is d -regular, then

�`(H) >
�

1

k � 1
+ o(1)

�
logk d:

We remark that proving lower bounds for the list chromatic number of simple hyper-
graphs was one of the original motivations driving the development of the method of
hypergraph containers.
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8.2 Additive combinatorics. The method of hypergraph containers has been applied
to a number of different number-theoretic objects, including sum-free sets Alon, Balogh,
Morris, and Samotij [2014a,b] and Balogh, Liu, Sharifzadeh, and Treglown [2015, n.d.],
Sidon sets Saxton and Thomason [2016], sets containing no k-term arithmetic progres-
sion Balogh, Liu, and Sharifzadeh [2017] and Balogh, Morris, and Samotij [2015], and
general systems of linear equations Saxton and Thomason [2016]. (See also Green [2004],
Green and Ruzsa [2004], and Sapozhenko [2003] for early applications of the container
method to sum-free sets and Dellamonica, Kohayakawa, Lee, Rödl, and Samotij [2016a,b,
n.d.] and Kohayakawa, Lee, Rödl, and Samotij [2015] for applications of graph containers
to Bh-sets.) Here we will mention just three of these results.

Let us begin by recalling that a Sidon set is a set of integers containing no non-trivial
solutions of the equation x+y = z+w. Results of Chowla, Erdős, Singer, and Turán from
the 1940s imply that the maximum size of a Sidon set in f1; : : : ; ng is

�
1+o(1)

�p
n and it

was conjectured by Cameron and Erdős [1990] that the number of such sets is 2(1+o(1))
p

n.
This conjecture was disproved by Saxton and Thomason [2016], who gave a construction
of 2(1+")

p
n Sidon sets (for some " > 0), and also used the hypergraph container method to

reprove the following theorem, which was originally obtained in Kohayakawa, Lee, Rödl,
and Samotij [2015] using the graph container method.

Theorem 8.2. There are 2O(
p

n) Sidon sets in f1; : : : ; ng.

Dellamonica, Kohayakawa, Lee, Rödl, and Samotij [n.d.] later generalized these results
to Bh-sets, that is, set of integers containing no non-trivial solutions of the equation x1 +

: : : + xh = y1 + : : : + yh.
The second result we would like to state was proved by Balogh, Liu, and Sharifzadeh

[2017], and inspired the proof presented in Section 4. Let rk(n) be the largest size of a
subset of f1; : : : ; ng containing no k-term arithmetic progressions.

Theorem 8.3. For each integer k > 3, there exist a constantC and infinitely many n 2 N
such that there are at most 2C rk(n) subsets of f1; : : : ; ng containing no k-term arithmetic
progression.

We recall (see, e.g., Gowers [2013]) that obtaining good bounds on rk(n) is a well-
studied and notoriously difficult problem. The proof of Theorem 8.3 avoids these dif-
ficulties by exploiting merely the ‘self-similarity’ property of the hypergraph encoding
arithmetic progressions in f1; : : : ; ng, cf. the discussion in Section 3 and the proof of
Lemma 4.3.

The final result we would like to mention was one of the first applications of (and
original motivations for the development of) the method of hypergraph containers. Re-
call that the Cameron–Erdős conjecture, proved by Green [2004] and, independently, by
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Sapozhenko [2003], states that there are onlyO(2n/2) sum-free subsets of f1; : : : ; ng. The
following sparse analogue of the Cameron–Erdős conjecture was proved by Alon, Balogh,
Morris, and Samotij [2014a] using an early version of the hypergraph container lemma for
3-uniform hypergraphs.

Theorem 8.4. There exists a constant C such that, for every n 2 N and every 1 6 m 6
dn/2e, the set f1; : : : ; ng contains at most 2C n/m

�
dn/2e

m

�
sum-free sets of size m.

We remark that ifm >
p

n, then Theorem 8.4 is sharp up to the value ofC , since in this
case there is a constant c > 0 such that there are at least 2cn/m

�
n/2
m

�
sum-free m-subsets of

f1; : : : ; ng. For smaller values of m the answer is different, but the problem in that range
is much easier and can be solved using standard techniques. Let us also mention that in
the case m �

p
n logn, the structure of a typical sum-free m-subset of f1; : : : ; ng was

also determined quite precisely in Alon, Balogh, Morris, and Samotij [ibid.].
Finally, wewould like to note that, although the statements of Theorems 8.2, 8.3 and 8.4

are somewhat similar, the difficulties encountered during their proofs are completely dif-
ferent.

8.3 Sharp thresholds for Ramsey properties. Given an integer k > 3, let us say that a
set A � Zn has the van der Waerden property for k if every 2-colouring of the elements of
A contains a monochromatic k-term arithmetic progression; denote this by A ! (k-AP).
Rödl and Ruciński [1995] determined the threshold for the van der Waerden property in
random subsets of Zn for every k 2 N. Combining the sharp threshold technology of
Friedgut [1999] with the method of hypergraph containers, Friedgut, Hàn, Person, and
Schacht [2016] proved that this threshold is sharp. Let us writeZn;p to denote a p-random
subset of Zn (i.e., each element is included independently with probability p).

Theorem 8.5. For every k > 3, there exist constants c1 > c0 > 0 and a function
pc : N ! [0; 1] satisfying c0n�1/(k�1) < pc(n) < c1n�1/(k�1) for every n 2 N, such
that, for every " > 0,

P
�
Zn;p !

�
k-AP

��
!

(
0 if p 6 (1 � ")pc(n);

1 if p > (1 + ")pc(n);

as n ! 1.

The existence of a sharp threshold in the context of Ramsey’s theorem for the triangle
was obtained several years earlier, by Friedgut, Rödl, Ruciński, and Tetali [2006]. Very
recently, using similar methods to those in Friedgut, Hàn, Person, and Schacht [2016],
Schacht and Schulenburg [2018] gave a simpler proof of this theorem and also generalised
it to a large family of graphs, including all odd cycles.
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8.4 Maximal triangle-free graphs and sum-free sets. In contrast to the large body of
work devoted to counting and describing the typical structure of H -free graphs, relatively
little is known aboutH -free graphs that aremaximal (with respect to the subgraph relation).
The following construction shows that there are at least 2n2/8 maximal triangle-free graphs
with vertex set f1; : : : ; ng. Fix a partition X [ Y = f1; : : : ; ng with jX j even. Define G

by letting G[X ] be a perfect matching, leaving G[Y ] empty, and adding to E(G) exactly
one of xy or x0y for every edge xx0 2 E(G[X ]) and every y 2 Y . It is easy to verify that
all such graphs are triangle-free and that almost all of them are maximal.

Using the container theorem for triangle-free graphs (Theorem 2.1), Balogh and Petřı́čková
[2014] proved that the construction above is close to optimal by showing that there are
at most 2n2/8+o(n2) maximal triangle-free graphs on f1; : : : ; ng. Following this break-
through, Balogh, Liu, Petřı́čková, and Sharifzadeh [2015] proved the following much
stronger theorem, which states that in fact almost all maximal triangle-free graphs can
be constructed in this way.

Theorem 8.6. For almost every maximal triangle-free graph G on f1; : : : ; ng, there is a
vertex partition X [ Y such that G[X ] is a perfect matching and Y is an independent set.

A similar result for sum-free sets was obtained by Balogh, Liu, Sharifzadeh, and Tre-
glown [2015, n.d.], who determined the number of maximal sum-free subsets of f1; : : : ; ng

asymptotically. However, the problem of estimating the number of maximal H -free
graphs for a general graph H is still wide open. In particular, generalizing the results
of Balogh, Liu, Petřı́čková, and Sharifzadeh [2015] and Balogh and Petřı́čková [2014] to
the family of maximal Kk-free graphs seems to be a very interesting and difficult open
problem.

8.5 Containers for rooted hypergraphs. A family F of finite sets is union-free if
A [ B ¤ C for every three distinct sets A; B; C 2 F . Kleitman [1976] proved that
every union-free family in f1; : : : ; ng contains at most

�
1 + o(1)

��
n

n/2

�
sets; this is best

possible as the family of all bn/2c-element subsets of f1; : : : ; ng is union-free. Balogh and
Wagner [2017] proved the following natural counting counterpart of Kleitman’s theorem,
confirming a conjecture of Burosch, Demetrovics, Katona, Kleitman, and Sapozhenko
[1991].

Theorem 8.7. There are 2(1+o(1))( n
n/2

) union-free families in f1; : : : ; ng.

It is natural to attempt to prove this theorem by applying the container method to the
3-uniform hypergraph H that encodes triples fA; B; C g with A [ B = C . However, there
is a problem: for any pair (B; C ), there exist 2jBj sets A such that A [ B = C and this
means that∆2(H) is too large for a naive application of the hypergraph container lemma.
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In order to overcome this difficulty, Balogh and Wagner developed in Balogh and Wagner
[2017] a new container theorem for ‘rooted’ hypergraphs (each edge has a designated root
vertex) that exploits the asymmetry of the identity A [ B = C . In particular, note that
while the degree of a pair (B; C ) can be large, the pair fA; Bg uniquely determines C ; it
turns out that this is sufficient to prove a suitable container theorem. We refer the reader
to Balogh and Wagner [ibid.] for the details.

8.6 Probabilistic embedding in sparse graphs. The celebrated regularity lemma of
Szemerédi [1978] states that, roughly speaking, the vertex set of every graph can be di-
vided into a bounded number of parts in such a way that most of the bipartite subgraphs
induced by pairs of parts are pseudorandom; such a partition is called a regular partition.
The strength of the regularity lemma stems from the so-called counting and embedding
lemmas, which tell us approximately how many copies of a particular subgraph a graph
G contains in terms of basic parameters of the regular partition of G. While the original
statement of the regularity lemma applied only to dense graphs (i.e., n-vertex graphs with
Ω(n2) edges), the works of Kohayakawa [1997], Rödl (unpublished), and Scott [2011]
provide extensions of the lemma that are applicable to sparse graphs. However, these ex-
tensions come with a major caveat: the counting and embedding lemmas do not extend
to sparse graphs; this unfortunate fact was observed by Łuczak. Nevertheless, it seemed
likely that such atypical graphs that fail the counting or embedding lemmas are so rare that
they typically do not appear in random graphs. This belief was formalised in a conjecture
of Kohayakawa, Łuczak, and Rödl [1997], which can be seen as a ‘probabilistic’ version
of the embedding lemma.

The proof of this conjecture, discovered by the authors of this survey Balogh, Morris,
and Samotij [2015] and by Saxton and Thomason [2015], was one of the original appli-
cations of the hypergraph container lemma. Let us mention here that a closely related
result was proved around the same time by Conlon, Gowers, Samotij, and Schacht [2014].
A strengthening of the KŁR conjecture, a ‘probabilistic’ version of the counting lemma,
proposed by Gerke, Marciniszyn, and Steger [2007], remains open.
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COMBINATORIAL APPLICATIONS OF THE
HODGE–RIEMANN RELATIONS

Jඎඇൾ Hඎඁ

Abstract

Why do natural and interesting sequences often turn out to be log-concave? We
give one of many possible explanations, from the viewpoint of “standard conjectures”.
We illustrate with several examples from combinatorics.

1 Log-concave and unimodal sequences

Logarithmic concavity is a property of a sequence of real numbers, occurring throughout
algebra, geometry, and combinatorics. A sequence of real numbers a0; : : : ; ad is log-
concave if

a2
i � ai�1ai+1 for all i :

When all the entries are positive, the log-concavity implies unimodality, a property easier
to visualize: the sequence is unimodal if there is an index i such that

a0 � � � � � ai�1 � ai � ai+1 � � � � � ad :

A rich variety of log-concave and unimodal sequences arising in combinatorics can be
found in the surveys Brenti [1994] and Stanley [1989, 2000]. For an extensive discussion
of log-concavity and its applications in probability and statistics, see Dharmadhikari and
Joag-Dev [1988], Marshall, Olkin, and Arnold [2011], and Saumard and Wellner [2014].

Why do natural and interesting sequences often turn out to be log-concave? Below we
give one of many possible explanations, from the viewpoint of standard conjectures. To
illustrate, we discuss three combinatorial sequences appearing in Stanley [2000, Problem
25], in Sections 2.4, 2.5, and 2.8. Another heuristic, based on the physical principle that
the entropy of a system should be concave as a function of the energy, can be found in
Okounkov [2003].
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Let X be a mathematical object of “dimension” d . Often it is possible to construct
from X in a natural way a graded vector space over the real numbers

A(X) =

dM
q=0

Aq(X);

together with a symmetric bilinear map P : A(X) � A(X) ! R and a graded linear map
L : A�(X) ! A�+1(X) that is symmetric with respect to P. The linear operator L usually
comes in as a member of a family K(X), a convex cone in the space of linear operators
on A(X).1 For example, A(X) may be the cohomology of real (q; q)-forms on a com-
pact Kähler manifold (Gromov [1990]), the ring of algebraic cycles modulo homological
equivalence on a smooth projective variety (Grothendieck [1969]), McMullen’s algebra
generated by the Minkowski summands of a simple convex polytope (McMullen [1993]),
the combinatorial intersection cohomology of a convex polytope (Karu [2004]), the re-
duced Soergel bimodule of a Coxeter group element (Elias andWilliamson [2014]), or the
Chow ring of a matroid (Section 2.6).

Often, but not always, A(X) has the structure of a graded algebra, P is determined by
the multiplicative structure of A(X) up to a constant multiple, and L is the multiplication
by an element in A1(X). In any case, we expect the following properties to hold for the
triple (A(X);P(X);K(X)) for every nonnegative integer q �

d
2
:

(PD) The bilinear pairing

Aq(X) � Ad�q(X) �! R; (�; �) 7�! P(�; �)

is nondegenerate (the Poincaré duality for X ).

(HL) For any L1; : : : ;Ld�2q 2 K(X), the linear map

Aq(X) �! Ad�q(X); � 7�!
� d�2qY

i=1

Li

�
�

is bijective (the hard Lefschetz theorem for X ).

(HR) For any L0;L1; : : : ;Ld�2q 2 K(X), the bilinear form

Aq(X) � Aq(X) �! R; (�1; �2) 7�! (�1)q P(�1;
� d�2qY

i=1

Li

�
�2)

1“P” is for Poincaré, “L” is for Lefschetz, and “K” is for Kähler.
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is positive definite on the kernel of the linear map

Aq(X) �! Ad�q+1(X); � 7�!
� d�2qY

i=0

Li

�
�

(the Hodge-Riemann relation for X ).

All three properties are known to hold for the objects listed above except one, which is the
subject of Grothendieck’s standard conjectures on algebraic cycles. The known proofs of
the hard Lefschetz theorems and the Hodge-Riemann relations for different objects have
certain structural similarities, but there is no known way of deducing one of them from
the others.

Hard Lefschetz theorems for various X ’s have found numerous applications to prob-
lems of combinatorial nature. An early survey of these applications can be found in Stanley
[1984]. We highlight the following three:

(1) Erdős–Moser conjecture (Erdős [1965]), proved by Stanley [1980b]: LetE be a subset
of R and let f (E; k) be the number of subsets of E whose elements sum to k. If the
cardinality of E is 2n + 1, then

f (E; k) � f
�
[�n; n] \ Z; 0

�
:

(2) McMullen’s g-conjecture (McMullen [1971]), proved by Billera and Lee [1980] and
Stanley [1980a]: The f -vector of a d -dimensional convex polytope P is the sequence
f0(P); : : : ; fd (P), where

fi (P) = the number of (i � 1)-dimensional faces of P:

The h-vector of P is the sequence h0(P); : : : ; hd (P) defined by the identity
dX

i=0

hi (P)xi =

dX
i=0

fi (P)xi (1 � x)d�i :

The g-conjecture gives a complete numerical characterization of the h-vectors of sim-
plicial polytopes. In particular, for any d -dimensional simplicial polytope P,

hi (P) = hd�i (P) and hi (P) � hi+1(P) for all i < d/2:

(3) Dowling-Wilson conjecture (Dowling and Wilson [1974, 1975]), proved by Huh and
Wang [2017]: Let E be a finite subset of a vector space, and let wi (E) be the number
of i -dimensional subspaces spanned by subsets of E. If E spans a d -dimensional
subspace, then

wi (E) � wd�i (E) and wi (E) � wi+1(E) for all i < d/2:
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All known proofs of the above statements use some version of HL.
When the Poincaré duality for X is known, the Hodge-Riemann relation for X is

stronger than the hard Lefschetz theorem for X in the sense that, for every q,

HR in degrees at most q H) HL in degrees at most q:

In the remainder of this survey, we give an overview of applications of theHodge-Riemann
relations to concrete problems. We remark that most known applications only use the
following immediate consequence of HR in degrees q � 1: For any L1; : : : ;Ld�2 2

K(X), any matrix representing the symmetric bilinear form

A1(X) � A1(X) �! R; (�1; �2) 7�! P(�1;
� d�2Y

i=0

Li

�
�2)

has exactly one positive eigenvalue. One notable exception is the implication

Grothendieck standard conjectures on algebraic cycles H)

Weil conjectures on zeta functions over finite fields;

which was one of the main motivations for formulating the standard conjectures (Colmez
and Serre [2001], Kleiman [1968], and Kleiman [1994]). It will be interesting to find
applications of HR for q > 1 in other contexts too.

2 Applications of the Hodge-Riemann relations

2.1 Mixed discriminants and permanents. The notion of mixed discriminant arises
when one combines the determinant with the matrix sum. To define the mixed discrimi-
nant, letA = (A1; : : : ;Ad ) be a collection of real symmetric d �d matrices, and consider
the function

detA : Rd
�! R; (t1; : : : ; td ) 7�! det(t1A1 + � � � + tdAd );

which is a homogeneous polynomial of degree d . The number

D(A1; : : : ;Ad ) =
@d

@t1 � � � @td
detA(t1; : : : ; td )

is called the mixed discriminant of A. The mixed discriminant is symmetric in A, and it
is nonnegative whenever all the matrices in A are positive semidefinite.2

2The latter fact can be viewed as a Hodge-Riemann relation in degree 0.
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Let P = (P1; : : : ; Pd�2) be any collection of d � d positive semidefinite matrices.
Define a symmetric bilinear form HR(P) on the space of real symmetric d � d matrices
by

HR(P) : Symd � Symd �! R; (�1; �2) 7�! D(�1; �2;P1; : : : ; Pd�2):

Aleksandrov [1938] proved the following statement and used it in his proof of theAleksandrov-
Fenchel inequality for mixed volumes of convex bodies. To avoid trivialities, we suppose
that HR(P) is not identically zero.

Theorem 1. Any matrix representing HR(P) has exactly one positive eigenvalue.

It follows from Cauchy’s eigenvalue interlacing theorem that, for any positive semidef-
inite d � d matrices A1; : : : ;Ad ,

det
�

D(A1;A1;A3; : : : ;Ad ) D(A1;A2;A3; : : : ;Ad )

D(A1;A2;A3; : : : ;Ad ) D(A2;A2;A3; : : : ;Ad )

�
� 0:

Theorem 1 is, in fact, a Hodge-Riemann relation in degree 1. The object X is the d -
dimensional complex vector space Cd , the algebra A(X) is the ring of real differential
forms with constant coefficients on Cd , and the cone K(X) is the spectrahedral cone of
all d � d positive definite matrices. Elementary proofs of the Hodge-Riemann relation
for this X in any degree can be found in Gromov [1990] and Timorin [1998].

In the important special case when all the matrices are diagonal, the mixed discriminant
is a permanent. Precisely, if A = (aij ) is an d � d matrix and if Ai is the diagonal matrix
whose j -th diagonal element is aij , then

d !D(A1; : : : ;Ad ) = per(A) :=
X

�

dY
i=1

ai�(i);

where � runs through all permutations of f1; : : : ; dg. Therefore, for any column vectors
a1; : : : ; ad in Rn with nonnegative entries,

per(a1; a2; a3; : : : ; ad )
2

� per(a1; a1; a3; : : : ; ad )per(a2; a2; a3; : : : ; ad ):

The above special case of the Hodge-Riemann relations for Cd was the main ingredient
in Egorychev’s and Falikman’s proofs of van der Waerden’s conjecture that the permanent
of any doubly stochastic d � d matrix is at least d !/d d . See Knuth [1981] and van Lint
[1982] for more on van der Waerden’s permanent conjecture.
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2.2 Mixed volumes of convex bodies. The notion of mixed volume arises when one
combines the volume with the Minkowski sum. For any collection of convex bodies P =

(P1; : : : ; Pd ) in Rd , consider the function

volP : Rd
�0 �! R�0; (t1; : : : ; td ) 7�! vol(t1P1 + � � � + tdPd ):

Minkowski noticed that volP is a homogeneous polynomial of degree d , and called the
number

V (P1; : : : ; Pd ) =
@d

@t1 � � � @td
volP(t1; : : : ; td )

the mixed volume of P. The mixed volume is symmetric in P, and it is nonnegative for
any P.3

Now let �1; : : : ; �n be another collection of convex bodies in Rd , and define an n � n

matrix AF = (AFij ) by

AFij = V (�i ; �j ;P1; : : : ; Pd�2):

If AF ¤ 0, then the mixed volume analog of Theorem 1 holds.

Theorem 2. The matrix AF has exactly one positive eigenvalue.

It follows that the mixed volume satisfies the Aleksandrov-Fenchel inequality

det
�

V (P1;P1;P3; : : : ; Pd ) V (P1;P2;P3; : : : ; Pd )

V (P1;P2;P3; : : : ; Pd ) V (P2;P2;P3; : : : ; Pd )

�
� 0:

In particular, the sequence of mixed volumes of two convex bodies is log-concave:

V (P1; : : : ; P1„ ƒ‚ …
i

;P2; : : : ; P2„ ƒ‚ …
d�i

)2 � V (P1; : : : ; P1„ ƒ‚ …
i�1

;P2; : : : ; P2„ ƒ‚ …
d�i+1

)V (P1; : : : ; P1„ ƒ‚ …
i+1

;P2; : : : ; P2„ ƒ‚ …
d�i�1

):

Aleksandrov reduced Theorem 2 to the case when the Minkowski sum of all the relevant
convex bodies, say 4, is a simple convex polytope. Under this hypothesis, Theorem 2 is
a Hodge-Riemann relation in degree 1 (Gromov [1990], McMullen [1993], and Teissier
[1979]). The objectX is the convex polytope4, the algebraA(X) isMcMullen’s polytope
algebra generated by the Minkowski summands of 4, and the cone K(X) is the cone of
convex polytopes that share the normal fan with 4. Elementary proofs of the Hodge-
Riemann relation for this X in any degree can be found in Fleming and Karu [2010],
McMullen [1993], and Timorin [1999].

3The latter fact can be viewed as a Hodge-Riemann relation in degree 0.
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The Alexandrov-Fenchel inequality has been used to understand linear extensions of
partially ordered sets. For example, Chung, Fishburn, and Graham [1980] conjectured
that, for any finite poset Q,

Pri (x)2 � Pri�1(x)Pri+1(x) for all i and all x 2 Q;

where Pri (x) is the fraction of linear extensions of Q in which x is the i -th largest element.
Stanley [1981] proved the conjecture by constructing suitable convex polytopes from x 2

Q and using the Alexandrov-Fenchel inequality. For another example, write Pr(x1 <

x2) for the fraction of linear extensions of Q in which x1 is smaller than x2. Kahn and
Saks [1984] employed Stanley’s method to deduce the following remarkable fact from the
Alexandrov-Fenchel inequality:

If Q is not a chain, then there are elements x1; x2 2 Q such that

3/11 < Pr(x1 < x2) < 8/11:

This confirmed a conjecture of Fredman [1975/76] and Linial [1984] that the informa-
tion theoretic lower bound for the general sorting problem is tight up to a multiplicative
constant.

2.3 The correlation constant of a field. Let G be a finite connected graph, let i , j

be distinct edges, and let T be a random spanning tree of G. Kirchhoff’s effective resis-
tance formula can be used to show that the probability that i is in T can only decrease by
assuming that j is in T :

Pr(i 2 T ) � Pr(i 2 T j j 2 T ):

In other words, the number b� of spanning trees containing given edges satisfies

bi

b
�

bij

bj

:

Now let M be a finite spanning subset of a vector space V , let i , j be distinct nonzero
vectors in M, and write b� for the number of bases in M containing given vectors. Do we
still have the negative correlation

bi

b
�

bij

bj

?

The previous statement on graphs is the special case when M is the vertex-edge incidence
matrix over the field with two elements.

Seymour and Welsh [1975] gave the first example of M over a field of characteristic 2
with b bij

bi bj
= 36

35
for some i and j . How large can the ratio be?



3118 JUNE HUH

Definition 3. The correlation constant of a field k is the supremum of b bij

bi bj
over all pairs

of distinct vectors i and j in finite vector configurations in vector spaces over k.

The correlation constant may be an interesting invariant of a field, although it is not im-
mediately clear that the constant is finite. In fact, the finiteness of the correlation constant
is one of the consequences of the Hodge-Riemann relations for vector configurations. Let
n be the number of vectors in M, and let HR(M) be the symmetric n � n matrix

HR(M)ij =

(
0 if i = j ,

bij if i ¤ j .

To avoid the trivial case HR(M) = 0, we suppose that the dimension of V is at least 2.
For example, if K4 is the set of six column vectors of the matrix�

1 1 1 0 0 0

�1 0 0 1 1 0

0 �1 0 �1 0 1

0 0 �1 0 �1 �1

�
;

then HR(K4) is the 6 � 6 symmetric matrix0@ 0 3 3 3 3 4

3 0 3 3 4 3

3 3 0 4 3 3

3 3 4 0 3 3

3 4 3 3 0 3

4 3 3 3 3 0

1A :

In Huh and Wang [2017], the following statement was deduced from Theorem 12.

Theorem 4. The matrix HR(M) has exactly one positive eigenvalue.

In fact, the same statement holds more generally for any matroid M (Huh and Wang
[ibid., Remark 15]). To deduce a bound on the correlation constant, consider the restriction
of HR(M) to the three-dimensional subspace of Rn spanned by ei , ej , and (1; : : : ; 1).
Cauchy’s eigenvalue interlacing theorem shows that the resulting 3� 3 symmetric matrix
also has exactly one positive eigenvalue. Expressing the 3� 3 determinant, which should
be nonnegative, we get the inequality

b bij

bi bj

� 2 � 2(dimV )�1:

Thus the correlation constant of any field is at most 2. What is the correlation constant of,
say, Z/2Z? Does the correlation constant depend on the field?
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2.4 The chromatic polynomial of a graph. Generalizing earlier work of Birkhoff,
Whitney [1932] introduced the chromatic polynomial of a connected graph G as the func-
tion on N defined by

�G(q) = the number of proper q-colorings of G:

In other words, �G(q) is the number of ways to color the vertices of G using q colors so
that the endpoints of every edge have different colors. Whitney noticed that the chromatic
polynomial is indeed a polynomial. In fact, we can write

�G(q)/q = a0(G)qd
� a1(G)qd�1 + � � � + (�1)d ad (G)

for some positive integers a0(G); : : : ; ad (G), where d is one less than the number of
vertices.

Example 5. The cycle C4 with 4 vertices and 4 edges has the chromatic polynomial

�C4
(q) = 1q4

� 4q3 + 6q2
� 3q:

The chromatic polynomial was originally devised as a tool for attacking the Four Color
Problem, but soon it attracted attention in its own right. Read [1968] conjectured that
the coefficients of the chromatic polynomial form a unimodal sequence for any graph. A
few years later, Hoggar [1974] conjectured more generally that the coefficients form a
log-concave sequence:

ai (G)2 � ai�1(G)ai+1(G) for any i and G.

Notice that the chromatic polynomial can be computed using the deletion-contraction re-
lation: if Gne is the deletion of an edge e from G and G/e is the contraction of the same
edge, then

�G(q) = �Gne(q) � �G/e(q):

The first term counts the proper colorings of G, the second term counts the otherwise-
proper colorings of G where the endpoints of e are permitted to have the same color, and
the third term counts the otherwise-proper colorings of G where the endpoints of e are
mandated to have the same color. For example, to compute the chromatic polynomial of
the cycle C4 in Example 5, we write

= –
,
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and use that the chromatic polynomials of the two smaller graphs are q(q �1)3 and q(q �

1)(q � 2), respectively. Note that, in general, the sum of log-concave sequences need not
be log-concave.

The log-concavity conjecture for chromatic polynomials was proved in Huh [2012] by
showing that the absolute values of the coefficients of �G(q)/(q�1) are mixed multiplici-
ties of certain homogeneous ideals constructed fromG. The notion of mixed multiplicities
is a commutative algebraic analog of the notion of mixed volumes, and it can be shown that
mixed multiplicities of homogeneous ideals satisfy a version of the Aleksandrov-Fenchel
inequality. To formulate the underlying Hodge-Riemann relation in purely combinatorial
terms was the primary motivation for Adiprasito, Huh, and Katz [2015]. The main result
of Adiprasito, Huh, and Katz [ibid.] will be reviewed in Section 2.6 below.

2.5 Counting independent sets. How many linearly independent collection of i vec-
tors are there in a given configuration of vectors? Let’s write M for a finite subset of a
vector space and fi (M) for the number of independent subsets of M of size i .

Example 6. Let F be the set of all nonzero vectors in the three-dimensional vector space
over the field with two elements. Nontrivial dependencies between elements of F can be
read off from the picture of the Fano plane shown below.

The nonempty independent subsets of F correspond to the seven points in F, the twenty-
one pairs of points in F, and the twenty-eight triple of points in F not in one of the seven
lines:

f0(F) = 1; f1(F) = 7; f2(F) = 21; f3(F) = 28:

Welsh [1971] conjectured that the sequence fi (M) is unimodal for anyM. Shortly after,
Mason [1972] conjectured more generally that the sequence is log-concave:

fi (M)2 � fi�1(M)fi+1(M) for any i and M.

In any small specific case, the conjecture can be verified by computing the fi (M)’s by the
deletion-contraction relation: if Mnv is the deletion of a nonzero vector v from M and
M/v is the projection of M in the direction of v, then

fi (M) = fi (Mnv) + fi�1(M/v):
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The first term counts the number of independent subsets of size i , the second term counts
the independent subsets of size i not containing v, and the third term counts the indepen-
dent subsets of size i containing v. As in the case of graphs, we notice the apparent conflict
between the log-concavity conjecture and the additive nature of fi (M).

The log-concavity conjecture for fi (M) was proved in Lenz [2013] by combining a
geometric construction of Huh and Katz [2012] and a matroid-theoretic construction of
Brylawski [1977]. Given a spanning subset M of a d -dimensional vector space over a
field k, one can construct a d -dimensional smooth projective variety X(M) over k and
globally generated line bundles L1; L2 on X(M) so that

fi (M) =

Z
X(M)

Ld�i
1 Li

2:

The Hodge-Riemann relation for smooth projective varieties is known to hold in degrees
q � 1 (Grothendieck [1958] and Segre [1937]), and this implies the log-concavity of
fi (M) as in Sections 2.1, 2.2. To express and verify the general Hodge-Riemann relation
for X(M) in purely combinatorial terms was another motivation for Adiprasito, Huh, and
Katz [2015].

2.6 The Hodge-Riemann relations for matroids. In the 1930s, Hassler Whitney ob-
served that several notions in graph theory and linear algebra fit together in a common
framework, that of matroids (Whitney [1935]). This observation started a new subject
with applications to a wide range of topics like characteristic classes, optimization, and
moduli spaces.

Definition 7. A matroid M on a finite set E is a collection of subsets of E, called flats of
M, satisfying the following axioms:

(1) The ground set E is a flat.

(2) If F1 and F2 are flats, then F1 \ F2 is a flat.

(3) If F is a flat, then any element not in F is contained in exactly one flat covering F .

Here, a flat is said to cover another flat F if it is minimal among the flats properly con-
taining F .

For our purposes, we may and will suppose that M is loopless:

(4) The empty subset of E is a flat.

Every maximal chain of flats in F has the same length, and this common length is called
the rank of the flat F . The rank of the flat E is called the rank of the matroid M. Ma-
troids are determined by their independent sets (the idea of “general position”), and can
be alternatively defined in terms of independent sets (Oxley [2011, Chapter 1]).
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Example 8. Let E be the set of edges of a finite graph G. Call a subset F of E a flat when
there is no edge in E n F whose endpoints are connected by a path in F . This defines a
graphic matroid on E.
Example 9. A projective space P is a set with distinguished subsets, called lines, satisfy-
ing:

(1) Every line contains more than two points.

(2) If x; y are distinct points, then there is exactly one line xy containing x and y.

(3) If x; y; z; w are distinct points, no three collinear, then

the line xy intersects the line zw H) the line xz intersects the line yw:

A subspace of P is a subset S of P such that

x and y are distinct points in S H) the line xy is in S:

For any finite subset E of P , the collection of sets of the form E \ S has the structure of
a matroid. Matroids arising from subsets of projective spaces over a field k are said to be
realizable over k (the idea of “coordinates”).

Not surprisingly, the notion of realizability is sensitive to the field k. A matroid may
arise from a vector configuration over one field while no such vector configuration exists
over another field.

Among the rank 3 matroids pictured above, where rank 1 flats are represented by points
and rank 2 flats containingmore than 2 points are represented by lines, the first is realizable
over k if and only if the characteristic of k is 2, the second is realizable over k if and only
if the characteristic of k is not 2, and the third is not realizable over any field. Recently,
Nelson [2016] showed that almost all matroids are not realizable over any field Nelson
[ibid.].

Definition 10. We introduce variables xF , one for each nonempty proper flat F of M,
and consider the polynomial ring

S(M) = R[xF ]F ¤¿;F ¤E :
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The Chow ring A(M) of M is the quotient of S(M) by the ideal generated by the linear
forms X

i12F

xF �
X
i22F

xF ;

one for each pair of distinct elements i1 and i2 of E, and the quadratic monomials

xF1
xF2

;

one for each pair of incomparable nonempty proper flats F1 and F2 of M. We have

A(M) =
M

q

Aq(M);

where Aq(M) is the span of degree q monomials in A(M).

Feichtner and Yuzvinsky introduced the Chow ring of M (Feichtner and Yuzvinsky
[2004]). When M is realizable over a field k, it is the Chow ring of the “wonderful”
compactification of the complement of a hyperplane arrangement defined over k studied
by De Concini and Procesi [1995].

To formulate the hard Lefschetz theorem and the Hodge-Riemann relations for A(M),
we define a matroid analog of the Kähler cone in complex geometry.

Definition 11. A real-valued function c on 2E is said to be strictly submodular if

c¿ = 0; cE = 0;

and, for any two incomparable subsets I1; I2 � E,

cI1
+ cI2

> cI1 \ I2
+ cI1 [ I2

:

We note that strictly submodular functions exist. For example,

I 7�! jI jjE n I j

is a strictly submodular function. A strictly submodular function c defines an element

Lc =
X
F

cF xF 2 A1(M):

The Kähler cone K(M) is defined to be the set of all such elements in A1(M).
Now let d + 1 be the rank of M, and write “deg” for the unique linear isomorphism

deg : Ad (M) �! R
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which maps xF1
� � � xFd

to 1 for every maximal chain F1 ¨ � � � ¨ Fd of nonempty proper
flats (Adiprasito, Huh, and Katz [2015, Proposition 5.10]). We are ready to state the hard
Lefschetz theorem and the Hodge-Riemann relation for M (Adiprasito, Huh, and Katz
[ibid., Theorem 8.9]).

Theorem 12. Let q be a nonnegative integer �
d
2
, and let L0;L1; : : : ;Ld�2q 2 K(M).

(PD) The product in A(M) defines a nondegenerate bilinear pairing

Aq(M) � Ad�q(M) �! R; (�; �) 7�! deg(� �):

(HL) The multiplication by L1; : : : ;Ld�2q defines a linear bijection

Aq(M) �! Ad�q(M); � 7�!
� d�2qY

i=1

Li

�
�:

(HR) The symmetric bilinear form

Aq(M) � Aq(M) �! R; (�1; �2) 7�! (�1)q deg
�� d�2qY

i=1

Li

�
�1�2

�
is positive definite on the kernel of the multiplication map

Aq(M) �! Ad�q+1(M); � 7�!
� d�2qY

i=0

Li

�
�:

We highlight the following consequence of HR in degrees� 1: For any �1; �2 2 K(M),0@ deg
�� Qd�2

i=1 Li

�
�1�1

�
deg

�� Qd�2
i=1 Li

�
�1�2

�
deg

�� Qd�2
i=1 Li

�
�1�2

�
deg

�� Qd�2
i=1 Li

�
�2�2

�
1A

has exactly one positive eigenvalue. Taking the determinant, we get an analog of the
Alexandrov-Fenchel inequality

deg
�� d�2Y

i=1

Li

�
�1�2

�2
� deg

�� d�2Y
i=1

Li

�
�1�1

�
deg

�� d�2Y
i=1

Li

�
�2�2

�
:

We apply the inequality to the characteristic polynomial �M(q), a generalization of the
chromatic polynomial �G(q) to a matroid M that is not necessarily graphic (Welsh [1976,
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Chapter 15]). For this, we consider two distinguished elements of A1(M). For fixed
j 2 E, the elements are

˛ =
X
j 2F

xF ; ˇ =
X
j …F

xF :

The two elements do not depend on the choice of j , and they are limits of elements of the
form `c for a strictly submodular function c. A bijective counting argument in Adiprasito,
Huh, and Katz [2015] shows that

ei (M) = deg(˛i ˇd�i ) for every i ;

where ei (M) is the sequence of integers satisfying the identity

�M(q)/(q � 1) = e0(M)qd
� e1(M)qd�1 + � � � + (�1)d ed (M):

Thus the sequence ei (M) is log-concave, which implies the following conjecture of Heron
[1972], Rota [1971], and Welsh [1976]:

The coefficients of �M(q) form a log-concave sequence for any matroid M.

The above implies the log-concavity of the sequence ai (G) in Section 2.4 and the log-
concavity of the sequence fi (M) in Section 2.5. See Oxley [2011, Chapter 15] and White
[1987, Chapter 8] for overviews and historical accounts.

2.7 The reliability polynomial of a network. Let G be a finite connected graph with
v vertices and n edges. The reliability of G is the probability that any two vertices remain
connected when each edge is independently removed with the same probability q. Let’s
write oi (G) for the number of i -edge operational states. For example, ov�1(G) is the
number of spanning trees and on�1(G) is the number of non-bridges. Thus the reliability
of G is

RG(q) =
X

i

oi (G)(1 � q)i qn�i :

We define a sequence of integers h0(G); : : : ; hd (G) by the identity

RG(q)/(1 � q)v�1 = hd (G)qd + hd�1(G)qd�1 + � � � + h0(G);

where d is one more than the difference n � v.
Example 13. The complete graph on 4 vertices has the reliability polynomial

RK4
(q) = 16q3(1 � q)3 + 15q2(1 � q)4 + 6q(1 � q)5 + 1(1 � q)6

= (1 � q)3(6q3 + 6q2 + 3q + 1):
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The numbers hi are closely related to the numbers fi of independent sets in Section 2.5.
Writing M for the dual of the graphic matroid of G, we have

dX
i=0

hi (G)xi =

dX
i=0

fi (M)xi (1 � x)d�i =

dX
i=0

hi (M)xi :

Dawson [1984] conjectured that the sequence hi (M) defined by the second equality is
log-concave for any matroid M:

hi (M)2 � hi�1(M)hi+1(M) for any i and M.

Colbourn [1987] independently conjectured the same in the context of reliability polyno-
mials.

When M is the dual of a graphic matroid, or more generally when M is realizable over
the complex numbers, the log-concavity conjecture for hi (M) was proved in Huh [2015]
by applying an algebraic analog of the Alexandrov-Fenchel inequality to the variety of
critical points of the master function of a realization of M studied by Denham, Garrousian,
and Schulze [2012]. The underlying combinatorial Hodge-Riemann relation is yet to be
formulated, and Dawson’s conjecture for general matroids remains open. The argument
in the complex realizable case is tightly connected to the geometry of characteristic cycles
(Huh [2013]), suggesting that the combinatorial Hodge-Riemann relation in this context
will be strictly stronger than that of Section 2.6.

2.8 Unsolved problems. The log-concavity of a sequence is not only important because
of its applications but because it hints the existence of a structure that satisfies PD, HL,
and HR. We close by listing some of the most interesting sequences that are conjectured
to be log-concave.

(1) Rota’s unimodality conjecture (Rota [1971]): If wk(M) is the number of rank k flats
of a rank d matroid M, then the sequence w0(M); : : : ; wd (M) is unimodal. Welsh
[1976] conjectured more generally that the sequence is log-concave.

(2) Fox’s trapezoidal conjecture (Fox [1962]): The sequence of absolute values of the
coefficients of the Alexander polynomial of an alternating knot strictly increases, pos-
sibly plateaus, then strictly decreases. Stoimenow [2005] conjectured more generally
that the sequence is log-concave.

(3) Kazhdan-Lusztig polynomials of matroids (Elias, Proudfoot, and Wakefield [2016]):
For any matroid M, the coefficients of the Kazhdan-Lusztig polynomial of M form a
nonnegative log-concave sequence.
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HYPERGRAPH MATCHINGS AND DESIGNS
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Abstract

We survey some aspects of the perfect matching problem in hypergraphs, with
particular emphasis on structural characterisation of the existence problem in dense
hypergraphs and the existence of designs.

1 Introduction

Matching theory is a rich and rapidly developing subject that touches on many areas of
Mathematics and its applications. Its roots are in the work of Steinitz [1894], Egerváry
[1931], Hall [1935] and König [1931] on conditions for matchings in bipartite graphs.
After the rise of academic interest in efficient algorithms during themid 20th century, three
cornerstones of matching theory were Kuhn’s ‘Hungarian’ algorithm (Kuhn [1955]) for
the Assignment Problem, Edmonds’ algorithm (Edmonds [1965]) for finding a maximum
matching in general (not necessarily bipartite) graphs, and the Gale and Shapley [1962]
algorithm for Stable Marriages. For an introduction to matching theory in graphs we refer
to Lovász and Plummer [2009], and for algorithmic aspects to parts II and III of Schrijver
[2003].

There is also a very large literature on matchings in hypergraphs. This article will be
mostly concerned with one general direction in this subject, namely to determine condi-
tions under which the necessary ‘geometric’ conditions of ‘space’ and ‘divisibility’ are
sufficient for the existence of a perfect matching. We will explain these terms and discuss
some aspects of this question in the next two sections, but first, for the remainder of this
introduction, we will provide some brief pointers to the literature in some other directions.

We do not expect a simple general characterisation of the perfect matching problem
in hypergraphs, as by contrast with the graph case, it is known to be NP-complete even
for 3-graphs (i.e. when all edges have size 3), indeed, this was one of Karp’s original 21
NP-complete problems Karp [1972]. Thus for algorithmic questions related to hypergraph
Research supported in part by ERC Consolidator Grant 647678.
MSC2010: primary 05C65; secondary 05B05, 05C70.
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matching, we do not expect optimal solutions, and may instead consider Approximation
Algorithms (see e.g. Williamson and Shmoys [2011], Asadpour, Feige, and Saberi [2008],
and Lau, Ravi, and Singh [2011]).

Another natural direction is to seek nice sufficient conditions for perfect matchings.
There is a large literature in Extremal Combinatorics on results under minimum degree
assumptions, known as ‘Dirac-type’ theorems, after the classical result of Dirac [1952]
that any graph on n � 3 vertices with minimum degree at least n/2 has a Hamiltonian
cycle. It is easy to see that n/2 is also the minimum degree threshold for a graph on n

vertices (with n even) to have a perfect matching, and this exemplifies the considerable
similarities between the perfect matching and Hamiltonian problems (but there are also
substantial differences). A landmark in the efforts to obtain hypergraph generalisations of
Dirac’s theorem was the result of Rödl, Ruciński, and Szemerédi [2009] that determined
the codegree threshold for perfect matchings in uniform hypergraphs; this paper was sig-
nificant for its proof method as well as the result, as it introduced the Absorbing Method
(see Section 5), which is now a very important tool for proving the existence of spanning
structures. There is such a large body of work in this direction that it needs several sur-
veys to describe, and indeed these surveys already exist Rödl and Ruciński [2010], Kühn
and Osthus [2009], Kühn and Osthus [2014], Zhao [2016], and Yuster [2007]. The most
fundamental open problem in this area is the Erdős Matching Conjecture Erdős [1965],
namely that the maximum number of edges in an r-graph1 on n vertices with no matching
of size t is either achieved by a clique of size t r � 1 or the set of all edges hitting some
fixed set of size t � 1 (see Frankl and Tokushige [2016, Section 3] for discussion and a
summary of progress).

The duality between matching and covers in hypergraphs is of fundamental important
in Combinatorics (see Füredi [1988]) and Combinatorial Optimisation (see Cornuéjols
[2001]). A defining problem for this direction of researchwithin Combinatorics is ‘Ryser’s
Conjecture’ (published independently byHenderson [1971] and Lovász [1975]) that in any
r-partite r-graph the ratio of the covering andmatching numbers is at most r�1. For r = 2

this is König’s Theorem. The only other known case is r = 3, due to Aharoni [2001], us-
ing a hypergraph analogue of Hall’s theorem due to Aharoni and Haxell [2000], which has
a topological proof. There are now many applications of topology to hypergraph match-
ing, and more generally ‘independent transversals’ (see the survey Haxell [2016]). In the
other direction, the hypergraph matching complex is now a fundamental object of Com-
binatorial Topology, with applications to Quillen complexes in Group Theory, Vassiliev
knot invariants and Computational Geometry (see the survey Wachs [2003]).

From the probabilistic viewpoint, there are (at least) two natural questions:
(i) does a random hypergraph have a perfect matching with high probability (whp)?

1 An r-graph is a hypergraph in which every edge contains r vertices.
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(ii) what does a random matching from a given (hyper)graph look like?
The first question for the usual (binomial) random hypergraph was a longstanding open

problem, perhaps first stated by Erdős [1981] (who attributed it to Shamir), finally solved
by Johansson, Kahn, and Vu [2008]; roughly speaking, the threshold is ‘where it should
be’, namely around the edge probability at which with high probability every vertex is in at
least one edge. Another such result due to Cooper, Frieze, Molloy, and Reed [1996] is that
random regular hypergraphs (of fixed degree and edge size) whp have perfect matchings.

The properties of randommatchings in lattices have been extensively studied under the
umbrella of the ‘dimer model’ (see Kenyon [2010]) in Statistical Physics. However, rather
little is known regarding the typical structure of random matchings in general graphs, let
alone hypergraphs. Substantial steps in this direction have been taken by results of Kahn
[2000] characterising when the size of a random matching has an approximate normal
distribution, and Kahn and Kayll [1997] establishing long-range decay of correlations of
edges in random matchings in graphs; the final section of Kahn [2000] contains many
open problems, including conjectural extensions to simple hypergraphs.

Prequisite to the understanding of random matchings are the closely related questions
of Sampling and Approximate Counting (as established in the Markov Chain Monte Carlo
framework of Jerrum and Sinclair, see Jerrum [2003]). An approximate counting result for
hypergraphmatchingswith respect to balancedweight functionswas obtained byBarvinok
and Samorodnitsky [2011]. Extremal problems also arise naturally in this context, for the
number of matchings, and more generally for other models in Statistical Physics, such
as the hardcore model for independent sets. Much of the recent progress here appears
in the survey Zhao [2017], except for the very recent solution of (almost all cases of)
the Upper Matching Conjecture of Friedland, Krop, and Markström [2008] by Davies,
Jenssen, Perkins, and Roberts [2017].

2 Space and divisibility

In this section we discuss a result (joint work with Mycroft 2015) that characterises the
obstructions to perfect matching in dense hypergraphs (under certain conditions to be dis-
cussed below). The obstructions are geometric in nature and are of two types: Space
Barriers (metric obstructions) and Divisibility Barriers (arithmetic obstructions).

The simplest illustration of these two phenomena is seen by considering extremal ex-
amples for the simple observation mentioned earlier that a graph on n vertices (n even)
with minimum degree at least n/2 has a perfect matching. One example of a graph with
minimum degree n/2� 1 and no perfect matching is obtained by fixing a set S of n/2� 1

vertices and taking all edges that intersect S . Then in any matching M , each edge of M
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uses at least one vertex of S , so jM j � jS j < n/2; there is no ‘space’ for a perfect match-
ing. For another example, suppose n = 2mod 4 and consider the graph that is the disjoint
union of two cliques each of size n/2 (which is odd). As edges have size 2, which is even,
there is an arithmetic (parity) obstruction to a perfect matching.

There is an analogous parity obstruction to matching in general r-graphs, namely an
r-graph G with vertices partitioned as (A; B), so that jAj is odd and je \ Aj is even for
each edge e ofG; this is one of the extremal examples for the codegree threshold of perfect
matchings (see Rödl, Ruciński, and Szemerédi [2009]).

In general, space barriers are constructions for each 1 � i � r , obtained by fixing a set
S of size less than in/r and taking the r-graph of all edges e with je \ S j � i . Then for
any matching M we have jM j � jS j/i < n/r , so M is not perfect.

General divisibility barriers are obtained by fixing a lattice (additive subgroup) L in
Zd for some d , fixing a vertex set partitioned as (V1; : : : ; Vd ), with (jV1j; : : : ; jVd j) … L,
and taking the r-graph of all edges e such that (je \ V1j; : : : ; je \ Vd j) 2 L. For example,
the parity obstruction corresponds to the lattice f(2x; y) : x; y 2 Zg.

To state the result of Keevash andMycroft [2015a] that is most conveniently applicable
we introduce the setting of simplicial complexes and degree sequences. We consider a
simplicial complex J on [n] = f1; : : : ; ng, write Ji = fe 2 J : jej = ig and look for a
perfect matching in the r-graph Jr . We define the degree sequence (ı0(J ); : : : ; ır�1(J ))

so that each ıi (J ) is the least m such that each e 2 Ji is contained in at least m edges of
Ji+1. We define the critical degree sequence ıc = (ıc

0 ; : : : ; ıc
r�1) by ıc

i = (1�i/r)n. The
space barrier constructions show that for each i there is a complex with ıi (J ) slightly less
than ıc

i but no perfect matching. An informal statement of Keevash and Mycroft [ibid.,
Theorem 2.9] is that if J is an r-complex on [n] (where r j n) with all ıi (J ) � ıc

i � o(n)

such that Jr has no perfect matching then J is close (in edit distance) to a space barrier or
a divisibility barrier.

One application of this result (also given in Keevash and Mycroft [ibid.]) is to deter-
mine the exact codegree threshold for packing tetrahedra in 3-graphs; it was surprising
that it was possible to obtain such a result given that the simpler-sounding problems of
determining the thresholds (edge or codegree) for the existence of just one tetrahedron
are open, even asymptotically (the edge threshrold is a famous conjecture of Turán; for
more on Turán problems for hypergraphs see the survey Keevash [2011b]). Other ap-
plications are a multipartite version of the Hajnal-Szemeredi theorem (see Keevash and
Mycroft [2015b]) and determining the ‘hardness threshold’ for perfect matchings in dense
hypergraphs (see Keevash, Knox, and Mycroft [2015] and Han [2017]).

We will describe the hardness threshold in more detail, as it illustrates some impor-
tant features of space and divisibility, and the distinction between perfect matchings and
almost perfect matchings. For graphs there is no significant difference in the thresholds
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for these problems, whereas for general r-graphs there is a remarkable contrast: the code-
gree threshold for perfect matchings Rödl, Ruciński, and Szemerédi [2009] is about n/2,
whereas Han [2015], proving a conjecture from Rödl, Ruciński, and Szemerédi [2009],
showed that a minimum codegree of only n/r guarantees a matching of size n/r � 1, i.e.
one less than perfect. The explanation for this contrast is that the divisibility barrier is no
obstacle to almost perfect matching, whereas the space barrier is more robust, and can be
continuously ‘tuned’ to exclude a matching of specified size.

To illustrate this, we consider a 3-graph G0 on [n] where the edges are all triples that
intersect some fixed set S of size (1/3 � c)n, for some small c > 0. Then the minimum
codegree and maximum matching size in G0 are both equal to jS j. Furthermore, if we
consider G = G0 [ G1 where all edges of G1 lie within some S 0 disjoint from S with
jS 0j = 3cn thenG has a perfect matching if and only ifG1 has a perfect matching, which is
NP-complete to decide for arbitrary G1. Thus the robustness of the space barrier provides
a reduction showing that the codegree threshold for the existence of an algorithm for the
perfect matching is at least the threshold for an approximate perfect matching.

Now consider the decision problem for perfect matchings in 3-graphs on [n] (where
3 j n) with minimum codegree at least ın. For ı < 1/3 the problem is NP-complete, and
for ı > 1/2 it is trivial (there is a perfect matching by Rödl, Ruciński, and Szemerédi
[ibid.]). For intermediate ı there is a polynomial-time algorithm, and this is in essence
a structural stability result: the main ingredient of the algorithm is a result of Keevash,
Knox, and Mycroft [2015] that any such 3-graph with no perfect matching is contained in
a divisibility barrier. (For general r the structural characterisation is more complicated.)

3 Fractional matchings

The key idea of the Absorbing Method of Rödl, Ruciński, and Szemerédi [2009] men-
tioned earlier is that the task of finding perfect matchings can often broken into two sub-
problems: (i) finding almost perfect matchings, (ii) absorbing uncovered vertices into an
almost perfect matching until it becomes perfect. We have already seen that the almost per-
fect matching problem appears naturally as a relaxation of the perfect matching problem
in which we eliminate divisibility obstacles but retain space obstacles. This turns out to fit
into a more general framework of fractional matchings, in which the relaxed problem is a
question of convex geometry, and space barriers correspond to separating hyperplanes.

The fractional (linear programming) relaxation of the perfect matching problem in a
hypergraph is to assign non-negative weights to the edges so that for any vertex v, there
is a total weight of 1 on all edges incident to v. A perfect matching corresponds to a
f0; 1g-valued solution, so the existence of a fractional perfect matching is necessary for the
existence of a perfect matching. We can adopt a similar point of view regarding divisibility
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conditions. Indeed, we can similarly define the integer relaxation of the perfect matching
problem inwhichwe now require the weights to be integers (not necessarily non-negative);
then the existence of an integral perfect matching is necessary for the existence of a perfect
matching.

The fractional matching problem appears naturally in Combinatorial Optimisation (see
Cornuéjols [2001] and Schrijver [2003]) because it brings in polyhedral methods and du-
ality to bear on the matching problem. It has also been studied as a problem in its own
right from the perspective of random thresholds (e.g. Devlin and Kahn [2017] and Kriv-
elevich [1996]), and it appears naturally in combinatorial existence problems, as in dense
hypergraphs almost perfect matchings and fractional matchings tend to appear at the same
threshold. Indeed, for many open problems, such as the Erdős Matching Conjecture Erdős
[1965] or the Nash-Williams Triangle Decomposition Conjecture Nash-Williams [1970],
any progress on the fractional problem translates directly into progress on the original
problem (see Barber, Kühn, Lo, and Osthus [2016]).

This therefore makes the threshold problem for fractional matchings and decomposi-
tions a natural problem in its own right. For example, an asymtotic solution of the Nash-
Williams Conjecture would follow from the following conjecture: any graph on n vertices
with minimum degree at least 3n/4 has a fractional triangle decomposition, i.e. an assign-
ment of non-negative weights to its triangles so that for any edge e there is total weight 1
on the triangles containing e. An extremal example G for this question can be obtained
by taking a balanced complete bipartite graph H and adding a (n/4 � 1)-regular graph
inside each part; indeed, this is a space barrier to a fractional triangle decomposition, as
any triangle uses at least one edge not in H , but jH j > 2jG n H j. The best known upper
bound is 0:913n by Dross [2016]. More generally, Barber, Kühn, Lo, Montgomery, and
Osthus [2017] give the current best known bounds on the thresholds for fractional clique
decompositions (in graphs and hypergraphs), but these seem to be far from optimal.

There are (at least) two ways to think about the relationship between almost perfect
matchings and fractional matchings. The first goes back to the ‘nibble’ (semi-random)
method of Rödl [1985], introduced to solve the Erdős and Hanani [1963] conjecture on
approximate Steiner systems (see the next section), which has since had a great impact on
Combinatorics (e.g. Alon, J. H. Kim, and Spencer [1997], Bennett and Bohman [2012],
Bohman [2009], Bohman, Frieze, and Lubetzky [2015], Bohman and Keevash [2010,
2013], Pontiveros, Griffiths, and Morris [2013], Frankl and Rödl [1985], Grable [1999],
Kahn [1996b,a], J. H. Kim [2001], Kostochka and Rödl [1998], Kuzjurin [1995], Pip-
penger and Spencer [1989], Spencer [1995], and Vu [2000]). A special case of a theorem
of Kahn [1996a] is that if there is a fractional perfect matching on the edges of an r-graph
G on [n] such that for any pair of vertices x; y the total weight on edges containing fx; yg

is o(1) then G has a matching covering all but o(n) vertices. In this viewpoint, it is natu-
ral to interpret the weights of a fractional matching as probabilities, and an almost perfect
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matching as a random rounding; in fact, this random rounding is obtained iteratively, so
there are some parallels with the development of iterative rounding algorithms (see Lau,
Ravi, and Singh [2011]).

Another way to establish the connection between almost perfect matchings and frac-
tional matchings is via the theory of Regularity, developed by Szemerédi [1978] for graphs
and extended to hypergraphs independently byGowers [2007] andNagle, Rödl, and Schacht
[2006], Rödl and Schacht [2007b,a], and Rödl and Skokan [2004]. (The connection was
first established by Haxell and Rödl [2001] for graphs and Rödl, Schacht, Siggers, and
Tokushige [2007] for hypergraphs.) To apply Regularity to obtain spanning structures
(such as perfect matchings) requires an accompanying result known as a blowup lemma,
after the original such result for graphs obtained by Komlós, Sárközy, and Szemerédi
[1997]; we proved the hypergraph version in Keevash [2011a]. More recent developments
(for graphs) along these lines include the Sparse Blowup Lemmas of Allen, Böttcher, Hàn,
Kohayakawa, and Person [2016] and a blowup-up lemma suitable for decompositions (as
in the next section) obtained by J. Kim, Kühn, Osthus, and Tyomkyn [2016] (it would
be interesting and valuable to obtain hypergraph versions of these results). The tech-
nical difficulties of the Hypergraph Regularity method are a considerable barrier to its
widespread application, and preclude us giving here a precise statement of Keevash and
Mycroft [2015a, Theorem 9.1], which informally speaking characterises the perfect match-
ing problem in dense hypergraphs with certain extendability conditions in terms of space
and divisibility.

4 Designs and decompositions

A Steiner system with parameters (n; q; r) is a q-graph G on [n] such that any r-set of
vertices is contained in exactly one edge. For example, a Steiner Triple System on n

points has parameters (n; 3; 2). The question of whether there is a Steiner system with
given parameters is one of the oldest problems in combinatorics, dating back to work of
Plücker (1835), Kirkman (1846) and Steiner (1853); see R. Wilson [2003] for a historical
account.

Note that a Steiner system with parameters (n; q; r) is equivalent to a Kr
q -decomposi-

tion of Kr
n (the complete r-graph on [n]). It is also equivalent to a perfect matching in the

auxiliary
�

q
r

�
-graph on

�
[n]
r

�
(the r-subsets of [n] := f1; : : : ; ng) with edge set f

�
Q
r

�
: Q 2�

[n]
q

�
g.
More generally, we say that a set S of q-subsets of an n-set X is a design with pa-

rameters (n; q; r; �) if every r-subset of X belongs to exactly � elements of S . (This is
often called an ‘r-design’ in the literature.) There are some obvious necessary ‘divisibil-
ity conditions’ for the existence of such S , namely that

�
q�i
r�i

�
divides �

�
n�i
r�i

�
for every
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0 � i � r � 1 (fix any i -subset I of X and consider the sets in S that contain I ). It is not
known who first advanced the ‘Existence Conjecture’ that the divisibility conditions are
also sufficient, apart from a finite number of exceptional n given fixed q, r and �.

The case r = 2 has received particular attention due to its connections to statistics,
under the name of ‘balanced incomplete block designs’. We refer the reader to Colbourn
and Dinitz [2007] for a summary of the large literature and applications of this field. The
Existence Conjecture for r = 2 was a long-standing open problem, eventually resolved
by R. M. Wilson [1972a,b, 1975] in a series of papers that revolutionised Design The-
ory. The next significant progress on the general conjecture was in the solution of the
two relaxations (fractional and integer) discussed in the previous section (both of which
are interesting in their own right and useful for the original problem). We have already
mentioned Rödl’s solution of the Erdős–Hanani Conjecture on approximate Steiner sys-
tems. The integer relaxation was solved independently by Graver and Jurkat [1973] and
R. M. Wilson [1973], who showed that the divisibility conditions suffice for the existence
of integral designs (this is used in R. M. Wilson [ibid.] to show the existence for large � of
integral designs with non-negative coefficients). R. M. Wilson [1999] also characterised
the existence of integral H -decompositions for any r-graph H .

The existence of designs with r � 7 and any ‘non-trivial’ � was open before the break-
through result of Teirlinck [1987] confirming this. An improved bound on � and a prob-
abilistic method (a local limit theorem for certain random walks in high dimensions) for
constructing many other rigid combinatorial structures was recently given by Kuperberg,
Lovett, and Peled [2017]. Ferber, Hod, Krivelevich, and Sudakov [2014] gave a construc-
tion of ‘almost Steiner systems’, in which every r-subset is covered by either one or two
q-subsets.

In Keevash [2014] we proved the Existence Conjecture in general, via a new method
of Randomised Algebraic Constructions. Moreover, in Keevash [2015] we obtained the
following estimate for the number D(n; q; r; �) of designs with parameters (n; q; r; �)

satisfying the necessary divisibility conditions: writing Q =
�

q
r

�
and N =

�
n�r
q�r

�
, we have

D(n; q; r; �) = �!�
�

n
r

�
((�/e)Q�1N + o(N ))�Q�1

�
n
r

�
:

Our counting result is complementary to that in Kuperberg, Lovett, and Peled [2017], as it
applies (e.g.) to Steiner Systems, whereas theirs is only applicable to large multiplicities
(but also allows the parameters q and r to grow with n, and gives an asymptotic formula
when applicable).

The upper bound on the number of designs follows from the entropy method pioneered
by Radhakrishnan [1997]; more generally, Luria [2017] has recently established a simi-
lar upper bound on the number of perfect matchings in any regular uniform hypergraph
with small codegrees. The lower bound essentially matches the number of choices in the
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Random Greedy Hypergraph Matching process (see Bennett and Bohman [2012]) in the
auxiliary Q-graph defined above, so the key to the proof is showing that this process can
be stopped so that whp it is possible to complete the partial matching thus obtained to
a perfect matching. In other words, instead of a design, which can be viewed as a Kr

q -
decomposition of the r-multigraph �Kr

n, we require a Kr
q -decomposition of some sparse

submultigraph, that satisfies the necessary divisibility conditions, and has certain pseudo-
randomness properties (guaranteed whp by the random process).

The main result of Keevash [2014] achieved this, and indeed (in the second version of
the paper) we obtained a more general result in the same spirit as Keevash and Mycroft
[2015a], namely that we can find a clique decomposition of any r-multigraphwith a certain
‘extendability’ property that satisfies the divisibility conditions and has a ‘suitably robust’
fractional clique decomposition.

Glock, Kühn, Lo, and Osthus [2016, 2017] have recently given a new proof of the exis-
tence of designs, as well as some generalisations, including the existence ofH -decompositions
for any hypergraph H (a question from Keevash [2014]), relaxing the quasirandomness
condition from Keevash [ibid.] (version 1) to an extendability condition in the same spirit
as Keevash [ibid.] (version 2), and a more effective bound than that in Keevash [ibid.] on
the minimum codegree decomposition threshold; the main difference in our approaches
lies in the treatment of absorption (see the next section).

5 Absorption

Over the next three sections we will sketch some approaches to what is often the most
difficult part of a hypergraph matching or decomposition problem, namely converting an
approximate solution into an exact solution. We start by illustrating the AbsorbingMethod
in its original form, namely the determination in Rödl, Ruciński, and Szemerédi [2009]
of the codegree threshold for perfect matchings in r-graphs; for simplicity we consider
r = 3.

We start by solving the almost perfect matching problem. Let G be a 3-graph on [n]

with 3 j n and minimum codegree ı(G) = n/3, i.e. every pair of vertices is in at least
n/3 edges. We show that G has a matching of size n/3 � 1 (i.e. one less than perfect).
To see this, consider a maximum size matching M , let V0 = V (G) n V (M ), and suppose
jV0j > 3. Then jV0j � 6, so we can fix disjoint pairs a1b1, a2b2, a3b3 in V0. For each i

there are at least n/3 choices of c such that ai bi c 2 E(G), and by maximality of M any
such c lies in V (M ). We define the weight we of each e 2 M as the number of edges
of G of the form ai bi c with c 2 e. Then

P
e2M we � n, and jM j < n/3, so there is

e 2 M with we � 4. Then there must be distinct c; c0 in e and distinct i; i 0 in [3] such
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that ai bi c and ai 0bi 0c0 are edges. However, deleting e and adding these edges contradicts
maximality of M .

Now suppose ı(G) = n/2 + cn, where c > 0 and n > n0(c) is large. Our plan for
finding a perfect matching is to first put aside an ‘absorber’ A, which will be a matching
in G with the property that for any triple T in V (G) there is some edge e 2 A such that
T [e can be expressed as the disjoint union of two edges in G (then we say that e absorbs
T ). Suppose that we can find such A, say with jAj < n/20. Deleting the vertices of A

leaves a 3-graph G0 on n0 = n � jAj vertices with ı(G0) � ı(G) � 3jAj > n0/3. As
shown above, G0 has a matching M 0 with jM 0j = n0/3 � 1. Let T = V (G0) n V (M 0).
By choice of A there is e 2 A such that T [ e = e1 [ e2 for some disjoint edges e1; e2 in
G. Then M 0 [ (A n feg) [ fe1; e2g is a perfect matching in G.

It remains to findA. The key idea is that for any triple T there are many edges inG that
absorb T , and so if A is random then whp many of them will be present. We can bound
the number of absorbers for any triple T = xyz by choosing vertices sequentially. Say
we want to choose an edge e = x0y0z0 so that x0yz and xy0z0 are also edges. There are at
least n/2 + cn choices for x0 so that x0yz is an edge. Then for each of the n � 4 choices
of y0 2 V (G) n fx; y; z; x0g there are at least 2cn � 1 choices for z0 ¤ z so that x0y0z0

and xy0z0 are edges. Multiplying the choices we see that T has at least cn3 absorbers.
Now suppose that we construct A by choosing each edge of G independently with

probability c/(4n2) and deleting any pair that intersect. Let X be the number of deleted
edges. There are fewer than n5 pairs of edges that intersect, so EX < c2n/16, so P (X <

c2n/8) � 1/2. Also, the number of chosen absorbers NT for any triple T is binomial
with mean at least c2n/4, so whp all NT > c2n/8. Thus there is a choice of A such that
every T has an absorber in A. This completes the proof of the approximate version of
Rödl, Ruciński, and Szemerédi [2009], i.e. that minimum codegree n/2 + cn guarantees
a perfect matching.

The idea for the exact result is to consider an attempt to construct absorbers as above
under the weaker assumption ı(G) � n/2� o(n). It is not hard to see that absorbers exist
unless G is close to one of the extremal examples. The remainder of the proof (which we
omit) is then a stability analysis to show that the extremal examples are locally optimal,
and so optimal.

In the following two sections wewill illustrate two approaches to absorption for designs
and hypergraph decompositions, in the special case of triangle decompositions of graphs,
which is considerably simler, and so allows us to briefly illustrate some (but not all) ideas
needed for the general case. First we will conclude this section by indicating why the basic
method described above does not suffice.

Suppose we seek a triangle decomposition of a graph G on [n] with e(G) = Ω(n2)

in which there is no space or divisibility obstruction: we assume that G is ‘tridivisible’
(meaning that 3 j e(G) and all degrees are even) and ‘triangle-regular’ (meaning that
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there is a set T of triangles in G such that every edge is in (1 + o(1))tn triangles of T ,
where t > 0 and n > n0(t)). This is equivalent to a perfect matching in the auxiliary
3-graph H with V (H ) = E(G) and E(H ) = ffab; bc; cag : abc 2 T g. Note that H

is ‘sparse’: we have e(H ) = O(v(H )3/2). Triangle regularity implies that Pippenger’s
generalisation (see Pippenger and Spencer [1989]) of the Rödl nibble can be applied to
give an almost perfect matching in H , so the outstanding question is whether there is an
absorber.

Let us consider a potential random construction of an absorber A in H . It will contain
at most O(n2) triangles, so the probability of any triangle (assuming no heavy bias) will
be O(n�1). On the other hand, to absorb some fixed (tridivisible) S � E(G), we need A

to contain a setAS of a edge-disjoint triangles (for some constant a) such that S [AS has a
triangle decompositionBS , so we needΩ(na) suchAS inG. To see that this is impossible,
we imagine selecting the triangles of AS one at a time and keeping track of the number
ES of edges that belong to a unique triangle of S [ AS . If a triangle uses a vertex that has
not been used previously then it increases ES , and otherwise it decreases ES by at most 3.
We can assume that no triangle is used in both AS and BS , so we terminate with ES = 0.
Thus there can be at most 3a/4 steps in which ES increases, so there are only O(n3a/4)

such AS in G.
The two ideas discussed below to overcoming this obstacle can be briefly summarised

as follows. In Randomised Algebraic Construction (introduced in Keevash [2014]), in-
stead of choosing independent random triangles for an absorber, they are randomly chosen
according to a superimposed algebraic structure that has ‘built-in’ absorbers. In Iterative
Absorption (used for designs and decompositions in Glock, Kühn, Lo, and Osthus [2016,
2017]), instead of a single absorption step, there is a sequence of absorptions, each of
which replaces the current subgraph of uncovered edges by an ‘easier’ subgraph, until we
obtain S that is so simple that it can be absorbed by an ‘exclusive’ absorber put aside at
the beginning of the proof for the eventuality that we end up with S . This is a powerful
idea with many other applications (see the survey Kühn and Osthus [2014]).

6 Iterative Absorption

Here we will sketch an application of iterative absorption to finding a triangle decompo-
sition of a graph G with no space or divisibility obstruction as in the previous subsection.
(We also make certain ‘extendability’ assumptions that we will describe later when they
are needed.) Our sketch will be loosely based on a mixture of the methods used in Barber,
Kühn, Lo, and Osthus [2016] and Glock, Kühn, Lo, and Osthus [2016], thus illustrating
some ideas of the general case but omitting most of the technicalities.
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The plan for the decomposition is to push the graph down a ‘vortex’, which consists
of a nested sequence V (G) = V0 � V1 � � � � � V� , where jVi j = � jVi�1j for each
i 2 [� ] with n�1 � � � t , and jV� j = O(1) (so � is logarithmic in n = v(G)). Suppose
G has a set T of triangles such that every edge is in (1 ˙ c)tn triangles of T , where
n�1 � � � c; t . By choosing the Vi randomly we can ensure that each edge of G[Vi ]

is in (1 ˙ 2c)t jVi j triangles of Ti = ff 2 T : f � Vi g. At step i with 0 � i � t we
will have covered all edges of G not contained in Vi by edge-disjoint triangles, and also
some edges within Vi , in a suitably controlled manner, so that we still have good triangle
regularity in G[Vi ].

At the end of the process, the uncovered subgraphLwill be contained in V� , so there are
only constantly many possibilities for L. Before starting the process, for each tridivisible
subgraph S of the complete graph on V� we put aside edge-disjoint ‘exclusive absorbers’
AS , i.e. sets of edge-disjoint triangles in G such that S [ AS has a triangle decomposition
BS (we omit here the details of this construction). Then L will be equal to one of these S ,
so replacing AS by BS completes the triangle decomposition of G.

Let us now consider the process of pushing G down the vortex; for simplicity of no-
tation we describe the first step of covering all edges not within V1. The plan is to cover
almost all of these edges by a nibble, and then the remainder by a random greedy algo-
rithm (which will also use some edges within V1). At first sight this idea sounds suspicious,
as one would think that the triangle regularity parameter c must increase substantially at
each step, and so the process could not be iterated logarithmically many times before the
parameters blow up.

However, quite suprisingly, if we make the additional extendability assumption that
every edge is in at least c0n3 copies of K5 (where c0 is large compared with c and t � c0),
then we can pass to a different set of triangles which dramatically ‘boost’ the regular-
ity. The idea (see Glock, Kühn, Lo, and Osthus [2016, Lemma 6.3]) is that a relatively
weak triangle regularity assumption implies the existence of a perfect fractional triangle
decomposition, which can be interpreted as selection probabilities (in the same spirit as
Kahn [1996a]) for a new set of triangles that is much more regular. A similar idea appears
in the Rödl-Schacht proof of the hypergraph regularity lemma via regular approximation
(see Rödl and Schacht [2007b]). It may also be viewed as a ‘guided version’ of the self-
correction that appears naturally in random greedy algorithms (see Bohman and Keevash
[2013] and Pontiveros, Griffiths, and Morris [2013]).

Let us then consider G� = G n G[V1] n H , where H contains each edge of G crossing
between V1 and V � := V (G) n V1 independently with some small probability p �

c; � . (We reserve H to help with the covering step.) Then whp every edge of G� is in
(1 ˙ c)tn ˙ jV1j ˙ 3pn triangles of T within G�. By boosting, we can find a set T �

of triangles in G� such that every edge of G� is in (1 ˙ c0)tn/2 triangles of T �, where
c0 � p. By the nibble, we can choose a set of edge-disjoint triangles in T � covering
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all of G� except for some ‘leave’ L of maximum degree c1n, where we introduce new
constants c0 � c1 � c2 � p.

Now we cover L by two random greedy algorithms, the first to cover all remaining
edges in V � and the second to cover all remaining cross edges. The analysis of these
algorithms is not as difficult as that of the nibble, as we have ‘plenty of space’, in that we
only have to cover a sparse graph within a much denser graph, whereas the nibble seeks
to cover almost all of a graph. In particular, the behaviour of these algorithms is well-
approximated by a ‘binomial heuristic’ in which we imagine choosing random triangles
to cover the uncovered edges without worrying about whether these triangles are edge-
disjoint (so we make independent choices for each edge). In the actual algorithm we have
to exclude any triangle that uses an edge covered by a previous step of the algorithm, but
if we are covering a sparse graph one can show that whp at most half (say) of the choices
are forbidden at each step, so any whp estimate in the binomial process will hold in the
actual process up to a factor of two. (This idea gives a much simpler proof of the result of
Ferber, Hod, Krivelevich, and Sudakov [2014].)

For the first greedy algorithm we consider each remaining edge in V � in some arbitrary
order, and when we consider e we choose a triangle on e whose two other edges are in H ,
and have not been previously covered. In general we would make this choice uniformly at
random, although the triangle case is sufficiently simple that an arbitrary choice suffices;
indeed, there are whp at least p2�n/2 such triangles in H , of which at most 2c1n are
forbidden due to using a previously covered edge (by the maximum degree of L). Thus
the algorithm can be completed with arbitrary choices.

The second greedy algorithm for covering the cross edges is more interesting (the anal-
ogous part of the proof for general designs is the most difficult part of Glock, Kühn, Lo,
and Osthus [2016]). Let H 0 denote the subgraph of cross edges that are still uncovered.
We consider each x 2 V � sequentially and cover all edges ofH 0 incident to x by the set of
triangles obtained by adding x to each edge of a perfect matchingMx inG[H 0(x)], i.e. the
restriction of G to the H 0-neighbourhood of x. We must choose Mx edge-disjoint from
Mx0 for all x0 preceding x, so an arbitrary choice will not work; indeed, whp the degree
of each vertex y in G[H 0(x)] is (1˙ c2)p� tn, but our upper bound on the degree of y in
H 0 may be no better than pn, so previous choices of Mx0 could isolate y in G[H 0(x)].

To circumvent this issue we choose random perfect matchings. A uniformly random
choice would work, but it is easier to analyse the process where we fix many edge-disjoint
matchings in G[H 0(x)] and then choose one uniformly at random to be Mx . We need
some additional assumption to guarantee that G[H 0(x)] has even one perfect matching
(the approximate regularity only guarantees an almost perfect matching).

One way to achieve this is to make the additional mild extendability assumption that
every pair of vertices have at least c0n common neighbours in G[H 0(x)], i.e. any adjacent
pair of edges xy; xy0 in G have at least c0n choices of z such that xz, yz and y0z are
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edges. It is then not hard to see that a random balanced bipartite subgraph of G[H 0(x)]

whp satisfies Hall’s condition for a perfect matching. Moreover, we can repeatedly delete
p3/2�c0n perfect matchings in G[H 0(x)], as this maintains all degrees (1 ˙ 2

p
p)p� tn

and codegrees at least p�c0n/2.
The punchline is that for any edge e in G[H 0(x)] there are whp at most 2p2n earlier

choices of x0 with e in G[H 0(x0)], and the random choice of Mx0 covers e with probability
at most (p3/2�c0n)�1, so e is coveredwith probability at most 2p2n(p3/2�c0n)�1 < p1/3,
say. Thus whp G[H 0(x)] still has sufficient degree and codegree properties to find the
perfect matchings described above, and the algorithm can be completed. Moreover, any
edge of G[V1] is covered with probability at most p1/3, so whp we maintain good triangle
regularity in G[V1] and can proceed down the vortex.

7 Randomised Algebraic Construction

Here we sketch an alternative proof (via our method of Randomised Algebraic Construc-
tion from Keevash [2014]) of the same result as in the previous subsection, i.e. finding
a triangle decomposition of a graph G with certain extendability properties and no space
or divisibility obstruction. Our approach will be quite similar to that in Keevash [2015],
except that we will illustrate the ‘cascade’ approach to absorption which is more useful
for general designs.

As discussed above, we circumvent the difficulties in the basic method for absorption
by introducing an algebraic structure with built-in absorbers. Let � : V (G) ! F2a n f0g

be a uniformly random injection, where 2a�2 < n � 2a�1. Our absorber (which in
this context we call the ‘template’) is defined as the set T of all triangles in G such that
�(x)+�(y)+�(z) = 0. Clearly T consists of edge-disjoint triangles. We letG� =

S
T

be the underlying graph of the template and suppress � , imagining V (G) as a subset of
F2a .

Standard concentration arguments show that whp G n G� has the necessary properties
to apply the nibble, so we can find a set N of edge-disjoint triangles in G n G� with leave
L := (G n G�) n

S
N of maximum degree c1n (we use a similar hierarchy of very small

parameters ci as before). To absorb L, it is convenient to first ‘move the problem’ into the
template: we apply a random greedy algorithm to cover L by a set M c of edge-disjoint
triangles, each of which has one edge in L and the other two edges in G�. Thus some
subgraph S of G�, which we call the ‘spill’ has now been covered twice. The binomial
heuristic discussed in the previous subsection applies to show that whp this algorithm is
successful, and moreover S is suitably bounded. (To be precise, we also ensure that each
edge of S belongs to a different triangle of T , and that the union S� of all such triangles
is c2-bounded.)
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The remaining task of the proof is to modify the current set of triangles to eliminate
the problem with the spill. The overall plan is to find a ‘hole’ in the template that exactly
matches the spill. This will consist of two sets of edge-disjoint triangles, namely M o

(outer set) and M i (inner set), such that M o � T and
S

M o is the disjoint union of S

and
S

M i . Then replacing M o by M i will fix the problem: formally, our final triangle
decomposition of G is M := N [ M c [ (T n M o) [ M i .

We break down the task of finding the hole into several steps. The first is a refined
form of the integral decomposition theorem of Graver and Jurkat [1973] and R. M. Wil-
son [1973], i.e. that there is an assignment of integers to triangles so that total weight of
triangles on any edge e is 1 if e 2 S or 0 otherwise. Our final hole can be viewed as
such an assignment, in which a triangle f has weight 1 if f 2 M o, �1 if f 2 M i , or 0
otherwise. We intend to start from some assignment and repeatedly modify it by random
greedy algorithms until it has the properties required for the hole. As discussed above,
the success of such random greedy algorithms requires control on the maximum degree,
so our refined version of Graver and Jurkat [1973] and R. M. Wilson [1973] is that we
can choose the weights wT on triangles with

P
T :v2T jwT j < c3n for every vertex v.

(The proof is fairly simple, but the analogous statement for general hypergraphs seems to
be much harder to prove.) Note that in this step we allow the use of any triangle in Kn

(the complete graph on V (G)), without considering whether they belong to G�: ‘illegal’
triangles will be eliminated later.

Let us now consider how to modify assignments of weights to triangles so as to obtain
a hole. Our first step is to ignore the requirement M o � T , which makes our task much
easier, as T is a special set of only O(n2) triangles. Thus we seek a signed decomposition
of S within G�, i.e. an assignment from f�1; 0; 1g to each triangle of G� so that the total
weight on any e is 1 if e 2 S or 0 otherwise, and every edge appears in at most one triangle
of each sign.

To achieve this, we start from the simple observation that the graph of the octahedron
has 8 triangles, which can be split into two groups of 4, each forming a triangle decom-
position. For any copy of the octahedron in Kn we can add 1 to the triangles of one
decomposition and subtract 1 from the triangles of the other without affecting the total
weight of triangles on any edge. We can use this construction to repeatedly eliminate ‘can-
celling pairs’, consisting of two triangles on a common edge with opposite sign. (There
is a preprocessing step to ensure that each triangle to be eliminated can be assigned to
a unique such pair.) In particular, as edges not in G� have weight 0, this will eliminate
all illegal triangles. The boundedness condition facilitates a random greedy algorithm
for choosing edge-disjoint octahedra for these eliminations, which constructs the desired
signed decomposition of S .

Nowwe remember that wewanted the outer triangle decompositionM o to be contained
in the template T . Finally, the algebraic structure will come into play, in absorbing the set
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M+ of positive triangles in the signed decomposition. To see how this can be achieved,
consider any positive triangle xyz, recall that vertices are labelled by elements of F2a n

f0g, and suppose first for simplicity that xyz is ‘octahedral’, meaning that G� contains
the ‘associated octahedron’ of xyz, defined as the complete 3-partite graph O with parts
fx; y + zg, fy; z + xg, fz; x + yg. Then xyz is a triangle of O , and we note that O

has a triangle decomposition consisting entirely of template triangles, namely fx; y; x +

yg, fy + z; y; zg, fx; z + x; zg and fy + z; z + x; x + yg. Thus we can ‘flip’ O (i.e.
add and subtract the two triangle decompositions as before) to eliminate xyz while only
introducing positive triangles that are in T .

The approach taken in Keevash [2015] was to ensure in the signed decomposition that
every positive triangle is octahedral, with edge-disjoint associated octahedra, so that all
positive triangles can be absorbed as indicated above without interfering with each other.
For general designs, it is more convenient to define a wider class of triangles (in general
hypergraph cliques) that can be absorbed by the following two step process, which we
call a ‘cascade’. Suppose that we want to absorb some positive triangle xyz. We look
for some octahedron O with parts fx; x0g, fy; y0g, fz; z0g such that each of the 4 triangles
of the decomposition not using xyz is octahedral. We can flip the associated octahedra
of these triangles so as to include them in the template, and now O is decomposed by
template triangles, so can play the role of an associated octahedron for xyz: we can flip
it to absorb xyz. The advantage of this approach is that whp any non-template xyz has
many cascades, so no extra property of the signed decomposition is required to complete
the proof. In general, there are still some conditions required for a clique have many
cascades, but these are not difficult to ensure in the signed decomposition.

8 Concluding remarks

There are many other questions of Design Theory that can be reformulated as asking
whether a certain (sparse) hypergraph has a perfect matching. This suggests the (vague)
meta-question of formulating and proving a general theorem on the existence of perfect
matchings in sparse ‘design-like’ hypergraphs (for some ‘natural’ definition of ‘design-
like’ that is sufficiently general to capture a variety of problems in Design Theory). One
test for such a statement is that it should capture all variant forms of the basic existence
question, such as general hypergraph decompositions (as in Glock, Kühn, Lo, and Osthus
[2016]) or resolvable designs (the general form of Kirkman’s original ‘schoolgirl prob-
lem’, solved for graphs by Ray-Chaudhuri and R. M. Wilson [1971] but still open for
hypergraphs). But could we be even more ambitious?

To focus the ideas, one well-known longstanding open problem is Ryser’s Conjecture
Ryser [1967] that every Latin square of odd order has a transversal. (A generalised form
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of this conjecture by Stein [1975] was recently disproved by Pokrovskiy and Sudakov
[2017].) To see the connection with hypergraph matchings, we associate to any Latin
square a tripartite 3-graph in which the parts correspond to rows, columns and symbols,
and each cell of the square corresponds to an edge consisting of its own row, column and
symbol. A perfect matching in this 3-graph is precisely a transversal of the Latin square.
However, there is no obvious common structure to the various possible 3-graphs that may
arise in this way, which presents a challenge to the absorbing methods described in this
article, and so to formulating a meta-theorem that might apply to Ryser’s Conjecture. The
best known lower bound of n � O(log2 n) on a partial transversal (by Hatami and Shor
[2008]) has a rather different proof. Another generalisation of Ryser’s Conjecture by Aha-
roni and Berger [2009] concerning rainbow matchings in properly coloured multigraphs
has recently motivated the development of various other methods for such problems not
discussed in this article (see e.g. Gao, Ramadurai, Wanless, andWormald [2017], Keevash
and Yepremyan [2017], and Pokrovskiy [2016]).

Recalling the theme of random matchings discussed in the introduction, it is unsur-
prising that it is hard to say much about random designs, but for certain applications one
can extract enough from the proof in Keevash [2014], e.g. to show that whp a random
Steiner Triple System has a perfect matching (Kwan [2016]) or that one can superimpose
a constant number of Steiner Systems to obtain a bounded codegree high-dimensional ex-
pander (Lubotzky, Luria, and Rosenthal [2015]). Does the nascent connection between
hypergraph matchings and high-dimensional expanders go deeper?

We conclude by recalling two longstanding open problems from the other end of the
Design Theory spectrum, concerning q-graphs with q of order

p
n (the maximum possi-

ble), as opposed to the setting n > n0(q) considered in this article (or even the methods
of Kuperberg, Lovett, and Peled [2017] which can allow q to grow as a sufficiently small
power of n).

Hadamard’s Conjecture. (Hadamard [1893])
There is an n � n orthogonal matrix H with all entries ˙n�1/2 iff n is 1, 2 or divisible by
4?

Projective Plane Prime Power Conjecture. (folklore)
There is a Steiner system with parameters (k2 + k + 1; k + 1; 2) iff k is a prime power?
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LIMIT SHAPES AND THEIR ANALYTIC
PARAMETERIZATIONS
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Abstract

A “limit shape” is a form of the law of large numbers, and happens when a large
random system, typically consisting of many interacting particles, can be described,
after an appropriate normalization, by a certain nonrandom object. Limit shapes occur
in, for example, random integer partitions or in random interface models such as the
dimer model. Typically limit shapes can be described by some variational formula
based on a large deviations estimate. We discuss limit shapes for certain 2-dimensional
interface models, and explain how their underlying analytic structure is related to a
(conjectural in some cases) conformal invariance property for the models.

1 Limit shapes: integer partitions

We illustrate the notion of limit shape with a fundamental example. Given a uniform ran-
dom integer partition � of n for n large, a theorem of Vershik and Kerov [1981] asserts
that, when both axes are scaled by

p
n, the graph of � (that is, the Young diagram asso-

ciated to �) converges with probability tending to 1 to a nonrandom curve, given by the
equation e�cx + e�cy = 1, with c =

p
�2/6, see Figure 1. This is an example (in fact,

one of the first examples) of a limit shape theorem: in the limit of large system size, the
typical random object will, when appropriately scaled, concentrate on a fixed nonrandom
shape. One way to make a more precise formulation of this statement is say that for each
n, the random partition of n defines a certain probability measure �n (on the space of non-
increasing functions f : [0; 1) ! [0; 1) of integral 1) and as n ! 1 this sequence of
measures converges in probability1 to a point mass on the Vershik-Kerov curve.

MSC2010: 82B20.
1 The topology of convergence for the sequence of random functions can be taken to be uniform convergence

on compact subsets of (0; 1).
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Figure 1: The Vershik-Kerov curve and a (scaled) random partition of 1000.

2 Lozenge tilings

There are many other limit shape theorems for random objects. In this talk we will discuss
certain two-dimensional generalizations of the Kerov-Vershik result above. Our objects
are lozenge tilings. A lozenge tiling is a tiling of a region in the plane with lozenges, which
are 60ı rhombi (in three possible orientations), see Figure 2.

Equivalently, we can think of a lozenge tiling as a projection of a three-dimensional
object, a stepped surface. A stepped surface is a piecewise linear surface in R3 composed
of squares from the Z3 lattice, and which is monotone in the sense that it projects orthogo-
nally injectively to the plane P111 = fx + y + z = 0g. The equivalence between lozenge
tilings and stepped surfaces spanning an appropriate boundary is clear. Each lozenge tiling
comes equipped with a height function which is the scaled distance of its stepped surface
to the plane P111.

Anotherway to view lozenge tilings is asmonotone nonintersecting lattice paths (MNLPs),
see Figure 3.

2.1 Limit shape theorem. Given a polygonal domain in the plane which can be tiled
with lozenges, what is the “shape” of a typical tiling? Here by typical we mean chosen
uniformly at random from the set of all possible tilings of the region. The first such re-
sult was for a different but actually closely related model, domino tilings of the “Aztec
diamond”, where Jockusch, Propp and Shor showed the existence of a certain circle in the
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Figure 2: A (uniform) random lozenge tiling of a hexagon.

Figure 3: The lozenge tiling model is equivalent to the MNLP model. The lattice
paths are the paths running through the centers of the blue and green lozenges (hor-
izontally through the green and vertically through the blue).



3158 RICHARD KENYON

limit shape Jockusch, Propp, and Shor [1998]; this was extended to the limit shape itself
by Cohn, Elkies and Propp in Cohn, Elkies, and Propp [1996]. The first limit shape result
for lozenge tilings is due to Cohn, Larsen, and Propp [1998] for the special case of the
hexagonal boundary conditions of Figure 2.

Henry Cohn, James Propp and myself proved Cohn, Kenyon, and Propp [2001] the
following limit shape theorem for lozenges with general boundary conditions. Given a
Jordan domain U � R2 and a function u : @U ! R satisfying a certain Lipschitz
condition, there is a unique Lipschitz extension h : U ! R (satisfying hj@U = u) which
is the “limit shape for lozenge tilings with boundary values u” in the following sense.
Let Un � R2 be a polygonal domain, approximating U , which can be tiled by lozenges
scaled by 1/n, and such that the height function along the boundary of Un approximates
u as n ! 1. Then for any " > 0, for sufficiently large n, a uniform random lozenge
tiling of Un will have, with probability at least 1 � ", height function lying within " of h.
Moreover, there is a variational formula for the limiting surface h: h is the unique function
minimizing the integral

(1)
“

U

�(rh) dx dy

where � is an explicit function (see Figure 4), the surface tension. Here for convenience

Figure 4: The surface tension function � for the lozenge tiling model.

we parameterize points of P111 by their x and y coordinates, and rather than have h

be the distance to the plane P111, we define h(x; y) to be the z coordinate of the point
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on the surface. In this case the gradient rh = (hx ; hy) lies in the unit triangle N =

cvxf(0; 0); (1; 0); (0; 1)g. The function � is taken to be 1 when rh is not in N; this
constrains h to have gradient in N, which it must if it arises as a limit of height functions
for lozenge tilings. The Lipschitz condition on u referred to in the statement is that there
exists an extension h with gradient in N.

The function � = �(s; t) itself is rather remarkable. If we take a triangle in C with
vertices 0; 1; z with Im z > 0 and angles at 0 and 1 equal to �s and �t respectively, then
�(s; t) = D(z), where D is the Bloch-Wigner dilogarithm

D(z) =
1

�
(arg(1 � z) log jzj + ImLi(z)):

Here Li(z) = �
R z

0 log(1 � �)d�
�

is the standard dilogarithm.
The limit shapes arising in the above theorem are generally not analytic: near the cor-

ners of N the Hessian of � becomes singular; this feature cause the limit shapes to form
facets in the directions of the coordinate planes. These can be seen in Figure 2: there
are regions near the corners of solid color, containing only one tile type, which persist in
the limit; in fact these regions are the exterior regions of the inscribed circle (one of the
results of Cohn, Larsen, and Propp [1998].) The boundary of these facets is called the
frozen boundary. Our limit shapes are only C 1, not C 2, across the frozen boundary. The
region encircled by the frozen boundary is the temperate zone; the limit shape is analytic
in the temperate zone.

2.2 Analytic parameterization. The surface tension function � is sufficiently compli-
cated that it is not immediately clear how to solve the variational problem of minimizing
(1). Any minimizer will solve the associated Euler-Lagrange equation, which in this case
is

divx;y(r�(rh)) = 0:

It is pretty gnarly when written out in Cartesian coordinates. Several years after the pub-
lication of the limit shape theorem, in joint work with Andrei Okounkov, we rewrote the
Euler-Lagrange equation in terms of the variable z (the apex of the triangle mentioned
above in the definition of � ). In this variable the equation becomes significantly simpler

(2)
zx

z
�

zy

1 � z
= 0;

which is a version of the complex Burgers’ equation (substituting � = �
z

1�z
the equation

is the actual complex Burgers’ equation �x + ��y = 0). This equation can be solved
by the method of complex characteristics; in fact it is easy to check that if Q(z) is any
analytic function and z = z(x; y) is defined implicitly by xz + y(1 � z) = Q(z) then z

satisfies (2).
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This gives a remarkable way to parameterize all limit shapes for lozenge tilings in
terms of analytic functions. It is reminiscent of the Weierstrass-Enneper parameterization
of minimal surfaces, except that here we are minimizing a different functional: not the
surface area, but the function � which depends on the slope.

One difficulty that this parameterization shares with the Weierstrass-Enneper parame-
terization is the relation between the analytic input Q(z) and the boundary data u. For
given boundary data (@U; u), how do we find Q? This is a nontrivial problem which is
not solved in general. See the next section for a large family of algebraic solutions.

If instead of solving for z as a function of x; y we solve for x; y as a function of z, we
obtain a linear PDE

zxz̄ + (1 � z)yz̄ = 0:

This linearity results in an interesting semigroup property of limit shapes: given two
limit shape surfaces Σ1;Σ2 we can add them to get a third: this “addition” is a form of
Minkowski sum: we add corresponding (x; y) coordinates where the normals are equal:
the inverse of the gauss map for Σ3 is the sum of the inverse gauss maps for Σ1 and Σ2.

2.3 Rational parameterization. In the special case that U is a polygon with edges in
the directions of the cube roots of 1, as is the case for the hexagon in Figure 2, there is an
explicit method for computing the limit shape, discussed in Kenyon and Okounkov [2007].
A quick way to find the limit shape, when U has 3n sides which alternate in directions
1; e2�i/3; e4�i/3, is to first find the frozen boundary, which has a rational parameterization
in terms of t 2 R̂ = R [ f1g: it is the envelope of lines of the form

Ax

Qn
i=1(t � ai )Qn
i=1(t � ci )

+ By

Qn
i�1(t � bi )Qn
i=1(t � ci )

= 1

where a1; b1; c1; a2; : : : ; cn are in cyclic order in R̂. One simply needs to find the numbers
ai ; bi ; ci and A; B so that this envelope contains the lines corresponding to the sides of U ,
in order. There is a unique solution up to precomposition by a real Möbius transformation
of t .

As an example, for the hexagon of Figure 2, the pencil of lines�
t � 2

t + 1
x +

1 � t

t
y + 1 = 0 j t 2 R̂

�
contains the lines x = 0; y = 0; x �y = 1; x = 2; y = 2; x �y = �1 in cyclic order, as t

runs over R̂. As such it defines the frozen boundary. See Figure 5 (this picture is distorted
by a linear mapping as compared to Figure 2 because it is plotted in Cartesian coordinates
for clarity).
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Figure 5: The pencil of lines defining the limit shape for the hexagon.

Once the frozen boundary is found, giving x = x(t); y = y(t), the slope of the line
defines z = z(t) (precisely, the slope is z(t)/(1 � z(t))). Extending t to the upper half
plane gives z = z(x; y) at interior points as well, from which the surface can be found by
integrating.

3 Interacting lozenge tilings

Given the success of the calculations for the lozenge tiling model, it is natural to try to ex-
tend the results to other similar random tiling models. This was accomplished for general
bipartite planar dimer models in the papers Cohn, Kenyon, and Propp [2001], Kenyon,
Okounkov, and Sheffield [2006], and Kenyon and Okounkov [2007]. The tractability of
these models arises from their “determinantal” nature: the fundamental tool is the result
of Kasteleyn [1963] who showed how to compute partition functions (weighted sums of
configurations) for the planar dimer model with determinants.

If we move out of the class of determinantal models, things quickly become very chal-
lenging. No combinatorial methods are available for general tiling models. A few models
have been shown to be “solvable”, to a certain extent, via so-called Bethe Ansatz methods,
see e.g. Baxter [1982], Kalugin [1994], and de Gier and Nienhuis [1996]. One of the most
important of these Bethe-Ansatz solvable models is the six-vertex model, see Figure 6. A
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special case of this model (the “symmetric” case when a1 = a2; a3 = a4; a5 = a6) was
solved by Lieb in 1967 Lieb [1967] and partial results on the general six-vertex model
were obtained by Sutherland, C. N. Yang, and C. P. Yang [1967]. The general six-vertex
model is still unsolved, however, in the sense that the asymptotic free energy and surface
tension have not been computed.

a1 a2 a3 a4 a5 a6
Figure 6: The six-vertex model consists of edge subsets of Z2 whose local config-
urations at a vertex are one of these six types. The probability of a configuration is
proportional to the product of its vertex weights.

In joint work with Jan de Gier and Sam Watson de Gier, Kenyon, and Watson [2018],
we extend the lozenge tiling model to a model of interacting lozenges, known as the “5-
vertex model” (this model was also studied, with partial results, by Huang et al Huang,
Wu, Kunz, and Kim [1996]). We define a new probability measure by assigning a con-
figuration a weight r for every adjacency between a blue and green rhombi, see Figure 7;
equivalently, in terms of the MNLPmodel, we assign each corner of a lattice path a weight
r . This measure is a special case of the 6-vertex model, where one of the six possible ver-
tex configurations is disallowed. For each choice of r , there is a two-parameter family of
measures �s;t on configurations, where s and t give the average slope. These three param-
eters r; s; t describe in fact the whole phase space of the model, which is 3-dimensional
(scaling all weights has no effect on the measure, and for the boundary conditions we
care about, the free energy depends on the weight of configurations 4 and 5 only via their
product, so we may as well assume their weights are equal.

The analysis of the five-vertex model is considerably more involved than that of the
lozenge tiling model, however we can get a complete picture of the limit shape theory
including explicit analytic parameterizations of limit shapes. The methods used here still
do not extend to the full six-vertex model, unfortunately. Our method relies on the Bethe
Ansatz; the first part of the calculation was given by Sutherland et al Sutherland, C. N.
Yang, and C. P. Yang [1967] in 1969.

3.1 Electric field variables. Suppose as in Figure 7 we assign weights eX and eY to
vertical and horizontal edges, or equivalently (referring to Figure 3), to blue and green
lozenges, so that a configuration (on a finite region) has probability 1

Z
eNbX+NgY rNbg
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1 eX eY r e
X+Y
2 r e
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Figure 7: The five-vertex model is a special case of the 6-vertex model where no
vertex has four incident edges (that is, weight a2 of Figure 6 is zero). It is convenient
to parameterize the vertex weights as shown. Setting instead one of a1; a3; a4 equal
to zero results in an equivalent model. If instead we set one of a5 or a6 equal to
zero, we get a different 5-vertex model with different properties, quite degenerate,
which we will not discuss here.

where Nb is the number of blue lozenges, Ng is the number of green lozenges, Nbg is the
number of adjacencies between blue and green lozenges, and Z is a normalizing constant.
For configuration with periodic boundary conditions, that is, on a torus, these “electric
field” variables X; Y can be used to adjust the relative numbers of red, blue and green
lozenges, thereby adjusting the expected slope (s; t) = rh. For fixed r the phase space
of the model can be parameterized either by the variables s; t , which describe the average
slope, or X; Y which define the tile weights.

For fixed r the relationship between (X; Y ) and (s; t) is essential in understanding the
model, because we have the following equations relating the free energy F (X; Y ) and the
surface tension �(s; t):

rF (X; Y ) = (s; t);

r�(s; t) = (X; Y );(3)

which says that F and � are Legendre dual to each other.
Although we didn’t mention this above, the electric field variablesX; Y also play a role

in the uniform lozenge tiling model, which is the special case r = 1; in this case eX ; eY are
weights assigned to blue and green lozenges (red lozenges have weight 1). The quantities
eX ; eY ; 1 are in fact the side lengths of the 0; 1; z triangle.

Knowing the map from (X; Y ) to (s; t), we can integrate (3) to get � .

3.2 Bethe Ansatz. The 5-vertex measure can not be solved with determinants unless
r = 1 (in which case it is equivalent to the uniform lozenge tiling model). However
it is still solvable on a cylinder via the Bethe Ansatz method. Let us brielfy describe
this method here. One considers configurations on a grid on a cylinder Z/N � Z of
circumference N . The states of the model are configurations of occupied vertical bonds
on a given horizontal row; there are 2N possible states. The 2N � 2N transfer matrix
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T is indexed by such row configurations and the entry T (x; y) is the weighted sum of
configurations between a row configuration x and the configuration y occurring on the
subsequent row. Thus T k(x; y) is the weighted number of configurations starting from
row 0 in configuration x and ending k rows later in configuration y. The logarithm of
the Perron eigenvalue of T is the free energy per row; dividing by N and taking the limit
N ! 1 gives the normalized free energy per site of the model. From this free energy
the surface tension can be computed by an appropriate Legendre transform as discussed
above.

3.3 Surface tension. For the five vertex model the limit shape theorem and formula
(1) still hold, however the surface tension function � is more complicated to write down
explicitly. We can give the surface tension derivative as follows: Let w be a point in the
upper half plane and consider the triangle with vertices 0; 1; w. Draw in the line from w

to 1/(1 � r2) as indicated in Figure 8.

w

1

1

1- r20

tθ (1-s-t)θ(1-t)θ

sθ
z

Figure 8

Given w, let t be defined by the equation t
1�t

= argw

arg( 1
1�w )

, that is, t/(1� t) is the ratio
of base angles at 0 and 1 of the triangle f0; 1; wg. Let s be defined by the equation that
(1� s � t)/t is the ratio of the base angles of the triangle f0; 1

1�r2 ; wg. Consider the circle
through 0; 1; w and let z̄ be the other intersection of this circle with the line from w to
1/(1 � r2). Then w; z satisfy the equation

1 � w � z + (1 � r2)wz = 0:

(This equation defines the “spectral curve” of the model.) Let X = � log(1� r2)� B(w)

and Y = � log(1 � r2) � B(z̄) where

(4) B(u) =
1

�
(argu log j1 � uj + ImLi(u))
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is another variant of the dilogarithm. This gives X; Y; s; t as functions of w, and thus we
can find implicitly X; Y as functions of s; t , from which we arrive at a formula for � and
the free energy, see Figure 9 and Figure 11.

Figure 9: Minus surface tension as a function of (s; t) 2 N with r = :8. The black
line is graph of surface tension on the hyperbola bounding N�; the entropy is linear
in N n N�.

The surface tension � has an interesting feature that for r < 1 it is not strictly convex,
and in fact is only piecewise analytic: it is strictly convex and analytic on the region
N� � N bounded by the axes and the hyperbola

1 � r2

r2
xy + x + y � 1 = 0:

In the region N n N�, � is linear.
The free energy, which is the Legendre dual of � , is shown (for r = :8) in Figure 11.

It is piecewise analytic with four pieces, see Figure 12.
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Figure 10: The region N� is bounded by the axes and the hyperbola ( 1�r2

r2 )xy +

x + y � 1 = 0 (shown here for r = 0:6).

Figure 11: The free energy F (X; Y ) for r = :8. It is linear in each complementary
component of the curved region shown (except for a slope change along the line
y = x for x > � log(1 � r2)).
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Figure 12: For r < 1, the region bounding the analytic part of the free energy is
bounded by the three curves 1�eX �eY +(1�r2)eX+Y = 0; �1+eX �r2eY = 0,
and �1 + eY � r2eX = 0. The line x = y separates the external phases.

The graph of the free energy is also the limit shape of a 3D partition, weighted according
to the 5-vertex measure. That is, consider all 3D partitions of n, with probability measure
proportional to rNbg where Nbg is the number of blue-green lozenge adjacencies. Then
for large n, when rescaled by n1/3 (so that the total volume is 1) the limit shape of the 3D
partition is given by the graph in Figure 11 (once we apply a linear coordinate change so
that the two facets become vertical: (x; y; z) ! (x � z; y � z; z)); see Figure 13.

3.4 Euler-Lagrange equation. Because (X; Y ) = r�; the Euler-Lagrange equation
for the surface tension minimizer can be written in a very simple form

Xx + Yy = 0:

This can be supplemented with another equation

sy = tx

(the equality of mixed partials of the height function). It is a small miracle (i.e. something
which we can prove but don’t fully understand) that these two equations can be combined
into a single equation for the complex variable w. The equation is more symmetric when
written in terms of z and w (but remember that 1 � w � z + (1 � r2)wz = 0)

(5)
@B(w)

@w
wy �

@B(z)

@z
zx = 0
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Figure 13: A 3D partition (that is, 3D Young diagram) weighted according to the
5-vertex measure with r = :7.

where B is the function of (4).
It is worth rewriting (5) as an equation for x and y (real variables) as a function of w

(a complex variable), instead of w as a function of x and y. After some manipulation this
becomes the first order linear equation

(6) A(w)xw̄ � A(z)yw̄ = 0

where A(w) is the function A(w) := �w argw � (1 � w) arg(1 � w):

The Equation (6) is first order but cannot be solved by standard methods (of complex
characteristics); it is really a coupled 2 � 2 system of real PDEs. Another miracle is
that one can integrate it explicitly to find an explicit parameterization of solutions with
analytic functions. Rather than derive the solution, we’ll just give the answer here. Let
u = 1 � (1 � r2)w̄, and consider the equation

(7) x �
r2

uū
y =

Im h(u)

Imu
:

For any analytic function h, solve this for y, plug into (6), and arrive at an equation for x

of the form
xu + A1x + A2 = 0

for functions A1(u); A2(u), which can be integrated by standard techniques. The special
form of (7) guarantees that x will be real.
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This leads to the following explicit parameterization of solutions to (5):

(8) x(w) =
�1

(r2A(w) � juj2A(z))
Im

�Z u

u0

r2h(u)

(1 � u)(u � r2)
du +

juj2h(u)A(z)

Im (u)

�
and y is defined by (7).

Plugging in for example h(u) = 0 leads to (inserting an appropriate constant of inte-
gration in (8))

(x; y) = (
1

r2A(w) � uūA(z)
;

uū

r2(r2A(w) � uūA(z))
):

4 Open problems

There are many open problems and mysteries in the above calculations, some of which
we are still working on. Here are four important ones.

1. Is there a nice parameterization of limit shapes for the five-vertex model (in polygo-
nal domains with sides in directions of cubic roots of 1) in terms of rational curves,
like there is for the lozenge tiling model?

2. Should we expect that for the six-vertex model we can similarly combine the Euler-
Lagrange equation Xs + Yt = 0 and the mixed-partials equation sy � tx = 0 into a
single ODE for a complex variable z? Is this some general property of conformally
invariant models? And if so, is there a similar parameterization of solutions with
analytic functions?

3. For the lozenge tiling, � has the interesting property that its Hessian determinant
detH (�) is a constant. Is there an analog of this Monge-Ampère relation for � for
the 5-vertex model?

4. Under what conditions on a real analytic function f (z; z̄) can the PDE

zx = f (z; z̄)zy

be solved (for a complex function z = z(x; y) of two real variables) explicitly?
When f is analytic or antianalytic (that is, a function of z or z̄ only), it can eas-
ily be solved by characteristics. The case of (5) is neither but we were still (after
some significant head-scratching) able to find solutions by some sort of generalized
characteristics.



3170 RICHARD KENYON

References

Rodney J. Baxter (1982). Exactly solved models in statistical mechanics. Academic Press,
Inc. [Harcourt Brace Jovanovich, Publishers], London, p. 486. MR: 690578 (cit. on
p. 3161).

Henry Cohn, Noam Elkies, and James Propp (1996). “Local statistics for random domino
tilings of the Aztec diamond”. Duke Math. J. 85.1, pp. 117–166. MR: 1412441 (cit. on
p. 3158).

HenryCohn, RichardKenyon, and James Propp (2001). “A variational principle for domino
tilings”. J. Amer. Math. Soc. 14.2, pp. 297–346. MR: 1815214 (cit. on pp. 3158, 3161).

Henry Cohn, Michael Larsen, and James Propp (1998). “The shape of a typical boxed
plane partition”. New York J. Math. 4, pp. 137–165. MR: 1641839 (cit. on pp. 3158,
3159).

Jan de Gier, Richard Kenyon, and Sam Watson (2018). “Limit shapes for the asymmetric
five vertex model”. preprint (cit. on p. 3162).

Jan de Gier and Bernard Nienhuis (1996). “Exact solution of an octagonal random tiling
model”. Phys. Rev. Lett. 76 (cit. on p. 3161).

H. Y. Huang, F. Y.Wu,H. Kunz, andD.Kim (1996). “Interacting dimers on the honeycomb
lattice: an exact solution of the five-vertex model”. Phys. A 228.1-4, pp. 1–32. MR:
1399280 (cit. on p. 3162).

William Jockusch, James Propp, and Peter Shor (1998). “RandomDomino Tilings and the
Arctic Circle Theorem”. arXiv: math/9801068 (cit. on p. 3158).

P A Kalugin (1994). “The square-triangle random-tiling model in the thermodynamic
limit”. Journal of Physics A:Mathematical and General 27.11, p. 3599 (cit. on p. 3161).

P. W. Kasteleyn (1963). “Dimer statistics and phase transitions”. J. Mathematical Phys. 4,
pp. 287–293. MR: 0153427 (cit. on p. 3161).

Richard Kenyon and Andrei Okounkov (2007). “Limit shapes and the complex Burgers
equation”. Acta Math. 199.2, pp. 263–302. MR: 2358053 (cit. on pp. 3160, 3161).

Richard Kenyon, Andrei Okounkov, and Scott Sheffield (2006). “Dimers and amoebae”.
Ann. of Math. (2) 163.3, pp. 1019–1056. MR: 2215138 (cit. on p. 3161).

Elliott H. Lieb (Oct. 1967). “Residual Entropy of Square Ice”. Phys. Rev. 162 (1), pp. 162–
172 (cit. on p. 3162).

B. Sutherland, C. N. Yang, and C. P. Yang (Sept. 1967). “Exact Solution of aModel of Two-
Dimensional Ferroelectrics in an Arbitrary External Electric Field”. Phys. Rev. Lett. 19
(10), pp. 588–591 (cit. on p. 3162).

A. M. Vershik and S. V. Kerov (1981). “Asymptotic theory of the characters of a symmet-
ric group”. Funktsional. Anal. i Prilozhen. 15.4, pp. 15–27, 96. MR: 639197 (cit. on
p. 3155).

http://www.ams.org/mathscinet-getitem?mr=MR690578
https://doi.org/10.1215/S0012-7094-96-08506-3
https://doi.org/10.1215/S0012-7094-96-08506-3
http://www.ams.org/mathscinet-getitem?mr=MR1412441
https://doi.org/10.1090/S0894-0347-00-00355-6
https://doi.org/10.1090/S0894-0347-00-00355-6
http://www.ams.org/mathscinet-getitem?mr=MR1815214
http://nyjm.albany.edu:8000/j/1998/4_137.html
http://nyjm.albany.edu:8000/j/1998/4_137.html
http://www.ams.org/mathscinet-getitem?mr=MR1641839
https://doi.org/10.1016/S0378-4371(96)00057-X
https://doi.org/10.1016/S0378-4371(96)00057-X
http://www.ams.org/mathscinet-getitem?mr=MR1399280
http://arxiv.org/abs/math/9801068
http://arxiv.org/abs/math/9801068
http://arxiv.org/abs/math/9801068
http://stacks.iop.org/0305-4470/27/i=11/a=010
http://stacks.iop.org/0305-4470/27/i=11/a=010
https://doi.org/10.1063/1.1703953
http://www.ams.org/mathscinet-getitem?mr=MR0153427
https://doi.org/10.1007/s11511-007-0021-0
https://doi.org/10.1007/s11511-007-0021-0
http://www.ams.org/mathscinet-getitem?mr=MR2358053
https://doi.org/10.4007/annals.2006.163.1019
http://www.ams.org/mathscinet-getitem?mr=MR2215138
http://dx.doi.org/10.1103/PhysRev.162.162
http://dx.doi.org/10.1103/PhysRevLett.19.588
http://dx.doi.org/10.1103/PhysRevLett.19.588
http://www.ams.org/mathscinet-getitem?mr=MR639197


LIMIT SHAPES AND THEIR ANALYTIC PARAMETERIZATIONS 3171

Received 2018-02-21.

Rංർඁൺඋൽ Kൾඇඒඈඇ
rkenyon@math.brown.edu

mailto:rkenyon@math.brown.edu




Pඋඈർ. Iඇඍ. Cඈඇ. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 4 (3171–3198)

COMPLEXITY PROBLEMS IN ENUMERATIVE
COMBINATORICS

Iඈඋ Pൺ

Abstract

We give a broad survey of recent results in enumerative combinatorics and their
complexity aspects.

Introduction

The subject of Enumerative Combinatorics is both classical and modern. It is classical
as the basic counting questions go back millennia, yet it is modern in the use of a large
variety of the latest ideas and technical tools from across many areas of mathematics. The
remarkable successes from the last few decades have been widely publicized, yet they
come at a price, as one wonders if there is anything left to explore. In fact, are there
enumerative problems which cannot be resolved with existing technology? In this paper
we present many challenges in the field from the Computational Complexity point of view,
and describe how recent results fit into the story.

Let us first divide the problems into three major classes. This division is not as neat at
it may seem as there are problems which fit into multiple or none of the classes, especially
if they come from other areas. Still, it would provide us with a good starting point.

(1) Formula. Let P be a set of combinatorial objects, think of trees, words, permutations,
Young tableaux, etc. Such objects often come with a parameter n corresponding to the
size of the objects. Let Pn be the set of objects of size n. Find a formula for jPnj.
(2) Bijection. Now let P and Q be two sets of (possibly very different) combinatorial
objects. Say, you know (or at least suspect) that jPnj = jQnj. Find an explicit bijection
' : Pn ! Qn.

The author was partially supported by the NSF..
MSC2010: primary 05A15; secondary 05A10, 05A17, 68R05, 68Q17, 05C30.
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(3) Combinatorial interpretation. Now suppose there is an integer sequence fang given
by a formula. Say, you know (or at least suspect) that an � 0 for all n. Find a combina-
torial interpretation of an, i.e. a set of combinatorial objects P such that jPnj = an.

People in the area are well skilled in both resolving and justifying these problems. In-
deed, a formula is a good thing to have in case one needs to compute jPnj explicitly for
large n, find the asymptotics, gauge the structural complexity of the objects, etc. A bijec-
tion between a complicated set P and a simpler set Q is an even better thing to have, as it
allows one to better understand the nature of P , do a refined counting of Pn with respect
to various statistics, generate elements of Pn at random, etc. Finally, a combinatorial in-
terpretation is an excellent first step which allows one to proceed to (1) and then (2), or
at least obtain some useful estimates for an.

Here is the troubling part, which comes in the form of inquisitive questions in each
case:
(10) What is a formula? What happens if there is no formula? Can you prove there isn’t
one? How do you even formalize the last question if you don’t know the answer to the
first?
(20) There are, obviously, jPnj! bijections ' : Pn ! Qn, so you must want a particular
one, or at least one with certain properties? Is there a “canonical” bijection, or at least the
one you want best? What if there isn’t a good bijection by whatever measure, can you
prove that? Can you even formalize that?
(30) Again, what do you do in the case when there isn’t a combinatorial interpretation?
Can you formally prove a negative result so that others stop pursuing these problems?

We have a few formal answers to these questions, at least in some interesting special
cases.1 As the reader will see, the complexity approach does bring some clarity to these
matters. But to give the answers we first need to explain the nature of combinatorial
objects in each case, and to review the literature. That is the goal of this survey.

1 What is a formula?

1.1 Basic examples. We start with the Fibonacci numbers Sloane [n.d., A000045]:

(1-1) Fn = Fn�1 + Fn�2; F0 = F1 = 1

(1-2) Fn =

bn/2cX
i=0

 
n � i

i

!
1Due to space limitations, we address (3) and (30) in the full version of the paper.

https://oeis.org/A000045
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(1-3) Fn =
1

p
5

�
�n + (��)�n

�
; where � =

1 +
p
5

2

(1-4) Fn =
�
An
�
2;2

; where A =

�
0 1

1 1

�
:

Equation (1-1) is usually presented as a definition, but can also be used to compute Fn

in poly(n) time. Equation (1-2) is useful to place Fibonacci numbers in the hierarchy
of integer sequences (see below). Equation (1-3) is useful to obtain asymptotics, and
equation (1-4) gives a fast algorithm for computing Fn (by repeated squaring). The moral:
there is no one notion of a “good formula”, as different equations have different uses.

Let us consider a few more plausible formula candidates:

(1-5) Dn = [[n!/e]] ; where [[x]] denotes the nearest integer

(1-6) Cn = [tn]
1 �

p
1 � 4t

2t

(1-7) En = n! � [tn] y(t); where 2y0 = 1 + y2; y(0) = 1

(1-8) Tn = (n � 1)! � [tn] z(t); where z = t et et et e
:::

Here Dn is the number of derangements (fixed-point-free permutations in Sn), Cn is the
Catalan number (the number of binary trees with n vertices), En is the Euler number (the
number of alternating permutations �(1) < �(2) > �(3) < �(4) > : : : in Sn), Tn is the
Cayley number (the number of spanning trees inKn), and [tn]F (t) denotes the coefficient
of tn in F (t).

In each case, there are better formulas for applications:

(1-9) Dn = n!

nX
k=0

(�1)k

k!

(1-10) Cn =
1

n + 1

 
2n

n

!

(1-11) En = n! � [tn] y(t); where y(t) = tan(t) + sec(t)
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(1-12) Tn = nn�2

In all four cases, the corresponding formulas are equivalent by mathematical reasoning.
Whether or not you accept (1-5)–(1-8)as formulas, it is their meaning that’s important,
not their form.

Finally, consider the following equations for the number of partitions p(n), and n-th
prime number pn:

(1-13) p(n) = [tn]

1Y
i=1

1

1 � t i

(1-14)

pn =

n2X
m=2

m
D
1 +

ˇ̌̌
n � hmi

mX
r=2

hri

ˇ̌̌E
; where hxi :=

�
1

x

�
; r :=

p
rX

d=1

�
br/dc

r/d

�
:

Equation (1-13) is due to Euler (1748), and had profound implications in number theory
and combinatorics, initiating the whole area of partition theory (see e.g. R. Wilson and
Watkins [2013]). Equation (1-14) is from Tsangaris [2007]. Esthetic value aside, both
equations are largely unhelpful for computing purposes and follow directly from defini-
tions. Indeed, the former is equivalent to the standard counting algorithm (dynamic pro-
gramming), while the latter is an iterated divisibility testing in disguise.

In summary, we see that the notion of “good formula” is neither syntactic nor semantic.
One needs to make a choice depending on the application.

1.2 Wilfian formulas. In his pioneer 1982 paper Wilf [1982], Wilf proposed to judge
a formula from the complexity point of view. He suggested two definitions of “good
formulas” for computing an integer sequence fang:

(W1) There is an algorithm which computes an in time poly(n).
(W2) There is an algorithm which computes an in time o(an).

In the literature, such algorithms are called sometimesWilfian formulas. Note that (W1) is
aimed to apply for sequences fang of atmost exponential growth an = expO(nc), while (W2) for
fang of at most polynomial growth (see e.g. Garrabrant and Pak [2017] and Flajolet and
Sedgewick [2009] for more on growth of sequences).

Going over our list of examples we conclude that (1-1), (1-2), (1-4), (1-9), (1-10)
and (1-12) are all transparentlyWilfian of type (W1). Equations (1-3), (1-6), (1-7) and (1-11)
are Wilfian of type (W1) in a less obvious but routine way (see below). Equations (1-3)
and (1-5) do give rise to ad hoc poly(n) algorithms, but care must be applied when dealing
with irrational numbers. E.g., one must avoid circularity, such as when computing fpng by
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using the prime constant
P

n 1/2
pn , see Sloane [n.d., A051006]. Finally, equation (1-8)

is not Wilfian of type (W1), while (1-14) is not Wilfian of type (W2).
Let us add two more notions of a “good formula” in the same spirit, both of which are

somewhat analogous but more useful than (W2):
(W3) There is an algorithm which computes an in time poly(logn).
(W4) There is an algorithm which computes an in time no(1).

Now, for a combinatorial sequence fang one can ask if there is a Wilfian formula. In the
original paper Wilf [1982] an explicit example is given:

Conjecture 1.1 (Wilf). Let an be the number of unlabeled graphs on n vertices. Then
fang has no Wilfian formula of type (W1).

See Sloane [n.d., A000088] for this sequence. Note that by the classical result Erdős
and Rényi [1963] (see also Babai [1995, �1.6]), we have an ∼ 2(

n
2
)/n!, so the problem is

not approximating an, but computing it exactly. For comparison, the sequence fcng of the
number of connected (labeled) graphs does have a Wilfian formula:

cn = 2(
n
2
)

�
1

n

n�1X
k=1

k

 
n

k

!
2(

n�k
2
) ck

(see Sloane [n.d., A001187] and Harary and Palmer [1973, p. 7]).
The idea behind Conjecture 1.1 is that the Pólya theory formulas (see e.g. Harary and

Palmer [ibid.]) are fundamentally not Wilfian. We should mention that we do not believe
the conjecture in view of Babai’s recent quasipolynomial time algorithm for Gඋൺඉඁ Iඌඈ-
ආඈඋඉඁංඌආ Babai [2016]. While the connection is indirect, it is in fact conceivable that
both problems can be solved in poly(n) time.

Open Problem 1.2. Let �(n) denote the number of primes � n. Does f�(n)g have a
Wilfian formula of type (W4)?

The prime-counting function�(n) has a long history. InitiallyWilf asked about formula
of type (W2), and such formula was found in Lagarias, V. S. Miller, and Odlyzko [1985].
Note that even the parity of �(n) is hard to compute Tao, Croot, and Helfgott [2012].

1.3 Complexity setting and graph enumeration. Let Pn denote the set of certain com-
binatorial objects of size n. This means one can decide if X 2 Pn in time poly(n). The
problem of computing an := jPnj is in #EXP because the input n has bit-lengthO(logn).2
This is a counting version of the decision problem NEXP.

2To bring the problem into the (usual) polynomial hierarchy, the input n should be given in unary, cf. Gol-
dreich [2008] and Moore and Mertens [2011].

https://oeis.org/A051006
https://oeis.org/A000088
https://oeis.org/A001187
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For example, let an = jPnj be the set of (labeled) planar 3-regular 3-connected graphs
on n vertices. Graphs in Pn are exactly graphs of simple 3-dimensional polytopes. Since
testing each property can be done in poly(n) time, the decision problem is naturally inNEXP,
and the counting problem is in #EXP. In fact, the decision problem is trivially in P, since
such graphs exist for all even n � 4 and don’t exist for odd n. Furthermore, Tutte’s for-
mula for the number of rooted plane triangulations gives a simple product formula for an,
and thus can be computed in poly(n) time, see Tutte [1998, Ch. 10].

On the one hand, counting the number of non-Hamiltonian graphs in Pn is not naturally
in #EXP, since testing non-Hamiltonicity is co-NP-complete in this case Garey, Johnson,
and Tarjan [1976]. On the other hand, the corresponding decision problem (the existence
of such graphs) is again in P by Tutte’s disproof of Tait’s conjecture, see Tutte [1998,
Ch. 2].

Note that Gඋൺඉඁ Iඌඈආඈඋඉඁංඌආ is in P for trees, planar graphs and graphs of bounded de-
gree, see e.g. Babai [1995, �6.2]. The discussion above suggests the following counterpart
of Wilf’s Conjecture 1.1.

Conjecture 1.3. Let an be the number of unlabeled plane triangulations with n vertices,
bn the number of 3-connected planar graphs with n vertices, and tn the number of unla-
beled trees with n vertices. Then fang, fbng and ftng can be computed in poly(n) time.

We are very optimistic about this conjecture. For triangulations and trees, there is
some recent evidence in Kang and Sprüssel [2018] and the theory of species Bergeron,
Labelle, and Leroux [1998], respectively. See also Noy, Requilé, and Rué [2018] for
further positive results on enumeration of (labeled) planar graphs.

Denote by an the number of 3-regular labeled graphs on 2n vertices. The sequence fang

can be computed in polynomial time via the following recurrence relation, see Sloane [n.d.,
A002829].
(1-15)

3(3n � 7)(3n � 4) � an = 9(n � 1)(2n � 1)(3n � 7)(3n2
� 4n + 2) � an�1

+ (n � 1)(2n � 3)(2n � 1)(108n3
� 441n2 + 501n � 104) � an�2

+ 2(n � 2)(n � 1)(2n � 5)(2n � 3)(2n � 1)(3n � 1)(9n2
� 42n + 43) � an�3

� 2(n � 3)(n � 2)(n � 1)(2n � 7)(2n � 5)(2n � 3)(2n � 1)(3n � 4)(3n � 1) � an�4

Conjecture 1.4. Fix k � 1 and let an be the number of unlabeled k-regular graphs with
n vertices. Then fang can be computed in poly(n) time.

For k = 1; 2 the problem is elementary, but for k = 3 is related to enumeration of
certain 2-groups (cf. Luks [1982]).

https://oeis.org/A002829
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Consider now the problem of computing the number f (m; n) of triangulations of an
integer [m�n] grid (see Figure 1). This problem is a distant relative of Catalan numbersCn

in (1-10) which Euler proved counts the number of triangulations of a convex (n+2)-gon,
see R. P. Stanley [2015], and is one of the large family of triangulation problems, see De
Loera, Rambau, and Santos [2010]. Kaibel and Ziegler prove in Kaibel and Ziegler [2003]
that f (m; n) can be computed in poly(n) time for every fixed m, but report that their
algorithm is expensive even for relatively small m and n (see Sloane [n.d., A082640]).

Question 1.5. Can ff (n; n)g can be computed in poly(n) time?

Figure 1: Grid triangulation of [5 � 5] and a domino tiling.

1.4 Computability setting and polyomino tilings. Let an be the number of domino
tilings on a [2n � 2n] square. Kasteleyn and Temperley–Fisher classical determinant for-
mula (1961) for the number of perfect matchings of planar graphs gives a poly(n) time
algorithm for computing fang, see e.g. Kenyon [2004] and Lovász and Plummer [1986].
This foundational result opens the door to potential generalizations, but, unfortunately,
most of them turn out to be computationally hard.

First, one can ask about computing the number bn of 3-dimensional domino tilings of a
[2n � 2n � 2n] box. Or how about the seemingly simpler problem of counting he number
cn of 3-dimensional domino tilings of a “slim” [2 � n � n] box? We don’t know how to
solve either problem, but both are likely to be difficult. The negative results include #P-
completeness of the counting problem for general and slim regions Pak and Yang [2013]
and Valiant [1979], and topological obstacles, see Freire, Klivans, Milet, and Saldanha
[2017] and Pak and Yang [2013, Prop. 8.1].

Consider now a fixed finite set T = f�1; : : : ; �kg of general polyomino tiles on a square
grid: �i � Z2, 1 � i � k. To tile a region Γ � Z2, one must cover it with copies of
the tiles without overlap. These copies must be parallel translations of �i (rotations and
reflections are not allowed). There existNP-complete tileability problems even for a fixed
set of few small tiles. We refer to Pak [2003] for short survey of the area.

https://oeis.org/A082640
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For a fixed T, denote by g(m; n) the number of tilings of [m � n] with T. Is g(m; n)

computable in polynomial time? The following conjecture suggests otherwise.

Conjecture 1.6. There exists a finite set of tiles T such that counting the number of tilings
of [n � n] with T is #EXP-complete.

In fact, until we started writing this survey, we always believed this result to be known,
only to realize that standard references such as van Emde Boas [1997] fall a bit short.
Roughly, one needs to embed a #EXP-complete language into a counting tilings problem of
a rectangle. This may seem like a classical idea (see e.g. Moore andMertens [2011, �5.3.4,
�7.6.5]), which worked well for many related problems. For example, the Rൾർඍൺඇඎඅൺඋ
Tංඅൾൺൻංඅංඍඒ asks: given a finite set of tiles T, does there exists integers m and n, such that
T tiles [m � n].

Theorem 1.7 (Yang [2014]). The Rਅਃਔਁਇਕਁ Tਉਅਁਂਉਉਔਙ problem is undecidable.

In the proof, Yang embeds the Hൺඅඍංඇ Pඋඈൻඅൾආ into Rൾർඍൺඇඎඅൺඋ Tංඅൾൺൻංඅංඍඒ. So
can one embed aNEXP-complete problem into tileability of [m�n] rectangle? The answer
is yes if T is allowed to be part of the input. In fact, even Levin’s original 1973 paper
introducing NP-completeness proposed this approach L. A. Levin [1973]. The following
result should come as a surprise, perhaps.

Theorem 1.8 (Lam [2008]). Given T, the tileability of [m�n] can be decided inO(logm+

logn) time.

The proof is nonconstructive; it is based on Hilbert’s Basis Theorem and the algebraic
approach by F. W. Barnes. A combination of Theorem 1.7 and Theorem 1.8 implies that
the constant implied by the O(�) notation is not computable as a function of T. Roughly,
we do know that a linear time algorithm exists, but given T it is undecidable to find it.
Theorem 1.8 also explains why Conjecture 1.6 remains open – most counting results in
the area use parsimonious reductions (think bijections between solutions of two problems),
and in this case a different approach is required.

2 Classes of combinatorial sequences

2.1 Algebraic and D-algebraic approach. Combinatorial sequences fang are tradi-
tionally classified depending on the algebraic properties of their GFs

A(t) =

1X
n=0

an tn:
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We list here only four major classes:

Rational: A(t) = P (t)/Q(t), for some P; Q 2 Z[t ],
Algebraic: c0Ak + c1Ak�1 + : : : + ck = 0, for some k 2 N, ci 2 Z[t ],
D-finite: c0A + c1A0 + : : : + ckA(k) = b, for some k 2 N, b; ci 2 Z[t ],
D-algebraic: Q

�
t; A; A; : : : ; A(k)

�
= 0, for some k 2 N, Q 2 Z[t; x0; x1; : : : ; xk ].

Note that rational GFs are exactly those fang which satisfy linear recurrence:

c0an = c1an�1 + : : : + ck an�k ; for some k 2 N; ci 2 Z:

Such sequences fang are calledC-recursive. For example, Fibonacci numbers satisfy (1-1)
and have GF (1 � t � t2)�1. Similarly, Catalan numbers have algebraic GF by (1-6).
D-finite GFs (also called holonomic) are exactly those fang which satisfy polynomial re-
currence

c0(n)an = c1(n)an�1 + : : : + ck(n)an�k ; for some k 2 N; ci 2 Z[n] :

Such sequences fang are called P-recursive. Examples include fn!g, derangement num-
bers fDng by (1-9), the number of 3-regular graphs by (1-15), and the numbers frng of
involutions in Sn, which satisfy rn = rn�1 + (n � 1)rn�2, see Sloane [n.d., A000085].
Finally, D-algebraic GFs (also called ADE and hyperalgebraic) include Euler numbers
by the equation (1-7).

Theorem 2.1 (see e.g. R. P. Stanley [1999], Ch. 6).

Rational � Algebraic � D-finite � D-algebraic.

Here only the inclusion Algebraic � D-finite is nontrivial. The following observation
explains the connection to the subject.

Proposition 2.2. Sequences with D-algebraic GFs have Wilfian formulas of type (W1).

In other words, if one wants to show that a sequence does not have a Wilfian formula,
then proving that it is D-transcendental, i.e. non-D-algebraic, is a good start.3 Unfortu-
nately, even proving that a sequence is non-P-recursive is often challenging (see below).

Example 2.3 (Bell numbers). Let Bn denotes the number of set partitions of f1; : : : ; ng,
see R. P. Stanley [ibid.] and Sloane [n.d., A000110]. Let

y(t) =

1X
n=0

Bn tn

n!
; z(t) =

1X
n=0

Bn tn

3To simplify exposition and for the lack of better terminology, here and in the future we refer to sequences
by the properties of their GFs.

https://oeis.org/A000085
https://oeis.org/A000110


3180 IGOR PAK

be the exponential and ordinary GFs of Bell numbers, respectively. On the one hand, we
have:

y(t) = eet �1; y00 y � (y0)2 � y0 y = 0 :

Thus, y(t) is D-algebraic, and the proposition implies that fBng can be computed in
poly(n) time. On the other hand, z(t) is D-transcendental by Klazar’s theorem Klazar
[2003].

This also implies that y(t) is not D-finite. Indeed, observe by definition, that if a
sequence fang is P-recursive, then so is fn!ang, which implies the result by taking an =

Bn/n! (cf. Lipshitz and Rubel [1986]). Of course, there is a more direct way to prove that
y(t) is not D-finite by repeated differentiation or via the asymptotics, see below. This
suggests the following advanced generalization of Klazar’s theorem.

Open Problem 2.4 (P.–Yeliussizov). Suppose fan/n!g is D-algebraic but not P-recursive.
Does this imply that fang is D-transcendental?

Before we proceed to more combinatorial examples, let us mention that D-transcen-
dental GFs are the subject of Differential Galois Theory, which goes back to Liouville,
Lie, Picard and Vessiot in the 19th century (see e.g. Ritt [1950]), and continues to be devel-
oped van der Put and Singer [1997]. Some natural GFs are known to be D-transcendental,
e.g. Γ(z), �(z), etc., but there are too few methods to prove this in most cases of inter-
est. Here are some of our favorite open problems along these lines, unapproachable with
existing tools.

Conjecture 2.5.
P

n�1 pn tn and
P

n�1 �(n)tn are D-transcendental.

Here pn is n-th prime, �(n) is the number of primes � n, as above. Both GFs are
known to be non-D-finite, as shown by Flajolet, Gerhold, and Salvy [2004/06] by asymp-
totic arguments. The authors quip: “Almost anything is non-holonomic unless it is holo-
nomic by design”. Well, maybe so. But the same applies for D-transcendence where the
gap between what we believe and what we can prove is much wider. The reader should
think of such open problems as irrationality of e + � and �(5), and imagine a similar
phenomenon in this case.

Conjecture 2.6.
X
n�0

tn3

is D-transcendental.

This problem should be compared with Jacobi’s 1848 theorem that
P

n�0 tn2 is D-
algebraic. To understand the difference, the conjecture is saying that there are no good
formulas governing the number of ways to write n as a sum of k cubes, for any k, the kind
of formulas that exist for sums of two, four and six squares, see Hardy and Wright [2008,
�XX].
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2.2 Asymptotic tools. The following result is the best tool we have for proving that
a combinatorial sequence is not P-recursive. Note that deriving such asymptotics can be
very difficult; we refer to Flajolet and Sedgewick [2009] and Pemantle and M. C. Wilson
[2013] for recent comprehensive monographs on the subject.

Theorem 2.7. Let fang be a P-recursive sequence, s.t. an 2 Q, C n
1 < an < C n

2 for some
C2 > C1 > 0 and all n � 1. Then:

an ∼
mX

i=1

Ki �n
i n˛i (logn)ˇi ;

where Ki 2 R+, �i 2 Q, ˛i 2 Q, and ˇi 2 N.

The theorem is a combination of several known results Garrabrant and Pak [2017].
Briefly, the generating series A(t) is a G-function in a sense of Siegel (1929), which
by the works of André, Bombieri, Chudnovsky, Dwork and Katz, must satisfy an ODE
which has only regular singular points and rational exponents. We then apply the Birkhoff–
Trjitzinsky claim/theorem, which in the regular case has a complete and self-contained
proof in Flajolet and Sedgewick [2009] (see Theorem VII.10 and subsequent comments).

Example 2.8 (Euler numbers En). Recall that

En ∼
4

�

�
2

�

�n

n!

(see e.g. Flajolet and Sedgewick [ibid., p. 7]). Then fEng is not P-recursive, since other-
wise En/n! ∼ K �N with a transcendental exponent � = (2/�) … Q.

Example 2.9 (n-th prime pn). Following Flajolet, Gerhold, and Salvy [2004/06], recall
that pn = n logn + n log logn + O(n). Observe that the harmonic number hn is P-
recursive by definition:

hn = hn�1 +
1

n
= 1 +

1

2
+ : : : +

1

n
= logn + O(1) :

Then fpng is not P-recursive, since otherwise so is

pn � nhn = n log logn + O(n);

which is impossible by Theorem 2.7.
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2.3 Lattice walks. Let Γ = (V; E) be a graph and let v0; v1 2 V be two fixed vertices.
Let an be the number of walks v0 ! v1 in Γ of length n. This is a good model which
leads to many interesting sequences. For example, Fibonacci number Fn is the number of
walks 1 ! 1 of length n in the graph on f1; 2g, with edges (1; 1), (1; 2) and (2; 1).

For general finite graphs we get C-recursive sequences fang with rational GFs. For
the usual walks 0 ! 0 on N we get Catalan numbers a2n = Cn as in (1-10), while
for ˙1 walks in Z we get a2n =

�
2n
n

�
, both algebraic sequences. Similarly, for (0; ˙1),

(˙1; 0)walks in Z2, we get a2n =
�
2n
n

�2, which is P-recursive but not algebraic. In higher
dimensions or for more complicated graphs, there is no such neat formula.

Theorem 2.10. Let S � Zd be a fixed finite set of steps, and let an be the number of
walks O ! O in Zd of length n, with steps in S . Then fang is P-recursive.

This result is classical and follows easily from R. P. Stanley [1999, �6.3]. It suggests
that to obtain more interesting sequences one needs to look elsewhere. Notably, one can
consider natural lattice walks on some portion of Zd . There is a tremendous number of
results in the literature, remarkable both in scope and beauty.

In recent years, M. Bousquet-Mélou and her coauthors initiated a broad study of the
subject, and now have classified all walks in the first quadrant which start and end at the
origin O , and have a fixed set S of steps with both coordinates in f0; ˙1g. There are in
principle 28�1 = 255 suchwalks, but some of them are trivial and some are the same up to
symmetries. After the classification was completed, some resulting sequences are proved
algebraic (say, Kreweras walks and Gessel walks), very surprisingly so, some are D-finite
(not a surprise given Theorem 2.10), some are D-algebraic (this required development of
new tools), and some are D-transcendental (it is amazing that this can be done at all).

Example 2.11 (Case 16). Let S =
˚
(1; 1); (�1; �1); (�1; 0); (0; �1)

	
, and let an be the

number of walks O ! O in the first quadrant of length n, with steps in S , see Sloane
[n.d., A151353]. It was shown in Bostan, Raschel, and Salvy [2014, Case 16] that

an ∼ K �n n˛ ;

where � � 3:799605 is a root of x4 + x3 � 8x2 � 36x � 11 = 0, and ˛ � �2:318862

satisfies c = � cos(�/˛), and c is a root of

y4
�

9

2
y3 +

27

4
y2

�
35

8
y +

17

16
= 0

Since ˛ … Q, Theorem 2.7 implies that fang is not P-recursive.

We refer to Bousquet-Mélou [2006] and Bousquet-Mélou andMishna [2010] for a com-
prehensive overview of the background and early stages of this far reaching project, and

https://oeis.org/A151353
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to Bernardi, Bousquet-Mélou, and Raschel [2017] and Bostan, Bousquet-Mélou, Kauers,
and Melczer [2016] for some recent developments which are gateways to references. Fi-
nally, let us mention a remarkable recent development Dreyfus, Hardouin, Roques, and
Singer [2017], which proves D-transcendence for many families of lattice walks. Let us
single out just one of the many results in that paper:

Theorem 2.12 (Dreyfus, Hardouin, Roques, and Singer [ibid.], Thm. 5.8). Sequence fang

defined in Example 2.11 is D-transcendental.

In conclusion, let us mention that fang can be computed in polynomial time straight
from definition using dynamic programming, since the number of points reachable after n

steps is poly(n). This leads us to consider walks with constraints or graphs of superpoly-
nomial growth.

Conjecture 2.13. Let an denotes the number of self-avoiding walks O ! O in Z2 of
length n. Then sequence fang has no Wilfian formula of type (W1).

We refer to Guttmann [2009] for an extensive investigation of self-avoiding walks and
its relatives, and the review of the literature.

2.4 Walks on Cayley graphs. Let G = hSi be a finitely generated group G with a
generating set S . Let an = an(G; S) be the number of words in S of length n equal to 1;
equivalently, the number of walks 1 ! 1 of length n, in the Cayley graph Γ = Γ(G; S). In
this case fang is called the cogrowth sequence and its GF A(t) the cogrowth series. They
were introduced by Pólya in 1921 in probabilistic context of random walks on graphs, and
by Kesten in the context of amenability Kesten [1959].

The cogrowth sequence fang is C-recursive if only ifG is finite Kouksov [1998]. It is al-
gebraic for the dihedral group Humphries [1997], for the free group Haiman [1993] and for
free products of finite groups Kuksov [1999], all with standard generators. The cogrowth
sequence is P-recursive for many abelian groups Humphries [1997], and for the Baumslag-
Solitar groupsG = BS(k; k) in the standard presentation BS(k; `) = hx; y j xky = yx`i,
see Elder, Rechnitzer, Janse van Rensburg, and Wong [2014].

Theorem 2.14 (Garrabrant and Pak [2017]). Sequence
˚
an(G; S)

	
is not P-recursive for

all symmetric S = S�1, and the following classes of groups G:
(1) virtually solvable groups of exponential growth with finite Prüfer rank,
(2) amenable linear groups of superpolynomial growth,
(3) groups of weakly exponential growth

Aen˛

< G;S (n) < B enˇ

;
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where A; B > 0, and 0 < ˛; ˇ < 1,
(4) the Baumslag–Solitar groups BS(k; 1), k � 2,
(5) the lamplighter groups L(d; H ) = H o Zd , where H is a finite abelian group and
d � 1.

Since G ' Z Ë Z2 with a free action of Z, is linear of exponential growth, by (2) we
obtain a solution to the question originally asked by Kontsevich, see R. Stanley [2014].

Corollary 2.15 (Garrabrant and Pak [2017]). There is a linear group G and a symmetric
generating set S , s.t. the sequence

˚
an(G; S)

	
is not P-recursive.

The proof of Theorem 2.14 is a combination of many results by different authors. For
example, for G = BS(k; 1), k � 2, and every symmetric hSi = G, there exist C1; C2 > 0

which depend on S , s.t.

(2-1) jS j
n e�C1

3
p

n
� an(G; S) � jS j

n e�C2
3
p

n ;

see Woess [2000, �15.C]. The result now follows from Theorem 2.7.
It may seem from Theorem 2.14 that the properties of fan(G; S)g depend only on G,

but that is false. In fact, for G = Fk � F` there are generating sets with both P-recursive
and non-P-recursive sequences Garrabrant and Pak [2017]. For groups in the theorem,
this is really a byproduct of probabilistic tools used in establishing the asymptotics such
as (2-1). In fact, the probabilities of return of the random walk an(G; S)/jS jn always
have the same growth under quasi-isometry, see e.g. Woess [2000].4

In a forthcoming paper Garrabrant and Pak [n.d.] we construct an explicit but highly
artificial non-symmetric set S � Fk � F` with D-transcendental cogrowth sequence.
In Kassabov and Pak [n.d.] we use the tools in Kassabov and Pak [2013] to prove that
groups have an uncountable set of spectral radii

�(G; S) := lim
n!1

an(G; S)1/n :

Since the set of D-algebraic sequence is countable, this implies the existence ofD-transcendental
Cayley graphs with symmetric S , but such proof is nonconstructive.

Open Problem 2.16. Find an explicit construction of Γ(G; S) when S is symmetric, and
fan(G; S)g is D-transcendental.

Sequences fang have been computed in very few special cases. For example, for
PSL(2; Z) = Z2 � Z3 with the natural symmetric generating set, the cogrowth series

4While the leading term in the asymptotics remains the same, lower order terms can change for different S ,
see Woess [2000, �17.B].
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A(t) is computed in Kuksov [1999]:

A(t) =
(1 + t)

�
�t + t2 � 8t3 + 3t4 � 9t5 + (2 � t + 6t2)

p
R(t)

�
2(1 � 3t)(1 + 3t2)(1 + 3t + 3t2)(1 � t + 3t2)

;

where R(t) = 1 � 2t + t2 � 6t3 � 8t4 � 18t5 + 9t6 � 54t7 + 81t8:

There are more questions than answers here. For example, can cogrowth sequence be
computed for nilpotent groups?

Before we conclude, let us note that everywhere above we are implicitly assuming
that G either has a faithful rational representation, e.g. G = BS(k; 1) as in (4) above, or
more generally has the word problem solvable in polynomial time (cf. Lipton and Zalc-
stein [1977]). The examples include the Grigorchuk group G, which is an example of 3,
see Grigorchuk and Pak [2008] and the lamplighter groups L(d; H ) as in (5). Note that
in general the word problem can be superpolynomial or even unsolvable, see e.g. C. F.
Miller I. [1992], in which case fang is no longer a combinatorial sequence.

2.5 Partitions. Let p(n) be the number of integer partitions of n, as in (1-13). We have
the Hardy–Ramanujan formula:

(2-2) p(n) ∼
1

4n
p
3

e�
p

2n
3 as n ! 1:

(see e.g. Flajolet and Sedgewick [2009, p. VIII.6]). Theorem 2.7 implies that fp(n)g is
not P-recursive. On the other hand, it is known that

F (t) :=

1X
n=0

p(n)tn =

1Y
i=1

1

1 � t i

satisfies the following ADE:

4F 3F 00 + 5t F 3F 000 + t2F 3F (4)
� 16F 2 (F 0)2 � 15t F 2F 0 F 00

� 39t2F 2 (F 00)2 + 10t F (F 0)3 + 12t2F (F 0)2F 00 + 6t2 (F 0)4 = 0

(cf. Zagier [2008]). A quantitative version of Proposition 2.2 then implies that fp(n)g

can be computed in time O�(n4:5), where O� indicates logn terms. For comparison, the
dynamic programming takes O(n2:5) time, where O(

p
n) comes as the cost of addition.

Similarly, Euler’s recurrence famously used by MacMahon (1915) to compute p(200),
gives an O(n2) algorithm:

p(n) = p(n � 1) + p(n � 2) � p(n � 5) � p(n � 7) + p(n � 12) + p(n � 15) � : : :
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(cf. Calkin, Davis, James, Perez, and Swannack [2007]). There is also an efficient imple-
mentation Johansson [2012] based on the Hardy–Ramanujan–Rademacher sharp asymp-
totic formula which extends (2-2) to o(1) additive error. It would be interesting to analyze
this algorithm perhaps using Lehmer’s estimates used in DeSalvo and Pak [2015].

Now, for a subset A � f1; 2; : : :g, denote by pA(n) the number of partitions of n into
parts in A. The dynamic programming algorithm is easy to generalize to every fpA(n)g

where the membership a 2?A can be decided in poly(log a) time, giving a Wilfian for-
mula of type (W1). This is polynomially optimal for partitions into primes Sloane [n.d.,
A000607] or squares Sloane [ibid., A001156], but not for sparse sequences.

Proposition 2.17. Let A = fa1; a2; : : :g, such that ak � ck , for some c > 1 and all
k � 1. Then pA(n) = nO(logn).

Thus,pA(n) as in the proposition could in principle have aWilfian formula of type (W3).
Notable examples include the number q(n) of binary partitions (partitions of n into pow-
ers of 2), see Sloane [ibid., A000123], partitions into Fibonacci numbers Sloane [ibid.,
A003107], and s-partitions defined as partitions into f1; 3; 7; : : : ; 2k �1; : : :g Sloane [ibid.,
A000929].

Theorem 2.18 (Pak and Yeliussizov [n.d.]). Let A = fa1; a2; : : :g, and suppose ak/ak�1

is an integer � 2, for all k > 1. Then fpA(n)g can be computed in time poly(logn).

This covers binary partitions, partitions into factorials Sloane [n.d., A064986], etc. We
conjecture that partitions into Fibonacci numbers and s-partitions also have Wilfian for-
mulas of type (W3). Cf. N. Robbins [1996] for an algorithm for partitions into distinct
Fibonacci numbers. Other partitions functions such as partitions into Catalan numbers
Sloane [n.d., A033552] and partitions into partition numbers Sloane [ibid., A007279],
could prove less tractable. We should mention that connection between algebraic proper-
ties of GFs and complexity goes only one way:

Theorem 2.19. The sequence fq(n)g of the number of binary partitions is D-transcen-
dental.

This follows from the Mahler equation

Q(t) � t Q(t) � Q(t2) = 0 ; where Q(t) =

1X
n=0

q(n)tn;

see Dreyfus, Hardouin, and Roques [2015]. We conjecture that fang and fbng from Con-
jecture 1.3 satisfy similar functional equations, and are also D-transcendental.

https://oeis.org/A000607
https://oeis.org/A001156
https://oeis.org/A000123
https://oeis.org/A003107
https://oeis.org/A000929
https://oeis.org/A064986
https://oeis.org/A033552
https://oeis.org/A007279
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2.6 Pattern avoidance. Let � 2 Sn and ! 2 Sk . Permutation � is said to contain the
pattern ! if there is a subset X � f1; : : : ; ng, jX j = k, such that � jX has the same relative
order as !. Otherwise, � is said to avoid !.

Fix a set of patterns F � Sk . Denote by An(F ) the number of permutations � 2

Sn avoiding all patterns ! 2 F . The sequence fAn(F )g is the fundamental object of
study in the area of pattern avoidance, extensively analyzed from analytic, asymptotic
and combinatorial points of view.

The subject was initiated by MacMahon (1915) and Knuth (1973), who showed that
An(123) = An(213) = Cn, the n-th Catalan number (1-10). The Erdős–Szekeres theorem
(1935) on longest increasing and decreasing subsequences in a permutation can also be
phrased in this language: An(12 � � � k; ` � � � 21) = 0, for all n > (k � 1)(` � 1).

To give a flavor of subsequent developments, let us mention a few more of our most
favorite results. Simion–Schmidt (1985) proved An(123; 132; 213) = Fn+1, the Fi-
bonacci numbers. Similarly, Shapiro–Stephens (1991) proved An(2413; 3142) = S(n),
the Schröder numers Sloane [n.d., A006318]. The celebratedMarcus–Tardos theoremMar-
cus and Tardos [2004] states that fAn(!)g is at most exponential, for all ! 2 Sk , with a
large base of exponent for random ! 2 Sk Fox [2013]. We refer to Kitaev [2011], Klazar
[2010], and Vatter [2015] for many results on the subject, history and background.

TheNoonan–Zeilberger conjectureNoonan and Zeilberger [1996], first posed as a ques-
tion by Gessel [1990], stated that the sequence fAn(F )g is P-recursive for all F � Sk . It
was recently disproved:

Theorem 2.20 (Garrabrant and Pak [2015]). There is F � S80, jF j < 30; 000, such that
fAn(F )g is not P-recursive.

We extend this result in a forthcoming paper Garrabrant and Pak [n.d.], where we con-
struct a D-transcendent pattern avoiding sequence fAn(F )g, for some F � S80. Both
proofs involve embedding of Turing Machines into the problem modulo 2. We also prove
the following result on complexity of counting pattern avoiding permutations, our only
result forbidding Wilfian formulas:

Theorem 2.21 (Garrabrant and Pak [2015]). If EXP ¤ ˚EXP, then An(F )mod 2 cannot
be computed in poly(n) time.

In other words, counting parity of pattern avoiding permutations is likely hard. We
conjecture that An(F ) is #EXP-complete, but we are not very close to proving this.

Theorem 2.22 (Garrabrant and Pak [ibid.]). The problem whether An(F ) = An(F 0)

mod 2 for all n, is undecidable.

https://oeis.org/A006318
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The theorem implies that in some cases even a large amount of computational evidence
in pattern avoidance is misleading. For example, there exists two sets of patterns F ; F 0 2

Sk , so that the first time they have different parity is for n > tower of 2s of length 2k .
Finally, let us mention an ongoing effort to find a small set of patterns F , so that

fAn(F )g is not P-recursive. Is one permutation enough? It is known that fAn(1342)g

is algebraic Bóna [1997], while fAn(1234)g is P-recursive Gessel [1990]. One of the
most challenging problems is to analyze fAn(1324)g, the only 4-pattern remaining. The
asymptotics obtained experimentally in Conway, Guttmann, and Zinn-Justin [2018] based
on the values for n � 50, suggests:

An(1324) ∼ B �n �
p

n n˛;

where � = 11:600˙ 0:003, � = 0:0400˙ 0:0005, ˛ = �1:1˙ 0:1. If true, Theorem 2.7
would imply that fAn(1324)g is not P-recursive. While this remains out of reach, the
following problem could be easier.

Open Problem 2.23. Can fAn(1324)g be computed in poly(n) time?5 More generally,
can one find a single permutation � such that fAn(�)g cannot be computed in poly(n)
time? Is the computation of fAn(�)g easier or harder for random permutations � 2 Sk?

3 Bijections

3.1 Counting and sampling via bijections. There is an ocean of bijections between
various combinatorial objects. They have a variety of uses: to establish a theorem, to
obtain refined counting, to simplify the proof, to make the proof amenable for generaliza-
tions, etc. Last but not least, some especially beautiful bijections are often viewed as a
piece of art, an achievement in its own right, a result to be taught and admired.

From the point of view of this survey, bijections ' : An ! Bn are simply algorithms
which require complexity analysis. There are two standard applications of such bijections.
First, their existence allows us to reduce counting of

˚
jAnj

	
to counting of

˚
jBnj

	
. For ex-

ample, the classical Prüfer’s algorithm allows counting of spanning trees in Kn, reducing
it to Cayley’s formula (1-12).

Second and more recent application is to random sampling of combinatorial objects.
Oftentimes, one of the sets has a much simpler structure which allows (nearly) uniform
sampling. To compare the resulting algorithm with other competing approaches one then
needs a worst case and/or average case analysis of the complexity of the bijection.

5In 2005, Doron Zeilberger expressed doubts that A1000(1324) can be computed even by Hashem. This
sentiment has been roundly criticized on both mathematical and theological grounds (see Steingrı́msson [2013]).
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Of course, most bijections in the literature are so straightforward that their analysis is
elementary, think of the Prüfer’s algorithm or the classical “plane trees into binary trees”
bijection de Bruijn and Morselt [1967]. But this is also what makes them efficient. For
example, the bijections for planar maps are amazing in their elegance, and have some
important applications to statistical physics; we refer to Schaeffer [2015] for an extensive
recent survey and numerous references.

Finally, we should mention a number of perfect sampling algorithms, some of which
in the right light can also be viewed as bijections. These include most notably general
techniques such as Boltzmann samplersDuchon, Flajolet, Louchard, and Schaeffer [2004]
and coupling from the pastD. A. Levin, Peres, andWilmer [2017]. Note also two beautiful
ad hoc algorithms: Wilson’s LERW D. B.Wilson [1996] and the Aldous–Broder algorithm
for sampling uniform spanning trees in a graph (both of which are highly nontrivial already
for Kn), see e.g. D. A. Levin, Peres, and Wilmer [2017].

3.2 Partition bijections. Let q(n) denote the number of concave partitions defined by
�i � �i+1 � �i+1 � �i+2 for all i . Then fq(n)g can be computed in poly(n) time. To
see this, recall Corteel’s bijection between convex partitions and partitions into triangular
numbers Sloane [n.d., A007294]. We then have:

1X
n=1

q(n)tn =

1Y
k=2

1

1 � t(
k
2
)

;

see Canfield, Corteel, and Hitczenko [2001]. This bijection can be described as a linear
transformation which can be computed in polynomial time Corteel and Savage [2004] and
Pak [2004a]. More importantly, the bijections allow random sampling of concave parti-
tions, leading to their limit shape Canfield, Corteel, and Hitczenko [2001] and DeSalvo
and Pak [2016].

On the opposite extreme, there is a similar Hickerson’s bijection between s-partitions
and partitions with �i � 2�i+1 for all i � 1, see Canfield, Corteel, and Hitczenko [2001]
and Pak [2004a]. Thus, both sets are equally hard to count, but somehow this makes the
problem more interesting.

The Garsia and Milne [1981] celebrated involution principle combines the Schur and
Sylvester’s bijections in an iterative manner, giving a rather complicated bijective proof
of the Rogers–Ramanujan identity:

(3-1) 1 +

1X
k=1

tk2

(1 � t)(1 � t2) � � � (1 � tk)
=

1Y
i=0

1

(1 � t5i+1)(1 � t5i+4)
:

To be precise, they constructed a bijectionΨn : Pn ! Qn, where P is the set of partitions
into parts �i � �i+1 + 2, and Q is the set of partitions into parts ˙1 mod 5. In Pak

https://oeis.org/A007294
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[2006, �8.4.5] we conjecture thatΨn requires expnΩ(1) iterations in theworst case. Partial
evidence in favor of this conjecture is our analysis of O’Hara’s bijection in Konvalinka and
Pak [2009], with a expΩ( 3

p
n) worst case lower bound. On the other hand, the iterative

proof in Boulet and Pak [2006] for (3-1) requires only O(n) iterations.

3.3 Plane partitions and Young tableaux. Denote by sp(n) the number of 3-dimen-
sional (or solid) partitions. MacMahon famously proved in 1912 that

1X
n=0

sp(n)tn =

1Y
k=1

1

(1 � tk)k
;

which gives a poly(n) time algorithm for computing fsp(n)g. A variation on the celebrated
Hillman-Grassl and RSK bijections proves this result and generalizes it Pak [2006]. The
application to sampling of this bijection have been analyzed in Bodini, Fusy, and Pivoteau
[2010]. On the other hand, there is a strong evidence that the RSK-based algorithms cannot
be improved. While we are far from proving this, let us note that in Pak and Vallejo [2010]
we show linear time reductions between all major bijections in the area, so a speedup of
one of them implies a speedup of all.

A remarkable Krattenthaler’s bijection allows enumerations of solid partitions which
fit into [n � n � n] box Krattenthaler [1999]. This bijection is based on top of the NPS
algorithm, which has also been recently analyzed Neumann and Sulzgruber [2015] and
Schneider and Sulzgruber [2017]. Curiously, there are no analogous results in d � 4

dimensions, making counting such d -dimensional partitions an open problem (cf. Govin-
darajan [2013]).

3.4 Complexity of bijections. Let us now discuss the questions (20) in the introduction,
about the nature of bijections ' : Pn ! Qn from an algorithmic point of view.

If we think of ' as a map, we would want both ' and '�1 to be computable in polyno-
mial time. If that’s all we want, it is not hard to show that such ' can always be constructed
whenever there is a polynomial time algorithm to compute jPnj = jQnj. For example, the
dynamic programming plus the divide and conquer allows a construction of poly(n) time
bijection 'n : Pn ! Qn, proving Rogers–Ramanujan identity (3-1). Since such construc-
tion would require prior knowledge of jPnj = jQnj, from a combinatorial point of view
this is unsatisfactory.

Alternatively, one can think of a bijection as an algorithm which computes a given
map 'n as above in poly(n) time. This is a particularly unfriendly setting as one would
essentially need to prove new lower bounds in complexity. Worse, we proved in Kon-
valinka and Pak [2009] that in some cases O’Hara’s algorithm requires superpolynomial



COMPLEXITY PROBLEMS IN ENUMERATIVE COMBINATORICS 3191

time, while the map given by the algorithm can be computed in poly(n) time using integer
programming. Since this is the only nice bijective proof of the Andrews identities that we
know (see Pak [2006]), this suggests that either we don’t understand the nature of these
identities or have a very restrictive view on what constitutes a combinatorial bijection. Or,
perhaps, the complexity approach is simply inapplicable in this combinatorial setting.

There are other cases of unquestionably successful bijections which are inferior to other
algorithms from complexity point of view. For example, stretching the definitions a bit,
Wilson’s LERW algorithm for generating random (directed) spanning trees requires expo-
nential time on directed graphs D. B. Wilson [1996], while a straightforward algorithm
based on the matrix-tree theorem is polynomial, of course.

Finally, even when the bijection is nice and efficient, it might still have no interesting
properties, so the only application is the proof of the theorem. One example is an iterative
bijection for the Rogers–Ramanujan identity (3-1) which is implied by the proof in Boulet
and Pak [2006]. We don’t know if it respects any natural statistics which would imply a
stronger result. Thus, we left it in the form of a combinatorial proof to make the underlying
algebra clear.

3.5 Probabilistic/asymptotic approach. Suppose both sets of combinatorial objects
Pn and Qn have well-defined limit shapes � and !, as n ! 1. Such limits exists for
various families of trees Drmota [2009], graphs Lovász [2012], partitions DeSalvo and Pak
[2016], permutations Hoppen, Kohayakawa,Moreira, Ráth, andMenezes Sampaio [2013],
solid partitions Okounkov [2016], Young tableaux Romik [2015], etc.6 For a sequence
f'ng of bijections 'n : Pn ! Qn, one can ask about the limit bijection Φ : � ! !,
defined as limn!1 'n. We can then require that Φ satisfies certain additional properties,
This is the approach taken in Pak [2004b] to prove the following result:

Theorem 3.1. The Rogers–Ramanujan identity (3-1) has no geometric bijection.

Here the geometric bijections are defined as compositions of certain piecewise
GL(2; Z) maps acting on Ferrers diagrams, which are viewed as subsets of Z2. We first
prove that the limits of such bijections are asymptotically stable, i.e. act piecewise lin-
early on the limit shapes. The rest of the proof follows from existing results on the limit
shapes � and ! on both sides of (3-1), which forbid a piecewise linear map Φ : � ! !,
see DeSalvo and Pak [2016].

The next story is incomplete, yet the outlines are becoming clear. Let ASM(n) be the
number of alternating sign matrices of order n, defined as the number of n � n matrices
where every row has entries in f0; ˙1g, with row and column sums equal to 1, and all signs
alternate in each row and column. Let FSLT(n) be the number of the fully symmetric

6Here the notion of a “limit shape” is used very loosely as it means very different things in each case.
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lozenge tilings, defined as lozenge tilings of the regular 2n-hexagon with the full group
of symmetries D6. Such tilings are in easy bijection with solid partitions which fit into
[2n �2n �2n] box, have full group of symmetries S3, and are self-complementary within
the box (cf. Section 3.3). Finally, let TSPP(n) be the number of triangular shifted plane
partitions defined as plane partitions (bij )1�i�j of shifted shape (n � 1; n � 2; : : : ; 1),
and entries n � i � bij � n for 1 � i � j � n � 1.

The following identity is justly celebrated:

(3-2) ASM(n) = FSLT(n) = TSPP(n) =
1! 4! 7! � � � (3n � 2)!

n! (n + 1)! � � � (2n � 1)!

Here the second equality is known to have a bijective proof Mills, D. P. Robbins, and
Rumsey [1986]. Finding bijective proof of the third equality is a major open problem.
See Bressoud [1999] and Krattenthaler [2016] for the history of the problem and Sloane
[n.d., A005130] for further references.

Claim 3.2. The equality ASM(n) = FSLT(n) has no geometric bijection.

We now know (conjecturally) what the frozen regions in each case are: the circle for
FSLTs and a rather involved sextic equation for ASMs. The latter is an ingenuous con-
jecture in Colomo and Pronko [2010] (see also Colomo and Sportiello [2016]), while the
former is a natural conjecture about the Arctic Circle which remains when the symmetries
are introduced (cf. Panova [2015]).7 We are not sure in this case what do we mean by
a “geometric bijection”. But any natural definition should imply that the two shapes are
incompatible. It would be interesting to formalize this even before both frozen regions are
fully established.

There is another aspect of this asymptotic approach, which allows us to distinguish be-
tween different equinumerous collections of combinatorial objects with respect to some
(transitive) notions of a “good” (canonical) bijection, and thus divide them into equiva-
lence classes. This method would allow us to understand the nature of these families and
ignore superficial differences within the same class.

The prototypical example of this is a collection of over 200 objects enumerating Catalan
numbers R. P. Stanley [2015], but there are other large such collections: for Motzkin
numbers, Schröder numbers, Euler numbers (1-11), etc. A natural approach would be to
use the symmetry properties or the topology, but such examples are rare (see, however,
Armstrong, Stump, and Thomas [2013] and West [1995] for two “canonical” bijections
between Catalan objects).

7While the frozen region hasn’t been established for FSLTs, it is known that if exists it must be a circle (Greta
Panova, personal communication).

https://oeis.org/A005130
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In Miner and Pak [2014], we studied the limit averages of permutation matrices cor-
responding to An(F ). We showed that the limit surfaces corresponding to An(123) and
An(213) are quite different, even though their sizes are Catalan numbers (see also Hoff-
man, Rizzolo, and Slivken [2017] and Madras and Pehlivan [2016]). This partly explains
a well known phenomenon: there are nine(!) different bijections between these two fam-
ilies described in Kitaev [2011], each with its own special properties – there is simply
no “canonical” bijection in this case. See also Dokos and Pak [2014] for the analysis of
another interesting family of Catalan objects.
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Abstract

The nonnegative Grassmannian is a cell complex with rich geometric, algebraic,
and combinatorial structures. Its study involves interesting combinatorial objects,
such as positroids and plabic graphs. Remarkably, the same combinatorial structures
appeared in many other areas of mathematics and physics, e.g., in the study of cluster
algebras, scattering amplitudes, and solitons. We discuss new ways to think about
these structures. In particular, we identify plabic graphs and more general Grassman-
nian graphs with polyhedral subdivisions induced by 2-dimensional projections of
hypersimplices. This implies a close relationship between the positive Grassmannian
and the theory of fiber polytopes and the generalized Baues problem. This suggests
natural extensions of objects related to the positive Grassmannian.

1 Introduction

The geometry of the Grassmannian Gr(k; n) is related to combinatorics of the hypersim-
plex ∆kn. Gelfand, Goresky, MacPherson, and Serganova [1987] studied the hypersim-
plex as the moment polytope for the torus action on the complex Grassmannian. In this
paper we highlight new links between geometry of the positive Grassmannian and combi-
natorics of the hypersimplex∆kn.

Gelfand, Goresky, MacPherson, and Serganova [ibid.] studied the matroid stratifica-
tion of the Grassmannian Gr(k; n; C), whose strata are the realization spaces of matroids.
They correspond to matroid polytopes living inside ∆kn. In general, matroid strata are
not cells. In fact, according to Mnëv’s universality theorem Mnëv [1988], the matroid

MSC2010: primary 05E00; secondary 52B, 52C, 13F60, 81T.
Keywords: Total positivity, positive Grassmannian, hypersimplex, matroids, positroids, cyclic shifts,
Grassmannian graphs, plabic graphs, polyhedral subdivisions, triangulations, zonotopal tilings,
associahedron, fiber polytopes, Baues poset, generalized Baues problem, flips, cluster algebras, weakly
separated collections, scattering amplitudes, amplituhedron, membranes.
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strata can be as complicated as any algebraic variety. Thus the matroid stratification of
the Grassmannian can have arbitrarily bad behavior.

There is, however, a semialgebraic subset of the real GrassmannianGr(k; n; R), called
the nonnegative Grassmannian Gr�0(k; n), where the matroid stratification exhibits a
well behaved combinatorial and geometric structure. Its structure, which is quite rich and
nontrivial, can nevertheless be described in explicit terms. In some way, the nonnegative
Grassmannian is similar to a polytope.

The notion of a totally positive matrix, that is a matrix with all positive minors, origi-
nated in pioneeringworks of Gantmacher andKrein [1935], and Schoenberg [1930]. Since
then such matrices appeared in many areas of pure and applied mathematics. Lusztig
[1994, 1998a] and Lusztig [1998b] generalized the theory of total positivity in the gen-
eral context of Lie theory. He defined the positive part for a reductive Lie group G and a
generalized flag variety G/P . K. C. Rietsch [1998] and K. Rietsch [1999] studied its cel-
lular decomposition. Lusztig’s theory of total positivity has close links with his theory of
canonical bases Lusztig [1990, 1992] and Lusztig [1993] and Fomin-Zelevinsky’s cluster
algebras Fomin and A. Zelevinsky [2002a,b, 2003], Berenstein, Fomin, and A. Zelevinsky
[2005], and Fomin and A. Zelevinsky [2007].

Postnikov [2006] initiated a combinatorial approach to the study of the positive Grass-
mannian. The positive (resp., nonnegative) Grassmannian Gr>0(k; n)

(Gr�0(k; n)) was described as the subset of the Grassmannian Gr(k; n; R) where all
Plücker coordinates are positive (resp., nonnegative). This “elementary” definition agrees
with Lusztig’s general notion Lusztig [1998a] of the positive part ofG/P in the case when
G/P = Gr(k; n).

The positroid cells, defined as the parts of matroid strata inside the nonnegative Grass-
mannian, turned out to be indeed cells. (The term “positroid” is an abbreviation for
“positive matroid.”) The positroid cells form a CW-complex. Conjecturally, it is a reg-
ular CW-complex, and the closure of each positroid cell is homeomorphic to a closed
ball. This positroid stratification of Gr�0(k; n) is the common refinement of n cyclically
shifted Schubert decompositions Postnikov [2006]. Compare this with the result Gelfand,
Goresky, MacPherson, and Serganova [1987] that the matroid stratification of Gr(k; n) is
the common refinement of n! permuted Schubert decompositions. The cyclic shift plays a
crucial role in the study of the positive Grassmannian. Many objects associated with the
positive Grassmannian exhibit cyclic symmetry.

Positroid cells were identified in Postnikov [2006] with many combinatorial objects,
such as decorated permutation, Grassmann necklaces, etc. Moreover, an explicit birational
subtraction-free parametrization of each cell was described in terms of plabic graphs, that
is, planar bicolored graphs, which are certain graphs embedded in a disk with vertices
colored in two colors.
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Remarkably, the combinatorial structures that appeared in the study of the positive
Grassmannian also surfaced and played an important role in many different areas of math-
ematics and physics. J. Scott [2005] and J. S. Scott [2006] and Oh, Postnikov, and D. E.
Speyer [2015] linked these objects with cluster algebra structure on the Grassmannian
and with Leclerc-Zelevinsky’s quasi-commutting families of quantum minors and weakly
separated collections. Corteel and L. K.Williams [2007] applied Le-diagrams (which cor-
respond to positroids) to the study of the partially asymmetric exclusion process (PASEP).
Knutson, Lam, andD. E. Speyer [2013] proved that the cohomology classes of the positroid
varieties (the complexifications of the positroid cells) are given by the affine Stanley sym-
metric functions,which are dual to Lapointe-Lascoux-Morse k-Schur functions. They also
linked positroids with theory of juggling. Plabic graphs appeared in works of Chakravarty
and Kodama [2009], Kodama and L. K. Williams [2011], and Kodama and L. Williams
[2014] as soliton solutions of the Kadomtsev-Petviashvili (KP) equation, which describes
nonlinear waves. Last but not least, plabic graphs appeared under the name of on-shell
diagrams in the work by Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, and
Trnka [2016] on scattering amplitudes in N = 4 supersymmetric Yang-Mills (SYM) the-
ory. They play a role somewhat similar to Feynman diagrams, however, unlike Feynman
diagrams, they represent on-shell processes and do not require introduction of virtual par-
ticles.

In this paper, we review some of the main constructions and results from Postnikov
[2006], Postnikov, D. Speyer, and L. Williams [2009], and Oh, Postnikov, and D. E.
Speyer [2015] related to the positive Grassmannian. We extend these constructions in the
language of Grassmannian graphs. The parametrization of a positroid cell in Gr�0(k; n)

given by a Grassmannian graph can be thought of as a way to “glue” the positroid cell
out of “little positive Grassmannians” associated with vertices of the graph. The idea to
think about parametrizations of cells as gluings of Grassmannians came originally from
physics Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, and Trnka [2016],
where vertices of on-shell diagrams (i.e., plabic graphs) were viewed as little Grassman-
nians Gr(1; 3) and Gr(2; 3).

We link this construction of parametrizations of Gr>0(k; n) given by Grassmannian
graphs with the study of polyhedral subdivisions induced by 2-dimensional cyclic projec-
tions � : ∆kn ! Q of the hypersimplex. Reduced Grassmannian graphs parametrizing
the positive Grassmannian Gr>0(k; n) turn out to be in bijection with �-induced polyhe-
dral subdivisions. Thus gluing of Grassmannians from smaller Grassmannians is equiva-
lent to subdividing polytopes into smaller polytopes. The study of �-induced subdivisions
for projections of polytopes is the subject of Billera-Sturmfels’ theory Billera and Sturm-
fels [1992] of fiber polytopes and the generalized Baues problem (GBP) posed by Billera,
Kapranov, and Sturmfels [1994]. We also mention the result of Galashin [2016] where
plabic graphs are identified with sections of zonotopal tilings, and the construction from
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the work T. Lam [2018] with Lam on polypositroids where plabic graphs are viewed as
membranes, which are certain 2-dimensional surfaces in higher dimensional spaces.

The correspondence between parametrizations of the positive Grassmannian and poly-
hedral subdivisions leads to natural generalizations and conjectures. We discuss a possible
extension of constructions of this paper to “higher positive Grassmannians” and amplituhe-
dra of Arkani-Hamed and Trnka [2014].

I thank Federico Ardila, Nima Arkani-Hamed, Arkady Berenstein, David Bernstein,
LouBillera, JacobBourjaily, FreddyCachazo,MiriamFarber, Sergey Fomin, Pavel Galashin,
Israel Moiseevich Gelfand, Oleg Gleizer, Alexander Goncharov, Darij Grinberg, Alberto
Grünbaum, XuhuaHe, SamHopkins, David Ingerman, TamásKálmán, Mikhail Kapranov,
Askold Khovanskii, Anatol Kirillov, Allen Knutson, Gleb Koshevoy, Thomas Lam, Joel
Lewis, Gaku Liu, Ricky Liu, George Lusztig, ThomasMcConville, KarolaMészáros, Ale-
jandroMorales, Gleb Nenashev, Suho Oh, Jim Propp, Vic Reiner, Vladimir Retakh, Konni
Rietsch, Tom Roby, Yuval Roichman, Paco Santos, Jeanne Scott, Boris Shapiro, Michael
Shapiro, David Speyer, Richard Stanley, Bernd Sturmfels, Dylan Thurston, Jaroslav Trnka,
Wuttisak Trongsiriwat, Vladimir Voevodsky, Lauren Williams, Hwanchul Yoo, Andrei
Zelevinsky, and Günter Ziegler for insightful conversations. These people made a tremen-
dous contribution to the study of the positive Grassmannian and related combinatorial,
algebraic, geometric, topological, and physical structures. Many themes we discuss here
are from past and future projects with various subsets of these people.

2 Grassmannian and matroids

Fix integers 0 � k � n. Let [n] := f1; : : : ; ng and
�[n]

k

�
be the set of k-element subsets of

[n].
TheGrassmannianGr(k; n) = Gr(k; n; F) over a fieldF is the variety of k-dimensional

linear subspaces in Fn. More concretely, Gr(k; n) is the space of k � n-matrices of rank
k modulo the left action of GL(k) = GL(k; F). Let [A] = GL(k)A be the element of
Gr(k; n) represented by matrix A.

Maximal minors ∆I (A) of such matrices A, where I 2
�[n]

k

�
, form projective coordi-

nates on Gr(k; n), called the Plücker coordinates. For [A] 2 Gr(k; n), let

M(A) := fI 2

 
[n]

k

!
j ∆I (A) ¤ 0g:

The sets of the form M(A) are a special kind of matroids, called F -realizable matroids.
Matroid strata are the realization spaces of realizable matroids M �

�[n]
k

�
:

SM := f[A] 2 Gr(k; n) j M(A) = Mg:
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The matroid stratification is the disjoint decomposition

Gr(k; n) =
G

M realizable matroid

SM :

The Gale order “�” (or the coordinatewise order) is the partial order on
�[n]

k

�
given by

fi1 < � � � < ikg � fj1 < � � � < jkg; if ir � jr for r 2 [k]: Each matroid M has a unique
minimal element Imin(M) with respect to the Gale order.

For I 2
�[n]

k

�
, the Schubert cell ΩI � Gr(k; n) is given by

ΩI := f[A] 2 Gr(k; n) j I = Imin(M(A)g =
G

M: I=Imin(M)

SM:

They form the Schubert decomposition Gr(k; n) =
F

ΩI . Clearly, for a realizable ma-
troid M, we have SM � ΩI if and only if I = Imin(M).

The symmetric group Sn acts on Gr(k; n) by permutations

w([v1; : : : ; vn]) = [vw(1); : : : ; vw(n)]

of columns of [A] = [v1; : : : ; vn] 2 Gr(k; n).
It is clear that, see Gelfand, Goresky, MacPherson, and Serganova [1987], the matroid

stratification ofGr(k; n) is the common refinement of the n! permuted Schubert decompo-
sitions. In other words, each matroid stratum SM is an intersection of permuted Schubert
cells:

SM =
\

w2Sn

w(ΩIw
):

Indeed, if we know theminimal elements of a setM �
�[n]

k

�
with respect to all n! orderings

of [n], we know the set M itself.

3 Positive Grassmannian and positroids

Fix the field F = R. Let Gr(k; n) = Gr(k; n; R) be the real Grassmannian.

Definition 3.1. Postnikov [2006, Definition 3.1] The positive Grassmannian Gr>0(k; n)

(resp., nonnegative Grassmannian Gr�0(k; n)) is the semialgebraic set of elements [A] 2

Gr(k; n) represented by k � n matrices A with all positive maximal minors ∆I (A) > 0

(resp., all nonnegative maximal minors∆I (A) � 0).

This definition agrees with Lusztig’s general definition Lusztig [1998a] of the positive
part of a generalized flag variety G/P in the case when G/P = Gr(k; n).
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Definition 3.2. Postnikov [2006, Definition 3.2] A positroid cell ΠM � Gr�0(k; n) is
a nonempty intersection of a matroid stratum with the nonnegative Grassmannian:

ΠM := SM \ Gr�0(k; n):

A positroid of rank k is a collection M �
�[n]

k

�
such that ΠM is nonempty. The positroid

stratification of the nonnegativeGrassmannian is the disjoint decomposition ofGr�0(k; n)

into the positroid cells:
Gr�0(k; n) =

G
M is a positroid

ΠM:

Clearly, positroids, or positive matroids, are a special kind of matroids. The positive
Grassmannian Gr>0(k; n) itself is the top positroid cell Π([n]

k )
for the uniform matroid

M =
�[n]

k

�
.

The cyclic shift is the map c̃ : Gr(k; n) ! Gr(k; n) acting on elements [A] =

[v1; : : : ; vn] 2 Gr(k; n) by

c̃ : [v1; : : : ; vn] 7�! [v2; v3; : : : ; vn; (�1)k�1v1]:

The shift c̃ induces the action of the cyclic group Z/nZ on the Grassmannian Gr(k; n),
that preserves its positive part Gr>0(k; n). Many of the objects associated with the posi-
tive Grassmannian exhibit cyclic symmetry. This cyclic symmetry is a crucial ingredient
in the study of the positive Grassmannian.

Theorem 3.3. Postnikov [ibid., Theorem 3.7] The positroid stratification is the common
refinement of n cyclically shifted Schubert decompositions restricted to Gr�0(k; n). In
other words, each positroid cell ΠM is given by the intersection of the nonnegative parts
of n cyclically shifted Schubert cells:

ΠM =

n�1\
i=0

c̃ i (ΩIi
\ Gr�0(k; n)):

So the positroid cells require intersecting n cyclically shifted Schubert cells, which is
a smaller number than n! permuted Schubert cells needed for general matroid strata. In
fact, the positroid cells ΠM (unlike matroid strata) are indeed cells.

Theorem 3.4. Postnikov [ibid., Theorem 3.5], Postnikov, D. Speyer, and L. Williams
[2009, Theorem 5.4] The positroid cells ΠM are homeomorphic to open balls. The cell
decomposition of Gr�0(k; n) into the positroid cells ΠM is a CW-complex.

Conjecture 3.5. Postnikov [2006, Conjecture 3.6] The positroid stratification of the non-
negative Grassmannian Gr�0(k; n) is a regular CW-complex. In particular, the closure
ΠM of each positroid cell in Gr�0(k; n) is homeomorphic to a closed ball.
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This conjecture was motivated by a similar conjecture of Fomin and Zelevinsky on
double Bruhat cells Fomin and A. Zelevinsky [1999]. Up to homotopy-equivalence this
conjecture was proved by K. Rietsch and L. Williams [2010]. A major step towards this
conjecture was recently achieved by Galashin, Karp, and Lam, who proved it for the top
cell.

Theorem 3.6. Galashin, Karp, and Lam [2017, Theorem 1.1] The nonnegative Grass-
mannian Gr�0(k; n) is homeomorphic to a closed ball of dimension k(n � k).

By Theorem 3.3, positroids M and positroid cells ΠM � Gr�0(k; n) correspond to
certain sequences (I0; I1; : : : ; In�1). Let us describe this bijection explicitly.

Definition 3.7. Postnikov [2006, Definition 16.1] A Grassmann necklace J = (J1; J2;

: : : ; Jn) of type (k; n) is a sequence of elements Ji 2
�[n]

k

�
such that, for any i 2 [n], either

Ji+1 = (Ji n fig) [ fj g or Ji+1 = Ji , where the indices i are taken (mod n).

The cyclic permutation c 2 Sn is given by c : i 7! i + 1 (mod n). The action of the
symmetric group Sn on [n] induces the Sn-action on

�[n]
k

�
and on subsets of

�[n]
k

�
. Recall

that Imin(M) is the minimal element of a matroid M in the Gale order. For a matroid M,
let

J(M) := (J1; : : : ; Jn); where

Ji+1 = ci (Imin(c
�i (M))); for i = 0; : : : ; n � 1:

Theorem 3.8. Postnikov [ibid., Theorem 17.1] The map M 7! J(M) is a bijection be-
tween positroids M of rank k on the ground set [n] and Grassmann necklaces of type
(k; n).

The sequence (I0; I1; : : : ; In�1) associated with M as in Theorem 3.3 is related to the
Grassmann necklace (J1; : : : ; Jn) of M by Ii = c�i (Ji+1), for i = 0; : : : ; n � 1.

The following result shows how to reconstruct a positroid M from its Grassmann neck-
lace, cf. Theorem 3.3. For I 2

�[n]
k

�
, the Schubert matroid is MI := fJ 2

�[n]
k

�
j I � J g,

where “�” is the Gale order.

Theorem 3.9. Oh [2011, Theorem 6] For a Grassmann necklace J = (J1; : : : ; Jn), the
associated positroid M(J) = M is given by

M =

n�1\
i=0

ci (MIi
);

where Ii = c�i (Ji+1).
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Let us describe positroids in the language of convex geometry. The hypersimplex

∆kn := conv

(
eI j I 2

 
[n]

k

!)
is the convex hull of the

�
n
k

�
points eI =

P
i2I ei , for all I 2

�[n]
k

�
. Here e1; : : : ; en is

the standard basis in Rn. For a subset M �
�[n]

k

�
, let PM := convfeI j I 2 Mg be the

convex hull of vertices of∆kn associated with elements of M.
By Gelfand, Goresky, MacPherson, and Serganova [1987], M is a matroid if and only

if every edge of the polytope PM has the form [eI ; eJ ], for I; J 2
�[n]

k

�
with jI \ J j =

k � 1. Here is an analogous description of positroids, which is not hard to derive from
Theorem 3.9.

Theorem 3.10. T. Lam [2018] A nonempty subset M �
�[n]

k

�
is a positroid if and only if

1. Every edge of PM has the form [eI ; eJ ], for I; J 2
�[n]

k

�
with jI \ J j = k � 1.

2. Every facet of PM is given by xi + xi+1 + � � � + xj = aij for some cyclic interval
fi; i + 1; : : : ; j g � [n] and aij 2 Z.

Many of the results on the positive Grassmannian are based on an explicit birational
parametrization Postnikov [2006] of the positroid cells ΠM in terms of plabic graphs. In
the next section we describe a more general class of Grassmannian graphs that includes
plabic graphs.

4 Grassmannian graphs

Definition 4.1. A Grassmannian graph is a finite graph G = (V; E), with vertex set
V and edge set E, embedded into a disk (and considered up to homeomorphism) with n

boundary vertices b1; : : : ; bn 2 V of degree 1 on the boundary of the disk (in the clockwise
order), and possibly some internal vertices v in the interior of the disk equipped with
integer parameters h(v) 2 f0; 1; : : : ; deg(v)g, called helicities of vertices. Here deg(v) is
the degree of vertex v. We say that an internal vertex v is of type (h; d ) if d = deg(v)
and h = h(v).

The set of internal vertices of G is denoted by Vint = V n fb1; : : : ; bng, and the set of
internal edges, i.e., the edges which are not adjacent to the boundary vertices, is denoted
by Eint � E. The internal subgraph is Gint = (Vint; Eint).

A perfect orientation of a Grassmannian graph G is a choice of directions for all edges
e 2 E of the graphG such that, for each internal vertex v 2 Vint with helicity h(v), exactly
h(v) of the edges adjacent to v are directed towards v and the remaining deg(v) � h(v)
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of adjacent edges are directed away from v. A Grassmannian graph is called perfectly
orientable if it has a perfect orientation.

The helicity of a Grassmannian graph G with n boundary vertices is the number h(G)

given by
h(G) � n/2 =

X
v2Vint

(h(v) � deg(v)/2):

For a perfect orientation O of G, let I (O) be the set of indices i 2 [n] such that the
boundary edge adjacent to bi is directed towards the interior of G in the orientation O.

Lemma 4.2. For a perfectly orientable Grassmannian graph G and any perfect orienta-
tion O of G, we have jI (O)j = h(G). In particular, in this case, h(G) 2 f0; 1; : : : ; ng.

Remark 4.3. This lemma expresses the Helicity Conservation Law. We leave it as an
exercise for the reader.

For a perfectly orientable Grassmannian graph G of helicity h(G) = k, let

M(G) = fI (O) j O is a perfect orientation of Gg �

 
[n]

k

!
:

Here is one result that links Grassmannian graphs with positroids.

Theorem 4.4. For a perfectly orientable Grassmannian graph G with h(G) = k, the set
M(G) is a positroid of rank k. All positroids have form M(G) for some G.

Definition 4.5. A strand ˛ in a Grassmannian graph G is a directed walk along edges of
G that either starts and ends at some boundary vertices, or is a closed walk in the internal
subgraphGint, satisfying the following Rules of the Road: For each internal vertex v 2 Vint
with adjacent edges labelled a1; : : : ; ad in the clockwise order, where d = deg(v), if ˛

enters v through the edge ai , it leaves v through the edge aj , where j = i+h(v) (mod d ).

A Grassmannian graph G is reduced if

1. There are no strands which are closed loops in the internal subgraph Gint.

2. All strands in G are simple curves without self-intersections. The only exception
is that we allow strands bi ! v ! bi where v 2 Vint is a boundary leaf, that is a
vertex of degree 1 connected with bi by an edge.

3. Any two strands ˛ ¤ ˇ cannot have a bad double crossing, that is, a pair of vertices
u ¤ v such that both ˛ and ˇ pass through u and v and both are directed from u to
v. (We allow double crossings where ˛ goes from u to v and ˇ goes from v to u.)
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4. The graph G has no vertices of degree 2.

The decorated strand permutation w = wG of a reduced Grassmannian graph G is the
permutation w : [n] ! [n] with fixed points colored in colors 0 or 1 such that

1. w(i) = j if the strand that starts at the boundary vertex bi ends at the boundary
vertex bj .

2. For a boundary leaf v connected to bi , the decorated permutation w has fixed point
w(i) = i colored in color h(v) 2 f0; 1g.

A complete reduced Grassmannian graph G of type (k; n), for 0 � k � n, is a
reduced Grassmannian graph whose decorated strand permutation is given by w(i) =

i + k (mod n). In addition, for k = 0 (resp., for k = n), we require that G only has n

boundary leaves of helicity 0 (resp., of helicity 1) and no other internal vertices.

Theorem 4.6. cf. Postnikov [2006, Corollaries 14.7 and 14.10] (1) For any permutation
w : [n] ! [n] with fixed points colored in 0 or 1, there exists a reduced Grassmannian
graph G whose decorated strand permutation wG is w.

(2) Any reduced Grassmannian graph is perfectly orientable. Moreover, it has an
acyclic perfect orientation.

(3) A reduced Grassmannian graphG is complete of type (k; n) if and only if its helicity
equals h(G) = k and the number of internal faces (excluding n boundary faces) equals

f (k; n) �
X

v2Vint

f (h(v); deg(v)):

where f (k; n) = (k � 1)(n � k � 1). A reduced Grassmannian graph is complete if and
only if it is not a proper induced subgraph of a larger reduced Grassmannian graph.

Figure 1: Two complete reduced Grassmannian graphs of type (2; 5)with 2 internal
faces (left) and 1 internal face (right). The internal vertices of types (1; 3) and (1; 4)

are colored in white, the type (2; 3) vertices colored in black, and the type (2; 4)

vertex is “chessboard” colored.
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Let us now describe a partial ordering and an equivalence relation on Grassmannian
graphs.

Definition 4.7. For twoGrassmannian graphsG andG0, we say thatG refinesG0 (and that
G0 coarsens G), if G can be obtained from G0 by a sequence of the following operations:
Replace an internal vertex of type (h; d ) by a complete reduced Grassmannian graph of
type (h; d ).

The refinement order onGrassmannian graphs is the partial orderG �ref G0 ifG refines
G0. We say that G0 covers G, if G0 covers G in the refinement order.

Two Grassmannian graphs G and G0 are refinement-equivalent if they are in the same
connected component of the refinement order �ref, that is, they can be obtained from each
other by a sequence of refinements and coarsenings.

Definition 4.8. A Grassmannian graph is called a plabic graph if it is a minimal element
in the refinement order.

The following is clear.

Lemma 4.9. A Grassmannian graph is a plabic graph if and only if each internal vertex
in the graph has type (1; 3), (2; 3), (0; 1), or (1; 1).

In drawings of plabic and Grassmannian graphs, we color vertices of types (1; d ) in
white color, and vertices of types (d � 1; d ) in black color.

Let us now describe almost minimal elements in the refinement order.

Definition 4.10. A Grassmannian graph G is called almost plabic if it covers a plabic
graph (a minimal element) in the refinement order.

For example, the two graphs shown on Figure 1 are almost plabic. The following
lemma is also straightforward from the definitions.

Lemma 4.11. Each almost plabic Grassmannian graph G has exactly one internal vertex
(special vertex) of type (1; 4), (2; 4), (3; 4), (0; 2), (1; 2), or (2; 2), and all other internal
vertices of types (1; 3), (2; 3), (0; 1), or (1; 1). An almost plabic graph with a special
vertex of type of type (1; 4), (2; 4), or (3; 4) covers exactly two plabic graphs. An almost
plabic graph with a special vertex of type (0; 2), (1; 2), or (2; 2) covers exactly one plabic
graph.

Note that a reduced Grassmannian graph cannot contain any vertices of degree 2. So
each reduced almost plabic graph covers exactly two reduced plabic graphs.

Definition 4.12. Two plabic graphs are connected by a move of type (1; 4), (2; 4), or
(3; 4), if they are both covered by an almost plabic graph with a special vertex of the
corresponding type. Two plabic graphs G and G0 are move-equivalent if they can be
obtained from each other by a sequence of such moves.
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Figure 2: Three types of moves of plabic graphs: (1,4) contraction-uncontraction of
white vertices, (2,4) square move, (3,4) contraction-uncontraction of black vertices.

Let us say that vertices of types (1; 2), (0; d ), (d; d ) (except boundary leaves) are
extraneous. A reduced graph cannot have a vertex of this form.

Theorem 4.13. (1) For two reduced Grassmannian graphs G and G0, the graphs are
refinement-equivalent if and only if they have the same decorated strand permutation
wG = wG0 .

(2) cf. Postnikov [2006, Theorem 13.4] For two reduced plabic graphs G and G, the
following are equivalent:

(a) The graphs are move-equivalent.

(b) The graphs are refinement-equivalent.

(c) The graphs have the same decorated strand permutation wG = wG0 .

(3) A Grassmannian graph is reduced if and only if it has no extraneous vertices and
is not refinement-equivalent to a graph with a pair of parallel edges (two edges between
the same vertices), or a loop-edge (an edge with both ends attached to the same vertex).

(4) A plabic graph is reduced if and only if it has no extraneous vertices and is not
move-equivalent to a plabic graph with a pair of parallel edges or a loop-edge.

Remark 4.14. Plabic graphs are similar to wiring diagrams that represent decompositions
of permutations into products of adjacent transpositions. In fact, plabic graphs extend
the notions of wiring diagrams and, more generally, double wiring diagrams of Fomin-
Zelevinsky Fomin and A. Zelevinsky [1999], see Postnikov [2006, Remark 14.8, Fig-
ure 18.1]. Moves of plabic graphs are analogous to Coxeter moves of decompositions
of permutations. Reduced plabic graphs extend the notion of reduced decompositions of
permutations.

Let us now summarize the results about the relationship between positroids, Grassman-
nian and plabic graphs, decorated permutations, and Grassmann necklaces. For a deco-
rated permutation w : [n] ! [n] (a permutation with fixed points colored 0 or 1), define
J(w) := (J1; : : : ; Jn), where

Ji = fj 2 [n] j c�i+1w�1(j ) > c�i+1(j )g [ fj 2 [n] j w(j ) = j colored 1g:
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The helicity of w is defined as h(w) := jJ1j = � � � = jJnj. Conversely, for a Grassmann
necklace J = (J1; : : : ; Jn), let

w(J) := w; where w(i) =

8̂̂<̂
:̂

j if Ji+1 = (Ji n fig) [ fj g;

i (colored 0) if i 62 Ji = Ji+1;

i (colored 1) if i 2 Ji = Ji+1:

Theorem 4.15. cf. Postnikov [ibid.] The following sets are in one-to-one correspondence:

1. Positroids M of rank k on n elements.

2. Decorated permutation w of size n and helicity k.

3. Grassmann necklaces J of type (k; n).

4. Move-equivalence classes of reduced plabic graphsG with n boundary vertices and
helicity h(G) = k.

5. Refinement-equivalence classes of reduced Grassmannian graphs G0 with n bound-
ary vertices and helicity h(G0) = k.

The following maps (described above in the paper) give explicit bijection between these
sets and form a commutative diagram:

1. Reduced Grassmannian/plabic graphs to positroids: G 7! M(G).

2. Reduced Grassmannian/plabic graphs to decorated permutations: G 7! wG .

3. Positroids to Grassmann necklaces: M 7! J(M).

4. Grassmann necklaces to positroids: J 7! M(J),

5. Grassmann necklaces to decorated permutations: J 7! w(J).

6. Decorated permutations to Grassmann necklaces: w 7! J(w).

Proof of Theorems 4.4, 4.6, 4.13 and 4.15. In case of plabic graphs, most of these results
were proved in Postnikov [ibid.]. The extension of results to Grassmannian graphs follows
from a few easy observations.

Let G and G0 be a pair of Grassmannian graphs such that G refines G0. Any perfect
orientation of G induces a perfect orientation of G0. Conversely, any perfect orientation
of G0 can be extended (not uniquely, in general) to a perfect orientation of G. Thus G

is perfectly orientable if and only if G0 is perfectly orientable, and M(G) = M(G0) and
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h(G) = h(G0). Any strand of G corresponds to a strand of G0. The graph G is reduced
if and only if G0 is reduced. If they are reduced, then they have the same decorated strand
permutationwG = wG0 . Finally, any Grassmannian graph can be refined to a plabic graph.
So the results for plabic graphs imply the results for Grassmannian graphs.

5 Weakly separated collections and cluster algebras

Definition 5.1. J. Scott [2005], cf. Leclerc and A. Zelevinsky [1998] Two subsets I; J 2�[n]
k

�
are weakly separated if there is no a < b < c < d such that a; c 2 I n J and

b; d 2 J n I , or vise versa. A collection of subsets S �
�[n]

k

�
is weakly separated if it is

pairwise weakly separated.

This is a variation of Leclerc-Zelevinsky’s notion of weak separation Leclerc and A.
Zelevinsky [ibid.] given by J. Scott [2005]. It appeared in their study of quasi-commuting
quantum minors.

Definition 5.2. The face labelling of a reduced Grassmannian graph G is the labelling of
faces F of G by subsets IF � [n] given by the condition: For each strand ˛ that goes
from bi to bj , we have j 2 IF if and only if the face F lies to the left of the strand ˛

(with respect to the direction of the strand from bi to bj ).

Let us stay that two reduced plabic graphs are contraction-equivalent if they can be
transformed to each other by themoves of type (1; 4) and (3; 4) (contraction-uncontraction
moves) without using the move of type (2; 4) (square move).

Theorem 5.3. Oh, Postnikov, and D. E. Speyer [2015] (1) Face labels of a reduced Grass-
mannian graph form a weakly separated collection in

�[n]
k

�
, where k = h(G) is the helicity

of G.
(2) Every maximal by inclusion weakly separated collection in

�[n]
k

�
is the collection of

face labels of a complete reduced plabic graph of type (k; n).
(3) This gives a bijection between maximal by inclusion weakly separated collections

in
�[n]

k

�
, and contraction-equivalence classes of complete reduced plabic graphs of type

(k; n).

Remark 5.4. Weakly separated collections are related to the cluster algebra structure
Fomin and A. Zelevinsky [2002a, 2003], Berenstein, Fomin, and A. Zelevinsky [2005],
and Fomin and A. Zelevinsky [2007] on the Grassmannian studied by J. S. Scott [2006]. In
general, the cluster algebra onGr(k; n) has infinitelymany clusters. (See J. S. Scott [ibid.]
for a classification of finite cases.) There is, however, a nicely behaved finite set of clus-
ters, called the Plücker clusters, which are formed by subsets of the Plücker coordinates
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∆I . According to Oh, Postnikov, and D. E. Speyer [2015, Theorem 1.6], the Plücker clus-
ters for Gr(k; n) are exactly the sets f∆I gI2S associated with maximal weakly-separated
collections S �

�[n]
k

�
. They are in bijection with contraction-equivalence classes of type

(k; n) complete reduced plabic graphs, and are given by the k(n � k) + 1 face labels of
such graphs. Square moves of plabic graphs correspond to mutations of Plücker clusters
in the cluster algebra.

Theorem 5.3 implies an affirmative answer to the purity conjecture of Leclerc and A.
Zelevinsky [1998]. An independent solution of the purity conjecture was given byDanilov,
Karzanov, and Koshevoy [2010] in terms of generalized tilings. The relationship between
the parametrization a positroid cell given by a plabic graph G (see Section 7 below) and
the Plücker cluster f∆gI2S associated with the same graphG induces a nontrivial transfor-
mation, called the twist map, which was explicitly described by Muller and D. E. Speyer
[2017]. Weakly separated collections appeared in the study of arrangements of equal mi-
nors Farber and Postnikov [2016]. In Galashin and Postnikov [2017] the notion of weakly
separated collections was extended in the general framework of oriented matroids and
zonotopal tilings.

6 Cyclically labelled Grassmannian

Let us reformulate the definition of the Grassmannian and its positive part in a more invari-
ant form, which makes its cyclic symmetry manifest. In the next section, we will consider
“little positive Grassmannians” associated with vertices v of a Grassmannian graph G

whose ground sets correspond to the edges adjacent to v. There is no natural total order-
ing on such a set of edges, however there is the natural cyclic (clockwise) ordering.

We say that a cyclic ordering of a finite set C is a choice of closed directed cycle that
visits each element of C exactly once. A total ordering of C is compatible with a cyclic
ordering if it corresponds to a directed path on C obtained by removing an edge of the
cycle. Clearly, there are jC j such total orderings.

Definition 6.1. Let C be a finite set of indices with a cyclic ordering of its elements, and
let k be an integer between 0 and jC j. The cyclically labelled Grassmannian Gr(k; C )

overR is defined as the subvariety of the projective spaceP (jC j
k )�1 with projective Plücker

coordinates (∆I ) labelled by unordered k-element subsets I � C satisfying the Plücker
relations written with respect to any total order “<” on C compatible with the given cyclic
ordering: X

i2AnB

(�1)jfa2A; a>igj+jfb2B; b<igj ∆Anfig ∆B[fig = 0;
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where A and B are any (k + 1)-element and (k � 1)-element subsets of C , respectively.
(More precisely, Gr(k; C ) is the projective algebraic variety given by the radical of the
ideal generated by the above Plücker relations.)

The positive part Gr>0(k; C ) is the subset of Gr(k; C )where the Plücker coordinates
can be simultaneously rescaled so that∆I > 0, for all k-element subsets I � C .

Remark 6.2. The Plücker relations (written as above) are invariant with respect to cyclic
shifts of the ordering “<”. Thus the definition of the cyclically labelled Grassmannian
Gr(k; C ) is independent of a choice of the total order on C . For example, for k = 2 and
C = f1; 2; 3; 4g, Gr(2; C ) is the subvariety of P 6�1 given by the Plücker relation:

∆f1;3g ∆f2;4g = ∆f1;2g ∆f3;4g +∆f1;4g ∆f2;3g:

Observe the cyclic symmetry of this relation! The ordering of indices 2 < 3 < 4 < 1

gives exactly the same Gr(2; C ) with the same positive part Gr>0(2; C ).

Remark 6.3. There is a subtle yet important difference between the cyclically labelled
Grassmannian Gr(k; C ) with the Plücker coorinates ∆I and the usual definition of the
Grassmannian Gr(k; n), n = jC j, with the “usual Plücker coordinates” defined as the
minors D(i1;:::;ik) = det(Ai1;:::;ik ) of submatrices Ai1;:::;ik of a k � n matrix A.

The D(i1;:::;ik) are labelled by ordered collections (i1; : : : ; ik) of indices. They are anti-
symmetric with respect to permutations of the indices i1; : : : ; ik . On the other hand, the
∆fi1;:::;ikg are labelled by unordered subsets I = fi1; : : : ; ikg. So they are symmetric with
respect to permutations of the indices i1; : : : ; ik .

The “usual Plücker relations” for the D(i1;:::;ik) have the Sn-symmetry with respect to
all permutations of the ground set. On the other hand, the above Plücker relations for the
∆fi1;:::;ikg have only the Z/nZ-symmetry with respect to cyclic shifts of the ground set.

Of course, if we fix a total order of the ground set, we can rearrange the indices in
D(i1;:::;ik) in the increasing order and identifyD(i1;:::;ik), for i1 < � � � < ik , with∆fi1;:::;ikg.
This identifies the cyclically labelled Grassmannian Gr(k; C ) with the usual Grassman-
nianGr(k; n). However, this isomorphism is not canonical because it depends on a choice
of the total ordering of the index set. For even k, the isomorphism is not invariant under
cyclic shifts of the index set.

7 Perfect orientation parametrization of positroid cells

Positroid cells were parametrized in Postnikov [2006] in terms of boundary measurements
of perfect orientations of plabic graphs. Equivalent descriptions of this parametrization
were given in terms of network flows by Talaska [2008] and in terms of perfect matchings
Postnikov, D. Speyer, and L. Williams [2009] and Lam [2016]. Another interpretation of
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this parametrization was motivated by physics Arkani-Hamed, Bourjaily, Cachazo, Gon-
charov, Postnikov, and Trnka [2016], where plabic graphs were viewed as on-shell dia-
grams, whose vertices represent little Grassmannians Gr(1; 3) and Gr(2; 3) and edges
correspond to gluings, see also Lam [2016, Section 14] for a more mathematical descrip-
tion. Here we give a simple and invariant way to describe the parametrization in the
general setting of Grassmannian graphs and their perfect orientations. It easily specializes
to all the other descriptions. Yet it clarifies the idea of gluings of little Grassmannians.

LetG = (V; E) be a perfectly orientable Grassmannian graph with n boundary vertices
and helicity h(G) = k, and let Gint = (Vint; Eint) be its internal subgraph. Also let
Ebnd = E n Eint be the set of boundary edges of G.

Informally speaking, each internal vertex v 2 Vint represents the “little Grassmannian”
Gr(h; d ), where d is the degree of vertex v and h is its helicity. We “glue” these little
Grassmannians along the internal edges e 2 Eint of the graph G to form a subvariety in
the “big Grassmannian” Gr(k; n). Gluing along each edge kills one parameter. Let us
give a more rigorous description of this construction.

For an internal vertex v 2 Vint, let E(v) � E be the set of all adjacent edges to v

(possibly including some boundary edges), which is cyclically ordered in the clockwise
order (as we go around v). Define the positive vertex-Grassmannian Gr>0(v) as the
positive part of the cyclically labelled Grassmannian

Gr>0(v) := Gr>0(h(v); E(v)):

Let (∆(v)
J ) be the Plücker coordinates on Gr>0(v), where J ranges over the set

�E(v)
h(v)

�
of

all h(v)-element subsets in E(v).
Let us define several positive tori (i.e., positive parts of complex tori). The boundary

positive torus is T >0
bnd := (R>0)

Ebnd ' (R>0)
n. The internal positive torus is T >0

int :=

(R>0)
Eint , and the total positive torus T >0

tot := T >0
bnd � T >0

int . The boundary/internal/total
positive torus is the group of R>0-valued functions on boundary/internal/all edges of G.

These tori act on the positive vertex-Grassmannians Gr>0(v) by rescaling the Plücker
coordinates. For (te)e2E 2 T >0

tot ,

(te) : (∆
(v)
J ) 7�! (

 Y
e2J

te

!
∆

(v)
J ):

The boundary torusT >0
bnd also acts of the “bigGrassmannian”Gr(k; n) as usual (t1; : : : ; tn) :

∆I 7! (
Q

i2I ti )∆I , for (t1; : : : ; tn) 2 T >0
bnd .

Recall that, for a perfect orientation O of G, I (O) denotes the set of i 2 [n] such that
the boundary edge adjacent to bi is directed towards the interior of G in O. For an internal
vertex v 2 Vint, let J (v; O) � E(v) be the subset of edges adjacent to v which are directed
towards v in the orientation O.
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We are now ready to describe the perfect orientation parametrization of the positroid
cells.

Theorem 7.1. Let G be a perfectly orientable Grassmannian graph. Let �G be the map
defined on the direct product of the positive vertex-Grassmannians Gr>0(v) and written
in terms of the Plücker coordinates as

�G : �
v2Vint

Gr>0(v) �! P ([n]

k )�1

�G : �
v2Vint

(∆
(v)
J )

J 2(E(v)

h(v))
7�! (∆I )I2([n]

k )
;

where ∆I is given by the sum over all perfect orientations O of the graph G such that
I (O) = I :

∆I =
X

I (O)=I

Y
v2Vint

∆
(v)

J (v;O):

(1) The image of �G is exactly the positroid cellΠM � Gr�0(k; n) � P ([n]

k )�1, where
M = M(G) is the positroid associated with G.

(2) The map �G is T >0
int -invariant and T >0

bnd -equivariant, that is, �G(t � x) = �G(x)

for t 2 T >0
int , and �G(t 0 � x) = t 0 � �G(x) for t 0 2 T >0

bnd .
(3) The map �G induces the birational subtraction-free bijection �̄G

�̄G :

 
�

v2Vint

Gr>0(v)

!
/T >0

int �! ΠG

if and only if the Grassmannian graph G is a reduced.

Remark 7.2. The phrase “birational subtraction-free bijection” means that both �̄G and
its inverse (�̄G)�1 can be expressed in terms of the Plücker coordinates by rational (or
even polynomial) expressions written without using the “�” sign.

Proof. Part (2) is straightforward from the definitions. Let us first prove the remaining
claims in the case when G is a plabic graph. In fact, in this case this construction gives
exactly the boundary measurement parametrization ofΠG from Postnikov [2006, Section
5]. The Plücker coordinates for the boundary measurement parametrization were given
in Postnikov [ibid., Proposition 5.3] and expressed by Talaska [2008, Theorem 1.1] in
terms of network flows on the graph G. The construction of the boundary measurement
parametrization (and Talaska’s formula) depends on a choice of a reference perfect ori-
entation O0. One observes that any other perfect orientation O of the plabic graph G is
obtained from O0 by reversing the edges along a network flow, which gives a bijection
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between network flows and perfect orientations of G. This shows that the above expres-
sion for∆I is equivalent to Talaska’s formula, which proves the equivalence of the above
perfect orientation parametrization and the boundary measurement parametrization from
Postnikov [2006]. Parts (1) and (3) now follow from results of Postnikov [ibid.].

For an arbitrary Grassmannian graph G0, let G be a plabic graph that refines G0. We
already know that each “little plabic graph” Gv , i.e., the subgraph of G that refines a
vertex v of G0, parametrizes each positive vertex-Grassmannian Gr>0(v) by a birational
subtraction-free bijection �̄v := �̄Gv

. We also know the map �̄G for the plabic graph
G parametrizes the cell ΠM(G) if G reduced, or maps surjectively but not bijectively
onto ΠM(G) if G is not reduced. Then the map �̄G0 is given by the composition �̄G ı

(�v2Vint(�̄v)
�1) and the needed result follows.

The above construction can be thought of as a gluing of the “big Grassmannian” out of
“little Grassmannians.” This is similar to a tiling of a big geometric object (polytope) by
smaller pieces (smaller polytopes). As we will see, this construction literally corresponds
to certain subdivisions of polytopes.

8 Polyhedral subdivisions: Baues poset and fiber polytopes

In this section we discuss Billera-Sturmfels’ theory Billera and Sturmfels [1992] of fiber
polytopes, the generalized Baues problem Billera, Kapranov, and Sturmfels [1994], and
flip-connectivity, see also Reiner [1999], Rambau and Santos [2000], Athanasiadis, Ram-
bau, and Santos [1999], Athanasiadis [2001], andAthanasiadis and Santos [2002] for more
details.

8.1 The Baues poset of �-induced subdivisions. Let � : P ! Q be an affine projec-
tion from one convex polytope P to another convex polytope Q = �(P ).

Informally, a �-induced polyhedral subdivision is a collection of faces of the polytope
P that projects to a polyhedral subdivision of the polytope Q.

Here is a rigorous definition, see Billera and Sturmfels [1992]. Let A be the multiset
of projections �(v) of vertices v of P . Each element �(v) of A is labelled by the vertex
v. For � � A, let conv(�) denotes the convex hull of � . We say that � 0 � � is a face of
� if � 0 consists of all elements of � that belong to a face of the polytope conv(�).

A �-induced subdivision is a finite collection S of subsets � � A, called cells, such
that

1. Each � 2 S is the projection under � of the vertex set of a face of P .

2. For each � 2 S , dim(conv(�)) = dim(Q).
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3. For any �1; �2 2 S , conv(�1) \ conv(�2) = conv(�1 \ �2).

4. For any �1; �2 2 S , �1 \ �2 is either empty or a face of both �1 and �2.

5.
S

�2S conv(�) = Q.

The Baues poset !(P
�
! Q) is the poset of all �-induced subdivisions partially or-

dered by refinement, namely, S � T means that, for every cell � 2 S , there exists a cell
� 2 T such that � � � . This poset has a unique maximal element 1̂, called the trivial
subdivision, that consists of a single cell � = A. All other elements are called proper
subdivisions. Let !̂(P

�
! Q)) := !(P

�
! Q) � 1̂ be the poset of proper �-induced

subdivisions obtained by removing the maximal element 1̂. The minimal elements of the
Baues poset are called tight �-induced subdivisions.

Among all �-induced subdivisons, there is a subset of coherent subdivisions that come
from linear height functions h : P ! R as follows. For each q 2 Q, let F̄q be the face of
the fiber ��1(q)\ P where the height function h reaches its maximal value. The face F̄q

lies in the relative interior of some face Fq of P . The collection of faces fFqgq2Q projects
to a �-induced subdivision of Q. Let !coh(P

�
! Q) � !(P

�
! Q) be the subposet of

the Baues poset formed by the coherent �-induced subdivisions. This coherent part of the
Baues poset is isomorphic to the face lattice of the convex polytope Σ(P

�
! Q), called

the fiber polytope, defined as the Minkowskii integral of fibers of � (the limit Minkowskii
sums):

Σ(P
�
! Q) :=

Z
q2Q

(��1(q) \ P ) dq

In general, the whole Baues poset !(P
�
! Q) may not be polytopal.

8.2 The generalized Baues problem and flip-connectivity. For a finite poset !, the
order complex ∆! is the simplicial complex of all chains in !. The “topology of a poset
!” means the topology of the simplicial complex∆!. For example, if ! is the face poset
of a regular cell complex ∆, then ∆! is the barycentric subdivision of the cell complex
∆; and, in particular,∆! is homeomorphic to∆.

Clearly, the subposet !̂coh(P
�
! Q) of proper coherent �-induced subdivisions ho-

motopy equivalent to a (dim(P ) � dim(Q) � 1)-sphere, because it is the face lattice of a
convex polytope of dimension dim(P )�dim(Q), namely, the fiber polytopeΣ(P

�
! Q).

The generalized Baues problem (GBP) posed by Billera, Kapranov, and Sturmfels
[1994] asks whether the same is true about the poset of all proper �-induced subdivisions.
Is it true that !̂(P

�
! Q) is homotopy equivalent to a (dim(P )�dim(Q)�1)-sphere? In
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general, the GBP is a hard question. Examples of Baues posets with disconnected topol-
ogy were constructed by Rambau and Ziegler [1996] and more recently by Liu [2017].
There are, however, several general classes of projections of polytopes, where the GBP
has an affirmative answer, see the next section.

Another related question is about connectivity by flips. For a projection � : P ! Q,
the flip graph is the restriction of the Hasse diagram of the Baues poset !(P

�
! Q) to

elements of rank 0 (tight subdivisions) and rank 1 (subdivisions that cover a tight subdi-
vision). The elements of rank 1 in the flip graph are called flips. The flip-connectivity
problem asks whether the flip graph is connected. The coherent part of the flip graph is
obviously connected, because it is the 1-skeleton of the fiber polytope Σ(P

�
! Q).

The GBP and the flip-connectivity problem are related to each other, but, strictly speak-
ing, neither of them implies the other, see Reiner [1999, Section 3] for more details.

8.3 Triangulations and zonotopal tilings. There are two cases of the above general
setting that attracted a special attention in the literature.

The first case is when the polytope P is the (n � 1)-dimensional simplex ∆n�1. The
multiset A of projections of vertices of the simplex can be an arbitrary multiset of n points,
and Q = conv(A) can be an arbitrary convex polytope. In this case, the Baues poset
!(∆n�1 �

! Q) is the poset of all polyhedral subdivisions of Q (with vertices at A); tight
�-induced subdivisions are triangulations of Q; and the fiber polytope Σ(∆n�1 �

! Q)

is exactly is the secondary polytope of Gelfand-Kapranov-Zelevinsky Gelfand, Kapranov,
and A. V. Zelevinsky [1994], which appeared in the study of discriminants.

In particular, for a projection of the simplex ∆n�1 to an n-gon Q, �-induced subdi-
visions are exactly the subdivisions of the n-gon by noncrossing chords. All of them are
coherent. Tight subdivisions are triangulations of the n-gon. There are the Catalan number
Cn�2 = 1

n�1

�
2n�4
n�2

�
of triangulations of the n-gon. The fiber polytope (or the secondary

polytope) in this case is the Stasheff associahedron.
Another special case is related to projections � : P ! Q of the hypercube P =� n := [0; 1]n. The projections Q = �(� n) of the hypercube form a special class of

polytopes, called zonotopes. In this case, �-induced subdivisions are zonotopal tilings
of zonotopes Q. According to Bohne-Dress theorem Bohne [1992], zonotopal tilings of
Q are in bijection with 1-element extensions of the oriented matroid associated with the
zonotope Q.

For a projection of the n-hypercube � n to a 1-dimensional line segment, the fiber
polytope is the permutohedron. For a projection � : � n ! Q of the n-hypercube � n to
a 2n-gonQ, fine zonotopal tilings (i.e., tight�-induced subdivisions) are known as rhomus
tilins of the 2n-gon. They correspond to commutation classes of reduced redecompositions
of the longest permutation wı 2 Sn.
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9 Cyclic polytopes and cyclic zonotopes

Fix two integers n and 0 � d � n � 1.

Definition 9.1. A cyclic projection is a linear map

� : Rn
! Rd+1; � : x 7! Mx

given by a (d +1)� n matrix M = (u1; : : : ; un) (the ui are the column vectors) with all
positive maximal (d + 1) � (d + 1) minors and such that f (u1) = � � � = f (un) = 1 for
some linear form f : Rd+1 ! R. In other words, M represents a point of the positive
Grassmannian Gr>0(d + 1; n) with columns ui rescaled so that they all lie on the same
affine hyperplane H1 = fy 2 Rd+1 j f (y) = 1g.

The cyclic polytope is the image under a cyclic projection � of the standard (n � 1)-
dimensional simplex∆n�1 := conv(e1; : : : ; en)

C (n; d ) := �(∆n�1) � H1:

The cyclic zonotope is the image of the standard n-hypercube � n := [0; 1]n � Rn

Z(n; d + 1) := �(� n) � Rd+1:

Remark that, for each n and d , there are many combinatorially (but not linearly) isomor-
phic cyclic polytopes C (n; d ) and cyclic zonotopes Z(n; d + 1) that depend on a choice
of the cyclic projection � . Clearly, C (n; d ) = Z(n; d + 1) \ H1.

Ziegler [1993] identified fine zonotopal tilings of the cyclic zonotope Z(n; d +1), i.e.,
the minimal elements of the Baues poset!(� n

�
! Z(n; d +1)), with elements of Manin-

Shekhtman’s higher Bruhat orderManin and Shekhtman [1986], also studied by Voevod-
skiĭ and Kapranov [1991]. According to results of Sturmfels and Ziegler [1993], Ziegler
[1993], Rambau [1997], and Rambau and Santos [2000], the GBP and flip-connectivity
have affirmative answers in these cases.

Theorem 9.2. (1) Sturmfels and Ziegler [1993] For � : � n ! Z(n; d + 1), the poset
of proper zonotopal tilings of the cyclic zonotope Z(n; d + 1) is homotopy equivalent to
an (n � d � 2)-dimensional sphere. The set of fine zonotopal tilings of Z(n; d + 1) is
connected by flips.

(2) Rambau and Santos [2000] For � : ∆n�1 ! C (n; d ), the poset of proper subdivi-
sions of the cyclic polytope C (n; d ) is homotopy equivalent to an (n�d �2)-dimensional
sphere. Rambau [1997] The set of triangulations of the cyclic polytope C (n; d ) is con-
nected by flips.
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10 Cyclic projections of the hypersimplex

Fix three integers 0 � k � n and 0 � d � n � 1. The hypersimplex ∆kn :=

conv
n
eI j I 2

�[n]
k

�o
is the k-th section of the n-hypercube � n � Rn

∆kn = � n \ fx1 + � � � + xn = kg:

Let � : Rn ! Rd+1 be a cyclic projection as above. Define the polytope

Q(k; n; d ) := �(∆kn) = Z(n; d + 1) \ Hk ;

where Hk is the affine hyperplane Hk := fy 2 Rd+1 j f (y) = kg. Clearly, for k = 1,
the polytope Q(1; n; d ) is the cyclic polytope C (n; d ).

Let !(k; n; d ) be the Baues poset of �-induced subdivisions for a cyclic projection
� : ∆kn ! Q(k; n; d ):

!(k; n; d ) := !(∆kn

�
! Q(k; n; d )):

Let !�
coh(k; n; d ) := !coh(∆kn

�
! Q(k; n; d )) � !(k; n; d ) be its coherent part. Note

that the coherent part !�
coh(k; n; d ) depends on a choice of the cyclic projection � , but

the whole poset !(k; n; d ) is independent of any choices. The coherent part !�
coh(k; n; d )

may not be equal !(k; n; d ). For example they are not equal for (k; n; d ) = (3; 6; 2).
The poset !(k; n; d ) is a generalization of the Baues poset of subdivisions of the cyclic

polytope C (n; d ), and is related to the Baues poset of zonotopal tilings of the cyclic zono-
tope Z(n; d + 1) in an obvious manner. For k = 1, !(1; n; d ) = !(∆n�1 �

! C (n; d )).
For any k, there is the order preserving k-th section map

Sectionk : !(� n
�
! Z(n; d + 1)) ! !(k; n; d )

that send a zonotopal tiling of Z(n; d + 1) to its section by the hyperplane Hk .
Let !lift(k; n; d ) � !(k; n; d ) be the image of the map Sectionk . We call the elements

of !lift(k; n; d ) the lifting �-induced subdivisions. They form the subset of �-induced
subdivisions from !(k; n; d ) that can be lifted to a zonotopal tiling of the cyclic zonotope
Z(n; d + 1). Clearly, we have

!�
coh(k; n; d ) � !lift(k; n; d ) � !(k; n; d ):

The equality of the sets of minimal elements of!(k; n; d ) and!lift(k; n; d )was proved
in the case k = 1 by Rambau and Santos [2000], who showed that all triangulations of
the cyclic polytope C (n; d ) are lifting triangulations. For d = 2, the equality follows
from the result of Galashin [2016] (Theorem 11.7 below) about plabic graphs, as we will
explain in the next section.
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Theorem 10.1. The minimal elements of the posets !lift(k; n; d ) and !(k; n; d ) are the
same in the following cases: (1) k = 1 and any n; d ; (2) d = 2 and any k; n.

Flip-connectivity Sturmfels and Ziegler [1993] and Ziegler [1993] of zonotopal tilings
of Z(n; d + 1) easily implies the following claim.

Lemma 10.2. The minimal elements of !lift(k; n; d ) are connected by flips.

Indeed, for any pair of fine zonotopal tilings T and T 0 of Z(n; d + 1) connected by
a flip, their k-sections Sectionk(T ) and Sectionk(T

0) are either equal to each other or
connected by a flip.

The Baues posets of the form !(k; n; d ) are good candidates for a general class of pro-
jections of polytopes where the GBP and flip-connectivity problemmight have affirmative
answers.

Problem 10.3. Is the poset !(k; n; d ) � 1̂ homotopy equivalent of a sphere? Can its
minimal elements be connected by flips? Is it true that !lift(k; n; d ) = !(k; n; d )?

Example 10.4. For d = 1, the Baues poset !(k; n; 1) is already interesting. Its minimal
elements correspond to monotone paths on the hypersimplex ∆kn, which are increasing
paths that go along the edges of the hypersimplex ∆kn. Such paths are the subject of
the original (non-generalized) Baues problem Baues [1980], which was proved by Billera,
Kapranov, and Sturmfels [1994] (for any 1-dimensional projection of a polytope). More
specifically, monotone paths on ∆kn correspond to directed paths from [1; k] to [n � k +

1; n] in the directed graph on
�[n]

k

�
with edges I ! J if J = (I n fig) [ fj g for i < j .

It is not hard to see that, for k = 1; n � 1, there are 2n�2 monotone paths, and the
posets !(1; n; 1) and !(n � 1; n; 1) are isomporphic to the Boolean lattice Bn�2, i.e., the
face poset of the hypercube � n�2. For n = 2; 3; 4; 5, the Baues poset !(2; n; 1) has
1; 2; 10; 62 minimal elements.

Monotone paths on∆kn might have different lengths. The longest monotone paths are
in an easy bijection with standard Young tableaux of the rectangular shape k � (n � k).
By the hook-length formula, their number is (k(n � k))!

Qn�k�1
i=0

i !
(k+i)!

.
Note, however, !(k; n; d ) ¤ !lift(k; n; d ) for (k; n; d ) = (2; 5; 1). Indeed, Galashin

pointed out that the monotone path f1; 2g ! f1; 3g ! f1; 4g ! f2; 4g ! f3; 4g cannot
be lifted to a rhombus tiling of the the 2n-gon Z(n; 2), because it is not weakly separated.
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11 Grassmannian graphs as duals of polyhedral subdivisions
induced by projections of hypersimplices

Let us now discuss the connection between the positive Grassmannian and combinatorics
of polyhedral subdivisions. In fact, the positive Grassmannian is directly related to the
setup of the previous section for d = 2.

Theorem 11.1. The poset of complete reduced Grassmannian graphs of type (k; n) or-
dered by refinement is canonically isomorphic to the Baues poset !(k; n; 2) of �-induced
subdivisions for a 2-dimensional cyclic projection � of the hypersimplex ∆kn. Under
this isomorphism, plabic graphs correspond to tight �-induced subdivisions and moves of
plabic graphs correspond to flips between tight �-induced subdivisions.

Theorem 4.13(2) (Postnikov [2006, Theorem 13.4]) immediately implies flip-connec-
tivity.

Corollary 11.2. The minimal elements of Baues poset !(k; n; 2) are connected by flips.

Example 11.3. The Baues poset !(1; n; 2) is the poset of subdivisions of an n-gon by non-
crossing chords, i.e., it is the Stasheff’s associahedron. Its minimal elements correspond
to the Catalan number 1

n�1

�
2n�4
n�2

�
triangulations of the n-gon.

We can think of the Baues posets!(k; n; 2) as some kind of “generalized associahedra.”
In general, they are not polytopal. But they share some nice features with the associahe-
dron. It is well-known that every face of the associahedron is a direct product of smaller
associahedra. The same is true for all !(k; n; 2).

Proposition 11.4. For any element S in !(k; n; 2), the lower order interval fS 0 j S 0 �

Sg in the Baues poset !(k; n; 2) is a direct product of Baues posets of the same form
!(k0; n0; 2).

Proof. This is easy to see in terms of complete reduced Grassmannian graphs G. Indeed,
for any G, all refinements of G0 are obtained by refining all vertices of G independently
from each other.

This property is related to the fact that every face of the hypersimplex∆kn is a smaller
hypersimplex, as we discuss below.
Remark 11.5. Among all reduced Grassmannian/plabic graphs, there is a subset of coher-
ent (or regular) graphs, namely the ones that correspond to the coherent �-induced subdi-
visions from !coh(k; n; 2). Each of these graphs can be explicitly constructed in terms of
a height function. This subclass depends on a choice of the cyclic projection � . Regular
plabic graphs are related to the study of soliton solutions of Kadomtsev-Petviashvili (KP)
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equation, see Kodama and L. K.Williams [2011] and Kodama and L.Williams [2014]. We
will investigate the class of regular plabic graphs in Galashin, Postnikov, and L. Williams
[n.d.].

Let us now give more details on the correspondence between Grassmannian graphs and
subdivisions. A cyclic projection � : ∆kn ! Q(k; n; 2) is the linear map given by a 3�n

matrix M = (u1; : : : ; un) such that [u1; : : : ; un] 2 Gr>0(3; n) and u1; : : : ; un all lie on
the same affine plane H1 � R3. Without loss of generality, assume that H1 = f(x; y; z) j

z = 1g. The positivity condition means that the points �(u1); : : : ; �(un) form a convex
n-gon with vertices arranged in the counterclockwise order.

The polytope Q := Q(k; n; 2) = �(∆kn) is the convex n-gon in the affine plane
Hk = f(x; y; k)g � R3 with the vertices �(e[1;k]), �(e[2;k+1]), …, �(e[n;k�1]) (in the
counterclockwise order) corresponding to all consecutive cyclic intervals of size k in [n].

Notice that each face  of the hypersimplex∆kn is itself a smaller hypersimplex of the
form

I0;I1
:= f(x1; : : : ; xn) 2 ∆kn j xi = 0 for i 2 I0; xj = 1 for j 2 I1g

where I0 and I1 are disjoint subsets of [n]. So  ' ∆hm, where h = k � jI0j and
m = n � jI0j � jI1j. The projection � maps the face  to the m-gon �() that carries an
additional parameter h.

Thus the �-induced subdivisions S are in bijective correspondence with the tilings of
the n-gon Q by smaller convex polygons such that:

1. Each vertex has the form �(eI ) for I 2
�[n]

k

�
.

2. Each edge has the form [�(eI ); �(eJ )] for two k-element subsets I and J such that
jI \ J j = k � 1.

3. Each face is an m-gon of the form �(I0;I1
), as above.

Let S� be the planar dual of such a tiling S . The graph S� has exactly n boundary
vertices bi corresponding to the sides [�(e[i;i+k�1]); �(e[i+1;i+k])] of the n-gon Q. The
internal vertices v of S� (corresponding to faces  of S ) are equipped with the param-
eter h = h(v) 2 f0; : : : ; deg(v)g. Thus S� has the structure of a Grassmannian graph.
Moreover, each face F of S� (corresponding a vertex �(eI ) of S ) is labelled by a subset
I 2

�[n]
k

�
. We can now make the previous theorem more precise.

Theorem 11.6. The map S 7! S� is an isomporphism between the Baues poset !(k; n; 2)

and complete reduced Grassmannian graphsG of type (k; n). For each faceF ofG = S�

corresponding to a vertex �(eI ) of S , the subset I �
�[n]

k

�
is exactly the face label IF

(see Definition 5.2).
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Proof. Let us first show that tight �-induced subdivisions S are in bijection with complete
reduced plabic graphs of type (k; n). That means that, in addition to the conditions (1),
(2), (3) above, we require the tiling S of the n-gon G has all triangular faces. So S is a
triangulation of the n-gon Q of a special kind, which we call a plabic triangulation.

Such plabic triangulations of the n-gon are closely related to plabic tilings from Oh,
Postnikov, and D. E. Speyer [2015]. The only difference between plabic triangulations
and plabic tilings is that the latter correspond not to (3-valent) plabic graphs (as defined
in the current paper) but to bipartite plabic graphs. A bipartite plabic graph G is exactly
a Grassmannian graph such that each internal vertex either has type (1; d ) (white vertex)
or type (d � 1; d ) (black vertex), and every edge of G connects vertices of different
colors. Each reduced 3-valent plabic graph G0 can be easily converted into a bipartite
plabic graph G by contrating edges connecting vertices of the same color. It was shown
in Oh, Postnikov, and D. E. Speyer [ibid., Theorem 9.12] that the planar dual graph of any
reduced bipartite plabic graph G can be embedded inside an n-gon as a plabic tiling with
black and white regions and all vertices of the form �(eI ). If we now subdivide the black
and white regions of such plabic tiling by chords into triangles, we can get back the plabic
triangulation associated with a (3-valent) plabic graph G0. This shows that any complete
reduced (3-valent) plabic graph is indeed the planar dual of a tight �-induced subdivision.

On the other hand, for each plabic triangulation S we can construct the plabic graph by
taking its planar dual G = S� as described above. It is easy to check from the definitions
that the decorated strand permutation w of G is exactly w(i) = i +k (mod n). It remains
to show that this plabic graph G is reduced. Suppose that G is not reduced. Then by The-
orem 4.13(5), after possibly applying a sequence of moves (1; 4), (2; 4), and/or (3; 4), we
get a plabic graph with a pair of parallel edges or with a loop-edge. It is straightforward
to check that applying the moves (1; 4), (2; 4), (3; 4) corresponds to local transformations
of the plabic triangulation S , and transforms it into another plabic triangulations S 0. How-
ever, it is clear that if a plabic graph G contains parallel edges of a loop-edge, then the
dual graph is not a plabic triangulation. So we get a contradiction, which proves the result
for plabic graphs and tight subdivisions.

Now let G0 be any complete reduced Grassmannian graph of type (k; n), and let G

be its plabic refinement. We showed that we can embed the planar dual graph G� as a
plabic triangulation S into the n-gon. The union of triangles in S that correspond to a
single vertex v of G0 covers a region inside Q. We already know that this region is a
convex m-gon (because we already proved the correspondence for plabic graphs). Thus,
for each vertex ofG0, we get a convex polygon inQ and all these polygons form�-induced
subdivision. So we proved that the planar dual of G0 can be embedded as a polyhedral
subdivision of Q. The inverse map is S 0 7! G0 = (S 0)�.

Let us mention a related result of Galashin [2016].
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Theorem 11.7. Galashin [2016] Complete reduced plabic graphs of type (k; n) are ex-
actly the dual graphs of sections of fine zonotopal tilings of the 3-dimensional cyclic zono-
tope Z(n; 3) by the hyperplane Hk .

In view of the discussion above, this result means that any tight �-induced subdivision
in!(k; n; 2) can be lifted to a fine zonotopal tiling of the cyclic zonotopeZ(n; 3). In other
words, the posets !(k; n; 2) and !lift(k; n; 2) have the same sets of minimal elements. A
natural question to ask: Is the same true for all (not necessarily minimal) elements of
!(k; n; 2)?

12 Membranes and discrete Plateau’s problem

Membranes from a project with T. Lam [2018] provide another related interpretation of
plabic graphs. Let Φ = fei � ej j i ¤ j g 2 Rn, where e1; : : : ; en are the standard
coordinate vectors.

Definition 12.1. T. Lam [ibid.] A loop L is a closed piecewise-linear curve in Rn formed
by line segments [a; b] such that a; b 2 Zn and a � b 2 Φ.

A membrane M with boundary loop L is an embedding of a 2-dimensional disk into
Rn such that L is the boundary of M , and M is made out of triangles conv(a; b; c), where
a; b; c 2 Z and a � b; b � c; a � c 2 Φ.

A minimal membrane M is a membrane that has minimal possible area (the number of
triangles) among all membranes with the same boundary loop L.

The problem about finding a minimal membrane M with a given boundary loop L is
a discrete version Plateau’s problem about minimal surface. Informally speaking, mem-
branes correspond to (the duals of) plabic graphs, and minimal membranes correspond to
reduced plabic graphs. Here is a more careful claim.

Theorem 12.2. T. Lam [ibid.] Let w 2 Sn be a permutation without fixed points with
helicity h(w) = k. Let Lw the closed loop inside the hypersimplex ∆kn formed by the
line segments [a1; a2]; [a2; a3]; : : : ; [an�1; an]; [an; a1] such that ai+1 � ai = ew(i) � ei ,
for i = 1; : : : ; n, with indices taken modulo n.

Then minimal membranes M with boundary loop Lw are in bijection with reduced
plabic graphs G with strand permutation w. Explicitly, the correspondence is given as
follows. Faces F of G with face labels I = IF correspond to vertices eI of the mem-
brane M . Vertices of G with 3 adjacent faces labeled by I1; I2; I3 correspond to triangles
conv(eI1

; eI2
; eI3

) in M .
Moves of plabic graphs correspond to local area-preserving transformations of mem-

branes. Any two minimal membranes with the same boundary loop Lw can be obtained
from each other by these local transformations.
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13 Higher positive Grassmannians and Amplituhedra

The relation between the positive Grassmannian Gr>0(k; n) and the Baues poset
!(k; n; 2) raises a natural question: What is the geometric counterpart of the Baues poset
!(k; n; d ) for any d? These “higher positiveGrassmannians” should generalizeGr>(k; n)

in the same sense as Manin-Shekhtman’s higher Bruhat orders generalize the weak Bruhat
order. The first guess is that they might be related to amplituhedra.

Arkani-Hamed and Trnka [2014] motivated by the study of scattering amplitudes in
N = 4 supersymmetric Yang-Mills (SYM) theory, defined the amplituhedron An;k;m =

An;k;m(Z) as the image of the nonnegative Grassmannian Gr�(k; n) under the “linear
projection”

Z̃ : Gr�0(k; n) ! Gr(k; k + m); [A] 7! [A ZT ]

induced by a totally positive (k + m) � n matrix Z, for 0 � m � n � k. The case m = 4

is of importance for physics.
In general, the amplituhedronAn;k;m has quite mysterious geometric and combinatorial

structure. Here are few special cases where its structure was understood better. For m =

n � k, An;k;n�k is isomorphic to the nonnegative Grassmannian Gr�0(k; n). For k = 1,
An;1;m is (the projectivization of) the cyclic polytope C (n; m). For m = 1, Karp and
L. K. Williams [2017] showed that the structure of the amplituhedron An;k;1 is equivalent
to the complex of bounded regions of the cyclic hyperplane arrangement. In general, the
relationship between the amplituhedron An;k;m and polyhedral subdivisions is yet to be
clarified.
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Abstract
The so-called graph limit theory is an emerging diverse subject at the meeting

point of many different areas of mathematics. It enables us to view finite graphs as
approximations of often more perfect infinite objects. In this survey paper we tell the
story of some of the fundamental ideas in structural limit theories and how these ideas
led to a general algebraic approach (the nilspace approach) to higher order Fourier
analysis.

1 Introduction

Finite objects are often imperfect approximations of much nicer infinite objects. For ex-
ample the equations of fluid dynamics or thermodynamics are much simpler if we replace
discrete particles by continuous mass. If the particle system is large enough then the con-
tinuous model behaves sufficiently similarly to the discrete one in many practical appli-
cations. This connection between finite and infinite structures is useful in both directions.
Passing to infinite limits can greatly simplify messy calculations with finite objects. Vari-
ous small quantities (epsilon’s), that appear as errors in calculations often disappear in the
limit. Beyond getting rid of epsilon’s there is a deeper advantage of limit theories. Cer-
tain algebraic structures, that are present only in approximate forms in finite structures,
appear in a precise form when going to the limit. One of the most surprising discoveries
in higher order Fourier analysis is that functions on finite Abelian groups can behave as
approximations of functions on inherently non-commutative, topological structures such
as nilmanifolds.

The goal of this paper is to take the reader to a journey that starts with a general in-
troduction to structural limits and their applications. We use ergodic theory and graph
limit theory to demonstrate a number of fundamental concepts including sampling, quasi-
randomness, uniformity norms, convergence, limit space and topologization. We devote
MSC2010: primary 05C99; secondary 37A05, 46B99.
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a separate chapter to the non-standard approach which is a powerful tool in limit theories.
Finally we turn to higher order Fourier analysis where we explain how nilmanifolds and
other even more exotic structures come into play when we look at finite additive structures
in the limit.

2 History and basic concepts

The history of structural limits can be traced back all the way to ancient Greeks. Archime-
des (287-212 BC) used polygon approximations of the circle to compute its area. Struc-
tural limit theories are routinely used in physics. Continuous limits are essential in thermo-
dynamics and fluid dynamics where large but finite particle systems are investigated. On
the other hand discrete approximations of continuous objects such as lattice gauge theory
play also an important role in physics.

Many of the above limit theories are based on very simple correspondences between
finite objects and continuous limit objects. Most of the time the finite approximation
is directly related to a continuous space through a prescribed geometric connection. By
somewhat abusing the term, we call such limits scaling limits. Much more mysterious and
surprising limit theories emerged more recently where simple and very general structures
are considered such as 0-1 sequences or graphs. In these theories there is no ”prescribed”
geometry to be approximated. The geometry emerges from the internal ”logic” of the
structure and thus a great variety of geometric, topological and algebraic structures can
appear in the limit. Many of these limit theories are based on taking small random samples
from large structures. We call such limit theories local limit theories. Some other limit
theories are based on observable, large scale properties and we call them global limit
theories. Furthermore there are hybrid theories such as the local-global convergence of
bounded degree graphs Hatami, Lovász, and Szegedy [2014].
Scaling limits of 0 � 1 sequences: As an illustration we start with a rather simple (warm
up) limit theory for 0� 1 sequences. Later we will see a different and much more compli-
cated theory for the same objects. For k 2 N let [k] := f1; 2; : : : ; kg. A 0 � 1 sequence
of length k is a function f : [k] ! f0; 1g. Assume that we are given a growing sequence
ffng1

n=1 of 0 � 1 sequences. In what sense can we say that these sequences converge?
A simple and natural approach would be to regard the set [k] as a discretization of the
(0; 1] interval. This way, for a 0 � 1 sequence s of length k we can define the function
s̃ : [0; 1] ! f0; 1g by s̃(x) := s(dkxe) (and s̃(0) := 0). Now we can replace the functions
fn by f̃n and use one of the readily available convergence notions for functions on [0; 1]

such as L2 or L1 convergence. Note that they are equivalent for 0 � 1 valued functions.
The limit object in L2 is a Lebesgue measurable function f : [0; 1] ! f0; 1g with the
property that the measure of f �1(1)4f̃ �1

n (1) converges to 0 as n goes to infinity. A
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much more interesting and flexible limit concept is given by the weak convergence in
L2([0; 1]). For 0 � 1 valued functions this is equivalent with the fact that for every inter-
val I = [a; b] � [0; 1] the measure of I \ f̃ �1

n (1) converges to some quantity �(I ) as
n goes to infinity. The limit object is a measurable function f : [0; 1] ! [0; 1] with the
property that �(I ) =

R
I
fd� where � is the Lebesgue measure. If f̃n is L2 convergent

then its weak limit is the same as the L2 limit. However many more sequences satisfy
weak convergence.

Let ffng1
n=1 be a sequence of 0 � 1 sequences. We say that fn is scaling convergent

if ff̃ng1
n=1 is a weakly convergent sequence of functions in L2([0; 1]). The limit object

(scaling limit) is a measurable function of the form f : [0; 1] ! [0; 1].
Although scaling convergence is a rather simplistic limit notion we can use it as a

toy example to illustrate some of the fundamental concepts that appear in other, more
interesting limit theories.

• Compactness: Every sequence of 0 � 1 sequences has a scaling convergent subse-
quence

• Uniformity norm: Scaling convergence can be metrized through norms. An ex-
ample for such a norm is the ”intervall norm” defined by kf kin := supI

ˇ̌R
I
fd�

ˇ̌
.

where I runs through all intervals in (0; 1]. The distance of two 0� 1 sequences f1
and f2 (not necessarily of equal lenght) is defined as kf̃1 � f̃2kin.

• Quasi randomness: A 0� 1 sequence f is �-quasi random with density p 2 [0; 1]

if kf̃ � pkin � �. Note that if fn is a sequence of 0 � 1 sequences such that fn is
�n quasi random with density p and �n goes to 0 then fn converges to the constant
p function.

• Random objects are quasi random: Let fn be a random 0� 1 sequence of length
n in which the probabilty of 1 is p. For an arbitrary � > 0 we have that if n is
large enough then with probability arbitrarily close to 1 the function fn is � quasi
random.

• Low complexity approximation (regularization): For every � > 0 there is some
natural number N� such that for every 0 � 1 sequence f there is a function g :

[N�] ! [0; 1] such that kf̃ � g̃kin � �. (Note g̃ is defined by the same formula as
for 0 � 1 sequences and g̃ is a step function on [0; 1] with N� steps.)

Local limits of 0 � 1 sequences: The main problem with scaling convergence is that
highly structured sequences such as periodic sequences like 0; 1; 0; 1; 0; 1; : : : are viewed
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as quasi random. The above limit concept is based on a prescribed geometric correspon-
dence between integer intervals and the continuous [0; 1] interval. A different and much
more useful limit concept does not assume any prescribed geometry. It is based on the
local statistical properties of 0 � 1 sequences. For any given 0 � 1 sequence h of length
k and f of length n � k we define t(h; f ) to be the probability that randomly chosen
k consecutive bits in f are identical to the sequence h (if n < k then we simply define
t(H;f ) to be 0).

A sequence ffng1
n=1 of growing 0�1 sequences is called locally convergent if for every

fix 0 � 1 sequence h we have that limn!1 t(h; fn) exists.
This definition was first used by Furstenberg [1977] in his famous correspondence prin-

ciple stated in the 70’s, a major inspiration for all modern limit theories. In Furstenberg’s
approach finite 0 � 1 sequences are regarded as approximations of subsets in certain dy-
namical systems called measure preserving systems. A measure preserving system is a
probability space (Ω;B; �) together with a measurable transformation T : Ω ! Ω with
the property that �(T �1(A)) = �(A) for every A 2 B.
Furstenberg’s correspondence principle forZ : Let fn be a locally convergent sequence
of 0 � 1 sequences. Then there is a measure preserving system (Ω;B; �; T ) and a mea-
surable set S � Ω such that for every 0 � 1 sequence h : [k] ! f0; 1g the quantity
limn!1 t(h; fn) is equal to the probability that (1S (x); 1S (xT ); : : : ; 1S (xT

k�1
)) = h

for a random element x 2 Ω.
Note that originally the correspondence principle was stated in a different and more

general form for amenable groups. If the group is Z then it is basically equivalent with
the above statement. A measure preserving system is called ergodic if there is no set
A 2 A such that 0 < �(A) < 1 and �(A4T �1(A)) = 0. Every measure preserving
system is the combination of ergodic ones and thus ergodic measure preserving systems
are the building blocks of this theory.

We give two examples for convergent 0 � 1 sequences and their limits. Let ˛ be a
fixed irrational number. Then, as n tends to infinity, the sequences 1[0;1/2](f˛ig); i =

1; 2; : : : ; n (where fxg denotes the fractional part of x) approximate the semicircle in a
dynamical system where the circle is rotated by 2�˛ degrees. Both the circle and the
semicircle appears in the limit. A much more surprising example (in a slightly different
form) is given byHost and Kra [2008a]. Let us take twoQ-independent irrational numbers
˛; ˇ and let ai := 1[0;1/2](f[iˇ]i˛ � i(i � 1)˛ˇ/2g) where [x] denotes the integer part of
x. In this case the limiting dynamical system is defined on a three dimensional compact
manifold called Heisenberg nilmanifold.
Topologization and algebraization: At this point it is important to mention that Fursten-
berg’s correspondence principle does not immediately give a ”natural” topological repre-
sentation of the limiting measure preserving system. In fact the proof yields a system in
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which the ground space is the compact set f0; 1gZ with the Borel � -algebra, T is the shift
of coordinates by one and � is some shift invariant measure. The notion of isomorphism
between systems allows us to switch f0; 1gZ to any other standard Borel space. However
in certain classes of systems it is possible to define a ”nicest” or ”most natural” topology
. An old example for such a topologization is given by Kronecker systems Furstenberg
[1981]. Assume that the measure preserving map T is ergodic and it has the property that
L2(Ω) is generated by the eigenvectors of the induced action of T on L2(Ω). It turns out
that such systems can be represented as rotations in compact abelian groups (called Kro-
necker systems). The problem of topologization is a recurring topic in limit theories. It
often comes together with some form of ”algebraization” in the frame of which the unique
nicest topology is used to identify an underlying algebraic structure that is intimately tied
to the dynamics. Again this can be demonstrated on Kronecker systems where finding the
right topology helps in identifying the Abelian group structure. Note that there is a highly
successful and beautiful story of topologization and algebraization in ergodic theory in
which certain factor-systems of arbitrarymeasure preserving systems (called characteristic
factors) are identified as inverse limits of geometric objects (called nilmanifolds) arising
from nilpotent Lie groups Host and Kra [2005],Ziegler [2007]. As this breakthrough was
also crucial in the development of higher order Fourier analysis we will give more details
in the next paragraph. In many limit theories the following general scheme appears .

discrete objects ! measurable objects ! topological objects ! algebraic objects
The first arrow denotes the limit theory, the second arrow denotes topologization and the
third arrow is the algebraization.

Factors: Factor systems play a crucial role in ergodic theory. A factor of a measure
preserving system (Ω;B; �; T ) is a sub � -algebra F in B that is T invariant (if B 2

F then T �1(B) 2 F ). Note that if F is a factor then (Ω; F ; �; T ) is also a measure
preserving system. Often there is a duality between a system of ”observable quantities”
defined through averages and certain factors, called characteristic factors. For example
the averages

t(f ) := lim
n!1

n�1
nX
i=1

Z
x

f (x)f (T i (x))f (T 2i (x))d�

defined for bounded measurable functions satisfy that t(f ) = t(E(f jK)) where K is the
Kronecker factor of the system (the unique largest factor that is a Kronecker system) and
E(f jK) is the conditional expectation with respect to K. Since conditional expectation is
an elementary operation, this means that properties of t(f ) can be completely described
in terms of Kronecker systems. The ergodic theoretic proof Furstenberg [1977] of Roth
theorem Roth [1953] on 3-term arithmetic progressions is based on this fact and a limiting
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argument using Furstenberg’s correspondence principle. It turns out that in every ergodic
measure preserving system there is a sequence of increasing, uniquely defined factors
K1 � K2 � : : : which starts with the Kronecker factor. Similarly to Roth’s theorem, the
study of k-term arithmetic progressions can be reduced to Kk�2. The results in Host and
Kra [2005] and Ziegler [2007] give a complete geometric description for these factors in
terms of nilsystems. Let G be a k-step nilpotent Lie group and Λ � G be a co-compact
subgroup. The space N = fgΛ : g 2 Gg of left cosets of Λ is a finite dimensional
compact manifold on which G acts by left multiplication. It is known that there is a
unique G invariant probability measure � on N . We have that fN;B; �; gg is a measure
preserving system for every g 2 G (where B is the Borel � -algebra). If g acts in an
ergodic way then it is called a k-step nilsystem. It was proved in Host and Kra [2005] and
Ziegler [2007] that for every k the factor Kk of an ergodic system is the inverse limits of
k-step nilsystems.

Local and global limits of graphs: Although Furstenberg’s correspondence principle
gives the first example for a local limit theory, a systematic study of similar structural limit
theories started much later. The general program of studying structures in the limit became
popular in the early 2000’s when graph limit theory was born Benjamini and Schramm
[2001],Lovász and Szegedy [2006],Lovász and Szegedy [2007],Borgs, J. Chayes, Lovász,
Sós, Szegedy, and Vesztergombi [2006],Borgs, J. T. Chayes, Lovász, Sós, and Veszter-
gombi [2008],Borgs, J. T. Chayes, Lovász, Sós, and Vesztergombi [2012]. The motiva-
tion to develop an analytic theory for large networks came partially from applied math-
ematics. The growing access to large networks such as social networks, internet graphs
and biological networks like the brain generated a demand for new mathematical tools to
understand their approximate structure. Another motivation came from extremal combina-
torics where inequalities between subgraph densities are extensively studied. An analytic
view of graphs enables the use of powerful methods such as differential calculus to solve
extremal problems. Similarly to ergodic theory certain graph sequences approximate in-
finite structures which can not be perfectly represented by finite objects. It turns out that
there are simple extremal problems for graphs which have no precise finite solutions but
a nice exact solution appears in the limit. This is somewhat similar to the situation with
the inequality (x2 � 2)2 � 0 which has no precise solution in Q but it has two solutions
in R.

Similarly to 0 � 1 sequences graph convergence can be defined through converging
sample distributions and thus the convergence notion will depend on the sampling method.
Quite surprisingly there are two different natural sampling methods. The first one works
well if the graph has a non negligible edge density (such graphs are called dense) and the
second one is defined only for bounded degree graphs. Note that on n vertices a dense
graph has cn2 edges for some non negligible c > 0 whereas a bounded degree graph has
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cn edges for some bounded c. This means that dense and bounded degree graphs are at
the two opposite ends of the density spectrum. If a graph is neither dense nor bounded
degree then we call it intermediate.

Let G = (V;E) be a finite graph. In the first sampling method we choose k ver-
tices v1; v2; : : : ; vk independently and uniformly from V and take the graph Gk spanned
on these vertices. We regard Gk as a random graph on [k]. For a graph H on the ver-
tex set [k] let t0(H;G) denote the probability that Gk = H . In dense graph limit the-
ory, a graph sequence fGng1

n=1 is called convergent if for every fixed graph H the limit
limi!1 t0(H;G) exists. Another equivalent approach is to define t(H;G) as the proba-
bility that a randommap from V (H ) to V (G) is a graph homomorphism i.e. it takes every
edge ofH to an edge of G. This number is called the homomorphism density ofH in G.
In a sequence fGng1

n=1, the convergence of t(H;Gn) for all graphsH is equivalent with
the convergence of t0(H;Gn) for all graphs H . The advantage of using homomorphism
densities is that they have nicer algebraic properties such as multiplicativity and reflection
positivity Lovász and Szegedy [2006].

For the second sampling method let Gd denote the set of finite graphs with maximum
degree at most d . Let furthermore Gr

d
denote the set of graphs of maximum degree at most

d with a distinguished vertex o called the root such that every other vertex is of distance at
most r from o. Now ifG = (V;E) is in Gd then let v be a uniform random vertex in V . Let
Nr(v) denote the v-rooted isomorphism class of the radius r-neighborhood of v inG. We
have thatNr(v) is an element in Gr

d
and thus the random choice of v imposes a probability

distribution �(r; G) on Gr
d
. A graph sequence fGng1

n=1 is called Benjamini-Schramm
convergent if �(r; Gn) is convergent in distribution for every fixed r . The convergence
notion was introduced in the paper Benjamini and Schramm [2001] to study randomwalks
on planar graphs. Colored and directed versions of this convergence notion can be also
introduced in a similar way. Benjamini-Schramm convergence provides a rather general
framework for many different problems. Note that it generalizes the local convergence of
0 � 1 sequences because one can represent finite 0 � 1 sequences by directed paths with
0 and 1 labels on the nodes. Limit objects for Benjamini-Schram convergent sequences
are probability distributions on infinite rooted graphs with a certain measure preserving
property that generalizes the concept of measure preserving system. Note that Benjamini-
Schramm convergence is closely related to group theory. A finitely presented group is
called Sofic if its Cayley graph is the limit of finite graphs in which the edges are directed
and labeled by the generators of the group. Sofic groups are much better understood than
general abstract groups. The study of sofic groups is a fruitful interplay between graph
limit theory and group theory.

Global aspects of graph limit theory arise both in the dense and the bounded degree
frameworks. In case of dense graph limit theory the local point of view is often not strong
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enough. Although it turns out that one can represent convergent sequences by so-called
graphons Lovász and Szegedy [2006] i.e. symemtric measurable functions of the form
W : [0; 1]2 ! [0; 1] a stronger theorem that connects the convergence with Szemerédi’s
regularity lemma is more useful. Szemerédi’s famous regularity lemma is a structure the-
orem describing the large scale structure of graphs in terms of quasi rendom parts. A
basic compactness result in dense graph limit theory Lovász and Szegedy [2007] (see also
Theorem 1) connects the local and global point of views. This is used in many applica-
tions including property testing Lovász and Szegedy [2010b] and large deviation princi-
ples Chatterjee and Varadhan [2011].

The Benjamini-Schramm convergence is inherently a local convergence notion and
thus it is not strong enough for many applications. For example random d -regular graphs
are locally tree-like but they have a highly non-trivial global structure that has not been
completely described. The formalize this problem one needs a refinement of Benjamini-
Schramm convergence called local-global convergence Hatami, Lovász, and Szegedy
[2014]. The concept of local-global convergence was successfully used in the study of
eigenvectors of random regular graphs. It was proved by complicated analytic, informa-
tion theoretic and graph limit methods in Backhausz and Szegedy [2016] that almost eigen-
vectors of random regular graphs have a near Gaussian entry distribution. This serves as an
illustrative example for the fact that deep results in graph theory can be obtained through
the limit approach.

We have to mention that the branch of graph limit theory that deals with intermedi-
ate graphs (between dense and bounded degree) is rather underdeveloped. There are nu-
merous competing candidates for an intermediate limit theory Borgs, J. T. Chayes, Cohn,
and Zhao [n.d.],Borgs, J. T. Chayes, Cohn, and Zhao [2018],Szegedy [n.d.(c)],Kunszenti-
Kovács, Lovász, and Szegedy [2016],Nesetril andMendez [2013], Frenkel [2018] but they
have very few applications so far. The hope is that at least one of these approaches will
become a useful tool to study real life networks such as connections in the brain or social
networks. These networks are typically of intermediate type.

Limits in additive combinatorics and higher order Fourier analysis: Let A be a finite
Abelian group and S be a subset inA. Many questions in additive combinatorics deal with
the approximate structure of S . For example Szemerédi’s theorem can be interpreted as a
result about the density of arithemtic progressions of subsets in cyclic groups. It turns out
that limit approaches are natural in this subject. LetM 2 Zm�n be an integer matrix such
that each element inM is coprime to the order of A. Then we can define the density of
M in the pair (A; S) as the probability that

P
Mi;jxj 2 S holds for every i with random

uniform independent choice of elements x1; x2; : : : ; xn 2 A. For example the density
of 3 term arithmetic progressions in S is the density of the matrix ((1; 0); (1; 1); (1; 2))

in S . We say that a sequence f(Ai ; Si )g
1
i=1 is convergence if the density of all coprime
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matrixM in the elements of the sequence converges. This type of convergence was first
investigated in Szegedy [n.d.(b)] and limit objects were also constructed. The subject is
deeply connected to Gowers norms and the subject of higher order Fourier analysis. We
give more details in chapter 5.

3 Dense graph limit theory

A graphon is a measurable function of the form W : [0; 1]2 ! [0; 1] with the property
W (x; y) = W (y; x) for every x; y 2 [0; 1]. Let W denote the set of all graphons. If G
is a finite graph on the vertex set [n] then its graphon representationWG is defined by the
formula

W (x; y) = 1E(G)(dnxe; dnye):

For a graphH on the vertex set [k] let

t(H;W ) :=

Z
x1;x2;:::;xk2[0;1]

Y
(i;j )2E(H)

W (xi ; xj ) dx1dx2 : : : dxk :

The quantity t(H;W ) is an analytic generalization of the so called homomorphism den-
sity defined for finite graphs. This is justified by the easy observation that t(H;G) =

t(H;WG). We will need the so-called cut norm k:k� onL1([0; 1]2). LetF : [0; 1]2 ! R
be a bounded measurable function. Then

kF k� := sup
A;B�[0;1]

ˇ̌̌Z
A�B

F (x; y) dxdy
ˇ̌̌

whereA andB run through all measurable sets in [0; 1]. Using this norm we can introduce
a measure for ”similarity” of two graphons U and W by kU � W k�. However this is
not the similarity notion that we use for convergence. We need to factor out by graphon
ismorphisms. If  : [0; 1] ! [0; 1] is a measure preserving transformation the we define
W  (x; y) := W ( (x);  (y)). It is easy to check that this transformation on graphons
preserves the homomorphism densities: t(H;W ) = t(H;W  ) holds for every finite
graphH . The next distance was introduced in Lovász and Szegedy [2007] :

ı�(U;W ) := inf
�; :[0;1]![0;1]

kU � �W  
k�

where � and  are measure preserving transformations. It is easy to check that ı� is a
pseudometrics i.e. it satisfies all axioms except that d (x; y) = 0 does not necessarily
imply that x = y. In order to get an actual metrics we have to factor out by the equiv-
alence relation ∼ı� defined by x ∼ı� y , d (x; y) = 0. Let X := W/ ∼ı� . Since
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ı�(U;W ) = 0 implies that t(H;U ) = t(H;W ) holds for every graph H we have that
t(H;�) is well defined on X. The following result Lovász and Szegedy [2006],Lovász
and Szegedy [2007] in graph limit theory is fundamental in many applications.

Theorem 1. We have the following statements for the metric space (X; ı�).

1. The metric ı� defines a compact, Hausdorff, second countable topology on X.

2. The functionX ! t(H;X) is a continuous function on X for every finite graphH .

Two important corollaries are the following.

Corollary 3.1. Assume that fGig1
i=1 is a sequence of graphs such thatf (H ) := limi!1 t(H;Gi )

exists for every finite graph H . Then there is a graphon W 2 W such that f (H ) =

t(H;W ) holds for everyH .

Corollary 3.2. Szemerédi’s regularity lemma Szemerédi [1978] (even in stronger forms)
follows from Theorem 1.

Note that, although Corollary 3.1 may be deduced from earlier results on exchange-
ability Aldous [1985], Theorem 1 combines both the local and global aspects of conver-
gence and so it is a stronger statement. In some sense it can be regarded as a common
generalization of both Szemerédi’s regularity lemma Szemerédi [1978] and a result on
exchangeability Aldous [1985].
Topologization of graph limit theory: In the definition of a graphonW : [0; 1]2 ! [0; 1]

the [0; 1] interval on the left hand side is replaceable by any standard probability space
(Ω; �). In general we need that (Ω; �) is atomless but for certain special graphons even
atoms maybe allowed. Note that the values of W represent probabilities and so the [0; 1]
interval is crucial on the right hand side. Thus the general form of a graphon is a symmetric
measurable functionW : Ω�Ω ! [0; 1]. Homomorphism densities t(H;W ) are defined
for all such general graphons and two of them are equivalent if all homomorphism densities
are the same. The folowing question arises: Given a graphon W . Is there a most natural
topological spaceX and Borel measure � onX such thatW is equivalent with a graphon
of the form W 0 : X2 ! [0; 1]? An answer to this question was given in Lovász and
Szegedy [2010a]. For a general graphon W : Ω � Ω ! [0; 1] there is a unique purified
version of W on some Polish space X with various useful properties. The language of
topologization induced a line of exciting research in extremal combinatorics. Here we
give a brief overview on applications of graphons in extremal graph theory.
Extremal graphs and graphons: The study of inequalities between subgraph densities
and the structure of extremal graphs is an old topic in extremal combinatorics. A classical
example is Mantel’s theorem which implies that a triangle free graph H on 2n vertices
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maximizes the number of edges if H is the complete bipartite graph with equal color
classes. Another example is given by the Chung-Graham-Wilson theorem Chung, Gra-
ham, and Wilson [1989]. If we wish to minimize the density of the four cycle in a graph
H with edge density 1/2 then H has to be sufficiently quasi random. However the per-
fect minimum of the problem (that is 1/16) can not be attained by any finite graph but
one can get arbitrarily close to it. Both statements can be conveniently formulated in the
framework of dense graph limit theory. In the first one we maximize t(e;G) in a graphG
with the restriction that t(C3; G) = 0 (where e is the edge and C3 is the triangle). In the
second one we fix t(e;G) to be 1/2 and we minimize t(C4; G). Since the graphon space
is the completion of the space of graphs it is very natural to investigate these problems in
a way that we replace G by a graphon W . If we fix finite graphs H1;H2; : : : ;Hk then
all possible inequalities between t(H1;W ); t(H2;W ); : : : ; t(Hk ;W ) are encoded in the
k-dimesional point set

L(H1;H2; : : : ;Hk) := f(t(H1;W ); t(H2;W ); : : : ; t(Hk ;W )) : W 2 Wg:

Note that this is a closed subset in [0; 1]k . As an example let e be a single edge and letP2 de-
note the path with two edges. It is easy to prove that t(P2;W ) � t(e;W )2. This inequality
is encoded encoded in L(e; P2) is the form that L(e; P2) � f(x; y) : y � x2g. We have
however that L(e; P2) carries much more information. The shape of L(H1;H2; : : : ;Hk)

is know in very few instances. It took decades of research to completely describe the two
dimensional shape L(e; C3) which gives all possible inequalities between t(e;W ) and
t(C3;W ). The characterization of L(e; C3) was completed by Razborov [2008] partially
using limit methods (a certain differentiation on the graph limit space). Another direction
of research investigates the structure of a graphon W with given subgraph densities. A
graphonW is called finitely forcible Lovász and Szegedy [2011] if there are finitely many
graphs H1;H2; : : : ;Hk such that if t(Hi ;W 0) = t(Hi ;W ) holds for i = 1; 2; : : : ; k for
some W 0 2 W then W 0 is equivalent with W . The motivation to study finitely forcible
graphons is that they represent a large family of extremal problems with unique solution.
It is very natural to ask how complicated can extremal graph theory get at the structural
level. Originally it was conjectured that finitely forcible graphons admit a step function
structure which is equivalent with the fact that the topologization of the graphon is a finite
space. This was disproved in Lovász and Szegedy [ibid.] and various examples were given
with more interesting underlying topolgy. However the topology in all of these examples
is compact and finite dimensional. It was asked in Lovász and Szegedy [ibid.] whether this
is always the case. Quite surprisingly both conjectures turned out to be false. Extremal
problems with strikingly complicated topologies were constructed in Glebov, Klimosova,
and Kral [2014], Cooper, Kaiser, Noel, et al. [2015]. This gives a very strong justification
of graph limit theory in extremal cobinatorics by showing that complicated infinite struc-
tures are somehow encoded into finite looking problems. The marriage between extremal
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graph theory and graph limit theory has turned into a growing subject with surprising re-
sults. It brought topology and analysis into graph theory and gave a deep insight into the
nature and complexity of extremal structures.

4 The ultra limit method

The use of ultra products in structural limit theory Elek and Szegedy [2012],Szegedy
[n.d.(b)] was partially motivated by the great complexity of the proofs in hypergraph regu-
larity theory Nagle, Rödl, and Schacht [2006],Rödl and Schacht [2007],Rödl and Skokan
[2004] and later in higher order Fourier analysis. For example the hypergraph removal
lemma is a simple to state and beautiful theorem, but its combinatorial proofs are extremely
complicated. This may not be surprising in the light of the fact that it implies Szemerédi’s
famous theorem Szemerédi [1975] on arithmetic progressions even in a multi-dimensional
form Solymosi [2004]. However it was observed in Elek and Szegedy [2012] that great
simplification can be made to these proofs if one works in a limiting setting. The limit the-
ory which is particularly useful here is based on ultra products of measure spaces. Without
going to technical details we give an overview of a scheme that was successfully used in
hypergraph theory Elek and Szegedy [ibid.] and additive combinatorics Szegedy [n.d.(b)].
This scheme is based on the philosophy that if there is any ”reasonable” limit of a se-
quence of structures S1; S2; : : : then it has to appear somehow on the ultra product space
S :=

Q
! Si where ! is a non-principal ultra filter. Usually the limit object appears as a

factor space of S endowed with some structure obtained from S. In the followings we give
a strategy that unifies some of the applications of the ultra limit method without aiming
for full generality.
Introducing a limit theory:

1. Structures: Let F be a family of structures (for example finite graphs, hypergraphs
or subsets in finite or more generally compact Abelian groups).

2. Function representation: Represent each element F 2 F as a function on some
simpler structure Q 2 Q. We assume that each structure Q 2 Q is equipped with
a probability measure �Q. Let R denote the representation function R : F 7!

[Q2QL
1(Q;�Q).

For example, in case of graphs, Q is the family of finite product sets of the form
V � V and �V�V is the uniform measure. The representation function for a graph
G = (V;E) is given by R(G) := 1E on the product set V � V . In other words
R(G) is the adjacency matrix of G. For k uniform hypergraphs Q is the set of
power sets of the form V k . If F is the set of measurable subsets in compact Abelian
groups then Q is the set of compact Abelian groups with the Haar measure.
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3. Moments: Define a set of moments M such that for eachm 2 M andQ 2 Q there
is a functional m : L1(Q;�Q) ! C.

Note that the name ”moment” refers to the fact that elements in L1(Q;�) are ran-
dom variables. Here we use generalizations of classical moments which make use
of the underlying structure of Q. For example if F is the family of finite graphs,
then M is the set of finite directed graphs. Each finite directed graphH = ([k]; F )

defines a moment by t(H;W ) := Ex1;x2;:::;xk2V (
Q

(i;j )2F W (xi ; xj )) for an ar-
bitrary function W : V � V ! C. (If W is symmetric then t(H;W ) does not
depend on the direction on H .) Note that if we allow multiple edges in H then
the n-fold single edge corresponds to the n-th classical moment E(W n). For func-
tions on Abelian groups, moments are densities of additive patterns. For example
if f : A ! C then the 3 term arithmetic progression density in f is defined by
Ex;tf (x)f (x + t)f (x + 2t). Similarly the parallelogram density is defined by
Ex;t1;t2f (x)f (x + t1)f (x + t2)f (x + t1 + t2).

4. Convergence: Define a limit notion in F in the following way. A sequence fFig
1
i=1

in F is called convergent if for every m 2 M we have that lim
i!1

m(R(Fi )) exists.

Note that this convergence notion naturally extends to functions on structures in Q.
This allows us to define convergent sequences of matrices, multidimensional arrays
(functions on product sets) or functions on Abelian groups.

5. Quasi randomness and similarity Define a norm k:kU on each function space
L1(Q;�Q) that measures quasi randomness such that if kf kU is close to 0 then
f is considered to be quasi random. We need the property that for every m 2 M
and � > 0 there is ı > 0 such that if f; g 2 L1(Q;�Q) satisfy jf j; jgj � 1 and
kf � gkU � ı then jm(f ) �m(g)j � �.

In case of graphs we can use the four cycle norm kf kU := t(C4; f )
1/4 or an

appropriately normalized version of the cut norm. For hypergraphs we can use the
so-called octahedral norms. On Abelian groups we typically work with one of the
Gowers norms Gowers [2001],Gowers [1998] depending on the set of moments we
need to control.

The ultra limit method:

1. The ultra limit space Let Q denote the ultra product of some sequence fQig
1
i=1

in Q. There is an ultra product � -algebra A and an ultra product measure � on
Q that comes from the measure space structures on Qi by a known construction.
Each uniformly bounded function system ffi 2 L1(Qi )g

1
i=1 has an ultra limit

function f 2 L1(Q;A; �) and each function g 2 L1(Q;A; �) arises this way
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(up to 0 measure change). We can also lift the moments in M and the norm k:kU to
L1(Q;A; �). Note that k:kU usually becomes a seminorm on L1(Q;A; �) and
thus it can take 0 value.

2. Characteristic factors of the ultra limit space: Similarly to ergodic theory our
goal here is to identify a sub � -algebra AU in A such that k:kU is a norm on
L1(Q;AU ; �) and kf � E(f jAU )kU = 0 holds for every f 2 L1(Q;A; �).
With this property we also obtain that m(f ) = m(E(f jAU )) and
m(f � E(f jAU )) = 0 holds.

These equations imply that the information on the values of the moments is com-
pletely encoded in the projection to AU . Once we identify this � -algebra, the goal
is to understand its structure. Note that AU is a huge non-separable � -algebra. The
next step is to reduce it to a separable factor.

3. Separable realization: Let us fix a function in f 2 L1(Q;AU ; �). Our goal here
is to find a separable (countable based) sub � -algebra Af in AU which respects
certain operations that come from the algebraic structure ofQ but at the same time
f 2 L1(Q;Af ; �).

Note that f itself generates a separable sub � -algebra inA. However this � -algebra
does not automatically respects the algebraic structure on Q. For example in case
of graphs Q = V � V where Qi = Vi � Vi and V is the ultraproduct of fVig

1
i=1.

Here we look for a separable � -algebra that respects this product structure i.e. it is
the ”square” of some � -algebra on V.

4. Topologization and algebraization (the separable model): The setQ is naturally
endowed with a � -topology Szegedy [n.d.(b)]. Our goal here is to find a compact,
Hausdorff, separable factor topology with factor map � : Q ! X such that the
� algebra generated by � is Af . We also wish to construct an algebraic structure
on X such that � is a morphism in an appropriate category. This way we can find
a Borel measurable function f 0 : X ! C such that f 0 ı � = f holds almost
everywhere. Now we regard (X; f 0) as a separable model for the non standard
object Q together with f .

This is the part of the method where we came back from the non standard universe
to the world of reasonable, constructible structures. Note however that many times
the algebraic structure on X is (has to be) more general than the structures in Q. It
is in a class Q containing Q. In other words the non standard framework ”teaches”
us how to extend the class Q to get a limit closed theory. This was very beneficial in
case of higher order Fourier analysis where the non standard framework ”suggested”
the class of nilspaces Camarena and Szegedy [2010].
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5. Using the separable model for limit theory and regularization: There are two
main application of the separable model of a function on Q. The first one is that
if ffi : Qi ! Rg1

i=1 is a convergent sequence of uniformly bounded functions
then the separable model for their ultra limit is an appropriate limit object for the
sequence. The second application is to prove regularity lemmas in F or more gen-
erally for functions on elements in Q.

Let Q 2 Q and f 2 L1(Q;�Q) with jf j � 1. A regulaity lemma is a decompo-
sition theorem of f into a structured part and a quasi random part.

5 Higher order Fourier analysis: limit theory and nilspaces

Fourier analysis is a very powerful tool to study the structure of functions on finite or more
generally compact Abelian groups Rudin [1990]. If f : A ! C is a measurable function
inL2(A;�A) (where�A is the Haarmeasure onA) then there is a unique decomposition of
the form f =

P
�2Â c�� converging inL

2 where Â is the set of linear characters ofA and
the numbers c� 2 C are the Fourier coefficients. Note that for finite A the Haar measure
is the uniform probability measure on A. The uniqueness of the decomposition follows
from the fact that Â is a basis in the Hilbert space L2(A;�A). It is also an important fact
that the characters them self form a commutative group, called dual group, with respect
to point-wise multiplication.

In 1953 Roth used Fourier analysis to prove a lower bound for the number of 3 term
arithmetic progressions in subsets of cyclic groups Roth [1953]. In particular it implies that
positive upper density sets in Z contain non trivial 3-term arithmetic progressions. The
same problem for k-term arithmetic progressions was conjectured by Erdős and Turán in
1936 and solved by Szemerédi [1975] in 1974. Szemerédi’s solution is completely com-
binatorial. It is quite remarkable that despite of the strength of Fourier analysis it is less
useful for higher than 3 term arithmetic progressions (although it was extended for 4 term
progressions in 1972 Roth [1972]). A deep reason for this phenomenon was discovered by
Gowers [2001], Gowers [1998] in 1998. His results gave a new insight into how densities
of additive patterns behave in subsets of Abelian groups by revealing a hierarchy of struc-
tural complexity classes governed by the so-called Gowers norms. Roughly speaking, at
the bottom of the hierarchy there is the universe of structures, or observable quantities
that can be detected by the dominant terms in Fourier decompositions. In particular the
density of 3-term arithmetic progressions belongs to this part of the hierarchy. However it
turns out that Fourier analysis does not go deep enough into the structure of a function (or
characteristic function of a set) to clearly detect 4 or higher term arithmetic progressions:
this information may be ”dissolved” into many small Fourier terms. The Gowers norms
U2; U3; : : : provide an increasingly fine way of comparing functions from a structural
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point of view. The U2 norm is closely connected to Fourier analysis. Gowers formulated
the following very far reaching hypothesis: for every natural number k there is a k-th
order version of Fourier analysis that is connected to the Uk+1 norm. In particular k-th
order Fourier analysis should be the appropriate theory to study k + 2 term arithmetic
progressions.

Gowers coined the term ”higher order Fourier analysis” and he developed a version of
it that was enough to improve the bounds in Szemerédi’s theorem. However the following
question was left open: Is there some structural decomposition theorem in k-th order
Fourier analysis that relates the Uk norm to some algebraically defined functions similar
to characters? The intuitive meaning behind these norms is that kf kUk

is small if and
only if f is quasi random in k�1-th order Fourier analysis. A way of posing the previous
question is the following: For each k let us find a set of nice enough functions (called
structured functions) such that for jf j � 1 we have that kf kUk

is non negligible if and
only if f has a non negligible correlation with one of these functions. (In case of the
U2 norm the set of linear characters satisfy this property.) Such a statement is called an
inverse theorem for the Uk norm. Despite of that fact that an inverse theorem is seemingly
weaker than a complete decomposition theorem, known techniques can be used to turn
them into Szermerédi type regularity lemmas.

There are several reasons why higher order Fourier analysis can’t be as exact and rigid
as ordinary Fourier analysis. One obvious reason is that linear characters span the full
Hilbert space L2(A;�A) and thus there is no room left for other basis elements. Quite
surprisingly this obstacle disappears in the limit. If we have an increasing sequence of
finite Abelian groups Ai , then there are very many function sequences fi : Ai ! C such
that kfik2 = 1 and fi is more and more orthogonal to every character � i.e. kf̂ik1 goes
to 0. On the ultra limit group A we find that ultra limits of linear characters generate only
a small part of the Hilbert space L2(A; �). This leaves more than enough room for higher
order terms. In the rest of this chapter we give a short introduction to Gowers norms and
explain how they lead to exact higher order Fourier decompositions in the limit. Then we
explain an even deeper theory describing the algebraic meaning of these decompositions
in terms of nilspace theory Host and Kra [2008b],Camarena and Szegedy [2010]. This
leads to general inverse theorems and regularity lemmas for the Gowers norms on arbitrary
compact abelian groups Szegedy [n.d.(b)]. Note that another but not equivalent approach
to inverse theorems was developed by Green, Tao, and Ziegler [2012],Tao and Ziegler
[2012] for various classes on abelian groups. They were particularly interested in inverse
theorems fromGowers norms for integer sequences Green, Tao, and Ziegler [2012] since it
leads to spectacular number theoretic applications developed by andGreen and Tao [2010].
It is important to mention that in Ergodic theory, the Host-Kra seminorms Host and Kra
[2005] play a similar role in measure preserving systems as Gowers norms do on compact
Abelian groups. Thus a tremendous amount of great ideas were transported from ergodic
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theory (especially from the works of Host and Kra [ibid.],Host and Kra [2008b],Host and
Kra [2008a] and Ziegler [2007]) to higher order Fourier analysis.

Let ∆t : L
1(A;�A) ! L1(A;�A) denote the multiplicative ”differential operator”

defined by (∆tf )(x) := f (x)f (x + t). Since ∆t1(∆t2(f )) = ∆t2(∆t1(f )) we can
simply use multi indices∆t1;t2;:::;tk . The Uk norm of a function f is defined by

kf kUk
:=

�
Ex;t1;t2;:::;tk (∆t1;t2;:::;tkf )(x)

�1/2k

:

Note that Uk is only a norm if k � 2. If k = 1 then kf kU1
= jE(f )j and thus it is a

seminorm. It was observed by Gowers that kf kU2
is the l4 norm of the Fourier transform

of f showing the connection between the U2 norm and Fourier analysis.
We say that fAig1

i=1 is a growing sequence of compact Abelian groups if their sizes tend
to infinity. (If the size of a group A is already infinite then the constant sequence Ai = A

satisfies this.) Let A be the ultra product of a growing sequence of Abelian groups. The
Gowers norms are also defined for functions in L1(A;A; �). Quite surprisingly, all the
Gowers norms become seminorms in this non-standard framework. For each Uk the set
Wk = ff : kf kUk

= 0g is a linear subspace in L1(A;A; �). It turns out that the
orthogonal space of Wk in L2 is equal to L2(A; Fk�1; �) for some sub � -algebra Fk�1

in A. Intuitively, Fk is the � -algebra of the k-th order structured sets. The next theorem
from Szegedy [n.d.(a)] (and proved with different methods in Szegedy [n.d.(b)]) uses these
� -algebras to define higher order Fourier decompositions.

Theorem 2. Let A be as above. Then

1. For each natural number k there is a unique � -algebra Fk � A such that Uk+1 is
a norm on (A; Fk ; �) and kf � E(f jFk)kUk+1

= 0 for every f 2 L1(A;A; �).

2. We have thatL2(A; Fk ; �) =
L
W 2Âk

W where Âk is the set of shift invariant rank
one modules in L2(A; Fk ; �) over the algebra L1(A; Fk�1; �) and the sum is an
orthogonal sum.

3. Every function f 2 L1(A;A; �) has a unique decomposition in the form

f = f � E(f jFk) +
X
W 2Âk

PW (f )

converging inL2 where PW is the projection of f to the rank one module Âk . Note
that only countably many terms in the sum are non-zero.

4. The set Âk is an Abelian group (called k-th order dual group) with respect to point
wise multiplication (using bounded representatives chosen from the modules).
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Linear characters are in shift invariant one dimensional subspaces on L2(A;�A) and
each one dimensional subspace is a module over L1 of the trivial � -algebra. This way
the above theorem is a direct generalization of ordinary Fourier decomposition. The fact
that higher order generalizations of the dual group appear in the limit already shows the
algebraic benefits of the limit framework however, as we will see soon, this is just the sur-
face of an even deep algebraic theory. Theorem 2 can also be turned back to statements
on usual compact Abelian groups using standard methods, however the exact nature dis-
appears and various errors appear.

Theorem 2 does not give a full explanation of the algebraic nature of higher order
Fourier analysis. It does not provide a structural description of how the rank one modules
look like. To obtain a complete algebraic characterization the new theory of nilspaces was
needed which generalizes to notion of Abelian groups. This theory was developed in Ca-
marena and Szegedy [2010] but it was initiated in a different form in Host and Kra [2008b].
More detailed lecture notes on Camarena and Szegedy [2010] is Candela [2017b],Candela
[2017a]. Here we give a brief description of nilspace theory and explain how it appears in
higher order Fourier analysis.

A combinatorial cube of dimension n is the product set f0; 1gn. A morphism between
two combinatorial cubes is a map f : f0; 1gn ! f0; 1gm such that it extends to an affine
homomorphism (a homomorphism and a shift) from Zn to f0; 1gm. A combinatorial de-
scription of morphisms is the following: each coordinate of f (x1; x2; : : : ; xn) is one of 1,
0, xi and 1�xi for some i 2 [n]. For example f (x1; x2; x3; x4) := (1; x1; x1; 1�x1; x2; 0)

is morphism from f0; 1g4 to f0; 1g6. An abstract nilspace is a set N together with maps
(also called morphisms) from cubes to N satisfying three simple axioms. For each k we
denote by C k(N ) � N f0;1gn the set of morphisms from f0; 1gn to N .

1. Composition axiom: If f : f0; 1gn ! f0; 1gm is a morphism and g 2 Cm(N )

then g ı f 2 C n(N ).

2. Ergodicity axiom: C 1(N ) = N f0;1g (Every map f : f0; 1g ! N is a morphism.)

3. Completion axiom: Let f : f0; 1gn n f1ng ! N be a function such that its re-
striction to every n � 1 dimensional face of f0; 1gn is a morphism. Then f can be
extended to a function f̃ : f0; 1gn ! N such that f̃ is a morphism.

If the completion in the last axiom is unique for some n then N is called an n� 1 step
nilspace. One step nilspaces are Abelian groups such that f : f0; 1gn ! A is a morphism
if and only if it can be extended to a map Z ! A which is an affine morphism. We give
a general family of examples for nilspaces.
The group construction: LetG be an at most k-nilpotent group. Let fGigk+1

i=1 be a central
series with Gk+1 = f1g, G1 = G and [Gi ; Gj ] � Gi+j . We define a cubic structure on
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G which depends on the given central series. The set of n morphisms f : f0; 1gn ! G is
the smallest set satisfying the following properties.

1. The constant 1 map is a cube,

2. If f : f0; 1gn ! G is a cube and g 2 Gi then the function f 0 obtained from f

by multiplying the values on some (n � i)-dimensional face from the left by g is a
cube.

Let Λ � G be a subgroup in G and let N = fgΛ : g 2 Gg denote the set of left cosets of
Λ in G. We define C n(N ) to be the set of morphisms f : f0; 1gn ! G composed with
the map g 7! gΛ. It can be verified that N with this cubic structure is a nilspace.
Example 1.) higher degree abelian groups: In the previous construction if G is abelian,
G1; G2; : : : ; Gk = G, Gk+1 = f1g and Λ = f1g then G with the above cubic structure
is called a k-degree Abelian group. It is true that 1-degree Abelian groups are exactly the
one step nilspaces. Every k-degree Abelian group is a k-step nilspace. However there are
many more k-step nilspaces for k � 2.
Example 2.) nilmanifolds: LetG be a connected nilpotent Lie group with some filtration
and assume that Λ is a discrete co-compact subgroup. Then the left coset space of Λ is a
compact manifold. The above construction produces a nilspace structure on N .

We can talk about topological or compact nilspaces. Assume that N is a topological
space an C n(N ) � N f0;1gn is closed in the product topology. Then we say that N is
a topological nilspace. If N is a compact (Hausdorff and second countable) topologi-
cal nilspace then we say that N is a compact nilspace. Nilspaces form a cetegory. A
morphism between two nilspaces is a function f : N ! M such that for every n and
g 2 C n(N ) we have that f ı g is in C n(M ). In the category of compact nilspaces we
assume that morphisms are continuous. The next theorem Szegedy [n.d.(b)] gives an al-
gebraic description of the � -algebras on A. Note that the Abelian group A is a one step
nilspace.

Theorem 3. Let f 2 L1(A;A; �). Then f is measurable in Fk if and only if there is a
morphism  : A ! N into a k-step compact nilspace such that

1.  is continuous in the � -topology on A.

2. There is a Borel function g : N ! C such that f = g ı  almost surely.

The above theorem shows that in the limit, the k degree structured functions are exactly
those that factor through k-step compact nilspaces. This statement also implies inverse the-
orems for the Gowers norms on compact Abelian groups, however they are more technical.
The reason for the difficulty is that the clean qualitative separation between complexity
classes that we detected in the limit on A becomes a more quantitative issue for concrete
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compact Abelian groups. For this reason we need to involve notions such as the complex-
ity of a nilspace and a function on it. We mention that the structured functions that appear
in the inverse theorem for the Uk+1 norm (see Szegedy [n.d.(b)]) have the form g ı 

where  is a morphism from A to a bounded complexity, finite dimensional nilspace N
and g is a continuous function with bounded Lipschitz constant.
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EXTREMAL THEORY OF ORDERED GRAPHS

Gගൻඈඋ Tൺඋൽඈඌ

Abstract

We call simple graphs with a linear order on the vertices ordered graphs. Turán-
type extremal graph theory naturally extends to ordered graphs. This is a survey on
the ongoing research in the extremal theory of ordered graphs with an emphasis on
open problems.

1 Definitions

An ordered graph is a simple graph with linear order on the vertices. Formally, an ordered
graph is triple (V; E; <), whereV is the vertex set,E �

�
V
2

�
is the edge set and< is a linear

order relation on V . In this survey we assume that V is finite. We say that (V; E) is the
simple graph underlying the ordered graph (V; E; <) and that the ordered graph (V; E; <

) is an ordering of the simple graph (V; E). The notion of subgraph and isomorphism
naturally extend to ordered graphs: the ordered graphs (V; E; <) and (V 0; E 0; <0) are
isomorphic if there is an order preserving isomorphism between the graphs (V; E) and
(V 0; E 0). The ordered graph (V 0; E 0; <0) is an ordered subgraph of (V; E; <) if V 0 � V ,
E 0 � E and <0 is the restriction of < to V 0.

Armed with this definition we can extend some classic areas of graph theory to ordered
graphs. Here we do this for Turán-type extremal graph theory. It asks for the maximal
number of edges in a simple graph of given size that avoids (i.e., does not contain as a
subgraph) a specified pattern or all members of a given family of patterns. In particular,
we are interested in the maximal number, ex(P ; n), of edges in an n-vertex simple graph
that has no subgraph isomorphic to any member of the family P . Note that we must
require that P does not contain empty graphs in order for this definition to make sense.
If the forbidden pattern is a singleton we write ex(P; n) to denote ex(fP g; n). We call
ex(P ; n) the extremal function of the family P and will concentrate on its asymptotic
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behavior. Accordingly, all the asymptotic notations like O(�), o(�) should be interpreted
for a fixed family P and, in particular, the implied constants in O(�) may depend on this
family.

For a natural extension of this theory to ordered graphs, we consider a family P of or-
dered graphs and we are looking for the largest number ex<(P ; n) of edges in an n-vertex
ordered graph with no ordered subgraph isomorphic to any member of P . As before, we
require that each member of P has at least one edge and simplify the notation for single-
ton families by writing ex<(P; n) to denote ex<(fP g; n). Our remark on the asymptotic
notation also applies here.

Let us first observe that the extremal theory of ordered graph is strictly richer than
classical extremal graph theory in the sense that the classical questions can be equivalently
asked in this setting, but we can also ask new questions. In particular, for any family P
of simple graphs one can form the family P< consisting all orderings of the patterns in P
and then we trivially have:

ex(P ; n) = ex<(P<; n):

On the other hand, if we forbid, say, a single ordered graph P , the corresponding ex-
tremal function ex<(P; n) has no direct analogue in the classical theory. We naturally
have ex<(P; n) � ex(P ; n), where P is the simple graph underlying P , but this lower
bound is typically very weak, since avoiding P in a particular order is often much easier
than avoiding it in all possible orders.

Extensions of Ramsey theory to ordered graph is also studied extensively, see Balko,
Cibulka, Král, and Kynčl [2015] and Conlon, Fox, Lee, and Sudakov [2017].

2 Basic results

Any survey about extremal graph theory should start with the following classical theorem
of Turán [1941], of which the r = 2 special case (the maximal number of edges in a
triangle-free graph) was proved by Mantel in 1907. The result gives the exact extremal
function when the forbidden graph is a complete graph. Further, for the (r + 1)-vertex
complete graph Kr+1 the theorem states that the unique (up to isomorphism) n-vertex
graph with the maximum number of edges avoiding Kr+1 is the Turán graph T (n; r)

formed by partitioning the vertices into r almost equal parts and letting a pair of vertices
form an edge if and only if they are from distinct parts. Note that the number of edges of
the Turán graph T (n; r) is (1� 1/r)n2/2� O(1), where the O(1) error term comes from
unequal parts and can go as high as br/8c. As a consequence, we have:

Theorem 1 (Turán [ibid.]). For every r � 1 we have

ex(Kr+1; n) = (1 �
1

r
)
n2

2
� O(1):
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A trivial generalization of this result to ordered graphs involves the ordered clique, the
unique ordering of the complete graph. Let Kr+1;< stand for the (r + 1)-vertex ordered
clique and we trivially have ex<(Kr+1;<; n) = ex(Kr+1; n). A more revealing general-
ization is about the ordered path Pr+1;< obtained from the (r +1)-vertex path Pr+1 with
the natural order on the vertices where edges connect neighboring vertices in the order.
We have ex<(Pr+1;<; n) = ex(Kr+1; n). Here the direction � follows from the fact that
Pr+1;< is an ordered subgraph of Kr+1;< and � follows from the fact that if we order
the vertices of T (n; r) in a way that the r parts become intervals in the ordering, then the
resulting ordered graph does not contain Pr+1;< as an ordered subgraph. Note, however,
that in the case r does not divide n, this process may yield several non-isomorphic ex-
tremal ordered graphs. Note also that the path Pr+1 has several non-isomorphic orderings
for r > 1, and by Theorem 3 below, all other orderings have smaller extremal functions.

The most general result in Turán-type extremal graph theory is the following conse-
quence of the Erdős–Stone theorem, Erdős and Simonovits [1966]. It basically states that
the extremal function of any simple graph is close to the extremal function of the complete
graph with the same chromatic number.

Theorem 2 (Erdős and Stone [1946] and Erdős and Simonovits [1966]). Let P be a family
of simple graphs and r+1 = minP 2P �(P ) be the smallest chromatic number of amember
of this family. We have

ex(P ; n) = (1 �
1

r
)
n2

2
+ o(n2):

Pach and Tardos [2006] gave a generalization of this result for ordered graphs. It is
based on finding the “correct” version of the chromatic number for ordered graph.

The interval coloring of an ordered graph is a proper coloring of the underlying simple
graph in which each color class is an interval of the linear order. The interval chromatic
number of an ordered graph P is the smallest number of colors in an interval coloring of
P . We write �<(P ) to denote the interval chromatic number of P .

Note that the interval chromatic number is much simpler to compute than the chromatic
number because a greedy strategy suffices. Indeed, we can form the first color class by
taking longest initial segment of the vertices that form an independent set and proceed sim-
ilarly for subsequent color classes. The process yields an interval coloring with the fewest
possible colors. Using this definition, the generalization of the Erdős–Stone–Simonovits
theorem is rather straightforward:

Theorem3 (Erdős–Stone–Simonovits Theorem for ordered graphs Pach and Tardos [ibid.]).
Let P be a family of ordered graphs and r +1 = minP 2P �<(P ) be the smallest interval
chromatic number of a member of this family. We have

ex<(P ; n) = (1 �
1

r
)
n2

2
+ o(n2):
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Just as the classic version of this theorem, it gives exact asymptotics for the extremal
function of ordered graphs unless the ordered graph is ordered bipartite (i.e., has interval
chromatic number 2). We will therefore concentrate on ordered bipartite graphs. Con-
tainment between ordered bipartite graphs can also be visualized using the language of
containment in 0-1 matrices. This connection is explored in the next section.

3 Connection to 0-1 matrices

A 0-1 matrix is simply a matrix with all entries being 0 or 1. The weight of such a matrix
is the number of its 1-entries. A 0-1 matrix A is said to contain another 0-1 matrix P

if P is a submatrix of A or P is obtained from a submatrix of A by replacing some 1-
entries with 0-entries. Note that permuting rows or columns is not allowed. If A does not
contain P , we say it avoids P . The extremal problem for 0-1 matrix containment can be
formulated as computing (or estimating) the following extremal function for families P
of 0-1 matrices: Ex(P ; n) is the maximal weight of an n-by-n 0-1 matrix that avoids all
matrices in P . We require that all matrices in P have positive weights. We write Ex(P; n)

to denote Ex(fP g; n).
For a 0-1 matrix P , let GP stand for the ordered bipartite graph whose vertices corre-

spond to the rows and columns ofP , the order of the vertices agrees with the order of rows
and columns in P with all row-vertices preceding all column vertices, and with an edge
between a row-vertex and a column-vertex if and only if the corresponding entry in P is
1. This makes P the bipartite adjacency matrix of GP and turns the weight of P into into
the number of edges in GP . The close connection between the extremal theory of ordered
bipartite graphs and 0-1 matrices follows from the trivial observation that if a 0-1 matrix
A contains another 0-1 matrix P , then the ordered graph GA also contains GP . The con-
verse is also true if the homomorphism of GP to GA maps row-vertices to row-vertices
and column-vertices to column-vertices. This extra condition is automatically satisfied if
both the last row and first column of P contain at least one 1-entry, so in this case we have
Ex(P; n) � ex<(GP ; 2n). There is no equality in general, because ex<(GP ; 2n) is the
maximum number of edges among all ordered graphs on 2n vertices avoiding GP and the
extremal ones may not be ordered bipartite. Still, the two extremal functions are really
close to each other as shown by the following observation:

Theorem 4 (Pach and Tardos [2006]). For a 0-1 matrix P and the corresponding ordered
bipartite graph Gp we have

Ex(n; P ) � ex<(2n; Gp) = O(Ex(n; P ) logn):
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The logarithmic term in the bound above is needed even for some small matrices, e.g.,
for the matrix

P =

 
1 1

0 1

!
:

For this matrix, we have Ex(n; P ) = 2n � 1, but for the corresponding ordered graph
GP one has ex<(n; GP ) = n logn + O(n), where log stands for the binary logarithm. A
construction showing the lower bound for this estimate is an ordered graph whose vertices
are adjacent if and only if their distance in the ordering is a power of 2.

The extremal theory of 0-1 matrices predates the related theory of ordered graphs.
Füredi [1990] established the extremal function for a specific 2-by-3 0-1 matrix and used
this result for a problem in combinatorial geometry: he bounded the number of diagonals
of equal length in a convex n-gon. Independently, Bienstock and Győri [1991] found the
extremal function of few small 0-1 matrices. Later Füredi and Hajnal [1992] started a
systematic study of the extremal theory of 0-1 matrices. This latter paper not only con-
tained many nice results, but was also rich in conjectures and had a significant effect on
future research. As we will see, some of these conjectures have since been proved, others
disproved and some are still open.

4 Relation between ordered and unordered extremal functions

A (too) general conjecture that appeared in Füredi and Hajnal [ibid.] can be informally
stated as
Conjecture 1. For all 0-1 matrix P of positive weight we have

Ex(P; n) � ex(GP ; n);

where GP is the simple graph underlying the ordered graph GP .
This conjecture connects ordered extremal theory to the classical unordered one. We

clearly have an inequality in one direction:

Ex(n; P ) � ex<(2n; GP ) � ex(2n; GP ) = O(ex(n; GP )):

By Theorem 4, the first inequality is almost tight for any pattern, so we concentrate of the
second inequality and ask how large the ratio between the two sides can be:
Question 1. How high can the ratio ex<(n;P )

ex(n;P )
be for an ordered bipartite graph P with

more than two vertices and at least one edge and its underlying simple graph P ?
The paper Pach and Tardos [2006] gives an orderingPk of the cycleC2k with ex<(n; Pk) =

Ω(n4/3). Using the Bondy-Simonovits theorem on the extremal function of cycles Bondy
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and Simonovits [1974], one obtains that the ratio in Question 1 for the pattern P = Pk is
Ω(n1/3�1/k), which disproves Conjecture 1. We do not know if any pattern with higher
ratio, sayΩ(n1/3) exists. For an upper bound, we trivially have O(n), as both the enumer-
ator and the denominator are functions between n and n2. In fact, they are O(n2��) for
some � > 0 depending on the size of P by the Kővári–Sós–Turán theorem Kövari, Sós,
and Turán [1954], so the ratio is always O(n1��), but no better upper bound is known.

5 Forests

The Füredi and Hajnal [1992] formulated the special case of Conjecture 1 for cycle-free
patterns P separately. Here we call a 0-1 matrix P cycle-free if the corresponding simple
graph GP is cycle-free, that is a forest. In this case, ex(n; GP ) (the extremal function of
an unordered forest) is trivially linear. Concerning the corresponding question for ordered
graphs, we formulate the following conjecture:
Conjecture 2 For an ordered bipartite forest P and any c > 1, we have

ex<(P; n) = o(nc):

Note first that if this conjecture is true, then it characterizes the ordered graphs with
almost linear extremal functions. Indeed, if P is not ordered bipartite, then ex<(P; n) =

Θ(n2) by Theorem 3, while if the underlying graph P contains a cycle, then ex<(P; n) �

ex(P ; n) = Ω(nc) for some c > 1.
Note that o(nc) for all c > 1 is not the only possible way to quantify the notion that

a function is “close to linear”. One could formulate a stronger conjecture with a bound
O(n logc n) for a constant c = cP depending on P , or even with an O(n logn) bound.
Conjecture 2 and the conjecture with the O(n logc n) bound are still open and by Theo-
rem 4 are equivalent to the similar conjectures about Ex(P; n) for cycle-free 0-1 matrices
P . The strongest form of the conjecture (an O(n logn) bound) was also considered for
a while and was supported by the fact that it was easy to find an extremal function of the
order Θ(n logn), but there was no known example of an ordered bipartite forest whose
extremal function grows faster. Note that here the distinction between cycle-free 0-1 ma-
trices and ordered bipartite forests is meaningful. As we have seen above, there exists
a three-edge ordered bipartite path whose extremal function is Θ(n logn). Although the
extremal function of the corresponding 2-by-2 matrix is linear, there is a 3-by-2 0-1 ma-
trix whose extremal function isΘ(n logn). This was the first 0-1 matrix considered in the
context of extremal functions in the papers Füredi [1990] and Bienstock and Győri [1991].

Pettie [2011] found a cycle-free 0-1 matrix P with extremal function slightly higher
than n logn: for this matrix P one has Ex(P; n) = Ω(n logn log logn). By this, he
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disproved the strengthening of Conjecture 2 with the O(n logn) upper bound, but the
conjecturemay still hold with the boundO(n log2 n). Pettie’s result was slightly improved
and the current best lower bound is due Park and Shi [n.d.]. They found a cycle-free 0-1
matrix Pm with Ex(Pm; n) = Ω(n logn log logn � � � log(m) n), where log(m) denotes the
m-times-iterated logarithm function.

On the positive side, ex<(P; n) = O(n logc n) was established in Pach and Tardos
[2006] for all ordered bipartite forests with at most 6 vertices. The most general result
in this direction is due to Korándi, Tardos, Tomon, and Weidert [2017]. They call a 0-1
matrix M vertically degenerate if for any submatrix M 0 = (aij ) of M consisting of l > 1

rows one can find 1 � k < l such that M 0 has at most one column j with two 1-entries
aij = ai 0j = 1 satisfying 1 � i � k < i 0 � l . Note that all vertically degenerate 0-1
matrices are cycle-free. All cycle-free 0-1 matrices with at most three rows are vertically
degenerate, but there are 4-row cycle-free 0-1 matrices that are not vertically degenerate.
Using a density increment argument they prove the following theorem.

Theorem 5 (Korándi, Tardos, Tomon, and Weidert [ibid.]). Let M be a vertically degen-
erate 0-1 matrix with l rows. We have

Ex<(M; n) = n2O(log1�1/l n):

This result implies that Conjecture 2 holds for all ordered graphs GM , where M is
a vertically degenerate 0-1 matrix. By symmetry, Conjecture 2 is also true for all GM ,
where M is horizontally degenerate, that is, the transpose of M is vertically degenerate.
Conjecture 2 has not been verified for any other ordered bipartite forest. The smallest of
these open cases is an ordered path on 8 vertices.

6 Linear extremal functions

Füredi and Hajnal [1992] conjectured, and later Marcus and Tardos [2004] proved, that
Ex(P; n) = O(n) for permutation matrices P . It is not hard to see that this result can
be restated in the following equivalent form (although Theorem 4 does not directly imply
this equivalence).

Theorem 6. The extremal function of any ordered bipartite matching P is linear. That is,

Ex(P; n) = O(n):

Conjecture 2, if true, characterizes all ordered graphs with almost linear extremal func-
tions. It would be nice to find a characterization of ordered graphs or 0-1 matrices with
linear extremal functions. One possibility is finding allminimally nonlinear matrices. We
call a 0-1 matrix P minimally nonlinear, if its extremal function Ex(P; n) is nonlinear,
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but Ex(P 0; n) = O(n) for all 0-1 matrices P 0 ¤ P contained in P . It might be possible
to find such a characterization, but the following theorem indicates that this might be a
difficult task:

Theorem 7 (Geneson [2009] and Keszegh [2009]). There are infinitely many minimally
nonlinear matrices.

7 Interaction between ordered graphs

We finish this survey with a few remarks on interactions between extremal functions of dif-
ferent forbidden patterns. Let us start with the classical extremal theory of graphs. Clearly,
we have

ex(fG; H g; n) � min(ex(G; n); ex(H; n)): (�)

By Theorem 2, the two sides are asymptotically the same for non-bipartite graphs G and
H . It is easy to see that they differ by a factor of less than 2 if only one of the graphs
is bipartite. For bipartite graphs, the situation is more complicated. We say that G and
H interact if the two sides differ more than by a constant factor. It is not known if there
exists any interacting pair of graphs, but Faudree and Simonovits [n.d.] conjecture that the
cycle C4 and the subdivision of the complete graph K4, in which each edge is subdivided
with a single new vertex, do interact.

In contrast, for 0-1 matrices it is not hard to find a lot of interactions. Consider the
3-by-2 matrix M1 =

�
1 1 0
1 0 1

�
. Füredi [1990] and Bienstock and Győri [1991] proved that

Ex(M1) = Θ(n logn). By symmetry, the extremal functions of the matricesM2 =
�
1 0 1
1 1 0

�
,

M3 =
�
0 1 1
1 0 1

�
and M4 =

�
1 0 1
0 1 1

�
are same. The following theorem implies that each of M2,

M3 and M4 interacts with M1:

Theorem 8 (Tardos [2005]).

Ex(fM1; M2g; n) = Θ(n)

Ex(fM1; M3g; n) = Θ(n logn/ log logn)

Ex(fM1; M4g; n) = Θ(n log logn)

These results represent the first step toward exploring interactions between different
patterns. It would be interesting to find “stronger” interactions, where the ratio between
the right and left sides of (*) is larger than logarithmic.
Question 2 Are there ordered graphs G and H such that

ex<(fG; H g; n) = O(min(ex<(G; n); ex<(H; n))/n�)

for some � > 0?
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ASYMPTOTIC ENUMERATION OF GRAPHS WITH GIVEN
DEGREE SEQUENCE

Nංർඁඈඅൺඌ Wඈඋආൺඅൽ

Abstract

We survey results on counting graphs with given degree sequence, focusing on
asymptotic results, and mentioning some of the applications of these results. The main
recent development is the proof of a conjecture that facilitates access to the degree
sequence of a random graph via a model incorporating independent binomial random
variables. The basic method used in the proof was to examine the changes in the
counting function when the degrees are perturbed. We compare with several previous
uses of this type of method.

1 Introduction

We sometimes count objects in a class simply because they are there. This is especially true
if they are abundantly occurring as mathematical objects (e.g. partitions, sets, or graphs
with certain properties), and then we are often pleased if we obtain a simple formula. For
example, the number of trees on n vertices is nn�2. But we cannot hope for simple formu-
lae in all cases, and even if we are extremely lucky and the formula is not very complicated,
it may be hard to find or difficult to prove. Yet a formula is often useful in order to prove
other things, and for such purposes we are frequently satisfied with an approximate or
asymptotic formula. For instance, many results in probabilistic combinatorics (see e.g.
Alon and Spencer [2000]) use such estimates.

The problems considered here involve graphs or, in an alternate guise, matrices. A non-
negative integer m � n matrix A with row sums r = (r1; : : : ; rm) and column sums s =
(s1; : : : ; sn) is equivalent to a bipartite multigraph G with vertex set V1 [ V2 where V1 =

fu1; : : : ; umg and V2 = fv1; : : : ; vng. The (i; j ) entry of the matrix is the multiplicity of
the edge ui vj . Here A is the adjacency matrix of G. If A is 0-1 (binary) then G has no
multiple edges and is thus a (simple) bipartite graph. If every row sum is 2, then A is the
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incidence matrix of a multigraph with degree sequence s. If A is symmetric, then it is also
the adjacency matrix of a pseudograph H (where loops and multiple edges are permitted).
We can obtain H from G by identifying ui with vi , i = 1; : : : ; n. If A furthermore has
zero diagonal, then H is a multigraph, and if is in addition 0-1, then H is a graph. For
the bulk of this article, we discuss only the enumeration of graphs, bipartite graphs and
multigraphs on a given set of vertices, without mentioning the immediate corollaries for
matrices.

We focus on graphs with given degree sequence d = (d1; : : : ; dn), where di is the
degree of vertex i . For this purpose we normally implicitly assume that n is the number
of vertices in the graphs concerned, and that they have vertex set f1; : : : ; ng. An early
example of a formula concerning such graphs is from Moon [1970]: the number of trees
with degree sequence d is precisely 

n � 2

d1 � 1; : : : ; dn � 1

!
=

(n � 2)!

(d1 � 1)! � � � (dn � 1)!
:

A graph is d -regular if its degree sequence is (d; d; : : : ; d ). No such neat formula is
known for the number gd;n of d -regular graphs on n vertices, but we do have the asymp-
totic formula

(1-1) gd;n ∼
(dn)!e�(d2�1)/4

(dn/2)!2dn/2
Q

di !

as n ! 1 with d fixed. Here a ∼ b means a = b(1 + o(1)), with o() the Landau
notation. This and many more developments are described in Section 2.

Counting graphs by degree sequence is strongly related to finding the distribution of
the degree sequence of a random graph on n vertices in either of the two most common
random graph models. In the model G(n; p), where edges occur independently and each
with probability p, the degree of a vertex is distributed binomially as Bin(n � 1; p), but
the degrees of the vertices are not independent of each other. Bollobás [2001] devotes an
early chapter to this topic. The model G(n; p) can be viewed as a mixture of the models
G(n; m), where m is distributed binomially as Bin

�
n(n � 1)/2; p

�
. Here, G(n; m) has m

edges selected from all
�

n
2

�
possible positions uniformly at random. We use g(d) to denote

the number of graphs with degree sequence d. Then the probability that a random graph
G 2 G(n; m) has degree sequence d can be evaluated precisely as g(d)/

�(n
2)
m

�
.

McKay and Wormald [1990a] made a conjecture (which has now been verified) on the
number of graphs with degree sequence d, for a wide-ranging choice of possible vectors d
stated by Liebenau and Wormald [2017]. Let An and Bn be two sequences of probability
spaces with the same underlying set for each n. Suppose that whenever the event Hn

satisfies P (Hn) = n�O(1) in either model, it is true that PAn
(Hn) ∼ PBn

(Hn). Then we
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say thatAn andBn are asymptotically quite equivalent (a.q.e.). Also, throughout this paper
we use !(f (n)) to denote a function of n such that !(f (n))/f (n) ! 1 as n ! 1.
The conjecture from McKay and Wormald [1997] implies the following two propositions.

Let D(G) denote the (random) degree sequence of a random graph G. Define Bp(n)

to be the random sequence consisting of n independent binomial variables Bin(n � 1; p).
We use QjF to denote the restriction of the probability space Q to an event F . The lack
of specification of p in the following is due to the obvious fact that the restricted space
Bp(n) jΣ=2m is independent of p. The restriction imposed on m in this proposition only
excludes graphs with so few or so many edges that their degree sequence is excruciatingly
boring.

Proposition 1.1. Let Σ denote the sum of the components of the random vector Bp(n).
Let 0 < p < 1. ThenD(G(n; m)) andBp(n) jΣ=2m are a.q.e. provided thatmaxfm;

�
n
2

�
�

mg = !(logn).

This gives a very appealing way to derive properties of the degree sequence of a random
graph with n vertices and m edges: consider independent binomials as above with p =

2m/n(n � 1) and condition on the event Σ = 2m, which has (not very small) probability
Θ(1/

p
p(1 � p)n2). Even more appealing, it was also shown in McKay and Wormald

[ibid.] that a statement like the above proposition would imply the following one.

Proposition 1.2. Let Σ denote the sum of the components of the random vector Bp̂(n),
where p̂ is randomly chosen according to the normal distribution with mean p and vari-
ance p(1 � p)/n(n � 1), truncated at 0 and 1. Then D(G(n; p)) and Bp̂(n) jΣ is even are
a.q.e. provided that p(1 � p) = !(log3 n/n2).

This second proposition gives even easier access to properties of the degree sequence
of the random graph G(n; p), as conditioning on the parity of Σ is insignificant for many
properties, and the effect of the random choice of p̂ can be evaluated by integration. This
was all made explicit in McKay and Wormald [ibid.], where there are a number of helper
theorems tomake it easy to transfer results from the independent binomial modelBp(n). It
was also observed in McKay and Wormald [ibid.], from known asymptotic formulae, that
the main conjecture (and hence also Propositions 1.1 and 1.2) holds when p = o(1/

p
n)

or p(1 � p) > n/c logn. The gap between these ranges, where p(1 � p) is between
roughly 1/

p
n and 1/ logn, was only recently plugged (see Section 4.1), which proved

the main conjecture of McKay and Wormald [1990a] in full.
This gives the following asymptotic formula for the number of graphswith given degree

sequence, that holds provided the degrees are reasonably close to each other. The degree
sequence of a random graph in G(n; p) with high probability falls into the range covered,
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for the p considered here. Given d, let

d =
1

n

nX
i=1

di ;

� = �(n) = d/(n � 1)

and

2 = (n � 1)�2
nX

i=1

(di � d )2:

Also, given a sequence d with even sum 2m, let P (d) denote the probability that d occurs
in the model Bp(n) jΣ=2m. Using Stirling’s formula, we easily find

P (d) ∼
p
2(��(1 � �)1��)n(n�1)/2

Y 
n � 1

di

!
:

Proposition 1.3. For some absolute constant � > 0,

(1-2) g(d) ∼ exp
�1
4

�
2
2

4�2(1 � �)2

�
P (d)

provided that dn is even,maxj jdj �d j = o(n� minfd; n�d �1g1/2) and n2 minf�; 1�

�g ! 1.

Note. Where we state asymptotics such as in (1-2) where we do not explicitly give d as
a function of n, there are two possible interpretations. One is that we do, indeed, consider
d a function of n. Then the limit easily makes sense, and the interpretation should be
that this holds for any d(n) satisfying the given constraints. The other interpretation is
that the asymptotic convergence should contain a bound that is uniform over all d under
consideration. The first interpretation is the default, and two interpretations are easily
seen to be equivalent when the permitted domain of d is suitably closed, such that one can
consider the ‘worst’ sequence d(n) for each n.

The validity of this formula cannot possibly extend to very “eccentric” degree sequences,
in particular certain non-graphical degree sequences (i.e. sequences for which no graph ex-
ists). Examples of degree sequences at the fringe of the formula’s validity can be obtained
as follows. Consider the degree sequence dwith n/2 entries d+x and n/2 of d �x, where
d = o(

p
n) and x � d . By expanding the formula in McKay and Wormald [1991a, The-

orem 5.2] appropriately, we can check that g(d) differs from the formula in (1-2) by a
factor exp

�
x6(2d 2 � x2)/nd 5 + o(1)

�
. Hence, for such d and x, (1-2) is correct iff

x = o(n1/6d 1/2), which is for all x � d when d = o(n1/3), but not for larger d .
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Formulae similar to (1-2) are also now known for bipartite graphs and loopless directed
graphs; see Section 2.3.

The next section traces the development of results on this problem. Section 3 gives a
description and observations on the basic approach used in Liebenau andWormald [2017],
and Section 4 discusses applications of the results (and methods). Some open problems
are mentioned in the last section.

2 Results on enumeration of graphs by degrees

We focus on asymptotic results mainly because these formulae, for the problems of our
concern, are much simpler than the corresponding known exact formulae. Due to the
complexity of the exact formulae, they tend to be useless in proving results such as Pro-
postions 1.1 and 1.2 and the applications in Section 4. For these, simple formulae are
generally required, even if only approximate. The interest in limiting behaviour is thus
prominent, as in many areas of mathematics.

2.1 Asymptotic results for graphs. Most of the following results come with explicit
error bounds in the asymptotic approximations. To keep the description simple, we omit
these error bounds, and similarly make little mention of a number of variations and ex-
tensions given in the papers quoted. The description in this section is basically in order
of increasing maximum degree of the graphs being treated. This largely corresponds to
chronological order, the main exception being for very dense graphs with degrees approx-
imately cn.

Our story begins with Read [1958] thesis. Using Polya’s cycle index theory and ma-
nipulation of generating functions, Read found a formula for the number of graphs with
given degree sequence, from which he was able to obtain a simple asymptotic formula in
the case of the number g3(n) of 3-regular graphs:

(2-1) g3(n) ∼
(3n)!e�2

(3n/2)!288n/2
:

(Here n is restricted to being even, as it is in all our formulae when the total degree parity
condition forces it.)

Further progress on enumeration of regular graphswas stymied by the lack of an amenable
approach. However, before long significant developments occurred in enumeration of
m � n non-negative integer matrices, which in the case of 0-1 matrices correspond to bi-
partite graphs. Let b(r; s) denote the number of 0-1 matrices, of dimensions m � n, with
row sum vector r and column sum vector s. We refer to the entries of a vector r as ri ,
entries of s as si , and so on. We can assume these vectors have equal sums, and define for
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a vector d
M1(d) =

X
i

di ; and in general Mj (d) =
X

i

[di ]j

where [x]j = x(x � 1) � � � (x � j +1). O’Neil [1969] showed that, as long as m = n and
some � > 0 satisfies ri ; si � (logn)1/4�� for all i ,

(2-2) b(r; s) ∼
M1!e

�˛Qm
i=1 ri !

Qn
i=1 si !

as M1 ! 1, where ˛ = M2(r)M2(s)/2M 2
1 and M1 = M1(r) = M1(s). Of course, in

the corresponding bipartite graphs, M1 is the number of edges and r and s are the degree
sequences of the vertices in the two parts.

For fixed r , Everett and P. R. Stein [1971/72] gave a different proof for the r-regular
case of (2-2), i.e. ri = si = r for all i (in particular this again requires m = n), using
symmetric function theory. This is the bipartite version of (1-1).

A. Békéssy, P. Békéssy, and Komlós [1972] showed that (2-2) holds even form ¤ n, as
long as there is a constant upper bound on maximum degree of the corresponding graphs,
i.e. maxi ri and maxi si . They used the following model. Consider n buckets, and M1

balls with ri labelled i , 1 � i � m. Distribute the balls at random in the buckets by
starting with a random permutation of the balls, placing the first s1 into bucket 1, the next
s2 into bucket 2, and so on. (The balls and buckets are all mutually distinguishable.) Each
distribution corresponds to a matrix whose (i; j ) entry is the number of balls labelled i

falling into bucket j . In this model, it is easy to see that the 0-1 matrices with row sum
vector r and column sum vector s are equiprobable. The number of permutations is M1!,
and the number of these corresponding to any one 0-1 matrix is the denominator of (2-2).
Hence (2-2) follows once we show that the event that no entry is at least 2 has probability
e�˛+o(1). This is done using an inclusion-exclusion technique, equivalent to applying
Bonferroni’s inequalities or Brun’s sieve.

Mineev and Pavlov [1976] used more accurate analysis of the same model to show
that (2-2) still holds with maxium degree ( logn)1/4 for  < 2/3, and a slightly more
extended range in the regular case.

Bender [1974] used a model equivalent to that in A. Békéssy, P. Békéssy, and Komlós
[1972] to obtain results for matrices with integer entries in the range [0; : : : ; t ], but with
bounded row and column sums. He allowed some entries to be forced to be 0. This permits
the diagonal to be forced to be 0 in the case m = n, hence giving a formula for the number
of loopless digraphs with given in- and out-degree sequence.

About 20 years passed from Read’s result (2-1) for the 3-regular case, before any ad-
vance was made in the case of non-bipartite graphs. In 1978 Bender and Canfield [1978]
showed that the number g(d), of graphs with degree sequence dwith the maximum degree
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bounded, is given by

(2-3) g(d) ∼
M1!e

�˛

(M1/2)!2M1/2
Qn

i=1 di !

where ˛ = M2/2M1 + M 2
2 /4M 2

1 , and Mj = Mj (d) for all statements about graphs.
For this result, they used a model of involutions of a set of cardinality M1 partitioned into
blocks of sizes d1; d2; : : : ; dn. When there are no fixed points, we can regard the two ele-
ments in a 2-cycle of an involution as two balls of the same label, to recover the model of
Békéssy et al. applied to the incidence matrix of graphs. (Bender and Canfield obtained
other results for symmetric matrices with nonzero diagonal, in which the involutions are
permitted to have fixed points.) We easily see that the number of such involutions corre-
sponding to a given simple graph is precisely the denominator in (2-3), since the labels
of the edges are immaterial, giving a factor (M1/2)! in addition to the considerations ap-
plied for the matrix counting in (2-2). The factor e�˛ is shown to be asymptotically the
probability that the graph obtained in the model is simple. We call this event S.

Independently, in my PhD thesis Wormald [1978] I used the asymptotic results of A.
Békéssy, P. Békéssy, and Komlós [1972] for bipartite graphs, to derive (2-3) for bounded
degrees.

Bollobás [1980] gave the configuration model, in which di objects, commonly called
half-edges, are assigned to each vertex i , and then paired up at random. Two paired half-
edges form an edge joining the corresponding vertices. It is readily seen that conditioning
on no loops or multiple edges gives a uniformly random graph. This is clearly equivalent
to the earlier models, such as the involution model of Bender and Canfield, where each
2-cycle corresponds to two paired half-edges. The model was used in Bollobás [ibid.] to
extend the validity of (2-3) to maximum degree

p
2 logn�1, provided that a certain lower

bound on the number of edges (M1/2) is satisfied. In place of the inclusion-exclusion
based arguments in the earlier papers, Bollobás used the method of moments for Poisson
random variables, which is essentially equivalent. Using this model, we can write

(2-4) g(d) =
jΦjP (S)Q

di !

where Φ is the set of pairings in the model, with jΦj = M1!/
�
(M1/2)!2

M1/2
�
.

Aside from enumeration results, Bollobás [1981], and then many others, found the
configuration model a convenient starting point to prove properties of random graphs with
given degrees.

Several further developments involved estimating P (S) for a wider range of degree
sequences.
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For the bipartite case, Bollobás and McKay [1986] extended the validity of the formula
to cover m � n when maximum degree is at most log1/3 m and a certain lower bound on
the number of edges is satisfied.

Again for the bipartite case, McKay [1984] then took a much bigger step, by intro-
ducing switchings as a technique for this problem. (See Section 3.1 for a detailed de-
scription of this method, including some subsequent developments mentioned below.) He
obtained (2-2) under conditions that are a little complicated to state in general, but apply
for all r = o(n1/3) in the r-regular case (i.e. ri = si = r for all i , and m = n).

McKay [1985] applied the same technique to the graph case, with a similar restriction
on degrees, again obtaining (2-3) with the same formula for ˛.

From this point onwards, the results for the two cases, graphs versus bipartite graphs,
have generally been obtained more or less in tandem using the same methods, so we con-
tinue tracing only the graph case in detail.

It was evident that with considerably more effort, the switching approach should extend
to higher degrees, but at the expense of much case analysis, which was enough of a deter-
rent to stifle such further development. Instead, after several years, McKay and Wormald
[1991a] found a different version of switchings that enabled a much easier advance. The
result was that for degree sequences with∆ = o(M

1/3
1 ), (2-4) holds with

P (S) = exp
�
�

M2

2M
�

M 2
2

4M 2
�

M 2
2 M3

2M 4
+

M 4
2

4M 5
+

M 2
3

6M 3
+ O

�∆3

M

��
:

This covers the d -regular case for d = o(
p

n).
Janson [2009, 2014] was interested in characterising the degree sequences for which

P (S) ! 0. He showed by analysing the configuration model for degree sequence d, using
the method of moments, that for M1 = Θ(n),

P (S) ! 0 iff
X

d 2
i /n ! 1;

and that for M2 = O(M1) and M1 ! 1, we have the asymptotic formula

P (S) = exp
�

�
1

2

X
�i i �

X
i<j

�
�ij � log(1 + �ij )

��
+ o(1)

where �ij =
p

di (di � 1)dj (dj � 1)/(2M1). This was the first general result to apply
to some sequences with maximum degree as large as

p
n.

Gao and Wormald [2016] analysed cases in which the configuration model produces
edges of much higher multiplicity than previous studies, using a major extension of the
switchingmethodmentioned above. This resulted in an asymptotic formula for g(d)when
d satisfies some very complicated conditions. We describe one simple consequence. We
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say (d1; : : : ; dn) is power-law distribution-boundedwith parameter  if there existsC > 0

such that the number of di taking value at least i is at most C n
P

j �i j � for all i and
n. This condition restricts the maximum di to O(n1/(�1)). Before Gao and Wormald
[ibid.], there were no asymptotic enumeration formulae for such sequences when  � 3.
However, many naturally occurring networks seem to have power law degree sequences
with  < 3. From Gao and Wormald [ibid., Theorem 3] (corrected), we see that if d is
a power-law distribution-bounded sequence with parameter 3 >  > 1 +

p
3 � 2:732,

then with Φ given just after (2-4),

g(d) =
jΦjQ

di !
exp

�
�

M1

2
+

M2

2M1
+

3

4
+
X
i<j

log(1 + di dj /M1) + O
�
�
��

;

where � = n(2+2�2)/(�1).
Recently, Burstein and Rubin [2015] presented an approach that would give a formula

that is valid up to maximum degree n1�ı for any fixed ı > 0, using a finite amount of
computation. We say a little more about this in Section 3.3.

Liebenau and Wormald [2017] introduced a new approach and “plugged the gap” in
the formulae with the following result.

Theorem 2.1. Let �0 > 0 be a sufficiently small constant, and let 1/2 � ˛ < 3/5. If
� = d/(n � 1) satisfies � � �0 and, for all fixed K > 0, (logn)K/n = O(�), and
jdi � d j � d ˛ for all i 2 [n] then (1-2) holds (provided dn is even).

Together with the previous results, this establishes Proposition 1.3 and hence Propo-
sitions 1.1 and 1.2. The method seems strong enough to cover all the results mentioned
above, though some significant tinkering would need to be done to obtain the results for
eccentric degree sequences in Janson [2009, 2014] and Gao and Wormald [2016].

At this point, we travel slightly back in time to consider results for dense graphs. Of
course, extremely dense cases are covered by simply complementing the sparse cases
above. All results for graphs of average degree comparable with n are based on extracting
coefficients from the ‘obvious’ generating function:

(2-5) g(d) = [xd1

1 � � � xdn
n ]

Y
i<j

(1 + xi xj ):

The generating function is derived by letting xi mark the degree of vertex i , so the term
xi xj denotes the presence of the edge ij and the term 1 denotes its absence. Coefficients
are extracted using Cauchy’s integral formula, for multiple dimensions.

McKay and Wormald [1990a] evaluated the integrals to obtain the result of Proposi-
tion 1.3 in the case that �(1 � �) > c/ logn for fixed c > 2/3.
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Barvinok andHartigan [2013] used a similar approach, with different analysis, to obtain
a result for a wider range of degrees when minf�; 1 � �g = Θ(1).

Independently and almost simultaneously with the completion of the proof of Proposi-
tion 1.3 in Liebenau and Wormald [2017], Isaev and McKay [2016] made an exciting new
advance, by developing the theory of martingale concentration for complex martingales,
which (amongst other things) enabled them to reproduce and extend the results in McKay
and Wormald [1990a] and Barvinok and Hartigan [2013], by better analysis of the inte-
grals involved. Moreover, they recently report (by private communication) being able to
obtain a result, in a certain implicit form, that applies to a wide range of degree sequences
with average degree at least na for any fixed a > 0. They have used this to show in
particular that (1-2) is valid for the d -regular case with d = !(n1/7).

2.2 Exact enumeration for graphs. We include here only a selection of results that
bear some relation to our main topic of simple asymptotic formulae. These concern the
number gd (n) = g(d; d; : : : ; d ) of d -regular graphs on n vertices.

As mentioned above, Read [1960] found a formula for the number of graphs with given
degree sequence. His approach was to count the incidence matrices of the graphs, i.e. 0-1
matrices with column sums vector d and all row sums 2. Pólya’s Hauptsatz for enumera-
tion under the action of the symmetric group was used to eliminate the distinction between
matrices that are equivalent up to permuting the rows (edges). To eliminate multiple edges,
Read used a version of the Hauptsatz in which the ‘figures’ are distinct. Unfortunately,
this gives a very complicated formula, involving generating functions for which the ex-
traction of coefficients is difficult. Nevertheless, in the case of g3(n), Read obtained a
formula containing a single summation that he analysed to obtain (2-1).

One can also ask for simple recurrence relations. There are two direct uses of these:
for efficient computation of the numbers, and also, as Read [1958] shows, the recurrence
relation can be combined with an asymptotic formula to deduce an asymptotic series ex-
pansion. Read did this in the case of 3-regular graphs, finding the first few terms of a
series in powers of n�1. Read and Wormald [1980] found a similar recurrence for g4(n).

Goulden, Jackson, and Reilly [1983] considered the generating function (2-5), in the
case of regular graphs, and obtained a different recurrence relation for g4(n).

Gessel (90) showed recurrence relations exist for gd (n)when d is fixed. (To be precise,
he showed that the generating function for d -regular graphs is D-finite.) However, to our
knowledge, these recurrences have not been found explicitly for any d � 5.

Chen and Louck [1999] obtained a formula for g3(n) by first getting a formula for ma-
trices with row sums 3 and column sums 2 (and related problems) using a little symmetric
function theory, and then using inclusion-exclusion to delete the multiple edges. The same
method should work for d > 3 but would appear to get rapidly much more complicated.
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2.3 Asymptotics for special types of graphs. Aside from Moon’s formula for trees
with given degree sequence mentioned in the introduction, many results are known on the
asymptotic number of trees of some given variety with given degree sequence. We refer
the interested reader to Drmota [2009].

As implied in Section 2, there have been further results on bipartite graphs, and a re-
cent summary may be found in Liebenau and Wormald [2017]. In particular, that paper
completes the proof of the analogue of Proposition 1.1 in the case that the two sides of the
bipartite graph have reasonably similar cardinalities. See also Section 5.

2.4 Similar results for other structures. Greenhill andMcKay [2013] obtained results
for multigraphs analogous to the graph results of McKay and Wormald [1991a], for a
similar range of degrees. Already in A. Békéssy, P. Békéssy, and Komlós [1972], the
number of bipartite multigraphs with given degree sequence (with bounded maximum
degree) was also obtained.

The results on graphs obtained in Liebenau and Wormald [2017] were accompanied by
similar results on loopless directed graphs.

Some results on hypergraphs have been obtained my means similar to those discussed
for graphs. For simplicity we omit these from the scope of this article.

A k �n Latin rectangle can be defined as an ordered set of k disjoint perfect matchings
which partition the edges of a bipartite graph (i.e. a properly k-edge-coloured bipartite
graph) on vertex sets V1 = f1; : : : ; ng and V2 = fn+1; : : : ; 2ng. Asymptotic estimates of
the numbers of these were obtained for ever-increasing k by Erdős and Kaplansky [1946],
Yamamoto [1951], C. M. Stein [1978], culminating in the result of Godsil and McKay
[1990] for k = o(n6/7). In a recent preprint, Leckey, Liebenau, and Wormald [n.d.]
reached k = o(n/ logn) using the method described above for graph enumeration. See
Section 3.3.

Kuperberg, Lovett, and Peled [2017] have a different probabilistic approach to enumer-
ation of several other kinds of regular combinatorial structures such as orthogonal arrays,
t -designs and certain regular hypergraphs.

3 The perturbation method

The author coined this term in Wormald [1996], to refer to enumeration methods based on
comparing the number of structures with a given parameter set to the numbers of structures
with slightly perturbed parameter sets. Overall, it can be expressed as estimating the ratio
of probabilities of “adjacent” points in a discrete probability space. How to estimate the
ratio depends on the application, and some examples are discussed below. It is relatively
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straightforward to use the information on ratios for adjacent points. We may use the fol-
lowing result, in which the probabilities actually occurring relate to P 0 and are compared
with those in some “ideal” probability space P . Here diam(F ) is the diameter of F .

Lemma 3.1 (Liebenau andWormald [2017]). Let P and P 0 be probability spaces with the
same underlying setΩ. LetF be a graphwith vertex setW � Ω such thatPP (v); PP 0(v) >

0 for all v 2 W. Suppose that 1 > � > 0 with minfPP (W); PP 0(W)g � e�� , and that
C; ı > 0 satisfy, for every edge uv of F ,

(3-1)
ˇ̌̌̌
log

PP 0(u)

PP 0(v)
� log

PP (u)

PP (v)

ˇ̌̌̌
� Cı:

Suppose further that diam(F ) � r < 1. Then for each v 2 W we have

j logPP 0(v) � logPP (v)j � rCı + O(�):

The proof is entirely straightforward, using a telescoping product of ratios along a path
joining u to v of length at most r .
Note: if the error function ı depends on u and v, it might be possible to take advantage
of this and finish with a smaller error term than what is suggested by the lemma. In the
applications so far, this would not give any significant gain.

Estimating the ratios of adjacent probabilities, and hence ı, is the main requirement
for applying the method. We describe several different but related examples. The overall
structure of the arguments in most cases was phrased differently from Lemma 3.1, but is
essentially equivalent. In most cases, ratios of adjacent probabilities were found to approx-
imate the ratio of corresponding probabilities of a Poisson distributed random variable. In
such cases we may take Ω = N and PP (i) = P (X = i) for a given Poisson random
variable X . The graph F then has edges fi; i + 1g for all i in some suitably defined set
W.

3.1 Switchings for pairings. Arguments involving switchings or similar concepts have
been used inmany places in combinatorics. An early example close to our topic is provided
by the bounds on the probabilities of subgraphs of random graphs obtained by McKay
[1981].

McKay [1985] applied switchings to estimate the probability of the event S (that a
simple graph results) in the configuration model for degree sequence d described in Sec-
tion 2.1. We can describe this as two rounds of the perturbation method, first estimating
the number of pairings with no loops, and then, among those, the number with no double
edge. (To be precise, even higher multiplicities were eliminated first.) Roughly, the dou-
ble edge round was as follows. Let Ci denote set of pairings with i double edges. Take
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any pairing P in Ci for i � 1. To apply a switching to P , choose a random pair from a
random double pair, call it ab, and any other random pair, call it cd , and then delete those
two pairs and replace them by ac and bd . This is depicted in Figure 1. We can count the

Figure 1: Switching two pairs

switchings that produce members of Ci�1 in two ways: the number that can be applied to
such a P 2 Ci , and the number that can produce a pairing P 0 2 Ci�1. By estimating the
ratio of these two numbers, McKay obtained an estimate of the ratio P (Ci )/P (Ci�1), in
the model. In his argument, the ratios were used to estimate the ratios P (Ci )/P (C0), and
the absolute sizes were obtained by arguing about the sum of these ratios. Alternatively
and equivalently, we could apply Lemma 3.1 by lettin Ω = N and assigning probabilities
in P 0, according to the distribution of the random number, X , of double edges in a pairing.
Then, with P defined as an appropriate Poisson random variable, we can deduce (3-1) for
quite small values of ı and C . The set W is defined to be [0; M0] for a suitable constant
M0, and � can be bounded by estimating E[X ]k for suitable large k.

To obtain sufficient accuracy, McKay introduced secondary switchings that enabled
him to argue about the local structure of random elements of Ci . This was needed because
the number of reverse switchings depends heavily on the structure of P 0 mentioned above,
though it is quite stable for typical P 0. This enabled him to obtain the asymptotic formula
in the case of d -regular graphs for d = o(n1/3).

McKay and Wormald [1991a] introduced fancier switchings, involving more pairs, for
which local structure had little effect on the number of reverse switchings, and hence
directly gave accuracy comparable to the secondary switchings of McKay. Further sec-
ondary switchings produced results that, in the d -regular case, reached d = o(

p
n). An

additional benefit of the fancier switchings was that they led to a useful uniform generator
of d -regular graphs for d = O(n1/3). (See Section 4.3.)

3.2 Relation to Stein’s method. Stein’s asymptotic formula for k � n Latin rectangles
in C. M. Stein [1978] was based on Chen’s method (which is elsewhere called the Stein-
Chen or Chen-Stein method) for Poisson approximation, which was based in turn on a
more general method of Stein for approximating a random variable. His basic strategy was
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the same as all results on this problem before Leckey, Liebenau, andWormald [n.d.]: given
k � 1 rows of a rectangle, estimate the probability that a random new row is compatible
with the given rows. Stein approached this as follows. Given the first k�1 rows, defineX

to be the number of column constraints that a random permutation, upon being inserted as
the kth row, would violate. A permutation Π is associated with a random permutation Π0

using a random pair (j1; j2) of distinct elements of [n]: Π0(i) is defined asΠ(j1) if i = j2,
Π(j2) if i = j1, and Π(i) otherwise. Then, with X 0 the number of column constraints
violated by Π0, C. M. Stein [1978, (3) in Section 2] is

P (X = x + 1)

P (X = x)
=

P (X 0 = x + 1 j X = x)

P (X 0 = x j X = x + 1)
:

This is clearly equivalent to restricting to pairs (j1; j2) whereΠ0 violates one less column
constraint than Π, which is a direct analogue of the switchings for pairings described
above. Stein also uses secondary randomisation in C. M. Stein [ibid., (20), Section 2],
which corresponds to the secondary switchings described above. However, he does not
seem to use the analogue of the fancier switchings. On the other hand, analogues of the
fancier switchings were applied to the problem of uniformly generating Latin rectangles
by McKay and Wormald [1991b].

3.3 Iterated applications. In the ideal situation, we can start with a set of initial es-
timates for the ratios of adjacent probabilities, and then iteratively feed these estimates
into equations that are derived from some operation, such as switchings, to improve the
accuracy of the estimates.

We can view the equations as specifying an operator on functions which fixes the true
ratios, except perhaps for a quantified error term. Normally we could then hope to apply
standard concepts of fixed point analysis to show that the true ratios are close to a fixed
point of this operator. Initial bounds are required on the true ratios, as they provide an
initial “guess”, and also simultaneously they can be used to guarantee that, essentially,
this guess is in the domain of attraction of the correct fixed point of the operator.

Here are some examples.
(i) Nonexistence of subgraphs of G(n; p) and G(n; m).

Consider estimating the number tn;m of graphs with n vertices,m edges and no triangles
(cycles of length 3). A. Frieze [1992] switched edges of subgraphs to different positions
and then argued in a similar fashion to the argument for double edges in pairings described
above. This gave an asymptotic formula for tn;m, and similarly for other strictly balanced
subgraphs, when m = n1+� for � quite small. A result for tn;m, with much larger � was
achieved by the author in Wormald [1996], using a different version of the perturbation
method. Instead of moving edges to new positions, one of the basic operations considered
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was to add a triangle at a random position. This generally transforms the graph into one
with an extra triangle, but sometimes two or more new ones can be created. The number
of copies of two triangles sharing an edges is also recorded, as well as numbers of some
other small clusters of triangles sharing edges. In this case vertices of F in Lemma 3.1
are vectors specifying the numbers of each type of cluster, and each vertex is adjacent to
several others, being those adjacent in the integer lattice. The estimate for a ratio between
adjacent vertices contains lower order terms involving similar ratios for other nearby ver-
tices. The ratio for vectors adjacent in the vector component corresponding to a given
cluster is estimated using a “switching” operation in which a copy of the corresponding
cluster is added at random. Fixed points are not used explicitly, but estimates of lower
and upper bounds on ratios are iterated. These arguments are complicated by a careful
induction that yields the required initial bounds on the ratios. Stark and Wormald [2016]
strengthened the method and also extended it to all strictly balanced subgraphs.
(ii) Degree switchings for counting graphs.

This is a rough outline of the argument in Liebenau and Wormald [2017]. Suppose we
have a random graph G with degree sequence d�eb where ev denotes the elementary unit
vector with 1 in its vth coordinate. Pick a random edge e incident with vertex a, and with
v denoting the other end of e, remove e and add the edge bv. Let B(a; b; d � eb) denote
the probability of the “bad” event that a loop or multiple edge is produced. If this event
fails, the graph now has degree sequence d� ea. We call this a degree switching. Simple
counting shows that

(3-2) R(a; b;d) :=
g(d � ea)

g(d � eb)
=

da

db

�
1 � B(a; b; d � eb)

1 � B(b; a; d � ea)
:

Let Pav(d) denote the probability that edge av occurs in a random graph with degree
dequence d. With a little work, we can express B(a; b; d � eb) using a combination of
such probabilities, resulting in a formula for R(a; b;d) in terms of the Pav(d) for various
a, v and d.

By noting da =
P

v Pav , we can also obtain

Pav(d) = dv

 X
b2V nfag

R(b; a;d � ev)
1 � Pbv(d � eb � ev)

1 � Pav(d � ea � ev)

!�1

where V = [n] is the set of all vertices. Iterating these two formulae produces a sequence
of approximations to the functionsP andR that converges, and it is convenient to consider,
as described above, fixed points of the operators defined by these equations. Then the
argument becomes one of proving that the limits of the convergent solutions are close to
the fixed points of the operators, and that these are close to the true values of the ratios.
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The required initial bounds on the true ratios were obtained in this case by a primitive
analysis of a switching-type operation similar to that in Figure 1.

Lemma 3.1 was applied here, with Ω being the set of sequences on non-negative inte-
gers of sum 2m. The probability of d in P 0 is proportional to g(d), and in P is proportional
to the target formula, i.e. the right hand side of (1-2).

(iii) A related approach for graphs.

While work on Liebenau and Wormald [2017] was under way, Burstein and Rubin
[2015] (mentioned above) considered ratios of ‘adjacent’ degree sequences, and iterated
their formulae to obtain higher accuracy ratios. Having estimated the ratios, they used
them to compare g(d) with some known value g(d0). In terms of the ratios, they give
a formula for g(d), however it was not explicit enough in the general case to enable the
derivation of results as simple as (1-2). In particular, they did not extend the range of
validity of (1-2) past what was known at the time.

(iv) Counting Latin rectangles.

All results before Leckey, Liebenau, and Wormald [n.d.] considered adding a random
row to a valid (k � 1)� n Latin rectangle, and estimating the probability that the new row
causes no conflicts with the previous rows. (The paper McKay and Wormald [1991b] is
almost an exception, since all rows are considered at random, and switching operations
were used to generate a random Latin rectangle. A similar anlysis on numbers would have
yielded the asymptotic formula for k = o(n1/3)which was already known.) The approach
in Leckey, Liebenau, and Wormald [n.d.] is different. As mentioned above, enumerating
k � n Latin rectangles is equivalent to counting k-regular bipartite graphs with vertex
parts V1 and V2, both of cardinality n, which have been properly k-edge-coloured. Now
consider all bipartite graphs with vertex parts V1 and V2, with n edges of each of k colours.
The colour-degree sequence is the array of numbers dij , i = 1; : : : ; n, j = 1; : : : ; k such
that dij is the number of edges of colour j incident with vertex i . Then the problem
becomes one of enumerating those graphs with the all-1’s degree sequence. Equivalently,
consider the probability of such a colour-degree sequence arising when an edge-coloured
bipartite graph with n edges of each colour is chosen uniformly at random. The problem
is simplified somewhat by restricting to those graphs in which the degrees on V2 are all 1;
there is a simple model for selecting a random graph subject to this condition. To solve it,
degree-switchings are applied to the vertices in V1, and the perturbation method is applied
as in Lemma 3.1 with P being a certain multinomial probability distribution. The number
of variables (colour-degrees) is much larger than the graph case discussed above, with the
consequence that the argument “only” succeeds for k = o(n/ logn).
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4 Applications of the enumeration results

4.1 Models for joint degree distribution. It was shown inMcKay andWormald [1997]
how to use Proposition 1.2 to transfer properties of a sequence of independent binomial
variables to the degree sequence of the random graph G(n; p) (in the range of p for which
the proposition holds). In a follow-up paper, the authors will use this to obtain results on
the order statistics of the degree sequence, and also the distribution of the number of ver-
tices of given degree, a problem discussed at some length by Barbour, Holst, and Janson
[1992].

Similar models for bipartite graphs and loopless directed graphs have been investigated
in the dense range by McKay and Skerman [2016], who observed that once we have the
results on enumeration that are now supplied by Liebenau and Wormald [2017], these
models can presumably be extended to all interesting ranges of density.

4.2 Subgraphs and properties of random graphs. The methods of counting graphs
can frequently be modified to include certain edges as specified (or forbidden). This lets
us estimate moments of random variables that count copies of given subgraphs. Armed
with such formulae, if they are simple enough, we can derive properties of the subgraph
counts of random graphs with given degrees.

Examples include perfectmatchings in regular graphs (seeBollobás andMcKay [1986]).
Robinson and Wormald [1994] used this approach (and a new technique for analysing
variance) to show that a random d -regular graph is highly likely to have a Hamilton cycle.
Enumeration results were used similarly to prove various properties of random regular
graphs of high degree by Krivelevich, Sudakov, Vu, and Wormald [2001]. There many
other examples.

4.3 Random generation. The uniform generation of random graphs with given degree
sequence, and related objects, has statistical uses (see Blitzstein and Diaconis [2010] for
example). Methods and results of enumeration can be useful, or sometimes adapted, to
this problem. See Wormald [1984] for examples with exact enumeration; the applicabil-
ity of the configuration model and its earlier bipartite versions are obvious. McKay and
Wormald [1990b] used switchings to generate random regular graphs uniformly, and this
was extended by Gao and Wormald [2017].

4.4 Relations to graphs without specified degrees. Kim and Vu [2004] used asymp-
totic enumeration results, amongst other things, to show that a random d -regular graph is
“sandwiched” in between two random graphs G(n; m) for two different values of m close
to d , as long as d does not grow too slowly or too quickly. Their result was extended by
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Dudek, A. Frieze, Ruciński, and Šileikis [2017] to larger d , which might have been easier
had the results in Liebenau and Wormald [2017] been available.

One approach to obtaining results for graphs with a given number of edges is to prove
results for given degree sequences and then essentially sum over all degree sequences.
This was used for instance by Pittel and Wormald [2005] to obtain the distribution of the
size of the 2-core in the random graphs G(n; p) and G(n; m). Asymptotic enumeration
results are used heavily in such arguments.

5 Final questions

An obvious question that might soon be within reach, given the new methods arising in
the past year or so, is to find necessary and sufficient conditions on d for (1-2) to hold.

In McKay [2010], McKay points out that the asymptotic formula for the number of
bipartite graphs with given degree sequence is unknown when the two vertex parts have
very different cardinalities. The method in Liebenau and Wormald [2017] goes some way
towards alleviating this defect in our knowledge, but further work can still be done. In
particular, Canfield and McKay [2005] suggest a formula of Good and Crook that might
be valid to within a constant factor in all cases for the biregular case.

One problem that arose in some discussions with Boris Pittel and is still unsolved, is
to construct a nice model for the degree sequence of a random connected graph with n

vertices and m edges, in the sparse range, particularly when m = Θ(n).
The asymptotic number of acyclic digraphs with n vertices and cn edges is essentially

unknown. Can we nevertheless find an asymptotic formula for the number of acyclic
digraphs with given in- and out-degree sequence, with cn edges?

Acknowledgments. I would like to thank all my coauthors on this topic, and Brendan
McKay in particular for highly productive collaborations at various stages of the work and
also for checking an early draft of this article.
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Abstract

Query complexity is a model of computation in which we have to compute a func-
tion f (x1; : : : ; xN ) of variables xi which can be accessed via queries. The com-
plexity of an algorithm is measured by the number of queries that it makes. Query
complexity is widely used for studying quantum algorithms, for two reasons. First, it
includes many of the known quantum algorithms (including Grover’s quantum search
and a key subroutine of Shor’s factoring algorithm). Second, one can prove lower
bounds on the query complexity, bounding the possible quantum advantage. In the
last few years, there have been major advances on several longstanding problems in
the query complexity. In this talk, we survey these results and related work, including:

• the biggest quantum-vs-classical gap for partial functions (a problem solvable
with 1 query quantumly but requiring Ω(

p
N ) queries classically);

• the biggest quantum-vs-determistic and quantum-vs-probabilistic gaps for to-
tal functions (for example, a problem solvable with M queries quantumly but
requiring Ω̃(M 2:5) queries probabilistically);

• the biggest probabilistic-vs-deterministic gap for total functions (a problem solv-
able withM queries probabilistically but requiring Ω̃(M 2) queries determinis-
tically);

• the bounds on the gap that can be achieved for subclasses of functions (for ex-
ample, symmetric functions);

• the connections between query algorithms and approximations by low-degree
polynomials.
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1 Introduction

Quantum computers open new possibilities for computing, by being able to solve problems
that are considered intractable classically. The most famous example is factoring large
numbers which is thought to require Ω(2nc

) time classically but is efficiently solvable by
a quantum computer, due to Shor’s quantum algorithm Shor [1997]. Another example is
simulating quantum physical systems which is thought to require Ω(2n) time classically
but is also solvable in polynomial time quantumly Cirac and Zoller [2012] and Georgescu,
Ashhab, and Nori [2014].

This naturally leads to a question: how large is the advantage of quantum computers?
Can we put limits on it?

In the Turing machine model, we haveBQTIME(f (n)) � [cTIME(2cf (n))where
TIME and BQTIME denote the classes of problems that are solvable by deterministic
or quantumTuringmachineswithin the respective time bound. However, it is very difficult
to prove unconditional separations between complexity classes and we cannot even show
that BQTIME(f (n)) is larger than TIME(f (n)).

For this reason, the power of quantum computers is often studied in the query model
(also known as the decision tree model Buhrman and de Wolf [2002]). In this model, we
have to compute a function f (x1; : : : ; xN ) of an input (x1; : : : ; xN ), with xi accessible
via queries to a black box that, given i , outputs xi . The complexity is measured by the
number of queries that an algorithm makes.

The query model is very interesting in the quantum case because it captures most of
the known quantum algorithms. Some of the problems that can be described in it are:

Search. Given black box access to x1; : : : ; xN 2 f0; 1g, determine whether there exists
i : xi = 1 (or find such i ).

Search requires N queries classically but can be solved with O(
p
N ) queries quan-

tumly Grover [1996]. It can be viewed as a black box model for a generic exhaustive
search problem where one has to check N possibilities (without any information which
of those N possibilities are more likely) and implies quantum speedups for a variety of
problems (for example, a quadratic quantum speedup over the best probabilistic algorithm
for 3-SAT Ambainis [2004]).

Period-finding. Given black box access to x1; : : : ; xN 2 [M ], determine the smallest
r such that xi = xi+r for all i (and xi ¤ xi+q for all i and q < r), under a promise that
such r exists and is smaller than c

p
N for some c > 0.

Period-finding is solvable with O(1) queries quantumly and requires Ω(N 1/4

logN
) queries

classically Shor [1997] and Chakraborty, Fischer, Matsliah, and de Wolf [2010]. It is at
the heart of Shor’s factoring algorithm Shor [1997] which consists of a classical reduction
from factoring to period-finding and a quantum algorithm for period-finding.
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Element distinctness. Given black box access to x1; : : : ; xN 2 [M ], determine if there
are i; j : i ¤ j such that xi = xj .

Element distinctness requires N queries classically and Θ(N 2/3) queries quantumly
Ambainis [2007] and Aaronson and Shi [2004]. It is related to black box models of algo-
rithms for breaking collision-resistant hash functions (an important cryptographic primi-
tive). The quantum algorithm for element disticntness is also useful as a subroutine for
other quantum algorithms, from checking matrix products Buhrman and Špalek [2006] to
solving typical instances of subset sum (which is also important for cryptography) Bern-
stein, Jeffery, Lange, and Meurer [2013].

Many other quantum query algorithms are known, as can be seen from Quantum Algo-
rithms Zoo (a website collecting information about all quantum algorithms Jordan [n.d.]).
From a complexity-theoretic perspective, the query model is very interesting because it al-
lows to prove lower bounds on quantum algorithms and it is often possible to characterize
the quantum advantage within a big-O factor.

The current survey is focused on characterizing the maximum possible quantum advan-
tage in the query model, for different types of computational tasks. Let Q(f ) and R(f )
denote the number of queries for the best quantum and randomized algorithm, respectively.
For partial Boolean functions, we describe a gap ofQ(f ) = 1 vsR(f ) = Ω(

p
N / logN )

Aaronson and Ambainis [2015]. For total functions, the biggest known gap is much
smaller: R(f ) = Ω̃(Q2:5(f )) Aaronson, Ben-David, and Kothari [2016]. Imposing
symmetry constraints on f also decreases the maximum possible gap.

As a side result, this research has lead to new results on classical query algorithms. This
includes solutions to two well known problems in the classical query complexity which
had been open for about 30 years (such as determining the maximum gap between random-
ized and deterministic query complexities Saks and Wigderson [1986] and Arunachalam,
Briët, and Palazuelos [2017]). We describe those developments, as well.

2 Computational Models

2.1 Deterministic, randomized and quantum query algorithms. We now formally
define the models of query complexity that we use. We consider computing a function
f (x1; : : : ; xN ) of variables xi . By default, we assume that the variables xi are f0; 1g-
valued. (If we consider xi with values in a larger set, this is explicitly indicated.) The
function f (x1; : : : ; xN ) can be either a total function (defined on the entire f0; 1gN ) or a
partial function (defined on a subset of f0; 1gN ).

Deterministic algorithms. Deterministic query algorithms are often called decision
trees, because they can be described by a tree (as in Figure 1). At each node of this tree,
we have the name of a variable that is asked if the algorithm gets to this node. Depending
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on the outcome of the query, the algorithm proceeds to the xi = 0 child or to the xi = 1

child of the node. If the algorithm gets to a leaf of the tree, it outputs the value of the
function listed at this leaf.

Figure 1: Example of a decision tree

The complexity of an algorithm A is the maximum number of queries that it can
make. Deterministic query complexity D(f ) is the smallest complexity of a determinis-
tic A which outputs f (x1; : : : ; xN ) if the queries are answered according to (x1; : : : ; xN ),
whenever f (x1; : : : ; xN ) is defined.

Randomized algorithms. In a randomized query algorithm, the algorithmmay choose
the variable xi for the next query randomly from some probability distribution.

Randomized algorithms are usually studied either in the zero-error setting or in the
bounded error setting. In the zero-error setting, the algorithm is required to outputf (x1; : : : ; xN )

with probability at least 1/2 and may output ”don’t know” otherwise but must not output
a value that is different from f (x1; : : : ; xN ). In the bounded-error setting, algorithm is
required to output f (x1; : : : ; xN ) with probability at least 2/3 and may output anything
otherwise. In both cases, the requirement has to be satisfied for every (x1; : : : ; xN ) for
which f (x1; : : : ; xN ) is defined.

The complexity of an algorithm A is measured by the largest number of queries that
is made by A, for the worst choice of (x1; : : : ; xN ) and the worst random choices of A.
R0(f ) andR2(f ) are the smallest complexities of a zero-error randomized and a bounded
error randomized algorithm for f , respectively. (Alternatively, one can define randomized
query complexity via the expected number of queries for the worst case (x1; : : : ; xN ) but
this changes the complexities R0 and R2 by at most a constant factor.)
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Quantum algorithms. Unlike in the probabilistic case, different branches of a quan-
tum algorithm can recombine at a later stage. For this reason, a quantum query algorithm
cannot be described by a tree.

Instead, a quantum query algorithm is defined by an initial state j start i and transfor-
mations U0;Q;U1; : : : ;Q;UT . The initial state j start i and transformations Ui are inde-
pendent of x1; : : : ; xN . Q are the queries - transformations of a fixed form that depend on
xi ’s. The algorithm consists of performingU0;Q;U1; : : : ;Q;UT on j start i and measur-
ing the result (as shown in Figure 2). The algorithm computes f if, for every (x1; : : : ; xN )

for which f (x1; : : : ; xN ) is defined, this measurement produces f (x1; : : : ; xN ).

Figure 2: Structure of a quantum query algorithm

To define the model more precisely, we must define the notions of a quantum state,
a transformation, and a measurement. (For more details on these notions, we refer the
reader to the book Nielsen and Chuang [2000].) The state space of a quantum algorithm
is a complex vector space of dimension d (where d can be choosen by the designer of
the algorithm). Let j1i; : : : ; jd i be an orthonormal basis for this vector space. A quantum
state is a vector

j i = ˛1j1i + : : :+ ˛d jd i =

0BB@
˛1
˛2
: : :

˛d

1CCA
of unit length (i.e. satisfying

P
i j˛i j

2 = 1). A unitary transformation is a linear trans-
formation on j i that preserves the length of j i. The principles of quantum mechanics
allow to perform any unitary U on a quantum state.

A measurement is the way of obtaining information from a quantum state. Measuring
a state j i with respect to j1i; : : : ; jd i yields the result i with probability j˛i j

2.
To define a quantum query algorithm, we allow the starting state j start i to be an

arbitrary quantum state. Ui ’s can be arbitrary unitary transformations that do not depend
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on x1; : : : ; xN . Q is the query transformation, defined in a following way1. We rename
the basis states from j1i; : : : ; jd i to ji; j i with i 2 f0; 1; : : : ; N g and j 2 [di ] for some di

and define
Qj0; j i = j0; j i for all j;

Qji; j i =

(
ji; j i if xi = 0

�ji; j i if xi = 1
:

It can be argued that this is a natural quantum conterpart of a probabilistic query in which
we choose i according to a probability distribution and get the corresponding xi .

After the last transformation, the state of the algorithm is measured w.r.t. j1i; : : : ; jd i

and the result is transformed into the answer of the algorithm according to a predefined
rule. (For example, if the answer should be f0; 1g-valued, we could take the first bit of the
measurement result i as the answer.)

Two most frequently considered types of quantum query algorithms are exact and
bounded error algorithms. A quantum query algorithm computes f exactly if its answer
is always the same as f (x1; : : : ; xN ), whenever f is defined. A quantum query algorithm
A computes f with bounded error, if for every (x1; : : : ; xN ), for which f (x1; : : : ; xN ) is
defined, the probability thatA outputs f (x1; : : : ; xN ) as the answer is at least 2/3. QE (f )

and Q2(f ) are the smallest numbers of queries in quantum algorithms that compute f
exactly and with bounded error, respectively.

2.2 Quantities that are related to query complexity. In this section, we define several
quantities that provide upper and lower bounds on different query complexities. Using
them, we can prove bounds on the maximum gaps between query complexity measures
(for example, that D(f ) = O(R3

2(f )) Nisan [1991] and D(f ) = O(Q6
2(f )) Beals,

Buhrman, Cleve, Mosca, and de Wolf [2001] for any total Boolean function f ).
Block sensitivity. For an input x 2 f0; 1gN and a subset of variables S � [N ], x(S)

is the input obtained from x by changing all xi ; i 2 S to opposite values. The block
sensitivity bs(f ) is the maximum k for which there is an input x 2 f0; 1gN and pairwise
disjoint subsets S1; : : : ; Sk � [N ] with f (x) ¤ f (x(Si )) for all i 2 [k].

Block sensitivity is a lower bound on all the query complexity measures: D(f ) �

bs(f ), R(f ) = Ω(bs(f )) Nisan [1991] and Q(f ) = Ω(
p
bs(f )) Beals, Buhrman,

Cleve, Mosca, and de Wolf [2001]. It also provides an upper bound on D(f ) for total
Boolean functions f : D(f ) = O(bs3(f )) Nisan [1991]. Combining these relations
yields D(f ) = O(R3

2(f )) and D(f ) = O(Q6
2(f )) - the best upper bounds on the gap

betweenD(f ) and R2(f ) orQ2(f ).
1Since most of this survey considers functions f (x1; : : : ; xN ) of variables xi 2 f0; 1g, we only give the

definition of a query for this case.
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Certificate complexity. For an input x 2 f0; 1gN , a certificate is a set S � [N ] with
the property that the variables xi ; i 2 S determine the value of f (x). (More precisely,
S � [N ] is a certificate on an input x if, for any y 2 f0; 1gN such that xi = yi for all
i 2 [S ], we have f (x) = f (y).) Cx(f ) is the minimum size jS j of a certificate S on the
input x. The certificate complexity C (f ) is the maximum of Cx(f ) over all x 2 f0; 1gN .

Certificate complexity provides a better upper bound on D(f ) for total f : D(f ) �

C 2(f ) Nisan [ibid.]. If one could show that Q2(f ) = Ω(
p
C (f )), this would imply

D(f ) = O(Q4
2(f )), improving the best known relation betweenD(f ) andQ2(f ).

Randomized certificate complexity Aaronson [2008]. For an input x,RCx(f ) is the
minimum number of queries in a bounded-error randomized query algorithm that accepts
x and rejects all y : f (x) ¤ f (y). The randomized certificate complexity RC (f ) is the
maximum of RCx(f ) over all x 2 f0; 1gN .

Unlike for the standard certificate complexity, it is known thatQ2(f ) = Ω(
p
RC (f ))

Aaronson [ibid.]. ProvingD(f ) = O(RC 2(f )) for total f (which is not known) would
also implyD(f ) = O(Q4

2(f )).
Polynomial degree. The exact degree, deg(f ), is the degree of the multilinear polyno-

mialp(x1; : : : ; xN )which satisfies f (x1; : : : ; xN ) = p(x1; : : : ; xN ) for all (x1; : : : ; xN ).
The approximate degree, edeg(f ), is the smallest degree of amultilinear polynomialp(x1; : : : ; xN ) 2

f0; 1gN which satisfies jf (x1; : : : ; xN ) � p(x1; : : : ; xN )j �
1
3
for all (x1; : : : ; xN ) 2

f0; 1gN .
Both of thesemeasures also provide lower bounds on quantum query complexity: QE (f ) �

deg(f )
2

andQ2(f ) = Ω(

q
edeg(f )) Beals, Buhrman, Cleve, Mosca, and de Wolf [2001].

3 Maximum quantum-classical gap for partial functions

In this section, we consider the question: what is the maximum possible gap between
Q2(f ) and themost general of classical complexitiesR2(f ), for a partial functionf (x1; : : : ; xN )

if we do not place any constraints on f ?
As we already mentioned, period finding has Q2(f ) = O(1) and R2(f ) = Ω̃( 4

p
N ).

In the form defined in Section 1, period-finding is not a Boolean function (it has variables
xi 2 [M ] instead of Boolean variables). While it is possible to define a Boolean version
of period-finding with almost the same gap, there is Boolean function with an even bigger
gap:

Theorem1. Aaronson and Ambainis [2015] There exists f withQ2(f ) = 1 andR2(f ) =

Ω(
p
N/ logN ).

The function f is defined as follows Aaronson and Ambainis [ibid.]. We have
N = 2n+1 variables. For technical convenience, we denote variables x0; : : : ; x2n�1;
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y0; : : : ; y2n�1 and assume that the possible values for variables are ˙1 (instead of 0 and
1). Let F be the 2n � 2n matrix (with rows and columns indexed by a; b 2 [0; 2n � 1])
defined by Fa;b = 1

2n/2 (�1)a�b where a � b =
P

i aibi is the inner product between a and
b interpreted as n-bit strings an�1 : : : a0 and bn�1 : : : b0. (In terms of quantum computing,
F = H˝n whereH is the standard 2 � 2 Hadamard matrix.) We define

f (x0; : : : ; y2n�1) =

(
1 if

P
a;b Fa;bxayb �

3
5
2n

0 if
P

a;b Fa;bxayb �
1

100
2n
:

The thresholds 3
5
and 1

100
are chosen so that:

• if we choose xi 2 f�1; 1g for i 2 f0; : : : ; 2n � 1g uniformly at random and then
choose yi = sgn((Fx)i ), we get f = 1 with a high probability;

• if we choose both xi and yj uniformly at random form f�1; 1g, we get f = 0 with
a high probability.

Thus, by solving f , we are effectively distinguishing between Ey = (yi )i2[0;2n�1] being
the vector of signs of F Ex where Ex = (xi )i2[0;2n�1] and Ey being independently random.
Q2(f ) = 1 is shown by a quantum algorithm that generates a quantum state

j i =

2n�1X
i=0

�
xi

p
2n

j0; ii +
yi

p
2n

j1; ii

�
:

This quantum state can be generated by just 1 query. We then apply the transformation F
to basis states j0; ii, transforming the state to

j i =

2n�1X
i=0

�
(Fx)i
p
2n

j0; ii +
yi

p
2n

j1; ii

�
:

We then use the SWAP test Buhrman, Cleve, Watrous, and De Wolf [2002], a well known
test for testing similarity of coefficient vectors of two parts of a quantum state.

The proof of the lower bound,R2(f ) = Ω(
p
N / logN ), is quite intricate. We define a

corresponding problem (which we call REAL FORRELATION)with real valued variables
x0; : : : ; x2n�1; y0; : : : ; y2n�1 in which we have to distinguish between two cases:

(a) all xi and yi are i.i.d. random with Gaussian distribution N(0; 1);

(b) xi ’s are i.i.d random with Gaussian distribution N(0; 1) and yi are obtained by ap-
plying Fourier transform to a vector consisting of xi ’s: yi = ((Fx)i ).
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In Aaronson and Ambainis [2015], we show that any algorithm for FORRELATION im-
plies an algorithm for REAL FORRELATION with a similar complexity. Thus, it suffices
to show a classical lower bound on REAL FORRELATION.

REAL FORRELATION is, in turn, a special case of a more general problem, GAUS-
SIAN DISTINGUISHING, in which we have to determine whether a set of real-valued
variables x1; : : : ; xM has a hidden structure. Let Ev1, : : :, EvM be a set of vectors in Rd for
some d . We have to distinguish between two cases:

(a) all xi are i.i.d. random with Gaussian distribution N(0; 1);

(b) x1; : : : ; xM are generated by choosing a random Eu 2 Rd (whose entries are i.i.d.
N(0; 1) random variables) and taking xi = (Eu; Evi ).

The lower bound on REAL FORRELATION is a special case of

Theorem 2. Let Evi be such that j( Evi ; Evj )j � � for all i ¤ j . Then, GAUSSIAN DISTIN-
GUISHING requires Ω( 1/�

log(M/�)
) queries.

In the case of REAL FORRELATION,M = 2n+1, d = 2n, Ev1; : : : ; Ev2n are the com-
putational basis states j0i, : : :, j2n � 1i and Ev2n+1; : : : ; Ev2n+1 are F j0i, : : :, F j2n � 1i.
Then, � = 1p

2n
= 1p

N/2
, implying a lower bound of Ω(

p
N / logN ) on REAL FORRE-

LATION. This bound is nearly tight, as shown by

Theorem 3. Let A be a 1-query quantum algorithm. There is a probabilistic algorithm
A0 that makes O(

p
N ) queries and, on every input (x1; : : : ; xN ), outputs an estimate p̃

such that jp � p̃j � � (where p is the accepting probability of A on (x1; : : : ; xN )) with a
high probability.

The simulation makes use of the connection between quantum algorithms and polyno-
mials:

Lemma 1. Beals, Buhrman, Cleve, Mosca, and de Wolf [2001] Let A be a quantum al-
gorithm that makes k queries to an input (x1; : : : ; xN ), xi 2 f0; 1g. The accepting prob-
ability of A can be expressed as a polynomial p(x1; : : : ; xN ) in variables x1; : : : ; xN of
degree at most 2k.

Since the accepting probability of an algorithm must be between 0 and 1, we have
0 � p(x1; : : : ; xN ) � 1 whenever x1; : : : ; xN 2 f0; 1g. Theorem 3 then follows from a
more general result about estimating bounded polynomials:

Lemma 2. Aaronson and Ambainis [2015] For every polynomial p(x1; : : : ; xN ) with
degp � 2 and 0 � p(x1; : : : ; xN ) � 1 for any x1; : : : ; xN 2 f0; 1g, there is a prob-
abilistic algorithm A0 that makes O(

p
N ) queries and outputs an estimate p̃ such that

jp(x1; : : : ; xN ) � p̃j � � with a high probability, for every input (x1; : : : ; xN ) 2 f0; 1gN .
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More generally, if we have a bounded polynomial p(x1; : : : ; xN ) with degp � k, its
value can be estimated with O(N 1�1/k) queries. Together with Lemma 1, this implies a
probabilistic simulation of t query quantum algorithms withO(N 1�1/2t ) queries. Unlike
for t = 1, we do not know whether this is optimal.

Open Problem 1. Let t � 2. Is there a partial function g(x1; : : : ; xN ) with Q2(g) = t

and R2(g) = Ω̃(N 1�1/2t )?

The problem remains open, if instead of Ω̃(N 1�1/2t ) (which matches our upper bound),
we ask for a weaker lower bound of Ω(N c), c > 1/2 and, even, if instead of a constant t ,
we allow t = O(logc N ).

Open Problem 2. Is there a partial function g(x1; : : : ; xN ) with Q2(g) = O(logc N )

for some c and R2(g) = Ω(N d ) for d > 1/2?

The well known examples of problems with a large quantum-classical gap (such as
Simon’s problem Simon [1997] or period-finding) typically have R2(g) = O(

p
N ). In

Aaronson and Ambainis [2015], we give a candidate problem, k-FOLD FORRELATION
for which we conjecture that bounds of Open Problem 1 hold. This is, however, the only
candidate problem that we know.

4 Total functions: pointer function method

For total functions f , the possible gaps betweenQ(f ),R(f ) andD(f ) aremuch smaller:
all of these complexity measures are polynomially related.

It is well known that D(f ) = O(Q6
2(f )) Beals, Buhrman, Cleve, Mosca, and de

Wolf [2001] and D(f ) = O(R3
2(f )) Nisan [1991]. For exact/zero error algorithms we

know that D(f ) = O(Q3
E (f )) Midrijanis [2004] and D(f ) = O(R2

0(f )) Saks and
Wigderson [1986]. The question is: how tight are these bounds?

For a very long time, the best separations were:

• Quantumvs. probabilistic/deterministic: OR(x1; : : : ; xN ) hasQ2(OR) = O(
p
N )

due to Grover’s quantum search algorithm and R2(f ) = Ω(N ).

• Probabilistic vs. deterministic: the binary AND–OR tree function of depth d has
D(f ) = 2d and R0(f ) = O(( 1+

p
33

4
)d ), thus implying that

R0(f ) = O(D0:753:::(f )) Saks and Wigderson [ibid.].

Both of these separations were conjectured to be optimal by a substantial part of the
respective research community.

For exact quantum query complexity, the best separation was Q2(XOR) = N /2 vs.
D(XOR) = R2(XOR) = N for theN -bit XOR function Beals, Buhrman, Cleve, Mosca,
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and de Wolf [2001] until 2013 when an example with QE (f ) = O(R0:86:::
2 (f )) was

discovered Ambainis [2016].
In 2015, major improvements to all of these bounds were achieved, via two new meth-

ods. The first of them, the pointer function method was first invented by Göös, Göös,
Pitassi, and Watson [2015] for solving the communication vs. partition number problem
in classical communication complexity. It was then quickly adapted to separating query
complexity measures by Ambainis, Balodis, Belovs, Lee, Santha, and Smotrovs [2017]:

Theorem 4. Ambainis, Balodis, Belovs, Lee, Santha, and Smotrovs [ibid.]

1. There exists a total Boolean function f withQ2(f ) = Õ(D1/4(f )).

2. There exists a total Boolean function f with R0(f ) = Õ(D1/2(f )).

3. There exists a total Boolean function f with R2(f ) = Õ(R
1/2
0 (f )).

The first two results provide major improvements over the previosly known results
mentioned at the beginning of this section. The third result is the first ever superlinear gap
between R0(f ) and R2(f ) for a total f .

We now illustrate the method by describing the simplest function by Göös, Pitassi,
and Watson [2015] and sketch a proof that it achieves R2(f ) = Õ(D1/2(f )), a slightly
weaker result than the second item above. Consider f (xij ; yij ; zij ), with variables xij 2

f0; 1g; yij 2 [0; N ]; zij 2 [0;M ] indexed by i 2 [N ]; j 2 [M ]. The variables xij are
interpreted as elements of an N �M table and pairs of variables (yij ; zij ) are interpreted
as pointers to entries in this table2 .

We define that f = 1 if the following conditions are satisfied:

1. the N �M table has a unique column i in which all entries xij are 1;

2. in this column, there is exactly one j for which (yij ; zij ) ¤ (0; 0);

3. if we start at this (i; j ) and repeatedly follow the pointers (that is, consider the
sequence (ik ; jk) defined by (i0; j0) = (i; j ) and (ik ; jk) = (yik�1jk�1

; zik�1jk�1
)

for k > 0), then:

(a) for each i 0 ¤ i , there is a unique k 2 [N � 1] with ik = i 0,
(b) (iN ; jN ) = (0; 0),
(c) xikjk

= 0 for all k 2 [N � 1].

This function f has the following properties:
2As described, this is a function of variables with a larger set of values but it can be converted into a function

with f0; 1g-valued variables, with complexities changing by at most a logarithmic factor.
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1. D(f ) = NM : for any deterministic algorithm, an adversary may choose the values
for variables so that at least one of xij , yij , zij needs to be queried for each ij .

2. If f (xij ; yij ; zij ) = 1, this can be certified by showing variables xij ; yij ; zij for
N +M � 1 different (i; j ): the all-1 column and the cells (ik ; jk) in the sequence
of pointers. Moreover, there is one and only one way to certify this.

To show a gap between D(f ) and R2(f ), it suffices to show that a randomized al-
gorithm can find this certificate faster than a deterministic algorithm. For that, we set
N = M and consider the following randomized algorithm (due to Mukhopadhyay and
Sanyal [2015]):

1. Θ(N logN ) times repeat:

(a) Choose a random entry (i; j ) of the table in a column that has not been elimi-
nated yet.

(b) While xij = 0, yij ¤ 0, zij ¤ 0 and i is not a column that has been already
eliminated:

• eliminate column i ;
• set i = yij and j = zij .

(c) If xij = 0 but yij = 0 or zij = 0, eliminate column i .

2. If all columns are eliminated or more than 100 columns remain, output 0.

3. Otherwise, test each of remaining columns by checking whether it satisfies the con-
ditions for a certificate.

If f = 1, each time when we choose a random entry in a column that is not the all-1
column, there is an 1

N
probability of choosing the entry that is a part of the pointer chain.

This means that, duringΘ(N logN ) repetitions, this happensΘ(logN ) times. Each time,
the columns that are after this entry in the pointer chain get eliminated. On average, half
of remaining columns are after the entry that gets chosen. This means that, with a high
probability, after Θ(logN ) times, only O(1) columns are not eliminated. Then, one can
test each of them with O(N ) queries.

This basic construction can be modified in several ways Ambainis, Balodis, Belovs,
Lee, Santha, and Smotrovs [2017]. To separate two models of computation, we should
make the certificate for f = 1 easy to find in one of them but difficult in the other
model. (For example, hard to find by zero-error probabilistic algorithms but easy to find
by bounded error probabilistic algorithms.) For different separations, the modifications
include:
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• Arranging the cells with pointers (in columns that are not the all-1 column) into a
binary tree instead of a chain.

• Introducing back pointers at the end of the pointer chain or at the leaves of the tree,
pointing back to the all-1 column.

• Having more than one all-1 column with pointers among the all-1 columns.

Besides the threemajor results in Theorem 4, this approach gives better-than-before sep-
arations between exact quantum query complexity and all classical complexity measures
(QE (f ) = Õ(

p
D(f )), QE (f ) = Õ(

p
R0(f )), and QE (f ) = Õ(R

2/3
2 (f ))), be-

tween bounded-error quantum and zero-error probabilistic complexity (Q2(f ) = Õ( 3
p
R0(f ))),

and between polynomial degree and randomized query complexity
(edeg(f ) = Õ( 4

p
R2(f ))) Ambainis, Balodis, Belovs, Lee, Santha, and Smotrovs [ibid.].

5 Total functions: cheat sheet method

5.1 Query complexity. After the developments described in the previous section, the
biggest separation between quantum and randomized complexities still remainedQ(f ) =

O(
p
R2(f )). This was improved to Q(f ) = Õ(R2(f )

2/5) in a breakthrough paper by
Aaronson, Ben-David, and Kothari [2016], using another new method, cheat sheets.

The key feature of cheat sheet method is that it takes separations for partial functions
and transforms them into separations for total functions, by adding extra variables that
allow to check that the input satisfies the promise for one of two cases when the partial
function f is defined. The main result is

Theorem 5. Aaronson, Ben-David, and Kothari [ibid.] Let f (x1; : : : ; xN ) be a partial
function with Q2(f ) = Q, R2(f ) = R and C (f ) = C . Then, there exists a total
function fCS withQ2(fCS ) = Õ(Q +

p
C ) and R2(fCS ) = Ω(R).

Let f (x1; : : : ; xN 3) be the partial function f = AND ı OR ı FORRELATION

obtained by composing AND, OR and FORRELATION on N variables each. From
the complexities of AND, OR and FORRELATION and composition properties of
the complexity measures it follows thatQ2(f ) = O(N ), C (f ) = O(N 2) and R2(f ) =

Ω̃(N 2:5), implying

Theorem 6. Aaronson, Ben-David, and Kothari [ibid.] There exists a total Boolean func-
tion fCS withQ2(fCS ) = Õ(R

2/5
2 (fCS )).

Moreover, if Open Problem 1 was resolved in affirmative, we could substitute the
corresponding g instead of FORRELATION and Theorem 5 would imply Q2(gCS ) =

Õ(R
1/3+o(1)
2 (gCS )).
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The cheat sheet method also gives new separations betwen Q2(f ) and many of com-
binatorial complexity measures: Q2(f ) = Ω̃(C 2(f )), Q2(f ) = Ω̃(deg2(f )), and
Q2(f ) = Ω(edeg4�o(1)

(f )). Moreover, several of results proven via the pointer func-
tion method (for example, the QE (f ) = Õ(R

2/3
2 (f )) separation) can be reproven via

cheat sheets Aaronson, Ben-David, and Kothari [2016].
To show Theorem 5, Aaronson, Ben-David, and Kothari [ibid.] define the cheat-sheet

function fCS in a following way. fCS has tN + 2t tC dlogN + 1e variables (for an ap-
propriately chosen t = Θ(logN )) which we denote x11; : : : ; xtN , y11; : : : ; y2t M (where
M = CtdlogN+1e). We interpret the blocks of variables x(i) = (xi1; : : : ; xiN ) as inputs
to the function f and and the blocks y(i) = (yi1; : : : ; yiM ) as descriptions for t certifi-
cates of function f , with the description containing both the set of variables S � [N ]

and and the values that xi , i 2 S must take. (We refer to those blocks as cheat-sheets, as
they allow to verify the values of f (x(1)), : : :, f (x(t)) with less queries than it takes to
compute them.)

We interpret the t -bit string s = s1 : : : st , si = f (x(i)) as an index for the block
y(s). We define that fCS = 1 if the block y(s) contains certificates for f (x) = s1, : : :,
f (x) = st and the values of corresponding input variables in inputs x(1); : : : ; x(t) match
the ones specified by the corresponding certificate. Otherwise, fCS = 0.

To compute fCS by a quantum algorithm, we proceed as follows:

1. compute f (x(1)), : : :, f (x(t)), repeating each computationO(log t) times, to make
the error probability at most 1/(10t) for each f (xi ) (then, the probability that all
f (x(i)) are all simultaneously correct is at least 9/10);

2. check whether the certificates in the block y(s) are satisfied by inputs x(1); : : : ; x(t),
by using Grover’s quantum search to search for a variable in one of x(i) which does
not match the corresponding certificate.

The complexity of the 1st stage isO(Qt log t). The complexity of the 2nd stage isO(
p
Ct logN ),

since we have to search among tC variables x(i)j (t certificates, each of which contains C
variables), Grover’s quantum searchGrover [1996] allows to search among them by testing
O(

p
tC ) possibilities, and testing each possibility requires readingO(logN ) variables in

the block y(s). Thus, the overall complexity is Õ(Q +
p
C ) quantum queries.

Classically, Rt queries are required to solve t instances of f (x(i)). Moreover, if the
number of queries is substantially smaller (of an order o(Rt)), then, with a high probability,
most of f (x(i)) are not solved yet and, at that point, a classical algorithm cannot make use
of certificate descriptions in y(j ) because there are too many possible yj ). This suggests
that R2(fCS ) = Ω(Rt) and Aaronson, Ben-David, and Kothari [2016] show that this is
indeed the case.
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5.2 Communication complexity. The cheat sheet method has also found applications
in a different domain, communication complexity Kushilevitz and Nisan [1997] and Lee
and Shraibman [2007]. In the standard model of communication complexity, we have two
parties, Alice and Bob, who want to compute a function f (x; y), with Alice holding the
input x and Bob holding the input y. The task is to compute f (x; y) with the minimum
amount of communication between Alice and Bob. Communication complexity has a
number of applications, from designing efficient communication protocols for various
tasks to proving lower bounds on other models of computation (for example, streaming
algorithms).

If quantum communication is allowed, the communication complexity may decrease
exponentially. Similarly to query complexity, let Q2(f ), QE (f ) and R2(f ) denote the
bounded-error quantum, exact quantum and bounded error randomized communication
complexity of f . A partial function with an exponential gap between R2(f ) andQ2(f )

was first constructed by Raz [1999] in 1999. In a later work, it was shown that quantum
protocols can be exponentially more efficient even if the quantum protocol is restricted
to one message from Klartag and Regev [2011] but it is compared against randomized
protocols that can send an arbitrary number of messages back and forth.

However, similarly to query complexity, quantum advantages for total functions have
beenmuchmore limited, with the best known separation ofQ(f ) = O(

p
R2(f ))Buhrman,

Cleve, and Wigderson [1999] and Aaronson and Ambainis [2005] for the set disjoint-
ness problem which is the natural communication counterpart of Grover’s search. Anshu,
Belovs, Ben-David, Göös, Jain, Kothari, Lee, and Santha [2016] have adapted the cheat
sheet method to communication complexity, proving

Theorem 7. Anshu, Belovs, Ben-David, Göös, Jain, Kothari, Lee, and Santha [ibid.]

1. There is a total function f (x; y) withQ2(f ) = Õ(R
2/5
2 (f ));

2. There is a total function f (x; y) withQE (f ) = Õ(R
2/3
2 (f ));

6 Quantum-classical separations on almost all inputs?

All known partial functions f (x1; : : : ; xN ) with a superpolynomial quantum advantage
have the property that f takes one of values f = 0 and f = 1 on a very small subset of
inputs. For example, for FORRELATION, the fraction of inputs with f = 1 is exponen-
tially small in the number of variables N . This had led to a following conjecture (known
as a folklore since about 1999):

Conjecture 1. Aaronson and Ambainis [2014] Let Q be a quantum algorithm that makes
T queries and let �; ı > 0. There is a deterministic algorithm with a number of queries
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that is polynomial in T , 1
�
and 1

ı
and approximates the probability of Q outputting 1 to an

additive error � on at least 1 � ı fraction of all inputs.

For total function, this conjecture implies that quantum and deterministic complexity
are polynomially equivalent in the setting of approximately computing f . That is, for a
total function f , letD�(f ) andQ�(f ) be the smallest number of queries for a (determin-
istic or quantum) algorithm that outputs the correct answer on at least 1 � � fraction of
inputs (x1; : : : ; xN ). Then, Conjecture 1 implies that D�(f ) and Q�0(f ) are polynomi-
ally related, for all constant �; �0 with � > �0.

There is a natural path towards proving Conjecture 1. Due to Lemma 1, Conjecture 1
is implied by

Conjecture 2. Aaronson and Ambainis [2014] Let p(x1; : : : ; xN ) be a polynomial of
degree 2T which satisfies jp(x1; : : : ; xN )j � 1 for all x1; : : : ; xN 2 f0; 1g and let �; ı > 0.
There is a deterministic algorithm with a number of queries that is polynomial in T , 1

�
and

1
ı
and approximates p(x1; : : : ; xN ) to an additive error � on at least 1 � ı fraction of all

inputs.

The natural way to design such a deterministic algorithm is by repeatedly choosing the
variable xi that has the biggest influence on the value of p (with the influence defined
as Infi (p) = Ex [jp(x) � p(x(fig))j2] with the expectation over a random choice of
x 2 f0; 1gn). To prove Conjecture 2, it suffices to show

Conjecture 3. Aaronson and Ambainis [ibid.] Let p(x1; : : : ; xN ) be a polynomial of de-
gree 2T which satisfies jp(x1; : : : ; xN )j � 1 for all x1; : : : ; xN 2 f0; 1g. Assume that

Ex2f0;1gn

h
(p(x) �E[p(x)])2

i
� �:

Then, there is a variable i with Infi [p] �
�

�
T

�c for some constant c.

Conjecture 3 connects with research in the analysis of Boolean functions. In particular,
work of Dinur, Friedgut, Kindler, and O’Donnell [2006] implies a weaker form of the
conjecture, with Infi [p] �

�3

2O(T ) . Improving it to Infi [p] �
�

�
T

�c is a challenging open
problem which is interesting for both analysis of Boolean functions and quantum query
complexity.

7 Structure of quantum speedups?

Another related question is: when can we achieve large quantum speedups? From the
known examples of exponential and superexponential speedups for partial functions, we
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can observe that they are typically achieved for problems with an algebraic structure. For
example, Simon [1997] showed an exponential speedup for the following problem:

Simon’s problem. LetN = 2n. We are promised that the input (x0; : : : ; xN �1) (where
xi 2 [M ]) satisfies one of two promises:

(a) the mapping i ! xi is 2-to-1 with some z 2 [N ]; z ¤ 0 such that xy = xy˚z for
all y 2 [N ], with ˚ denoting bitwise addition modulo 2;

(b) the mapping i ! xi is 1-1.

As shown by Simon,Q2(f ) = O(n) but R2(f ) = Ω(2n/2). However, randomly per-
muting inputs turns Simon’s problem into the problem of distinguishing whether i ! xi

is 2-1 or 1-1 for which it is known that Q2(f ) = Θ(2n/3) but R2(f ) = Θ(2n/2) Bras-
sard, Høyer, and Tapp [1997] and Aaronson and Ambainis [2015], with the exponential
quantum speedup disappearing. Similarly, permuting the input variables destroys the su-
perexponential quantum speedup for the FORRELATION problem.

This leads to a question: can we show that quantum speedup is at most polynomial
for any partial function that is symmetric with respect to permuting the input variables
xi? A positive answer would imply that large quantum speedups require problems with a
structure (typically, of algebraic nature) that disappears if inputs are permuted.

For the case when xi ’s are binary, evaluating a partial symmetric function essentially
requires counting the number of i : xi = 1 up to a certain precision (which is sufficient
for distinguishing whether the input x = (x1; : : : ; xN ) satisfies f (x) = 0 or f (x) = 1).
Quantum algorithms can count i : xi = 1 quadratically faster than classical algorithms
Brassard, Høyer, and Tapp [1998] and it is easy to show that larger speedups cannot be
obtained.

For non-binary inputs there are two possible ways of defining a “symmetric function”:

(a) f : [M ]N ! f0; 1g is symmetric, if f (x1; : : : ; xN ) = f (x�(1); : : : ; x�(N )) for
any permutation � on f1; 2; : : : ; N g;

(b) f : [M ]N ! f0; 1g is symmetric, if f (x1; : : : ; xN ) = f (�(x�(1)); : : : ; �(x�(N )))

for any permutations � on f1; 2; : : : ; N g and � on f1; 2; : : : ;M g.

For example, the property of being 1-1 or 2-1 is preserved both if x1; : : : ; xN are per-
muted and if the values for x1; : : : ; xN are permuted. Thus, it is symmetric in the second,
stronger sense. Similarly, element distinctness (determining whether x1; : : : ; xN are all
distinct) and other natural properties are symmetric in the second sense. For such proper-
ties, we have

Theorem 8. Assume that a partial function f : [M ]N ! f0; 1g is symmetric in the second
sense. Then, R2(f ) = O(Q7

2(f ) log
c Q2(f )).
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It has been conjectured since about 2000 that a similar result also holds for f with a
symmetry of the first type.

A related question has been studied by Aaronson and Ben-David [2016]: given a total
function f : f0; 1gN ! f0; 1g, can we define a subproblem fP (f restricted to some
subset P � f0; 1gN ) for whichQ2(fP ) = O(logc R2(fP ))?

For example, if f (x1; : : : ; xN ) = x1OR : : :ORxN , then, for any restriction, the quan-
tum advantage is at most quadratic. (An intuitive explanation is that computing OR is
essentially equivalent to finding i : xi = 1 and, for search, the quantum advantage is
quadratic whatever the number of i : xi = 1 is.) In contrast, both MAJORITY and
PARITY can be restricted so that quantum advantage becomes exponential.

The next theorem gives a full characterization when superpolynomial speedups can be
achieved:

Theorem 9. Aaronson and Ambainis [2014] A promise P � f0; 1gN with Q2(fP ) =

O(N o(1)) and R2(fP ) = Ω(NΩ(1)) exists if and only if, for some c > 0, there are 2N c

inputs x 2 f0; 1gN with Cx(f ) � N c .

8 From polynomials to quantum algorithms

As shown by Lemma 1, a quantum algorithm that makes k queries can be converted into a
polynomial of degree at most 2k. In the opposite direction, the existence of a polynomial
of degree 2k does not imply the existence of a quantum algorithm that makes k queries. As
mentioned in Section 5.1, there is a total f with Q2(f ) = Ω(edeg4�o(1)(f )) Aaronson,
Ben-David, and Kothari [2016].

However, there is an interesting particular case in which polynomials and quantum
algorithms are equivalent.

Theorem 10 (Aaronson, Ambainis, Iraids, Kokainis, and Smotrovs [2016]). Let
f (x1; : : : ; xN ) be a partial Boolean function. Assume that there is a polynomial
p(x1; : : : ; xN ) of degree 2 with the following properties:

• for any x1; : : : ; xN 2 f0; 1g, 0 � p(x1; : : : ; xN ) � 1;

• if f (x1; : : : ; xN ) = 1, p(x1; : : : ; xN ) �
1
2
+ ı;

• if f (x1; : : : ; xN ) = 0, p(x1; : : : ; xN ) �
1
2

� ı.

Then, f (x1; : : : ; xN ) can be computed by a 1-query quantum algorithm with the probabil-
ity of correct answer at least 1

2
+ ı

3(2K+1)
whereK is the Groethendieck’s constant Pisier

[2012] (for which it is known that 1:5707::: � K � 1:7822::: Braverman, K. Makarychev,
Y. Makarychev, and Naor [2011]).
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The main ideas for the transformation from a polynomial to a quantum algorithm are
as follows:

1. For technical convenience, we assume that xi are f�1; 1g-valued (instead of f0; 1g-
valued). We start by transforming a polynomial p(x1; : : : ; xN ) into another poly-
nomial

q(x1; : : : ; xN ; y1; : : : ; yN ) =
X
i;j

ai;jxiyj

which satisfies q(x1; : : : ; xN ; x1; : : : ; xN ) = p(x1; : : : ; xN ) for all x1; : : : ; xN 2

f�1; 1g and jq(x1; : : : ; xN ; y1; : : : ; yN )j � 1 for all x1; : : : ; xN ; y1; : : : ; yN 2

f�1; 1g.

2. If the spectral norm kAk of the matrix A is small, then the polynomial q can be
transformed into a quantum algorithm:

Lemma 3. Let A = (aij )i2[N ];j 2[M ] with
p
NMkAk � C and let

q(x1; : : : ; xN ; y1; : : : ; yM ) =

NX
i=1

MX
j=1

aijxiyj :

Then, there is a quantum algorithm that makes 1 query to x1; : : : ; xN , y1; : : : ; yM

and outputs 1 with probability

r =
1

2

�
1 +

q(x1; : : : ; xN ; y1; : : : ; yM )

C

�
:

The quantum algorithm consists of creating a combination of quantum states j i =PN
i=1

xip
N

jii and j�i =
PM

j=1
yip
M

jj i, applying U =
p
NM � A to j�i and then

using the SWAP test Buhrman, Cleve, Watrous, and De Wolf [2002] to estimate the
inner product of j i and U j�i which happens to be equal to the desired quantityPN

i=1

PM
j=1 aijxiyj .

If U is unitary, we can apply this procedure as described. If kU k = C > 1, U is
not unitary and cannot be applied directly. Instead, we design and apply a unitary
transformation that is equal to 1

C
U on a certain subspace.

3. For the general case, a corollary of Groethendieck’s inequality Pisier [2012], Aaron-
son, Ambainis, Iraids, Kokainis, and Smotrovs [2016], and Arunachalam, Briët, and
Palazuelos [2017] implies that, if aij are such that
j
PN

i=1

PM
j=1 aijxiyj j � 1 for all choices of xi 2 f�1; 1g and yj 2 f�1; 1g, there
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exist Eu = (ui )i2N and Ev = (vj )j 2M such that kEuk = 1, kEvk = 1, aij = bijuivj

for all i 2 [N ]; j 2 [M ] and B = (bij )i;j satisfies kBk � K.

Then, we can perform a similar algorithm with quantum states j i =
PN

i=1 uixi jii

and j�i =
PM

j=1 vjyj jj i.

Following this work, it was shown Arunachalam, Briët, and Palazuelos [2017] that
quantum algorithms are equivalent to polynomial representations by polynomials of a par-
ticular type. Namely, the accepting probability of a t query quantum algorithm is equal to
a completely bounded form of degree 2t . For t = 1, representatios of f by a completely
bounded forms are equivalent to representations by general polynomials (implying Theo-
rem 10) but this does not hold for t � 2.
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APPROXIMATE NEAREST NEIGHBOR SEARCH IN HIGH
DIMENSIONS
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Abstract

The nearest neighbor problem is defined as follows: Given a set P of n points
in some metric space (X;D), build a data structure that, given any point q, returns a
point in P that is closest to q (its “nearest neighbor” in P ). The data structure stores
additional information about the set P , which is then used to find the nearest neighbor
without computing all distances between q and P . The problem has a wide range of
applications in machine learning, computer vision, databases and other fields.

To reduce the time needed to find nearest neighbors and the amount of memory
used by the data structure, one can formulate the approximate nearest neighbor prob-
lem, where the the goal is to return any point p0 2 P such that the distance from q to
p0 is at most c � minp2P D(q; p), for some c � 1. Over the last two decades many
efficient solutions to this problem were developed. In this article we survey these de-
velopments, as well as their connections to questions in geometric functional analysis
and combinatorial geometry.

1 Introduction

The nearest neighbor problem is defined as follows: Given a set P of n points in a
metric space defined over a set X with distance function D, build a data structure1 that,
given any “query” point q 2 X , returns its “nearest neighbor” argminp2P D(q; p). A
particularly interesting and well-studied case is that of nearest neighbor in geometric
spaces, where X = Rd and the metric D is induced by some norm. The problem has
a wide range of applications in machine learning, computer vision, databases and other
fields, see Shakhnarovich, Darrell, and Indyk [2006] and Andoni and Indyk [2008] for an
overview.

This research was supported by NSF and Simons Foundation.
MSC2010: primary 68W20; secondary 52A21, 46B09, 46B85, 68P05.
1See Section 1.1 for a discussion about the computational model.
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A simple solution to this problem would store the set P in memory, and then, given
q, compute all distances D(q; p) for p 2 P and select the point p with the minimum
distance. Its disadvantage is the computational cost: computing all n distances requires at
least n operations. Since in many applications n can be as large as 109 (see e.g., Sundaram,
Turmukhametova, Satish, Mostak, Indyk, Madden, and Dubey [2013]), it was necessary
to develop faster methods that find the nearest neighbors without explicitly computing
all distances from q. Those methods compute and store additional information about the
set P , which is then used to find nearest neighbors more efficiently. To illustrate this
idea, consider another simple solution for the case where X = f0; 1gd . In this case, one
could precompute and store in memory the answers to all 2d queries q 2 X ; given q,
one could then return its nearest neighbor by performing only a single memory lookup.
Unfortunately, this approach requires memory of size 2d , which again is inefficient (d is
at least 103 or higher in many applications).

The two aforementioned solutions can be viewed as extreme points in a tradeoff be-
tween the time to answer a query (“query time”) and the amount ofmemory used (“space”)2.
The study of this tradeoff dates back to the work of Minsky and Papert [1969, p. 222]),
and has become one of the key topics in the field of computational geometry Preparata
and Shamos [1985]. During the 1970s and 1980s many efficient solutions have been dis-
covered for the case when (X;D) = (Rd ; `2) and d is a constant independent of n. For
example, for d = 2, one can construct a data structure using O(n) space with O(logn)
query time Lipton and Tarjan [1980]. Unfortunately, as the dimension d increases, those
data structures become less and less efficient. Specifically, it is known how construct data
structures with O(dO(1) logn) query time, but using nO(d) space (Meiser [1993], build-
ing on Clarkson [1988]).3 Furthermore, there is evidence that data structures with query
times of the form n1�˛dO(1) for some constant ˛ > 0 might be difficult to construct
efficiently.4

The search for efficient solutions to the nearest neighbor problem has led to the ques-
tion whether better space/query time bounds could be obtained if the data structure was
allowed to report approximate answers. In the c-approximate nearest neighbor problem,
the data structure can report any point p0 2 P within distance c � minp2P D(q; p) from
q; the parameter c � 1 is called “approximation factor”. The work of Arya and Mount

2There are other important data structure parameters, such as the time needed to construct it. For the sake of
simplicity, we will mostly focus on query time and space.

3This exponential dependence on the dimension is due to the fact that those data structures compute and store
the Voronoi decomposition of P , i.e., the decomposition of Rd into cells such that all points in each cell have
the same nearest neighbor inP . The combinatorial complexity of this decomposition could be as large as nΩ(d)

Carathéodory [1911].
4If such a data structure could be constructed in polynomial time nO(1), then the Strong Exponential Time

Hypothesis Vassilevska Williams [2018] would be false. This fact essentially follows from R. Williams [2005],
see the discussion after Theorem 1 in Ahle, Pagh, Razenshteyn, and Silvestri [2016].
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[1993] and Bern [1993] showed that allowing c > 1 indeed leads to better data structures,
although their solutions still retained exponential dependencies on d in the query time or
space bounds Arya and Mount [1993] or required that the approximation factor c be poly-
nomial in the dimension d Bern [1993]. These bounds have been substantially improved
over the next few years, see e.g., Clarkson [1994], Chan [1998], Arya, Mount, Netanyahu,
Silverman, and A. Y. Wu [1998], and Kleinberg [1997] and the references therein.

In this article we survey the “second wave” of approximate nearest neighbor data struc-
tures, whose query time and space bounds are polynomial in the dimension d . 5 At a
high level, these data structures are obtained in two steps. In the first step, the approxi-
mate nearest neighbor problem is reduced to its “decision version”, termed approximate
near neighbor (see e.g. Har-Peled, Indyk, and Motwani [2012]). The second step involves
constructing a data structure for the latter problem. In this survey we focus mostly on the
second step.

The approximate near neighbor problem is parameterized by an approximation factor
c > 1 as well as a “scale parameter” r > 0, and defined as follows.

Definition 1.1 ((c; r)-Approximate Near Neighbor). Given a set P of n points in a metric
space (X;D), build a data structure S that, given any query point q 2 X such that the
metric ball BD(q; r) = fp 2 X : D(p; q) � rg contains a point in P , S returns any point
in BD(q; cr) \ P .

Note that the definition does not specify the behavior of the data structure if the ball
BD(q; r) does not contain any point in P . We omit the index D when it is clear from the
context.

The above definition applies to algorithms that are deterministic, i.e., do not use random
bits. However, most of the approximate near neighbor algorithms in the literature are
randomized, i.e., generate and use random bits while constructing the data structure. In
this case, the data structure S is a random variable, selected uniformly at random from
some distribution. This leads to the following generalization.

Definition 1.2 ((c; r; ı)-Approximate Near Neighbor). Given a set P of n points in a
metric space (X;D), build a data structure S that, given any query point q 2 X such that
B(q; r) \ P ¤ ¿,

Pr
S
[S returns any point in B(q; cr) \ P ] � 1 � ı

The probability of failure ı of the data structure can be reduced by independently re-
peating the process several times, i.e., creating several data structures. Therefore, in the

5Due to the lack of space, we will not cover several important related topics, such as data structures for
point-sets with low intrinsic dimension Clarkson [2006], approximate furthest neighbor, approximate nearest
line search Mahabadi [2014] and other variants of the problem.
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rest of the survey we will set ı to an arbitrary constant, say, 1/3. We will use (c; r)-ANN
to denote (c; r; 1/3)-Approximate Near Neighbor.

1.1 Computational model. For the purpose of this survey, a data structure of sizeM
is an array A[1 : : :M ] of numbers (“the memory”), together with an associated algorithm
that, given a point q, returns a point in P as specified by the problem. The entries A[i ]
of A are called “memory cells”. Due to lack of space, we will not formally define other
details of the computational model, in particular what an algorithm is, how to measure its
running time, what is the range of the array elements A[i ], etc. There are several ways of
defining these notions, and the material in this survey is relatively robust to the variations
in the definitions. We note, however, that one way to formalize these notions is to restrict
all numbers, including point coordinates, memory entries, etc, to rational numbers of the
form a/b, where a 2 f�nO(1) : : : nO(1)g and b = nO(1), and to the define query time as
the maximum number of memory cells accessed to answer any query q.

For an overview of these topics and formal definitions, the reader is referred to Mil-
tersen [1999]. For a discussion specifically geared towards mathematical audience, see
Fefferman and Klartag [2009].

2 Data-independent approach

The first approach to the approximate near neighbor problem has been via data-indepen-
dent data structures. These are data structures where the memory cells accessed by the
query algorithm do not depend on the data set P , but only on q and (for randomized
data structures) the random bits used to construct the data structure. In this section, we
describe two methods for constructing such data structures, based on oblivious dimension-
reduction, and on randomized space partitions. These methods give ANN data structures
for the `1 and `2 spaces in particular.

2.1 ANN via dimension reduction. As described in the introduction, there exist ANN
data structures with space and query time at most exponential in the dimension d . Since
exponential space/time bounds are unaffordable for large d , a natural approach is to per-
form a dimension reduction beforehand, and then solve the problem in the lower, reduced
dimension. The main ingredient of such an approach is a map f : Rd ! Rk that pre-
serves distances up to a c = 1 + " factor, where k = O(logn). Then a space bound
exponential in k becomes polynomial in n.

Such dimension-reducing maps f indeed exist for the `2 norm if we allow randomiza-
tion, as first shown in the influential paper by Johnson and Lindenstrauss:
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Lemma 2.1 (Johnson and Lindenstrauss [1984]). Fix dimension d � 1 and a “target”
dimension k < d . Let A be the projection of Rd to its k-dimensional subspace selected
uniformly at random (with respect to the Haar measure), and define f : Rd ! Rk as
f (x) =

p
dp
k
Ax. Then, there is a universal constant C > 0, such that for any " 2 (0; 1/2),

and any x; y 2 Rd , we have that

Pr
A

h
kf (x)�f (y)k

kx�yk
2 (1 � "; 1 + ")

i
� 1 � e�C"2k :

We can now apply this lemma, with k = O
�
logn
"2

�
, to a set of points P to show that

the map f has a (1 + ") distortion on P , with probability at least 2/3. Most importantly
the map f is “oblivious”, i.e., it does not depend on P .

We now show how to use Lemma 2.1 to design a (1 + O("); r)-ANN data structure
with the following guarantees.

Theorem 2.2 (Indyk and Motwani [1998] and Har-Peled, Indyk, and Motwani [2012]).
Fix " 2 (0; 1/2) and dimension d � 1. There is a (1 +O("); r)-ANN data structure over
(Rd ; `2) achievingQ = O(d �

logn
"2

) query time, and S = nO(log(1/")/"2) +O(d (n+ k))

space. The time needed to build the data structure is O(S + ndk).

Proof sketch. First, assume there is a (1 + "; r)-ANN data structure A for the k-dimen-
sional `2 space, achieving query time Q(n; k) and space bounded by S(n; k). For k =

O( logn
"2

), we consider the map f from Lemma 2.1. For the dataset P , we compute f (P )

and preprocess this set using A (with the scale parameter r(1 + ")). Then, for a query
point q 2 Rd , we query the data structure A on f (q). This algorithm works for a fixed
dataset P and query q with 5/6 probability, by applying Lemma 2.1 to the points in the set
P [ fqg. The map f preserves all distances between P and q up to a factor of 1 + ".

We now construct A with space S(n; k) = n � (1/")O(k) andQ(n; k) = O(k), which
yields the stated bound for k = O( logn

"2
). Given the scale parameter r , we discretize the

spaceRk into cubes of sidelength "r/
p
k, and consider the setS of cubes that intersect any

ball B(p0; r) where p0 2 f (P ). Using standard estimates on the volume of `2 balls, one
can prove that jS j � n � (1/")O(k). The data structure then stores the set S in a dictionary
data structure.6 For a query f (q), we just compute the cube that contains f (q), and check
whether it is contained in set S using the dictionary data structure. We note that there is
an additional 1 + " factor loss from discretization since the diameter of a cube is "r .

6In the dictionary problem, we are given a set S of elements from a discrete universe U , and we need
to answer queries of the form “given x, is x 2 S?”. This is a classic data structure problem and has many
solutions. One concrete solution is via hashing Cormen, Leiserson, Rivest, and Stein [2001], which achieves
space ofO(jS j) words, each ofO(log jU j) bits, and query time ofO(1) in expectation.
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A similar approach was introduced Kushilevitz, Ostrovsky, and Rabani [2000] in the
context of the Hamming space f0; 1gd . An important difference is that that there is no
analog of Lemma 2.1 for the Hamming space Brinkman and M. Charikar [2005].7 There-
fore, Kushilevitz, Ostrovsky, and Rabani [2000] introduce a weaker notion of randomized
dimension reduction, which works only for a fixed scale r .

Lemma 2.3 (Kushilevitz, Ostrovsky, and Rabani [ibid.]). Fix the error parameter " 2

(0; 1/2), dimension d � 1, and scale r 2 [1; d ]. For any k � 1, there exists a randomized
map f : f0; 1gd ! f0; 1gk and an absolute constant C > 0, satisfying the following for
any fixed x; y 2 f0; 1gd :

• if kx � yk1 � r , then Prf [kf (x) � f (y)k1 � k/2] � 1 � e�C"2k;

• if kx�yk1 � (1+")r , then Prf [kf (x)�f (y)k1 > (1+"/2) �k/2] � 1�e�C"2k .

The map f can be constructed via a random projection over GF (2). That is, take
f (x) = Ax, where A is a k � d matrix for k = O(log(n)/"2), with each entry being 1

with some fixed probability p, and zero otherwise. The probability p depends solely on
r . The rest of the algorithm proceeds as before, with the exception that the “base” data
structure A is particularly simple: just store the answer for any dimension-reduced query
point f (q) 2 f0; 1gk . Since there are only 2k = nO(1/"2) such possible queries, and
computing f (q) takes O(dk) time, we get the following result.

Theorem 2.4 (Kushilevitz, Ostrovsky, and Rabani [ibid.]). Fix " 2 (0; 1/2) and di-
mension d � 1. There is a (1 + O("); r)-ANN data structure over (f0; 1gd ; `1) using
nO(1/"2) +O(d (n+ k)) space and O(d �

logn
"2

) query time.

As a final remark, we note we cannot obtain improved space bounds by improving the
dimension reduction lemmas 2.1 and 2.3. Indeed the above lemma are tight as proven
in Jayram and Woodruff [2013]. There was however work on improving the run-time
complexity for computing a dimension reduction map, improving over the naïve bound of
O(dk); see Ailon and Chazelle [2009], Dasgupta, R. Kumar, and Sarlós [2010], Ailon
and Liberty [2013], Krahmer and Ward [2011], Nelson, Price, and Wootters [2014], and
Kane and Nelson [2014].

2.2 ANN via space partitions: Locality-Sensitive Hashing. While dimension reduc-
tion yields ANN data structure with polynomial space, this is not enough in applications,
where one desires space as close as possible to linear in n. This consideration led to the

7In fact, it has been shown that spaces for which analogs of Lemma 2.1 hold are “almost” Hilbert spaces John-
son and A. Naor [2009].
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following, alternative approach, which yields smaller space bounds, albeit at the cost of
increasing the query time to something of the form n� where � 2 (0; 1).

The new approach is based on randomized space partitions, and specifically on Locality-
Sensitive Hashing, introduced in Indyk and Motwani [1998].

Definition 2.5 (Locality-Sensitive Hashing (LSH)). Fix a metric space (X;D), scale r >
0, approximation c > 1 and a set U . Then a distribution H over maps h : X ! U is
called (r; cr; p1; p2)-sensitive if the following holds for any x; y 2 X :

• if D(x; y) � r , then Prh[h(x) = h(y)] � p1;

• if D(x; y) > cr , then Prh[h(x) = h(y)] � p2.

The distribution H is called an LSH family, and has quality � = �(H) = log1/p1

log1/p2
.

In what follows we require an LSH family to have p1 > p2, which implies � < 1.
Note that LSH mappings are also oblivious: the distribution H does not depend on the
point-set P or the query q.

Using LSH, Indyk and Motwani [ibid.] show how to obtain the following ANN data
structure.

Theorem 2.6 (Indyk and Motwani [ibid.]). Fix a metric M = (X;D), a scale r > 0,
and approximation factor c > 1. Suppose the metric admits a (r; cr; p1; p2)-sensitive
LSH family H, where the map h(�) can be stored in � space, and, for given x, can be
computed in � time; similarly, assume that computing distance D(x; y) takes O(�) time.
Let � = �(H) = log1/p1

log1/p2
. Then there exists a (c; r)-ANN data structure over M achieving

query timeQ = O(n� � �
log1/p2

n

p1
) and space S = O(n1+� �

1
p1

+n� 1
p1

�� � log1/p2
n) (in

addition to storing the original dataset P ). The time needed to build this data structure is
O(S � �).

While we describe some concrete LSH families later on, for now, one can think of the
parameters �; � as being proportional to the dimension of the space (although this is not
always the case).

The overall idea of the algorithm is to use an LSH family as a pre-filter for the dataset
P . In particular, for a random partition h from the family H, the query point q will likely
collidewith its near neighbor (with probability at leastp1), but with few points at a distance
� cr , in expectation at most p2 �n of them. Below we show how an extension of this idea
yields Theorem 2.6.

Proof sketch. Given an LSH family H, we can build a new, derived LSH family via a
certain tensoring operation. In particular, for an integer k � 1, consider a new distribution
Gk over maps g : X ! U , where g(�) is obtained by picking k i.i.d. functions h1; : : : hk
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chosen from H and setting g(x) = (h1(x); h2(x); : : : hk(x)) Then, if H is (r; cr; p1; p2)-
sensitive, Gk is (r; cr; pk1 ; pk2 )-sensitive. Note that the parameter � of the hash family does
not change, i.e., �(Gk) = �(H).

The entire ANN data structure is now composed of L dictionary data structures (e.g.,
hash tables discussed in the previous section), where L; k � 1 are parameters to fix later.
The i -th hash table is constructed as follows. Pick a map gi uniformly at random from
Gk , and store the set gi (P ) in the dictionary structure. At the query time, we iterate over
i = 1 : : : L. For a given i , we compute gi (q), and use the dictionary structure to obtain
the set of “candidate” points Qi = fp 2 P : gi (p) = gi (q)g. For each candidate point
we compute the distance from q to that point. The process is stopped when all Qi ’s are
processed, or when a point within distance cr to q is found, whichever happens first.

To analyze the success probability, we note that the dictionary structure i succeeds if
p� 2 Qi , where p� is the assumed point at distance at most r from q. This happens with
probability at least pk1 . Thus, we can take L = O(1/pk1 ) such dictionary structures, and
thus guarantee success with a constant probability.

The expected query time isO(L(k�+Ln�pk2 ��)), which includes both the computation
of the maps g1(q); : : : gL(q) and the of distances to the candidates in setsQ1; : : :QL. We
can now derive the value of k that minimizes the above, obtaining k = dlog1/p2

ne �

log1/p2
n+ 1, and hence L = O(n�/p1).

Finally, note that the space usage is O(Ln) for the dictionary structures, plus O(Lk�)

for the description of the maps.

2.3 Space partitions: LSH constructions. Theorem 2.6 assumes the existence of an
LSH family H with a parameter � < 1. In what follows we show a few examples of such
families.

1. Hamming space f0; 1gd , with � = 1/c. The distribution H is simply a projection
on a random coordinate i : H = fhi : hi (x) = xi ; i = 1; : : : dg. This family is
(r; cr; 1� r/d; 1� cr/d )-sensitive, and hence � � 1/c Indyk and Motwani [1998].

This LSH scheme is near-optimal for the Hamming space, as described in Sec-
tion 2.4. We also note that, since `2 embeds isometrically into `1 (see Section 6),
this result extends to `2 as well.

2. Euclidean space (Rd ; `2), with � < 1/c. In Datar, Immorlica, Indyk, and Mirrokni
[2004], the authors introduced an LSH family which slightly improves over the
above construction. It is based on random projections in `2. In particular, define
a random map h(x) as h(x) = b

hx;gi

wr
+ bc, where g is a random d -dimensional

Gaussian vector, b 2 [0; 1], and w > 0 is a fixed parameter. It can be shown that,
for any fixed c > 1, there exists w > 0 such that � < 1/c.



APPROXIMATE NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS 3313

3. Euclidean space (Rd ; `2), with � ! 1/c2. In Andoni and Indyk [2006], the authors
showed an LSH family with a much better �, which later turned out to be optimal
(see Section 2.4). At its core, the main idea is to partition the space into Euclidean
balls.8 It proceeds in two steps: 1) perform a random dimension reduction A to
dimension t (a parameter), and 2) partition Rt into balls. Since it is impossible
to partition the space Rt into balls precisely9 when t � 2, instead one performs
“ball carving”. The basic idea is to consider a sequence of randomly-centered balls
B1; B2; : : :, each of radius wr for some parameter w > 1, and define the map h(x),
for x 2 Rd , to be the index i of the first ball Bi containing the point Ax. Since
we want to cover an infinite space with balls of finite volume, the above procedure
needs to be modified slightly to terminate in finite time. The modified procedure
runs in time T = tO(t).
Overall, optimizing for w, one can obtain � = 1/c2 + O(log t)

p
t

which tends to 1/c2

as t ! 1. The time to hash is � = O(T t + dt), where T depends exponentially
on the parameter t , i.e., T = tΘ(t). For the ANN data structure, the optimal choice
is t = O(logn)2/3, resulting in � = 1/c2 + O(log logn)

(logn)1/3 .

The `2 LSH families can be extended to other `p’s. For p < 1, Datar, Immorlica,
Indyk, and Mirrokni [2004] showed one can use method 2 as described above, but using
p-stable distributions instead of Gaussians. See Section 6 for other extensions for p > 1.

We remark that there is a number of other widely used LSH families, including min-
hash Broder [1997] and Broder, Glassman, Manasse, and Zweig [1997] and simhash M. S.
Charikar [2002], which apply to different notions of similarity between points. See An-
doni and Indyk [2008] for an overview.

2.4 Space partitions: impossibility results. It is natural to explore the limits of LSH
families and ask what is the best � one can obtain for a given metric space as a function of
the approximation c > 1. In Motwani, A. Naor, and Panigrahy [2007] and O’Donnell, Y.
Wu, and Zhou [2014], it was proven that the LSH families Indyk and Motwani [1998] and
Andoni and Indyk [2006] from the previous section are near-optimal: for the Hamming
space, we must have � � 1/c � o(1), and for the Euclidean space, � � 1/c2 � o(1).
Below is the formal statement from O’Donnell, Y. Wu, and Zhou [2014].

Theorem 2.7. Fix dimension d � 1 and approximation c � 1. Let H be a (r; cr; p1; p2)-
sensitive LSH family over the Hamming space, and suppose p2 � 2�o(d). Then � �

1/c � od (1).
8In contrast, the above LSH family can be seen as partitioning the space into cubes: when considering the

k-tensored family G = Hk , the resulting map g 2 G is equivalent to performing a random dimension reduction
(by multiplying by a random k � d Gaussian matrix), followed by discretization of the space into cubes.

9This is also termed tessellation of the space.



3314 ALEXANDR ANDONI, PIOTR INDYK AND ILYA RAZENSHTEYN

Note that the above theorem also immediately implies � � 1/c2 � o(1) for the Eu-
clidean space, by noting that kx � yk1 = kx � yk22 for binary vectors x and y.

Finally, we remark that some condition onp2 is necessary, as there exists an LSH family
with p2 = 0, p1 = 2�O(d) and hence � = 0. To obtain the latter, one can use the “ball
carving” family of Andoni and Indyk [2006], where the balls have radius wr = cr/2.
Note however that such a family results in query time that is at least exponential in d ,
which LSH algorithms are precisely designed to circumvent.

3 (More) Deterministic algorithms

A drawback of data structures described in the previous section is that they allow “false
negatives”: with a controllable but non-zero probability, the data structure can report noth-
ing even if the ball B(q; r) is non-empty. Although most of the data structures described
in the literature have this property, it is possible to design algorithms with stronger guar-
antees, including deterministic ones.

The first step in this direction was an observation (already made in Kushilevitz, Ostro-
vsky, and Rabani [2000]) that for a finite metric (X;D) supported by (c; r)-ANN data
structures, it is possible to construct a data structure that provides accurate answers to all
queries q 2 X . This is because one can construct and use O(log jX j) independent data
structures, reducing the probability of failure to 1

3jX j
. By taking a union bound over all

q 2 X , the constructed data structure works, with probability at least 2/3, for all queriesX .
Note that the space and query time bounds of the new data structure areO(log jX j) times
larger than the respective bounds for (c; r)-ANN . Unfortunately, the algorithm for con-
structing such data structures has still a non-zero failure probability, and no deterministic
polynomial-time algorithm for this task is known.

The first deterministic polynomial-time algorithm for constructing a data structure that
works for all queries q 2 X appeared in Indyk [2000a]. It was developed for d -dimensional
Hamming spaces, and solved a (c; r)-ANN with an approximation factor c = 3 + " for
any " > 0. The data structure had d (1/")O(1) query time and used dn(1/")O(1) space.
It relied on two components. The first component, “densification”, was a deterministic
analog of the mapping in Lemma 2.3, which was shown to hold with k = (d/")O(1). Ret-
rospectively, the mapping can be viewed as being induced by an adjacency matrix of an
unbalanced expander Guruswami, Umans, and Vadhan [2009].

Definition 3.1 (Expander). An (r; ˛)-unbalanced expander is a bipartite simple graph
G = (U; V;E), jU j = d; jV j = k, with left degree ∆ such that for any X � U with
jX j � r , the set of neighbors N (X) of X has size jN (X)j � (1 � ˛)∆jX j.

Given such a graph G, one can construct a mapping f = fG : f0; 1gd ! Σk for
some finite alphabet Σ by letting f (x)j to be the concatenation of all symbols xi such
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that (i; j ) 2 E. LetH (x; y) be the Hamming distance between x and y, i.e., the number
of coordinates on which x and y differ. We have that:

• H (f (x); f (y)) � ∆H (x; y), since each difference between a and b contributes
to at most∆ differences between f (x) and f (y). In particularH (f (x); f (y)) �

∆r(1 � ") ifH (x; y) � r(1 � ").

• ifH (x; y) � r , thenH (f (x); f (y)) � (1 � ˛)∆r (from the expansion property).

Thus, setting ˛ = "/2 yields guarantees analogous to Lemma 2.3, but using a deter-
ministic mapping, and with coordinates of f (x) in Σ, not f0; 1g. To map into binary
vectors, we further replace each symbol f (x)j by C (f (x)j ), where C : Σ ! f0; 1gs

is an error-correcting code, i.e., having the property that for any distinct a; b 2 Σ we
haveH (C (a); C (b)) 2 [s(1/2� "); s(1/2+ ")]. We then use off-the-shelf constructions
of expanders Guruswami, Umans, and Vadhan [ibid.] and codes Guruswami, Rudra, and
Sudan [2014] to obtain the desired mapping g = C ı f : f0; 1gd ! f0; 1gks .

The second component partitions the coordinates of points g(x) into blocks S1 : : : St of
size log(n)/"O(1) such that an analog of Lemma 2.3 holds for all projections g(x)Sl

and
g(y)Sl

where x; y 2 P , l = 1 : : : t . Such a partitioning can be shown to exist using the
probabilistic method, and can be computed deterministically in time polynomial in n via
the method of conditional probabilities. Unfortunately, this property does not extend to the
case where one of the points (say, x) is a query point fromX�P . Nevertheless, by averag-
ing, there must be at least one block Sl such thatH (g(x)Sl

; g(y)Sl
) � H (g(x); g(y))/t ,

where y is the nearest neighbor of x in P . It can be then shown that an approximate near
neighbor of g(x)Sl

in fg(y)Sl
: y 2 P g is an approximate nearest neighbor of x in P .

Finding the nearest neighbor in the space restricted to a single block Sl can be solved via
exhaustive storage using n1/"O(1) space, as in Theorem 2.4.

Perhaps surprisingly, the above construction is the only known example of a polynomi-
al-size deterministic approximate near neighbor data structure with a constant approxi-
mation factor. However, more progress has been shown for an “intermediary” problem,
where the data structure avoids false negatives by reporting a special symbol ?.

Definition 3.2 ((c; r; ı)-ApproximateNearNeighborWithout FalseNegatives (ANNWFN)).
Given a set P of n points in a metric space (X;D), build a data structure S that, given
any query point q 2 X such that B(q; r) \ P ¤ ¿, S returns an element of (B(q; cr) \

P ) [ f?g, and PrS[S returns ?] � ı.

A (1 + "; r; ı)-ANNWFN data structure with bounds similar to those in Theorem 2.4
was given in Indyk [2000a]. It used densification and random block partitioning as de-
scribed above. However, thanks to randomization, block partitioning could be assumed
to hold even for the query point with high probability.
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Obtaining “no false negatives” analogs of Theorem 2.2 turned out to be more difficult.
The first such data structure was presented in Pagh [2016], for the Hamming space, achiev-
ing query time of the form (roughly) dn1:38/c . Building on that work, very recently, Ahle
[2017] improved the bound to (roughly) dn1/c , achieving the optimal runtime exponent.

In addition to variants of densification and random block partitioning, the latter al-
gorithm uses a generalization of the space partitioning method from Section 2.2, called
locality sensitive filtering. Such objects can be constructed deterministically in time and
space roughly exponential in the dimension. Unfortunately, random block partitioning
leads to blocks whose length is larger than logn by at least a (large) constant, which re-
sults in large (although polynomial) time and space bounds. To overcome this difficulty,
Ahle [ibid.] shows how to combine filters constructed for dimension d to obtain a filter
for dimension 2d . This is achieved by using splitters M. Naor, Schulman, and Srini-
vasan [1995], which can be viewed as families of partitions of f1 : : : 2dg into pairs of sets
(S1; S1); (S2; S2); : : : of size d , such that for any x; y, there is a pair (Sl ; S l) for which
H (xSl

; ySl
) = H (xS l

; yS l
)˙1. The construction multiplies the space bound by a factor

quadratic in d , which makes it possible to apply it a small but super-constant number of
times to construct filters for (slightly) super-logarithmic dimension.

4 Data-dependent approach

In the earlier sections, we considered ANN data structures that are based on random and
deterministic space partitions. The unifying feature of all of the above approaches is that
the partitions used are independent of the dataset. This “data-independence” leads to cer-
tain barriers: for instance, the best possible LSH exponent is � � 1/c � o(1) for the `1
distance and � � 1/c2 � o(1) for `2 (see Section 2.4). In this section, we show how
to improve upon the above results significantly if one allows partitions to depend on the
dataset.

This line of study has been developed in a sequence of recent results Andoni, Indyk,
H. L. Nguyên, and Razenshteyn [2014], Andoni and Razenshteyn [2015], and Andoni,
Laarhoven, Razenshteyn, and Waingarten [2017]. However, even before these works,
the data-dependent approach had been very popular in practice (see, e.g., surveys Wang,
Shen, Song, and Ji [2014] and Wang, Liu, S. Kumar, and Chang [2016]). Indeed, real-
world datasets often have some implicit or explicit structure, thus it pays off to tailor
space partitions to a dataset at hand. However, the theoretical results from Andoni, In-
dyk, H. L. Nguyên, and Razenshteyn [2014], Andoni and Razenshteyn [2015], and An-
doni, Laarhoven, Razenshteyn, and Waingarten [2017] improve upon data-independent
partitions for arbitrary datasets. Thus, one must show that any set of n points has some
structure that makes the ANN problem easier.
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4.1 The result. In Andoni and Razenshteyn [2015] (improving upon Andoni, Indyk,
H. L. Nguyên, and Razenshteyn [2014]), the following result has been shown.

Theorem 4.1. For every c > 1, there exists a data structure for (c; r)-ANN over (Rd ; `2)
with space n1+� +O(nd ) and query time n� + dno(1), where

� �
1

2c2 � 1
+ o(1):

This is much better than the best LSH-based data structure, which has � = 1
c2

+ o(1).
For instance, for c = 2, the above theorem improves the query time from n1/4+o(1) to
n1/7+o(1), while using less memory.

Next, we describe the new approach at a high level.

4.2 Simplification of the problem. Before describing new techniques, it will be con-
venient to introduce a few simplifications. First, we can assume that d = log1+o(1) n,
by applying Lemma 2.1. Second, we can reduce the general ANN problem over (Rd ; `2)
to the spherical case: where dataset and queries lie on the unit sphere Sd�1 � Rd (see
Razenshteyn [2017], pages 55–56). Both the dimension reduction and the reduction
to the spherical case incur a negligible loss in the approximation10. After the reduction to
the spherical case, the distance to the near neighbor r can be made to be any function of
the number of points n that tends to zero as n ! 1 (for example, r = 1

log logn ).

4.3 Data-independent partitions for a sphere. In light of the above discussion, we
need to solve the (c; r)-ANN problem for Sd�1, where d = log1+o(1) n and r = o(1).
Even though the final data structure is based on data-dependent partitions, we start with
developing a data-independent LSH scheme for the unit sphere, which will be later used
as a building block.

The LSH scheme is parametrized by a number � > 0. Consider a sequence of i.i.d.
samples from a standard d -dimensional Gaussian distribution N (0; 1)d : g1, g2, …, gt ,
…2 Rd . The hash function h(x) of the point x 2 Sd�1 is then defined as mintft � 1 j

hx; gt i � �g. This LSH family gives the following exponent � for distances r and cr :

(1) � =
log 1/p1

log 1/p2
=

4 � c2r2

4 � r2
�
1

c2
+ ı(r; c; �);

where ı(r; c; �) > 0 and ı(r; c; �) ! 0 as � ! 1. Thus, the larger the value of the
threshold � is, the more efficient the resulting LSH scheme is. At the same time, � affects
the efficiency of hash functions. Indeed, one can show that with very high probability

10Approximation c reduces to approximation c � o(1).
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maxx2Sd�1 h(x) � e(1+o(1))�
2/2 � dO(1), which bounds the hashing time as well as the

number of Gaussian vectors to store.
Consider the expression (1) for the exponent � in more detail. If r = o(1), then we

obtain � = 1
c2

+ o(1), which matches the guarantee of the best data-independent LSH for
`2. This is hardly surprising, since, as was mentioned above, the general ANN problem
over `2 can be reduced to the (c; r)-ANN problem over the sphere for r = o(1). If
r � 2/c, then � is close to zero, and, indeed, the (c; 2/c)-ANN problem on the sphere is
trivial (any point can serve as an answer to any valid query).

Between these two extremes, there is a point r �

p
2
c

that is crucial for the subsequent
discussion. Since the distance between a pair of random points on Sd�1 is close to

p
2

with high probability, the problem where r is slightly smaller than
p
2
c

has the following
interpretation: if one is guaranteed to have a data point within distance r from the query,
find a data point that is a bit closer to the query than a typical point on the sphere. For
r �

p
2
c
, the Equation (1) gives exponent � �

1
2c2�1

, which is significantly smaller
than the bound 1

c2
one is getting for r = o(1). Later, using a certain data-dependent

partitioning procedure, we will be able to reduce the general ANN problem on the sphere
to this intermediate case of r �

p
2
c
, thus obtaining the ANN data structure with the

exponent � = 1
2c2�1

+ o(1). This significantly improves upon the best possible LSH for
`2 from Section 2, which yields � = 1

c2
+ o(1).

4.4 Data-dependent partitions. We now describe at a high level how to obtain a data
structure with space n1+� and query time n�, where � = 1

2c2�1
+o(1), for the (c; r)-ANN

problem on the sphere for general r > 0. If r �

p
2
c

� o(1), then we can simply use the
data-independent LSH described above. Now suppose r is nontrivially smaller than

p
2
c
.

We start with finding and removing dense low-diameter clusters. More precisely, we
repeatedly find a point u 2 Sd�1 such that jP \B(u;

p
2� ")j � � n, where "; � = o(1),

and setP := P nB(u;
p
2�"). We stop when there are no more dense clusters remaining.

Then we proceed with clusters and the remainder separately. Each cluster is enclosed in
a ball of radius 1 � Ω("2) and processed recursively. For the remainder, we sample one
partition from the data-independent LSH family described above, apply it to the dataset,
and process each resulting part of the dataset recursively. During the query stage, we
(recursively) query the data structure for every cluster (note that the number of clusters is
at most 1/� ), and for the remainder we query (again, recursively) a part of the partition,
where the query belongs to. Each step of the aforementioned procedure makes progress
as follows. For clusters, we decrease the radius by a factor of 1�Ω("2). It means that we
come slightly closer to the ideal case of r �

p
2
c
, and the instance corresponding to the

cluster becomes easier. For the remainder, we use the fact that there are at most � n data
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points closer than
p
2 � " to the query. Thus, when we apply the data-independent LSH,

the expected number of data points in the same part as the query is at most (� + p2)n,
where p2 is the probability of collision under the LSH family for points at the distance
p
2 � ". We set � � p2, thus the number of colliding data points is around p2n. At

the same time, the probability of collision with the near neighbor is at least p1, where p1

corresponds to the distance r . Since r <
p
2
c
, we obtain an effective exponent of at most

1
2c2�1

+ o(1). Note that we need to keep extracting the clusters recursively to be able to
apply the above reasoning about the remainder set in each step.

One omission in the above high-level description is that the clusters are contained in
smaller balls rather than spheres. This is handled by partitioning balls into thin annuli and
treating them as spheres (introducing negligible distortion).

4.5 Time–space trade-off. InAndoni, Laarhoven, Razenshteyn, andWaingarten [2017],
Theorem 4.1 has been extended to provide a smooth time–space trade-off for the ANN
problem. Namely, it allows to decrease the query time at a cost of increasing the space
and vice versa.

Theorem 4.2. For every c > 1 and every �s; �q such that

(2) c2
p
�q + (c2 � 1)

p
�s �

p
2c2 � 1;

there exists a data structure for (c; r)-ANN over (Rd ; `2) with space n1+�s+o(1)+O(nd )

and query time n�q+o(1) + dno(1).

The bound (2) interpolates between:

• The near-linear space regime: �s = 0, �q = 2
c2

�
1
c4
;

• The “balanced” regime: �s = �q =
1

2c2�1
, where it matches Theorem 4.1;

• The fast queries regime: �s =
�

c2

c2�1

�2

, �q = 0.

For example, for c = 2, one can obtain any of the following trade-offs: space n1+o(1)
and query time n7/16+o(1), space n8/7+o(1) and query time n1/7+o(1), and space n16/9+o(1)
and query time no(1).

Theorem 4.2 significantly improves upon the previous ANN data structures in various
regimes Indyk and Motwani [1998], Kushilevitz, Ostrovsky, and Rabani [2000], Indyk
[2000b], Panigrahy [2006], and Kapralov [2015]. For example, it improves the depen-
dence on " in Theorem 2.2 from O(log(1/")/"2) to O(1/"2).
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4.6 Impossibility results. Similarly to the data-independent case, it is natural to ask
whether exponent � = 1

2c2�1
+ o(1) from Theorem 4.1 is optimal for data-dependent

space partitions. In Andoni and Razenshteyn [2016], it was shown that the above � is
near-optimal in a properly formalized framework of data-dependent space partitions. This
impossibility result can be seen as an extension of the results discussed in Section 2.4.

Specifically, Andoni and Razenshteyn [ibid.] show that � �
1

2c2�1
, where � = log1/p1

log1/p2

for p1 and p2 being certain natural counterparts of the LSH collision probabilities for the
data-dependent case, even when we allow the distribution on the partitions to depend on
a dataset. This result holds under two further conditions. First, as in Section 2.4, we need
to assume that p2 is not too small.

The second condition is specific to the data-dependent case, necessary to address an-
other necessary aspect of the space partition. For any dataset, where all the points are
sufficiently well separated, we can build an “ideal” space partition, with � = 0, simply
by considering its Voronoi diagram. However, this is obviously not a satisfactory space
partition: it is algorithmically hard to compute fast where in the partition a fixed query
point q falls to — in fact, it is precisely equivalent to the original nearest neighbor prob-
lem! Hence, to be able to prove a meaningful lower bound on �, we would need to restrict
the space partitions to have low run-time complexity (e.g., for a given point q, we can
compute the part where q lies in, in time no(1)). This precise restriction is well beyond
reach of the current techniques (it would require proving computational lower bounds).
Instead, Andoni and Razenshteyn [ibid.] use a different, proxy restriction: they require
that the description complexity of partitions is n1�Ω(1). The latter restriction is equivalent
to saying that the distribution of partitions (which may depend on the given dataset) is
supported on a fixed (universal) family of partitions of the size 2n1�Ω(1) . This restriction,
for instance, rules out the Voronoi diagram, since the latter has a description complexity
of Ω(n). Furthermore, the description complexity of a randomized partition is a good
proxy for the run-time complexity of a partition because in all the known constructions
of random space partitions with a near-optimal �, the run-time complexity is at least the
description complexity, which makes the requirement meaningful.

Overall, under the above two conditions, Andoni and Razenshteyn [ibid.] show that
� �

1
2c2�1

� o(1) for data-dependent random space partitions, and hence Theorem 4.1 is
essentially optimal in this framework.

4.7 ANN for `1. In this subsection we will describe another type of data-dependent
data structure, for the `1 norm. Historically, this was the first example of a data-dependent
partitioning procedure used for ANN over high-dimensional spaces.
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Theorem 4.3 (Indyk [2001]). For every 0 < " < 1, there exists a deterministic data struc-
ture for (c; 1)-ANN for (Rd ; `1) with approximation c = O

�
log logd
"

�
, space O(dn1+")

and query time O(d logn).

The algorithm relies on the following structural lemma.

Lemma 4.4. Let P � Rd be a set of n points and 0 < " < 1. Then:

1. Either there exists an `1-ball of radiusO
�
log logd
"

�
that containsΩ(n) points from

P , or

2. There exists a “good” coordinate i 2 f1; 2; : : : ; dg and a threshold u 2 R such that
for the sets A = fp 2 P j pi < u � 1g, B = fp 2 P j u � 1 � pi � u+ 1g and
C = fp 2 P j pi > u+ 1g one has:

(3)
�

jAj + jBj

n

�1+"

+

�
jBj + jC j

n

�1+"

� 1

and jAj/n; jC j/n � Ω(1/d ).

Using this lemma, we can build the data structure for (c; 1)-ANN for (Rd ; `1) recur-
sively. If there exists a ball B(x;R) with R = O

�
log logd
"

�
such that jP \ B(x;R)j �

Ω(n) (Case 1), then we store x and R and continue partitioning P n B(x;R) recursively.
If there exists a good coordinate i 2 f1; 2; : : : ; dg and a threshold u 2 R (Case 2), then
we define sets A, B , C as in the above lemma and partition A[B and B [C recursively.
We stop as soon as we reach a set that consists of O(1) points.

The query procedure works as follows. Suppose there is a point in P within distance
1 from q (“the near neighbor”). If we are in Case 1, we check if the query point q lies
in B(x;R + 1). If it does, we return any data point from B(x;R); f not, we query the
remainder recursively. On the other hand, if we are in Case 2, we query A [ B if qi � u,
and B [ C otherwise. In this case we recurse on the part which is guaranteed to contain
a near neighbor.

Overall, we always return a point within distanceO
�
log logd
"

�
, and it is straightforward

to bound the query time by bounding the depth of the tree. We obtain the space bound of
O(dn1+") by using the property (3) to bound the number of times points that are replicated
in the Case 2 nodes.

Surprisingly, the approximation O(log log d ) turns out to be optimal in certain re-
stricted models of computation Andoni, Croitoru, and Patrascu [2008] and Kapralov and
Panigrahy [2012], including for the approach from Indyk [2001].
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5 Closest pair

A problem closely related to ANN is the closest pair problem, which can be seen as an
“offline” version of ANN. Here, we are given a set P of n points, and we need to find a
pair p; q 2 P of distinct points that minimize their distance.

A trivial solution is to compute the distance between all possible
�
n
2

�
pairs of points and

take the one that minimizes the distance. However this procedure has quadratic running
time. As for the nearest neighbor problem, there is evidence that for, say, d -dimensional
`2 space, the closest pair problem cannot be solved in time n2�˛dO(1) for any constant
˛ > 0.

As with c-ANN, we focus on the approximate version of the problem. Furthermore,
we consider the decision version, where we need to find a pair of points that are below a
certain threshold r . The formal definition (for the randomized variant) follows.

Definition 5.1 ((c; r)-approximate close pair problem, or (c; r)-CP). Given a set of points
P � X of size n, if there exist distinct points p�; q� 2 X with D(p�; q�) � r , find a pair
of distinct points p; q 2 P such that D(p; q) � cr , with probability at least 2/3.

The (c; r)-CP problem is closely related to the (c; r)-ANN problem because we can
solve the former using a data structure for the latter. In particular, one can run the fol-
lowing procedure: partition P into two sets A, B randomly; build (c; r)-ANN on the
set A; query every point q 2 B . It is easy to see that one such run succeeds in solving
a (c; r)-approximate close pair with probability at least 1/2 � 2/3. Repeating the proce-
dure 3 times is enough to guarantee a success probability of 2/3. If (c; r)-ANN under
the desired metric can be solved with query timeQ(n) and preprocessing time S(n), we
obtain a solution for (c; r)-CP running in timeO(S(n)+nQ(n)). For example, applying
the reduction from above for (Rd ; `p) space for p 2 f1; 2g, we immediately obtain an
algorithm running in O(dn1+�) time, where � = 1

2cp�1
+ o(1) (Section 4).

Focusing on the case of `2, and approximation c = 1 + ", the above algorithm has
runtime O(n2�4"+O("2)d ). It turns out that, for the `2 norm, one can obtain algorithms
with a better dependance on ", for small ". In particular, the line of work from Valiant
[2015], Karppa, Kaski, and Kohonen [2016], and Alman, Chan, and R. Williams [2016]
led to the following algorithm:

Theorem 5.2 (Alman, Chan, and R. Williams [2016]). Fix dimension d � 1, r > 0, and
" 2 (0; 1/2). Then, for any set of n points in Rd , one can solve the (1 + "; r)-CP over `2
in time O(n2�Ω("1/3/ log(1/")) + dn), with constant probability.

Note that the running time bound in the above theorem is better than that obtained using
LSH data structures, for small enough ".
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The main new technical ingredient is the fast matrix multiplication algorithm. In partic-
ular, suppose we want to multiply two matrices of size n�m andm�n. Doing so naïvely
takes time O(n2m). Starting with the work of Strassen [1969], there has been substantial
work to improve this run-time; see also V. V. Williams [2012]. Below we state the running
time of a fast matrix multiplication algorithm due to Coppersmith [1982], which is most
relevant for this section.

Theorem 5.3 (Coppersmith [ibid.]). Fix n � 1 and let m � 1 be such that m � n0:172.
One can compute the product of two matrices of sizes n � m and m � n in O(n2 log2 n)
time.

5.1 Closest pair via matrix multiplication. We now sketch the algorithm for the clos-
est pair from Valiant [2015], which obtains O(n2�Ω(

p
")d ) time. The algorithm is best

described in terms of inner products, as opposed to distances as before. In particular, sup-
pose we have a set of points P � Sd of unit norm, where all pairs of points have inner
product in the range [��; � ], except for one “special” pair that has inner product at least
c� , for some scale � > 0 and approximation c = 1 + ". Now the problem is to find
this special pair—we term this problem (c; �)-IP problem. We note that we can reduce
(1+"; r)-CP over `2 to (1+Ω("); 1/2)-IP , by using the embedding of Schoenberg [1942],
or Lemma 2.3 of Kushilevitz, Ostrovsky, and Rabani [2000].

A natural approach to the the IP problem is to multiply two n � d matrices: if we
consider the matrixM where the rows are the points of P , thenMM t will have a large
off-diagonal entry precisely for the special pair of points. This approach however requires
at least n2 computation time, since even the output of MM t has size n2. Nevertheless,
an extension of this approach gives a better run-time when c is very large (and hence
� < 1/c very small, i.e., all points except for the special pair are near-orthogonal). In
particular, partition randomly the vectors fromP inton/g groupsS1; : : : Sn/g , each of size
O(g). For each group i , we sum the vectors Si with random signs, obtaining vectors vi =P
pj 2Si

�jpj , where pj are the points in P and �j are Rademacher random variables.
Now the algorithm forms a matrix M with vi ’s as rows, and computes MM t using fast
matrix multiplication (Theorem 5.3). The two special points are separated with probability
1 � g/n. Conditioning on this event, without loss of generality, we can assume that they
are in group 1 and 2 respectively. Then, it is easy to note that j(MM t )12j � Θ(c � �),
whereas, for (i; j ) ¤ (1; 2) and i ¤ j , we have that j(MM t )ij j � O(g ��)with constant
probability. Hence, we can identify the special pair in the productMM t as long as c � g,
and yields runtime O(n2/g2), i.e., a g2 � c2 speed-up over the naïve algorithm (note
that Theorem 5.3 requires that d < n0:172).

The above approach requires c to be very large, and hence the challenge is whether
we can reduce the case of c = 1 + " to the case of large c. Indeed, one method is
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to use tensoring: for a fixed parameter k and any two vectors x; y 2 Rd , we consider
x˝k ; y˝k 2 Rd

k , for which hx˝k ; y˝ki = (hx; yi)k . Thus tensoring reduces the prob-
lem of (1+"; 1/2)-IP to ((1+")k ; 2�k)-IP, and hence we hope to use the above algorithm
for c = (1+ ")k � e"k . If we use t = � lnn, for small constant �, we obtain c = n"� , and
hence we obtain a speed-up of g2 � c2 = n2"� . One caveat here is that, after tensoring
the vectors, we obtain vectors of dimension dk , which could be much larger than n—then
even writing down such vectors would take Ω(n2) time. Yet, one can use a dimension
reduction method, like Lemma 2.1, to reduce dimension to O( logn

�k ) = Õ(n� ln2), which
is enough to preserve all inner products up to additive, say, 0:1 � �k . There are further
details (e.g., we cannot afford to get high-dimensional vectors in the first place, even if
we perform dimension-reduction), see Valiant [2015] and Karppa, Kaski, and Kohonen
[2016] for more details.

The above algorithm yields a speed-up of the order of nO("), i.e., comparable to the
speed-up via the LSH methods. To obtain a better speed-up, like in the Theorem 5.2,
one can replace the tensoring transformation with a more efficient one. Indeed, one can
employ an asymmetric embedding f; g : Rd ! Rm, with the property that for any unit-
norm vectors x; y, we have that hf (x); g(y)i = p(hx; yi), where p(�) is a polynomial
of choice. In particular, we require a polynomial p(�) that is small on the interval [��; � ],
as large as possible on [(1 + ")�; 1], and p(1) is bounded. Note that the tensoring oper-
ation implements such an embedding with p(a) = ak and where f (x) = g(x) = x˝k .
However, there are more efficient polynomials: in fact, the optimal such polynomial is
the Chebyshev polynomial. For example, for the degree-k Chebyshev polynomial Tk(�),
we have that Tk(1 + ")/Tk(1) � e

p
"k , which is in contrast to the above polynomial

p(a) = ak , for which p(1 + ")/p(1) � e"k .
Using the Chebyshev polynomials, one can obtain a runtime of n2�Ω(

p
") for the IP and

hence CP problem. To obtain the improved result from Theorem 5.2, Alman, Chan, and
R. Williams [2016] employ randomized polynomials, i.e., a distribution over polynomials
where p(�) is small/large only with a certain probability. Without going into further details,
the theorem below states the existence of such polynomials, which are used to obtain
n2�Ω("1/3/ log(1/")) run-time for the (1 + "; r)-CP problem.

Theorem 5.4 (Alman, Chan, and R.Williams [ibid.]). Fix d � 1, � � 1, s � 1, and " > 0.
There exists a distribution over polynomials P : f0; 1gd ! R of degree O("�1/3 log s),
such that we have the following for any x 2 f0; 1gd :

• if
Pd
i=1 xi � � , then jP (x)j � 1 with probability at least 1 � 1/s;

• if
Pd
i=1 xi 2 (�; (1 + ")�), then jP (x)j > 1 with probability at least 1 � 1/s;

• if
Pd
i=1 xi > (1 + ")� , then jP (x)j � s with probability at least 1 � 1/s.
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6 Extensions

In this section, we discuss several techniques that significantly extend the class of spaces
which admit efficient ANN data structures.

6.1 Metric embeddings. So far, we have studied the ANN problem over the `1, `2 and
`1 distances. A useful approach is to embed a metric of interest into `1/`2/`1 and use
one of the data structures developed for the latter spaces.

6.1.1 Deterministic embeddings.

Definition 6.1. For metric spaces M = (X;DX ), N = (Y;DY ) and for D � 1, we say
that a map f : X ! Y is a bi-Lipschitz embedding with distortionD if there exists � > 0

such that for every x1; x2 2 X one has:

�dX (x1; x2) � DY (f (x1); f (x2)) � D � �DX (x1; x2):

A bi-Lipschitz embedding of M into N with distortionD together with a data structure
for (c; r)-ANN over N immediately implies a data structure for (cD; r 0)-ANN over M,
where r 0 = r

�D
. However, space and query time of the resulting data structure depend

crucially on the computational efficiency of the embedding, since, in particular, the query
procedure requires evaluating the embedding on a query point.

As the following classic results show, any finite-dimensional normed or finite metric
space can be embedded into finite-dimensional `1 with small distortion.

Theorem6.2 (Fréchet [1906] andKuratowski [1935]). IfM is a finite metric space, which
consists ofN points, thenM embeds into (RN ; `1)with distortionD = 1 (isometrically).

Theorem 6.3 (see, e.g., Wojtaszczyk [1996]). For every " > 0, every normed space
(Rd ; k � k) embeds with distortion 1+ " into (Rd 0

; `1), where d 0 = O(1/")d , via a linear
map.

However, the utility of Theorems 6.2 and 6.3 in the context of the ANN problem is
limited, since the required dimension of the target `1 space is very high (in particular,
Theorem 6.3 gives a data structure with exponential dependence on the dimension). More-
over, even if we allow the distortionD of an embedding to be a large constant, the target
dimension can not be improved much. As has been shown in Matoušek [1997], one needs
at leastNΩ(1/D)-dimensional `1 to “host” all theN -point metrics with distortionD. For
d -dimensional norms, even as simple as `2, the required dimension is 2ΩD(d) Figiel, Lin-
denstrauss, and Milman [1977] and Ball [1997].
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More generally, (lower-dimensional) `1 turns out to be not so useful of a target space,
and only a handful of efficient embeddings into `1 are known (for instance, such an
embedding has been constructed in Farach-Colton and Indyk [1999] for the Hausdorff
distance). Luckily, the situation drastically improves, if we allow randomized embeddings,
see Section 6.1.2 for the examples.

Instead of `1, one can try to embed a metric of interest into `1 or `2. Let us list a few
cases, where such embeddings lead to efficient ANN data structures.

• Using the result from Johnson and Schechtman [1982], one can embed (Rd ; `p) for
1 < p � 2 into (Rd 0

; `1)with distortion 1+", where d 0 = O(d/"2). Moreover, the
corresponding map is linear and hence efficient to store and apply. This reduction
shows that the ANN problem over `p for 1 < p � 2 is no harder than for the `1
case. However, later in this section we will show how to get a better ANN algorithm
for the `p case using a different embedding.

• For the Wasserstein-1 distance (a.k.a. the Earth-Mover distance in the computer
science literature) between probability measures defined on f1; 2; : : : ; dgk , one can
use the results from M. S. Charikar [2002], Indyk and Thaper [2003], and A. Naor
and Schechtman [2007], to embed it into (RdO(k)

; `1) with distortion O(k log d ).

• The Levenshtein distance (a.k.a. edit distance) over the binary strings f0; 1gd can be
embedded into (RdO(1)

; `1)with distortion 2O(
p

logd log logd) Ostrovsky and Rabani
[2007].

Let us note that there exist generic results concerned with embeddings into `1/`2 sim-
ilar to Theorem 6.2 and Theorem 6.3.

Theorem6.4 (Bourgain [1985] and Linial, London, andRabinovich [1995]). AnyN -point
metric embeds into (RO(logN ); `2) with distortion O(logN ).

Theorem 6.5 (John [1948] and Ball [1997]). Any normed space (Rd ; k � k) embeds into
(Rd ; `2) with distortion

p
d via a linear map.

Theorem 6.4 does not give an embedding efficient enough for the ANN applications:
computing it in one point requires time Ω(N ). At the same time, Theorem 6.5 is effi-
cient and, together with `2 data structures, gives an ANN data structure for a general
d -dimensional norm with approximation O(

p
d ).

Since the ANN problem is defined for two specific distance scales (r and cr), we do not
need the full power of bi-Lipschitz embeddings and sometimes can get away with weaker
notions of embeddability. For example, the following theorem follows from the results
of Schoenberg [1937].
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In the theorem, `2(N) denotes the space of infinite sequences (ai )1
i=1 such that

P
i jai j

2 <

+1 and the norm of the sequence kak2 is equal to
�P

i jai j
2
�1/2.

Theorem 6.6. For every 1 � p < 2 and every d � 1, there exists a map f : Rd ! `2(N)

such that for every x; y 2 Rd , one has:

kf (x) � f (y)k22 = kx � yk
p
p:

This embedding allows to use an ANN data structure for `2 with approximation c to
get an ANN data structure for `p with approximation c2/p . However, for this we need
to make the embedding computationally efficient. In particular, the target must be finite-
dimensional. This can be done, see H. Nguyên [2014] for details. As a result, for the
`p distance for 1 � p < 2, we are able to get the result similar to the one given by
Theorem 4.2, where in (2) c2 is replaced with cp everywhere.

6.1.2 Randomized embeddings. It would be highly desirable to utilize the fact that
every metric embeds well into `1 (Theorems 6.2 and 6.3) together with the ANN data
structure for `1 from Section 4.7. However, as discussed above, spaces as simple as
(Rd ; `1) or (Rd ; `2) require the target `1 to have 2Ω(d) dimensions to be embedded with
small distortion. It turns out, this can be remedied by allowing embeddings to be ran-
domized. In what follows, we will consider the case of (Rd ; `1), and then generalize the
construction to other metrics.

The randomized embedding of (Rd ; `1) into (Rd ; `1) is defined as follows: we gen-
erate d i.i.d. samples u1, u2, …, ud from the exponential distribution with parameter 1,
and then the embedding f maps a vector x 2 Rd into�

x1

u1
;
x2

u2
; : : : ;

xd

ud

�
:

Thus, the resulting embedding is linear. Besides that, it is extremely efficient to store (d
numbers) and apply (O(d ) time).

Let us now understand how kf (x)k1 is related to kxk1. The analysis uses (implicitly)
the min-stability property of the exponential distribution. One has for every t > 0:

Prf [kf (x)k1 � t ] =

dY
i=1

Pr
�

jxi j

ui
� t

�
=

dY
i=1

Pr
�
ui �

jxi j

t

�
=

dY
i=1

e�jxi j/t = e�kxk1/t :

The random variable kf (x)k1 does not have a finite first moment, however its mode is
in the point t = kxk1, which allows us to use kf (x)k1 to estimate kxk1. It is immediate
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to show that for every ı > 0, there exist C1; C2 > 1 with C1 = O(log(1/ı)) and C2 =

O(1/ı) such that for every x, one has:

(4) Prf
�
kf (x)k1 �

kxk1

C1

�
� 1 � ı

and

(5) Prf [kf (x)k1 � C2 � kxk1] � 1 � ı

Thus, the map f has distortion O
�
log(1/ı)

ı

�
with probability 1 � ı. However, unlike

the deterministic case, the randomized guarantees (4) and (5) are not sufficient for the
reduction between ANN data structures (if ı � 1/n). This is because the lower bound
on kf (x)k1 must apply simultaneously to all “far” points. In order to obtain a desired
reduction, we need to use slightly different parameters. Specifically, for 0 < " < 1 one
has:

Prf
�
kf (x)k1 � Ω

�
kxk1

logn

��
� 1 �

1

10n

and
Prf

�
kf (x)k1 � O

�
kxk1

" � logn

��
� n�":

This allows us to reduce the (c/"; r)-ANN problem over (Rd ; `1) to nO(") instances of the
(c; r 0)-ANN problem over (Rd ; `1). Indeed, we sample nO(") i.i.d. maps fi as described
above and solve the ANN problem over `1 on the image of fi . Far points remain being
far with probability 1 � 1/10n each. Using the linearity of expectation and the Markov
inequality, we observe that, with probability at least 0:9, no far point come close enough
to the query point. At the same time, with probability at least n�", the near neighbor does
not move too far away, so, with high probability, at least one of the nO(") data structures
succeeds. This reduction is quite similar to the use of Locality-Sensitive Hashing in Sec-
tion 2.2.

As a result, we get an ANN data structure for (Rd ; `1)with approximationO
�
log logd
"2

�
,

query timeO(dn") and spaceO(dn1+"). This is worse than the best ANN data structure
for `1 based on (data-dependent) space partitions. However, the technique we used is very
versatile and generalizes easily to many other distances. The `1 embedding was first used
in Andoni, Indyk, and Krauthgamer [2009]. Later, it was generalized Andoni [2009] to
`p spaces for p � 1. To get such an embedding, one can divide every coordinate by
the (1/p)-th power of an exponential random variable. Finally, in Andoni, H. L. Nguyên,
Nikolov, Razenshteyn, andWaingarten [2017] the same technique has been shown to work
for Orlicz norms and top-k norms, which we define next.
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Definition 6.7. Let  : [0;+1) ! [0;+1) be a non-negative monotone increasing
convex function with  (0) = 0. Then, an Orlicz norm k � k over Rd is given by its unit
ball K , defined as follows:

K =

(
x 2 Rd

ˇ̌̌̌
ˇ dX
i=1

 (jxi j) � 1

)
:

Clearly, `p norm for p < 1 is Orlicz for  (t) = tp .

Definition 6.8. For 1 � k � d , we define the top-k norm of a vector from Rd as the sum
of k largest absolute values of the coordinates.

The top-1 norm is simply `1, while top-d corresponds to `1.
To embed an Orlicz norm k � k into `1, we divide the coordinates using a random

variable X with the c.d.f. FX (t) = Pr[X � t ] = 1 � e� (t). To embed the top-k norm,
we use a truncated exponential distribution. All of the above embeddings introduce only
a constant distortion.

Let us note that for the `p norms one can achieve approximation 2O(p) A. Naor and
Rabani [2006] and Bartal and Gottlieb [2015], which is an improvement upon the above
O(log log d ) bound if p is sufficiently small.

6.2 ANN for direct sums. In this section we describe a vast generalization of the ANN
data structure for `1 from Section 4.7. Namely, we will be able to handle direct sums of
metric spaces.

Definition 6.9. Let M1 = (X1;D1), M2 = (X2;D2), …, Mk = (Xk ;Dk) be metric
spaces and let k � k be a norm over Rk . Then the k � k-direct sum of M1, M2, …, Mk

denoted by
�Lk

i=1Mi

�
k�k

is a metric space defined as follows. The ground set is the
Cartesian product X1 �X2 � : : :�Xk . The distance function D is given by the following
formula.

D ((x1; x2; : : : ; xk); (y1; y2; : : : ; yk)) = k(D1(x1; y1);D2(x2; y2); : : : ;Dk(xk ; yk))k :

It turns out that for many interesting norms k � k the following holds. If for met-
rics M1, M2, …, Mk there exist efficient ANN data structures, then the same holds for�Lk

i=1Mi

�
k�k

(with a mild loss in the parameters).

The first result of this kind was shown in Indyk [2002]11 for the case of `1-direct sums.
In what follows we denote by d the “complexity” of each metricMi . That is, we assume

11In Indyk [2002], a slightly weaker version of Theorem 6.10 has been stated. First, it assumed deterministic
data structures for the spaces Mi . This is straightforward to address by boosting the probability of success
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it takes O(d ) time to compute the distance between two points, and that a point requires
O(d ) space to store.

Theorem 6.10. Let c > 1, r > 0 and 0 < " < 1. Suppose that eachMi admits a (c; r)-
ANN data structure for n-point sets with space n1+� (in addition to storing the dataset)
for some � � 0 and query timeQ(n). Then, there exists a data structure for (c0; r)-ANN
over

�Lk
i=1Mi

�
1
, where c0 = O

�
c log logn

"

�
, the space is O(n1+�+") (in addition to

storing the dataset), and the query time isQ(n) � logO(1) n+O(dk logn).

Informally speaking, compared to data structures for Mi , the data structure for
(
L
i Mi )1 loses log logn

"
in approximation, n" in space, and logO(1) n in query time.

Later, the result of Indyk [2002] was significantly extended Indyk [2004], Andoni, In-
dyk, andKrauthgamer [2009], Andoni [2009], andAndoni, H. L. Nguyên, Nikolov, Razen-
shteyn, and Waingarten [2017], to support k � k-direct sums where k � k is an `p norm, an
Orlicz norm, or a top-k norm. The main insight is that we can use the randomized embed-
dings of various norms into `1 developed in Section 6.1.2, to reduce the case of k�k-direct
sums to the case of `1-direct sums. Indeed, we described how to reduce the ANN prob-
lem over several classes of norms to n" instances of ANN over the `1 distance at a cost
of losing O(1/") in the approximation. It is not hard to see that the exact same approach
can be used to reduce the ANN problem over

�Lk
i=1Mi

�
k�k

to n" instances of ANN over�Lk
i=1Mi

�
1

also at a cost of losing O(1/") in approximation.

6.3 Embeddings into direct sums. As Section 6.2 shows, for a large class of norms
k � k, we can get an efficient ANN data structure for any k � k-direct sum of metrics that
admit efficient ANN data structures. This gives a natural approach to the ANN problem:
embed a metric of interest into such a direct sum.

This approach has been successful in several settings. In Indyk [2002], the Fréchet
distance between two sequences of points in a metric space is embedded into an `1-direct
for data structures for Mi using repetition. Second, the resulting space bound Indyk [2002] was worse. An
improvement to the space bound has been described in Appendix A of the arXiv version of Andoni, H. L. Nguyên,
Nikolov, Razenshteyn, and Waingarten [2017]. Finally, the paper Indyk [2002] assumes ANN data structures
forMi with a slightly stronger guarantee. Namely, each point is assigned a priority from 1 to n, and if the near
neighbor has priority t , we must return a point with priority at most t . It is not hard to solve the version with
priorities using a standard ANN data structure (with logO(1) n loss in space and query time). A naïve reduction
builds an ANN data structure for points with priority at most t for every t . Then, we can run a binary search
over the resulting priority. However, this gives a linear in n loss in space. To rectify this, we use a standard data
structure technique: the decomposition of an interval into O(logn) dyadic intervals, i.e., intervals of the form
[2k � l + 1; 2k � (l + 1)] for integer k; l .. Thus, we build an ANN data structure for every dyadic interval of
priorities. This still givesO(n) ANN data structures, however, each data point participates in at mostO(logn)
of them.
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sums of Fréchet distances between shorter sequences. Together with Theorem 6.10, this
was used to obtain an ANN data structure for the Fréchet distance. In Andoni, Indyk, and
Krauthgamer [2009], it is shown how to embed the Ulammetric (which is the edit distance

between permutations of length d ) into
�Ld

�LO(logd)(Rd ; `1)
�
`1

�
`22

with a constant

distortion which gives an ANN data structure with doubly-logarithmic approximation. At
the same time, the Ulam distance requires distortion Ω

�
logd

log logd

�
to embed into `1 An-

doni and Krauthgamer [2010]. This shows that (lower-dimensional) direct sums form a
strictly more “powerful” class of spaces than `1 or `2. Finally, in Andoni, H. L. Nguyên,
Nikolov, Razenshteyn, and Waingarten [2017], it is shown that any symmetric norm over
Rd is embeddable into

�LdO(1)

i=1

�Ld
j=1Xij

�
1

�
1

with constant distortion, where Xij
is Rd equipped with the top-j norm. Together with the results from Section 6.1.2 and
Section 6.2, this gives an ANN algorithm with approximation (log logn)O(1) for general
symmetric12 norms.

6.4 ANN for general norms. For general d -dimensional norms, the best known ANN
data structure is obtained by combining Theorem 6.5 with an efficient ANN data structure
for `2 (for example, the one given by Theorem 4.1). This approach gives approxima-
tion O(

p
d/") for space dO(1) � n1+" and query time dO(1) � n" for every constant 0 <

" < 1. Very recently, the approximation O(
p
d/") has been improved to O

�
logd
"2

�
An-

doni, A. Naor, Nikolov, Razenshteyn, and Waingarten [2017] for the same space and time
bounds if one is willing to relax the model of computation to the cell-probe model, where
the query procedure is charged for memory accesses, but any computation is free. This
ANN data structure heavily builds on a recent geometric result from A. Naor [2017]: a
bi-Lipschitz embedding (see Definition 6.1) of the shortest-path metric of any N -node
expander graph Hoory, Linial, and Wigderson [2006] into an arbitrary d -dimensional
normed space must have distortion at least Ω (logd N ). At a very high level, this non-
embeddability result is used to claim that any large bounded-degree graph, which does
embed into a normed space, can not be an expander, and hence it must have a sparse
cut. The existence of the sparse cut is then used, via a duality argument, to build a (data-
dependent) random space partition family for a general d -dimensional normed space. The
latter family is used to obtain the final data structure.

This approach can be further extended for several norms of interest to obtain proper,
time-efficient ANN data structures, with even better approximations. For instance, An-
doni, A. Naor, Nikolov, Razenshteyn, and Waingarten [2017] show how to get ANN with
approximation O(p) for the `p norms, improving upon the bound 2O(p) from A. Naor

12Under permutations and negations of the coordinates.
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and Rabani [2006] and Bartal and Gottlieb [2015]. Finally, for the Schatten-p norms of
matrices, defined as the `p norm of the vector of singular values, one obtains approxima-
tion O(p) as well, while the previous best approximation was polynomial in the matrix
size (by relating the Schatten-p norm to the Frobenius norm).

Acknowledgments. The authors would like to thank Assaf Naor, Tal Wagner, Erik Wain-
garten and Fan Wei for many helpful comments.
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GROUP, GRAPHS, ALGORITHMS: THE GRAPH
ISOMORPHISM PROBLEM
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Abstract
Graph Isomorphism (GI) is one of a small number of natural algorithmic problems

with unsettled complexity status in the P /NP theory: not expected to be NP-complete,
yet not known to be solvable in polynomial time.

Arguably, the GI problem boils down to filling the gap between symmetry and
regularity, the former being defined in terms of automorphisms, the latter in terms of
equations satisfied by numerical parameters.

Recent progress on the complexity of GI relies on a combination of the asymptotic
theory of permutation groups and asymptotic properties of highly regular combinato-
rial structures called coherent configurations. Group theory provides the tools to infer
either global symmetry or global irregularity from local information, eliminating the
symmetry/regularity gap in the relevant scenario; the resulting global structure is the
subject of combinatorial analysis. These structural studies are melded in a divide-
and-conquer algorithmic framework pioneered in the GI context by Eugene M. Luks
(1980).

1 Introduction

We shall consider finite structures only; so the terms “graph” and “group” will refer to
finite graphs and groups, respectively.

1.1 Graphs, isomorphism, NP-intermediate status. A graph is a set (the set of ver-
tices) endowed with an irreflexive, symmetric binary relation called adjacency. Isomor-
phisms are adjacency-preseving bijections between the sets of vertices. The Graph Iso-
morphism (GI) problem asks to determine whether two given graphs are isomorphic.

It is known that graphs are universal among explicit finite structures in the sense that
the isomorphism problem for explicit structures can be reduced in polynomial time to
GI (in the sense of Karp-reductions1) Hedrlı́n and Pultr [1966] and Miller [1979]. This
MSC2010: primary 68Q25; secondary 20B05, 05B30, 05C68, 05C60, 05E30.
1For basic concepts of complexity theory we refer to Garey and Johnson [1979].
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makes GI a natural algorithmic problem. It is a polynomial-time verifiable problem: a
candidate isomorphism is easily verified. This puts GI in the complexity class NP. Over
time, increasingly strong conjectural evidence has been found that GI is not NP-complete,
yet no polynomial-time algorithm is known to solve GI. This puts GI among the small
number of natural NP-problems of potentially intermediate complexity (neither in P, nor
NP-complete). (Another such problem is that of factoring integers, cf. Section 11.) The
interest in this status of GI was recognized at the dawn of the P /NP theory Karp [1972]
and Garey and Johnson [1979].

1.2 Brief history of the GI problem. Combinatorial heuristics such as individualiza-
tion and refinement (I/R) (see Section 8) have been used for the longest time to reduce the
GI search space. It was shown that the “naive refinement” algorithm solves GI for almost
all graphs in linear time Babai, Erdős, and Selkow [1980] and Babai and Kucera [1979].
Efficient algorithmswere found for special classes such as planar graphs J. E. Hopcroft and
Tarjan [1972] and J. E. Hopcroft andWong [1974]. These algorithms exploited the combi-
natorial structure of the graphs concerned. However, combinatorial refinement methods
alone cannot succeed in less than exponential time for the general GI problem, as shown
in a seminal 1992 paper by Cai, Fürer, and Immerman [1992].

It has long been known that GI is equivalent to determining whether two vertices of a
given graph belong to the same orbit of the automorphism group. Refinement procedures
have been used to distinguish vertices, trying to refute symmetry by discovering irregular-
ity. While this gives a first indication of the critical role of the gap between symmetry and
regularity to GI, the CFI result shows the futility of trying to close this gap using combina-
torial refinement heuristics alone. We use group theory to close a gap of this nature under
particular circumstances (see Theorem 5.3 and the paragraph preceding it). The relevant
new group theoretic result, the “Unaffected Stabilizers Lemma,” is stated in Theorem 6.2.

Elements of group theory were first introduced into the design of GI algorithms in
1979 Babai [1979]. The tower of groups method described in that paper produced the
following results. A vertex-colored graph has a “color” assigned to each vertex; isomor-
phisms preserve the colors by definition. The multiplicity of a color is the number of
vertices of that color. The adjacency matrix of a graph with n vertices is the n � n (0; 1)-
matrix whose (i; j )-entry is 1 if vertex i is adjacent to vertex j , and 0 otherwise. By the
eigenvalues of a graph we mean the eigenvalues of its adjacency matrix.

Theorem 1.1. (a) Babai [1979] and Furst, J. Hopcroft, and E. Luks [1980] Isomorphism
of vertex-colored graphs of bounded color multiplicities can be tested in polynomial time.
(b) Babai, Grigoryev, and Mount [1982] Isomorphism of graphs with bounded eigenvalue
multiplicities can be tested in polynomial time.
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It turns out that the CFI pairs of graphs, i. e., the pairs of graphs shown in Cai, Fürer, and
Immerman [1992] to be hard to separate by combinatorial refinement, can be viewed as
vertex-colored graphs with color multiplicity 4. This shows that elementary group theory
(hardly more than the concept of cosets was used) was already capable of overcoming
exponential barriers to combinatorial refinement methods. Modern extensions of the CFI
result show that GI is hard for several more general refutation systems (see Section 11),
putting GI in a somewhat paradoxical position in complexity theory (cf. Section 11).

In-depth use of group theory in the design of GI algorithms arrived with Luks’s ground-
breaking 1980 paper E. M. Luks [1982]. We state the main result of that paper. Adjacent
vertices of a graph are called neighbors; the degree of a vertex is the number of its neigh-
bors.

Theorem 1.2 (Luks, 1980). Isomorphism of graphs of bounded degree can be tested in
polynomial time.

Luks’s group theoretic method, combined with a combinatorial refinement result by
Zemlyachenko, Korneenko, and Tyshkevich [1982], have lead to themoderately exponen-
tial complexity bound of

(1) exp(O(
p
n logn));

where n denotes the number of vertices (Luks, 1983, cf. Babai and E. M. Luks [1983]
and Babai, Kantor, and E. M. Luks [1983]). In spite of intermittent progress on important
special cases, notably for strongly regular graphs Spielman [1996], Chen, Sun, and Teng
[2013], Babai and Wilmes [2013], and Babai, Chen, Sun, Teng, and Wilmes [2013] and
for primitive coherent configurations Sun and Wilmes [2015], Luks’s bound (1) for the
general case had not been improved until this author’s recent annoucement Babai [2016]
of a quasipolynomial-time algorithm. A quasipolynomial function is a function of the
form exp(p(logn)) for some polynomial p. A quasipolynomial time bound is a bound
of this form where n is the bit-length of the input; but if we take n to be the number of
vertices of an input graph, the form of the bound will not be affected.

Theorem 1.3 (B 2015). Isomorphism of graphs can be tested in quasipolynomial time.

In this paper we outline the main components of this result. For an introduction to the
algorithmic theory of permutation groups we refer to the monograph Seress [2003].

Disclaimer. I should emphasize that the results discussed in this paper address the math-
ematical problem of the asymptotic worst-case complexity of GI and have little relevance
to practical computation. A suite of remarkably efficient GI packages is available for prac-
tical GI testing; McKay and Piperno [2014] give a detailed comparison of methods and
performance. These algorithms employ ingenious shortcuts to backtrack search. While
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the worst-case performance of these heuristics seems to be exponential, this is increas-
ingly difficult to demonstrate, cf. Cai, Fürer, and Immerman [1992], Miyazaki [1996],
and Neuen and Schweitzer [2017].

2 The string isomorphism problem

We now define a generalization of the GI problem, introduced by E. M. Luks [1982].
LetΩ be a finite set; Sym(Ω) denotes the symmetric group acting onΩ. LetΣ be finite

alphabet. AnΩ-string (or just “string”) overΣ is a function x : Ω ! Σ. There is a natural
action x 7! x� of Sym(Ω) on the set ΣΩ of strings (� 2 Sym(Ω), x 2 ΣΩ). We say that
� 2 Sym(Ω) is a G-isomorphism between the strings x and y if � 2 G and x� = y.
The strings x and y are G-isomorphic, denoted x ŠG y, if such a � exists. The String
Isomorphism (SI) problem asks, given G, x, and y, does x ŠG y hold? We refer to G as
the ambient group; it is given by a list of generators.

Luks pointed out E. M. Luks [ibid.] that GI reduces to SI by encoding each graph X
by the characteristic function fX of its adjacency relation, fX :

�
Ω
2

�
! f0; 1g, where�

Ω
2

�
denotes the set of unordered pairs of elements of Ω. So fX is an

�
Ω
2

�
-string over

the alphabet f0; 1g. The pertinent ambient group is Sym(Ω)(2), the induced action of
Sym(Ω) on the set

�
Ω
2

�
. It is easy to see that two graphs are isomorphic if and only if the

corresponding
�
Ω
2

�
-strings are Sym(Ω)(2)-isomorphic. The actual result we shall discuss

concerns the complexity of SI Babai [2016].

Theorem 2.1 (B 2015). String isomorphism can be tested in quasipolynomial time.

Theorem 1.3 is then a corollary. The previous best bound for SI was exp(eO(n1/2)),
where n = jΩj is the length of the strings in question Babai [1983] (cf. Babai, Kantor, and
E. M. Luks [1983]). (The tilde hides a polylogarithmic factor.)

Luks also observed that several other problems of computational group theory are
polynomial-time equivalent to SI (under Karp-reductions), including the coset intersec-
tion, double coset membership, and ‘centralizer in coset’ problems. Given two subgroups
G;H of the symmertic group Sn and two elements �; � 2 Sn, the Coset Intersection prob-
lem asks whether G� \ H� ¤ ¿; the double coset membership problem asks whether
� 2 G�H , and the centralizer in coset problem asks whether there exists an element in
the cosetG� that commutes with � . As a consequence, these problems, too, can be solved
in quasipolynomial time.

The advantage of approaching GI through the SI problem is that SI permits recursion
on the ambient group. This was Luks’s core idea.
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3 Divide-and-Conquer

In the theory of algorithms, the term “Divide-and-Conquer” refers to recursive procedures
that reduce an instance of a computational problem to a moderate number of significantly
smaller instances. If our input has size n, we shall consider instances of size � 0:9n to be
“significantly smaller.” Let q(n) be the number of such smaller instances to which our in-
put is reduced; we refer to q(n) as themultiplicative cost of the reduction. If f (n) denotes
the worst-case cost of processing an input of size n, this leads to the following recurrence
(ignoring the additive cost of assembling all information from the smaller instances, which
will typically not affect the cost estimate).

(2) f (n) � q(n)f (0:9n)

Assuming that q(n) is monotone, this gives the bound f (n) � q(n)O(logn), so if q(n) is
quasipolynomially bounded then so is f (n). Therefore our goal will be to significantly
reduce the problem size at a quasipolynomial multiplicative cost.

4 Large primitive permutation groups

Not only did Luks point out that GI reduces to SI, but he also showed that (i) the SI
problem for groups with restricted structure can be used to solve the GI problem for certain
classes of graphs; and that (ii) SI can be solved efficiently under such structural constraints.
The issue of relevance here is bounding the order of primitive permutation groups under
structural constraints.

A permutation group acting on the set Ω (the permutation domain) is a subgroup G �

Sym(Ω). (The “�” sign stands for “subgroup.”) The degree of G is jΩj. The set xG =

fx� j � 2 Gg is the G-orbit of x; the orbit has length jxG j. We say that G is transitive if
xG = Ω for some (and therefore any) x 2 Ω. A transitive groupG � Sym(Ω) is primitive
if jΩj � 2 and there is no nontrivial G-invariant equivalence relation on Ω.

In 1982, Pálfy [1982] andWolf [1982] showed that primitive solvable groups of degree
n have order � nc where c � 3:243. It turns out that the critical structural parameter of a
group for polynomial bounds on the order of its primitive permutation representations is
its “thickness.”

Definition 4.1. The thickness2 �(G) of a groupG is the largest t such that the alternating
group At is involved in G as a quotient of a subgroup.

The following result characterizes those hereditary classes of groups (classes that are
closed under subgroups and quotients) which have only small primitive permutation rep-
resentations.

2The term “thickness” was coined in Babai [2014].
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Theorem 4.2 (B, Cameron, Pálfy, 1982). If G is a primitive permutation group of degree
n and thickness t then jGj = nO(t).

This result first appeared in Babai, Cameron, and Pálfy [1982]; here it is stated with
an improved exponent due to Pyber [1990]. Refined versions were subsequently obtained
by Liebeck, Shalev, Maróti; see Liebeck and Shalev [2003, Sec. 3] for a survey of those
developments. We note that while the initial motivation for Theorem 4.2 came from the GI
problem, the result also found applications in other areas, such as the theory of profinite
groups Borovik, Pyber, and Shalev [1996].

E. M. Luks [1982] introduced a group theoretic divide-and-conquer technique to attack
the SI problem. Luks’s method, combined with the above bounds, yields the following.

Corollary 4.3. The SI problem can be solved in polynomial time if the ambient group is
solvable or more generally, if it has bounded thickness.

Let G be the stabilizer of an edge in the automorphism group of a connected graph in
which every vertex has degree � k. It is easy to see that every composition factor of G is
a subgroup of the symmetrc group Sk�1. In particular, �(G) � k � 1 and therefore the SI
problem can be solved in polynomial time for such G as the ambient group. This fact is
at the heart3 of the proof of Theorem 1.2.

While Theorem 4.2 is helpful for groups with small thickness, our interest is in the gen-
eral case. Luks’s technique for SI works in quasipolynomial time as long as the primitive
groups involved in the ambient group have quasipolynomially bounded orders. In 1981,
building on the then expected completion of the classification of the finite simple groups
(CFSG), Cameron [1981] gave a precise characterization of primitive groups of large or-
der. The socle of a group is the product of its minimal normal subgroups. It is known that
the socle of a primitive permutation group is a direct product of isomorphic simple groups.
For a permutation group T � Sym(∆), the product action of the direct power T k on the
Cartesian power ∆k is the independent action of each copy of T on the corresponding
coordinate. Wreath product in addition permutes the coordinates by some group “on the
top.” For a permutation group G � Sym(Ω) we denote by G(t) the induced action of G
on the set

�
Ω
t

�
of unordered t -tuples of elements of Ω.

Definition 4.4. G � Sn is a Cameron group with parameters s; t � 1 and k � max(2t +
1; 5) if we have n =

�
k
t

�s
, the socle of G is isomorphic to As

k
and acts as (A(t)

k
)s in the

product action, and (A
(t)

k
)s � G � S

(t)

k
o Ss (wreath product, product action), moreover

the induced action G ! Ss on the direct factors of the socle is transitive.

3Theorem 4.2 was not available to Luks at the time; he used a further layer of recurrence so a weaker group-
theoretic result was sufficient for his analysis E. M. Luks [1982].
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Theorem 4.5 (Cameron 1981). For n � 25, if G � Sn has order jGj � n1+log2 n then G
is a Cameron group.

This sharp version of Cameron’s theorem Cameron [ibid.] is due to Maróti [2002].

5 Luks’s method and the bottleneck

In attacking the SI problem, Luks applies a combination of the following two types of
recursive operations to the ambient group.

• Descend to a subgroup.

• Process orbits one by one.

Orbit-by-orbit processing leads to ultra-efficient (linear-time) recurrence. Descent to a
subgroup H � G incurs a heavy penalty, namely, a multiplicative cost of jG : H j, so
this can only be used to replace the ambient group with a subgroup of small index, and to
compensate for the multiplicative cost, such a step needs to lead to significantly reduced
problem size. Small primitive groups acting on a minimal system of imprimitivity (system
of maximal blocks of aG-invariant equivalence relation) provide such an opportunity; the
orbits of the kernel of the action of such a primitive group have length � n/2, hence orbit-
by-orbit processing reduces the problem to significantly smaller instances.

Using Theorem 4.5 we can identify the bottleneck for Luks’s method.

Definition 5.1. We say that a group G has a giant quotient of degree m if G has an
epimorphism onto Sm or Am.

Proposition 5.2. For any constant C � 1 one can use Luks recurrence for the SI problem
to achieve one of the following at a multiplicative cost of nO(logn).

(a) Significantly reduce the problem size.
(b) Reduce the ambient group to a transitive group with a giant quotient of degree �

C logn.

Our work addresses case (b), the bottleneck situation. The goal is to either confirm
or effectively break the symmetry represented by the giant quotient. This inserts another
layer of recurrence into Luks’s framework: significant reduction of m, the degree of the
giant quotient.

More specifically, let G � Sym(Ω) be our ambient group and x;y : Ω ! Σ be two
strings of which we wish to determine the G-isomorphisms. Let, further, ' : G ! H

be an epimorphism where Alt(Γ) � H � Sym(Γ) for some large set Γ, where Alt(Γ)
denotes the alternating group (even permutations of Γ). Let m = jΓj and let P (x) =



3344 LÁSZLÓ BABAI

'(AutG(x)) � Sym(Γ); define P (y) analogously. We say that a group K � Sym(Ψ) is
a giant on Ψ if Alt(Ψ) � K � Sym(Ψ).

Theorem 5.3 (Canonical obstruction to symmetry). Either P (x) acts as a giant on a
P -orbit of length � 0:9m, or there exists a P (x)-invariant canonical k-ary relational
structure X(x) on Γ with k = O(logn) such that X(x) has symmetry defect > 0:1. More-
over, in each case, we can find, via efficient Luks recurrences, an effective representation
of the stated objects.

We explain the concepts involved in this statement.
By ‘efficient Luks recurrence’ wemean a sequence of Luks operations that significantly

reduces the problem size at a multiplicative cost of nO(logn).
In the first case, ‘effective representation’ means we can find a subgroupM � AutG(x)

such that '(M ) has a large orbit on which it acts as a giant. Note that AutG(x) is not
known; in fact, determining AutG(x) is equivalent to the SI problem.

We need to explain the second case. A k-ary relation on a set Γ is a subset of the
Cartesian power Γk . A k-ary relational structure on Γ is a pair X = (Γ;R) where R =

(R1; : : : ; Rr) is a list of k-ary relations Ri on Γ. ‘Effective representation’ of X simply
means listing each Ri . We may assume the Ri are disjoint, so the total length of the lists
is � mk .

We say that the symmetry defect of X is � ˛ if every orbit of Aut(X) on which Aut(X)

acts as a giant has size � (1 � ˛)m.
Canonicity of the x 7! X(x) assignment means this construction is a functor from

the category of G-isomorphisms of strings in the set fx;yg (two objects) to the category
of isomorphisms of k-ary relational structures on Γ, so every G-isomorphism z1 ! z2
(zi 2 fx;yg) induces an isomorphism X(z1) ! X(z2).

The two cases listed in Theorem 5.3 are mutually exclusive by the definition of sym-
metry defect. The result provides a constructive obstruction to certain type of very large
symmetry (small symmetry defect); the stucture X has sufficient irregularity to preclude
such large symmetry. This is the sense in which, under our special circumstances, we
have been able to close a symmetry vs. regularity gap (see Section 1), a key step toward
Theorem 2.1.

6 Unaffected Stabilizers Lemma

In this section we state a group theoretic result, Theorem 6.2 (a), that is our main mathe-
matical (non-algorithmic) tool for the proof of Theorem 5.3.

For a group G � Sym(Ω) and x 2 Ω, the stabilizer of x in G is the subgroup Gx =

f� 2 G j x� = xg. For ∆ � Ω, the pointwise stabilizer of ∆ is the subgroup G(∆) =T
x2∆Gx .
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For a group G and a set Γ we say that the action ' : G ! Sym(Γ) is a giant represen-
tation of G (or a giant homomorphism) if the image '(G) is a giant, i. e., '(G) � Alt(Ω).
We now define our central new concept.

Definition 6.1 (Affected). LetΩ andΓ be sets,G � Sym(Ω), and let ' : G ! Sym(Γ) be
a giant representation. We say that x 2 Ω is affected by ' if the '-image of the stabilizer
Gx is not a giant, i. e., '(Gx) � Alt(Γ).

We note that if x 2 Ω is affected then every element of the orbit xG is affected. So we
can speak of affected orbits.

Theorem 6.2. Let G � Sym(Ω) be a permutation group of degree n = jΩj and ' : G !

Sk a giant representation, i. e., '(G) � Ak . Let U � Ω denote the set of elements of Ω
not affected by '. Then the following hold.

(a) (Unaffected Stabilizers Lemma) Assume k > maxf8; 2+log2 ng. Then ' restricted to
G(U ), the pointwise stabilizer of U , is still a giant representation, i. e., '(G(U )) � Ak .
In particular, U ¤ Ω (at least one element is affected).

(b) (Affected Orbit Lemma) Assume k � 5. If ∆ is an affected G-orbit, i. e., ∆ \ U =

¿, then ker(') is not transitive on ∆; in fact, each orbit of ker(') in ∆ has length
� j∆j/k.

The affected/unaffected dichotomy underlies the core “local certificates” algorithm
(Section 7).

Part (b) is an easy exercise; its significance is that it permits efficient Luks reductions
on affected orbits.

Part (a) is the central result mentioned. The proof of part (a) builds on the O’Nan–
Scott–Aschbacher characterization of primitive permutation groups (L. L. Scott [1980]
and Aschbacher and L. Scott [1985], cf. Dixon and Mortimer [1996, Thm. 4.1A]) and de-
pends on the classification of Finite Simple Groups (CFSG)4 through Schreier’s Hypothe-
sis (a consequence of CFSG) that asserts that the outer automorphism group of every finite
simple group is solvable.

Note that part (a) is counter-intuitive: it asserts that if the stabilizer of each x 2 U

maps onto Ak or Sk then even the intersection of these stabilizers maps onto Ak or Sk .
The condition k > 2 + log2 n in part (a) is tight. In fact, there are infinitely many

examples with k = 2 + log2 n which have no affected points, as shown by the example
of a semidirect product Zk�2

2 Ì Ak � AGL(k � 2; 2) for even k, acting on n = 2k�2

elements.
4A less tight version of the lemma, still sufficient for the quasipolynomial claim, was recently proved by

Pyber [2016] without the CFSG.
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7 Local certificates

In this section we describe our core algorithmic result. The goal is to categorize ordered
k-tuples of Γ, setting the stage for a combinatorial analysis of the resulting k-ary relational
structure. The method requires the construction of global automorphisms from local in-
formation; our key tool is the Unaffected Stabilizers Lemma.

We consider the Luks bottleneck situation. The input is a transitive groupG � Sym(Ω),
a giant representation ' : G ! Alt(Γ), and two strings x;y : Ω ! Σ. We write n = jΩj

andm = jΓj. We fix a number k > 2+log2 n (but notmuch greater, e. g., k = 3+blog2 nc)
and assume m � 10k. Subsets T � Γ of size jT j = k will be referred to as “test sets.”

If L � G then L also acts on Γ via ' so for a test set T we can speak of the setwise
stabilizer of T in L; we write LT for this subgroup.

We say that T is L-invariant if LT = L. We write  T : GT ! Sym(T ) for the map
that restricts the domain of ' to GT and the codomain to Sym(T ). The group GT can
be computed in polynomial time as GT = '�1(Sym(Γ)T ). Our focus is the (unknown)
group P (T ) :=  T (AutGT

(x)).

Definition 7.1 (Fullness). Let T be a test set. We say that T is full with respect to the
input string x if P (T ) � Alt(T ), i. e., the G-automorphisms of x induce a giant on T .

We consider the problem of deciding whether a given test set is full and compute useful
certificates of either outcome. We show that this question can efficiently (in time k!nO(1))
be reduced to the String Isomorphism problem on inputs of size � n/k.

Certificate of non-fullness. We certify non-fullness of the test set T by computing a
permutation group M (T ) � Sym(T ) such that (i) M (T ) � Alt(T ) and (ii) M (T ) �

P (T ) (M (T ) is guaranteed to contain the projection of the G-automorphism group of x).
Such an “encasing group”M (T ) can be thought of as a constructive refutation of fullness.

Certificate of fullness. We certify fullness of the test set T by computing a permutation
group K(T ) � Sym(Ω) such that (i) K(T ) � AutGT

(x) and (ii)  T (K(T )) � Alt(T ).
Note that K(T ) � P (T ), so K(T ) represents a polynomial-time verifiable proof of full-
ness of T .

Our ability to findK(T ), the certificate of fullness, may be surprising because it means
that from a local start (that may take only a small segment of x into account), we have to
build up global automorphisms (automorphisms of the full string x). Our ability to do so
critically depends on the “Unaffected Stabilizers Lemma” (Theorem 6.2 (a)).

Theorem 7.2 (Local certificates). Let T � Γ where jT j = k is a test set. Assume
maxf8; 2 + log2 ng < k � m/10 (where m = jΓj). By making � k!n2 calls to SI
problems on domains of size � n/k and performing k!nO(1) computation we can decide
whether T is full and
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(a) if T is full, find a certificate K(T ) � AutG(x) of fullness

(b) if T is not full, find a certificateM (T ) � Sym(T ) of non-fullness.

To aggregate the local certificates, first we consider the group F generated by the full-
ness certificates. If the support of '(F ) � Sym(Γ) has at least m/10 elements then the
structure of '(F ) suffices for the proof of Theorem 5.3. In the alternative, non-fullness
certificates dominate. In this case a slight extension of Theorem 7.2 is needed, to encase
not only the group  T (AutGT

(x) but also the images of the cosets IsoGT;T 0 (z1; z2) for all
pairs T; T 0 of test sets and all choices of z1; z2 2 fx;yg. The result will be two classifi-
cations of the ordered k-tuples of Γ, one associated with x, the other with y, yielding the
canonical assignment x 7! X(x) and y 7! X(y).

8 Individualization and refinement

We consider k-ary partition structures X = (Γ;R)where R = (R1; : : : ; Rr) is a partition
of Γk . We think of such a structure as a coloring c : Γk ! f1; : : : ; rg where c(Ex) = i if
Ex 2 Ri (Ex 2 Γk). We also write X = (Γ; c) instead of X = (Γ;R). A refinement of a
coloring c is a coloring c0 such that (8Ex; Ey 2 Γk)(c0(Ex) = c0( Ey) H) c(Ex) = c( Ey)).

An assignment X 7! X0 is canonical if it is defined by a functor between categories of
isomorphisms of structures.

By a binary configuration we mean a binary partition structure X = (Γ; c) such that

(i) (8x; y; z 2 Γ)(c(x; y) = c(z; z) H) x = y) and

(ii) (8x; y 2 Γ)(c(x; y) determines c(y; x)).

The Weisfeiler–Leman canonical refinement process (WL) Weisfeiler [1968] and On
construction and identification of graphs [1976] takes a binary configuration and with
every pair (x; y) 2 Γ2 associates the list c0(x; y) = (c(x; y); di;j (x; y) j i; j = 1; : : : ; r)

where di (x; y) = jfz 2 Γ j c(x; z) = i; c(z; y) = j gj. This is clearly a canonical
refinement.

Let X = (Γ; c) be a k-ary partition structure. We assign colors to the elements by set-
ting c(x) = c(x; : : : ; x). Individualizing an element x 2 Γ means assigning it a special
color, thereby introducing irregularity. This irregularity propagates via canonical refine-
ment, reducing the isomorphism search space. LetXx denoteXwith x 2 Γ individualized.
Then X Š Y () (9y 2 Γ)(Xx Š Yy). So progress comes at a multiplicative cost of
m = jΓj. The multiplicative cost of individualizing t points is nt , so we need t � polylog
for a quasipolynomial complexity bound.
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9 Coherent configurations

The stable configurations of the WL process (where no proper refinement is obtained) are
called coherent configurations. This concept goes back to Schur [1933] who abstracted its
axiom from the orbital configurations of permutation groups. An orbital ofG � Sym(Ω)

is an orbit of the induced action of G on Ω � Ω. Let X(G) denote the configuration on
Ω with the orbitals as the relations. This configuration is clearly coherent, but there are
many coherent configurations that do not arise this way. For v � 2k + 1, the Johnson
scheme J (v; k) has

�
v
k

�
vertices; it is defined as the orbital configuration of the group S (k)

v

(induced action of Sv on unordered k-tuples).
A coherent configuration is homogeneous if every point has the same color. A homo-

geneous configuration is primitive if jΓj � 2 and each off-diagonal color (relation) is a
(strongly) connected (directed) graph. We note that the orbital configuration X(G) of a
permutation group G is homogeneous iff G is transitive and X(G) is primitive iff G is
primitive. The rank of a configuration is the number of colors, so for jΓj � 2 the rank is
at least 2. The only rank-2 configuration is the clique; its automorphism group is Sym(Γ).
The Johnson scheme J (v; k) has rank k + 1.

TheWL process and its natural k-ary generalization play a key role in the combinatorial
analysis of the k-ary relational structures handed down by the Local Certificates algorithm.

10 Combinatorial partitioning

Recall that we have a giant homomorphism ' : G ! Sym(Γ) for some ‘ideal domain’
Γ and we are given a canonical k-ary partition structure X(x) = (Γ; cx) with symmetry
defect � 0:1 where x is the input string. Here k = O(logn) where n = jΩj is the size
of our original domain. Recall that our recursive goal is to significantly reduce the size
of the ideal domain at moderate multiplicative cost. Ideally we would like to achieve this
by finding a good canonical coloring of Γ (no color has multiplicity greater than 0:9m) or
a good equipartition, i. e., a nontrivial canonical equipartition of the dominant (> 0:9m)

vertex-color class.
This goal cannot be achieved because of the resilience of the Johnson schemes to canon-

ical partitioning.

Proposition 10.1 (Resilience of Johnson schemes). The multiplicative cost of a good
canonical coloring or a good canonical equipartition of the Johnson scheme J (v; t) is
� (4t)v/(4t).

The proof shows that if we pay less than exponential multiplicative cost then our Johnson
scheme is simply reduced to a slighly smaller Johnson scheme.
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Note that t = 2 is an interesting case, largely responsible for the lack of progress over
the exp(eO(

p
n)) bound for a long time.

The good news is that in a sense, the Johnson schemes are the only obstacles.
So our modified goal will be to find either (a) a good canonical coloring, or (b) a good

canonical equipartition, or (c) a canonically embedded Johnson scheme on a dominant
vertex-color class. In item (c), canonical embedding means a functor from the isomor-
phisms of the input structures X to the isomorphisms of the secondary structures whose
vertex set is a dominant vertex-color class in Γ (under a canonical coloring).

We achieve this goal in two stages: first we go from k-ary to binary (Design Lemma)
and then from binary to the desired goal (Split-or-Johnson).

Theorem 10.2 (Design lemma). Let X = (Γ; c) be a k-ary partition structure with m =

jΓj elements, 2 � k � m/2, and symmetry defect � 0:1. Then in time mO(k) we can find
a sequence S of at most k � 1 vertices such that after individualizing each element of S
we can either find
(a) a good canonical coloring of Γ, or
(b) a good canonical equipartition of Γ, or
(c) a good canonically embedded primitive coherent configuration of

rank � 3.

Here canonicity is relative to the arbitrary choice of the sequence S .
Outcomes (a) and (b) allow for efficient Luks reduction. Case (c) requires further pro-

cessing.

Theorem 10.3 (Split-or-Johnson). Given a primitive coherent configuration X = (Γ; c)

of rank � 3, at quasipolynomial multiplicative cost we can find either
(a) a good canonical coloring of Γ, or
(b) a good canonical equipartition of Γ, or
(c) a good canonically embedded nontrivial Johnson scheme.

Here canonicity is relative to the arbitrary choices made that resulted in the multiplica-
tive cost. The trivial Johnson schemes are the cliques J (v; 1).

Outcomes (a) and (b) again allow for efficient Luks reduction. Outcome (c) provides
even greater efficiency. Assume the canonically embedded Johnson scheme is J (m0; t);
som �

�
m0

t

�
�

�
m0

2

�
and thereforem0 < 1+

p
2m. Now Aut(J (m0; t)) Š Sm0 , so we can

replace Γ by a set Γ0 of size m0 = O(
p
m), a dramatic reduction of the size of the ideal

domain.

Overall algorithm. We followLuks’s algorithm until we hit a bottleneck, at which time an
“ideal domain” Γ arises and our recursive goal becomes to significantly reduce the size of
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the ideal domain. First we use our central group theoretic algorithm (“Local certificates”),
based on the “Unaffected Stabilizers Lemma,” to construct a canonical structure on Γ of
logarithmic arity and with non-negligible symmetry defect. Then we use our combinato-
rial partitioning algorithms to achieve the desired reduction. Once Γ itself becomes very
small (polylogarithmic), we can individualize all of its elements, yielding a significant
reduction of n, the size of the input string.

11 Paradoxes of Graph Isomorphism

GI is perceived to be an “easy” computational problem. As discussed in the Introduction
(see “Disclaimer”), it is efficiently solved in practice. It is also provably easy on average.
Our result shows it has rather lowworst-case time complexity. In comparison, the problem
of factoring integers is perceived to be “hard” – the assumption that it is hard, not only
in the worst case but even of average, is the basis of the RSA cryptosystem and many
other cryptographic applications. Yet, by common measures used in structural complexity
theory, GI seems harder than factoring. The decision version of the factorization problem
is inNP\ coNP; this is not known to be the case for GI. Factoring is solvable in polynomial
time in the quantum computation model; no quantum advantage has been found (in spite
of significant effort) for GI. Most remarkable is the series of recent hardness results for
GI in proof complexity, inspired by the CFI result. It turns out that in commonly studied
hierarchies of semialgebraic and algebraic proof systems, isomorphism of certain pairs
of graphs cannot be refuted on levels lower than cn for some constant c > 0 (where
n is the number of vertices), corresponding to refutation proofs of exponential length in
these systems Atserias andManeva [2013], O’Donnell, Wright, Wu, and Zhou [2014], and
Berkholz and Grohe [2015]. (Cf. Atserias and Ochremiak [2017] for an overview of these
and related systems.)

12 Open problems

Complexity theory. It is not known whether GI belongs to coNP. On the other hand, it is
also not known whether P has logspace reductions to GI. This is equivalent to a logspace
reduction of the circuit value problem (CVP) to GI. The CVP takes a Boolean circuit and
an input to the circuit and asks to evaluate the circuit. Such a reduction would be viewed
as strong evidence against the existence of an efficient parallel algorithm for GI.

While GI is universal over isomorphism problems for explicit structures, there are in-
teresting classes of isomorphism problems for non-explicit structures that are also not ex-
pected to be NP-complete (based on strong evidence from the theory of interactive proofs),
yet cannot currently be solved in less than exponential time. Perhaps the simplest among
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them is the code equivalence problem that asks, given two subspaces U and V of Fn for
some finite field F , is there a permutation � 2 Sn such that U � = V ? Here � acts on Fn

by permuting the coordinates.
Can GI be solved in quasipolynomial time and polynomial space? (Luks)
Can canonical forms of graphs be constructed in quasipolynomial time? (Cf. Babai

and E. M. Luks [1983].)
Can isomophism of hypergraphs be decided in time, quasipolynomial in the number of

vertices and polynomial in the number of edges?
Combinatorics. The author’s decades-old project to find combinatorial relaxations of
Cameron’s Theorem 4.5 has seenmajor progress recently, made by PhD students. Cameron
schemes are the orbital configurations of Cameron groups (Definition 4.4). Let us say that
a primitive coherent configuration is a non-Cameron PCC if it is not a Cameron scheme.
The author has circulated various versions of the following conjectures for some time.

Conjecture 12.1. There exists a polynomial p such that the following hold. Let X be a
non-Cameron PCC with n vertices. Let G = Aut(X). Then
(a) �(Aut(X)) � p(logn) (where � denotes the thickness, Definition 4.1)

(polylogarithmically bounded thickness)
(b) jGj � exp(p(logn)) (quasipolynomially bounded order)

Part (a) obviously follows from part (b). Regarding (b), for non-Cameron PCCs, an
upper bound jGj � exp(eO(

p
n)) was proved in Babai [1981] in 1981. After no progress

for three and a half decades, in a recent tour de force of combinatorial reasoning, Sun and
Wilmes reduced this upper bound to exp(eO(n1/3)), building a new combinatorial structure
theory of primitive coherent configurations along the way. The weaker Conjecture (a) has
been confirmed for rank-3 configurations (essentially, strongly regular graphs) in Babai
[2014] (2014). Overcoming an array of technical obstacles through a powerful combina-
tion of structural and spectral theory, Kivva [2017] very recently confirmed (a) for rank-4
configurations. These are major steps, and raise the hope of further progress, although the
technical challenges seem daunting.
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Abstract
Efficient verification of computation, also known as delegation of computation, is

one of the most fundamental notions in computer science, and in particular it lies at
the heart of the P vs. NP question.

This article contains a high level overview of the evolution of proofs in computer
science, and shows how this evolution is instrumental to solving the problem of dele-
gating computation. We highlight a curious connection between the problem of dele-
gating computation and the notion of no-signaling strategies from quantum physics.

1 Introduction

The problem of delegating computation considers the setting where a computationally
weak device (the client) wishes to offload his computations to a powerful device (the
server). Such a client may not trust the server, and would therefore want the server to
accompany the result of each computation with an easy-to-verify proof of correctness.
Clearly, the time it takes to verify such a proof should be significantly lower than the time
it takes to do the computation from scratch, since otherwise there is no point of delegating
this computation to begin with. At the same time, it is desirable that the time it takes to
generate a proof is not too high (i.e., not significantly higher than doing the computation)
since otherwise it will be too costly to delegate this computation.

Efficient delegation carries significance to applications. In many cases, computation
today is asymmetric, where lightweight computations are done locally, and large computa-
tional tasks are performed off-site (e.g. by a cloud server). In addition, complex computa-
tions are often delegated to powerful (possibly untrusted) hardware. The ability to verify
that the computation is carried out correctly without investing significant computational
resources is obviously useful in these situations. The applicability of delegation schemes
goes even further. For example, efficient verification of computation is used today as a
MSC2010: 68.
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building block in one of the prominent, and widely used, crypto currencies Ben-Sasson,
Chiesa, Garman, Green, Miers, Tromer, and Virza [2014].

Aside from its practical value, efficient verification of computation is one of the most
fundamental notions in computer science. Indeed, one of the most basic computational
objects in computer science is the complexity class NP, which is defined as the class of
problems whose computation can be verified “efficiently”, where an “efficient” computa-
tion is defined as one that takes polynomial time.

Unfortunately, the power of the complexity class NP is still unknown, and the question
of whether NP ¤ P, which is arguably the most important open problem in computer
science, remains open.1 Thus, in a sense, we don’t even know if verifying a proof is easier
than finding a proof from scratch! Moreover, even under the widely believed assumption
that NP ¤ P, it is widely believed that general T -time computations do not have a proof
that is verifiable in time significantly smaller than T . This seems to pose an insurmount-
able barrier to the problem of delegating general purpose computations.

We overcome this barrier by abandoning the traditional (thousands-year-old) notion of
a proof being a piece of text, and instead utilize a beautiful and instrumental line of work,
motivated by cryptography, where various alternative proof models were proposed and
studied. These proof models include interactive proofs, multi-prover interactive proofs
and probabilistically checkable proofs, which we elaborate on below.

Jumping ahead, in this article we show how this line of work, together with the use
of cryptography and an intriguing connection to no-signaling strategies from quantum
physics, can be used to construct secure delegation schemes.

Interactive Proofs. The notion of interactive proofs was defined by Goldwasser, Micali,
and Rivest [1988]. Their goal was to construct zero-knowledge proofs, which intuitively
are proofs that reveal no information, beyond the validity of the statement being proven.
Goldwasser et. al. noticed that such a notion is not achievable using traditional proofs, and
hence they introduced a new proof model, which they called interactive proofs.

In contrast to a traditional proof, an interactive proof is an interactive process between
a prover and an efficient (i.e., polynomial time) verifier. Interestingly (and oddly), the
verifier is allowed to toss coins, and let these coin tosses determine the questions he asks
the prover. Importantly, whereas traditionally, it is required that false statements do not
have a valid proof, here we require that a (cheating) prover cannot convince the verifier
of the correctness of any false statement, except with very small probability (over the
verifier’s coin tosses). We denote the class of all languages that have an interactive proof
by IP. Note that allowing the verifier to be randomized is crucial, since otherwise, the

1The complexity class P consists of the class of problems that can be computed in polynomial time.
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prover can predict the verifier’s questions and can send a single document emulating the
entire interaction. Thus without the use of randomness we would get IP = NP.

Interestingly, with the use of randomness, it seems that the class IP is significantly
more powerful that the class NP. The celebrated results of Lund, Fortnow, Karloff, and
Nisan [1992] and Shamir [1992] prove that IP = PSPACE, where PSPACE is the class
of all languages that can be computed by a Turing machine that uses polynomial space
and with arbitrarily long runtime. This class of PSPACE is believed to be significantly
larger than NP, and hence the IP proof system seems to be very powerful. Looking into
the IP = PSPACE theorem more closely, it says that any computation that takes time T
and space S has an interactive proof, where the verifier runs in time proportional to S
(and the length of the statement being proven). However, the runtime of the prover is
significantly higher than T . In the original works of Lund, Fortnow, Karloff, and Nisan
[1992] and Shamir [1992] the runtime of the prover was proportional to 2S2 , and thus
is super-polynomial (in T ) even for log-space computations (i.e., computations that take
space O(logT )).2

1.1 Our Goal: Doubly-Efficient Proofs. The computation delegation challenge re-
quires not only efficiently verifiable proofs but in actuality doubly efficiently verifiable
proofsGoldwasser, Kalai, and G. N. Rothblum [2008]. Such proofs require the complexity
of the verifier to be efficient without paying a noticeable penalty in increasing the provers
running time. This is in contrast to the results of the early 90’s, that were focused on the
question of which computations have an “easy to verify proof” of correctness, without
putting any restriction on the runtime of the prover.

In the most basic setting, in a delegation scheme a prover P proves to a verifier V
the correctness of an arbitrary time T computation. Our most basic goal is to construct a
delegation scheme, with the following three properties.

1. Verifying a proof should be easier than running the computation from scratch, and
in particular should take time significantly less than T . Otherwise, the weak device
will simply run the computation on its own in the first place.

2. Proving the correctness of a computation should not be “much harder” than running
the computation, and in particular should take time at mostpoly(T ) (for some poly-
nomial poly). Indeed, if proving requires say an exponential blowup in runtime,
then even powerful devices will not be able to prove the correctness of computa-
tions.

2We emphasize that almost all (natural) computations require space at least logT , since even holding an
index (or pointer) to a location in the computation tableau requires space logT .
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3. It is impossible to prove the correctness of a false statement (except with very small
probability). Otherwise, these proofs will have no meaning. This latter requirement
is known as soundness.

Unfortunately, achieving these three properties (and even achieving only properties (1)
and (3)) simultaneously is widely believed to be impossible. This follows from the fact
that IP � PSPACE, which implies that delegating computations that require large space
(say, space proportional to the runtime), is simply impossible! Nevertheless, one can still
consider delegating certain limited classes of computations.

Goldwasser et. al. Goldwasser, Kalai, and G. N. Rothblum [2008] constructed such a
delegation scheme for computations that are computable in “low depth”. Intuitively, low
depth computations correspond to computations that are highly parallelizable. In Gold-
wasser, Kalai, and G. N. Rothblum [ibid.] it was shown how to delegate any time T and
depth D computation, where the runtime of the prover is proportional to D (and the in-
stance size), and the runtime of the prover is poly(T ). Thus, for low-depth computations,
this is a doubly-efficient interactive proof. Moreover, it is quite simple and (almost) ef-
ficient enough to use in practice. Indeed, many systems based on the Goldwasser, Kalai,
and G. N. Rothblum [ibid.] blueprint were implemented (for example, Cormode, Mitzen-
macher, and Thaler [2012], Thaler, M. Roberts, Mitzenmacher, and Pfister [2012], Thaler
[2013], Vu, Setty, Blumberg, and Walfish [2013], Blumberg, Thaler, Vu, and Walfish
[2014], Wahby, Howald, S. J. Garg, Shelat, and Walfish [2016], Wahby, Ji, Blumberg,
Shelat, Thaler, Walfish, and Wies [2017], and Zhang, Genkin, Katz, Papadopoulos, and
Papamanthou [2017]), with the goal of using these systems in our day-to-day lives.

The following fundamental problem remains open: Does the IP = PSPACE theorem
hold if we restrict the prover in the interactive proof to be efficient? Namely, does every
T -time S -space computation has an interactive proof where the verifier runs in time pro-
portional to the space S (and the statement length), and the prover runs in time poly(T )?

Significant progress was recently made by Reingold, G. N. Rothblum, and R. D. Roth-
blum [2016], who proved that for every constant � > 0, every T -time S -space computa-
tion have an interactive proof where the verifier runs in time proportional to S � T � (and
the statement length), and the prover runs in time poly(T ). But the fundamental problem
above remains a very interesting open problem.

In the rest of this article, we focus on the general problem of delegating any T -time
computation. As we saw, in order to achieve this goal we must depart from the interactive
proof model, since this proof model is not powerful enough.

Multi-Prover Interactive Proofs. The notion of multi-prover interactive proofs was
defined by Ben-Or, Goldwasser, Kilian, and Wigderson [1988]. This notion, similarly to
the interactive proof notion, was defined with a cryptographic goal in mind.
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Shortly after Goldwasser et. al. Goldwasser, Micali, and Rivest [1988] introduced the
notions of interactive proofs and zero-knowledge proofs, Goldreich, Micali, and Wigder-
son [1987] showed that every interactive proof can be made zero-knowledge, assuming
the existence of a one-way function (a function that is easy to compute but hard to in-
vert). The goal of Ben-Or et. al. Ben-Or, Goldwasser, Kilian, and Wigderson [1988] was
to construct an information theoretic zero-knowledge proof, without relying on any com-
putational assumptions. This is believed to be impossible in the interactive proof model,
which led them to define the multi-prover interactive proof (MIP) model.

In this model, the verifier interacts with two (or more) provers. Importantly, it is as-
sumed that these two provers do not communicate during the protocol. Intuitively, this
can be enforced by placing the two provers in different rooms (without any connection to
the outside world).

Beyond enabling the construction of information theoretic zero-knowledge proofs, this
proof model was proven to be extremely powerful. It was proven by Babai, Fortnow, and
Lund [1991] that any T -time computation can be proved to be correct, using a two-prover
interactive proof, where the verifier sends a single query to each prover, and each prover
replies with an answer. The queries and answers consist of only polylog(T ) bits, and the
runtime of the verifier is n � polylog(T ), where n is the length of the input. Moreover,
the runtime of the provers is poly(T ), as desired.

In addition, it was shown that the above holds also for non-deterministic computa-
tions. In other words, it was shown that any proof of length T can be converted to a
2-prover interactive proof as above where the two queries and two answers are of length
polylog(T ). In the language of complexity theory, Babai, Fortnow, and Lund [ibid.]
proved that MIP = NEXP.3 Intuitively, the reason this model is so powerful is that it is
hard to cheat in a “consistent” manner. Indeed, known 2-prover interactive proof systems
consist of a bunch of cross examinations (or consistency checks).

Thus, if we were willing to assume the existence of two non-communicating provers,
then we could use these results from the early 90’s to construct a delegation scheme, where
the client interacts with two servers, and soundness is ensured as long as these two servers
do not interact during the proof process. However, we do not want to make such an as-
sumption, since in many applications (such as for crypto-currencies) this is not a realistic
assumption, and for other applications (such as cloud computing) the non-communicating
assumption may be too strong, or at the very least simply expensive.

Nevertheless, we show how cryptography can be used to emulate two (or more) non-
communicating provers using a single prover.

3We slightly abuse notation, and throughout this article we denote by MIP the class of all languages that
have a multi-prover interactive proof (see Definition 5), and we also denote by MIP any specific multi-prover
interactive proof system.
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Probabilistically Checkable Proofs. Shortly after this MIP model was introduced, it
was noticed that this model is equivalent to the fascinating notion of probabilistically
checkable proofs (PCP’s), which are (non-interactive) proofs that can be verified by read-
ing only a few of their bits. It was observed by Fortnow et. al. Fortnow, Rompel, and
Sipser [1994] that any MIP can be trivially converted into a PCP, by writing down for
each prover the answers to all the possible queries of the verifier. Since there are known
MIP schemes where the length of each query (and each answer) is O(logT ) the number
of possible queries is at most poly(T ), and the size of each answer is at most O(logT ).
Thus, this entire list of queries and answers is of length at most poly(T ). Hence, one can
verify this proof by running the verifier and sampling a few queries (one for each prover),
and reading only the answers corresponding to these queries.

Since this observation, there has been a beautiful line of work (eg., Feige, Goldwasser,
Lovász, Safra, and Szegedy [1991], Babai, Fortnow, Levin, and Szegedy [1991], Arora
and Safra [1992], and Arora, Lund, Motwani, Sudan, and Szegedy [1998]), culminating
with the remarkable PCP theorem that says that any proof of length T can be converted
into a probabilistically checkable one, of length poly(T ), where the verifier needs to read
only three bits of the proof in order to be convinced that the statement is true with constant
probability, and this soundness probability can be amplified by repetition. Moreover, to
verify the correctness of the proof the verifier only needs to do a single polynomial time
(in the statement size) computation, which is independent of the answers, followed by a
single polylog(T )-time computation.

Probabilistically checkable proofs seem very relevant to the problem of delegating com-
putation, since verifying a PCP can be done very efficiently (reading only a few bits of the
proof). However, the length of the PCP is poly(T ), and thus even communicating (and
storing) this proof is too expensive. If communication and storage were free then indeed
PCPs would yield a delegation scheme.

To summarize, despite the beautiful evolution of proofs in computer science starting
from the late 80’s, it seems that this tremendous progress still does not solve our problem of
delegating computation: PCPs require storing a long proof (as long as the computation at
hand), multi-prover interactive proofs require assuming two non-communicating provers,
and interactive proofs are not general enough to delegate all computations (only bounded
space computations). Moreover, as we mentioned, constructing a doubly-efficient inter-
active proofs for all bounded space computations remains an open problem. Finally, we
mention that interactive proofs require many rounds of interaction between the prover
and the verifier, and one of the major goals of delegating computation is to obtain non-
interactive solutions.
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Therefore, in the context of delegating computation, this line of work suffers from
significant limitations. Somewhat surprisingly, it has been shown that cryptography can
be used to remove many of these limitations.

1.2 Cryptography to the Rescue. It turns out that cryptography can be used to convert
any PCP or MIP scheme into a delegation scheme. At first, the use of cryptography may
seem quite surprising, since the problem at hand does not seem related to cryptography in
any way, since we are not concerned with privacy, only in proving correctness. Neverthe-
less, we show how using cryptography one can shrink a long PCP into a short one, and
how one can simulate a multi-prover interactive proof via a single prover. To this end, we
need to relax the soundness condition, to computational soundness.

Computational Soundness. Rather than requiring that it is impossible to prove the va-
lidity of a false statement, we require that it is “practically impossible” to prove the valid-
ity of a false statement. More specifically, we require that it is impossible to prove a false
statement only for computationally-bounded (e.g., polynomial time) cheating provers. Yet,
a computationally all powerful cheating prover may be able to cheat. Honest provers are
also required to be efficient (i.e., computationally bounded), in keeping with the philoso-
phy that security should hold against adversaries who are at least as powerful as honest
parties. Such proof systems are also known in the literature as argument systems Brassard,
Chaum, and Crépeau [1988] or computationally sound proofs Micali [1994] (as opposed
to statistically sound proofs that ensure that even a computationally unbounded cheating
prover cannot convince a verifier to accept a false statement).

Typically, computational soundness relies on a computational hardness assumption,
such as the assumption that it is hard to factor large composite numbers (known as the
Factoring Assumption). In this case the soundness guarantee is that if a cheating prover
can convince the verifier to accept a false statement (with high probability), then this
prover can be used to break the Factoring Assumption. Most of the work in the literature
on delegating computation, considers the setting of computational soundness, where we
require soundness to hold only against cheating provers who cannot break some underly-
ing cryptographic assumption (such as the Factoring Assumption).

Very loosely speaking, the literature on computation delegation can be partitioned into
three categories. The first constructs delegation schemes from any PCP scheme by using
the notion of collision resistant hash functions to “shrink” the long PCP. The second con-
structs delegation schemes from any MIP scheme by using cryptography to emulate the
many (non-communicating) provers using a single prover. The third uses the notion of ob-
fuscation to construct a delegation scheme directly (without using the beautiful evolution
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of proofs in computer science, summarized above). In this article we focus on the second
category. In what follows, we slightly elaborate on the line of work in the first category,
and due to lack of space, we do not elaborate on the works in the third category.

Delegation from PCP schemes. Kilian [1992] showed how to use a collision resistant
hash function to convert any PCP scheme into a 4-message delegation scheme for any
deterministic (or even non-deterministic) computation.

Many of the applicationswhere a delegation scheme is used (such as in crypto-currencies)
require the proof to be non-interactive. A non-interactive delegation scheme consists of
public parameters (generated honestly by the verifier). These public parameters are used to
generate proofs that consist of a single message, and soundness holds even if a (cheating)
prover chooses the statement to be proved as a function of the public parameters.

Micali [1994] proved that a similar approach to the one byKilian, yields a non-interactive
delegation scheme in the so called “Random Oracle Model” Bellare and Rogaway [1993].
Specifically, his scheme uses a hash function, and security is proven assuming the adver-
sary only makes black-box use of this hash function. However, the Random Oracle Model
is known to be insecure in general, and there are examples of schemes that are secure in the
Random Oracle Model, yet are known to be insecure when the random oracle is replaced
with any (succinct) hash function Canetti, Goldreich, and Halevi [2004], Barak [2001],
and Goldwasser and Kalai [2003].

Since this seminal work of Micali, there has been a long line of followup works (eg.,
Groth [2010], Lipmaa [2012], Damgård, Faust, andHazay [2012], Gennaro, Gentry, Parno,
and Raykova [2013], Bitansky, Chiesa, Ishai, Ostrovsky, and Paneth [2013], Bitansky,
Canetti, Chiesa, and Tromer [2013], and Bitansky, Canetti, Chiesa, Goldwasser, H. Lin,
Rubinstein, and Tromer [2014]), constructing a delegation scheme without resorting to
the Random Oracle Model. However, these delegation schemes were proven secure un-
der very strong and non-standard “knowledge assumptions”. Knowledge assumptions are
different from standard complexity assumptions, and (similarly to the Random Oracle
Model) they restrict the class of adversaries considered to those which compute things in
a certain way.4

Our focus. In this article we focus on the second line of work, which constructs a non-
interactive delegation scheme based on a standard cryptographic assumption. This line
of work is based on a curious connection, noted in Kalai, Raz, and R. D. Rothblum [2013,
2014], between the problem of delegating computation and the concept of no-signaling
strategies from quantum physics.

4For example, the Knowledge-of-Exponent assumption Damgård [1992] assumes that any adversary that
given (g; h) computes (gz ; hz), must do so by “first” computing z and then computing (gz ; hz).
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The starting point is an elegant method introduced by Biehl et. al. Biehl, Meyer, and
Wetzel [1999], for converting anyMIP into a 1-round delegation scheme. In what follows,
for the sake of simplicity, we describe this method using a fully homomorphic encryption
scheme, though weaker primitives (such a computational private retrieval scheme) are
known to suffice. A fully homomorphic encryption scheme is a secure encryption scheme
that allows to do computations on encrypted data (we refer the reader to Section 2.3, and
to Definition 8 for the precise definition). Starting from the breakthrough work of Gen-
try [2009] and of Brakerski and Vaikuntanathan [2011], such homomorphic encryption
schemes were constructed based on the Learning with Error Assumption, which is a stan-
dard and well established cryptographic assumption.

The Biehl, Meyer, and Wetzel [1999] method. Loosely speaking, the Biehl, Meyer,
and Wetzel [ibid.] method takes any MIP scheme and converts it into the following 1-
round delegation scheme: The verifier of the delegation scheme computes all the queries
for the MIP provers, and sends all these queries to a (single) prover, each encrypted using
a different (freshly generated) key corresponding to an FHE scheme. The prover who
receives all these encrypted queries, computes for each of the MIP provers its response
homomorphically, underneath the layer of the FHE encryption.

This method was considered to be a heuristic, since no proof of soundness was given.
The intuition for why this heuristic was believed to be sound is that when a cheating prover
answers each of the queries, the other queries are encrypted using different (independently
generated) keys, and hence these other queries are completely hidden. Surprisingly, de-
spite this intuition, Dwork et. al. Dwork, Langberg, Naor, Nissim, and Reingold [2004]
and Dodis el. al. Dodis, Halevi, R. D. Rothblum, andWichs [2016] showed that this heuris-
tic, in general, is insecure. Intuitively the reason is that the soundness of theMIP is ensured
only against cheating provers that answer each query locally, only as a function of the cor-
responding query. In this delegation scheme a cheating prover is not restricted to use local
strategies. Rather the security of the FHE scheme ensures that each answer (provided by a
cheating prover) does not “signal” information about the other queries, since if it did then
we could use this prover to break the security of the FHE scheme.

However, there are strategies that are neither signaling nor local. Such strategies are
known in the quantum literature as no-signaling strategies (and are formally defined in
Section 3.2). The intuition above suggests that these no-signaling strategies are useless.
However, in the quantum literature it is well known that this is not necessarily the case.

In a series of work, starting from Kalai, Raz, and R. D. Rothblum [2013, 2014], it was
proven that if the underlying MIP is sound against (statistically) no-signaling strategies,
then the delegation scheme resulting from the Biehl, Meyer, and Wetzel [1999] heuristic
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is sound. Moreover, these works constructed for any T -time (deterministic) computa-
tion an MIP with (statistical) no-signaling soundness, with communication complexity
polylog(T ), and where the runtime of the verifier is n � polylog(T ). This led to the
first 1-round delegation scheme for arbitrary (deterministic) computations based on stan-
dard cryptographic assumptions. Moreover, these works were later generalized to include
RAM computations Kalai and Paneth [2015], non-adaptive delegation (i.e., 1-round dele-
gation with adaptive soundness) Brakerski, Holmgren, and Kalai [2017], and even gener-
alized to non-deterministic space-bounded computations.

As opposed to the previous line of work, where anyone can verify the proof since all
that is needed for verification is the public parameters and the proof, in this line of work
the proofs are privately verifiable, meaning that in order to verify the proof one needs to
know a “secret state” generated together with the public parameters.5

In a very recent work, Paneth and G. N. Rothblum [2017] provide a blue-print that
generalizes the approach taken in this line of work, to obtain publicly verifiable delegation
schemes. However, currently we do not know how to realize this blue-print based on
standard cryptographic assumptions.

We mention that the third line of work, that constructs delegation schemes based on
obfuscation (e.g., Canetti, Holmgren, Jain, and Vaikuntanathan [2015], Koppula, Lewko,
and Waters [2015], Bitansky, S. Garg, H. Lin, Pass, and Telang [2015], Canetti and Holm-
gren [2016], Ananth, Chen, Chung, H. Lin, and W. Lin [2016], and Chen, Chow, Chung,
Lai, W. Lin, and Zhou [2016]), achieve public verifiable delegation schemes for deter-
ministic computations. However, known constructions of obfuscation are built on shaky
grounds, and are not known to be secure based on standard assumptions.6

The question of constructing a publicly verifiable 1-round delegation scheme for gen-
eral computations under standard assumptions remains a fascinating open question. In ad-
dition, the question of constructing a 1-round delegation scheme for general non-deterministic
computations (beyond space-bounded computations) under standard assumptions (and
even under obfuscation type assumptions) remains a fascinating open question.

2 Preliminaries

Wemodel efficient algorithms as probabilistic polynomial time (PPT) algorithms, formally
modeled as Turing machines. We denote by DTIME(T ) the class of all the languages that
can be computed by a deterministicTuringmachine that on input x runs in timeT (jxj) (i.e.,
terminates within T (jxj) steps). We denote by NTIME(T ) the class of all the languages

5Indeed, the secret keys of the FHE scheme are needed in order to decrypt the answers and verify correctness.
6We mention that these schemes are also not non-interactive, in the sense that soundness holds only if the

false statement does not depend on the public parameters.
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that can be computed by a non-deterministic Turing machine that on input x runs in time
T (jxj).

Throughout this article we use � to denote the security parameter. This value deter-
mines the security level of our schemes. Taking larger values of � results with better
security, though the prover(s) and verifier run in time polynomial in �, and thus the effi-
ciency of the scheme degrades as we increase �. The prover(s) and the verifier take as
input 1�, and the reason we give � in unary is since we allow our algorithms to run in
polynomial time, and we want to allow them to run in time polynomial in �.

Definition 1. A function � : N ! N is said to be negligible if for every polynomial
p : N ! N, there exists a constant c > 0 such that for every � > c it holds that
�(�) � 1

p(�)
.

For a distribution A, we denote by a  A a random variable distributed according
to A (independently of all other random variables).

Definition 2. Two distribution ensembles fX�g�2N and fY�g�2N are said to be compu-
tationally indistinguishable if for every PPT distinguisher D,

j Pr
x X�

[D(x) = 1] � Pr
y Y�

[D(y) = 1]j = negl(�):

They are said to be statistically indistinguishable if the above holds for every (even com-
putationally unbounded) distinguisher D.

2.1 Delegation Schemes. In what follows, we define the notion of a 1-round delegation
scheme and a non-interactive delegation scheme. We require that the first message sent by
the verifier does not depend on the statement to be proven. In the literature, this is often
not explicitly required, and we add this requirement to the definition since our construc-
tions achieve this desirable property. We define delegation schemes for non-deterministic
languages, though we emphasize that this includes also deterministic languages, since any
deterministic computation can be thought of as a non-deterministic one where the non-
deterministic advice is empty.

Definition 3. Fix any T : N ! N and any L 2 NTIME(T ). A 1-round delegation
scheme (P; V ) for the language L, has the following properties.

1. Structure: The algorithmV can be partitioned into twoPPTalgorithmsV = (V1; V2),
where V1 is a PPT algorithm that generates parameters (pp; st)  V (1�). To
prove that x 2 L, upon receivingpp and x, the proverP runs in timepoly(�; T (jxj))
and computes pf P (x;pp). The algorithm V2 takes as input (x;pf; st) and out-
puts a bit, indicating whether he accepts or rejects the proof pf with respect to the
public parameters corresponding to his secret state st.
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2. Completeness: For every security parameter 1�, and every x 2 L such that jxj �
2�,

Pr[V2(x;pf; st) = 1] = 1

where the probability is over (pp; st) V1(1
�) and over pf P (x;pp).

3. Soundness: For every PPT (cheating) prover P � = (P �1 ; P
�
2 ),

Pr[V2(x;pf; st) = 1 ^ (x … L)] = negl(�)

where the probability is over x  P �1 (1
�), over (pp; st)  V1(1

�) and over
pf P �2 (x;pp).

4. Efficiency: The communication complexity is poly(�; logT (jxj)). The honest ver-
ifier runs in time jxj�polylog(T (jxj))+poly(�; logT (jxj)), and the honest prover
runs in time poly(�; T (jxj)) (given non-deterministic advice for x 2 L).

Definition 4. A non-interactive delegation scheme for a language L 2 NTIME(T ), has
the same properties as a 1-round delegation scheme except that the soundness condition
is replaced with the following adaptive soundness condition:

Adaptive Soundness: For every PPT (cheating) prover P �,

Pr[V2(x;pf; st) = 1 ^ (x … L)] = negl(�)

where the probability is over (pp; st) V1(1
�) and over (x;pf) P �(pp).

2.2 Multi-Prover Interactive Proofs. In what follows, we define the notion of a multi-
prover interactive proof (MIP). Let L be a language. In a 1-round k-prover interactive
proof, k = k(�) provers, P1; : : : ; Pk , try to convince a (probabilistic) verifier V , that
x 2 L. The input x is known to all parties.

In the traditional works onMIP, it was required that the verifier’s runtime on input (1�; x)

is at most poly(jxj; �) and the honest provers’ runtime could be unbounded.7 We change
these efficiency requirements to align with the requirements of a delegation scheme. In
particular, we require that if L 2 NTIME(T ) then the runtime of the verifier is at most
jxj �polylog(T (jxj))+poly(�; logT (jxj)) and the runtime of the (honest) provers is at
most poly(�; T (jxj)) (assuming they are given the non-deterministic advice for x 2 L).

The proof consists of only one round. Given a security parameter 1� (which determines
the soundness), and a random string, the verifier generates k = k(�) queries, q1; : : : ; qk ,
one for each prover, and sends them to the k provers. Each prover responds with an

7To be precise, the traditional definition does not even include a security parameter. The verifier is required
to run in time poly(jxj) and soundness is required to hold with constant probability (say 1/2).
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answer that depends only on its own individual query. That is, the provers on input x (and
associated non-deterministic advice) respond with answers a1; : : : ; ak , where for every i
we have ai  Pi (x; qi ). Finally, the verifier decides wether to accept or reject based on
the answers that it receives (as well as the input x and the random string).

Definition 5. Fix any T : N ! N and any L 2 NTIME(T ). We say that (V;P1; : : : ; Pk)

is a one-round k-prover interactive proof system (MIP) for L if the following properties
are satisfied:

1. Structure: The verifier consists of two PPT algorithms, V = (V1; V2), where
(q1; : : : ; qk ; st) V1(1

�).

Namely, the queries do not depend on the statement proven.

2. Completeness: For every security parameter 1�, and every x 2 L such that jxj �
2�,

Pr
�
V2(x; q1; : : : ; qk ; a1; : : : ; ak ; st) = 1

�
= 1 � negl(�);

where the probability is over (q1; : : : ; qk ; st)  V1(1
�) and over ai  Pi (x; qi )

for every i 2 [k].

3. Soundness: For every � 2 N, every x 62 L (whose size may depend on �), and any
(computationally unbounded, possibly cheating) provers P �1 ; : : : ; P �k ,

Pr
�
V2(x; q1; : : : ; qk ; a1; : : : ; ak ; st) = 1

�
= negl(�);

where the probability is over (q1; : : : ; qk ; st)  V1(1
�) and over ai  P �(x; qi )

for every i 2 [k].

4. Efficiency: The communication complexity is poly(�; logT ). The verifier runs
in time jxj � polylog(T (jxj)) + poly(�; logT (jxj)), and the prover runs in time
poly(�; T (jxj)) (assuming he has non-deterministic advice for x 2 L).

Theorem 1. Babai, Fortnow, and Lund [1991] For any T : N ! N and any language
L 2 NTIME(T ), there exists a 2-prover interactive proof (V;P1; P2) for L satisfying
Definition 5.

The holy grail of the area of computation delegation, is to achieve the guarantees of
Theorem 1 with a single prover. Unfortunately, as we mentioned, this dream is too good
to be true, since the IP = PSPACE theorem says that a single prover can only prove
the correctness of bounded space computations. Moreover, known interactive proofs for
PSPACE require many rounds, and the class of languages that can be proved via a 1-round
interactive proof is widely believed to be quite limited.



3368 YAEL TAUMAN KALAI

In Section 3.1, we present a method first proposed by Biehl et. al. Biehl, Meyer, and
Wetzel [1999], that converts any MIP scheme into a single prover delegation scheme, us-
ing the aid of cryptography, and in particular using a computational private information
retrieval (PIR) scheme. In this article, for the sake of simplicity, we present this method
using a fully homomorphic encryption (FHE) scheme, which is a stronger assumption than
a PIR scheme. We chose to present this method using an FHE scheme (as opposed to a PIR
scheme) only because we find the terminology to be simpler. We emphasize that all the
results presented from now on hold with a PIR scheme as well.

2.3 Fully Homomorphic Encryption (FHE). We start by defining a public-key encryp-
tion scheme. Such a scheme consists of three probabilistic polynomial-time algorithms
(Gen; Enc;Dec), and is defined over some message space M. The key generation algo-
rithm Gen, when given as input a security parameter 1�, outputs a pair (pk; sk) of public
and secret keys. The encryption algorithm, Enc, on input a public key pk, and a mes-
sagem 2M, outputs a ciphertext m̂, and the decryption algorithm, Dec, when given the
ciphertext m̂ and the secret key sk, outputs the original message m (with overwhelming
probability).

Definition 6. A public key encryption over a message space M consists of three PPT
algorithms (Gen; Enc;Dec) such that for every m 2M,

Pr[Dec(m̂; sk) = m] = 1 � negl(�);

where the probability is over (pk; sk) Gen(1�), and over m̂ Enc(m;pk).

Definition 7. Goldwasser and Micali [1984] A public-key encryption scheme
(Gen; Enc;Dec) is (semantically) secure if for every PPT algorithm A, for every � 2 N
and for every two messages m1; m2 2M such that jmj = jm0j,ˇ̌

Pr [A(pk; m̂1) = 1] � Pr [A(pk; m̂2) = 1]
ˇ̌
= negl(�)

where the probabilities are over (pk; sk)  Gen(1�), over m̂1  Enc(m1; pk), and
over and over m̂2  Enc(m2; pk).

Definition 8. A tuple of PPT algorithms (Gen; Enc;Dec; Eval) is a fully-homomorphic
encryption scheme over the message space f0; 1g� if (Gen; Enc;Dec) is a public-key
encryption scheme over the message space f0; 1g�, and in addition the following condition
holds:

Homomorphic Evaluation: Eval takes as input a public keypk, a circuitC : f0; 1gk !

f0; 1g`, where k; ` � poly(�), and a ciphertext m̂ that is an encryption of a messagem 2
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f0; 1gk with respect topk, and outputs a string such that for everyC : f0; 1gk ! f0; 1g`,
where k; ` � poly(�), and every m 2 f0; 1gk ,

Pr[Dec( ; sk) = C (m)] = 1 � negl(�);

where the probability is over (pk; sk)  Gen(1�), over m̂  Enc(m;pk), and over
 = Eval(pk; C; m̂).

Moreover, the length of  is polynomial in � and ` (and is independent of the size of
C ).

Starting from the breakthrough work of Gentry [2009], and of Brakerski and Vaikun-
tanathan [2011], such homomorphic encryption schemes were constructed based on the
standard Learning with Error Assumption Regev [2003]. The message space in these con-
structions is M = f0; 1g, though one can use these schemes to encrypt any message in
f0; 1g� by encrypting the message in a bit-by-bit manner.

3 From MIP to Non-Interactive Delegation

Notation. Throughout this section we denote by k = k(�) the number of provers in the
MIP scheme. For a vector a = (a1; : : : ; ak) and a subset S � [k], we denote by aS the
sequence of elements of a that are indexed by indices in S , that is, aS = (ai )i2S .

3.1 The Biehl, Meyer, and Wetzel [1999] Heuristic. Biehl et. al. Biehl, Meyer, and
Wetzel [ibid.] suggested a heuristic for converting any MIP into a 1-round delegation
scheme, by using a computational private information retrieval (PIR) scheme. As men-
tioned above, we present this heuristic using a fully homomorphic encryption (FHE) scheme
(see Definition 8).

The Biel et. al. heuristic is natural and elegant. Loosely speaking, the idea is the follow-
ing: The verifier of the delegation scheme computes all the queries for the MIP provers,
and sends all these queries to the (single) prover, each encrypted using an FHE scheme,
where each query is encrypted with its own (freshly generated) key. The prover then com-
putes for each of the MIP provers its response homomorphically, underneath the layer of
the FHE encryption.

In what follows we give a formal description of the Biehl et. al. heuristic.

The Biehl, Meyer, and Wetzel [ibid.] Heuristic. Fix any language L, an MIP scheme
(V;P1; : : : ; Pk) forL, and an FHE scheme (Gen; Enc;Dec; Eval). Consider the follow-
ing 1-round delegation scheme (P del; V del), where V del = (V del

1 ; V del
2 ):
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• The PPT algorithm V del
1 takes as input the security parameter 1�, and does the fol-

lowing:

1. Compute (q1; : : : ; qk ; st) V1(1
�).

2. Run Gen(1�) independently k times to generate f(pki ; ski )gi2[k].

3. For every i 2 [k] compute q̂i  Enc(qi ;pki ).

4. Set ppdel = (q̂1; : : : ; q̂k) and set stdel = (sk1; : : : ; skk ; q1; : : : ; qk ; st).

• The prover P del(x;ppdel) does the following:

1. Parse ppdel = (q̂1; : : : ; q̂k).

2. For every i 2 [k] compute âi  Eval(Pi (x; �); q̂i ).

3. Send (â1; : : : ; âk) to the verifier.

• Upon receiving x and (â1; : : : ; âk) , the verifier V del
2 (x; â1; : : : ; âk ; stdel) does the

following:

1. Parse stdel = (sk1; : : : ; skk ; q1; : : : ; qk ; st).
2. For each i 2 [k] compute ai  Dec(âi ; ski ).

3. Accept if and only if V2(x; q1; : : : ; qk ; a1; : : : ; ak ; st) = 1.

This is a beautiful and natural heuristic. it is easy to see that it satisfies the efficiency and
completeness properties of a delegation scheme. The main question is:

Is this Heuristic Sound?

The intuition for why this heuristic was believed to be sound is the following: When a
cheating prover answers each of the queries, the other queries are encrypted using different
(independently generated) keys, and hence are indistinguishable from encryptions of 0.
Therefore, each answer should be indistinguishable from the answer the cheating prover
would have provided in the case where the other queries were all 0, and clearly having
encryptions of 0 cannot help a prover cheat, since he can generate these encryptions on
his own.

Surprisingly, despite this intuition, Dwork et. al. Dwork, Langberg, Naor, Nissim, and
Reingold [2004] showed that this heuristic, in general, can be insecure. The reason is that
the soundness of the MIP is ensured only against cheating provers that answer each query
locally, only as a function of the corresponding query. In this delegation scheme a cheating
prover is not restricted to use local strategies. Rather the security of the FHE scheme
ensures that each answer (provided by a cheating prover) does not “signal” information
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about the other queries, since if it did then we could use this prover to break the security
of the FHE scheme.

However, there are strategies that are neither signaling nor local. Dwork et. al. Dwork,
Langberg, Naor, Nissim, and Reingold [ibid.] refer to such strategies as “spooky interac-
tions”. Such strategies are known in the quantum literature as no-signaling strategies (de-
fined formally in Section 3.2, below). The intuition above suggests that these no-signaling
strategies are useless. However, in the quantum literature it is well known that this is not
the case.

Very recently, Dodis, Halevi, R. D. Rothblum, and Wichs [2016] showed that indeed
the Biehl, Meyer, and Wetzel [1999] heuristic is insecure! Specifically, they construct an
MIP scheme and a FHE scheme, for which when applying the Biehl, Meyer, and Wetzel
[ibid.] heuristic to these MIP and FHE schemes, the resulting delegation scheme is not
sound. To this end, they construct an MIP scheme whose soundness can be broken via a
no-signaling strategy, and this no-signaling strategy can be implemented under the layer
of the FHE.

3.2 MIPs with No-Signaling Provers. The works of Kalai, Raz, and R. D. Rothblum
[2013, 2014] attempt to prove the soundness of the Biehl, Meyer, andWetzel [1999] heuris-
tic, by considering a variant of the MIP model, where the cheating provers are more pow-
erful.

In the standard MIP model, each prover answers his own query locally, without know-
ing the queries that were sent to the other provers. The no-signaling model allows each
answer to depend on all the queries, as long as for any subset S � [k], and any queries qS

for the provers in S , the distribution of the answers aS , conditioned on the queries qS , is
independent of all the other queries.

Intuitively, this means that the answers aS do not give the provers in S information
about the queries of the provers outside S , except for information that they already have
by seeing the queries qS .

Formally, denote byD the alphabet of the queries and denote by Σ the alphabet of the
answers. For every q = (q1; : : : ; qk) 2 D

k , let Aq be a distribution over Σk . We think
of Aq as the(joint) distribution of the answers for queries q.

Definition 9. We say that the family of distributions fAqgq2Dk is no-signaling if for every
subset S � [k] and every two sequences of queries q; q0 2 Dk , such that qS = q0S , the
following two random variables are identically distributed:

• aS , where a Aq

• a0S where a0  Aq0
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If the two distributions are computationally (resp. statistically) indistinguishable (see Def-
inition 2), rather than identical, we say that the family of distributions fAqgq2Dk is com-
putationally (resp. statistically) no-signaling.

Definition 10. An MIP (V;P1; : : : ; Pk) for a language L is said to be sound against
no-signaling strategies (or provers) if the following (more general) soundness property is
satisfied:

Ni-Signaling Soundness: For every � 2 N, every x 62 L, and any no-signaling family
of distributions fAqgq2Dk ,

Pr[V2(x; q1; : : : ; qk ; a1; : : : ; ak ; st) = 1] = negl(�)

where the probability is over (q1; : : : ; qk ; st) V1(1
�) and over (a1; : : : ; ak) A(q1;:::;qk).

If this property is satisfied for any computationally (resp. statistically) no-signaling
family of distributions fAqgq2Dk , we say that the MIP has soundness against computa-
tionally (resp. statistically) no-signaling strategies.

No-signaling strategies were first studied in physics in the context of Bell inequalities
by Khalfin and Tsirelson [1985] and Rastall [1985], and they gained much attention after
they were reintroduced by Popescu and Rohrlich [1994]. MIPs that are sound against no-
signaling provers were extensively studied in the literature (see for example Toner [2009],
Barrett, Linden, Massar, Pironio, Popescu, and D. Roberts [2005], Avis, Imai, and Ito
[2006], Kempe, Kobayashi, Matsumoto, Toner, and Vidick [2008], Ito, Kobayashi, and
Matsumoto [2009], Holenstein [2009], and Ito [2010]). We denote the class of MIP’s that
are sound against no-signaling provers by MIPNS.

The study ofMIPs that are sound against no-signaling provers was originally motivated
by the study of MIPs with provers that share entangled quantum states. No-signaling
provers are allowed to use arbitrary strategies, as long as their strategies cannot be used
for communication between any two disjoint sets of provers. By the physical principle that
information cannot travel faster than light, a consequence of Einstein’s special relativity
theory, it follows that if the provers are placed far enough apart, then the only strategies
that can be realized by these provers, even if they share entangled quantum states, are
no-signaling strategies.

Moreover, the principle that information cannot travel faster than light is a central prin-
ciple in physics, and is likely to remain valid in any future ultimate theory of nature, since
its violation means that information could be sent from future to past. Therefore, sound-
ness against no-signaling strategies is likely to ensure soundness against provers that obey
a future ultimate theory of physics, and not only the current physical theories that we have,
that are known to be incomplete.
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The study of MIPs that are sound against no-signaling provers is very appealing also
because no-signaling strategies have a simple mathematical characterization.

Ito el. al. Ito, Kobayashi, and Matsumoto [2009] proved that the set of languages in
MIPNS contains PSPACE and is contained in EXP. We emphasize that they use the tradi-
tional MIP definition, which allows the honest provers to be computationally unbounded,
and indeed in their MIPNS for PSPACE the provers run in super-polynomial time. More-
over, they assume the verifier runs in time at most poly(jxj) (which is the traditional
requirement).8 We note that if they used our efficiency requirement where the verifier
is allowed to run in time jxj � polylog(T ) + poly(�; logT ), and the communication
complexity is at most poly(�; logT ), they would get that each MIPNS is contained in
DTIME(T ).

For the case of two provers, Ito [2010] showed that the corresponding complexity class
is contained in (and therefore equal to) PSPACE. This is in contrast to the classMIP (with
soundness against local strategies), which is known to be equal to NEXP.

The connection between MIPs with no-signaling soundness and computation delega-
tion was first observed in Kalai, Raz, and R. D. Rothblum [2013]. Loosely speaking, they
prove that the Biehl, Meyer, andWetzel [1999] heuristic is sound when applied to anyMIP
that is secure against statistically no-signaling strategies, denoted by MIPsNS.9 In Kalai,
Raz, and R. D. Rothblum [2013, 2014] they also characterize the exact power ofMIPs that
are secure against statistically no-signaling provers, and prove that MIPsNS = EXP. More
specifically, they prove the following theorem.

Theorem 2. Kalai, Raz, and R. D. Rothblum [2013, 2014] For any T : N ! N, and any
language in L 2 DTIME(T ), there exists an MIP with statistical no-signaling soundness
(as in defined in Definitions 5 and 10).

In particular, these works prove the following theorem.

Theorem 3. Kalai, Raz, and R. D. Rothblum [2013, 2014] For any T : N ! N and any
L 2 DTIME(T ) there exists a 1-round delegation scheme forL (as defined in Definition 3),
assuming the existence of an FHE scheme that is secure against quasi-polynomial time
adversaries.

To achieve non-interactive delegation (as opposed to 1-round delegation) we need
to use an MIP scheme that is sound against adaptive no-signaling strategies, as defined
in Brakerski, Holmgren, and Kalai [2017].

8They show that one can find the best no-signaling strategy for the provers by solving an exponential (in jxj)
size linear program.

9Their result relies on the stronger assumption that the underlying FHE is not only secure against PPT adver-
saries, but also again quasi-polynomial time adversaries.
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Definition 11. An MIP (V;P1; : : : ; Pk) for a language L is said to be adaptively sound
against no-signaling strategies (or provers) if the following adaptive soundness property
is satisfied:

Adaptive Soundness: For every � 2 N and any no-signaling family of distributions
fAqgq2Dk ,

Pr
�
V2(x; q1; : : : ; qk ; a1; : : : ; ak ; st) = 1

�
= negl(�)

where the probability is over (q1; : : : ; qk ; st)  V1(1
�) and over (x; a1; : : : ; ak)  

A(q1;:::;qk), where x should be thought of as corresponding to an additional (dummy)
query q0, and thus should signal no information about the other queries q1; : : : ; qk .

If this property is satisfied for any computationally (resp. statistically) no-signaling
family of distributions fAqgq2Dk , we say that the MIP has adaptive soundness against
computationally (resp. statistically) no-signaling strategies.

We denote the class ofMIP scheme that have adaptive soundness against computational
no-signaling strategies by MIPadaptive�cNS. Brakerski et. al. Brakerski, Holmgren, and
Kalai [2017] proved that MIPadaptive�cNS = EXP. More specifically, they prove the
following theorem, which is a strengthening of Theorem 2.

Theorem 4. For any T : N ! N, and any language in L 2 DTIME(T ), there exists an
MIP with adaptive computational no-signaling soundness (as in defined in Definitions 5
and 11).

In addition, they proved that applying the Biehl, Meyer, and Wetzel [1999] heuristic
to any MIP that is adaptively sound against computational no-signaling strategies, results
with a non-interactive delegation scheme that is sound assuming the standard (PPT) secu-
rity of the underlying FHE scheme.

Theorem 5. Brakerski, Holmgren, and Kalai [2017] For every T : N ! N and for
every L 2 DTIME(T ) there exists a non-interactive delegation scheme for L (as defined
in Definition 4), assuming the existence of an FHE scheme.

Due to lack of space we do not provide any intuition behind the proof of Theorem 4,
and instead provide a proof sketch of Theorem 5 (assuming Theorem 4).

Proof Sketch of Theorem5. Fix an FHE scheme (Gen; Enc;Dec; Eval), a time bound
T = T (�), and a language L 2 DTIME(T ). Let

MIPadaptive�cNS = (V;P1; : : : ; Pk)

be an MIP for L with adaptive soundness against computationally no-signaling strategies.
The existence of such a proof system for L follows from Theorem 4.
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The non-interactive delegation scheme, denoted by (V del; P del) is the one obtained by
applying the Biehl, Meyer, and Wetzel [1999] heuristic to MIPadaptive�cNS and FHE.

Suppose for contradiction that there exists a cheating prover P � such that for infinitely
many � 2 N,

Pr[V del
2 (x;pf; st) = 1 ^ (x … L)] �

1

poly(�)
where the probability is over (pp; st) V del

1 (1�) and over (x;pf) P �(pp).
We useP � to construct an adaptive computational no-signaling strategy that contradicts

the adaptive soundness condition of MIPadaptive�cNS.
To this end, for every possible set of queries q = (q1; : : : ; qk), consider the distribution

of answers Aq defined as follows:

1. For every i 2 [k] sample (pki ; ski ) Gen(1�).

2. For every i 2 [k] sample q̂i  Enc(qi ;pki ).

3. Let pp = (q̂1; : : : ; q̂k).

4. Compute (x;pf) P �(pp).

5. Parse pf = (â1; : : : ; âk).

6. For every i 2 [k] decrypt ai  Dec(âi ; ski ).

7. Output (x; a1; : : : ; ak).

To reach a contradiction it remains to argue that the strategy fAqg is computationally no-
signaling. This follows from the security of the underlying FHE scheme. We omit the
proof due to lack of space.
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GRADIENTS AND FLOWS: CONTINUOUS OPTIMIZATION
APPROACHES TO THE MAXIMUM FLOW PROBLEM
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Abstract

We use the lens of the maximum flow problem, one of the most fundamental prob-
lems in algorithmic graph theory, to describe a new framework for design of graph
algorithms. At a high level, this framework casts the graph problem at hand as a con-
vex optimization task and then applies to it an appropriate method from the continu-
ous optimization toolkit. We survey how this new approach led to the first in decades
progress on the maximum flow problem and then briefly sketch the challenges that
still remain.

1 Introduction

The maximum flow problem is one of the most fundamental and extensively studied graph
problems in combinatorial optimization Schrijver [2003], Ahuja, Magnanti, and Orlin
[1993], and Schrijver [2002]. It has a wide range of applications (see Ahuja, Magnanti,
Orlin, and Reddy [1995]), is often used as subroutine in other algorithms (see, e.g., Arora,
Hazan, and Kale [2012] and Sherman [2009]), and a number of other important problems –
e.g., the minimum s-t cut problem and the bipartite matching problem Cormen, Leiserson,
Rivest, and C. Stein [2009] – can be reduced to it. Furthermore, this problem was often
a testbed for development of fundamental algorithmic tools and concepts. Most promi-
nently, the max-flow min-cut theorem Elias, Feinstein, and Shannon [1956] and Ford and
Fulkerson [1956] constitutes a prototypical primal-dual relation.

Several decades of work resulted in a number of developments on fast algorithms for
the maximum flow problem (see Goldberg and S. Rao [1998] for an overview) and many
of this problem’s generalizations and special cases. The algorithms underlying these de-
velopments tended to be combinatorial in spirit. That is, they operated on various com-
binatorial notions associated with a graph, such as paths, cuts, trees, and partitions, and
then used sophisticated data structures to make these operations efficient. Employing this
MSC2010: primary 68Q25; secondary 05C85, 68W40, 65K10.
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kind of approaches is fairly natural in this context – after all, graphs are combinatorial
objects – and it was very successful too. The resulting techniques were shaping much of
our understanding of not only graph algorithms but also algorithms at large.

Still, despite all this effort and successes, the basic problem of computing a maximum
s-t flow in general graphs resisted progress for a long time. The best known combinato-
rial algorithm for that problem runs in time O(mminfm 1

2 ; n
2
3 g log(n2/m) logU ) and it

was developed already 20 years ago by Goldberg and S. Rao [1998]. In fact, this running
time bound, in turn, matches the O(mminfm 1

2 ; n
2
3 g) bound that Even and Tarjan [1975]

– and, independently, Karzanov [1973] – established for unit-capacity graphs almost 40
years ago.1 It is thus evident that such purely combinatorial techniques have certain funda-
mental limitations. Consequently, there is a need for development of a different, broader
perspective on graph algorithms.

In this survey, we describe such a new perspective. In a sense, this new view can be
seen as a more general form of the continuous approaches to understanding graphs that
were developed in the context of spectral graph theory Chung [1997]. At a high level, it
relies on casting the graph problem at hand as an optimization task that is continuous and
then applying to it an appropriate tool from continuous optimization, a field that aims to
design efficient algorithms for finding (approximate) minimum of a given (continuous)
function over a continuous domain.

Over the last decade this new approach enabled us tomake first in decades progress on a
number of fundamental graph problems. Most prominently, it provided us with algorithms
for the "-approximate undirected maximum flow problem Christiano, J. Kelner, Mądry,
D. Spielman, and Teng [2011], Lee, S. Rao, and Srivastava [2013], Sherman [2013], J.
Kelner, Lee, Orecchia, and Sidford [2014], and Sherman [2017a] and the exact, directed
maximum flow problem Mądry [2013], Lee and Sidford [2014], and Mądry [2016] that
finally improve over the classic bounds due to Even and Tarjan [1975] and Karzanov
[1973] as well as Goldberg and S. Rao [1998].

The goal of this exposition is to present a unified view on these developments. In par-
ticular, we aim to directly connect the maximum flow algorithms that have been proposed
in this context to the underlying methods and notions from the field of continuous opti-
mization. It turns out that this “tale of one problem” enables us to survey a large part of
continuous optimization’s landscape. Specifically, along the way, we discuss almost all
of the most fundamental tools and concepts of that field, such as different variants of the
gradient descent method, and the Newton’s method. This shows that the maximum flow

1Here, m denotes the number of edges, n – the number of vertices, and U is the largest (integer) edge
capacity.
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problem might end up becoming a fertile testbed for development of new continuous op-
timization methods, and thus play a role that is similar to the one it has played already in
the context of combinatorial methods.

1.1 Organization of the Paper. We begin the technical part of the paper in Section 2
by introducing the basic notions that will be needed in our discussion. Then, in Section 3,
we provide a brief overview of basic continuous optimization tools. In Section 4, we show
how these tools can be used to obtain fast "-approximate algorithms for the maximum flow
problem in undirected graphs. Next, in Section 5, we describe continuous optimization–
based approaches to computing an exact maximum flow in directed graphs. We conclude
in Section 6 with a discussion of some of the key challenges that the future work in this
area might be able to address.

2 Preliminaries

We will be viewing graphs as having both lower and upper capacities. Specifically, we
will denote by G = (V;E; u) a directed graph with a vertex set V , an edge set E, and
two (non-negative) integer capacities u�

e and u+e , for each edge e 2 E. (The role of these
capacities is described below.) Usually, m will denote the number jEj of edges of the
graph in question, n = jV j the number of its vertices, and U the largest edge capacity. We
view each edge e of G as having an orientation (u; v), where u is its tail and v is its head.

Maximum Flow Problem. Given a graph G, we view a flow in G as a vector f 2 Rm

that assigns a value fe to each edge e of G. When fe is non-negative (resp. negative) we
interpret it as having a flow of jfej flowing in (resp. opposite to) the direction of the edge
e orientation.

We say that a flow f is valid for some demands � 2 Rn iff it satisfies flow conservation
constraints with respect to that demands. That is, we have that

(1)
X

e2E+(v)

fe �
X

e2E�(v)

fe = �v; for each vertex v 2 V :

Here,E+(v) (resp. E�(v)) is the set of edges ofG that are oriented towards (resp. out of)
vertex v. Intuitively, these constraints enforce that the net balance of the total in-flow into
vertex v and the total out-flow out of that vertex is equal to �v , for every v 2 V . (Observe
that this implies, in particular, that

P
v �v = 0.)

Now, we say that a flow f is feasible in G iff f obeys the the capacity constraints:

(2) � u�
e � fe � u

+
e ; for each arc e 2 E:
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In other words, we want each arc e to have a flow that is at most u+e if it flows in the
direction of e’s orientation (i.e., fe � 0), and at most u�

e , if it flows in the opposite
direction (i.e., fe < 0). Note that orienting the edges accordingly and setting all u�

e s be
equal to zero recovers the standard notion of flows in directed graphs. Similarly, setting
u�

e = u+e for each edge e corresponds to the setting of undirected flows.
One type of flows that will be of special interest to us are s-t flows, where s (the source)

and t (the sink) are two distinguish vertices ofG. Formally, an s-t flow is a � -flow whose
demand vector � is equal to F � �s;t , where F � 0 is called the value of f and �s;t is
a demand vector that has �1 (resp. 1) at the coordinate corresponding to s (resp. t ) and
zeros everywhere else.

Now, the maximum flow problem corresponds to a task in which we are given a graph
G = (V;E; u) with integer capacities as well as a source vertex s and a sink vertex t and
want to find a feasible (in the sense of (2)) s-t flow of maximum value. We will denote
this maximum value as F �.

Vector Norms. We will find it useful to work with various `p-norms of vectors. To this
end, for any p > 0, we define the `p-norm khkp of a vector h as khkp := (

P
i jhi j

p)
1
p .

In particular, the `1-norm is given by khk1 := maxi jhi j. Finally, for a given positive
definite matrix A, we define khkA :=

p
hTAh.

3 A Primer on Continuous Optimization

The framework that will be at the center of our considerations is continuous optimiza-
tion or, more precisely, its part called convex optimization. Therefore, in this section, we
provide a brief overview of this framework. (For a much more comprehensive treatment
of this subject, the reader is referred to Nemirovskii, Yudin, and Dawson [1983], Nes-
terov [2004], Nocedal and S. Wright [2000], Boyd and Vandenberghe [2004], and Bubeck
[2015].) Later, we will discuss how this methodology can be applied to flow problems.

3.1 (Constrained) Minimization Problem. At a high level, one can view continu-
ous optimization as a set of tools designed to solve a single, general task: (constrained)
minimization problem. In this problem, we are given a continuous objective function
g : Rk ! R and want to solve the following optimization problem.

(3) min
x2K

g(x);

where K � Rk is the feasible set. In its full generality, the problem (3) is intractable (or
even impossible to solve). Therefore, in the context of convex optimization – which is
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the context we will focus on here – we assume that both K and g are convex and that a
minimum we intend to find indeed exists. Additionally, whenever we have that K = Rk ,
we will call (3) unconstrained.

The most popular way of solving problem (3) is to apply an iterative approach to it.
Specifically, we start with some initial feasible solution x0 2 K and then, repeatedly,
given a current solution xt�1 2 K, we provide a procedure (update rule) that produces a
new, improved solution xt . We require that

lim
t!1

xt = x�;

for some optimal solution x� 2 K to problem (3), and are interested in the rate of this
convergence. Specifically, for a given " > 0, we would like to understand the number T"

of update steps needed to have that

(4) min
t=0;:::;T"

g(xt ) � g(x�) � ":

That is, the number of steps needed to guarantee that we find an "-approximate minimizer
of g in K.

Convex optimization has developed a number of different update rules. Each of these
rules gives rise to a different algorithm and thus a different type of bound on T". Most of
these methods – including each one we will discuss – require making additional assump-
tions on the function g that go beyond assuming that it is convex. The general principle is
that the stronger conditions on g we assume, the better convergence bounds we can obtain.

In what follows, we describe the most basic examples of such algorithms: the subgradi-
ent descent and the gradient descentmethods. These methods fall into the broad category
of so-called first-order methods, i.e., algorithms whose update rules rely only on the local
first-order information about the objective function g. Later on, in Section 5, we will also
discuss more advanced algorithms.

3.2 Subgradient Descent Method. Recall that a subgradient of a function g at a point
x is any vector s 2 Rk such that

(5) g(x) � g(y) � sT (x � y);

for every y. So, in other words, s defines a linear function g(x) + sT (y � x) that lower-
bounds the function g everywhere. We denote by @g(x) the set of all subgradients of g at
the point x.

Now, the key observation is that if s 2 @g(x) for some (non-optimal) solution x 2 K
and x� is a minimizer of g in K, then, by (5), it must be the case that

(6) 0 < g(x) � g(x�) � sT (x � x�) = (�s)T (x�
� x);
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i.e., the direction in which x� lies with respect to x is positively correlated, i.e., has a
positive inner product, with the direction that is opposite to the subgradient direction.

The above observation motivates the following natural update rule

(7) xt
 xt�1

� s;

where s 2 @g(xt�1).
This update rule has, however, two important issues. First of all, even if moving in the

direction of �s might indeed bring us closer to a minimum x�, it might make the point xt

lay outside of the feasible set K. We thus need to have a way to map such a point outside
of K back to K (and do it in a way that does not cancel our progress). To this end, we
employ the operation of a projection ΠK on the set K defined as

(8) ΠK(x) = argminy2K ky � xk2;

and project our new solution back on the feasible set K in each step. A key property of
such projection that we use here is its contractivity. In particular, we have that, for any
point y,

kΠK(x
�) �ΠK(y)k2 = kΠK(x

�) �ΠK(y)k2 � kΠK(x
�) � yk2;

where the first equality follows from the fact that ΠK(x
�) = x�, as x� 2 K. As a result,

projecting a point on K can only bring it closer to a given minimum x�.
The second shortcoming of the update rule (7) is related to the fact that it is not clear if

fully moving in the direction of �s is not too drastic. After all, the correlation expressed
by (6) does not tell us much about how far from x the minimum x� lies. It only informs
the direction we should take. Consequently, moving by too much could lead to vast “over-
shooting” of the minimum x� and thus lack of convergence.

To cope with this problem we need to make (a fairly minimal) assumption about the
objective function g. Namely, we require that g is L-Lipschitz, i.e., that

(9) jg(x) � g(y)j � Lkx � yk2;

for every x and y and some fixed parameter L, and then we modulate the size of our step
appropriately.

Specifically, our final form of subgradient descent method update becomes

(10) xt
 ΠK(x

t�1
� �s);

where s 2 @g(xt�1) and � > 0 is the scalar step size.
With this update rule in place, one can establish the following convergence bounds for

the resulting algorithm.
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Theorem 3.1 (see, e.g., Theorem 3.2 in Bubeck [2015]). If the objective function g is L-
Lipschitz then, for any " > 0, the update rule (10) with � = "

L2 delivers an "-approximate
solution after at most

T" � L
2R2"�2

iterations, where R = kx0 � x�k is the distance of the initial solution x0 to a minimum
x�.

The above bound is fairly remarkable as it requires very minimal assumptions on the
objective function g. In particular, we do not even need g to be differentiable. Still, as we
will see shortly, once stronger assumptions on g can be made, we can obtain significantly
improved bounds.

3.3 Gradient Descent Method. Arguably, the most well-known algorithm in continu-
ous optimization is gradient descent method. In our setting, this algorithm can be viewed
as a variant of the subgradient descent method considered above in the case when the
objective function g is differentiable everywhere. In this case, the gradient rg(x) of g
exists at every point x and, consequently, we have that @g(x) = frg(x)g everywhere.
That is, the gradients are the (unique) subgradients of g.

The update rule (10) thus becomes

(11) xt
 ΠK(x

t�1
� �rg(xt�1));

where, again, � > 0 is the step size.
Clearly, setting � as in Theorem 3.1 immediately recovers the corresponding bounds.

(Note that the Lipschitz constant L (cf. Equation (9)) corresponds to the bound on the
norm of the gradient.)

However, one can get an even better bound provided g is not only Lipschitz but also
has Lipschitz gradients. That is, the additional assumption to make on g is to require that
it is ˇ-smooth, which is defined as

(12) krg(x) � rg(y)k2 � ˇkx � yk2;

for every x and y.
To understand how ˇ-smoothness enables us to get a better control over the progress

made by the update step (11), let us assume for the sake of exposition that g is infinitely dif-
ferentiable. (However, every conclusion that follows holds also without this assumption.)
Applying Taylor expansion to g around a given solution x, we obtain that

(13) g(x +∆) = g(x) + rg(x)T ∆„ ƒ‚ …
'x(∆)

+
1

2
∆T
r

2g(x)∆ + : : :„ ƒ‚ …
%x(∆)

;
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where∆ is the step that we intend to take and r2g(x) is the Hessian of g at x.
One should view this expansion as comprising two terms. A linear (in∆) term'x(∆) =

g(x)+rg(x)T ∆ that corresponds to a (local) linear approximation of our objevtive func-
tion g at the point x, and %x(∆) being the “tail error” of this approximation.

Now, the key point is that the convexity and ˇ-smoothness of g enables us to have a
fairly tight control of the tail error term %x(∆). Specifically, we have that

(14) 0 � %x(∆) �
ˇ

2
k∆k22;

for all x and∆. That is, the objective function g can be not only lowerbounded by the lin-
ear function 'x(∆), as before, but it also can be upperbounded by the same linear function
after adding a quadratic term ˇ

2
k∆k22 to it.

Consequently, instead of trying to choose the step∆ so us to directly minimize g, one
can aim to minimize this upperbounding function. More precisely, we can choose∆ so as

(15) ∆�
x = argmin∆

�
'x(∆) +

ˇ

2
k∆k22

�
= �

1

ˇ
argmax∆

�
rg(x)T ∆ �

1

2
k∆k22

�
:

An elementary calculation shows that ∆�
x = � 1

ˇ
rg(x). This, in turn, corresponds to

the update step (11) with the setting of � = 1
ˇ
.

Indeed, with such a setting of � one obtains the following, improved convergence
bound.

Theorem 3.2 (see, e.g., Theorem 3.3 in Bubeck [2015]). If the objective function g is
ˇ-smooth then, for any " > 0, the update rule (11) with � = 1

ˇ
delivers an "-approximate

solution to problem (3) after at most

T" � O
�
ˇR2"�1

�
iterations, where R = kx0 � x�k2 is the distance of the initial solution x0 to a minimum
x�.

We remark that the update rule (11) and the resulting iteration bound provided above is
not optimal. Nesterov [1983, 2005] put forth a much more involved update rule: so-called
accelerated scheme, that enables one to obtain a significantly improved convergence.

Theorem 3.3 (see, e.g., Theorem 3.19 in Bubeck [2015]). If the objective function g is
ˇ-smooth then, for any " > 0, one can compute an "-approximate solution to problem (3)
after at most

T" � O
�p

ˇR"� 1
2

�
iterations, where R = kx0 � x�k2 is the distance of the initial solution x0 to a minimum
x�.
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3.4 Gradient Descent Method and Strong Convexity. The bound provided by the
gradient descent method (cf. Theorem 3.2) is a clear improvement over the convergence
bound delivered by the subgradient descent method (cf. Theorem 3.1). Still, this bound
is not fully satisfying as it depends polynomially on "�1. As a result, obtaining a solution
that is very close to optimal, say, has " = 1

nc , for some constant c > 1, becomes very
expensive computationally.

It turns out, however, that gradient descent, with the exact same update rule (11), can
converge significantly faster as long as the objective function g has an additional property:
it is strongly convex. Formally, we say that g is ˛-strongly convex, for some ˛ > 0, if we
have that

(16) g(x +∆) � g(x) + rg(x)T ∆+
˛

2
k∆k22;

for every x and∆. (Note that standard convexity corresponds to taking ˛ = 0 above.)
Clearly, ˛-strong convexity immediately implies the following straightening of the tail

error approximation (14)

(17)
˛

2
k∆k22 � %x(∆) �

ˇ

2
k∆k22;

for all x and∆. That is, now, we can both lower- and upperbound the objective g at point
x by quadratic functions. This much tighter control of the error tail %x(∆) leads to the
following convergence bound.

Theorem 3.4 (see, e.g., Theorem 3.10 in Bubeck [ibid.]). If the objective function g is
˛-strongly convex and ˇ-smooth then, for any " > 0, the update rule (11) with � = 1

ˇ

delivers an "-approximate solution to problem (3) after at most

T" � O

�
ˇ

˛
log

R

"

�
iterations, where R = kx0 � x�k2 is the distance of the initial solution x0 to a minimum
x�.

Observe that the convergence bound in the above theorem is only logarithmic in "�1

(and R). So, this dependence is small enough that we can afford getting solutions that are
close to optimal. Consequently, the key factor influencing the convergence of gradient
descent in this case is the ratio ˇ

˛
. This ratio can be seen as expressing the worst-case

ill-conditioning of the level sets of g and is thus often referred to as the condition number
of g.

Finally, as in the previous section, the above iteration bound is not optimal. In particular,
the dependence on the condition number that the above theorem presents can be improved
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using an accelerated scheme due to Nesterov [1983, 2005], which corresponds to a certain
more sophisticated update rule.

Theorem 3.5 (see, e.g., Theorem 3.18 in Bubeck [2015]). If the objective function g is
˛-strongly convex and ˇ-smooth then, for any " > 0, one can compute an "-approximate
solution to problem (3) after at most

T" � O

 r
ˇ

˛
log

R

"

!

iterations, where R = kx0 � x�k2 is the distance of the initial solution x0 to a minimum
x�.

4 First-Order–Based Approaches to Undirected Maximum Flow

The previous section laid down the key components of the continuous optimization frame-
work we will need: the basic first-order convex optimization methods. We are thus ready
to demonstrate how these methods can be applied to the maximum flow problem.

For now, our focus will be on solving a very basic variant of the problem: the one that
corresponds to the graph being undirected and all capacities being unit, and in which we
are interested in obtaining only an approximately optimal solution. Then, in Section 5, we
will extend our approach to make it deliver exact solution to the general problem.

One should note that the classic, combinatorial approaches to the maximum flow prob-
lem are not known to be able to offer improved performance for this special variant of the
problem. Specifically, the best combinatorial algorithm for this setting is still the classic
O(mminf

p
m; n

2
3 g)-time algorithm for the (exact) unit-capacity maximum flow problem

due to Even and Tarjan [1975] and Karzanov [1973].

4.1 Maximum Flow as an Optimization Problem. Our point of start is casting the
(undirected) maximum flow problem as a continuous optimization task. To this end, we
need first to encode our graph and the flows in it in the language of linear algebra, i.e., as
vectors and matrices. Conveniently, our definition of a flow already views it as a vector in
m-dimensional space. As a result, for a given demand vector � 2 Rn, we can compactly
express the flow conservation constraints (1) as

(18) BT f = �;
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where B is an m � n edge-vertex incidence matrix defined as

(19) Be;v :=

8̂<̂
:
1 if v is e’s head
�1 if v is e’s tail
0 otherwise:

Now, one should observe that by employing a simple binary search (and incurring
an O(lognU ) = O(logn) factor running time overhead) we can reduce the task of ("-
approximate) solving of the maximum flow problem to solving an ("-approximate) flow
feasibility problem. In the latter problem, we are given a candidate value F � 0 as well
as the desired accuracy " > 0, and our goal is to either return a flow of value F /(1 + ")

that is feasible or to conclude that F > F �.
The flow feasibility problem can be in turn cast as the following optimization task

min
x

kxk1(20)

s.t. x 2 Fs;t ;

where s is the source vertex, t is the sink vertex and

(21) Fs;t = fx j B
T x = F�s;tg;

i.e., Fs;t is the affine subspace of all the vectors x that represent an s-t flow of value F .
Note that both the set Fs;t and the objective k � k1 are convex. Furthermore, it is not

hard to see that obtaining an "-approximate solution to the minimization problem (20)
(and scaling this solution down by (1 + ") when needed) gives us a solution the desired
"-approximate flow feasibility problem. So, from now on, we can focus on the former
task.

4.2 Projections and Electrical Flows. The most straightforward way to solve the prob-
lem (20) is to apply to it the subgradient descent method (cf. Section 3.2). However, to
apply the corresponding update rule (10), we need to describe how to compute the projec-
tion ΠFs;t

on the feasible set Fs;t (cf. (8)).
Since Fs;t is an affine subspace (cf. (21)), a simple calculations shows that, for any

vector x,

(22) ΠFs;t
(x) = x � B

�
BBT

�� �
BT x � F�s;t

�
:

The above expression turns out to have a very natural interpretation. It corresponds to
canceling out any deviation of the demand vector of the flow represented by x from the
desired demand vector F�s;t by routing it in the graph using electrical flows, i.e., flows
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that minimize the energy (wrt to unit edge resistances). In particular, the matrix BBT is
the Laplacian matrix of our graph and multiplying its pseudoinverse

�
BBT

�� by a vector
corresponds to solving a Laplacian system. Importantly, there is now a long line of work
D. A. Spielman and Teng [2004], Koutis, Miller, and Peng [2010, 2011], J. A. Kelner,
Orecchia, Sidford, and Zhu [2013], Cohen, Kyng, Miller, Pachocki, Peng, A. B. Rao,
and Xu [2014], Kyng, Lee, Peng, Sachdeva, and D. A. Spielman [2016], and Kyng and
Sachdeva [2016] that builds on an earlier work of Vaidya [n.d.] and D. A. Spielman and
Teng [2003] that enables us to solve such a system, and thus also compute the projection
ΠFs;t

(x), in nearly-linear time, i.e., in time eO ((m)).2
Once we know how to implement each iteration of the update rule (11) efficiently, we

can use Theorem 3.1 to bound the running time of the resulting algorithm. To this end,
observe that our objective function k � k1 has a Lipschitz constant (cf. (9)) of L = 1, and
with some care one can show thatR =

p
m, providedwe start with x0 = B

�
BBT

��
F�s;t .

Given that each iteration can be implemented in eO (m) time, this yields an overall running
time bound of

(23) eO (m) �
LR2

"2
= eO �m2"�2

�
;

to get an "-approximate solution to our problem.

4.3 Smoothing Technique. The running time bound (23) is hardly satisfying given that
classic algorithms Even and Tarjan [1975] and Karzanov [1973] run in
O(mminf

p
m; n

2
3 g) time and deliver an exact solution to the problem. In fact, even the

most basic Ford-Fulkerson algorithm Ford and Fulkerson [1956] and Elias, Feinstein, and
Shannon [1956] offers a running time ofO(mn), which is also superior to the bound (23).

Still, this should not be viewed as the evidence that continuous optimization is an in-
adequate toolkit in this context. To the contrary! After all, the algorithm we just obtained
came out of a very straightforward attempt. This attempt almost completely ignored the
structure of the problem. It turns out that there is a principled methodology that one can
apply here to address the shortcomings of this first attempt.

More precisely, a problematic issue with formulation (20) is that the objective function
is convex and Lipschitz but not differentiable, let alone smooth. At first, this might seem
to be an insurmountable obstacle. After all, (20) captures exactly the problem we want to
solve! However, this turns out to not be entirely correct. Even though the objective itself
captures our problem and is non-differentiable, it is still possible to approximate it with a
different “proxy” objective function that is differentiable and, in fact, smooth. (Note that

2The notation eO (t(n)) suppresses factors that are polylogarithmic in t(n). Also, we ignore here the fact
that the solutions computed by the solver are not exact, as this shortcoming can be alleviated in a standard way.
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we are looking here for approximate solution anyway, so this additional approximation is
not detrimental.) This approach of substituting the original objective function with such
a proxy function is known as smoothing Nesterov [2005]. In the context of our specific
objective function, the corresponding proxy function is the softmax function defined as

(24) smaxı(x) := ı ln

 Pm
i=1 e

xi
ı + e

�xi
ı

2m

!
;

for any ı > 0.
Elementary calculation shows that smaxı is 1

ı
-smooth and we have that

kxk1 � ı ln 2m � smaxı(x) � kxk1;

for any vector x. So, the parameter ı trades off the quality of approximation of the l1
norm and the smoothness of the resulting function. In particular, it is not hard to see that
setting ı = "

2 ln2m
suffices for our purposes.

Now, by applying gradient descent update (11) to such smoothened version of the prob-
lem (20), by Theorem 3.2, we get an "-approximation to the maximum flow problem in
time

(25) eO (m) �O

�
ˇR2

"

�
� eO (m) �O

�
R2

ı"

�
= eO �m2"�2

�
:

This new running time bound unfortunately matches the bound (23) we obtained using
subgradient descent method. Still, the important differences is that now we are able to
work directly with gradients of our objective function. As a result, the range of possible
tools we can apply to the problem is much broader.

In particular, Christiano, J. Kelner, Mądry, D. Spielman, and Teng [2011] showed
that one can use a certain variant of gradient descent method: the so-called multiplica-
tive weights update method Plotkin, Shmoys, and Tardos [1995], N. E. Young [1995], N.
Young [2001], and Arora, Hazan, and Kale [2012] to obtain an improved running time ofeO �m 3

2 "� 5
2

�
. This running time, in a sense, alreadymatches the classicO(mminf

p
m; n

2
3 g)

running time bound of Even and Tarjan [1975] and Karzanov [1973] whenever the graph
is sparse, i.e., m = O(n).

4.4 Importance of Choosing the “Right” Geometry. As we have seen above, fairly
standard gradient descent–based approaches are able to largely recover the best known
classic running time bounds. At least when we only aim for an "-approximate solution to
the undirected variant of the maximum flow problem. Naturally, the fact that we merely
recover these bounds might not be fully satisfying. So, it is important to understand what
are the key obstacles preventing us from obtaining an actual improvement here.
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The choice that turns out to play a key role in this context is the choice of the geometry
we use when projecting back onto the feasible space in the update rule (11) of the gradient
descent method. Specifically, we defined our projection ΠFs;t

to be an `2-projection, i.e.,
to always project a given point x to a feasible point y that is the closest one with respect
to the `2 distance kx � yk2 (see (8)). This choice was convenient since it enables us to
compute this projection fast via Laplacian system solvers (see (22)). However, the `2–
based geometry this projection works with ends up being ill-suited to the maximum flow
problem.

The root of the problem here is that the maximum flow problem corresponds to an `1–
based geometry. In particular, as made explicit in formulation (20), its objective is to find
a minimum `1 norm point in an affine space (Fs;t ). It is not hard to see, however, that the
`2– and `1–based notions of distance can sometimes vary significantly. So, points that are
“close” with respect to `1–based distance might seem far when computing the projection
with respect to `2–based distance. More precisely, if we are working in m-dimensional
space, which is the case for us, we have that

(26) kxk1 � kxk2 �
p
m kxk1;

and both these inequalities are tight, e.g., when x has just a single non-zero coordinate or
is an all-ones vector, respectively.

This
p
m discrepancy manifests itself directly when establishing the upper boundR on

the initial distance to the optimum solution (see Theorem 3.2). In a sense, the fact that our
bound on R was only O(

p
m) is tied closely to the worst-case discrepancy captured by

(26).
This realization prompted Christiano, J. Kelner, Mądry, D. Spielman, and Teng [2011]

to change the geometry used in the projection. Specifically, instead of working with the
distance induced by the `2 norm, they work with an `2 norm that is coordinate-wise
reweighted in an adaptive manner. That is, in each step t , one projects with respect to
the distance induced by the norm k � kDt

, where each Dt is a positive diagonal matrix
and, additionally, Dt+1 � Dt for each t . The choice of these matrices Dt is such that
the corresponding distance measure approximates the `1–based distances well (at least,
in the directions relevant for the current solution) and thus avoids theO(

p
m) worst-case

discrepancy discussed above. Also, sinceDt is a diagonal matrix, k � kDt
is still at its core

an `2 norm. So, this enables us to use the Laplacian solver–based approach to make the
projections step remain fast.

These ideas give rise to the following result that finally improves over the classic run-
ning time bounds.
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Theorem 4.1 (Christiano, J. Kelner, Mądry, D. Spielman, and Teng [ibid.]). For any
" > 0, one can compute an "-approximate maximum flow in undirected graph in timeeO �m 4

3 "�3
�
.

Christiano, J. Kelner, Mądry, D. Spielman, and Teng [ibid.] also demonstrate how to
use sparsification techniques D. A. Spielman and Teng [2008] and D. A. Spielman and
Srivastava [2008] to get an eO �mn 1

3 "� 11
3

�
–time algorithm. This algorithm is more favor-

able for dense graph setting, at the expense of slightly higher dependence on 1
"
. Finally,

it is worth noting that Lee, S. Rao, and Srivastava [2013] subsequently demonstrated that
one can obtain a similar result using the accelerated gradient descent method (see Theo-
rem 3.3).

4.5 Interlude: Gradient Descent Method for General Norms. As discussed in the
previous section, the key to obtaining faster algorithms for the maximum flow problem
is to understand and exploit the interplay between the geometries of the problem and the
one used by the gradient descent method. Once we manage to align these two geometries
better, we can obtain an improved running time.

This gives rise to a question: howmuch flexibility does the gradient descent framework
have in terms of the geometry it canwork in? So far, all our considerations revolved around
the `2 geometry (and its coordinate-wise reweightings). However, it turns out that gradient
descent method can be applied to any geometry that is induced by a norm.

In fact, our treatment of gradient descent method presented in Section 3.3 can be trans-
lated into this broader, general norm setting almost syntactically. (Although there are
certain important differences.) The point of start is extending the notion of ˇ-smoothness
(12). We say that an objective function is ˇ-smooth (with respect to a general norm k � k)
iff

(27) krg(x) � rg(y)k� � ˇkx � yk;

for every x and y, where k � k� denotes the dual norm of k � k, defined as

(28) kyk� = max
x¤0

yT x

kxk
:

Observe that if k � k is the `2 norm then k � k� is also the `2 norm. (This corresponds to
the fact that `2 norm is self-dual.) Thus, the definition (12) is a special case of the above
definition. In general, the primal norm k � k and its dual norm k � k� are different. In
particular, k � k�p = k � kq , where 1

p
+ 1

q
= 1.

Now, similarly as in Section 3.3, the fact that the objective function g is ˇ-smooth (and
convex) enables us to derive the following analogue of the bound (14) on the behavior of
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the tail error term %x(∆) of the linear Taylor approximation 'x(∆) (see (13)).

(29) 0 � %x(∆) �
ˇ

2
k∆k2;

for all x and∆.
This, in turn, enables us to derive the optimal update∆�

x (see (15)) to be

(30)
∆�

x = argmin∆
�
'x(∆) +

ˇ

2
k∆k2

�
= �

1

ˇ
argmax∆

�
rg(x)T ∆ �

1

2
k∆k2

�
= �

1

ˇ
(rg(x))]

;

where �] operator is defined as

(31) y] = argmax∆
�
yT ∆ �

1

2
k∆k2

�
:

Observe that, again, if k � k is the `2 norm then (y)] = y and (15) becomes a special case
of (30). In general, however, (y)]

¤ y and, for example, when k � k is the `1 norm, we
have that

(y)]
i = sign(yi ) � jyj1;

for each coordinate i .
The final step is to make our projection ΠK correspond to the distance induced by our

general norm k � k. Namely, we take (cf. (8))

(32) ΠK(x) = argminy2K ky � xk;

for any x. As a result, our overall update rule becomes

(33) xt
 ΠK

�
xt�1

� �
�
rg(xt�1)

�]�
;

where, again, � > 0 is the step size.
Once we put all these elements together, we obtain a direct analogue of Theorem 3.2.

Theorem 4.2. If the objective function g is ˇ-smooth with respect to norm k � k then, for
any " > 0, the update rule (33) with � = 1

ˇ
delivers an "-approximate solution after at

most
T" � ˇR

2"�1

iterations, where R = kx0 � x�k is the distance of the initial solution x0 to a minimum
x�.
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It is important to remember that even though the above theorem seems to be an almost
verbatim repetition of Theorem 3.2, the fact that all the notions correspond to a general
norm is crucial and, as we will see shortly, it significantly enhances the power of this
framework.

Finally, we note that once we extend the notion of ˛-strong convexity (16) in an anal-
ogous manner, i.e., define the objective function to be ˛-strong convex (with respect to a
general norm k � k) iff

(34) g(x +∆) � g(x) + rg(x)T ∆+
˛

2
k∆k2;

for every x and ∆, we can obtain a corresponding tighter control on the behavior of the
tail error term %x(∆) of our (local) linear approximation 'x(D) of the objective function
g at x (cf (13)). Specifically, as a direct analogue of the inequalities (17), we have that

(35)
˛

2
k∆k2 � %x(∆) �

ˇ

2
k∆k2;

and thus the following extension of Theorem 3.4 can be established.

Theorem 4.3. If the objective function g is ˛-strongly convex and ˇ-smooth with respect
to a norm k � k then, for any " > 0, the update rule (33) with � = 1

ˇ
delivers an "-

approximate solution after at most

T" �
ˇ

˛
log

R

"

iterations, where R = kx0 � x�k is the distance of the initial solution x0 to a minimum
x�.

4.6 Solving the "-approximate UndirectedMaximumFlow in eO �m"�1 logU
�
Time.

As first noted by Sherman [2013] and J. Kelner, Lee, Orecchia, and Sidford [2014] inde-
pendently, the framework described in the previous section is particularly well-suited to
tackle the "-approximate undirected maximum flow problem.3 Indeed, let us consider ap-
plying an `1 norm variant of the gradient descent method to a version of the problem
(20) that was smoothened as described in Section 4.3. One can readily notice that such
smoothened objective has a smoothness of

ˇ =
1

ı
=

2 ln 2m
"

3Strictly speaking, the variant of the framework presented here corresponds to the one employed in the work
of J. Kelner, Lee, Orecchia, and Sidford [2014]. Sherman [2013] relied on its slightly different, dual variant.
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also with respect to the `1 norm. Additionally, one can bound the distance to the optimum
R in that norm to be onlyO(1). As a result, Theorem 4.2 yields an iteration bound of only
O( lnm

"2
)!

Unfortunately, this alone does not yet provide us with a nearly-linear time algorithm.
The issue is that now in each iteration of the algorithm we need to compute a projection
ΠFs;t

with respect to the `1 norm – instead of the (reweighted) `2 norm. This is prob-
lematic as, in general, computing this projection is as hard as solving the exact maximum
flow problem. Specifically, if we consider a projection ΠFs;t

(0) of the all-zero vector, we
note that

ΠFs;t
(0) = argminy2Fs;t

kyk1;

which is exactly the optimal solution to our problem (20).
To circumvent this conundrum, Sherman [2013] and J. Kelner, Lee, Orecchia, and Sid-

ford [2014] make a crucial observation: we do not need to compute the projectionΠFs;t
(x)

exactly. It suffices to compute some  -approximation of it. Even if the value of  is fairly
large, its only impact is on the running time, i.e., the running time will depend polynomi-
ally on  , but not on the quality of the solution one obtains in the end. With this insight
in mind, they build on the work of Mądry [2010] that gave an eO �m1+o(1)

�
-time no(1)-

approximation algorithm for the value of the undirected maximum flow, to compute such
 = no(1)-approximate projection in eO �m1+o(1)

�
time. This gives rise to the following

result.

Theorem 4.4 (Sherman [2013] and J. Kelner, Lee, Orecchia, and Sidford [2014]). For
any " > 0, one can compute an "-approximate maximum flow in undirected graph in time
O
�
m1+o(1)"�2 logU

�
.

Note that the above running time already refers to the general, not necessary unit-
capacity, version of the undirected maximum flow problem. (The necessary adjustment
boils down to applying an appropriate coordinate-wise scaling that corresponds to edge
capacities. It also introduces theO(logU ) term in the running time due to the need to per-
form a binary search in the reduction of the maximum flow problem to the flow feasibility
problem – see Section 4.1.)

In follow up work, Peng [2016] provided an improved variant of the algorithm that
runs in eO �m"�2

�
time. Finally, Sherman [2017a] further improved the dependence on 1

"
,

giving rise to the following theorem.

Theorem 4.5 (Sherman [ibid.]). For any " > 0, one can compute an "-approximate max-
imum flow in undirected graph in time eO �m"�1 logU

�
.

It is worth noting that in the unit capacity setting (i.e., when U = 1), if we wanted to
obtain an exact solution to the undirectedmaximum flow problem, it suffices to set " = 1p

n
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and then “fix” the resulting approximate solution by rounding the flow and computing at
most

p
n augmenting paths, which would take O(m

p
n) time. So, the above result also

matches (up to polylogarithmic factors) – and, in fact, for dense graphs improves – the
classic O(mminf

p
m; n

2
3 g)-time algorithms of Even and Tarjan [1975] and Karzanov

[1973] also in the regime of exact answers.

5 Computing Maximum Flows with Second-Order Methods

In the previous section, we demonstrated how continuous optimization–based approaches
such as gradient descent method can make substantial progress on the problem of comput-
ing "-approximately maximum flows in undirected graphs (cf. Theorem 4.5). Can though
some of this progress be leveraged to get improved algorithms also for the general vari-
ant of the maximum flow problem, i.e., the task of computing exact maximum flows in
directed graphs?

At first glance, the key challenge in adapting the techniques from previous section
to this new setting might be that these techniques were defined only in the context of
undirected graphs. So, it is unclear how to extend them to the directed graph context. It
turns out, however, that this alone is not a problem. Specifically, one can show that the
maximum flow problem in directed graphs can be efficiently reduced to the maximum
flow problem in undirected graphs. At least, in the regime of sparse graph. (See Theorem
3.6.1 in Mądry [2011] for details.)

Crucially, however, this reduction only holds if we are able to solve the undirected max-
imum flow problem (almost) exactly. The key shortcoming of the methods from Section 4
is thus that, due to their running time bounds being polynomial in "�1, they do not offer
sufficiently good accuracy here. This deficiency is, in a sense, inherent to the first-order
framework that these methods rely on. Specifically, this shortcoming is tied to the fact
that our objective function g in problem (20) is not strongly convex (and smoothening
does not affect this aspect). As a result, we are unable to benefit from the corresponding,
much improved convergence bound given by Theorem 4.3.

This realization motivates us to consider a more powerful continuous optimization
methodology: the so-called second-order methods, i.e., approaches that, in contrast to
the first-order approaches that rely solely on the information conveyed by the gradients of
the objective function, also take advantage of probing the Hessians of that function.

5.1 Barrier–Based Maximum Flow Problem Formulation. Our point of start here is
casting the maximum flow problem as a special type of a constrained minimization: linear
program (LP). That is, instead of formulating the maximum flow problem as a problem
of `1 norm minimization over an affine subspace – as was the case in (20), we phrase it
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as a task of minimizing a simple, linear objective function over a more complex, convex
feasible set.

Specifically, the maximum flow problem can be cast as the following LP.

min
x
cT x

s:t:BT x = 0(36)
xe � u

+
e 8e

xe � u
�
e 8e:

Here, B is an edge-vertex incidence matrix (cf. (19)) of the input graph after we added to
it an edgebe that connects the sink t to the source s and has its lower capacity u�be be 0 and
its upper capacity u+be be unbounded. Also, c is a vector in which cbe = �1 and ce = 0

for all other edges e. (This added edgebe ensures that the circulation x that we find in the
augmented graph corresponds to a valid s-t flow in the original graph, and the penalty we
apply to that edge ensures that in the optimal solution the corresponding s-t flow is indeed
a maximum one.)

As the LP (36) is an example of a constrained minimization problem, we are, in princi-
ple, able to apply to it the gradient descent framework we described in Section 3. However,
in that case, the update rule (11) would require us to compute in each step the projection
onto the feasible set of this LP, and it is difficult to implement that task efficiently. The
key reason here is the presence of the inequality constraints. (Note that projection on the
kernel of the matrix B would again correspond to solving a Laplacian system – cf. (22),
and thus could be computed fast.)

To cope with this problem, we will employ a technique that is inspired by one of the
most popular family of approaches to solving linear programs: the interior point methods
(see Boyd and Vandenberghe [2004], S. J. Wright [1997], and Ye [1997]). This technique,
instead of maintaining the inequality constraints explicitly, enforces them implicitly by
introducing an appropriate term to the objective. Specifically, instead of solving the LP
(36), we aim to solve the following constrained minimization problem.

min
x
cT x +  �(x)(37)

s:t:BT x = 0;

where

(38)  �(x) = ��
X

e

�
ln(u+e � xe) + ln(xe � u

�
e )
�
;

is the barrier function and � > 0 is a positive number.
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Observe that as long as � > 0 and our initial solution is feasible, the barrier function
will ensure that any solution we find using an iterative minimization scheme, such as
gradient descent method, remains feasible. Also, it is not hard to see that the smaller
� > 0 is the closer the optimal solution to the problem (37) is to the desired optimal
solution to the LP (36). In particular, one can show that to get an "-approximate solution
to the LP (36) it suffices to set � � "

2m
and find the optimal solution to the corresponding

problem (37).
Finally, observe that the Hessian of the objective function of (37) at some point x is

equal to the Hessian r2 �(x) of the barrier function. The latter turns out to be a diagonal
matrix with �

r
2 �(x)

�
e;e

= �

�
1

(u+e � xe)2
+

1

(xe � u�
e )

2

�
;

for each edge e. Thus, the Hessian of our objective function is positive definite (provided
� > 0).

Now, one should note that the fact that this Hessian is positive definite implies that
the objective function is strongly convex. So, if we attempted to solve problem (37) using
gradient descent method we can take advantage of the improved iteration bound described
by Theorem 3.4. Importantly, this bound depends only logarithmically on "�1, which is
what we need in order to be able to compute the (almost) exact solutions.

Unfortunately, even though this objective function is indeed ˛-strongly convex and ˇ-
smooth, its condition number ˇ

˛
might be very large. The bound delivered by Theorem 4.3

would thus still be prohibitively large, even if it would have the “right” dependence on
"�1. It turns out that in order to get a more efficient algorithm we need to resort to a more
powerful technique: the Newton’s method.

5.2 Interlude: Netwon’s Method. Recall that the key quantity that impacts the itera-
tion bound given by Theorem 4.3 is the condition number ˇ

˛
. This number captures the

degree of control we have on the behavior of the tail error %x(∆) – see (35), in terms of the
norm k � k we work with. However, in principle, we have a complete freedom in choosing
this norm. So, one might wonder: what is the “best” norm to choose in order to make this
condition number be as small as possible?

Observe that, for a given point x and sufficiently small∆, Taylor expansion (13) gives
us that

%x(∆) �
1

2
∆T
r

2g(x)∆ =
1

2
k∆k2r2g(x);

where the norm k � kr2g(x) is called the local norm of g at x. (Note that, crucially, this
norm might be different at each point x.)

So, as long as the objective function g is strongly convex for some ˛ with respect to
the `2 norm (and thus r2g(x) � 0), the local norm is well-defined at each point x and
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locally, i.e., in a sufficiently close neighborhood of that point x, the condition number of
g with respect to k � kr2g(x) is close to best possible, i.e., close to 1!

This suggests employing an iterative method in which we repeatedly perform a gradient
descent update (33) with respect to such local norm (at the current point). This method is
known as the Newton’s method. Clearly, its most attractive feature is that whenever the
“sufficiently close neighborhood” of x contains the minimum x� of the objective function
g, Theorem 4.3 ensures very fast convergence regardless of the “natural”, i.e., `2–based,
condition number of g. (In fact, one can show that in this case the convergence can be
even faster than the one promised by that theorem.)

Unfortunately, this method has also two important shortcomings. First of all, it has no
meaningful convergence guarantees if the minimum x� of the objective function g is not
sufficiently close to the current point x. In fact, even the notion of “sufficiently close” is
in general not well defined. One thus usually is able to analyze Newton’s method only
for special class of functions such as self-concordant functions Nesterov and Nemirovskii
[1994]. (The barrier function (38) is self-concordant by design.)

Also, the other shortcoming is that each update step of Newton’s method can be compu-
tationally expensive. Specifically, recall that by (33) and (31), we have that this method’s
update rule becomes
(39)
xt
 ΠK

�
xt�1

� �
�
rg(xt�1)

�]�
= ΠK

�
xt�1

� �
�
r

2g(xt�1)
��1
rg(xt�1)

�
;

where we used the fact that y] = A�1y when we work with respect to the norm k � kA.
So, implementing each step of the Newton’s method requires solving a linear system in
the local Hessian of the objective function.

5.3 Faster Algorithms for the Maximum Flow Problem. The shortcomings of the
Newton’s method that we identified above severely limit its usefulness as a general op-
timization procedure. Still, this method turns out to be very powerful when carefully
applied. In particular, it is a key element of the interior point method–based approaches
to LP solving Boyd and Vandenberghe [2004], Ye [1997], and S. J. Wright [1997].

More concretely, the so-called path-following variants of the interior point methods
solve the LP (36) by solving a sequence of barrier problems (37) (instead of solving di-
rectly the one that corresponds to the desired, sufficiently small value of �). Specifically,
they start by obtaining a (near) optimal solution to the problem (37) for a large value of �.
(One can show that after appropriate preprocessing of the problem, such a solution is read-
ily available.) Then, these algorithms repeatedly use the Newton’s method to compute a
(near) optimal solution to the barrier problem (37) for a slightly smaller value of � while
using the previously obtained solution as a warm start. (This warm starting is crucial as
it ensures that the Newton’s method is always in its rapid convergence stage.)
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Now, one of the most central theoretical challenges in continuous optimization is es-
tablishing bounds on the number of iterations that the above path-following procedure
requires. That is, bounding the number of such barrier subproblems that need to be solved
in order to obtain an "-approximate solution to the LP (36). In 1988, Renegar [1988] estab-
lished a general iteration bound ofO(

p
m log 1

"
). Also, Daitch and D. A. Spielman [2008]

observed that when one solves flow LPs such as (36), the Newton’s method update step
(39) for the corresponding barrier problem (37) can be implemented in nearly-linear time
using a Laplacian solver. This enabled them to obtain an eO �m 3

2 logU
�
-time algorithm

for the maximum flow problem as well as a host of its generalizations.
However, this running time is hardly satisfying. In particular, it is still inferior to the

running time ofO(mminfm 1
2 ; n

2
3 g log(n2/m) logU ) due to Goldberg and S. Rao [1998].

Unfortunately, obtaining an improvement here hinges on going beyond the Renegar’s
O(
p
m log 1

"
) iteration bound, which is one of the longstanding open problems in the

field.
To address this challenge, Mądry [2013] developed a more fine-grained understanding

of the convergence behavior of such interior point methods. This understanding showed
that, similarly as it was the case in the context of undirected maximum flow problem
(see Section 4.4), the slower convergence is directly tied to an underlying “geometry mis-
match”. In particular, theO(

p
m) term in Renegar’s bound arises due to the compounded

worst-case discrepancies between the `1 and `4 as well as `4 and `2 norms. Mądry then
builds on the idea of adaptive coordinate-wise reweighting of the `2 norm put forth in the
work of Christiano, J. Kelner, Mądry, D. Spielman, and Teng [2011] (see Section 4.4) to
alleviate this worst case discrepancies.

Specifically, after translating to our setting, the approach of Mądry [2013] can be
viewed as considering a coordinate-wise reweighted version of the barrier function  �

defined as

(40)  �(x) = ��
X

e

�e

�
ln(u+e � xe) + ln(xe � u

�
e )
�
;

where each �e � 1 is an individual weight tied to edge e’s constraints. Then, Mądry de-
velops an adaptive scheme to update the weights �e that is inspired by (but more involved
than) the reweighting scheme due to Christiano, J. Kelner, Mądry, D. Spielman, and Teng
[2011]. This scheme together with a careful analysis enables one to obtain the following
result.

Theorem5.1 (Mądry [2013, 2016]). Themaximum flow problem can be solved in eO �m 10
7 U

1
7

�
time.

Observe that the resulting algorithm constitutes the first improvement over the clas-
sic O(mminfm 1

2 ; n
2
3 g)-time results of Even and Tarjan [1975] and Karzanov [1973] for
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unit capacity graphs as well as the general capacity result of Goldberg and S. Rao [1998],
provided the capacities are not too large and the graph is sufficiently sparse. In fact, the
improved variant of interior point method developed in Mądry [2013] can be applied to
solving any linear program. Unfortunately, the underlying reweighting scheme involves
permanent perturbation of the cost vector of that solved LP. This method is thus of lim-
ited use if one cannot control the impact of these perturbations on the final solution we
find, as one can in the context of the maximum flow problem. (It is, however, possible
that introducing these perturbations is not truly necessary and an alternative reweighting
scheme could avoid it.)

Later on, Lee and Sidford [2014] provided a different barrier function reweighting
scheme. Their result builds on the work of Vaidya [1989] and delivers an interior point
method that converges in only eO �pn log 1

"

�
iterations, which yields the following theo-

rem.

Theorem 5.2 (Lee and Sidford [2014]). The maximum flow problem can be solved ineO �mpn logU � time.
This result thus improves over the classic work of Even and Tarjan [1975], Karzanov

[1973] andGoldberg and S. Rao [1998] for dense graph case. Importantly, this new interior
point method can be readily applied to any LP. (In fact, it was developed directly in the
general LP setting.) In particular, the iteration bound it gives matches – and in some
cases even outperforms – the bound stemming from the seminal self-concordant barrier
of Nesterov and Nemirovskii [1994] and, in contrast to the latter, the method of Lee and
Sidford is efficiently computable. Due to this generality, Lee and Sidford [2014] is able
to provide, in particular, improved running times for a number of generalizations of the
maximum flow problem too.

6 Open Problems

Last decade has brought us a significant progress on algorithms for the maximum flow
problem (see Theorems 4.5, 5.1 and 5.2) as well as for the related graph problems such as
(weighted) bipartitematching and general shortest path problemsCohen,Mądry, Sankowski,
and Vladu [2017]. However, there is still a number of key open problems that remain un-
solved and, hopefully, further work on them will lead to a better understanding of both the
graph algorithms as well as the continuous optimization toolkit we employ in this context.
We briefly discuss some of these questions below.

Arguably, the most progress so far has been made in the context of the "-approximate
algorithms for the undirected maximum flow problem. In particular, Theorem 4.5 delivers
a solution that could be viewed, essentially, as the best possible in this regime. Still, it is
interesting to understand how flexible the underlying framework is. In particular, if it is
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possible to apply it with a similar success to other, related flow problems. Indeed, Sher-
man [2017b] showed that this framework can deliver an almost linear time "-approximate
algorithm for a variant of the problem (20) in which weminimize the `1 norm of the vector
instead of its `1 norm. This corresponds to solving a special case of the minimum-cost
flow problem in which the capacities are unbounded and costs are all unit. It is thus nat-
ural to attempt to use this approach to tackle the general undirected minimum-cost flow
problem as well.

Challenge 6.1. Solve the general minimum-cost flow problem in undirected graphs in
O(m1+o(1)"�2 log(C +U ) time, where C is the largest (integer) cost and U , as usual, is
the largest (integer) capacity.

Intuitively, solving this problem corresponds to solving the problem (20) in the case
when the objective is a linear combination of `1 and `1 norms, with each one of them be-
ing reweighted coordinate-wise according to the capacities and costs, respectively. Since
these two norms are dual to each other, it is unclear how to “reconcile” them to get
the desired running time improvement. The current state of the art for this problem is
the eO �mpn log(U + C )

�
-time exact algorithm due to Lee and Sidford [2014] and theeO �m 10

7 logC
�
-time exact algorithm of Cohen, Mądry, Sankowski, and Vladu [2017] for

the unit capacity (but general costs) variant of the problem.
In the context of the maximum flow problem, the most central direction is to extend

further the progress made on the exact algorithms for the general, directed graph setting.
(See Theorems 5.1 and 5.2.) In particular, given the fact that Theorem 5.1 builds on the
adaptive coordinate-wise `2 norm reweighting idea of Christiano, J. Kelner, Mądry, D.
Spielman, and Teng [2011], one could wonder if it is possible to match the type of running
time improvement that was achieved in the latter work.

Challenge 6.2. Obtain an eO �m 4
3 logU

�
time algorithm for the (exact) maximum flow

problem.

Note that the above challenge is interesting also in the setting of unit capacity maximum
flow, i.e., when U = 1. As it would still constitute an improvement over the current besteO �m 10

7 U
1
7

�
-time algorithm due to Mądry [2013, 2016].

Finally, even though our treatment so far focused on applying the continuous optimiza-
tion framework to graph algorithms, this connection can be also used in the opposite way.
That is, we can view graph algorithmic problems as a useful “testbed” for understanding
the full power and limitations of the current continuous optimization tools. This under-
standing can, in turn, be translated into progress on the challenges in core continuous
optimization.
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In fact, the advances on the maximum flow problemmade so far already yielded impor-
tant progress on such core questions. On one hand, the "-approximation result described
in Theorem 4.5 required going beyond the standard gradient descent–based framework to
overcome its fundamental limitation: the inability to obtain the acceleration (as in Theo-
rem 3.3) for the `1 norm based variant of gradient descent. On the other hand, the progress
on the exact maximum flow problem captured by Theorems 5.1 and 5.2 brought us key
advances on the convergence bounds for general interior point methods. In the light of
this, the natural next goal here would be to use the adaptive `2 norm reweighing ideas to
get the following improvement.

Challenge 6.3. Develop an interior point method that computes an "-approximate solu-
tion to any linear program using eO �m 4

3 log 1
"

�
iterations, with each iteration requiring

only O(1) linear system solves4.

One should note that this challenge subsumes Challenge 6.2. This is so as themaximum
flow problem can be cast as a linear program in which the linear systems to be solved in
each iteration of the interior point method are Laplacian (and thus can be solved efficiently)
– see Section 5.1. We also view tackling the above challenge as the current most promising
way to approach Challenge 6.2.
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Abstract
Estimation is the computational task of recovering a hidden parameter x associ-

ated with a distribution Dx , given a measurement y sampled from the distribution.
High dimensional estimation problems can be formulated as system of polynomial
equalities and inequalities, and thus give rise to natural probability distributions over
polynomial systems.

Sum of squares proofs not only provide a powerful framework to reason about
polynomial systems, but they are constructive in that there exist efficient algorithms
to search for sum-of-squares proofs. The efficiency of these algorithms degrade expo-
nentially in the degree of the sum-of-squares proofs.

Understanding and characterizing the power of sum-of-squares proofs for estima-
tion problems has been a subject of intense study in recent years. On one hand, there
is a growing body of work utilizing sum-of-squares proofs for recovering solutions
to polynomial systems whenever the system is feasible. On the other hand, a broad
technique referred to as pseudocalibration has been developed towards showing lower
bounds on degree of sum-of-squares proofs. Finally, the existence of sum-of-squares
refutations of a polynomial system has been shown to be intimately connected to the
spectrum of associated low-degree matrix valued functions. This article will survey
all of these developments in the context of estimation problems.
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4 Connection to Spectral Algorithms 3431

1 Introduction

An estimation problem is specified by a family of distributions fDxg over RN

parametrized by x 2 Rn. The input consists of a sample y 2 RN drawn fromDx for some
x 2 Rn, and the goal is to recover the value of the parameter x. Here x is referred to as the
hidden variable or the parameter, while the sample y is the measurement or the instance.
Often, it is information theoretically impossible to recover hidden variables x in that their
value is not completely determined by the measurements. Further, even if the hidden
variable x is completely determined by the measurements, in many high-dimensional set-
tings it is computationally intractable to recover x For these reasons, one often seeks to
recover x approximately by minimizing the expected loss for an appropriate loss function.
For example, if �(y) denotes the estimate for x given the measurement y, a natural goal
would be to minimize the expected mean-square loss given by Ey∼Dx

[k�(y) � xk2].
Such a minimization problem can often be equivalently stated as the problem of find-

ing a solution to a system of polynomial inequalities and equalities. By classical NP-
completeness results, general polynomial systems in many variables are computationally
intractable in the worst case. In the context of estimation problems, the estimation prob-
lem gives rise to a probability distribution over polynomial systems, and the goal is to
reason about a typical system drawn from the distribution. If the underlying distributions
are sufficiently well-behaved, polynomial systems yield an avenue to design algorithms
for high-dimensional estimation problems.

The central tool that we will bring to bear on polynomial systems is that of sum-of-
squares proofs. Sum-of-squares proofs yield a complete proof system to reason about poly-
nomial systems Krivine [1964] and Stengle [1974]. More importantly, sum-of-squares
proofs are constructive: the problem of finding a sum-of-squares proof can be formulated
as a semidefinite program, and thus algorithms for convex optimization can be used to find
a sum-of-squares proof when one exists. The computational complexity of the algorithm
grows exponentially with the degree of the polynomials involved in the sum-of-squares
proof. Thus, low-degree sum-of-squares proofs can be found efficiently.

Applying low-degree sum-of-squares proofs in the context of estimation problems lays
open a rich family of questions. For natural distributions of polynomial systems, if a sys-
tem drawn from the distribution is feasible, can one harness the sum-of-squares proofs
towards actually solving the polynomial system? (surprisingly, the answer is yes!) If
the system is typically infeasible, what is the smallest degree of a sum-of-squares refuta-
tion? Are there structural characterizations of the degree of sum-of-squares refutations in
terms of the properties of the distribution? Is there a connection between the existence of
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low-degree sum-of-squares proofs and the spectra of random matrices associated with the
distribution? In the past few years, significant strides have been made on all these fronts,
exposing the contours of a rich theory that lies hidden. This survey will be devoted to
expounding some of the major developments in this context.

1.1 Estimation problems. We will start by describing a few estimation problems that
will be recurring examples in our survey.

Example 1.1 (k-ർඅංඊඎൾ). Fix a positive integer k 6 n. In the k-ർඅංඊඎൾ problem, a clique
of size k is planted within a random graph drawn from the Erdős–Rényi distribution de-
noted G(n; 1/2). The goal is to recover the k clique. Formally, the structured family fJg

is parametrized by subsets S �
�[n]

k

�
. For a subset S 2

�[n]
k

�
, the distribution JS over

f0; 1g(
n
2
) is specified by the following sampling procedure:

• Sample a graph G0 = ([n]; E(G0)) from the Erdős–Rényi distribution G(n; 1/2)

and set G = ([n]; E(G0)[ E(KS )) where KS denotes the clique on the vertices in
S . Let y 2 f1; �1g(

n
2
) denote the natural f1; �1g-encoding of the graph G, namely,

yij = 1
2
(1 � 2 1[(i; j ) 2 E(G)]) for all i; j 2

�
n
2

�
. Set x := 1S 2 f0; 1gn.

We will refer to the variables yij as instance variables as they specify the input to the
problem. The variables xi will be referred to as the hidden variables.

It is easy to see that for all k � 2 logn, the clique S can be exactly recovered with high
probability given the graph G. However, there is no known polynomial time algorithm for
the problem with the best algorithm being a brute force search running in time nO(logn).
We will now see how to encode the problem as a polynomial system by encoding the
constraints one at a time, i.e.,

xi are Boolean fxi (1 � xi ) = 0gi2[n]

(1-1)

if (i; j ) … E(G) then fi; j g are not both in clique
˚
(1 � yij )xi xj = 0

	
8i;j 2([n]

2
)

(1-2)

at least k vertices in clique
X
i2[n]

xi � k > 0

(1-3)

Note that the instance variables yij are given, and the hidden variables fxi g are the un-
knowns in the polynomial system. It is easy to check that the only feasible solutions
x 2 Rn for this system of polynomial equations are Boolean vectors x 2 f0; 1gn wich are
supported on cliques of size at least k in G.
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For every estimation problem that we will encounter in this survey, one can associate
two related computational problems termed refutation and distinguishing.

Estimation can be thought of as searching for a hidden structure within the input in-
stance y. The goal of refutation is to certify that there is no hidden structure, when there
is none. More precisely, a null distribution is a probability distribution over instances y

for which there is no hidden structure x. For example, in the k-ർඅංඊඎൾ problem, the cor-
responding null distribution is just the Erdős–Rényi random graph G(n; 1/2) (without a
planted clique in it). With high probability, a graph y ∼ G(n; 1/2) has no clique with
significantly more than 2 logn vertices. Therefore, for a fixed k � 2 logn, given a graph
y ∼ G(n; 1/2), the goal of a refutation algorithm is to certify that y has no clique of
size k. Equivalently, the goal of a refutation algorithm is to certify the infeasibility of the
associated polynomial system.

The most rudimentary computational task associated with estimation and refutation is
that of distinguishing. The setup of the distinguishing problem is as follows. Fix a prior
distribution � on the hidden variables x 2 Rn, which in turn induces a distribution D� on
RN , obtained by first sampling x ∼ � and then sampling y ∼ Jx . The input consists of a
sample y which is with equal probability drawn from the structured distribution D� or the
null distribution D¿. The computational task is to identify which distribution the sample
y is drawn from, with a probability of success 1

2
+ı for some constant ı > 0. For example,

the structured distribution for k-ർඅංඊඎൾ is obtained by setting the prior distribution of x

to be uniform on subsets of size k. In the distinguishing problem, the input is a graph
drawn from either D� or the null distribution G(n; 1/2) and the algorithm is required to
identify the distribution. For every problem included in this survey, the distinguishing
task is formally no harder than estimation or refutation, i.e., the existence of algorithms
for estimation or refutation immediately implies a distinguishing algorithm.

Example 1.2. (ඍൾඇඌඈඋ PCA) The family of structured distributions f�xg is parametrized
by unit vectors x 2 Rn. A sample from �x consists of a symmetric 4-tensor y = x˝4+ �

where � 2 Rn�n�n�n is a symmetric 4-tensor whose entries are i.i.d Gaussian random
variables sampled fromN (0; �2). The goal is to recover a vector x0 that is close as possible
to x.

A canonical strategy to recover x given y = x˝4 + � is to maximize the degree-4
polynomial associated with the symmetric 4 tensor y. Specifically, if we set

x0 = argmaxkx0k61hy; x0˝4
i

then one can show that kx � x0k2 6 O(n1/2 � �) with high probability over �. If y ∼ Jx

then hy; x˝4i = 1. Furthermore, when � � n�1/2 it can be shown that x 2 Rn is close
to the unique maximizer of the function �(z) = hy; z˝4i. So the problem of recovering
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x can be encoded as following polynomial system:

kxk
2 6 1;

X
i;j;k;`2[n]4

yijk`xi xj xkx` > �:(1-4)

where � := 1.
In the distinguishing and refutation versions of this problem, we will take the null distri-

butionD¿ to be the distribution over 4-tensors with independent Gaussian entries sampled
from N (0; �2) (matching the distribution of the noise � from D�). For a 4-tensor y, the
maximum of y(x) = hx˝4; yi over the unit ball is referred to as the injective tensor norm
of the tensor y, and is denoted by kykinj. If y ∼ D¿ then kykinj 6 O

�
n1/2 � �

�
with high

probability over choice of y . Thus when � � n�1/2, the refutation version of the ඍൾඇඌඈඋ
PCA problem reduces to certifying an upper bound on kykinj. If we could compute kykinj
exactly, then we can certify that y ∼ D¿ for � as large as � = O(n�1/2). The injective
tensor norm is known to be computationally intractable in the worst case Gurvits [2003],
Gharibian [2010], and Barak, Brandão, Harrow, Kelner, Steurer, and Zhou [2012].

Example 1.3. (Matrix & Tensor Completion) In matrix completion, the hidden parameter
is a rank-r matrix X 2 Rn�n. For a parameter X , the measurement consists of a partial
matrix revealing a subset of entries of X , namely XΩ for a subset Ω � [n] � [n] with
jΩj = m. The probability distribution �X over measurements is obtained by picking the
set Ω to be a uniformly random subset of m entries. To formulate a polynomial system
for recovering a rank-r matrix consistent with the measurement XΩ, we will use a n � r

matrix of variables B , and write the following system of constraints on it:

(BBT )Ω = XΩ (BBT is consistent with measurement)

Tensor completion is the analogous problem with X being a higher-order tensor namely,
X =

Pr
i=1 a˝k

i for some fixed k 2 N. The corresponding polynomial system is again
over a n � r matrix of variables B with columns b1; : : : ; br and the following system of
constraints,0@X

i2[r]

b˝k
i

1A
Ω

= XΩ (
Pr

i=1 b˝k
i is consistent with measurement)

1.2 Sum-of-squares proofs. The sum-of-squares (SoS) proof system is a restricted
class of proofs for reasoning about polynomial systems. Fix a set of polynomial inequali-
ties A = fpi (x) > 0gi2[m] in variables x1; : : : ; xn. We will refer to these inequalities as
the axioms. Starting with the axioms A, a sum-of-squares proof of q(x) > 0 is given by
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an identity of the form,0@ X
i2[m0]

b2
i (x)

1A � q(x) =
X

j

s2j (x) +
X

i2[m]

a2
i (x) � pi (x) ;

where fsj (x)g; fai (x)gi2[m]; fbi (x)gi2[m0] are real polynomials. It is clear that any iden-
tity of the above form manifestly certifies that the polynomial q(x) > 0, whenever each
pi (x) > 0 for real x. The degree of the sum-of-squares proof is the maximum degree of
all the summands, i.e., maxfdeg(s2j ); deg(a

2
i pi )gi;j .

The notion extends naturally to polynomial systems that involves a set of equations
fri (x) = 0g along with a set of inequalities fpi (x) > 0g. A syntactic approach to extend
the definition would be to replace each equality ri (x) = 0 by a pair of inequalities ri (x) >
0 and �ri (x) > 0.

We will the use the notation A
d

x
fq(x) > 0g to denote that the assertion that, there

exists a degree d sum-of-squares proof of q(x) > 0 from the set of axioms A. The su-
perscript x in the notation A

d

x
fq(x) > 0g indicates that the sum-of-squares proof is an

identity of polynomials where x is the formal variable. We will drop the subscript or super-
script when it is clear from the context, and just write A fq(x) > 0g. Sum-of-squares
proofs can also be used to certify the infeasibility, a.k.a., refute the polynomial system. In
particular, a degree d sum-of-squares refutation of a polynomial system fpi (x) > 0gi2[m]

is an identity of the form,

�1 =
X
i2[k]

s2i (x) +
X

i2[m]

a2
i (x) � pi (x)(1-5)

where maxfdeg(s2j ); deg(a
2
i pi )gi;j is at most d .

Sum-of-square proof system have been an object of study starting with the work of
Hilbert and Minkoswki more than a century ago (see Reznick [2000] for a survey). With
no restriction on degree, Stengle’s Positivestellensatz imply that sum-of-squares proofs
form a complete proof system, i.e., if the axioms A imply q(x) > 0, then there is a sum-
of-squares proof of this fact.

The algorithmic implications of sum-of-squares proof system were realized starting
with the work of Parrilo [2000] and Lasserre [2000], who independently arrived at fam-
ilies of algorithms for polynomial optimization using semidefinite programming (SDP).
Specifically, these works observed that semidefinite programming can be used to find a
degree-d sum-of-squares proof in time nO(d), if there exists one. This family of algo-
rithms (called a hierarchy, as we have algorithms for each even integer degree d ) are
referred to as the low-degree sum-of-squares SDP hierarchy.

The SoS hierarchy has since emerged as one of the most powerful tools for algorithm
design. On the one hand, a vast majority of algorithms in combinatorial optimization and
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approximation algorithms developed over several decades can be systematically realized
as being based on the first few levels of this hierarchy. Furthermore, the low-degree SoS
SDP hierarchy holds the promise of yielding improved approximations to NP-hard com-
binatorial optimization problems, approximations that would beat the long-standing and
universal barrier posed by the notorious unique games conjecture Trevisan [2012] and
Barak and Steurer [2014].

More recently, the low-degree SoS SDP hierarchy has proved to be a very useful tool
in designing algorithms for high-dimensional estimation problems, wherein the inputs are
drawn from a natural probability distribution. For this survey, we organize the recent work
on this topic into three lines of work.

• When the polynomial system for an estimation problem is feasible, can sum-of-
squares proofs be harnessed to retrieve the solution? The answer is YES for many
estimation problems including tensor decomposition, matrix and tensor completion.
Furthermore, there is a simple and unifying principle that underlies all of these ap-
plications. Specifically, the underlying principle asserts that if there is a low-degree
SoS proof that all solutions to the system are close to the hidden variable x, then
low-degree SoS SDP can be used to actually retrieve x. We will discuss this broad
principle and many of its implications in Section 2.

• When the polynomial system is infeasible, what is the smallest degree at which it
admits sum-of-squares proof? The degree of the sum-of-squares refutation is crit-
ical for the run-time of the SoS SDP based algorithm. Recent work by Barak et
al. Barak, Hopkins, Kelner, P. Kothari, Moitra, and A. Potechin [2016] introduces
a technique referred to as “pseudocalibration” for proving lower bounds on the de-
gree of SoS refutation, developed in the context of the work on k-ർඅංඊඎൾ. Section
Section 3 is devoted to the heuristic technique of pseudocalibration, and the mystery
surrounding its effectiveness.

• Can the existence of degree-d of sum-of-square refutations be characterized in
terms of properties of the underlying distribution? In Section 4, we will discuss a
result that shows a connection between the existence of low-degree sum-of-squares
refutations and the spectra of certain low-degree matrices associated with the dis-
tribution. This connection implies that under fairly mild conditions, the SoS SDP
based algorithms are no more powerful than a much simpler class of algorithms re-
ferred to as spectral algorithms. Roughly speaking, a spectral algorithm proceeds
by constructing a matrix M (x) out of the input instance x, and then using the eigen-
values of the matrix M (x) to recover the desired outcome.
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Notation. For a positive integer n, we use [n] to denote the set f1; : : : ; ng. We sometimes
use

�[n]
d

�
to denote the set of all subsets of [n] of size d , and [n]6d to denote the set of all

multi-subsets of cardinality at most d .
If x 2 Rn and A � [n] is a multiset, then we will use the shorthand xA to denote the

monomial xA =
Q

i2A xi . We will also use x6d to denote the N � 1 vector containing
all monomials in x of degree at most d (including the constant monomial 1), where N =Pd

i=0 ni . Let R[x]6d denote the space of polynomials of degree at most d in variables x.
For a function f (n), we will say g(n) = O(f (n)) if limn!1

g(n)
f (n)

6 C for some
universal constant C . We say that f (n) � g(n) if limn!1

f (n)
g(n)

= 0.
If � is a distribution over the probability space S, then we use the notation x ∼ � for

x 2 S sampled according to �. For an event E, we will use 1[E] as the indicator that E
occurs. We use G(n; 1/2) to denote the Erdős–Rényi distribution with parameter 1/2, or
the distribution over graphs where each edge is included independently with probability
1/2.

If M is an n � m matrix, we use �max(M ) to denote M ’s largest eigenvector. When
n = m, then Tr(M ) denotes M ’s trace. If N is an n � m matrix as well, then we use
hM; N i = Tr(MN >) to denote the matrix inner product. We use kM kF to denote the
Frobenius norm of M , kM kF = hM; M i. For a subset S � [n], we will use 1S to denote
the f0; 1g indicator vector of S in Rn. We will also use 1 to denote the all-1’s vector.

For two matrices A; B we use A ˝ B to denote both the Kronecker product of A and
B , and the order-4 tensor given by taking A ˝ B and reshaping it with modes for the rows
and columns of A and of B . We also use A˝k to denote the k-th Kronecker power of A,
A ˝ A ˝ � � � ˝ A.

Pseudoexpectations. If there is no degree-d refutation, the dual semidefinite program
gives rise to a linear functional over degree d polynomials which we term a pseudoex-
pectation. Formally, a pseudoexpectation Ẽ : R[x]6d ! R is a linear functional over
polynomials of degree at most d with the properties that Ẽ[1] = 1, Ẽ[p(x)a2(x)] > 0

for all p 2 P and polynomials a such that deg(a2 � p) 6 d , and Ẽ[q(x)2] > 0 whenever
deg(q2) 6 d .

Claim 1.4. Suppose there exists a degree d pseudoexpectation Ẽ : R[x]6d ! R for the
polynomial system P = fpi (x) > 0gi2[m], then P does not admit a degree d refutation.

Proof. Suppose P admits a degree d refutation. Applying the pseudoexpectation operator
Ẽ to the left-hand-side of Equation (1-5), we have �1. Applying Ẽ to the right-hand-side
of Equation (1-5), the first summand must be non-negative by definition of Ẽ since it
is a sum of squares, and the second summand is non-negative, since we assumed that Ẽ
satisfies the constraints of P . This yields a contradiction.
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2 Algorithms for high-dimensional estimation

In this section, we prove a algorithmic meta-theorem for high-dimensional estimation that
provides a unified perspective on the best known algorithms for a wide range of estimation
problems. Through this unifying perspective we are also able to obtain algorithms with
significantly than what’s known to be possible with other methods.

2.1 Algorithmic meta-theorem for estimation. We consider the following general
class of estimation problems, which will turn out to capture a plethora of interesting
problems in a useful way: In this class, an estimation problem1is specified by a set
P � Rn � Rm of pairs (x; y), where x is called parameter and y is called measure-
ment. Nature chooses a pair (x�; y�) 2 P , we are given the measurement y� and our goal
is to (approximately) recover the parameter x�.

For example, we can encode compressed sensing with measurement matrix A 2 Rm�n

and sparsity bound k by the following set of pairs,

PA;k = f(x; y) j y = Ax; x 2 Rn is k-sparseg :

Similarly, we can encode matrix completion with observed entries Ω � [n]� [n] and rank
bound r by the set of pairs,

PΩ;r = f(X; XΩ) j X 2 Rn�n; rankX 6 rg :

For both examples, the measurement was a simple (linear) function of the parameter.

Identifiability. In general, an estimation problem P � Rn � Rm may be ill-posed in
the sense that, even ignoring computational efficiency, it may not be possible to (approxi-
mately) recover the parameter for a measurement y because we have (x; y); (x0; y) 2 P
for two far-apart parameters x and x0.

For a pair (x; y) 2 P , we say that y identifies x exactly if (x0; y) 62 P for all x0 ¤ x.
Similarly, we say that y identifies x up to error " > 0 if kx � x0k 6 " for all (x0; y) 2 P .
We say that x is identifiable (up to error ") if every (x; y) 2 P satisfies that y identifies x

(up to error ").
For example, for compressed sensing PA;k , it is not difficult to see that every k-

sparse vector is identifiable if every subset of at most 2k columns of A is linearly in-
dependent. For tensor decomposition, it turns out, for example, that the observation

1 In contrast to the discussion of estimation problems in Section 1, for every parameter, we have a set of
possible measurements as opposed to a distribution over measurements. We can model distributions over mea-
surements in this way by considering a set of “typical measurements”. The viewpoint in terms of sets of possible
measurements will correspond more closely to the kind of algorithms we consider.



3416 PRASAD RAGHAVENDRA, TSELIL SCHRAMM AND DAVID STEURER

f (x) =
Pr

i=1 x˝3
i is enough to identify x 2 Rn�r (up to a permutation of its columns)

if the columns x1; : : : ; xr 2 Rn of x are linearly independent.

Identifiability proofs to efficient algorithms. By itself, identifiability typically only
implies that there exists an inefficient algorithm to recover a vector x close to the parameter
x� from the observation y�. But perhaps surprisingly, the notion of identifiability in a
broader sense can also help us understand if there exists an efficient algorithm for this
task. Concretely, if the proof of identifiability is captured by the sum-of-squares proof
system at low degree, then there exists an efficient algorithm to (approximately) recover
x from y.

In order to formalize this phenomenon, let the set P � Rn � Rm be be described by
polynomial equations

P = f(x; y) j 9z: p(x; y; z) = 0g ;

where p = (p1; : : : ; pt ) is a vector-valued polynomial and z are auxiliary variables.2 (In
other words, P is a projection of the variety given by the polynomials p1; : : : ; pt .) The
following theorem shows that there is an efficient algorithm to (approximately) recover
x� given y� if there exists a low-degree proof of the fact that the equation p(x; y�; z) = 0

implies that x is (close to) x�.

Theorem 2.1 (Meta-theorem for efficient estimation). Let p be a vector-valued poly-
nomial and let the triples (x�; y�; z�) satisfy p(x�; y�; z�) = 0. Suppose A

`

x;z

fkx� � xk2 6 "g, where A = fp(x; y�; z) = 0g. Then, every level-` pseudo-distribution
D consistent with the constraints A satisfiesx � Ẽ

D(x;z)
x

2 6 " :

Furthermore, for every ` 2 N, there exists a polynomial-time algorithm (with running time
nO(`))3 that given a vector-valued polynomial p and a vector y outputs a vector x̂(y)with
the following guarantee: if A

`

x;z
fkx� �xk2 6 "g with a proof of bit-complexity at most

n`, then kx� � x̂(y�)k2 6 " + 2�n` .

Despite not being explicitly stated, the above theorem is the basis for many recent
advances in algorithms for estimation problems through the sum-of-squares method Barak,
Kelner, and Steurer [2015, 2014], Hopkins, Shi, and Steurer [2015], Ma, Shi, and Steurer

2 We allow auxiliary variables here because they might make it easier to describe the set P . The algorithms
we consider depend on the algebraic description of P we choose and different descriptions can lead to different
algorithmic guarantees. In general, it is not clear what is the best possible description. However, typically, the
more auxiliary variables the better.
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[2016], Barak andMoitra [2016], A. Potechin and Steurer [2017], P. K. Kothari, Steinhardt,
and Steurer [2018], and Hopkins and Li [2018].

2.2 Matrix and tensor completion. In matrix completion, we observe a few entries
of a matrix and the goal is to fill in the missing entries. This problem is studied exten-
sively both from practical and theoretical perspectives. One of its practical application is
in recommender systems, which was the basis of the famous Netflix Prize competition.
Here, we may observe a few movie ratings for each user and the goal is to infer a user’s
preferences for movies that the user hasn’t rated yet.

In terms of provable guarantees, the best known polynomial time algorithm for
matrix completion is based on a semidefinite programming relaxation. Let X =Pr

i=1 �i � ui vi
T 2 Rn�n be a rank-r matrix such that its left and right singular vectors

u1; : : : ; ur ; v1; : : : ; vr 2 Rn are �-incoherent4, i.e., they satisfy hui ; ej i2 6 �/n and
hvi ; ej i2 6 �/n for all i 2 [r ] and j 2 [n]. The algorithm observes the partial matrix
XΩ that contains a random cardinality m subset Ω � [n] � [n] of the entries of X . If
m > �rn � O(logn)2, then with high probability over the choice of Ω the algorithm re-
covers X exactly Candès and Recht [2009], Gross [2011], Recht [2011], and Chen [2015].
This bound on m is best-possible in several ways. In particular, m > Ω(rn) appears to be
necessary because an n-by-n rank-r matrix has Ω(r � n) degrees of freedom (the entries
of its singular vectors).

In this section, we will show how the above algorithm is captured by sum-of-squares
and, in particular, Theorem 2.1. We remark that this fact follows directly by inspecting the
analysis of the original algorithm Candès and Recht [2009], Gross [2011], Recht [2011],
and Chen [2015]. The advantage of sum-of-squares here is two-fold: First, it provides a
unified perspective on algorithms for matrix completion and other estimation problems.
Second, the sum-of-squares approach for matrix completion extends in a natural way to
tensor completion (in a way that the original approach for matrix completion does not).

Identifiability proof for matrix completion. For the sake of clarity, we consider a
simplified setup where the matrix X is assumed to be a rank-r projector so that X =Pr

i=1 ai ai
T for �-incoherent orthonormal vectors a1; : : : ; ar 2 Rn. The following theo-

rem shows that, with high probability over the choice of Ω, the matrix X is identified by
the partial matrix XΩ. Furthermore, the proof of this fact is captured by sum-of-squares.
Together with Theorem 2.1, the following theorem implies that there exists a polynomial-
time algorithm to recover X from XΩ.

3In order to be able to state running times in a simple way, we assume that the total bit-complexity of (x; y; z)
and the vector-valued polynomial p (in the monomial basis) is bounded by a fixed polynomial in n.

4 Random unit vectors satisfy this notion of �-incoherence for � 6 O(logn). In this sense, incoherent
vectors behave similar to random vectors.
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Theorem 2.2 (implicit in Candès and Recht [2009], Gross [2011], Recht [2011], and Chen
[2015]). Let X =

Pr
i=1 ai ai

T 2 Rn�n be an r-dimensional projector and a1; : : : ; ar 2

Rn orthonormal with incoherence � = maxi;j n � hai ; ej i2. LetΩ � [n]� [n] be a random
symmetric subset of size jΩj = m. Consider the system of polynomial equations in n-by-r
matrix variable B ,

A =
n�

BBT
�
Ω
= XΩ; BTB = Idr

o
:

Suppose m > �rn � O(logn)2. Then, with high probability over the choice of Ω,

A 4
B
nBBT = X


F
= 0

o
:

Proof. The analyses of the aforementioned algorithm for matrix completion Candès and
Recht [2009], Gross [2011], Recht [2011], and Chen [2015] show the following: with high
probability over the choice of Ω, there exists5 a symmetric matrix M with MΩ̄ = 0 and
0:9(Idn � X) � M � X � 0:9(Idn � X). As we will see, this matrix also implies that the
above proof of identifiability exists.

Since 0 � X and X � 0:9(Idn � X) � M , we have

hM; Xi > hX; Xi � 0:9hIdn � X; Xi = hX; Xi = r :

Since MΩ̄ = 0 and A contains the equation (BBT)Ω = XΩ, we have A
B

hM; BBTi =

hM; Xi > r . At the same time, we have

A hM; BBT
i 6 hX; BBT

i + 0:9hIdn � X; BBT
i = 0:1hX; BBT

i + 0:9r ;

where the first step usesM � X+0:9(Id�X) and the second step usesA hIdn; BBTi =

r because hIdn; BBTi = TrBTB and A contains the equation BTB = Idr . Combining the
lower and upper bound on hM; BBTi, we obtain

A hX; BBT
i > r :

Together with the facts kXk
2
F = r and A

BBT2
F = r , we obtain A

X � BBT2
F =

0 as desired.

5 Current proofs of the existence of this matrix proceed by an ingenious iterative construction of this matrix
(alternatingly projecting to two affine subspaces). The analysis of this iterative construction is based on matrix
concentration bounds. We refer to prior literature for details of this proof Gross [2011], Recht [2011], and Chen
[2015].
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Identifiability proof for tensor completion. Tensor completion is the analog of matrix
completion for tensors. We observe a few of the entries of an unknown low-rank tensor
and the goal is to fill in the missing entries. In terms of provable guarantees, the best
known polynomial-time algorithms are based on sum-of-squares, both for exact recovery
A. Potechin and Steurer [2017] (of tensors with orthogonal low-rank decompositions) and
approximate recovery Barak and Moitra [2016] (of tensors with general low-rank decom-
positions).

Unlike for matrix completion, there appears to be a big gap between the number of
observed entries required by efficient and inefficient algorithms. For 3-tensors, all known
efficient algorithms require r �Õ(n1:5) observed entries (ignoring the dependence on inco-
herence) whereas information-theoretically r �O(n) observed entries are enough. The gap
for higher-order tensors becomes even larger. It is an interesting open question to close
this gap or give formal evidence that the gap is inherent.

As for matrix completion, we consider the simplified setup that the unknown ten-
sor has the form X =

Pr
i=1 a˝3

i for incoherent, orthonormal vectors a1; : : : ; ar 2

Rn. The following theorem shows that with high probability, X is identifiable from
rn1:5 � (� logn)O(1) random entries of X and this fact has a low-degree sum-of-squares
proof.

Theorem 2.3 (A. Potechin and Steurer [2017]). Let a1; : : : ; ar 2 Rn orthonormal vectors
with incoherence � = maxi;j n � hai ; ej i2 and let X =

Pr
i=1 a˝3

i be their 3-tensor.
Let Ω � [n]3 be a random symmetric subset of size jΩj = m. Consider the system of
polynomial equations in n-by-r matrix variable B with columns b1; : : : ; br ,

A =

( 
rX

i=1

b˝3
i

!
Ω

= XΩ; BTB = Idr

)

Suppose m > rn1:5 � (� logn)O(1). Then, with high probability over the choice of Ω,

A
O(1)

B

8<:
 rX

i=1

b˝3
i � X


2

F

= 0

9=;
2.3 Overcomplete tensor decomposition. Tensor decomposition refers to the follow-
ing general class of estimation problems: Given (a noisy version of) a k-tensor of the
form

Pr
i=1 a˝k

i , the goal is to (approximately) recover one, most, or all of the compo-
nent vectors a1; : : : ; ar 2 Rn. It turns out that under mild conditions on the components
a1; : : : ; ar , the noise, and the tensor order k, this estimation task is possible information
theoretically. For example, generic components a1; : : : ; ar 2 Rn with r 6 Ω(n2) are
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identified by their 3-tensor
Pr

i=1 a˝3
i Chiantini and Ottaviani [2012] (up to a permuta-

tion of the components). Our concern will be what conditions on the components, the
noise, and the tensor order allow us to efficiently recover the components.

Besides being significant in its own right, tensor decomposition is a surprisingly ver-
satile and useful primitive to solve other estimation problems. Concrete examples of
problems that can be reduced to tensor decomposition are latent Dirichlet allocation mod-
els, mixtures of Gaussians, independent component analysis, noisy-or Bayes nets, and
phylogenetic tree reconstruction Lathauwer, Castaing, and Cardoso [2007], Mossel and
Roch [2005], Anandkumar, Foster, Hsu, S. Kakade, and Liu [2012], Hsu and S. M.
Kakade [2013], Bhaskara, Charikar, Moitra, and Vijayaraghavan [2014], Barak, Kelner,
and Steurer [2015], Ma, Shi, and Steurer [2016], and Arora, Ge, Ma, and Risteski [2016].
Through these reductions, better algorithms for tensor decomposition can lead to better
algorithms for a large number of other estimation problems.

Toward better understanding the capabilities of efficient algorithms for tensor decom-
position, we focus in this section on the following more concrete version of the problem.

Problem 2.4 (Tensor decomposition, one component, constant error). Given an order-k
tensor

Pr
i=1 a˝k

i with component vectors a1; : : : ; ar 2 Rn, find a vector u 2 Rn that is
close6 to one of the component vectors in the sense that maxi2[r]

1
kai k�kuk

jhai ; uij > 0:9.

Algorithms for Problem 2.4 can often be used to solve a-priori more difficult versions of
the tensor decomposition that ask to recover most or all of the components or that require
the error to be arbitrarily small.

A classical spectral algorithm attributed to Harshman [1970] and Leurgans, Ross, and
Abel [1993] can solve Problem 2.4 for up to r 6 n generic components if the tensor order
is at least 3. (Concretely, the algorithm works for 3-tensors with linearly independent
components.) Essentially the same algorithms works up to Ω(n2) generic7 components if
the tensor order is at least 5. A more sophisticated algorithm Lathauwer, Castaing, and
Cardoso [2007] solves Problem 2.4 for up to Ω(n2) generic8 components if the tensor
order is at least 4. However, these algorithms and their analyses break down if the tensor
order is only 3 and the number of components issue n1+Ω(1), even if the components are
random vectors.

In this and the subsequent section, we will discuss a polynomial-time algorithm based
on sum-of-squares that goes beyond these limitations of previous approaches.

6This notion of closeness ignores the sign of the components. If the tensor order is odd, the sign can often be
recovered as part of some postprocessing. If the tensor order is even, the sign of the components is not identified.

7Here, the vectors a
˝2
1 ; : : : ; a

˝2
r are assumed to be linearly independent.

8Concretely, the vectors fa
˝2
i

˝ a
˝2
j

j i ¤ j g [ f(ai ˝ aj )
˝2 j i ¤ j g are assumed to be linearly

independent.
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Theorem 2.5 (Ma, Shi, and Steurer [2016] building on Barak, Kelner, and Steurer [2015],
Ge and Ma [2015], and Hopkins, Schramm, Shi, and Steurer [2016]). There exists a
polynomial-time algorithm to solve Problem 2.4 for tensor order 3 and Ω̃(n1:5) compo-
nents drawn uniformly at random from the unit sphere.

The strategy for this algorithm consists of two steps:

1. use sum-of-squares in order to lift the given order-3 tensor to a noisy version of the
order-6 tensor with the same components,

2. apply Jennrich’s classical algorithm to decompose this order-6 tensor.

While Problem 2.4 falls outside of the scope of Theorem 2.1 (Meta-theorem for ef-
ficient estimation) because the components are only identified up to permutation, the
problem of lifting a 3-tensor to a 6-tensor with the same components is captured by
Theorem 2.1. Concretely, we can formalize this lifting problem as the following set of
parameter–measurement pairs,

P3;6;r =

(
(x; y)

ˇ̌̌̌
ˇ x =

rX
i=1

a˝6
i ; y =

rX
i=1

a˝3
i ; a1; : : : ; ar 2 Rn

)
� Rn6

� Rn3

:

In Section 2.4, we give the kind of sum-of-squares proofs that Theorem 2.1 requires in
order to obtain an efficient algorithm to solve the above estimation problem of lifting 3-
tensors to 6-tensors with the same components.

The following theorem gives an analysis of Jennrich’s algorithm that we can use to
implement the second step of the above strategy for Theorem 2.5.

Theorem 2.6 (Ma, Shi, and Steurer [2016] and Schramm and Steurer [2017]). There
exists " > 0 and a randomized polynomial-time algorithm that given a 3-tensor
T 2 (Rn)˝3 outputs a unit vector u 2 Rn with the following guarantees: Let
a1; : : : ; ar 2 Rn be unit vectors with orthogonality defect kIdr � ATAk 6 ", where
A 2 Rn�r is the matrix with columns a1; : : : ; ar . Suppose

T �
P

i a˝3
i

2
F 6 " � r and

maxfkT kf1;3gf2g; kT kf1gf2;3gg 6 10. Then, with at least inverse polynomial probability,
maxi2[r]hai ; ui > 0:9.

2.4 Tensor decomposition: lifting to higher order. In this section, we give low-
degree sum-of-squares proofs of identifiability for the different version of the estimation
problem of lifting 3-tensors to 6-tensors with the same components. These sum-of-squares
proofs are a key ingredient of the algorithms for overcomplete tensor decomposition dis-
cussed in Section 2.3.
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We first consider the problem of lifting 3-tensors with orthonormal components. By
itself, this lifting theorem cannot be used for overcomplete tensor decomposition. How-
ever it turns out that this special case best illustrates the basic strategy for lifting tensors
to higher-order tensors with the same components.

Orthonormal components. The following lemma shows that for orthonormal compo-
nents, the 3-tensor identifies the 6-tensor with the same set of components and that this
fact has a low-degree sum-of-squares proof.

Lemma 2.7. Let a1; : : : ; ar 2 Rn be orthonormal. Let A = f
Pr

i=1 a˝3
i =Pr

i=1 b˝3
i ; BT � B = Idg, where B is an n-by-r matrix of variables and b1; : : : ; br are

the columns of B . Then,

A 12
B

8<:
 rX

i=1

a˝6
i �

rX
i=1

b˝6
i


2

F

= 0

9=; :

Proof. By orthonormality,
Pr

i=1 a˝6
i

2
F =

Pr
i=1 a˝3

i

2
F = r and A

BPr
i=1 b˝6

i

2
F =

Pr
i=1 b˝3

i

2
F = r . Thus, A

P
i;j hai ; bj i3 = r it suffices to show

A
P

i;j hai ; bj i6 > r .
Using

Pr
i=1 ai ai

T � Id, a sum-of-squares version of Cauchy–Schwarz, and the fact
that A contains the constraints kb1k2 = � � � = kbrk2 = 1,

A r =
X
i;j

hai ; bj i
3 6 1

2

X
i;j

hai ; bj i
2 + 1

2

X
i;j

hai ; bj i
4 6 1

2
r + 1

2

X
i;j

hai ; bj i
4 :

We conclude that A
P

i;j hai ; bj i4 = r . Applying the same reasoning to
P

i;j hai ; bj i4

instead of
P

i;j hai ; bj i3 yields A
P

i;j hai ; bj i6 = r as desired.

Random components. Let a1; : : : ; ar 2 Rn be uniformly random unit vectors with
r 6 nO(1). Let B be an n-by-r matrix of variables and let b1; : : : ; br be the columns of
B . Consider the following system of polynomial constraints
(2-1)

B" =
n
kbi k

2 = 18i;
Pr

i=1 b˝3
i

2
F > (1 � ") � r;

Pr
i=1 b˝6

i

2
F 6 (1 + ") � r

o
:

With high probability, the vectors a1; : : : ; ar satisfy B" for " 6 Õ(r/n1:5). Concretely,
with high probability, every pair (i; j ) 2 [r ]2 with i ¤ j satisfies hai ; aj i2 6 Õ(1/n).
Thus,

Pr
i=1 b˝3

i

2
F = r +

P
i¤j hbi ; bj i3 > (1 + Õ(r/n1:5)) � r and

Pr
i=1 b˝6

i

2
F 6

(1 + Õ(r/n3)) � r .
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Lemma 2.8 (implicit in Ge and Ma [2015]). Let " > 0 and a1; : : : ; ar 2 Rn be random
unit vectors with r 6 " � Ω̃(n1:5). Let B be an n-by-r matrix of variables, b1; : : : ; br the
columns of B , and A the following system of polynomial constraints,

A = B"

[(
rX

i=1

a˝3
i =

rX
i=1

b˝3
i

)
:

Then,

A 12
B

8<:
 rX

i=1

a˝6
i �

rX
i=1

b˝6
i


2

F

6 O(") �

 rX
i=1

a˝6
i +

rX
i=1

b˝6
i


2

F

9=; :

2.5 Clustering. We consider the following clustering problem: given a set of points
y1; : : : ; yn 2 Rd , the goal is to output a k-clustering matrix X 2 f0; 1gn�n of the points
such that the points in each cluster are close to each other as possible. Here, we say that
a matrix X 2 f0; 1gn�n is a k-clustering if there is a partition S1; : : : ; Sk of [n] such that
Xij = 1 if and only if there exists ` 2 [k] with i; j 2 S`.

In this section, we will discuss how sum-of-squares allow us to efficiently find cluster-
ings with provable guarantees that are significantly stronger than for previous approaches.
For concreteness, we consider in the following theorem the extensively studied special
case that the points are drawn from a mixture of spherical Gaussians such that the means
are sufficiently separated Dasgupta [1999], Arora and Kannan [2001], Vempala andWang
[2004], Achlioptas and McSherry [2005], Kalai, Moitra, and Valiant [2010], Moitra and
Valiant [2010], and Belkin and Sinha [2010]. Another key advantage of the approach we
discuss is that it continues to work even if the points are not drawn from a mixture of
Gaussians and the clusters only satisfy mild bounds on their empirical moment tensors.

Theorem 2.9 (Hopkins and Li [2018], P. K. Kothari, Steinhardt, and Steurer [2018], and
Diakonikolas, Kane, and Stewart [2018]). There exists an algorithm that given k 2 N
with k 6 n and vectors y1; : : : ; yn 2 Rd outputs a k-clustering matrix X 2 f0; 1gn�n in
quasi-polynomial time n + (dk)(logk)O(1) with the following guarantees: Let y1; : : : ; yn

be a sample from the uniform mixture of k spherical Gaussians N (�1; Id); : : : ; N (�k ; Id)
with mean searation mini¤j k�i � �j k > O(

p
log k) and n > (dk)(logk)O(1) . Let X� 2

f0; 1gn�n be the k-clustering matrix corresponding to the Gaussian components (so that
X�

ij = 1 if yi and yj were drawn from the same Gaussian component and X�
ij = 0

otherwise). Then with high probability,

kX � X�
k
2
F 6 0:1 � kX�

k
2
F :
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We remark that the same techniques also give a sequence of polynomial-time algo-
rithms that approach the logarithmic separation of the algorithm above. Concretely, for
every " > 0, there exists an algorithm that works if the mean separation is at least O"(k

").
These algorithms for clustering points drawn from mixtures of separated spherical

Gaussians constitute a significant improvement over previous algorithms that require sep-
aration at least O(k1/4) Vempala and Wang [2004].

Sum-of-squares approach to learning mixtures of spherical Gaussians. In order to
apply Theorem 2.1, we view the clustering matrix X corresponding to the Gaussian com-
ponents as parameter and a “typical sample” y1; : : : ; yn of the mixture as measurement.
Here, typical means that the empirical moments in each cluster are close to the moments of
a spherical Gaussian distribution. Concretely, we consider the following set of parameter-
measurement pairs,

Pk;";` =

�
(X; Y )

ˇ̌̌̌
X is k-clustering matrix with clusters S1; : : : ; Sk � [n]

8� 2 [k]:
Ei2S�

(1; xi � ��)
˝` � Ex∼N (0;Id)(1; x)˝`


F 6 "

�
� f0; 1g

n�n
� Rd�n ;

where �� = Ei2S�
xi is the mean of cluster S� � [n].

It is straightforward to express Pk;";` in terms of a system of polynomial constraints
A = fp(X; Y; z) = 0g, so that Pk;";` = f(X; Y ) j 9z: p(X; Y; z) = 0g. Theorem 2.9
follows from Theorem 2.1 using the fact that under the conditions of Theorem 2.9, the
following sum-of-squares proof exists with high probability for ` 6 (log k)O(1),

A
`

X;z
n
kX � X�

k
2
F 6 0:1 � kX�

k
2
F

o
;

where X� is the ground-truth clustering matrix (corresponding to the Gaussian compo-
nents).

3 Lower bounds

In this section, we will be concerned with showing lower bounds on the minimum de-
gree of sum-of-squares refutations for polynomial systems, especially those arising out of
estimation problems.

The turn of the millennium saw several works that rule out degree-2 sum-of-squares
refutations for a variety of problems, such as ආൺඑ ർඎඍ Feige and Schechtman [2002], k-
ർඅංඊඎൾ Feige and Krauthgamer [2000], and ඌඉൺඋඌൾඌඍ ർඎඍ Khot and Vishnoi [2015], among
others. These works, rather than explicitly taking place in the context of sum-of-squares
proofs, were motivated by the desire to show tightness for specific SDP relaxations.
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Around the same time, Grigoriev proved linear lower bounds on the degree of sum-of-
squares refutations for k-XOR, k-SAT, and knapsack Grigoriev [2001b,a] (these bounds
were later independently rediscovered by Schoenebeck [2008]). Few other lower bounds
against SoS were known. Most of the subsequent works (e.g. Tulsiani [2009] and
Bhaskara, Charikar, Vijayaraghavan, Guruswami, and Zhou [2012]) built on the k-SAT
lower bounds via reduction; in essence, techniques for proving lower bounds against
higher-degree sum-of-squares refutations were ad hoc and few.

In recent years, a series of papers Meka, A. Potechin, and Wigderson [2015], Desh-
pande and Montanari [2015], and Hopkins, P. Kothari, A. H. Potechin, Raghavendra, and
Schramm [2016] introduced higher-degree sum-of-squares lower bounds for k-ർඅංඊඎൾ,
culminating in the work of Barak et al. Barak, Hopkins, Kelner, P. Kothari, Moitra, and A.
Potechin [2016]. Barak et al. go beyond proving lower bounds for the k-ർඅංඊඎൾ problem
specifically, introducing a beautiful and general framework for proving SoS lower bounds.
Though their work settles the k-ർඅංඊඎൾ refutation problem in G(n; 1/2), it leaves more
questions than answers. In particular, it gives rise to a compelling conjecture, which if
proven, would settle the degree needed to refute a broad class of estimation problems, in-
cluding ൽൾඇඌൾඌඍ k-ඌඎൻඋൺඉඁ, community detection problems, graph coloring, and more.
We devote this section to describing the technique of pseudocalibration.

Let us begin by recalling some notation. Let P = fpi (x; y) > 0gi2[m] be a polynomial
system associated with an estimation problem. The polynomial system is over hidden vari-
ables x 2 Rn, with coefficients that are functions of the measurement/instance variables
y 2 RN . We will use Py to denote the polynomial system for a fixed y. Let P have
degree at most dx in x and degree at most dy in y. If D¿ denotes the null distribution,
then Py is infeasible w.h.p. when y ∼ D¿, and we are interested in the minimum degree
of sum-of-squares refutation.

Pseudodensities. By Claim 1.4, to rule out degree-d sum-of-squares refutations for Py

, it is sufficient to construct the dual object namely the pseudoexpectation functional Ẽy

with the properties outlined in Section 1.2. However, it turns out to be conceptually cleaner
to think about constructing a related object called pseudodensities rather than pseudoexpec-
tation functionals. Towards defining pseudodensities, we first pick a natural background
measure � for x 2 Rn. Therefore, Ex will denote the expectation over the background
measure � . The choice of background measure itself is not too important, but for the ex-
ample we will consider, it will be convenient to pick � to be uniform distribution over
f0; 1gn.
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Definition 3.1. A function �̄ : f0; 1gn ! R is a pseudodensity for a polynomial system
P = fpi (x) > 0gi2[m] if Ẽ�̄ : R[x]6d ! R defined as follows:

Ẽ
�̄
[p(x)]

def
= E

x
�̄(x)p(x)

is a valid pseudoexpectation operator, namely, it satisfies the constraints outlined in Sec-
tion 1.2.

To show that Py is does not admit a degree d SoS refutation for most y ∼ D¿, it
suffices for us to show that with high probability over y ∼ D¿, we can construct a pseu-
dodensity �̄y : f0; 1gn ! R. More precisely, with high probability over the choice of
y ∼ D¿, the following must hold:

(scaling) E
x

�̄y(x)dx = 1

(3-1)

(pos. semidef.) E
x

q(x)2�̄y(x)dx > 0 8q 2 R[x]6d

(3-2)

(constraints P ) E
x

p(x)a2(x) � �y(x)dx > 0 8p 2 P ; a 2 R[x]; deg(a2
� p) 6 d:

(3-3)

3.1 Pseudocalibration. Pseudocalibration is a heuristic for constructing pseudodensi-
ties for non-feasible systems in such settings. It was first introduced in Barak, Hopkins,
Kelner, P. Kothari, Moitra, and A. Potechin [2016] for the k-ർඅංඊඎൾ problem, but the
heuristic is quite general and can be seen to yield lower bounds for other problems as well
(e.g. Grigoriev [2001b] and Schoenebeck [2008]).

At a high level, pseudocalibration leverages the existence of the structured/structured
distribution of estimation problem, to construct pseudodistributions. Let J� denote
the joint structured distribution over y� 2 f˙1gN and x� is sampled from � , i.e.,
P J�

f(x; y)g = �(x) � P Jx
fyg.

Let us define a joint null distribution J¿ on pairs (x; y) to be

J¿
def
= � � D¿ :

As we describe pseudocalibration, J¿ will serve as the background measure for us. Let
�� : f˙1gN � f0; 1gn ! R+ denote the density of the joint structured distribution J�

with respect to the background measure J¿, namely

��(x; y) =
P J�

(x; y)

P J¿(x; y)
=

P D�
fyg

P D¿fyg
�

P J�
fxjyg

�(x)
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At first glance, a candidate construction of pseudodensities �̄y would be the partially-
evaluated relative joint density �� namely

�̄y = ��(y; �) :

This construction already satisfies two of the three constraints namely Equation (3-2)
and Equation (3-3). Note that for any polynomial p(x; y),

E
x

p(x)�̄y(x) =
P D�

fyg

P D¿fyg
� E

x
p(x)

P J�
fxjyg

�(x)
=

P D�
fyg

P D¿fyg
� E

x∼Jjy

p(x) :

From the above equality, Equation (3-2) follows directly because

E
x

q(x)2�̄y(x) =
P D�

fyg

P D¿fyg
� E

x∼Jjy

q2(x) > 0 :

Similarly, Equation (3-3) is again an immediate consequence of the fact that J is supported
on feasible pairs for P ,

E
x

p(x)a2(x)�̄y(x) =
P D�

fyg

P D¿fyg
� E

x∼Jjy

p(x)a2(x) > 0 :

However, the scaling constraint Equation (3-1) is far from satisfied because,

E
x

�̄y(x) =
P D�

fyg

P D¿fyg
� E

x∼Jjy

1 =
P D�

fyg

P D¿fyg

is a quantity that is really large for y 2 supp(D�) and 0 otherwise. As a saving grace, the
constraint Equation (3-1) is satsified in expectation over y, i.e.,

E
y∼D¿

E
x

�̄y(x) = E
y∼D¿

E
x

��(x; y) = E
(x;y)∼J¿

��(x; y) = 1 ;

since �� is a density.
The relative joint density ��(y; x) faces an inherent limitation in that it is only nonzero

on supp(D�), which accounts for a negligible fraction of y ∼ D¿. Intuitively, the con-
straints of P are low-degree polynomials in x and y. Therefore, our goal is to construct a
�̄y that has the same low-degree structure of �� but has a much higher entropy a.k.a., its
mass is not too all concentrated on a small fraction of instances.

The most natural candidate to achieve this is to just project the joint density�� in to the
space of low-degree polynomials. Formally, let L2(J¿) denote the vector space of func-
tions over RN � Rn equipped with the inner product hf; giD¿ = Ey∼J¿ f (x; y)g(x; y).
For dx ; Dy 2 N, let Vdx ;Dy

� L2(J¿) denote the following vector space

Vdx ;Dy
= spanfq(x; y) 2 R[x; y]j degx(q) 6 dx ; degy(q) 6 Dyg
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IfΠdx ;Dy
denote the projection on to Vdx ;Dy

, then the pseudo-calibration recipe suggests
the use of the following pseudodistribution:

(3-4) (Pseudo-calibration) �̄y(x) = Πdx ;Dy
ı ��(x; y)

where dx is the target degree for the pseudodistribution and Dy 2 N is to be chosen
sufficiently large given dx .

Consider a constraint fp(x; y) > 0g 2 P in the polynomial system. As long as
degx(p) 6 d and degy(p) 6 Dy , the pseudodensity �̄y satisfies the constraint in ex-
pectation over y. This is immediate from the following calculation,

E �̄y(x)p(x; y) = E
(x;y)∼J¿

(Πdx ;Dy
ı ��(x; y))p(x; y)

= E
(x;y)∼J¿

��(x; y)p(x; y)

= E
(x;y)∼J�

p(x; y) > 0 :

We require that the constraints are satisfied for each y ∼ D¿, rather than in expecta-
tion. Under mild conditions on the joint distribution J�, the pseudocalibrated construction
satisfies the constraints approximately with high probability over y 2 D¿. Specifically,
the following theorem holds.

Theorem 3.2. Suppose fp(x; y) > 0g 2 P is always satisfied for (x; y) ∼ J� and
let B := max(x;y)2J¿ p(x; y) and let dy := degy(p). If �̄y is the pseudocalibrated
pseudodensity as defined in Equation (3-4) then

P
y2D¿

[E
x

p(x; y)�̄y(x) 6 �"] 6
B2

"2
kΠd;Dy+2dy

ı �� � Πd;Dy
ı ��)k

2
2;J¿

where Πd;D is the projection on to span of polynomials of degree at most D in y and
degree d in x.

The theorem suggests that if the projection of the structured density �� decays with
increasing degree then the pseudocalibrated density �̄y satisfies the same constraints as
those satisfied by ��, with high probability. This decay in the Fourier spectrum of the
structured density is a common feature in all known applications of pseudocalibration.
We defer the proof of the Theorem 3.2 to the full version.

Verifying non-negativity of squares. In light of Theorem 3.2, the chief obstacle in es-
tablishing �̄(y; �) as a valid pseudodensity is in proving that it satisfies the constraint
EJ¿ p(y; x)2�̄(y; x)dx > 0, for every polynomialp of degree at most d

2
in x. As wewill
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see in Claim 3.3, this condition is equivalent to establishing the positive-semidefiniteness
(PSDness) of the matrix

Md (y)
def
= E

x

�
x6d/2

� �
x6d/2

�>

� �̄(y; x)dx;

where x6d/2 is the O(nd/2)�1 vector whose entries contain all monomials in x of degree
at most d/2.
Claim 3.3. EJ¿ q(y; x)2�̄(y; x) > 0 for all polynomials q(y; x) of degree at most d/2

in x if and only if the matrix M (y)
def
= Ẽ[(x6d/2)(x6d/2)>](y) is positive semidefinite.

Proof. The first direction is given by expressing q(y; x) with its vector of coefficients of
monomials of x, q̂(y), so that hq̂(y); x6d/2i = q(y; x). Then

E
J¿

q(y; x)2�̄(y; x) = E
J¿

[q̂(y)>(x62)(x62)>q̂(y)] = q̂(y)>M (y)q̂(y) > 0;

by the positive-semidefiniteness of M (y).
We now prove the contrapositive: if M (y) is not positive-semidefinite, then there

is some negative eigenvector v(y) so that v(y)>M (y)v(y) < 0. Taking q(y; x) =

hv(y); x6d/2i, we have our conclusion.

Each entry of Md (y) is a degree-D polynomial in y ∼ D¿. Since the entries of
Md (y) are not independent, and because Md (y) cannot be decomposed easily into a sum
of independent randommatrices, standard black-box matrix concentration arguments such
as matrix Chernoff bounds and Wigner-type laws do not go far towards characterizing the
spectrum of Md (y). This ends up being a delicate and involved process, and the current
proofs are very tailored to the specific choice of D¿, and in some cases they are quite
technical.

3.1.1 Pseudocalibration: a partial answer, andmany questions. While Theorem 3.2
establishes some desirable properties for �, we are left with many unanswered questions.
Ideally, we would be able to identify simple, general sufficient conditions on the structured
distribution D� and on d the degree in x and D the degree in y, for which the answer to
the above questions is affirmative. The following conjecture stipulates one such choice of
conditions:

Conjecture 3.4. Suppose that P contains no polynomial of degree more than k in y. Let
D = O(kd logn) and D = Ω(kd ). Then the D-pseudocalibrated function �̄(y; �) is
with high probability a valid degree-d pseudodistribution which satisfies P if and only if
there is no polynomial q(y) of degree D in y such that

E
y∼D¿

[q(y)] < nO(d)
� E

y∼D�

[q(y)]:
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The upper and lower bounds on D stated in Conjecture 3.4 may not be precise; what is
important is that D not be too much larger than O(kd ). In support of this conjecture, we
list several refutation problems for which the conjecture has been proven: k-ർඅංඊඎൾ Barak,
Hopkins, Kelner, P. Kothari, Moitra, and A. Potechin [2016], ඍൾඇඌඈඋ PCA Hopkins, P. K.
Kothari, A. Potechin, Raghavendra, Schramm, and Steurer [2017], and random k-SAT
and k-XOR Grigoriev [2001b] and Schoenebeck [2008]. However, in each of these cases,
the proofs have been somewhat ad hoc, and do not generalize well to other problems of
interest, such as densest-k-subgraph, community detection, and graph coloring.

Resolving this conjecture, which will likely involve discovering the “book” proof of
the above results, is an open problem which we find especially compelling.

Variations. The incompleteness of our understanding of the pseudocalibration tech-
nique begs the question, is there a different choice of function �0(y; x) such that �0(y; �)

is a valid pseudodensity satisfying P with high probability over y ∼ D¿? Indeed, al-
ready among the known constructions there is some variation in the implementation of
the low-degree projection: the truncation threshold is not always a sharp degree D, and is
sometimes done in a gradual fashion to ease the proofs (see e.g. Barak, Hopkins, Kelner,
P. Kothari, Moitra, and A. Potechin [2016]). It is a necessary condition that �0 and ��

agree at least on the moments of y which span the constraints of P . However, there are
alternative ways to ensure this, while also choosing �0 to have higher entropy than ��.

In Hopkins, P. K. Kothari, A. Potechin, Raghavendra, Schramm, and Steurer [2017],
the authors give a different construction, in which rather than projecting �� to the span of
low-degree polynomials in y, they choose the function �0 which minimizes energy under
the constraint that

R
x˝d �0(y; x)dx is positive semidefinite for every y 2 supp(D¿),

and that Ey �0(y; x)p(y; x) = Ey ��(y; x)p(y; x) for every p(y; x) of degree at most
D in y. Though in Hopkins, P. K. Kothari, A. Potechin, Raghavendra, Schramm, and
Steurer [ibid.] this did not lead to unconditional lower bounds, it was used to obtain a
characterization of sum-of-squares algorithms in terms of spectral algorithms.

3.2 Example: k-ർඅංඊඎൾ . In the remainder of this section, we will work out the pseu-
docalibration construction for the k-ർඅංඊඎൾ problem (see Example 1.1 for a definition).
We’ll follow the outline of the pseudocalibration recipe laid out in Equation (3-4), filling
in the blanks as we go along.

The null and structured distributions. Recall that D¿ is the uniform distribution over
the hypercube f˙1g(

[n]
2
), corresponding to G(n; 1/2). For J� we use the joint distribution

over tuples of instance and solution variables (y�; x�) described in Example 1.1, with a
small twist designed to ease calculations: Rather than sampling x� from � the uniform
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distribution over the indicators 1S 2 f0; 1gn for jS j = k, we sample x� by choosing every
coordinate to be 1 with probability 2k

n
, and 0 otherwise.

Pseudomoments. Instead of directly constructing the pseudodensity �̄, it will be more
convenient for us to work with the pseudomoments. So for each monomial xA where
the multiset A � [n] has cardinality at most d , we will directly define the function
Ẽ�̄(y)[x

A] : f˙1g(
[n]
2
) ! R. For convenience, and to emphasize the dependence on

y, we will equivalently write Ẽ[xA](y).

Let A � E6D be a set of subsets of edges of cardinality at most D (we will specify
D later). Following the pseudocalibration recipe from Equation (3-4), for each ˛ 2 A we
will set

E
y∼D¿

h
y˛

� Ẽ[xA](y)
i
=

X
y2f˙1gE

Z
xA

� ��(y; x)dx = E
(y;x)∼D�

[y˛xA]:

The right-hand side can be simplified further. For (y; x) ∼ D�, if any vertices of A

are not chosen to be in the clique, then xA is zero. Similarly, if any edge e 2 ˛ has an
endpoint not in the clique, then yfeg is independent of yAnfeg and of expectation 0. Thus,
the expression is equal to the probability that all vertices of ˛ and A, which we denote
v(˛) [ A, are contained in the clique:

E
(y;x)∼D�

[xAy˛] = P
x∼D�

[xi = 1; 8i 2 v(˛) [ A] =
�
2k
n

�jv(˛)[Aj

:

For convenience, we will let �
def
= ( 2k

n
). Now expressing Ẽ[xA](y) via its Fourier decom-

position, we have

Ẽ(y)[xA] =
X
˛2A

�
2k
n

�jv(˛)[Aj

� y˛:(3-5)

4 Connection to Spectral Algorithms

Sum-of-squares SDPs yield a systematic framework that capture and generalize a loosely
defined class of algorithms often referred to as spectral algorithms. The term “spectral
algorithm” refers to an algorithm that on an input x associates a matrix M (x) that can
be easily computed from x and whose eigenvalues and eigenvectors manifestly yield a
solution to the problem at hand. We will give a more concrete definition for the notion
of a spectral algorithms a little later in this section.
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Although spectral algorithms are typically subsumed by the sum-of-squares SDPs, the
spectral versions tend to be simpler to implement andmore efficient. Furthermore, inmany
cases such as the k-ർඅංඊඎൾ Alon, Krivelevich, and Sudakov [1998] and tensor decomposi-
tionHarshman [1970], the first algorithms discovered for the problem were spectral. From
a theoretical standpoint, spectral algorithms are much simpler to study and could serve as
stepping stones to understanding the limits of sum-of-squares SDPs.

In the worst case, sum-of-squares SDPs often yield strictly better guarantees than corre-
sponding spectral algorithms. For instance, the Goemans-Williamson SDP yields a 0.878
approximation for ආൺඑ ർඎඍ Goemans and Williamson [1995], has no known analogues
among spectral algorithms. Contrary to this, in many random settings, the best known
sum-of-squares SDP algorithms yield guarantees that are no better than the corresponding
spectral algorithms. Recent work explains this phenomena by showing an equivalence be-
tween spectral algorithms and their sum-of-squares SDP counterparts for a broad family
of problems Hopkins, P. K. Kothari, A. Potechin, Raghavendra, Schramm, and Steurer
[2017]. To formally state this equivalence, we will need a few definitions. Let us begin
by considering a classic example of a spectral algorithm for the k-ർඅංඊඎൾ problem. In a
graph G = (V; E), if a subset S � V of k vertices forms a clique then,�

1S ;

�
AG �

J

2

�
1S

�
=

k(k � 2)

2
:

where J 2 Rn�n denotes the n � n matrix consisting of all ones. On the other hand, we
can upper bound the right hand side by�

1S ;

�
AG �

J

2

�
1S

�
6 k1S k

2
2kAG �

J

2
kop = k � �max

�
AG �

J

2

�
:

thereby certifying an upper bound on the size of the clique k, namely,

k 6 2�max

�
AG �

J

2

�
+ 2 :

In particular, for a graph G drawn from the null distribution namely, Erdős-Rényi dis-
tribution G(n; 1

2
), the matrix AG �

J
2
is a random matrix whose entries are i.i.d uni-

formly over f˙
1
2
g. By Matrix Chernoff inequality Tropp [2015] , we will have that

�max (AG � J /2) = O(
p

n) with high probability. Thus one can certify an upper bound
of O(

p
n) on the size of the clique in a random graph drawn from G(n; 1

2
) by computing

the largest eigenvalue of the associated matrix valued function P (G) = AG �
1
2
J .

Injective tensor norm. Recall that the injective tensor norm (see Example 1.2) of a
symmetric 4-tensor T 2 R[n]�[n]�[n]�[n] is given by maxkxk61hx˝4; T i. The injective
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tensor norm kT kinj is computationally intractable in the worst case Hillar and Lim [2013].
We will now describe a sequence of spectral algorithms that certify tighter bounds for the
injective tensor norm of a tensor T drawn from the null distribution, namely a tensor T

whose entries are i.i.d Gaussian random variables from N (0; 1).
Let T2;2 denotes the n2 � n2 matrix obtained by flattening the tensor T then,

kT kinj = argmaxkxk261hT; x˝4
i = argmaxkxk261hx˝2; T2;2x˝2

i 6 �max(T2;2)

Thus �max(T2;2) is a spectral upper bound on kT kinj. Since each entry of T is drawn
independently from N (0; 1), we have �max(T2;2) 6 O(n) with high probability Tropp
[2015]. Note that the injective norm of a random N (0; 1) tensor T is at most O(

p
n)with

high probability Tomioka and Suzuki [2014] and Montanari and Richard [2014] . In other
words, �max(T2;2) certifies an upper bound that is n1/2-factor approximation to kT kinj. We
will now describe a sequence of improved approximations to the injective tensor norm via
spectral methods. Fix a positive integer k 2 N. The polynomial T (x) = hx˝4; T i can be
written as,

T (x) = hx˝2; T2;2x˝2
i = hx˝2k ; T ˝k

2;2 x˝2k
i
1/k :

The tensor x˝2k is symmetric, and is invariant under permutations of its modes. Let Σ2k

denote the set of all permutations of f1; : : : ; 2kg. For a permutation Π 2 Σ2k and a 2k-
tensor A 2 R[n]2k , let Π ı A denote the 2k-tensor obtained by applying the permutation
Π to the modes of A. By averaging over all permutations Π;Π0 2 Σ2k , we can write

T (x) =

�
E

Π;Π02Σ2k

hΠ ı x˝2k ; T ˝k
2;2 (Π

0
ı x˝2k)i

�1/2k

=

�
hx˝2k ;

�
E

Π;Π02Σ2k

Π ı T ˝k
2;2 ı Π0

�
x˝2k)i

�1/2k

6 �max

�
E

Π;Π02Σ2k

Π ı T ˝k
2;2 ı Π0

�1/2k

� kxk
2
2 :(4-1)

Therefore for every k 2 N, if we denote

Pk(T )
def
= E

Π;Π02Σ2k

Π ı T ˝k
2;2 ı Π0

then kT kinj 6 �max(Pk(T ))1/k .
The entries of Pk(T ) are degree k polynomials in the entries of T . For example, a

generic entry of P2(T ) looks like,

P2(T )ijk`;i 0j 0k0`0 =
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=
1

(4!)2
�
�
Tij i 0j 0 � Tk`k0`0 + Tij i 0k0 � Tk j̀ 0`0 + Tij i 0`0 � Tk j̀ 0k0 + � � � 4!2 terms � � �

�
:

Thus a typical entry of Pk(T ) with no repeated indices is an average of a super-
exponentially large number, say Nk , of i.i.d. random variables. This implies that the
variance of a typical entry of Pk(T ) is equal to 1

Nk
. For the moment, let us assume that

the spectrum of Pk(T ) has a distribution that is similar to that of a random matrix with
i.i.d. Gaussian entries with variance 1

Nk
. Then, �max(Pk(T )) 6 O(nk �

1

N
1/2

k

) with high

probability, certifying that kT kinj 6 n

N
1/2k

k

. On accounting for the symmetries of T , it

is easy to see that Nk = k!
�

1
2k

2k!
k!

�2
� (k!)2. Consequently, as per this heuristic

argument, �max(Pk(T )) would certify an upper bound of kT kinj 6 O( n
k3/4 ).

Unfortunately, the entries of Pk(T ) are not independent random variables and not
all entries of Pk(T ) are typical as described above. Although the heuristic bound on
�max(Pk(T )) is not quite accurate, a careful analysis via the trace method shows that the
upper bound �max(Pk(T ))1/k decreases polynomially in k Bhattiprolu, Guruswami, and
Lee [2017] and Raghavendra, Rao, and Schramm [2017].

Theorem 4.1. Bhattiprolu, Guruswami, and Lee [2017] For 4 6 k 6 n2/3 if T is a
symmetric 4-tensor with i.i.d. entries from a subgaussian measure then

�max(Pk(T ))1/k 6 Õ
� n

k1/2

�
then with probability 1 � o(1). Here Õ notation hides factors polylogarithmic in n.

Thus the matrix polynomial Pk(T ) yields a nO(k)-time algorithm to certify an upper
bound of Õ(n/k1/2) on the injective tensor norm of random 4-tensors with Gaussian
entries.

Note that the upper bound certificate produced by the above spectral algorithm can be
cast as a degree 4k sum-of-squares proof. In particular, if �max(Pk(T )) 6 B for some
tensor T and B 2 R then,

B � T (x)k = Bkxk
4k
2 � hx˝2k ; Pk(T )x˝2k

i + B(1 � kxk
4k
2 )

= hx˝2k ; (B � Id � Pk(T ))x˝2k
i + B(1 � kxk

4k
2 )

= hx˝2k ; (B � Id � Pk(T ))x˝2k
i + (1 � kxk

2
2)

 
B �

2k�1X
i=0

kxk
2i
2

!

=
X

j

s2j (x) + (1 � kxk
2
2)

 
B �

2k�1X
i=0

kxk
2i
2

!
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The final step in the calculation uses the fact that if a matrix M � 0 is positive semidef-
inite, then the polynomial hx˝2k ; Mx˝2ki is a sum-of-squares. Therefore, the degree
4k sum-of-squares SDP to obtain the same approximation guarantee at least as good as
the somewhat adhoc spectral algorithm described above. This is a recurrent theme where
the sum-of-squares SDP yields a unified and systematic algorithm that subsumes a vast
majority of more adhoc approaches to algorithm design.

Refuting Random CSPs. The basic scheme used to upper bound the injective tensor
norm (see Equation (4-1)) can be harnessed towards refuting random constraint satisfac-
tion problems (CSPs). Fix a positive integer k 2 N. In general, a random k-CSP instance
consists of a set of variables V over a finite domain, and a set of randomly sampled con-
straints each of which is on a subset of at most k variables. The problem of refuting
random CSPs has been extensively studied for its numerous connections and applications
Feige [2002], Ben-Sasson and Bilu [2002], Daniely, Linial, and Shalev-Shwartz [2014],
Barak, Kindler, and Steurer [2013], and Crisanti, Leuzzi, and Parisi [2002]. For the sake
of concreteness, let us consider the example of random 4-එඈඋ.

Example 4.2 (4-එඈඋ). In the 4-එඈඋ problem, the input consists of a linear system over
F2-valued variables fX1; : : : ; Xng such that each equation has precisely 4 variables in
it. A random 4-එඈඋ instance is one where each equation is sampled uniformly at random
(avoiding repetition). Letm denote the number of equations, and n the number of variables.
For m � n, with high probability over the choice of the constraints, every assignment
satisfies at most 1

2
+ o(1) fraction of constraints. The goal of refutation algorithm is to

certify that there no assignment that satisfies 1
2
+o(1) fraction of constraints. To formulate

a polynomial system, we will use the natural ˙1-encoding of F2, i.e., xi = 1 () Xi = 0

and xi = �1 () Xi = 1. An equation of the form Xi + Xj + Xk + X` = 0/1

translates in to xi xj xkx` = ˙1. We can specify the instance using a symmetric 4-tensor
fTijk`g

i;j;k;`2([n]
4
), with Tijk` = ˙1 if we have the equation xi xj xkx` = ˙1, and Tijk =

0 otherwise. To certify that no assignment satisfies more than "m constraints, we will
need to refute the following polynomial system.˚

x2
i � 1

	
i2[n]

and
˚
hT; x˝4

i > " � m
	

(4-2)

This system is analogous to the injective tensor norm, except the maximization is over the
boolean hypercube x 2 f˙1gn, as opposed to the unit ball. Unlike the case of random
Gaussian tensors, the tensor T of interest in 4-එඈඋ is a sparse tensor with about n1+o(1)

non-zero entries. While this poses a few technical challenges, the basic schema from
Equation (4-1) can still be utilized to obtain the following refutation algorithm.
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Theorem 4.3. Raghavendra, Rao, and Schramm [2017] For all ı 2 [0; 1), the degree
nı sum-of-squares SDP can refute random 4-එඈඋ instances with m > Ω̃(n2�ı) with high
probability.

The refutation algorithm for XOR can be used as a building block to obtain sum-of-
squares refutations for all random k-CSPs Raghavendra, Rao, and Schramm [ibid.]. More-
over, these bounds on the degree of sum-of-squares refutations tightly match correspond-
ing lower bounds for CSPs shown in P. K. Kothari, Mori, O’Donnell, and Witmer [2017]
and Barak, Chan, and P. K. Kothari [2015].

Defining spectral algorithms. The above-described algorithmswill serve as blue-prints
for the class of spectral algorithms that we will formally define now. The problem setup
that is most appropriate for our purposes is that of distinguishing problem. Recall that in
a distinguishing problem, the input consists of a x sample drawn from one of two distri-
butions say D� or D¿ and the algorithm’s goal is to identify the distribution the sample
is drawn from. Furthermore, one of the distributions D� is referred to as the structured
distribution is guaranteed to have an underlying hidden structure that is planted within,
while samples from the null distribution D¿ typically do not.

A spectral algorithm A to distinguish between samples from a structured distribution
D� and a null distribution D¿ proceeds as follows. Given an instance x, the algorithm
A computes a matrix P (x) whose entries are given by low-degree polynomials in x, such
that �max(P (x)) > 0 indicates whether x ∼ D� or x ∼ D¿.

Definition 4.4. (Spectral Algorithm) A spectral algorithm A consists of a matrix valued
polynomial P : P ! RN �N . The algorithm A is said to distinguish between samples
from structured distribution D� and a null distribution D¿ if,

E
y∼D�

�+
max(P (y)) � E

y∼D¿
�+
max(P (y))

where �+
max(M )

def
= max(�max(M ); 0) for a matrix M .

In general, a spectral algorithm could conceivably use the entire spectrum of the matrix
P (y) instead of the largest eigenvalue, and perform some additional computations on the
spectrum. However, a broad range of spectral algorithms can be cast into this framework
and as we will describe in this section, this restricted class of spectral algorithms already
subsumes the sum-of-squares SDPs in a wide variety of settings.

Spectral algorithms as defined in Definition 4.4 are a simple and highly structured class
of algorithms, in contrast to algorithms for solving a sum-of-squares SDP. The feasible
region for a sum-of-squares SDP is the intersection of the positive semidefinite cone with
polynomially many constraints, some of which are equality constraints. Finding a feasible
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solution to the SDP involves an iterated sequence of eigenvalue computations. Further-
more, the feasible solution returned by the SDP solver is by no-means guaranteed to be
a low-degree function of the input instance. Instead a spectral algorithm involves exactly
one eigenvalue computation of a matrix whose entries are low-degree polynomials in the
instance. In spite of their apparent simplicity, we will now argue that they are no weaker
than sum-of-squares SDPs for a wide variety of estimation problems.

Robust Inference. Many estimation problems share a useful property that we will re-
fer to as ”robust inference” property. Specifically, the structured distributions underlying
these estimation problems are such that, a randomly chosen subsampling of the instance
is sufficient to recover a non-negligible fraction of the planted structure. For example,
consider the structured distribution D� for the k-ർඅංඊඎൾ problem. A graph G ∼ D� con-
sists of a k-clique embedded in to a Erdős-Rényi random graph. Suppose we subsample
an induced subgraph G0 of G, by randomly sampling a subset S � V of vertices of size
jS j = ıjV j. With high probability, G0 contains Ω(ı � k) of the planted clique in G. There-
fore, the maximum clique in G0 yields a clique of size Ω(ı � k) in the original graph G.
This is an example of robust inference property, where a random subsample G0 can reveal
non-trivial structure in the instance. While the subsample does not determine the planted
clique inG, the information revealed is substantial. For example, as long as ı �k � 2 logn,
G0 is sufficient to distinguish whether G is sampled from the structured distribution D�

or the null distribution D¿. Moreover, the maximum clique in G0 can be thought of as a
feasible solution to a relaxed polynomial system where the clique size sought after is ı � k,
instead of k.

Let P denote a polynomial system defined on instance variables y 2 RN and in solu-
tion variables x 2 Rn Let Υ denote the subsampling distribution namely, a probability
distribution over subsets of instance variables [N ]. Given an instance y 2 RN , a sub-
sample z can be sampled by first picking S ∼ Υ and setting z = yS . Let I denote the
collection of all instances, and I# denote the collection of all sub-instances.

Definition 4.5. A polynomial system P is "-robustly inferable with respect to a subsam-
pling distribution Υ and a structured distribution D�, if there exists a map � : I# ! Rn

such that,

P
y∼D�

S∼Υ

[�(yS ) is feasible for P ] > 1 � "

Robust inference property arises in a broad range of estimation problems including
stochastic block models, densest k-subgraph, tensor PCA, sparse PCA and random CSPs
(see Hopkins, P. K. Kothari, A. Potechin, Raghavendra, Schramm, and Steurer [2017] for
a detailed discussion). The existence of robust inference property has a stark implication
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on the power of low-degree sum-of-squares SDPs, namely they are no more powerful than
spectral algorithms. This assertion is formalized in the following theorem.

Theorem 4.6. Suppose P = fpi (x; y) > 0gi2[m] is a polynomial system with degree dx

and dy over x and y respectively. Fix B > dx � dy 2 N. If the degree d sum-of-squares
SDP relaxation can be used to distinguish between the structured distribution D� and the
null distribution D¿, namely,

• For y ∼ D�, the polynomial system P is not only satisfiable, but is 1/n8B -robustly
inferable with respect to a sub-sampling distribution Υ.

• For y ∼ D¿, the polynomial system P is not only infeasible but admits a degree
d sum-of-squares refutation with numbers bounded by nB with probability at least
1 � 1/n8B .

Then, there exists a degree 2D matrix polynomial Q : I ! R[n]6d �[n]6d such that,

Ey∼D�
[�+

max(Q(y))]

Ey∼D¿ [�+
max(Q(y))]

> nB/2

where D 2 N be smallest integer such that for every subset ˛ � [N ] with j˛j > D �

2dxdy , P S∼Υ[˛ � S ] 6 1
n8B .

The degree D of the spectral distinguisher depends on the sub-sampling distribution.
Intuitively, the more robustly inferable (a.k.a inferable from smaller subsamples) the prob-
lem is, the smaller the degree of the distinguisher D. For the k-ർඅංඊඎൾ problem with a
clique size of n1/2�", we have D = O(d/"). For random CSPs, community detection
and densest subgraph we have D = O(d logn) (see Hopkins, P. K. Kothari, A. Potechin,
Raghavendra, Schramm, and Steurer [2017] for details).

From a practical standpoint, the above theorem shows that sum-of-squares SDPs can of-
ten be replaced by their more efficient spectral counterparts. From a theoretical standpoint,
it reduces the task of showing lower bounds against the complicated algorithm namely the
sum-of-squares SDP to that of understanding the spectrum of low-degree matrix polyno-
mials over the two distributions.

Future work. The connection in Theorem 4.6 could potentially be tightened, leading to
a fine-grained understanding of the power of sum-of-squares SDPs. Wewill use a concrete
example to expound on the questions laid open by Theorem 4.6, but the discussion is
applicable more broadly too.

Consider the problem of certifying an upper bound on the size ofmaximum independent
sets in sparse random graphs. Formally, let G be a sparse random graph drawn from
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G(n; k/n) by sampling each edge independently with probability k/n. There exists a
constant ˛k 2 (0; 1) such that the size of the largest independent set in G is (˛ ˙ o(1)) � n

with high probability. For every ˇ 2 (0; 1), the existence of a size ˇ � n-independent set
can be formulated as the following polynomial system.

Pˇ (G) :

8<:fx2
i � xi = 0gi2[n]; fxi xj = 0g(i;j )2E(G);

X
i2[n]

xi > ˇ � n :

9=;
For each degree d 2 N define

˛
(k)

d

def
= smallest ˇ such that lim

n!1
P

G∼G([n];k/n)
[Pˇ d

x
?] = 1

It is natural to ask if the approximation obtained by the degree d sum-of-squares SDP
steadily improves with k.

Question 4.7. Is f˛
(k)

d
gd2N a strictly decreasing sequence?

We can associate the following structured distribution Jˇ with the problem. For each
subset S 2

� [n]
ˇ �n

�
, define �S as G(n; k/n) conditioned on S being an independent set.

For D 2 N define, Let 
(k)
D 2 (0; 1) be the largest value of ˇ for which distribution

of eigenvalues of low-degree matrix polynomials in the structured distribution Jˇ and
null distribution D¿ converge to each other in distribution. In other words, 

(k)
D is the

precise threshold of independent set size ˇ below which the structured and the null distri-
butions have same empirical distribution of eigenvalues. It is natural to conjecture that if
the empirical distribution of eigenvalues look alike then the sum-of-squares SDP cannot
distinguish between the two. Roughly speaking, the conjecture formalizes the notion that
sum-of-squares SDPs are no more powerful than spectral algorithms.

Question 4.8. Is ˛
(k)

d
> 

(k)

O(d)
?
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Abstract

We consider the problem of determining whether an Erdős–Rényi random graph
contains a subgraph isomorphic to a fixed pattern, such as a clique or cycle of con-
stant size. The computational complexity of this problem is tied to fundamental open
questions including P vs. NP and NC1 vs. L. We give an overview of unconditional
average-case lower bounds for this problem (and its colored variant) in a few impor-
tant restricted classes of Boolean circuits.

1 Background and preliminaries

The subgraph isomorphism problem is the computational task of determining whether a
“host” graph H contains a subgraph isomorphic to a “pattern” graph G. When both G

and H are given as input, this is a classic NP-complete problem which generalizes both
the ආൺඑංආඎආ ർඅංඊඎൾ and Hൺආංඅඍඈඇංൺඇ ർඒർඅൾ problems Karp [1972]. We refer to the G-
subgraph isomorphism problem in the setting where the pattern G is fixed and H alone is
given as input. As special cases, this includes the k-ർඅංඊඎൾ and k-ർඒർඅൾ problems when
G is a complete graph or cycle of order k.

For patterns G of order k, the G-subgraph isomorphism problem is solvable in time
O(nk) by the obvious exhaustive search.1 This upper bound can be improved toO(n˛dk/3e)

using any O(n˛) time algorithm for fast matrix multiplication Nešetřil and Poljak [1985]
(the current record has ˛ < 2:38 Le Gall [2014]). Additional upper bounds are tied to
structural parameters of G, such as an O(nw+1) time algorithm for patterns G of tree-
width w Plehn and Voigt [1990]. (See Marx and Pilipczuk [2014] for a survey on upper
bounds.)

The author’s work is supported by NSERC and a Sloan Research Fellowship.
MSC2010: primary 68Q17; secondary 05C60.
1Throughout this article, asymptotic notation (O(�), Ω(�), etc.), whenever bounding a function of n, hides

constants that may depend on G.
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The focus of this article are lower bounds which show that the G-subgraph isomor-
phism problem cannot be solved with insufficient computational resources. It is con-
jectured that the k-ർඅංඊඎൾ problem requires time nΩ(k) and that a colored version of G-
subgraph isomorphism (described in Section 2) requires time nΩ(w/ logw) for patterns G

of tree-width w. Conditionally, these lower bounds are known to follow from the Expo-
nential Time Hypothesis Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia [2005] and
Marx [2010]. Proving such lower bounds unconditionally would separate P from NP in a
very strong way. Since that goal is a long way off, we shall restrict attention to complexity
measures much weaker than sequential time; specifically, we focus on restricted classes
of Boolean circuits (described in Section 1.2).

1.1 The average-case setting. The lower bounds for the G-subgraph isomorphism
problem described in this article are obtained in the natural average-case setting where the
input is an Erdős–Rényi graph Gn;p (or G-colored version thereof). This is the random
n-vertex graph in which each potential edge is included independently with probability
p. For many patterns of interest including cliques and cycles, Gn;p is conjectured to be
a source of hard-on-average instances at an appropriate threshold p. These conjectures
are natural targets for the combinatorial and probabilistic approach of circuit complex-
ity. Strong enough lower bounds for the average-case G-subgraph isomorphism problem
would resolve P vs. NP and other fundamental questions, as we explain next.

In the average-case version of the k-ർඅංඊඎൾ problem, we are given an Erdős–Rényi
graph Gn;p at the critical threshold p = Θ(n�2/(k�1)) (where the existence of a k-clique
occurs with probability bounded away from 0 and 1). Our task is to determine, asymptot-
ically almost surely2 correctly, whether or not the given graph contains a k-clique. One
natural approach is to make several independent runs of the following randomized greedy
algorithm: start with a uniform random vertex v1, then select a vertex v2 uniformly at ran-
dom from among the neighbors of v1, next select a vertex v3 uniformly at random from
among the common neighbors v1 and v2, and so on until reaching a maximal (though not
necessarily maximum) clique in the given graph. It is easy to show that a single run of
the greedy algorithm on Gn;p , which only requires linear time with very high probability,
almost surely produces a clique of size b

k
2
c or d

k
2
e. To find a clique of size b

(1+")k
2

cwhere
" < 1, it suffices to repeat the greedy algorithm n"2k/4 times, while nk/4+O(1/k) iterations
suffice to find a k-clique in Gn;p if any exists. The average-case k-ർඅංඊඎൾ problem is thus
solvable in time nk/4+O(1).

It is unknown whether this iterated greedy algorithm is optimal. In other words, is
Ω(nk/4) a lower bound on the complexity of the average-case k-ർඅංඊඎൾ problem? This

2Throughout this article, asymptotically almost surely (abbreviated as a.a.s.) means with probability 1�o(1),
that is, with probability that tends to 1 as n ! 1.
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question may be seen a scaled-down version of a famous open question of Karp [1976]
concerning the uniform random graph Gn;1/2. It is well-known that Gn;1/2 has expected
maximum clique size � 2 logn, while the randomized greedy algorithm almost surely
finds a clique of size � logn. Karp asked whether any polynomial-time algorithm a.a.s.
succeeds in finding a clique of size (1 + ") logn for any constant " > 0. Karp’s question,
together with a variant where Gn;1/2 is augmented by a very large planted clique, have
stimulated a great deal of research in theoretical computer science. The hardness of detect-
ing planted cliques is used as a cryptographic assumption Juels and Peinado [2000], while
lower bounds have been shown against specific algorithms such as the metropolis process
Jerrum [1992], the sum-of-squares semidefinite programming hierarchy Barak, Hopkins,
Kelner, Kothari, Moitra, and Potechin [2016], and a class of statistical query algorithms
Feldman, Grigorescu, Reyzin, Vempala, and Xiao [2013].

The k-ർඒർඅൾ problem is another instance where Gn;p at the critical threshold p =

Θ(1/n) is thought to be a source of hard-on-average instances. Compared to the k-ർඅංඊඎൾ
problem, the average-case k-ർඒർඅൾ problem has relatively low complexity: it is solvable
in just n2+o(1) time and moreover in logarithmic space. Nevertheless, Gn;p is believed
to be hard-on-average with respect to formula size (a combinatorial complexity measure
which we shall discuss shortly). The smallest known formulas solving the k-ർඒർඅൾ prob-
lem have size nO(logk) and this upper bound is conjectured to be optimal even in the
average-case. Proving such a lower bound unconditionally would separate complexity
classes NC1 and L.

1.2 Circuit complexity. Circuit complexity is the quest for unconditional lower
bounds in combinatorial models of computation. Among such models, Boolean circuits
(acyclic networks of^,_ and: gates) are themost basic and important. Every polynomial-
time algorithm can be implemented by a sequence of polynomial-size Boolean circuits,
one for each input length n. To separate P from NP, it therefore suffices to prove a super-
polynomial lower bound on the minimum circuit size of any problem inNP, as represented
by a sequence of Boolean functions f0; 1gn ! f0; 1g.

Shannon et al. [1949] showed that almost all Boolean functions require circuits of ex-
ponential size. Yet after nearly 70 years of efforts, no one has yet proved a super-linear
lower bound on the circuit size of any explicit Boolean function. In the meantime, the
majority of research in circuit complexity has focused on restricted classes of Boolean
circuits and other combinatorial models with the aim of developing sharper insights and
techniques. Below, we describe three natural and important restricted settings: formulas
(tree-like circuits), the AC0 setting (bounded alternation), and the monotone setting (the
absence of negations).
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Definitions. A circuit is a finite directed acyclic graph in which every node of in-degree
0 (“input”) is labeled by a literal (i.e., a variable xi or its negation :xi ), there is a unique
node of out-degree 0 (the “output”), and each non-input (“gate”) has in-degree 2 and is
labeled by ^ or _. Every n-variable circuit computes a Boolean function f0; 1gn ! f0; 1g

in the obvious way.
The size of a circuit is the number of gates it contains. The complexity class P/poly

consists of sequences of Boolean functions f0; 1gn ! f0; 1g computable by n-variable
circuits of polynomial size (i.e., O(nc) for any constant c). (The more familiar class P is
obtained by imposing a uniformity condition on the sequence of n-variable circuits.)

The depth of a circuit is the maximum number of gates on an input-to-output path. The
class NC1 consists of Boolean functions computable by circuits of depth O(logn). Note
that size(C ) � 2depth(C ) for all circuits C , hence NC1 � P/poly. This containment is
believed but not known to be proper.

The alternation-depth of a circuit is the maximum number of alternations between ^

and _ gates on an input-to-output path. The complexity class AC0 consists of Boolean
functions computed by circuits of polynomial size and constant alternation-depth.3 Break-
through lower bounds of the 1980’s showed that AC0 is a proper subclass of NC1 Ajtai
[1983] and Furst, Saxe, and Sipser [1984]. Quantitatively, the strongest of these lower
bounds shows that circuits with alternation-depth d require size 2Ω(n1/(d�1)) to compute
the n-variable ඉൺඋංඍඒ function Håstad [1986].

Another important restricted class of circuits are formulas: circuits with the structure
of a tree (i.e., in which every non-output node has out-degree 1). In the context of formu-
las, size and depth are closely related complexity measures, as every formula of size s is
equivalent to a formula of depth O(log s) Spira [1971]. As a corollary, NC1 is equivalent
to the class of Boolean functions computed by polynomial-size formulas.

In contrast to circuits, formulas are memoryless in the sense that the result of each sub-
computation is only used once. However, despite this obvious weakness, the strongest
lower bound on the formula size of an explicit Boolean function is only n3�o(1) Håstad
[1998] and Tal [2014]. The challenge of proving a super-polynomial formula-size lower
bound (i.e., showing that any explicit Boolean function is not in NC1) is one of the major
frontiers in circuit complexity.

1.3 The monotone setting. Monotonicity is both a property of circuits and a property
of Boolean functions. A circuitC ismonotone if it has no negations (i.e., inputs are labeled
by positive literals only). A Boolean function f : f0; 1gn ! f0; 1g ismonotone if f (x) �

3AC0 is usually defined in terms of constant depth circuits with AND and OR gates of unbounded in-degree.
In this article, we adopt the equivalent definition in terms of alternation-depth, since the simplest version of our
lower bounds naturally applies to binary ^ and _ gates.
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f (y) whenever xi � yi for all coordinates i . Note that the G-subgraph isomorphism
problem is monotone when viewed as a sequence of functions f0; 1g(

n
2
) ! f0; 1g.

It is natural to study the monotone complexity of monotone functions f (i.e., the min-
imum size of a monotone circuit or formula which computes f ). This has been an ex-
tremely fruitful restricted setting in circuit complexity beginning with celebrated results
in the 1980’s. In a groundbreaking paper which introduced the sunflower-plucking approx-
imation method, Razborov [1985] showed that the k-ർඅංඊඎൾ problem requires monotone
circuits of size Ω(nk/(logn)2k) for any constant k.4 By an entirely different technique
based on communication complexity, Karchmer andWigderson [1990] proved an nΩ(logk)

lower bound on the size of monotone formulas solving ൽංඌඍൺඇർൾ-k ඌඍ-ർඈඇඇൾർඍංඏංඍඒ, a
problem which is equivalent to k-ർඒർඅൾ up to a polynomial factor. These results and sev-
eral others Grigni and Sipser [1992], Pitassi and Robere [2017], Potechin [2010], and Raz
and McKenzie [1997] imply essentially all separations AC0 � TC0 � NC1 � L � NL �

P � NP in the monotone world (i.e., for the monotone versions of these classes), whereas
in the non-monotone world it is open whether TC0 (the class of constant-depth threshold
circuits) is equal to NP.

Unfortunately, it is unclear if any of the lower bound techniques developed in the mono-
tone setting have the potential to extend to non-monotone classes. A “barrier” emerges
from the observation that essentially all monotone lower bounds in the literature are ob-
tained by pitting a class of sparse 1-inputs (e.g., isolated k-cliques or st-paths) against a
class of dense 0-inputs (complete k � 1-partite graphs or st-cuts). In this circumstance,
note that the sets of relevant 0- and 1-inputs are separable (in the anti-monotone direction)
by a mere threshold function. No monotone lower bound with this property can therefore
extend to TC0.

This observation motivates the challenge of proving average-case lower bounds under
product distributions in the monotone setting, in particular for problems like k-ർඅංඊඎൾ
and k-ർඒർඅൾ on Erdős–Rényi graphs. This challenge may be seen as a step toward non-
monotone lower bounds insofar as product distributions like Gn;p resemble slice distribu-
tions like Gn;m (the random graph with exactly m edges), due to the fact that monotone
and non-monotone complexity measures coincide on slice distributions up to a polynomial
factor Berkowitz [1982].

1.4 Outline of the article. In the rest of this article, we give an overview of lower
bounds which characterize the circuit size, as well as the formula size, of the average-
case G-subgraph isomorphism problem in both the AC0 and monotone settings. The basic

4Note that this monotone lower bound is quantitatively stronger than the non-monotone O(n2:73dk/3e)
upper bound from fast matrixmultiplication. This reveals a gap betweenmonotone vs. non-monotone complexity
(see Tardos [1988]).
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technique originated in Rossman [2008] where it is shown that AC0 circuits solving the
average-case k-ർඅංඊඎൾ problem require size Ω(nk/4), matching the upper bound from the
greedy algorithm. This result improved the previous Ω(nk/89d2

) lower bound of Beame
[1990] for circuits of alternation-depth d . This is significant for eliminating the depen-
dence on d in the exponent of n up to O(logn/k2 log logn), at which point the technique
breaks down (though the lower bound is conjectured to hold for unbounded d ).

Amano [2010] generalized the technique to the G-subgraph isomorphism problem for
arbitrary patterns G and also gave an extension to hypergraphs. Subsequent work of Li,
Razborov, and Rossman [2014] further generalized the technique to a colored variant of
the G-subgraph isomorphism problem, obtaining an nΩ(w/ logw) lower bound for patterns
of tree-width w. This result is presented in Section 4.

The challenge of proving stronger lower bounds for formulas was addressed in Ross-
man [2014a] where it is shown that AC0 formulas solving the average-case k-ർඒർඅൾ prob-
lem require size nΩ(logk). This result sharply separates the power of formulas vs. circuits in
theAC0 setting, since k-ർඒർඅൾ is solvable byAC0 circuits of size nO(1). A lower bound for
arbitrary patterns G in terms of tree-depth (a graph invariant akin to tree-width) was subse-
quently shown using recent results in graph minor theory
Kawarabayashi and Rossman [2018]. These results are described in Section 5.

These lower bounds in the AC0 setting apply more generally to any Boolean circuit
(or formula) all of whose subcircuits (subformulas) have “low sensitivity with respect to
planted subgraphs of G” in a certain sense made precise in Section 3. By considering
a different notion of “sensitivity”, quantitatively similar lower bounds for monotone cir-
cuits and formulas are obtained in Rossman [2014b, 2015]. For most patterns G, these
lower bounds are merely average-case with respect to a non-product distribution (a convex
combination of Gn;p and Gn;p+o(p)). However, in the special case of the k-ർඒർඅൾ prob-
lem, the technique produces an average-case lower bound under Gn;p . This is significant
for being the first super-polynomial lower bound against monotone formulas under any
product distribution.

It is hoped that the framework behind these lower bounds might eventually offer an
approach to proving super-polynomial lower bounds for unrestricted Boolean formulas
and circuits.

2 Colored G-subgraph isomorphism

The main target problem for our lower bounds is actually a colored version of the G-
subgraph isomorphism problem, which we denote by SUB(G). In this problem, the input
is aG-colored graphX with vertex setV (G)�f1; : : : ; ng and the task to determinewhether
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X contains a copy of the pattern G that involves one vertex from each color class. Com-
pared with the previously discussed uncolored G-subgraph isomorphism problem, which
we denote by SUBuncol(G), the colored variant turns out to be better structured and ad-
mits a richer class of threshold distributions. All average-case lower bounds for SUB(G)

in this article extend to the average-case SUBuncol(G) as a special case (as we explain in
Example 2.6).

Definitions. All graphs in this article are finite simple graphs without isolated vertices.
Formally, a graph G consists of a set V (G) of vertices and a set E(G) �

�
V (G)

2

�
of

unordered edges such that V (G) =
S

fv;wg2E(G)fv; wg. A subgraph of G is a graph
H such that E(H ) � E(G) (we simply write H � G). A graph G thus has 2jE(G)j

subgraphs, which are naturally identified with points in the hypercube f0; 1gjE(G)j. An
isomorphism between graphs G and G0 is a bijection � : V (G) ! V (G0) such that
fv; wg 2 E(G) , f�(v); �(w)g 2 E(G0) for all distinct vertices v; w of G.

The n-blowup of a graph G, denoted G"n, has vertices v(1); : : : ; v(n) for each v 2

V (G) and edges fv(a); w(b)g for each fv; wg 2 E(G) and a; b 2 [n] (:= f1; : : : ; ng). We
view G"n and its subgraphs as “G-colored graphs” under the vertex-coloring v(a) 7! v.

The colored G-subgraph isomorphism problem, denoted SUB(G) for short, is the com-
putational task, given a G-colored graph X � G"n as input, of determining whether X

contains a subgraph that is isomorphic G via the map v(a) 7! v. Formally, this problem
is represented by a sequence of Boolean functions f0; 1gkn2

! f0; 1g where k = jE(G)j

and kn2 = jE(G"n)j.
Henceforth, H is always a subgraph of G, while X is a subgraph of G"n. For an

element ˛ 2 [n]V (H), let H (˛) denote the copy of H in G"n with vertices v(˛v) for
v 2 V (H ) and edges fv(˛v); w(˛w)g for fv; wg 2 E(H ). We refer to subgraphs of X of
the form H (˛) as H -subgraphs of X . Let subH (X) denote the number of H -subgraphs
of X , that is, subH (X) := jf˛ 2 [n]V (H) : H (˛) � Xgj:

On the relationship between SUBuncol(G) and SUB(G). For every pattern G, the color-
coding method of Alon, Yuster, and Zwick [1995] provides an efficient many-one reduc-
tion from SUBuncol(G) to SUB(G). The colored version of G-subgraph isomorphism is
therefore the harder problem in general. However, for many graphs G of interest such
as cliques, these two problems are in fact equivalent. Namely, if G is a core (meaning
every homomorphism G ! G is an isomorphism), then there is a trivial reduction from
SUB(G) to SUBuncol(G), as the only subgraphs of G"n that are isomorphic to G are those
of the form G(˛).
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2.1 Threshold random graphs. For the average-case analysis of the problem SUB(G),
it is natural to study a G-colored version of the Erdős–Rényi random graph. For a vec-
tor Ep 2 [0; 1]E(G) of edge probabilities (one pe 2 [0; 1] for each e 2 E(G)), let Gn; Ep

denote the random subgraph of G"n which includes each potential edge fv(a); w(b)g in-
dependently with probability pfv;wg. The class of “threshold vectors” for the existence of
G-subgraphs in Gn; Ep has a characterization in terms of certain edge-weightings on G.

Definition 2.1 (Threshold weighting). Let G be a graph, let � be a function E(G) !

[0; 2], and let ∆� be the function fsubgraphs of Gg ! R�0 defined by

∆� (H ) := jV (H )j �
P

e2E(H) �(e):

We say that � is a threshold weighting on G if∆� (G) = 0 and∆� (H ) � 0 for all H � G.
We say that � is strict if, moreover,∆� (H ) > 0 for all proper subgraphs ¿ � H � G.

The set of threshold weightings on G forms a convex polytope in [0; 2]E(G). For con-
nected graphs G, the strict threshold weightings form the interior of this polytope. Note
that only connected graphs admit strict threshold weightings, as it follows from the defi-
nition that∆� (H ) = 0 whenever H is a union of connected components of G.

Example 2.2. For every graph G, the function � : E(G) ! [0; 2] defined by
�(fv; wg) := 1

deg(v) + 1
deg(w)

is a threshold weighting. In particular, if G is r-regular,
then the constant function � = 2

r
is a threshold weighting. (Two additional constructions

of threshold weightings are described at the end of this section.)

Definition 2.3 (The random graph X� ). Every threshold weighting � on G gives rise to
a sequence of random graphs Xn;� , defined as the G-colored Erdős–Rényi graph Gn; Ep

where Ep 2 [0; 1]E(G) is the vector of edge probabilities pe = n��(e). That is, Xn;� is the
random subgraph of G"n which includes each potential edge fv(a); w(b)g independently
with probability n��(fv;wg). To simplify notation, we will generally omit the parameter n

and simply write X� .

Observe that the function ∆� characterizes the expected number of H -subgraphs in
X� : for every H � G, we have E[ subH (X� ) ] = n∆� (H) by linearity of expectation.
In particular, subG(X� ) has expectation 1 (since ∆� (G) = 0). Moreover, when � is
strict, subG(X� ) is asymptotically Poisson and subH (X� ) is highly concentrated around
its mean for all proper subgraphs H � G.

Proposition 2.4. For every graph G and threshold weighting � , the probability that X�

contains a G-subgraph converges to a limit in (0; 1). When � is strict, this limit is 1 �
1
e
.

In light of Proposition 2.4, it makes sense to study the average-case complexity of
SUB(G) on X� , that is, the complexity of functions f : fsubgraphs of G"ng ! f0; 1g
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such that f (X� ) = 1 , subG(X� ) � 1 holds asymptotically almost surely. We conclude
this section with two constructions of threshold weightings.

Example 2.5 (Threshold weightings from Markov chains). Let G be any graph and let
M : V (G) � V (G) ! [0; 1] be a Markov chain on G satisfying

• M (v; w) > 0 ) fv; wg 2 E(G) and

•
P

w M (v; w) = 1 for every v.

Then the function E(G) ! [0; 2] given by fv; wg 7! M (v; w) + M (w; v) is a threshold
weighting on G. (This construction generalizes Example 2.2, which corresponds to the
Markov chain where M (v; w) = 1

deg(v) for every fv; wg 2 E(G).) The associated func-
tion∆M has the property that∆M (H ) equals the amount ofM -flow leaving the subgraph
H (i.e.,

P
v;w M (v; w) over pairs v; w with v 2 V (H ) and fv; wg 2 E(G) n E(H )). In

Section 4.1 we use this construction of threshold weightings to bound the AC0 circuit size
of SUB(G) in terms of the tree-width of G.

Example 2.6 (The uncolored setting). The threshold for the existence of G-subgraphs in
the Erdős–Rényi random graph Gn;p is well-known to be p = Θ(n�c) where c is the
constant minH�G

jV (H)j
jE(H)j

Bollobás [1981]. For all intents and purposes, the average-case
analysis of SUBuncol(G) on Gn;p is equivalent to the average-case analysis of SUB(G) on
X�uncol where �uncol : E(G) ! f0; cg is the threshold weighting defined by �uncol(e) = c ,

there exists H � G such that e 2 E(H ) and jV (H)j
jE(H)j

= c. All lower and upper bounds
described in this article translate easily between these two average-case settings, modulo
insignificant constant factors as between njV (G)j and

�
n

jV (G)j

�
.

3 H-subgraph sensitivity

AC0 functions are known to have low average sensitivity in the following sense Boppana
[1997]: for any AC0 function f : f0; 1gn ! f0; 1g and independent uniform random
x 2 f0; 1gn and i 2 [n], it holds that

Pr
x;i

[ f (x) ¤ f (x with its i th coordinate flipped) ] � n�1+o(1):

Analogously, a key lemma in our lower bounds shows that AC0 functions f : fsubgraphs
of G"ng ! f0; 1g have what might be termed “low average H -subgraph sensitivity on
X�”.

Definition 3.1. For any graph F , let B(F ) denote the set of functions fsubgraphs of
F g ! f0; 1g.
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We say that a function f 2 B(F ) depend on all coordinates if for every e 2 E(F ),
there exists a subgraph F 0 � F such that f (F 0) ¤ f (F 0 � e) where F 0 � e is the graph
with edge set E(F 0) n feg (in other words, if f depends on all coordinates when viewed
as a Boolean function f0; 1gjE(F )j ! f0; 1g).

For a function f 2 B(F ) and graphs X; H � F ,

• let f [X 2 B(F ) denote the function f [X (F 0) := f (X [ F 0) and

• let f �H 2 B(H ) denote the restriction of f to domain fsubgraphs of H g.

Note that the function f [X �H 2 B(H ) depends on all coordinates if, and only if, for
every e 2 E(H ), there exists a subgraph H 0 � H such that f (X [ H 0) ¤ f (X [ (H 0 �

e)).

Fix any graph G and threshold weighting � . Consider any subgraph H � G and let ˛

be a uniform random element of [n]V (H), independent of X� . For a function f 2 B(G"n),
we consider the randomly restricted function f [X� �H (˛) 2 B(H (˛)). When f is AC0-
computable, the following lemma from Li, Razborov, and Rossman [2014] bounds the
probability that f [X� �H (˛) depends on all coordinates.

Lemma 3.2 (H -subgraph sensitivity of AC0 functions). Suppose f 2 B(G"n) is an AC0-
computable sequence of functions. Then for every subgraph H � G,

Pr
X� ; ˛2[n]V (H)

[ f [X� �H (˛) depends on all coordinates ] � n�∆� (H)+o(1):

When∆� (H ) > 0, the n�∆� (H)+o(1) bound of Lemma 3.2 is nontrivial and moreover
tight. However, note that this lemma says nothing when ∆� (H ) = 0, in particular when
H = G. The main tools in the proof are the Switching Lemma of Håstad [1986], which
shows that random restrictions simplify AC0 circuits, and Janson’s Inequality, which im-
plies lower tail bounds for random variables subH (X� ) Janson [1990]. The assumption
that f is AC0-computable is necessary, as for instance if f is the ඉൺඋංඍඒ function (map-
ping X � G"n to jE(X)j mod 2), then the restricted function f [X� �H (˛) depends on all
coordinates with probability 1. (In the case that H is a single-edge subgraph of G, Lemma
3.2 essentially equivalent to aforementioned bound on the average sensitivity of AC0 func-
tions, only with respect to a product distribution rather than the uniform distribution.)

The next lemma from Rossman [2015] is an analogue of Lemma 3.2 in the mono-
tone setting. It shows that every monotone function, irrespective of its monotone circuit
complexity, has “low average H -subgraph sensitivity of f on X�” in a different sense.
Namely, we consider the event that H (˛) is a common minterm of f and f [X� (i.e.,
f (H (˛)) = 1 and f [X� (H (˛) � e) = 0 for every e 2 E(H (˛))).
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Lemma 3.3 (H -subgraph sensitivity of monotone functions). For every monotone func-
tion f 2 B(G"n) and subgraph H � G,

Pr
X� ; ˛2[n]V (H)

[ H (˛) is a common minterm f and f [X� ] � n�∆� (H)+o(1):

In Section 5.3 we explain how Lemma 3.3 is used in place of Lemma 3.2 to derive
lower bounds for monotone circuits and formulas using the same framework as our AC0

lower bounds.

4 The AC0 circuit size of SUB(G)

This section presents results of Li, Razborov, and Rossman [2014] which characterize the
average-case AC0 circuit size of SUB(G) on X� for any G and � in terms of a combinato-
rial invariant �� (G). This invariant is defined by dual min-max and max-min expressions.

Definition 4.1. A union family for a graph G is a set F of subgraphs of G such that
G 2 F and every F 2 F with at least two edges is the union of two proper subgraphs
which both belong to F (i.e., there exist proper subgraphs F1; F2 � F with F1 [ F2 = F

and F1; F2 2 F ). Intuitively, F is a blueprint for constructing G out of individual edges
by taking pairwise unions of subgraphs.

A hitting family for G is a set H of subgraphs of G such that F \ H ¤ ¿ for every
union family F for G.

For any threshold weighting � on G, the invariant �� (G) is defined by the pair of dual
expressions

�� (G) := min
union families F

max
F 2F

∆� (F ) = max
hitting families H

min
H2H

∆� (H ):

Example 4.2. We illustrate these definitions by working through an example. Let Kk

be the k-clique graph (i.e., the complete graph of order k � 2) and let � be the constant
threshold weighting 2

k�1
. We will show that �� (Kk) = k

4
+ O( 1

k
) by constructing a

union family F and a hitting family H that witness matching upper and lower bounds for
�� (Kk).

Let F be the set of subgraphs F � Kk such that F is either a clique (i.e., a complete
subgraph KI � Kk where I � [k] with jI j � 2) or a clique minus a single edge. Note
that F is a union family for Kk , as Kk 2 F and every graph in F with at least two
edges is the union of two proper subgraphs in F (e.g., Kf1;:::;j g minus the edge f1; j g is
the union of Kf1;:::;j �1g and Kf2;:::;j g). A straightforward calculation shows �� (Kk) �

maxF 2F ∆� (F ) = maxF 2F jV (F )j �
2

k�1
jE(F )j = k

4
+ O( 1

k
), where this maximum

over F 2 F is attained by a clique of size d
k
2
e minus a single edge.
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To obtain a matching lower bound on �� (Kk), we consider the hitting family H con-
sisting of subgraphs H � Kk such that jV (H )j �

k
2
and H = H1 [H2 for some H1; H2

satisfying jV (H1)j; jV (H2)j < k
2
. The minimum of∆� (H ) overH 2 H is again attained

by a clique of size d
k
2
e minus a single edge. This shows that the k

4
+ O( 1

k
) upper bound

coming from F is tight.

Example 4.3. If G is an r-regular expander and � = 2
r
, then we obtain a lower bound

�� (G) = Ω(jV (G)j) (for a constant depending on the edge-expansion of G) by consider-
ing the hitting family fH � G : 1

3
�

jV (H)j
jV (G)j

< 2
3
g.

We next state the main theorem of Li, Razborov, and Rossman [2014] and outline its
proof.

Theorem 4.4. For every graphG and threshold weighting � , the average-case AC0 circuit
size of SUB(G) on X� is at least n�� (G)�o(1) and at most n2�� (G)+O(1).

Theorem 4.4 together with Examples 2.6 and 4.2 imply a lower bound of Ω(nk/4) on
the AC0 circuit size of the average-case k-ർඅංඊඎൾ problem on Gn;p at the threshold p =

Θ(n�2/(k�1)).

The upper bound. We give a high-level description of an algorithm that solves SUB(G)

a.a.s. correctly onX� in time n2�� (G)+O(1), omitting details of the implementation by AC0

circuits. We use the fact that, with high probability, subH (X� ) is at most n∆� (H)+o(1) for
all H � G (by Markov’s inequality). Fix an optimal union family F such that �� (G) =

maxF 2F ∆� (F ). Also fix an enumeration F1; : : : ; Fm of graphs in F such that Fm = G

and each Fi is either a single edge or the union of two previous graphs in the sequence. In
order for k = 1; : : : ; m, the algorithm will compile a list of all Fk-subgraphs in X� . When
Fk is a single edge, this takes time O(n2). When Fk = Fi [ Fj for i; j < k, this is done
by examining each pair of subgraphs F

(˛)
i � X� and F

(ˇ)
j � X� from the previously

compiled lists: if ˛v = ˇv for all v 2 V (Fi )\ V (Fj ), then F
(˛[ˇ)

k
is added to the list of

Fk-subgraphs. Compiling this list therefore takes time O(subFi
(X� ) �subFj

(X� )), which
with high probability is at most n∆� (Fi )+∆� (Fj )+o(1) � n2�� (G)+o(1). Since there are
only O(1) (at most 2jE(G)j) lists to compute and nonemptiness of the final list determines
whether X� contains a G-subgraph, this algorithm has expected time n2�� (G)+O(1).

The lower bound. Let C be a sequence of AC0 circuits of size n�� (G)�Ω(1) which com-
pute functions f 2 B(G"n). Our goal is to show that f does not agree with SUB(G) a.a.s.
on X� . We consider the randomly restricted function f [X� �G(˛) where ˛ is a uniform
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random element of [n]V (G) independent of X� . We will show that

Pr[ f [X� �G(˛) depends on all coordinates ] = o(1):(4-1)

Inequality 4-1 uses Lemma 3.2 on the “H -subgraph sensitivity” of AC0 functions. How-
ever, (4-1) does not follow by directly applying Lemma 3.2 to f with H = G (as the
n�∆� (H)+o(1) bound of Lemma 3.2 is trivial when H = G). Rather, we apply Lemma 3.2
to all functions g computed by subcircuits of C with respect to all subgraphs H � G

which come from an optimal hitting family for G. We present the argument in detail in a
moment.

On the other hand, we show that every function f 2 B(G"n) which agrees with
SUB(G) a.a.s. on X� satisfies

Pr[ f [X� �G(˛) depends on all coordinates ] = Ω(1):(4-2)

Since (4-1) and (4-2) are contradictory for sufficiently large n, we conclude that functions
f computed by C do not solve SUB(G) on X� .

We first justify (4-2), which is the more straightforward inequality. To illustrate the gen-
eral idea, we make the stronger assumption that f coincides with SUB(G) on all inputs
and we further assume that � is strict. In this case, Proposition 2.4 implies that X� has no
G-subgraph with probability 1

e
� o(1). A straightforward union bound shows that, a.a.s.,

if X� has no G-subgraph, then neither does X� [ H (˛) for any proper subgraph H � G.
(By “H (˛)” we mean H (˛V (H)), which is a uniform random H -subgraph of G"n indepen-
dent of X� .) It follows that, with probability 1

e
� o(1), the randomly restricted function

f [X� �G(˛) 2 B(G(˛)) outputs 1 on G and 0 on every H � G (i.e., f [X� �G(˛) is the
AND function over coordinates G(˛)). Since this function depends on all coordinates, in-
equality 4-2 follows. (When we only assume that f agrees with SUB(G) a.a.s. onX� , this
argument additionally requires showing that the total variation distance between random
graphs X� and X� [ H (˛) is 1 � Ω(1) for every H � G.)

Onto the more interesting inequality (4-1), showing that a.a.s. f X� �G(˛) does not de-
pend on all coordinates. Let G � B(G"n) be the set of functions computed by subcircuits
of C . For every g 2 G and H � G, Lemma 3.2 implies that the randomly restricted
function g[X� �H (˛) depends on all coordinates with probability at most n�∆� (H)+o(1).
Let us now fix an optimal hitting family H � fsubgraphs of Gg such that �� (G) =

minH2H ∆� (H ). Taking a union bound over g 2 G and H 2 H, we have

(4-3) Pr[ (9g 2 G)(9H 2 H) g[X� �H (˛) depends on all coordinates ]

� jGj � jHj � n��� (G)+o(1) = o(1)

since jGj � size(C ) = n�� (G)�Ω(1) and jHj � 2jE(G)j = O(1). Inequality (4-1) now
follows by combining (4-3) with the following non-probabilistic claim.
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Claim 4.5. For any X � G"n and ˛ 2 [n]V (G), if f [X �G(˛) depends on all coordinates,
then there exist g 2 G and H 2 H such that g[X �H (˛) depends on all coordinates.

To prove Claim 4.5, assume f [X �G(˛) depends on all coordinates. Let F be the family
of subgraphs F � G for which there exists g 2 G such that g[X �F (˛) depends on all
coordinates. It suffices to show that F is a union family for G. The claim then follows
from the fact that F \ H is nonempty (since H is a hitting family for G). To show that F
is a union family, we first note that G 2 F (by the assumption that f [X �G(˛) depends on
all coordinates).

Now consider any F 2 F with � 2 edges. It remains to show that F is the union
of two proper subgraphs which belong to F . By definition of F and G, there exists a
function g 2 B(G"n) computed by a subcircuit of C such that g[X �F (˛) depends on all
coordinates. Fix a choice of g computed by a subcircuit of minimal depth in C . Since
g[X �F (˛) depends on � 2 coordinates (namely all edges of F (˛)), it cannot correspond
to an input of C and must therefore come from a gate of C . Let g1 and g2 be the functions
computed by the two subcircuits feeding into this gate. The function g is thus either g1^g2

or g1 _ g2.
For i = 1; 2, letFi be the graph consisting of edges fv; wg 2 E(F ) such that g[X

i �F (˛)

depends on the corresponding edge fv(˛v); w(˛w)g 2 E(F (˛)). Observe that the function
g[X

i �F
(˛)

i
2 B(F

(˛)
i ) depends on all coordinates. Therefore, Fi 2 F . Next, note that Fi

must be proper subgraph of F by the minimality in our choice of g. Finally, observe that
F = F1 [ F2 (since if g depends on a given coordinate in E(F ), then so must one or
both of g1 and g2, and the same is true after applying the restriction [X �F (˛) to all three
functions). As we have shown that F is the union of two proper subgraphs which belong
to F , this completes the proof.

By a similar argument, we obtain a similar n�� (G)�o(1) lower bound on the monotone
circuit size of SUB(G). In this argument, Lemma 3.3 plays the role of Lemma 3.2 in
bounding the “H -subgraph sensitivity” of each subcircuit. However, as we explain in
Section 5.3, for most patterns G, the lower bound we obtain in the monotone setting is
only worst-case, or average-case under a non-product distribution.

4.1 Tree-width. Tree-width, denoted tw(G), is an important invariant that arises fre-
quently in parameterized complexity and several areas of graph theory. Roughly speaking,
it measures the extent to which a graph is “tree-like”: trees and forests have tree-width 1,
while the complete graph of order k has tree-width k � 1.

In the introduction, it was mentioned that the G-subgraph isomorphism problem is
solvable in time O(ntw(G)+1) for all patterns G. In fact, SUB(G) is solvable by monotone
AC0 circuits of size O(ntw(G)+1). If we compare this upper bound to the lower bound of
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Theorem 4.4, we see that max� �� (G) � tw(G)+1. The next proposition shows that this
inequality is nearly tight.

Proposition 4.6. Every graph G admits a threshold weighting � such that �� (G) =

Ω(tw(G)/log tw(G)).

Proof. Wewill use a lemma of Grohe andMarx [2009] which states that, for every G with
tree-width k, there exists a set W � V (G) of size jW j = Ω(k) together with a concurrent
flow on G with vertex-capacity 1 which routes Ω( 1

k logk
) units of flow between every pair

of vertices in W . This concurrent flow is easily transformed to a Markov chain M on G

(in the sense of Example 2.5) with the property that ∆M (H ) = Ω( jV (H)\W j�jV (H)nW j

k logk
)

for all H � G. We now consider the hitting family H consisting of subgraphs H � G

such that 1
3

�
jV (H)\W j

jW j
< 2

3
(similar to Example 4.3). This gives the bound �M (G) �

minH2H ∆M (H ) = Ω( k
logk

)with respect to the thresholdweighting fv; wg 7! M (v; w)+

M (w; v) induced by M .

We remark that the upper bound max� �� (G) � tw(G)+1 has a direct proof that does
not appeal to Theorem 4.4. In fact, the next proposition shows that max� �� (G) is at most
the branch-width of G, an invariant that is related to tree-width by bw(G) � tw(G)+1 �
3
2
bw(G) Robertson and Seymour [1991].

Proposition 4.7. �� (G) � bw(G) for every threshold weighting � on G.

Proof. Branch-width admits a simple characterization in terms of union families:

bw(G) = min
complement-closed union families F

max
F 2F

jV (F ) \ V (F )j:

Here complement-closed means F 2 F ) F 2 F where F is the graph with E(F ) =

E(G) n E(F ). It follows from the definition of threshold weighting that ∆� (F ) �

∆� (F )+∆� (F ) = jV (F )\V (F )j for every threshold weighting � and subgraph F � G.
Therefore, �� (G) = minunion families F maxF 2F ∆� (F ) � bw(G):

5 The restricted formula size of SUB(G)

In this section we sketch an extension the lower bound technique that yields quantitatively
stronger lower bounds for formulas vis-à-vis circuits in both the AC0 and monotone set-
tings. The improvement is significant for patterns of constant tree-width such as paths
and cycles where SUB(G) is computable by polynomial-size circuits but is conjecture to
require super-polynomial size formulas.

An outline of this section is as follows. In Section 5.1 we introduce the key notion
of pathsets (relations A � [n]V (H) that satisfy certain density constraints related to the
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bounds on “H -subgraph sensitivity” given by Lemmas 3.2 and 3.3). We then define path-
set formulas, which are a tree-like model for constructing pathsets. In Section 5.2 we
describe a randomized reduction which transforms any AC0 formula that solves average-
case SUB(G) on X� into a pathset formula that computes a dense subset of [n]V (G). In
Section 5.3 we outline a similar transformation for monotone formulas.

In Section 5.4 we arrive at the combinatorial heart of the technique: an n�� (G)�o(1)

lower bound on the size of pathset formulas that compute a dense subset of [n]V (G). Here
�� (G) is an invariant of the threshold-weighted graphs, which plays an analogous role to
�� (G) in the context of formulas. Although �� (G) turns out to be much harder to compute,
we are able to bound �� (G) in a few special cases of interest, such as when G is a cycle,
path or complete binary tree. Finally, in Section 5.5 we discuss a relationship between
max� �� (G) and the tree-depth of G.

5.1 Pathset formulas. In what follows, we fix a graph G and a threshold weighting � ,
as well as n 2 N and an arbitrary “density parameter” " 2 [0; 1]. (In our applications, we
take " to be n1�o(1) and later n1/2�o(1).)

Definition 5.1. Let A � [n]V where V is any finite set. (We regard A as a “V -ary relation
with universe [n]”.) The density of A is defined by

�(A) := Pr
˛2[n]V

[ ˛ 2 A ] (= jAj/njV j).

For S � V and ˇ 2 [n]S , the conditional density of A on ˇ is defined by

�(A j ˇ) := Pr
˛2[n]V

[ ˛ 2 A j ˛S = ˇ ]:

The join of relations A � [n]V and B � [n]W is the relation A ‰ B � [n]V [W

consisting of  2 [n]V [W such that V 2 A and W 2 B.

Definition 5.2. Let H be a subgraph of G. An H -pathset (with respect to G; �; n; ") is a
relation A � [n]V (H) satisfying density constraints

�(A j ˇ) � "∆� (H1) for all H1 ] H2 = H and ˇ 2 [n]V (H2):(5-1)

Here the pair H1; H2 range over vertex-disjoint partitions of H (such that H1 [ H2 = H

and V (H1) \ V (H2) = ¿). Thus, if H has t connected components, then (5-1) includes
2t separate inequalities. Note that the inequality corresponding to H1 = H and H2 = ¿
(the empty graph) is �(A) � "∆� (H), while the inequality corresponding to H1 = ¿ and
H2 = H is vacuous since ∆� (¿) = 0. If H is connected, it follows that a relation A �

[n]V (H) is an H -pathset if and only if �(A) � "∆� (H). Finally, note that every relation
A � [n]V (G) is a G-pathset since ∆� (G1) = 0 whenever G1 is a union of connected
components of G.
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Definition 5.3. A pathset formula (with respect to G; �; n; ") is a rooted binary tree F

together with an indexed family of relations fAf;H � [n]V (H)gf 2V (F ); H�G subject to
three conditions:

(i) Af;H is a H -pathset,

(ii) if f is a leaf and jE(H )j � 2, then Af;H = ¿,

(iii) if f is a non-leaf with children f1 and f2, then

Af;H �
S

H1;H2�H :H1[H2=H (Af1;H1
‰ Af2;H2

):

We view F as “computing” the family of pathsets fAfout;H gH�G (and in particular the
G-pathset Afout;G) where fout is the root of F .

5.2 Transforming AC0 formulas to pathset formulas. For any Boolean function f 2

B(G"n) and a subgraph H � G, let AX�

f;H
� [n]V (H) be the random relation defined by

AX�

f;H
:= f˛ 2 [n]V (H) : f [X� �H (˛) depends on all coordinatesg:

When f is AC0-computable, Lemma 3.2 is equivalent to the expectation bound
E[ �(AX�

f;H
) ] � n�∆� (H)+o(1). This can be extended to show that �(AX�

f;H
) >

n�(1�ı)∆� (H) with exponentially small probability for any constant ı > 0 (i.e., with prob-
ability exp(�Ω(nc)) where c > 0 depends on ı and the minimum nonzero value of ∆� ).
It is a small additional step to show that AX�

f;H
fails to be an H -pathset (with respect to

G; �; n and " = n�1+ı ) with exponentially small probability.
IfF is an AC0 formula, it follows that the family of relationsAX�

f;H
� [n]V (H) (indexed

by subformulas f of F and subgraphs H � G) a.a.s. constitutes a pathset formula. Con-
dition (i) of Definition 5.3 is established by taking a union bound, over the nO(1) pairs of
f and H , of the exponentially small probability that AX�

f;H
fails to be an H -pathset. Con-

ditions (ii) and (iii) both hold with probability 1 (by observations which appeared earlier
in the proof of Claim 4.5). Finally, if F solves SUB(G) a.a.s. correctly on X� , it follows
that the G-pathset computed by F is :99-dense with constant probability by an argument
similar to inequality (4-2).

5.3 Transforming monotone formulas to pathset formulas. Let F be a monotone
formula of polynomial size. As a first attempt to transformF to a pathset formula, for each
subformula f of F and subgraph H � G, let MX�

f;H
� [n]V (H) be the relation consisting

of ˛ 2 [n]V (H) such that H (˛) is a minterm of f [X� . This family of relations satisfies
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conditions (ii) and (iii) of Definition 5.3 with probability 1. (Condition (iii) follows from
the elementary fact that every minterm of f1 _ f2 is a minterm of f1 or f2, while every
minterm of f1 ^ f2 is the union of a minterm of f1 and a minterm of f2.) However,
the relation MX�

f;H
can fail to be an H -pathsets with probability Ω(1/n) (e.g., if f is the

monotone threshold function f (X) = 1 , jE(X)j �
P

e2E(G) n2��(e)). This failure
probability is too large for us to establish condition (i) by taking a union bound over pairs
f and H .

To get around this issue, we consider different relations defined in terms of an increas-
ing sequence EX� of random graphs X0

�
� � � � � Xm

�
where m = no(1). This sequence is

generated as X0
�
:= X� and X i

�
:= X i�1

�
[ Y i where Y i is an independent copy of the

G-colored Erdős–Rényi graph Gn; Ep where pe := n�(1�ı)�(e) for a small constant ı > 0

(i.e., each Y i is a sparse version of X� ). If f is a depth-d subformula of F , we say that
H (˛) is a persistent minterm of f [ EX� if it is a common minterm of f [X i

� and f [X
j

� for
some 0 � i < j � m with j � i =

�d+jE(H)j
jE(H)j

�
. Finally, we consider relations

P
EX�

f;H
:= f˛ 2 [n]V (H) : H (˛) is a persistent minterm of f [ EX� g:

The definition of persistent minterms ensures that, just like MX�

f;H
, this family of relations

satisfies conditions (ii) and (iii) of Definition 5.3 with probability 1. An extension of
Lemma 3.3 shows that P

EX�

f;H
fails to be an H -pathset (with respect to " = n�1+2ı ) with

exponentially small probability. A union bound now shows that this family of relations
a.a.s. satisfies condition (i), thus transforming F to a pathset formula.

In order for this pathset formula to compute a :99-dense G-pathset with constant prob-
ability, we require two additional assumptions: first, that F has depth O(logn) so that�depth(F )+jE(G)j

jE(G)j

�
� m = no(1) (this is without loss of generality by Spira [1971]); and sec-

ond, that F solves SUB(G) a.a.s. on both X� and Xm
�

(= X� [ Y 1 [ � � � [ Y m). This is
akin to solving SUBuncol(G) a.a.s. correctly on both Gn;p and Gn;p+p1+ı , or alternatively
on a convex combination of these random graphs. The lower bounds that we obtain in the
monotone setting are therefore merely worst-case, or average-case under a non-product
distribution.

However, in the special case of G = Ck and � = 1 (corresponding to the average-
case k-ർඒർඅൾ problem on Gn;p at the threshold p = Θ(1/n)), we may take each Y i to
be the union of n1/2�ı random paths of length k. In this case we are able to show that
relations P

EX�

f;H
are pathsets with respect to density parameter " = n1/2�2ı . Moreover,

random graphs X� and Xm
�

have total variation distance o(1). As a result, we obtain an
average-case lower bound for SUB(G) on X� alone.
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5.4 Pathset complexity. At this point, we are left with the task of proving lower bounds
on the size of pathset formulas computing dense G-pathsets. This is by far the hardest part
of the overall technique. Here we present only a brief outline. We introduce a family of
complexity measures, each associated with different union family. However, rather than
viewing a union family as a set of subgraphs of G, we explicitly consider the underlying
tree structure.

Definition 5.4. A union tree A is a rooted binary tree whose leaves are labeled by edges
of G. We denote by GA the subgraph of G formed by the edges that label the leafs in
A. We say that A is an H -union tree if GA = H . For union trees A and B , let hA; Bi

denote the union tree consisting of a root attached to A and B (with GhA;Bi = GA [ GB ).
Notation A � B denotes that A is a subtree of B formed by a node of B together with all
of its descendants.

Definition 5.5. Pathset complexity (with respect to G; �; n; ") is the unique pointwise
maximal family of functions �A : fGA-pathsetsg ! N, one for each union tree A, subject
to the following inequalities:

• �A(A) � 1 whenever A is a union tree of size 1,

• �A(A) �
P

i �A(Ai ) whenever A �
S

i Ai ,

• �A(A) � maxf�B(B); �C (C)g whenever A = hB; C i and A � B ‰ C.

Pathset complexity gives lower bounds on pathset formula size (and by extension lower
bounds on AC0 formula size and monotone formula size). We describe the relationship
between pathset formula size and pathset complexity in terms of a parameter �� (G), which
plays an analogous role to �� (G) in our formula lower bounds.

Definition 5.6. For each union tree A, let ΦA be the maximum constant (depending on G

and � alone) such that the inequality �A(A) � (1/")ΦA ��(A) holds for every GA-pathset
A and every setting of parameters n and ". The invariant �� (G) is defined as the minimum
value of ΦA over G-union trees A.

For comparison, note that the invariant �� (G) equals the minimum value of maxA0�A

∆A0 over G-union trees A, writing ∆A0 to abbreviate ∆� (GA0). The constant ΦA thus
plays a similar role in our formula lower bounds as maxA0�A ∆A0 in our circuit lower
bounds.

It follows from the above definitions, though not entirely straightforwardly, that any
pathset formula F computing a :99-dense G-pathset (i.e., such that �(Afout;G) � :99)
must have sizeΩ((1/")�� (G)). (ThisΩ(�) hides a factor of (1/2)2jE(G)j , which arises from
partitioning Afout;G according to a union tree that accounts for the construction of each of
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its elements in F .) Combined with the reduction outlined in Section 5.2, this implies the
following lower bound, which is a version of Theorem 4.4 for AC0 formulas.

Theorem 5.7 (Rossman [2014a]). The average-case AC0 formula size of SUB(G) on X�

is at least n�� (G)�o(1).

Using the reduction outlined in Section 5.3, we get the following lower bounds in the
monotone setting.

Theorem 5.8 (Rossman [2015]). For allG and � , the worst-case monotone formula (resp.
circuit) size SUB(G) is at least n�� (G)�o(1) (resp. n�� (G)�o(1)). In the case ofG = Ck and
� = 1, the average-case monotone formula size of SUB(G) onX� is at least n 1

2 �� (G)�o(1).

It remains to prove lower bounds on �� (G), especially in cases of interest like G = Ck

and � = 1. This requires us to prove lower bounds on constants ΦA for every possible
G-union tree A. In principle, this is a problem in the realm of graph theory, since ΦA

depends on G and � alone. Unfortunately, we do not have any nice expression for ΦA,
nor even an efficient method of computing these constants. Nevertheless, we are able to
deduce some useful inequalities. For starters, it is simple to show that ΦA � ∆A and
moreover ΦA � ∆A0 for every A0 � A. However, this merely amounts to the inequality
�� (G) � �� (G), which is the unsurprising fact that our formula lower bounds are not
weaker than our circuit lower bounds.

To derive stronger lower bounds onΦA, we make use of structural properties of pathset
complexity:

• (projection lemma) �A0(projA0(A)) � �A(A) for all union trees A0 � A and every
GA-pathset A, where projA0(A) � [n]V (GA0 ) is the projection of A to coordinates
in V (GA0),

• (restriction lemma) �A�H1
(A j ˇ) � �A(A) for every vertex-disjoint partition

GA = H1 ] H2 and ˇ 2 [n]V (H2), where A�H1 is the union tree obtained from A

by deleting every leaf that is labeled by an edge of H2.

These lemmas allow us to derive two useful inequalities on constants ΦA: for all union
trees A = hB; C i and B 0 � B and C 0 � C ,

ΦA � ΦB0 +∆C +∆A	C ;(5-2)
ΦA �

1
2
(ΦB0 +ΦC 0	B0 +∆A +∆A	hB0;C 0i):(5-3)

Here 	 is the following operation on union trees: A	B is the union tree obtained from A

by deleting every leaf that is labeled an edge whose connected component in GA contains
any vertex of GB .
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In the case of G = Ck and � = 1, inequalities (5-2) and (5-3) can be used to show that
�� (G) �

1
6
log2(k). This yields the following corollary of Theorems 5.7 and 5.8.

Corollary 5.9. AC0 formulas, as well as monotone formulas, which solve the average-
case k-ਃਙਃਅ problem on Gn;p at the threshold p = Θ(1/n) require size nΩ(logk).

In unpublished work in progress, we explore an additional inequality on constant ΦA.
Consider any root-to-leaf branch in a union tree A, and let A1; : : : ; Am enumerate the
union trees hanging off this branch in any order. For example, we might have A =

hA3; hhA1; hA5; A2ii; A4ii. For all such A and A1; : : : ; Am, there is an inequality

ΦA � ∆A1
+∆A2	A1

+∆A3	(A1[A2) + � � � +∆Am	(A1[���[Am�1):(5-4)

Again in the case G = Ck and � = 1, using (5-4) we can show that if A is a G-union
tree with left-depth d (i.e., no root-to-leaf branch in A descends to the left more than d

times), then ΦA � Ω(dk1/d )� O(d ). This in turn leads to nearly tight tradeoffs between
the size and alternation-depth of AC0 formulas solving the average-case k-ർඒർඅൾ problem.
Inequality (5-4) is also useful in bounding �� (G) for additional patterns of interest, such
as complete binary trees.

5.5 Tree-depth. The tree-depth of a graph G, denoted td(G), is the minimum height of
a forest F with the property that every edge of G connects a pair of vertices that have an
ancestor-descendant relationship to each other in F (see Nešetřil and Ossona de Mendez
[2006]). Analogous to the relationship between tree-width and the circuit size, it turns out
that SUB(G) is solvable by monotone AC0 formulas of size O(ntd(G)). Comparing this
upper bound to the lower bound of Theorem 5.7, it follows that max� �� (G) � td(G).

Using a recent result in graph minor theory of Kawarabayashi and Rossman [2018], we
are able to show that max� �� (G) � td(G)c for all patterns G where c > 0 is an absolute
constant. This result reduces this inequality to three special cases when the pattern G is a
grid, a path, or a complete binary tree. By bounding max� �� (G) in these three cases, we
obtain anΩ(ntd(G)c

) lower bound on both the AC0 and monotone formula size of SUB(G)

for arbitrary patterns G.
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Abstract
In recent years, a new “fine-grained” theory of computational hardness has been

developed, based on “fine-grained reductions” that focus on exact running times for
problems. Mimicking NP-hardness, the approach is to (1) select a key problem X that
for some function t , is conjectured to not be solvable by any O(t(n)1�") time algo-
rithm for " > 0, and (2) reduce X in a fine-grained way to many important problems,
thus giving tight conditional time lower bounds for them. This approach has led to the
discovery of many meaningful relationships between problems, and to equivalence
classes.

The main key problems used to base hardness on have been: the 3-SUM problem,
the CNF-SAT problem (based on the Strong Exponential Time Hypothesis (SETH))
and the All Pairs Shortest Paths Problem. Research on SETH-based lower bounds
has flourished in particular in recent years showing that the classical algorithms are
optimal for problems such as Approximate Diameter, Edit Distance, Frechet Distance
and Longest Common Subsequence.

This paper surveys the current progress in this area, and highlights some exciting
new developments.

1 Introduction

Arguably the main goal of the theory of algorithms is to study the worst case time com-
plexity of fundamental computational problems. When considering a problem P , we fix
a computational model, such as a Random Access Machine (RAM) or a Turing machine
(TM). Then we strive to develop an efficient algorithm that solves P and to prove that for
a (hopefully slow growing) function t(n), the algorithm solves P on instances of size n

in O(t(n)) time in that computational model. The gold standard for the running time t(n)

is linear time, O(n); to solve most problems, one needs to at least read the input, and so
linear time is necessary.
MSC2010: primary 68Q17; secondary 68Q25.
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The theory of algorithms has developed a wide variety of techniques. These have
yielded near-linear time algorithms for many diverse problems. For instance, it is known
since the 1960s and 70s (e.g. Tarjan [1971, 1972, 1974] and Hopcroft and Tarjan [1974])
that Depth-First Search (DFS) and Breadth-First Search (BFS) run in linear time in graphs,
and that using these techniques one can obtain linear time algorithms (on a RAM) for many
interesting graph problems: Single-Source Shortest paths, Topological Sort of a Directed
Acyclic Graph, Strongly Connected Components, Testing Graph Planarity etc. More re-
cent work has shown that even more complex problems such as Approximate Max Flow,
Maximum Bipartite Matching, Linear Systems on Structured Matrices, and many others,
admit close to linear time algorithms, by combining combinatorial and linear algebraic
techniques (see e.g. Spielman and Teng [2004], Christiano, Kelner, Madry, Spielman, and
Teng [2011], Spielman and Teng [2014], Madry [2013, 2016], Cohen, Madry, Sankowski,
and Vladu [2017], Cohen, Madry, Tsipras, and Vladu [2017], Cohen, Kelner, Peebles,
Peng, Rao, Sidford, and Vladu [2017], Cohen, Y. T. Lee, Miller, Pachocki, and Sidford
[2016], and Y. T. Lee and Sidford [2014]).

Nevertheless, for most problems of interest, the fastest known algorithms run much
slower than linear time. This is perhaps not too surprising. Time hierarchy theorems
show that for most computational models, for any computable function t(n) � n, there
exist problems that are solvable inO(t(n)) time but are NOT solvable inO(t(n)1�") time
for " > 0 (this was first proven for TMs Hartmanis and Stearns [1965], see Papadimitriou
[1994] for more).

Time hierarchy theorems are proven by the diagonalization method pioneered by Can-
tor in the 19th century. Unfortunately, however, these theorems say almost nothing about
particular problems of interest. Consider for instance the ubiquitous Boolean Satisfiabil-
ity (SAT) problem: given a Boolean expression F over n variables and Boolean operators
AND, OR and NOT, is there a Boolean assignment to the variables that makes F evaluate
to true?

A simple algorithm to solve SAT is to try all possible 2n assignments and evaluateF on
each of them. The runtime depends on how F is represented. In Circuit-SAT, F is given
as a (directed acyclic) circuit with AND, OR and NOT gates, n input gates representing
the variables and a designated output gate. The evaluation of a circuit can be performed
in O(m + n) time, where m is the number of gates and wires, by evaluating its gates in
topological order. A much more structured version of SAT is CNF-SAT. Here, F is given
as a Boolean expression in Conjunctive Normal Form (CNF): an AND of m clauses that
are ORs of literals (variables and their negations), i.e. one needs to satisfy every clause by
setting at least one literal to TRUE. A CNF-Formula can be evaluated in O(m + n) time.
Regardless, of the representation, Circuit or CNF, the enumeration of all 2n assignments
dominates if m is, say, subexponential.
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When the maximum clause length is a constant k, CNF-SAT can be solved in
O�(2n�cn/k) time for constant c independent of n and k (see e.g., Hirsch [1998], Monien
and Speckenmeyer [1985], Paturi, Pudlák, and Zane [1999], Paturi, Pudlák, Saks, and
Zane [2005], Schiermeyer [1992], and Schöning [1999]). Nevertheless, as k grows, this
runtime approaches 2n, and the exhaustive search algorithm is essentially the best known
for general CNF-SAT. For general Circuit-SAT, there is no better algorithm known than
exhaustive search.

A natural question then is, can one prove, for a robust model of computation, that this
2n runtime dependence is inherent to the problem? Unfortunately, such a result is very
far from current techniques in computational complexity. In fact, it is not even known
whether SAT can be solved in linear time!

The only known superlinear runtime lower bounds for SAT are obtained by restricting
the algorithms, for instance, to use only a small amount of space. The best of these is by
R. Williams R. R. Williams [2008] who showed that if an algorithm running on a RAM
uses no(1) space, then it requires at least n2 cos(�/7)�o(1) � Ω(n1:8) time to solve SAT on
n variables. This runtime lower bound is very far from the 2n upper bound, and in fact,
Buss andWilliams showed Buss and R. Williams [2012] that this is the best result one can
obtain with known techniques.

Since unconditional lower bounds seem so challenging to derive, the computer science
community has long resorted to lower bounds that are conditioned on plausible, but so far
unproven hypotheses. One of the most commonly used hardness hypotheses is P ¤ NP.
The hypothesis is formally about decision problems— problems whose outputs are binary
— YES or NO. E.g. CNF-SAT is the decision problem that asks whether the given CNF
formula is satisfiable. P is the set of decision problems that can be decided by a polyno-
mial time algorithm1 on a TM. NP is the set of decision problems that have polynomial
time algorithms (on a TM) that can verify a polynomial sized solution to the instance2:
e.g. CNF-SAT is in NP because we can check in polynomial time if any given Boolean
assignment satisfies the formula.

P vs NP asks whether all decision problems that can be verified in polynomial time (in
the sense of the above paragraph), can also be decided in polynomial time. P vs NP is one
of the most famous open problems in computer science. It is one of the Clay Millennium
problems. While current techniques seem very far from resolving this problem, most
researchers believe that P ¤ NP.

The most fascinating implication of the P¤ NP hypothesis is that many problems such
as SAT cannot be solved in polynomial time. A problem A is NP-hard if every instance of

1When we say polynomial, we mean O(nc) for constant c > 0, where n is the size of the input instance.
2More formally, � 2NP if there is a polynomial time algorithm V such that if x is a YES instance of � ,

then there is a string y of size O(jxjc) for some constant c, such that V (x; y) returns YES, and if x is a NO
instance, V (x; y) returns NO for all y.



3468 VIRGINIA VASSILEVSKA WILLIAMS

every problem in NP can be encoded in polynomial time as an instance of A. A problem
in NP which is NP-hard is called NP-Complete.

Clearly, if an NP-hard problem has a polynomial time algorithm, then P = NP. Thus,
if we assume that P ¤ NP, no NP-hard problem can have a polynomial time algorithm.
Starting with the work of Cook and Levin (who showed that SAT is NP-complete) and
Karp (who added 21 more NP-complete problems), NP-hardness took off. Now there are
many thousands of problems known to be NP-hard.

NP-hardness is arguably the biggest export of theoretical computer science (TCS) to
other disciplines. It is routinely used to explain why it is so hard to find efficient algo-
rithms for problems occurring in practice, and why one should probably use specialized
algorithms and heuristics to solve them.

P and NP are defined for TMs. However, due to polynomial time reductions between
computational models (see van Emde Boas [1990] for a thorough treatment), whether we
consider a TM or a RAM in the definition of P and NP does not actually matter. P vs
NP is essentially model-independent. This model-independence was one of the reasons to
focus on polynomial time as a model of efficiency. (Another simple reason is that polyno-
mials compose into polynomials.) Nevertheless, no-one would argue that all polynomial
runtimes are actually efficient. In fact, for today’s large inputs, even quadratic time is
inefficient.

There are many fundamental problems for which the fastest known algorithms run in
quadratic time or slower. A simple example is the Edit Distance problem, with many
diverse applications from computational biology to linguistics: given two strings ˛ and ˇ,
over some finite alphabet, what is the smallest sequence of symbol insertions, deletions
and substitutions that can be performed on ˛ to obtain ˇ?

The problem has a long history: a classical dynamic programming algorithm by Wag-
ner and Fischer [1974] runs in O(n2) time, and despite many efforts, the best known
algorithm Masek and Paterson [1980] only shaves a log2 n factor. On inputs where n is
in the billions (such as the human genome), quadratic runtime is prohibitive.

Another simple problem, from Computational Geometry, asks for a given set of points
in the plane, are any three colinear; conversely, are the points are in general position.
Before running a computational geometry algorithm, one typically needs to check this im-
portant primitive. Unfortunately, the best known algorithms for this Colinearity question
for n points run in n2�o(1), i.e. quadratic time.

There are many such examples within P, from a vast variety of research areas. Why has
it been so hard to find faster algorithms for such problems? Addressing this is impossible
using P ¤ NP as an assumption: no problem that is already in P can be NP-Complete,
unless P = NP. We need a different approach.
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The Fine-Grained Question. Let us delve further into the issue described above. From
now on let us fix the computational model to a word-RAMwithO(logn) bit words. Infor-
mally, this is a RAM machine that can read from memory, write to memory and perform
operations on O(logn) bit chunks of data in constant time. We can fix any computational
model; we pick the word-RAM because it is simple to work with.

When faced with a computational problem P , we can usually apply well-known algo-
rithmic techniques (such as dynamic programming, greedy, divide and conquer etc.) and
come up with a simple algorithm that runs in O(t(n)) time on inputs of size n.

Often this algorithm is obtained by the brute-force approach— enumerate all candidate
solutions in a search space. This is the case for SAT, but also for a large variety of other
problems.

Sometimes the simple algorithm is not brute-force but uses textbook techniques in the
natural way. Consider for instance the Longest Common Subsequence problem (LCS),
a simplified version of Edit Distance: given two sequences A and B of length n over
an alphabet Σ, determine the maximum length sequence S that appears in both A and
B , with symbols in the same order, but possibly not consecutively. For instance, an
LCS of (b; b; c; a; d; e) and (b; d; c; b; e) is (b; c; e). The textbook approach here is to
apply dynamic programming, concluding that LCS((b; b; c; a; d; e); (b; d; c; b; e)) is the
longest of LCS((b; b; c; a; d ); (b; d; c; b)) ˇ e, LCS((b; b; c; a; d; e); (b; d; c; b)), and
LCS((b; b; c; a; d ); (b; d; c; b; e)). The runtime is O(n2) since throughout the computa-
tion, one at most needs to memoize the computed longest common subsequences of n2

pairs of prefixes. (The textbook algorithm for Edit Distance is similar.)
More often than not, the obtained “textbook” running time seems difficult to improve

upon: improvements have been sought after for decades, and the simple algorithm has
stood almost unchallenged. We mentioned earlier that this is the case for CNF-SAT, Co-
linearity and Edit Distance. The situation is similar for LCS and Edit Distance (fastest
runtime O(n2/ log2 n) Masek and Paterson [ibid.] for constant size alphabet and other-
wise O(n2 log logn/ log2 n) Bille and Farach-Colton [2008] and Grabowski [2014]), and
for a large variety of other problems from all over computer science and beyond. The
central question that needs to be addressed is:

For each of the problems of interest with textbook runtime O(t(n)) and nothing much
better known, is there a barrier to obtaining an O(t(n)1�") time algorithm for " > 0?

Relatedly, is the reason for this difficulty the same for all problems of interest?

2 Fine-Grained Complexity (and algorithms)

We would like to mimic NP-Completeness. The approach will be as follows.
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1. We will identify some believable fine-grained hardness hypotheses. These will be
about specific conjectured running times for very well-studied computational prob-
lems.

2. Using fine-grained reductions we will show that for a problem with textbook run-
ning time t(n), obtaining anO(t(n)1�") time algorithm for " > 0would violate one
or more of the hypotheses. The reductions we employ cannot be mere polynomial
time reductions - they would have to be tailored to the specific textbook runtime
t(n). As we will see, they will differ in other ways as well from most reductions
used in traditional complexity.

We would also like to give equivalences, i.e. to show that problem A with textbook
running time a(n) and problem B with textbook running time b(n) are equivalent in the
sense that if A admits an a(n)1�" time algorithm for " > 0, then B admits an b(n)1�"0

time algorithm for some "0 > 0. This would mean that the reason why it has been hard to
improve on A and on B is the same.

In the following we will discuss some of the most prominent hardness hypotheses in
fine-grained complexity, and the reductions we employ to achieve fine-grained hardness.

2.1 Key Hypotheses. Much of fine-grained complexity is based on hypotheses of the
time complexity of three problems: CNF-SAT, All-Pairs Shortest Paths (APSP) and 3-
SUM. Below we will introduce these, and a few more related hypotheses. There are no
known reductions between CNF-SAT, APSP and 3-SUM: they are potentially unrelated.
All hypotheses are about the word-RAM model of computation with O(logn) bit words,
where n is the size of the input.

SETH.. Impagliazzo and Paturi [2001] introduced the Strong Exponential Time Hypoth-
esis (SETH) to address the complexity of CNF-SAT. At the time they only considered
deterministic algorithms, but nowadays it is common to extend SETH to allow random-
ization.

Hypothesis 1 (Strong Exponential Time Hypothesis (SETH)). For every " > 0 there
exists an integer k � 3 such that CNF-SAT on formulas with clause size at most k (the
so called k-SAT problem) and n variables cannot be solved in O(2(1�")n) time even by a
randomized algorithm.

As the clause size k grows, the lower bound given by SETH converges to 2n. SETH
also implies that general CNF-SAT on formulas with n variables and m clauses requires
2n�o(n)poly(m) time.

SETH is motivated by the lack of fast algorithms for k-SAT as k grows. It is a much
stronger assumption than P¤NP which assumes that SAT requires superpolynomial time.
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A weaker version, the Exponential Time Hypothesis (ETH) asserts that there is some con-
stant ı > 0 such that CNF-SAT requires Ω(2ın).

Both ETH and SETH are used within Fixed Parameter and Exponential Time algo-
rithms as hardness hypotheses, and they imply meaningful hardness results for a variety
of problems (see e.g. Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk,
and Saurabh [2015]). Because we are concerned with tight, fine-grained, runtime bounds,
we focus on SETH as opposed to ETH.

3-SUM Hypothesis. The 3-SUM problem is as follows: given a set S of n integers
from f�nc ; : : : ncg for some constant c, determine whether there are x; y; z 2 S such that
x + y + z = 0. A standard hashing trick allows us to assume that c � 3 + ı for any
ı > 0.3

Hypothesis 2 (3-SUM Hypothesis). 3-SUM on n integers in f�n4; : : : ; n4g cannot be
solved in O(n2�") time for any " > 0 by a randomized algorithm.

The hypothesis was introduced by Gajentaan and M. Overmars [1995] and Gajentaan
and M. H. Overmars [2012] who used it to show that many problems in computational
geometry require quadratic time, assuming that 3-SUM does. Quadratic lower bounds for
3-SUM are known in restricted models of computation such as the linear decision tree
model in which each decision is based on the sign of an affine combination of at most 3
inputs (see e.g. Erickson and Seidel [1995] and Erickson [1995]). However, in the more
general linear decision tree model, Kane et al. Kane, Lovett, and Moran [2017] show that
O(n log2 n) queries suffice to solve 3-SUM, so that such lower bounds should be taken
with a grain of salt.

The 3-SUM problem is very simple and has been studied extensively. The textbook
algorithm is a simple O(n2 logn) time enumeration algorithm: sort S and then for every
x; y 2 S , check if �z 2 S using binary search. An O(n2) runtime can be obtained by
traversing the sorted order of S in both directions. Baran, Demaine and Pǎtraşcu Baran, E.
Demaine, and Pǎtraşcu [2008] improved this running time to O(n2(log logn)2/ log2 n)

time. If the input numbers are real numbers instead of integers (now in the Real-RAM
model of computation), Jørgensen and Pettie [2014] gave anO(n2(log logn)2/3/ log2/3 n)

time algorithm. This runtimewas recently improved byChan [2018] ton2(log logn)O(1)/ log2 n,
almost matching the known running time for integer inputs.

3One can pick a random prime p that is between n and n3+ı . The number of distinct primes in this range
that can divide any particular sum of three input integers is O(1), and hence the total number of distinct primes
that can divide the sum of some three input integers is O(n3). However, there are Ω(n3+ı0

) primes in the
interval between n and n3+ı , for any 0 < ı 0 < ı , and the probability that p divides one of the sums from
S is � O(1/nı0

). We can then reduce 3-SUM mod p to three instances of the original 3-SUM problem with
integers in the range f�2p; : : : ; p � 1g — checking if x; y; z sum to 0,p or 2p.
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All-Pairs Shortest Paths (APSP).. The APSP problem is as follows: given an n node
graph G = (V; E), and integer edge weights w : E ! f�M; : : : ; M g for some M =

poly(n), compute for every u; v 2 V , the (shortest path) distance d (u; v) in G from u to
v, i.e. the minimum over all paths from u to v of the total weight sum of the edges of the
path. G is assumed to contain no negative weight cycles.

The textbook algorithm for APSP is the O(n3) time Floyd-Warshall algorithm from
the 1960s based on dynamic programming. Many other algorithms run in the same time.
For instance, one can run Dijkstra’s algorithm from every vertex, after computing new
nonnegative edge weights using Johnson’s trick Johnson [1977]. Following many poly-
logarithmic improvements (e.g. chan06; Fredman [1976]), the current best APSP running
time is a breakthrough n3/ exp(

p
logn) runtime by R. R. Williams [2014]. Despite the

long history, the cubic runtime of the textbook algorithm has remained unchallenged. This
motivates the APSP Hypothesis below, implicitly used in many papers (e.g. Roditty and
Zwick [2004]). Its first explicit use as a hardness hypothesis is in Vassilevska Williams
and R. Williams [2010].

Hypothesis 3 (APSP Hypothesis). No randomized algorithm can solve APSP in O(n3�")

time for " > 0 on n node graphs with edge weights in f�nc ; : : : ; ncg and no negative
cycles for large enough c.

2.2 Fine-grained reductions. Our goal is as follows. Consider problem A with text-
book runtime a(n) and problemB with textbook runtime b(n). Given a supposedO(b(n)1�")

time algorithm for B for " > 0, we would like to compose it with another algorithm (the
reduction) that transforms instances of A into instances of B , to obtain an algorithm for A

running in time O(a(n)1�"0

) time for "0 > 0 (a function of ").
The most common reductions used in complexity are polynomial time (or sometimes

logspace) reductions. For our purposes such reductions are not sufficient since we truly
care about the runtimes a(n) and b(n) that we are trying to relate, and our reductions need
to run faster than a(n) time for sure; merely polynomial time does not suffice. In turn, if
a(n) is super-polynomial, we would like to allow ourselves super-polynomial time in the
reduction – there is no reason to restrict the reduction runtime to a polynomial.

Beyond the time restriction, reductions differ in whether they are Karp or Turing re-
ductions. Karp (also called many-one) reductions transform an instance of A into a single
instance of B . Turing reductions are allowed to produce multiple instances, i.e. oracle
calls to B . If we restrict ourselves to Karp-style reductions, then we wouldn’t be able
to reduce a search problem to any decision problem: decision problems return a single
bit and if we only make one oracle call to a decision problem, in general we would not
get enough information to solve the original search problem. We hence use Turing-style
reductions.
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The most general definition is:

Definition 2.1 (Fine-grained reduction). Assume that A and B are computational prob-
lems and a(n) and b(n) are their conjectured running time lower bounds, respectively.
Then we say A (a; b)-reduces to B , A �a;b B , if for every " > 0, there exists ı > 0, and
an algorithm R for A that runs in time a(n)1�ı on inputs of length n, making q calls to
an oracle for B with query lengths n1; : : : ; nq , where

qX
i=1

(b(ni ))
1�"

� (a(n))1�ı :

If A �a;b B and B �b;a A, we say that A and B are fine-grained equivalent, A �a;b

B .

The definition implies that if A �a;b B and B has an algorithm with running time
O(b(n)1�"), then, A can be solved by replacing the oracle calls by the corresponding runs
of the algorithm, obtaining a runtime of O(a(n)1�ı) for A for some ı > 0. If A �a;b B ,
then arguably the reason why we have not been able to improve upon the runtimes a(n)

and b(n) for A and B , respectively, is the same.
Notice that the oracle calls in the definition need not be independent — the i th oracle

call might be adaptively chosen, according to the outcomes of the first i � 1 oracle calls.

3 Hardness results from SETH

SETH was first used to give conditional hardness for other NP-hard problems. For in-
stance, Cygan et al. Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh,
and Wahlström [2016] show that several other problems (such as k-Hitting Set and k-
NAE-SAT) are equivalent to k-SAT, in that an O(2(1�")n) time algorithm for " > 0 for
one of them (for all k) would imply such an algorithm for all of them, and would refute
SETH.

The introduction of SETH as a hardness hypothesis for polynomial time problems was
initiated by R. Williams R. Williams [2005]. Among other things, Williams shows that
the so called Orthogonal Vectors (OV) problem, a problem in quadratic time, requires
quadratic time under SETH. We will describe the reduction shortly.

Orthogonal Vectors. The OV problem, and its generalization k-OV, form the basis of
many fine-grained hardness results for problems in P.

The OV problem is defined as follows: Let d = !(logn); given two sets A; B �

f0; 1gd with jAj = jBj = n, determine whether there exist a 2 A; b 2 B so that a � b = 0

where a � b =
Pd

i=1 a[i ] � b[i ].
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The k-OV problem for constant k � 2 is the generalization of OV to k sets: Let
d = !(logn); given k sets A1; : : : ; Ak � f0; 1gd with jAi j = n for all i , determine
whether there exist a1 2 A1; : : : ; ak 2 Ak so that a1 � : : : � ak = 0 where a1 � : : : � ak :=Pd

i=1

Qk
j=1 aj [i ].

OV is a special case of Hopcroft’s problem: given two sets R and B of n vectors each
inRd , detect r 2 R, b 2 B such that hr; bi = 0 (an equivalent version that Hopcroft posed
is when we are given points and hyperplanes through the origin, and we want to detect a
point lying on one of the hyperplanes). The fastest algorithms for Hopcroft’s problem for
general d run in 2O(d)n2�Θ(d) time Matoušek [1993] and Chazelle [1993].

OV is equivalent to the Batch Subset Query problem from databases Ramasamy, Patel,
Naughton, and Kaushik [2000], Goel and Gupta [2010], Agrawal, Arasu, and Kaushik
[2010], and Melnik and Garcia-Molina [2003]: given two sets S and T of sets over [d ],
check if there is some s 2 S; t 2 T such that s � t . It is also known to be equivalent to
the classical Partial Match problem.

It is not hard to solve k-OV in O(nkd ) time by exhaustive search, for any k � 2.
The fastest known algorithms for the problem run in time nk�1/Θ(log(d/ logn)) Abboud,
R. R. Williams, and Yu [2015] and Chan and R. Williams [2016]. It seems that nk�o(1) is
necessary. This motivates the now widely used k-OV Hypothesis.

Hypothesis 4 (k-OVHypothesis). No randomized algorithm can solve k-OV on instances
of size n in nk�"poly(d ) time for constant " > 0.

Interestingly, Williams and Yu R. Williams and Yu [2014] show that the 2-OV Hypoth-
esis is false when operations are over the ring Zm, or over the field Fm for any prime
power m = pk . In the first case, OV can be solved in O(nd m�1) time, and in the second
case, in O(nd p(k�1) time. Although the problem is easier in these cases, R. Williams and
Yu [ibid.] actually also show that these runtimes cannot be improved very much, unless
SETH fails, so there is still some hidden hardness. Over Z6, it turns out that OV does still
require quadratic time under SETH: no n2�"d od (logd/ log logd) time algorithm " > 0 can
exist.

Gao et al. Gao, Impagliazzo, Kolokolova, and R. R. Williams [2017] show that OV
is complete for a large class of problems: the class of all first order properties. They
consider properties expressible by a first-order formula with k + 1 quantifiers on a given
structure withm records; checking if any such property holds can easily be done inO(mk)

time, and Gao, Impagliazzo, Kolokolova, and R. R. Williams [ibid.] give an improved
mk/2Θ(

p
logm) time algorithm. The completeness of OV is as follows. The First-Order

Property Conjecture (FOPC) Gao, Impagliazzo, Kolokolova, and R. R. Williams [ibid.]
asserts that there is some k � 2 s.t. for all " > 0 there is a first order property on k+1 quan-
tifiers that cannot be decided in O(mk�") time. Gao et al. Gao, Impagliazzo, Kolokolova,
and R. R. Williams [ibid.] show that FOPC is equivalent to the 2-OV hypothesis.
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Here we present Williams’ R. Williams [2005] result that k-OV requires essentially nk

time, under SETH. Afterwards we will see some applications of this result.

Theorem 3.1 (R. Williams [ibid.]). If k-OV on sets with N vectors from f0; 1gm can be
solved in N k�"poly(m) time for any " > 0, then CNF-SAT on n variables and m clauses
can be solved in 2(1�"0)npoly(m) time for some "0 > 0 and SETH is false.

Proof. Wepresent a fine-grained reduction fromCNF-SAT to k-OV. Let the given formula
F have n variables andm clauses. Split variables into k parts V1; : : : ; Vk on n/k variables
each. For every j = 1; : : : k create a set Aj containing a length m binary vector aj (�)

for every one of the N = 2n/k Boolean assignments � to the variables in Vj , where

aj (�)[c] = 0 if the cth clause of F is satisfied by �; and 1 otherwise.

The instance of k-OV formed by A1; : : : ; Ak has all jAj j = N = 2n/k .
Suppose that for some a1(�1) 2 A1; : : : ; ak(�k) 2 Ak , we have

P
c

Q
j aj (�j )[c] =

0, then for every clause c, there is some vector aj (�j ) that is 0 in clause c, and hence the
Boolean assignment �j to the variables in Vj satisfies clause c. Thus, the concatenation
�1 ˇ : : : ˇ �k is a Boolean assignment to all variables V of F that satisfies all clauses.
Conversely, if � satisfies all clauses, then we define �j to be the restriction of � to Vj ,
and we see that

P
c

Q
j aj (�j )[c] = 0, as every clause must be satisfied by some �j .

If k-OV on k sets of N vectors each in f0; 1gm can be solved in N k�"poly(m) time,
then CNF-SAT on n variables and m clauses can be solved in time (2n/k)k�"poly(m) =

2n�"0poly(m) time for "0 = "/k > 0. This contradicts SETH. �

We note that due to the Sparsification Lemma Impagliazzo and Paturi [2001], one can
assume that the n-variable `-CNF instance that one reduces to k-OV has O(n) clauses.
Thus, to refute SETH, one only needs to obtain an N k�"poly(d ) time algorithm for " > 0

for k-OV where the dimension d of the vectors is any slowly growing function of N that
is !(logN ), for instance d = log2 N .

Besides k-OV, Williams also considers the k-Dominating set problem: for a fixed con-
stant k, given an n node graph G = (V; E), determine whether there is a subset S � V

of size k so that for every v 2 V there is some s 2 S so that (s; v) 2 E. Williams
(R. Williams [2007b], later in Pǎtraşcu and R. Williams [2010]) shows via a reduction
from CNF-SAT, k-Dominating set requires nk�o(1) time. The reduction from CNF-SAT
to k-OV can be routed through k-Dominating Set, showing that that problem is in a sense
between CNF-SAT and k-OV.

The k-OV problem is the basis for most reductions from CNF-SAT to problems within
Polynomial Time. We will give two examples, and will then give a short summary of most
known results.
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It is simple to reduce k-OV to (k �1)-OV: go over all vectors in the first set, and solve
a (k � 1)-OV instance for each. Hence 2-OV is the hardest out of all k-OV problems.
Also, k-OV is potentially strictly harder than SETH. Thus, even if SETH turns out to be
false, the k-OV Hypothesis might still hold.

Orthogonal Vectors and Graph Diameter. Arguably the first reduction from SETH to
a graph problem in P is from a paper by Roditty and Vassilevska Williams [2013] that
considers the Diameter problem: given an n node, m edge graph G = (V; E), determine
its diameter, i.e. maxu;v2V d (u; v).

For directed or undirected graphs with arbitrary (real) edge weights, the fastest known
algorithm for the Diameter problem computes all the pairwise distances in G, solving
APSP. As mentioned earlier, the fastest known algorithm for APSP in dense graphs runs
in n3/ exp(

p
logn) time. For sparser graphs, the fastest known algorithms run in Õ(mn)

time4 Pettie and Ramachandran [2005], Pettie [2004], and Pettie [2008].
If the graph is unweighted, one can solve Diameter in Õ(n!) time, where ! < 2:373

Vassilevska Williams [2012] and Le Gall [2014] is the exponent of square matrix mul-
tiplication. If the graph has small integer edge weights in f0; : : : ; M g, Diameter is in
Õ(Mn!) time (see e.g. Cygan, Gabow, and Sankowski [2012]). However, since ! � 2,
all known algorithms for Diameter run inΩ(n2) time, even when the graph is unweighted,
and undirected5, and has m � O(n) edges.

With a simple reduction, Roditty and Vassilevska Williams [2013] show that under
SETH, the Diameter problem in undirected unweighted graphs with n nodes and O(n)

edges requires n2�o(1) time. Moreover, their reduction shows that under SETH, even
distinguishing between graphs with Diameter 2 and 3 requires n2�o(1) time, and hence no
3/2 � " approximation algorithm can run in O(n2�ı) time for "; ı > 0 even on sparse
graphs.

Chechik, Larkin, Roditty, Schoenebeck, Tarjan, and Vassilevska Williams [2014] ob-
tained a 3/2-approximation algorithm for Diameter that runs in Õ(m3/2) time in m-edge
graphs; their algorithm was based on a previous Õ(m

p
n) time algorithm from Roditty

and Vassilevska Williams [2013] that is a 3/2 approximation when the diameter is divisi-
ble by 3 (and slightly worse otherwise). This algorithm is thus in a sense optimal, under
SETH: it runs in truly subquadratic time in sparse graphs, but if one wants to improve
upon the approximation factor even slightly, all of a sudden n2�o(1) time is needed. An
Õ(n2) runtime in sparse graphs is very easy to achieve: just solve APSP by running BFS

4Õ(f (n)) denotes f (n)polylog(n).
5All shortest paths problems, including Diameter, are at least as hard in directed graphs as they are in undi-

rected graphs; similarly, they are at least as hard in weighted graphs as they are in unweighted graphs, and at
least as hard in denser graphs than they are in sparser graphs.
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(a) Reduction from OV to Diameter 2 vs 3.
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(b) Reduction from 3-OV to S -T -Diameter 3 vs
7.

Figure 1: Two reductions to Diameter Problems.

from every node! Thus, under SETH, there is essentially nothing more to do besides the
easy algorithm, for approximation below 3/2.

Theorem 3.2. If one can distinguish between Diameter 2 and 3 in an undirected un-
weighted graph with O(N ) nodes and edges in O(N 2�") time for some " > 0, then
2-OV on two sets of n vectors in d dimensions can be solved in n2�"poly(d ) time and
SETH is false.

Proof. Suppose we are given an instance of 2-OV,A,B of n vectors each in f0; 1gd , where
jAj = jBj = n. Let’s create a graph G as follows. See Figure 1a.

For every vector a 2 A, create a node a of G. For every vector b 2 B , create a node
b of G. For every i 2 [d ], create a node ci . We add two additional nodes x and y.

The edges are as follows. For every a 2 A and i 2 [d ], if a[i ] = 1, add an edge
between a and ci in G. Similarly, for every b 2 B and i 2 [d ], if b[i ] = 1, add an edge
between b and ci in G.

The edges incident to x are as follows: (x; a) for every a 2 A, (x; ci ) for every i 2 [d ]

and (x; y). The edges incident to y are as follows: (y; b) for every b 2 B and (y; ci ) for
every i 2 [d ] (and (x; y)).

Now, if a 2 A and b 2 B are not orthogonal, then there is some i such that a[i ] =

b[i ] = 1, and so d (a; b) = 2 via the path through ci . Otherwise, if a and b are orthogonal,
then there is no such ci and the shortest a � b path goes through (x; y), and d (a; b) = 3.
All nodes in the graph are at distance at most 2 to x; y; and each ci , and hence the Diameter
is 3 if there is an orthogonal pair, and 2 otherwise.

Let N = nd . The number of nodes and edges is at most O(N ). If Diameter 2 vs 3 can
be solved in O(N 2�") time for some " > 0, then 2-OV is in O((nd )2�") � n2�"poly(d )
time for " > 0. �
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By the above result, we get that under the 2-OVHypothesis, improving upon the approx-
imation factor of the knownDiameter algorithms Roditty and VassilevskaWilliams [2013]
and Chechik, Larkin, Roditty, Schoenebeck, Tarjan, and Vassilevska Williams [2014] is
impossible without blowing up the running time to n2�o(1). However, all known 3/2-
approximation algorithms run in Õ(n1:5) time in sparse graphs. Can this runtime be im-
proved? Can it be made linear?

Cairo et al. Cairo, Grossi, and Rizzi [2016] presented faster approximation algorithms
for Diameter. Generalizing Roditty and VassilevskaWilliams [2013] and Chechik, Larkin,
Roditty, Schoenebeck, Tarjan, and Vassilevska Williams [2014], they presented for every
integer k � 1, an Õ(mn1/(k+1)) time algorithm that is a 2 � 1/2k-approximation to the
Diameter of undirected graphs (if it is divisible by 2k+1 � 1, and slightly worse other-
wise). Unfortunately, the approximation quality degrades as the runtime decreases. Thus
their results do not answer the question of whether there are faster 3/2-approximation
algorithms.

In recent work, Backurs et al. Backurs, Roditty, Segal, Vassilevska Williams, and
Wein [2018] show that unless the 3-OV Hypothesis (and hence SETH) is false, any 3/2-
approximation algorithm to the Diameter in sparse graphs needs n1:5�o(1) time, thus re-
solving the question. They also obtain a variety of other tight conditional lower bounds
based on k-OV for different k for graph Eccentricities, and variants of Diameter.

The hardness result for 3/2-approximate Diameter is based on a hardness construction
for a slightly more difficult problem called S -T Diameter. In it, one is given a graph G =

(V; E) and two subsets S; T � V and is asked to compute DS;T := maxs2S;t2T d (s; t),
the so called S -T Diameter which is the largest distance between a node of S and a node
of T .

When it comes to exact computation in sparseweighted graphs, S -T Diameter is (n2; n2)-
equivalent to Diameter (see Backurs, Roditty, Segal, Vassilevska Williams, and Wein
[ibid.]). When it comes to approximation, the problems differ a bit. In linear time, Di-
ameter admits a 2-approximation, while S -T Diameter admits a 3-approximation. In
Õ(m3/2) time, Diameter admits a 3/2-approximation, whereas S -T Diameter admits a
2-approximation. Thus, the starting point of the hardness for 3/2-approximate Diameter
is a hardness construction for 2-approximate S -T Diameter.

Theorem 3.3 (Backurs, Roditty, Segal, Vassilevska Williams, and Wein [ibid.]). Under
the 3-OV Hypothesis, no O(N 1:5�") time algorithm for " > 0, can distinguish between
S -T Diameter 3 and 7 in graphs with at most N nodes and edges.

Since any 2-approximation algorithm can distinguish between S -T Diameter 3 and
7, the Theorem above implies that n1:5�o(1) time is needed to 2-approximate the S -T
Diameter of a sparse graph. We will present the proof of Theorem 3.3. To complete the
reduction to Diameter, some extra gadgets are needed; these create a graph in which the
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Diameter is either 5 or 9 and thus give hardness for 3/2-Diameter approximation. We refer
the reader to the presentation in Backurs, Roditty, Segal, Vassilevska Williams, and Wein
[ibid.]. Theorem 3.2 and the extension to Theorem 3.3 to Diameter can be generalized to
a reduction from k-OV for arbitrary k to Diameter, thus showing a time/approximation
tradeoff lower bound Backurs, Roditty, Segal, Vassilevska Williams, and Wein [ibid.].

Proof Sketch of Theorem 3.3. Let A1; A2; A3 � f0; 1gd be the n-sets forming the 3-OV
instance.

For every pair of vectors a1 2 A1; a2 2 A2, we create a node (a1; a2) in a set S . For
every pair of vectors a2 2 A2; a3 2 A3, we create a node (a2; a3) in a set T .

For every node a1 2 A1 and every pair of coordinates i; j 2 [d ], create a node
(a1; xi ; xj ) in a set X . For every node a3 2 A3 and every pair of coordinates i; j 2 [d ],
create a node (a3; xi ; xj ) in a set Y .

See Figure 1b. The edges are as follows.
For every i; j 2 [d ], and every a1 2 A1; a3 2 A3, add an edge between (a1; xi ; xj )

and (a3; xi ; xj ); we get bicliques in X � Y corresponding to each pair of coordinates i; j .
For each (a1; a2) 2 S , we add an edge to (a1; xi ; xj ) 2 X if and only if a1[i ] =

a1[j ] = 1 and a2[i ] = 1. For each (a2; a3) 2 T , we add an edge to (a3; xi ; xj ) 2 Y if
and only if a3[i ] = a3[j ] = 1 and a2[j ] = 1.

Suppose that there is no 3-OV solution. Then, for every a1 2 A1; a2 2 A2; a3 2 A3,
there exists a coordinate k such that a1[k] = a2[k] = a3[k] = 1. Consider an arbitrary
(a1; a2) 2 S and (a0

2; a3) 2 T . There is a coordinate i for which a1[i ] = a2[i ] = a3[i ] = 1

and a coordinate j for which a1[j ] = a0
2[j ] = a3[j ] = 1. By construction, there is

an edge between (a1; a2) 2 S and (a1; xi ; xj ) 2 X and between (a0
2; a3) 2 T and

(a3; xi ; xj ) 2 Y . Together with the edge between (a1; xi ; xj ) and (a3; xi ; xj ), we get
that the distance between (a1; a2) 2 S and (a0

2; a3) 2 T is 3. Thus the S -T -Diameter is
3.

Suppose now that there is a 3-OV solution, a1 2 A1; a2 2 A2; a3 2 A3. Then one
can show that if d ((a1; a2); (a2; a3)) � 5, then there is a coordinate i such that a1[i ] =

a2[i ] = a3[i ] = 1, giving a contradiction. Because the graph is bipartite, the distance
must be � 7, and we can conclude.

Thus, the S -T Diameter is 3 if there is no 3-OV solution or � 7 if there is one. The
number of vertices is O(n2 + nd 2) and the number of edges is O(n2d 2). Let N = n2d 2.
If there is an O(N 3/2�") time algorithm distinguishing 3 and 7 for " > 0, then 3-OV can
be solved in n3�2"poly(d ) time. �

Other known hardness results under SETH and k-OV.. In recent years, there has
been an explosion of conditional hardness results based on OV and hence SETH:
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1. Tight lower bounds for approximating the Graph Diameter and Graph Eccentricities
Roditty and Vassilevska Williams [2013], Chechik, Larkin, Roditty, Schoenebeck,
Tarjan, and VassilevskaWilliams [2014], Abboud, VassilevskaWilliams, andWang
[2016], and Backurs, Roditty, Segal, Vassilevska Williams, and Wein [2018].

2. Tight quadratic lower bounds for the Local Alignment problemAbboud, Vassilevska
Williams, and Weimann [2014].

3. Tight lower bounds for dynamic problems. The first comprehensive paper to con-
sider multiple hardness hypotheses to explain the difficulty of dynamic problems
was by Abboud and Vassilevska Williams [2014]. Under SETH, the main hardness
results concern the following dynamic problems: maintaining under edge insertions
and deletions, the strongly connected components of a graph, the number of nodes
reachable from a fixed source, a 1:3 approximation of the graph diameter, or given
fixed node sets S and T , whether there is a pair of nodes s 2 S; t 2 T so that s can
reach t .

4. Strong hardness for the All Pairs Max Flow problem Krauthgamer and Trabelsi
[2017]: in n node, m edge graphs mn2�o(1) time is needed. Lower bounds from
OV and fromMax-CNF-SAT. These results are based on previous hardness for vari-
ants of the Max Flow problem under SETH by Abboud et al. Abboud, Vassilevska
Williams, and Yu [2015].

5. Lower bounds for incremental and decremental Max-Flow Dahlgaard [2016] fol-
lowing Abboud, Vassilevska Williams, and Yu [2015] and Abboud and Vassilevska
Williams [2014]. This is among the handful of lower bounds that address amortized
runtimes for partially dynamic algorithms. The prior techniques could only provide
worst case lower bounds here.

6. Lower bounds for sensitivity problems. Sensitivity problems are similar to dynamic
problems in that they need to preprocess the input and prepare a data structure that
answers queries after some sequence of updates. The difference is that once the
queries are answered, the updates must be rolled back to the original state of the
input. That is, the sensitivity problem is to prepare for any set of small changes and
be able to answer queries on them. Henzinger, Lincoln, Neumann, and Vassilevska
Williams [2017] give lower bounds under SETH for sensitivity data structures for
graph problems such as answering for any small (constant) size set of edge inser-
tions, approximate Graph Diameter queries or queries about the number of nodes
reachable from a fixed source node.

7. Closest Pair in d -dimensional Hamming Space cannot be solved in n2�"2o(d) time
for " > 0 Alman and R. Williams [2015]. The best algorithm for this problem and
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several others (e.g. offline bichromatic furthest neighbors) is by Alman, Chan, and
R. R. Williams [2016] and runs in n2�1/O(c log2(c)) time for d = c logn.

8. Quadratic lower bounds for LCSAbboud, Backurs, andVassilevskaWilliams [2015b]
and Bringmann and Künnemann [2015b], Edit Distance Backurs and Indyk [2015],
Frechet Distance Bringmann [2014]. Abboud, Backurs, and Vassilevska Williams
[2015b] also give an nk�o(1) lower bound for computing the LCS of k strings for
any k � 2.

9. Tight lower bounds for problems like LCS and RNA-Folding where the input strings
are represented as a context free grammar whose only output is the input string
Abboud, Backurs, Bringmann, and Künnemann [2017]. Some of the lower bounds
are also based on Hypotheses about the complexity of k-Clique and k-SUM.

10. Subset Sum on n integers and target T , cannot be solved in T 1�"2o(n) time for any
" > 0 Abboud, Bringmann, Hermelin, and Shabtay [2017]. Similar results apply to
the Bicriteria Path problem.

11. Tight lower bounds for the Subtree Isomorphism problem: given rooted trees on n

total nodes T and T 0, is T a subtree of T 0? Abboud, Backurs, Hansen, Vassilevska
Williams, and Zamir [2016] show that truly subquadratic algorithms for the follow-
ing refute the OV Hypothesis: for binary, rooted trees, or for rooted trees of depth
O(log logn). Conversely, for every constant d , there is a constant "d > 0 and a
randomized, truly subquadratic algorithm for degree-d rooted trees of depth at most
(1 + "d ) logd n.

12. Frechet distance on n-length strings requires n2�o(1) time Bringmann [2014], and
is hard to approximate Bringmann and Künnemann [2015a] and Bringmann and
Mulzer [2016].

13. Tight results for regular expression matching (Backurs and Indyk [2016] and Bring-
mann, Grønlund, and Larsen [2017]): here one is given a pattern of lengthm, text of
length n, and the pattern involves concatenation, OR, Kleene star and Kleene plus.
Under SETH, there is a dichotomy of problems (proven for depth 2 by Backurs and
Indyk [2016] and for > 2 by Bringmann, Grønlund, and Larsen [2017]): either they
are solvable in near-linear time, or they require mn1�o(1) time. There is a single
exception: the Word Break problem solvable in Õ(m + nm1/3) time Bringmann,
Grønlund, and Larsen [ibid.].

14. Tight lower bounds for problems in model checking: for Büchi objectives Chatter-
jee, Dvorák, Henzinger, and Loitzenbauer [2016a] and others Chatterjee, Dvorák,
Henzinger, and Loitzenbauer [2016b].

15. Tight lower bounds for succinct stable matching Moeller, Paturi, and Schneider
[2016].
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16. Quadratic hardness results for problems in Machine Learning Backurs, Indyk, and
Schmidt [2017].

17. Tight hardness for some one dimensional Dynamic Programming problems Künne-
mann, Paturi, and Schneider [2017].

18. Furthest pair in Rd (`2) on n vectors, when d = !(log logn) requires n2�o(1)

time R. Williams [2018]. This is to be contrasted with Closest Pair in the same
dimensions which can be solved in n1+o(1) time.

19. Very strong inapproximability several problems via the introduction of Distributed
PCPs for Fine-Grained Hardness of Approximation Abboud, Rubinstein, and R. R.
Williams [2017]: BichromaticMax-Inner Product onN vectors in f0; 1gd cannot be
approximated better than a factor of 2(logN )1�o(1) if you do not spend N 2�o(1) time.
Similar inapproximability for approximation versions of Subset Query, Bichromatic
LCS Closest Pair, Regular Expression Matching and Diameter in Product Metrics.

4 Hardness results from 3-SUM

A seminal paper by Gajentaan and M. Overmars [1995] and Gajentaan and M. H. Over-
mars [2012] from the 1990s introduces the 3-SUM Hypothesis and proves that a large set
of problems in computational geometry require quadratic time, under this hypothesis:

1. Given a set of points in the plane, decide whether any three are colinear (Colinearity
/ 3 Points on Line).

2. Given a set of lines in the plane, decide whether any three of them pass through the
same point (Point on 3 Lines).

3. Given a set of non-intersecting, axis-parallel line segments, decide whether some
line separates them into two non-empty subsets (Separator).

4. Given a set of (infinite) strips in the plane and a rectangle, decide whether they fully
cover the rectangle (Strips Cover Box).

5. Given a set of triangles in the plane, compute their measure (Triangle Measure).

6. Given a set of horizontal opaque triangles in three dimensional space, a view point
p and another triangle T , decide whether there is a point on T that can be seen from
p (Visible Triangle).

7. Given a set of non-intersecting, axis-parallel line segment obstacles in the plane, a
rod and a source and a destination point, decide whether the rod can be moved by
translations and rotations from the source to the destination without colliding with
the obstacles (Planar Motion Planning).
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8. Given a set of horizontal triangle obstacles in three dimensional space, a vertical
rod, and a source and destination, decide whether the rod can be translated (without
rotation) from the source to the destination without colliding with the obstacles (3D
Motion Planning).

The notion of 3-SUM hardness reduction used in Gajentaan and M. Overmars [1995]
and Gajentaan and M. H. Overmars [2012] is more restrictive than the fine-grained reduc-
tion defined later on. It only allows the creation of O(1) number of instances, each of
no more than linear size. Even though the reduction notion is limited, it is still possible
to obtain all of the above hardness results using more or less simple algebraic transfor-
mations. The paper inspired many other 3-SUM hardness results in computational geom-
etry. Some of these include polygon containment Barequet and Har-Peled [2001], test-
ing whether a dihedral rotation will cause a chain to self-intersect Soss, Erickson, and
M. H. Overmars [2003] and many others de Berg, de Groot, and M. H. Overmars [1997],
Erickson [1999], Aronov and Har-Peled [2008], Cheong, Efrat, and Har-Peled [2007],
Bose, van Kreveld, and Toussaint [1998], Erickson, Har-Peled, and Mount [2006], Arkin,
Chiang, Held, Mitchell, Sacristán, Skiena, and Yang [1998], Archambault, Evans, and
Kirkpatrick [2005], and Abellanas, Hurtado, Icking, Klein, Langetepe, Ma, Palop, and
Sacristán [2001].

A transformative paper in 3-SUM research by Pǎtraşcu Pǎtraşcu [2010] shows that 3-
SUM is equivalent (under subquadratic reductions) to a slightly simpler looking problem,
3-SUM Convolution: Given three length n arrays A, B and C of integers, decide whether
there exist i; k such that C [k] = A[i ] + B[k � i ].

Unlike for 3-SUM, O(n2) is the brute-force algorithm runtime for 3-SUM Convolu-
tion (for 3-SUM the trivial runtime is O(n3)). This makes it easier to reduce 3-SUM
Convolution to other problems whose best known algorithm is the brute-force one. Also,
because now the search is reduced to finding two indices i; k, as opposed to searching for
a sum of two integers, one can use 3-SUM Convolution in reductions to problems that are
more combinatorial in nature. Pǎtraşcu reduces 3-SUM Convolution to problems such as
Listing Triangles in a graph. He shows that listing up to m triangles in an m-edge graph
requires m4/3�o(1) time under the 3-SUM Hypothesis. This is the first hardness result for
a truly combinatorial problem (no numbers in the instance).

Prior to Pǎtraşcu’s results, there is one other 3-SUM hardness result for a problem
outside computational geometry, by Vassilevska and R. Williams [2009]. They show that
under the 3-SUM Hypothesis, the following Exact Triangle problem requires n2:5�o(1)

time on an n node edge-weighted graph G: determine whether there is a triangle G whose
edge weights sum to 0. Pǎtraşcu’s equivalence between 3-SUM and 3-SUM Convolution
allows this hardness to be improved to n3�o(1), thus showing that the brute-force cubic
algorithm for the problem might be optimal Vassilevska Williams and R. Williams [2013].
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After Pǎtraşcu [2010] and Vassilevska Williams and R. Williams [2013], many other
combinatorial problemswere proven to be 3–SUMhard: Abboud andVassilevskaWilliams
[2014] continue Pǎtraşcu’s work, giving lower bounds for many dynamic problems under
the 3-SUM hypothesis. Example graph problems of consideration are to maintain under
edge deletions and insertions: s � t Reach (whether a given fixed source can reach a given
fixed destination in a directed graph), SCC (the strongly connected components of a graph,
or even just their number), BPMatch (whether a bipartite graph as a perfect matching), and
many others. Kopelowitz et al. Kopelowitz, Pettie, and Porat [2016] improve Pǎtraşcu’s
reduction to triangle listing and show that the known algorithms for listing triangles in
graphs Björklund, Pagh, Vassilevska Williams, and Zwick [2014] are optimal if ! = 2

and under the 3-SUM Hypothesis. They also give amortized conditional lower bound for
maintaining a maximum matching in a graph under edge insertions. Abboud, Vassilevska
Williams, and Weimann [2014] show that the Local Alignment requires quadratic time
under 3-SUM. The following other problems are also known to be hard under 3-SUM:
jumbled indexing Amir, Chan, M. Lewenstein, and N. Lewenstein [2014], online pattern
matching with gaps Amir, Kopelowitz, Levy, Pettie, Porat, and Shalom [2016], partial
matrix multiplication, and witness reporting versions of convolution problems Goldstein,
Kopelowitz, M. Lewenstein, and Porat [2016], and others.

5 Hardness results from APSP

APSP is now known to be equivalent to many other problems on n node graphs and n � n

matrices so that either all these problems admitO(n3�") time algorithms for " > 0, or none
of them do. A partial list of these equivalent problems is below. The main references are
the original paper by VassilevskaWilliams and R.Williams [2010, 2018] (bullets 1-9), and
also Backurs, Dikkala, and Tzamos [2016] (bullet 9), Abboud, Grandoni, and Vassilevska
Williams [2015] (bullets 10-12), and Lincoln, Vassilevska Williams, and R. R. Williams
[2018] (bullet 13).

1. The all-pairs shortest paths problem on weighted digraphs (APSP).
2. Detecting if an edge-weighted graph has a triangle of negative total edge weight

(Negative Triangle).
3. Listing up to n2:99 negative triangles in an edge-weighted graph (Triangle listing).
4. Finding a minimum weight cycle in a graph of non-negative edge weights (Shortest

Cycle).
5. The replacement paths problem on weighted digraphs (RP).
6. Finding the second shortest simple path between two nodes in a weighted digraph

(2nd Shortest Path).
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7. Checking whether a given matrix defines a metric (Metricity).

8. Verifying a matrix product over the (min;+)-semiring (Distance Product Verifica-
tion).

9. Finding a maximum subarray in a given matrix (Max Subarray).

10. Finding the Median node of a weighted graph (Median).

11. Finding the Radius of a weighted graph (Radius).

12. Computing the Betweenness Centrality of a given node in a weighted graph (BC).

13. Computing the Wiener Index of a weighted graph (Wiener Index).

Some of the equivalences above have been strengthened to preserve sparsity Agarwal
and Ramachandran [2016] and Lincoln, Vassilevska Williams, and R. R. Williams [2018]
and even the range of weights Roditty and VassilevskaWilliams [2011]. Beyond the above
equivalences, there have been multiple APSP-hardness results. Computing the edit dis-
tance between two rooted ordered trees with nodes labeled from a fixed alphabet (Tree
Edit Distance) Bringmann, Gawrychowski, Mozes, and Weimann [2017] is known to re-
quire cubic time if APSP does. An equivalence with APSP is an open problem. Abboud
and Vassilevska Williams [2014] provided tight hardness for dynamic problems under the
APSP Hypothesis. The main results are for Bipartite MaximumWeight Matching and s-t
Shortest Path, showing that the trivial dynamic algorithms are optimal, unless APSP can
be solved faster. For instance, any algorithm that can maintain the distance in a weighted
graph between a fixed source node s and a fixed target t , while supporting edge deletions,
must either perform n3�o(1) time preprocessing, or either the update or the query time
must be n2�o(1) (Abboud and Vassilevska Williams [ibid.] following Roditty and Zwick
[2004]). Henzinger et al. Henzinger, Lincoln, Neumann, and VassilevskaWilliams [2017]
give tight lower bounds under the APSP Hypothesis for sensitivity problems such as an-
swering Graph Diameter or s�t Shortest Path queries for any single edge failure. Abboud
and Dahlgaard [2016] gave the first fine-grained lower bound for a problem in planar
graphs: no algorithm for dynamic shortest paths or maximum weight bipartite matching
in planar graphs can support both updates and queries in amortized O(n1/2�") time, for
any " > 0, unless the APSP Hypothesis fails.

Themain technical hurdle in showing the equivalences andmost hardness results above,
overcome by Vassilevska Williams and R. Williams [2010], is in reducing APSP to the
Negative Triangle Problem. Negative Triangle is a simple decision problem, and reducing
it to the other problems above is doable, with sufficient gadgetry.

Below we will outline the reduction from APSP to Negative Triangle. It is a true fine-
grained reduction— it producesmany instances, reducing a function problem to a decision
problem.
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Figure 2

The first step is to formulate APSP as a problem involving triangles, the All-Pairs
Negative Triangles (APNT) problem defined as follows: given a tripartite graph G with
node partitions R; T; C , with arbitrary edges in R � T; T � C; C � R, with integer edge
weights w(�), for every i 2 R; j 2 C , determine whether there exists a t 2 T so that
w(i; t) + w(t; j ) + w(j; i) < 0.

Reducing APSP to APNT (see Vassilevska Williams and R. Williams [2010]) is done
by using a known equivalence Fischer and Meyer [1971] between APSP and the Distance
Product problem of computing a product of twomatrices over the (min;+) semiring. Then
Distance Product is solved by using calls to APNT to binary search for the entries in the
output matrix.

Now, it suffices to reduce the All-Pairs Negative Triangles problem to just detecting
a Negative Triangle. The reduction picks a parameter t = n2/3. Then, it arbitrarily
partitions R; T; C into t pieces each of size roughly n/t : (R1; : : : ; Rt ), (T1; : : : ; Tt ),
(C1; : : : ; Ct ). Every negative triangle is in some triple (Ri ; Tj ; Ck). We will create Neg-
ative Triangle instances for these triples as follows. See Figure 2.

Create an n � n all 0matrix D that at the end will have D[i; j ] = 1 if and only if there
is some ` 2 T so that i; `; j is a negative triangle.

Now, for every triple of parts (Ri ; Tj ; Ck) in turn, starting with (R1; T1; C1), while the
subgraph induced by the triple (Ri ; Tj ; Ck) contains a negative triangle (this is a call to
Negative Triangle), find one such negative triangle i 2 R; ` 2 T; j 2 C via self-reduction
(see Vassilevska Williams and R. Williams [2010]). Set D[i; j ] = 1 and remove (i; j )

from the entire graph; we do this so that there will be nomore negative triangles containing
(i; j ) in any of the subsequent Negative Triangle calls. Thus, the number of calls that do
find a negative triangle is � n2.

The algorithm keeps calling Negative Triangle on a triple until the triple has no more
negative triangles, and then moves on to the next triple. At the end it just returns D. The
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number of calls to Negative Triangle that do not return a negative triangle are bounded by
the number of triples which is t3.

The number of calls to Negative Triangle is at most t3+n2, and each call is on a graph
with O(n/t) nodes. As t = n2/3, we get O(n2) calls to instances of size O(n1/3), i.e. a
subcubic fine-grained reduction.

6 Other hypotheses

Beyond the three main hardness hypotheses, there are several other ones that have come
to the forefront of fine-grained complexity. Again, the model of computation is the word-
RAM with O(logn) bit words.

Hitting set. TheHitting Set (HS) problem is as follows: given two sets of vectorsS; T �

f0; 1gd for d = !(logn), determine whether there is some s 2 S such that s � t ¤ 0 for
all t 2 T , in other words a vector in S that hits all vectors in T .

Hypothesis 5 (HS Hypothesis Abboud, VassilevskaWilliams, andWang [2016]). No ran-
domized algorithm can solve HS on n vectors in f0; 1gd in n2�"poly(d ) time for " > 0.

To see why this new hypothesis is useful, consider the converse HS: decide whether
8s 2 S 9t 2 T such that s � t = 0. This is OV with the first 9 quantifier replaced with
8. This quantifier flip allows for different hardness results to be proven. For instance the
Radius Problem asks, given a graph, whether there exists a vertex c such that for all other
vertices v, d (v; c) is most R. The converse asks whether 8c 9v such that d (v; c) > R

which is the 89 variant of Diameter, which is 99. While it was not hard to reduce the 99

problem OV to Diameter, reducing it to the 98 Radius seemed problematic. On the other
hand, since HS has the 89 structure, Abboud, Vassilevska Williams, and Wang [ibid.] are
able to reduce it Radius, so that Radius on sparse graphs requires n2�o(1) time under the
HS Hypothesis. HS and its hypothesis are also studied in Gao, Impagliazzo, Kolokolova,
and R. R. Williams [2017].

The HS Hypothesis implies the OV Hypothesis Abboud, Vassilevska Williams, and
Wang [2016] and Abboud, R. R. Williams, and Yu [2015], but the reverse is not known to
be true.

Hypotheses on the complexity of k-Clique. For a constant k � 3, the k-Clique prob-
lem is as follows: given a graph G = (V; E) on n vertices, does G contain k distinct
vertices a1; : : : ; ak so that for every i; j , i ¤ j , (ai ; aj ) 2 E? Such a k node graph is
called a k-clique.
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The k-Clique problem can easily be solved in O(nk) time by enumerating all k-tuples
of vertices. A faster algorithm Itai and Rodeh [1978] and Nešetřil and Poljak [1985]
reduces the problem to multiplying square matrices, giving anO(n!k/3) � O(n0:8k) time
algorithm when k is divisible by 3. Recall, ! < 2:373 is the exponent of square matrix
multiplication Vassilevska Williams [2012], Stothers [2010], and Le Gall [2014]. If k is
not divisible by 3, the fastest known algorithm for k-Clique runs asymptotically in the
time to multiply an nbk/3c � ndk/3e matrix by an ndk/3e � nk�bk/3c�dk/3e matrix, which
is no more than O(n2+!k/3); tighter bounds are known (Le Gall [2012], Coppersmith
[1997], Gall and Urrutia [2018], and Huang and Pan [1998]).

Hypothesis 6 (k-Clique Hypothesis). No randomized algorithm can detect a k-Clique in
an n node graph in O(n

!k
3 �") time for " > 0.

The Hypothesis is usually used for k divisible by 3. Also, since ! � 2 (one needs to
output a matrix with n2 entries), the hypothesis asserts in particular that k-Clique requires
n2k/3�o(1) time.

Two harder problems are the Min-Weight k-Clique and Exact k-Clique problems. In
both problems, one is given a graph on n vertices and edge weights in f�n100k ; : : : ; n100kg.
In the first, one seeks a k-Clique that minimizes the total sum of its edge weights. In the
second, one seeks a k-Clique with weight sum of exactly 0. Neither of these problems are
known to be solvable in O(nk�") time for any constant " > 0.

Hypothesis 7 (Min-Weight k-Clique Hypothesis). The Min-Weight k-Clique problem on
n node graphs with edge weights in f�n100k ; : : : ; n100kg requires (randomized) nk�o(1)

time.

Hypothesis 8 (Exact k-CliqueHypothesis). The Exact k-Clique problem onn node graphs
with edge weights in f�n100k ; : : : ; n100kg requires (randomized) nk�o(1) time.

It is known that the Min-Weight k-Clique Hypothesis implies the Exact k-Clique Hy-
pothesis Vassilevska and R. Williams [2009]. The version of Min-Weight k-Clique in
which the weights are on the nodes, rather than on the edges, can be solved in the same
time as the (unweighted) k-Clique problem Czumaj and Lingas [2007], Vassilevska and
R. Williams [2009], and Abboud, Lewi, and R. Williams [2014], so that the Min-Weight
k-Clique Hypothesis does not hold for node-weighted graphs.

Using results from Abboud, Lewi, and R. Williams [2014] and R. Williams [2005] and
the known reduction from k-Clique to k-Dominating Set, one can show that Exact-Weight
and Min-Weight k-Clique are (nk ; n2)-reducible to 2-OV, and hence their hypotheses im-
ply the OV Hypothesis Abboud, Bringmann, Dell, and Nederlof [2018].

Notably, the Min-Weight 3-Clique problem is equivalent to the Negative Triangle prob-
lem and hence also to APSP, under subcubic fine-grained reductions VassilevskaWilliams
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and R. Williams [2010]. Exact 3-Clique is just the Exact Triangle problem studied by Vas-
silevskaWilliams and R. Williams [2013]. Exact 3-Clique seems genuinely more difficult
thanMin-Weight 3-Clique. First, the latter problem can be solved in n3/ exp(

p
logn) time

R.Williams [2014], whereas the fastest algorithm for Exact 3-Clique runs inn3(log logn)2/ logn

time Jørgensen and Pettie [2014]. Second, as we mentioned in the section on 3-SUM, Ex-
act 3-Clique requires n3�o(1) under both the 3-SUM and the APSP Hypotheses, whereas
Min-Weight 3-Clique is equivalent to APSP which is not known to be related to 3-SUM
and could be potentially easier.

The following tight lower bounds under the k-Clique Hypothesis are known: Context
Free Grammar Recognition for O(1) size grammars, RNA-Folding, and Language Edit
Distance require n!�o(1) time Abboud, Backurs, and Vassilevska Williams [2015a] and
Chang [2016], and Tree-adjoining grammar parsing Bringmann and Wellnitz [2017] re-
quires the unusual running time of n2! , tight due to Rajasekaran and Yooseph [1998].

The following problems have tight conditional lower bounds under the Min-Weight k-
Clique Hypothesis: all problems hard under the APSP Hypothesis, the Local Alignment
Problem Abboud, Vassilevska Williams, and Weimann [2014], the Viterbi problem of
finding the most likely path in a Hidden Markov Model (HMM) that results in a given
sequence of observations Backurs and Tzamos [2017], theMaximumWeight Box problem
that given weighted points (positive or negative) in d dimensions, asks to find the axis-
aligned box which maximizes the total weight of the points it contains Backurs, Dikkala,
and Tzamos [2016].

Recently, the k-Clique and Min-Weight k-Clique Hypotheses have been used to show
hardness for graph problems for almost all sparsities. Recall that under SETH one could
show that many problems in very sparse graphs (with a near-linear number of edges) are
hard. On the other hand, the APSP Hypothesis implied hardness for problems in dense
graphs, i.e. when the runtime is measured solely in terms of the number of vertices. How-
ever, neither of these hypotheses seem to address questions such as “Can APSP be solved
in O(n2 + m3/2) time?”. Such a runtime would be consistent with the APSP Hypothesis
and with the fact that in sparse graphs one needs Ω(n2) time to write down the output.

For APSP and many other graph problems on m edges and n vertices, the best known
running times are of the form Õ(mn): APSP, Shortest Cycle, Replacement Paths, Radius,
Wiener Index etc. There is no faster algorithm for any sparsity m. Lincoln et al. Lincoln,
Vassilevska Williams, and R. R. Williams [2018] address this by showing that for any
constant k � 1, if one assumes the Min-Weight 2k + 1-Clique Hypothesis, then APSP,
Shortest Cycle, Replacement Paths, Radius, Wiener Index etc. require mn1�o(1) time in
weighted graphs with m = Θ(n1+1/k) edges. In other words, for an infinite number of
sparsities, mn is the right answer. Under the k-Clique Hypothesis, Lincoln, Vassilevska
Williams, and R. R. Williams [ibid.] provide weaker lower bounds for the same problems
in unweighted graphs.
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Boolean Matrix Multiplication (BMM).. The BMM problem is, given two n � n ma-
trices A and B , to compute the n � n matrix C with C [i; j ] = _n

i=1(A[i; k] ^ B[k; j ])

for all i; j . BMM can be solved using the known matrix multiplication algorithms over
a field by embedding the Boolean semiring into the Rationals. Thus BMM on n � n ma-
trices is in O(n2:373) time Vassilevska Williams [2012] and Le Gall [2014]. However,
the theoretically fast algorithms for matrix multiplication are considered inefficient. The
desire for more practical algorithms motivates the notion of “combinatorial” algorithms.
This notion is not well-defined, however it roughly means that the runtime should have a
small constant in the big-O, and that the algorithm is feasibly implementable.

There is a “BMM hypothesis” (in quotes as this is not well-defined) asserting that any
combinatorial BMM algorithm requires n3�o(1) time. This is supported by the lack of
truly subcubic combinatorial BMM algorithms: the fastest is by Yu [2015] and runs in
n3(log logn)O(1)/ log4 n time. The first combinatorial BMM algorithm is the so called
Four-Russians algorithmArlazarov, Dinic, Kronrod, and Faradzev [1970], which was later
improved by Chan [2015], Bansal and R. Williams [2009], and Yu [2015].

The BMM Hypothesis has been used to explain the lack of fast combinatorial algo-
rithms for many problems: many dynamic problems Abboud and Vassilevska Williams
[2014] and Roditty and Zwick [2004], Context Free Grammar Parsing L. Lee [2002], 2k-
Cycle in undirected graphs Dahlgaard, Knudsen, and Stöckel [2017], etc. Also many
fine-grained combinatorial equivalences to BMM are known (e.g. Vassilevska Williams
and R. Williams [2010]).

Online Matrix Vector Multiplication (OMV).. The BMM Hypothesis is unsatisfac-
tory due to the undefined combinatorial notion, and there has been some work to replace
it with something else. Henzinger et al. Henzinger, Krinninger, Nanongkai, and Saranurak
[2015] define the OnlineMatrix Vector (OMV) hypothesis which makes the BMMhypoth-
esis about an online version of the problem for which even non-combinatorial subcubic
algorithms seem out of reach. The OMV problem is well-studied R. Williams [2007a],
Blelloch, Vassilevska, and R. Williams [2008], and Larsen and R. R. Williams [2017]:
given an n � n Boolean matrix, preprocess it so that future products with arbitrary query
n � 1 vectors are efficient.

Hypothesis 9 (OMVHypothesis). Every (randomized) algorithm that can process a given
n � n Boolean matrix A, and then in an online way can compute the products Avi for any
n vectors v1; : : : ; vn, must take total time n3�o(1).

The best algorithm for OMV is by Larsen and R. R. Williams [2017] who show that
the OMV problem (for n queries) can be solved in total time n3/ exp(

p
logn) via a reduc-

tion to the OV problem. Moreover, Larsen and R. R. Williams [ibid.] give a cell probe
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algorithm that can solve the problem using O(n11/4/
p
logn) probes, thus ruling out an

unconditional lower bound for OMV using purely information theoretic techniques.
The OMV Hypothesis is particular suited to proving conditional lower bounds for dy-

namic problems. Such lower bounds are known for practically all dynamic problems for
which there is a known BMM-based combinatorial lower bound Henzinger, Krinninger,
Nanongkai, and Saranurak [2015], and many other problems (e.g. Dahlgaard [2016]).

Nondeterministic Strong Exponential Time Hypothesis (NSETH).. Surprisingly, the
fastest algorithm for CNF-SAT on formulas on n variables, even using nondeterminism,
still runs in roughly 2n time. This motivated Carmosino et al. Carmosino, Gao, Impagli-
azzo, Mihajlin, Paturi, and Schneider [2016] to define the following.

Hypothesis 10 (Nondeterministic Strong Exponential Time Hypothesis (NSETH)). Refut-
ing unsatisfiable k-CNF formulas on n variables requires nondeterministic 2n�o(n) time
for unbounded k.

It is worth noting that NSETH does not allow randomization. In early work, Carmosino
et al. also proposed a Merlin-Arthur and Arthur-Merlin SETH that assert that no constant
round probabilistic proof system can refute unsatisfiable k-CNF formulas in 2n�Ω(n) time.
Williams R. R. Williams [2016] shows that these hypotheses are false in a very strong way,
exhibiting proof systems that prove that the number of satisfying assignments of any given
o(n)-depth, bounded-fan-in circuit is a given value, using a proof of length 2n/2poly(n)
that can be verified in 2n/2poly(n) time with high probability, using only O(n) random
bits.

The fact that the AM and MA versions of NSETH are false casts doubt on the verac-
ity of NSETH. Nevertheless, disproving NSETH seems challenging. Assuming NSETH,
Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, and Schneider [2016] prove that there can
be no deterministic reduction from OV to 3-SUM or APSP. This is done by exhibiting fast
nondeterministic algorithms for the latter two problems, whereas OV cannot have a non-
trivial nondeterministic refutation algorithm, under NSETH, via Williams’ R. Williams
[2005] reduction from CNF-SAT to OV that we presented earlier.

SETH for other Circuit Satisfiability Problems. As we mentioned in the introduction,
CNF places a restriction on the input of the more general SAT problem. When represented
as a circuit, a k-CNF formula has depth two — it is an AND of ORs. Moreover, due to
the Sparsification Lemma of Impagliazzo and Paturi [2001], SETH really concerns the
satisfiability problem for depth two circuits ofO(n) size. To make SETHmore believable,
we can instead consider the satisfiability of less restricted classes of inputs to Circuit SAT.

Consider a Boolean function f on n bit inputs for which we want to prove satisfiability.
It is not hard to see that any algorithmwhose only access to f is by querying the value of f
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on various inputs, must spendΩ(2n) time to check if there is an n-bit x for which f (x) =

1. A clever algorithm would do more than query the function. It would attempt to analyze
f to decrease the runtime of SAT. Howmuch power algorithms have to analyze f depends
crucially on the representation of f . It is impossible for a black box representation, and
it is quite trivial if f is given as a DNF formula (ORs of ANDs of literals).

For each class C of representations, we can define the corresponding C -SETH that
states that SAT with a representation from C cannot be solved in O(2(1�")n) time for
" > 0.

C -SETH for k-CNF Formulas as k grows is just SETH. NC-SETH on the other hand
asserts that SAT of polynomial size, polylogarithmic depth circuits requires 2n�o(n) time.
NC circuits are much more powerful than CNF Formulas. They can perform most lin-
ear algebraic operations, and they can implement cryptographic primitives like One Way
Functions and Pseudorandom Generators, for which the ability to hide satisfiability is cru-
cial.

C -SETH was defined by Abboud et al. Abboud, Hansen, Vassilevska Williams, and
R. Williams [2016] who gave fine-grained lower bounds for sequence alignment prob-
lems such as Edit Distance, Frechet Distance, LCS. For instance, these problems on n

length sequences require n2�o(1) time unless NC-SETH fails, thus replacing the prior
SETH hardness results with NC-SETH hardness. The results of Abboud, Hansen, Vas-
silevska Williams, and R. Williams [ibid.] also imply that a truly subquadratic algorithm
for any of these problems would imply novel circuit lower bounds for classes such as
ENP. More surprisingly, if these problems can be solved in O(n2/ logc n) time for all
constants c, then NTIME[2O(n)] does not have non-uniform polynomial-size log-depth
circuits. Hence, shaving all polylogs over the textbook quadratic runtime would result in
a major advance in complexity theory.

Two Problems Harder than CNF-SAT, 3-SUM and APSP.. The search for more be-
lievable hypotheses than SETH, and the APSP and 3-SUM Hypotheses motivates the fol-
lowing more believable conjecture: “At least one of SETH, the APSP Hypothesis and the
3-SUM Hypothesis is true.”

To prove hardness under this conjecture, one would have to perform three reductions
(from k-SAT, APSP and from 3-SUM) instead of just one; this can be cumbersome. It is
also not apriori clear that any natural problems are hard under all three conjectures. Ab-
boud et al. Abboud, VassilevskaWilliams, and Yu [2015] define two simple combinatorial
problems and reduce k-SAT, APSP and 3-SUM to them. The goal is then to use these as
the basis of hardness.

The first problem is Triangle Collection: Given a graph G = (V; E) with node colors
c : V ! f1; : : : ; ng, decide whether there exist colors c1; c2; c3 2 f1; : : : ; ng such that
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there are NO triangles u; v; w in G (i.e. (u; v); (v; w); (w; u) 2 E), such that c(u) =

c1; c(v) = c2; c(w) = c3.
The second problem is Matching Triangles: Given a graph G = (V; E) with node

colors c : V ! f1; : : : ; ng and an integer∆, decide whether there exist colors c1; c2; c3 2

f1; : : : ; ng such that there are at least∆ triangles u; v; w in G (i.e. (u; v); (v; w); (w; u) 2

E), such that c(u) = c1; c(v) = c2; c(w) = c3.
Abboud et al. Abboud, Vassilevska Williams, and Yu [ibid.] show that if either Trian-

gle Collection or Matching Triangles on n node graphs admit an O(n3�") time algorithm
for any " > 0, then all three of SETH, the APSP Hypothesis and the 3-SUM Hypothesis
are false. In fact, this is true for a restricted version Triangle Collection� of Triangle Col-
lection that is easier to work with, and Abboud, Vassilevska Williams, and Yu [ibid.] give
conditional hardness under it for several dynamic graph problems under edge insertions
and deletions such dynamic Max Flow, or maintaining the number of nodes reachable
from a fixed source node. Dahlgaard [2016] gave conditional lower bounds for approxi-
mating the graph Diameter both statically and dynamically, under the Triangle Collection�

hypothesis. Hence many problems are known to be difficult under all three main hypothe-
ses.

7 Further Applications of Fine-grained Complexity

The fine-grained approach has found applications in many other areas of TCS:

• FPT in P. Parameterized complexity strives to classify problems according to their
time complexity as a function of multiple parameters of the input or output. This is
a different way to classify problems on a finer scale. It is particularly interesting for
NP-hard problems.

A problem is FPT with respect to a set of parameters if it can be solved in time
f (k1; : : : ; kt )poly(n) on inputs of size n and parameters set to k1; : : : ; kt ; here
f can be any computable function. FPT problems can be solved in polynomial
time when the parameters are constant; this can often make NP-hard FPT problems
tractable. Parameterized complexity has identified many problems that are FPT and
has developed a theory to explain which problems are likely not to be FPT (see e.g.
Flum and Grohe [2006] and Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk,
Pilipczuk, and Saurabh [2015]).

Abboud et al. Abboud, VassilevskaWilliams, andWang [2016] consider a notion of
FPT for polynomial time problems: Fixed Parameter Subquadratic (FPS)– parame-
terized problems that admit algorithms running in time f (k)n2�" for " > 0 on in-
puts of size n and parameter(s) set to k, for some computable function f . Abboud,
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Vassilevska Williams, and Wang [ibid.] show that the Diameter and Radius prob-
lems in graphs with parameter treewidth are FPS. They also give conditional lower
bounds on the function f for these problems. Their workwas continued by Fomin et
al. Fomin, Lokshtanov, Pilipczuk, Saurabh, and Wrochna [2017] who added fixed
parameter results for other polynomial time problems. Notice that parameterized al-
gorithms have long been used within Algorithms: e.g. for graph problems, runtimes
are often measured in terms of both the number of edges and the number of vertices.
Abboud et al. Abboud, Vassilevska Williams, and Wang [2016] are the first to give
fine-grained conditional lower bounds for parameterized polynomial time solvable
problems.

• Unconditional CONGEST Lower Bounds. Abboud et al. Abboud, Censor-Hillel,
and Khoury [2016] consider the CONGEST model in distributed computing in
which processors are n nodes in a graph, and computation proceeds in rounds in
which every processor can send O(logn) bits of information to all adjacent pro-
cessors. Abboud, Censor-Hillel, and Khoury [ibid.] (see also Bringmann and Krin-
ninger [2017]) show how to convert some conditional lower bounds based on the
OV Hypothesis to unconditional lower bounds in the CONGEST model. For in-
stance, they show that in the CONGEST model, any algorithm that can compute a
3/2 � " approximation to the diameter of the graph of a 5/3 � " approximation to
the eccentricities for any " > 0 needs Ω(n) rounds of communication.
The basic idea in Abboud, Censor-Hillel, andKhoury [2016] is that OV is equivalent
to Set Disjointness which has an unconditionalΘ(n) lower bound in communication
complexity. The proofs show that any Diameter or Eccentricities protocol that takes
too few rounds is solving Set Disjointness with too little communication.

• Fine-GrainedCryptography. Two papers begin the study of creating cryptographic
primitives from fine-grained assumptions. Degwekar et al. Degwekar, Vaikun-
tanathan, and Vasudevan [2016] develop cryptographic protocols secure against ad-
versaries that are at most as powerful as low circuit classes within P such as NC1 —
this is more fine-grained but does not address runtime. More recently, Ball, Rosen,
Sabin, and Vasudevan [2017], provide several problems that are provably hard on
average, under SETH or the 3-SUM or APSP Hypotheses. Then they use these
problems to construct a Proof of Work scheme. They leave as an open problem
to develop more cryptographic primitives, such as One Way Functions, from fine-
grained assumptions.

• Fine-Grained Time/Space Tradeoffs for Algorithms. Besides considering the
runtime as the main measure of complexity, one can also consider the space usage.
Lincoln et al. Lincoln, Vassilevska Williams, Wang, and R. R. Williams [2016]
study the time/space tradeoffs of 3-SUM, building on prior work by Wang [2014].
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Besides developing new algorithms, Lincoln, VassilevskaWilliams,Wang, andR. R.
Williams [2016] show that the 3-SUM hypothesis is equivalent to the following
hypothesis: There is some ı > 0, such that every algorithm that uses O(n0:5+ı)

space, needs n2�o(1) time to solve 3-SUM.
This makes the 3-SUM Hypothesis look even more plausible as it only applies to
space bounded algorithms. Also, one might conceivably be able to prove it uncon-
ditionally: restricting the space usage has been sufficient to prove unconditional
lower bounds for SAT, among other problems R. R. Williams [2008].

• Fine-Grained Time/Space Tradeoffs for Data Structures. Goldstein et al. Gold-
stein, Kopelowitz, M. Lewenstein, and Porat [2017] define various data structure
variants of 3-SUM, BMM and Directed Reachability, formulate novel conjectures
and show consequences for the time/space tradeoffs for various data structure prob-
lems.

• Fine-Grained Complexity in the I/O Model. Demaine et al. E. D. Demaine, Lin-
coln, Liu, Lynch, andVassilevskaWilliams [2018] initiate the study of the I/Omodel
from the perspective of fine-grained complexity. The paper proposes plausible I/O
hardness hypotheses, and uses these, together with fine-grained I/O reductions, to
show that many known I/O upper bounds are tight. For instance, the best known
upper bound on the I/O complexity of LCS is tight under one of the assumptions.
Finally, they prove an analogue of the Time Hierarchy Theorem in the I/O model.

Fine-grained complexity is a growing field and we hope that its ideas will spread to
many other parts of TCS and beyond.
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Abstract

The sedimentation of a suspension is a unit operation widely used in mineral pro-
cessing, chemical engineering, wastewater treatment, and other industrial applications.
Mathematical models that describe these processes and may be employed for simula-
tion, design and control are usually given as nonlinear, time-dependent partial differ-
ential equations that in one space dimension include strongly degenerate convection-
diffusion-reaction equations with discontinuous coefficients, and in two or more di-
mensions, coupled flow-transport problems. These models incorporate non-standard
properties that have motivated original research in applied mathematics and numerical
analysis. This contribution summarizes recent advances, and presents original numer-
ical results, for three different topics of research: a novel method of flux identification
for a scalar conservation law from observation of curved shock trajectories that can
be observed in sedimentation in a cone; a new description of continuous sedimenta-
tion with reactions including transport and reactions of biological components; and
the numerical solution of a multi-dimensional sedimentation-consolidation system by
an augmented mixed-primal method, including an a posteriori error estimation.

1 Introduction

1.1 Scope. The sedimentation of small particles dispersed in a viscous fluid under the
influence of a (mostly gravitational) body force is a process of theoretical and practical
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interest that appears as a controlled unit operation in mineral processing, wastewater treat-
ment, the pulp-and-paper and chemical industry, medicine, volcanology, and other areas
where a suspension must be separated into a clarified liquid and concentrated sediment.
The authors are involved in the development and the mathematical and numerical analysis
of models that describe these processes and may be employed for simulation and control
in industrial applications. This contribution provides a survey of some recent advances
in this area, which is related to nonlinear, time-dependent partial differential equations
(PDEs).

1.2 Two-phase flow models of sedimentation. Sedimentation models for these appli-
cations should predict the behaviour of a given unit on relatively large temporal and spatial
scales, while microscopical information such as the position of a given particle is of lit-
tle interest. These considerations justify representing the liquid and the solid particles as
superimposed continuous phases, namely a liquid phase and one or several solid phases.
Since gravity acts in one dimension and computational resources for simulations are lim-
ited, spatially one-dimensional models are common. The continuous sedimentation of a
suspension subject to applied feed and bulk flows, hindered settling and sediment com-
pressibility can be modelled by a nonlinear, strongly degenerate parabolic PDE for the
solids concentration � = �(z; t) as a function of depth z and time t (Bürger, Karlsen,
and Towers [2005]). This PDE is based on the solid and liquid mass balances, and its
coefficients depend discontinuously on z.

To introduce the two-phase flow setting, we let � denote the total solids volume fraction
and vs and vf the solids and fluid phase velocity, respectively. Moreover, vr := vs�vf and
q := �vs+(1��)vf are the solid-fluid relative velocity (or drift velocity) and the volume
average velocity of the mixture, respectively. Then the conservation of mass equations for
the solid and the mixture can be written as

@t� + r �
�
�q + �(1 � �)vr

�
= 0; r � q = 0:(1-1)

A constitutive assumption is introduced to specify vr (see below). In one space dimension,
the model (1-1) is closed with q (i.e., q in one dimension) given by feed input as a function
of t and by operating input and output flows as a piecewise constant function of z, while in
two or three space dimensions, additional equations such as the Navier-Stokes equations
need to be solved for the components of q. In one space dimension, the simplest complete
model is based on the kinematic assumption Kynch [1952] that vr is a given function of �,
or equivalently, that the hindered settling function vhs(�) = (1 � �)vr(�) is given. Then
the evolution of � in a column is given by the scalar conservation law

@t� � @xf (�) = 0; 0 < x < 1;(1-2)
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Figure 1: (a) An ideal secondary settling tank (SST) with variables of the feed in-
let, effluent and underflow indexed with f, e and u, respectively (Bürger, Diehl, and
Mejı́as [n.d.]). The sludge blanket (concentration discontinuity) separates the hin-
dered settling and compression regions. (b) Subdivision into computational cells.
(c) Nomenclature.

with the nonlinear batch flux density function (Kynch [ibid.])

f (�) = �vhs(�):(1-3)

Here, x denotes height, x = 0 is the bottom of the column, and x = 1 the meniscus
of the suspension. The initial and boundary conditions are �(x; 0) = �0 for x 2 (0; 1),
and �(0+; t) = 1 and �(1�; t) = 0 for t > 0. If f has exactly one inflection point, this
problem has three different qualitative solutions, depending on the value of �0 (see Bürger
and Diehl [2013]). Recent references to the background of (1-2), (1-3) include Betancourt,
Bürger, Ruiz-Baier, Torres, and Vega [2014] and Diehl [2012].

1.3 A model PDE with rough coefficients. Continuous sedimentation is the process
where gravity settling occurs in a large tank which is continuously fed with a suspen-
sion and from which a clarified liquid at the top and a thickened slurry at the bottom are
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withdrawn. For a tank with constant cross-sectional area this process can in one spatial
dimension be modelled by the following PDE:

@t� + @zF (�; z; t) = @z

�
(z)@zD(�)

�
+ s(t)ı(z):(1-4)

Here, the total flux function F (�; z; t) = q(z; t)� + (z)f (�) contains the piecewise
constant bulk velocity q(�; t), which has a discontinuity at the feed inlet depth z = 0. The
source term is the product of the suspension feed flux s(t) and the delta distribution ı(z).
The characteristic function  equals 1 inside the tank and 0 outside. Hence, F (�; �; t) has
three discontinuities, namely at z = 0 and at the bottom (z = B) and top ( z = �H ) of
the SST (Figure 1). The batch flux density function is given by (1-3) where vhs can be
given by the Richardson-Zaki expression

vhs(�) = v0(1 � �)nRZ ; nRZ � 2;(1-5)

by the Vesilind expression vhs(�) = v0 exp(�rV�), rV > 0, or its correction

vhs(�) = v0
�
exp(�rV�) � exp(�rV�max)

�
; rV > 0;(1-6)

or the formula (Diehl [2015])

vhs(�) = v0/
�
1 + (�/�̄)r

�
; �̄; r > 0;(1-7)

where v0 > 0 is a constant that in (1-5) and (1-7) denotes the settling velocity of single
particle in unbounded fluid, and �max in (1-6) denotes a maximum solids concentration
(see Diehl [ibid.] for references). Moreover, sediment compressibility is modeled by the
degenerating diffusion term that involves the integrated diffusion coefficient

D(�) =

Z �

0

�Xvhs(s)�
0
e(s)

g(�X � �L)
ds;(1-8)

where �X and �L denote the constant solid and fluid mass densities and � 0
e is the derivative

of the so-called effective solid stress function �e = �e(�) that satisfies

� 0
e(�) =

d�e(�)
d�

=

(
= 0 for � � �c,
> 0 for � > �c,

(1-9)

where �c denotes a critical concentration above which solid particles are assumed to form
a porous network capable of supporting solid stress.

Thewell-posedness of themodel described hereinwas established and numerical schemes
were developed in Bürger, Karlsen, and Towers [2005]. It has meanwhile been extended
in various directions, including reactive settling (Bürger, Careaga, Diehl, Mejı́as, Nopens,
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Torfs, and Vanrolleghem [2016] and Bürger, Diehl, and Mejı́as [n.d.]; see Section 3). Its
usefulness for practical simulations (Bürger, Diehl, and Nopens [2011]), however, de-
pends critically on that one can reliably identify the material specific model functions f
and �e for the given material. The function f is usually identified via a batch settling
experiment in a cylindrical vessel, but as we show in Section 2, this can be done more
efficiently by a settling test in a cone.

1.4 A multi-dimensional model of sedimentation. In Section 4 we turn to the de-
scription of sedimentation processes in a multidimensional setting. We assume that the
viscous fluid is incompressible so its mass and momentum balances are governed by the
Navier-Stokes equations with variable viscosity, and the mass balance of the solid phase is
described by a nonlinear advection-diffusion equation. Consequently, while in one space
dimension one needs to solve only one scalar PDE such as (1-4) for the solids volume frac-
tion �, in several space dimensions we are faced with a system of PDEs that form coupled
transport-flow problem for the computation of �, the velocity field q, and a pressure p.

The mathematical difficulties associated with such a problem include highly nonlin-
ear (and typically degenerate) advection and diffusion terms, strong interaction of the q

and � fields via the Cauchy stress tensor and the forcing term, nonlinear structure of the
overall coupled flow-transport problem, saddle-point structure of the flow problem, and
non-homogeneous and mixed boundary conditions. These complications affect the solv-
ability analysis of the model, the construction of numerical schemes, and the derivation
of stability results and error bounds.

We are also interested in the construction of accurate, robust and reliable methods for
the discretization of the model equations, and special emphasis is placed in primal-mixed
finite element formulations, meaning that at both continuous and discrete levels, the flow
equations possess a saddle-point structure involving the Cauchy stress as additional un-
known, whereas the formulation of the advection-diffusion equation is written exclusively
in terms of the primal variable, in this case �. Such a structure yields stress approxima-
tions without postprocessing them from a low-order discrete velocity (which may lead to
insufficiently reliable approximations). In Section 4 we review some recent developments
on these lines.

2 Flux identification via curved shock trajectories

2.1 Model of sedimentation in a vessel with varying cross-sectional area. The batch
settling of a suspension of initial concentration �0 in a vessel that occupies the height
interval x 2 [0; 1] and that at height x has the cross-sectional area A(x) can be described
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Figure 2: Schematic of settling of a suspension in a cylinder (top) and in a cone
(bottom).

by the initial-boundary value problem

@t

�
A(x)�

�
� @x

�
A(x)f (�)

�
= 0; 0 < x < 1; t > 0;

�(x; 0) = �0; 0 < x < 1; �(0+; t) = �max = 1; �(1�; t) = 0; t > 0,
(2-1)

where we assume that 0 � f 2 C 2 such that f (0) = f (1) = 0, with a single maxi-
mum at �̂ and an inflexion point �infl 2 (�̂; 1], such that f 00(�) < 0 for � < �infl and
f 00(�) > 0 for � > �infl. Furthermore, we assume that A(x) is invertible with A0(x) � 0.
Specifically, we assume that

A(x) =

�
p + qx

p + q

�1/q

for 0 � x � 1(2-2)

for constants p � 0 and q � 0 (p2 + q2 ¤ 0). Of particular interest is the case p = 0

and q = 1/2 that corresponds to a full cone, while p > 0 and q = 1/2 refers to a trun-
cated cone. Cones are widely used for routine tests in sanitary engineering, where they
are known as “Imhoff cones” (̈Bürger, Careaga, Diehl, Merckel, and Zambrano [n.d.]).
The recent contribution by Bürger, Careaga, and Diehl [2017] related to (2-1) is the con-
struction of explicit solutions to this problem. The basic difficulty associated with (2-1)
is that characteristic curves and iso-concentration lines do not coincide. Furthermore, our
solution handles functions f that have one inflection point, while the solution to (2-1) by
Anestis [1981] was reduced to f (�) = �(1 � �).

The practical interest in solving (2-1) for settling in a cone is illustrated in Figure 2: it
turns out that in the conical case, the concentration � beneath the suspension-supernate in-
terface gradually increases, so that the velocity of descent of that interface decreases, while
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in the cylindrical case that concentration and velocity are constant. As a consequence, that
velocity of descent depends on a whole interval of �-values and corresponding flux val-
ues f (�). It is therefore possible to reconstruct the function � 7! f (�) on a whole
interval, which may be as large as (�0; �max], where �0 is the initial concentration, from a
single batch test, while the cylindrical case permits only to obtain one point (�0; f (�0))
in addition to (�max; f (�max)), so a separate test has to be performed for each initial con-
centration.

2.2 Solution of the initial-boundary value problem. The reconstruction is achieved
through the exact solution of (2-1) by the method of characteristics wherever � is smooth,
combinedwith the solution of the ordinary differential equations for the suspension heighth
as a function of time t . The method of characteristics (see Holden and Risebro [2015]), ap-
plied to the PDE in (2-1)written in quasilinear form @t��f 0(�)@x� = (A0(x)/A(x))f (�),
yields that we may choose t as a parameter along characteristics, and that for a non-
characteristic initial curve (x; t; �) = (�; �; '), the quantities x = X(t) and � = Φ(t)

satisfy the characteristic equations

X 0(t) = �f 0(Φ); t > � ;

X(�) = �;

Φ0(t) =
�
A0(X)/A(X)

�
f (Φ); t > � ;

Φ(�) = ';

fromwhich we already read off thatA0 > 0 impliesΦ0 > 0, i.e. the concentration increases
along characteristics. For A given by (2-2) we get the characteristic system

t � �

p + qx
= f (q)

Z �

'

dΦ
f (Φ)1+q

;
f (�)

f (')
=

�
p + q�

p + qx

�1/q

:(2-3)

For ' = �0 specified at initial time � = 0, the first equation in (2-3) yields

 (x; t) :=
t

p + qx
= f (�)q

Z �

�0

dΦ
f (Φ)1+q

=: Q(�):(2-4)

Thus, the solution � = �(x; t) for small times is implicitly given by the relation

 (x; t) = Q(�);(2-5)

where Q is invertible in closed form only in exceptional cases. However, (2-5) informs
that the curves of constancy of  in an x versus t plot are those of �, and for a (truncated)
cone (q = 1/2), these are straight lines that intersect at x = �p/q.

The integral in (2-4) cannot be evaluated in closed form in general, but this is possible
for the following case treated in Anestis [1981]:

f (�) = �(1 � �/�max); q = 1/2:(2-6)
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Here we emphasize that our treatment (Bürger, Careaga, and Diehl [2017]) is based on
integrals with respect to �, while that of Anestis [1981] is based on integrating over values
of f . This is the key insight that allowed us to handle flux functions having an inflection
point.

Of course it is well known that the projected characteristics t 7! x(t) for a quasi-
linear first-order PDE may intersect after finite time and give rise to discontinuities. If
�+(t) ¤ ��(t) are solution values adjacent to a curve t 7! xd(t), then these must satisfy
the Rankine-Hugoniot condition

�x0
d = S(��; �+) := (f (�+) � f (��))/(�+

� ��)(2-7)

and the entropy jump condition

S
�
u; ��

�
� S

�
�+; ��

�
for all u between �+ and ��.(2-8)

Definition 2.1. A function � is an entropy solution of (2-1) if � is a C 1 solution of (2-1)
everywhere with the exception of a finite number of curves xd(t) 2 C 1 of discontinuities.
At each jump, �˙ := �(xd(t)

˙; t) satisfy (2-7) and (2-8).

Our approach is based on piecing together solutions � = �(x; t) in smooth regions,
where these are defined by (2-3), along with trajectories of discontinuities that satisfy
(2-7) and (2-8). The entropy solution defined here is also the unique entropy solution
in the sense of Kružkov-type entropy inequalities (Holden and Risebro [2015]). Such a
solution may be used to provide exact reference solutions to test numerical schemes.

We illustrate in Figure 3 the construction for the case (2-6), for which the integral in
(2-4) is available in closed form andQ is invertible, as considered in Anestis [1981]. The
characteristics are upwards-bent curves, and the straight lines  = const: intersect at
x = �p/q = �1/9. These lines carry �-values ranging from �0 = 0:35 to �max = 0:66.
The characteristic area is enclosed by two convex curves that separate the suspension from
the clear liquid region (� = 0) and the sediment (� = �max) from the suspension, and
which intersect at some time to form a stationary solution.

The construction of an entropy solution for a function f having an inflection point is
more involved; see Bürger, Careaga, and Diehl [2017, n.d.] for full details. We here only
provide those preliminaries that permit stating the final results in self-contained form.

To classify the generic cases that may arise for a function f with exactly one inflection
point �infl, we introduce the operations � 7! �� and � 7! ���:

�� := sup
˚
u > � : S(�; u) � S(�; v) 8v 2 (�; u]

	
for � 2 [0; �infl],

��� := inf
˚
u < � : u� = �

	
for � 2 [�infl; �max].

The generic cases are then those of a low (L), medium (M), and high (H) value of �0 in
terms of comparisons with �infl and ���

max, see Figure 4.
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Figure 3: Construction of the entropy solution of (2-1) for (2-6) with �max = 0:66,
�0 = 0:35, and a truncated cone with p = 1/18.

Let us first consider a truncated cone (q = 1/2, p > 0). The solutions are illustrated
in Figure 5. In each case an upper discontinuity x = h(t) is defined for 0 � t � t3,
where t3 is the time at which the solution becomes stationary, and in Cases L and M a
lower discontinuity x = b(t) emerges from x = 0 at t = t1 > 0, and may cease to
exist at a time t2 or merge with h(t) at t = t2:5. Regions I, IIa, etc. (denoted RI, RIIa,
etc.) contain qualitatively different smooth solutions. The following theorem is proved
in Bürger, Careaga, and Diehl [2017].

Theorem 2.1. Assume that A is given by (2-2) with p; q > 0 or p > 0 and q ! 0+.
Then the entropy solution � = �(x; t) of (2-1) is piecewise smooth and has a descending
shock h(t), which is strictly convex for 0 < t < t3. Moreover:

(i) A discontinuity b(t) rises from x = 0 if and only if 0 < �0 < �infl (Cases L and
M). It is a shock for 0 � t < t1, a contact for t1 � t < t2, and strictly convex for
0 � t < t2. Here h and b are smooth, except if t2 = t2:5 (i.e., h and b intersect);
then h0 jumps at t = t2:5. If t2 < t2:5, then b(t) dies at t = t2.

(ii) @t� > 0 and @x� < 0 (weakly) except for � = 0 for x > h(t) and � = �max in
RIII; and if q = 0, then @t� > 0 and @x� = 0 in RI.

(iii) In RI, �(x; t) = Q�1( (x; t)).



3516 BÜRGER, CAREAGA, DIEHL, MEJÍAS AND RUIZ BAIER

.

φ∗∗

max φ̂ φmaxφinfl

f (φ)

φ0

1

Case L:
�0 � ���

max

.

φ∗∗

max φ̂ φmaxφinfl

f (φ)

φ0

1

Case M:
���
max � �0 � �infl

.

φ∗∗

max φ̂ φmaxφinfl

f (φ)

φ0

1

Case H:
�0 � �infl

Figure 4: Generic cases of a low (L), medium (M), and high (H) value of �0. The
thick lines show the intervals of possible identification of the flux.

(iv) RIIa = ¿ if �infl � �0 < �max (Case H) or if P (�infl) � 0 and �G < �0 <

�infl. Otherwise, � > �infl in RIIa, and strictly concave characteristics emanate
tangentially from b(t) for t1 � t � t2.

(v) RIIb = ¿ if �0 � ���
max (Case L). Otherwise RIIb is filled with concave characteris-

tics emanating from (x; t) = (0; 0) with initial values in (��
0 ; �max) in Case M, and

in (�0; �max) in Case H.

Note that Theorem 2.1 does not cover the case of a full cone, that is, q = 1/2 and
p = 0. In fact, it is not entirely straightforward to take the limit p ! 0+ in the proof
of Bürger, Careaga, and Diehl [2017] since a singularity arises at (x; t) = (0; 0) even if
no singularity is created for p > 0. For the identification problem, the case p = 0 is of
interest since full cones are common laboratory equipment, and more importantly, for the
following reason. The conversion of the curve (t; h(t)) into a portion of the flux, that is,
into pairs (�; f (�)) on a certain �-interval is possible for 0 � t � t2:5 Bürger, Careaga,
and Diehl [2017, n.d.]. However, the time t2:5, that is the moment of merger of b(t) and
h(t), may be hard to be detect. Fortunately, for p = 0 it turns out that t2:5 = t3 (under
some mild conditions), and therefore the entire curve h(t) may be used for all times for
flux identification. The following theorem is proved in Bürger, Careaga, and Diehl [n.d.].

Theorem 2.2. Assume that A is given by (2-2) with p = 0 and q > 0. The entropy
solution � = �(x; t) of (2-1) is piecewise smooth and satisfies (i) and (ii) of Theorem 2.1.
If f 0(�max) < 0, then t3 < 1 and � � �max in RIII, which is bounded by the upper shock
curve x = h(t) and the line x = `(t) := �f 0(�max)t . If f 0(�max) = 0, then RIII = ¿.
Furthermore, we define P (�) := Q0(�)

qf (�)q�1 , and have the following.

(i) Independently of �0: If P (�infl) > 0, then the solution is continuous in 0 � x �

h(t), t > 0, without a bottom discontinuity b(t). (See Figure 6.)

(ii) If �0 � �infl (Cases L and M) and P (�infl) � 0, then the solution has both dis-
continuities, where b(t) is a straight line originating from the bottom, having the
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constant � = �G just above it, where G(�G) = 0 and we define the function
G(') := S('; '�) + 1

qQ(')
.

2.3 Solution of the inverse problem and curved trajectories. Let us now come back
to the inverse problem. We assume thatA(x) is given by (2-2) withp; q � 0, that the intial
concentration �0 is given, and that the flux is unknown but has the following properties:
f 2 C 2 is a nonnegative function with f (0) = f (1) = 0, one maximum �̂ and one
inflection point �infl 2 (�̂; 1] such that f 00(�) < 0 for � < �infl and f 00(�) > 0 for
� > �infl. Then the inverse problem can be formulated as follows (see Figure 2):

Given the interface trajectory [tstart; tend] 3 t 7! h(t), find the portion of
� 7! f (�) corresponding to the interval of adjacent �-values.

(IP)

The idea to solve (IP) is based on the representation of the explicit solution according to
Theorems 2.1 and 2.2. In Bürger, Careaga, and Diehl [ibid.] the solution of (IP) is given as
a parametric explicit formula for the flux. If h(t) is not provided in closed algebraic form,
for instance if only pointwise experimental data are available, then a suitable decreasing
and convex approximation can be generated by solving a constrained least-squares ap-
proximation (quadratic programming) problem; see Bürger, Careaga, and Diehl [n.d.] and
Bürger and Diehl [2013].

To elucidate a relation between curved shock trajectories and the functional form of
the nonlinear flux, let us consider for the moment the cylindrical case A � const:, for
which the identification problemwas handled in Bürger and Diehl [2013]. Then, the upper
discontinuity x = h(t) is initially a straight line; see Figure 2. For a medium large initial
value �0 2 (���

max; �infl), a rarefaction fan emerges from (x; t) = (0; 0). After this wave
has met the upper discontinuity h(t) at t = tstart, the latter becomes convex for some
t 2 [tstart; tend]. Kynch [1952] presented a graphical procedure for obtaining f in the
interval [��

0 ; �max] (the ‘tail’). Diehl [2007] showed that Kynch’s graphical procedure can
be written by representation formulas; namely the tail of f can be expressed as a function
of the curved discontinuity h and its derivative h0. This is a solution of the inverse problem
of obtaining (the tail of) the flux function f given the solution of (2-1) with A � const:.
It is interesting to note that Kunik [1993] presented a representation formula for the global
solution of (2-1) withA � const: for a monotone initial value function �(x; 0) = �init(x),
0 � x � 1. In the special batch-sedimentation case where �init � �0, Kunik’s formulas
relate the curved discontinuity h as a function of the flux function f in precisely the same
way as Diehl’s formulas relate f as a function of h. To elucidate this symmetry, we denote
the concentration just below the curved discontinuity by

�h(t) := �(h(t)�; t) for tstart � t � tend;(2-9)
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where �h is an increasing C 1 function that maps [tstart; tend] to [��
0 ; �max]. In the rest of

this section, we restrict h and f to these respective intervals. Evaluating the formula
x/t = �f 0(�(x; t)), which describes the slope of characteristics within the rarefaction
wave, and inserting (2-9) we obtain

h(t)/t = �f 0(�h(t)) for tstart � t � tend:(2-10)

On the other hand, the jump condition (2-7) for x = h(t) implies that

�h0(t) = f (�h(t))/�h(t) for tstart � t � tend:(2-11)

Note that replacing h by f and t by �h in any of the formulas (2-10) and (2-11), the other is
obtained. In fact, defining �(t) := h(t) � th0(t) and Φ̃(�) := f (�) � �f 0(�), we obtain
the following dual representation formulas Bürger and Diehl [2013]:�

�; f (�)
�
=

�
H�0/�(t)

��
1;�h0(t)

�
for tstart � t � tend;(2-12) �

t; h(t)
�
=

�
H�0/Φ̃(�)

��
1;�f 0(�)

�
forH�0/�(tstart) = ��

0 � � � �max;(2-13)

where (2-12) was derived by Diehl [2007] and (2-13) by Kunik [1993]. Both f and h are
decreasing, strictly convex and C 2 functions (on the intervals of interest). Since both �
and Φ̃ are invertible, explicit representation formulas may be obtained:

f (�) = ��h0
�
��1 (H�0/�)

�
for ��

0 � � � �max;

h(t) = �tf 0
�
Φ̃�1(H�0/t)

�
for tstart � t � tend.

2.4 Anumerical example. Weare currently applying the newmethod of flux identifica-
tion to synthetic and experimental data (̈Bürger, Careaga, Diehl, Merckel, and Zambrano
[n.d.]). We show in Figure 1 the numerical solution to a problem of flux recognition. The
flux function f (�) defined by (1-3) and (1-6) with rV = 5 was used to produce the up-
per discontinuity by solving the corresponding jump condition ODE numerically. From
the ODE solution, discrete data points were obtained and used to fit a piecewise cubic
polynomial function h(t). This function is then used in the explicit parametric formula
(see Bürger, Careaga, and Diehl [n.d.]) for the flux. With sufficiently many data points,
containing hardly any noise, many subintervals can be used and a portion of the flux iden-
tified accurately.

3 Reactive settling

3.1 Introduction. Models of continuously operated settling tanks form a topic for well-
posedness and numerical analysis even in one space dimension due to the spatially dis-
continuous coefficients of the underlying strongly degenerate parabolic, nonlinear model
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PDE (1-4). Such a model was recently extended (Bürger, Careaga, Diehl, Mejı́as, Nopens,
Torfs, and Vanrolleghem [2016] and Bürger, Diehl, and Mejı́as [n.d.]) to multi-component
particles that react with several soluble constituents of the liquid phase. The fundamental
balance equations contain the mass percentages of the components of both phases. The
equations are reformulated in Bürger, Diehl, and Mejı́as [n.d.] as a system of nonlinear
PDEs that can be solved by an explicit numerical difference scheme. The scheme itself is
not described in this contribution since space is limited. It combines a difference scheme
for conservation laws with discontinuous flux, similar to that of Bürger, Karlsen, and
Towers [2005], with numerical percentage propagation for multi-component flows (Diehl
[1997]).

3.2 Mathematicalmodel. Themain variables are explained in Figure 1. The unknowns
are X , L, pX and pL as functions of z and t . The solid and fluid densities, �X and �L,
are assumed constant. The model keeps track of kX particulate and kL liquid components
(kL � 1 substrates and water), whose concentrations are collected in vectors C and S

along with W , or equivalently, percentage vectors pX and pL:

C = pXX =

0BB@ p
(1)
X
:::

p
(kX )
X

1CCAX; pLL =

0BB@ p
(1)
L
:::

p
(kL)
L

1CCAL =

�
S

W

�
=

0BBB@
S (1)

:::

S (kL�1)

W

1CCCA ;
wherep(1)

X + � � � + p
(kX )
X = 1 andp(1)

L + � � � + p
(kL)
L = 1. The governing system of equa-

tions can be formulated as follows:

@tX + @zFX = ı(z)
XfQf

A
+ (z)R̃X (X); FX := Xq + (z)

�
f (X) � @zD(X)

�
;

@t (pXX) + @z(pXX) = ı(z)
pX;fXfQf

A
+ (z)RX ;

L = �L(1 �X/�X );

@t (p̄LL) + @z(p̄LL) = ı(z)
p̄L;fXfQf

A
+ (z)R̄L; FL := �L

�
q �

FX

�X

�
;

p
(kL)
L = 1 �

�
p
(1)
L + � � � + p

(kL�1)
L

�

(3-1)

for z 2 R and t > 0, along with suitable initial conditions. The convective flux func-
tion FX contains the spatially discontinuous bulk velocity q(z; t), the hindered-settling
flux function f given by (1-3) and the sediment compressibility function D by (1-8).
Moreover, p̄L = p̄L(z; t) is a vector of components of the liquid phase formed by the
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first kL � 1 components of pL. The reaction term vectors are denoted by RX and R̄L,
and lastly R̃X is the sum of all components of the vector RX .

The model (3-1) may include a full biokinetic Activated Sludge Model (ASMx; see
Henze, Grady, Gujer, Marais, and Matsuo [1987]) at every depth z within RX and R̄L,
and is based on the idea that hindered and compressive settling depend on the total particu-
late concentration (flocculated biomass) X modelled by the first equation. The particular
formulation (3-1) has two advantages. Firstly, for a numerical method with explicit time
stepping such as the one advanced in Bürger, Diehl, and Mejı́as [n.d.], the new value ofX
is obtained by solving the first equation in (3-1) only. Then pX is updated by the second
equation of (3-1), etc. Secondly, this formulation yields the invariant region property of
the numerical scheme (see Bürger, Diehl, and Mejı́as [ibid., Theorem 4.1]), which states
that the solution stays in

Ω̃ :=
˚
U 2 RkX+kL+2 : 0 � pX ;pL � 1; 0 � X � Xmax;

�L � rXmax � L � �L; p
(1)
X + � � � + p

(kX )
X = 1; p

(1)
L + � � � + p

(kL)
L = 1

	
(vectors in inequalities should be interpreted component-wise), provided that the spatial
meshwidth and the time step satisfy a suitable CFL condition.

We have no proof that an exact solution of system (3-1) stays in Ω̃ if the initial datum
does since the well-posedness (existence and uniqueness) analysis of the model is not yet
concluded, and a suitable concept of a (discontinuous) exact solution is not yet established.
However, it is reasonable to expect that an exact solution of (3-1) should also assume val-
ues within Ω̃. To support this conjecture, wemention first that the invariant region property
proved in Bürger, Diehl, andMejı́as [ibid.] holds uniformly for approximate solutions, and
therefore will hold for any limit to which the scheme converges as discretization param-
eters tend to zero. This standard argument has been used for related models in Bürger,
Karlsen, Risebro, and Towers [2004], Bürger, Karlsen, and Towers [2005], and Karlsen,
Risebro, and Towers [2002]. With the properties of the reaction term here, namely that
R̃X = 0 if X = 0 or X = Xmax, the invariance property of the numerical scheme follows
by a monotonicity argument (Bürger, Diehl, and Mejı́as [n.d., Lemma 4.3]). The conver-
gence of that scheme with a reaction term being a function of X only (and utilizing that
it is zero for X = 0 or X = Xmax) can be established by modifying the proof in Bürger,
Karlsen, and Towers [2005].

3.3 Numerical example. To specify the function f given by (1-3), we utilize (1-7)
with volume fraction � replaced by the equivalent local density X and the parameters
X̄ = 3:87 kgm�3 and r = 3:58. The function D that describes sediment compressibility
is specified by (1-8), where we choose �e = 0 for X < Xc and �e(X) = ˛(X � Xc) for
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X > Xc with ˛ = 0:2m2 s�2 and Xc = 5 kgm�3. The velocity q is defined in terms of
the given bulk flows as

q(z; t) =
1

A
�

(
Qe(t) = Qf(t) �Qu(t) for z < 0,
Qu(t) for z > 0,

where A = 400m2.

We use a reduced biological model of denitrification, distinguishing kX = 2 particu-
late components with concentrations XOHO (ordinary heterotrophic organisms) and XU
(undegradable organics), and kL = 4 liquid components, namely the substrates SNO3

(nitrate), SS (readily biodegradable substrate) and SN2 (nitrogen), and water, such that
pXX = C = (XOHO; XU)

T and S = (SNO3 ; SS; SN2)
T. The reaction terms are then given

by

RL = XOHO

0BBBBBB@
�
1 � Y

2:86Y
�(S )

(1 � fp)b �
1

Y
�(S )

1 � Y

2:86Y
�(S )

0

1CCCCCCA ;
RX = XOHO

�
�(S ) � b

fpb

�
;

�(S ) := �max
SNO3

KNO3 + SNO3

SS

KS + SS
;

where �(S ) is the so-called growth rate function. (Values of constants are given in the
caption of Figure 9.) The resulting summed reaction terms are

R̃X = (�(S ) � (1 � fp)b)XOHO; R̃L =

�
(1 � fp)b �

�(S )

Y

�
XOHO:

We choose the volumetric flows Qf and Qu and the feed concentration Xf as piecewise
constant functions of t (see Figure 8), and let pX;f and pL;f be constant.

The whole simulation is shown in Figure 9. The initial steady state is kept during
two hours of the simulation. There is a sludge blanket, i.e., a discontinuity from a low
concentration up to X = Xc. At t = 4 h, the step change of control functions causes a
rapidly rising sludge blanket that nearly reaches the top of the SST around t = 5:8 h, when
the control variables are changed again. The fast reactions imply that the soluble NO3 is
quickly converted to N2 in regions where the bacteria OHO are present, which is below
the sludge blanket.

4 A multi-dimensional sedimentation model

4.1 Coupled transport-flow problem. Consider an incompressible mixture occupying
the domain Ω � Rd , d = 2 or d = 3, and that the velocities q and vr are as defined in
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Section 1.2. Following Bürger, Wendland, and Concha [2000] and discarding quadratic
terms for the filtration velocity, we may recast the governing equations as follows (cf.
Ruiz-Baier and Lunati [2016]):

div q = 0;

@t� + div(�q � b(�)k) = div(�(�)r�);

@t q + q � rq �
1

�
div

�
�(�)"(q) � pI

�
= Q(�)(@t vr + q � rvr)

+ Q(�)vr � rq + gk;

(4-1)

where � = ��X + (1 � �)�L is the local density of the mixture, Q(�) = ��1(�X �

�L)�(1 � �), and b(�) is the Kynch batch flux density function, i.e., b(�) = f (�) in
the notation of Sections 1.2 and 1.3, where we assume that this function is given by (1-3),
(1-5) with nRZ = 0. The coefficient functions �(�) := (dD(�)/d�)/�X (see (1-8)) and
�(�) := (1 � �)�3 account for compressibility of the sediment and mixture viscosity,
respectively.

The primal unknowns are the volume average flow velocity of the mixture q, the solids
concentration �, and the pressure field p. Next we proceed to recast (4-1) in mixed form,
also making the assumption that the flow regime is laminar: Find the Cauchy fluid pseudo-
stress � , the velocity q, and the volume fraction � satisfying

(4-2)
(�(�))�1� d = rq; @t q � div � = f �; div q = 0 in Ω;

e� = #(�)r� � �q + b(�)k; @t� � dive� = g in Ω:

This system is supplemented with the following boundary conditions:

q = qD; � = �D on ΓD; �� = 0; e� � � = 0 on ΓN(4-3)

along with the initial data q(0) = q0, s(0) = s0 in Ω � f0g. Here (�)d denotes the
deviatoric operator, k is a vector pointing in the direction of gravity and f 2 L1(Ω),
qD 2 H1/2(ΓD), g 2 L2(Ω) are given functions.

Even if problems with the ingredients mentioned above have successfully been sim-
ulated numerically by many techniques (see e.g. Betancourt, Bürger, Ruiz-Baier, Tor-
res, and Vega [2014], Khalili, Basu, Pietrzyk, and Jørgensen [1999], Ekama, Barnard,
Günthert, Krebs, McCorquodale, Parker, and Wahlberg [1997], and Rao, Mondy, and Al-
tobelli [2007]), the study of mathematical properties of (4-1) and the rigorous analysis
of discretizations is still an open problem in the general case. The parabolic regulariza-
tion approach has been exploited in Bürger, Liu, and Wendland [2001] to address the
well-posedness of (4-1) for a large fluid viscosity. Its formulation in terms of Stokes
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flow and the steady coupling to compression effects has been recently studied in Alvarez,
Gatica, and Ruiz-Baier [2015]. That contribution assumes that the nonlinear diffusivity
depends on the concentration gradient, which is also done, for instance, for reacting non-
Newtonian fluids Bulı́ček and Pustějovská [2014]. More general viscosity and diffusivity
functions were analyzed in Alvarez, Gatica, and Ruiz-Baier [2016b], but still assuming
non-degeneracy of the diffusion term. Models of sedimentation-consolidation are similar
in structure to Boussinesq- and Oldroyd-type models, for which several mixed formu-
lations have been analyzed (see Colmenares, Gatica, and Oyarzúa [2016], Farhloul and
Zine [2011], and Cox, Lee, and Szurley [2007] and references cited in these papers). Aug-
mentation of the formulation, as done in Alvarez, Gatica, and Ruiz-Baier [2015, 2016b],
simplifies the analysis of continuous and discrete problems associated to (4-2)–(4-3).

4.2 Finite volume element schemes. The dominance of convection in the diffusive
transport equation in (4-1) suggests the use of finite volume (FV)-based discretizations.
In turn, finite element (FE) formulations are more suitable for error analysis by energy
arguments and for setting up mixed formulations. Finite-volume-element (FVE) schemes
retain properties of both FV and FEmethods. Their construction hinges on defining fluxes
across element boundaries defined on a dual partition of the domain (see Bank and Rose
[1987] for details and Quarteroni and Ruiz-Baier [2011], Kumar and Ruiz-Baier [2015],
and Wen, He, and Yang [2013] for recent applications in incompressible flows). Variants
of FVE schemes have been employed for reactive flows (Ewing, Lazarov, and Lin [2000]),
variable viscosity flows (Calgaro, Creusé, and Goudon [2008]), sedimentation equations
in axisymmetric form and including mild (pointwise) degeneracy (Bürger, Ruiz-Baier, and
Torres [2012]), incorporating convective terms and using a conforming approximation in
primal form (Ruiz-Baier and Torres [2015]), defining discontinuous discretizations for
velocity-pressure and concentration (Bürger, Kumar, and Ruiz-Baier [2015]), also in the
case of porous materials (Bürger, Kumar, Kenettinkara, and Ruiz-Baier [2016]).

4.3 A posteriori error estimation. Mesh adaptivity guided by a posteriori error esti-
mates has a considerable potential in sedimentation-consolidation problems. Exploiting
intrinsic differences in spatio-temporal scales, adaptive methods have been developed for
the 1D case (Bürger, Ruiz, Schneider, and Sepúlveda [2008]) using multiresolution tech-
niques, whereas the a posteriori error analysis for general coupled viscous flow-transport
problems has only been addressed in Alvarez, Gatica, and Ruiz-Baier [2016b], Braack
and Richter [2007], and Larson, Söderlund, and Bengzon [2008], and Alvarez, Gatica,
and Ruiz-Baier [2017] in a specific application to sedimentation processes in porous me-
dia. In Alvarez, Gatica, and Ruiz-Baier [ibid.] efficient and reliable residual-based a pos-
teriori error estimators for augmented mixed–primal FE schemes for stationary versions
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of (4-2)–(4-3) are proposed, and a generalization to the transient case can be defined as
described below.

Given an element of the FE mesh K 2 Th, we denote by Eh(K) the set of its edges
not sharing any boundary segments, and let EΓD

h
(K) denote the set of edges of K lying

on the boundary ΓD. The unit normal vector on each edge is �e := (�1; �2)
T, and let

se := (��2; �1)
T be the corresponding fixed unit tangential vector along e. We let [[v ��e]]

be the corresponding jump across e. Then we define the approximate flux vector ase� h :=

#(�h)r�h � �hqh � b(�h)k and define an element-wise local error indicator associated
to a semidiscretization of (4-2)–(4-3) as follows:

�2K :=kf �h � (@t qh � div� h)k
2
0;K +

rqh � (�(�h))
�1� d

h

2

0;K

+ h2Kkg � (@t�h � dive� h)k
2
0;K + h2K

curl �(�(�h))
�1� d

h

� 2

0;K

+
X

e2E(K)

he

�q
(�(�h))

�1� d
hse

y2

0;e
+ kJe� h � �eKk20;e

�
+

X
e2EΓD (K)

kqD � qhk
2
0;e

+
X

e2EΓN (K)

heke� h � �ek
2
0;e +

X
e2EΓD (K)

he

dqD
dse

� (�(�h))
�1� d

hse

2

0;e

:

A global residual error estimator can then be defined as � := f
P

K2Th
�2Kg1/2, which has

resemblance to the first residual-based indicator proposed in Alvarez, Gatica, and Ruiz-
Baier [2017], and which has been shown to be efficient and reliable.

4.4 Numerical example. Let us consider a zeolite suspension in a secondary clarifier
unit, where domain configuration and dimensions are taken from the Eindhoven WWTP
(see Figure 10), and whose geometry is precisely described in Bürger, Kumar, and Ruiz-
Baier [2015]. A numerical simulation using axisymmetric discontinuous FVE schemes for
primal formulations has been developed in Bürger, Kumar, and Ruiz-Baier [ibid.]. We use
the model parameters of that study, but here stating the set of equations in mixed form (4-2)
and employ a lowest-order mixed-primal scheme as the one proposed in Alvarez, Gatica,
and Ruiz-Baier [2016b]. A backward Euler method is used for the time discretization
setting a fixed timestep of ∆t = 5 s and the system is evolved until tfinal = 12000s. The
device features a feed inletΓin and a peripheral overflow annular regionΓofl. A suspension
is injected through Γin with constant velocity q in = (0; 0:17)T and having a concentration
of � = 0:08. On Γout we set qout = (0;�1:5e6)T and on Γofl we impose zero normal
Cauchy stresses; and on the remainder of @Ω we prescribe q = 0 and no-flux conditions
for �.

The remaining parameters are chosen as � 0
e(�) = (�0˛/�

˛
c )�

˛�1, �0 = 0:22Pa, ˛ = 5,
ˇ = 2:5, �L = 998:2 kg/m3, �X = 1750 kg/m3, �c = 0:014, �̃max = 0:95, v1 =
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0:0028935m/s, g = 9:8m/s2, and D0 = 0:0028935m2/s. The physical bounds for
the concentration imply that the stabilisation parameters needed for the augmented mixed-
primal FE method take the values �1 = 0:256 and �2 = 0:25.

We implement an adaptive mesh refinement strategy according to the a posteriori error
indicator � , which we invoke at the end of each time step. The marking-refining algorithm
is based on the equi-distribution of the error indicators in such a way that the diameter of
each new element (contained in a generic elementK on the initial coarse mesh) is propor-
tional to the initial diameter times the ratio �̄h/�K , where �̄h is the mean value of � over
the initial mesh (Verfürth [1996]). On each time step we then solve the coupled set of non-
linear equations using a fixed point method, stopping the Picard iterations when a residual
tolerance of 1e-6 is attained. Inside each fixed-point step we solve the discretized mixed
Stokes equations with a preconditioned BiCGStab method, and a nested Newton solver
is employed for the nonlinear transport equation using the same value for the residual
tolerance as stopping criterion and the same solver for the corresponding linear systems.

Figure 11 (top rows) presents snapshots of the numerically computed concentration
profiles on a surface line integration visualization of the velocity field. We observe ve-
locity patterns avoiding the skirt baffle and the accumulation of sediment on the bottom
of the tank. The sequence of refined meshes indicates that the a posteriori error estimator
identifies the zones of high concentration gradients and marked flow features. A cluster
of elements is formed near these particular zones.

4.5 Ongoing extensions. The theory exposed above still does not cover the analysis
of flow coupled to degenerate elliptic or parabolic equations, that is when the diffusivity
vanishes for all concentrations below a critical value �c , invalidating the fundamental as-
sumptions of strong ellipticity and monotonicity that permits the derivation of solvability
and stability of continuous and discrete problems. Then the classical tools employed in
the continuous analysis as well as in the construction and analysis of the associated nu-
merical method (Alvarez, Gatica, and Ruiz-Baier [2015, 2016b,a], Bürger, Kumar, and
Ruiz-Baier [2015], Bürger, Kumar, Kenettinkara, and Ruiz-Baier [2016], Bürger, Ruiz-
Baier, and Torres [2012], and Ruiz-Baier and Torres [2015]), need to be extended. Part
of such a theoretical formalism has been around for many years in the context of hyper-
bolic conservation laws (cf. Andreianov, Karlsen, and Risebro [2011] and Berres, Bürger,
Karlsen, and Tory [2003] and the references therein), but has not yet been exploited in
multidimensional models of sedimentation. These developments will need to encompass
entropy solutions, low-regularity finite element discretizations, discontinuous FVE, and
non-conforming methods. It is also left to investigate the performance of a posteriori error
indicators developed for FVE schemes applied to (4-1), where sample preliminary studies
include the case of convection-reaction-diffusion (Lazarov and Tomov [2002]).
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Figure 5: Solutions of (2-1) in a truncated cone (q = 1/2, p > 0) with f given by
(1-6): (a) Case L, rV = 4, �0 = 0:04, p = 1/18; (b) Case L, rV = 4, �0 = 0:1,
p = 1/3; (c) Case M, rV = 5, �0 = 0:12, p = 1/6; (d) Case H, rV = 4:7,
�0 = 0:43, p = 9:5. The solid blue curves are discontinuities.



RECENT ADVANCES FOR MODELS OF SEDIMENTATION 3533

x

t

1

φ0

0

III
I

x = ℓ(t)

x = h(t)

φmax

φ = 0

t3

Figure 6: Solution corresponding to item (i) of Theorem 2.2.
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Figure 7: Flux identification via settling in a cone with �0 = 0:1 from synthetic
data of the discontinuity x = h(t). The number of subintervals is that of cubic
polynomials used for the h-curve. The true flux is shown in dashed and the identified
fluxes in solid red.
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Figure 8: Piecewise constant functions Qf and Qu (feed and underflow volume
rates) and Xf (solids feed concentration) for the numerical example of reactive set-
tling (Figure 9).
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Figure 9: Simulation of reactive settling (denitrification) in an SST under vari-
ations of Qu, Qf and Xf (see Figure 8). Constants are standard in ASM1
(Henze, Grady, Gujer, Marais, and Matsuo [1987]) or arise in a strongly re-
duced model (Bürger, Careaga, Diehl, Mejı́as, Nopens, Torfs, and Vanrolleghem
[2016]): b = 6:94 � 10�6 s�1, fp = 0:2, KNO3 = 5:0 � 10�4 kgm�3, Xmax =

30 kgm�3, (the maximum solids concentration), �max = 5:56 � 10�5 s�1, v0 =

1:76 � 10�3ms�1, �X = 1050 kgm�3, �L = 998 kgm�3, g = 9:8m s�2 (accel-
eration of gravity) and Y = 0:67 (yield factor).
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Figure 11: Example: Mixed-primal FE approximation of � at t = 200 s, t = 4000 s,
and t = 12000 s, and corresponding adapted meshes refined using the a posteriori
error estimator � .
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Abstract
In this work a general strategy to design high order well-balanced schemes for

hyperbolic system with nonconservative products and/or source terms is reviewed.
We briefly recall the theory of Dal Maso-LeFloch-Murat to define weak solutions of
nonconservative systems and how it has been used to establish the notion of path-
conservative schemes. Next, a family of high order finite volume methods combin-
ing a reconstruction operator and a first order path-conservative scheme is described.
Then, the well-balanced property of the proposed methods is analyzed. Finally, some
challenging examples on tsunami modeling are shown.

1 Introduction

In the last few years, numerous publications have been devoted to the development of high
order finite volume schemes for PDE systems of the form

(1)
@U

@t
+

@F1

@x
(U ) +

@F2

@y
(U ) + B1(U )

@U

@x
+B2(U )

@U

@y
= S1(U )

@H

@x
+ S2(U )

@H

@y
;

where the unknown U (x; t) is defined in D � (0; T ), D being a domain of R2, and takes
values on an open convex subset Ω of RN ; Fi , i = 1; 2 are two regular functions from
Manuel J. Castro wants to thank all collaborators such as M.L. Muñoz Ruiz, J. A. López, A. Pardo, C. Sánchez,

C. Escalante and E. Guerrero (Univ. Málaga), J. M. Mantas (Univ. Granada), T. Chacón and G. Narbora (Univ.
Sevilla), A. Marquina (Univ. Valencia), J. A. García and A. Ferreiro (Univ. Coruña), E. F. Toro, M. Dumbser
and E. Gaburro (Univ. Trento), G. Russo (Univ. Catania), among others, with whom I have worked in recent
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Ω to RN ; Bi , i = 1; 2 are two regular matrix-valued function from Ω to MN �N (R); Si ,
i = 1; 2 are two functions from Ω to RN ; and finally H (x) is a known function from D

to R. See for example Castro, Fernández-Nieto, Ferreiro, Garcı́a-Rodrı́guez, and Parés
[2009], Castro, Gallardo, and Parés [2006], Castro, Gallardo, López-Garcı́a, and Parés
[2008a], Dumbser, Enaux, and E. F. Toro [2008], Gallardo, Ortega, de la Asunción, and
Mantas [2011], Gallardo, Parés, and Castro [2007], Lukáčová-Medviďová, Noelle, and
Kraft [2007], Noelle, Pankratz, Puppo, and Natvig [2006], Noelle, Xing, and Shu [2007],
Russo and Khe [2009], Xing and Shu [2006], Xing [2017] among others, and Castro,
Morales de Luna, and Parés [2017] for a review.

System (1) includes as particular cases: systems of conservation laws (Bi = 0, Si = 0,
i = 1; 2); systems of conservation laws with source term or balance laws (Bi = 0, i =

1; 2); and coupled systems of conservation laws.
In particular, many interesting problem related to geophysical flows may be written in

the form (1): shallow water systems (one layer or multi-layer systems) that govern the
flow of homogeneous stratified fluid (see E. F. Toro [2001], Audusse, Bristeau, Perthame,
and Sainte-Marie [2011], Fernández-Nieto, Koné, and Chacón Rebollo [2014]), Shallow-
water Exner systems that are commonly used to model the evolution of a sediment layer
submerged on a shallow-flow (see Exner [1925], Grass [1981], Castro Dı́az, Fernández-
Nieto, and Ferreiro [2008], Fernández-Nieto, Lucas,Morales de Luna, andCordier [2014]),
turbidity current models useful to simulate the hyperpycnal plume that is created when a
river with a high concentration of suspended sediment flows into the sea (see Bradford
and Katopodes [1999], Morales de Luna, Castro Dı́az, Parés Madroñal, and Fernández Ni-
eto [2009], Morales de Luna, Fernández Nieto, and Castro Dı́az [2017], Ripa model or
two-mode shallow-water system for modeling ocean currents (see Ripa [1993], Khouider,
Majda, and Stechmann [2008], and Castro Dı́az, Cheng, Chertock, and Kurganov [2014]).
Systems with similar characteristics also appear in other fluid models as two-phase flows.

In this paper, we summarize our main contributions to the design of high-order and
well-balanced finite volume solvers for system (1). Notice first that (1) can be rewritten
in he form

(2) Wt + A1(W )Wx + A2(W )Wy = 0;

by considering W = [U; H ]T and

Ai (W ) =

�
Ai (U ) �Si (U )

0 0

�
; i = 1; 2;

being Ai (U ) = Ji (U ) + Bi (U ) where Ji (U ) =
@Fi

@U
(U ), i = 1; 2 denote the Jacobians

of Fi , i = 1; 2. We also assume that (2) is strictly hyperbolic, i.e. for all W 2 Ω̃ = Ω�R
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and 8 � = (�x ; �y) 2 S1, where S1 � R2 denotes the unit sphere, the matrix

A(W; �) = A1(W )�x + A2(W )�y

has M = N + 1 real and distinct eigenvalues

�1(W; �) < � � � < �M (W; �)

and A(W; �) is thus diagonalizable.
The nonconservative products A1(W )Wx and A2(W )Wy do not make sense as dis-

tributions if W is discontinuous. However, the theory developed by Dal Maso, LeFloch
and Murat in Dal Maso, Lefloch, and Murat [1995] allows to give a rigorous definition of
nonconservative products as bounded measures provided that a family of Lipschitz con-
tinuous paths Φ: [0; 1] � Ω̃ � Ω̃ � S1 ! Ω̃ is prescribed. This family must satisfy certain
natural regularity conditions, in particular:

1. Φ(0;WL; WR; �) = WL and Φ(1;WL; WR; �) = WR, for any WL; WR 2 Ω̃, � 2

S1.

2. Φ(s;WL; WR; �) = Φ(1�s;WR; WL; ��), for anyWL; WR 2 Ω̃, s 2 [0; 1], � 2 S1.

The choice of this family of paths should be based on the physics of the problem: for
instance, it should be based on the viscous profiles corresponding to a regularized system
in which some of the neglected terms (e.g. the viscous terms) are taken into account.
Unfortunately, the explicit calculations of viscous profiles for a regularization of (2) is in
general a difficult task. Some hints of how paths can be chosen is discussed in Castro,
Morales de Luna, and Parés [2017]. An alternative is to choose the ‘canonical’ path given
by the family of segments:

(3) Φ(s;WL; WR; �) = WL + s(WR � WL);

that corresponds to the definition of nonconservative products proposed by Volpert (see
Volpert [1967]). As shown in Castro Dı́az, Fernández-Nieto, Morales de Luna, Narbona-
Reina, and Parés [2013], this family is a sensible choice as it provides third order approx-
imation of the correct jump conditions in the phase plane .

Suppose that a family of paths Φ in Ω̃ has been chosen. Then a piecewise regular func-
tion W is a weak solution of (2) if and only if the two following conditions are satisfied:

(i) W is a classical solution where it is smooth.

(ii) At every point of a discontinuity W satisfies the jump condition

(4)
Z 1

0

�
�I � A(Φ(s;W �; W +; �); �)

�@Φ

@s
(s;W �; W +; �) ds = 0;
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where I is the identity matrix; � , the speed of propagation of the discontinuity; � a
unit vector normal to the discontinuity at the considered point; and W �, W +, the
lateral limits of the solution at the discontinuity.

As in conservative systems, together with the definition of weak solutions, a notion
of entropy has to be chosen. We will assume here that the system can be endowed with
an entropy pair (H;G) i.e. a pair of regular functions H : Ω̃ ! R, H convex and G =

(G1; G2) : Ω ! R2 such that:

rGi (W ) = rH(W ) � Ai (W ); 8 W 2 Ω; i = 1; 2:

Then, a weak solution is said to be an entropy solution if it satisfies the inequality

@t H(W ) + @xG1(W ) + @yG2(W ) � 0;

in the sense of distributions.

Acknowledgments. Manuel J. Castrowants to thank all collaborators such as J. A. López,
A. Pardo, C. Sánchez, C. Escalante and E. Guerrero (Univ. Málaga), J. M. Mantas (Univ.
Granada), T. Chacón and G. Narbora (Univ. Sevilla), A. Marquina (Univ. Valencia), J.
A. García and A. Ferreiro (Univ. Coruña), E. F. Toro, M. Dumbser and E. Gaburro (Univ.
Trento), G. Russo (Univ. Catania), G. Puppo (Politecnico Torino), among others, with
whom I have worked in recent years.

2 High-order finite volume schemes

To discretize (2) the computational domain D is decomposed into subsets with a simple
geometry, called cells or finite volumes: Vi � R2. It is assumed that the cells are closed
convex polygons whose intersections are either empty, a complete edge, or a vertex. De-
note by T the mesh, i.e., the set of cells, and by NT the number of cells.

Given a finite volume Vi , jVi j will represent its area; Ni 2 R2 its center; Ni the set of
indexes j such that Vj is a neighbor of Vi ; Eij the common edge of two neighboring cells
Vi and Vj , and jEij j its length; �ij = (�ij;x ; �ij;y) the normal unit vector at the edge Eij

pointing towards the cell Vj ; ∆x is the maximum of the diameters of the cells and W n
i

the constant approximation to the average of the solution in the cell Vi at time tn provided
by the numerical scheme:

W n
i Š

1

jVi j

Z
Vi

W (x; t) dx:
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Following Castro, Fernández-Nieto, Ferreiro, Garcı́a-Rodrı́guez, and Parés [2009], we
are first going to describe a procedure to construct high order finite volume schemes for
system (2). Let us, first recall the procedure for systems of conservation laws

(5) Wt + F1(W )x + F2(W )y = 0:

High order methods based on the reconstruction of states can be built for (5) combining
a first order conservative scheme with a consistent numerical flux function
F (Wl ; Wr ; �) together with a reconstruction operator of order p. We will assume that
the reconstructions are calculated as follows: given a family fWi g

NT
i=1 of cell values, first

an approximation function is constructed at every cell Vi , based on the values at some of
the cells close to Vi :

Pi (x) = Pi (x; fWj gj 2Bi
) ;

for some set of indexes Bi (the stencil). If, for instance, the reconstruction only depends
on the neighbor cells of Vi , then Bi = Ni [ fig. These approximation functions are
calculated usually by means of an interpolation or approximation procedure. Once these
functions have been constructed, the reconstruction at  2 Eij are defined as follows:

(6) W �
ij () = lim

x!
Pi (x); W +

ij () = lim
x!

Pj (x):

As usual, the reconstruction operator must satisfy the following properties:

(P1) It is conservative, i.e. the following equality holds for any cell Vi :

(7) Wi =
1

jVi j

Z
Vi

Pi (x)dx:

(P2) If the operator is applied to the cell averages fWi g for some smooth function W (x),
then

W ˙
ij () = W () + O(∆xp); 8 2 Eij ;

and
W +

ij () � W �
ij () = O(∆xp+1); 8 2 Eij :

In the literature one can findmany examples of reconstruction operators that satisfy (P1)
and (P2): ENO, WENO, CWENO, hyperbolic reconstructions, among others (see Harten,
Engquist, Osher, and Chakravarthy [1987], Marquina [1994], Shu [1998], Shu and Osher
[1989], Dumbser, Balsara, E. F. Toro, and Munz [2008], Dumbser and Käser [2007], and
Dumbser, Käser, Titarev, and E. F. Toro [2007], Gallardo, Ortega, de la Asunción, and
Mantas [2011], Cravero and Semplice [2016]).
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Once the first order method and the reconstruction operator have been chosen, the
method of lines can be used to develop high order methods for (5): the idea is to discretize
only in space, what leads to a system of ODE that can be solved using TVD Runge-Kutta
methods introduced in Gottlieb and Shu [1998] and Shu and Osher [1988]. Other time
discretization can be considered, as ADER schemes developed by Toro and Dumbser (see
Titarev and E. F. Toro [2005] and Dumbser, Castro, Parés, and E. F. Toro [2009]).

Let W i (t) denote the cell average of a regular solution W of (5) over the cell Vi at
time t :

W i (t) =
1

jVi j

Z
Vi

W (x; t) dx:

Integrating (5) over the cell Vi , the following equation can be easily obtained for the cell
averages:

(8) W
0

i (t) = �
1

jVi j

0@ X
j 2Ni

Z
Eij

F�ij
(W (; t)) d

1A
where F�(�) = F1(�)�x +F2(�)�y . The first order method and the reconstructions are now
used to approach the values of the fluxes at the edges:

(9) W
0

i (t) = �
1

jVi j

0@ X
j 2Ni

Z
Eij

F (W �
ij (; t); W +

ij (; t); �ij ) d

1A ;

Wi (t) being the approximation to W i (t) provided by the scheme and W ˙
ij (; t) the recon-

struction at  2 Eij corresponding to the family fWi (t)g
NT
i=1. It can be shown that (9) is

an approximation of order p of (8).
In practice, the integral terms in (9) are approached by means of a numerical quadrature

formula of order r̄ � p at least.
Let us now generalize the semi-discrete method (9) to the nonconservative system (2).

We will assume that the reconstruction operators satisfy (P1)-(P2) and the following prop-
erties:

(P3) It is of order q in the interior of the cells, i.e. if the operator is applied to a sequence
fWi g for some smooth function W (x), then:

(10) Pi (x) = W (x) + O(∆xq); 8x 2 int(Vi ):

(P4) Under the assumption of the previous property, the gradient of Pi provides an ap-
proximation of order m of the gradient of W :
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(11) rPi (x) = rW (x) + O(∆xm); 8x 2 int(Vi ):

Remark 1. Notice that, in general, m � q � p. If, for instance, the approximation
functions are polynomials of degree p obtained by interpolating the cell values on a fixed
stencil, thenm = p�1 and q = p. In the case of WENO-like reconstructions (see Shu and
Osher [1988]), the approximation functions are obtained as a weighted combination of
interpolation polynomials whose accuracy is greater on the boundary than at the interior
of the cell: in this case q < p. An interesting alternative ofWENO reconstruction operator
for which q = p is given by CWENO reconstruction (see Cravero and Semplice [2016]).

Let us denote by P t
i the approximation functions defined using the cell averagesWi (t),

i.e.
P t

i (x) = Pi (x; fWj (t)gj 2Bi
) :

W �
ij (; t) (resp. W +

ij (; t)) is then defined by

(12) W �
ij (; t) = lim

x!
P t

i (x); W +
ij (; t) = lim

x!
P t

j (x):

Note that (9) can be rewritten as follows using the divergence theorem:

(13)
W 0

i (t) = �
1

jVi j

X
j 2Ni

Z
Eij

D�
ij (W

�
ij (; t); W +

ij (; t); �ij ) d

�
1

jVi j

Z
Vi

�
J1(P

t
i (x))

@P t
i

@x1
(x) + J2(P

t
i (x))

@P t
i

@x2
(x)

�
dx;

where

(14) D�
ij (W

�
ij (; t); W �

ij (; t); �ij ) = F (W �
ij (; t); W +

ij (; t); �ij ) � F�ij
(W �

ij (; t)):

According to Parés Parés [2006], (14) is a first order path-conservative scheme that is
naturally defined from a standard conservative flux. This expression can be extended to
nonconservative systems by replacing Ji by Ai , i = 1; 2 and D�

ij by the fluctuations of a
path-conservative numerical method:

(15)
W 0

i (t) = �
1

jVi j

24 X
j 2Ni

Z
Eij

D�
Φ(W

�
ij (; t); W +

ij (; t); �ij ) d

+

Z
Vi

�
A1(P

t
i (x))

@P t
i

@x
(x) + A2(P

t
i (x))

@P t
i

@y
(x)

�
dx

�
;
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where D�
� (W

�
ij (; t); W �

ij (; t); �ij ) is a path-conservative scheme for system (2), that is
D�

Φ(Wl ; Wr ; �) is a regular function from Ω̃ � Ω̃ � S1 to RM , M = N + 1 satisfying

(16) D�
Φ(W; W; �) = 0 8W 2 Ω̃; 8� 2 S1

and
(17)

D�
Φ(Wl ; Wr ; �) + D+

Φ(Wl ; Wr ; �) =

Z 1

0

A(Φ(s;Wl ; Wr ; �); �)
�@Φ

@s
(s;Wl ; Wr ; �) ds;

where D+
Φ(Wl ; Wr ; �) = D�

Φ(Wr ; Wl ; ��) and Φ is the chosen family of paths.
Note that the cell averages of a smooth solution of (2), W i (t), satisfy:

(18) W
0

i (t) = �
1

jVi j

Z
Vi

(A1(W (x))Wx(x) + A2(W (x))Wy(x)) dx:

Thus, (15) is expected to be an accurate approximation of (18). This fact is stated in
the following result (see Castro, Fernández-Nieto, Ferreiro, Garcı́a-Rodrı́guez, and Parés
[2009]):

Theorem 1. Let us assume that A1 and A2 are of class C2 with bounded derivatives and
D�

Φ(�; �; �ij ) is bounded for all i , j . Let us also suppose that the reconstruction operator
satisfies the hypothesis (P1)-(P4). Then (15) is an approximation of order at least ˛ =

min(p; q; m) to the system (18) in the following sense:

(19)
1

jVi j

X
j 2Ni

"Z
Eij

�
D�

Φ(W
�

ij (; t); W +
ij (; t); �ij )

�
d

+

Z
Vi

�
A1(P

t
i (x))

@P t
i

@x
(x) + A2(P

t
i (x))

@P t
i

@y
(x)

�
dx

�
=

1

jVi j

X
j 2Ni

Z
Vi

(A1(W (x; t))Wx(x; t) + A2(W (x; t))Wy(x; t)) dx + O(∆x˛);

for every solution W smooth enough, being W ˙
ij (; t) the associated reconstructions and

P t
i the approximation functions corresponding to the family

W i (t) =
1

jVi j

Z
Vi

W (x; t) dx:

Remark 2. According to Remark 1 the expected order of the numerical scheme is m. Nev-
ertheless, this theoretical result is rather pessimistic: in practice order q is often achieved.
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Now, taking into account the relation between systems (2) and (1), it is possible to
rewrite (15) as follows:

U 0
i (t) = �

1

jVi j

X
j 2Ni

Z
Eij

D�
Φ(U

�
ij (; t); U +

ij (; t); H �
ij (); H+

ij (); �ij ) d

�
1

jVi j

X
j 2Ni

Z
Eij

F�ij
(U �

ij (; t)) d

�
1

jVi j

Z
Vi

B1(P
U;t
i (x))

@P
U;t
i

@x
(x) + B2(P

U;t
i (x))

@P
U;t
i

@y
(x) dx

+
1

jVi j

Z
Vi

S1(P
U;t
i (x))

@P H
i

@x
(x) + S2(P

U;t
i (x))

@P H
i

@y
(x) dx

(20)

where P
U;t
i is the reconstruction approximation function at time t of Ui (t) at cell Vi de-

fined using the stencil Bi :

P
U;t
i (x) = Pi (x; fUj (t)gj 2Bi

) ;

and P H
i is the reconstruction approximation function of H . The functions U ˙

ij (; t) are
given by

U �
ij (; t) = lim

x!
P

U;t
i (x); U +

ij (; t) = lim
x!

P
U;t
j (x);

and H ˙
ij () are given by

H �
ij () = lim

x!
P H

i (x); H+
ij () = lim

x!
P H

j (x):

In practice, the integral terms in (20) must be approximated numerically using a high
order quadrature formula, whose order is related to the one of the reconstruction opera-
tor (see Castro, Fernández-Nieto, Ferreiro, Garcı́a-Rodrı́guez, and Parés [ibid.] for more
details).

In order to properly define a numerical scheme, D�
Φ(Ul ; Ur ; Hl ; Hr ; �) should be pre-

scribed. In the next section we briefly describe a general procedure to define
D�

Φ(Ul ; Ur ; Hl ; Hr ; �).
Finally, let us remark that a well-known problem related to the design of numerical

schemes for non-conservative systems is the analysis of the convergence towards the weak-
solutions, here we refer to Castro, Morales de Luna, and Parés [2017] for a review on this
particular subject.
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2.1 FVM path-conservative schemes. In this section we briefly present a procedure
to define a family of first order path-conservative schemes named as FVM methods (see
Castro Dı́az and Fernández-Nieto [2012] and Castro, Gallardo, and Marquina [2014] and
Castro, Morales de Luna, and Parés [2017] for a review). FVM reads from functional
viscosity matrix since as it will be shown in the next paragraphs, they are characterized
by a numerical viscosity matrix that results from a functional evaluation of a Roe matrix
for system (2) or, more generally, of the matrix A� = A1�x + A2�y evaluated in a given
intermediate state.

Given a family of paths Φ, a Roe linearization of system (2) is a function

AΦ : Ω̃ � Ω̃ � S1
! MM (R)

satisfying the following properties for each Wl ; Wr 2 Ω̃ and � 2 S1:

1. AΦ(Wl ; Wr ; �) has M distinct real eigenvalues

�1(Wl ; Wr ; �) < �2(Wl ; Wr ; �) < � � � < �M (Wl ; Wr ; �):

2. AΦ(W; W; �) = A(W; �).

3. AΦ(Wl ; Wr ; �) � (Wr � Wl) =

(21)
Z 1

0

A(Φ(s;Wl ; Wr ; �); �)
@Φ

@s
(s;Wl ; Wr ; �) ds:

Note that in the particular case in which Ak(W ), k = 1; 2, are the Jacobian matrices of
smooth flux functions Fk(W ), property (21) does not depend on the family of paths and
reduces to the usual Roe property:

(22) AΦ(Wl ; Wr ; �) � (Wr � Wl) = F�(Wr) � F�(Wl)

for any � 2 S1.
Given a Roe matrix AΦ(Wl ; Wr ; �), let us consider:

bA˙
Φ(Wl ; Wr ; �) =

1

2
(AΦ(Wl ; Wr ; �) ˙ QΦ(Wl ; Wr ; �)) ;

where QΦ(Wl ; Wr ; �) is a semi-definite positive matrix that can be seen as the viscosity
matrix associated to the method.

Now, it is straightforward to define a path-conservative scheme in the sense defined in
Parés [2006] based on the previous definition:

(23) D˙
� (Wl ; Wr ; �) = bA˙

Φ(Wl ; Wr ; �)(Wr � Wl):
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Finally, we could also define a path-conservative scheme for the system (1) as follows:

(24)
D˙

Φ (Ul ; Ur ; Hl ; Hr ; �) =
1

2

�
F�(Wr) � F�(Wl) � BΦ � (Ur � Ul)

�SΦ(Hr � Hl)

˙QΦ � (Ur � Ul � A�1
Φ � SΦ(Hr � Hl))

�
where the path is supposed to be given by Φ = (ΦU ΦH )T and

BΦ � (Ur � Ul) = BΦ(Ul ; Ur ; �) � (Ur � Ul)

=

Z 1

0

B�(ΦU (s;Wl ; Wr ; �))
@ΦU

@s
(s;Wl ; Wr ; �) ds

with
B�(U ) = �xB1(U ) + �yB2(U );

SΦ(Hr � Hl) = SΦ(Ul ; Ur ; �)(Hr � Hl)

=

Z 1

0

S�(ΦU (s;Wl ; Wr ; �))
@ΦH

@s
(s;Wl ; Wr ; �) ds

with
S�(U ) = �xS1(U ) + �yS2(U ):

The matrix AΦ is defined as follows

AΦ = AΦ(Ul ; Ur ; �) = J (Ul ; Ur ; �) + BΦ(Ul ; Ur ; �)

where J (Ul ; Ur ; �) is a Roe matrix for the flux F�(U ), that is

J (Ul ; Ur ; �) � (Ur � Ul) = F�(Ur) � F�(Ul):

Remark 3. The previous scheme can be derived from the standard Roe method for system
(2), taking into account the structure of the matrices A˙

Φ(Wl ; Wr ; �). In fact (24) exactly
coincides with Roe method for system (1) setting QΦ = jAΦj.

Remark 4. Notice that the termQΦ �(Ur �Ul �A�1
Φ �SΦ(Hr �Hl)) is not well defined and

makes no sense if one of the eigenvalues of AΦ vanishes. In this case, two eigenvalues of
AΦ(Wl ; Wr ; �) vanish and the problem is said to be resonant. Resonant problems exhibit
an additional difficulty, as weak solutions may not be uniquely determined by their initial
data. The analysis of this difficulty depends on the considered problem and it is beyond of
this review. A general procedure, that formally avoids this difficulty is described in Castro,
Pardo, Parés, and E. F. Toro [2010].
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Finally, in order to fully define the scheme (24), the matrix QΦ(Ul ; Ur ; �), that plays
the role of the viscosity matrix, has to be defined. For instance, the standard Roe method
is obtained if QΦ = jAΦj. Note that with this choice one needs to perform the complete
spectral decomposition ofAΦ. In many situations, as in the case of the multilayer shallow-
water system, it is not possible to obtain an easy analytical expression of the eigenvalues
and eigenvectors, and a numerical algorithm has to be used to perform the spectral decom-
position of matrix AΦ, increasing the computational cost of the Roe method.

A rough approximation is given by the local Lax-Friedrichs (or Rusanov) method, in
which:

(25) QΦ(Ul ; Ur ; �) = max(j�i (Ul ; Ur ; �)j; i = 1; : : : ; N )I;

I being the identity matrix. Note that this definition of QΦ(Ul ; Ur ; �) only requires an
estimation of the largest wave speed in absolute value. However, this approach gives
excessive numerical diffusion for the waves corresponding to the lower eigenvalues.

The strategy that we follow is to consider viscosity matrices of the form

(26) QΦ(Ul ; Ur) = f (AΦ(Ul ; Ur ; �));

where, f : R 7! R satisfies the following properties:

• f (x) � 0; 8x 2 R,

• f (x) is easy to evaluate,

• the graph of f (x) is close to the graph of jxj.

Moreover, if
f (0) > 0

no entropy-fix techniques are required to avoid the appearance of non-entropy discontinu-
ities at the numerical solutions.

The stability of the scheme is strongly related to the definition of the function f (x). In
parti-cular, if �1(Ul ; Ur ; �) < � � � < �N (Ul ; Ur ; �) denote the eigenvalues of
AΦ(Ul ; Ur ; �) and the usual CFL condition is assumed

(27) ∆t � max
�

j�ij;kj

dij

; i = 1; : : : ; NT ; j 2 Ni ; k = 1; : : : ; N

�
= ı;

with 0 < ı � 1, where dij is the distance from the center of cell Vi to the edge Eij , then
the resulting scheme is L1-stable if f (x) satisfies the following condition Castro Dı́az
and Fernández-Nieto [2012]:

(28) f (x) � jxj; 8 x 2 [�1(Ul ; Ur ; �); �N (Ul ; Ur ; �)];
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i.e., the graph of the function f (x)must be above the graph of the absolute value function
in the interval containing the eigenvalues.

At the beginning of the eighties, Harten, Lax, and van Leer [1983] proposed to choose
f as the linear polynomial p(x) that interpolates jxj at the smallest and largest eigenvalue,
which results in a considerable improvement of the local Lax-Friedrichsmethod. This idea,
which is on the basis of the HLL method, has been improved later by several authors (see
E. F. Toro [2009] for a review).

To our knowledge, the paper by Degond et al. Degond, Peyrard, Russo, and Villedieu
[1999] is the first attempt to construct a simple approximation of jAj by means of a polyno-
mial that approximates jxjwithout interpolation of the absolute value function at the exact
eigenvalues. This approach has been extended to a general framework in Castro Dı́az and
Fernández-Nieto [2012], where the so-called PVM (Polynomial Viscosity Matrix) meth-
ods are defined in terms of viscosity matrices based on general polynomial evaluations of
a Roe matrix. The idea is to consider viscosity matrices of the form:

QΦ(Ul ; Ur ; �) = Pr(AΦ(Ul ; Ur ; �));

where Pr(x) is a polynomial of degree r .
A number of well-known schemes can be interpreted as PVMmethods: this is the case

for Roe, Lax-Friedrichs, Rusanov, HLL Harten, Lax, and van Leer [1983], FORCE E. F.
Toro and Billett [2000], MUSTA E. F. Toro [2006] and E. F. Toro and Titarev [2006],
etc. (see Castro Dı́az and Fernández-Nieto [2012] for details). The numerical scheme
introduced in Degond, Peyrard, Russo, and Villedieu [1999] and the Krylov-Riemann
solver recently introduced in Torrilhon [2012] can be viewed as particular cases of PVM
schemes as well.

In Morales de Luna, Castro Dı́az, and Parés [2014], the relation between Simple Rie-
mann Solvers (SRS) and PVM methods is analyzed. It has been shown that every PVM
method can be interpreted as a SRS provided that it is based on a polynomial that interpo-
lates the absolute value function at some points. Furthermore, the converse is true under
some technical assumptions. Besides its theoretical interest, this relation provides a useful
tool to investigate the properties of some well-known numerical methods that are particu-
lar cases of PVMmethods, as the analysis of certain properties (like positivity preserving)
is easier for SRS methods.

Besides the interpretation of well-known numerical schemes as PVM, this framework
allows for the development of new ones. For instance, in Fernández-Nieto, Castro Dı́az,
and Parés [2011] a numerical method based on a polynomial that interpolates three values
(the largest and lowest eigenvalues and the maximum of the intermediate ones) has been
derived. This numerical method gives excellent results for the two-layer shallow water
model. Another interesting family of PVM schemes based on Chebyshev polynomials,
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which provide optimal uniform approximations to the absolute value function has been
proposed in Castro, Gallardo, and Marquina [2014].

A natural extension of the PVM methods consists in the use of rational functions to
approach the absolute value, since these functions provide more accurate approximations
of this function in the uniform norm. Specifically, in Castro, Gallardo, and Marquina
[ibid.] two families of Rational Viscosity Matrix (RVM) methods have been considered,
based on the so-called Newman and Halley rational approximations of the absolute value
function.

Another interesting application of functional viscosity methods is the derivation of new
flux-limiter type schemes similar to theWAF (Weighted Average Flux) method introduced
by Toro in E. Toro [1989]. In Castro Dı́az, Fernández-Nieto, Narbona-Reina, and de la
Asunción [2014] a natural extension of the original WAFmethod has been proposed based
on a non-linear combination of two PVM methods.

2.2 Well-balancing. In this section the well-balanced property of the scheme (20) is
studied. Let us consider the following definitions:

Definition 1. Consider a semi-discrete method to approximate (1)

(29)

8<: U 0
i (t) =

1

jVi j
H (Uj (t); j 2 Bi ) ;

U (0) = U0;

where U (t) = fUi (t)g
NT
i=1 represents the vector of the approximations to the averaged

values of the exact solution; U0 = fU 0
i g is the vector of the all averages of the initial

conditions; and Bi are the stencils. Given a smooth stationary solution U of the system,
the numerical scheme is said to be exactly well-balanced for U if the vector of its cell
averages is a critical point of (29), i.e.

(30) H(Uj ; j 2 Bi ) = 0:

Let us also introduce the concept of well-balanced reconstruction operator:

Definition 2. Given a smooth stationary solution of (1), a reconstruction operator is
said to be well-balanced for U (x) if the approximation functions Pi (x) associated to the
averaged values of U are also stationary solutions of the system (1).

Remark 5. Here, as H (x) is a given function, we set that its reconstruction is P H
i (x) =

H (x) x 2 Vi .

The following results can be proved:
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Theorem 2. Let U be a stationary solution of (1) and let us assume that the family of
paths Φ(s; Wl ; Wr ; �) = (ΦU (s; Wl ; Wr ; �); ΦH (s; Wl ; Wr ; �))T connecting two states
Wl = (U (xl); H (xl))

T andWr = (U (xr); H (xr))
T with xl < xr is a reparametrization

of x 2 [xl ; xr ] 7! U (x), then the first order FVM scheme is exactly well-balanced for U .

Theorem 3. Let U be a stationary solution of (1). Let us suppose that the first order
FVM path-conservative scheme and the reconstruction operator chosen are exactly well-
balanced for U . Then the numerical scheme (20) is also exactly well-balanced for U .

Remark 6. Note that if the stationary solution is smooth, then U �
ij = U +

ij and D˙
Φ = 0,

therefore, the well-balanced property of the high order method only depends on the well-
balanced property of the reconstruction operator.

Notice that standard reconstruction operators are not expected in general to be well-
balanced. In Castro, Gallardo, López-Garcı́a, and Parés [2008b] we propose a general pro-
cedure to modify any standard reconstruction operator P

U;t
i in order to be well-balanced

for every stationary solution of (1). This procedure summarizes as follows:
Given a family of cell values fUi (t)g, at every cell Vi :

1. Look for the stationary solution U �
i (x) such that

(31)
1

jVi j

Z
Vi

U �
i (x) dx = Ui (t):

2. Apply the reconstruction operator to the cell values fDUj gj 2Bi
given by

DUj (t) = Uj (t) �
1

jVj j

Z
Vj

U �
i (x) dx; j 2 Bi ;

to obtain fP t
i (x) = Pi (x; fDUj (t)gj 2Bi

):

being Pi (x) a standard reconstruction operator that is exact for the null function.
Note that DUj (t), j 2 Bi are the cell averages of the fluctuations with respect to
the stationary solution and should be zero if Uj (t), j 2 Bi correspond to the cell
average of the stationary solution U �

i (x).

3. Define
P t

i (x) = U �
i (x) +

fP t
i (x):

It can be easily checked that the reconstruction operator P t
i is well-balanced for every

stationary solution provided that the reconstruction operator Pi is exact for the null func-
tion and it is high-oder accurate, and that the stationary solutions U �

i are smooth. When
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it is not possible to solve the equation (31) the reconstruction reduces to the standard one
Pi (x).

Finally, let us remark that quadrature formulae also play an important role to preserve
the well-balanced properties of the scheme. In fact, the previous results have been estab-
lished assuming that the integrals are exactly computed. Thus, in order to preserve the
well-balanced properties, quadrature formulae should be exact for the stationary solutions.
For that purpose, the strategy developed in Castro, Ortega, and Parés [2017] can be used.

3 Numerical tests

In this section two numerical tests related to tsunami modeling are presented. In the first
one, the well-known Lituya Bay mega-tsunami is modeled and, in the second one, a hypo-
thetical tsunami in the Mediterranean Sea is simulated. Both simulations have been run
with the software package HySEA developed by Edanya group (University of Málaga).
Tsunami-HySEA and Landslide-HySEA are the numerical models of the HySEA software
specifically designed for tsunami simulations. Tsunami-HySEA model simulates with the
same code the three parts of an earthquake generated tsunami (generation, propagation,
and coastal inundation) using the non-linear shallow-water system on the sphere. In the
generation stage, Okada’s fault deformation model (see Okada [1985]) is used to predict
the initial bottom deformation that is transmitted instantaneously to the sea surface gener-
ating the tsunami wave. This method assumes that an earthquake can be regarded as the
rupture of a single fault plane. This fault is described by a set of parameters, including dip
angle, strike angle, rake angle, fault width, fault length, and fault depth. Landslide-HySEA
model implements the natural 2D extension of the 1D two-layer Savage-Hutter model pre-
sented in Fernández-Nieto, Bouchut, Bresch, Castro Dı́az, and Mangeney [2008], where
Cartesian coordinates are used instead of local coordinates at each point of the 2D do-
main and where no anisotropy effects are taken into account in the normal stress tensor
of the solid phase. The mathematical model consists of two systems of equations that
are coupled: the model for the slide material is represented by a Savage-Hutter type of
model and the water dynamics model is represented by the shallow-water equations. Both
models have been implemented on multiGPU architectures to speedup the computations.
Modern Graphics Processing Units (GPUs) are highly programmable and massively par-
allel devices which can be used to accelerate considerably numerical computations in a
cost-effective way Brodtkorb, Hagen, and Sætra [2013], Owens, Houston, Luebke, Green,
Stone, and Phillips [2008], and M. Ujaldon [2012]. They offer hundreds or thousands of
processing units optimized for massively performing floating-point operations in parallel
and have proven to be effective in the acceleration of numerical schemes which exhibit a
lot of exploitable fine-grain parallelism. GPU computing consists of using GPUs together
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with CPUs to accelerate the solution of compute-intensive science, engineering and enter-
prise problems. Since the numerical simulations based on PDEs present a lot of exploitable
parallelism, there has been an increasing interest in the acceleration of these simulations by
using GPU-based computer systems. There is a widespread use of CUDA-based platforms
to accelerate numerical solvers for PDEs. See de la Asunción, Castro, Fernández-Nieto,
Mantas, Ortega Acosta, and González-Vida [2013], de la Asunción, Castro, Mantas, and
Ortega [2016], de la Asunción and Castro [2017], and Mantas, de la Asunción, and Castro
[2016] and the references therein for some examples of the use of CUDA-based codes in
geophysical flows.

3.1 LituyaBaymega-tsunami. On July 9, 1958, an 8.3magnitude (rated on the Richter
scale) earthquake, along the Fairweather fault, triggered a major subaerial landslide into
the Gilbert Inlet at the head of Lituya Bay on the southern coast of Alaska (USA). The
landslide impacted the water at a very high speed generating a giant tsunami with the
highest recorded wave run-up. The mega-tsunami run-up was up to an elevation of 524 m
and caused total destruction of the forest as well as erosion down to the bedrock on a spur
ridge, along the slide axis. Many attempts have been made to understand and simulate this
mega tsunami. Here, we consider the 2D extension of the two-layer Savage-Hutter system
described in Fernández-Nieto, Bouchut, Bresch, Castro Dı́az, and Mangeney [2008]. This
system has been discretized by the second-order IFCP FVM path-conservative scheme de-
scribed in Fernández-Nieto, Castro Dı́az, and Parés [2011]. Friction terms are discretized
semi-implicitly. For fast computations, this scheme has been implemented on GPUs using
CUDA. This two-dimensional scheme and its GPU adaptation and implementation using
single numerical precision are described in de la Asunción, Castro, Mantas, and Ortega
[2016].

A rectangular grid of 3,648� 1,264 = 4,611,072 cells with a resolution of 4m� 7.5m
has been designed in order to perform this simulation. We use public domain topo-bathymetric
data as well as the review paper Miller [1960] to approximate the Gilbert inlet topo-
bathymetry. The parameters describing the properties of the sediment layer and those
present in the friction laws have been calibrated with some laboratory experiments. The
CFL number is set to 0:9. Figures 1(a)-1(b) show the simulated free-surface elevation at
39 s. and 120 s. The maximum run-up is reached at 39 s.

While the initial wave moves through the main axis of Lituya Bay, a larger second wave
appears as reflection of the first one from the south shoreline (see Figure 1(b)). These
waves sweep both sides of the shoreline in their way. In the north shoreline, the wave
reaches between 15-20 m height while in the south shoreline the wave reaches values
between 20-30 m.
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(a) Free surface at t = 39 seconds.

(b) Free surface at t = 120 seconds.

Figure 1: Evolution of the Lituya Bay mega-tsunami

Figures 2(a) and 2(b) show the comparison between the computed maximum run-up
(inundation) and the measured, provided by NOAA, in red, at the near field and the Ceno-
taph island, located in the middle of the narrow bay. The impact time and the maximum
run-up provided by the simulation are in good agreement with the majority of observations
and conclusions described by Miller [1960].

3.2 Hypothetical tsunami in the eastern Mediterranean basin. In this test we con-
sider the one-layer shallow-water equations (SWE). The application of SWE to large scale
phenomena (of the order of 1000’s of km) makes necessary to take into account the cur-
vature of the Earth. Usually, the Earth is approached by a sphere and the equations are
written in spherical coordinates. Although the PDE system is similar to the SWEs in the
plane using Cartesian coordinates, new source terms appear due to the change of variables.
Therefore, the discretization of the system in spherical coordinates goes far beyond a sim-
ple adaptation of the numerical methods for the equations written in Cartesian coordinates.
In Castro, Ortega, and Parés [2017] a third order path-conservative scheme has been pre-
sented. The numerical scheme is exactly well-balanced for the water at rest, that in this
particular case, must take into account the curvature of the Earth.
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(a) Maximum runup at the Gilbert intlet.

(b) Maximum runup at Cenotaph island.

Figure 2: Comparison between the computed and the observed (in red) maximum
runup in Gilbert intlet and Cenotaph island (Lituya Bay event).

In this test we simulate the evolution of a hypothetical tsunami in the eastern Mediter-
ranean basin. A uniform cartesian grid of the rectangular domain in the �̃ -'̃ plane (that
is, the longitude and latitude in degrees), given by [6:25; 36:25] � [30:25; 45:65] with
∆

�̃
= ∆'̃ = 3000. The mean radius of the Earth is set to R = 6371009:4 m and the

CFL parameter is set to 0:5. Open boundary conditions are prescribed at the four bound-
aries. The topo-bathymetry of the area has been interpolated from the ETOPO1 Global
Relief Model (see Amante and Eakins [n.d.]). Next, a hypothetical seafloor deformation
generated by an earthquake of magnitude Ms = 8 has been computed using the Okada
model (see Okada [1985]). This seafloor deformation is instantaneously transmitted to the
water column to generate the initial tsunami profile (see Figure 3(a)). The initial veloc-
ity is set to zero. Concerning the numerical treatment of wet/dry fronts, here we follow
the ideas described in Gallardo, Parés, and Castro [2007], that have been adapted to the
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reconstruction operator defined in Gallardo, Ortega, de la Asunción, and Mantas [2011].
Figures 3 and 4 show the evolution of the tsunami wave propagating along the eastern
Mediterranean Sea. Note that after approximately one hour, the waves generated near to
the Greek coasts, arrive to the north of Africa and south of Italy (see Figures 3 and 4).

(a) Free surface at t = 0 minutes.

(b) Free surface at t = 10 minutes.

Figure 3: Evolution of a hypothetical tsunami at the eastern Mediterranean basin.
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AN INVITATION TO NONLOCAL MODELING, ANALYSIS
AND COMPUTATION

Qංൺඇ Dඎ (杜强)

Abstract
This lecture serves as an invitation to further studies on nonlocal models, their

mathematics, computation, and applications. We sample our recent attempts in the
development of a systematic mathematical framework for nonlocal models, includ-
ing basic elements of nonlocal vector calculus, well-posedness of nonlocal variational
problems, coupling to local models, convergence and compatibility of numerical ap-
proximations, and applications to nonlocal mechanics and diffusion. We also draw
connections with traditional models and other relevant mathematical subjects.

1 Introduction

Nonlocal phenomena are ubiquitous in nature but their effective modeling and simula-
tions can be difficult. In early mathematical and scientific inquiries, making local approx-
imations has been a dominant strategy. Over centuries, popular continuum models are
presented as partial differential equations (PDEs) that are expressed by local information
in an infinitesimal neighborhood and are derived, in their origins, for smooth quantities.
Entering into the digital age, there have been growing interests and capabilities in the
modeling of complex processes that exhibit singularities/anomalies and involve nonlocal
interactions. Nonlocal continuum models, fueled by the advent in computing technology,
have the potential to be alternatives to local PDE models in many applications, although
there are many new challenges for mathematicians and computational scientists to tackle.

While mathematical analysis and numerical solution of local PDEs are well estab-
lished branches of mathematics, the development of rigorous theoretical and computa-
tional framework for nonlocal models, relatively speaking, is still a nascent field. This
Supported in part by the U.S. NSF grants DMS–1719699, AFOSR FA9550-14-1-0073 MURI Center for Ma-

terial Failure Prediction Through Peridynamics, OSD/ARO/MURI W911NF-15-1-0562 on Fractional PDEs for
Conservation Laws and Beyond: Theory, Numerics and Applications, and the Columbia University.
MSC2010: primary 45P05; secondary 65R20, 35R09, 74G15, 76M25, 47G10.
Keywords: Nonlocal operators, nonlocal function spaces, nonlocal vector calculus, numerical methods,
asymptotic compatibility, heterogeneous localization, nonlocal in time dynamics.
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lecture serves as an invitation to further studies on this emerging subject. We refer to
Du [n.d.], an NSF-CBMS monograph, for a review on the historical development, recent
progress and connections with other mathematical subjects such as multiscale analysis,
calculus of variations, functional analysis, fractional PDEs, differential geometry, graph,
data and image analysis, deep learning, as well as various applications. Instead of a brief
survey, we present here samples of our recent attempts to develop a systematic mathemati-
cal framework for nonlocal models, including some basic building blocks, algorithms and
applications. In particular, our discussions are centered around nonlocal models with a
finite range of interactions typically characterized by a horizon parameter ı. Their local
(ı ! 0) and global (ı ! 1) limits offer natural links to local and fractional PDEs and
their discretization are also tied with graph operators, point clouds and discrete networks.
A few questions on nonlocal modeling, analysis and computation are addressed here: how
do nonlocal models compare with local and discrete models and how are they connected
with each other? what are the ingredients of nonlocal vector calculus? how to develop
robust discretization of nonlocal models that are asymptotically compatible with their lo-
cal limit? how to get well defined trace maps in larger nonlocal function spaces to couple
nonlocal and local models? and, how to explain the crossover of diffusion regimes using
nonlocal in time dynamics? It is our intention to demonstrate that studies on nonlocal
modeling not only provoke the discovery of new mathematics to guide practical model-
ing efforts, but also provide new perspectives to understand traditional models and new
insight into their connections.

2 Modeling choices and emergence of nonlocal modeling

Mathematical models have various types, e.g., discrete or continuum, and deterministic
or stochastic. Historically, influenced by the great minds like Newton, Leibniz, Maxwell
and others, most popular continuum models are those given by PDEs whose simple close-
form or approximate solutions have often been utilized. As more recent human endeavors,
nevertheless, computer simulations have made discrete models equally prominent.

We consider some simple continuum and discrete equations as illustrations. Let u =

u(x) be a function to be determined on a domain (an interval) Ω � R. The differential
equation

�L0u(x) = �
d 2u

dx2
(x) = f (x; u(x)); 8 x 2 Ω

with a prescribed function f = f (x; u), represents a local continuum model: it only in-
volves the value and a few derivatives of the solution at any single point x. By introducing
a set of grid points fxj g in Ω, equally spaced with a grid spacing h and the standard 2nd
order center difference operator Lh = D2

h
on the grid. We then have a discrete difference
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model

�Lhu(xj ) = �D2
hu(xj ) = �

u(xj + h) � 2u(xj ) + u(xj � h)

h2
= f (xj ; u(xj ))8xj

that, as h ! 0, approximates the local continuum model. In comparison, we consider

(1) � Lıu(x) = f (x; u(x)); x 2 Ω ;

which is a nonlocal model Du [2015, 2017b] and Du and X. Tian [2015] with a nonlocal
operator Lı defined, for a prescribed nonlocal interaction kernel !ı associated with a
given horizon parameter ı > 0, by

(2) Lıu (x) =

ˆ ı

0

u(x + s) � 2u(x) + u(x � s)

s2
!ı(s)ds:

The model (1) is generically nonlocal, particularly if the support of !ı extends beyond
the origin. It, at any x, involves function values of u at not only x but possibly its ı-
neighborhood. With !ı = !ı(s) a probability density function, Lı can be interpreted as
a continuum average (integral) of the difference operator D2

s over a continuum of scales
s 2 [0; ı]. This interpretation has various implications as discussed below.

First, differential and discrete equations are special cases of nonlocal equations: let
!ı(s) be the Dirac-delta measure at either s = 0 or h, we get L0 = d2

dx2 or Lh = D2
h

respectively, showing the generality of nonlocal continuum models. A better illustration
is via a limiting process, e.g., for smooth u, small ı, and !ı going to the Dirac-delta at
s = 0, we have

Lıu (x) =
d 2u

dx2
(x)

ˆ ı

0

!ı(s)ds + c2ı2
d 4u

dx4
(x) + � � � �

d 2u

dx2
= L0u(x)

showing that nonlocal models may resemble their local continuum limit for smooth quan-
tities of interests (QoI), while encoding richer information for QoIs with singularity.

In addition, with a special class of fractional power-law kernel !ı(s) = c˛;1jsj1�2˛ for
0 < ˛ < 1 and ı = 1, Lı leads to a fractional differential operator Bucur and Valdinoci
[2016], Caffarelli and Silvestre [2007], Nochetto, Otárola, and Salgado [2016], Vázquez
[2017], and West [2016]:

L1u (x) = c˛;1

ˆ 1

0

D2
s u(x)jsj

1�2˛ds =

�
�

d 2

dx2

�˛

u(x):

One may draw further connections from the Fourier symbols of these operators Du [n.d.]
and Du and K. Zhou [2011].



3562 QIANG DU (杜强)

Nonlocal models and operators have many variations and extensions. For example,
one may define a nonlocal jump (diffusion) operator for a particle density u = u(x),

Lıu (x) =

ˆ
(ˇ(x; y)u(y) � ˇ0(y; x)u(x)) dy ;

with ˇ = ˇ(x; y) and ˇ0 = ˇ0(y; x) the jumping rates. We can recover (2) if ˇ(x; y) =

ˇ0(y; x) = jx � yj�2!ı(jx � yj), and make connections with stochastic processes Du,
Huang, and Lehoucq [2014].

Other extensions include systems for vector and tensor fields such as nonlocal models
of mechanics. A representative example is the peridynamic theory Silling [2000] which at-
tempts to offer a unified treatment of balance laws on and off materials discontinuities, see
Bobaru, Foster, Geubelle, and Silling [2017] for reviews on various aspects of peridynam-
ics. We briefly describe a simple linear small strain state-based peridynamic model here.
LetΩ be eitherRd or a bounded domain inRd with Lipshitz boundary, andΩ� = Ω[ΩI

where ΩI is an interaction domain. Let u = u(x; t) = y(x; t)�x denote the displacement
field at the point x 2 Ω� and time t so that y = x + u gives the deformed position, the
peridynamic equation of motion can be expressed by

�ut t (x; t) = Lıu(x; t) + b(x; t); 8x 2 Ω; t > 0;

where � is the constant density, b = b(x; t) the body force, and Lıu the interaction force
derived from the variation of the nonlocal strain energy. Under a small strain assumption,
for any x; x0 = x+ �, the linearized total strain and dilatational strain are given by

(3) s(u)(x0; x) := e(�) �
�

j�j
and dı(u)(x) :=

ˆ
!ı(x0; x)s(u)(x0; x)dx0 :

where e(�) = �/j�j, � = u(x+�)�u(x) and the kernel!ı has its support over a spherical
neighborhood jx0 � xj < ı (with ı being the horizon parameter) and is normalized byˆ

!ı(x0; x)dx0 = 1:

The linearized deviatoric strain is denoted by Sı(u)(x0; x) := s(u)(x0; x) � dı(u)(x).
Then, the small strain quadratic last energy density functional is given by

(4) Wı(x; f�; �g) = �jdı(u)(x)j2+�

ˆ
Ω�

!ı(x+�; x) js(u)(x+ �; x) � dı(u)(x)j2 d�

where � represents the peridynamic bulk modulus and � the peridynamic shear modulus.
For � = �, we get a nondimensionalized bond-based peridynamic energy density

Mengesha and Du [2014] and Silling [2000]

Wı(x; f�; �g) =

ˆ
!ı(x+ �; x)

ˇ̌̌̌
�

j�j
�
u(x+ �) � u(x)

j�j

ˇ̌̌̌2
d� ;(5)
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For a scalar function u = u(x), we get a simple one dimensional energy density

Wı(x; fug) =

ˆ
!ı(jy � xj)

ju(y) � u(x)j2

jy � xj2
dy ;

associated with the nonlocal operator in (1), if a translation invariant and even kernel !ı

is adopted. This special case has often served as a benchmark problem for peridynam-
ics, even though in most practical applications, peridynamic models do take on nonlinear
vector forms to account for complex interactions Du, Tao, and X. Tian [2017].

3 Nonlocal vector calculus and nonlocal variational problems

We introduce the theory through an example, accompanied by some general discus-
sions.

A model equation. The systematic development of the nonlocal vector calculus was
originated from the study of peridynamics Du, Gunzburger, Lehoucq, and K. Zhou [2013].
Let us consider a time-independent linear bond-based peridynamic model associated with
the strain energy (5) given by
(6)

� Lıu(x) = �2

ˆ
Ω�

!ı(x+ �; x)
�
u(x+ �) � u(x)

j�j2
� e(�)

�
e(�)d� = b(x) ; 8 x 2 Ω;

where u is a displacement field and b is a body force. Intuitively, (6) describes the force
balance in a continuum body of linear springs, with the spring force aligned with the
undeformed bond direction between any pair of points x and x0 = x + �. This gives a
nonlocal analog of classical linear elasticity model with a particular Poisson ratio, yet it
does not, at the first sight, share the same elegant form of linear elasticity. Nonlocal vector
calculus can make the connections between local and nonlocal models more transparent.

Examples of nonlocal operators. Let us introduce some nonlocal operators as illustra-
tive examples. First, we define a nonlocal two-point gradient operator G for any v : Rd !

Rm such that Gv : Ω� � Ω� ! Rd�n is a two-point second-order tensor field given by,

(7) (Gv)(x0; x) = e(x0
�x)˝

v(x0) � v(x)
jx0 � xj

where e(x0
�x) =

x0 � x
jx0 � xj

; 8 x0; x 2 Ω�:

There are two cases of particular interests, namely, n = 1 and n = d . In the latter case,
we also define a nonlocal two-point divergence operator D by

(8) (Dv)(x0; x) = e(x0
� x) �

v(x0) � v(x)
jx0 � xj

= Tr(Gv)(x; x0) ; for n = d:
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For peridynamics, (Dv)(x0; x) corresponds to the linearized strain described in (3).
Next, we define a nonlocal two-point dual divergence operator D� acting on any two-

point scalar fieldΨ : Ω� � Ω� ! R such that D�Ψ becomes a vector field given by,

(9) (D�Ψ)(x) =
ˆ
Ω�

�
Ψ(x; x0) +Ψ(x0; x)

�e(x0 � x)
jx0 � xj

dx0 ; 8 x 2 Ω�:

We may interpret D� and D as adjoint operators to each other in the sense that

(10)
ˆ
Ω�

v(x) � (D�Ψ)(x)dx = �

ˆ
Ω�

ˆ
Ω�

(Dv)(x0; x)Ψ(x0; x)dx0dx

for all v andΨ that make integrals in (10) well defined. The duality may also be written
more canonically as (v; D�Ψ)Ω� = �(Dv;Ψ)Ω��Ω� where (�; �)Ω� and (�; �)Ω��Ω� de-
noteL2 inner products for vector and scalar fields in their respective domains of definition.
Similarly, we can define a nonlocal two-point dual gradient operator G � acting on any two-
point vector fieldΨ : Ω� �Ω� ! Rd by the duality that (v; G �Ψ)Ω� = �(G v;Ψ)Ω��Ω�

for G given by (7).
Some basic elements of nonlocal vector calculus are listed in Table 2 in comparison

with the local counterpart. Discussions on concepts like the nonlocal flux and further
justifications on labeling G and D as two-point gradient and divergence can be found in
Du [n.d.] and Du, Gunzburger, Lehoucq, and K. Zhou [2013].

Newton’s vector calculus , Nonlocal vector calculus
Differential operators, local flux , Nonlocal operators, nonlocal flux
Green’s identity, integration by partsˆ
Ω

u � ∆v� v � ∆u =

ˆ
@Ω

u � @nv� v � @nu
,

Nonlocal Green’s identity (duality)¨
Ω��Ω�

u � D�(Dv) � v � D�(Du) = 0

Table 1: Elements of vector calculus: local versus nonlocal.

Reformulation of nonlocal models. Let the kernel in (6) !ı = !ı(x0; x) = !ı(x; x0)

be symmetric. We consider D�Ψ withΨ(x0; x) = !ı(x0; x)(Du)(x0; x). This leads to

�Lıu = �D�(!ıDu) = b

a concise reformation of (6) that starts to resemble, in appearance, the PDE form of clas-
sical elasticity, with local differential (gradient and divergent) operators replaced by their
nonlocal counterparts. Analogously, a scalar nonlocal diffusion equation for a translation
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invariant !ı , i.e., !ı(x0; x) = !ı(x0 �x) = !ı(x�x0), and its reformulation can be given
by
(11)

� Lıv(x) = �

ˆ
Ω�

!ı(�)
v(x+ �) � 2v(x) + v(x � �)

j�j2
d� = f (x) , �G �(!ıGv) = f:

similar to the one-dimensional version (2). Moreover, not only nonlocal models can be
nicely reformulated like classical PDEs, their mathematical theory may also be developed
in a similar fashion along with interesting new twists Du, Gunzburger, Lehoucq, and K.
Zhou [2013, 2012] and Mengesha and Du [2014, 2015].

Variational problems. Let Ω � Rd be a bounded domain with Lipshitz boundary and
ΩI be where constraints on the solution are imposed. We consider an energy functional

(12) Eı(u) :=
1

2
juj

2

Sı
2

�(b;u)Ω� with juj
2

Sı
2

:=

¨
Ω��Ω�

!ı(x
0
�x) (Du(x0; x))2dx0dx

for a prescribed body force b = b(x) 2 L2(Ω�
ı
)d and a kernel !ı = !ı(�) satisfying

(13)

8<: !ı(�) � 0 is radially symmetric, B�ı(0) � supp(!ı) � Bı(0) � Rd

for 0 < � < 1, and
ˆ

Bı(0)

!ı(�) d� = 1 :

Let Sı
2 be the set of u 2 L2(Ω�)d with kuk2

Sı
2

= kuk2
L2(Ω�)d + juj2

Sı
2

finite, which is a
separable Hilbert space with an inner product induced by the norm k � kSı

2
Mengesha and

Du [2014]. For a weakly closed subspace V � L2(Ω�)d that has no nontrivial affine maps
with skew-symmetric gradients, we let Vc;ı = Sı

2 \ V . One can establish a compactness
result on Vc;ı Mengesha and Du [2014] and Mengesha [2012]:

Lemma 3.1. For a bounded sequence fung2Vc;ı , limn!1 junjSı
2

= 0 gives
kunkL2(Ω�) ! 0.

This leads to a nonlocal Poincaré inequality and the coercivity of the energy functional.

Proposition 3.2 (Nonlocal Poincaré). There exists a positive constant C such that

kukL2(Ω�)d � C jujSı
2
; 8 u 2 Vc;ı :

The well-posedness of the variational problem then follows Mengesha and Du [2014].
Moreover, one can get a uniform Poincaré constant, independent of ı as ı ! 0, if the
nonlocal interaction kernels behave like a Diract-delta sequence. More specifically, they
satisfy that

(14) lim
ı!0

ˆ
j�j>�

!ı(�)d� = 0; 8 � > 0:
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The assumption is particularly true for a rescaled kernel !ı(�) = ı�d !(�/ı) Du [n.d.]
and Mengesha and Du [2014].

Note that the above line of analysis can be carried out by extending similar results
for the scalar function spaces originated from the celebrated work Bourgain, Brezis, and
Mironescu [2001] and further studied in Ponce [2004]. One complication for vector fields
is that the energy seminorm only uses a projected difference Du instead of the total dif-
ference, see Mengesha [2012] and Mengesha and Du [2014, 2015, 2016] for detailed dis-
cussions.

The nonlocal Poincaré inequality and energy coercivity then imply a well-posed vari-
ational formulation of the nonlocal model through minimizing Eı(u) over u 2 Vc;ı . The
weak form of the Euler–Lagrange equation is given by

Bı(u; v) := (!ıDu; Dv)Ω��Ω� = (u;b)Ω� ; 8 v 2 Vc;ı :

We note a special case with Vc;ı = S0;ı , the closure of C 1
0 (Ω)d in Sı

2 with all of its
elements satisfying u(x) = 0 onΩI = Ωı = fx 2 Rd nΩ j dist(x;Ω) < ıg, corresponding
to a problem with a homogeneous nonlocal Dirichlet constraint on a ı-layer aroundΩ, see
Figure 1.

�Lıu = �D�(!ıD)u = b; in Ω;

u = 0; in ΩI = Ωı :
(15)

Ω

ΩI = Ωı

x x0ı

Ω

u = 0 on @Ω

�L0u = bı ! 0

Figure 1: A nonlocal constrained value problem and its local PDE limit

Furthermore, under the assumption (14), we can show that as ı ! 0, the solution
of (15), denoted by uı , converges in L2(Ω) to the solution u0 2 H 1

0 (Ω) of the equation
�L0u = �(d+2)�1(∆u+2r(r�u)) = b inΩMengesha andDu [2014], thus compatible
with linear elasticity.

Elements of mathematical foundation of nonlocal models. Without going into details,
we summarize some basic elements in Table 2. For brevity, the illustration is devoted to
the case of nonlocal diffusion model and its local limit, with K denoting a generic 2nd
order positive definite coefficient tensor, and the same notation (�; �) for L2 inner products
of scalar, vector and tensor fields over their respective domains.
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Local variational problems , Nonlocal variational problems
Local energy: (ru; ru) , Nonlocal energy: (!ıG u; Gu)

Sobolev space H 1(Ω) , Nonlocal function space Sı
2

Local balance (PDE):
� r � (Kru) = f

�
,

(
Nonlocal balance:

�G �(!ıG u) = f

Boundary conditions on @Ω , Volumetric constraints on ΩI

Local weak forms:
(Kru; ru) = (f; v); 8 v

�
,

�Nonlocal weak forms:
(!ıG u; G v) = (f; v); 8 v

Classical Poincaré: kukL2 � ckrukL2 , Nonlocal Poincaré: kukL2 � cjujSı
2

Table 2: Elements of variational problems: local versus nonlocal.

Other variants of nonlocal operators and nonlocal calculus. As part of the nonlocal
vector calculus, there are other on possible variants to the nonlocal operators introduced
here, e.g., the one-point nonlocal divergence and nonlocal dual gradient given by

D�v(x) =
ˆ
Ω

�ı(x0
� x)(Dv)(x0; x)dx0; G�

�v(x) =
ˆ
Ω

�ı(x0
� x)e(x0

� x) ˝
v(x0) + v(x)

jx0 � xj
dx0

for an averaging kernel �ı . With �ı approaching a Dirac-delta measure at the origin
as ı ! 0, D� and G�

� recover the conventional local divergence and gradient opertors
Du, Gunzburger, Lehoucq, and K. Zhou [2013] and Mengesha and Du [2016]. They also
form a duality pair and have been used for robust nonlocal gradient recovery Du, Tao, X.
Tian, and J. Yang [2016]. Their use in the so-called correspondence peridynamic materials
models could be problematic but more clarifications have been given recently Du and X.
Tian [n.d.]. Moreover, these one-point operators are needed to reformulate more general
state-based peridynamics Du, Gunzburger, Lehoucq, and K. Zhou [2013] and Mengesha
and Du [2015, 2016] where the equation of motion is often expressed by Silling [2010],
Silling, Epton, Weckner, Xu, and Askari [2007], and Silling and Lehoucq [2010]

�ut t =

ˆ
fT[x;u]hx0

� xi � T[x0;u]hx � x0
igdx0

with T[x;u]hx0 � xi and T[x0;u]hx � x0i denoting the peridynamic force states. In fact,
D�u can be used to represent the linear dilational strain in (3). Thus, we once again see
that the study of nonlocal models of mechanics further enriches the mathematical theory
of nonlocal operators and makes nonlocal vector calculus highly relevant to applications.
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4 Numerical discretization of nonlocal models

There are many ways to discretizef nonlocal models Du [2017a], such as mesh-free
Bessa, Foster, Belytschko, and Liu [2014], Parks, Seleson, Plimpton, Silling, and Lehoucq
[2011], and Parks, Littlewood, Mitchell, and Silling [2012], quadrature based difference
or collocation Seleson, Du, and Parks [2016], H. Tian, H. Wang, and W. Wang [2013],
and X. Zhang, Gunzburger, and Ju [2016a,b], finite element Tao, X. Tian, and Du [2017],
H. Tian, Ju, and Du [2017], and K. Zhou and Du [2010] and spectral methods Du and J.
Yang [2017]. In particular, finite difference, finite element and collocation schemes in one
dimension were considered in X. Tian and Du [2013], including comparisons and analysis
of the differences and similarities. Discontinuous Galerkin approximations have also been
discussed, including conforming DG Chen and Gunzburger [2011] and Ren, C. Wu, and
Askari [2017] nonconforming DG X. Tian and Du [2015] and local DG Du, Ju, and Lu
[2018].

Since nonlocal models are developed as alternatives when conventional continuum
PDEs can neither capture the underlying physics nor have meaningful mathematical so-
lutions, we need to place greater emphasis on verification and validation of results from
the more tortuous simulations. A common practice for code verification is to consider the
case where the nonlocal models can lead to a physically valid and mathematically well-
defined local limit on the continuum level and to check if one can numerically reproduce
solutions of the local limit by solving nonlocal models with the same given data. Such
popular benchmark tests may produce surprising results as discussed here.

Asymptotical compatibility. Addressing the consistency on both continuum and dis-
crete levels and ensuring algorithmic robustness have been crucial issues for modeling and
code development efforts, especially for a theory like peridynamics that is developed to
capture highly complex physical phenomena. In the context of nonlocal models and their
local limits, the issues on various convergent paths are illustrated in the diagram shown
in Figure 2 X. Tian and Du [2014] (with smaller discretization parameter h representing
finer resolution).

The paths along the diagram edges are for taking limit in one of the parameters while
keeping the other fixed: � shows the convergence of solutions of nonlocal continuum
models to their local limit as ı ! 0, which has been established for various linear and
nonlinear problems; | is a subject of numerical PDE; } assures a convergent discretiza-
tion to nonlocal problem by design;~ is more intriguing, as it is not clear whether the local
limit of numerical schemes for nonlocal problems would remain an effective scheme for
the local limit of the continuum model. An affirmative answer would lead to a nice com-
mutative diagram, or asymptotic compatibility (AC) X. Tian and Du [ibid.], one can follow



NONLOCAL MODELS 3569

uh
ı uh

0

uı u0

Discrete
Nonlocal

Continuum
Nonlocal

Discrete
Local

Continuum
Local PDE

ı ! 0

~

h
!

0}

ı ! 0

�

h
!

0 |ı
!

0

h
!

0

Figure 2: A diagram of possible paths between uı , uh
ı
, uh

0 and u0 via various limits.

either the paths through those marked with } and � or ones marked with ~ and | to get
the convergence of uh

ı
to u0.

AC schemes offer robust and convergent discrete approximations to parameterized
problems and preserve the correct limiting behavior. While the variational characteriza-
tion and framework are distinctive, they are reminicent in spirit to other studies of conver-
gent approximations in the limiting regimes, see for example Arnold and Brezzi [1997],
Guermond and Kanschat [2010], and Jin [1999].

Getting wrong solution from a convergent numerical scheme. To motivate the AC
schemes, we consider a 1d linear nonlocal problem �Lıuı(x) = b(x) for x 2 (0; 1),
where Lı is given by (2) with a special kernel, i.e.,

(16) Lıu (x) =
3

ı3

ˆ ı

0

�
u(x + s) � 2u(x) + u(x � s)

�
ds =

3

ı3

ˆ ı

0

h2D2
hu(x)dh ;

We impose the contraint that uı(x) = u0(x) for x 2 (�ı; 0) [ (1; 1 + ı) where u0

solves the local limiting problem �u
00

0(x) = b(x) in R. On the continuum level, we have
uı ! u0 as ı ! 0 in the appropriate function spaces, as desired. For (16), we may obtain
a discrete system if we replace the continuum difference Lı by discrete finite differences
through suitable quadrature approximations (leading to the quadrature based finite differ-
ence discretization as named in X. Tian and Du [2013]). For example, following Du and
X. Tian [2015] and X. Tian and Du [2013], we consider a scheme for (16) obtained from
a Riemann sum quadrature: for 1 � i � N = 1/h, ı = rh,

(17) � Lh
ı ui = �

3h

ı3

rX
m=1

(D2
mhu)i = b(xi ) ;

where fui g are approximations of fu(xi )g at nodal points fxi = ihg
N+r
i=�r . For any given

ı > 0, we can show the convergence of the discretization as h ! 0 for any given ı by
combining both stability with consistency estimates X. Tian and Du [2013]. However, by
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considering a special case with r = 1 in (17), we end up with a scheme �3(D2
h
u)i = bi ,

which converges to the differential equation �3u00(x) = b(x) as h = ı ! 0, but not
to the correct local limit. In other words, if we set h and ı to zero proportionally, the
numerical solution of the discrete scheme for the nonlocal problem yields a convergent
approximation to a wrong local limit associated with, unfortunately, a consistently over-
estimated elastic constant!

The possibility of numerical approximations converging to a wrong solution is alarm-
ing; if without prior knowledge, such convergence might be mistakenly used to verify or
disapprove numerical simulation, and we see the risks involved due to the wrong local lim-
its produced by discrete solutions to nonlocal models. Although illustrated via a simple
example here, it has been shown to be a generic feature of discretizations represented by
(17) and other schemes such as the piecewise constant Galerkin finite element approxima-
tions, for scalar nonlocal diffusion models and general state-based peridynamic systems
Du and X. Tian [2015] and X. Tian and Du [2013, 2014].

Robust discretization via AC schemes. On a positive note, the complications due to
the use of discrete schemes like (17) can be resolved through other means. For example,
it is proposed in X. Tian and Du [2013] that an alternative formulation works much more
robustly by suitably adjusting the weights for the second order differences fD2

mh
ug so

that the elastic constant always maintain its correct constant value 1, independently of r!
Hence, as shown in X. Tian and Du [ibid.], we have a scheme that is convergent to the
nonlocal model for any fixed ı as h ! 0 and to the correct local limit whenever ı ! 0

and h ! 0 simultaneously, regardless how the two parameters are coupled. Moreover,
for a fixed h, it recovers the standard different scheme for the correct local limit models
as ı ! 0. Thus, we have a robust numerical approximation that is free from the risk of
going to the wrong continuum solution. Naturally, it is interesting to characterize how
such schemes can be constructed in general.

Quadrature based finite differenceAC scheme. Approximations formultidimensional
scalar nonlocal diffusion equations have been developed Du, Tao, X. Tian, and J. Yang
[n.d.], which are not only AC but also preserve the discrete maximum principle. We con-
sider a set of nodes (grid points) fxjg of a uniform Cartesian mesh with a mesh size h and a
multi-index j corresponding to xj = hj. It is natural to approximate the nonlocal operator
in (11) by

(18) Lıu(xi) �

ˆ
Ih

�
u(xi + z) � 2u(xi) + u(xi � z)

jzj2W (z)

�
W (z)!ı(z)dz;

where Ih represents the piecewise d -multi-linear interpolation operator in z associated
with the uniform Cartesian mesh fxj = hjg, but the key that is crucial for the AC property
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and the discrete maximum principle is to choose a properly defined nonnegative weight
W = W (z). The choice adopted in Du, Tao, X. Tian, and J. Yang [ibid.] corresponds
to W (z) = 1/jzj1 where jzj1 denotes the `1 norm in Rd . This particular weight makes
the quadrature exact for all quadratic functions. One can then show, through a series of
technical calculations, that the resulting numerical solution converges to the solution of
the nonlocal model on the order of O(h2) for a fixed ı > 0, and converges to that of
the local limit model on the order of O(ı2 + h2) as both h; ı ! 0 simultaneously, thus
demonstrating the AC property.

AC finite element approximations. For multidimensional systems, one can extend, as
in X. Tian and Du [2014], to more general abstract settings using conforming Galerkin
finite element (FE) methods on unstructured meshes. In particular, the concept and theory
of asymptotically compatible schemes are introduced for general parametrized variational
problems. A special application is to pave a way for identifying robust approximations to
linear nonlocal models that are guaranteed to be consistent in the local limit. Specifically,
we have the following theorem that agrees with numerical experiments reported in the
literature Bobaru, M. Yang, Alves, Silling, Askari, and Xu [2009] and X. Tian and Du
[2013].

Theorem 4.1. Let uı be the solution of (15) and uı;h be the conforming Galerkin FE
approximation on a regular quasi-uniform mesh with meshing parameter h. If the FE
space Vı;h contains all continuous piecewise linear elements, then kuı;h �u0kL2(Ω) ! 0

as ı ! 0 and h ! 0. If in addition, the FE subspace is given by a conforming FE space of
the local limit PDE model with zero extension outside Ω with u0;h being the FE solution,
then on each fixed mesh, kuı;h � u0;hkL2 ! 0 as ı ! 0. On the other hand, if Vı;h is the
piecewise constant space and conforming for (15), then kuı;h � u0kL2 ! 0 if h = o(ı)

as ı ! 0.

The above theorem, proved under minimal solution regularity, remains valid for nonlo-
cal diffusion and state-based peridynamic models. The same framework of AC schemes
can establish the convergence of numerical approximation to linear fractional diffusion
equations (that correspond to ı = 1) via the approximation of a nonlocal diffusion model
with a finite horizon X. Tian, Du, and Gunzburger [2016]. For example, consider a scalar
fractional diffusion model, for ˛ 2 (0; 1),

(�∆)˛u = f; on Ω; u = 0; on Rd
nΩ; (�∆)˛u(x) = Cd;˛

ˆ
Rd

u(x) � u(x0)

jx � x0jd+2˛
dx0;

and Cd;˛ is a positive constant dependent on d and ˛. We have that X. Tian, Du, and
Gunzburger [ibid.],
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Theorem 4.2. Let uı be the solution of the above fractional diffusion model with the
integral truncated to a spherical neighborhood of radius ı > 0. Let uh

ı
be a conforming

Galerkin FE approximation with the discretization parameter h, then kuh
ı

� uıkH ˛ ! 0

as h ! 0 for any given ı and kuh
ı

� u1kH ˛ ! 0 as ı ! 1 and h ! 0.

We note that studies of AC schemes have been extended to nonconforming DG FE X.
Tian and Du [2015], local DG FE Du, Ju, and Lu [2018], spectral approximation Du and
J. Yang [2016] and nonlocal gradient recoveries Du, Tao, X. Tian, and J. Yang [2016].
There were also extensions to nonlinear nonlocal models Du and Huang [2017] and Du
and J. Yang [2016].

5 Nonlocal and local coupling

Nonlocal models can be effective alternatives to local models by accommodating sin-
gular solutions, which makes nonlocal models particularly useful to subjects like fracture
mechanics. Yet treating nonlocality in simulations may incur more computation. Thus,
exploring localization and effective coupling of nonlocal and local models can be helpful
in practice. Nevertheless, nonlocal models, unlike local PDEs, generically do not employ
local boundary or interface conditions imposed on a co-dimension-1 surface, hence mo-
tivating the development of different approaches for local-nonlocal coupling Li and Lu
[2017] and Du, Tao, and X. Tian [2018].

Heterogeneous localization. A particular mathematical quest for a coupled local and
nonlocal model is through heterogeneous localization, as initiated in X. Tian and Du
[2017].

The aim is to characterize subspaces of L2(Ω), denoted by S(Ω), that are significantly
larger than H 1(Ω) and have a continuous trace map into H 1/2(@Ω). One such example
is defined as the completion of C 1(Ω) with respect to the nonlocal norm for a kernel ı ,

kukS(Ω) =
�
kuk

2
L2(Ω) + juj

2
S(Ω)

� 1
2

; with

juj
2
S(Ω) =

ˆ
Ω

ˆ
Ω\Bı(x)

ı(x; y)
(u(y) � u(x))2

jy � xj2
dydx:

The main findings of X. Tian and Du [ibid.] are that the trace map exists and is contin-
uous on a nonlocal function space S(Ω) if the radius of the support of ı , i.e., the horizon,
is heterogeneously localized as x ! @Ω. By considering such a class of kernels, the study
departs from many existing works, such as Bourgain, Brezis, and Mironescu [2001], cor-
responding to typical translate-invariant kernels. In X. Tian and Du [2017], the class of
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kernels under consideration is given by

(19) (x; y) =
1

jı(x)jd
̂

�
jy � xj

ı(x)

�
where ̂ = ̂(s) is a non-increasing nonnegative function defined for s 2 (0; 1) with a
finite d � 1 moment. The heterogeneously defined horizon ı = ı(x) approaches zero
when x ! Γ � @Ω. A simple choice taken in X. Tian and Du [ibid.] is ı(x) = � dist(x;Γ)

for � 2 (0; 1].
The following proposition has been established in X. Tian and Du [ibid.], which is of

independent interests by showing the continuous imbedding of classical Sobolev space
H 1(Ω) in the new heterogeneously localized nonlocal space S(Ω). The result generalizes
a well-known result of Bourgain, Brezis, andMironescu [2001] for the case with a constant
horizon and translation invariant kernel.

Proposition 5.1. For the kernel in (19) and the horizon ı(x) = �dist(x;Γ) with � 2

(0; 1), H 1(Ω) is continuously imbedded in S(Ω) and for any u 2 H 1(Ω), kukS(Ω) �

C kukH1(Ω) where the constant C = C (Ω) is independent of � for � small.

New trace theorems. A key observation proved in X. Tian and Du [2017] is that, with
heterogeneously vanishing interaction neighborhood when x ! @Ω, we expect a well
defined continuous trace map from the nonlocal space S(Ω), which is larger than H 1(Ω),
to H 1/2(@Ω).

Theorem 5.2 (General trace theorem). Assume that Ω is a bounded simply connected
Lipschitz domain in Rd (d � 2) and Γ = @Ω, for a kernel in (19) and the heterogeneously
defined horizon given by ı(x) = � dist(x;Γ) for � 2 (0; 1]. there exists a constant C

depending only on Ω such that the trace map T for Γ satisfies kT uk
H

1
2 (Γ)

� C kukS(Ω),
for any u 2 S(Ω).

By Proposition 5.1, we see that the above trace theorem is indeed a refinement of the
classical trace theorem in the space H 1(Ω), with the latter being a simple consequence.

An illustrative example with a simple kernel on a stripe domain. A complete proof
of the trace Theorem 5.2 is presented in X. Tian and Du [ibid.]. To help understanding
what the result conveys and how it compares with other relevant works, it is suggestive to
consider a special case.

For Ω and Γ, we take a special stripe domain Ω = (0; r) � Rd�1 and a portion of its
boundary Γ = f0g � Rd�1 for a constant r > 0, see equation (20) and Figure 3.
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(20)8̂̂̂<̂
ˆ̂:

(x; y) =
�(0;1)(jy � xj)jy � xj2

jı(x)jd+2
;

where ı(x) = dist(x;Γ) = x1;

8 x = (x1; x̃); x̃ 2 Rd�1:

r

Ω=(0; r)�Rd�1Γ = f0g � Rd�1

x̃

Figure 3: Nonlocal kernel and depiction of the stripe geometry.

This case serves as not only a helpful step towards proving the more general trace
Theorem 5.2 but also an illustrative example on its own. Indeed, this special nonlocal
(semi)-norm is

(21) juj
2
S(Ω) =

ˆ
Ω

ˆ
Ω\fjy�xj<jx1jg

(u(y) � u(x))2

jx1j2+d
dydx :

Clearly, the denominator x1 penalizes the spatial variation only at x1 = 0, thus S(Ω)
contains all functions in L2(Ω̃) (and possibly discontinuous) for any domain Ω̃ with its
closure being a compact subset of Ω. Hence, functions in S(Ω) are generally not expected
to have regularity better than L2(Ω0) over any strict subdomain Ω0. Yet, as elucidated in
X. Tian and Du [2017], due to the horizon localization at the boundary, the penalization
of spatial variations provides enough regularity for the functions in S(Ω) to have well-
defined traces just on the boundary itself. Intuitively, this is a natural consequence of
the localization of nonlocal interactions on the boundary. In contrast, a standard norm
associated with fractional Sobolev space is defined by

juj
2
H ˛(Ω) =

ˆ
Ω

ˆ
Ω

(u(y) � u(x))2

jy � xj2˛+d
dydx :

The regularity of the functions is effected by the denominator which vanishes at x = y.
We now state the special trace theorem, see X. Tian and Du [ibid.] for a complete proof.

Theorem 5.3 (Special trace theorem). ForΩ = (0; r)�Rd�1 and Γ = f0g�Rd�1, there
exists a constant C depends only on d such that for any u 2 C 1(Ω̄) \ S(Ω),

kukL2(Γ) � C
�
r�1/2

kukL2(Ω) + r1/2jujS(Ω)

�
; for d � 1;

jujH1/2(Γ) � C
�
r�1

kukL2(Ω) + jujS(Ω)

�
; for d � 2:

where the nonlocal semi-norm of S(Ω) is as given in (20).

Coupled local and nonlocal models. We useΩ� andΩ+ to denote two open domains in
Rd that satisfyΩ�\Ω+ = Γ, a co-dimension-1 interface, andΩ to denote their union. We
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consider the coupling of a local model on Ω� with a nonlocal model on Ω+, see Figure 4.
Let S(Ω+) be the nonlocal space with heterogeneous localization on the boundary. By the
trace theorem, we define the energy (solution) space and the test function space as

W(Ω) = fu 2 H 1(Ω�) \ S(Ω+) j u� = u+ on Γg

W0(Ω) = fu 2 W(Ω) j u = 0 on @Ωg;

where fu˙(x)g denotes the traces of u defined from Ω˙ respectively. From Proposi-
tion 5.1, we have the space H 1(Ω) continuously imbedded in W(Ω) and H 1

0 (Ω) also
continuously imbedded in W0(Ω). For u 2 W(Ω), its norm is defined as kukW(Ω) =

kukH1(Ω�)+kukS(Ω+). For g 2 H 1/2(@Ω) and f 2 L2(Ω), we have a coupled nonlocal-
to-local model (22).

(22)
min

˚
1
2
juj2

H1(Ω�) +
1
2
juj2S(Ω+) � (f; u)Ω

	
;

subject to u 2 W(Ω) and uj@Ω = g:

�∆u = f

u 2 H 1(Ω�)
Γ

�Lu = f

u 2 S(Ω+)

Figure 4: Variational formulation of a coupled local-nonlocal model.

Well-posedness of the coupled model. For (22) to be well-posed, the coercivity of the
energy functional is the key, which is consequence of a Poincaré inequality on W0(Ω).
The latter can be established in a similar fashion as that on the nonlocal space with the
constant horizon (and the local Sobolev space H 1

0 (Ω) as well). We thus have

Proposition 5.4. The coupled variational problem (22) has a unique minimizer u 2

W0(Ω).

The seamless coupling of the nonlocal and local model means that one could use the
same numerical discretization to solve the coupled problems if the heterogenous localiza-
tion of horizon can be handled effectively. Indeed, this is where we can circle back to
utilize the concept of robust asymptotically compatible schemes X. Tian [2017], Du, Tao,
and X. Tian [2018], and X. Tian and Du [2014].

6 Nonlocal in time dynamics

Spatial nonlocality is often accompanied by temporal correlations and memory effects.
The latter involves nonlocality in time. Let us note first that a major difference in time and
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space nonlocality is perhaps the generic time irreversibility. While a local time derivative
may be defined by an infinitesimal change either backward to the history or forward to the
future, it is more natural to view nonlocal time derivative as only dependent on past history.
Thus, it is ofmuch interests to reconsider the basic operators of the nonlocal vector calculus
to accommodate the nonlocal interactions that are not symmetric. Of course, the issue of
symmetry does not only pertain to changes in time. In earlier works, nonlocal gradients
of the upwind type, variants of the operators given in Section 3, have been utilized in the
modeling of convective effects H. Tian, Ju, and Du [2017] and in the nonlocal formulation
of conservation laws Du and Huang [2017] and Du, Huang, and LeFloch [2017]. They
have also been used to perform nonlocal gradient recovery Du, Tao, X. Tian, and J. Yang
[2016]. The first rigorous treatment of a nonlocal in time dynamics with a finite memory
span, in the spirit of nonlocal vector calculus, was given in Du, J. Yang, and Z. Zhou
[2017], which we follow here.

Nonlocal time derivative and nonlocal-in-time dynamics. We take the operator

(Gıu)(t) = lim
�!0

ˆ ı

�

u(t) � u(t � s)

s
�ı(s) ds; for t > 0;

as the nonlocal time derivative for a nonnegative density kernel �ı that is supported in the
interval [0; ı). This leads to the study of an abstract nonlocal-in-time dynamics:

(23) Gıu+Au = f; 8 t 2 ΩT = (0; T ) � R+; u(t) = g(t); 8 t 2 (�ı; 0) � R�:

for a linear operatorA in an abstract space, together with some nonlocal initial (historical)
data g = g(t). We recall a well-posedness result for (23) corresponding to A = �∆ on a
bounded spatial domainΩwith a homogeneous Dirichlet boundary condition Du, J. Yang,
and Z. Zhou [ibid.].

Theorem 6.1. For f 2 L2(0; T ;H �1(Ω)), the problem (23) for A = �∆ on Ω with the
homogeneous Dirichlet boundary condition and g(x; t) � 0 has a unique weak solution
u 2 L2(0; T ;H 1

0 (Ω)). Moreover, there is a constant c, independent of ı, f and u, such
that. kukL2(0;T ;H1

0 (Ω)) + kGıukL2(0;T ;H �1(Ω)) � ckf kL2(0;T ;H �1(Ω)).

The nonlocal-in-time diffusion equationmay be related to fractional in time sub-diffusion
equations like @˛

t u � ∆u = 0 for ˛ 2 (0; 1) Du, J. Yang, and Z. Zhou [2017], Metzler
and Klafter [2004], and Sokolov [2012] by taking some special memory kernels Allen,
Caffarelli, and Vasseur [2016]. Such equations have often been used to describe the con-
tinuous time random walk (CTRW) of particles in heterogeneous media, where trapping
events occur. In particular, particles get repeatedly immobilized in the environment for a
trapping time drawn from the waiting time PDF that has a heavy tail Metzler and Klafter
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[2004]. In general though, (23) provides a new class of models, due to the finite memory
span, that serves to bridge anomalous and normal diffusion, with the latter being the limit
as ı ! 0. Indeed, the model (23) can also be related to a trapping model, see Du [n.d.],
Du, J. Yang, and Z. Zhou [2017], and Du and Z. Zhou [2018] for more detailed studies.

Crossover of diffusion regimes. Diffusions in heterogeneous media have important
implications in many applications. Using single particle tracking, recent studies have
revealed many examples of anomalous diffusion, such as sub-diffusion with a slower
spreading process inmore constricted environment Berkowitz, Klafter, Metzler, and Scher
[2002], He, Song, Su, Geng, Ackerson, Peng, and Tong [2016], and Jeon, Monne, Ja-
vanainen, and Metzler [2012]. Meanwhile, the origins and models of anomalous diffusion
might differ significantly Korabel and Barkai [2010], McKinley, Yao, and Forest [2009],
and Sokolov [2012]. On one hand, new experimental standards have been called for Sax-
ton [2012]. On the other hand, there are needs for in-depth studies ofmathematical models,
many of which are non-conventional and non-local Du, Huang, and Lehoucq [2014], Du,
Gunzburger, Lehoucq, and K. Zhou [2012], and Sokolov [2012].

Motivated by recent experimental reports on the crossover between initial transient
sub-diffusion and long time normal diffusion in various settings He, Song, Su, Geng,
Ackerson, Peng, and Tong [2016], the simple dynamic equation (23) with A = �∆ pro-
vides an effective description of the diffusion process encompassing these regimes Du
and Z. Zhou [2018]. For model (23), the memory effect dominates initially, but as time
goes on, the fixed memory span becomes less significant over the long life history. As
a result, the transition from sub-diffusion to normal diffusion occurs naturally. This phe-
nomenon can be illustrated by considering the mean square displacement (MSD) m(t)

which can be explicitly computed Du and Z. Zhou [ibid.]. In Figure 5, we plot a solution
of Gım(t) = 2, i.e., the mean square displacement of the nonlocal solution for f � 0

and �ı(s) = (1 � ˛)ı˛�1s�˛ with ˛ = 0:2 and ı = 0:5. The result again illustrates the
analytically suggested transition from the early fractional anomalous diffusion regime to
the later standard diffusion regime. This ”transition” or ”crossover” behavior have been
seen in many applications, e.g. diffusions in lipid bilayer systems of varying chemical
compositions Jeon, Monne, Javanainen, and Metzler [2012, Fig.2], and lateral motion of
the acetylcholine receptors on live muscle cell membranes He, Song, Su, Geng, Ackerson,
Peng, and Tong [2016, Figs.3, 4].

7 Discussion and conclusion

Nonlocal models, arguably more general than their local or discrete analogs, are de-
signed to account for nonlocal interactions explicitly and to remain valid for complex
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Figure 5: TheMSD plot for (23) and theMSD curve He, Song, Su, Geng, Ackerson,
Peng, and Tong [2016, Fig. 3] showing the crossover from sub-diffusion to normal
diffusion for immobile AChRs.

systems involving possibly singular solutions. They have the potential to be alternatives
and bridges to existing local continuum and discrete models. Their increasing popular-
ity in applications makes the development of a systematic/axiomatic mathematical frame-
work for nonlocal models necessary and timely. This work attempts to answer a few
questions on nonlocal modeling, analysis and computation, particularly for models in-
volving a finite-range nonlocal interactions and vector fields, To invite further studies
on the subject, it might be more enticing to identify some issues worthy further investi-
gation and to explore connections with other relevant topics. This is the purpose here,
but before we proceed, we note that there are already many texts and online resources
devoted to nonlocal models (scalar fractional equations in particular, see for example
more recent books Bucur and Valdinoci [2016], Vázquez [2017], and West [2016] and
http://www.ma.utexas.edu/mediawiki/index.php/Starting_page). We also re-
fer to Du [n.d.] for more details and references on topics discussed below.

Nonlocal exterior calculus and geometry. While an analogy has been drawn between
traditional local calculus and the nonlocal vector calculus involving nonlocal operators
and fluxes, nonlocal integration by parts and nonlocal conservation laws, the nonlocal
framework still needs to be updated or revamped. For example, a geometrically intrin-
sic framework for nonlocal exterior calculus and nonlocal forms on manifolds is not yet
available. It would be of interests to develop nonlocal geometric structures that are more
general than both discrete complexes and smooth Riemannian manifolds. In connection
with such investigations, there are relevant studies on metric spaces Burago, Ivanov, and
Kurylev [2014] and Fefferman, Ivanov, Kurylev, Lassas, and Narayanan [2015], Laplace-
Beltrami Belkin and Niyogi [2008] and Lévy [2006], and combinatorial Hodge theory
with scalar nonlocal forms Bartholdi, Schick, N. Smale, and S. Smale [2012]. We also
made attempts like Le [2012] to introduce nonlocal vector forms, though more coherent
constructions are desired. Given the close relations between local continuum models of

http://www.ma.utexas.edu/mediawiki/index.php/Starting_page
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mechanics and differential geometry, one expects to find deep and intrinsic connections
between nonlocal mechanics and geometry.

Nonlocal models, kernel methods, graph and data. Discrete, graph, network models
and various kernel based methods in statistics often exhibit nonlocality. Exploring their
continuum limits and localization can offer fundamental insights. In this direction, we
mention some works related to graph Laplacians, diffusion maps, spectral clustering and
so on Coifman and Lafon [2006], Singer and H.-T. Wu [2017], Spielman [2010], Trillos
and Slepčev [2016], and van Gennip and A. L. Bertozzi [2012]. These subjects are also
connected with the geometric analysis already mentioned and applications such as image
and data analysis and learning Buades, Coll, and Morel [2010], Gilboa and Osher [2008],
and Lou, X. Zhang, Osher, and A. Bertozzi [2010]. For instance, one can find, for appli-
cations to image analysis, the notion of nonlocal means Buades, Coll, and Morel [2010]
and nonlocal (NL) gradient operator Gilboa and Osher [2008] together with a graph di-
vergence all defined for scalar fields. Indeed, there have been much works on nonlocal
calculus for scalar quantities, see Du [n.d.] for more detailed comparisons.

Nonlocal function spaces, variational problems and dynamic systems. While there
have been a vast amount of studies on nonlocal functional spaces, related variational prob-
lems and dynamic systems, such as Ambrosio, De Philippis, and Martinazzi [2011], Bour-
gain, Brezis, and Mironescu [2001], Bucur and Valdinoci [2016], Caffarelli and Silvestre
[2007], Silvestre [2014], and West [2016], the majority of them have focused on scalar
quantities of interests and are often associated with fractional differential operators, frac-
tional calculus, fractional Sobolev spaces and fractional PDEs having global interactions.
On the other hand, motivated by applications in mechanics, our recent works can serve as a
starting point of further investigations on nonlocal functional analysis of vector and tensor
fields and systems of nonlocal models. For example, one may consider nonlocal exten-
sions to the variational theory of nonlinear elasticity Ball [2010] and use them to develop
better connections with atomistic modeling. One may further consider nonlocal spaces
that can account for anisotropies and heterogeneities in both state and configuration vari-
ables. Extensions of the new trace theorems on heterogeneously localized nonlocal spaces
to various vector field forms are also topics of more subsequent research. For instance,
one may investigate possible nonlocal generalization of the trace theorems on the normal
component of vector fields in theH (div) space Buffa and Ciarlet [2001]. Moreover, there
are also interesting questions related to nonlocal models of fluid mechanics, including the
nonlocal Navier-Stokes equations involving fractional order derivatives Constantin and
Vicol [2012] and more recently analyzed nonlocal analogs of the linear incompressible
Stokes equation as presented in the following forms, together with a comparison with
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their classical form in the local limit:

(24)
�
�Lıu+ Gıp= b;

�Dıu = 0;
or

�
�Lıu+ Gıp = b;

�Dıu � ı2L̂ıp= 0;
and

�
�∆u + rp= b;

r � u = 0;

where Lı and L̂ı are nonlocal diffusion operators, Gı and Dı are one-point nonlocal
gradient and divergence operators, similar to ones described in Section 3. There are surely
more questions about the extensions to time-dependent and nonlinear systems.

Nonlocal, multiscale and stochasticmodeling. Nonlocality arises naturally frommodel
reductions and has appeared (either knowingly or implicitly) in many early works (such
as the Mori-Zwanzig formalism Chorin, Hald, and Kupferman [2002]). Nonlocal model-
ing could play more prominent roles in multiscale and stochastic modeling, ranging from
bridging atomistic and continuum models, to data-driver model reductions of dynamic
systems. There are also strong connections of nonlocal models with hydrodynamic de-
scriptions of collective behavior and flocking hydrodynamics Motsch and Tadmor [2014]
and Shvydkoy and Tadmor [2017]. Exploring nonlocal models in diffusion and dispersal
processes has also received much attention Fuentes, Kuperman, and Kenkre [2003], Kao,
Lou, and Shen [2010], and Massaccesi and Valdinoci [2017], with the resulting nonlo-
cal models having strong ties with stochastic processes, particularly, non-Gaussian and
non-Markovian behaviors Kumagai [2014] and Zaburdaev, Denisov, and Klafter [2015].
Stochastic nonlocal modeling is certainly an interesting subject on its own. In addition,
inverse problems related to nonlocal models are also essential research subjects of both
theoretical and practical interests and they can also be connected with various design and
control problems.

Nonlocal modeling, numerical analysis and simulation. Numerical simulations of
nonlocalmodels bring new computational challenges, from discretization to efficient solvers.
To elevate the added cost associated with nonlocal interactions, it is of interests to explore
a whole host of strategies, including local and nonlocal coupling Li and Lu [2017] and
Du, Tao, and X. Tian [2018], adaptive grids Du, L. Tian, and Zhao [2013], multigrid and
fast solvers Du and Z. Zhou [2017] and H. Wang and H. Tian [2012], some of them are
less examined than others and most of topics remain to be further studied. The subject is
naturally linked to sparse and low rank approximations that would allow one to explore
the nonlocal structure to achieve efficient evaluation of nonlocal interactions as well as
the solution of associated algebraic systems. Scalable algorithms via domain decomposi-
tion or other strategies that can particularly handle the information exchange (communi-
cations between processors) involving nonlocal interactions are interesting and important
research questions. Let us also mention that nonlocal models can also become effective
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tools to analyze numerical schemes that were initially developed to solve local PDEs. For
example, to understand the interplay between the smoothing length and the particle spac-
ing in the context of smoothed particle hydrodynamics Gingold and Monaghan [1977]
and Monaghan [2005], nonlocal continuum systems (24) can help providing a rigorous
mathematical foundation for improving the stability and robustness of the discretization
Du and X. Tian [2017]. Another example is concerned with discretization schemes for
multidimensional local diffusion equations through the nonlocal integral formulation Du,
Tao, X. Tian, and J. Yang [n.d.] and Nochetto and W. Zhang [2017], a topic linked with
approximations of fully nonlinear elliptic equations such as the Monge-Ampére. An open
question there is whether or not there are discretization schemes on unstructured meshes
which can preserve the discrete maximum principles and are asymptotically compatible
for general anisotropic and heterogeneous diffusion equations.

Thinking nonlocally, acting locally. The pushes for nonlocal modeling come from sev-
eral fronts. Foremost, the development of nonlocal models is driven by the interests in
studying singular/anomalous/stochastic/multiscale behavior of complex systems where
nonlocal models can potentially unify and bridge different models. Nowadays, the im-
minent growth of nonlocal modeling may also be attributed to the inescapable presence
of nonlocality in the daily human experience. The emergence of augmented reality, infor-
mation technology and data science as well as intelligent computing has been fueling the
popularity of nonlocal modeling as the world is getting more than ever remotely and non-
locally networked together. With extreme computing capabilities beyond doing simple
analytical approximations, we could be ready to tackle nonlocal interactions directly. Yet,
despite the huge lift in computing power, exploring simple representations and closure
relations via local, sparse, low rank or low dimensional approximations is still of great
theoretical interest and practical significance. We thus conclude by saying that promoting
the role of nonlocal modeling is to not only argue for the need to think nonlocally and to
retain nonlocal features wherever necessary, but also point out the importance in utilize
local models wherever feasible, hence to act locally, as our goal is to have the efficiency
and robustness of mathematical modeling and numerical simulations while maintaining
their generality and predicability.
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AN INTRODUCTION TO MULTILEVEL MONTE CARLO
METHODS

Mංർඁൺൾඅ B. Gංඅൾඌ

Abstract
In recent years there has been very substantial growth in stochastic modelling in

many application areas, and this has led to much greater use of Monte Carlo methods
to estimate expected values of output quantities from stochastic simulation. However,
such calculations can be expensive when the cost of individual stochastic simulations
is very high. Multilevel Monte Carlo greatly reduces the computational cost by per-
forming most simulations with low accuracy at a correspondingly low cost, with rela-
tively few being performed at high accuracy and a high cost.

This article reviews the key ideas behind the multilevel Monte Carlo method.
Some applications are discussed to illustrate the flexibility and generality of the ap-
proach, and the challenges in its numerical analysis.

1 Introduction

Stochastic modelling and simulation is an important and growing area in applied mathe-
matics and scientific computing. One large application area is in computational finance,
in quantitative risk management and the pricing of financial derivatives. Another is Un-
certainty Quantification in engineering and science, which has led to new journals and
annual conferences.

When the dimensionality of the uncertainty (i.e. the number of uncertain input vari-
ables) is low, it can be appropriate to model the uncertainty using the Fokker-Planck PDE
and use stochastic Galerkin, stochastic collocation or polynomial chaos methods Xiu and
Karniadakis [2002], Babuška, Tempone, and Zouraris [2004], Babuška, Nobile, and Tem-
pone [2010], and Gunzburger, Webster, and Zhang [2014]. When the level of uncertainty
is low, and its effect is largely linear, then moment methods can be an efficient and ac-
curate way in which to quantify the effects on uncertainty Putko, Taylor, Newman, and
The author acknowledges the financial support of the U.K. Engineering and Physical Sciences Research Coun-

cil.
MSC2010: primary 65C05; secondary 65C30, 65C50, 60H35, 60H10, 60H15.
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Green [2002]. However, when the uncertainty is high-dimensional and strongly nonlinear,
Monte Carlo simulation often remains the preferred approach.

At its simplest, Monte Carlo simulation is extremely simple. To estimate E[P ], the
expected value of a scalar output quantity of interest, a simple Monte Carlo estimate is just
an equally-weighted average of the values P (!) for N independent samples ! coming
from the given probability space (Ω; F ; P ),

N �1
NX

n=1

P (!(n)):

The variance of this estimate isN �1 V [P ], so the RMS (root-mean-square) error isO(N �1/2)

and an accuracy of " requires N =O("�2) samples. This is the weakness of Monte Carlo
simulation; its computational cost can be very high, particularly when each sample P (!)

might require the approximate solution of a PDE, or a computation with many timesteps.
One approach to addressing this high cost is the use of Quasi-Monte Carlo (QMC)

methods, in which the samples are not chosen randomly and independently, but are instead
selected very carefully to reduce the error. In the best cases, the error may be O(N �1), up
to logarithmic terms, giving a very substantial reduction in the number of samples required
for a given accuracy Dick, Kuo, and Sloan [2013].

In this article, we cover a different approach to improving the computational efficiency,
the multilevel Monte Carlo (MLMC) method. This is important when the cost of comput-
ing the individual samples is very high, but it is possible to compute approximate values
at a much lower cost. We also briefly discuss the combination of MLMC with QMC.

This article provides only a short introduction to the subject and some of the correspond-
ing literature. For a more comprehensive overview of multilevel Monte Carlo methods,
the author has recently written a 70-page review with a much more extensive list of refer-
ences Giles [2015]. There is also a webpage web-page with a list of active research groups
and their publications.

2 Multilevel Monte Carlo

2.1 MLMCwith exact simulation. The key idea inMultilevelMonte Carlo is also very
simple. Supposewe are interested in estimatingE[PL(!)], and it is possible to exactly sim-
ulatePL(!) but it is very costly. Suppose also that there is a sequenceP0(!); : : : ; PL�1(!)

which approximatesPL(!)with increasing accuracy, but also increasing cost. In this case,
instead of directly estimating E[PL] we can use the trivial identity

E[PL] = E[P0] +

LX
`=1

E[P`�P`�1];

http://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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to construct the following unbiased estimator for E[PL],

N �1
0

N0X
n=1

P
(0;n)
0 +

LX
`=1

8<:N �1
`

NX̀
n=1

�
P

(`;n)

`
�P

(`;n)

`�1

�9=;
where P

(`;n)

`
is shorthand for P`(!

(`;n)), with the inclusion of the level ` in the super-
script (`; n) indicating that independent samples are used at each level of correction. The
important point is that by using the same !(`;n) we aim to ensure that P

(`;n)

`
�P

(`;n)

`�1
is

small for larger values of `, so that relatively few samples are needed on finer levels to
estimate E[P`�P`�1].

If we define C0; V0 to be the cost and variance of one sample of P0, and C`; V` to
be the cost and variance of one sample of P` �P`�1, then the overall cost and variance
of the multilevel estimator is

PL
`=0 N` C` and

PL
`=0 N �1

`
V`, respectively. Ignoring the

fact that the N` are integers, for a fixed cost the variance is minimised by choosing N` to
minimise

LX
`=0

�
N �1

` V` + �2N` C`

�
for some value of the Lagrange multiplier �2, which gives

(1) N`=�

q
V` /C`:

To achieve an overall variance of "2 then requires that �="�2
PL

`=0

p
V` C`.

Rounding up (1) to the nearest integer improves the overall variance and increases the
cost by at most

PL
`=0 C`, so that the variance of "2 can be achieved at a total cost which

is bounded by

(2) C = "�2

 
LX

`=0

p
V` C`

!2

+

LX
`=0

C`:

It is important to note whether the product V` C` increases or decreases with `. If
it increases, then the dominant contribution to the cost comes from VL CL and we have
C � "�2VL CL, whereas if it decreases then the dominant contribution comes from V0 C0

and C � "�2V0 C0. This contrasts with the standard Monte Carlo cost of approximately
"�2V0 CL, assuming that the cost of computing PL is similar to the cost of computing
PL�PL�1 and V [PL] � V [P0].

This shows that in the first case theMLMCcost is reduced by factorVL/V0, correspond-
ing to the ratio of the variances V [PL �PL�1] and V [PL], whereas in the second case it
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is reduced by factor C0/CL, the ratio of the costs of computing P0 and PL�PL�1. If the
product V` C` does not vary with level, then the total cost is approximately "�2L2 V0 C0 =

"�2L2 VL CL.

2.2 MLMC with inexact simulation. In almost all MLMC applications, it is not pos-
sible to exactly simulate the quantity of interest P (!), often because the calculation of
P (!) requires the approximate solution of a PDE or SDE. Instead, what we have is an in-
finite sequence of approximations P`; ` = 0; 1; : : : which approximate P with increasing
accuracy and cost. If Y is an approximation to E[P ], then a standard piece of theory gives
the MSE (mean square error) as

(3) MSE � E[ (Y �E[P ])2] = V [Y ] + (E[Y ]�E[P ] )2:

If Y is now the multilevel estimator

(4) Y =

LX
`=0

Y`; Y` = N �1
`

NX̀
n=1

(P
(`;n)

`
�P

(`;n)

`�1
);

with P�1 �0, then

(5) E[Y ] = E[PL]; V [Y ] =

LX
`=0

N �1
` V`; V` � V [P`�P`�1]:

To ensure that the MSE is less than "2, it is sufficient to ensure that V [Y ] and (E[PL�P ])2

are both less than 1
2
"2. Combining this idea with a geometric sequence of levels in which

the cost increases exponentially with level, while both the weak error E[PL�P ] and the
multilevel correction variance V` decrease exponentially, leads to the following theorem:

Theorem 1. Let P denote a random variable, and let P` denote the corresponding level
` numerical approximation. If there exist independent estimators Y` based on N` Monte
Carlo samples, eachwith expected costC` and varianceV`, and positive constants˛; ˇ; ; c1; c2; c3
such that ˛ �

1
2
min(ˇ; ) and

i)
ˇ̌̌
E[P`�P ]

ˇ̌̌
� c1 2

�˛ `

ii) E[Y`] =

(
E[P0]; ` = 0

E[P`�P`�1]; ` > 0

iii) V` � c2 2
�ˇ `

iv) C` � c3 2
 `;
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then there exists a positive constant c4 such that for any " < e�1 there are values L and
N` for which the multilevel estimator

Y =

LX
`=0

Y`;

has a mean-square-error with bound

MSE � E
h
(Y � E[P ])2

i
< "2

with an expected computational complexity C with bound

C �

8̂̂<̂
:̂

c4 "�2; ˇ > ;

c4 "�2j log "j2; ˇ = ;

c4 "�2�(�̌ )/˛; ˇ < :

The statement of the theorem is a slight generalisation of the original theorem in Giles
[2008b]. It corresponds to the theorem and proof in Cliffe, Giles, Scheichl, and Teckentrup
[2011], except for the minor change to expected costs to allow for applications in which
the simulation cost of individual samples is itself random. Note that if condition iii) is
tightened slightly to be a bound on E[(P` �P`�1)

2], which is usually the quantity which
is bounded in numerical analysis, then it would follow immediately that ˛ �

1
2
ˇ.

The essence of the proof is very straightforward. If we have V` =O(2�ˇ`) and C` =

O(2`), then the analysis in Section 2.1 shows that the optimal number of samples N` on
level ` is proportional to 2�(ˇ+)`/2, and therefore the total cost on level ` is proportional
to 2(�ˇ)`/2. The result then follows from the requirement thatL is chosen so that (E[Y ]�

E[P ] )2 < 1
2
"2, and the constant of proportionality for N` is chosen so that V [Y ] < 1

2
"2.

The result of the theorem merits some discussion. In the case ˇ >  , the dominant
computational cost is on the coarsest levels where C` = O(1) and O("�2) samples are
required to achieve the desired accuracy. This is the standard result for a Monte Carlo
approach using i.i.d. samples; to do better would require an alternative approach such as
the use of Latin hypercube sampling or quasi-Monte Carlo methods.

In the case ˇ <  , the dominant computational cost is on the finest levels. Because of
condition i), we have 2�˛L = O("), and hence CL = O("�/˛). If ˇ = 2˛, which is
usually the best that can be achieved since typically V [P`�P`�1] is similar in magnitude
to E[(P` �P`�1)

2] which is greater than (E[P` �P`�1])
2, then the total cost is O(CL),

corresponding to O(1) samples on the finest level, which is the best that can be achieved.
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The dividing case ˇ =  is the one for which both the computational effort, and the
contributions to the overall variance, are spread approximately evenly across all of the
levels; the j log "j2 term corresponds to the L2 factor in the corresponding discussion at
the end of Section 2.1.

One comment on the Theorem is that it assumes lots of properties, and then from these
determines relatively easily some conclusions for the efficiency of the MLMC approach.
In real applications, the tough challenge is in proving that the assumptions are valid, and
in particular determining the values of the parameters ˛; ˇ;  . Furthermore, the Theorem
assumes knowledge of the constants c1; c2; c3. In practice, c1 and c2 are almost never
known, and instead have to be estimated based on empirical estimates of the weak error
and the multilevel correction variance.

Equation (4) gives the natural choice for the multilevel correction estimator Y`. How-
ever, the multilevel theorem allows for the use of other estimators, provided they satisfy
the restriction of condition ii) which ensures that E[Y ] = E[PL]. Examples of this will
be given later in this article. In each case, the objective in constructing a more complex
estimator is to achieve a greatly reduced varianceV [Y`] so that fewer samples are required.

2.3 Randomised MLMC for unbiased estimation. A very interesting extension was
introduced by Rhee & Glynn in Rhee and Glynn [2015]. Rather than choosing the finest
level of simulation L based on the desired accuracy, and then using the optimal number
of samples on each level based on an estimate of the variance, the “single term” estimator
in Rhee and Glynn [ibid.] instead uses N samples in total, and for each sample the level
on which the simulation is performed is selected randomly, with level ` being chosen with
probability p`.

The estimator is

Y =
1

N

NX
n=1

1

p`(n)

(P
(n)

`(n) �P
(n)

`(n)�1
)

with the level `(n) for each sample being selected randomly with the relevant probability.
Alternatively, their estimator can be expressed as

Y =

1X
`=0

0@ 1

p` N

NX̀
n=1

(P
(n)

`
�P

(n)

`�1
)

1A :

where N`, the number of samples from level `, is a random variable with

1X
`=0

N` = N; E[N`] = p`N:
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Note that in this form it is very similar in appearance to the standard MLMC estimator.
The beauty of their estimator is that it is naturally unbiased, since

E[Y ] = E

�
1

p`0

(P`0 �P`0�1)

�
=

1X
`=0

p` E

�
1

p`0

(P`0 �P`0�1) j `0 = `

�
=

1X
`=0

E [P`�P`�1] = E[P ]:

The choice of probabilities p` is crucial. For both the variance and the expected cost
to be finite, it is necessary that

1X
`=0

1

p`

V` < 1;

1X
`=0

p` C` < 1:

Under the conditions of the MLMC Theorem, this is possible when ˇ >  by choosing
p` / 2�(+ˇ)`/2; so that

1

p`

V` / 2�(ˇ�)`/2; p` C` / 2�(ˇ�)`/2:

It is not possible when ˇ �  , and for these cases the estimators constructed in Rhee and
Glynn [ibid.] have infinite expected cost.

2.4 Multilevel Richardson-Romberg extrapolation. Richardson extrapolation is a
very old technique in numerical analysis. Given a numerical approximation Ph based
on a discretisation parameter h which leads to an error

Ph � P = a h˛ + O(h2˛);

it follows that P2h � P = a (2h)˛ + O(h2˛); and hence the extrapolated value

eP =
2˛

2˛ �1
Ph �

1

2˛ �1
P2h

satisfies eP � P = O(h2˛): Lemaire & Pagès take this approach much further Lemaire
and Pagès [2017]. Assuming that the weak error has a regular expansion

E[P`] � E[P ] =

LX
n=1

an2
�n˛` + o(2�˛`L);

they first determine the unique set of weights w`; ` = 0; 1; : : : ; L such that
LX

`=0

w` = 1;

LX
`=0

w` 2
�n˛` = 0; n = 1; : : : ; L;
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so that  
LX

`=0

w` E[P`]

!
� E[P ] �

LX
`=0

w` (E[P`] � E[P ]) = o(2�˛L2

):

Next, they re-arrange terms to give
LX

`=0

w` E[P`] =

LX
`=0

v` E[P`�P`�1]

where as usual P�1 � 0, and the coefficients v` are defined by w` = v` � v`+1, with
vL+1 �0, and hence

v` =

LX
`0=`

w`0 :

This leads to their Multilevel Richardson-Romberg extrapolation estimator,

Y =

LX
`=0

Y`; Y` = v`N �1
`

X
n

(P
(`;n)

`
�P

(`;n)

`�1
):

Because the remaining error is o(2�˛L2
), rather than the usual O(2�˛L), it is possible to

obtain the usual O(")weak error with a value of L which is approximately the square root
of the usual value. Hence, in the case ˇ= they prove that the overall cost is reduced to
O("�2j log "j), while for ˇ < the cost is reduced much more to O("�22(�ˇ)

p
j log2 "j/˛).

This analysis is supported by numerical results which demonstrate considerable savings
Lemaire and Pagès [2017], and therefore this is a very useful extension to the standard
MLMC approach when ˇ � .

2.5 Multi-Index Monte Carlo. In standard MLMC, there is a one-dimensional set of
levels, with a scalar level index `, although in some applications changing ` can change
more than one aspect of the computation (such as both timestep and spatial discretisation
in a parabolic SPDE application, or timestep and number of sub-samples in a nested sim-
ulation). Multi-Index Monte Carlo developed by Haji-Ali, Nobile, and Tempone [2016]
generalises this to “levels” being defined in multiple directions, so that the level “index”
` is now a vector of integer indices. This is illustrated in Figure 1 for a 2D MIMC appli-
cation.

In MLMC, if we define the backward difference ∆P` � P` �P`�1 with P�1 � 0, as
usual, then the telescoping sum which lies at the heart of MLMC is

E[P ] =
X
`�0

E[∆P`]:
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-
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`1

`2 d d
d dfour evaluations forcross-difference∆P(5;4)

Figure 1: “Levels” in 2D multi-index Monte Carlo application

Generalising this to D dimensions, we can first define a backward difference operator in
one particular dimension, ∆d P` � P` �P`�ed

where ed is the unit vector in direction
d . Then defining the cross-difference

∆P` �

 
DY

d=1

∆d

!
P`

the telescoping sum becomes

E[P ] =
X
`�0

E[∆P`]:

As an example, Figure 1 marks the four locations at which P` must be computed to deter-
mine the value of∆P(5;4) in the 2D application.

Instead of summingE[∆P`] over the full domain ` � 0, the sum is instead truncated to
a summation region L. It might seem natural that this should be rectangular, as illustrated
on the left in Figure 2, so that X

`2L

∆P` = PL

whereL is the outermost point on the rectangle. However, Haji-Ali, Nobile, and Tempone
[ibid.] proves that it is often better to use a region L of the form ` � n � L for a particular
choice of direction vector n with strictly positive components. In 2D, this corresponds to
a triangular region, as illustrated on the right in Figure 2. This is very similar to the use of
the sparse grid combination technique in high-dimensional PDE approximations Bungartz
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Figure 2: Two choices of 2D MIMC summation region L.

and Griebel [2004], and indeed MIMC can be viewed as a combination of this approach
with Monte Carlo sampling.

The benefits of MIMC over the standard MLMC can be very substantial. They are
perhaps best illustrated by an elliptic PDE or SPDE example, in which D corresponds to
the number of spatial dimensions. Using the standard MLMC approach, ˇ, the rate of
convergence of the multilevel variance, will usually be independent of D, but  , the rate
of increase in the computational cost, will increase at least linearly with D. Therefore, in
a high enough dimension we will have ˇ � and therefore the overall computational com-
plexity will be less (often much less) than the optimal O("�2). However, using MIMC it
is possible to achieve the optimal complexity independent of the value ofD. Hence, in the
same way that sparse grids offer the possibility of dimension-independent complexity for
deterministic PDE applications, MIMC offers the possibility of dimension-independent
complexity for SPDEs and other high-dimensional stochastic applications.

MIMC is the first multi-dimensional generalisation of MLMC, but it is not the only
one. Other possibilities include using sparse grid samples within a standard MLMC for-
mulation, and nested MLMC in which there is an outer MLMC telescoping sum in one
“direction”, and then each of its expectations is expressed as an MLMC telescoping sum
in a second “direction”. These ideas, and the inclusion of quasi-Monte Carlo sampling,
are discussed in Giles, Kuo, and Sloan [2018].

2.6 MLQMC. The final part of this theory section concerns the use of quasi-Monte
Carlo (QMC) sampling in place of standard Monte Carlo. The key change in MLQMC
is that N` is now the size of a set of QMC points used on level `. This set of points
is not constructed randomly and independently, but is instead constructed very carefully
to provide a relatively uniform coverage of a unit hypercube integration region which is
then mapped into the required domain, for example by mapping unit interval uniformly
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distributed random variables to standard Normal random variables Dick, Kuo, and Sloan
[2013]. In the best cases, this results in the numerical integration error being approximately
O(N �1

`
) rather than the usual O(N

�1/2

`
) error which comes from Monte Carlo sampling.

Using just one set of N` points gives good accuracy, but no confidence interval. To
regain a confidence interval one uses randomised QMC in which the set of points is col-
lectively randomised in a way which ensures that the averages obtained from each set
of points are independent. Using 32 randomisations, for example, yields 32 set averages
for the quantity of interest, Y`, and from these the variance of their average, V`, can be
estimated in the usual way.

Since V` is now defined to be the variance of the average of the set averages, the aim
now is to choose the N` in a way which ensures that

(6)
LX

`=0

V` �
1
2
"2:

We can not use the same Lagrange multiplier approach as before to determine the optimal
N`. Instead, we note that many QMC methods work naturally with N` as a power of
2. Doubling N` will usually eliminate a large fraction of the variance, so the greatest
reduction in total variance relative to the additional computational effort is achieved by
doubling N` on the level `� given by

(7) `� = argmax
`

V`

N` C`

:

This approach was first developed in Giles and Waterhouse [2009], with application to
stochastic differential equations (SDEs) using QMC samples based on extensible rank-1
lattices Dick, Pillichshammer, and Waterhouse [2008]. QMC is known to be most effec-
tive for low-dimensional applications, and the numerical results were very encouraging
for SDE applications in which the dominant computational cost was on the coarsest levels
of resolution. However, there was no supporting theory for this research. More recently,
there has been considerable research on applications and the underlying theoretical founda-
tions for MLQMC methods applied to PDEs with stochastic coefficients Niu, Hickernell,
Müller-Gronbach, and Ritter [2011], Kuo, Schwab, and Sloan [2015], and Dick, Kuo, and
Sloan [2013]. These theoretical developments are very encouraging, showing that under
certain conditions they lead to multilevel methods with a complexity which is O("�p)

with p <2.
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3 SDEs

The original multilevel path simulation paper Giles [2008b] treated stochastic differential
equations

dSt = a(St ; t) dt + b(St ; t) dW;

using the simple Euler-Maruyama discretisation with a uniform timestep h and Brownian
increments∆Wn,bS (n+1)h = bSnh + a(bSnh; nh) h + b(bSnh; nh)∆Wn:

The multilevel Monte Carlo implementation is very simple. On level `, the uniform
timestep is taken to be h` = M �`h0, for some integer M . The timestep h0 on the coarsest
level is often taken to be the interval length T , so that there is just one timestep for the
entire interval, but this is not required, and in some applications using such a large timestep
may lead to numerical results which are so inaccurate that they are not helpful in reducing
the variance.

The multilevel coupling is achieved by using the same underlying driving Brownian
path for the coarse and fine paths; this is accomplished by summing the Brownian in-
crements for the fine path timesteps to obtain the Brownian increments for the coarse
timesteps. The multilevel estimator is then the natural one defined in (4), with the specific
payoff approximation P` depending on the particular application.

Provided the SDE satisfies the usual conditions (see Theorem 10.2.2 in Kloeden and
Platen [1992]), the strong error for the Euler discretisation with timestep h is O(h1/2), so
that

E

"
sup
[0;T ]

kSt �bS t k
2

#
= O(h);

where bS t is a piecewise constant interpolation of the discrete values bSnh.
For financial options for which the payoff is a Lipschitz function of St , with constant

K, we have

V [P �P`] � E[(P �P`)
2] � K2 E

"
sup
[0;T ]

kSt �bS t k
2

#
;

where K is the Lipschitz constant, and

V` � V [P`�P`�1] � 2
�
V [P �P`] + V [P �P`�1]

�
;

and hence V` = O(h`).
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Euler-Maruyama Milstein
option numerics analysis numerics analysis
Lipschitz O(h) O(h) O(h2) O(h2)

Asian O(h) O(h) O(h2) O(h2)

lookback O(h) O(h) O(h2) o(h2�ı)

barrier O(h1/2) o(h1/2�ı) O(h3/2) o(h3/2�ı)

digital O(h1/2) O(h1/2j log hj) O(h3/2) o(h3/2�ı)

Table 1: Observed and theoretical convergence rates for the multilevel correction
variance for scalar SDEs, using the Euler-Maruyama and Milstein discretisations. ı

is any strictly positive constant.

If h` = 4�`h0, as in the numerical examples in Giles [2008b], then this gives ˛ = 2,
ˇ = 2 and  = 2. This is found to be better than using h` = 2�`h0 with twice as many
timesteps on each successive level, which gives ˛ = 1, ˇ = 1 and  = 1. In either case,
Theorem 1 gives the complexity to achieve a RMS error of " to be O("�2j log "j2), which
has been proved to be optimal for a class of Lipschitz path-dependent functions Creutzig,
Dereich, Müller-Gronbach, and Ritter [2009].

Themore accurateMilstein approximation achieves first order strong convergence, giv-
ing V` = O(h2

`
) for certain Lipschitz payoff functions Giles [2008a]. Further challenges

are encountered with digital and barrier options for which the payoff functions are a dis-
continuous function of the path St . In such cases, a small difference between the coarse
and fine path approximations can nevertheless produce a large value for P`�P`�1. Tech-
niques have been developed to partially address this Giles [ibid.]. Table 1 summarises the
observed variance convergence rate in numerical experiments for a number of different
financial options; the Asian option is based on the average value of the underlying asset,
the lookback is based on its maximum or minimum value, the barrier is a discontinuous
function of the maximum or minimum, and the digital is a discontinuous function of the
final value. The table also displays the theoretical numerical analysis results which have
been obtained Avikainen [2009], Giles, Higham, and Mao [2009], and Giles, Debrabant,
and Rößler [2013].

There is insufficient space in this article to discuss in detail the many other extensions
and generalisations in applying MLMC to SDEs. We will simply mention a few, and
further details and references can be obtained from Giles [2015].

There are difficulties in implementing theMilstein approximation formulti-dimensional
SDEs when they require the simulation of Lévy areas. In this case, there is a special “an-
tithetic” MLMC estimator which eliminates to leading order the error due to the omission
of the Lévy areas.
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The classic analysis of SDE approximations assumes that the drift function a(St ; t) and
volatility b(St ; t) are both globally Lipschitz functions ofSt . Some important applications
have drift functions, such as �St � S3

t , which are only locally Lipschitz. These require
adaptive timestepping, or some other technique, to maintain numerical stability, and this
causes additional difficulties for MLMC.

There are also extensions to jump-diffusion SDEs, in which there is an additional Pois-
son jump process, and SDEs driven by increments of a more general Lévy process instead
of a Brownian motion.

Finally, in some applications the output quantity of interest is not the expected value
of a scalar quantity but a function such as the density of that output, or the cumulative
distribution function, CDF(x) = P [X <x] = E[H (x�X)] where H (x) is the Heaviside
function.

4 PDEs and SPDEs

Applying MLMC to stochastic PDEs and PDEs with random data or stochastic coeffi-
cients was a natural follow-on to the use for SDEs. Indeed, there was more scope for
computational savings because the cost of a single sample increases more rapidly with
grid resolution for SPDEs with higher space-time dimension. There has been a variety
of papers on elliptic Barth, Schwab, and Zollinger [2011] and Cliffe, Giles, Scheichl, and
Teckentrup [2011], parabolic Barth, Lang, and Schwab [2013] and Giles and Reisinger
[2012] and hyperbolic Mishra, Schwab, and Šukys [2012] PDEs and SPDEs, as well as
for mixed elliptic-hyperbolic systems Efendiev, Iliev, and Kronsbein [2013] and Müller,
Jenny, and Meyer [2013].

In almost all of this work, the construction of the multilevel estimator is quite natural,
using a geometric sequence of grids and the natural estimators for P`�P`�1. It is the nu-
merical analysis of the variance of themultilevel estimator which is often very challenging,
but in the simplest cases it can be straightforward.

Consider, for example, a D-dimensional elliptic PDE, r2u = f (x; !), where the
r.h.s. forcing term is stochastic, depending on a number of random variables. If f is
sufficiently smooth, then a standard piecewise linear finite element method might achieve
second order accuracy for a large class of output functionals. Hence, if the computational
grid has spacing proportional to 2�` in each direction then the error would be O(2�2`)

and the MLMC variance V` would be O(2�4`). Using an efficient multigrid solver, the
computational cost would be approximately proportional to the total number of grid points,
which is O(2D`). Hence this MLMC application has ˛=2; ˇ=4;  =D.

This means that a RMS accuracy of " can be achieved at O("�2) cost for D <4, while
the cost is O("�2j log "j2) for D=4, and O("�D/2) for D >4. By comparison, to achieve
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an accuracy of " for a single deterministic calculation requires 2�2` ∼ ", and hence the cost
is O("�D/2), which for D >4 is the same order as the cost of estimating the expectation
in the random setting.

The largest amount of research on multilevel for SPDEs has been for elliptic PDEs with
random coefficients. The PDE typically has the form

�r � (�(x; !)rp(x; !)) = 0; x 2 D:

with Dirichlet or Neumann boundary conditions on the boundary @D. For sub-surface
flow problems, such as the modelling of groundwater flow in nuclear waste repositories,
the diffusivity (or permeability) � is often modelled as a lognormal random field, i.e. log �

is a Gaussian field with a uniform mean and a covariance function R(x; y). Samples of
log � can be provided by a Karhunen-Loève expansion:

log �(x; !) =

1X
n=0

p
�n �n(!) fn(x);

where �n and fn are the eigenvalues and eigenfunctions defined byZ
R(x; y) fn(y) dy = �n fn(x);

and �n are independent unit Normal random variables. However, it can be more efficient
to generate them using a circulant embedding technique based on the use of FFTs.

There is no space to detail the huge range of other applications. The one other point to
note here is that they are not all based on a geometric hierarchy of approximations. A non-
geometric example is the use of a reduced basis approximation in which the approximate
solution u at a set of discrete grid points for an arbitrary set of random inputs ! is written
as

u(!) =

KX
k=1

ck(!)uk

where the ck are a set of scalar coefficients, and the uk are a fixed set of vectors, for
example corresponding to solutions of the PDE for particular values of the random in-
puts. In such a reduced basis approximation, the accuracy improves if one increases the
number of basis functions, K, but so too does the cost. Neither behaves in a simple way
such that there is an obvious way in which to prescribe K` as a function of level, and
therefore numerical optimisation can be used instead Vidal-Codina, Nguyen, Giles, and
Peraire [2015].
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5 Continuous-time Markov chains

Avery interesting and important application ofMLMChas been to continuous-timeMarkov
Chain simulation Anderson and Higham [2012]. Such models arise in the context of
stochastic chemical reactions, when species concentrations are extremely low and so stochas-
tic effects become significant. When there is just one chemical species which is being
spontaneously created at a rate which depends on the current number of molecules x, the
“tau-leaping” method (which is essentially the Euler-Maruyama method, approximating
the reaction rate as being constant throughout the timestep) gives the discrete equation

xn+1 = xn + P (h �(xn));

where the state xn is an integer, h is the timestep, �(xn) is the reaction rate (or propensity
function), andP (t) represents a unit-rate Poisson random variable over time interval [0; t ].
If this equation defines the fine path in the multilevel simulation, then the coarse path, with
double the timestep, is given by

xc
n+2 = xc

n + P (2h �(xc
n))

for even timesteps n.
The question then is how to couple the coarse and fine path simulations in a MLMC

calculation. The key observation in Anderson and Higham [ibid.], is that for any t1; t2 > 0,
the sum of two independent Poisson variates P (t1), P (t2) is equivalent in distribution to
P (t1+ t2). Based on this, the first step is to express the coarse path Poisson variate as
the sum of two independent Poisson variates, P (h �(xc

n)) corresponding to the first and
second fine path timesteps. For the first of the two fine timesteps, the coarse and fine path
Poisson variates are coupled by defining two Poisson variates based on the minimum of
the two reactions rates, and the absolute difference,

P1 = P
�
hmin(�(xn); �(xc

n))
�

; P2 = P
�
h j�(xn) � �(xc

n)j
�

;

and then using P1 as the Poisson variate for the path with the smaller rate, and P1+P2 for
the path with the larger rate. This elegant approach naturally gives a small difference in
the Poisson variates when the difference in rates is small, and leads to a very effective mul-
tilevel algorithm with a correction variance which is O(h), leading to an O("�2j log "j2)

complexity.
In their paper Anderson and Higham [ibid.], Anderson & Higham treat more general

systems with multiple species and multiple reactions. They also include an additional
coupling at the finest level to the exact Stochastic Simulation Algorithm developed by
Gillespie [1976] which updates the reaction rates after every single reaction. Hence, their
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overall multilevel estimator is unbiased, unlike the estimators discussed earlier for SDEs,
and the complexity is reduced to O("�2) because the number of levels remains fixed
as " ! 0. They give a complete numerical analysis of the variance of their multilevel
algorithm; this has been further sharpened in more recent work Anderson, Higham, and
Sun [2014]. Because stochastic chemical simulations typically involve 1000’s of reactions,
the multilevel method is particularly effective in this context, providing computational
savings in excess of a factor of 100 Anderson and Higham [2012].

They also give an interesting numerical example in which an approximate model with
fewer reactions/reactants is used as a control variate for the full system. This kind of
multilevel modelling is another possibility which could be considered in a wide variety of
circumstances.

6 Nested simulation

In nested simulations we are interested in estimating quantities of the form

EZ

h
f
�
EW [g(Z; W )]

� i
where EZ represents an expectation with respect to Z, an outer random variable, and
EW [g(Z; W )] is a conditional expectation with respect to an independent inner random
variable W . For example, in some financial applications, Z represents different risk sce-
narios, EW [g(Z; W )] represents the conditional value of a portfolio, and f corresponds
to the loss in excess of a certain level, so that EZ

h
f
�
EW [g(Z; W )]

� i
is the expected

shortfall.
This can be simulated using nestedMonte Carlo simulation withN outer samplesZ(n),

M inner samples W (m;n) and a standard Monte Carlo estimator:

Y = N �1
NX

n=1

f

 
M �1

MX
m=1

g(Z(n); W (m;n))

!
Note that to improve the accuracy of the estimate we need to increase both M and N , and
this will significantly increase the cost.

An MLMC implementation is straightforward; on level ` we can use M` = 2` inner
samples. To construct a low variance estimate for E[P`�P`�1] where

E[P`] � EZ

"
f

 
M �1

`

X
m

g(Z; W (m))

!#
;
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we can use an antithetic approach and split the M` samples of W for the “fine” value into
two subsets of size M`�1 for the “coarse” value:

Y`=N �1
`

NX̀
n=1

8<: f

0@M �1
`

MX̀
m=1

g(Z(n); W (m;n))

1A
�

1
2
f

0@M �1
`�1

M`�1X
m=1

g(Z(n); W (m;n))

1A
�

1
2
f

0@M �1
`�1

MX̀
m=M`�1+1

g(Z(n); W (m;n))

1A9=;
Note that this has the correct expectation, i.e. E[Y`] = E[P`�P`�1].

If we now define

M �1
`�1

M`�1X
m=1

g(Z(n); W (m;n))=E[g(Z(n); W )] + ∆g
(n)
1 ;

M �1
`�1

MX̀
m=M`�1+1

g(Z(n); W (m;n))=E[g(Z(n); W )] + ∆g
(n)
2 ;

then if f is twice differentiable a Taylor series expansion gives

Y` � �
1

4N`

NX̀
n=1

f 00
�
E[g(Z(n); W )]

� �
∆g

(n)
1 �∆g

(n)
2

�2
By the Central Limit Theorem,∆g

(n)
1 ;∆g

(n)
2 = O(M

�1/2

`
) and therefore

f 00
�
E[g(Z(n); W )]

� �
∆g

(n)
1 �∆g

(n)
2

�2
= O(M �1

` ):

It follows that E[Y`]=O(M �1
`

) and V` =O(M �2
`

). For the MLMC theorem, this corre-
sponds to ˛=1, ˇ=2,  =1, so the complexity is O("�2).

This approach has been used for a financial credit derivative application Bujok, Ham-
bly, and Reisinger [2015], but in that case the function f was piecewise linear, not twice
differentiable, and so the rate of variance convergence was slightly lower, with ˇ = 1:5.
However, this is still sufficiently large to achieve an overall complexity which is O("�2).

Current research in this area is addressing the challenges of functions f which are
discontinuous, and Multi-Index Monte Carlo or nested MLMC for applications in which
there are additional “dimensions” to the problem, such as the number of timesteps in an
SDE simulation in the inner conditional expectation.
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7 Variable precision arithmetic

This final category of applications is included to illustrate the flexibility and generality
of the MLMC approach. In the latest Intel CPUs, each core has a vector unit which can
perform 16 single precision or 8 double precision operations with one instruction. Hence,
single precision computations can be twice as fast as double precision on CPUs. The latest
GPUs (graphics processing units) take this idea even further, including a half-precision
capability which is twice as fast as single-precision.

This leads naturally to the idea of a 2-level MLMC calculation on CPUs, or a 3-level
calculation on GPUs, with the different levels corresponding to different levels of floating
point precision. To ensure that the MLMC telescoping sum is correctly respected, all
MLMC summations should be performed in double precision, which we can view as being
“exact”. It is also important that the random numbers are generated consistently, so that
the distribution of half-precision random numbers used on level 0, is equivalent to the
distribution of “coarse sample” half-precision random numbers obtained on level 1 by
first generating single-precision random numbers are then truncating them down to half-
precision.

This approach has been generalised in researchwhich exploits FPGAs (field-programmable
gate arrays) which can perform computations with a user-specified number of bits to repre-
sent floating-point or fixed-point numbers. Thus, it is possible to implement a multilevel
treatment in which the number of bits used increases with level Brugger, de Schryver,
Wehn, Omland, Hefter, Ritter, Kostiuk, and Korn [2014].

8 Conclusions

The last ten years has seen considerable progress in the theoretical development, appli-
cation and analysis of multilevel Monte Carlo methods. On the theoretical side, the key
extensions are to unbiased randomised estimators for applications with a rapid rate of
variance convergence; Richardson-Romberg extrapolation for improved computational
efficiency when the rate of variance convergence is low; and multi-index Monte Carlo
(MIMC), generalising multilevel to multiple “directions” in which approximations can be
refined. On the practical side, the range of applications is growing steadily, including the
examples given in this article and others such as reliability and rare event simulation, and
MCMC and Bayesian inverse methods. There has also been excellent progress on the
numerical analysis of the MLMC variances for the full range of applications.

This review has attempted to emphasise the conceptual simplicity of the multilevel
approach; in essence it is simply a recursive control variate strategy, using cheap inaccurate
approximations to some random output quantity as a control variate for more accurate but
more costly approximations. In practice, the challenge is first to develop a tight coupling
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between successive approximation levels, to minimise the variance of the difference in the
output obtained from each level, and then to develop a corresponding numerical analysis.

Acknowledgments. The author is very grateful to the many collaborators and students
he has worked with on MLMC applications over the past 10 years, and in particular to
Dr. Abdul-Lateef Haji-Ali for his comments on the paper.
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Abstract

Quasicrystals are one kind of fascinating aperiodic structures, and give a strong
impact on material science, solid state chemistry, condensed matter physics and soft
matters. The theory of quasicrystals, included in aperiodic order, has grown rapidly in
mathematical and physical areas over the past few decades. Many scientific problems
have been explored with the efforts of physicists and mathematicians. However, there
are still lots of open problems which might to be solved by the close collaboration
of physicists, mathematicians and computational mathematicians. In this article, we
would like to bridge the physical quasicrystals and mathematical quasicrystals from
the perspective of numerical mathematics.

1 Introduction

Crystals are one of themost important structures inmaterial science, solid-state physics,
condensed matter physics, and soft matters. Before 1980s, by traditional criterion of long-
range order, i.e., periodicity, materials can be divided into two categories: crystal and
non-crystalline. Crystal materials have periodicity, while the non-crystalline does not.
Two ingredients of the description of periodic crystals are lattice and morphology. The
periodic lattice is a pure mathematical concept characterized by space group symmetry.
In the 19th century, 230 space groups (219 distinct types) in three dimensions, were de-
termined based on periodicity. Then the “classical” crystallography, in which the allowed
rotational symmetry is only 1-, 2-, 3-, 4-, or 6-fold symmetry, was perfectly completed.
The diversity of morphologies in real world depends on the specific building block of
structures in corresponding scales. All of rest materials belong to non-crystalline materi-
als, e.g. glass, coal, coke, and plastic. Non-crystalline materials have short-range order,

The work is supported by the Natural Science Foundation of China (Grant No. 21274005, No. 11421101, and
No. 11771368).
MSC2010: primary 65Z05; secondary 52C23, 11K70, 11K60.
Keywords: Quasicrystals, Cut-and-project scheme, Almost periodic functions, Projection method.

3609

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v4-p


3610 KAI JIANG AND PINGWEN ZHANG

lack symmetry, and usually are isotropic. By this classification, all structures in real world
seem to be fully known at that time.

In 1982, however, an unexpected pattern with fivefold symmetric diffraction, which
is not compatible with three-dimensional periodicity, was found by Shechtman in rapidly
quenched aluminum manganese alloy Shechtman, Blech, Gratias, and Cahn [1984]. This
discovery raised much interest. Until now, many stable quasicrystals have been found
in more than a hundred of different metal alloysN. Wang, Chen, and Kuo [1987], Tsai
[2008], and Steurer [2004]. Moreover, quasicrystals have been also discovered in a host
of soft-matter materials Zeng, Ungar, Liu, Percec, Dulcey, and Hobbs [2004], even in na-
ture Bindi, Steinhardt, Yao, and Lu [2009]. These discoveries lead people to realize that
there are many different kinds of structures between periodic crystals and non-crystalline
phases. This ismore important than quasicrystals appear at first sight, because non-periodic
order shows both new features and new horizon line. As a consequence, the crystal has
been redefined as that if it has a sharp diffraction pattern in reciprocal space “Report of
the executive committee for 1991” [1992]. In fact, beside quasicrystals, incommensurate
modulated phases, incommensurate composites and incommensurate magnetic structures
have been confirmed as members in the family of aperiodic structures. It is fair to say that
a classification of a hierarchy of aperiodic order, and structures between periodic crystals
and amorphous phases, has not been achieved yet.

With the efforts of physicists and mathematicians, many scientific problems of qua-
sicrystals have been solved in the past few decades. However, there are still many open
problems in the field of quasicrystals, many of which lie in both fields of physics and
mathematics. This inspires us to bridge the connection between physical quasicrystals
and mathematical quasicrystals. In this paper, we would like to briefly review the related
studies on both fields and understand their connection from the viewpoint of numerical
mathematics. The paper is organized as follows. In Section 2, we present a short intro-
duction of physical quasicrystals, and related mathematical knowledge of quasicrystals.
In Section 3, we review common computational methods of quasicrystal, especially the
projection method. Finally in Section 4, the relationship among mathematical, physical,
and numerical quasicrystals is discussed. Also some perspectives and unsolved problems
are drawn.

2 Quasicrystals: From Physics to Mathematics

2.1 What is a physical quasicrystal ? Since the symmetry is one of the most important
properties in experimental discovery, a prevailing definition of quasicrystals is that a d -
dimensional quasicrystal is not periodic, and has any finite subgroup of O(d ) as its point
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group. However, this definition is too restrictive to excludes any important and interest-
ing collections of quasicrystals. For example, there are no quasicrystals in one dimension
according to the above definition. To contain these aperiodic structures who exhibit all the
well-known properties of quasicrystals, a quasicrystal is defined as quasiperiodic crystal
which was firstly proposed by Levine and Steinhardt Levine and Steinhardt [1986], Mer-
min [1991], and Lifshitz [2003]. A d -dimensional quasiperiodic crystal means that its
density function can be expanded as

f (x) =
X
k2Λ

f̂ (k)eik�x; x 2 Rd ;(1)

where the spectrum set Λ = fk =
Pn

j=1 hj bj ; bj 2 Rd ; hj 2 Zg is a finitely generated
Z-module of rank n. If n = d , it is a periodic crystal.

Many mathematical works on quasicrystals have been independently explored before
the discovery of quasicrystals. In recent years, it has been found that quasicrystals have a
fundamental connection to many areas of mathematics, e.g. algebra de Bruijn [1981a,b],
discrete geometry Senechal [1995], number theory and harmonic analysis
Salem [1963], Meyer [1972], and Lev andOlevskii [2015], crystallographyMermin [1991]
and Steurer and Deloudi [2009], diffraction theoryBaake and Grimm [2011, 2012, 2013],
dynamical systemsHou and You [2012], sampling theoryMeyer [2012]. In particular, it
might be a way to treat the well-known Riemann Hypothesis Dyson [2009].

To the best of our knowledge, there are two significant pioneer works in mathematics.
One is the Penrose’s work from discrete geometry Penrose [1974]. Another is Meyer’s
monograph on the connection between algebraic number theory and harmonic analysisMeyer
[1972]. In fact, it contains the abstract theory of the cut-and-projection method, in terms
of the full generality of locally compact Abelian groups. Meyer’s work is also an exten-
sion of the theory of almost periodic functions to the setting of point sets. In the following
context, we briefly review the mentioned mathematical works.

2.2 Penrose tiling. The best known work might be the fivefold symmetric planar tiling
due to Penrose from Oxford Penrose [1974], now referred to as Penrose tiling. This work
stems from the Hilbert’s 18th problem which raises issues of the filling of space with
congruent shapes. Hilbert was probably assuming – incorrectly, as it turned out – that no
anisohedral prototile could exist in two dimensions. In other words, there do not exist
finite prototiles that cover entire space without void. Based on the previous work of many
mathematicians, including H. Wang, R. Berger, and D. Knuth, in 1974, Penrose found
an approach to pave the whole plane with only two rhombi in an aperiodic way Senechal
[1995].

In particular, the simplest rhombic Penrose tiling includes two prototiles: one thick
rhombus (with angles 2�/5 and 3�/5) and one thin rhombus (with angles 4�/5 and
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�/5). Using the above rhombi, Penrose found a matching rule to pave the plane space.
The resulted pattern, also known as Penrose tiling, is a quasicrystal with 5-fold symme-
try without any period. It was later shown that this pattern is compatible with a projec-
tion from 5-space and has a pure Bragg spectrum de Bruijn [1981a,b]. More tilings with
other symmetries, as well as three dimensional tilings have also been constructed and stud-
ied intensively Senechal [1995], Baake and Grimm [2013], and Grünbaum and Shephard
[1987].

2.3 Almost periodic functions. Harmonic analysis was originally devoted to periodic
functions. The analysis of a periodic function perfectly depends on the knowledge of
one period. A natural aperiodic generalization of continuous periodic functions is almost
periodic functions, originally from Bohr’s work in 1920sBohr [1925]. Its definition is
given as follows.

Definition 1 ("-almost period). Let f be a complex-valued function on R and let " > 0.
An "-almost period of f is a number � such that

sup
x2R

jf (x � �) � f (x)j < ":

Definition 2 (Almost periodic function). A complex-valued function f on R is almost
periodic, if it is continuous and if for every " > 0, there exists L = L("; f ) > 0 such that
every interval of length L on R contains an "-almost period of f .

Obviously, continuous periodic functions are almost periodic. Beside that, another
simplest almost periodic function is f (x) = sin(x) + sin(

p
2x). However, f is not

periodic since f (x) = 0 only for x = 0. DenoteAP (R) to be the space of almost periodic
functions on R. It is known that AP (R) is a closed subalgebra of L1(R) and that almost
periodic functions are uniformly continuousKatznelson [2004]. Given f 2 AP (R), the
mean value M (f ) of f is defined by

M (f ) = lim
T !1

1

2T

Z T

�T

f (x) dx:(2)

The limit of the above definition exists when f 2 AP (R). Then, we define the inner
product h�; �iL2 on AP (R) as

hf; giL2 = M (f ḡ) = lim
T !1

1

2T

Z T

�T

f (x)ḡ(x) dx;(3)
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for f; g 2 AP (R). This inner product is well defined since f ḡ is also in AP (R). More-
over, it induces the L2-norm, for f 2 AP (R),

kf kL2 = lim
T !1

 
1

2T

Z T

�T

jf (x)j2 dx

!1/2

:(4)

We now define the Fourier coefficient of f 2 AP (R) by

f̂ (�) = hf; ei�x
iL2 = M (fe�i�x):(5)

By Bessel’s inequality, we have
P

�2R jf̂ (�)j2 � kf k2L2 < 1. This implies that f̂ (�) =

0 except for countable many values of �’s. We define its frequency set �(f ) = f� 2 R :

f̂ (�) ¤ 0g and write

f (x) �
X

�2�(f )

f̂ (�)ei�x ;(6)

where the right-hand side is referred to as Fourier series associated to f . It is known that
the complex exponentials fei�xg�2R form an orthonormal basis of AP (R). Moreover,
the Parseval’s identity

kf k
2
L2 =

X
�2R

jf̂ (�)j2;(7)

holds for f 2 AP (R). The following theorem gives the convergence of the Fourier series
to an almost periodic function.

Theorem 1 (Theorem 1.20 in Corduneanu [1968]). Let f 2 AP (R). If the Fourier series
in (6) associated to f converges uniformly, then it converges to f .

2.4 Meyer’s work. Let Λ be a set of real numbers, we say Λ is a coherent set of fre-
quencies if there exist a C > 0 and a compact set K such that

sup
x2R

jP (x)j � C sup
x2K

jP (x)j;(8)

for all trigonometric sums P (x) whose frequencies belong to Λ. In 1970s, Meyer consid-
ered a primal issue: how to construct coherent set Λ and what Λ’s properties are. A trivial
example of coherent set isΛ = Z. As a consequence, P (x) is the periodic function. More
general coherent sets can be characterized by the remarkable Diophantine approximation
property. The quasicrystal is an interesting by-product during the period of studying this
primal issue.
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To characterize the Diophantine approximation property, a new concept of harmonious
set is introduced into the subject of harmonic analysis on locally compact Abelian groups.
In this paper, we focus on the space of Rn which is a specific example of local compact
Abelian groups. More general results can be found in Meyer’s book Meyer [1972].

Definition 3 (Harmonious set). A set Λ = f�j gj �1 is harmonious if for each positive ",
there exists a function T ("; �1; : : : ) = T > 0, such that each interval of real numbers
of length T at least contains a solution t satisfying the infinite system of Diophantine
inequalities

jt�j � [t�j ]j � "; j � 1:(9)

[�] is the nearest integer of �.

Another useful concept is the Delaunay set we will use later.

Definition 4 (Delaunay set). A subset Λ � Rn is a Delaunay set if there exist two radii
R2 > R1 > 0 such that each ball with radiusR1, whatever be its location, shall contain at
most one point inΛ while each ball with radius R2, whatever be its location, shall contain
at least one point in Λ.

The first requirement can be equivalently given by the uniformly discrete formulation:
there exists a positive r such that �; �0 2 Λ and � ¤ �0 imply j� � �0j � r . A collection
of points fulfilling the second condition is referred to as relatively dense.

An interesting problem is to characterize a harmonious set by its arithmetical properties.
Considering additive properties, if Λ � Rd is a Delaunay set and F is a finite subset of
Rd , then Λ is harmonious if and only if Λ � Λ � Λ + F , where Λ � Λ denotes the set
of Minkowski difference �1 � �2, for arbitrary �1; �2 2 Λ. This property naturally gives
the first mathematical definition of quasicrystals.

Definition 5. A mathematical quasicrystal Λ is a Delaunay set in Rn such that Λ � Λ �

Λ + F where F is a finite set.

In many literatures, a point set satisfying the Definition 5 is referred to as Meyer set.
An equivalent concept is the quasiregular set that is a Delaunay set Λ such that Λ � Λ is
also a Delaunay set Lagarias [1996]. However, Definition 5 does not directly yield the
Diophantine approximation characterization of quasicrystals.

In 1970s, to maintain the Diophantine approximation property, Meyer proposed an ele-
gant method to construct relatively dense harmonious sets, or in terms of model setsMeyer
[1972]. A model set Λ � Rn is defined as follows. Consider a lattice D � Rn+m =

Rn � Rm where m is an integer and m = 0 is not excluded. If (x; y) = X 2 Rn � Rm,
we write x = p1(X) and y = p2(X). Assume that p1 : D 7! p1(D) is a 1-1 mapping
and that p2(D) is a dense subgroup of Rm.
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Definition 6 (Model set). Keeping the above notations, let B be any bounded set in Rm.
Then the model set Λ defined by D and B is the collection of all Λ = p1(d ) such that
d 2 D and p2(d ) 2 B.

This is the well-known cut-and-project scheme in the field of quasicrystals. A famous
guiding example is the Fibonacci chain which can be obtained as a projection of square
lattice Z2 within a strip. The chain space is the line with slope (

p
5 � 1)/2. Cut-and-

project method appears in various different disguises in the literature, each of which has its
own merits. In 1981, de Bruijn [1981a,b] devised an algebraic description of the rhombic
Penrose tilings, based on the dualisation of a pentagrid. It is straightforward to generalize
this method to produce planar rhombic tilings with arbitrary rotational symmetry. In fact,
Bruijn’s method is equivalent to the cut-and-project approach with a suitable choice of the
cut window Gähler and Rhyner [1986].

The relationship between model sets and quasicrystals is given as follows.

Theorem 2 (Theorem 1 in Meyer [1995]). Let Λ � Rn be a model set such that the corre-
sponding bounded set B has a non-empty interior. Then Λ is a mathematical quasicrystal.

Conversely if Λ is a mathematical quasicrystal, there exists a finite set F and a model
set Λ0 such that Λ � Λ0 + F . Moreover this model set Λ0 corresponds to a bounded set
B0 with a non-empty interior.

FromTheorem 2, the model set is a subset of mathematical quasicrystals. Nevertheless,
cut-and-project method has three benefits in the study of quasicrystals. The first one is
that it provides an explicit constructive approach to generate quasicrystals.

The second one is on explaining why only finitely many spectral points are observed in
the experimental diffraction pattern of a quasicrystal. Using the cut-and-project scheme,
we can obtain Poisson’s summation formula for quasicrystals.

Theorem 3. (Poisson’s summation formula for quasicrystal) Let Λ 2 Rn be a model
set such that the corresponding bounded set B has a non-empty interior. And let � =P

�2Λ ı� be the Dirac masses over Λ. Then the Fourier transform, in the distribution
sense, �̂ of � is given by

�̂ =
X

d2D�

!(p2(d
�))ıp1(d�);(10)

where the weights !(p2(d
�)) are defined by !(y) = (2�)n

vol(D)
�̂B(�y); y = p2(d

�), �B is
the indicator function of B, and vol(D) is the volume of fundamental domain of D.

The support of the measure �̂ is dense in Rn, and the weight !(y) has a rapid decay at
infinity. A general result of the above theorem is the Theorem 7 in Meyer [ibid.].
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The third one is the connection between quasicrystals and almost periodic functions
from the duality theory. For a set Λ 2 Rn and " > 0, its "-dual set Λ�

" , is defined by,
Λ�

" = fy : jeiy�� � 1j � "; � 2 Λg. It is a generalization of periodic lattice and its dual
lattice.

Definition 7. A mathematical quasicrystal Λ is a Delaunay set such that the "-dual set
Λ�

" is also a Delaunay sets whenever 0 < " � 1.

Therefore, for any almost periodic function f whose spectrum lies in quasicrystal Λ and
C > 0, we have

sup
x

jf (x � �) � f (x)j � C " sup
x

jf (x)j;(11)

where C and "-almost periods � 2 Λ�
" do not depend on f . Definition 7 is equivalent

to Definition 5, which allows us build a connection between quasicrystals and almost
periodic functions. More concretely, if Λ is a model set, then its "-dual set Λ�

" , 0 < " � 1,
is also a model set (see Theorem 3 in Meyer [1995]).

Besides, self-similarity is an important property of quasicrystals. From this perspective,
the Pisot (or Pisot-Vijayaraghavan) and Salem numbers play a key role in characterizing
the property of quasicrystals.

Definition 8 (Pisot number and Salem number). A Pisot number � > 1 is a real algebraic
integer of degree n � 1 if all its conjugates �2; : : : ; �n satisfy j�2j < 1, ..., j�nj < 1.

A Salem number � > 1 is a real algebraic integer of degree n � 1 if all its conjugates
�2; : : : ; �n satisfy j�2j � 1, ..., j�nj � 1 with, at least, equality somewhere.

Theorem 4 (Theorem 6 in Meyer [ibid.]). If Λ is a quasicrystal, � > 1 is a real number
and �Λ � Λ, then � is either a Pisot number or is a Salem number.

Conversely, for each Pisot or Salem number � , there exists a quasicrystalΛ � Rn such
that �Λ � Λ.

Aphysical quasicrystal is usually related to a Pisot number. For example, 5-fold symmetric
quasicrystals refer to the golden number of � = (1 +

p
5)/2 which is a Pisot number.

3 Numerical Quasicrystals

In this section, we will review numerical mathematics of quasicrystals. In numerical
computation, the implementation of algorithms is based on physical models. A class of
useful physical models to describe the phase behaviour of quasicrystals is the phase-field
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quasicrystal model. In particular, its free energy functional can be written as

F ['(x)] = lim
R!1

1

B(0; R)

Z
B(0;R)

Z
Rd



2

h
'(x)G(x; x0)'(x0)

i
dxdx0

+ lim
R!1

1

B(0; R)

Z
B(0;R)

h
�

"

2
'2(x) �

˛

3
'3(x) +

1

4
'4(x)

i
dx;(12)

where '(x) is the order parameter to describe the order of structures.  , " and ˛ are phe-
nomenological parameters of the system. In this model, the polynomial term corresponds
to the bulk free energy of the system, whereas the term involving G(x; x0) is a two-body
correlation potential, describing the free energy cost of inhomogeneity of the system. Dif-
ferent choices of G(x; x0) result in the selection of different fundamental modes at partic-
ular length scales, thus promoting the formation of ordered structures. When the function
G(x; x0) is chosen such that two length scales with proper length ratios are selected, com-
plicated ordered phases including quasicrystals can be stabilizedMüller [1994], Lifshitz
and Petrich [1997], Dotera, Oshiro, and Ziherl [2014], and Jiang, Tong, and P. Zhang
[2016]. The selection of two length scales in the potential function such that it has two
equal-depth minima, 1 and q, which can be realized by differential termLifshitz and Pet-
rich [1997], a steplike functionBarkan, Diamant, and Lifshitz [2011], or a Gaussian-type
potential familyArcher, Rucklidge, and Knobloch [2013] and Barkan, Engel, and Lifshitz
[2014].

Theoretically, the ordered patterns, including periodic and quasiperiodic, are corre-
sponding to local minima of the free energy functional. Seeking for the minima of (12) can
directly use optimization methods, or gradient flow equations, such as Allen-Cahn, Cahn-
Hilliard equations. However, there are multiple local minima of the energy functional 12
due to its the nonlinearity and nonconvexity. Thus the initial values are important to speed
up the convergence, and critical to find the expected solutions. There is not an universal
approach to choose initial values for a general nonlinear variation problem. In practice, the
choice of initial values depends on specific problem. The group theory is a useful tool of
screening initial values for symmetric structures: for periodic crystals with translational
and rotational invariance, the space group is a perfect tool to chose initial values Jiang,
Huang, and P. Zhang [2010], Xu, Jiang, P. Zhang, and Shi [2013], and Jiang, C. Wang,
Huang, and P. Zhang [2013]; for quasicrystals, the point group can be used to screen ini-
tial values Jiang, Tong, P. Zhang, and Shi [2015] and Jiang, P. Zhang, and Shi [2017]. In
general, the more complicated the phase is, the more sensitive to initial value the solution
is.

Another important issue in numerical computations is how to discretize or represent or-
dered parameter '(x). For periodic structures, their study can be confined to one period.
As a consequence, many traditional discretization methods can be applied to solve such
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structures, e.g. Fourier spectral method, finite difference/element/volume method. How-
ever, these numerical methods are not directly applicable to quasicrystals due to their prop-
erty of space-filling. In the following context, we review existing discretization schemes
to decompose order parameter, especially the projection method.

3.1 One-mode or multi-modes approximation method. One-mode or multi-modes
approximation method is a widely used semi-analytical approach in physics to find the
approximation solution under some assumptionChaikin and Lubensky [2000]. If the solu-
tion is symmetric, the approximation approach uses symmetric eigenfunctions to expand
order parameter function '(x). Then the energy functional becomes a function. The opti-
mization problem of minimizing a energy functional becomes minimizing a function with
one or few variables.

In the model of (12), when the parameter  ! +1, the interaction potential G(x; x0)

must be zero. Otherwise energy value goes to infinity. In this case, only fundamental
Fourier modes that lie on rings of jkj = 1 or/and jkj = q are nonzero. For example,
in consideration of dodecagonal symmetric quasicrystals, order parameter '(x) is repre-
sented by the linear combination of trigonometric functions satisfying two properties: the
basis functions have 12-fold symmetry; and the frequencies lie on the two rings. Then
the original energy functional (12) becomes an approximation function of only two vari-
ables Lifshitz and Petrich [1997] and Jiang, Tong, P. Zhang, and Shi [2015].

The approximation method can dramatically decrease the computational burden, and
useful for qualitative analysis. However, it is only available to some limited cases.

3.2 Crystalline approximant method. Recently, a popular method to calculate a qua-
sicrystal is a modified trigonometric spectral method which uses a large region with pe-
riodic boundary condition to approximate the quasicrystal. More precisely, this trigono-
metric spectral method can only be applied to periodic structures. Therefore, this method
computes crystalline approximants rather than quasicrystals, for which we refer to it as
crystalline approximant method Jiang and P. Zhang [2014].

For any d -dimensional periodic structure f (x), x 2 Rd , the repeated structural unit
is called a unit cell. A primitive unit cell, described by d d -dimensional primitive vec-
tors, a1, …, ad , has the smallest possible volume. f (x) has translational invariance
on the lattice composed by the primitive vectors. Given the primitive vectors, the prim-
itive reciprocal vectors in Fourier space, b1, …, bd , bj 2 Rd satisfy ai bj = 2�ıij ,
1 � i; j � d . The primitive reciprocal vector, i.e., the spectra of f (x), is specified by
Λ = fk =

Pn
i=1 hi bi ; hi 2 Zg. One of the most important properties of the recipro-

cal primitive lattices is that trigonometric functions, fei(hB)�xgh2Zd , B = (b1; : : : ; bd ),
form a set of basis functions in L2(V), V is the primitive unit cell described by d vectors
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a1; : : : ; ad . The periodic function f (x) on L2(V) can be expanded as

f (x) =
X

h2Zd

f̂ (h)ei(hB)�x;(13)

It is noted that, the spectra of a periodic structure is a linear combination of primitive
reciprocal vectors on field Q (actually on ring Z).

For a d -dimensional quasicrystal f (x), its spectra Λ is a combination of primitive
reciprocal vectors on field R rather than Q, i.e., ΛQC = fk =

Pd
j=1 pj bj ; pj 2 Rg.

The trigonometric spectral method (13) cannot directly apply to compute quasicrystals.
A natural idea is to use a lattice of Rd to approximate ΛQC which is the Diophantine
approximation. More concretely, the quasiperiodic function can be approximated by

f (x) �
X

k2ΛQC

f̂ ([Lk])ei �[Lk]�x/L;(14)

where x belongs to the region LV. To approximate the quasiperiodic function f (x) accu-
rately, we need that [Lk] approximate Lk for all k 2 ΛQC as close as possible. Without
loss of generality, one can always use (1; 0; : : : ; 0) as one of primitive reciprocal vectors.
Therefore, L can be chosen as an integer. In view of numerical computability, the integer
L should be as small as possible. However, since there exist irrational coefficients pj in
ΛQC , from the Diophantine approximation theory, L increases nonlinearly and quickly
as the desired approximation error becomes small. A concrete example is in the computa-
tion of a two-dimensional decagonal symmetric quasicrystal in the phase field quasicrystal
model. Table 1 gives the least integer L when achieving desired Diophantine approxima-
tion error. It is easy to see that the computational amount increases quickly due to the

Table 1: For a two-dimensional decagonal symmetric quasicrystal, the Diophantine
approximation error and the required least integer L. The computational region
is [0; 2�L]2. The first L = 126 is the least integer in computing the crystalline
approximant of two-dimensional decagonal symmetric quasicrystals based on the
model of (12).

Error 0.1669 0.0918 0.0374 0.0299 : : :

L 126 204 3372 53654 : : :

increase of L.
The error of the crystalline approximant method comes from two parts: using a finite

region to approximate the space-filling quasicrystal, and using a periodic function to ap-
proximate the quasicrystal in a finite domain. Numerical results have given an evidence
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that the gap between the free energy of the quasicrystals and their corresponding approxi-
mants always exists Jiang and P. Zhang [2014]. However, it still lacks a rigorous analysis
about this phenomenon.

3.3 Gaussian approximation method. Gaussian approximation method is based on
the assumption that the density function is a linear combination of Gaussian functions
centered on a priori determined lattice or quasilattice Λ� Sachdev and Nelson [1985]. Un-
der this assumption, the density function is represented as

(15) 'G(x) =
X

xn2Λ�

G� (x � xn);

whereG� (x) = (��2)�3/2 exp(�jxj2/�2) is the Gaussian function with width � , andΛ�

is the given lattice or quasilattice. Note that if � ! 1, Gaussian approximation method
will obliterate structured phases, whichmeans an uniform state. Using the expression (15),
the free energy functional F ['(x); Λ�] becomes a function F (� ; Λ�) of � . It is much
easier to minimize F (� ; Λ�) than F ['; Λ�]. Furthermore, in many density functional
frameworks, the Gaussian functions in (15) are assumed to be non-overlap. This provides
a numerical approximation advantage to evaluate the integral terms in F , i.e., for any
continuous function f , we have

(16)
Z

V

f (�G)dx �
X

xn2Λ�

Z
V

f (G� (x � xn))dx:

When we describe the lattice or quasilattice by a measure

(x) =
X

xn2Λ�

ı(x � xn);

the Equation (15) can be re-written in the Fourier space as (actually by the Poisson’s sum-
mation formula of quasicrystals of Theorem 3)

(17) '̂G(kn) = 3( � G� )(kn) = w(kn) exp
�

�
jknj2"2

4

�
; kn 2 Λ;

where w(kn), the weight factor, is the spectral coefficients of the given structure. For a
periodic lattice structure Λ�, the weight factor w(kn) � 1 for kn 2 Λ. Nevertheless, the
weight factor of a quasicrystal structure is much complicated. The main method to obtain
the weight factor of quasicrystals is employing the cut-and-project method, see Theorem 3.
In general, we should carefully choose the cut windows as different choices of windows
result in different quasicrystals Smith [1990] and MCarley and Ashcroft [1994].
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The success of Gaussian approximationmethod in density functional framework should
attribute to the nature of physical problems. From our experience, this method is suitable
for solid quasicrystals and the width � should not be too large to overlap. It provides a
simple route to approximate order parameter '(x). The performance might be further
improved by extending the one parameter Gaussian in (15) to a summation of several
general Gaussians. However, mathematically, it is hard to expect high accuracy of the
Gaussian approximation method.

3.4 Projection Method. The projection method is inspired by a picture of diffraction
pattern of quasicrystals. We observed that the diffraction point of a d -dimensional qua-
sicrystal cannot be represented by a linear combination of d d -dimensional vectors with
integer coefficients like periodic lattice. Then we used n (n > d ) vectors to represent the
diffraction pattern. From another viewpoint, the n vectors can be lifted up to n dimension
to expand Zn. As a consequence, we project the Zn to Rd space to obtain the diffraction
pattern. In particular, consider the information of primitive lattice, we can represent the
diffraction pattern of a d -dimensional quasicrystal as

ΛQC = fk = PBh; h 2 Zn; P 2 Rd�n; B 2 Rn�n
g;(18)

where P is the projection matrix of rank d , and B = (b1; � � � ; bn) is the n-dimensional
reciprocal primitive lattice. The projection matrix depends on the specific structure. Con-
sider the rotational symmetry, the crystallographic restriction in two and three dimensions
can be generalized to arbitrary dimensions Steurer and Deloudi [2009]. For example,
5-, 8-, 10-, and 12-fold symmetric quasicrystals, the minimal dimension of embedded
space is four. While 7-, 9-, and 18-fold symmetric quasicrystals must be restricted to
six-dimensional space or above. A uniform computational formula for the minimal ex-
tended dimension of rotational symmetry can be obtained from an additive Euler totient
functionHiller [1985]. If we consider periodic lattice, the projection matrix is a d -order
identity matrix.

Using the representation of ΛQC , we proposed an expansion of a d -dimensional qua-
sicrystal

(19) f (x) �
X

k2ΛQC

f̂ (k)eik�x:

The next task is to compute coefficients f̂ (k). In order to ensure the convergence of the
above Fourier series, the coefficients should have decay property. In the model set, each
spectrum point has a rapidly decay weight factor due to the cut window (see Theorem 3).
Accordingly, in projection method, we assume that coefficients ff̂ (k)gk2ΛQC

2 `2(Zn).
In practice computation, we calculate it by the n-dimensional L2-inner product, �̂(h) =
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˝
�̃(x̃); e�i(Bh)T x̃

˛
, with x̃ being in the supercube of f

Pn
i=1 si ai 2 Rn; 0 6 si 6 1g.

Here ai , i = 1; ::; n, are the primitive lattice vectors forming the primitive lattice A of
the n-dimensional periodic structure. Specific value of f̂ (k) is obtained by solving the
physical models, such as the energy functional of (12).

With the help of n-dimensional reciprocal space, projection method can calculate the
spectrum of quasicrystals directly. In the projection method, the physical space variable
x always belongs to d -dimensional space. Therefore an energy functional including d -
dimensional quasicrystals is not required to be lifted up to n dimension. Since quasicrys-
tals are space-filling structures, the energy values must be infinity. Instead, the energy
density is considered. With the L2-inner product (3), the energy density of a quasicrystal
can be calculated by the following lemma.

Lemma 1 (Lemma in Jiang and P. Zhang [2014]). For a d -dimensional quasiperiodic
function f (x), under the expansion (19), we have

lim
R!1

1

B(0; R)

Z
B(0;R)

'(x) dx = '̂(k)
ˇ̌̌
k=0

:(20)

Compared with the crystalline approximant method, the projection method overcomes
the restriction of Diophantine approximation, and is able to compute quasicrystals rather
than crystalline approximants. In projection method, the decay rate of coefficients f̂ (k)

is dependent on the smoothness of the quasiperiodic function. To increase numerical pre-
cision, we just need add more trigonometric functions to expand the density function.

In practice, computational domain is an important variable in calculating ordered struc-
tures. The appropriate computational box is important to determine the final morphol-
ogy of solutions, especially for complicated phases Jiang, C. Wang, Huang, and P. Zhang
[2013]. In physics, an equilibrium periodic structure is related to the minimum of the
energy functional of order parameter '(x) and computational domain. Therefore, the
optimization problem of minimizing energy functional (12) is extended to

min
'; fb1;��� ;bd g

F ['(x); fb1; � � � ; bd g];(21)

where b1; : : : ; bd is the reciprocal primitive lattice vectors.
For a d -dimensional periodic phase, one can always choose a proper coordinate system

such that the freedom of computational domain is d (d + 1)/2 P. Zhang and X. Zhang
[2008]. Through the dual relationship, ai � bj = 2�ıij , optimizing computational region
in reciprocal space is equivalent to doing in real space for periodic structures. However, it
does not hold for quasicrystals. In projectionmethod, the freedom of computational region
of a d -dimensional quasicrystals is d (d + 1)/2 + d (n � d ). If the rotational symmetry
is determined in advance, the degree of freedom can be greatly reduced.
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We have successfully applied the projection method to study the emergence and ther-
modynamic stability of quasicrystals based on the class of physical models (12). With
the choice of two-scale correlation potential G(x; x0) = (r2 + 1)2(r2 + q2)2ı(x; x0),
we have found the two-dimensional 8-, 10-, and 12-fold symmetric quasicrystals, and
obtained corresponding phase diagram including periodic crystals and quasicrystals (see
Figure 1). More details can be found in Jiang, Tong, P. Zhang, and Shi [2015]. The phase

Figure 1: Phases and phase diagram of model (12) withG(x; x0) = (r2+1)2(r2+

q2)2ı(x; x0) using the projection method when  = 100. The structural parame-
ter q equals to 2 cos(�/12), 2 cos(�/5), and 2 cos(�/8) for 12-, 10-, and 8-fold
symmetric quasicrystals, respectively. For periodic crystals, q = 2 cos(�/5). The
spectrum points of quasicrystals are also given. Beside ordered structures, D de-
notes the disordered phase. 8-fold symmetric quasicrystal is always metastable in
the range of parameters of this phase diagram.

behaviour of quasicrystals in multi-component systems has been studied in Jiang, Tong,
and P. Zhang [2016]. Three-dimensional icosaheral quasicrystals have been investigated
in Jiang, P. Zhang, and Shi [2017] with two-scale Gaussian-polynomials type potential
function.

4 Conclusion and Future Perspectives

Generally speaking, mathematicians investigate the quasicrystals from the abstract con-
cepts which might not be closely related to the quasicrytals in real world. The discovered
quasicrystals always depend on the underlying physical systems. Even for quasicrystals
in the same category, they might have various morphologies due to the diverse building
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blocks of materials. In the study of a specific system, numerical mathematics could build
a bridge between mathematical and physical quasicrystals by solving a physical model of
the system. During the computation of quasicrystals, numerical mathematics might pro-
vide a new possibility to understand the natural law of the quasicrystals. Meanwhile, the
new generated problems in computing quasicrystals could promote the development of
mathematical and physical fields. For our purpose in this article, we will give a perspec-
tive of related problems on a connection between physics andmathematics from numerical
mathematics.

There are three mathematical formalisms to describe quasicrystals including point sets,
dual sets, and functions. The point set represents the position of units or atoms, the dual
set is for spectra, and the function is the density distribution of a quasicrystal. To study
quasicrystals, we expect to integrate three formalisms under one umbrella. As far as we
know, the constructive method of cut-and-project scheme fulfills the above requirements.
Using this scheme, we can obtain the model set and its "-dual set that are subsets of mathe-
matical quasicrystals. As discussed in Section 2.4, the model sets obtained by the cut-and-
project scheme can explainmany properties of quasicrystals. For example, cut-and-project
method can produce aperiodic tilings with an appropriate choice of cut window. Besides,
using Poisson’s summation formula based on models sets and their "-dual sets, the obser-
vation of only finite Bragg points in experiments can be also explained. However, the
scheme still has limitations for specific physical systems. The Gaussian approximation
method from the cut-and-project scheme can be used to represent quasicrystals when solv-
ing physical models. However, the numerical precision cannot be guaranteed.

In practice, the projection method demonstrates the best performance in solving phys-
ical models for quasicrystals. In this method, the quasiperiodic function is expressed as
trigonometric function sumwhose frequencies belong to a projection of higher-dimensional
periodic lattice of (18). The decay rate of the Fourier coefficients depends on the smooth-
ness of the quasiperiodic function. This explains that only finite spectrum points can be
observed in computation and experiments. But the explanation is different from the cut-
and-project method. Until now, rigorous analysis of the projection method still lacks in
pure and numerical mathematics.

Many problems of quasicrystals have been solved, at least partially, with the efforts
of physicists and mathematicians in the past few decades. However, the theory of qua-
sicrystals, as well as aperiodic order, is a fast developing field. There are still lots of open
problems in many areas of mathematics, physics, and numerical mathematics. Solving
these problems requires the close collaboration of researchers from different areas.

An unsolved fundamental problem, in physics or material science, is why quasicrystals
can emerge and be stable. In physics, we need to understand intrinsic mechanism of gen-
erating physical quasicrystals and give precise models. Current models are mainly based
on energy functionals in which the important interaction potential comes from physical
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understanding Lifshitz and Petrich [1997] or multiscale modelingMCarley and Ashcroft
[1994]. Most of these models are phenomenological, in which the relation between model
parameters and the nature of the specific systems is uncertain. Establishing a physical
model which is able to cover the details of a concrete system is still requiring more re-
search.

The second open problem is mainly the computational challenge in numerical mathe-
matics. Once we have appropriate physical models, efficient and convergent numerical
methods should be developed to solve concrete models. Certainly, analysing these compu-
tational algorithms appeals to known and unknownmathematical theory. Actually, there is
still lack of rigorous numerical analysis for the existing numerical methods, including pro-
jection method, crystalline approximant method, and Gaussian approximation approach.
Moreover, using more properties of quasicrystals, more efficient and high accurate numer-
ical methods could be developed.

The third open problem is whether there exist more non-periodic structures between pe-
riodic crystals and disordered phases. The positive answer is amazing. The intermediate
structures may contain other aperiodic structures or beyond aperiodic structures. Solv-
ing this issue requires the multipartly efforts, including experimental discovery, physical
modeling, mathematical theories and numerical methods. In mathematics, if we are lucky
enough, the undiscovered non-periodic structures or part of them might belong to mathe-
matical quasicrystals (see Definition 5 or 7). Otherwise, it would promote new research
topics of mathematics. In physics, we expect the well defined models which can describe
the detailed information of concrete systems including these new non-periodic structures.
To establish the connection between the abstract mathematical theory and concrete physi-
cal systems, correspondingly, new numerical methods should be developed to solve these
models. Last but not the least, these unknown non-periodic structures would give us new
challenges and opportunities in mathematics, physics, numerical mathematics, and other
fields.

Acknowledgments. The authors are grateful to Dr. Yongqiang Cai for useful discussions.
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MATHEMATICAL ANALYSIS AND NUMERICAL METHODS
FOR MULTISCALE KINETIC EQUATIONS WITH

UNCERTAINTIES
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Abstract
Kinetic modeling and computation face the challenges of multiple scales and un-

certainties. Developing efficient multiscale computational methods, and quantify-
ing uncertainties arising in their collision kernels or scattering coefficients, initial or
boundary data, forcing terms, geometry, etc. have important engineering and indus-
trial applications. In this article we will report our recent progress in the study of
multiscale kinetic equations with uncertainties modelled by random inputs. We first
study the mathematical properties of uncertain kinetic equations, including their reg-
ularity and long-time behavior in the random space, and sensitivity of their solutions
with respect to the input and scaling parameters. Using the hypocoercivity of kinetic
operators, we provide a general framework to study these mathematical properties for
general class of linear and nonlinear kinetic equations in various asymptotic regimes.
We then approximate these equations in random space by the stochastic Galerkin meth-
ods, study the numerical accuracy and long-time behavior of the methods, and further-
more, make the methods “stochastically asymptotic preserving”, in order to handle
the multiple scales efficiently.

1 Introduction

Kinetic equations describe the probability density function of a gas or system comprised
of a large number of particles. In multiscale modeling hierarchy, they serve as the bridge
between atomistic and continuum models. On one hand, since they model the collec-
tive dynamics of particles, thus are more efficient than molecular dynamics; on the other
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hand, they provide more accurate solutions when the macroscopic fluid mechanics laws
of Navier-Stokes and Fourier become inadequate. The most fundamental kinetic equation
is the Boltzmann equation, an integro-differential equation describing particle transport
with binary collisions Chapman and Cowling [1991] and Cercignani [1988]. Now kinetic
theory has seen expanding applications from rarefied gas dynamics Cercignani [2000], ra-
diative transfer Chandrasekhar [1960], medical imaging Arridge [1999], plasma physics
Degond and Deluzet [2017a], to microfabrication technology Markowich, Ringhofer, and
Schmeiser [1990] and Jüngel [2009], biological and even social sciences Naldi, Pareschi,
and Toscani [2010].

There are three main computational challenges in kinetic modeling and simulation: Di-
mension curse, multiple scales, and uncertainty.

A kinetic equation solves the particle density distribution f (t; x; v), which depends on
time t 2 R+, space x 2 Rd , and particle velocity v 2 Rd . Typically, d = 3, therefore
one has to solve a six dimensional differential-integral equation plus time.

Kinetic equations often have multiple scales, characterized by the Knudsen number ",
the ratio of particle mean free path over a typical length scale, which can vary spatially
dramatically. In these problems, multiscale and multi physics modelings are essential. For
example, in the space shuttle reentry problem, along the vehicle trajectory, one encoun-
ters free streaming, rarefied gas (described by the Boltzmann equation), transition to the
macroscopic hydrodynamic (described by the Euler or Navier-Stokes equations) regimes.
In this process the mean free path changes from O(1) meters to O(10�8) meters Rivell
[2006]. In plasma physics, one has to match the plasma and sheath where the quasineutral
(which allows macroscopic modeling) and non-quasineutral (which needs kinetic model-
ing) models need to be coupled Franklin and Ockendon [1970]. These multiscale and
multi-physics problems pose tremendous numerical challenges, with stiff collision terms,
strong (electric or magnetic) fields, fast advection speed, and long-time behavior that re-
quire prohibitively small time step and mesh size in order to obtain reliable computational
results.

Another challenge, which has been ignored in the community, is the issue of uncertain-
ties in kinetic models. In reality, there are many sources of uncertainties that can arise
in these equations, such as collision kernels, scattering coefficients, initial or boundary
data, geometry, source or forcing terms Bird [1994], Berman, Haverkort, and Woerdman
[1986], and Koura and Matsumoto [1991]. Understanding the impact of these uncertain-
ties is crucial to the simulations of the complex kinetic systems in order to validate and
improve these models.

To characterize the uncertainty, we assume that certain quantities depend on a random
vector z 2 Rn in a properly defined probability space (Σ;A;P ), whose event space
is Σ and is equipped with � -algebra A and probability measure P . We also assume
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the components of z are mutually independent random variables with known probabil-
ity !(z) : Iz �! R+, obtained already through some dimension reduction technique,
e.g., Karhunen-Loève (KL) expansion Loève [1977], and do not pursue further the issue
of random input parameterization.

Although uncertainty quantification (UQ) has been a popular field in scientific and en-
gineering computing in the last two decades, UQ for kinetic equations has been largely
an open area until recently. In this article we will present some of our recent results in
UQ for multiscale kinetic equations. We will use hypocoercivity of kinetic operators to
study the regularity and long-time behavior in the random space, as well as sensitivity of
the solutions with respect to the random input parameters. Our results are fairly general,
covering most important linear and nonlinear kinetic equations, including the Boltzmann,
Landau, semi-classical relaxation models, and the Vlasov-Poisson-Fokker-Planck equa-
tions. We then introduce the stochastic Galerkin method for random kinetic equations, and
study their numerical accuracy and long-time behavior, and formulate them as stochastic
asymptotic-preservingmethods for multiscale kinetic equations with uncertainties, which
allows one to solve these problems with all numerical parameters–including the degree
of orthogonal polynomials used in the polynomial chaos expansions–independent of the
Kundsen number.

2 Basic mathematical theory for uncertain kinetic equations

2.1 The linear transport equation with isotropic scattering. We first introduce the
linear transport equation in one dimensional slab geometry:

"@tf + v@xf =
�

"
Lf � "�af + "S; t > 0; x 2 [0; 1]; v 2 [�1; 1]; z 2 Iz ;(2-1)

Lf (t; x; v; z) =
1

2

Z 1

�1

f (t; x; v0; z) dv0
� f (t; x; v; z) ;(2-2)

with the initial condition

(2-3) f (0; x; v; z) = f 0(x; v; z):

This equation arises in neutron transport, radiative transfer, etc. and describes particles
(for example neutrons) transport in a background media (for example nuclei). L is the
collision operator, v = Ω � ex = cos � where � is the angle between the moving direction
and x-axis. �(x; z), �a(x; z) are total and absorption cross-sections respectively. S(x; z)
is the source term. For �(x; z), we assume

(2-4) �(x; z) � �min > 0:
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The equation is scaled in long time with strong scattering.
Denote

(2-5) [�] =
1

2

Z 1

�1

�(v) dv

as the average of a velocity dependent function �.
Define in the Hilbert space L2

�
[�1; 1]; ��1 dv

�
the inner product and norm

(2-6) hf; gi� =

Z 1

�1

f (v)g(v)��1 dv; kf k
2
� = hf; f i� :

The linear operator L satisfies the following coercivity properties Bardos, Santos, and
Sentis [1984]: L is non-positive self-adjoint inL2([�1; 1];��1 dv), i.e., there is a positive
constant sm such that

(2-7) hf;Lf i� � �2smkf k
2
� ; 8f 2 N(L)?;

with N(L) = span f� j � = [�] g the null space of L.
Let � = [f ]. For each fixed z, the classical diffusion limit theory of linear transport

equation Larsen and Keller [1974], Bensoussan, Lions, and Papanicolaou [1979], and
Bardos, Santos, and Sentis [1984] gives that, as " ! 0, � solves the following diffusion
equation:

(2-8) @t� = @x

�
1

3
�(x; z)�1@x�

�
� �a(x; z)� + S(x; z):

To study the regularity and long-time behavior in the random space of the linear trans-
port Equation (2-1)-(2-3), we use the Hilbert space of the random variable

(2-9) H (Iz ; ! dz) =
n
f j Iz ! R+;

Z
Iz

f 2(z)!(z) dz < +1

o
;

equipped with the inner product and norm defined as

(2-10) hf; gi! =

Z
Iz

fg !(z) dz; kf k
2
! = hf; f i! :

We also define the kth order differential operator with respect to z as

(2-11) Dkf (t; x; v; z) := @k
zf (t; x; v; z);

and the Sobolev norm in z as

(2-12) kf (t; x; v; �)k2
H k :=

X
˛�k

kD˛f (t; x; v; �)k2! :
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Finally, we introduce norms in space and velocity as follows,

kf (t; �; �; �)k2Γ :=

Z
Q

kf (t; x; v; �)k2! dx dv; t � 0;(2-13)

kf (t; �; �; �)k2
Γk :=

Z
Q

kf (t; x; v; �)k2
H k dx dv; t � 0;(2-14)

where Q = [0; 1] � [�1; 1] denotes the domain in the phase space. For simplicity of
notations, we will suppress the dependence of t and just use kf kΓ, kf kΓk in the following
results, which were established in Jin, J.-G. Liu, and Ma [2017].

Theorem 2.1 (Uniform regularity). If for some integer m � 0,

(2-15) kDk�(z)kL1 � C� ; kDkf0kΓ � C0; k = 0; : : : ; m;

then the solution f to the linear transport Equation (2-1)–(2-3), with �a = S = 0 and
periodic boundary condition in x, satisfies,

(2-16) kDkf kΓ � C; k = 0; � � � ; m; 8t > 0;

where C� , C0 and C are constants independent of ".

The above theorem shows that, under some smoothness assumption on � , the regularity
of the initial data is preserved in time and the Sobolev norm of the solution is bounded
uniformly in ".

Theorem 2.2 ("2-estimate on [f ] � f ). With all the assumptions in Theorem 2.1 and
furthermore, � 2 W k;1 = f� 2 L1([0; 1]�Iz)jD

j� 2 L1([0; 1]�Iz) for all j � kg.
For a given time T > 0, the following regularity result of [f ] � f holds:

(2-17) kDk([f ] � f )k2Γ � e��mint/2"2
kDk([f0] � f0)k

2
Γ + C 0"2

for any t 2 (0; T ] and 0 � k � m;, where C 0 and C are constants independent of ".

The first term on the right hand side of (2-17) is the behavior of the initial layer, which
is damped exponentially in t/"2. After the initial layer, the high order derivatives in z of
the difference between f and its local equilibrium [f ] is of O(").

Such results have been generalized to linear anisotropic collision operators in L. Liu
[n.d.]. For general linear collision operators conserving mass, the hypocoercivity frame-
work of Dolbeault, Mouhot, and Schmeiser [2015] was first used by Li and Wang [n.d.]
to prove regularity in the random space with sharp constants.
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2.2 General collisional nonlinear kinetic equationswith randomuncertainties. Con-
sider the initial value problem for kinetic equations of the form8<: @tf +

1

"˛
v � rxf =

1

"1+˛
Q(f );

f (0; x; v; z) = fin(x; v; z); x 2 Ω � T d ; v 2 Rd ; z 2 Iz � R:
(2-18)

The operator Q models the collisional interactions of particles, which is either binary or
between particles and a surrounding medium. ˛ = 1 is referred to the incompressible
Navier-Stokes scaling, while ˛ = 0 corresponds to the Euler (or acoustic) scaling. The pe-
riodic boundary conditions for the spatial domain Ω = T d is assumed here for theoretical
purpose. In the sequel L is used for both the linear collision operator and the linearized
collision operator for nonlinear equations. Consider the linearized equation

(2-19) @tg +
1

"˛
v � rxg =

1

"1+˛
L(g);

Since L is not fully dissipative, as summarized in S. Daus, Jüngel, Mouhot, and Zamponi
[2016] and Dolbeault, Mouhot, and Schmeiser [2015], the idea is to use the hypocoercivity
of the linearized kinetic operator

G =
1

"1+˛
L �

1

"˛
T ;

where T = v � rx is the streaming operator, using the dissipative properties of L and the
conservative properties of T . The aim is to find a Lyaponov type functional �[h] which is
equivalent to the square of the norm of a Banach space, for example

H 1
x;v =

8<:f ˇ̌̌ ZΩ�Rd

X
ji j+jj j�1

jj@xi
@vj

gjj
2
L2

x;v
dxdv < 1

9=; ;
such that

�1 jjgjjH1
x;v

� �[g] � �2 jjgjjH1
x;v
; for g 2 H 1

x;v;

which leads to
d

dt
�[g(t)] � �� jjg(t)jjH1

x;v
; t > 0;

with constants �1, �2, � > 0. Then one concludes the exponential convergence of g in
H 1

x;v . The obvious choice of �[g] = c1 jjgjj2
L2

x;v
+ c2 jjrxgjj2

L2
x;v

+ c3 jjrvgjjL2
x;v

does
not work, since the collision operator is not coercive. The key idea, first seen in Villani
[2009] and implemented in Mouhot and Neumann [2006], is to add the “mixing term”
chrxg; rvgiL2

x;v
to the definition of �[g], that is

d

dt
hrxg; rvgiL2

x;v
= �jjrxgjj

2
L2

x;v
+ 2hrxL(g); rvgiL2

x;v
:
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Mouhot and Neumann [ibid.] discusses the linearized equation @tg + v � rxg = L(g)

and proves that if the linear operatorL satisfies some assumptions, thenL�v�rx generates
a strongly continuous evolution semi-group etG onH s

x;v , which satisfies

(2-20) jjetG(I � ΠG)jjH s
x;v

� C exp[�� t ];

for some explicit constants C; � > 0 depending only on the constants determined by the
equation itself. Here ΠG is the orthogonal projection in L2

v onto the null space of L. This
result shows that apart from 0, the spectrum of G is included in

f� 2 C : Re(�) � ��g:

For nonliner kinetic equations, the main idea is to use the perturbative setting Guo
[2006] and Strain and Guo [2008]. Equations defined in (2-18) admit a unique global
equilibrium in the torus, denoted by M which is independent of t; x. Now consider the
linearization around this equilibrium and perturbation of the solution of the form

(2-21) f = M + "Mh

with M being the global equilibrium (or global) Maxwellian, and M =
p

M. Then h
satisfies

(2-22) @th+
1

"˛
v � rxh =

1

"1+˛
L(h) +

1

"˛
F (h; h):

L is the linearized (around M) collision operator acting on L2
v = ff j

R
Rd f

2 dv < 1g,
with the kernel denoted byN (L) = spanf 1; � � � ;  d g. f i g1�i�d is an orthonormal fam-
ily of polynomials in v corresponding to the manifold of local equilibria for the linearized
kinetic models. The orthogonal projection on N (L) in L2

v is defined by

(2-23) ΠL(h) =

nX
i=1

�Z
Rd

h i dv

�
 i ;

where ΠL is the projection on the ’fluid part’ and I � ΠL is the projection on the kinetic
part, with I the identity operator. The global equilibrium is then

(2-24) M = ΠG(h) =

nX
i=1

�Z
Td �Rd

h i dx dv

�
 i ;

which is independent of x and t and is the orthogonal projection on N (G) = N (L) in
L2

x;v = ff j
R
Ω�Rd f

2 dxdv < 1g.
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Since the linear part 1
"1+˛ L part has one extra factor of 1

"
than the nonlinear part 1

"˛ T ,
one hopes to use the hypocoercivity from the linear part to control the nonlinear part in
order to come up with the desired decay estimate. This is only possible for initial data
close to M, as in (2-21). In addition, one needs some assumptions on these operators,
which can be checked for a number of important collision kernels, such as the Boltzmann,
Landau, and semi-classical relaxation models Briant [2015].

Assumption on the linear operator L. L has the local coercivity property: There
exists � > 0 such that 8 h 2 L2

v ,

(2-25) hL(h); hiL2
v

� �� jjh?
jj
2
Λv
;

where
h? = h � ΠL(h)

stands for the microscopic part of h, which satisfies h? 2 N (L)? in L2
v . Here Λv-norm

is collision operator specific. For the Boltzmann collision operator, it is given in (2-33).
To extend to higher-order Sobolev spaces, let us first introduce some notations of multi-

indices and Sobolev norms. For two multi-indices j and l in Nd , define

@
j

l
= @/@vj @/@xl :

For i 2 f1; � � � ; dg, denote by ci (j ) the value of the i -th coordinate of j and by jj j the
l1 norm of the multi-index, that is, jj j =

Pd
i=1 ci (j ). Define the multi-index ıi0 by:

ci (ıi0) = 1 if i = i0 and 0 otherwise. We use the notation

@˛
zh = @˛h:

Denote jj � jjΛ := jj jj � jjΛv
jjL2

x
. The Sobolev norms onH s

x;v andH s
Λ are defined by

jjhjj
2
H s

x;v
=

X
jj j+jlj�s

jj@
j

l
hjj

2
L2

x;v
; jjhjj

2
H s

Λ
=

X
jj j+jlj�s

jj@
j

l
hjj

2
Λ :

Define the sum of Sobolev norms of the z derivatives by

jjhjj
2
H

s;r
x;v

=
X

jmj�r

jj@mhjj
2
H s

x;v

jjhjj
2
H

s;r
Λ

=
X

jmj�r

jj@mhjj
2
H s

Λ

jjhjj
2
H

s;r
x L2

v
=
X

jmj�r

jj@mhjj
2
H s

xL2
v
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Note that these norms are all functions of z. Define the norms in the (x; v; z) space

jjh(x; v; �)jj2H s
z
=

Z
Iz

jjhjj
2
H s

x;v
�(z) dz

jjh(x; v; �)jj2H s
x;vH r

z
=

Z
Iz

jjhjjH s;r
x;v
�(z) dz

in addition to the sup norm in z variable,

jjhjjH s
x;vL1

z
= sup

z2Iz

jjhjjH s
x;v
:

Assumptions on the nonlinear term F : F : L2
v �L2

v ! L2
v is a bilinear symmetric

operator such that for all multi-indexes j and l such that jj j + jl j � s, s � 0, m � 0,

ˇ̌̌
h@m@

j

l
F (h; h); f iL2

x;v

ˇ̌̌
�

(
Gs;m

x;v;z(h; h) jjf jjΛ ; if j ¤ 0;

Gs;m
x;z (h; h) jjf jjΛ ; if j = 0:

(2-26)

Sum up m = 0; � � � ; r , then 9 s0 2 N; 8s � s0, there exists a z-independent CF > 0

such that for all z, X
jmj�r

(Gs;m
x;v;z(h; h))

2
� CF jjhjj

2
H

s;r
x;v

jjhjj
2
H

s;r
ΛX

jmj�r

(Gs;m
x;z (h; h))

2
� CF jjhjj

2
H

s;r
x L2

v
jjhjj

2
H

s;r
Λ

With uncertainty in the equation, following the deterministic framework inBriant [ibid.],
we define a Lyapunov type functional

jj � jj
2
Hs

"?

=
X

jj j+jlj�s; jj j�1

b
(s)

j;l
jj@

j

l
(I � ΠL) � jj

2
L2

x;v
+
X
jlj�s

˛
(s)

l
jj@0l � jj

2
L2

x;v

+
X

jlj�s; i;ci (l)>0

" a
(s)

i;l
h@

ıi

l�ıi
�; @0l � iL2

x;v
;(2-27)

and the corresponding Sobolev norms

jjhjj
2
Hs;r

"?

=
X

jmj�r

jj@mhjj
2
Hs

"?

; jjhjjHs;r
"?

L1
z

= sup
z2Iz

jjhjjHs;r
"?
:

The following theorem is from L. Liu and Jin [2017]:
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Theorem 2.3. For all s � s0, 9 (b
(s)

j;l
); (˛

(s)

l
); (a

(s)

i;l
) > 0 and 0 � "d � 1, such that for

all 0 � " � "d ,
(1) jj � jjHs

"?
∼ jj � jjH s

x;v
;

(2) Assume jjhinjjH s
x;vL1

z
� CI , then if h" is a solution of (2-22) in H s

x;v for all z, we
have

jjh"jjH s;r
x;vL1

z
� CI e

��s t ; jjh"jjH s
x;vH r

z
� CI e

��s t ; for ˛ = 1 ;(2-28)

jjh"jjH s;r
x;vL1

z
� CI e

�"�s t ; jjh"jjH s
x;vH r

z
� CI e

�"�s t ; for ˛ = 0 ;(2-29)

where CI , �s are positive constants independent of ".

Remark 2.4. Theorem 2.3 provides the regularity of h (thus f ) in the random space,
which preserves the regularity of the initial data in time. Furthermore, it shows that the
uncertainty from the initial datum will eventually diminish and the solution will exponen-
tially decay to the deterministic global equilibrium in the long time, with a decay rate of
O(e�t ) under the incompressible Navier-Stokes scaling and O(e�"t ) under the acoustic
scaling.

2.3 The Boltzmann equation with uncertainties. As an example of the general theory
in subSection 2.2, we consider the Boltzmann equation with uncertain initial data and
uncertain collision kernel:8<: @tf +

1

"˛
v � rxf =

1

"1+˛
Q(f; f );

f (0; x; v; z) = f 0(x; v; z); x 2 Ω � T d ; v 2 Rd ; z 2 Iz :
(2-30)

The collision operator is

Q(f; f ) =

Z
Rd �Sd�1

B(jv � v�j; cos �; z) (f 0f 0
� � ff�) dv� d�:

We adopt notations f 0 = f (v0), f� = f (v�) and f 0
� = f (v0

�), where

v0 = (v + v�)/2 + (jv � v�j/2)�; v0
� = (v + v�)/2 � (jv � v�j/2)�

are the post-collisional velocities of particles with pre-collisional velocities v and v�. � 2

[0; � ] is the deviation angle between v0�v0
� and v�v�. The global equilibrium distribution

is given by the Maxwellian distribution

(2-31) M(�1; u1; T1) =
�1

(2�T1)N/2
exp

�
�

ju1 � vj2

2T1

�
;
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where �1, u1, T1 are the density, mean velocity and temperature of the gas

�1 =

Z
Ω�Rd

f (v) dxdv; u1 =
1

�1

Z
Ω�Rd

vf (v) dxdv;

T1 =
1

N�1

Z
Ω�Rd

ju1 � vj
2 f (v) dxdv;

which are all determined by the initial datum due to the conservation properties. We will
consider hard potentials with B satisfying Grad’s angular cutoff, that is,

B(jv � v�j; cos �; z) = �(jv � v�j) b(cos �; z); �(�) = C� �
 ; with  2 [0; 1];

8� 2 [�1; 1]; jb(�; z)j � Cb; j@�b(�; z)j � Cb; j@k
zb(�; z)j � C �

b ; 8 0 � k � r :

(2-32)

where b is non-negative and not identically equal to 0. Recall that h solves (2-22), with
the linearized collision operator given by

L(h) =M�1 [Q(Mh;M) + Q(M;Mh)] ;

while the bilinear part is given by

F (h; h) = 2M�1Q(Mh;Mh)

=

Z
Rd �Sd�1

�(jv � v�j) b(cos �; z)M� (h
0
�h

0
� h�h) dv�d� :

The the coercivity norm used in (2-25) is

(2-33) jjhjjΛ = jjh(1 + jvj)/2
jjL2 :

The coercivity argument of L is proved in Mouhot [2006]:

(2-34) � hh; L(h)iL2
v

� � jjh?
jjΛ2

v
:

Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with
hard potentials have been obtained in Mouhot and Baranger [2005] and extended to esti-
mates given in Mouhot [2006]. Proofs of L satisfying Equation (2-25) and F satisfying
(2-26), even for random collision kernel satisfying conditions given in (2-32), were given
in L. Liu and Jin [2017]. Thus Theorem 2.3 holds for the Boltzmann equation with ran-
dom initial data and collision kernel. Similar results can be extended to Landau equation
and semi-classical relaxation model, see L. Liu and Jin [ibid.].
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2.4 The Vlasov-Poisson-Fokker-Planck system. One kinetic equation which does not
fit the collisional framework presented in subSection 2.2 is the Vlasov-Poisson-Fokker-
Planck (VPFP) system that arises in the kinetic modeling of the Brownian motion of a
large system of particles in a surrounding bath Chandrasekhar [1943]. One application of
such system is the electrostatic plasma, in which one considers the interactions between
the electrons and a surrounding bath via the Coulomb force. With the electrical potential
�(t; x; z), the equations read

(2-35)

(
@tf + 1

ı
@xf �

1
"
@x�@vf = 1

ı"
F f;

�@xx� = � � 1; t > 0; x 2 Ω � R; v 2 R; z 2 Iz ;

with initial condition

(2-36) f (0; x; v; z) = f 0(x; v; z):

Here, F is the Fokker-Planck operator describing the Brownian motion of the particles,

F f = @v

�
Mrv

�
f

M

��
;(2-37)

where M is the global equilibrium or global Maxwellian,

M =
1

(2�)
d
2

e�
jvj2

2 :(2-38)

ı is the reciprocal of the scaled thermal velocity, " represents the scaled thermal mean free
path. There are two different regimes for this system. One is the high field regime, where
ı = 1. As " ! 0, f goes to the local Maxwellian Ml =

1

(2�)
d
2

e�
jv�rx �j2

2 , and the VPFP

system converges to a hyperbolic limit Arnold, Carrillo, Gamba, and C.-W. Shu [2001],
Goudon, Nieto, Poupaud, and Soler [2005], and Nieto, Poupaud, and Soler [2001]:

(2-39)

(
@t� + rx � (�rx�) = 0;

�∆x� = � � 1:

Another regime is the parabolic regime, where ı = ". When " ! 0, f goes to the global
Maxwellian M, and the VPFP system converges to a parabolic limit Poupaud and Soler
[2000]:

(2-40)

(
@t� � rx � (rx� � �rx�) = 0;

�∆x� = � � 1:
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Define the L2 space in the measure of

d� = d�(x; v; z) = !(z) dx dv dz:(2-41)

With this measure, one has the corresponding Hilbert space with the following inner prod-
uct and norms:

< f; g >=

Z
Ω

Z
R

Z
Iz

fg d�(x; v; z); or; < �; j >=

Z
Ω

Z
Iz

�j d�(x; z);

(2-42)

with norm
kf k

2 =< f; f > :

In order to get the convergence rate of the solution to the global equilibrium, define

h =
f � M
p

M
; � =

Z
R
h
p
M dv; u =

Z
R
h v

p
M dv;(2-43)

where h is the (microscopic) fluctuation around the equilibrium, � is the (macroscopic)
density fluctuation, and u is the (macroscopic) velocity fluctuation. Then the microscopic
quantity h satisfies,

"ı@th+ ˇv@xh � ı@x�@vh+ ı
v

2
@x�h+ ıv

p
M@x� = LF h;(2-44)

@2x� = ��;(2-45)

while the macroscopic quantities � and u satisfy

ı@t� + @xu = 0;(2-46)

"ı@tu+ "@x� + "

Z
v2

p
M (1 � Π)@xhdv + ı@x�� + u+ ı@x� = 0 ;(2-47)

where LF is the so-called linearized Fokker-Planck operator,

(2-48) LF h =
1

p
M

F
�
M +

p
Mh

�
=

1
p

M
@v

�
M@v

�
h

p
M

��
:

Introduce projection operator

(2-49) Πh = �
p

M + vu
p

M:

Furthermore, we also define the following norms and energies,

khk
2
L2(v) =

Z
R
h2 dv; kf k

2
H m =

mX
l=0

k@l
zf k

2;

Em
h = khk

2
H m + k@xhk

2
H m�1 ; Em

� = k@x�k
2
H m + k@2x�k

2
H m�1 :
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Weneed the following hypocoercivity properties proved inDuan, Fornasier, and Toscani
[2010]:

Proposition 2.5. For LF defined in (2-48),

(a) �hLF h; hi = �hL(1 � Π)h; (1 � Π)hi + kuk2;

(b) �hLF (1 � Π)h; (1 � Π)hi = k@v(1 � Π)hk2 + 1
4
kv(1 � Π)hk2 �

1
2
k(1 � Π)hk2;

(c) �hLF (1 � Π)h; (1 � Π)hi � k(1 � Π)hk2;

(d) There exists a constant �0 > 0, such that the following hypocoercivity holds,

(2-50) � hLF h; hi � 0k(1 � Π)hk
2
v + kuk

2;

and the largest �0 = 1
7
in one dimension.

The following results were obtained in Jin and Y. Zhu [n.d.].

Theorem 2.6. For the high field regime (ı = 1), if

(2-51) Em
h (0) +

1

"2
Em

� (0) �
C0

"
;

then,
(2-52)

Em
h (t) �

3

�0
e� t

"2

�
Em

h (0) +
1

"2
Em

� (0)

�
; Em

� (t) �
3

�0
e�t

�
"2Em

h (0) +Em
� (0)

�
;

For the parabolic regime (ı = "), if

(2-53) Em
h (0) +

1

"2
Em

� (0) �
C0

"2
;

then,
(2-54)

Em
h (t) �

3

�0
e� t

"

�
Em

h (0) +
1

"2
Em

� (0)

�
; Em

� (t) �
3

�0
e�t

�
"2Em

h (0) +Em
� (0)

�
:

Here C0 = 2�0/(32BC
2
1

p
")2; B = 48

p
m
�

m
[m/2]

�
is a constant only depending on m,

[m/2] is the smallest integer larger or equal to m
2
, and C1 is the Sobolev constant in one

dimension, and m � 1.
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These results show that the solution will converge to the global Maxwellian M. Since
M is independent of z, one sees that the impact of the randomness dies out exponentially in
time, in both asymptotic regimes. One should also note the small initial data requirement:
Em

� = O(") for ı = 1.
The above theorem also leads to the following regularity result for the solution to VPFP

system:

Theorem 2.7. Under the same condition given in Theorem 2.6, for x 2 [0; l ], one has

kf (t)k2H m
z

�
3

�0
Em(0) + 2l2;(2-55)

where Em(0) = Em
h
(0) + 1

"2
Em

� .

This Theorem shows that the regularity of the initial data in the random space is pre-
served in time. Furthermore, the bound of the Sobolev norm of the solution is independent
of the small parameter ".

3 Stochastic Galerkin methods for random kinetic equations

In order to quantify the uncertainty of kinetic equation we will use polynomial chaos
expansion based stochastic Galerkin (SG)methodGhanem and Spanos [1991] andXiu and
Karniadakis [2002]. As is well known, the SG methods can achieve spectral accuracy if
the solution has the regularity. This makes it very efficient if the dimension of the random
space is not too high, compared with the classical Monte-Carlo method.

Due to its Galerkin formulation, mathematical analysis of the SG methods can be con-
ducted more conveniently. Indeed many of the analytical methods well-established in
kinetic theory can be easily adopted or extended to study the SG system of the random
kinetic equations. For example, the study of regularity, and hypocoercivity based sen-
sitivity analysis, as presented in Section 2, can been used to analyze the SG methods.
Furthermore, for multiscale kinetic equations, the SG methods allow one to extend the de-
terministic Asymptotic-preserving framework–a popular computational paradigm for mul-
tiscale kinetic and hyperbolic problems–to the random problem naturally. Finally, kinetic
equations often contain small parameters such as the mean free path/time which asymptoti-
cally lead to macroscopic hyperbolic/diffusion equations. We are interested in developing
the stochastic analogue of the asymptotic-preserving (AP) scheme, a scheme designed to
capture the asymptotic limit at the discrete level. The SG method yields systems of de-
terministic equations that resemble the deterministic kinetic equations, although in vector
forms. Thus it allows one to easily use the deterministic AP framework for the random
problems, and allowing minimum “intrusion” to the legacy deterministic codes.
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3.1 The generalized polynomial chaos expansion based SG methods. In the gener-
alized polynomial chaos (gPC) expansion, one approximates the solution of a stochastic
problem via an orthogonal polynomial series by seeking an expansion in the following
form:

f (t; x; v; z) �

KMX
jkj=0

fk(t; x; v)Φk(z) := f K(t; x; v; z);(3-1)

where k = (k1; : : : ; kn) is a multi-index with jkj = k1 + � � � + kn. fΦk(z)g are from P n
K ,

the set of all n-variate polynomials of degree up toM and satisfy

< Φk;Φj >!=

Z
Iz

Φk(z)Φj(z)!(z) dz = ıkj; 0 � jkj; jjj � K:

Here ıkj is the Kronecker delta function. The orthogonality with respect to !(z), the prob-
ability density function of z, then defines the orthogonal polynomials. For example, the
Gaussian distribution defines the Hermite polynomials; the uniform distribution defines
the Legendre polynomials, etc.

Now inserting (3-1) into a general kinetic equation(
@tf + v � rxf � rx� � rvf = Q(f ); t > 0; x 2 Ω; v 2 Rd ; z 2 Iz ;

f (0; x; v) = f 0(x; v); x 2 Ω; v 2 Rd ; z 2 Iz :
(3-2)

Upon a standard Galerkin projection, one obtains for each 0 � jkj � M ,8̂̂<̂
:̂ @tfk + v � rxfk �

KX
jjj=0

rx�kj � rvfj = Qk(f
K); t > 0; x 2 Ω; v 2 Rd ;

fk(0; x; v) = f 0
k (x; v); x 2 Ω; v 2 Rd ;

(3-3)

with

Qk(f
K) :=

Z
Iz

Q(f K)(t; x; v; z)Φk(z)!(z) dz

�kj :=

Z
Iz

�(t; x; z)Φk(z)Φj(z)!(z) dz

f 0
k :=

Z
Iz

f 0(x; v; z)Φk(z)!(z) dz:

We also assume that the potential �(t; x; z) is given a priori for simplicity (the case that it
is coupled to a Poisson equation can be treated similarly).
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Therefore, one has a system of deterministic equations to solve and the unknowns are
gPC coefficients fk, which are independent of z. Mostly importantly, the resulting SG
system is just a vector analogue of its deterministic counterpart, thus allowing straightfor-
ward extension of the existing deterministic kinetic solvers. Once the coefficients fk are
obtained through some numerical procedure, the statistical information such as the mean,
covariance, standard deviation of the true solution f can be approximated as

E[f ] � f0; Var[f ] �

KX
jkj=1

f 2
k ; Cov[f ] �

KX
jij;jjj=1

fifj:

3.2 Hypocoercivity estimate of the SG system. The hypocoercivity theoy presented
in Section 2.2 can be used to study the properties of the SG methods. Here we take � = 0.
Assume the random collision kernel has the assumptions given by (2-32). Consider the
perturbative form

(3-4) fk = M + "Mhk ;

where hk is the coefficient of the following gPC expansion

h(t; x; v; z) �

MX
jkj=0

hk(t; x; v)Φk(z) := hK(t; x; v; z) :

Inserting ansatz (3-4) into (3-3) and conducting a standardGalerkin projection, one obtains
the gPC-SG system for hk:8<: @thk +

1

"
v � rxhk =

1

"2
Lk(h

K) +
1

"
Fk(h

K ; hK);

hk(0; x; v) = h0k(x; v); x 2 Ω � T d ; v 2 Rd ;
(3-5)

for each 1 � jkj � K, with a periodic boundary condition and the initial data given by

h0k :=

Z
Iz

h0(x; v; z) k(z)�(z)dz:

For the Boltzmann equation, the collision parts are given by

Lk(h
K) = L+

k (h
K)

=

KX
jij=1

Z
Rd �Sd�1

eSki�(jv � v�j) (hi(v
0)M (v0

�) + hi(v
0
�)M (v0))M (v�) dv�d�

�M (v)

KX
jij=1

Z
Rd �Sd�1

eSki�(jv � v�j) hi(v�)M (v�) dv�d� �

KX
jij=1

�kihi
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Fk(h
K ; hK)(t; x; v) =

=

KX
jij;jjj=1

Z
Rd �Sd�1

Skij �(jv � v�j)M (v�) (hi(v
0)hj(v

0
�) � hi(v)hj(v�)) dv�d�;

with

eSki :=

Z
Iz

b(cos �; z) k(z) i(z)�(z)dz

�ki :=

Z
Rd �Sd�1

eSki �(jv � v�j)M(v�) dv�d�

Skij :=

Z
Iz

b(cos �; z) k(z) i(z) j(z)�(z)dz

For technical reasons, we assume z 2 Iz is one dimensional and Iz has finite support
jzj � Cz (which is the case, for example, for the uniform and Beta distribution). In L. Liu
and Jin [2017] the following results are given:

Theorem 3.1. Assume the collision kernel B satisfies (2-32) and is linear in z, with the
form of

(3-6) b(cos �; z) = b0(cos �) + b1(cos �)z ;

with j@zbj � O("). We also assume the technical condition

(3-7) jj kjjL1 � Ckp; 8 k;

with a parameter p > 0. Let q > p + 2, define the energy EK by

(3-8) EK(t) = EK
s;q(t) =

KX
k=1

jjkqhkjj
2
H s

x;v
;

with the initial data satisfying EK(0) � �. Then for all s � s0, 0 � "d � 1, such that for
0 � " � "d , if hK is a gPC solution of (3-5) inH s

x;v , we have the following:
(i) Under the incompressible Navier-Stokes scaling (˛ = 1),

EK(t) � � e�� t :

(ii) Under the acoustic scaling (˛ = 0)„

EK(t) � � e�"� t ;

where �, � are all positive constants that only depend on s and q, independent of K and
z.
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Remark 3.2. The choice of energy EK in (3-8) enables one to obtain the desired energy
estimates with initial data independent of K R. W. Shu and Jin [2017].

From here, one also concludes that, jjhK
jjH s

x;vL1
z

also decays exponentially in time,
with the same rate as EK(t), namely

(3-9) jjhK
jjH s

x;vL1
z

� � e�� t

in the incompressible Navier-Stokes scaling, and

jjhK
jjH s

x;vL1
z

� � e�" � t

in the acoustic scaling.
For other kinetic models like the Landau equation, the proof is similar and we omit it

here.
L. Liu and Jin [2017] also gives the following error estimates on the SG method for the

uncertain Boltzmann equations.

Theorem 3.3. Suppose the assumptions on the collision kernel and basis functions in
Theorem 3.1 are satisfied, and the initial data are the same in those in Theorem 2.3, then
(i) Under the incompressible Navier-Stokes scaling,

(3-10) jjh � hK
jjH s

z
� Ce

e��t

Kr
;

(ii) Under the acoustic scaling,

(3-11) jjh � hK
jjH s

z
� Ce

e�"�t

Kr
;

with the constants Ce; � > 0 independent of K and ".

The above results not only give the regularity of the SG solutions, which are the same
as the initial data, but also show that the numerical fluctuation hK converges with spectral
accuracy to h, and the numerical error will also decay exponentially in time in the random
space.

For more general solution (not the perturbative one given by (2-21) to the uncertain
Boltzmann equation, one cannot obtain similar estimates. Specifically, for ˛ = 1, as
" ! 0, the moments of f is governed by the compressible Euler equations whose solution
may develop shocks, thus the Sobolev norms used in this paper are not adequate. For
" = O(1), Hu and Jin [2016] proved that, in the space homogeneous case, the regularity
of the initial data in the random space is preserved in time. They also introduced a fast
algorithm to compute the collision operator Qk. When the random variable is in higher
dimension, sparse grids can be used, see R. W. Shu, Hu, and Jin [2017].
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4 Stochastic asymptotic-preserving (sAP) schemes for multiscale
random kinetic equations

When " is small, numerically solving the kinetic equations is challenging since time and
spatial discretizations need to resolve ". Asymptotic-preserving (AP) schemes are those
thatmimic the asymptotic transitions from kinetic equations to their hydrodynamic/diffusion
limits in the discrete setting Jin [1999, 2012]. The AP strategy has been proved to be a
powerful and robust technique to address multiscale problems in many kinetic problems.
The main advantage of AP schemes is that they are very efficient even when " is small,
since they do not need to resolve the small scales numerically, and yet can still capture
the macroscopic behavior governed by the limiting macroscopic equations. Indeed, it was
proved, in the case of linear transport with a diffusive scaling, an AP scheme converges
uniformly with respect to the scaling parameter Golse, Jin, and Levermore [1999]. This is
expected to be true for all AP schemes Jin [2012], although specific proofs are needed for
specific problems. AP schemes avoid the difficulty of coupling a microscopic solver with
a macroscopic one, as the micro solver automatically becomes a macro solver as " ! 0.
Interested readers may also consult earlier reviews in this subject Jin [2012], Degond and
Deluzet [2017b], and Hu, Jin, and Li [2017].

Here we are interested in the scenario when the uncertainty (random inputs) and small
scaling both present in a kinetic equation. Since the SG method makes the random kinetic
equations into deterministic systems which are vector analogue of the original scalar de-
terministic kinetic equations, one can naturally utilize the deterministic AP machinery to
solve the SG system to achieve the desired AP goals. To this aim, the notion of stochastic
asymptotic preserving (sAP) was introduced in Jin, Xiu, and X. Zhu [2015]. A scheme is
sAP if an SG method for the random kinetic equation becomes an SG approximation for
the limiting macroscopic, random (hydrodynamic or diffusion) equation as " ! 0, with
highest gPC degree, mesh size and time step all held fixed. Such schemes guarantee that
even for " ! 0, all numerical parameters, including the number of gPC modes, can be
chosen only for accuracy requirement and independent of ".

Next we use the linear transport Equation (2-1) as an example to derive an sAP scheme.
It has the merit that rigorous convergence and sAP theory can be established, see Jin, J.-G.
Liu, and Ma [2017].

4.1 An sAP-SG method for the linear transport equation. We assume the complete
orthogonal polynomial basis in the Hilbert space H (Iz ;!(z) dz) corresponding to the
weight !(z) is f�i (z); i = 0; 1; � � � ; g, where �i (z) is a polynomial of degree i and satis-
fies the orthonormal condition:

h�i ; �j i! =

Z
�i (z)�j (z)!(z) dz = ıij :
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Here �0(z) = 1, and ıij is the Kronecker delta function. Since the solution f (t; �; �; �) is
defined in L2

�
[0; 1] � [�1; 1] � Iz ; d�), one has the gPC expansion

f (t; x; v; z) =

1X
i=0

fi (t; x; v)�i (z); f̂ =
�
fi

�1
i=0

:=
�
f̄ ; f̂1

�
:

The mean and variance of f can be obtained from the expansion coefficients as

f̄ = E(f ) =

Z
Iz

f!(z) dz = f0; var (f ) = jf̂1j
2 :

Denote the SG solution by

(4-1) f K =

KX
i=0

fi �i ; f̂ K =
�
fi

�M
i=0

:=
�
f̄ ; f̂ K

1

�
;

from which one can extract the mean and variance of f K from the expansion coefficients
as

E(f K) = f̄ ; var (f K) = jf̂ K
1 j

2
� var (f ) :

Furthermore, we define

�ij =
˝
�i ; ��j

˛
!
; Σ =

�
�ij

�
M+1;M+1

; �a
ij =

˝
�i ; �

a�j

˛
!
; Σa =

�
�a

ij

�
M+1;M+1

for 0 � i; j � M . Let Id be the (M+1)�(M+1) identity matrix. Σ;Σa are symmetric
positive-definite matrices satisfying (Xiu [2010])

Σ � �min Id :

If one applies the gPC ansatz (4-1) into the transport Equation (2-1), and conduct the
Galerkin projection, one obtains

(4-2) "@t f̂ + v@x f̂ = �
1

"
(I � [�])Σf̂ � "Σaf̂ � Ŝ ;

where Ŝ is defined similarly as (4-1).
We now use the micro-macro decomposition (Lemou and Mieussens [2008]):

(4-3) f̂ (t; x; v; z) = �̂(t; x; z) + "ĝ(t; x; v; z);

where �̂ = [f̂ ] and [ĝ] = 0, in (4-2) to get

@t �̂ + @x [vĝ] = �Σa�̂ + Ŝ ;(4-4a)

@t ĝ +
1

"
(I � [:])(v@x ĝ) = �

1

"2
Σĝ � Σaĝ �

1

"2
v@x �̂;(4-4b)
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with initial data

�̂(0; x; z) = �̂0(x; z); ĝ(0; x; v; z) = ĝ0(x; v; z) :

It is easy to see that system (4-4) formally has the diffusion limit as " ! 0:

(4-5) @t �̂ = @x(K@x �̂) � Σa�̂ + Ŝ ;

where

(4-6) K =
1

3
Σ�1 :

This is the sG approximation to the random diffusion Equation (2-8). Thus the gPC ap-
proximation is sAP in the sense of Jin, Xiu, and X. Zhu [2015].

Let f be the solution to the linear transport Equation (2-1)–(2-2). Use the K-th order
projection operator PM : PKf =

PK
i=0 fi�i (z), the error arisen from the gPC-sG can

be split into two parts rK and eK ,

(4-7) f � f K = f � PKf + PKf � f K := rK + eK ;

where rK = f � PKf is the projection error, and eK = PKMf � f K is the SG error.
Here we summarize the results of Jin, J.-G. Liu, and Ma [2017].

Lemma 4.1 (Projection error). Under all the assumption in Theorem 2.1 and Theo-
rem 2.2, we have for t 2 (0; T ] and any integer k = 0; : : : ; m,

(4-8) krKkΓ �
C1

Kk
:

Moreover,

(4-9)
 [rK ] � rK


Γ

�
C2

Kk
";

where C1 and C2 are independent of ".

Lemma 4.2 (SG error). Under all the assumptions in Theorem 2.1 and Theorem 2.2, we
have for t 2 (0; T ] and any integer k = 0; : : : ; m,

(4-10) keM kΓ �
C (T )

M k
;

where C (T ) is a constant independent of ".

Combining the above lemmas gives the uniform (in ") convergence theorem:
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Theorem 4.3. If for some integer m � 0,

(4-11) k�(z)kH k � C� ; kDkf0kΓ � C0; kDk(@xf0)kΓ � Cx ; k = 0; : : : ; m;

then the error of the sG method is

(4-12) kf � f K
kΓ �

C (T )

Kk
;

where C (T ) is a constant independent of ".

Theorem 4.3 gives a uniformly in " spectral convergence rate, thus one can choose
K independent of ", a very strong sAP property. Such a result is also obtained with the
anisotropic scattering case, for the linear semiconductor Boltzmann equation (Jin and L.
Liu [2017] and L. Liu [n.d.]).

4.2 A full discretization. By using the SG formulation, one obtains a vector version
of the original deterministic transport equation. This enables one to use the determinis-
tic AP methodology. Here, we adopt the micro-macro decomposition based AP scheme
developed in Lemou and Mieussens [2008] for the gPC-sG system (4-4).

We take a uniform grid xi = ih; i = 0; 1; � � �N , where h = 1/N is the grid size, and
time steps tn = n∆t . �n

i is the approximation of � at the grid point (xi ; t
n) while gn+1

i+
1
2

is defined at a staggered grid xi+1/2 = (i + 1/2)h, i = 0; � � �N � 1.
The fully discrete scheme for the gPC system (4-4) is

�̂n+1
i � �̂n

i

∆t
+

264v ĝn+1

i+
1
2

� ĝn+1

i�
1
2

∆x

375 = �Σa
i �̂

n+1
i + Ŝi ;(4-13a)

ĝn+1

i+
1
2

� ĝn

i+
1
2

∆t
+

1

"∆x
(I � [:])

�
v+(ĝn

i+
1
2

� ĝn

i�
1
2

) + v�(ĝn
i+ 3

2
� ĝn

i+
1
2

)

�
(4-13b)

= �
1

"2
Σi ĝ

n+1

i+
1
2

� Σaĝn+1

i+
1
2

�
1

"2
v
�̂n

i+1 � �̂n
i

∆x
:

It has the formal diffusion limit when " ! 0 given by

(4-14)
�̂n+1

i � �̂n
i

∆t
�K

�̂n
i+1 � 2�̂n

i + �̂n
i�1

∆x2
= �Σa

i �̂
n+1
i + Ŝi ;

where K = 1
3
Σ�1. This is the fully discrete sG scheme for (4-5). Thus the fully discrete

scheme is sAP.
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One important property for an AP scheme is to have a stability condition independent
of ", so one can take ∆t � O("). The next theorem from Jin, J.-G. Liu, and Ma [2017]
answers this question.

Theorem 4.4. Assume �a = S = 0. If ∆t satisfies the following CFL condition

(4-15) ∆t �
�min

3
∆x2 +

2"

3
∆x;

then the sequences �̂n and ĝn defined by scheme (4-13) satisfy the energy estimate

∆x

N �1X
i=0

 
(�̂n

i )
2 +

"2

2

Z 1

�1

�
ĝn

i+
1
2

�2

dv

!
� ∆x

N �1X
i=0

��
�̂0i
�2

+
"2

2

Z 1

�1

�
ĝ0

i+ 1
2

�2
dv
�

for every n, and hence the scheme (4-13) is stable.

Since the right hand side of (4-15) has a lower bound when " ! 0 (and the lower bound
being that of a stability condition of the discrete diffusion Equation (4-14)), the scheme is
asymptotically stable and∆t remains finite even if " ! 0.

A discontinuous Galerkin method based sAP scheme for the same problem was devel-
oped in Chen, L. Liu, and Mu [2017], where uniform stability and rigirous sAP property
were also proven.

sAP schemes were also developed recently for other multiscale kinetic equations, for
example the radiative heat transfer equations Jin and Lu [2017], and the disperse two-phase
kinetic-fluid model Jin and R. Shu [2017].

4.3 Numerical examples. We now show one example from Jin, J.-G. Liu, and Ma
[2017] to illustrate the sAP properties of the scheme. The random variable z is one-
dimensional and obeys uniform distribution.

Consider the linear transport Equation (2-1) with �a = S = 0 and random coefficient
�(z) = 2 + z; subject to zero initial condition f (0; x; v; z) = 0 and boundary condition

f (t; 0; v; z) = 1; v � 0; f (t; 1; v; z) = 0; v � 0:

When " ! 0, the limiting random diffusion equation is

(4-16) @t� =
1

3�(z)
@xx� ;

with initial and boundary conditions:

�(0; x; z) = 0; �(t; 0; z) = 1; �(t; 1; z) = 0:
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The analytical solution for (4-16) with the given initial and boundary conditions is

(4-17) �(t; x; z) = 1 � erf

 
x/

s
4

3�(z)
t

!
:

When " is small, we use this as the reference solution, as it is accurate with an error of
O("2). For other implementation details, see Jin, J.-G. Liu, and Ma [ibid.].

In Figure 1, we plot the errors in mean and standard deviation of the SG numerical
solutions at t = 0:01 with different gPC orders M . Three sets of results are included:
solutions with∆x = 0:04 (squares),∆x = 0:02 (circles),∆x = 0:01 (stars). We always
use ∆t = 0:0002/3. One observes that the errors become smaller with finer mesh. One
can see that the solutions decay rapidly inM and then saturate where spatial discretization
error dominates. It is then obvious that the errors due to gPC expansion can be neglected
at orderM = 4 even for " = 10�8. From this simple example, we can see that using the
properly designed sAP scheme, the time, spatial, and random domain discretizations can
be chosen independently of the small parameter ".

0 1 2 3 4
10-5

10-4

10-3

10-2

10-1

Figure 1: Errors of the mean (solid line) and standard deviation (dash line) of �
with respect to the gPC orderM at " = 10�8: ∆x = 0:04 (squares), ∆x = 0:02

(circles),∆x = 0:01 (stars). ∆t = 0:0002/3.

In Figure 2, we examine the difference between the solution at t = 0:01 obtained by
the 4th-order gPC method with ∆x = 0:01, ∆t = ∆x2/12 and the limiting analytical
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solution (4-17). As expected, we observe the differences become smaller as " is smaller
in a quadratic fashion, before the numerical errors become dominant. This shows the sAP
scheme works uniformly for different ".

10-8 10-6 10-4 10-2 100
10-4

10-3

10-2

10-1

100

Figure 2: Differences in the mean (solid line) and standard deviation (dash line) of �
with respect to "2, between the limiting analytical solution (4-17) and the 4th-order
gPC solution with ∆x = 0:04 (squares), ∆x = 0:02 (circles) and ∆x = 0:01

(stars).

5 Conclusion and open problems

In this article we have presented some of our recent development of uncertainty quan-
tification (UQ) for multiscale kinetic equations. The uncertainties for such equations typ-
ically come from collision/scattering kernels, boundary data, initial data, forcing terms,
among others. Using hypocoercivity theory of kinetic operators, we proved the regularity,
sensitivity, and long-time behavior in the random space in a general framework, and then
adopted the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method to
handle the random inputs which can be proved spectrally accurate, under some regularity
assumption on the initial data and ramdom coefficients. When one needs to compute multi-
ple scales, the SG method is constructed to possess the stochastic Asymptotic-Preserving
(sAP) property, which allows all numerical parameters, including the gPC order, to be
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chosen independently of the small parameter, hence is highly efficient when the scaling
parameter, the Knudsen number, becomes small.

UQ for kinetic equations is a fairly recent research field, and many interesting problems
remain open. We list a few such problems here:

• Whole space problem. Our hypocoercivity theory is developed for periodic spa-
tial domain, which gives exponential decay towards the deterministic global Max-
wellian. For the whole space problem, one cannot use the same abstract framework
presented in subSection 2.2. For deterministic problems one can obtain only al-
gebraic decay Duan and Strain [2011], Guo [2004], and Strain [2012]. It will be
interesting to establish a corresponding theory for the uncertain Boltzmann equa-
tion.

• Boundary value problems. The uncertainty could also arise from boundary data.
For the Maxwellian boundary condition, one can use the SG framework Hu and Jin
[2016]. However, for small ", the sensitivity analysis for random boundary input
remain unexplored, even for the linear transport equation in the diffusive regime.

• Landau damping. While one can use hypocoercivity for collisonal operator or Fokker-
Planck operator, for Vlasov type equation (such as the Vlasov-Poisson equations)
from collisionless plasma, the system does not have any dissipation, yet one still
observes the asymptotica decay of a perturbation around a stationary homogeneous
solution and the vanishing of electric field, a phenomenon called the Landau damp-
ing Landau [1946]. It will be interesting to invest the impact of uncertainty on
Landau damping, although a rigorous nonlinear mathematical theory is very chal-
lenging Mouhot and Villani [2011].

• High dimensional random space. When the dimension of the random parameter z is
moderate, sparse grids have been introduced R. W. Shu, Hu, and Jin [2017] and Hu,
Jin, and R. Shu [n.d.] using wavelet approximations. Since wavelet basis does not
have high order accuracy, it remains to construct sparse grids with high (or spectral)
order of accuracy in the random space. When the random dimension is much higher,
new methods need to be introduced to reduce the dimension.

• Study of sampling based methods such as collocation and multi-level Monte-Carlo
methods. In practice, sampling based non-intrusivemethods are attractive since they
are based on the deterministic, or legacy codes. So far there has been no analysis
done for the stochastic collocationmethods for random kinetic equations. Moreover,
multi-level Monte-Carlo method could significantly reduce the cost of sampling
based methods Giles [2015]. Its application to kinetic equations with uncertainty
remains to be investigated.
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Despite at its infancy, due to the good regularity and asymptotic behavior in the random
space for kinetic equations with uncertain random inputs, the UQ for kinetic equations is a
promising research direction that calls for more development in their mathematical theory,
efficient numerical methods, and applications. Moreover, since the random parameters in
uncertain kinetic equations share some properties of the velocity variable for a kinetic
equation, the ideas from kinetic theory can be very useful for UQ Cho, Venturi, and Kar-
niadakis [2016], and vice versa, thus the marrige of the two fields can be very fruitful.
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Abstract
A large variety of efficient numerical methods, of the finite volume, finite differ-

ence and DG type, have been developed for approximating hyperbolic systems of con-
servation laws. However, very few rigorous convergence results for these methods are
available. We survey the state of the art on this crucial question of numerical analysis
by summarizing classical results of convergence to entropy solutions for scalar con-
servation laws. Very recent results on convergence of ensemble Monte Carlo methods
to the measure-valued and statistical solutions of multi-dimensional systems of con-
servation laws are also presented.

1 Introduction

Hyperbolic systems of conservation laws are nonlinear partial differential equations that
arise in a large number of models in physics and engineering. These PDEs are of the
generic form,

(1-1a) @t u + rx � f (u) = 0

(1-1b) u(x; 0) = ū(x):

Here, the unknown u = u(x; t) : Rd � R+ ! RN is the vector of conserved variables
and f = (f 1; : : : ; f d ) : RN ! RN �d is the flux function. We denote R+ := [0; 1).
The system is termed hyperbolic if the flux Jacobian matrix (along normal directions) has
real eigenvalues Dafermos [2010].

Examples for (1-1a) include the compressible Euler equations of gas dynamics, the
shallow water equations of oceanography, the magneto-hydrodynamics (MHD) equations
of plasma physics and the equations governing nonlinear elastodynamics Dafermos [ibid.].
This research was partially support by ERC STG NN. 306279 SPARCCLE..
MSC2010: 65M12.
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It is well known that solutions of (1-1) can form discontinuities such as shock waves,
even for smooth initial data ū. Hence, solutions of systems of conservation laws (1-1)
are sought in the sense of distributions. These weak solutions are not necessarily unique.
They need to be augmented with additional admissibility criteria, often termed entropy
conditions, to single out the physically relevant solution. Entropy solutions are widely
regarded as the standard solution paradigm for systems of conservation laws Dafermos
[2010].

Global well-posedness (existence, uniqueness and continuous dependence on initial
data) of entropy solutions of scalar conservation laws (N = 1 in (1-1)), was established in
the pioneering work of Kružkov [1970]. For one-dimensional systems (d = 1, N > 1 in
(1-1)), global existence, under the assumption of small initial total variation, was shown by
Glimm in Glimm [1965] and by Bianchini and Bressan in Bianchini and Bressan [2005].
Uniqueness and stability of entropy solutions for one-dimensional systems has also been
shown; see Bressan [2000] and references therein.

Although existence results have been obtained for some very specific examples of
multi-dimensional systems (see Benzoni-Gavage and Serre [2007] and references therein),
there are no global well-posedness results for any generic class of multi-dimensional sys-
tems. In fact, De Lellis, Székelyhidi et al. have recently been able to construct infinitely
many entropy solutions for prototypical multi-dimensional systems such as the Euler equa-
tions for polytropic gas dynamics (see De Lellis and Székelyhidi [2009] and Chiodaroli,
De Lellis, and Kreml [2015] and references therein).

It is not possible to obtain explicit solution formulas for (1-1), except in some very spe-
cial cases. Consequently, numerical methods are necessary to simulate the solutions of
systems of conservation laws. A large variety of efficient numerical methods have been
developed over the last three to four decades to approximate solutions of (1-1). These
include finite volume, conservative finite difference, discontinuous Galerkin finite ele-
ment and spectral (viscosity) methods. Detailed accounts of these methods can be read
from standard textbooks such as Godlewski and Raviart [1991], LeVeque [2002], Kröner
[1997], and Toro [1999].

The fundamental question, in the context of numerical analysis of systems of conserva-
tion laws, is whether numerical schemes approximating (1-1) converge to an appropriate
solution of (1-1) on mesh refinement ? Surprisingly and in spite of the remarkable suc-
cess of numerical methods in approximating solutions of systems of conservation laws,
this fundamental question has only been answered in a few cases. The main objective
to this article is to summarize some results on the convergence of numerical methods for
(1-1).

The question of convergence has been answered fully in one particular context, namely
the convergence of the so-called monotone finite volume (difference) schemes to entropy
solutions of (multi-dimensional) scalar conservation laws Godlewski and Raviart [1991].
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We begin by revisiting these classical results and showing that they can be generalized to
some high-resolution schemes and to some arbitrarily high-order schemes, provided that
the underlying reconstruction procedures satisfy a sign property and the numerical method
is consistent with a discrete version of the entropy inequality.

On the other hand, the question of convergence of numerical methods for systems of
conservation laws is largely unanswered, particularly for several space dimensions. Al-
though it was widely believed that well designed numerical methods converge to entropy
solutions, even for multi-dimensional systems of conservation laws, numerical experi-
ments, such as those reported recently in Fjordholm, Käppeli, Mishra, and Tadmor [2017]
and Fjordholm, Mishra, and Tadmor [2016], have revealed that even state of the art en-
tropy stable numerical methods may not converge to any function as the mesh is refined.
Rather, structures at finer and finer scales appear and impede convergence. Consequently,
it was argued in Fjordholm, Käppeli, Mishra, and Tadmor [2017] and Fjordholm, Mishra,
and Tadmor [2016] that entropy solutions may not be an appropriate paradigm to establish
convergence of numerical methods approximating (1-1).

It was suggested in Fjordholm, Käppeli, Mishra, and Tadmor [2017] and Fjordholm,
Mishra, and Tadmor [2016] that entropy measure-valued solutions are a promising candi-
date for an appropriate solution framework for systems of conservation laws. Measure-
valued solutions are Young measures i.e, space-time parameterized probability measures,
and were introduced by DiPerna in DiPerna [1985]. In recent papers Fjordholm, Käp-
peli, Mishra, and Tadmor [2017] and Fjordholm, Mishra, and Tadmor [2016], the au-
thors showed that a Monte-Carlo algorithm, based on underlying entropy stable finite
volume schemes, converges to an entropymeasure-valued solution of (1-1) onmesh refine-
ment. This provided the first rigorous convergence result for numerical approximations
of generic multi-dimensional systems of conservation laws.

Unfortunately, entropy measure-valued solutions are not necessarily unique as they
lack information about multi-point correlations. More recently, a novel solution concept
termed as statistical solutions has been introduced in Fjordholm, Lanthaler, and Mishra
[2017]. Statistical solutions are time-parameterized probability measures onLp(RN ) that
are constrained in terms of an infinite family of equations evolving moments of the prob-
ability measure. The concept of sttatistical solutions amounts to providing information
about all possible multi-point correlations for a measure-valued solution. In a forthcom-
ing paper Fjordholm, Lye, and Mishra [2017b], the authors will show that under certain
reasonable assumptions on the underlying numerical scheme, a Monte-Carlo algorithm,
similar to the one proposed in Fjordholm, Käppeli, Mishra, and Tadmor [2017], converges
in an appropriate topology to a statistical solution of (1-1),

We will survey all the afore-mentioned results in this article. We structure the rest of
the paper as follows ; in Section 2, we provide a brief introduction to numerical schemes
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for (1-1) in one space dimension. The convergence to entropy solutions for scalar conser-
vation laws is presented in Section 3. In sections 4 and 5, we present convergence of a
Monte-Carlo algorithm to an entropy measure-valued solution and to a statistical solution,
respectively.

2 Preliminaries

2.1 Entropy solutions. For simplicity of the notation and the exposition, we will focus
on the one-dimensional version of (1-1) for the remainder of the paper. The conservation
law reads as,

(2-1)
ut + (f (u))x = 0; (x; t) 2 (R; R+)

u(x; 0) = ū(x); x 2 R

Here, the unknown u = u(x; t) : R�R+ ! RN is the vector of conserved variables and
f : RN ! RN is the flux function.

Definition 2.1. A function u 2 L1(R�R+; RN ) is a weak solution of (2-1) if it satisfies
(2-1) in the sense of distributions:

(2-2)
Z

R+

Z
R

@t '(x; t)u(x; t)+@x'(x; t)f (u(x; t)) dxdt+

Z
Rd

'(x; 0)u0(x) dx = 0

for all test functions ' 2 C 1
c (R � R+). �

Weak solutions are not necessarily unique. We need to specify additional admissibility
conditions in order to select physically meaningful weak solutions. These take the form
of entropy conditions Dafermos [2010], given in terms of entropy pairs.

Definition 2.2. A pair of functions (�; q) with � : RN ! R, q : RN ! R is called
an entropy pair if � is convex and q satisfies the compatibility condition ruq(u) =

ru�(u)ruf (u), for all u 2 RN . �

Definition 2.3. A weak solution u of (2-1) is an entropy solution if the entropy inequality

@t �(u) + @xq(u) 6 0 in D0(R � R+)

is satisfied for all entropy pairs (�; q), that is, if
(2-3)Z

R+

Z
R

@t '(x; t)�(u(x; t)) + @x'(x; t)q(u(x; t)) dxdt +

Z
R

'(x; 0)�(u0(x)) dx > 0

for all nonnegative test functions 0 6 ' 2 C 1
c (R � R+). �
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2.2 Numericalmethods. For simplicity, we fix a uniformmesh size∆x > 0 and divide
the computational domain into cells Cj := [xj �1/2; xj+1/2]; 8j 2 Z, with xj+1/2 =

(j + 1/2)∆x. On this uniform grid, we will approximate (2-1) with the following sets of
numerical schemes,

2.2.1 Finite volume methods. In this class of numerical methods, one approximates
cell averages of the form:

(2-4) Uj (t) =
1

∆x

Z
Cj

u(x; t)dx

The cell averages satisfy a discrete form of the conservation law (2-1) resulting in the
semi-discrete form of the finite volume method,

(2-5)
d

dt
Uj (t) +

1

∆x

�
Fj+1/2(t) � Fj �1/2(t)

�
= 0; 8j 2 Z:

Here, the numerical flux function is given by

Fj+1/2(t) := F (Uj �r+1; : : : ; Uj ; : : : ; Uj+r)

for some r > 1. The numerical flux function is assumed to be consistent i.e,
F (U; : : : ; U ) = f (U ) and (locally) Lipschitz continuous in all its arguments Godlewski
and Raviart [1991].

By now, there is an elaborate algorithmic procedure to determine suitable numerical
fluxes in (2-5). A popular choice LeVeque [2002] is to set (suppressing the time depen-
dence of all quantities),

(2-6) Fj+1/2 := F (U �
j+1/2; U +

j+1/2);

with U ˙
j+1/2 being the trace values at the point x = xj+1/2 of piecewise polynomial

reconstructions of the cell averages Uj . To be more specific, we construct polynomials
belonging to

(2-7) P∆x
l := fP ∆x

2 L1(R) : P ∆x
j = P ∆x

jCj
is a polynomial of degree lg;

for some integer l > 0. Then, we set

U �
j+1/2 = P ∆x

j (xj+1/2); U +
j+1/2 = P ∆x

j+1(xj+1/2)

Different polynomial reconstruction procedures can be employed in this step. Popular
choices include the use of TVD and TVB limiters Godlewski and Raviart [1991] and LeV-
eque [2002] which restrict the overall formal accuracy to second order. One can also use
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the Essentially non-oscillatory (ENO) Harten, Engquist, Osher, and Chakravarthy [1987]
andWeighted essentially non-oscillatory (WENO) procedures for obtaining arbitrary high-
order of accuracy.

One can use a whole family of approximate Riemann solvers to calculate the numerical
fluxF in (2-6) Toro [1999]. A different strategywould be to employ entropy stable (sum of
entropy conservative and numerical diffusion) fluxes as advocated in Fjordholm, Mishra,
and Tadmor [2012].

The resulting system of ODEs (2-5) is initialized with the cell averages,

Uj (0) :=
1

∆x

Z
Cj

ū(x)dx

A variant of this scheme is obtained by setting the initial values of (2-5) to point values
i.e, requiring, Uj (0) = ū(xj ). The resulting scheme is a form of conservative finite
difference schemes LeVeque [2002].

2.2.2 DiscontinuousGalerkinMethod. The discontinuousGalerkin (DG)methodCock-
burn and Shu [1989] is a finite element method for discretizing (1-1) based on test spaces
of piecewise polynomial functions. In one space dimension, the discontinuous Galerkin
approximation of (2-1) consists of finding a function U ∆x 2 P∆x

l
that satisfies for every

test function w 2 P∆x
l

, the following integral identity,
(2-8)X

j

Z
Cj

�
@t U

∆x(x; t)w(x) � f (U ∆x(x; t))@xw(x)
�

dx

+
X

j

�
F (U ∆x(x�

j+1/2); U ∆x(x+
j+1/2))w(x�

j+1/2)

� F (U ∆x(x�
j �1/2); U ∆x(x+

j �1/2))w(x+
j �1/2)

�
= 0:

Here w(x˙
j+1/2) denotes taking left and right limits of a piecewise smooth function. The

numerical flux F can be similar to the one considered in definition of the finite volume
scheme (2-5) through (2-6).

2.2.3 Time stepping. The semi-discrete forms of the finite volume method (2-5) and
the discontinuousGalerkinmethod (2-8) both result in a (large) non-linear system ofODEs.
This system is usually solved using explicit high-order Runge-Kutta methods. A partic-
ularly attractive choice is that of strong stability preserving (SSP) Runge-Kutta methods
Gottlieb, Shu, and Tadmor [2001] that retain the non-oscillatory properties of the spa-
tial discretization. A less used but viable alternative is the family of time discontinuous
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Galerkinmethods Johnson and Szepessy [1987] and Hiltebrand andMishra [2014] that are
a finite element method in time. These methods are preferable for problems with multiple
time scales.

2.2.4 Multi-dimensional problems. It is straightforward to extend (arbitrary high-order)
finite volumemethods like (2-5) formulti-dimensional problems (1-1) on domains that can
be discretized with Cartesian or (block)-structured grids. On the other hands, it is very dif-
ficult to use such grids for domains with complex geometries. Unstructured grids, such
as triangles in two dimensions and tetrahedra in three dimensions are more feasible for
such domains. Although high-order finite volume schemes can be defined on such grids
Kröner [1997], discontinuous Galerkin methods such as (2-8) are more suited for these
class of problems Cockburn and Shu [1989].

3 Convergence to entropy solutions

3.1 Scalar conservation laws. We start with the case of scalar conservation laws in one
space dimension i.e, the unknown u : R � R+ ! R in (2-1). The convergence of numeri-
cal methods in scalar case has been well studied Godlewski and Raviart [1991]. The most
common approach for proving convergence of a numerical scheme, say a semi-discrete
finite volume scheme such as (2-5), is to show that the approximate solutions, generated
by the numerical scheme, are of finite total variation. Given the compact embedding of
BV (Rd ) in L1(Rd ), one can show compactness for the approximations and establish
pointwise convergence. The fact that the limit is a weak solution (2-2) and satisfies the
entropy condition (2-3) can be verified using a Lax-Wendroff argument Godlewski and
Raviart [ibid.]. This approach works well for the convergence of monotone schemes for
scalar conservation laws Godlewski and Raviart [ibid.]. A variant of this argument can
also be used to show that high-resolution schemes can be of finite total variation as in the
theorem below,

Theorem 3.1. Let fUj (t)gj 2Z be approximations generated by a semi-discrete finite vol-
ume scheme of the form (2-5), with flux (2-6). Assume that

(i.) The numerical fluxF in (2-5), (2-6) is monotone non-decreasing in its first argument
and monotone non-increasing in the second argument, i.e,

F (a1; b) 6 F (a2; b); if a1 6 a2; 8b 2 R(3-1)
F (a; b1) > F (a; b2); if b1 6 b2; 8a 2 R:(3-2)

(ii.) The reconstruction satisfies the sign property i.e,

(3-3) sign(U +
j+1/2(t) � U �

j+1/2(t))sign(Uj+1(t) � Uj (t)) > 0; 8j:
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(iii.) The reconstruction clips local extrema i.e,

(3-4) U �
j+1/2(t) = U +

j �1/2(t) = Uj (t)

if sign(Uj+1(t) � Uj (t)) ¤ sign(Uj (t) � Uj �1(t)).

Then, the scheme (2-5) is total variation diminishing (TVD) i.e,

(3-5)
d

dt

X
j

jUj+1(t) � Uj (t)j 6 0:

Proof. We suppress the time dependence of all quantities below for notational conve-
nience. Multiplying both sides of (2-5) with (sign(Uj � Uj �1) � sign(Uj � Uj �1)),
summing over j and arranging terms yields,

(3-6) ∆x
d

dt

X
j

jUj+1(t) � Uj (t)j =
X

j

[(sign(Uj+1 � Uj ) � sign(Uj � Uj �1))]�
F (U �

j+1/2; U +
j+1/2) � F (U �

j �1/2; U +
j �1/2)

�
:

The only non-zero contributions to the sum on the right hand side is for those indices
j 2 Z for which sign(Uj+1(t) � Uj (t)) ¤ sign(Uj (t) � Uj �1(t)). For definiteness, we
select an index j for which Uj 6 Uj+1 and Uj 6 Uj �1. Expanding the flux difference,
we obtain

F (U �
j+1/2; U +

j+1/2) � F (U �
j �1/2; U +

j �1/2) =F (U �
j+1/2; U +

j+1/2) � F (U �
j+1/2; U �

j+1/2)„ ƒ‚ …
T1

+ F (U �
j+1/2; U �

j+1/2) � F (U +
j �1/2; U +

j �1/2)„ ƒ‚ …
T2

+ F (U +
j �1/2; U +

j �1/2) � F (U �
j �1/2; U �

j �1/2)„ ƒ‚ …
T3

AsUj < Uj+1, the sign property (3-3) implies thatU �
j+1/2 6 U +

j+1/2. Hence, by property
(3-1) of the numerical flux F , we obtain that T1 6 0. An identical argument shows that
T3 6 0. Given that the numerical flux is consistent, we see from the clipping at local
extremum (3-4) that

T2 = f (U �
j+1/2) � f (U +

j �1/2) = 0:

Hence, we obtain the summand in (3-6) corresponding to the index j is non-positive and
this property holds for every j at which the summand in non-zero. This implies the TVD
property (3-5).
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Once the TVDproperty is shown, one obtains pointwise a.e. convergence of the approx-
imations generated by the semi-discrete scheme (2-5). A Lax-Wendroff theorem showing
that the limit is a weak solution can be readily verified Godlewski and Raviart [1991].

The above Theorem 3.1 illustrates some of the key requirements for a numerical scheme
to converge. The flux needs certain monotonicity properties that are satisfied by several
popular numerical fluxes for scalar conservation laws such as Godunov, Engquist-Osher,
Rusanov and Lax-Friedrichs fluxes LeVeque [2002]. On the other hand, the reconstruction
procedure has to satisfy a sign property (3-3). This property was introduced independently
in the context of the design of entropy stable schemes in Fjordholm, Mishra, and Tadmor
[2012]. Its role in providing a TVD bound on the scheme is novel. Among piecewise lin-
ear reconstruction procedures, the well-known minmod limiter enforces the sign property
Fjordholm, Mishra, and Tadmor [2012] and Fjordholm [2013]. On the other hand, other
well-known limiters such as MC and Superbee do not satisfy this property. The ENO
reconstruction procedure remarkably satisfies the sign property for all polynomial orders
Fjordholm, Mishra, and Tadmor [2013].

However, the sign property does not suffice for a TVD bound. As expected, one has
to switch off the reconstruction at local extrema (3-4). Hence and consistent with classi-
cal results of Harten Godlewski and Raviart [1991], one loses order of accuracy at local
extrema for a TVD scheme to first order.

The preceding discussion shows that one requires some degree of numerical oscilla-
tions near local extrema in order to obtain a (formally) high-order accurate finite volume
scheme. Thus, total variation bounds may not be an appropriate framework for showing
convergence of arbitrary high-order schemes. Instead, compensated compactness tech-
niques Tartar [1979] provide an alternative framework. A powerful illustration of this
technique was presented in Fjordholm [2013] where the author showed that a class of
arbitrary high-order entropy stable schemes converge to the entropy solution of a scalar
conservation law with convex flux. We reproduce theorem 3.3 from reference Fjordholm
[ibid.] below,

Theorem 3.2. [Theorem 3.3 of Fjordholm [ibid.]] Let the flux f in (2-1) be strictly convex
and the scalar conservation law be equipped with a strictly convex entropy function �.
Assume that the approximations fUj (t)gj 2Z generated by the semi-discrete finite volume
scheme (2-5) for any∆x > 0 and t 2 [0; T ] satisfies

i. A discrete entropy inequality of the form,

(3-7)
d

dt
�(Uj (t)) +

1

∆x

�
Qj+1/2(t) � Qj �1/2(t)

�
6 0;

for a numerical entropy flux Qj+1/2(t) := Q(Uj �r+1; : : : ; Uj ; : : : ; Uj+r) for
some r > 1. The numerical flux function is assumed to be consistent with the
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entropy flux q in (2-3) i.e, Q(U; : : : ; U ) = g(U ) and (locally) Lipschitz continuous
in all its arguments

ii. L1 bound i.e 9M 2 R

(3-8) jUj (t)j 6 M; 8t; 8j 2 Z

iii. Compact support, i.e 9J 2 N such that for all j with jj j > J , Uj (t) � 0.

iv. Weak BV bound i.e,

(3-9)
Z T

0

X
j

jUj+1 � Uj (t)j
pdt 6 C; for some p 2 [2; 1)

Then, define u∆x 2 L1(R � R+) as u∆x(x; t) = Uj (t) for all x 2 Cj . The sequence
of approximations u∆x (upto a subsequence) converge point wise almost everywhere to a
function u 2 L1(R � R+) as ∆x ! 0 and u is the unique entropy solution of (2-1).

The proof of this convergence theorem is based on the compensated compactness prin-
ciple, more precisely on the Murat Lemma Murat [1981]. It is easy to see that the weak
BV property (3-9) is significantly weaker than the standard TVD bound and implies a rate
of blow up for the total variation as∆x ! 0. The TeCNO schemes of Fjordholm, Mishra,
and Tadmor [2012] have been shown to satisfy the discrete entropy inequality (3-7) and
the weak BV bound (3-9), under an additional hypothesis Fjordholm [2013]. Hence, they
provide non-trivial examples of (formally) arbitrarily high-order schemes that converge
to the entropy solution of the scalar version of (2-5) on mesh refinement. Although, this
result is restricted to one-dimensional problems, it is conceivable that it can extended to
several space dimensions using the technique of H-measures Coclite, Mishra, and Risebro
[2010].

3.2 One-dimensional systems. Convergence to entropy solutions for (first-order) nu-
merical schemes approximating one-dimensional 2� 2 systems i.e, (2-5) with N = 2 can
be established using variants of the compensated compactness technique Ding, Chen, and
Luo [1989]. For N > 3 in (2-5), there are convergence results for the numerical meth-
ods such as the Glimm’s random choice method Glimm [1965] or front tracking methods
Holden and Risebro [2011], based on very delicate estimates on the approximations in
BV . However, extending these techniques to standard first-order schemes such as the
Godunov’s scheme and the Lax-Friedrichs scheme is much harder. These convergence
theorems require that the initial data should be of infinitesimally small total variation. Al-
though not yet available, one expects that the techniques of Bianchini and Bressan [2005]
etc can be modified to prove convergence of atleast first-order schemes to entropy solu-
tions of the one-dimensional system (2-1).
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3.3 Multi-dimensional systems. It was widely believed that well-designed numerical
methods for approximating (1-1) in several space dimensions also converge to the entropy
solution on mesh refinement. The lack of rigorous convergence proofs was blamed to the
paucity of available theoretical tools. However, more recent investigations into the limit
of popular numerical approximation frameworks for (1-1) have revealed some surprises
in terms of a lack of convergence of numerical methods. A good example to illustrate this
phenomenon was provided in Fjordholm, Käppeli, Mishra, and Tadmor [2017] and Fjord-
holm, Mishra, and Tadmor [2016] and we reproduce it here for the sake of completeness.

We consider the compressible Euler equations in two space dimensions,

(3-10)
@

@t

0BB@
�

�u

�v

E

1CCA+
@

@x1

0BB@
�u

�u2 + p

�uv

(E + p)u

1CCA+
@

@x2

0BB@
�v

�u

�v2 + p

(E + p)v

1CCA = 0:

Here, the density �, velocity field (u; v), pressure p and total energy E are related by the
equation of state

E =
p

 � 1
+

�(u2 + v2)

2
;

with adiabatic constant  = 1:4. We consider (3-10) in the computational domain x 2

[0; 1]2 with periodic boundary conditions and with initial data:

(3-11) p(x) =

(
20 if r < 0:1

1 otherwise,
�(x) =

(
2 if r < I (!; x)

1 otherwise,
u = v = 0;

where r := jx � (0:5; 0:5)j denotes the distance to the center of the domain. The radial
density interface I (!; x) = 0:25 + "Y (!;'(x)) is perturbed with

(3-12) Y (!;') =

KX
n=1

an(!) cos (' + bn(!)) ;

where '(x) = arccos((x1�1/2)/r) and an
j = an

j (!) 2 [0; 1] and bn
j = bn

j (!) 2 [��; � ],
i = 1; 2, n = 1; : : : ; K are uniformly randomly chosen numbers. The coefficients an

j

have been normalized such that
PK

n=1 an
j = 1 to guarantee that jIj (!; x) � Jj j 6 " for

j = 1; 2. We set K = 10. We fix " = 10�3 and a single realization of random num-
bers an; bn. The numerical scheme is a high-resolution finite volume scheme, based on
an approximate Riemann solver of the HLLC type, a non-oscillatory MC limiter based
piecewise linear reconstruction, in combination with a second-order, strong stability pre-
serving Runge-Kutta time stepping routine. It is implemented within a massively parallel
astrophysics code Käppeli, Whitehouse, Scheidegger, Pen, and Liebendörfer [2011].
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This initial data is known as the Richtmeyer-Meshkov problem and consists of an initial
(large) jump in the density and pressure across a slightly perturbed interface. We compute
the solution at different mesh resolutions ranging from 1282 to 10242. The computed den-
sity at time t = 4 is plotted in Figure 1. As shown in the figure, the solution is quite
complex: the initial shock waves generated from the explosion have exited and reentered
the domain (on account of periodic boundary conditions) and are interacting with an un-
stable interface. Furthermore, the reentered shock creates a complex pattern of small scale
eddies on hitting the interface. These structures are formed at finer and finer scales as the
mesh is refined.

The appearance of structures at finer and finer scales undermesh refinementmay inhibit
convergence of the scheme. To test this proposition, we compute the Cauchy rates i.e, the
difference in the approximate solutions on two successive resolutions:

(3-13) EN =
�2N

� �N


L1([0;1]2)
:

Here, N represents the number of mesh points in each direction. The results are shown
in Figure 2 and demonstrate that the numerical approximation does not form a Cauchy
sequence, let alone converge, as the mesh is refined. Similar results are also obtained with
other Lp norms. This lack of convergence is not an artifact of the scheme discussed here;
as reported in Fjordholm, Käppeli, Mishra, and Tadmor [2017], very similar results have
been obtained with other state of the art schemes, such as the high-order TeCNO schemes
Fjordholm, Mishra, and Tadmor [2012] and WENO schemes.

4 Convergence to measure-valued solutions

The last numerical example clearly indicated that one cannot expect that approximations,
generated by state of the art numerical schemes, will converge to an entropy solution
of the multi-dimensional system (1-1). An alternative solution paradigm is required in
order to characterize the limits of numerical schemes for (1-1). A promising candidate for
this paradigm is that of entropy measure-valued solutions of the system (1-1). We follow
Fjordholm, Käppeli, Mishra, and Tadmor [2017] and Fjordholm, Mishra, and Tadmor
[2016] and present a concise description of this solution concept in the following.

4.1 Young measures. Young measures were introduced in the context of PDEs by Tar-
tar in Tartar [1979] in order to represent weak* limits of L1 bounded sequences of highly
oscillatory functions. A Young measure from D � Rk to RN is a function which maps
z 2 D to a probability measure on RN . More precisely, a Young measure is a weak*
measurable map � : D ! P (RN ), meaning that

the mapping z 7!
˝
�z ; g

˛
is Borel measurable for every g 2 C0(R

N ).
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Figure 1: Approximate density at time t = 4 for a single sample, computed with
the high-resolution finite volume scheme of Käppeli, Whitehouse, Scheidegger, Pen,
and Liebendörfer [2011], for the Richtmeyer-Meshkov problem (3-11) for different
grid resolutions.
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Figure 2: Cauchy rates (3-13) for the density (y-axis) in a single sample of the
Richtmeyer-Meshkov problem (3-11) at time t = 4, with respect to different grid
resolutions (x-axis).

The set of all Young measures from D into RN is denoted by Y(D; RN ).
The fundamental theorem of Young measures was first introduced by Tartar for L1-

bounded sequences Tartar [1979] and then generalized by Schonbek [1982] andBall [1989]
for sequences of measurable functions. A further generalization was presented in a recent
paper Fjordholm, Käppeli, Mishra, and Tadmor [2017]: every sequence �n 2 Y(D; RN )

which does not “leak mass at infinity” has a weak* convergent subsequence in the follow-
ing sense (see theorem 3.3 of Fjordholm, Mishra, and Tadmor [2016]):

Theorem4.1. [Theorem 3.3 of Fjordholm,Mishra, and Tadmor [ibid.]] Let �n 2 Y(D; RN )

for n 2 N be a sequence of Young measures. Then there exists a subsequence �m which
converges weak* to a nonnegative measure-valued function � : D ! M+(RN ) in the
sense that

(i)
˝
�m

z ; g
˛ �
*
˝
�; g

˛
in L1(D) for all g 2 C0(RN ),

(ii) Suppose further there is a nonnegative function � 2 C (RN ) with limj�j!1 �(�) =

1 such that

(4-1) sup
n

Z
D

˝
�n

z ; �
˛
dz < 1:

Then k�zkM(RN ) = 1 for a.e. z 2 D,

whence � 2 Y(D; RN )

4.2 Measure-valued solutions. As mentioned earlier, entropy measure-valued solu-
tions for nonlinear systems of conservation laws were introduced by DiPerna in DiPerna



NUMERICAL SCHEMES FOR HYPERBOLIC SYSTEMS 3673

[1985]. Here, we follow the presentation of a recent paper Fjordholm, Käppeli, Mishra,
and Tadmor [2017].

Definition 4.2. Let � 2 Y(Rd ; RN ) be uniformly bounded given initial data. A family of
Young measures �t 2 Y(Rd ; RN ) is a measure-valued solution (MV solution) of (1-1a)
with data � if

(4-2)
Z

R+

Z
Rd

�˝
�x;t ; �

˛
@t ' +

˝
�x;t ; f (�)

˛
� r'

�
dxdt +

Z
Rd

'(x; 0)
˝
�x ; �

˛
dx = 0

for all ' 2 C 1
c (Ω). �

Note that we allow for uncertainty in the initial data by considering a general initial Young
measure � , rather than restricting attention to atomic initial data � = ıu0

.
As in the case of weak solutions, we need to impose additional admissibility criteria to

enforce uniqueness of the measure-valued solution (4-2). This brings us to the following
entropy inequalities.

Definition 4.3. Ameasure-valued solution � is an entropy measure-valued (EMV) solution
of (1-1a) if � satisfies the following entropy inequality for all entropy pairs (�; q):

(4-3)
Z

R+

Z
Rd

�˝
�x;t ; �(�)

˛
@t '(x; t) +

˝
�x;t ; q(�)

˛
� rx'(x; t)

�
dxdt+

+

Z
Rd

'(x; 0)
˝
�x ; �

˛
dx > 0

for all nonnegative test functions 0 6 ' 2 C 1
c (R

d � R+). �

4.3 The FKMT algorithm for computing entropy measure-valued solutions. Al-
though the concept of entropy measure-valued solutions was introduced by DiPerna, the
computation (algorithmic realization) of measure-valued solutions is quite challenging.
In a recent paper Fjordholm, Käppeli, Mishra, and Tadmor [ibid.], the authors designed
the following Monte-Carlo ensemble algorithm, termed here as the FKMT algorithm, to
approximate entropy-measure valued solutions. For notational simplicity, we restrict the
following discussion to the one dimensional case (2-1).

Algorithm 4.4. Let ∆ = ∆x denote the grid size parameter and let M 2 N. Let � 2

Y(Rd ; RN ) be the initial Young measure.

Step 1: For some probability space (Ω; X; P), draw M independent and identically dis-
tributed random fields u

∆;1
0 ; : : : ; u

∆;M
0 : Ω � Rd ! RN , all with the same proba-

bility law � .
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Step 2: For each 1 6 k 6 M and for a fixed ! 2 Ω, use the finite volume scheme (2-5)
to numerically approximate the conservation law (2-1) with initial data u

∆;k
0 (!).

Denote u∆;k(!; �; t) = S∆t u
∆;k
0 (!; �): with S∆t being the data to solution operator

associated with the scheme (2-5).

Step 3: Define the approximate measure-valued solution,

(4-4) �
∆;M
x;t :=

1

M

MX
k=1

ıu∆;k(!;x;t):

In Fjordholm, Käppeli, Mishra, and Tadmor [2017], this ensemble Monte-Carlo al-
gorithm was shown to converge to an entropy-measure valued solution of (2-1) in the
following theorem,

Theorem 4.5. [Theorem 6 of Fjordholm, Käppeli, Mishra, and Tadmor [ibid.]] Denote
U k

j (t) as the approximate solution generated at time t by the semi-discrete finite volume
scheme (2-5) for initial data uk

0(!) for 1 6 k 6 M , corresponding to the k-th sample of
the Algorithm 4.4. Assume that the numerical approximations satisfy the following,

i. Uniform L1 bound: i.e 9M 2 R

(4-5) jU k
j (t)j 6 M; 8t; 8j 2 Z; 81 6 k 6 M; a:e ! 2 Ω

ii. A discrete entropy inequality of the form,
(4-6)

d

dt
�(U k

j (t)) +
1

∆x

�
Qk

j+1/2(t) � Qk
j �1/2(t)

�
6 0; 81 6 k 6 M; a:e ! 2 Ω

for a numerical entropy flux Qk
j+1/2(t) := Q(U k

j �r+1; : : : ; U k
j ; : : : ; U k

j+r) for
some r > 1. The numerical flux function is assumed to be consistent with the
entropy flux q in (2-3) i.e, Q(U; : : : ; U ) = q(U ) and (locally) Lipschitz continuous
in all its arguments

iii. Weak BV bound i.e,

(4-7)
Z T

0

X
j

jU k
j+1(t) � U k

j (t)j
pdt 6 C; for some p 2 [2; 1);

for all 1 6 k 6 M and a:e ! 2 Ω.
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Then, the approximate measure-valued solutions �
∆;M
x;t , generated by Algorithm 4.4, con-

verges weak-� (in the sense of Theorem 4.1) as (∆; M ) ! (0; 1), upto a subsequence,
to a Young measure �x;t , which is an entropy measure-valued solution of (2-1).

Remark 4.6. The TeCNO schemes of Fjordholm, Mishra, and Tadmor [2012] and the
space-time DG schemes of Hiltebrand and Mishra [2014] are shown to verify the discrete
entropy inequality (4-6) and the weak BV-bound (4-7), even for (formally) arbitrary orders
of accuracy. The L1 bound is a technical assumption that can be relaxed by introducing
the concept of generalized measue-valued solutions, that also account for possible concen-
trations, as in Fjordholm, Mishra, and Tadmor [2016]. In that case, the discrete entropy
inequality provides bounds in Lp and this suffices to show convergence of Algorithrm
4.4. �

Remark 4.7. One has to treat the case of Dirac initial Young measure i.e, �x = ıū(x) for
some ū 2 L1(Rd ) by using a perturbation of the Monte Carlo algorithm, see Algorithm
4.3 of Fjordholm, Mishra, and Tadmor [ibid.]. �

Remark 4.8. The extension of the Algorithm 4.4 and the convergence Theorem 4.5 to sev-
eral space dimensions is straightforward, see Theorem 7 of Fjordholm, Käppeli, Mishra,
and Tadmor [2017]. �

The weak-� convergence for Young measures amounts to requiring that one-point sta-
tistical quantities of interest converge as the mesh is refined. In particular, mean, variance
and one-point probability density functions (pdfs) are shown to converge. Numerical ex-
periments reported in Fjordholm, Käppeli, Mishra, and Tadmor [2017] and Fjordholm,
Mishra, and Tadmor [2016] illustrate this convergence rather well. Another interesting
numerical observation from Fjordholm, Käppeli, Mishra, and Tadmor [2017] (see figure
18) is the realization that even if the initial data is a L1 function i.e, a Young measure
concentrated on a single atom, the computed measure-valued solution may not be atomic.
This furthers reinforces the contention that one cannot search for limits of numerical meth-
ods approximating (1-1) within the class of functions but has to rely on weaker notions of
solutions, such as measure-valued solutions.

However, entropy measure-valued solutions are not necessarily unique. This is even
true for the simplest case of a one-dimensional Burgers’ equation provided that the initial
data is a non-atomic Young measure, see example 9.1 of Fjordholm, Mishra, and Tad-
mor [2016] and several other counter-examples presented in Schochet [1989]. On the
other hand, the entropy measure-valued solution, computed by Algorithm 4.4 has been
observed to stable in numerical experiments, see Fjordholm, Käppeli, Mishra, and Tad-
mor [2017] and Fjordholm, Mishra, and Tadmor [2016]. This stability holds with respect
to perturbations of the initial Young measure data and with respect to the variation of
the underlying numerical scheme. Clearly, the numerical algorithm provides a selection
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principle that chooses a particular entropy measure-valued solution that is stable. Can we
further constrain entropy measure-valued solutions to characterize this stable solution ?

5 Convergence to Statistical Solutions

A possible answer to the above question was proposed in a recent paper Fjordholm, Lan-
thaler, and Mishra [2017]. Therein, the authors identified the principal reason for the non-
uniqueness of measure-valued solutions being the lack of information about (multi-point)
spatial correlations that is intrinsic to the notion of Young measures where only one-point
statistical quantities are constrained. The authors of Fjordholm, Lanthaler, and Mishra
[ibid.] proceeded to add further information to measure-valued solutions by specifying
multi-point correlations in a systematic manner as described below.

5.1 Correlation measures and Statistical solutions. We follow Fjordholm, Lanthaler,
andMishra [ibid.] and consider the framework of statistical solutions. As mentioned in the
introduction, we are interested in the situation where instead of an initial data ū 2 L1(Rd )

for (1-1), we are given some �̄ 2 P
�
Lp(Rd )

�
for some p 2 [1; 1), that is, a probability

distribution over different initial data ū 2 Lp(Rd ). A statistical solution of this initial
value problem is a map t 7! �t 2 P

�
Lp(Rd )

�
which satisfies the PDE (1-1) in a certain

sense. In Fjordholm, Lanthaler, and Mishra [ibid.], the authors showed that any probabil-
ity measure � 2 P (Lp(Rd )) can be described equivalently as a correlation measure—a
hierarchy � = (�1; �2; : : : ) in which each element �k provides the joint probability dis-
tribution �k

x1;:::;xk
of the solution values u(x1); : : : ; u(xk) at any choice of spatial points

x1; : : : ; xk 2 Rd . To be more precise, a correlation measure is defined as

Definition 5.1. Let d; N 2 N, let q 2 [1; 1), let D � Rd be an open set (the “spatial
domain”) and (for notational convenience) denote U = RN (“phase space”). A correla-
tion measure from D to U is a collection � = (�1; �2; : : : ) of maps satisfying for every
k 2 N:

(i) �k is a Young measure from Dk to Uk .

(ii) Symmetry: if � is a permutation of f1; : : : ; kg and f 2 C0(Uk) then˝
�k

�(x); f (�(�))
˛
=
˝
�k

x ; f (�)
˛
for a.e. x 2 Dk .

(iii) Consistency: If f 2 Cb(U
k) is of the form f (�1; : : : ; �k) = g(�1; : : : ; �k�1)

for some g 2 C0(Uk�1), then
˝
�k

x1;:::;xk
; f
˛
=
˝
�k�1

x1;:::;xk�1
; g
˛
for almost every

(x1; : : : ; xk) 2 Dk .
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(iv) Lq integrability:

(5-1)
Z

D

˝
�1

x ; j�j
q
˛
dx < 1:

(v) Diagonal continuity (DC): lim"!0 d
q
" (�

2) = 0, where

(5-2) d q
" (�

2) :=

�Z
D

�

Z
B"(x)

˝
�2

x;y ; j�1 � �2j
q
˛
dydx

�1/q

:

(Here, �
R

B
= 1

jBj

R
B
, the average over B .)

�

It was shown in Fjordholm, Lanthaler, andMishra [ibid.] that every probabilitymeasure
� 2 P (Lq(D;U)) is dual to a unique correlation measure �, and vice versa. Using this
duality, we can now state the definition of statistical solutions.

Definition 5.2.We say that a weak*-measurable map t 7! �t 2 P (Lp(D)), for some
p 2 [1; 1), with corresponding spatial correlation measures �t = (�k

t )k2N , is a statistical
solution of (1-1) with initial data �̄ 2 P (Lp(D)), if

(5-3)
Z

R+

Z
Dk

˝
�k

t;x ; �1 ˝ � � � ˝ �k
˛
: @t '+

+

kX
i=1

˝
�k

t;x ; �1 ˝ � � � ˝ f (� i ) ˝ � � � ˝ �k
˛
: rxi

'dxdt+

+

Z
Dk

˝
�̄k

x ; �1 ˝ � � � ˝ �k
˛
: 'jt=0dx = 0;

for all ' 2 C 1
c

�
Dk � R+; (RN )k

�
and all k 2 N. �

Remark 5.3. It is straightforward to see that if the initial data is a Dirac measure i.e,
�̄ = ıū for some ū 2 Lp(D) and if the corresponding statistical solution is also a Dirac
measure i.e, �t = ıu(t) for some u(t) 2 Lp(D) for almost every t , then the notion of
statistical solutions reduces to that of the standard weak solution (2-2). Moreover, setting
k = 1 in (5-3), we see that the one-point correlation marginal of a statistical solution is pre-
cisely a measure-valued solution in the sense of DiPerna (4-2). Thus, a statistical solution
can be thought of as measure-valued solution, supplemented with additional constraints
on all possible (multi-point) spatial correlations. A priori, a statistical solution contains
significantly more information than a measure-valued solution. �
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In Fjordholm, Lanthaler, and Mishra [2017], the authors showed existence and unique-
ness of statistical solutions, under an additional entropy condition, for multi-dimensional
scalar conservation laws. The computation of these solutions in the scalar case is presented
in a recent paper Fjordholm, Lye, and Mishra [2017a].

5.2 Computation of statistical solutions. In a forthcoming paper Fjordholm, Lye, and
Mishra [2017b], we present the following variant of the Monte Carlo Algorithm 4.4 for
computing the statistical solutions of systems of conservation laws. For notational con-
venience, we restrict the description to the one-dimensional case (2-1) in the following.

Algorithm 5.4. Let ∆ = ∆x denote the grid size parameter and let M 2 N. Let �̄ 2

P (Lp(D)) be the initial data.

Step 1: For some probability space (Ω; X; P), draw M independent and identically dis-
tributed random fieldsu

∆;1
0 ; : : : ; u

∆;M
0 : Ω ! Lp(D), all with the same probability

law �̄.

Step 2: For each 1 6 l 6 M and for any fixed ! 2 Ω, use the finite volume scheme (2-5)
to numerically approximate the conservation law (2-1) with initial data u

∆;l
0 (!).

Denote u∆;l(!; �; t) = S∆t u
∆;l
0 (!; �): with S∆t being the data to solution operator

associated with the scheme (2-5).

Step 3: Define the approximate statistical solution in terms of the empirical measure,

(5-4) �
∆;M
t :=

1

M

MX
l=1

ıu∆;l (!;t):

Remark 5.5. The first step in Algorithm 5.4 can be ensured by requiring that there exists
a probability space (Ω; X; P) and a random field ū 2 L2

�
Ω;Lp(D)

�
such that the law of

ū with respect to P is �̄. In most real-world applications, the uncertainty in initial data is
usually described in terms of such a random field ū, for instance, one given as a parametric
function ū : [0; 1]Q � D ! U, with possibly Q >> 1. The initial Monte Carlo samples
u
∆;1
0 ; : : : ; u

∆;M
0 : Ω ! L1(D) are realizations of ū. �

The convergence of this algorithmwill be demonstrated in the forthcoming paper Fjord-
holm, Lye, and Mishra [ibid.]. We summarize the convergence theorem below,

Theorem 5.6. [Fjordholm, Lye, and Mishra [ibid.]] Consider the system of conservation
laws (2-1) with a strictly convex entropy function � and a entropy flux function q. Let
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�̄ 2 P (Lp(D)) be the initial data. We follow the notation introduced in the descrip-
tion of Algorithm 5.4 and denote U l

j (t) as the approximate solution generated at time t

by the semi-discrete finite volume scheme (2-5) for initial data ul
0(!) for 1 6 l 6 M ,

corresponding to the k-th sample of the Algorithm 5.4. Assume that the numerical approx-
imations satisfy the following,

i. A discrete entropy inequality of the form,
(5-5)

d

dt
�(U l

j (t)) +
1

∆x

�
Ql

j+1/2(t) � Ql
j �1/2(t)

�
6 0; 81 6 l 6 M; ! 2 Ω:

for a numerical entropy flux Ql
j+1/2(t) := Q(U l

j �r+1; : : : ; U l
j ; : : : ; U l

j+r) for
some r > 1. The numerical flux function is assumed to be consistent with the
entropy flux q in (2-3) i.e, Q(U; : : : ; U ) = q(U ) and (locally) Lipschitz continuous
in all its arguments

ii. Weak BV bound i.e,

(5-6)
Z T

0

X
j

jU l
j+1(t) � U l

j (t)j
qdt 6 C; for some q 2 [p; 1)

for all 1 6 l 6 M and ! 2 Ω.

iii. Approximate scaling. Denote �
∆;M
t as the correlation measure associated with

the approximate statistical solution �
∆;M
t and define the corresponding diagonal

deficiency as in (5-2) as

(5-7) d p
r (�∆;M;2) :=

 Z T

0

Z
D

�

Z
Br (x)

˝
�
∆;M;2
t;x;y ; j�1 � �2j

p
˛
dydxdt

!1/p

:

Then, we assume that for all s 2 N , the following holds,

(5-8) d
p
s∆(�

∆;M;2) 6 C s�d
p
∆(�

∆;M;2);

for some 0 < � 6 1 and a constant C that are independent of∆ but can depend on
the initial probability measure �̄

Then, upto a subsequence, the probability measures�
∆;M
t , generated by the Algorithm 5.4,

converge in the following sense to a �t 2 P (Lp(D)):

(5-9) lim
(∆;M )!(0;1)

Z T

0

Z
Dk

jh�
∆;M;k
t;x ; g(x; t; �)i � �k

t;x ; g(x; t; �)idxdt = 0;
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for almost every t 2 (0; T ) and for any function g : Dk � [0; T ] ! C (Uk) satisfying

jg(x; t; �)j 6 CgΠ
k
i=1(1 + j�i j

p)

jg(x + z; t; � + �) � g(x; t; �)j 6 k1(z)k2(t)max(j�i j; j�i + �i j)
p�1Πj ¤i (1 + j�j j)p;

for some k1 locally bounded at origin and k2 2 L1((0; T )). Moreover, �t is a statistical
solution of (1-1) i.e, it satisfies (5-3)

The proof of this convergence theoremwill be provided in the forthcoming paper Fjord-
holm, Lye, and Mishra [2017b] and relies in a crucial manner on a novel topology on
P (Lp(D)) that is induced by the associated correlation measures. Convergence in this
topology ensures strong convergence for all multi-point statistical quantities of interest.

The discrete entropy inequality (5-5) is crucial in obtaining uniform Lp bounds on the
approximate statistical solution forp = 2, on account of the strict convexity of the entropy
function �. The weak-BV bound (5-6) provides a uniform diagonal continuity properties
for the associated correlation measures at the grid scales. Both these requirements are sat-
isfied by many finite volume schemes, such as the TeCNO schemes of Fjordholm, Mishra,
and Tadmor [2012]. On the other hand, the scaling requirement (5-8) is necessary to show
uniform diagonal continuity at scales that are larger than the grid scale i.e, the so-called
intermediate scales. Currently, we are not able to prove that standard numerical meth-
ods satisfy this scaling requirement. However, such a requirement is a weaker version of
the scaling hypothesis of Kolmogorov that is standard in the literature on incompressible
turbulence Frisch [1995].

The extension of Algorithm 5.4 and the proof of its convergence, to several space di-
mensions is straightforward Fjordholm, Lye, and Mishra [2017b].

5.3 Numerical results. Our aim is to compute (multi-point) statistical quantities of
interest with the ensemble Monte-Carlo Algorithm 5.4. To this end, we consider the
two-dimensional compressible Euler equations (3-10) in the domain [0; 1]2 with periodic
boundary conditions. As initial data, we consider the probability measure on L2(D) in-
duced by the random field given in (3-11). For subsequent computations, we useM = 400

Monte Carlo samples and compute up to t = 5 using grid resolutions from 1282 up to
10242 grid points.

In Figure 3 we plot for each grid resolution∆x the mean of the density variable,

(5-10) �̄∆x(x; t) :=
1

M

MX
l=1

�∆x;l(!; x; t)

(where �∆x;l(!) is the mass density of each individual Monte Carlo sample). We observe
that small scale features are averaged out in the mean and only large scale structures, such
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as the strong reentrant shocks (recall the periodic boundary conditions) andmixing regions,
are retained through the averaging process. The figure indicates that, unlike the individual
samples shown in Figure 1, the mean converges as the mesh is refined. This convergence
is quantified in Figure 4(a) where we plot the difference in the mean density for successive
resolutions,

(5-11)
�̄∆x(�; t) � �̄∆x/2(�; t)


L1 :

The figure indicates that this quantity goes to zero, so the mean of the approximations
form a Cauchy sequence and hence converge.

Figure 5 shows the variance of the mass density

Var(�∆x)(x; t) :=
1

M

MX
k=1

�
�∆x;k(!; x; t) � �̄∆x(!; x; t)

�2
:

As in Figure 3, the variance of the approximate statistical solution seem to converge as the
mesh is refined. This is again quantified in Figure 4(b) where the L1 differences of the
variances at successive mesh resolutions is plotted. Note from Figure 5 that the variance
is concentrated at the shocks and even more so in the mixing layer around the original
interface.

Both the mean and variance are one-point statistical quantities of interest for the sta-
tistical solution and can be expressible through a measure-valued solution. However, we
have seen in this section that correlations play a key role in the whole concept of statisti-
cal solutions. As a representative quantity, we consider the so-called two-point structure
function,

(5-12) S
p

h
(�∆;M;2)(t) :=

�Z
D

�

Z
Bh(x)

˝
�
∆;M;2
t;x;y ; j�1 � �2j

p
˛
dydx

�1/p

:

Note that (5-12) is a time snapshot of the diagonal deficiency (5-7) that plays a critical role
in the convergence Theorem 5.6. For the case of p = 2, the so-called structure functions
are an important observable in the theory as well in experiments for turbulent fluid flows
Frisch [1995]. We plot S2

h
(5-12) at time t = 5 and for different mesh resolutions, as

function of the length scale h in Figure 6 (a). The result shows that the structure function
behaves as S2

h
∼ C h�. Here both the constant C and the exponent � appear to be inde-

pendent of the mesh size∆, The exponent quickly converges to a value of � � 0:5 in this
case. This is consistent with the requirement in Theorem 5.6 of uniform (in mesh size)
diagonal continuity for the approximate statistical solutions. Furthermore, we compute
Cauchy rates for the structure function S2

h
as a function of resolution and plot the results

in Figure 6 (b). As predicted by the theory, this result shows that the computation of the
structure function converges on mesh refinement.
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Figure 3: The mean density for the Richtmeyer-Meshkov problem with initial data
(3-11) for different grid resolutions at time t = 4. All results are obtained with 400
Monte Carlo samples.
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Figure 4: Cauchy rates (5-11) for the mean (left) and for variance (right) versus grid
resolutions (x-axis) at time t = 4 for the Richtmeyer-Meshkov problem (3-11). All
results are obtained with 400Monte Carlo samples.

6 Conclusion

We considered the question of convergence, on mesh refinement, of state of the art numer-
ical methods for hyperbolic systems of conservation laws (1-1). Although a large variety
of numerical methods of the finite volume, finite difference and discontinuous Galerkin
finite element type have been developed to approximate (1-1), rigorous proofs of conver-
gence of these methods are relatively fewer. In the case of (multi-dimensional) scalar
conservation laws, one can show convergence of the well known monotone schemes to
the entropy solution by establishing bounds on the total variation. This program is harder
to carry out for (arbitrary) high-order schemes due to the necessity of clipping at local
extrema. On the other hand, compensated compactness techniques can be used to show
convergence for high-order schemes in the scalar case.

In contrast to the scalar case, numerical examples show that numerical methods approx-
imating the multi-dimensional system (1-1) may not necessarily converge to an entropy
solution on mesh refinement. Structures are formed at finer and finer scales impeding
convergence in spaces of integrable functions. One can weaken the notion of solutions by
introducing entropy measure-valued solutions as a paradigm that characterizes the limit
of numerical approximations of (1-1). Measure-valued solutions are Young measures and
we can construct them using the Monte Carlo Algorithm 4.4 Fjordholm, Käppeli, Mishra,
and Tadmor [2017]. One can prove weak-� convergence of approximations, generated by
the Algorithm 4.4, to measure-valued solutions and numerical experiments also illustrate
the ability to compute one-point statistical quantities of interest.
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Figure 5: Variance of the density with initial data (3-11) for different grid resolutions
at time t = 4. All results are obtained with 400Monte Carlo samples.
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However, generic entropy measure-valued solutions are not necessarily unique, even
for scalar conservation laws. Additional admissibility criteria need to be imposed. Fol-
lowing a recent paper Fjordholm, Lanthaler, and Mishra [2017], we consider statistical
solutions as an appropriate solution paradigm for the multi-dimensional system of conser-
vation laws (1-1). Statistical solutions are time parameterized probability measures on Lp

spaces and are shown to be equivalent to a hierarchy of Young measures. One determines
the time-evolution of statistical solutions in terms of an infinite family of moment equa-
tions (5-3). We present an ensemble Monte Carlo Algorithm 5.4 and show under certain
reasonable assumptions that the approximations generated by this algorithm converge to a
statistical solution of systems of conservation laws in a suitable topology Fjordholm, Lye,
and Mishra [2017b].

Summarizing, the state of the art answer to the question of convergence of numerical
methods to systems of conservation laws appears to be that one cannot expect convergence
in any pointwise or even integral sense for a single initial datum. On the other hand,
statistical quantities, including very sophisticated multi-point correlations, converge for
an ensemble of initial data. Thus, ensemble methods seem to be imperative when multi-
dimensional systems of conservation laws are considered.

There are many outstanding issues in this direction. At the theoretical level, one needs
further admissibility criteria (or entropy conditions) to uniquely specify the statistical so-
lution of (1-1). Such conditions are hitherto undiscovered. Their discovery might require
the design of novel numerical methods that are consistent with these criteria. Moreover,
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Monte Carlo algorithms are very expensive computationally. There is a pressing need for
the design of cheaper ensemble methods. Both these issues are topics of current research.
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ON EFFECTIVE NUMERICAL METHODS FOR PHASE-FIELD
MODELS

Tൺඈ Tൺඇ (汤涛)

Abstract

In this article, we overview recent developments of modern computational meth-
ods for the approximate solution of phase-field problems. The main difficulty for
developing a numerical method for phase field equations is a severe stability restric-
tion on the time step due to nonlinearity and high order differential terms. It is known
that the phase field models satisfy a nonlinear stability relationship called gradient sta-
bility, usually expressed as a time-decreasing free-energy functional. This property
has been used recently to derive numerical schemes that inherit the gradient stability.
The first part of the article will discuss implicit-explicit time discretizations which
satisfy the energy stability. The second part is to discuss time-adaptive strategies for
solving the phase-field problems, which is motivated by the observation that the en-
ergy functionals decay with time smoothly except at a few critical time levels. The
classical operator-splitting method is a useful tool in time discrtization. In the final
part, we will provide some preliminary results using operator-splitting approach.

1 Introduction

Phase-field models have emerged as a powerful approach for modeling and predicting
mesoscale morphological and microstructural evolution in materials. They were origi-
nally derived for the microstructure evolution and phase transition, but have been recently
extended tomany other physical phenomena, such as solid-solid transitions, growth of can-
cerous tumors, phase separation of block copolymers, dewetting and rupture of thin liquid
films and infiltration of water into porous medium. In general, the phase-field models take
two distinct values (for instance,+1 and �1) in each of the phases, with a smooth change

This work is partially supported by the Special Project on High-Performance Computing of the National Key
R&D Program under No. 2016YFB0200604, Hong Kong Research Grants Council CERG grants, National
Science Foundation of China, Hong Kong Baptist University FRG grants, and the SUSTech Start-Up Fund.
MSC2010: primary 65M15; secondary 65M70, 35Q35.
Keywords: Phase field equations, energy stability, adaptivity.
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between both values in the zone around the interface, which is then diffused with a finite
width. Many phenomenological macroscopic coarsening processes are energy driven in
the sense that the dynamics is the gradient flow of a certain energy functionalKohn [2006].

Two of the phase-field models have attracted much attention: the molecular beam epi-
taxy (MBE) equation with slope selection

(1) ut = �ı∆2u+ r � f (ru); x 2 Rd ; t 2 (0; T ];

and the Cahn-Hilliard (CH) equation

(2) ut = �ı∆2u+∆f (u); x 2 Rd ; t 2 (0; T ]:

In this paper, we consider

(3) f (�) = �j�j
2

� �

for which the two phase-field models (1) and (2) become

(4) ut = �ı∆2u+ r � (jruj
2
ru � ru); (x; y) 2 Rd ; t 2 (0; T ];

and

(5) ut = �ı∆2u+∆(u3 � u); (x; y) 2 Rd ; t 2 (0; T ]:

In (4), u is a scaled height function of epitaxial growth of thin films in a co-moving frame
and the parameter ı is a positive surface diffusion constant. In (5), u represents the con-
centration of one of the two metallic components of the alloy, and the positive parameter ı
represents the interfacial width, which is small compared to the characteristic length of the
laboratory scale. An important feature of these two equations is that they can be viewed
as the gradient flow of the following energy functionals:

(6) E(u) =

Z
Ω

�
ı

2
j∆uj

2 +
1

4
(jruj

2
� 1)2

�
dx

for the MBE equation and

(7) E(u) =

Z
Ω

�
ı

2
jruj

2 +
1

4
(juj

2
� 1)2

�
dx
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for the CH one. It is well known that both energy functionals decay in time

(8) E(u(t) � E(u(s)); 8t � s:

In this paper, we will review some recent works developing highly efficient numerical
methods for phase field models. The main stability criteria is the energy decay principle
(8). Among the time discretizations based on (8), Eyre [1993] convex splitting scheme
should be specially mentioned. It is a first-order accurate unconditionally stable time-
stepping scheme for gradient flows, which can be either linear or nonlinear depending
on the ways of splitting. In particular, it has served as inspiration for many other time
integration schemes in recent years, see, e.g., Feng, Tang, and J. Yang [2015], Qiao and
S. Sun [2014], Shen, C. Wang, X. Wang, and Wise [2012], and Shen, J. Xu, and J. Yang
[2017]. Other significant works for higher order stable schemes for the phase field models
can be found in Gomez and Hughes [2011], Qiao, Z.-Z. Sun, and Z. Zhang [2015], Shen,
C. Wang, X. Wang, and Wise [2012], Wise, C. Wang, and Lowengrub [2009], Xia, Y. Xu,
and Shu [2009], and van der Zee, Oden, Prudhomme, and Hawkins-Daarud [2011].

2 Time stablization by adding consistent terms

Since explicit schemes usually suffer from severe stability restrictions caused by the pres-
ence of high-order derivative terms and do not obey the energy decay property, semi-
implicit schemes are widely used. It is known that explicit schemes usually suffer severe
time step restrictions and generally do not obey energy conservation. To enforce the en-
ergy decay property and increase the time step, a good alternative is to use implicit-explicit
(semi-implicit) schemes in which the linear part is treated implicitly (such as backward
differentiation in time) and the nonlinear part is evaluated explicitly. For example, in
L.Q. Chen [1998] Chen and Shen considered the semi-implicit Fourier-spectral scheme
for (5) (set ı = 1)

1un+1(k) � cun(k)

∆t
= �jkj

41un+1(k) � jkj
2 1f (un)(k);(1)

where cun denotes the Fourier coefficient of u at time step tn. On the other hand, the semi-
implicit schemes can generate large truncation errors. As a result smaller time steps are
usually required to guarantee accuracy and (energy) stability. To resolve this issue, a class
of large time-stepping methods were proposed and analyzed in Feng, Tang, and J. Yang
[2013], He, Liu, and Tang [2007], Shen and X. Yang [2010], C. Xu and Tang [2006], and
Zhu, Chen, Shen, and Tikare [1999]. The basic idea is to add anO(∆t) stabilizing term to
the numerical scheme to alleviate the time step constraint whilst keeping energy stability.
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The choice of the O(∆t) term is quite flexible. For example, in Zhu, Chen, Shen, and
Tikare [1999] the authors considered the Fourier spectral approximation of the modified
Cahn-Hilliard-Cook equation

@tC = r �
�
(1 � aC 2)r(C 3

� C � �r
2C )

�
:(2)

The explicit Fourier spectral scheme is (see equation (16) therein)

1C n+1(k; t) � cC n(k; t)

∆t
= ik �

˚
(1 � aC 2)[ik0(f�C + C 3

g
n
k0 + �jk0

j
2 cC n(k0; t))]r

	
k
:

(3)

The time step for the above scheme has a severe constraint

∆t � � �K4
� 1;(4)

where K is the number of Fourier modes in each coordinate direction. To increase the
allowable time step, it is proposed in Zhu, Chen, Shen, and Tikare [ibid.] to add a term
�Ak4(1C n+1 � cC n) to the RHS of (3). Note that on the real side, this term corresponds to
a fourth order dissipation, i.e.

�A∆2(C n+1
� C n)

which roughly is of order O(∆t).
In He, Liu, and Tang [2007], a stabilized semi-implicit scheme was considered for the

CH model, with the use of an order O(∆t) stabilization term

A∆(un+1
� un):

Under a condition on A of the form:

A � max
x2Ω

n1
2

jun(x)j2 +
1

4
jun+1(x) + un(x)j2

o
�

1

2
; 8n � 0;(5)

one can obtain energy stability (8). Note that the condition (5) depends nonlinearly on the
numerical solution. In other words, it implicitly uses the L1-bound assumption on un in
order to make A a controllable constant.

In 2010, Shen and Yang proved energy stability of semi-implicit schemes for the Allen-
Cahn and the CH equations with truncated nonlinear term. More precisely it is assumed



ON EFFECTIVE NUMERICAL METHODS FOR PHASE-FIELD MODELS 3691

that

max
u2R

jf 0(u)j � L(6)

which is what we referred to as the Lipschitz assumption on the nonlinearity in the abstract.
In 2011, Bertozzi et al. considered a nonlinear diffusion model of the form

@tu = �r � (f (u)r∆u) + r � (g(u)ru);

where g(u) = f (u)�0(u), and f , � are given smooth functions. In addition f is assumed
to be non-nonnegative. The numerical scheme considered in Bertozzi, Ju, and Lu [2011]
takes the form

un+1 � un

∆t
= �A∆2(un+1

� un) � r � (f (un)r∆un) + r � (g(un)run);(7)

where A > 0 is a parameter to be taken large. One should note the striking similarity
between this scheme and the one introduced in Zhu, Chen, Shen, and Tikare [1999]. In
particular in both papers the biharmonic stabilization of the form �A∆2(un+1 � un) was
used. The analysis in Bertozzi, Ju, and Lu [2011] is carried out under the additional as-
sumption that

sup
n

kf (un)k1 � A < 1:(8)

This is reminiscent of the L1 bound on un.
Roughly speaking, all prior analytical developments are conditional in the sense that

either one makes a Lipschitz assumption on the nonlinearity, or one assumes certain a
prioriL1 bounds on the numerical solution. It is very desirable to remove these technical
restrictions and establish a more reasonable stability theory.

In D. Li, Qiao, and Tang [2016], this problem is settled for the spectral Galerkin case.
More precisely, the authors of D. Li, Qiao, and Tang [ibid.] considered a stabilized semi-
implicit scheme introduced in He, Liu, and Tang [2007] following the earlier work C. Xu
and Tang [2006]. It takes the form8<:u

n+1 � un

∆t
= �ı∆2un+1 + A∆(un+1

� un) + ∆ΠN (f (un)); n � 0;

u0 = ΠNu0:
(9)
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whereA > 0 is the coefficient for theO(∆t) regularization term. For each integerN � 2,
define

XN = span
n
cos(k � x); sin(k � x) : k = (k1; k2) 2 Z2; jkj1 = maxfjk1j; jk2jg � N

o
:

Note that the space XN includes the constant function (by taking k = 0). The L2 projec-
tion operator ΠN : L2(Ω) ! XN is defined by

(ΠNu � u; �) = 0; 8� 2 XN ;(10)

where (�; �) denotes the usualL2 inner product onΩ. In yet other words, the operatorΠN is
simply the truncation of Fourier modes ofL2 functions to jkj1 � N . SinceΠNu0 2 XN ,
by induction it is easy to check that un 2 XN for all n � 0.

Theorem 2.1 (Unconditional energy stability for 2D CH). Consider (9) with ı > 0 and
assume u0 2 H 2(Ω) with mean zero. DenoteE0 = E(u0) the initial energy. There exists
a constant ˇc > 0 depending only on E0 such that if

A � ˇ �

�
ku0k

2
H2 + ı

�1
j log ıj2 + 1

�
; ˇ � ˇc ;(11)

then

E(un+1) � E(un); 8n � 0;

where E is defined by (7). Furthermore, let u0 2 H s , s � 4 with mean zero. Let u(t) be
the solution to (5) with initial data u0. Let un be defined according to (9) with initial data
ΠNu0. If A satisfies (11), then

ku(tm) � um
k2 � A � eC1tm � C2 � (N�s +∆t):

where tm = m∆t , C1 > 0 depends only on (u0; ı), C2 > 0 depends on (u0; ı; s).

There is an analogue of Theorem 2.1 for theMBE Equation (4). Consider the following
semi-implicit scheme for MBE (4):8<:u

n+1 � un

�
= �ı∆2un+1 + A∆(un+1

� un) + ΠN r � (g(run)); n � 0;

u0 = ΠNu0:
(12)

This scheme was introduced and analyzed in C. Xu and Tang [2006] (see also Qiao, Z.
Zhang, and Tang [2011]). The authors of C. Xu and Tang [2006] first introduced the
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stabilized O(∆t) term of the form A∆(un+1 � un) as given in (12), and provided an
energy stability analysis based on the assumption that A depends implicitly on the L1

bound on the numerical solution un. Note that the result in D. Li, Qiao, and Tang [2016]
provide a clean description on the size of the constantA, in the sense thatA is independent
of the L1 bound on the numerical solution. The energy-supercritical three-dimensional
case is analysed in D. Li and Qiao [2017b] by exploiting discrete smoothing estimates.

Note that above results are restricted to the first-order time discretization. On the other
hand, D. Li and Qiao [2017a] introduced recently several novel stabilization techniques
for second-order schemes. Quite surprisingly, it is found that depending on the form of
numerical discretization (such as f (2un �un�1) v.s. 2f (un)�f (un�1)) the correspond-
ing scheme can have conditional stability or unconditional stability with the stabilization
parameter depending only on initial data and the diffusion coefficient. Developing upon
the second-order scheme in D. Li and Qiao [ibid.], Song and Shu [2017] constructed a
new unconditionally stable second-order implicit–explicit local discontinuous Galerkin
Method for the Cahn–Hilliard Equation.

3 Time stepping with p-adaptivity

As the governing equations (4) and (5) involve the perturbed (i.e., the coefficient ı � 1)
biharmonic operators and strong nonlinearities, it is very difficult to design efficient time
discretization strategy which can resolve dynamics and steady state of the corresponding
phase field models. Moreover, nonlinear energy stability which is intrinsic to the phase
field models (see, e.g., Figure 1) is also a challenging issue for numerical approximations.
Numerical evidences show that violating the energy stability may lead to non-physical
oscillations. Consequently, a satisfactory numerical strategy needs to balance solution
accuracy, efficiency and nonlinear stability.

Below we will briefly outline the motivation of this section. Our numerical evidences
show that the lower order time discretizations may require very small time stepsizes in
order to resolve the short time dynamics of the phase field problems. Figure 2 gives a
typical example which gives energy evolutions for the Cahn-Hilliard Equation (5) with
∆t = 1/1000; 1/100; 1/50. It is observed that a time step smaller than 10�2 is needed in
order to obtain accurate solutions.

For improvement, one quick idea is to use higher order time discretization. However,
there has few higher order energy-stable schemes, particularly for order 3 or higher. Our
idea is to use the so-called spectral deferred correction (SDC) method which was first in-
troduced to solve initial value ordinary differential equations (ODEs) by Dutt, Greengard,
and Rokhlin [2000]. The key idea of the SDCmethod is to first convert the original ODEs
into the corresponding Picard equation and then apply a deferred correction procedure



3694 TAO TANG (汤涛)

0 5 10 15 20
0

2

4

6

8

10

 Cahn−Hilliard equation

 t

E
n

e
r
g

y

0 5 10 15 20
−15

−10

−5

0

5

10

15
 Thin film epitaxy without slope selection

 t

 E
n

e
r
g

y

Figure 1: Illustrative energy curves for the three different models.
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Figure 2: A typical example for the energy dependent on time steps for the Cahn-
Hilliard equation.

in the integral formulation, aiming to achieve higher order accuracy in an iterative way.
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The reasons for us to employ the SDC method are the following: iteration loops can im-
prove the formal accuracy in a flexible and simple way; the SDC method was designed to
handle stiff systems which are the case of our perturbed singularly nonlinear equations;
and the flexibility of the order enhancement is useful for our local adaptive strategy to be
described later. On the other hand, although the SDC method can solve the short-time dy-
namics very well (e.g., a 5th-order time discretization can fix the problem in Figure 2 with
∆t = 1/20), unfortunately, a higher order time discretization may yield numerical insta-
bility as the nonlinear stability can not be guaranteed for higher order time discretizations.
A typical example is given in Figure 3, which solves the same example as in Figure 2 but
with an 3rd order SDC method (i.e. Np = 2 in the figure) and an 5th-order SDC method
(i.e. Np = 4). It is observed that the discrete energies blow up before T = 30.
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Figure 3: A typical energy blow-up with 3rd (right) or a 5th (left) order time dis-
cretization for the Cahn-Hilliard equation.

Note that the problem in Figs. 2 and 3 is partially due to the use of the central-difference
approaches in space approximation (see Feng, Tang, and J. Yang [2015]). A more elegant
approach using discontinuous Galerkin (DG) method together with SDC methods. Stable
and accurate numerical results have been obtained in Guo and Y. Xu [2016] and Guo, Xia,
and Y. Xu [2017]. On the other hand, for simple central-difference approaches in space,
we can use a hybrid p-adaptive method which chooses appropriate order of accuracy at
each time level. It is seen from the energy curves in Figure 1 that first-order methods
should be good enough in most of time regimes, but in some critical stages with rapid
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energy change appropriate adaptive strategies must be used. Some p-adaptive details will
be reported and the relevant numerical results will be presented in this section.

3.1 Convex splitting methods. An important class of time discretization is the convex
splitting method originally proposed by Eyre [1993], see also improved version of Shen,
J. Xu, and J. Yang [2017] and Shen, C. Wang, X. Wang, and Wise [2012], which can
produce unconditional energy stability (in the sense that the stability is irrelevant with the
choice of the time steps). If we can express the free energy as the difference of two convex
functional, namelyE = Ec �Ee , where bothEc andEe are convex about u, then we may
use the concept of convex splitting due to Eyre [1993] to obtain highly stable numerical
schemes.

Belowwe will demonstrate the convex splitting by considering the Cahn-Hilliard Equa-
tion (5). Using the splitting form

(1) Ec(u) =

Z
Ω

�
ı

2
jruj

2 +
ˇ

2
u2

�
dx; Ee(u) =

Z
Ω

�
ˇ

2
u2 � F (u)

�
dx;

where F = (juj2 � 1)2/4, and the corresponding semi-discrete scheme to the Cahn-
Hilliard Equation (5) is

un+1 � un

∆t
= ∆

�
ıEc(u

n+1)

ıu
�
ıEe(u

n)

ıu

�
(2)

= ��2∆2un+1 + ˇ∆un+1
� ˇ∆un +∆f (un):

It can be proven (see, e.g.,Feng, Tang, and J. Yang [2015]) that if the constant ˇ is suf-
ficiently large then the semi-discrete scheme (2) is unconditionally energy stable, i.e.,
E(un+1) � E(un), where the energy E is defined by (7). Similarly, for the MBE model
(4), using the convex splitting

(3) Ec(u) =

Z
Ω

�
�2

2
j∆uj

2 +
ˇ

2
jruj

2

�
dx; Ee(u) =

Z
Ω

�
ˇ

2
jruj

2
� F (ru)

�
dx;

gives the corresponding semi-discrete scheme

un+1 � un

∆t
= �

�
ıEc(u

n+1)

ıu
�
ıEe(u

n)

ıu

�
(4)

= ��2∆2un+1 + ˇ∆un+1
� ˇ∆un + r � f (run):

In practical computations, for both (4) and (5) with f (u) of the form (3), ˇ = 1 can
guarantee the energy stability for (4), and ˇ = 2 can guarantee the energy stability for (2).
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3.2 Spectral deferred correctionmethod. Assume the time interval [0; T ] intoN non-
overlapping intervals 0 = t0 < t1 < � � � < tN = T: Let ∆tn = tn+1 � tn and un

denotes the numerical solution of u(tn), with u0 = u(t0). Based on the convex splitting
schemes presented in the above subsection, our convex splitting scheme can be written in
the following form

(5) un+1 = un +∆tn(FE (un) + FI (u
n+1))

for convenience, where FN represents the explicit part and FI represents the implicit part.
The SDC method is a one step, multi-stage method. Denoting the p + 1 Legendre-

Guass-Radau IIa nodes (cf. Shen, Tang, and L.-L. Wang [2011]) on [�1; 1] by �1 = r0 <

r1 < � � � < rp�1 < rp = 1 and letting

tn;i =
tn+1 � tn

2
ri +

tn+1 + tn

2
; i = 0; 1; � � � ; p;

we obtain the spectral nodes on interval [tn; tn+1] of the form tn = tn;0 < tn;1 < � � � <

tn;p�1 < tn;p = tn+1. Then the interval [tn; tn+1] is divided into p subintervals. Let
∆tn;m = tn;m+1 � tn;m and uk

n;m denotes the kth order approximation to u(tn;m).
Note that we do the SDC procedure in every interval [tn; tn+1]. Given un, we wish to

approximate un+1. Let u1n;0 = un. We first compute a first order accurate approximate
solution u1 at the nodes ftn;mg

p
m=1:

(6) u1n;m+1 = u1n;m +∆tn;m

�
FE (tn;m; u

1
n;m) + FI (tn;m+1; u

1
n;m+1)

�
:

We then do the successive corrections. For each 1 � k � K, let uk+1
n;0 = un. For

m = 0; � � � ; p � 1, we use

uk+1
n;m+1 = uk+1

n;m +∆tn;m

�
FE (tn;m; u

k+1
n;m ) � FE (tn;m; u

k
n;m) + FI (tn;m+1; u

k+1
n;m+1)

� FI (tn;m+1; u
k
n;m+1)

�
+ Im+1

m (FE (t; uk) + FI (t; u
k));(7)

where the last part is the integral of the p-th degree interpolating polynomial on the p+1

points
(tn;m; FE (tn;m; u

k
n;m) + FI (tn;m; u

k
n;m))p

m=0

over the subinterval [tn;m; tn;m+1], which is the numerical quadrature approximation ofZ tn;m+1

tn;m

(FE (�; u(�)) + FI (�; u(�)))d�:
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The above procedure leads to un+1 = uK+1
n;p .

For more details of the SDC method, we refer the readers to Dutt, Greengard, and
Rokhlin [2000] and Minion [2003] and the recent work Guo and Y. Xu [2016] and Tang,
Xie, and Yin [2013].

3.3 Efficiency enhancement with p-adaptivity. It is known that the convex splitting
method can preserve the energy stability but accuracy may not be satisfactory. Although
using SDC may enhance accuracy, the SDC corrections may cause blow-up as demon-
strated in Fig. 3. It remains to balance the accuracy and stability. To this end, an adaptive
strategy adjusting the correction number was proposed in Feng, Tang, and J. Yang [2015]
based on the discrete energies Eh(u

n) and Eh(u
n�1):

(8)
Np = minfNmax; maxf0; Nmax + fix[log�(jEh(u

n) �Eh(u
n�1)j + ��(Nmax+1))]gg;

where � is a positive constant, Nmax is the maximum number of corrections and fix[�]
represents the integer part of a number. Below we will explain the motivation of using (8)
to predict Np. It is clear that more corrections are needed in the region where the energy
decays fast. More specifically, the relationship between Np and the energy change is
given as following:

(9) Np =

8̂̂<̂
:̂

0; if jEh(u
n) �Eh(u

n�1)j < ��Nmax

k; if ��Nmax+k � jEh(u
n) �Eh(u

n�1)j < ��Nmax+k+1

Nmax; if jEh(u
n) �Eh(u

n�1)j � ��1

;

whereNmax is upper bounded by 2p�1 as the accuracy order of the interpolation on the
p + 1 Gauss-Radau nodes is 2p and the parameter � can be fixed as 3 or 5.

Note that the energy decreasing property motivates us to use the energy difference at
tn�1 and tn for choosing the number of corrections. Firstly, as observed from the energy
curves in Figure 1, the energy variation in most time regimes is very small, so Np = 0

should be chosen in most of the time intervals. This implies that only first order SDC
method is used, which guarantees the energy stability in general. Secondly, in the tran-
sition regime, the energy variation is between ��Nmax and ��1, which indicates some
variable value of Np is used based on the size of the energy variation. Thirdly, if the
energy variation exceeds ��1, then the maximum number of correction should be used.
In the later two cases, the energy decreasing property may not be preserved locally. How-
ever, as the total number of the intervals relevant to the last two cases is very small, it is
expected that the overall energy stability can be preserved well. In other words, the choice
of (9) seems very useful to balance the accuracy and overall energy stability.
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Example 3.1. We will use the adaptive SDC scheme for the Cahn-Hilliard Equation (5)
with initial condition u0(x; y) = 0:05 sin x siny + 0:001; 0 � x; y � 2�; and the
periodic boundary condition. The parameter ı is chosen as 0.01.

The mesh grid in space is fixed as 400 � 400. We take the numerical solutions with
small uniform time step dt = 0:001 as the “reference” solution. We take p = 4 in the
SDC method, and ˇ = 1 in (2), � = 5; Nmax = 5 in (9) and set Np = Nmax at the first
step.

In Figure 4, the numerical results using adaptive SDC scheme with dt = 0:04 produce
graphically indistinguishable energy curve as that for un-adaptive dt = 0:001 results. On
the other hand, the energy curve with un-adaptive dt = 0:04 is quite far from the reference
energy curve, especially before T = 10, which can be seen in the locally magnified energy
curves from T = 2 to 8.

The CPU time comparison is presented in Figure 5, where it is seen that our adaptive
SDC scheme consumes more CPU time at beginning as more corrections are needed to
capture the fast dynamical evolution. However, the adaptive SDC scheme can enhance the
efficiency significantly in the long time computation. The numerical solutions at different
time levels are presented in Figure 6, where it is observed that the solution dynamics can
be captured correctly with larger time steps when adaptive strategy is employed.

4 Operator splitting method

Following the approach in Chertock, Kurganov, and Petrova [2009], we split Eq. (4) into
the nonlinear part

(1) ut = r � (jruj
2
ru);

and linear part

(2) ut = �∆u � ı∆2u:

We denote by SN the exact solution operator associated with (1) and by SL the exact
solution operator associated with (2). Notice that the corresponding energy functionals,

EN(u) =
1

4

Z
Ω

jruj
4 dxdy;(3)

EL(u) =

Z
Ω

�
ı

2
j∆uj

2
�

1

2
jruj

2 +
1

4

�
dxdy(4)
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decay. Then, introducing a (small) splitting step ∆t , the solution of the original equa-
tion (4) (which is assumed to be available at time t ) is evolved using the Strang splitting
method, one step of which can be written as

u(x; y; t +∆t) = SL(∆t/2)SN(∆t)SL(∆t/2)u(x; y; t):

A similar splitting approach is applied to equation (5), for which the linear part is still (2)
and the nonlinear one is

(5) ut = ∆(u3):

As in the case of the MBE equation, the corresponding energy functionals,

EN(u) =
1

4

Z
Ω

u4 dxdy;(6)

EL(u) =

Z
Ω

�
ı

2
jruj

2
�

1

2
u2 +

1

4

�
dxdy(7)

decay. We stress that even though the linear parts of equations (4) and (5) are the same,
the functionals (4) and (7) are different since they are associated with the corresponding
parts of the energy functionals (6) and (7).

In order to implement the splittingmethod, the exact solution operators SN and SL have
to be replaced by their numerical approximations. Note that one of the main advantages
of the operator splitting technique is the fact that the nonlinear, (1) and (5), and linear,
(2), subproblems, which are of different nature, can be solved numerically by different
methods. First, using the method of lines, (1) and (5) can be reduced to systems of ODEs,
which can be efficiently and accurately integrated by large stability domain explicit ODE
solvers Abdulle [2002]. Second, since (2) is linear, one can solve it (practically) exactly
using, for example, the pseudo-spectral method. This way, no stability restrictions on
solving (2) are imposed.

4.1 Finite-Difference Methods for (1) and (5). In this section, we propose efficient
explicit finite-differencemethods for the degenerate parabolic equations (1) and (5). These
methods are based on the semi-discretization of (1) and (5) followed by the use of an
efficient and accurate ODE solver. The ODE solver will be utilized to evolve the solutions
of (1) and (5) from time t to t + ∆t . We note that in a general case the time-steps of
the ODE solver denoted by ∆tODE will be smaller than the splitting step ∆t so that the
approximation of SN(∆t) will typically require several∆tODE steps.
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We first design 2mth-order centered-difference schemes for the 1-D version of (1):

(8) ut = (u3x)x ; x 2 [0; L]; t 2 (0; T ]:

We consider a uniform grid with nodes xj , such that xj+1 �xj = ∆x;8j , and introduce
the following 2mth-order discrete approximation of the @

@x
operator:

(9) ( x)j :=

mX
p=�m

˛p j+p =  x(xj ) + O((∆x)2m):

For example, when m = 2, we obtain a fourth-order centered-difference approximation
by taking

˛1 = �˛�1 =
2

3∆x
; ˛2 = �˛�2 = �

1

12∆x
:

Equipped with the above approximation of spacial derivatives, we discretize equation (8)
using the method of lines as follows:

(10)
duj

dt
(t) =

mX
p=�m

˛pHj+p(t) =: Fj (t);

where uj (t) denotes the computed point value of the solution at (xj ; t), and

(11) Hj (t) := (ux)
3
j (t) with (ux)j (t) :=

mX
p=�m

˛puj+p(t):

Note that the above quantities depend on t , but for the sake of brevity we will suppress
this dependence from now on.

It is proven in Cheng, Kurganov, Qu, and Tang [2015] that the semi-discrete schemes
(10)-(11) satisfy the following energy decay property:

d

dt
E∆

N � 0;

where E∆
N is a 1-D discrete version of the energy functional (3): E∆

N := 1
4

P
j

(ux)
4
j∆x.

We now consider the finite-difference schemes for ut = r � (jruj2ru), i.e., (1). We
consider a uniform grid with nodes (xj ; yk), such that xj+1�xj = ∆x;8j; yk+1�yk =

∆y;8k, and introduce the following 2mth-order discrete approximation of the @
@x

and @
@y
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operators:

(12)

( x)j;k :=

mX
p=�m

˛p j+p;k =  x(xj ; yk) + O((∆x)2m);

( y)j;k :=

mX
p=�m

ˇp j;k+p =  y(xj ; yk) + O((∆y)2m):

For example, when m = 2, we obtain a fourth-order centered-difference approximation
by taking

˛1 = �˛�1 =
2

3∆x
; ˛2 = �˛�2 = �

1

12∆x
;

ˇ1 = �ˇ�1 =
2

3∆y
; ˇ2 = �ˇ�2 = �

1

12∆y
:

Equipped with the above approximation of spacial derivatives, 2mth-order semi-discrete
finite-difference schemes for (1) read:

(13)
duj;k

dt
=

mX
p=�m

˛pH
x
j+p;k +

mX
p=�m

ˇpH
y

j;k+p
=: Fj;k ;

where

(14) Hx
j;k := (ux)

3
j;k + (uy)

2
j;k(ux)j;k and H

y

j;k
:= (uy)

3
j;k + (ux)

2
j;k(uy)j;k

with

(15) (ux)j;k :=

mX
p=�m

˛puj+p;k and (uy)j;k :=

mX
p=�m

ˇpuj;k+p:

It is shown in Cheng, Kurganov, Qu, and Tang [2015] that the semi-discrete schemes
(13)–(15) satisfy the following energy decay property:

d

dt
E∆

N � 0;

where E∆
N is a 2-D discrete version of the energy functional (3):

E∆
N := 1

4

P
j jrhuj;kj4∆x∆y with rhuj;k := ((ux)j;k ; (uy)j;k)

T .
We now design semi-discrete finite-difference schemes for ut = ∆(u3), i.e., (5). We

use the same grids and the same 2mth-order discrete approximation of the @
@x

and @
@y
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operators as above. Then, 2mth-order semi-discrete finite-difference schemes for (5) read:

(16)
duj;k

dt
=

mX
p=�m

˛pH
x
j+p;k +

mX
p=�m

ˇpH
y

j;k+p
=: Fj;k ;

where

(17) Hx
j;k :=

mX
p=�m

˛pu
3
j+p;k and H

y

j;k
:=

mX
p=�m

ˇpu
3
j;k+p:

It can be shown that the semi-discrete schemes (16)-(17) satisfy the following energy
decay property:

d

dt
E∆

N � 0;

whereE∆
N is a 2-D discrete version of the energy functional (6): E∆

N := 1
4

P
j

u4
j;k

∆x∆y.

4.2 Large Stability Domain Explicit ODE Solver. The ODE systems (10), (13) and
(16) have to be solved numerically. Recall that explicit ODE solvers typically require
time-steps to be ∆tODE ∼ (∆x)2, while implicit ODE solvers can be made uncondition-
ally stable. However, the accuracy requirements would limit time-step size and since a
large nonlinear algebraic system of equations has to be solved at each time-step, implicit
methods may not be efficient. Here, we apply the explicit third-order large stability do-
main Runge-Kutta method, developed in Medovikov [1998] and Medovikov [n.d.], which
allow one to use much larger time-steps compared with the standard explicit Runge-Kutta
methods. In practice, when the problem is not too stiff as in the case of ODEs arising
in finite-difference approximation of parabolic PDEs, these methods preserve all the ad-
vantages of explicit methods and are typically more efficient than implicit methods (see
Abdulle [2002], Medovikov [1998], and Verwer, Sommeijer, and Hundsdorfer [2004] for
details). We have implemented the code DUMKA3 Medovikov [n.d.], which incorpo-
rates the embedded formulas that permit an efficient stepsize control. The efficiency of
DUMKA3 is further improved when the user provides an upper bound on the time-step
stability restriction for the forward Euler method. Assume that the system of ODEs (10)-
(11) is numerically integrated by the forward Euler method from time t to t + ∆tFE and
that the following CFL condition holds:

(18) ∆tFE �
1

am
�

1

max
j

(ux)
2
j

; a :=

mX
p=�m

˛2p;
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where ˛p are the coefficients in (9) and (ux)j are given by (11). It is shown in Cheng,
Kurganov, Qu, and Tang [2015] that

(19) ku(t +∆tFE)kL2 � ku(t)kL2 ;

where ku(t)kL2 :=
qP

j u
2
j (t)∆x.

Similar theoretical results hold for (13)–(15) with the forward Euler method, and for
(16)–(17) with the forward Euler method. Note that the code DUMKA3 automatically
selects time-steps so that in average the selected time-steps ∆tODE are much larger than
∆tFE.

4.3 Pseudo-Spectral Methods for (2). We first consider the 1-D equation,

(20) ut = �uxx � ıuxxxx ; x 2 [0; L]; t 2 (0; T ];

subject to the L-periodic boundary conditions.
We first use the FFT algorithm to compute the discrete Fourier coefficients fbum(t)g

from the available point values fuj (t)g. This gives us the following spectral approxima-
tion of u on [0; L]:

(21) u(x; t) �
X

m

bum(t)ei 2�mx
L :

We then substitute (21) into (20) and obtain very simple linear ODEs for the discrete
Fourier coefficients of u,

d

dt
bum(t) = (s � ıs2)bum(t); s =

�2�m
L

�2

;

which can be solved exactly:

bum(t +∆t) = e(s�ıs2)∆t bum(t):

Finally, we use the inverse FFT algorithm to obtain the point values of the solution at the
new time level, fuj (t + ∆t)g, out of the set of the discrete Fourier coefficients fbum(t +

∆t)g.
We now consider the 2-D equation (2),

ut = �(uxx + uyy) � ı(uxxxx + 2uxxyy + uyyyy);
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on a rectangular domain Ω = [0; Lx ] � [0; Ly ] with the Lx- and Ly-periodic boundary
conditions in the x- and y-directions, respectively.

Similar to the 1-D case, we apply the FFT algorithm and obtain very simple linear
ODEs for the discrete Fourier coefficients of u,

(22)
d

dt
bum;`(t) = (s � ıs2)bum;`(t); s =

�2�m
Lx

�2

+
�2�`
Ly

�2

:

The exact solution of (22) is

bum;`(t +∆t) = e(s�ıs2)∆t bum;`(t):

Finally, we apply the inverse FFT algorithm to obtain the point values of the solution
at the new time level, fuj;k(t + ∆t)g, out of the set of the discrete Fourier coefficients
fbum;`(t +∆t)g.

As a numerical example, we again consider Example 3.1 and compute its solution on a
128�128 uniform grid with the constant splitting step∆t = 10�3. The solution computed
at times t = 1; 2; 5 and 20 is shown in Figure 7. These results are in good agreement with
those reported in Feng, Tang, and J. Yang [2015] and with the SDC result reported in the
last section.

We mention that the present operator-splitting approach can be combined with some
time-adaptor strategy to speed up numerical simulations, see, e.g., Cheng, Kurganov, Qu,
and Tang [2015], Luo, Tang, and Xie [2016], and Qiao, Z. Zhang, and Tang [2011].

We close this section bymentioning that some theoretical study for the operator splitting
method outlined above was carried out in X. Li, Qiao, and H. Zhang [2017], where the
finite difference scheme for the nonlinear part was improved so that larger time steps are
allowed.

5 Concluding remarks

There have been considerable recent interests in developing highly stable and efficient nu-
merical schemes for solving phase-field models. In this article, we present three classes of
effective time discretization schemes. The first one is based on adding consistent terms so
that the energy-decay property is satisfied. Some recent theory for this class of methods
is reviewed. The second class is based on the time direction p-adaptivity, by combin-
ing lower-order convex-splitting methods and the SDC technique. It is demonstrated by
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numerical experiments that this is a very efficient numerical approach. The third class
method is based on the classical operator-splitting method. Some preiminary results show
that this is a promising method for practical computations.
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Figure 4: Example 3.1: Energy curves of the Cahn-Hilliard equation by different
schemes with different time steps.
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Figure 5: Example 3.1: CPU time comparison between different schemes for Cahn-
Hilliard equation.
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Figure 6: Example 3.1: Solution variation at different time, using (a) direct energy
convex splitting scheme without SDC and dt = 0:001; (b) direct energy convex
splitting scheme without SDC and dt = 0:04; and (c) adaptive SDC scheme with
dt = 0:04.
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Figure 7: Example 3.1: u computed withsplitting time-stepping with
∆t = 10�3.
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FFT BASED SPECTRAL EWALD METHODS AS AN
ALTERNATIVE TO FAST MULTIPOLE METHODS
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Abstract

In this paper, we review a set of fast and spectrally accurate methods for rapid
evaluation of three dimensional electrostatic and Stokes potentials. The algorithms
use the so-called Ewald decomposition and are FFT-based, which makes them natu-
rally most efficient for the triply periodic case. Two key ideas have allowed efficient
extension of these Spectral Ewald (SE) methods to problems with periodicity in only
one or two dimensions: an adaptive 3D FFT that apply different upsampling rates lo-
cally combined with a newmethod for FFT based solutions of free space harmonic and
biharmonic problems. The latter approach is also used to extend to the free space case,
with no periodicity. For the non-radial kernels of Stokes flow, the structure of their
Fourier transform is exploited to extend the applicability from the radial harmonic and
biharmonic kernels.

Awindow function is convolvedwith the point charges to assign values on the FTT
grid. Spectral accuracy is attained with a variable number of points in the support
of the window function, tuning a shape parameter according to this choice. A new
window function, recently introduced in the context of a non-uniform FFT algorithm,
allows for further reduction in the computational time as compared to the truncated
Gaussians previously used in the SE method.

1 Introduction

The direct evaluation of so called N -body problems yields a computational cost propor-
tional to N 2. One example of such a problem is the evaluation of an electrostatic potential

This work has been supported by the Swedish Research Council under grants no 2011-3178 and 2015-04998
and by the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine. The author gratefully
acknowledge this support.
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owing to N particles at locations xn, n = 1; : : : ; N with charges qn, at each of the particle
locations,

�0P (xm) =

N 0X
n=1

qn

1

jxm � xnj
;(1)

where N 0 indicates that the term m = n is excluded from the sum.
Such sums also arise when solving boundary integral equations numerically. Discretiz-

ing the following integral over the boundary @Ω of Ω � R3Z
@Ω

f (y)
jx � yj

dSy;

qn is for each n the product of the function f evaluated at the quadrature point xn and the
quadrature weight at that point. Since the integrand is singular at x = y, the point xm can
naturally not be included in the sum.

As we use integral equations to solve the Stokes equations, we need instead to evaluate
integrals that contain fundamental solutions of Stokes flow, like the Stokeslet

(2) S(r) =
1

r
I+

1

r3
rr; or Sj` =

ıj`

r
+

rj r`

r3
j; l = 1; 2; 3;

with r = jrj and where ıj` is the Kronecker delta. Another fundamental solution of Stokes
flow, the Stresslet, will be introduced later. The discrete sum containing the Stokeslet
corresponding to Equation (1) becomes

u0P (xm) =

N 0X
n=1

S(xm � xn)fn; m = 1; : : : ; N:(3)

In electrostatic calculations, periodic boundary conditions are typically applied to accu-
rately capture properties of a larger aggregate. Periodicity in only one or two directions
can be applied for systems with different structures, such as membranes or nanopores.
Similarly, it is common to apply periodic boundary conditions in some directions for fluid
flows.

Assume that we have N particles with charge qn located at xn, n = 1; : : : ; N , in a
domainΩ = [0; L1]�[0; L2]�[0; L3], where the system is charge neutral, i.e.

PN
n=1 qn �

0. The electrostatic potential due to these charges, evaluated at these same locations, is
given by the sum

(4) �DP (xm) =
X
p2PD

N;0X
n=1

qn

jxm � xn + pj
; m = 1; : : : ; N:
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The sum over p is a periodic replication of the charges, and D = 0; 1; 2; 3 indicates the
number of periodic directions. The N;0 indicates that the term (n = m, p = 0) is excluded
from the sum. We define

P3 = f(jL1; lL2; pL3g : (j; l; p) 2 Z3
g; P2 = f(jL1; lL2; 0)g : (j; l) 2 Z2

g;

P1 = f(0; 0; pL3g : p 2 Zg; P0 = f(0; 0; 0gg:(5)

Here, we have chosen x and y as the periodic directions and z as the free direction in the
doubly periodic case (2P), and x and y as the free and z as the periodic direction in the
singly periodic case (1P).

In the triply periodic case, the sum given above is only conditionally convergent also
for charge neutral systems, and the result will depend on the summation order, as is shown
e.g. in the much cited paper by de Leeuw, Perram, and E. R. Smith [1980]. This is further
discussed more recently by E. Smith [2008]. The Ewald summation formula for the triply
periodic case was derived by Ewald [1921] in 1921. The resulting formula imposes two
choices: a spherical summation order and an assumption that the dielectric constant of the
surrounding medium is infinite, i.e. that it is a conductor. This is often referred to as “tin
foil” boundary conditions. As shown in E. Smith [2008], charge neutrality is necessary
also in the singly and doubly periodic cases for the sums to be convergent, but the results
are independent on the summation order.

In the Ewald summation formula Ewald [1921], the potential is computed by splitting
the contribution from each charge into a rapidly decaying part and a smooth part which is
summed in Fourier space. The Ewald sum for evaluating the potential at a source location
xm, m = 1; : : : ; N under triply periodic boundary conditions is

�3P (xm) =
X
p2P3

N;0X
n=1

qn

erfc(� jxm � xn + pj)

jxm � xn + pj
+

+
4�

V

X
k¤0

NX
n=1

qn

e�k2/4�2

k2
e�ik�(xm�xn) �

2�
p

�
qm:(6)

Here, the N;0 indicates that the term (n = m, p = 0) is excluded from the real space sum
and P3 is given in Equation (5). The k-vectors form the discrete set f2�( n1

L1
; n2

L2
; n3

L3
) :

(n1; n2; n3) 2 Z3g, k2 = jkj2 and V = L1L2L3. Here, � > 0 is the decomposition
parameter. The result is independent of this parameter, but it controls the relative decay
of the real and reciprocal space sums. The last term is the so called self correction term.
When evaluating the potential at a charge location, no contribution from this charge itself
should be included, and this term is added for this purpose. The Ewald sums for the
energy and electrostatic force are easily obtained from the expression for the potential,
see e.g. Deserno and Holm [1998].
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Ewald sums have also been derived for the doubly and singly periodic cases, see Grzy-
bowski, Gwóźdź, and Bródka [2000] and Porto [2000] and references therein. The deriva-
tion of the singly periodic sum in Porto [ibid.], however left an integral expression for
which no closed form was given, that could later be obtained following Fripiat, Delhalle,
Flamant, and Harris [2010]. In Tornberg [2016], derivations of the Ewald 3P , 2P and
1P sums are presented in a unified framework that gives a natural starting point for the
design of a fast method.

The Stokeslet sum (Equation (3)) can be extended similarly to Equation (4). Hasimoto
derived an Ewald type decomposition for the triply periodic case in 1959 Hasimoto [1959].
Instead of charge neutrality, here we have an assumption that there is a mean pressure
gradient that balances the net force. Pozrikidis [1996] derived an alternative sum for the
Stokes 3P case, using a different decomposition due to Beenakker [1986]. He further
discussed also the 2P and 1P Stokeslet sums, however not stating all formulas explicitly.
Explicit formulas for the 2P Stokeslet sum with the Hasimoto decomposition can be found
in Lindbo and Tornberg [2011a].

1.1 Fastmethods and the development of the Spectral Ewaldmethod. Aswas noted
above, the direct evaluation of the sum in Equation (1) has a computational complexity of
O(N 2) and so does the Ewald sum for the triply periodic case as given in Equation (6),
but in addition with a much larger cost for the same value of N .

For free space problems such as Equation (1), the Fast Multipole Method (FMM) can
reduce the O(N 2) cost to O(N ) work, where the constant multiplying N will depend on
the required accuracy. FMM was first introduced by Greengard and Rokhlin for the har-
monic kernel in 2D and later in 3D Greengard and Rokhlin [1987] and Cheng, Greengard,
and Rokhlin [1999] and has since been extended to other kernels, including the fundamen-
tal solutions of Stokes flow Tornberg and Greengard [2008] and Wang, Lei, Li, Huang,
and Yao [2007]. The FMM has not been as popular for periodic problems, even if it can
be extended to this case at an additional cost, see e.g. Gumerov and Duraiswami [2014]
and the references therein.

For triply periodic problems in electrostatics, FFT-based methods have been the most
popular and successfully used since the early 1990s. Here, the Ewald decomposition is
used, with � in Equation (6) chosen such that the real space terms decay rapidly, and more
work is put into the Fourier sum, which is accelerated with an FFT based method. With
a proper scaling of � as N grows, the full algorithm yields a cost of O(N logN ). One
early method for evaluation of the electrostatic potential and force was the Particle Mesh
Ewald (PME) method by Darden, York, and Pedersen [1993], later refined to the Smooth
Particle Mesh Ewald (SPME) method by Essmann, Perera, Berkowitz, Darden, Lee, and
Pedersen [1995]. See also the survey by Deserno and Holm [1998]. The SPME method
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was extended to the fast evaluation of the triply periodic stokeslet sum by Saintillan, Darve,
and Shaqfeh [2005].

The Spectral Ewald method. The Spectral Ewald (SE) method was first introduced for
the triply periodic stokeslet sum in Lindbo and Tornberg [2010], and soon thereafter for the
electrostatic problem Lindbo and Tornberg [2011b]. The PME methods mentioned above
have a polynomial order of accuracy, and require a refinement of the FFT grid to reduce
approximation errors. Specifically, in the SPME method, the point sources are convolved
with B-splines of a fixed regularity and support to assign values on the FTT grid. In
contrast, the SE method as it was introduced in Lindbo and Tornberg [2010, 2011b], is
spectrally accurate. By using suitably scaled and truncated Gaussians, the approximation
error is reduced spectrally fast as the number of points in the support of the truncated
Gaussians is increased, and is not tied to the grid size. The idea of using Gaussians as
window functions was of course not new, not in PME like methods, nor in the closely
related non-uniform FFT methods, as discussed in Lindbo and Tornberg [2010, 2011b].
The key in the performance of the SE method was to tie a shape parameter of the Gaussian
to the number of points in its support in order to minimize approximation errors.

Recently, we compared the use of Gaussians to a window function that was recently
introduced by Barnett and Magland in connection to a non-uniform FFT algorithm Bar-
nett and Magland [2017]. This window function is an approximation to the Kaiser-Bessel
function that retains the desirable properties while reducing the cost of evaluation. Sim-
ilarly to the Gaussians, we adjust a shape parameter for this window function with the
number of points in the support. In Saffar Shamshirgar and Tornberg [2017a], we showed
that this new Barnett-Magland window function is superior to the Gaussian and that the
computational cost is further reduced for the same target accuracy.

FFT based methods are most efficient for the triply periodic case. In this case, FFTs
can be used in all directions without any oversampling. As soon as there is a non-periodic
direction, the grid has to be extended in that direction. In the doubly periodic case, De
Joannis, Arnold, and Holm [2002] devised a method where the problem is extended to
full periodicity, with a larger length in the non-periodic direction, and where a correction
term is applied to improve on the result. Here, the increased length in the non-periodic
direction simply means a zero-padding of the FFT, increasing in the number of grid points
in that direction. The SE2P method by Lindbo and Tornberg [2012] takes a different
approach, which needs a “mixed” transform; a discrete Fourier transform in the periodic
variables and an approximation to the continuous Fourier integral transform in the free
dimension. Also in this case the grid in the free dimension must be oversampled for an
accurate approximation.
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In the doubly periodic Ewald sum, there is a term that includes the contribution from
the zero wave number in the periodic directions, i.e., that depends only on the variable
in the free direction. An expansion based on Chebyshev polynomials offered an efficient
evaluation if this 1D sum Lindbo and Tornberg [2012].

Recent developments. There were two main challenges to overcome when extending
the Spectral Ewald method to the singly periodic (1P) case. With two free dimensions, an
oversampling factor of four to six in each would increase the cost of FFTs by a factor of 16
to 64, which is clearly not desirable. Furthermore, the zero wave number in the periodic
direction here yields a 2D sum as opposed to a 1D sum in the doubly periodic case, and it
is not feasible to extend the approach in Lindbo and Tornberg [ibid.].

In Saffar Shamshirgar and Tornberg [2017b] we showed that it is sufficient to upsample
only for small discrete wave numbers, and introduced an adaptive FFT and IFFT (denoted
byAFT andAIFT) that only upsample for a select number of discretemodes in the periodic
direction. As for the second challenge, the 2D sum is the free space solution to a 2D
Poisson problem, and a recent idea for how to solve free space problems by the means of
FFTs Vico, Greengard, and Ferrando [2016] can therefore be used. The treatment of the
zero periodic wave number can now be treated in the same framework as the other modes,
and will be included in the AFT mentioned above. This is done at a negligible extra cost.
A typical increase in cost of the FFTs performed in the 1P case as compared to 3P is a
factor of 2 � 3. The gridding cost when applying the window function is essentially the
same in both cases. The ratio of the total runtime cost for the SE1P method and the SE3P
method is therefore even smaller.

In af Klinteberg, Saffar Shamshirgar, and Tornberg [2017], the approach to solve free
space problems with FFTs was used to extend the SE method to problems without peri-
odicity. The original idea in Vico, Greengard, and Ferrando [2016] is applicable for the
harmonic and biharmonic kernels, here an extension was introduced such that sum of free
space potentials could be evaluated for stokeslets, stresslets and rotlets.

We have very recently unified the treatment from free space up to triply periodic for the
electrostatic problem Saffar Shamshirgar and Tornberg [2017a]. The 2P algorithm from
Lindbo and Tornberg [2012] was here modified to make use of the advances made when
developing the 1P method Saffar Shamshirgar and Tornberg [2017b]. The software is
available Lindbo, af Klinteberg, and Saffar Shamshirgar [2016], including also the imple-
mentation of the new window function Barnett and Magland [2017].

Recently, Nestler, Pippig, and Potts [2015] developed an FFT based fast algorithm
based on Ewald decomposition for triply, double and singly periodic problems. To the
best of our knowledge, this is the only Ewald method with O(N log(N )) complexity for
singly periodic problems except our own. Their approach is however quite different as



FFT BASED SPECTRAL EWALD METHODS 3715

compared to ours, as instead of discretizing the continuous Fourier transforms, they work
with the analytical formulas containing special functions that are obtained from them.

Any method based on Ewald summation and acceleration by FFTs will be most effi-
cient in the triply periodic case. As soon as there is one or more non-periodic directions,
there will be a need for some oversampling of FFTs, which will increase the computational
cost. For the fast multipole method (FMM), the opposite is true. The free space problem
is the fastest to compute, and any periodicity will invoke an additional cost, which will
become substantial or even overwhelming if the base periodic box has a large aspect ra-
tio. Hence, implementing the FFT-based Spectral Ewald method for a free-space problem
and comparing it to an FMM method will be the worst possible case for the SE method.
Still, we did so for the free space summation of Stokes potentials in af Klinteberg, Saf-
far Shamshirgar, and Tornberg [2017], using an open source implementation of the FMM
Greengard [2012]. It turned out that our SE method was competitive and often performed
clearly better than the FMM (one can, however, expect this adaptive FMM to perform
better for highly non-uniform point distributions).

Outline. The structure of this review is as follows: in Section 2 we discuss the derivation
of the Ewald sums, and highlight the differences that occur due to different periodicities.
We also introduce modifications based on the ideas in Vico, Greengard, and Ferrando
[2016] to get formulas on a form amenable to numerical treatment for all Fourier modes.
In Section 2, we introduce the triply periodic SE method, and discuss all the steps of the
algorithm. This is the simplest case, and the extension of the Spectral Ewald method to
different periodicities is discussed in the following section. These sections are all con-
cerned with the evaluation of the electrostatic potential, and in Section 5 we discuss the
extension to potentials of Stokes flow, before we summarize and conclude.

2 Ewald formulas for electrostatics

There is more than one way to derive the Ewald summation formula. One can e.g. utilize
the fact that the electrostatic potential can be found as the solution to the Poisson equation

�∆� = 4�f DP (x); f DP (x) =
X
p2PD

X
n

qnı(x � xn + p); x 2 R3:(7)

The sum over p is a replication of the charges in the periodic directions, and D = 0; 1; 2; 3

indicates the number of periodic directions withPD defined in Equation (5). We introduce
a charge screening function, (�; x) to decompose f DP into two parts:

f DP (x) = f DP (x) � (f DP
� )(x)„ ƒ‚ …

:=f DP;R(�;x)

+(f DP
� )(x)„ ƒ‚ …

:=f DP;F (�;x)

:
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The Poisson equation can be solved for each of the two parts of the right hand side to find
�PD;R and �PD;F , that can then be added. The screening function for which the classical
Ewald decomposition is obtained is a Gaussian (�; x), with the Fourier transformb(�; k),
� > 0,

(�; x) = �3��3/2e��2jxj2 ; b(�; k) = e�jkj2/4�2

:(8)

The function f DP;F (�; x) is smooth, and a Fourier representation of the solution �PD;F

will hence converge rapidly.
The Ewald sum for evaluating the potential at a source location xm, m = 1; : : : ; N

under different periodicity conditions becomes

(9) �DP (xm) = �DP;R(xm; �) + �DP;F (xm; �) �
2�

p
�

qm;

where

(10) �DP;R(xm; �) =
X
p2PD

N;0X
n=1

qn

erfc(� jxm � xn + pj)

jxm � xn + pj
; D = 0; 1; 2; 3:

This term can be derived by evaluating a convolution integral of (�; x � xn) with the
harmonic Green’s function (see e.g. Appendix A of Tornberg [2016]), then summing
over all sources including periodic copies. Here, the N;0 indicates that the term (n = m,
p = 0) is excluded from the real space sum and PD is given in Equation (5). The last
term in Equation (9) is the so called self correction term. When evaluating the potential
at a charge location, no contribution from this charge itself should be included, and this
term is added for this purpose.

For the Fourier space contribution, it remains to solve

�∆�DP;F = 4�f DP;F (x; �); f DP;F (x; �) =
X
p2PD

X
n

qn(�; x � xn + p); x 2 R3:

(11)

with (�; x) as defined in Equation (8), under appropriate boundary conditions.
Expanding �3P;F (x; �) in a triply periodic Fourier sum, and using the expression forb(�;k) from Equation (8) to do the same for f 3P;F (x; �), we can solve Equation (11) and

obtain

(12) �3P;F (xm; �) =
4�

V

X
k¤0

NX
n=1

qn

e�k2/4�2

k2
e�ik�(xm�xn):
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which is the summation over k in the second line of Equation (6).
For the doubly periodic case, we can expand �2P;F (x; �) and f 2P;F (x; �) in Fourier

series in the periodic x and y directions. The Fourier coefficients �̂k̄(z) and f̂k̄(z) will be
indexed by k̄ = (k1; k2). These coefficients can be represented in terms of a Fourier trans-
form in the non-periodic z-direction. Alternatively, we can insert these doubly periodic
Fourier series into Equation (11), use orthogonality and for each wave vector k̄ obtain

(�@2z + jk̄j
2)�̂k̄(z) = 4�f̂k̄(z):

In light of how we will later proceed with constructing a fast method to evaluate
�2P;F (x; �), we take the first view point for k̄ ¤ 0, and the second for k̄ = 0. We
write

(13) �2P;F (x; �) = �̄2P;F (x; �) + �
2P;F
0 (z; �);

with

�̄2P;F (x; �) =
2

L1L2

X
k̄¤0

NX
n=1

qn

Z
lR

1

k2
e�k2/4�2

e�ik�(x�xn) d�3:(14)

Here, we use k = (k1; k2; �3) to emphasize that �3 is a continuous variable. The term for
k̄ = 0, i.e. k1 = k2 = 0 is given by the free space solution of the 1D Poisson equation

(15) �
d 2

dz2
�
2P;F
0 (z; �) = 4�

���1/2

L1L2

NX
n=1

qne��2jz�znj2 :

The integral in Equation (14) can be evaluated analytically, and the Equation (15) has an
explicit solution. The result is stated e.g. in section 9 of Tornberg [ibid.]. Those formulas
are however only used for validation of the fast method. To develop the fast method, we
will continue along a different path.

In the singly periodic case, we can similarly to the double periodic case expand in a
Fourier series in the periodic direction z, and index coefficients by k3. Also, in this case,
we use the continuous Fourier transform to express the coefficients as long as k3 ¤ 0,
and formulate the PDE for the k3 = 0 coefficient. The explicit formulas can be found in
Saffar Shamshirgar and Tornberg [2017b].

In the doubly periodic case, we need to solve a one-dimensional free space problem
(Equation (15)), and in the singly periodic case a two-dimensional free space problem.
For the free space case, the full problem is a three dimensional free space problem, i.e.
Equation (11) for D = 0 under the boundary conditions �0P;F (x; �) ! 0 as jxj ! 0.

This solution can be expressed as a 3D Fourier integral in k-space, with a 1/k2 factor. It
is integrable, and a change to spherical coordinates will for example remove the singularity.
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The integral can however not be accurately approximated with values on a regular grid,
which is needed for a fast treatment with FFTs.

2.1 Free space formulas with truncated Green’s functions. Assume that we want to
solve

�∆� = 4�f (x); x 2 Rdim:(16)

with free space boundary conditions (� ! 0 as jxj ! 0), and dim = 1; 2 or 3.
Assume now that f (x) is compactly supported within a domain D̃, a box with sides L̃,

D̃ =
˚
x j xi 2 [0; L̃i ]

	
, and that we seek the solution for x 2 D̃. The largest point-to-point

distance in the domain is jL̃j. Let R � jL̃j. Without changing the solution, we can then
replace the Green’s function with a truncated version

GR(r) = G(r) rect
� r

2R

�
; rect(x) =

�
1 for jxj � 1/2;

0 for jxj > 1/2:

The Fourier transform of the truncated Green’s function in 3D, where G(r) = 1/r is
Vico, Greengard, and Ferrando [2016]

ĜR(k) = 8�

�
sin(Rk/2)

k

�2

;

with the well defined limit

ĜR(0) = lim
k!0

ĜR(k) = 2�R2:

We then have

(17)
�(x) =

Z
R3

G(jx � yj)f (y) dy =
1

(2�)3

Z
R3

Ĝ(k)f̂ (k) eik�x dk

=
1

(2�)3

Z
R3

ĜR(k)f̂ (k) eik�x dk;

as long as the assumption introduced above is fulfilled s.t. supp(f ) 2 D̃, x 2 D̃ and R is
chosen appropriately. Similar formulas can be derived in one and two dimensions.

2.2 Formulas for the k-space contributions. The decomposition of �DP into a real
space part �DP;R and a Fourier space part �DP;F was introduced in Equation (10). The
terms in the real space part have the same form independent of the periodicity of the prob-
lem, only the summation over periodic images changes, as given in Equation (10). For the
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k-space contribution, we need to work with Fourier series in any periodic direction, and
Fourier integrals elsewhere. The simplest case is hence the triply periodic case, where a
discrete sum is obtained directly, and the result was given in Equation (12).

For the cases withmixed periodicity, there will be a sum over the discrete Fouriermodes
in the periodic direction(s). For the Fourier mode where the discrete wave number/wave
vector is zero, the integral has a singularity. For this zero mode, we instead define the
contribution as the solution to a free space problem. In the previous section, we discussed
how to work with truncated Green’s functions to obtain an expression in Fourier space for
a mollified Green’s function that has no singularity. Similarly, for the 0P case, we solve
a 3D free space problem, with the right hand side given in Equation (11).

This treatment introduces no approximation under the assumption of a compactly sup-
ported right hand side. Our right hand sides are however sums of Gaussians and are not
compactly supported. The Gaussians do however decay exponentially fast, and as we con-
struct a numerical algorithm based on these formulas, this error source can controlled and
made vanishingly small by the choice of R.

With k = (k1; k2; �3), k = jkj, we write for the 2P case,

�2P;F (x; �) �
2

L1L2

X
k1;k2

NX
n=1

qn

Z
lR

Ĝ2P
R (k)e�k2/4�2

e�ik�(x�xn) d�3:(18)

where

(19) Ĝ2P
R (k) =

8<: 1/k2 k2
1 + k2

2 ¤ 0

(Rk sin(Rk) + cos(Rk) � 1) /k; k1 = 0; k2 = 0; �3 ¤ 0

R2/2 k = 0:

With k = (�1; �2; k3), k = jkj, for the 1P case we write

�1P;F (x; �) �
1

�L3

X
k3

NX
n=1

qn

Z
R2

Ĝ1P
R (k)e�k2/4�2

e�ik�(x�xn) d�1d�2;(20)

where

(21) Ĝ1P
R (k) =

8<: 1/k2 k3 ¤ 0

(1 � J0(Rk))/k2 � R log(R)J1(Rk)/k k3 = 0; �2
1 + �2

2 ¤ 0

R2(1 � 2 log(R)/4: k = 0:

In the above, ki 2 f2�n/Li ; n 2 Zg. For the free space case, we have no discrete modes,
and use k = (�1; �2; �3), k = jkj, as we write

�0P;F (x; �) �
1

2�2

NX
n=1

qn

Z
R3

Ĝ0P
R (k)e�k2/4�2

e�ik�(x�xn) d�1d�2d�3;(22)
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where

(23) Ĝ0P
R (k) =

�
2 sin2(Rk/2)/k2; k ¤ 0

R2/2 k = 0:

Here, Ĝ0P
R is scaled with a factor of 1/(4�) as compared to ĜR introduced in the previous

section. Again, we want to emphasize that the � sign in these equations arise due to
the fact that we formally do not have compactly supported right hand sides for the free
space problems. In practice, if the domain of support is set such that the Gaussians are
sufficiently decayed, and the parameter R is chosen according to this, there will be no
noticeable errors from this source in the FFT based algorithm that we will develop based
on these formulas.

2.3 Truncation errors. Both the real space and k-space sums need to be truncated.
They decay exponentially fast, and can for the triply periodic case be truncated such as to
only include terms for which jxm �xn+pj < rc in Equation (10) and k = jkj < 2�k1/L

(assuming Li = L, i = 1; 2; 3 for a simpler expression. Excellent error estimates were
derived by Kolafa and Perram [1992], and given � and an error tolerance, rc and k1 can
be appropriately chosen. See also Lindbo and Tornberg [2011b]. Even though the error
estimates were derived for the triply periodic case, they work remarkably well also for the
singly and doubly periodic cases Lindbo and Tornberg [2012] and Saffar Shamshirgar and
Tornberg [2017b] and even for the free space case af Klinteberg, Saffar Shamshirgar, and
Tornberg [2017] (see the discussion on the rotlet). For the Fourier space contribution this
means that the discretized integrals are truncated at the corresponding k1.

3 The spectral Ewald method with full periodicity

As was just discussed, contributions to the real space sum will be ignored if the distance
between the source location and the target evaluation point is larger than a cut-off radius rc .
Typically, a linked cell list or a Verlet list algorithm can be used to efficiently obtain a list
of nearest neighbors Lindbo and Tornberg [2011b]. The real space sum in Equation (10)
includes a summation over the periodic dimensions, which means that contribution from
periodic images of the sources are also included if they are within this distance. We will
now proceed to discuss the evaluation of the Fourier space sum (Equation (12)) in the
triply periodic case.

3.1 Formulas and algorithmic steps. The triply periodic case is the most straight
forward, and also computationally most efficient since periodicity is naturally handled by
FFTs. The fast method that we propose follows the structure of methods within the PME
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family: point charges are distributed on a uniform grid using an interpolation (window)
function, an FFT is applied, a multiplication is made in k-space with an appropriately
modified Green’s function (depending on the choice of window function), an inverse FFT
is applied, and the window function is used once more to evaluate the result at irregular
evaluation (target) points.

Let us denote the window function by W(x), and assume W(�x) = W(x). Note the
trivial identity ŴkŴkŴ�2

k � 1 and introduce

(24) beH k =
e�k2/4�2

k2
Ŵ�2

k Ĥk

where

(25) Ĥk =

NX
n=1

qnŴke
�ikxn :

With this, the expression for �3P;F (xm; �) in Equation (12) becomes

(26) �3P;F (xm; �) =
4�

V

X
k¤0

Ŵk
beH �ke

�ikxm :

The fact that a product in Fourier space is equal to a convolution in real space implies that
H (x) is given by

(27) H (x) =
NX

n=1

qn

Z
Ω

ı(x � xn)W(y � x)� dy =

NX
n=1

qnW(x � xn)�;

where W(x)� =
P

p2PD
W(x+ p).

Furthermore, Parseval’s formula yields

(28)
�3P;F (xm; �) = 4�

Z
Ω

eH (x)
�Z

Ω

ı(y � xm)W(y � x)� dy
�

dx

= 4�

Z
Ω

eH (x)W(x � xm)� dx;

where we have suppressed the dependence on � in the notation for eH (x).
For simplicity, we will in the following assume that L1 = L2 = L3 = L such that the

periodic domain as defined above (Equation (4)) is Ω = [0; L]3.

1. Introduce a uniform grid over Ω of size M 3 and evaluate H (x) on this grid using
Equation (27).
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2. Apply an FFT to evaluate Ĥ .

3. Evaluate beH k according to Equation (24).

4. Apply an IFFT to evaluate eH (x) on the uniform grid.

5. Evaluate the integral (Equation (28)) with the trapezoidal rule to arrive at the final
result, �3P;F (xm; �).

There are two sources of errors. Truncation errors arise as only a finite number of
Fourier modes are included. Given an error tolerance, the grid size M is chosen from the
truncation error estimate as M = 2k1. Approximation errors enter due to the approxima-
tion of the integral in Equation (28). We will discuss window functions that do not have
compact support, and hence, truncation of the window function will also contribute to the
approximation error.

3.2 Window functions and approximation errors. In the Spectral Ewald method as
presented in e.g. Lindbo and Tornberg [2011b], truncated Gaussians have been used as
window functions. Here, we use W(x) = g(x; �; �), where

(29) g(x; �; �) =

�
2�2

��

�
e�2�2jxj2/�

The function has been normalized to 1. The Fourier transform is known, ĝ(k; �; �) =

e��jkj2/8�2 . With this choice of window function, the scaling step in Equation (24) be-
comes beH k =

e�(1��)k2/4�2

k2
Ĥk:

This relation to the Gaussian factor in the Ewald formula is the reason for defining g as in
Equation (29) with both � and the new shape parameter �.

Another class of window functions that has been commonly used is cardinal B-splines
Essmann, Perera, Berkowitz, Darden, Lee, and Pedersen [1995] and Deserno and Holm
[1998]. The degree of the B-spline is chosen, which gives a fixed (small) support size,
and a certain regularity. If the FFT gris has a grid size h = L/M , an approximation error
of O(hp) will be introduced, where p depends on the regularity. Hence, to decrease the
approximation error, the grid size M must be increased.

For the Gaussian window function, we truncate at jxj = jyj = jzj = w, where 2w =

P h such that we have P 3 points in the support. With � = (2w�/m)2, we can show
Lindbo and Tornberg [2011b] that the error committed in approximating Equation (28) by
the trapezoidal rule can be bounded by

(30) C
�
e��2P 2/(2m)2 + erfc(m/

p
2)

�
:
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The first term is the quadrature error, and the second term is due to the truncation of the
Gaussians. With m = c

p
�P (where c = 1 found close to optimal for electrostatics), we

obtain an exponential decay of the error with P .
Hence, for any given P , we scale the window function to achieve the optimal balance

between resolution and truncation. We do not need to increase the grid size to reduce
the approximation errors - we instead increase P and scale the window function properly.
This allows for the grid size to be selected solely according to the Kolafa-Perram estimate
for the truncation of the Fourier Ewald sum.

Recently, Barnett and Magland introduced a new window function in their work in the
non-uniform FFT method Barnett and Magland [2017]. This new window function is an
approximation of the so called Kaiser-Bessel function, which can be shown to yield low
error levels but is expensive to compute. To use this window function, we set W(x) =

B(x; ˇ)B(y; ˇ)B(z; ˇ), where

B(x; ˇ) =

(
eˇ

p
1�(x/w)2/eˇ �w � x � w

0 otherwise.

This defintion effectively yields a truncation, and again with 2w = P h, there are P 3

points in the support. The Fourier transform of this window function is not analytically
known. By the structure of the function, it is sufficient to compute a 1D FFT (or at most
three 1D FFTs if all dimensions are different), to obtain the transform numerically. This
can then be used in the scaling step (Equation (24)).

Although not proven yet, from numerical evidence Saffar Shamshirgar and Tornberg
[2017a] we can predict that the approximation error comparable to Equation (30) is

(31) C
�
ˇ2e�2�P 2/ˇ + erfc(

p
ˇ)

�
:

Hence, also here we can choose a parameter (ˇ) to balance the resolution and truncation.
In Saffar Shamshirgar and Tornberg [ibid.] we find ˇ = 2:5P close to optimal, and with
this an approximation error that decays like Ce�2:5P .

Hence, this window function shares many properties with the Gaussian, and the ap-
proximation errors decay faster with P (Ce�2:5P as compared to Ce��P/2). In Saffar
Shamshirgar and Tornberg [ibid.] it is shown that the evaluation costs for the two window
functions are comparable for the same P , and hence that the new BM window function is
computationally more efficient.

4 The spectral Ewald method for different periodicities

In the previous section, we introduced the Spectral Ewald method for the triply periodic
electrostatic problem. In the case of one or more non-periodic direction(s), we have to
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make some modifications. Our formulas now involve integrals defining inverse Fourier
transforms in Equations (18), (20) and (22), respectively. In addition, the evaluation of
H (x) in Equation (27) will be slightly different, and we start at this end.

In the triply periodic case, we introduced a uniform grid of grid sizeM 3 on [0; L)3 with
h = L/M . Now, we need to extend the grid in the non-periodic direction to accomodate
the support of the window functions. We set L̃ = L + P h, and M̃ = M + P s.t.
h = L/M = L̃/M̃ . Approximating the Fourier integrals with the trapezoidal rule, we
obtain discrete sums that can be evaluated with FFTs. The errors that we introduce are
similar to the errors introduced by discretization of the integral in Equation (28), as was
discussed in Section 3.2.

In analogy with the triply periodic case, we define a beH (k) as beH k in Equation (24) with
the factor 1/k2 replaced by ĜDP (k) (i.e. Ĝ3P (k) = 1/jkj2 = 1/k2). Consider e.g. the
singly periodic case, then we have

H̃ (x) =
1

(2�)2

X
k3

Z
R2

beH (k)eik�x d�1 d�2

where k = (�1; �2; k3). For k3 ¤ 0 we have Ĝ1P (k) = 1/jkj2 = 1/(�2
1 + �2

2 + k2
3)

(Equation (21)). To evaluate this integral accurately for all discrete k3 we need to discretize
it on a finer grid in k-space than a regular FFT of H (x) above would yield. Hence, for
the 1P /2P cases, there are 2/1 non-periodic directions that need this refinement.

The simplest way to achieve this is to define a global upsampling factor sg and extend
the domain to sgL̃ in any non-periodic direction. This is a so-called zero padding in real
space, which leads to a denser sampling of modes in Fourier space. Applying an FFT on a
grid of size sgM̃ in a non-periodic direction, yields a sampling in � for � = 2�n/(sgL̃),
n = �sgM̃/2; : : : ; sgM̃/2 � 1. An upsampling such that sgM̃ is 4 up to 6 times larger
than M can be needed depending on the accuracy requirement. This yields a large extra
cost especially in the 1P case, with FFTs that are 16 or even 36 times larger than in the
triply periodic case.

In Saffar Shamshirgar and Tornberg [2017b], we show that it is sufficient to apply up-
sampling to a band of discrete k3 modes with small magnitude, and introduce an adaptive
FFT and IFFT. With the AFFT, a typical increase in computational cost relative to the
FFT without oversampling is a factor of 2 � 3, with global upsampling it is 16 � 36. For
the doubly periodic case, upsampling is only needed in one dimension. Hence, the cost of
global upsampling is not so overwhelming and was used in the first 2P implementation in
Lindbo and Tornberg [2012].

In this implementation Lindbo and Tornberg [ibid.], the treatment of the zero mode
k1 = k2 = 0, was done separately. In the final Ewald formula, there is an explicit 1D
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sum for this term (see e.g. section 9 of Tornberg [2016]), and an expansion with Cheby-
shev polynomials was used for efficient evaluation. Again, moving to the singly periodic
(1P) case, the corresponding term is a 2D sum, and cannot be evaluated as efficiently. This
is where the idea of solving free space problems with FFTs as introduced by Vico, Green-
gard, and Ferrando [2016] enters. Now we consider the 2D free space Poisson problem
corresponding to k3 = 0 instead of the solution written as a sum in the Ewald formula. By
introducing the truncated Green’s function for the free space problem and then it’s Fourier
transform, we arrived at the definition in Equation (21) of Ĝ1P (k) for k3 = 0. It has a
finite limit as jkj ! 0, also given in the definition. Hence, this can be treated as all the
other discrete k3 modes. An oversampling factor of s0 = 1 +

p
2 is sufficient for this

mode. With this approach, the k3 = 0 mode can be included almost for free.
This approach to solve free space problems is used for the free space case with no

periodicity. With Ĝ0P (k) defined in Equation (23), an upsampling factor of 1 +
p
3 in

each dimension is sufficient for full accuracy. A precomputation can however be made,
to reduce the needed upsampling to a factor of 2, which is the minimum upsampling for
computing an aperiodic convolution. This was first introduced for potentials of Stokes
flow in af Klinteberg, Saffar Shamshirgar, and Tornberg [2017].

An extension of the domain length from L to L̃ to fit the support of the window func-
tion does not guarantee that the Gaussians in the right hand side of Equation (11) will be
sufficiently decayed in this domain. As was discussed in af Klinteberg, Saffar Shamshir-
gar, and Tornberg [ibid.], an additional extension is however needed only if M̃ is picked
larger than necessary for a given error tolerance (for a fixed P this reduces the support
width P h of the window function and hence L̃).

Very recently, we have treated all cases of periodicity in a unified framework Saffar
Shamshirgar and Tornberg [2017a], also introducing the new window function as sug-
gested by Barnett and Magland [2017]. Hence, this includes an implementation of the 2P
method with both adaptive FFT and free space FFT treatment of the k3 = 0 term, features
that differ from the original 2P method Lindbo and Tornberg [2012].

5 Extension to fundamental solutions for Stokes flow

One fundamental solution for Stokes flow, the stokeslet, was introduced in Equation (2).
The triply periodic SEmethod for the stokeslet is very similar in structure to that for electro-
statics. We however work with vector point sources (forces) and the Fourier representation
of the stokeslet is a matrix for each k. Another important fundamental solution, needed
e.g. when formulating second kind integral equations for Stokes flow, is the stresslet, as
given by

(32) Tj`m(r) = �6
rj r`rm

r5
j; `; m = 1; 2; 3:
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The stresslet has three indicies and the triply periodic SE method will involve 6 FFTs for
the source components, and three inverse FFTs for the components of the solution. Unlike
the stokeslet, the stresslet does not by construction generate a divergence free velocity
field. The correction term needed to impose a zero mean flow through a periodic cell was
derived in af Klinteberg and Tornberg [2014]. Available truncation error estimates for
the Ewald sums from Lindbo and Tornberg [2010] and af Klinteberg and Tornberg [2014]
are summarized in af Klinteberg, Saffar Shamshirgar, and Tornberg [2017], as additional
estimates needed for the free space case are derived.

For the free space case in af Klinteberg, Saffar Shamshirgar, and Tornberg [ibid.], we
write the stokeslet and the stresslet as a differential operator acting on r , which is the
Green’s function for the biharmonic equation. For the stokeslet, this becomes

Sj` =
�
ıj`r

2
� rj r`

�
r j; l = 1; 2; 3:

Using the approach from Vico, Greengard, and Ferrando [2016] for the biharmonic kernel,
which is a radial kernel, we can use this structure to extend the treatment to the stokeslet
and the stresslet. Similarly, the rotlet is based on the harmonic kernel.

The doubly periodic case for the stokeslet was treated in Lindbo and Tornberg [2011a],
in line with the 2P treatment of electrostatics in Lindbo and Tornberg [2012]. The exten-
sion to the 2P and 1P cases for both the stokeslet and stresslet in line with the new unified
treatment of electrostatics as discussed in the previous section has not yet been done.

6 Summary and future work

We have in this paper reviewed the development of the Spectral Ewald methods. We have
mainly considered their application to electrostatic problems, but also discussed the exten-
sion to Stokes flow. With the recent developments in Saffar Shamshirgar and Tornberg
[2017b] and Saffar Shamshirgar and Tornberg [2017a], we now have a method for electro-
statics that offers a unified treatment for problems with different periodicities, from triply
periodic down to free space.

Compared to the triply periodic case, which is the most efficient, each non-periodic
dimension increases the computational cost, but with the adaptive FFTs only to a limited
amount. The cost of the algorithm associated with the window functions is essentially in-
dependent of the FFT grid size. Since that cost is reduced with the new Barnett-Magland
window function, the increase in the FFT cost will have a larger impact when measuring
computational cost relative to the triply periodic case. In this setting, and for typical pa-
rameter choices, we noted in Saffar Shamshirgar and Tornberg [2017b] that the doubly
periodic case is only marginally more expensive than the triply periodic, and the singly
periodic and free space cases are up to two and four times as expensive, respectively.
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These FFT based methods are alternatives to fast multipole methods for evaluating
electrostatic and Stokes potentials, and we have shown that the SE method is competitive
with FMM Greengard [2012] for the free space summation of Stokes potentials, where it
is at its largest disadvantage af Klinteberg, Saffar Shamshirgar, and Tornberg [2017]. We
expect the SE method to do better the more periodic directions we have, and the FMM
to do better relative to the SE method the more non-uniform the distribution of points
get. Hence, this is not to conclude that one method is always better than the other, but
only to remark that an FFT based SE method can be a competitive alternative to the FMM
method. There is an additional value in having a method that can be used for different
periodicities, thereby keeping the structure intact and easing the integration with the rest of
the simulation code, concerning, e.g., modifications of quadrature methods in a boundary
integral method to handle near interactions.

Future work involves extending the unified treatment for the harmonic kernel of elec-
trostatics also to stokeslets and stresslets. In order for this to be possible it remains first
to derive the appropriate Ewald summation formulas for the singly periodic stokeslet and
for the singly and doubly periodic stresslet sums, as we are not aware of any suitable
decompositions.
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Abstract

We establish or refute the optimality of inexact second-order methods for uncon-
strained nonconvex optimization from the point of view of worst-case evaluation com-
plexity, improving and generalizing our previous results. To this aim, we consider a
new general class of inexact second-order algorithms for unconstrained optimization
that includes regularization and trust-region variations of Newton’s method as well as
of their linesearch variants. For eachmethod in this class and arbitrary accuracy thresh-
old � 2 (0; 1), we exhibit a smooth objective function with bounded range, whose gra-
dient is globally Lipschitz continuous and whose Hessian is ˛�Hölder continuous (for
given ˛ 2 [0; 1]), for which the method in question takes at least b��(2+˛)/(1+˛)c

function evaluations to generate a first iterate whose gradient is smaller than � in norm.
Moreover, we also construct another function on which Newton’s takes b��2c evalu-
ations, but whose Hessian is Lipschitz continuous on the path of iterates. These ex-
amples provide lower bounds on the worst-case evaluation complexity of methods in
our class when applied to smooth problems satisfying the relevant assumptions. Fur-
thermore, for ˛ = 1, this lower bound is of the same order in � as the upper bound
on the worst-case evaluation complexity of the cubic regularization method and other
algorithms in a class of methods recently proposed by Curtis, Robinson and Samadi or
by Royer and Wright, thus implying that these methods have optimal worst-case eval-
uation complexity within a wider class of second-order methods, and that Newton’s
method is suboptimal.

1 Introduction

Newton’s method has long represented a benchmark for rapid asymptotic convergence
when minimizing smooth, unconstrained objective functions Dennis and Schnabel [1983].
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It has also been efficiently safeguarded to ensure its global convergence to first- and even
second-order critical points, in the presence of local nonconvexity of the objective us-
ing linesearch Nocedal and Wright [1999], trust-region Conn, Gould, and Toint [2000] or
other regularization techniques Griewank [1981], Nesterov and Polyak [2006], and Cartis,
Gould, and Toint [2011a]. Many variants of these globalization techniques have been pro-
posed. These generally retain fast local convergence under non-degeneracy assumptions,
are often suitable when solving large-scale problems and sometimes allow approximate
rather than true Hessians to be employed. We attempt to capture the common features of
these methods in the description of a general class of second-order methods, which we
denote by M:˛ in what follows.

In this paper, we are concerned with establishing lower bounds on the worst-case evalu-
ation complexity of theM:˛ methods(1) when applied to “sufficiently smooth” nonconvex
minimization problems, in the sense that we exhibit objective functions on which these
methods take a large number of function evaluations to obtain an approximate first-order
point.

There is a growing literature on the global worst-case evaluation complexity of first-
and second-order methods for nonconvex smooth optimization problems (for which we
provide a partial bibliography with this paper). In particular, it is known Vavasis [1993],
Nesterov [2004, p. 29] that steepest-descent method with either exact or inexact line-
searches takes at most(2) O

�
��2

�
iterations/function-evaluations to generate a gradient

whose norm is at most � when started from an arbitrary initial point and applied to non-
convex smooth objectives with gradients that are globally Lipschitz continuous within
some open convex set containing the iterates generated. Furthermore, this bound is es-
sentially sharp (for inexact Cartis, Gould, and Toint [2010] and exact Cartis, Gould, and
Toint [2012c] linesearches). Similarly, trust-region methods that ensure at least a Cauchy
(steepest-descent-like) decrease on each iteration satisfy a worst-case evaluation complex-
ity bound of the same order under identical conditions Gratton, Sartenaer, and Toint [2008].
It follows that Newton’s method globalized by trust-region regularization has the same
O
�
��2

�
worst-case evaluation upper bound; such a bound has also been shown to be es-

sentially sharp Cartis, Gould, and Toint [2010].
From a worst-case complexity point of view, one can do better when a cubic regulariza-

tion/perturbation of the Newton direction is used Griewank [1981], Nesterov and Polyak
[2006], Cartis, Gould, and Toint [2011a], and Curtis, Robinson, and Samadi [2017b]—
such a method iteratively calculates step corrections by (exactly or approximately) mini-
mizing a cubic model formed of a quadratic approximation of the objective and the cube

(1)And, as an aside, on that of the steepest-descent method.
(2)When fakg and fbkg are two sequences of real numbers, we say that ak = O (bk) if the ratio ak/bk is

bounded.
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of a weighted norm of the step. For such a method, the worst-case global complexity im-
proves to be O

�
��3/2

�
Nesterov and Polyak [2006] and Cartis, Gould, and Toint [2011a],

for problems whose gradients and Hessians are Lipschitz continuous as above; this bound
is also essentially sharp Cartis, Gould, and Toint [2010]. If instead powers between two
and three are used in the regularization, then an “intermediate” worst-case complexity of
O
�
��(2+˛)/(1+˛)

�
is obtained for such variants when applied to functions with globally

˛�Hölder continuous Hessian on the path of iterates, where ˛ 2 (0; 1] Cartis, Gould, and
Toint [2011d]. It is finally possible, as proposed in Royer and Wright [2017], to obtain
the desired O

�
��3/2

�
order of worst-case evaluation complexity using a purely quadratic

regularization, at the price of mixing iterations using the regularized and unregularized
Hessian with iterations requiring the computation of its left-most eigenpair.

These (essentially tight) upper bounds on the worst-case evaluation complexity of such
second-order methods naturally raise the question as to whether other second-order meth-
odsmight have better worst-case complexity than cubic (or similar) regularization over cer-
tain classes of sufficiently smooth functions. To attempt to answer this question, we define
a general, parametrized class of methods that includes Newton’s method, and that attempts
to capture the essential features of globalized Newton variants we have mentioned. Our
class includes for example, the algorithms discussed above as well as multiplier-adjusting
types such as the Goldfeld-Quandt-Trotter approach Goldfeld, Quandt, and Trotter [1966].
The methods of interest take a potentially-perturbed Newton step at each iteration so long
as the perturbation is “not too large” and the subproblem is solved “sufficiently accurately”.
The size of the perturbation allowed is simultaneously related to the parameter ˛ defining
the class of methods and the rate of the asymptotic convergence of the method. For each
method in each ˛-parametrized class and each � 2 (0; 1), we construct a function with
globally ˛�Hölder-continuous Hessian and Lipschitz continuous gradient for which the
method takes precisely d��(2+˛)/(1+˛)e function evaluations to drive the gradient norm
below �. As such counts are the same order as the worst-case upper complexity bound
of regularization methods, it follows that the latter methods are optimal within their re-
spective ˛-class of methods. As ˛ approaches zero, the worst-case complexity of these
methods approaches that of steepest descent, while for ˛ = 1, we recover that of cubic
regularization. We also improve the examples proposed in Cartis, Gould, and Toint [2010,
2011d] in two ways. The first is that we now employ objective functions with bounded
range, which allows refining the associated definition of sharp worst-case evaluation com-
plexity bounds, the second being that the new examples now have finite isolated global
minimizers.

The structure of the paper is as follows. Section 2 describes the parameter-dependent
class of methods and objectives of interest; Section 2.1 gives properties of the methods
such as their connection to fast asymptotic rates of convergence while Section 2.2 reviews
some well-known examples of methods covered by our general definition of the class.
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Section 3 then introduces two examples of inefficiency of these methods and Section 4
discusses the consequences of these examples regarding the sharpness and possible opti-
mality of the associated worst-case evaluation complexity bounds. Further consequences
of our results on the new class proposed by Curtis, Robinson, and Samadi [2017b] and
Royer and Wright [2017] are developed in Section 5 and 6, respectively. Section 7 draws
our conclusions.

Notation. Throughout the paper, k � k denotes the Euclidean norm on IRn, I the n � n

identity matrix, and �min(H ) and �max(H ) the left- and right-most eigenvalue of any given
symmetric matrixH , respectively. The condition number of a symmetric positive definite
matrixM is denoted by �(M )

def
= �max(M )/�min(M ). IfM is only positive-semidefinite

which we denote by M � 0, and �min(M ) = 0, then �(0) def
= +1 unless M = 0, in

which case we set �(0) def
= 1. Positive definiteness ofM is written asM � 0.

2 A general parametrized class of methods and objectives

Our aim is tominimize a givenC 2 objective function f (x), x 2 IRn. We considermethods
that generate sequences of iterates fxkg for which ff (xk)g is monotonically decreasing,
we let

fk
def
= f (xk); gk

def
= g(xk) and Hk

def
= H (xk):

where g(x) = rxf (x) andH (x) = rxxf (x).
Let ˛ 2 [0; 1] be a fixed parameter and consider iterative methods whose iterations are

defined as follows. Given some x0 2 IRn, let

(2.1) xk+1 = xk + sk ; k � 0;

where sk satisfies

(2.2) (Hk +Mk)sk = �gk + rk with krkk � min [�rgkgkk; �rskMkskk]

for some residual rk and constants �rg 2 [0; 1) and �rs > 0, and for some symmetric
matrixMk such that

(2.3) Mk � 0; Hk +Mk � 0

and

(2.4) �min(Hk) + �min(Mk) � �� max
n
j�min(Hk)j; kgkk

˛
1+˛

o
for some �� > 1 independent of k. Without loss of generality, we assume that sk ¤ 0.
Furthermore, we require that no infinite steps are taken, namely

(2.5) kskk � �s
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for some �s > 0 independent of k. The M:˛ class of second-order methods consists of all
methods whose iterations satisfy (2.1)–(2.5). The particular choicesMk = �kI andMk =

�kNk (with Nk symmetric, positive definite and with bounded condition number) will be
of particular interest in what follows(3). Note that the definition of M:˛ just introduced
generalizes that of M.˛ in Cartis, Gould, and Toint [2011d].

Typically, the expression (2.2) for sk is derived byminimizing (possibly approximately)
the second-order model

(2.6) mk(s) = fk+g
T
k s+

1
2
sT (Hk+ˇkMk)s; with ˇk

def
= ˇk(s) � 0 and ˇk � 1

of f (xk+s)—possibly with an explicit regularizing constraint—with the aim of obtaining
a sufficient decrease of f at the new iterate xk+1 = xk + sk compared to f (xk). In the
definition of anM:˛method however, the issue of (sufficient) objective-function decrease
is not explicitly addressed/required. There is no loss of generality in doing so here since
although local refinement of the model may be required to ensure function decrease, the
number of function evaluations to do so (at least for known methods) does not increase the
overall worst-case evaluation complexity by more than a constant multiple and thus does
not affect quantitatively the worst-case bounds derived; see for example, Cartis, Gould,
and Toint [2010, 2011b] and Gratton, Sartenaer, and Toint [2008] and also Section 2.2.
Furthermore, the examples of inefficiency proposed in Section 3 are constructed in such
a way that each iteration of the method automatically provides sufficient decrease of f .

Having defined the classes of methods we shall be concerned with, we now specify the
problem classes that we shall apply the methods in each class to, in order to demonstrate
slow convergence. Given a method in M:˛, we are interested in minimizing functions f
that satisfy

A.˛ f : IRn
! IR is twice continuously differentiable and bounded below, with gradient

g being globally Lipschitz continuous on IRn with constant Lg , namely,

(2.7) kg(x) � g(y)k � Lgkx � yk; for all x; y 2 IRn;

and the HessianH being globally ˛�Hölder continuous on IRn with constantLH;˛ ,
i.e.,

(2.8) kH (x) �H (y)k � LH;˛kx � yk
˛; for all x; y 2 IRn.

2

(3)Note that (2.4) is slightly more general than a maybe more natural condition involving �min(Hk + Mk)
instead of �min(Hk) + �min(Mk).
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The case when ˛ = 1 in A.˛ corresponds to the Hessian of f being globally Lipschitz
continuous. Moreover, (2.7) implies (2.8) when ˛ = 0, so that the A.0 class is that of
twice continuously differentiable functions with globally Lipschitz continuous gradient.
Note also that (2.7) and the existence ofH (x) imply that

(2.9) kH (x)k � Lg

for all x 2 IRn Nesterov [2004, Lemma 1.2.2], and that every function f satisfying A.˛
with ˛ > 1must be quadratic. As we will see below, it turns out that we could weaken the
conditions defining A.˛ by only requiring (2.7) and (2.8) to hold in an open set containing
all the segments [xk ; xk +sk ] (the “path of iterates”), but these segments of course depend
themselves on f and the method applied.

The next subsection provides some background and justification for the technical condi-
tion (2.4) by relating it to fast rates of asymptotic convergence, which is a defining feature
of second-order algorithms. In Section 2.2, we then review some methods belonging to
M:˛.

2.1 Properties of the methods in M:˛. We first state inclusions properties for M:˛

and A.˛.

Lemma 2.1. 1. Consider a method of M:˛1 for ˛1 2 [0; 1] and assume that it gener-
ates bounded gradients. Then it belongs to M:˛2 for ˛2 2 [0; ˛1].

2. A.˛1 implies A.˛2 for ˛2 2 [0; ˛1], with LH;˛2
= max[LH;˛1

; 2Lg ].

Proof. By assumption, kgkk � �g for some �g � 1. Hence, if kgkk � 1,

kgkk
˛1

1+˛1 � �
˛1

1+˛1
g � �g � �gkgkk

˛2
1+˛2(2.10)

for any ˛2 2 [0; ˛1]. Moreover, (2.10) also holds if kgkk � 1, proving the first statement
of the lemma. Now we obtain from (2.9), that, if kx � yk > 1, then

kH (x) �H (y)k � kH (x)k + kH (y)k � 2Lg � 2Lgkx � yk
˛

for any ˛ 2 [0; 1]. When kx � yk � 1, we may deduce from (2.8) that, if ˛1 � ˛2, then
(2.8) with ˛ = ˛1 implies (2.8) with ˛ = ˛2. This proves the second statement.

Observe if a method is known to be globally convergent in the sense that kgkk ! 0 when
k ! 1, then it obviously generates bounded gradients and thus the globally convergent
methods of M:˛1 are included in M:˛2 (˛2 2 [0; ˛1]).

We next give a sufficient, more concise, condition on the algorithm-generated matrices
Mk that implies the bound (2.4).
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Lemma 2.2. Let (2.2) and (2.3) hold. Assume also that the algorithm-generated matrices
Mk satisfies

(2.11) �min(Mk) � ��kskk
˛; for some �� > 1 and ˛ 2 [0; 1] independent of k.

Then (2.4) holds with ��
def
= 2�

1
1+˛

�
(1 + �rg).

Proof. Clearly, (2.4) holds when �min(Hk +Mk) = 0. When �min(Hk +Mk) > 0 and
henceHk +Mk � 0, (2.2) implies that

(2.12) kskk �
kgkk + krkk

�min(Hk +Mk)
�

(1 + �rg)kgkk

�min(Hk) + �min(Mk)
:

This and (2.11) give the inequality

(2.13)  (�min(Mk)) � 0 with  (�)
def
= �

1
˛ (�+ �min(Hk)) � �

1
˛

�
(1 + �rg)kgkk:

Now note that  (0) =  (��min(Hk)) = ��
1
˛

�
(1 + �rg)kgkk and thus

(2.14)  (�1;k) < 0 with �1;k = maxf0;��min(Hk)g:

Moreover, the form of  (�) implies that  (�) is strictly increasing for � � �1;k . Define
now

(2.15) �2;k
def
= ��min(Hk) + 2max

�
j�min(Hk)j; �

1
1+˛

�
(1 + �rg)

˛
1+˛ kgkk

˛
1+˛

�
> �1;k :

Suppose first that �min(Hk) < 0 and j�min(Hk)j � �
1

1+˛

�
(1 + �rg)

˛
1+˛ kgkk

˛
1+˛ . Then

one verifies that �2;k = 3j�min(Hk)j and

 (�2;k) = (3j�min(Hk)j)
1+˛

˛ � (3j�min(Hk)j)
1
˛ j�min(Hk)j � �

1
1+˛

�
(1 + �rg)

˛
1+˛ kgkk

= 2 � 3
1
˛ j�min(Hk)j

1+˛
˛ � �

1
1+˛

�
(1 + �rg)

˛
1+˛ kgkk > 0

Suppose now that �min(Hk) � 0 and j�min(Hk)j � �
1

1+˛

�
(1 + �rg)

˛
1+˛ kgkk

˛
1+˛ . Then

�2;k = �min(Hk) and

 (�2;k) = (�min(Hk))
1+˛

˛ + (�min(Hk))
1
˛ j�min(Hk)j � �

1
1+˛

�
(1 + �rg)

˛
1+˛ kgkk > 0:

Thus we deduce that  (�2;k) > 0 whenever j�min(Hk)j � �
1

1+˛

�
(1 + �rg)

˛
1+˛ kgkk

˛
1+˛ .

Moreover the same inequality obviously holds if

j�min(Hk)j < �
1

1+˛

�
(1 + �rg)

˛
1+˛ kgkk

˛
1+˛
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because  (�) is increasing with �. As a consequence,  (�2;k) > 0 in all cases. We now
combine this inequality, (2.14) and the monotonicity of  (�) for � � �1;k to obtain that
either �min(Mk) � �1;k < �2;k or �min(Mk) 2 [�1;k ; �2;k) because of of (2.13). Thus
�min(Mk) � �2;k , which, due to (2.15) and �� > 1, implies (2.4).

Thus a method satisfying (2.1)–(2.5) and (2.11) belongs to M:˛, but not every method
in M:˛ needs to satisfy (2.11). This latter requirement implies the following property
regarding the length of the step generated by methods in M:˛ satisfying (2.11) when
applied to functions satisfying A.˛.

Lemma 2.3. Assume that an objective function f satisfying A.˛ is minimized by a method
satisfying (2.1), (2.2), (2.11) and such that the conditioning of Mk is bounded in that
�(Mk) � �� for some �� � 1. Then there exists �s;˛ > 0 independent of k such that, for
k � 0,

(2.16) kskk � �s;˛kgk+1k
1

1+˛ :

Proof. The triangle inequality provides

(2.17) kgk+1k � kgk+1 � (gk +Hksk)k + kgk +Hkskk:

From (2.1), gk+1 = g(xk + sk) and Taylor expansion provides

gk+1 = gk +

Z 1

0

H (xk + �sk)skd�

This and (2.8) now imply

kgk+1 � (gk +Hksk)k �

Z 1

0

[H (xk + �sk) �H (xk)]d�

 � kskk

� LH;˛(1 + ˛)
�1

kskk
1+˛

so that (2.17) and (2.2) together give that

kgk+1k � LH;˛(1 + ˛)
�1kskk1+˛ + (1 + �rs)kMkk kskk:

IfMk ¤ 0, this inequality and the fact that �(Mk) is bounded then imply that

kgk+1k � LH;˛(1 + ˛)
�1

kskk
1+˛ + �(Mk)(1 + �rs)�min(Mk) kskk;

while we may ignore the last term on the right-hand side ifMk = 0. Hence, in all cases,

kgk+1k � LH;˛(1 + ˛)
�1

kskk
1+˛ + ��(1 + �rs)�min(Mk) kskk;

where we used that �(Mk) � �� by assumption. This bound and (2.11) then imply (2.16)
with �s;˛

def
= [LH;˛(1 + ˛)

�1 + ��(1 + �rs)��]
� 1

1+˛ .
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Property (2.16) will be central for proving (in Appendix A2) desirable properties of a
class of methods belonging to M:˛. In addition, we now show that (2.16) is a necessary
condition for fast local convergence of methods of type (2.2), under reasonable assump-
tions; fast local rate of convergence in a neighbourhood of well-behaved minimizers is a
“trademark” of what is commonly regarded as second-order methods.

Lemma 2.4. Let f satisfy assumptions A.˛. Apply an algorithm to minimizing f that
satisfies (2.1) and (2.2) and for which

(2.18) kMkk � ��; k � 0, for some �� > 0 independent of k.

Assume also that convergence at linear or faster than linear rate occurs, namely,

(2.19) kgk+1k � �ckgkk
1+˛; k � 0;

for some �c > 0 independent of k, with �c 2 (0; 1) when ˛ = 0. Then (2.16) holds.

Proof. Let

(2.20) 0 � ˛k
def
=

kskk

kgk+1k
1

1+˛

; k � 0:

From (2.19) and the definition of ˛k in (2.20), we have that, for k � 0,

(1 � �rg)
kskk

˛k
� �c;˛(1 � �rg)kgkk � �c;˛kgk + rkk

= �c;˛k(Hk +Mk)skk � �c;˛kHk +Mkk � kskk;

where �c;˛
def
= �

1
1+˛
c and where we used (2.2) to obtain the first equality. It follows that

(2.21) kHk +Mkk �
(1 � �rg)

˛k�c;˛

; k � 0:

The bounds (2.9) and (2.18) imply that fHk +Mkg is uniformly bounded above for all k,
namely,

(2.22) kHk +Mkk � �hl ; k � 0;

where �hl
def
= Lg +��. Now (2.21) and (2.22) give that ˛k � 1/(�hl�c;˛) > 0, for all k �

0, and so it follows from (2.20), that (2.16) holds with �s;˛
def
= (1 � �rg)/(�c1�c;˛).

It is clear from the proof of Lemma 2.4 that (2.19) is only needed asymptotically, that is
for all k sufficiently large; for simplicity, we have assumed it holds globally.
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Note that letting ˛ = 1 in Lemma 2.4 provides a necessary condition for quadratically
convergent methods satisfying (2.1), (2.2) and (2.18). Also, similarly to the above proof,
one can show that if superlinear convergence of fgkg to zero occurs, then (2.16) holds
with ˛ = 0 for all �s;˛ > 0, or equivalently, kgk+1k/kskk ! 0, as k ! 1.

Summarizing, we have shown that (2.16) holds for a method in M:˛ if (2.11) holds
and �(Mk) is bounded, or if linear of faster asymptotic convergence takes place for unit
steps.

2.2 Some examples of methods that belong to the class M:˛. Let us now illustrate
some of the methods that either by construction or under certain conditions belong toM:˛.
This list of methods does not attempt to be exhaustive and other practical methods may be
found to belong to M:˛.

Newton’s method Dennis and Schnabel [1983]. Newton’s method for convex optimiza-
tion is characterised by finding a correction sk that satisfies Hksk = �gk for nonzero
gk 2 Range(Hk). Letting

(2.23) Mk = 0; rk = 0 and ˇk = 0

in (2.2) and (2.6), respectively, yields Newton’s method. Provided additionally that both
gk 2 Range(Hk) andHk is positive semi-definite, sk is a descent direction and (2.3) holds.
Since (2.4) is trivially satisfied in this case, it follows that Newton’s method belongs to
the class M:˛, for any ˛ 2 [0; 1], provided it does not generate infinite steps to violate
(2.5). As Newton’s method is commonly embedded within trust-region or regularization
frameworks when applied to nonconvex functions, (2.5) will in fact, hold as it is generally
enforced for the latter methods. Note that allowing krkk > 0 subject to the second part of
(2.2) then covers inexact variants of Newton’s method.

Regularization algorithms Griewank [1981], Nesterov [2004], and Cartis, Gould, and
Toint [2011b]. In these methods, the step sk from the current iterate xk is computed by
(possibly approximately) globally minimizing the model

(2.24) mk(s) = fk + gT
k s +

1
2
sTHks +

�k

2 + ˛
ksk2+˛;

where the regularization weight �k is adjusted to ensure sufficient decrease of f at xk+sk .
We assume here that the minimization of (2.24) is carried accurately enough to ensure that
r ²

ssmk �(s) = Hk+�kkskI is positive semidefinite, which is always possible because of
Cartis, Gould, and Toint [2011a, Theorem 3.1]. The scalar ˛ is the same fixed parameter
as in the definition of A.˛ and M:˛, so that for each ˛ 2 [0; 1], we have a different
regularization term and hence what we shall call an (2 + ˛)-regularization method. For
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˛ = 1, we recover the cubic regularization (ARC) approach Griewank [1981], Weiser,
Deuflhard, and Erdmann [2007], Nesterov and Polyak [2006], and Cartis, Gould, and
Toint [2011a,b]. For ˛ = 0, we obtain a quadratic regularization scheme, reminiscent of
the Levenberg-Morrison-MarquardtmethodNocedal andWright [1999]. For these (2+˛)-
regularization methods, we have

(2.25) ˛ 2 [0; 1]; Mk = �kkskk
˛I; and ˇk =

2

2 + ˛

in (2.2) and (2.6). If scaling the regularization term is considered, then the second of these
relation is replaced byMk = �kkskk˛Nk for some fixed scaling symmetric positive defi-
nite matrix having a bounded condition number. Note that, by construction, �(Mk) = 1.
Since ˛ � 0, we have 0 � ˇk � 1 which is required in (2.6). A mechanism of successful
and unsuccessful iterations and �k adjustments can be devised similarly to ARC Cartis,
Gould, and Toint [2011a, Alg. 2.1] in order to deal with steps sk that do not give sufficient
decrease in the objective. An upper bound on the number of unsuccessful iterations which
is constant multiple of successful ones can be given under mild assumptions on f Car-
tis, Gould, and Toint [2011b, Theorem 2.1]. Note that each (successful or unsuccessful)
iteration requires one function- and at most one gradient evaluation.

We now show that for each ˛ 2 [0; 1], the (2+˛)�regularization method based on the
model (2.24) satisfies (2.5) and (2.4) when applied to f in A.˛, and so it belongs to M:˛.

Lemma 2.5. Let f satisfy A.˛ with ˛ 2 (0; 1]. Consider minimizing f by applying an
(2 + ˛)-regularization method based on the model (2.24), where the step sk is chosen
as the global minimizer of the local ˛�model, namely of mk(s) in (2.6) with the choice
(2.25), and where the regularization parameter �k is chosen to ensure that

(2.26) �k � �min; k � 0;

for some �min > 0 independent of k. Then (2.5) and (2.11) hold, and so the (2 + ˛)-
regularization method belongs to M:˛.

(see Appendix A2 for details). The same argument that is used in Cartis, Gould, and Toint
[2011a, Lem.2.2] for the ˛ = 1 case (see also Appendix A2) provides

(2.27) kskk � max

(�
3(2 + ˛)Lg

4�k

� 1
˛

;

�
3(2 + ˛)kgkk

�k

� 1
1+˛

)
; k � 0;

so long as A.˛ holds, which together with (2.26), implies

(2.28) kskk � max

(�
3(2 + ˛)Lg

4�min

� 1
˛

;

�
3(2 + ˛)kgkk

�min

� 1
1+˛

)
; k � 0:
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The assumptions A.˛, that the model is minimized globally imply that the ˛ � 1 analog of
Cartis, Gould, and Toint [2011a, Corollary 2.6] holds, which gives kgkk ! 0 as k ! 1,
and so fkgkkg, k � 0, is bounded above. The bound (2.5) now follows from (2.28).

Using the same techniques as in Cartis, Gould, and Toint [ibid., Lemma 5.2] that ap-
plies when f satisfies A.1, it is easy to show for the more general A.˛ case that �k �

c� max(�0; LH;˛) for all k, where c� is a constant depending solely on ˛ and algorithm
parameters. It then follows from (2.25) that (2.11) holds and therefore that the (2 + ˛)-
regularization method belongs to M:˛ for ˛ 2 (0; 1].

We cannot extend this result to the ˛ = 0 case unless we also assume that Hk is positive
semi-definite. If this is the case, further examination of the proof of Cartis, Gould, and
Toint [ibid., Lem.2.2] allows us to remove the first term in the max in (2.28), and the
remainder of the proof is valid.

We note that bounding the regularization parameter �k away from zero in (2.26) appears
crucial when establishing the bounds (2.5) and (2.4). Requiring (2.26) implies that the
Newton step is always perturbed, but does not prevent local quadratic convergence of
ARC Cartis, Gould, and Toint [2011b].

Goldfeld-Quandt-Trotter-type (GQT) methods Goldfeld, Quandt, and Trotter [1966].
Let ˛ 2 (0; 1]. These algorithms setMk = �kI , where

(2.29) �k =

(
0; when �min(Hk) � !kkgkk

˛
1+˛ ;

��min(Hk) + !kkgkk
˛

1+˛ ; otherwise,

in (2.2), where !k > 0 is a parameter that is adjusted so as to ensure sufficient objective
decrease. (Observe that replacing ˛

1+˛
by 1 in the exponent of kgkk in (2.29) recovers

the original method of Goldfeld et al. Goldfeld, Quandt, and Trotter [ibid.].) It is straight-
forward to check that (2.3) holds for the choice (2.29). Thus the GQT approach takes
the pure Newton step whenever the Hessian is locally sufficiently positive definite, and a
suitable regularization of this step otherwise. The parameter !k is increased by a factor,
say 1 > 1, and xk+1 left as xk whenever the step sk does not give sufficient decrease in
f (i.e., iteration k is unsuccessful), namely when

(2.30) �k
def
=
fk � f (xk + sk)

fk �mk(sk)
� �1;

where �1 2 (0; 1) and

(2.31) mk(s) = fk + gT
k s +

1
2
sTHks

is the model (2.6) with ˇk = 0. If �k > �1, then !k+1 � !k and xk+1 is constructed
as in (2.1). Note that the choice (2.29) implies that (2.4) holds, provided !k is uniformly
bounded above. We show that the latter, as well as (2.5), hold for functions in A.˛.
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Lemma 2.6. Let f satisfy A.˛ with ˛ 2 (0; 1]. Consider minimizing f by applying a
GQT method that sets �k in (2.2) according to (2.29), measures progress according to
(2.30), and chooses the parameter !k and the residual rk to satisfy, for k � 0,

(2.32) !k � !min k � 0: and rT
k sk � 0:

Then (2.5) and (2.4) hold, and so the GQT method belongs to M:˛.

Note that the second part of (2.32) merely requires that sk is not longer that the line
minimum of the regularized model along the direction sk , that is 1 � argmin��0mk(�sk).

Proof. Let us first show (2.5). Since !k > 0, and gk + rk ¤ 0 until termination, the
choice of �k in (2.29) implies that �k + �min(Hk) > 0, for all k, and so (2.2) provides

(2.33) sk = �(Hk + �kI )
�1(gk + rk);

and hence,

(2.34) kskk � k(Hk + �kI )
�1

k � kgk + rkk =
(1 + �rg)kgkjj

�k + �min(Hk)
; k � 0:

It follows from (2.29) and the first part of (2.32) that, for all k � 0,

(2.35) �k + �min(Hk) � !kkgkk
˛

1+˛ � !minkgkk
˛

1+˛ ;

This and (2.34) further give

(2.36) kskk �
(1 + �rg)kgkk

1
1+˛

!min
; k � 0:

As global convergence assumptions are satisfied when f in A.˛ Conn, Gould, and Toint
[2000] and Goldfeld, Quandt, and Trotter [1966], we have kgkk ! 0 as k ! 1 (in fact,
we only need the gradients fgkg to be bounded). Thus (2.36) implies (2.5).

Due to (2.29), (2.4) holds if we show that f!kg is uniformly bounded above. For this,
we first need to estimate the model decrease. Taking the inner product of (2.2) with sk ,
we obtain that

�gT
k sk = sT

k Hksk + �kkskk
2

� rT
k sk :

Substituting this into the model decrease, we deduce also from (2.6) with ˇk = 0 that

fk �mk(sk) = �gT
k sk �

1
2
sT

k Hksk = 1
2
sT

k Hksk + �kkskk
2

� rT
k sk

�
�
1
2
�min(Hk) + �k

�
kskk

2:
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where we used the second part of (2.32) to obtain the last inequality. It is straightforward
to check that this and (2.35) now imply

(2.37) fk �mk(sk) �
1
2
!kkgkk

˛
1+˛ � kskk

2:

We show next that iteration k is successful for !k sufficiently large. From (2.30) and
second-order Taylor expansion of f (xk + sk), we deduce

j�k � 1j =

ˇ̌̌̌
f (xk + sk) �mk(sk)

fk �mk(sk)

ˇ̌̌̌
�

jHk �H (�k)j � kskk2

2(fk �mk(sk))
�

LH;˛kskk2+˛

2(fk �mk(sk))
:

This and (2.37) now give

(2.38) j�k � 1j �
LH;˛kskk˛

!kkgkk
˛

1+˛

�
LH;˛

!˛
min!k

;

where to obtain the last inequality, we used (2.36). Due to (2.30), iteration k is successful
when j�k �1j � 1��1, which from (2.38) is guaranteed to hold whenever!k �

LH;˛

!˛
min(1��1)

.
As on each successful iteration we set !k+1 � !k , it follows that

(2.39) !k � !
def
= max

�
!0;

1LH;˛

!˛
min(1 � �1)

�
; k � 0;

where themax term addresses the situation at the starting point and the 1 factor is included
in case an iteration was unsuccessful and close to the bound. This concludes proving
(2.4).

Trust-region algorithms Conn, Gould, and Toint [2000]. These methods compute the
correction sk as the global solution of the subproblem

(2.40) minimize fk + gT
k s +

1
2
sTHks subject to ksk � ∆k ;

where∆k is an evolving trust-region radius that is chosen to ensure sufficient decrease of
f at xk + sk . The resulting global minimizer satisfies (2.2)–(2.3) Conn, Gould, and Toint
[ibid., Corollary 7.2.2] with Mk = �kI (or Mk = �kNk if scaling is considered) and
rk = 0. The scalar �k is the Lagrange multiplier of the trust-region constraint, satisfies

(2.41) �k � maxf0;��min(Hk)g

and is such that �k = 0 whenever kskk < ∆k (and then, sk is the Newton step) or cal-
culated using (2.2) to ensure that kskk = ∆k . The scalar ˇk = 0 in (2.6). The iterates
are defined by (2.1) whenever sufficient progress can be made in some relative function
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decrease (so-called successful iterations), and they remain unchanged otherwise (unsuc-
cessful iterations) while∆k is adjusted to improve the model (decreased on unsuccessful
iterations, possibly increased on successful ones). The total number of unsuccessful iter-
ations is bounded above by a constant multiple of the successful ones plus a (negligible)
term in log � Gratton, Sartenaer, and Toint [2008, page 23] provided ∆k is not increased
too fast on successful iterations. One successful iteration requires one gradient and one
function evaluation while an unsuccessful one only evaluates the objective.

The property (2.5) of M:˛ methods can be easily shown for trust-region methods, see
Lemma 2.7. It is unclear however, whether conditions (2.4) or (2.11) can be guaranteed in
general for functions in A.˛. The next lemma gives conditions ensuring a uniform upper
bound on the multiplier �k , which still falls short of (2.4) in general.

Lemma 2.7. Let f satisfy assumptions A.0. Consider minimizing f by applying a trust-
region method as described in Conn, Gould, and Toint [2000, Algorithm 6.1.1], where the
trust-region subproblem is minimized globally to compute sk and where the trust-region
radius is chosen to ensure that

(2.42) ∆k � ∆max; k � 0;

for some ∆max > 0. Then (2.5) holds. Additionally, if

(2.43) kgk+1k � kgkk; for all k sufficiently large,

then �k � �max for all k and some �max > 0, and �min(Mk) is bounded.

Proof. Consider the basic trust-region algorithm as described in Conn, Gould, and Toint
[ibid., Algorithm 6.1.1], using the same notation. Since the global minimizer sk of the
trust-region subproblem is feasible with respect to the trust-region constraint, we have
kskk � ∆k , and so (2.5) follows trivially from (2.42).

Clearly, the upper bound on �k holds whenever �k = 0 or �k = ��min(Hk) � Lg .
Thus it is sufficient to consider the case when �k > 0 and Hk + �kI � 0. The first con-
dition implies that the trust-region constraint is active, namely kskk = ∆k Conn, Gould,
and Toint [ibid., Corollary 7.2.2]. The second condition together with (2.2) implies, as in
the proof of Lemma 2.2, that (2.12) holds. Thus we deduce

∆k �
kgkk

�k + �min(Hk)
;

or equivalently,

(2.44) �k �
kgkk

∆k

� �min(Hk) �
kgkk

∆k

+ Lg ; k � 0:
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It remains to show that

(2.45) fkgkk/∆kg is bounded above independently of k.

By Conn, Gould, and Toint [2000, Theorem 6.4.2], we have that there exists c 2 (0; 1)

such that the implication holds

(2.46) ∆k � ckgkk H) ∆k+1 � ∆k ; i.e., k is successful.

(Observe that the Cauchy model decrease condition Conn, Gould, and Toint [ibid., Theo-
rem 6.3.3] is sufficient to obtain the above implication.) Let 1 2 (0; 1) denote the largest
factor we allow ∆k to be decreased by (during unsuccessful iterations). Using a similar
argument to that of Conn, Gould, and Toint [ibid., Theorem 6.4.3], we let k � k0 be the
first iterate such that

(2.47) ∆k+1 < c1kgk+1k;

where k0 is the iteration from which onwards (2.43) holds. Then since∆k+1 � 1∆k and
from (2.43) we have that∆k < ckgkk. This and (2.46) give

∆k+1 � ∆k � c1kgkk � c1kgk+1k;

where to obtain the second and third inequalities, we used the hypothesis and (2.43), re-
spectively. We have reached a contradiction with our assumption that k + 1 is the first
iteration greater than k0 such that (2.47) holds. Hence there is no such k and we deduce
that

(2.48) ∆k � min
˚
∆k0

; c1kgkk
	

for all k � k0.

Note that since gk remains unchanged on unsuccessful iterations, (2.43) trivially holds on
such iterations. Since the assumptions of Conn, Gould, and Toint [ibid., Theorem 6.4.6]
are satisfied, we have that kgkk ! 0, as k ! 1. This and (2.48) imply (2.45). The
desired conclusion then follows from (2.44).

Note that if (2.19) holds for some ˛ 2 [0; 1], then (2.43) is satisfied, and so Lemma 2.7
shows that if (2.19) holds, then (2.18) is satisfied. It follows from Lemma 2.4 that fast con-
vergence of trust-region methods for functions in A.˛ alone is sufficient to ensure (2.16),
which in turn is connected to our definition of the class M:˛. However, the properties of
the multipliers (in the sense of (2.4) for any ˛ 2 [0; 1] or even (2.16)) remain unclear in the
absence of fast convergence of the method. Based on our experience, we are inclined to
believe that generally, the multipliers �k are at best guaranteed to be uniformly bounded
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above, even for specialized, potentially computationally expensive, rules of choosing the
trust-region radius.

As the Newton step is taken in the trust-region framework satisfying (2.2) whenever it
is within the trust region and gives sufficient decrease in the presence of local convexity,
the A.1- (hence A.˛-) example of inefficient behaviour for Newton’s method of worst-case
evaluation complexity precisely ��2 can be shown to apply also to trust-region methods
Cartis, Gould, and Toint [2010] (see also Gratton, Sartenaer, and Toint [2008]).

Linesearch methods Dennis and Schnabel [1983] and Nocedal and Wright [1999]. We
finally consider methods using a linesearch to control improvement in the objective at
each step. Such methods compute xk+1 = xk + sk , k � 0, where sk is defined via
(2.2) in which Mk is chosen so that Hk + Mk , the Hessian of the selected quadratic
modelmk(s), is “sufficiently” positive definite, and rk = (1��k)gk , yielding a stepsize
�k 2 [1 � �rg ; 1] which is calculated so as to decrease f (the linesearch); this is always
possible for sufficiently small�k (and hence sufficiently small �rg .) The precise definition
of ”sufficient decrease” depends on the particular linesearch scheme being considered, but
we assume here that

�k = 1 is acceptable whenever mk(sk) = f (xk + sk):

In other words, we require the unit step to be acceptable when the model and the true
objective function match at the trial point. Because the minimization of the quadratic
model along the step always ensure that mk(sk) = f (xk) +

1
2
gksk , the above condition

says that sk must be acceptable with �k = 1 whenever f (xk + sk) = f (xk) +
1
2
gksk .

This is for instance the case for the Armijo and Goldstein linesearch conditions(4), two
standard linesearch techniques. As a consequence, the corresponding linesearch variants
of Newton’s method and of the (2 + ˛)-regularization methods also belong to M:˛ (with
ˇk = 1 for all k), and the list is not exhaustive. Note that linesearch methods where the
search direction is computed inexactly are also covered by setting rk = gk ��k(gk +wk)

for some “error vector” wk , provided the second part of (2.2) still holds.

3 Examples of inefficient behaviour

After reviewing the methods in M:˛, we now turn to showing they can converge slowly
when applied to specific functions with fixed range(5) and the relevant degree of smooth-
ness.

(4)With reasonable algorithmic constants, see Appendix A1.
(5)At variance with the examples proposed in Cartis, Gould, and Toint [2010, 2011d].
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3.1 General methods in M:˛. Let ˛ 2 [0; 1] and � 2 (0; 1) be given and consider an
arbitrary method in M:˛. Our intent is now to construct a univariate function f M:˛

� (x)

satisfying A.˛ such that

(3.1) f M:˛
� (0) = 1; f M:˛

� (x) 2 [a; b] for x � 0;

for some constants a � b independent of � and ˛, and such that the method will terminate
in exactly

(3.2) k�;˛ =
l
��

2+˛
1+˛

m
iterations (and evaluations of f , g andH ).

We start by defining the sequences fk , gk andHk for k = 0; : : : ; k�;˛ by

(3.3) fk = 1 �
1
2
k�

2+˛
1+˛ ; gk = �2 � fk and Hk = 4 �

˛
1+˛ f 2

k :

They are intended to specify the objective function, gradient and Hessian values at succes-
sive iterates generated by the chosen method inM:˛, according to (2.1) and (2.2) for some
choice of multipliers f�kg = fMkg = f�min(Mk)g satisfying (2.3) and (2.4). In other
words, we impose that fk = f M:˛

� (xk), gk = rf M:˛
� (xk) and Hk = r2f M:˛

� (xk) for
k 2 K

def
= f0; : : : ; k�;˛g. Note that fk , jgkj andHk are monotonically decreasing and that,

using (3.2),

(3.4) fk 2 [ 1
2
; 1] for k 2 K:

In addition, (2.3) and (2.4) impose that, for k 2 K,

0 � �k + 4�
˛

1+˛ f 2
k � �� max[4�

˛
1+˛ f 2

k ; (2�fk)
˛

1+˛ ] = 4���
˛

1+˛ f 2
k :

yielding that

(3.5) �k 2

h
0; 4(�� � 1)�

˛
1+˛ f 2

k

i
;

As a consequence, we obtain, using both parts of (2.2), that, for k 2 K,

(3.6) sk = �k

�
1

1+˛

2fk

for some �k 2

�
1 � �rg

��

; 1 + �rg

�
:

Note that our construction imposes that

(3.7)

mk(sk) = fk + gksk + 1
2
gksk + 1

2
sk(Hk + ˇk�k)sk

= fk + gksk + 1
2
sk [�gk + rk + (ˇk � 1)�ksk ]

� fk �
1
2
jgkjsk �

1
2
�rg jgkjsk + 1

2
�2

k
(�� � 1)(ˇk � 1)�

2+˛
1+˛

� fk �
1
2
�k�

2+˛
1+˛ [1 + �rg + �k(1 � ˇk)(�� � 1)]

� fk �
1
2
�

2+˛
1+˛ (1 + �rg)

2[1 + (1 � ˇk)(�� � 1)]

� fk �
1
2
�

2+˛
1+˛ (1 + �rg)

2��
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where we have used (2.2), (3.3), (3.6), (3.5) and ˇk � 1. Hence, again taking (3.3) into
account,

(3.8)
fk � fk+1

fk �mk(sk)
�

1
2
�

2+˛
1+˛

1
2
�

2+˛
1+˛ ��(1 + �rg)2

=
1

(1 + �rg)2��

2 (0; 1);

and sufficient decrease of the objective function automatically follows. Moreover, given
(3.4), we deduce from (3.6) that jskj � 1 for k 2 K and (2.5) holds with �s = 1, as
requested for a method in M:˛. It also follows from (2.1) and (3.6) that, if x0 = 0,

(3.9) sk > 0 and xk =

k�1X
i=0

si ; k = 0; : : : ; k�;˛:

We therefore conclude that the sequences ffkg
k�;˛

k=0
, fgkg

k�;˛

k=0
, fHkg

k�;˛

k=0
, f�kg

k�;˛�1

k=0
and

fskg
k�;˛�1

k=0
can be viewed as produced by our chosen method in M:˛, and, from (3.3),

that termination occurs precisely for k = k�;˛ , as desired.
We now construct the function f M:˛

� (x) for x 2 [0; xk�;˛
] using Hermite interpolation.

We set

(3.10) f M:˛
� (x) = pk(x � xk) + fk+1 for x 2 [xk ; xk+1] and k = 0; : : : ; k�;˛ � 1,

where pk is the polynomial

pk(s) = c0;k + c1;ks + c2;ks
2 + c3;ks

3 + c4;ks
4 + c5;ks

5;

with coefficients defined by the interpolation conditions

(3.11)

pk(0) = fk � fk+1; pk(sk) = 0;

p0
k
(0) = gk ; p0

k
(sk) = gk+1;

p
00

k
(0) = Hk ; p

00

k
(sk) = Hk+1;

where sk is defined in (3.6). These conditions yield the following values for the coeffi-
cients

(3.12) c0;k = fk � fk+1; c1;k = gk ; c2;k = 1
2
Hk ;

with the remaining coefficients satisfying0@ s3k s4
k

s5
k

3s2
k

4s3
k

5s4
k

6sk 12s2
k

20s3
k

1A0@ c3;k

c4;k

c5;k

1A =

0@ ∆fk � gksk �
1
2
sT

k
Hksk

∆gk �Hksk
∆Hk

1A ;
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where

∆fk = fk+1 � fk ; ∆gk = gk+1 � gk and ∆Hk = Hk+1 �Hk :

Hence we obtain after elementary calculations that

(3.13)

c3;k = 10
∆fk

s3k
� 4

∆gk

s2k
+ ∆Hk

2sk
� 10

gk

s2k
�
Hk
sk

;

c4;k = �15
∆fk

s4k
+ 7

∆gk

s3k
�

∆Hk

s2k
+ 15

gk

s3k
+ Hk

2s2k
;

c5;k = 6
∆fk

s5k
� 3

∆gk

s4k
+ ∆Hk

2s3k
� 6

gk

s4k
;

The top three graphs of Figure 3.1 illustrate the global behaviour of the resulting func-
tion f M:˛

� (x) and of its first and second derivatives for x 2 [0; xk�;˛
], while the bottom

ones showmore detail of the first 10 iterations. The figure is constructed using � = 5:10�2

and ˛ = 1
2
, which then yields that k�;˛ = 148. In addition, we set �k = 1

10 jgkj
˛

1+˛ for
k = 0; : : : ; k�;˛ . The nonconvexity of f M:˛

� (x) is clear from the bottom graphs.

Lemma 3.1. The function f M:˛
� defined above on the interval [0; xk�;˛

] can be extended
to a function from IR to IR satifying A.˛ and whose range is bounded independently of ˛
and �.

Proof. We start by showing that, on

[0; xk�;˛
] =

[
k2K

[xk ; xk + sk ];

f M:˛
� is bounded in absolute value independently of � and ˛, twice continuously differ-

entiable with Lipschitz continuous gradient and ˛-Hölder continous Hessian. Recall first
(3.10) provide that f M:˛

� is twice continuously differentiable by construction on [0; xk�;˛
].

It thus remains to investigate the gradient’s Lipschitz continuity and Hessian’s ˛�Hölder
continuity, as well as whether jf M:˛

� (x)j is bounded on this interval.
Defining now

(3.14) �k
def
=
�k

2

2fk � 1

fk

2 [0; 1
2
�k ] and �(�)

def
= 2 �

1

�
2 [2 �

��

1 � �rg

; 1 + �rg ]

(where we used (3.4) and (3.6)), we obtain from (3.2), (3.3), (3.6) and (3.13), that, for
k 2 K,
(3.15)

jc3;k js2
k

= �fk

�
20 � 10

�k
� 2�k

�
� �

3+2˛
1+˛ (4 + �k) � �

�
10j�(�)j + 2� + 9

2 �
2+˛
1+˛

�
= O(�);

jc4;k js3
k

= �fk

�
15
�k

� 30 + �k

�
+ �

3+2˛
1+˛ (7 + 2�k) � �

�
15j�(�)j + � + 8�

2+˛
1+˛

�
= O(�);

jc5;k js4
k

= �fk

�
12 � 6

�k

�
� �

3+2˛
1+˛ (3 + �k) � �

�
6j�(�)j + 7

2 �
2+˛
1+˛

�
= O(�);
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Figure 3.1: f M:˛
� (x) (left) and its first (center) and second (right) derivatives as a

function of x for ˛ = 1
2 and � = 5:10�2 (top: x 2 [0; xk�;˛

]; bottom: x 2 [0; x10]).
Horizontal dotted lines indicate values of �� and � in the central top graph.
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where we also used � � 1 and (3.4). To show that the Hessian of f M:˛
� is globally

˛�Hölder continuous on [0; xk�;˛
], we need to verify that (2.8) holds for all x; y in this

interval. From (3.10), this is implied by

(3.16) jp
000

(s)j � cjsj�1+˛; for all s 2 [0; sk ] and k 2 K,

for some c > 0 independent of �, s and k. We have from the expression of pk and
s 2 [0; sk ] that

(3.17)
jp

000

k
(s)j � jsj1�˛ � (6jc3;kj + 24jc4;kjsk + 60jc5;kjs2

k
)s1�˛

k

= (6jc3;kjs2
k
+ 24jc4;kjs3

k
+ 60jc5;kjs4

k
)s

�(1+˛)

k
:

The boundedness of this last right-hand side on [0; xk�;˛
] , and thus the ˛-Hölder continuity

of the Hessian of f M , then follow from (3.15), (3.6) and (3.4).
Similarly, to show that the gradient of f M is globally Lipschitz continuous in [0; xk�;˛

]

is equivalent to proving that p00

k
(s) is uniformly bounded above on the interval [0; sk ] for

k 2 K. Since sk > 0, we have

(3.18)
jp

00

k
(s)j � 2jc2;kj + 6jc3;kjsk + 12jc4;kjs2

k
+ 20jc5;kjs3

k

= 2jc2;kj + (6jc3;kjs2
k
+ 12jc4;kjs3

k
+ 20jc5;kjs4

k
)s�1

k
:

Then the third part of (3.3) and the bounds � � 1, (3.15), (3.12), (3.6) and (3.4) again
imply the boundedness of the last right-hand side on [0; xk�;˛

], as requested. Finally, the
fact that jf M:˛

� j is bounded on [0; xk�;˛
] results from the observation that, on the interval

[0; sk ] with k 2 K,

jpk(s)j � fk + jgkjjskj + 1
2
jHkj jskj

2 + (jc3;kjs2k + jc4;kjs3k + jc5;kjs4k)sk

from which a finite bound a independent from ˛ and � again follows from � � 1, (3.3),
(3.10), (3.15), (3.12), (3.6) and (3.4). We have thus proved that f M:˛

� satisfies the desired
properties on [0; xk�;˛

].
We may then smoothly prolongate f M:˛

� for x 2 IR, for instance by defining two addi-
tional interpolation intervals [x�1; x0] = [�1; 0] and [xk�;˛

; xk�;˛
+1]with end conditions

f�1 = 1; fk�;˛+1 = fk�;˛
and g�1 = H�1 = gk�;˛+1 = Hk�;˛+1 = 0;

and setting

f M:˛
� (x) =

8<: 1 for x � �1;

pk(x � xk) + fk+1 for x 2 [xk ; xk+1] and k 2 f�1; : : : ; k�;˛g;

f M:˛
� (xk�;˛

) for x � xk�;˛
+ 1;

which subsumes (3.10). Using arguments similar to those used above, it is easy to verify
from (3.12), (3.13) and s�1 = sk�;˛

= 1 that all desired properties are maintained.
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We formulate the results of this development in the following theorem.

Theorem 3.2. For every � 2 (0; 1), every ˛ 2 [0; 1] and every method in M:˛, a function
f M:˛

� satisfying A.˛ with values in a bounded interval independent of � and ˛ can be
constructed, such, when applied to f M:˛

� , the considered method terminates exactly at
iteration

k�;˛ =
l
��

2+˛
1+˛

m
:

with the first iterate xk�;˛
such that krxf

M:˛
� (xk�;˛

)k � �.

Note that the prolongation of f M:˛
� (x) to x � 0 suggested as an example in the proof of

Lemma 3.1 admits an isolated finite global minimizer. Indeed, since the gk�;˛
< 0, there

must be a value lower than f (xk�;˛
) in (xk�;˛

; xk�;˛
+ 1), and thus the global minimizer

must lie in one of the constructed sub-intervals in (�1; xk�;˛+1); since f M:˛
� (x) is quintic

(and not constant) in each of these, the global minimizer must therefore be isolated.

3.2 The inexact Newton’s method. It is interesting that the technique developed in
the previous subsection can also be used to derive an O

�
��2

�
lower bound on worst-case

evaluation complexity for an inexact Newton’s method applied to a function having Lips-
chitz continuous Hessians on the path of iterates. This is stronger than using Theorem 3.2
above for ˛ = 1, as it would result in a weaker O

�
��3/2

�
lower bound, or for ˛ = 0 as

it would then only guarantee bounded Hessians. In the spirit of Cartis, Gould, and Toint
[2010], this new function is constructed by extending to IR2 the unidimensional f M:0

� (x)

obtained in the previous section for the specific choiceMk = 0, which then ensures that
�k 2 [1 � �rg ; 1 + �rg ] for all k (see (3.5) and (3.6)). The proposed extension is of the
form

(3.19) hN
� (x; y)

def
= f M:0

� (x) + u�(y);

where we still have to specify the univariate function u� such that Newton’s method ap-
plied to u� converges with large steps. In order to define it, we start by redefining

k� = k�;0 = d��2
e and K = f0; : : : ; k�g:

Then we set, for k 2 K,

(3.20) uk = 1 �
1
2
k�2; gu

k = �2�2uk ; Hu
k = 2jgu

k juk > 0;

and

(3.21) su
k =

�k

2uk

with �k 2 [1 � �rg ; 1 + �rg ] and uk 2 [ 1
2
; 1];



3752 CORALIA CARTIS, NICHOLAS I. M. GOULD AND PHILIPPE TOINT

this definition allowing for

Hu
k s

u
k = �gu

k + ru
k with jru

k j � �rg jgu
k j:

(Remember thatMk = 0 because we are considering Newton’s method.) Note that suffi-
cient decrease is obtained in manner similar to (3.7)-(3.8), because of (3.20), (3.21) and
�k = 0, yielding that uk �uk+1 � �(gu

k
su

k
+ 1

2
Hu

k
(su

k
)2)/(1+�rg). Setting now y0 = 0

and yk+1 = yk + su
k
for k 2 f1; : : : ; k�g, we may then, as in Section 3.1, define

(3.22) u�(y) = pu
k (y � yk) + uk+1 for y 2 [yk ; yk+1] and k = 0; : : : ; k� � 1,

where pu
k
is a fifth degree polynomial interpolating the values and derivatives given by

(3.20) on the interval [0; su
k
]. We then obtain the following result.

Theorem 3.3. For every � 2 (0; 1), there exists a function hN
� with Lipschitz continuous

gradient and Lipschitz continuous Hessian along the path of iterates [
k��1
k=0

[xj ; xj+1],
and with values in a bounded interval independent of �, such that, when applied to hN

� ,
Newton’s terminates exactly at iteration

k� =
˙
��2

�
with the first iterate xk�

such that krxf
M:˛

� (xk�
)k � �

p
1 + �2.

Proof. One easily verifies from (3.20), (3.21) and (3.13) that the interpolation coefficients,
now denoted by jdi;kj, are bounded for all k 2 f0; : : : ; k� � 1g and i 2 f0; : : : ; 5g. This
observation and (3.21) in turn guarantee that u� and all its derivatives (including the third)
remain bounded on each interval [0; su

k
] by constants independent of �. As in Lemma 3.1,

we next extend u� to the whole of IR while preserving this property. We then construct hN

using (3.19). From the properties of f M:0
� andu� , we deduce that hN

� is twice continuously
differentiable and has a range bounded independently of �. Moreover, it satisfies A.0.
When applied on hN

� (x; y), Newton’s generates the iterates (xk ; yk) and its gradient at
the k�-th iterate is (�; �2) so that krhN (xk�

; yk�
)k = �

p
1 + �2, prompting termination.

Before that, the algorithm generates the steps (sk ; su
k
), where, because both fk and uk

belong to [ 1
2
; 1] and because of (3.6) with ˛ = 0,

(3.23) sk 2 [�(1 � �rg); 2�(1 + �rg)] and su
k 2 [1 � �rg ; 2(1 + �rg)]:
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Thus the absolute value of the third derivative of hN
� (x; y) is given, for (x; y) in the k-th

segment of the path of iterates, by

(3.24)

1

k(sk ; s
u
k
)k

ˇ̌̌
p

000

k (x � xk)s
3
k + (pu

k )
000

(y � yk)(s
u
k )

3
ˇ̌̌

�
1

1 � �rg

h
jp

000

k
(x � xk)js

3
k
+ j(pu

k
)

000

(y � yk)j(s
u
k
)3
i

= 1
1 � �rg

h �
6jc3;kj + 24jc4;kjsk + 60jc5;kjs2

k

�
s3

k

+
�
6jd3;kj + 24jd4;kjsu

k
+ 60jd5;kj(su

k
)2
�
(su

k
)3
i

= 1
1 � �rg

h �
6jc3;kjs2

k
+ 24jc4;kjs3

k
+ 60jc5;kjs4

k

�
sk

+6jd3;kj(su
k
)3 + 24jd4;kj(su

k
)4 + 60jd5;kj(su

k
)5
i
;

where we used the fact that k(sk ; s
u
k
)k � ksu

k
k: and (3.23). But, in view of (3.15), (3.14)

with �k 2 [1 � �rg ; 1 + �rg ], (3.23), � � 1 and the boundedness of the di;k , the last right-
hand side of (3.24) is bounded by a constant independent of �. Thus the third derivative
of hN

� (x; y) is bounded on every segment by the same constant, and, as a consequence,
the Hessian of hN

� (x; y) is Lipschitz continuous of each segment, as desired.

Note that the same result also holds for any method in M:0 with Mk small enough to
guarantee that sk is bounded away from zero for all k.

4 Complexity and optimality for methods in M:˛

We now consider the consequences of the examples derived in Section 3 on the evaluation
complexity analysis of the various methods identified in Section 2 as belonging to M:˛.

4.1 Newton’s method. First note that the third part of (3.3) ensures that Hk > 0 so
that the Newton iteration is well-defined for the choice (2.23). This choice corresponds
to setting �k = 1 for all k � 0 in the example of Section 3. So we first conclude from
Theorem 3.2 that Newton’s method may require ��(2+˛)/(1+˛) evaluations when applied
on the resulting objective function f M:˛

� satisfying A.˛ to generate jgkj � �. However,
Theorem 3.3 provides the stronger result that it may in fact require ��2 evaluations (as a
method in M:0) for nearly the same task (we traded Lipschitz continuity of the Hessian
on the whole space for that along the path of iterates). As a consequence we obtain that
Newton’s method is not optimal in M:˛ as far as worst-case evaluation complexity is
concerned.

The present results also improves on the similar bound given in Cartis, Gould, and
Toint [2011d], in that the objective function on Sections 3.1 and 3.2 ensure the existence
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of a lower bound flow on f M:˛
� (x) such that f M:˛

� (x0)�flow is bounded, while the latter
difference is unbounded in Cartis, Gould, and Toint [2011d] (for ˛ 2 f0; 1g) as the number
of iterations approaches ��2. We will return to the significance of this observation when
discussing regularization methods.

Since the steepest-descent method is known to have a worst-case evaluation complexity
of O

�
��2

�
when applied on functions having Lipschitz continuous gradients Nesterov

[2004, p. 29] , Theorem 3.3 shows that Newton’s method may, in the worst case, converge
as slowly as steepest descent in the worst case. Moreover, we show in Appendix A1 that
the quoted worst-case evaluation complexity bound for steepest descent is sharp, which
means that steepest-descent and Newton’s method are undistinguishable from the point of
view of worst-case complexity orders.

Note also that if the Hessian of the objective is unbounded, and hence, we are outside
of the class A.0, the worst-case evaluation complexity of Newton’s method worsens, and
in fact, it may be arbitrarily bad Cartis, Gould, and Toint [2010].

4.2 Cubic and other regularizations. Recalling our discussion of the (2 + ˛)-regula-
rization method in Section 2.2, we first note, in the example of Section 3.1, that, because
of (2.2) and (2.3), sk is a minimizer of the model (2.6) with ˇk = �k at iteration k, in that

(4.1) mk(sk) = f M:˛
� (xk + sk) = fk+1

for k 2 K. Thus every iteration is successful as the objective function decrease exactly
matches decrease in the model. Hence the choice �k = � > 0 for all k is allowed by
the method, and thus �k = �kskk2+˛ satisfies (2.3) and (2.4). Theorem 3.2 then shows
that this method may require at least ��(2+˛)/(1+˛) iterations to generate an iterate with
jgkj � �. This is important as the upper bound on this number of iterations was proved(6)
in Cartis, Gould, and Toint [2011b] to be

(4.2) O
�
[f (x0) � flow)] �

�
2+˛
1+˛

�
where flow is any lower bound of f (x). Since we have that f (x0)�flow is a fixed number
independent of � for the example of Section 3.1, this shows that the ratio

(4.3) �comp
def
=

upper bound on the worst-case evaluation complexity
lower bound on the worst-case evaluation complexity

for the (2 + ˛)-regularization method is bounded independently of � and ˛. Given that
(4.2) involves an unspecified constant, this is the best that can be obtained as far as the

(6)As a matter of fact, Cartis, Gould, and Toint [2011b] contains a detailed proof of the result for ˛ = 1, as well
as the statement that it generalizes for ˛ 2 (0; 1]. Because of the central role of this result in the present paper, a
more detailed proof of the worst-case evaluation complexity bound for ˛ 2 (0; 1] in provided as Appendix A2.
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order in � is concerned, and yields the following important result on worst-case evaluation
complexity.

Theorem 4.1. When applied to a function satisfying A.˛, the (2 + ˛)-regularization
method may require at most (4.2) function and derivatives evaluations. Moreover this
bound is sharp (in the sense that �comp is bounded independently of � and ˛) and the
(2 + ˛)-regularization method is optimal in M:˛.

Proof. The optimality of the (2 + ˛)-regularization method within M:˛ results from the
observation that the example of Section 3 implies that no method in M:˛ can have a
worst-case evaluation complexity of a better order.

In particular, the cubic regularization method is optimal for smooth optimization problems
with Lipschitz continuous second derivatives. As we have seen above, this is in contrast
with Newton’s method.

Note that Theorem 4.1 as stated does not result from the statement in Cartis, Gould,
and Toint [2011d] that the bound (4.2) is “essentially sharp”. Indeed this latter statement
expresses the fact that, for any � > 0, there exists a function independent of �, on which
the relevant methodmay need at least ��3/2+� evaluations to terminate with jgkj � �. But,
for any fixed �, the value of f (x0) � flow tends to infinity when, in the example of that
paper, the number of iterations to termination approaches ��3/2 as � goes to zero. As a
consequence, the numerator of the ratio (4.3), that is (4.2), and �comp itself are unbounded
for that example. Theorem 4.1 thus brings a formal improvement on the conclusions of
Cartis, Gould, and Toint [ibid.].

4.3 Goldfeld-Quandt-Trotter. Recalling (2.29), we can set !k = ! in the algorithm
as every iteration is successful due to (4.1) which, with (3.3) and fk 2 [ 1

2
; 1] gives that

�k + �min(Hk) � !jgkj
˛

1+˛ , which is in agreement with (2.5) and (2.4). Thus the lower
bound of ��(2+˛)/(1+˛) iterations for termination also applies to this method.

An upper bound on the worst-case evaluation complexity for the GQT method can
be obtained by the following argument. We first note that, similarly to regularization
methods, we can bound the total number of unsuccessful iterations as a constant multiple
of the successful ones, provided !k is chosen such that (2.32) holds. Moreover, since
f satisfies A.˛, its Hessian is bounded above by (2.9). In addition, we have noted in
Section 2.2 that kgkk is also bounded above. In view of (2.29) and (2.39), this in turn
implies that kHk +�kIk is also bounded above. Hence we obtain from (2.33) that kskk �

�GQT kgkk � �GQT � for some �QGT > 0, as along as termination has not occurred.
This last bound and (2.37) then give that GQT takes at most O

�
(f (x0) � flow)�

� ˛
1+˛ �2

�
iterations, which is worse than (4.2) for ˛ > 0. Note that this bound improves if only
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Newton steps are taken (i.e. �k = 0 is chosen for all k � 0), to be of the order of (4.2);
however, this cannot be assumed in the worst-case for nonconvex functions. In any case,
it implies that the GQT method is not optimal in M:˛.

4.4 Trust-region methods. Recall the choices (2.41) we make in this case. If �k = 0,
the trust-region constraint ksk � ∆k is inactive at sk , in which case, sk is the Newton step.
If we make precisely the choices we made for Newton’s method above, choosing∆0 such
that∆0 > js0j implies that the Newton step will be taken in the first and in all subsequent
iterations since each iteration is successful and then ∆k remains unchanged or increases
while the choice (3.6) implies that sk decreases. Thus the trust-region approach, through
the Newton step, has a worst-case evaluation complexity when applied to f M:˛

� which is
at least that of the Newton’s method, namely ��2.

4.5 Linesearch methods. Because the examples of Sections 3.1 and 3.2 are valid for
rk = 0 which corresponds to �k = 1 for all k, and because this stepsize is acceptable
since f (xk+1) = mk(sk), we deduce that at least ��

2+˛
1+˛ iterations and evaluations may be

needed for the linesearch variants of any method in M:˛ applied to a function satisfying
A.˛, and that ��2 evaluationsmay be needed for the linesearch variant of Newton’smethod
applied on a function satisfying A.0. Thus the conclusions drawn regarding their (sub-
)optimality in terms of worst-case evaluation complexity are not affected by the use of a
linesearch.

5 The Curtis-Robinson-Samadi class

We finally consider a class ofmethods recently introduced inCurtis, Robinson, and Samadi
[2017b], which we call the CRS class. This class depends on the parameters 0 < � � �̄ ,
� 2 (0; 1) and two non-negative accuracy thresholds �1 and �2. It is defined as follows.
At the start, adaptive regularization thresholds are set according to

(5.1) �L
0 = 0 and �U

0 = �̄ :

Then for each iteration k � 0, a step sk from the current iterate xk and a regularization
parameter �k � 0 are chosen to satisfy(7)

(5.2) (Hk + �kI )sk = �gk + rk ;

(7)In Curtis, Robinson, and Samadi [2017b], further restrictions on the step are imposed in order to obtain
global convergence under A.0 and bounded gradients, but are irrelevant for the worst-case complexity analysis
under A.1. We thus ignore them here, but note that this analysis also ensures global convergence to first-order
stationary points.
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(5.3) �L
k kskk � �k � �U

k kskk;

(5.4) sT
k rk �

1
2
sT

k (Hk + �kI )sk + 1
2
�1kskk

3;

and

(5.5) krkk � �kkskk + �2kskk
2:

The step is then accepted, setting xk+1 = xk + sk , if

(5.6) �CRS =
f (xk) � f (xk + sk)

kskk3
� �

or rejected otherwise. In the first case, the regularization thresholds are reset according to
(5.1). If sk is rejected, �L

k
and �U

k
are updated by a simple mechanism (using � ) which is

irrelevant for our purpose here. The algorithm is terminated as soon as an iterate is found
such that kgkk � �.

Observe that (5.2) corresponds to inexactly minimizing the regularized model (2.6) and
that (5.5) is very similar to the subproblem termination rule of Birgin, Gardenghi, Martı́nez,
Santos, and Toint [2017].

An upper bound of O
�
��3/2

�
is proved in Curtis, Robinson, and Samadi [2017b, The-

orem 17] for the worst-case evaluation complexity of the methods belonging to the CRS
class. It is stated in Curtis, Robinson, and Samadi [ibid.] that both ARC Griewank [1981],
Weiser, Deuflhard, and Erdmann [2007], Nesterov and Polyak [2006], and Cartis, Gould,
and Toint [2011a,b] and TRACECurtis, Robinson, and Samadi [2017a] belong to the class,
although the details are not given.

Clearly, the CRS class is close to M:1, but yet differs from it. In particular, no require-
ment is made thatHk +�kI be positive semi-definite but (5.4) is required instead, there is
no formal need for the step to be bounded and (5.5) combined with (5.3) is slightly more
permissive than the second part of (2.2). We now define CRSa, a sub-class of the CRS
class of methods, as the set of CRS methods for which (5.5) is strengthened(8) to become

(5.7) krkk � min
h
�rgkgkk; �kkskk + �2kskk

2
i

with �rg < 1:

(in a manner reminiscent of the second part of (2.2)) and such that

(5.8) 2�(1 + �rg)
3

� 1

(a mild technical condition(9) whose need will become apparent below). We claim that,
for any choice of method in the CRSa class and termination threshold �, we can construct

(8)Hence the subscript a, for “accurate”.
(9)Due to the lack of scaling invariance of (5.6), at variance with (2.30).
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a function satisfying A.1 such that the considered CRSa method terminates in exactly˙
��3/2

�
iterations and evaluations. This achieved simply by showing that the generated

sequences of iterates, function, gradient and Hessian values belong to those detailed in the
example of Section 3.1.

We now apply a method of the CRSa class for a given � > 0, and first consider an
iterate xk with associated values fk , gk andHk given by (3.3) for ˛ = 1, that is

(5.9) f0 = 1; fk = f0 �
1
2
k�3/2; gk = �2�fk and Hk = 4�1/2f 2

k ;

Suppose that

(5.10) �L
k = 0 and �U

k = �̄

(as is the case by definition for k = 0), and let

(5.11) sk = �k

�1/2

2fk

(�k > 0)

be an acceptable step for an arbitrary method in the CRSa class. Now, because of (5.10),
(5.3) reduces to

(5.12) �k 2 [0; �̄ jskj] =

"
0; �̄�k

�1/2

2fk

#
and, given thatHk > 0 because of (5.9), this in turn implies thatHk +�k > 0. Condition
(5.7) requires that

(5.13) jgk + (Hk + �k)skj = jrkj � �rg jgkj = 2�rg�fk < 2�;

where we used the fact that fk � 1 because of (5.9) and �rg < 1 because of (5.7). More-
over, (5.13) and (5.12) imply that

(5.14)
2(1 � �rg)�fk

4�1/2f 2
k
+ �̄sk

�
jgkj(1 � �rg)

Hk + �k

� sk �
jgkj(1 + �rg)

Hk + �k

�
(1 + �rg)�

1/2

2fk

:

Thus, using (5.11) and the right-most part of these inequalities, we obtain that �k � 1+�rg ,
which in turn ensures that sk � (1 + �rg)�

1/2/(2fk). Substituting this latter bound in
the denominator of the left-most part of (5.14) and using (5.11) again with the fact that
fk �

1
2
before termination, we obtain that

(5.15) �k 2

�
1 � �rg

1 + �̄(1 + �rg)
; 1 + �rg

�
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(note that this is (3.6) with �� = 1 + �̄(1 + �rg)). We immediately note that �k and
�(�k) are then both guaranteed to be bounded above and below as in (3.14). (Since this
is enough for our purpose, we ignore the additional restriction on �k which might result
from (5.4).) Using the definitions (5.9) for k + 1, we may then construct the objective
function f CRS

� on the interval [xk ; xk + sk ] by Hermite interpolation, as in Section 3.1.
Moreover, using (5.6), (5.9), (5.11), (5.15), fk 2 [ 1

2
; 1] and the condition (5.8), we obtain

that

�k =
�3/2

2

�
2fk

�k�1/2

�3

=
4f 3

k

�3
k

�
1

2(1 + �rg)3
� �:

Thus iteration k is successful, xk+1 = xk + sk , �L
k+1

= �L
k

= 0, �U
k+1

= �U
k

= �̄ , and
all subsequent iterations of the CRSa method up to termination follow the same pattern in
accordancewith (5.9). As in Section 3.1, wemay construct f CRS

� on thewhole of IRwhich
satisfies A.1 and such that, the considered CRSa method applied to f CRS

� will terminate
in exactly d��3/2e iterations and evaluations. This and the O

�
��3/2

�
upper bound on the

worst-case evaluation complexity of CRS methods allow stating the following theorem.

Theorem 5.1. For every � 2 (0; 1) and every method in the CRSa class, a function f CRS
�

satisfying A.1 with values in a bounded interval independent of � can be constructed, such
that the considered method terminates exactly at iteration

k� =
l
��3/2

m
with the first iterate xk�

such that krxf
CRS

� (xk�
)k � �. As a consequence, methods in

CRSa are optimal within the CRS class and their worst-case evaluation complexity is, in
order, also optimal with respect to that of methods in M:1.

CRSa then constitutes a kernel of optimal methods (from the worst-case evaluation
complexity point of view) within CRS and M:1. Methods in CRS but not in CRSa corre-
spond to very inaccurate minimization of the regularized model, which makes it unlikely
that their worst-case evaluation complexity surpasses that of methods in CRSa. Finally
note that, since we did not use (5.4) to construct our example, it effectively applies to a
class larger than CRSa where this condition is not imposed.

6 The algorithm of Royer and Wright

We finally consider the linesearch algorithm proposed in Royer and Wright [2017, Algo-
rithm 1], which is reminiscent of the double linesearch algorithm of Gould, Lucidi, Roma,
and Toint [1998] and Conn, Gould, and Toint [2000, Section 10.3.1]. From a given iterate
xk , this algorithm computes a search direction dk whose nature depends on the curvature
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of the (unregularized) quadratic model along the negative gradient, and possibly computes
the left-most eigenpair of the Hessian if this curvature is negative or if the gradient’s norm
is small enough to declare first-order stationarity. A linesearch along dk is then performed
by reducing the steplength ˛k from ˛k = 1 until

(6.1) f (xk + ˛kdk) � f (xk) �
�

6
˛3kkdkk

3

for some � > 0. The algorithm uses �g and �H , two different accuracy thresholds for first-
and second-order approximate criticality, respectively.

Our objective is now to show that, when applied to the function f M:1
�g

of Section 3.1
with � = �g , this algorithm, which we call the RW algorithm, takes exactly k�g ;1 =

d�
�3/2
g e iterations and evaluations to terminate with kgkk � �g .
We first note that (3.3) guarantees thatHk is positive definite and, using (3.4), that

gT
k
Hkgk

kgkk2
= 4�

1/2
g f 2

k > �g

for k 2 f0; : : : ; k�g ;1g. Then, provided

(6.2) �H �
p
�g ;

and because �min(Hk) = 4�
1/2
g f 2

k
> �H (using (3.4) again), the RWalgorithm defines the

search direction from Newton’s equation Hkdk = �gk (which corresponds, as we have
already seen, to takingMk = 0 = rk and thus �k = 1 in the example of Section 3.1). The
RW algorithm is therefore, on that example, identical to a linesearch variant of Newton’s
method with the specific linesearch condition (6.1). Moreover, using (3.4) once more,

f (xk) � f (xk + dk) =
1

2
�
3/2
g �

�

6

 
�
1/2
g

2fk

!3

�
�

6
�
3/2
g

whenever � � 3, an extremely weak condition(10). Thus (6.1) holds(11) with ˛k = 1.
We have thus proved that the RW algorithm generates the same sequence of iterates as
Newton’s method when applied to f M:1

�g
. The fact that an upper bound of O

�
�

�3/2
g

�
iterations and evaluations was proved to hold in Royer and Wright [2017, Theorem 5]
then leads us to stating the following result.

Theorem 6.1. Assume that � 2 (0; 3]. Then, for every �g 2 (0; 1) and �H satisfying
(6.2), a function f M:1

�g
satisfying A.1 with values in a bounded interval (independent of �g

(10)In practice, � is most likely to belong to (0; 1) and even be reasonably close to zero.
(11)But fails for the example of Section 3.2 as kskk = 1.
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and �H ) can be constructed, such that the Royer-Wright algorithm terminates exactly at
iteration

k�g
=
l
�

�3/2
g

m
with the first iterate xk�g

such that krxf
M:1

�g
(xk�g

)k � �g . As a consequence and under

assumption (6.2), the first-order worst-case evaluation complexity order of O
�
�

�3/2
g

�
for this algorithm is sharp and it is (in order of �g ), also optimal with respect to that of
algorithms in the M:1 and CRS classes.

7 Conclusions

We have provided lower bounds on the worst-case evaluation complexity of a wide class
of second-order methods for reaching approximate first-order critical points of noncon-
vex, adequately smooth unconstrained optimization problems. This has been achieved
by providing improved examples of slow convergence on functions with bounded range
independent of �. We have found that regularization algorithms, methods belonging to
a subclass of that proposed in Curtis, Robinson, and Samadi [2017b] and the linesearch
algorithm of Royer and Wright [2017] are optimal from a worst-case complexity point
of view within a very wide class of second-order methods, in that their upper complexity
bounds match in order the lower bound we have shown for relevant, sufficiently smooth
objectives satisfying A.˛. At this point, the question of whether all known optimal second-
order methods share enough design concepts to bemademembers of a single class remains
open.

Note that every iteration complexity bound discussed above is of the order ��p (for
various values of p > 0) for driving the objective’s gradient below �; thus the methods we
have addressedmay require an exponential number of iterations 10p�k to generate k correct
digits in the solution. Also, as our examples are one-dimensional, they fail to capture
the problem-dimension dependence of the upper complexity bounds. Indeed, besides the
accuracy tolerance �, existing upper bounds depend on the distance to the solution set,
that is f (x0) � flow, and the gradient’s and Hessian’s Lipschitz or Hölder constants, all
of which may dependent on the problem dimension. Some recent developments in this
respect can be found in Jarre [2013], Agarwal, Allen-Zhu, Bullins, Hazan, and T. Ma
[2016], B. Jiang, Lin, S. Ma, and S. Zhang [2016], and Royer and Wright [2017].

Here we have solely addressed the evaluation complexity of generating first-order crit-
ical points, but it is common to require second-order methods for nonconvex problems to
achieve second-order criticality. Indeed, upper worst-case complexity bounds are known
in this case for cubic regularization and trust-region methods Nesterov and Polyak [2006]
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andCartis, Gould, and Toint [2011b, 2012b], which are essentially sharp in some cases Car-
tis, Gould, and Toint [2012b]. A lower bound on the whole class of second order methods
for achieving second-order optimality remains to be established, especially when different
accuracy is requested in the first- and second-order criticality conditions.

Regarding the worst-case evaluation complexity of constrained optimization problems,
we have shown Cartis, Gould, and Toint [2012a, 2011c, 2014] that the presence of con-
straints does not change the order of the bound, so that the unconstrained upper bound
for some first- or second-order methods carries over to the constrained case; note that this
does not include the cost of solving the constrained subproblems as the latter does not re-
quire additional problem evaluations. Since constrained problems are at least as difficult
as unconstrained ones, these bounds are also sharp. It remains an open question whether a
unified treatment such as the one given here can be provided for the worst-case evaluation
complexity of methods for constrained problems.

A1. An example of slow convergence of the steepest-descent method

We show in this paragraph that the steepest-descent method may need at least ��2 iteration
to terminate on a function whose range is fixed and independent of �.

We once again follow the methodology used in Section 3.1 and build a unidimensional
function f SD

� by Hermite interpolation, such that the steepest-descent method applied to
this function takes exactly k� = d��2e iterations and function evaluations to terminate
with an iterate xk such that jg(xk)j � �. Note that, for the sequence of function values to
be interpretable as the result of applying the steepest-descent method (using a Goldstein
linesearch), we require that, for all k,
(A.1)
f (xk)+�1g

T
k sk � f (xk��kgk) � f (xk)+�2g

T
k sk for constants 0 < �2 < �1 < 1

where, as above, sk = xk+1 � xk . Keeping this in mind, we define the sequences fk , gk ,
Hk and sk for k 2 f0; : : : ; k� � 1g by

fk = 1 �
1
2
k�2 gk = �2�fk ; Hk = 0; rk = 0 and �k =

1

4f 2
k

2 [ 14 ; 1]:

Note that this last definition ensures that (A.1) holds provided 0 < �2 <
1
2
< �1 < 1.

It also gives that sk = �/(2fk) � � < 1. Using these values, it can also be verified that
termination occurs for k = k� , that f SD

� defined by (3.10) and Hermite interpolation is
twice continuously differentiable on [0; xk�

] and that (3.12) again holds. Since jgkj � �,
we also obtain that, for k 2 f0; : : : ; k� � 1g,ˇ̌̌̌

ˇ∆fk

s2
k

ˇ̌̌̌
ˇ = 2f 2

k � 1;

ˇ̌̌̌
∆gk

sk

ˇ̌̌̌
= 2�2fk � 2 and

ˇ̌̌̌
gk

sk

ˇ̌̌̌
= 4f 2

k � 4:
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These bounds,Hk = ∆Hk = 0, the first equality of (3.18) and (3.13) then imply that the
Hessian of f SD

� is bounded above by a constant independent of �. f SD
� thus satisfies A.0

and therefore has Lipchitz continuous gradient. Moreover, since sk � 1, we also obtain,
as in Section 3.1 and 3.2, that jf SD

� j is bounded by a constant independent of � on [0; xk�
].

As above we then extend f SD
� to the whole of IR while preserving A.0.

Theorem A.1. For every � 2 (0; 1), a function f SD
� satisfying A.0 (and thus having

Lipschitz continuous gradient) with values in a bounded interval independent of � can be
constructed, such that the steepest-descent method terminates exactly at iteration

k� =
˙
��2

�
with the first iterate xk�

such that krxf
SD

� (xk�
)j � �.

As a consequence, the O
�
��2

�
order of worst-case evaluation complexity is sharp for

the steepest-descent method in the sense that the complexity ratio �comp is bounded above
independently of of �, which improves on the conclusion proposed in Cartis, Gould, and
Toint [2010] for the steepest-descent method.

The top three graphs of Figure A.2 illustrate the global behaviour of the resulting func-
tion f N

� (x) and of its first and second derivatives for x 2 [0; xk�
], while the bottom ones

show more detail of the first 10 iterations. The figure is once more constructed using
� = 5:10�2 (k� = 400).

A2. Upper complexity bound for the (2 + ˛)-regularization method

The purpose of this paragraph is to to provide some of the missing details in the proof
of Lemma 2.5, as well as making explicit the statement made at the end of Section 5.1
in Cartis, Gould, and Toint [2011b] that the (2 + ˛)-regularization method needs at most
(4.2) iterations (and function/derivatives evaluations) to obtain and iterate xk such that
jgkj � �.

We start by proving (2.27) following the reasoning of Cartis, Gould, and Toint [2011a,
Lem. 2.2]. Consider

mk(s) � f (xk) = gT
k s +

1
2
sTHks +

1

2 + ˛
�kksk2+˛

� �kgkk ksk �
1
2
ksk2 kHkk +

1

2 + ˛
�kksk2+˛

�

�
1

3(2 + ˛)
�kksk2+˛

� kgkk ksk

�
+

�
2

3(2 + ˛)
�kksk2+˛

�
1
2
ksk2kHkk

�
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Figure A.2: f SD
� (x) (left) and its first (center) and second (right) derivatives as a

function of x for � = 5:10�2 (top: x 2 [0; xk�;˛
]; bottom: x 2 [0; x10]). Horizontal

dotted lines indicate values of �� and � in the central top graph.
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But then 2
3(2+˛)

�kksk2+˛ � kHkk ksk2 > 0 if kskk < (3(2 + ˛)kHkk/(4�k))
1
˛ while

1
3(2+˛)

�kksk2+˛ � kgkk ksk > 0 if kskk < (3(2 + ˛)kgkk/�k)
1

1+˛ . Hence, since
mk(sk) < f (xk), we have that

kskk � max

"�
3(2 + ˛)kHkk

4�k

� 1
˛

;

�
3(2 + ˛)kgkk

�k

� 1
1+˛

#

which yields (2.27) because kHkk � Lg .
We next explicit the worst-case evaluation complexity bounf of Section 5.1 in Cartis,

Gould, and Toint [2011b]. Following Cartis, Gould, and Toint [2011a, Lemma 5.2], we
start by proving that

(A.1) �max
def
= c� max(�0; LH;˛)

for some constant c� only dependent on ˛ and algorithm’s parameters. To show this in-
equality, we deduce from Taylor’s theorem that, for each k � 0 and some �k belonging
the segment [xk ; xk + sk ],

f (xk + sk) �mk(sk) �
1

2
kH (�k) �H (xk)k � kskk

2
�

�k

2 + ˛
kskk

2+˛

�

�
LH;˛

2
�

�k

2 + ˛

�
kskk

2+˛;

where, to obtain the second inequality, we employed (2.8) in A.˛ and k�k � xkk � kskk.
Thus f (xk + sk) < mk(sk) whenever �k >

1
2
(2 + ˛)LH;˛ , providing sufficient descent

and ensuring that �k+1 � �k . Taking into account the (possibly large) choice of the
regularization parameter at startup then yields (A.1).

We next note that, because of (2.25) and (A.1), (2.11) holds. Moreover, �(Mk) =

� (�kkskk˛I ) = 1. Lemma 2.3 then ensures that (2.16) also holds.
We finally follow Cartis, Gould, and Toint [ibid., Corollary 5.3] to prove the final upper

bound on the number of successful iterations (and hence on the number of function and
derivatives evaluations). Let S�

k
index the subset of the first k iterations that are successful

and such that min[kgkk; kgk+1k] > �, and let jS�
k
j denote its cardinality. It follows from

this definition, (2.11), (2.26) and the fact that sufficient decrease is obtained at successful
iterations that, for all k before termination,

(A.2) f (xj ) �mk(sj ) � ˛S�
2+˛
1+˛ ; for all j 2 S�

k
,
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for some positive constant ˛S independent of �. Now, if flow > �1 is a lower bound on
f (x), we have, using the monotonically decreasing nature of ff (xk)g, that

f (x0) � flow � f (x0) � f (xk+1) =
X

j 2S�
k

[f (xj ) � f (xj+1)]

� �1
X

j 2S�
k

[f (xj ) �mk(sj )] � jS�
k
j �1˛S �

2+˛
1+˛ ;

where the constant �1 2 (0; 1) defines sufficient decrease. Hence, for all k � 0,

jS�
kj �

f (x0) � flow

�1˛S
��

2+˛
1+˛ :

As a consequence, the (2 + ˛)-regularization method needs at most (4.2) successful it-
erations to terminate. Since it known that, for regularization methods, k � �SjS�

k
j for

some constant �S Cartis, Gould, and Toint [2011b, Theorem 2.1] and because every iter-
ation involves a single evaluation, we conclude that the (2 + ˛)-regularization method
needs at most (4.2) function and derivatives evaluations to produce an iterate xk such that
kgkk � � when applied to an objective function satisfying A.˛.

We finally oserve that the statement (made in the proof of Lemma 2.5) that kgkk is
bounded above immediately follows from this worst-case evaluation complexity bound.
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INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR
HYPERBOLIC EQUATIONS
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Abstract

We consider inverse problems for hyperbolic equations and systems and the solu-
tions of these problems based on the focusing of waves. Several inverse problems for
linear equations can be solved using control theory. When the coefficients of the mod-
elling equation are unknown, the construction of the point sources requires solving
blind control problems. For non-linear equations we consider a new artificial point
source method that applies the non-linear interaction of waves to create microlocal
points sources inside the unknown medium. The novel feature of this method is that
it utilizes the non-linearity as a tool in imaging, instead of considering it as a difficult
perturbation of the system. To demonstrate the method, we consider the non-linear
wave equation and the coupled Einstein and scalar field equations.

1 Introduction

One of the simplest models for waves is the linear hyperbolic equation

@2t u(t; x) � c(x)2∆u(t; x) = 0 in R � Ω

where Ω � Rn and c(x) is the wave speed. This equation models e.g. acoustic waves. In
inverse problems one has access to measurements of waves (the solutions u(t; x)) on the
boundary, or in a subset of the domain Ω, and one aims to determine unknown coefficients
(e.g., c(x)) in the interior of the domain.

In particular, we will consider anisotropic materials, where the wave speed depends
on the direction of propagation. This means that the scalar wave speed c(x), where x =

The author was partly supported by Academy of Finland.
MSC2010: primary 35R30; secondary 35Q91, 49J20, 83C35, 53C50.
Keywords: Inverse problems, non-linear hyperbolic equations, point sources.
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(x1; x2; : : : ; xn) 2 Ω, is replaced by a positive definite symmetric matrix (gjk(x))n
j;k=1

,
and the wave equation takes for example the form

(1)
@2

@t2
u(t; x) �

nX
j;k=1

gjk(x)
@2u

@xj @xk
(t; x) = 0:

Anisotropic materials appear frequently in applications such as in seismic imaging, where
one wishes to determine the interior structure of the Earth by making various measure-
ments of waves on its surface.

It is convenient to interpret the anisotropic wave speed (gjk) as the inverse of a Rie-
mannian metric, thus modelling the medium as a Riemannian manifold. This is due to
fact that if Ψ : Ω ! Ω is a diffeomorphism such that Ψj@Ω = Id (and for an equation
of the form (1) it is also assumed to be volume preserving in Ω � Rn), then all boundary
measurements for the metric g and the pull-forward metric Ψ�g coincide. Thus to prove
uniqueness results for inverse problems, one has to consider properties that are invariant
in diffeomorphisms and try to reconstruct those uniquely, for example, to show that an un-
derlying manifold structure can be uniquely determined. In practice, the inverse problem
in a subset of the Euclidean space is solved in two steps. The first is to reconstruct the
underlying manifold structure. The second step is to find an embedding of the constructed
manifold in the Euclidean space using additional a priori information. In this paper we
conspace-timeate on the first step.

2 Inverse problems for linear equations

In this section we review the classical results for Gel’fand inverse problems Gelfand
[1954] for linear scalar wave equations. Note that these results require that the coeffi-
cients of the equation, or at least the leading order coefficients, are time independent. In
addition, it is required that the associated operator is selfadjoint or that it satisfies strong
geometrical assumptions, for example that all geodesics exit the domain at a given time.
In Section 4 we show how these results can be obtained using a focusing of waves that
produces point sources inside the unknown medium. In Sections 3 and 5 we consider
inverse problems non-linear hyperbolic equations and systems, and consider the recently
developed artificial point source method based on the non-linear interaction of waves.

Let (N; g) be an n-dimensional Riemannian manifold and consider the wave equation

@2t u(t; x) � ∆gu(t; x) = 0 in (0; 1) � N;(2)
@�ujR+�@N = f; ujt=0 = 0; @t ujt=0 = 0;
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where ∆g is the Laplace–Beltrami operator corresponding to a smooth time-independent
Riemannian metric g on N . In coordinates (xj )

n
j=1 this operator has the representation

∆gu =

nX
j;k=1

det(g)�1/2 @

@xj

�
det(g)1/2gjk @

@xk
u

�
;

where g(x) = [gjk(x)]
n
j;k=1

, det(g) = det(gjk(x)) and [gjk ]n
j;k=1

= g(x)�1.
The solution of (2), corresponding to the boundary value f (which is interpreted as a

boundary source), is denoted by uf = uf (t; x).
Let us assume that the boundary @N is known. The inverse problem is to reconstruct

the manifold N and the metric g when we are given the set

f(f; uf
jR+�@N ) : f 2 C 1

0 (R+ � @N )g;

that is, the Cauchy data of solutions corresponding to all possible boundary sources f 2

C 1
0 (R+ � @N ). This data is equivalent to the response operator

ΛN;g : f 7! uf
jR+�@N ;(3)

which is also called the Neumann-to-Dirichlet map. Physically, ΛN;gf describes the mea-
surement of the medium response to any applied boundary source f . In 1990s, the combi-
nation of Belishev’s and Kurylev’s boundary control method Belishev and Y. V. Kurylev
[1992] and Tataru’s unique continuation theorem Tataru [1995] gave a solution to the in-
verse problem of determining the isometry type of a Riemannian manifold (N; g) with
given boundary @N and the Neumann-to-Dirichlet map ΛN;g .

Theorem 2.1 (Belishev and Y. V. Kurylev [1992] and Tataru [1995]). Let (N1; g1) and
(N2; g2) be compact smooth Riemannian manifolds with boundary. Assume that there is
a diffeomorphism Φ : @N1 ! @N2 such that

(4) Φ�(ΛN1;g1
f ) = ΛN2;g2

(Φ�f ); for all f 2 C 1
0 (R+ � @N1):

Then (N1; g1) and (N2; g2) are isometric Riemannian manifolds.

Above, Φ�f is the pull-back of f in Φ. Theorem 2.1 can be used to prove the unique-
ness of other inverse problems. Katchalov, Kurylev, Mandache, and the author showed in
Katchalov, Y. Kurylev, Lassas, and Mandache [2004] the equivalence of spectral inverse
problems with several different measurements, that in particular implies the following
result.

Theorem 2.2 (Katchalov, Y. Kurylev, Lassas, and Mandache [ibid.]). Let @N be given.
Then the Neumann-to-Dirichet map Λ : @�ujR+�@N 7! ujR+�@N , for heat equation (@t �
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∆g)u = 0, or for the Schrödinger equation (i@t � ∆g)u = 0, with vanishing initial data
ujt=0 = 0 determine the Neumann-to-Dirichet map for the wave equation, and therefore,
the manifold (N; g) up to an isometry.

The stability of the solutions of the above inverse problems have been analyzed in
Anderson, Katsuda, Y. Kurylev, Lassas, and Taylor [2004], Bao and Zhang [2014], Bosi,
Y. Kurylev, and Lassas [2017], and P. Stefanov and G. Uhlmann [2005].

Without making strong assumptions about the geometry of the manifold, the existing
uniqueness results for linear hyperbolic equations with vanishing initial data are limited to
equations whose coefficients are time independent or real analytic in time (see e.g. Ander-
son, Katsuda, Y. Kurylev, Lassas, and Taylor [2004], Belishev and Y. V. Kurylev [1992],
Eskin [2017], Katchalov, Y. Kurylev, and Lassas [2001], Y. Kurylev, Oksanen, and Pa-
ternain [n.d.], and Oksanen [2013]). The reason for this is that these results are based on
Tataru’s unique continuation theorem Tataru [1995]. This sharp unique continuation result
does not work for general wave equations whose coefficients are not real analytic in time,
as shown by Alinhac [1983]. Alternatively, one can study inverse problems for hyperbolic
equations by using the Fourier transform in the time variable and reducing the problem to
an inverse boundary spectral problem for an elliptic equation. Note that this also requires
that the coefficients are time independent. The obtained inverse spectral problems (see
e.g. A. Nachman, Sylvester, and G. Uhlmann [1988]) can be solved using the complex
geometrical optics introduced in Sylvester and G. Uhlmann [1987].

Open Problem 1: Do the boundary @N and the Neumann-to-Dirichlet map for a wave
equation �gu = 0 determine the coefficient gjk(t; x) that depends on variables t and x?

In many applications, waves can not be detected on the part of the boundary where
sources are applied, that is, one is given only a restricted Neumann-to-Dirichlet map. Next
we consider such problems.

We say that (2) is exactly controllable from Γ1 � @N if there is T > 0 such that the
map

U : L2((0; T ) � Γ1) ! L2(N ) � H �1(N );(5)

U(f ) = (uf (T ); @t u
f (T ))

is surjective. In 1992, Bardos, Lebeau, and Rauch gave a sufficient geometric condition
for exact controllability and showed that this condition is also close to being necessary
Bardos, Lebeau, and Rauch [1992]. Roughly speaking, this geometric controllability con-
dition requires that all geodesics (that reflect from the boundary) in the domain N intersect
transversally to the set Γ1 before time T .
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Under the geometric controllability condition the inverse problem with a restricted
Neumann-to-Dirichlet map can be solved using exact controllability results Lassas and
Oksanen [2014]. However, in the general setting the following problem is open.

Open Problem 2: Assume that we are given open subsets Γ1;Γ2 � @N , such that Γ1 \

Γ2 = ¿, and the restricted Neumann-to-Dirichlet map ΛΓ1;Γ2
: f 7! uf jR+�Γ2

defined
for functions f 2 C 1

0 (R+ � Γ1). Do these data determine (N; g) up to an isometry?

Similarly, systems having terms causing energy absorption can be considered when the
geometric controllability condition is valid Y. Kurylev and Lassas [2000], but the follow-
ing problem is open.

Open Problem 3: Consider Equation (2) where the Laplace operator ∆g is replaced
by a non-selfadjoint operator, for example, the wave equation of the form (@2t � ∆g +

q(x))u(t; x) = 0, where q(x) is complex valued. Do the boundary @N and Neumann-to-
Dirichlet map ΛN;g;q for this equation determine (N; g) and q(x) up to an isometry?

The boundary control method has been used to solve inverse problems for some hy-
perbolic systems of equations, e.g. for Maxwell and Dirac equations, see Y. Kurylev,
Lassas, and Somersalo [2006] in the special cases when the wave velocity is independent
of polarization.

Open Problem 4: Consider a hyperbolic system of equations where the velocity of waves
depends on the polarisation, such as elastic equations or Maxwell’s equations in anisotropic
medium. Do @N and the response operator defined on the boundary determine the system
up to a diffeomorphism?

3 Inverse problems for non-linear equations

The present theory of inverse problems has largely been confined to the case of linear
equations. For the few existing results on non-linear equations (e.g. Isakov [1993], Salo
and Zhong [2012], and Sun and G. Uhlmann [1997]) the non-linearity is an obstruction
rather than a helpful feature.

Below, we consider inverse problems for non-linear hyperbolic equations and use non-
linearity as a tool to solve the problems. This enables us to solve inverse problems for
non-linear equations for which the corresponding problems for linear equations are still
unsolved (e.g. when the coefficients depend on the time variable or are complex valued, cf.
Open Problems 1 and 2). Below, we will first consider scalar wave-equation with simple
quadratic non-linearity. Later we consider inverse problems for the Einstein equations
that can be solved using the non-linear interaction of gravitational waves and matter field
waves. The inverse problems for the Einstein equations (in particular the passive problems
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X1
X2

Y1Y2 q

Figure 1: Left. The setting of Theorems 3.1 and 5.1. The solid black line depicts
the time-like geodesic � and the blue cylinder is its neighbourhood where measure-
ments are made. The dashed double cone is the set I (p�; p+) which properties are
reconstructed from the data. In Theorem 5.1 we use the frame Y1, Y2, Y3 moving
along � to define the Fermi coordinates in the blue cylinder (the third direction is
suppressed in the picture). Right. A schematic picture of the proof of Theorem 3.1.
Geodesics, depicted as black curves, that are sent from the neighbourhood of � in-
tersect at the point q 2 I (p�; p+). We consider (four) distorted plane waves that
propagate near the geodesics that interact at the point q and produce propagating
singularities (in red), analogous to those generated by a point source at q.

considered below) could be applied in the gravitational astronomy initiated by the direct
detection of gravitational waves B. P. Abbott et al. [2016].

3.1 Notation. Let (M; g) be a (1 + 3)-dimensional time-oriented Lorentzian manifold
of signature (�;+;+;+). Let q 2 M . The set of future pointing light-like vectors at q is
defined by

L+
q M = f� 2 TqM n 0 : g(�; �) = 0; � is future-pointingg:

A vector � 2 TqM is time-like if g(�; �) < 0 and space-like if g(�; �) > 0. Causal
vectors are the collection of time-like and light-like vectors, and a curve  is time-like
(light-like, causal, future-pointing) if the tangent vectors ̇ are time-like (light-like, causal,
future-pointing).

For p; q 2 M , the notation p � q means that p; q can be joined by a future-pointing
time-like curve. The chronological future and past of p 2 M are

I+(p) = fq 2 M : p � qg; I �(p) = fq 2 M : q � pg:
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To emphasise the Lorentzian structure of (M; g) we sometimes write I ˙
M;g(p) = I ˙(p).

We will denote throughout the paper

(6) I (p; q) = I+(p) \ I �(q):

A time-oriented Lorentzian manifold (M; g) is globally hyperbolic if there are no
closed causal paths in M , and for any p; q 2 M the set J (p; q) is compact. The set
J (p; q) is defined analogously to I (p; q) but with the partial order p � q replaced by
p � q, meaning that p and q can be joined by a future-pointing causal curve or p = q.
According to Bernal and Sánchez [2005], a globally hyperbolic manifold is isometric to
the product manifold R � N with the Lorentzian metric given by

(7) g = �ˇ(t; y)dt2 + �(t; y);

where ˇ : R � N ! R+ and � is a Riemannian metric on N depending on t .

3.2 Active measurements. Let (M; g) be a 4-dimensional globally hyperbolic
Lorentzian manifold and assume, without loss of generality, that M = R � N with a
metric of the form (7). Let t0 > 0 and consider the semilinear wave equation

�gu(x) + a(x)u(x)2 = f (x); for x 2 (�1; t0) � N ;(8)
u = 0; f = 0; in (�1; 0) � N :(9)

Here a 2 C 1(M ) is a nowhere vanishing function that may be complex valued, and

�gu =

nX
j;k=0

jdet(g)j�1/2 @

@xj

�
jdet(g)j1/2gjk @

@xk
u

�
:

Let � � (0; t0) � N be a time-like curve and V be its open neighbourhood. The solution
of (8)–(9) exists when the source f is supported in V and satisfies kf kC k(V ) < ", where
k 2 Z+ is sufficiently large and " > 0 is sufficiently small. For such sources f we define
the measurement operator

(10) LV : f 7! ujV :

Note LV is equivalent to its graph that is given by the data set

DLV
= f(ujV ; f ) : u and f satisfy (8),(9), f 2 C k

0 (V ), kf kC k(V ) < "g:(11)

Theorem 3.1 (Y. Kurylev, Lassas, and G. Uhlmann [2014]). Let (M; g) be a globally
hyperbolic 4-dimensional Lorentzian manifold. Let � be a time-like path containing p+
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Figure 2: Four plane waves propagate in space. When the planes intersect, the non-
linearity of the hyperbolic system produces new waves. Left: Plane waves before
interacting. Middle left: The two-wave interactions (red line segments) appear but
do not cause singularities propagating to new directions. Middle right and Right:
All plane waves have intersected and new waves have appeared. The three-wave
interactions cause conic waves (the black surface). Only one such wave is shown
in the figure. The interaction of four waves causes a microlocal point source that
sends a spherical wave in all future light-like directions.

and p�. Let V � M be a neighborhood of � and let a : M ! R be a nowhere vanishing
C 1-smooth function. Then (V; gjV ) and the measurement operator LV determine the
topology, differentiable structure and the conformal class of the metric g in the double
cone IM;g(p

�; p+).

When M has a significant Ricci-flat part, Theorem 3.1 can be strengthened.

Corollary 3.2. Assume that (M; g) and V satisfy the conditions of Theorem 3.1. More-
over, assume that W � IM;g(p

�; p+) is Ricci-flat and all topological components of W

intersect V . Then the metric tensor g is determined in W uniquely.

The proof of Theorem 3.1 uses the results on the inverse problem for passive measure-
ments for point sources, described below, and the non-linear interaction of waves having
conormal singularities. There are many results on such non-linear interaction, starting
with the studies of Bony [1986], R. Melrose and Ritter [1985], Holt [1995]. However,
these studies differ from the proof of Theorem 3.1 in that they assumed that the geomet-
rical setting of the interacting singularities, and in particular the locations and types of
caustics, is known a priori. In inverse problems we study waves on an unknown manifold,
so we do not know the underlying geometry and, therefore, the location of the singularities
of the waves. For example, the waves can have caustics that may even be of an unstable
type.

Theorem 3.1 only concerns the recovery of the conformal type of the metric. The recov-
ery of all coefficients up to a natural gauge transformation has in some special cases been
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considered (in Lassas, G. Uhlmann, and Wang [n.d.] and Wang and Zhou [2016]), but for
general equations both the compete recovery of all coefficients and the stable solvability
of the inverse problem are open questions.

Open Problem 5 (Recovery of all coefficients for non-linear wave equation): Assume
that we are given a time-like path �, its neighborhood V � M , and the map LV : f 7!

ujV for the non-linear equation �gu + B(x; D)u + a(x)u(x)2 = f , defined for small
sources f supported in V , where B(x; D) is a first order differential operator. Is it possible
to construct the metric tensor g and the operator B(x; D) in I (p�; p+) up to a local gauge
transformation?

Open Problem 6 (Stability of the inverse problem for non-linear wave equation): As-
sume that we are given a time-like curve �, its neigbhorhood V � M , the map LV with
an error, and p�; p+ 2 �. Is it possible to construct the set I (p�; p+) and the metric g

in I (p�; p+) with an error that can be estimated in terms of the geometric bounds for M

and the error in the given data?

For certain inverse problems for linear wave equations the essential features of several
measurements can be packed in a single measurement Helin, Lassas, and Oksanen [2014]
and Helin, Lassas, Oksanen, and Saksala [2016]. The corresponding problem for non-
linear equations is open.

Open Problem 7 (Single measurement inverse problem for non-linear wave equa-
tions): Can we construct a source f such that the set V and the measurement LV f

uniquely determine I (p�; p+) and the metric g on I (p�; p+)?

3.3 Passive measurements. The earliest light observation set is an idealized notion of
measurements of light coming from a point source.

Definition 3.3. Let M be a Lorentzian manifold, V � M be open, and q 2 M . The light
observation set of q 2 M in V is

PV (q) = fq;�(t) 2 M : t � 0; � 2 L+
q M g \ V;

where q;� denotes the geodesic emanating from q to the direction �. The earliest light
observation set of q 2 M in V is

EV (q) = fx 2 PV (q) : there are no y 2 PV (q) such that y � x in (V; g)g:

The set PV (q) can be viewed as a model of a measurement where light emitted by a
point source at q is recorded in V . As gravitational wave packets propagate at the speed
of light, PV (q) could also correspond to an observation where a gravitational wave is
generated at q and detected in V . The set EV (q) is related to the distance difference
functions used in Riemannian geometry.
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Definition 3.4. Let N be a Riemannian manifold with the distance function distN (x; y)

and let U � N be an open set. The distance difference function in the observation set U

corresponding to a point x 2 N is

Dx : U � U ! R; Dx(z1; z2) := distN (z1; x) � distN (z2; x):(12)

Consider a Riemannian manifold where the distance between two points is the travel
time of waves between these points. When a spontaneous point source produces a wave
at some unknown point x 2 N , at some unknown time t 2 R, the produced wave is
observed at the point z 2 U at time Tt;x(z) = distN (z; x) + t . These observation times
at two points z1; z2 2 U determine the distance difference function by

Dx(z1; z2) = Tt;x(z1) � Tt;x(z2) = distN (z1; x) � distN (z2; x):

Physically, this function corresponds to the difference in times when the wave produced
by a point source at (t; x) is observed at z1 and z2.

When M = R � N is the Lorentzian manifold given by the product metric of N and
(R; �dt2), the earliest light observation set corresponding to a point q = (t0; x0) and
V = R � U , where x 2 N and t0 2 R, is given by

EV (q) = f(t; y) 2 R � U : distN (y; x0) = t � t0g:

Similarly, the earliest light observation set EV (q) corresponding to q = (t0; x0) deter-
mines the distance difference function Dx0

by

Dx0
(z1; z2) = t1 � t2; if 9 t1; t2 2 R such that (t1; z1); (t2; z2) 2 EV (q).(13)

The following theorem says, roughly speaking, that observations of a large number
of point sources in a region W determine the structure of the spacetime in W , up to a
conformal factor.

Theorem3.5 (Y. Kurylev, Lassas, and G. Uhlmann [2014]). Let (Mj ; gj ), where j = 1; 2,
be two open globally hyperbolic Lorentzian manifolds of dimension 1 + n, n � 2. Let
�j : [0; 1] ! Mj be a future-pointing time-like path, let Vj � Mj be a neighbourhood of
�j ([0; 1]), and letWj � I �

Mj ;gj
(�j (1))nI �

Mj ;gj
(�j (0)) be open and relatively compact,

j = 1; 2. Assume that there is a conformal diffeomorphism � : V1 ! V2 such that
�(�1(s)) = �2(s), s 2 [0; 1], and

f�(EV1
(q)) : q 2 W1g = fEV2

(q) : q 2 W2g:

Then there is a diffeomorphism Ψ : W1 ! W2 and a strictly positive function ˛ 2

C 1(W1) such that Ψ�g2 = ˛g1 and ΨjV1\W1
= �.
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V

q

Inverse problem with passive observations

Next will formulate rigorously formulate the following result:

We do observations in a subset V of spacetime M.

The set U ⊂ M is unknown. U is as in the figure below.

Assume that U contains a dense set of point sources qj , j ∈ Z+.

If we observe in the set V the light coming from the every point qj ,

then we can determine the set U as a manifold.

Also, we can determine the metric g |U up to a scalar factor.

W

q

V

Figure 3: Left. When there are no cut points, the earliest light observation set EV (q)

is the intersection of the cone and the open set V . The cone is the union of future-
pointing light-like geodesics from q, and the ellipsoid depicts V . Right. The setting
of Theorem 3.5. The domain W � M (with a black boundary) contains several
points sources and a light ray from the point q 2 W reaches the observation set V

(with a blue boundary).

In the Riemannian case, the whole metric can be determined under conditions described
in the following theorem.

Theorem 3.6 (Lassas and Saksala [2015]). Let (N; g) be a connected Riemannian man-
ifold without boundary, that is either complete or compact, of the dimension n � 2. Let
W � N be a compact set with non-empty complement U = M n W . Then the pair
(U; gjU ) and the distance difference functions fDx 2 C (U � U ) : x 2 W g uniquely
determine the manifold (N; g) up to an isometry.

A classical distance function representation of a compact Riemannian manifold N is
the Kuratowskii embedding, K : x 7! distN (x; � ); from N to the space of the continuous
functions C (N ) on it. The mapping K : N ! C (N ) is an isometry so that K(N ) is
an isometric representation of N in a vector space C (N ). Next we consider a similar
embedding that is applicable for inverse problems.

Let x 2 N and define a function Dx : U � U ! R by formula (12). Let D : N !

C (U � U ) be given by D(x) = Dx . Theorem 3.6 implies that the set D(N ) = fDx :

x 2 N g can be considered as an embedded image of the manifold (N; g) in the space
C (U �U ) in the embedding x 7! Dx . Thus, D(N ) can be considered as a representation
of the manifold N , given in terms of the distance difference functions, and we call it the
distance difference representation of the manifold of N in C (U � U ).

The embedding D is different to the above embedding K in the following way that
makes it important for inverse problems: With D one does not need to know a priori the
set N in order to consider the function space C (U � U ) where we can embed N . Indeed,
when the observation set U is given, we can determine the topological properties of N
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by constructing the set D(N ) that is homeomorphic to N , and then consider D(N ) as a
“copy” of the unknown manifold N embedded in the known function space C (U � U ).

4 Ideas for proofs and reconstruction methods

4.1 The focusing of waves for linear equations. Let uf (t; x) denote the solution of
the hyperbolic Equation (2), let Λ = ΛN;g be the Neumann-to-Dirichlet map for the Equa-
tion (2), and let dSg denote the Riemannian volume measure on the manifold (@N; g@N ).
We start with the Blagovestchenskii identity BlagoveščenskiÄ [1969] (see also Katchalov,
Y. Kurylev, and Lassas [2001]) which states that the inner product of waves at any time
can be computed from boundary data.

Lemma 4.1. Let f; h 2 C 1
0 (R+ � @N ) and T > 0. Then

huf (T ); uh(T )iL2(N ) =

Z
N

uf (T; x)uh(T; x) dVg(x) =(14)

=
1

2

Z
L

Z
@M

(f (t; x)(Λh)(s; x) � (Λf )(t; x)h(s; x)) dSg(x)dtds;

where dVg is the volume measure on the Riemannian manifold (N; g) and L = f(s; t) 2

(R+)
2 : 0 � t + s � 2T; t < sg: A similar formula can be written to compute

huf (T ); 1iL2(N ) in terms of f , (@N; dSg), and Λ.

We also need an approximate controllability result that is based on the following fun-
damental unique continuation theorem of Tataru [1995].

Theorem 4.2. Let u(t; x) solve the wave equation @2t u � ∆gu = 0 in N � R and
uj(0;2T1)�Γ = 0 and @�uj(0;2T1)�Γ = 0, where Γ � @N is open and non-empty. Then
u(t; x) = 0 in KΓ;T1

; where

KΓ;T1
= f(t; x) 2 R � N : distN (x;Γ) < T1 � jt � T1jg

is the double cone of influence.

The quantitative stability results for Tataru-type unique continuation have recently been
obtained by Bosi, Kurylev, and the author, Bosi, Y. Kurylev, and Lassas [2016], and by
Laurent and Léautaud Laurent and Léautaud [2015]. Theorem 4.2 gives rise to the follow-
ing approximate controllability result:

Corollary 4.3. For any open Γ � @N and T1 > 0,

clL2(N )fu
f (T1; �) : f 2 C 1

0 ((0; T1) � Γ)g = L2(N (Γ; T1)):

Here N (Γ; T1) = fx 2 N : distN (x;Γ) < T1g is the domain of influence of Γ at time T1,
cl denotes the closure, and L2(N (Γ; T1)) = fv 2 L2(N ) : supp (v) � cl(N (Γ; T1))g.
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CONSTRUCTING TRAVEL TIME DISTANCES 21

(a)

(b)

(c)

(d)

Fig. 8: (a) wavefield demonstrating instability of the solution to the control problem
when WF(1

M(⌧)

) contains uncontrollable directions over (±.5,�.5) and (±1.15,�.5)
(b) A wavefield for which all directions in WF(1

M(⌧)

) are controlled. (c) Another
wavefield demonstrating instability, with uncontrollable directions in WF(1

M(⌧)

) over
(±1.15,�.5). (d) The di↵erence between the wavefields in (a) and (c), note that this
corresponds to an approximation to 1

M(cap(y,s,h))

as used in the distance estimation
procedure. Moreover, the instabilities in (a) and (c) located over (±1.15,�.5) cancel
each other.

as in the case of ⌧ = ⌧ s+h

y

_ s1
�

, we observe instabilities near the points (±1.15,�.5).
In Figure 8d we plot the di↵erence between the wave fields approximating 1

M(⌧

s+h
y _s1�)

and 1
M(s1�)

, and note that this di↵erence yields an approximation to the characteristic
function of cap

�

(y, s, h). In particular, notice that the instabilities observed near
(±1.15,�.5) in Figures 8a and 8c completely cancel in Figure 8d. Since our distance
determination relies primarily on the volumes of wave caps, which are obtained by
taking di↵erences in this fashion, we find that the instabilities near the cap bases tend
to provide the main source of error for our distance estimation procedure.

6. Conclusions. In this paper we have demonstrated a method to construct
distances between boundary points and interior points with fixed semi-geodesic co-
ordinates. The procedure is local in that it utilizes the local Neumann-to-Dirichlet
map for an acoustic wave equation on a Riemannian manifold with boundary. Our
procedure di↵ers from earlier results in that it utilizes volume computations derived
from local data in order to construct distances. Finally, we have provided a computa-

Figure 4: The numerical simulation on family of waves uf";˛ that focus to a point
as ˛ ! 0 and " ! 0, by de Hoop, Kepley, and Oksanen [2016]. The figure shows
the wave uf";˛ (x; T ) at the time t = T in the rectangle x 2 [�2; 0] � [�2; 2] that
is concentrated in the neigborhood A0

" n A00
" of the point x1. Waves are controlled

by a boundary source supported on the top of the rectangle and f";˛ is constructed
using the local Neumann-to-Dirichlet map.

4.1.1 Blind control problems. The inverse problem for the linear wave Equation (2)
can be solved by using blind control problems. To consider this approach, we consider
first an example of such a control problem.

Example 1: The blind deconvolution problem. The problem is to determine unknown
functions f and g when the convolution m = g � f is given. Naturally, this problem
has no unique solution. In practical settings when a priori assumptions about f and g

are given, one can approach the problem by solving a regularised problem, for example
finding (f; g)minimizing kf �g�mk2

L2(R)+R(f; g)where R(f; g) = ˛(kf k2X+kgk2Y )

and X and Y are suitable Banach spaces, e.g. Sobolev spaces, and ˛ > 0 is a regularization
parameter (see e.g. Mueller and Siltanen [2012]).

Below we consider a blind control problem for a wave equation on a compact man-
ifold N . Our aim is to find a boundary source f that produces a wave uf (t; x) solv-
ing the wave equation with metric g such that at time t = T the value of the wave,
uf (T; x), is close to a function m(x). When the domain N and the metric g on it are
known, this is a traditional control problem. We consider a blind control problem when
the metric g is unknown and we only know @N and the map Λ. Below we are par-
ticularly interested in the case when m(x) = �A(x) is the indicator function of a set
A = A(z1; z2; : : : ; zJ ;T0; T1; T2; : : : ; TJ ) � N ,

A = fx 2 N : distN (x; @N ) < T0g [

J[
j=1

BN (zj ; Tj );(15)
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where points zj 2 @N , j = 1; 2; : : : ; J , and values Tj 2 (0; T ) are given and BN (zj ; Tj )

are the balls of the manifold N with the centre zj and radius Tj . We consider the mim-
imization problem

min
f 2YA

kuf (T ) � 1k
2
L2(N ) + ˛kf k

2
L2([0;T ]�@N )(16)

where YA � L2([0; T ] � @N ) is the space of functions f (t; x), supported in the union of
the sets [T � T0; T ] � @N and

SJ
j=1f(t; z) 2 [0; T ] � @N : t > Tj � dist@M (z; zj )g, and

˛ > 0 is a small regularisation parameter.
When ˛ ! 0, it follows from Bingham, Y. Kurylev, Lassas, and Siltanen [2008] and de

Hoop, Kepley, and Oksanen [2016] that the solutions f˛ of the minimization Equation (16)
satisfy

lim
˛!0

uf˛ (T ) = �A in L2(N ):(17)

Moreover, a modification of the minimization Equation (16) (see Dahl, Kirpichnikova,
and Lassas [2009]) has the solution f̃˛ such that

lim
˛!0

uf̃˛ (T ) = �A and lim
˛!0

@t u
f̃˛ (T ) = 0;(18)

where limits take place in L2(N ).
Using Lemma 4.1 we can solve the above minimization Equation (16) when we do

not know the metric g in the manifold N but only the boundary measurements given in
terms of the Dirichlet-to-Neumann map ΛN;g . By (17), this means that the solutions of
the minimization Equation (16) are approximate solutions for a blind control problem. We
emphasise that one does not need to assume that the wave equation has an exact control-
lability property to consider this control problem.

Let z1 2 @N and � be the unit interior normal of @N , and define the cut-locus function
as

�@N (z1) = supfs > 0 : distN (z1;�(T1); @N ) = sg:

When T1 2 (0; T ) satisfies T1 < �@N (z1), the geodesic z1;�([0; T1]) is the shortest curve
connecting x1 = z1;�(T1) to the boundary @N . For " > 0, let

A0
" = fx 2 N : distN (x; @N ) < T1 � "g [ BN (z1; T1 + ");

A00
" = fx 2 N : distN (x; @N ) < T1 � "g

be sets of the form (15). Then the interior of A0
" n A00

" is a small neighbourhood of x1. Let
f 0

";˛ and f 00
";˛ be the solutions of the minimization problems (16) with objective functions

�A0
"

and �A00
"
, respectively. When ˛ > 0 is small, (17) implies that the boundary source
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f";˛ = f 0
";˛ � f 00

";˛ produces a wave uf";˛ (t; x) such that uf";˛ (T; x) is concentrated in
the set A0

" n A00
" . Further, when " ! 0, the set A0

" n A00
" tends to the point x1.

Numerical methods to constructing the family of focused waves, uf";˛ (T; x), by solv-
ing blind control problems similar to (17) have been developed by M. de Hoop, P. Kepley,
and L. Oksanen de Hoop, Kepley, and Oksanen [2016] (see Fig. 4).

As discussed above, the minimization Equation (17) can be modified –see Dahl, Kir-
pichnikova, and Lassas [2009] and (18)– so that their solutions are boundary sources
f̃";˛ 2 L2([0; T ] � @N ) that produce waves uf̃";˛ (t; x) for which the pair (uf̃";˛ (T; x);

@t u
f̃";˛ (T; x)) is concentrated near point x1. Moreover, when the sources are multiplied

by a factor c" = 1/vol (A0
" n A00

"), we have, in sense of distributions,

lim
"!0

lim
˛!0

(uc"f̃";˛ (T; x); @t u
c"f̃";˛ (T; x)) = (ıx1

; 0);

where ıx1
2 D0(N ) is the delta distribution supported at x1. This implies that the wave

uf̃";˛ (t; x) is at times t > T close to the time derivative of Green’s function G(t; x;T; x1)

corresponding to the point source ıx1
(x)ı(t � T ) at (T; x1). Furthermore, the bound-

ary observations of the time derivative @t G(t; x;T; x1) determine the boundary values of
Green’s function G(t; x;T; x1).

For convex manifolds the boundary observations of the above Green’s function deter-
mine the distance difference function Dx1

corresponding to the point x1, see (13). For
general manifolds, the distance difference function Dx1

can be constructed by computing
the L2-norms of the waves uf˛ (T; x), where f˛ solve the minimization Equation (16)
with different sets A of the form (15), see Bingham, Y. Kurylev, Lassas, and Siltanen
[2008]. When T > diam (M )/2, the above focusing of waves, that creates a point source,
can be replicated for arbitrary point x1 2 N . Assuming that manifold N is a subset of
a compact or closed manifold eN and that we know the exterior eN n N and the metric
on this set, Theorem 3.6 implies that the collection of the distance difference functions
D(N ) = fDx1

: x1 2 N g determine the isometry type of the Riemannian manifold
(N; g). A similar construction of manifold (N; g) can also be made when we are not given
the exterior eN n N but when we are given only @N and Λ (see Katchalov, Y. Kurylev, and
Lassas [2001]).

4.2 Non-linear equations and artificial point sources. Below we consider the non-
linear wave and the main ideas used to prove Theorem 3.1.

Let f = �h, � > 0, and write an asymptotic expansion of the solution u of (8),

u = �w1 + �2w2 + �3w3 + �4w4 + O(�5);
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where

w1 = ��1
g h; w2 = ���1

g (w1 � w1); w3 = �2��1
g (w1 � w2);(19)

w4 = ���1
g (aw2 � w2) � 2��1

g (aw1 � w3):

We say, for example, that w3 results from the interaction of w1 and w2, and consider such
interactions in general.

Let us consider for the moment R4 with the Minkowski metric g. We can choose
in R4 coordinates xj ; j = 1; 2; 3; 4, such that the hyperplanes Kj = fxj = 0g are
light-like, that is, TpKj contains a light-like vector for all p 2 R4. The plane waves
uj (x) = (xj )m

+, where m > 0, are solutions to the wave equation �gu = 0. They are
singular on the hyperplanes Kj , in fact, they are conormal distributions in I �m�1(N �Kj )

(see Greenleaf and G. Uhlmann [1993] and R. B. Melrose and G. A. Uhlmann [1979]).
The proof of Theorem 3.1 is based on an analysis of the interaction of four waves.

Analogously to (19), the derivative u(4) = @�1@�2@�3@�4uE�

ˇ̌
E�=0

of the solution uE� of (8)–
(9) with the source

fE�(x) =

4X
j=1

�j fj (x); E� = (�1; �2; �3; �4);

is a linear combination of terms such as

ew4 = ��1
g (S1234); S1234 = u4��1

g (u3��1
g (u2u1)):(20)

Moreover, a suitable choice of fj , j = 1; 2; 3; 4, guarantees that the term (20) dominates
the other terms in u(4). For example, two waves u1 and u2 are singular on hyperplanes K1

and K2, respectively, and these singularities interact on K1 \ K2. The interaction of the
three waves u1, u2, and u3 happens on the intersection K123 = K1 \ K2 \ K3 which is
a line. As N �K123 contains light-like directions that are not in union, N �K1 [ N �K2 [

N �K3, this interaction produces interesting singularities that start to propagate. These
singularities correspond to the black conic wave in Fig. 3. Finally, singularities of all four
waves uj , j = 1; 2; 3; 4 interact at the point fqg =

T4
j=1 Kj . The singularities from

the point q propagate along the light cone emanating from this point and with suitably
chosen sources fj the wave u(4) is singular on the light cone L(q). Thus S1234 can be
considered as a microlocal point source that sends similar singularities in all directions
as a point source located at the point q, and these singularities are observed in the set V .
The singularities caused by the interactions of three waves produce artefacts that need be
removed from the analysis. In this way, we see that the non-linear interaction of waves
gives us the intersection of the light cone L(q) and the observation domain V . The above-
described microlocal point source S1234 can be produced at an arbitrary point q in the
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future of the set V , and hence we can determine the earliest light observation sets EV (q)

for any such point. After letting q vary in I (p�; p+), we apply Theorem 3.5 to recover
the topology, differentiable structure, and the conformal class of g in I (p�; p+).

5 Einstein-matter field equations

Einstein’s equations for a Lorentzian metric g = (gjk) are

Ein(g) = T;

where Einjk(g) = Ricjk(g) �
1
2
(gpqRicpq(g))gjk . Here Ric denotes the Ricci tensor,

g�1 = (gpq) and T = (Tjk) is the stress-energy tensor. In vacuum T = 0. Einstein’s
equations coupled with scalar fields � = (�l), l = 1; 2; : : : ; L, and a source F = (F 1; F 2)

are

Ein(g) = T; T = T (g; �) + F 1;(21)

�g�l � @�l
Vl(x; �) = F 2

l ; l = 1; 2; :::; L:(22)

Here F = (F 1; F 2
1 ; : : : ; F 2

L) models a source in active measurements, see Section 5.1.
The standard coupling T = (Tjk) of g and � is given by

Tjk(g; �) =

LX
l=1

�
@j �l@k�l �

1

2
gjkgpq@p�l@q�l � Vl(x; �)gjk

�
;

the potentials Vl are smooth functions M � RL ! R.
Below, we consider the case when M is 4-dimensional. We say that (M;bg) and b� are

the background spacetime and scalar fields if they are C 1-smooth, satisfy (21)–(22) with
F = 0 and (M;bg) is globally hyperbolic. Again, we write M in the form M = R � N .
We will consider equations (21)–(22) with the initial conditions

(23) g = bg; � = b�; F = 0; in (�1; 0) � N .

The source F can not be arbitrary since the Bianchi identities imply that divgEin(g) =
0, whence the stress energy tensor T needs to satisfy the conservation law

(24) divgT = 0:

This again implies the compatibility condition

(25) divgF 1 +

LX
l=1

F 2
l r�l = 0:
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In local coordinates, the divergence is divgT = rp(g
pj Tjk), k = 1; 2; 3; 4, where r

is the covariant derivative with respect to g. The conservation law (24) for Einstein’s
equations dictates, roughly speaking, that any source in the equation must take energy
from some fields in order to increase energy in other fields.

Observe that in the system (21)–(22) the metric of the spacetime begins to change as
soon as F becomes non-zero, and that the system is invariant with respect to diffeomor-
phisms. We model an active measurement by factoring out the diffeomorphism invariance
by using Fermi coordinates.

Let bg and b� be a background spacetime and scalar fields, and g be a close to bg. We
recall that M = R � N . Let p 2 f0g � N , and let � 2 TpM be time-like. Define
�g(s) = p;�(s) to be the geodesic with respect to g satisfying �(0) = p and �̇(0) = �.
Let Xj , j = 0; 1; 2; 3, be a basis of TpM , with X0 = �, and consider the following Fermi
coordinates Φg ,

Φg(s; y1; y2; y3) = exp�g(s)(y
j Yj ); Φg : V ! M;

where Yj is the parallel transport of Xj along �g , j = 1; 2; 3. Here the parallel transport
and the exponential map exp are with respect to g, and V = (0; 1) � B where B is a
ball centered at the origin in R3. We suppose that B is small enough so that the Fermi
coordinates are well-defined with metric bg in V . Below, we denote the Fermi coordinates
of (M;bg) by Φ = Φbg .

Let t0 > 0 and consider a Lorentzian metric g on (�1; t0) � N such that the corre-
sponding Fermi coordinates Φg : V ! R � N are well-defined. We define the data set
similar to (11),

D = f(Φ�
ggjV ;Φ�

g�jV ;Φ�
gF jV ) :(g; �; F ) satisfies (21),(22),(23);

F 2 C k
0 (Φg(V )); kF kC k < "g;

where Φ�
g is the pullback under Φg , k is large enough, and " > 0 is small enough.

Theorem 5.1 (Y. Kurylev, Lassas, Oksanen, and G. Uhlmann [2014]). Let (M; g) be
a globally hyperbolic 4-dimensional Lorentzian manifold. Let �bg([0; 1]) be a time-like
geodesic and let p� = �(0) and p+ = �(1). Suppose L � 4, and we have the non-
degeneracy condition

(26) (@j
b�l)

4
j;l=1 is invertible at all points in Φ(V ).

Then the data set D determines the topology, differentiable structure and conformal class
of the metricbg in the double cone I (p�; p+) in (M;bg).

Analogous results for inverse problem for the Einstein-Maxwell system with vacuum
background metric are considered in Lassas, G. Uhlmann, and Wang [2017].
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5.1 More on active measurements. Recall that the source F must satisfy the compat-
ibility condition (25). In particular, the set of allowed sources F depends on the solution
(g; �) of the system (21)–(22). Due to this difficulty we use a construction that we call an
adaptive source for the scalar fields. Consider the following special case of (21),(22),(23),

Ein(g) = T; T = F 1 + T (g; �);(27)

�g� � @�V(�) = F 2 + S(g; �; r�; F; rF );

g = bg; � = b�; in (�1; 0) � N :

Here F = (F 1; F 2) are primary sources and S(g; �; r�; F; rF ) is the secondary source
function that vanishes outside the support of the primary source F and adapts to values of
the sources F and fields (g; �). The secondary source functions can be considered as an
abstract model for the measurement devices that one uses to implement the sources. When
(26) is valid, functions S can be constructed so that the conservation law (24) is valid for
all sufficiently small F (see Y. Kurylev, Lassas, Oksanen, and G. Uhlmann [2014]).
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Abstract
The Moment-SOS hierarchy initially introduced in optimization in 2000, is based

on the theory of theK-moment problem and its dual counterpart, polynomials that are
positive on K. It turns out that this methodology can be also applied to solve prob-
lems with positivity constraints “f (x) � 0 for all x 2 K” and/or linear constraints
on Borel measures. Such problems can be viewed as specific instances of the “Gen-
eralized Problem of Moments” (GPM) whose list of important applications in various
domains is endless. We describe this methodology and outline some of its applications
in various domains.

1 Introduction

Consider the optimization problem:

(1-1) P : f � = inf
x
ff (x) : x 2 Ω g;

where f is a polynomial and Ω � Rn is a basic semi-algebraic set, that is,

(1-2) Ω := f x 2 Rn : gj (x) � 0; j = 1; : : : ; m g;

for some polynomials gj , j = 1; : : : ; m. Problem P is a particular case of Non Linear
Programming (NLP) where the data (f; gj , j = 1; : : : ; m) are algebraic, and therefore
the whole arsenal of methods of NLP can be used for solving P. So what is so specific
about P in Equation (1-1)? The answer depends on the meaning of f � in Equation (1-1).

If one is interested in a local minimum only then efficient NLP methods can be used
for solving P. In such methods, the fact that f and gj ’s are polynomials does not help
Research supported by the European Research Council (ERC) through ERC-Advanced Grant # 666981 for the
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much, that is, this algebraic feature of P is not really exploited. On the other hand if
f � in Equation (1-1) is understood as the global minimum of P then the picture is totally
different. Why? First, to eliminate any ambiguity on the meaning of f � in Equation (1-1),
rewrite Equation (1-1) as:

(1-3) P : f � = sup f� : f (x) � � � 0; 8x 2 Ω g

because then indeed f � is necessarily the global minimum of P.
In full generality, most problems Equation (1-3) are very difficult to solve (they are

labelled NP-hard in the computational complexity terminology) because:

Given � 2 R, checking whether “f (x) � � � 0 for all x 2 Ω” is difficult.

Indeed, by nature this positivity constraint is global and therefore cannot be handled by
standard NLP optimization algorithms which use only local information around a current
iterate x 2 Ω. Therefore to compute f � in Equation (1-3) one needs an efficient tool to
handle the positivity constraint “f (x) � � � 0 for all x 2 Ω”. Fortunately if the data are
algebraic then:

1. Powerful positivity certificates from Real Algebraic Geometry (Posi-tivstellensätze
in german) are available.

2. Some of these positivity certificates have an efficient practical implementation via
Linear Programming (LP) or Semidefinite Programming (SDP). In particular and
importantly, testing whether a given polynomial is a sum of squares (SOS) simply
reduces to solving a single SDP (which can be done in time polynomial in the input
size of the polynomial, up to arbitrary fixed precision).

After the pioneers works of Shor [1998] and Nesterov [2000], Lasserre [2000, 2000/01]
and Parrilo [2000, 2003] have been the first to provide a systematic use of these two key
ingredients in Control and Optimization, with convergence guarantees. It is also worth
mentioning another closely related pioneer work, namely the celebrated SDP-relaxation
of Goemans and Williamson [1995] which provides a 0:878 approximation guarantee for
MAXCUT, a famous problem in non-convex combinatorial optimization (and probably
the simplest one). In fact it is perhaps the first famous example of such a successful
application of the powerful SDP convex optimization technique to provide guaranteed
good approximations to a notoriously difficult non-convex optimization problem. It turns
out that this SDP relaxation is the first relaxation in the Moment-SOS hierarchy (a.k.a.
Lasserre hierarchy) when applied to the MAXCUT problem. Since then, this spectacular
success story of SDP relaxations has been at the origin of a flourishing research activity
in combinatorial optimization and computational complexity. In particular, the study of
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LP- and SDP-relaxations in hardness of approximation is at the core of a central topic
in combinatorial optimization and computational complexity, namely proving/disproving
Khot’s famous Unique Games Conjecture1 (UGC) in Theoretical Computer Science.

Finally, another “definition” of the global optimum f � of P reads:

(1-4) f � = inf
�
f

Z
Ω

f d� : �(Ω) = 1 g

where the ‘inf” is over all probability measures onΩ. Equivalently, writing f as
P

˛ f˛ x˛

in the basis of monomials (where x˛ = x
˛1

1 � � � x
˛n
n ):

(1-5) f � = inf
y
f

X
˛

f˛ y˛ : y 2M(Ω); y0 = 1 g;

where M(Ω) = fy = (y˛)˛2Nn : 9� s.t. y˛ =
R
Ω x

˛ d�; 8˛ 2 Nng, a convex cone. In
fact Equation (1-3) is the LP dual of Equation (1-4). In other words standard LP duality
between the two formulations Equation (1-4) and Equation (1-3) illustrates the duality
between the “Ω-moment problem” and “polynomials positive on Ω”.

Problem (1-4) is a very particular instance (and even the simplest instance) of the more
general Generalized Problem of Moments (GPM):

(1-6) inf
�1;:::;�p

f

pX
j=1

Z
Ωj

fj d�j :

pX
j=1

fij d�j � bi ; i = 1; : : : ; s g;

for some functions fij : Rnj ! R, i = 1; : : : ; s, and sets Ωj � Rnj , j = 1; : : : ; p. The
GPM is an infinite-dimensional LP with dual:

(1-7) sup
�1;:::;�s�0

f

sX
i=1

�i bi : fj �

sX
i=1

�i fij � 0 on Ωj ; j : 1; : : : ; pg:

Therefore it should be of no surprise that the Moment-SOS hierarchy, initially developed
for global optimization, also applies to solving the GPM. This is particularly interesting
as the list of important applications of the GPM is almost endless; see e.g. Landau [1987].

2 The MOMENT-SOS hierarchy in optimization

2.1 Notation, definitions and preliminaries. Let R[x] denote the ring of polynomials
in the variables x = (x1; : : : ; xn) and let R[x]d be the vector space of polynomials of

1For this conjecture and its theoretical and practical implications, S. Khot was awarded the prestigious Nevan-
linna prize at the last ICM 2014 in Seoul Khot [2014] .
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degree at most d (whose dimension is s(d ) :=
�

n+d
n

�
). For every d 2 N, let Nn

d
:= f˛ 2

Nn : j˛j (=
P

i ˛i ) � dg, and let vd (x) = (x˛), ˛ 2 Nn, be the vector of monomials of
the canonical basis (x˛) of R[x]d . Given a closed set X � Rn, let P (X) � R[x] (resp.
Pd (X) � R[x]d ) be the convex cone of polynomials (resp. polynomials of degree at most
2d ) that are nonnegative on X. A polynomial f 2 R[x]d is written

x 7! f (x) =
X

˛2Nn

f˛ x˛;

with vector of coefficients f = (f˛) 2 Rs(d) in the canonical basis ofmonomials (x˛)˛2Nn .
For real symmetric matrices, let hB;Ci := trace (BC) while the notation B � 0 stands for
B is positive semidefinite (psd) whereas B � 0 stands for B is positive definite (pd).

The Riesz functional. Given a sequence y = (y˛)˛2Nn , the Riesz functional is the linear
mapping Ly : R[x]! R defined by:

(2-1) f (=
X

˛

f˛ x˛) 7! Ly(f ) =
X

˛2Nn

f˛ y˛:

Moment matrix. The moment matrix associated with a sequence y = (y˛), ˛ 2 Nn, is
the real symmetric matrixMd (y)with rows and columns indexed by Nn

d
, and whose entry

(˛; ˇ) is just y˛+ˇ , for every ˛; ˇ 2 Nn
d
. Alternatively, let vd (x) 2 Rs(d) be the vector

(x˛), ˛ 2 Nn
d
, and define the matrices (Bo;˛) � Ss(d) by

(2-2) vd (x) vd (x)T =
X

˛2Nn
2d

Bo;˛ x˛; 8x 2 Rn:

Then Md (y) =
P

˛2Nn
2d

y˛ Bo;˛ . If y has a representing measure � then Md (y) � 0

because hf;Md (y)fi =
R

f 2d� � 0, for all f 2 R[x]d .
A measure whose all moments are finite, is moment determinate if there is no other

measure with same moments. The support of a Borel measure � on Rn (denoted supp(�))
is the smallest closed set Ω such that �(Rn n Ω) = 0.

Localizing matrix. With y as above and g 2 R[x] (with g(x) =
P

 gx ), the lo-
calizing matrix associated with y and g is the real symmetric matrix Md (g y) with rows
and columns indexed by Nn

d
, and whose entry (˛; ˇ) is just

P
 g y˛+ˇ+ , for every

˛; ˇ 2 Nn
d
. Alternatively, let Bg;˛ 2 Ss(d) be defined by:

(2-3) g(x) vd (x) vd (x)T =
X

˛2Nn
2d+degg

Bg;˛ x˛; 8x 2 Rn:
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ThenMd (g y) =
P

˛2Nn
2d+degg

y˛ Bg;˛ . If y has a representing measure � whose support
is contained in the set fx : g(x) � 0g thenMd (g y) � 0 for all d because hf;Md (g y)fi =R

f 2 gd� � 0, for all f 2 R[x]d .

SOSpolynomials and quadraticmodules. Apolynomial f 2 R[x] is a Sum-of-Squares
(SOS) if there exist (fk)k=1;:::;s � R[x], such that f (x) =

Ps
k=1 fk(x)2, for all x 2 Rn.

Denote by Σ[x] (resp. Σ[x]d ) the set of SOS polynomials (resp. SOS polynomials of de-
gree at most 2d ). Of course every SOS polynomial is nonnegative whereas the converse is
not true. In addition, checking whether a given polynomial f is nonnegative onRn is diffi-
cult whereas checkingwhether f is SOS ismuch easier and can be done efficiently. Indeed
let f 2 R[x]2d (for f to be SOS its degree must be even), x 7! f (x) =

P
˛2Nn

2d
f˛ x˛ .

Then f is SOS if and only if there exists a real symmetric matrix XT = X of size
s(d ) =

�
n+d

n

�
, such that:

(2-4) X � 0; f˛ = hX;Bo;˛i; 8˛ 2 Nn
2d ;

and this can be checked by solving an SDP.
Next, let x 7! g0(x) := 1 for all x 2 Rn. With a family (g1; : : : ; gm) � R[x] is

associated the quadratic module Q(g) (= Q(g1; : : : ; gm)) � R[x]:

(2-5) Q(g) :=

8<: mX
j=0

�j gj : �j 2 Σ[x]; j = 0; : : : ; m

9=; ;

and its truncated version

(2-6) Qk(g) :=

8<: mX
j=0

�j gj : �j 2 Σ[x]k�dj
; j = 0; : : : ; m

9=; ;

where dj = ddeg(gj )/2e, j = 0; : : : ; m.

Definition 1. The quadratic module Q(g) associated with Ω in Equation (1-2) is said to
be Archimedean if there exists M > 0 such that the quadratic polynomial x 7!M �kxk2
belongs to Q(g) (i.e., belongs to Qk(g) for some k).

If Q(g) is Archimedean then necessarily Ω is compact but the reverse is not rue. The
Archimedean condition (which depends on the representation of Ω) can be seen as an
algebraic certificate that Ω is compact. For more details on the above notions of moment
and localizing matrix, quadratic module, as well as their use in potential applications, the
interested reader is referred to Lasserre [2010], Laurent [2009], Schmüdgen [2017].
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2.2 Two certificates of positivity (Positivstellensätze). Below we describe two par-
ticular certificates of positivity which are important because they provide the theoretical
justification behind the so-called SDP- and LP-relaxations for global optimization.

Theorem 2.1 (Putinar [1993]). LetΩ � Rn be as in Equation (1-2) and assume thatQ(g)

is Archimedean.
(a) If a polynomial f 2 R[x] is (strictly) positive on Ω then f 2 Q(g).
(b) A sequence y = (y˛)˛2Nn � R has a representing Borel measure on Ω if and only

if Ly(f
2 gj ) � 0 for all f 2 R[x], and all j = 0; : : : ; m. Equivalently, if and only if

Md (ygj ) � 0 for all j = 0; : : : ; m, d 2 N.

There exists another certificate of positivity which does not use SOS.

Theorem 2.2 (Krivine [1964a], Krivine [1964b], and Vasilescu [2003]). Let Ω � Rn as
in Equation (1-2) be compact and such that (possibly after scaling) 0 � gj (x) � 1 for all
x 2 Ω, j = 1; : : : ; m. Assume also that [1; g1; : : : ; gm] generates R[x].

(a) If a polynomial f 2 R[x] is (strictly) positive on Ω then

(2-7) f (x) =
X

˛;ˇ2Nn

c˛;ˇ

mY
j=1

gj (x)˛j (1 � gj (x))ˇj ;

for finitely many positive coefficients (c˛;ˇ )˛;ˇ2Nm .
(b) A sequence y = (y˛)˛2Nn � R has a representing Borel measure on Ω if and only

if Ly

0@ mY
j=1

gj (x)˛j (1 � gj (x))ˇj

1A � 0 for all ˛; ˇ 2 Nm.

The two facets (a) and (b) of Theorem 2.1 and Theorem 2.2 illustrate the duality be-
tween polynomials positive onΩ (in (a)) and theΩ-moment problem (in (b)). In addition to
their mathematical interest, both Theorem 2.1(a) and Theorem 2.2(a) have another distin-
guishing feature. They both have a practical implementation. Testing whether f 2 R[x]d
is in Q(g)k is just solving a single SDP, whereas testing whether f van be written as in
Equation (2-7) with

Pm
i=1 ˛i + ˇi � k, is just solving a single Linear Program (LP).

2.3 The Moment-SOS hierarchy. The Moment-SOS hierarchy is a numerical scheme
based on Putinar’s theorem. In a nutshell it consists of replacing the intractable positivity
constraint “f (x) � 0 for all x 2 Ω” with Putinar’s positivity certificate f 2 Qd (g) of
Theorem 2.1(a), i.e., with a fixed degree bound on the SOS weights (�j ) in Equation (2-6).
By duality, it consists of replacing the intractable constraint y 2M(Ω) with the necessary
conditionsMd (gj y) � 0, j = 0; : : : ; m, of Theorem 2.1(b) for a fixed d . This results in
solving an SDP which provides a lower bound on the global minimum. By allowing the
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degree bound d to increase, one obtains a hierarchy of SDPs (of increasing size) which
provides a monotone non-decreasing sequence of lower bounds. A similar strategy based
on Krivine-Stengle-Vasilescu positivity certificate (Equation (2-7)) is also possible and
yields a hierarchy of LP (instead of SDPs). However even though one would prefer to
solve LPs rather than SDPs, the latterMoment-LP hierarchy has several serious drawbacks
(some explained in e.g. Lasserre [2015a, 2002b]), and therefore we only describe the
Moment-SOS hierarchy.

Recall problemP in Equation (1-1) or equivalently in Equation (1-3) and Equation (1-4),
where Ω � Rn is the basic semi-algebraic set defined in Equation (1-2).

The Moment-SOS hierarchy. Consider the sequence of semidefinite programs
(Qd )d2N with d � d̂ := max[deg(f );maxj deg(gj )]:

(2-8) Qd : �d = inf
y
fLy(f ) : y0 = 1; Md�dj

(gj y) � 0; 0 � j � m g

(where y = (y˛)˛2Nn
2d
)2, with associated sequence of their SDP duals:

(2-9) Q�
d : ��

d = sup
�;�j

f� : f � � =

mX
j=0

�j gj ; �j 2 Σ[x]d�dj
; 0 � j � mg

(where dj =e(deggj )/2e). By standard weak duality in optimization ��
d
� �d for every

d � d̂ . The sequence (Qd )d2N forms a hierarchy of SDP-relaxations of P because
�d � f � and �d � �d+1 for all d � d̂ . Indeed for each d � d̂ , the constraints of
Qd consider only necessary conditions for y to be the moment sequence (up to order 2d )
of a probability measure on Ω (cf. Theorem 2.1(b)) and therefore Qd is a relaxation of
Equation (1-5).

By duality, the sequence (Q�
d
)d2N forms a hierarchy of SDP-strenghtenings of Equa-

tion (1-3). Indeed in Equation (2-9) one has replaced the intractable positivity constraint of
Equation (1-3) by the (stronger) Putinar’s positivity certificate with degree bound 2d�2dj

on the SOS weights �j ’s.

Theorem 2.3 (Lasserre [2000, 2000/01]). LetΩ in Equation (1-2) be compact and assume
that its associated quadratic module Q(g) is Archimedean. Then:

(i) As d ! 1, the monotone non-decreasing sequence (�d )d2N (resp. (��
d
)d2N) of

optimal values of the hierarchy (Equation (2-8)) (resp. Equation (2-9)) converges to the
global optimum f � of P.

2In Theoretical Computer Science, y is called a sequence of “pseudo-moments”.
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(ii) Moreover, let yd = (yd
˛ )˛2Nn

2d
be an optimal solution ofQd in Equation (2-8), and

let s = maxj dj (recall that dj = d(deggj )/2e). If

(2-10) rankMd (yd ) = rankMd�s(yd ) (=: t)

then �d = f � and there are t global minimizers x�
j 2 Ω, j = 1; : : : ; t , that can be

“extracted” from yd by a linear algebra routine.

The sequence of SDP-relaxations (Qd ), d � d̂ , and the rank test (Equation (2-10)) to
extract global minimizers, are implemented in the GloptiPoly software Henrion, Lasserre,
and Löfberg [2009].

Finite convergence and a global optimality certificate. After being introduced in Lasserre
[2000], in many numerical experiments it was observed that typically, finite convergence
takes place, that is, f � = �d for some (usually small) d . In fact there is a rationale behind
this empirical observation.

Theorem 2.4 (Nie [2014a]). Let P be as in Equation (1-3) where Ω in Equation (1-2)
is compact and its associated quadratic module is Archimedean. Suppose that at each
global minimizer x� 2 Ω:
� The gradients (rgj (x�))j=1;:::;m are linearly independent. (This implies existence of

nonnegative Lagrange-KKTmultipliers��
j , j � m, such thatrf (x�)�

Pm
j=1 ��

j rgj (x�) =

0 and ��
j gj (x�) = 0 for all j � m.)

� Strict complementarity holds, that is, gj (x�) = 0 ) ��
j > 0.

� Second-order sufficiency condition holds, i.e.,

hu;r2
x (f (x�) �

mX
j=1

��
j gj (x�))ui > 0;

for all 0 ¤ u 2 r(f (x�) �
Pm

j=1 ��
j gj (x�))?.

Then f � f � 2 Q(g), i.e., there exists d � and SOS multipliers ��
j 2 Σ[x]d��dj

,
j = 0; : : : ; m, such that:

(2-11) f (x) � f � = ��
0 (x) +

mX
j=1

��
j (x)gj (x):

With Equation (2-11), Theorem 2.4 provides a certificate of global optimality in poly-
nomial optimization, and to the best of our knowledge, the first at this level of generality.
Next, observe that x� 2 Ω is a global unconstrainedminimizer of the extended Lagrangian
polynomial f � f � �

Pn
j=1 ��

j gj , and therefore Theorem 2.4 is the analogue for non-
convex polynomial optimization of the Karush-Kuhn-Tucker (KKT) optimality conditions
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in the convex case. Indeed in the convex case, any local minimizer is global and is also a
global unconstrained minimizer of the Lagrangian f � f � �

Pm
j=1 ��

j gj .
Also interestingly, whenever the SOS weight ��

j in Equation (2-11) is non trivial, it
testifies that the constraint gj (x) � 0 is important for P even if it is not active at x�

(meaning that if gj � 0 is deleted from P then the new global optimum decreases strictly).
The multiplier ��

j plays the same role in the KKT-optimality conditions only in the convex
case. See Lasserre [2015a] for a detailed discussion.
Finite convergence of the Moment-SOS-hierarchies (Equations (2-8) and (2-9)) is an
immediate consequence of Theorem 2.4. Indeed by Equation (2-11) (f �; ��

0 ; : : : ; ��
m) is

a feasible solution of Q�
d� with value f � � ��

d
� f � (hence ��

d
= �d = f �).

Genericity: Importantly, as proved in Nie [2014a], the conditions in Theorem 2.4 are
generic. By this we mean the following: Consider the class P (t; m) of optimization prob-
lems P with data (f; g1; : : : ; gm) of degree bounded by t , and with nonempty compact
feasible set Ω. Such a problem P is a “point” in the space R(m+1)s(t) of coordinates of
(f; g1; : : : ; gm). Then the “good” problems P are points in a Zariski open set. Moreover,
generically the rank test (Equation (2-10)) is also satisfied at an optimal solution of Equa-
tion (2-8) (for some d ); for more details see Nie [2013].
Computational complexity: Each relaxation Qd in Equation (2-8) is a semidefinite pro-
gram with s(2d ) =

�
n+2d

n

�
variables (y˛), and a psd constraintMd (y) � 0 of size s(d ).

Therefore solving Qd in its canonical form Equation (2-8) is quite expensive in terms of
computational burden, especially when using interior-point methods. Therefore its brute
force application is limited to small to medium size problems.
Exploiting sparsity: Fortunately many large scale problems exhibit a structured sparsity
pattern (e.g., each polynomial gj is concerned with a few variables only, and the objec-
tive function f is a sum

P
i fi where each fi is also concerned with a few variables only).

Then Waki, Kim, Kojima, and Muramatsu [2006] have proposed a sparsity-adapted hier-
archy of SDP-relaxations which can handle problems P with thousands variables. In addi-
tion, if the sparsity pattern satisfies a certain condition then convergence of this sparsity-
adapted hierarchy is also guaranteed like in the dense case Lasserre [2006]. Successful
applications of this strategy can be found in e.g. Laumond, Mansard, and Lasserre [2017a]
in Control (systems identification) and in Molzahn and Hiskens [2015] for solving (large
scale) Optimum Power Flow problems (OPF is an important problem encountered in the
management of energy networks).

2.4 Discussion. Weclaim that theMoment-SOS hierarchy and its rationale Theorem 2.4,
unify convex, non-convex (continuous), and discrete (polynomial) Optimization. Indeed
in the description of P we do not pay attention to what particular class of problems P be-
longs to. This is in sharp contrast to the usual common practice in (local) optimization
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where several classes of problems have their own tailored favorite class of algorithms.
For instance, problems are not treated the same if equality constraints appear, and/or if
boolean (or discrete variables) are present, etc. Here a boolean variable xi is modeled by
the quadratic equality constraint x2

i = xi . So it is reasonable to speculate that this lack of
specialization could be a handicap for the moment-SOS hierarchy.

But this is not so. For instance for the sub-class of convex3 problems P where f and
(�gj )j=1;:::;m are SOS-convex4 polynomials, finite convergence takes place at the first
step of the hierarchy. In other words, the SOS hierarchy somehow “recognizes” this class
of easy problems Lasserre [2015a]. In the same time, for a large class of 0/1 combinatorial
optimization problems on graphs, the Moment-SOS hierarchy has been shown to provide
the tightest upper bounds when compared to the class of lift-and-project methods, and
has now become a central tool to analyze hardness of approximations in combinatorial
optimization. For more details the interested reader is referred to e.g. Lasserre [2002b],
Laurent [2003], Barak and Steurer [2014], Khot [2010, 2014] and the many references
therein.

3 The Moment-SOS hierarchy outside optimization

3.1 A general framework for the Moment-SOS hierarchy. Let Ωi � Rni be a finite
family of compact sets, M(Ωi ) (resp. C(Ωi )) be the space of finite Borel signed measures
(resp. continuous functions) on Ωi , i = 0; 1; : : : ; s, and let T be a continuous linear
mapping with adjoint T�:

T : M(Ω1) � � � � �M(Ωs)!M(Ω0)

C(Ω1) � � � � � C(Ωs) C(Ω0) : T�

Let � := (�1; : : : ; �s) and let �i � 0 stand for �i is a positive measure. Then consider
the general framework:

(3-1) � = inf
��0
f

sX
i=1

hfi ; �i i : T(�) = �;

sX
i=1

hfij ; �i i � bj ; j 2 J g;

where J is a finite or countable set, b = (bj ) is given, � 2 M(Ω0) is a given measure,
(fij )j 2J , i = 1; : : : ; s, are given polynomials, and h�; �i is the duality bracket between
C(Ωi ) and M(Ωi ) (hh; �i i =

R
Ωi

hd�i ), i = 1; : : : ; s.
3Convex problems P where f and (�gj )j=1;:::;m are convex, are considered “easy” and can be solved

efficiently.
4A polynomial f 2 R[x] is SOS-convex if its Hessian r2f is a SOS matrix-polynomial, i.e., rf 2(x) =

L(x)L(x)T for some matrix-polynomial L 2 R[x]n�p .
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As we will see, this general framework is quite rich as it encompasses a lot of important
applications inmany different fields. In fact Problem (3-1) is equivalent to the Generalized
Problem of Moments (GPM):

(3-2)
� = inf

��0
f

sX
i=1

hfi ; �i i : hT� pk ; �i = hpk ; �i; k = 0; 1; : : :

sX
i=1

hfij ; �i i � bj ; j 2 J g;

where the family (pk)k=0;::: is dense in C(Ω0) (e.g. a basis of R[x1; : : : ; xn0
]).

The Moment-SOS hierarchy can also be applied to help solve the Generalized Problem
of Moments (GPM) (Equation (3-2)) or its dual :

(3-3)
�� = sup

(�j �0;)

f
X

k

k hpk ; �i+ h�;bi :

s.t. fi �
X

k

k (T� pk)i �
X
j 2J

�j fij � 0 on Ωi for all i g;

where the unknown  = (k)k2N is a finite sequence.

3.2 A hierarchy of SDP-relaxations. Let

(3-4) Ωi := f x 2 Rni : gi;`(x) � 0; i = 1; : : : ; mi g; i = 1; : : : ; s;

for some polynomials (gi;`) � R[x1; : : : ; xni
], ` = 1; : : : ; mi . Let di;` = ddeg(gi;`)/2e

and d̂ := maxi;j;`[deg(fi ); deg(fij ); deg(gi;`)]. To solve Equation (3-2), define the
“moment” sequences yi = (yi;˛), ˛ 2 Nni , i = 1; : : : ; s, and with d 2 N, define
Γd := fpk : deg(T �pk)i � 2d; i = 1; : : : ; sg. Consider the hierarchy of semidefinite
programs indexed by d̂ � d 2 N:

(3-5)

�d = inf
(yi )
f

sX
i=1

Lyi
(fi ) :

sX
i=1

Lyi
((T �pk)i ) = hpk ; �i; pk 2 Γd

sX
i=1

Lyi
(fij ) � bj ; j 2 Jd

Md (yi ); Md�d`
(gi` yi ) � 0; ` � mi ; i � sg;
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where Jd � J is finite
S

d2N Jd = J . Its dual SDP-hierarchy reads:

(3-6)

��
d
= sup

(�j �0;k)

f
X

pk2Γd

k hpk ; �i+ h�; bi :

s.t. fi �
X

pk2Γd

k (T� pk)i �
X
j 2J

�j fij =

miX
`=0

�i;` gi;`

�i;` 2 Σ[x1; : : : ; xni
]d�di;`

; i = 1; : : : ; sg;

As eachΩi is compact, for technical reasons andwith no loss of generality, in the sequel
we may and will assume that for every i = 1; : : : ; s, gi;0(x) = Mi �kxk2, where Mi > 0

is sufficiently large.

Theorem 3.1. Assume that � > �1 and that for every i = 1; : : : ; s, fi0 = 1. Then for
every d � d̂ , Equation (3-5) has an optimal solution, and limd!1 �d = �.

3.3 Example In Probability and Computational Geometry.

Bounds on measures with moment conditions. Let Z be a random vector with values
in a compact semi-algebraic set Ω1 � Rn. Its distribution � on Ω1 is unknown but some
of its moments

R
x˛ d� = b˛ , ˛ 2 Γ � Nn, are known (b0 = 1). Given a basic semi-

algebraic set Ω2 � Ω1 we want to compute (or approximate as closely as desired) the best
upper bound on Prob(Z 2 Ω2). This problem reduces to solving the GPM:

(3-7)
� = sup

�1;�2�0

fh1; �2i : hx˛; �1i+ hx˛; �2i = b˛; ˛ 2 Γ;

�i 2M(Ωi ); i = 1; 2 g;

With Ω1 and Ω2 as in Equation (3-4) one may compute upper bounds on � by solving the
Moment-SOS hierarchy (Equation (3-5)) adapted to problem (Equation (3-7)). Under the
assumptions of Theorem 3.1, the resulting sequence (�d )d2N converges to � as d !1;
for more details the interested reader is referred to Lasserre [2002a].

Lebesgue&Gaussianmeasures of semi-algebraic sets. LetΩ2 � Rn be compact. The
goal is to compute (or approximate as closely as desired) the Lebesgue measure �(Ω2) of
Ω2. Then take Ω1 � Ω2 be a simple set, e.g. an ellipsoid or a box (in fact any set such
that one knows all moments (b˛)˛2Nn of the Lebesgue measure on Ω1). Then:

(3-8)
�(Ω2) = sup

�1;�2�0

fh1; �2i : hx˛; �1i+ hx˛; �2i = b˛; ˛ 2 Nn;

�i 2M(Ωi ); i = 1; 2 g:
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Problem (3-8) is very similar to (3-7) except that we now have countably many moment
constraints (Γ = Nn). Again, with Ω2 and Ω2 as in Equation (3-4) one may compute
upper bounds on �(Ω2) by solving the Moment-SOS hierarchy (Equation (3-5)) adapted
to problem (3-8). Under the assumptions of Theorem 3.1, the resulting monotone non-
increasing sequence (�d )d2N converges to �(Ω2) from above as d ! 1. The conver-
gence �d ! �(Ω2) is slow because of a Gibb’s phenomenon5. Indeed the semidefinite
program (Equation (3-6)) reads:

��
d = inf

p2R[x]2d

f

Z
Ω1

p d� : p � 1 on Ω2; p � 0 on Ω1g;

i.e., as!1 one tries to approximate the discontinuous function x 7! 1Ω2
(x) by polyno-

mials of increasing degrees. Fortunately there are several ways to accelerate the conver-
gence, e.g. as in Henrion, Lasserre, and Savorgnan [2009] (but loosing the monotonicity)
or in Lasserre [2017] (preserving monotonicity) by including in Equation (3-5) additional
constraints on y2 coming from an application of Stokes’ theorem.

For theGaussian measure � we need and may takeΩ1 = Rn andΩ2 is not necessarily
compact. Although both Ω1 and Ω2 are allowed to be non-compact, the Moment-SOS
hierarchy (Equation (3-5)) still converges, i.e., �d ! �(Ω2) as d !1. This is because
the moments of � satisfy the generalized Carleman’s condition

(3-9)
1X

k=1

�Z
Rn

x2k
i d�

��1/2k

= +1; i = 1; : : : ; n;

which imposes implicit constraints on y1 and y2 in Equation (3-5), strong enough to guar-
antee �d ! �(Ω2) as d ! 1. For more details see Lasserre [ibid.]. This deterministic
approach is computationally demanding and should be seen as complementary to brute
force Monte-Carlo methods that provide only an estimate (but can handle larger size prob-
lems).

3.4 In signal processing and interpolation. In this application, a signal is identified
with an atomic signed measure � supported on few atoms (xk)k=1;:::;s � Ω, i.e., � =Ps

k=1 �k ıxk
, for some weights (�k)k=1;:::;s .

Super-Resolution. The goal of Super-Resolution is to reconstruct the unknown mea-
sure � (the signal) from a few measurements only, when those measurements are the

5The Gibbs’ phenomenon appears at a jump discontinuity when one approximates a piecewise C 1 function
with a continuous function, e.g., by its Fourier series.
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moments (b˛)˛2Nn
t
of �, up to order t (fixed). One way to proceed is to solve the infinite-

dimensional program:

(3-10) � = inf
�
fk�kT V :

Z
x˛ d� = b˛; ˛ 2 Nn

t g;

where the inf is over the finite signed Borel measures on Ω, and k�kT V = j�j(Ω) (with
j�j being the total variation of �). Equivalently:

(3-11) � = inf
�+;���0

fh1; �+ + ��
i : hx˛; �+

� ��
i = b˛; ˛ 2 Nn

t g;

which is an instance of the GPM with dual:

(3-12) �� = sup
p2R[x]t

f
X

˛2Nn
t

p˛ b˛ : kpk1 � 1 g;

where kpk1 = supfjp(x)j : x 2 Ωg. In this case, the Moment-SOS hierarchy (Equa-
tion (3-5)) with d � d̂ := dt/2e, reads:

(3-13)
:�d = inf

y+;y�
fy+

0 + y�
0 : y+

˛ � y�
˛ = b˛; ˛ 2 Nn

t

Md (y˙) � 0; Md�d`
(gj y˙) � 0; ` = 1; : : : ; mg;

where Ω = fx : g`(x) � 0; ` = 1; : : : ; mg.
In the case where Ω is the torus T � C, Candès and Fernandez-Granda [2014] showed

that if ı > 2/fc (where ı is the minimal distance between the atoms of �, and fc is the
number of measurements) then Equation (3-10) has a unique solution and one may recover
� exactly by solving the single semidefinite program (Equation (3-10)) with d = dt/2e.
The dual (Equation (3-12)) has an optimal solution p� (a trigonometric polynomial) and
the support of �+ (resp. ��) consists of the atoms z 2 T of � such that p�(z) = 1 (resp.
p�(z) = �1). In addition, this procedure is more robust to noise in the measurements than
Prony’s method; on the other hand, the latter requires less measurements and no separation
condition on the atoms.

In the general multivariate case treated in De Castro, Gamboa, Henrion, and Lasserre
[2017] one now needs to solve the Moment-SOS hierarchy (Equation (3-11)) for d =

d̂ ; : : : (instead of a single SDP in the univariate case). However since the moment con-
straints of Equation (3-11) are finitely many, exact recovery (i.e. finite convergence of the
Moment-SOS hierarchy (Equation (3-13))) is possible (usually with a few measurements
only). This is indeed what has been observed in all numerical experiments of De Castro,
Gamboa, Henrion, and Lasserre [ibid.], and in all cases with significantly less measure-
ments than the theoretical bound (of a tensorized version of the univariate case).
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In fact, the rank condition (Equation (2-10)) is always satisfied at an optimal solution
(y+; y�) at some step d of the hierarchy (Equation (3-13)), and so the atoms of �+ and ��

are extracted via a simple linear algebra routine (as for global optimization). Nie’s gener-
icity result Nie [2013] should provide a rationale which explains why the rank condition
(Equation (2-10)) is satisfied in all examples.

Sparse interpolation. Here the goal is to recover an unknown (black-box) polynomial
p 2 R[x]t through a few evaluations of p only. In Josz, Lasserre, and Mourrain [2017]
we have shown that this problem is in fact a particular case of Super-Resolution (and even
discrete Super-Resolution) on the torus T n � Cn. Indeed let z0 2 T n be fixed, arbitrary.
Then with ˇ 2 Nn, notice that

p(zˇ
0 ) =

X
˛2Nn

d

p˛ (zˇ1

01 � � � z
ˇn

0n )
˛ =

X
˛2Nn

d

p˛ (z˛1

01 � � � z
˛n

0n )
ˇ

=

Z
Tn

zˇ d

0@ X
˛2Nn

d

p˛ ız˛
0

1A =

Z
Tn

zˇ d�:

In other words, one may identify the polynomial p with an atomic signed Borel measure
� on T n supported on finitely many atoms (z˛

0 )˛2Nn
t
with associated weights (p˛)˛2Nn

t
.

Therefore, if the evaluations of the black-box polynomial p are done at a few “powers”
(zˇ

0 ), ˇ 2 Nn, of an arbitrary point z0 2 T n, then the sparse interpolation problem is
equivalent to recovering an unknown atomic signed Borel measure � on T n from knowl-
edge of a few moments, that is, the Super-Resolution problem that we have just described
above. Hence onemay recoverp by solving theMoment-SOS hierarchy (Equation (3-13))
for which finite convergence usually occurs fast. For more details see Josz, Lasserre, and
Mourrain [ibid.].

3.5 In Control & Optimal Control. Consider the Optimal Control Problem (OCP)
associated with a controlled dynamical system:

(3-14)
J � = inf

u(t)

Z T

0

L(x(t);u(t)) dt : ẋ(t) = f (x(t);u(t)); t 2 (0; T )

x(t) 2 X; u(t) 2 U; 8t 2 (0; T )

x(0) = x0; x(T ) 2 XT ;

where L; f are polynomials, X;XT � Rn and U � Rp are compact basic semi-algebraic
sets. In full generality the OCP problem (Equation (3-14)) is difficult to solve, especially
when state constraints x(t) 2 X are present. Given an admissible state-control trajectory
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(t; x(t);u(t)), its associated occupation measure �1 up to time T (resp. �2 at time T ) are
defined by:

�1(A � B � C ) :=

Z
[0;T ]\C

1(A;B)((x(t);u(t)) dt ; �2(D) = 1D(x(T ));

for all A 2 B(X), B 2 B(U), C 2 B([0; T ]), D 2 B(XT ). Then for every differentiable
function h : X � [0; T ]! R

h(T; x(T )) � h(0; x0) =

Z T

0

(
@h(x(t);u(t))

@t
+

@h(x(t);u(t))
@x

f (x(t);u(t))) dt;

or, equivalently, with S := [0; T ] � X � U:Z
XT

h(T; x) d�2(x) = h(0; x0) +
Z
S
(
@h(x;u)

@t
+

@h(x;u)
@x

f (x;u)) d�1(t; x;u):

Then the weak formulation of the OCP (Equation (3-14)) is the infinite-dimensional linear
program:

(3-15)

� = inf
�1;�2�0

f

Z
S

L(x;u) d�1 :

s.t.
Z
XT

h(T; �) d�2 �

Z
S
(
@h

@t
+

@h

@x
f ) d�1 = h(0; x0)

8h 2 R[t; x] g:

It turns out that under some conditions the optimal values of Equations (3-14) and (3-15)
are equal, i.e., J � = �. Next, if one replaces “for all h 2 R[t; x;u]” with “for all tkx˛uˇ ”,
(t; ˛; ˇ) 2 N1+n+p”, then Equation (3-15) is an instance of the GPM (Equation (3-2)).
Therefore one may apply the Moment-SOS hierarchy (Equation (3-5)). Under the condi-
tions of Theorem 3.1 one obtains the asymptotic convergence �d ! � = J � as d !1.
For more details see Lasserre, Henrion, Prieur, and Trélat [2008] and the many references
therein.

Robust control. In some applications (e.g. in robust control) one is often interested in
optimizing over sets of the form:

G := fx 2 Ω1 : f (x;u) � 0; 8u 2 Ω2g;

where Ω2 � Rp , and Ω1 � Rn is a simple set, in fact a compact set such that one knows
all moments of the Lebesgue measure � on Ω1.

The set G is difficult to handle because of the universal quantifier. Therefore one is
often satisfied with an inner approximation Gd � G, and if possible, with (i) a simple
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form and (ii) some theoretical approximation guarantees. We propose to approximate G
from inside by sets of (simple) form Gd = fx 2 Ω1 : pd (x) � 0g where pd 2 R[x]2d .

To obtain such an inner approximation Gd � G, define F : Ω1 ! R, x 7! F (x) :=
min
u
ff (x;u) : u 2 Ω2g. Then with d 2 N, fixed, solve:

(3-16) inf
p2R[x]2d

Z
Ω1

(F � p) d� : f (x;u) � p(x) � 0; 8(x;u) 2 Ω1 � Ω2g:

Any feasible solution pd of Equation (3-16) is such that Gd = fx : pd (x) � 0g � G. In
Equation (3-16)

R
Ω1

(F � p) d� = kF � pk1 (with k � k1 being the L1(Ω1)-norm), and

inf
p

Z
Ω1

(F � p) d� =

Z
Ω1

F d�„ ƒ‚ …
=cte

+ inf
p

Z
Ω1

�p d� = cte � sup
p

Z
Ω1

p d�

and so in Equation (3-16) it is equivalent to maximize
R
Ω1

pd�. Again the Moment-
SOS hierarchy can be applied. This time one replaces the difficult positivity constraint
f (x;u)� p(x) � 0 for all (x;u) 2 Ω1 �Ω2 with a certificate of positivity, with a degree
bound on the SOS weights. That is, if Ω1 = fx : g1;`(x) � 0; ` = 1; : : : ; m1g and
Ω2 = fu : g2;`(u) � 0; ` = 1; : : : ; m2g, then with di;` := d(deg(�i;`)/2e, one solves

(3-17)

�d = sup
p2R[x]2d

Z
Ω1

p d� : f (x;u) � p(x) = �0(x;u)

+

m1X
`=1

�1;`(x;u)gi;`(x) +
m2X
`=1

�2;`(x;u)gi;`(u)

�i;` 2 Σ[x;u]d�di;`
; ` = 1; : : : ; mi ; i = 1; 2:

Theorem 3.2 (Lasserre [2015b]). Assume that Ω1 � Ω2 is compact and its associated
quadratic module is Archimedean. Let pd be an optimal solution of Equation (3-17). If
�(fx 2 Ω1 : F (x) = 0g) = 0 then lim

d!1
kF � pdk1 = 0 and lim

d!1
�(G nGd ) = 0.

Therefore one obtains a nested sequence of inner approximations (Gd )d2N � G, with
the desirable property that �(G nGd ) vanishes as d increases. For more details the inter-
ested reader is referred to Lasserre [ibid.].

Example 1. In some robust control problems one would like to approximate as closely as
desired a non-convex set G = fx 2 Ω1 : �min(A(x)) � 0g for some real symmetric r � r

matrix-polynomial A(x), and where x 7! �min(A(x)) denotes its smallest eigenvalue. If
one rewrites

G = fx 2 Ω1 : uTA(x)u � 0; 8u 2 Ω2g; Ω2 = fu 2 Rr : kuk = 1g;
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one is faced with the problem we have just described. In applying the above methodol-
ogy the polynomial pd in Theorem 3.2 approximates �min(A(x)) from below in Ω1, and
kpd (�) � �min(A(�))k1 ! 0 as d increases. For more details see Henrion and Lasserre
[2006].

There are many other applications of the Moment-SOS hierarchy in Control, e.g. in
Systems Identification Cerone, Piga, and Regruto [2012] and Laumond, Mansard, and
Lasserre [2017a], Robotics Posa, Tobenkin, and Tedrake [2016], for computing Lyapunov
functions Parrilo [2003], largest regions of attraction Henrion and Korda [2014], to cite a
few.

3.6 Some inverse optimization problems. In particular:

Inverse Polynomial Optimization. Here we are given a polynomial optimization prob-
lem P : f � = minff (x) : x 2 Ωgwith f 2 R[x]d , and we are interested in the following
issue: Let y 2 Ω be given, e.g. y is the current iterate of a local minimization algorithm
applied to P. Find

(3-18) g� = arg min
g2R[x]d

fkf � gk1 : g(x) � g(y) � 0; 8x 2 Ω g;

where khk1 =
P

˛ jh˛j is the `1-norm of coefficients of h 2 R[x]d . In other words, one
searches for a polynomial g� 2 R[x]d as close as possible to f and such that y 2 Ω is
a global minimizer of g� on Ω. Indeed if kf � g�k1 is small enough then y 2 Ω could
be considered a satisfying solution of P. Therefore given a fixed small � > 0, the test
kf �g�k1 < � could be a new stopping criterion for a local optimization algorithm, with
a strong theoretical justification.

Again the Moment-SOS hierarchy can be applied to solve Equation (3-18) as positivity
certificates are perfect tools to handle the positivity constraint “g(x) � g(y) � 0 for all
x 2 Ω”. Namely with Ω as in Equation (1-2), solve:

(3-19) �t = min
g2R[x]d

f kf � gk1 : g(x) � g(y) :=

mX
j=0

�j (x)gj (x); 8x g;

where g0(x) = 1 for all x, and �j 2 Σ[x]t�dj
, j = 0; : : : ; m. Other norms are possible

but for the sparsity inducing `1-norm k � k1, it turns out that an optimal solution g� of
Equation (3-19) has a canonical simple form. For more details the interested reader is
referred to Lasserre [2013].
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Inverse Optimal Control. With the OCP (Equation (3-14)) in Section 3.5, we now con-
sider the following issue: Given a database of admissible trajectories
(x(t ; x� );u(t; x� )), t 2 [�; T ], starting in initial state x� 2 X at time � 2 [0; T ], does
there exist a Lagrangian (x;u) 7! L(x;u) such that all these trajectories are optimal
for the OCP problem (Equation (3-14))? This problem has important applications, e.g.,
in Humanoid Robotics to explain human locomotion Laumond, Mansard, and Lasserre
[2017b].

Again theMoment-SOS hierarchy can be applied because aweak version of theHamilton-
Jacobi-Bellman (HJB) optimality conditions is the perfect tool to state whether some given
trajectory is �-optimal for the OCP (Equation (3-14)). Indeed given � > 0 and an admis-
sible trajectory (t; x�(t);u�(t)), let ' : [0; T ] � X ! R, and L : X � U ! R, be such
that:

(3-20) '(T; x) � 0; 8 x 2 X;
@'(t; x)

@t
+

@'(t; x)
@x

f (x;u) + L(x;u) � 0;

for all (t; x;u) 2 [0; T ] � X � U, and: '(T; x�(T )) > ��,

(3-21)
@'(t; x�(t))

@t
+

@'(t; x�(t))

@x
f (x�(t);u�(t)) + L(x�(t);u�(t)) < �;

for all t 2 [0; T ]. Then the trajectory (t; x�(t);u�(t)) is an �-optimal solution of the OCP
(Equation (3-14)) with x0 = x�(0) and Lagrangian L. Therefore to apply the Moment-
SOS hierarchy:

(i) The unknown functions ' and L are approximated by polynomials in R[t; x]2d and
R[x;u]2d , where d is the parameter in the Moment-SOS hierarchy (Equation (3-6)).

(ii) The above positivity constraint (Equation (3-20)) on [0; T ]�X�U is replaced with
a positivity certificate with degree bound on the SOS weights.

(iii) Equation (3-21) is stated for every trajectory (x(t ; x� );u(t; x� )), t 2 [�; T ], in
the database. Using a discretization ft1; : : : ; tN g of the interval [0; T ], the positivity con-
straints (Equation (3-21)) then become a set of linear constraints on the coefficients of the
unknown polynomials ' and L.

(iv) � in Equation (3-21) is now taken as a variable and one minimizes a criterion of
the form kLk1 +  �, where  > 0 is chosen to balance between the sparsity-inducing
norm kLk1 of the Lagrangian and the error � in the weak version of the optimality condi-
tions (Equation (3-20)). A detailed discussion and related results can be found in Pauwels,
Henrion, and Lasserre [2016].

3.7 Optimal design in statistics. In designing experiments one models the responses
z1; : : : ; zN of a random experimentwhose inputs are represented by a vector t = (ti ) 2 Rn

with respect to known regression functionsΦ = ('1; : : : ; 'p), namely: zi =
Pp

j=1 �j 'j (ti )+
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"i , i = 1; : : : ; N , where �1; : : : ; �p are unknown parameters that the experimenter wants
to estimate, "i is some noise and the (ti )’s are chosen by the experimenter in a design
space X � Rn. Assume that the inputs ti , i = 1; : : : ; N , are chosen within a set of dis-
tinct points x1; : : : ; x` 2 X, ` � N, and let nk denote the number of times the particular
point xk occurs among t1; : : : ; tN . A design � is then defined by:

(3-22) � =

�
x1 : : : x`
n1

N : : : n`

N

�
:

The matrix M(�) :=
P`

i=1
ni

N
Φ(xi )Φ(xi )

T is called the information matrix of �. Opti-
mal design is concerned with finding a set of points in X that optimizes a certain statisti-
cal criterion �(M(�)), which must be real-valued, positively homogeneous, non constant,
upper semi-continuous, isotonic w.r.t. Loewner ordering, and concave. For instance in
D-optimal design one maximizes �(M(�)) := log det(M(�)) over all � of the form (Equa-
tion (3-22)). This is a difficult problem and so far most methods have used a discretization
of the design space X.

The Moment-SOS hierarchy that we describe below does not rely an any discretization
and works for an arbitrary compact basic semi-algebraic design space X as defined in
Equation (1-2). Instead we look for an atomic measure on X (with finite support) and we
proceed in two steps:
� In the first step one solves the hierarchy of convex optimization problems indexed by
ı = 0; 1; : : :.

(3-23)
�ı = sup

y
flog det(Md (y)) : y0 = 1

Md+ı(y) � 0; Md+ı�dj
(gj y) � 0g;

where d is fixed by the number of basis functions 'j considered (here the monomials
(x˛)˛2Nn

d
). (Note that Equation (3-23) is not an SDP because the criterion is not linear

in y, but it is still a tractable convex problem.) This provides us with an optimal solution
y�(ı). In practice one chooses ı = 0.
� In a second step we extract an atomic measure � from the “moments” y�(ı), e.g. via
Nie’s method Nie [2014b] which consists of solving the SDP:

(3-24)
�r = sup

y
fLy(fr) : y˛ = y�

˛(ı); 8˛ 2 Nn
2d

Md+r(y) � 0; Md+r�dj
(gj y) � 0g;

where fr is a (randomly chosen) polynomial strictly positive on X. If (y�
˛(ı))˛2Nn

2d
has a

representing measure then it has an atomic representing measure, and generically the rank
condition (Equation (2-10)) will be satisfied. Extraction of atoms is obtained via a linear
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algebra routine. We have tested this two-steps method on several non-trivial numerical
experiments (in particular with highly non-convex design spaces X) and in all cases we
were able to obtain a design. For more details the interested reader is referred to De Castro,
Gamboa, Henrion, Hess, and Lasserre [2017].

Other applications & extensions. In this partial overview, by lack of space we have not
described some impressive success stories of the Moment-SOS hierarchy, e.g. in coding
Bachoc and Vallentin [2008], packing problems in discrete geometry de Laat and Vallentin
[2015] and Schürmann and Vallentin [2006]. Finally, there is also a non-commutative
version Pironio, Navascués, and Acı́n [2010] of the Moment-SOS hierarchy based on non-
commutative positivity certificates Helton and McCullough [2004] and with important
applications in quantum information Navascués, Pironio, and Acı́n [2008].

4 Conclusion

The list of important applications of the GPM is almost endless and we have tried to con-
vince the reader that theMoment-SOS hierarchy is one promising powerful tool for solving
the GPMwith already some success stories. However much remains to be done as its brute
force application does not scale well to the problem size. One possible research direction
is to exploit symmetries and/or sparsity in large scale problems. Another one is to deter-
mine alternative positivity certificates which are less expensive in terms of computational
burden to avoid the size explosion of SOS-based positivity certificates.

References

Christine Bachoc and Frank Vallentin (2008). “New upper bounds for kissing num-
bers from semidefinite programming”. J. Amer. Math. Soc. 21.3, pp. 909–924. MR:
2393433 (cit. on p. 3811).

Boaz Barak and David Steurer (2014). “Sum-of-squares proofs and the quest toward opti-
mal algorithms”. In: Proceedings of the International Congress of Mathematicians—
Seoul 2014. Vol. IV. Kyung Moon Sa, Seoul, pp. 509–533. MR: 3727623 (cit. on
p. 3800).

Emmanuel J. Candès and Carlos Fernandez-Granda (2014). “Towards a mathematical the-
ory of super-resolution”. Comm. Pure Appl. Math. 67.6, pp. 906–956. MR: 3193963
(cit. on p. 3804).

Vito Cerone, Dario Piga, and Diego Regruto (2012). “Set-membership error-in-variables
identification through convex relaxation techniques”. IEEE Trans. Automat. Control
57.2, pp. 517–522. MR: 2918760 (cit. on p. 3808).

https://doi.org/10.1090/S0894-0347-07-00589-9
https://doi.org/10.1090/S0894-0347-07-00589-9
http://www.ams.org/mathscinet-getitem?mr=MR2393433
http://www.ams.org/mathscinet-getitem?mr=MR3727623
https://doi.org/10.1002/cpa.21455
https://doi.org/10.1002/cpa.21455
http://www.ams.org/mathscinet-getitem?mr=MR3193963
https://doi.org/10.1109/TAC.2011.2168073
https://doi.org/10.1109/TAC.2011.2168073
http://www.ams.org/mathscinet-getitem?mr=MR2918760


3812 JEAN B. LASSERRE

Yohann De Castro, F. Gamboa, Didier Henrion, and Jean B. Lasserre (2017). “Exact solu-
tions to super resolution on semi-algebraic domains in higher dimensions”. IEEE Trans.
Inform. Theory 63.1, pp. 621–630. MR: 3599963 (cit. on p. 3804).

Yohann De Castro, Fabrice Gamboa, Didier Henrion, Roxana Hess, and Jean B. Lasserre
(2017). “Approximate Optimal Designs for Multivariate Polynomial Regression”.
LAAS report No 17044. 2017, Toulouse, France. To appear in Annals of Statistics.
arXiv: 1706.04059 (cit. on p. 3811).

Michel X. Goemans and David P. Williamson (1995). “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite programming”.
J. Assoc. Comput. Mach. 42.6, pp. 1115–1145. MR: 1412228 (cit. on p. 3792).

J. William Helton and Scott A. McCullough (2004). “A Positivstellensatz for non-
commutative polynomials”. Trans. Amer. Math. Soc. 356.9, pp. 3721–3737. MR:
2055751 (cit. on p. 3811).

D. Henrion, Jean B. Lasserre, and C. Savorgnan (2009). “Approximate volume and in-
tegration for basic semialgebraic sets”. SIAM Rev. 51.4, pp. 722–743. MR: 2563831
(cit. on p. 3803).

Didier Henrion and Milan Korda (2014). “Convex computation of the region of attraction
of polynomial control systems”. IEEE Trans. Automat. Control 59.2, pp. 297–312. MR:
3164876 (cit. on p. 3808).

Didier Henrion and JeanB. Lasserre (2006). “Convergent relaxations of polynomialmatrix
inequalities and static output feedback”. IEEE Trans. Automat. Control 51.2, pp. 192–
202. MR: 2201707 (cit. on p. 3808).

Didier Henrion, Jean B. Lasserre, and Johan Löfberg (2009). “GloptiPoly 3: moments,
optimization and semidefinite programming”. Optim. Methods Softw. 24.4-5, pp. 761–
779. MR: 2554910 (cit. on p. 3798).

Cédric Josz, Jean B. Lasserre, and Bernard Mourrain (Aug. 2017). “Sparse polynomial in-
terpolation: compressed sensing, super resolution, or Prony?” LAAS Report no 17279.
2017, Toulouse, France. arXiv: 1708.06187 (cit. on p. 3805).

Subhash Khot (2010). “Inapproximability of NP-complete problems, discrete Fourier anal-
ysis, and geometry”. In: Proceedings of the International Congress of Mathematicians.
Volume IV. Hindustan Book Agency, New Delhi, pp. 2676–2697. MR: 2827989 (cit.
on p. 3800).

– (2014). “Hardness of approximation”. In: Proceedings of the International Congress
of Mathematicians—Seoul 2014. Vol. 1. Kyung Moon Sa, Seoul, pp. 711–728. MR:
3728489 (cit. on pp. 3793, 3800).

Etienne de Klerk, Jean B. Lasserre, Monique Laurent, and Zhao Sun (2017). “Bound-
constrained polynomial optimization using only elementary calculations”.Math. Oper.
Res. 42.3, pp. 834–853. MR: 3685268.

https://doi.org/10.1109/TIT.2016.2619368
https://doi.org/10.1109/TIT.2016.2619368
http://www.ams.org/mathscinet-getitem?mr=MR3599963
http://arxiv.org/abs/1706.04059
http://arxiv.org/abs/1706.04059
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
http://www.ams.org/mathscinet-getitem?mr=MR1412228
https://doi.org/10.1090/S0002-9947-04-03433-6
https://doi.org/10.1090/S0002-9947-04-03433-6
http://www.ams.org/mathscinet-getitem?mr=MR2055751
https://doi.org/10.1137/080730287
https://doi.org/10.1137/080730287
http://www.ams.org/mathscinet-getitem?mr=MR2563831
https://doi.org/10.1109/TAC.2013.2283095
https://doi.org/10.1109/TAC.2013.2283095
http://www.ams.org/mathscinet-getitem?mr=MR3164876
https://doi.org/10.1109/TAC.2005.863494
https://doi.org/10.1109/TAC.2005.863494
http://www.ams.org/mathscinet-getitem?mr=MR2201707
https://doi.org/10.1080/10556780802699201
https://doi.org/10.1080/10556780802699201
http://www.ams.org/mathscinet-getitem?mr=MR2554910
http://arxiv.org/abs/1708.06187
http://arxiv.org/abs/1708.06187
http://arxiv.org/abs/1708.06187
http://www.ams.org/mathscinet-getitem?mr=MR2827989
http://www.ams.org/mathscinet-getitem?mr=MR3728489
https://doi.org/10.1287/moor.2016.0829
https://doi.org/10.1287/moor.2016.0829
http://www.ams.org/mathscinet-getitem?mr=MR3685268


THE MOMENT-SOS HIERARCHY 3813

J.-L. Krivine (1964a). “Anneaux préordonnés”. J. Analyse Math. 12, pp. 307–326. MR:
0175937 (cit. on p. 3796).

Jean-Louis Krivine (1964b). “Quelques propriétés des préordres dans les anneaux com-
mutatifs unitaires”. C. R. Acad. Sci. Paris 258, pp. 3417–3418. MR: 0169083 (cit. on
p. 3796).

David de Laat and Frank Vallentin (2015). “A semidefinite programming hierarchy for
packing problems in discrete geometry”. Math. Program. 151.2, Ser. B, pp. 529–553.
MR: 3348162 (cit. on p. 3811).

Henry J Landau (1987). Moments in mathematics. Vol. 37. Proc. Sympos. Appl. Math.
(cit. on p. 3793).

Jean B. Lasserre (2000). “Optimisation globale et théorie des moments”. C. R. Acad. Sci.
Paris Sér. I Math. 331.11, pp. 929–934. MR: 1806434 (cit. on pp. 3792, 3797, 3798).

– (2002a). “Bounds onmeasures satisfyingmoment conditions”.Ann. Appl. Probab. 12.3,
pp. 1114–1137. MR: 1925454 (cit. on p. 3802).

– (2002b). “Semidefinite programming vs. LP relaxations for polynomial programming”.
Math. Oper. Res. 27.2, pp. 347–360. MR: 1908532 (cit. on pp. 3797, 3800).

– (2006). “Convergent SDP-relaxations in polynomial optimization with sparsity”. SIAM
J. Optim. 17.3, pp. 822–843. MR: 2257211 (cit. on p. 3799).

– (2010). Moments, positive polynomials and their applications. Vol. 1. Imperial Col-
lege Press Optimization Series. Imperial College Press, London, pp. xxii+361. MR:
2589247 (cit. on p. 3795).

– (2013). “Inverse polynomial optimization”. Math. Oper. Res. 38.3, pp. 418–436. MR:
3092539 (cit. on p. 3808).

– (2015a). An introduction to polynomial and semi-algebraic optimization. Cambridge
Texts in Applied Mathematics. Cambridge University Press, Cambridge, pp. xiv+339.
MR: 3469431 (cit. on pp. 3797, 3799, 3800).

– (2015b). “Tractable approximations of sets defined with quantifiers”. Math. Program.
151.2, Ser. B, pp. 507–527. MR: 3348161 (cit. on p. 3807).

– (2017). “Computing Gaussian & exponential measures of semi-algebraic sets”. Adv. in
Appl. Math. 91, pp. 137–163. MR: 3673583 (cit. on p. 3803).

– (2000/01). “Global optimizationwith polynomials and the problem ofmoments”. SIAM
J. Optim. 11.3, pp. 796–817. MR: 1814045 (cit. on pp. 3792, 3797).

Jean B. Lasserre, Didier Henrion, Christophe Prieur, and Emmanuel Trélat (2008). “Non-
linear optimal control via occupation measures and LMI-relaxations”. SIAM J. Control
Optim. 47.4, pp. 1643–1666. MR: 2421324 (cit. on p. 3806).

Jean B. Lasserre, Monique Laurent, and Philipp Rostalski (2008). “Semidefinite charac-
terization and computation of zero-dimensional real radical ideals”. Found. Comput.
Math. 8.5, pp. 607–647. MR: 2443091.

https://doi.org/10.1007/BF02807438
http://www.ams.org/mathscinet-getitem?mr=MR0175937
http://www.ams.org/mathscinet-getitem?mr=MR0169083
https://doi.org/10.1007/s10107-014-0843-4
https://doi.org/10.1007/s10107-014-0843-4
http://www.ams.org/mathscinet-getitem?mr=MR3348162
https://doi.org/10.1016/S0764-4442(00)01750-X
http://www.ams.org/mathscinet-getitem?mr=MR1806434
https://doi.org/10.1214/aoap/1031863183
http://www.ams.org/mathscinet-getitem?mr=MR1925454
https://doi.org/10.1287/moor.27.2.347.322
http://www.ams.org/mathscinet-getitem?mr=MR1908532
https://doi.org/10.1137/05064504X
http://www.ams.org/mathscinet-getitem?mr=MR2257211
http://www.ams.org/mathscinet-getitem?mr=MR2589247
https://doi.org/10.1287/moor.1120.0578
http://www.ams.org/mathscinet-getitem?mr=MR3092539
https://doi.org/10.1017/CBO9781107447226
http://www.ams.org/mathscinet-getitem?mr=MR3469431
https://doi.org/10.1007/s10107-014-0838-1
http://www.ams.org/mathscinet-getitem?mr=MR3348161
https://doi.org/10.1016/j.aam.2017.06.006
http://www.ams.org/mathscinet-getitem?mr=MR3673583
https://doi.org/10.1137/S1052623400366802
http://www.ams.org/mathscinet-getitem?mr=MR1814045
https://doi.org/10.1137/070685051
https://doi.org/10.1137/070685051
http://www.ams.org/mathscinet-getitem?mr=MR2421324
https://doi.org/10.1007/s10208-007-9004-y
https://doi.org/10.1007/s10208-007-9004-y
http://www.ams.org/mathscinet-getitem?mr=MR2443091


3814 JEAN B. LASSERRE

Jean-Paul Laumond, Nicolas Mansard, and Jean B. Lasserre, eds. (2017a).Geometric and
numerical foundations of movements. Vol. 117. Springer Tracts in Advanced Robotics.
Springer, Cham, pp. x+419. MR: 3642945 (cit. on pp. 3799, 3808).

– eds. (2017b). Geometric and numerical foundations of movements. Vol. 117. Springer
Tracts in Advanced Robotics. Springer, Cham, pp. x+419. MR: 3642945 (cit. on
p. 3809).

Monique Laurent (2003). “A comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre relaxations for 0-1 programming”. Math. Oper. Res. 28.3, pp. 470–496. MR:
1997246 (cit. on p. 3800).

– (2009). “Sums of squares, moment matrices and optimization over polynomials”. In:
Emerging applications of algebraic geometry. Vol. 149. IMAVol.Math. Appl. Springer,
New York, pp. 157–270. MR: 2500468 (cit. on p. 3795).

Daniel K Molzahn and Ian A Hiskens (2015). “Sparsity-exploiting moment-based relax-
ations of the optimal power flow problem”. IEEE Transactions on Power Systems 30.6,
pp. 3168–3180 (cit. on p. 3799).

Miguel Navascués, Stefano Pironio, and Antonio Acı́n (2008). “A convergent hierarchy
of semidefinite programs characterizing the set of quantum correlations”. New Journal
of Physics 10.7, p. 073013 (cit. on p. 3811).

Yurii Nesterov (2000). “Squared functional systems and optimization problems”. In:High
performance optimization. Vol. 33. Appl. Optim. Kluwer Acad. Publ., Dordrecht,
pp. 405–440. MR: 1748764 (cit. on p. 3792).

Jiawang Nie (2013). “Certifying convergence of Lasserre’s hierarchy via flat truncation”.
Math. Program. 142.1-2, Ser. A, pp. 485–510. MR: 3127083 (cit. on pp. 3799, 3805).

– (2014a). “Optimality conditions and finite convergence of Lasserre’s hierarchy”.Math.
Program. 146.1-2, Ser. A, pp. 97–121. MR: 3232610 (cit. on pp. 3798, 3799).

– (2014b). “The A-truncated K-moment problem”. Found. Comput. Math. 14.6,
pp. 1243–1276. MR: 3273678 (cit. on p. 3810).

Pablo A. Parrilo (2000). “Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization”. PhD thesis. California Institute of Technol-
ogy (cit. on p. 3792).

– (2003). “Semidefinite programming relaxations for semialgebraic problems”. Math.
Program. 96.2, Ser. B. Algebraic and geometric methods in discrete optimization,
pp. 293–320. MR: 1993050 (cit. on pp. 3792, 3808).

Edouard Pauwels, Didier Henrion, and Jean B. Lasserre (2016). “Linear conic optimiza-
tion for inverse optimal control”. SIAM J. Control Optim. 54.3, pp. 1798–1825. MR:
3516862 (cit. on p. 3809).

S. Pironio, M. Navascués, and A. Acı́n (2010). “Convergent relaxations of polynomial
optimization problems with noncommuting variables”. SIAM J. Optim. 20.5, pp. 2157–
2180. MR: 2650843 (cit. on p. 3811).

https://doi.org/10.1007/978-3-319-51547-2
https://doi.org/10.1007/978-3-319-51547-2
http://www.ams.org/mathscinet-getitem?mr=MR3642945
https://doi.org/10.1007/978-3-319-51547-2
http://www.ams.org/mathscinet-getitem?mr=MR3642945
https://doi.org/10.1287/moor.28.3.470.16391
https://doi.org/10.1287/moor.28.3.470.16391
http://www.ams.org/mathscinet-getitem?mr=MR1997246
https://doi.org/10.1007/978-0-387-09686-5_7
http://www.ams.org/mathscinet-getitem?mr=MR2500468
https://doi.org/10.1007/978-1-4757-3216-0_17
http://www.ams.org/mathscinet-getitem?mr=MR1748764
https://doi.org/10.1007/s10107-012-0589-9
http://www.ams.org/mathscinet-getitem?mr=MR3127083
https://doi.org/10.1007/s10107-013-0680-x
http://www.ams.org/mathscinet-getitem?mr=MR3232610
https://doi.org/10.1007/s10208-014-9225-9
http://www.ams.org/mathscinet-getitem?mr=MR3273678
https://doi.org/10.1007/s10107-003-0387-5
http://www.ams.org/mathscinet-getitem?mr=MR1993050
https://doi.org/10.1137/14099454X
https://doi.org/10.1137/14099454X
http://www.ams.org/mathscinet-getitem?mr=MR3516862
https://doi.org/10.1137/090760155
https://doi.org/10.1137/090760155
http://www.ams.org/mathscinet-getitem?mr=MR2650843


THE MOMENT-SOS HIERARCHY 3815

Michael Posa, Mark Tobenkin, and Russ Tedrake (2016). “Stability analysis and control
of rigid-body systems with impacts and friction”. IEEE Trans. Automat. Control 61.6,
pp. 1423–1437. MR: 3508689 (cit. on p. 3808).

Mihai Putinar (1993). “Positive polynomials on compact semi-algebraic sets”. Indiana
Univ. Math. J. 42.3, pp. 969–984. MR: 1254128 (cit. on p. 3796).

Konrad Schmüdgen (2017). The moment problem. Vol. 277. Graduate Texts in Mathemat-
ics. Springer, Cham, pp. xii+535. MR: 3729411 (cit. on p. 3795).

Achill Schürmann and Frank Vallentin (2006). “Computational approaches to lattice pack-
ing and covering problems”.Discrete Comput. Geom. 35.1, pp. 73–116. MR: 2183491
(cit. on p. 3811).

Naum Z. Shor (1998). Nondifferentiable optimization and polynomial problems. Vol. 24.
Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dor-
drecht, pp. xviii+394. MR: 1620179 (cit. on p. 3792).

F.-H. Vasilescu (2003). “Spectral measures and moment problems”. In: Spectral analysis
and its applications. Vol. 2. Theta Ser. Adv. Math. Theta, Bucharest, pp. 173–215. MR:
2082433 (cit. on p. 3796).

Hayato Waki, Sunyoung Kim, Masakazu Kojima, and Masakazu Muramatsu (2006).
“Sums of squares and semidefinite program relaxations for polynomial optimization
problems with structured sparsity”. SIAM J. Optim. 17.1, pp. 218–242. MR: 2219151
(cit. on p. 3799).

Received 2017-11-06.

Jൾൺඇ B. Lൺඌඌൾඋඋൾ
lasserre@laas.fr

https://doi.org/10.1109/TAC.2015.2459151
https://doi.org/10.1109/TAC.2015.2459151
http://www.ams.org/mathscinet-getitem?mr=MR3508689
https://doi.org/10.1512/iumj.1993.42.42045
http://www.ams.org/mathscinet-getitem?mr=MR1254128
http://www.ams.org/mathscinet-getitem?mr=MR3729411
https://doi.org/10.1007/s00454-005-1202-2
https://doi.org/10.1007/s00454-005-1202-2
http://www.ams.org/mathscinet-getitem?mr=MR2183491
https://doi.org/10.1007/978-1-4757-6015-6
http://www.ams.org/mathscinet-getitem?mr=MR1620179
http://www.ams.org/mathscinet-getitem?mr=MR2082433
https://doi.org/10.1137/050623802
https://doi.org/10.1137/050623802
http://www.ams.org/mathscinet-getitem?mr=MR2219151
mailto:lasserre@laas.fr




Pඋඈർ. Iඇඍ. Cඈඇ. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 4 (3815–3836)

A VU-POINT OF VIEW OF NONSMOOTH OPTIMIZATION

Cඅൺඎൽංൺ Sൺൺඌඍංඓගൻൺඅ

Abstract

The realization that many nondifferentiable functions exhibit some form of struc-
tured nonsmoothness has been atracting the efforts of many researchers in the last
decades. Identifying theoretically and computationally certain manifolds where a non-
smooth function behaves smoothly poses challenges for the nonsmooth optimization
community. We review a sequence of milestones in the area that led to the devel-
opment of algorithms of the bundle type that can track the region of smoothnes and
mimic a Newton algorithm to converge with superlinear speed. The new generation
of bundle methods is sufficiently versatile to deal with structured objective functions,
even when the available information is inexact.

1 What is at stake in nonsmooth optimization

In 2008 the American magazine Wired published in its Science section an article entitled
The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. The author,
Chris Anderson, argued that when confronted to massive data theory was no longer mean-
ingful because in the “Petabyte Age” the traditional approach to science –hypothesize,
model, test– had become obsolete. Quoting from the publication,

There is now a better way. Petabytes allow us to say: “Correlation is enough.”
We can stop looking for models. We can analyze the data without hypothe-
ses about what it might show. We can throw the numbers into the biggest
computing clusters the world has ever seen and let statistical algorithms find
patterns where science cannot.

Partially supported by CNPq Grant 303905/2015-8 and FAPERJ, Brazil.
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While it is true that nowadays the Big Data concept pervades many scientific domains,
in Mathematical Optimization “theory” is still thriving, alive and kicking. Rather than
replacing the theoretical methodology, Big Data has in fact enriched the field with a whole
new set of paradigms and technical tools necessary to deal with the “Petabyte” issues.

In Nonsmooth Optimization (NSO) there are situations in which it is not affordable
to drop the theory and stop looking for models, as the article advocates. In particular, to
develop sound solution algorithms statistical measures and heuristics need to be comple-
mented with convergence proofs and optimality criteria. In this respect,models are crucial:
they yield a constructive mechanism to estimate the distance to the solution set, certify-
ing the quality of the solution approach and ensuring that the iterative process returns a
reliable numerical solution.

Consider the problem of minimizing over the whole space a finite-valued convex func-
tion f : Rn ! R. Let x 2 Rn be a given point and recall the Convex Analysis subdiffer-
ential definition

@f (x) = fg 2 Rn : f (y) � f (x) + hg; y � xi for all y 2 Rn
g ;

where hg; xi denotes the Euclidean inner product between g and x in Rn. Since the func-
tion f is convex, a minimizer is characterized by the generalized Fermat condition

(1-1) 0 2 @f (x̄) :

For convergence analysis purposes the iterative process must ensure the inclusion is even-
tually satisfied. On the other hand, for algorithmic purposes a fundamental related ques-
tion is:

What is a sound stopping test for a NSO method?

As explained in Section 2.2 such a matter is not as straightforward as it may look at first
glance. The answer is achieved by building elements in a continuous model for the subd-
ifferential, the "-subdifferential, depending on a parameter " � 0:

@"f (x) = fg 2 Rn : f (y) � f (x) + hg; y � xi � " for all y 2 Rn
g :

Continuity here is understood in a Set-Valued Analysis sense, both on x and ".
Like with smooth optimization methods, the NSO stopping test relies on properties

guaranteeing asymptotic global convergence: for any given starting point the sequence
has an accumulation point satisfying the Fermat condition.

Having resolved the issue of global convergence another very important matter refers
to local convergence, or speed. Here arises a second fundamental question:

Is it possible for a NSO algorithm to converge with superlinear rate?
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We review in Section 4 the main elements regarding this very difficult question, whose
answer required the continued efforts of many researchers for at least thirty years. As
with the first question, the response was also found by defining suitable models, only that
now the object of interest is certainmanifold of smoothness along which Newton-like steps
are possible. This, even if the function is nonsmooth and a subdifferential set (instead of
just one gradient) describes its first-order behaviour.

As observed in A. S. Lewis [2014], Variational Analysis has come of age and its com-
putational aspects have significantly grown in the last years. This work continues that line
of thinking, reviewing advances in the area and pointing out some open problems. Rather
than making an exhaustive list, which is clearly an impossible task, the focus is put on
transmitting the main ideas behind selected topics that we believe reflect well the state of
the art in the field.

To make the presentation palatable to non-expert readers, the emphasis is put on outlin-
ing key points, keeping a general view without entering into technicalities, to the extent
that this is possible in Mathematics.

2 A brief history of models in NSO

Pursuing further our claim that models cannot be just dismissed when it comes to Opti-
mization, we now describe how some of the more fundamental challenges have been ad-
dressed by a particular class of NSO algorithms, known as bundle methods, Hiriart-Urruty
and Lemaréchal [1993], Bonnans, Gilbert, Lemaréchal, and Sagastizábal [2006].

2.1 Oracle information. Designing a NSO method means to define iterates xk even-
tually solving the Fermat inclusion. There are various possibilities to ensure that (1-1)
holds asymptotically, depending on how much information is available on the function to
be minimized. Typically, the function f is not known in a closed form but the functional
value and one subgradient can be computed for each given xk 2 Rn. Such information
is provided in the form of an oracle, a procedure coded by the user independently of the
algorithm designer.

Initially oracles were assumed to yield exact values, namely f (xk) and one subgradient
g(xk) 2 @f (xk), as illustrated by Figure 1.

Since there is no control on which particular subgradient in the subdifferential is pro-
vided as an output, such oracles are said to be of the black-box type1. Modern oracles,
delivering inexact information, will be considered in Section 5.1. We just mention here
that inexact information in bundle methods was best handled after K. Kiwiel introduced

1Be aware that in machine learning the wording “black-box” is used to refer to an oracle making inexact
calculations, similar to the ones described in Section 5.1.
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Figure 1: NSO black-box oracle

f (xk)

gk 2 @f (xk)
xk

the notion of noise attenuation in K. C. Kiwiel [2006]; see also M. V. Solodov [2003],
Hintermüller [2001].

The importance of suitably modelling in NSO is demonstrated below by a couple of
algorithmic highlights that represented a breakthrough in the field.

2.2 Modelling the subdifferential. When introduced in the late 1970s, bundlemethods
Lemaréchal and Mifflin [1978] collected the black-box output of past iterations to create
a model for the subdifferential that was enriched along iterations, say k = 1; 2; : : :,

@f (x̄) � conv fgi
2 @f (xi ) ; i = 1; : : : ; kg ;

where convS stands for the convex hull of a set S . The Fermat inclusion was approxi-
mated by a quadratic programming (QP) problem, yielding the smallest element of such
subdifferential model. The resulting convex combination of subgradients, denoted by ĝk

and called aggregate gradient, gives a direction along which a line search defines the next
iterate.

The forerunner subgradient methods Shor [1970] take an even simpler model, since
they can be seen as making the crude approximation @f (x̄) � fgkg. With the excep-
tion of the dilation algorithms (a class including the well-known ellipsoid method by L.
Khachiyan), subgradient methods keep no memory of the past; every point is as if the first
one in the iterative process. This is in sheer contrast with the bundle of past information
that is collected in the bundle methodology to define its sequence of iterates.

Regarding the first question, on how to stop iterations in a NSOmethod, the transporta-
tion formula introduced by Lemaréchal [1980],

gi
2 @f (xi ) H) gi

2 @ei (xk)f (xk) ei (x
i ) = f (xk) � f (xi ) �

D
gi ; xk

� xi
E

� 0

proved fundamental. Indeed, thanks to this relation, when solving the QP problem to
compute the aggregate gradient a convex combination of terms ei (x

k), denoted by êk and
called aggregate error, is also available and the inclusion

(2-1) ĝk
2 @êk f (xk)
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gives a certificate for approximate optimality. Namely, if the aggregate error and the norm
of the aggregate gradient are both sufficiently small, the inclusion (1-1) is satisfied up to
certain tolerance. Furthermore, if the aggregate error and gradient associated with some
bounded subsequence of the iterates fxkg converge to zero, then any accumulation point
of such subsequence satisfies the Fermat condition, as desired.

Without having at hand a model for the subdifferential and without the transportation
formula, designing an optimality certificate does not seem possible. Consider once more
one iteration of a subgradient method and recall its “amnesic” feature. For the algorithm
designer to define an optimality certificate at the kth iteration, the only relation at hand
is gk 2 @f (xk). In this case satisfaction of (1-1) in the limit is only possible if gk ! 0

as k ! 1. This is too strong of a requirement in a black-box oracle context. It has no
reason to hold for the simplest nonsmooth convex function, f (x) = jxj for x 2 R, not
even in the best of circumstances, that is when xk = 0 is the minimizer; the output of the
black-box can be any gk 2 [�1; 1], instead of the “right” subgradient gk = 0.

The lack of a reliable stopping test, typical of subgradient methods, explains the devel-
opment of complexity analysis for those algorithms. Such results estimate the number of
iterations that takes for the method to achieve a given accuracy in the worst case. Com-
plexity estimates are pessimistic by nature and for this reason they are not often used in
practical implementations, especially if accuracy of the numerical solution is a concern.

Back to the first generation of bundle methods, in view of (2-1), an exogenous param-
eter "k ! 0 was introduced in the QP problem to bound from above the convex sum of
errors and drive the aggregate error to zero.

The challenge of making the aggregate gradient asymptotically null was resolved by a
brilliant new idea. In the late 1970s the main source of inspiration was smooth Nonlinear
Programming, a field that was in full bloom with the quasi-Newton approaches in those
times. It was then natural to try to follow the nonlinear programming path, defining a
descent direction first and then performing a line search. At this stage came the realization
that, unlike the smooth case, even for a convex function there is no guarantee that the
direction obtained from a black-box subgradient will provide descent (the subdifferential
is not a continuous set-valued mapping).

One crucial innovation brought by bundle methods to NSO is precisely the introduction
of a mechanism separating iterates into two subsequences, respectively called of serious
and null steps. Serious steps, usually denoted by x̂k , are reference points giving sufficient
reduction of the objective function. This descent subsequence has functional values that
decrease monotonically to a minimum (if such a minimum exists, of course). Null steps
are all the other iterates, they were named in this way because they do not contribute
to reduce the functional value. Their role is to supply the oracle information and help
building a richer model, so that eventually a new serious steps can be found.
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These considerations marked a departing point from the classical convergence results
in smooth optimization: splitting the iterates into two subsequences leads to a special the-
ory of convergence because the analysis must be split accordingly. When the subsequence
of serious step is infinite, the standard smooth optimization results can be mimicked (in
particular, the serious aggregate gradient subsequence tends to zero). The second case,
in which there is a last serious step followed by an infinite number of null steps, is more
involved and typically relies on properties of the proximal point method introduced by
Moreau [1965]. This issue, addressed in the next subsection, is again related to the intro-
duction of certain model, now of primal nature.

2.3 Modelling the objective function. Calling the oracle at xk yields a linearization
of f

`k(x) := f (xk) +
D
gk ; x � xk

E
� f (x) ;

which is a lower approximation of the function, tangent to f at xk by convexity. The
principle of collecting in a bundle of information the output of past oracle iterations can
then be used to define a cutting-plane model for the function:

f (x) � mk(x) for mk(x) = maxf`i (x) ; i = 1; : : : ; kg :

If the next iterate minimizes the model, the corresponding optimality condition, 0 2

@ mk(xk+1), is close to the one for the QP problem in the dual bundle methods in Sec-
tion 2.2. This is the basis of the cutting-plane method Cheney and Goldstein [1959] and
Kelley [1960] which, albeit convergent, does not distinguish between serious and null it-
erates, as bundle methods do. As a result, functional values start oscillating, to an extent
that in some cases the whole process stalls, due to tailing-off effects and numerical errors.

In the second generation of bundle methods, developed close to the end of the 1980s,
modelling switches from a dual to a primal point of view. Instead of approaching solely the
subdifferential, the objective function is also modelled along iterations. The cutting-plane
model is stabilized in a manner ensuring the next iterate remains sufficiently close to x̂k ,
the last generated serious step. In particular, the proximal variants of bundle methods K. C.
Kiwiel [1990] prevent oscillations by solving a QP problem whose objective function is
the model

mk(x) +
1

2
�kx � x̂k

k
2
2 ;

depending on a parameter � > 0. The unique minimizer of the stabilized model gives
the next iterate, which becomes the next reference point only if its functional value is
sufficiently smaller than a target �k , as follows:

x̂k+1 := xk+1 when f (xk+1) � �k := f (x̂k) � mık :
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In these relations, m 2 (0; 1) is a parameter and the expected decrease ık � 0 is computed
when solving the QP problem. If the inequality is not satisfied, a null step is declared. In
both cases, the next cutting-plane model is enriched with the linearization defined with
the oracle information at xk+1.

The name of the variant is explained by recalling that the proximal point operator of a
convex function f at a given x 2 Rn is defined by

pf (x) := argmin
p2Rn

�
f (p) +

1

2
�kp � xk

2
2

�
:

The point x above is refered to as the prox-center. Writing down the optimality condition
gives the equivalence

0 2 @f (pf (x))+�
�
pf (x)�x

�
() pf (x) = x�

1

�
gp for some gp

2 @f (pf (x)) ;

where the subgradient in the identity has an implicit nature. As a result, computing the
proximal point of f in the black-box oracle context is not possible because the function
f is not available analytically. However, it was proved in Correa and Lemaréchal [1993]
that

(2-2) lim
k!1

pmk

(x̂) = lim
k!1

argmin
p2Rn

fmk(p) +
1

2
�kp � x̂k

2
2g = pf (x̂) ;

see also Auslender [1987], Fukushima [1984]. This nice result shows that enriching the
cutting-plane model without moving the prox-center eventually gives the proximal point
for f .

The importance of (2-2) is better understood by recalling awell-known characterization
for minimizers of a convex function, alternative to the Fermat condition (1-1). This is the
statement that x̄ minimizes f if and only if it is a fixed point of the proximal point operator
for any � > 0:

x̄ = pf (x̄) :

By construction, in the proximal bundle method the next iterate is the proximal point of
the cutting-plane model at the reference point:

xk+1 = pmk

(x̂k) :

In particular, when the iterate is declared a serious step, since x̂k+1 = xk+1, the recursion

x̂k+1 = pmk

(x̂k)

is satisfied. Because of (2-2) this is nothing but an implementable form of a Picard iterative
process to find the fixed point of pf (�). Interpreting the bundle iterations in the context
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of (2-2) confirms the perception that null steps contribute to enrich the model, improving
its accuracy until a new serious step is found.

It is important to be aware that any statement regarding superlinear speed of a NSO
algorithm refers to the rate of convergence of the subsequence of serious steps only. With a
black-box oracle there is no control on how fast the proximal point of the model converges
to the proximal point of the function in the relations (2-2). No result is known for the speed
of convergence of the null step subsequence.

Bibliographical note. The very first bundle methods can be tracked back to Lemaréchal
[1975] andMifflin [1977]; see also K. Kiwiel [1985]. A secondwave came after more than
ten years of research with the trust-region Schramm and Zowe [1992], level Lemaréchal,
Nemirovskii, andNesterov [1995], and variablemetric Lemaréchal and Sagastizábal [1997b]
bundle variants; see also Lukšan and Vlček [1999]. The years 2000 brought an asymptot-
ically exact level algorithm Fábián [2000], the spectral method Helmberg and K. Kiwiel
[2002], the generalized bundle Frangioni [2002] and the limited memory algorithm Haar-
ala, Miettinen, and Makela [2004] taylored to tackle large-scale problems.

More recently the proximal Chebyshev method Ouorou [2013], the doubly stabilized
bundle method de Oliveira and M. Solodov [2016], the target radius algorithm de Oliveira
[2017], and Apkarian, Noll, and Ravanbod [2016], a trust-region bundle algorithm de-
clined for application in optimal control, are a proof of the continued interest on the subject
of researchers in the NSO area.

3 Speeding up the method

Picard iterations can be slow to converge and the subsequence of serious steps has at
best an R-linear rate Robinson [1999]. To accelerate the bundle variants the proximal
parameter � needs to be suitably updated at each iteration (the more correct notation �k

was discarded in this text, to alleviate the reading).
The characterization considered below for a minimizer x̄ reveals useful for such pur-

poses, in fact it was a key to defining superlinearly convergent NSO algorithms.

3.1 A not so regular regularization. Given a positive semi-definite matrix H , the
Moreau-Yosida regularization of f has the expression

(3-1) F (x) := inf
p2Rn

�
f (p) +

1

2
hH (p � x); p � xi

�
:

The original regularization (Moreau [1965], Yosida [1964]) was defined for positive def-
inite matrices. The slightly more general case considered here enjoys similar properties,
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listed below and extracted from Lemaréchal and Sagastizábal [1994]. In the theorem,
domf � denotes the domain of the conjugate function, that is the set of g 2 Rn where
supx2Rn fhg; xi � f (x)g is finite.

Theorem 3.1 (Moreau-Yosida regularization properties). If domf � \ Im H ¤ ¿ then
F (x) > �1 for all x, and F is a convex function defined on the whole of Rn. Suppose,
in addition, that for all x the infimum in (3-1) is attained on some nonempty set P (x).
Then the convex function F has at all x a gradient given by

(3-2) rF (x) = H (x � p); for arbitrary p 2 P (x) ;

which is Lipschitzian with constant equal toΛ, the largest eigenvalue ofH . More precisely,
for all x; x0:

krF (x) � rF (x0)k22 6 Λ
˝
rF (x) � rF (x0); x � x0

˛
:

Furthermore, minimizing f is equivalent to minimizing F .

Note in passing that minimizing F is as difficult, if not more, than minimizing f . Hav-
ing the black-box oracle yields a cutting-plane model mk for f , so the information avail-
able for the regularization cannot be exact and corresponds to the inexact oracle

F (x̂k) � mk(xk+1) +
1

2
�kxk+1

� x̂k
k
2
2 and rF (x̂k) � �

�
x̂k

� xk+1)
�

:

Another remark is the relation between the contraction factor of the fixed point itera-
tions and the value of Λ: the smaller the maximum eigenvalue of H , the faster will be
the Picard process. This observation confirms the interest of moving the Moreau-Yosida
(pseudo) metric along iterations. Actually, when applied with H = �I , a scalar multi-
ple of the identity matrix, the relations in (3-2) give an enlightening interpretation of the
Picard iterations:

x̂k+1 = p
f
� (x̂k) () x̂k+1 = x̂k +

�
p

f
� (x̂k) � x̂k

�
= x̂k �

1
�

�
�
x̂k � p

f
� (x̂k)

�
= x̂k �

1
�

rF (x̂k)

= x̂k � H �1rF (x̂k) :

The proximal point method is in fact a preconditioned gradient method to minimize the
(smooth) Moreau-Yosida regularization.

This new insight brought back to life the hope from the end of the 1970s, that designing
NSO quasi-Newton schemes might be possible. The hope was not vain: since F has
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a Lipschitzian gradient, applying a Newton-like scheme “just” needed for the Moreau-
Yosida regularization to have an invertible Hessian in a ball about a minimizer, or at least
at x̄.

The second-order study in Lemaréchal and Sagastizábal [1997a] gave a negative an-
swer to this issue, if the whole space is considered. Specifically, for any closed convex
function f satisfying a second order growth condition the Moreau Yosida regularization
has a Hessian at every x 2 Rn if and only if the function f has a Hessian everywhere.
In other words, if a Newton-like scheme can be applied to F , it can as well be applied
directly to the original function f !

This direction appeared unsuccessful but in fact it was not pointless, as revealed by the
following example.

3.2 A VU function. Given a positive scalar a, consider the minimization in R2 of

f (v; u) = f 1(v) + f 2(u) for f 1(v) = jvj and f 2(u) =
a

2
u2 :

The function f is differentiable everywhere except at the points with null first component:
@f (v; u) = sign(v) � faug, with the convention that sign(v) = [�1; 1] if v = 0. Such is
the case of the uniquer minimizer, x̄ = (0; 0).

Figure 2 shows two views of this bivariate function, on the left for fixed second com-
ponent f (�; uf ix) and on the right when fixing the first component f (vf ix ; �).

Figure 2: Two views of a simple VU-function
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For this simple, sufficiently structured function, several calculations related to the
Moreau-Yosida regularization can be easily performed explicitly. The separability of the
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function is inherited by the proximal point,

pf (v; u) = pf 1

(v) + pf 2

(u) with pf 1

(v) = v � P�(v) and pf 2

(u) =
�

a + �
u ;

where P�(v) is the projection of v onto the interval [� 1
�

; 1
�
].

The Hessian of the Moreau-Yosida regularization at a point xı exists if and only if
the proximal point operator has a Jacobian rp(xı) at xı, and the equality r2F (xı) =

H (I � rp(xı)) holds, (Lemaréchal and Sagastizábal [ibid., Prop. 2.4]).
Back to our simple function, take xı = (vı; uı) with first component satisfying jvıj <

1
�
, so that xı = (vı; uı) is close to x̄. The corresponding Moreau-Yosida objects are

pı := pf (xı) =

�
0

�
a+�

uı

�
; rF (xı) =

�
�vı

a�
a+�

uı

�
; and r

2F (xı) =

�
� 0

0 a�
a+�

�
:

The Moreau-Yosida regularization has a Hessian at xı, in particular at x̄. The function f

does not even have a gradient at x̄, let alone a Hessian. Notwithstanding, the right graph
in Figure 2 looks U-shaped, which indicates the function is sufficiently smooth to indeed
have some sort of second-order object, reminiscent of a Hessian.

This intriguing observation raised the following question:

Is it possible to find a regionwhere a nonsmooth function behaves smoothly?

The answer to this point was explored by several authors in the 2000s, adopting dif-
ferent perspectives. There was a Convex Analysis viewpoint, with the U-Lagrangian
Lemaréchal, Oustry, and Sagastizábal [2000]. Later on a theory for primal-dual gradient
structured functions Mifflin and Sagastizábal [2003] was developed on the basis of im-
plicit function theorems and algebra. The elegant geometrical approach of partly smooth
functions (not necessarily convex) A. S. Lewis [2002] relies on Variational Analysis.

Already in Lemaréchal and Sagastizábal [1997a] there was a hint of the answer, point-
ing at the need of suitably decomposing the space Rn according to the structure of nons-
moothness of f at x̄. More precisely, Lemaréchal and Sagastizábal [ibid., Sec. 3] showed
that when it comes to second order the regularizing effect of the Moreau-Yosida operator
is driven by the prox-Jacobian, whose image is entirely contained in the normal cone

U(pı) := N@f (pı)

�
rF (xı)

�
:

Such a cone is in fact a subspace because the Moreau-Yosida gradient is in the relative
interior of the subdifferential. Lemaréchal and Sagastizábal [ibid., Sec. 3]. Consider the
linear subspace spanned by @f (pı), i.e., V(pı) ? U(pı). Any closed convex function
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looks “kinky” along pı + V(pı) and smooth in pı + U(pı). For the example function
such relations and the facts that

@f (pı) = [�1; 1] �

�
a�

a + �
uı

�
and U(pı) = f0g � R ;

explain the respective “kinkiness” and smoothness of the left and right graphs in Figure 2
(keep in mind that x̄ = pf (x̄), so pı = x̄ in this case).

Bibliographical note. Proximal bundle methods designed to seek faster convergence by
means of the Moreau-Yosida regularization were studied in Lemaréchal and Sagastizábal
[1994], Mifflin [1996], Mifflin, Sun, and Qi [1998], Chen and Fukushima [1999], Rauf
and Fukushima [2000].

4 Walking the path of superlinear rate

Once the V and U subspaces were brought to light, two important issues remained. First,
there was the question of the algorithmic potential of the approach. In Nonlinear Program-
ming a Newton direction is the result of minimizing a second-order model of the smooth
function. For a nonsmooth function f we describe below how to make a second-order
expansion along a trajectory related to the U-subspace.

The second issue, crucial for applicability regards turning the conceptualVU-algorithm
into an actual implementable method. Properties of the proximal point operator and the
relations (2-2) revealed once more providencial in this respect.

4.1 Fast tracks. In the VU-space decomposition every x 2 Rn has a V and a U
component, say xv and xu. For our simple example the subspaces are

(4-1) V = R � f0g and U = f0g � R

(this was the reason for denoting by v and u the two vector coordinates.)
Many nonsmooth convex functions admit a second-order expansion when considering

special trajectories, parameterized by u 2 U sufficiently small. Such trajectories, called
fast track in Mifflin and Sagastizábal [2002] and denoted by �(u) have as V-component
a very special function of the U-component, v = v(u):

�(u) := p̄ + (v(u); u) :

The V-component is special in the sense given by the essential relation from Lemaréchal,
Oustry, and Sagastizábal [2000, Cor.3.5], stating that v(u) goes to zero faster than u.
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To illustrate the fast track, the example in Section 3.2 is too simple: v(u) � 0. Consider
a slightly more involved function,

f (v; u) = max(f 1(v); f 2(u)) = max(jvj;
1

2
au2) ;

and recall that a > 0. The function f fails to be differentiable on the locus of the equation
jvj = 1

2
au2. In particular, its minimizer p̄ = (0; 0) has the subdifferential @f (p̄) =

[�1; 1] � f0g so the VU-subspaces remain those in (4-1).
For a given interior subgradient with V-component  the fast track is defined as fol-

lows:
v(u) = v(u; ) 2 argmin ff (p̄ + (v; u)) � h; viV : v 2 Vg :

Working out the calculations with j j < 1 for the example function gives that

v(u) =
1

2
sign()u2 and, hence, �(u) =

�1
2
sign()u2; u

�
:

The fast track exists and its V-component is smooth for a fairly general class of functions,
with sufficiently structured nonsmoothness, for details seeMifflin and Sagastizábal [2002].
Furthermore the function can be expanded up to second order along the fast track. In our
example, for any u 2 R
(4-2)

f (�(u)) =
1 � j j

2
au2 ; rUf (�(u)) = (1 � j j)au ; and r

2
Uf (�(u)) = (1 � j j)a :

The second-order object, called the U-Hessian and denoted HUf , can be used in a U-
Newton scheme performing the following steps

1. Having u, compute v(u).

2. Compute (u) = rUf (�(u)), an element tangent to the fast track.

3. Update u by solving the system HUf ∆U = �(u).

This conceptual scheme converges superlinearly to p̄ because the U-update is super-
linear on the U-component (it is a Newton move on the smooth function f ı �). Since
v(u) = o(kuk) by the important Corollary 3.5 in Lemaréchal, Oustry, and Sagastizábal
[2000], the speed of convergence of the overall process is directed by the speed of the
U-component.

4.2 Putting the conceptual scheme in practice. So far superlinearVU steps are stated
on a conceptual level, since for their computation the subspaces and the U-Hessian must
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be known. The question of how to compute elements in the primal-dual track
�
�(u); (u)

�
was resolved by the following fundamental result, Mifflin and Sagastizábal [2002, Thm.5.1],
where riS stands for the relative interior of a convex set S .

Theorem 4.1 (Proximal points are on the fast track). Let f : Rn ! R be a convex
function with minimizer x̄ 2 Rn. Suppose that 0 2 ri @f (x̄) and let �(u) be a fast track.
Given a positive parameter �, for all x close enough to x̄ there exists u(x) such that
pf (x) = �

�
u(x)

�
.

Together with (2-2) this result opens the door towards implementability. The primal-
dual fast track is approximated using the proximal point of the cutting-plane model:

�(u) � pmk

(x̂k) and (u) � ĝk
2 @êk f (x̂k) :

The VU-bundle method Mifflin and Sagastizábal [2005] is the first globally convergent
algorithm with Q-superlinear rate designed according to these premises. To approximate
the U-Hessian, a quasi-Newton matrix is updated in the U-subspace by means of the
well-known Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula. Approximations for
the VU-subspaces result from the solution to a new QP problem, yielding the dual com-
ponent of the fast track. Indeed, an important distinctive feature of the method is that
approximating the primal-dual track requires solving two QP problems per iteration. This
is key to compute the VU objects using the most updated information.

The following excerpt from Mifflin and Sagastizábal [2012], slightly modified to fit
the current setting, together with Figure 3, illustrates the superlinear behaviour of theVU-
bundle method on a test function that is a multidimensional version of the VU-funcion in
Section 3.2.

“The half-and-half function f (x) =
p

xT Bx + xT Ax was created by A. Lewis and
M. Overton to analyze BFGS behavior when minimizing a nonsmooth function. The 8-
variable example in the figure has a matrix A with all elements zero, except for ones on
the diagonal at odd numbered locations (B(i; i) = 1 for i = 1; 3; 5; 7). The matrix A

is diagonal with elements A(i; i) = 1/i2 for i = 1; : : : ; 8. The minimizer of this partly
smooth convex function is at x̄ = 0, where the V and U subspaces both have dimension
4; hence, the name half-and-half.

Each graph in the figure shows function values from all points generated by its cor-
responding algorithm starting from the point having all components equal to 20.08. The
top curve indicates sublinear rate of convergence. It was obtained with a proximal bundle
method, implemented in the codeN1CV2 byC. Lemaréchal andC. Sagastizábal Lemaréchal
and Sagastizábal [1997b]. The middle curve exhibits a linear convergence rate and cor-
responds to the BFGS implementation by M. Overton, who adapted the method for non-
smooth functions via a suitable line search developed with A. Lewis in A. S. Lewis and
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Figure 3: Superlinear speed of a fully implementable VU-method

Overton [2013]. They argue that in NSO the linear convergence of “vanilla BFGS” as
exhibited by this example is surprisingly typical. The intriguing assertion, mentioned in
A. S. Lewis [2014], has been proved only for a two variable example with the use of exact
line searches, i.e. by exploiting nonsmoothness.

It pays indeed to exploit nonsmoothness, as shown by the curve at the bottom of the
figure, which exhibits a superlinear rate and results from the quasi-Newton VU-bundle
algorithm Mifflin and Sagastizábal [2005].

Bibliographical note. TheEigenvalueOptimizationworksOustry [1999], Oustry [2000],
with two QP problems per iteration, laid the groundwork for the VU-bundle method in
Mifflin and Sagastizábal [2005]. An important difference is that while the latter uses a
black-box oracle as in Figure 1, the former works exploit rich oracles, delivering more
than one subgradient at once (in the eigenvalue context, this amounts to computing most
of the eigenvectors at each iteration).

The smooth activity manifold in A. S. Lewis [2002] is the primal track �(u), while
the composition f ı � is the U-Lagrangian Lemaréchal, Oustry, and Sagastizábal [2000].
Interesting geometrical relations with the sequential quadratic programming method and
the predictor-corrector type algorithms in Nonlinear Programmingwere analyzed inMiller
and Malick [2005] and Daniilidis, Hare, and Malick [2006].
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Computational issues on how to numerically identify the primal track and the VU-
objects were respectively addressed in Daniilidis, Sagastizábal, and M. Solodov [2009]
and Hare [2014].

Finally, the case of (nonconvex) prox-regular functions was considered, among other
authors, by Hare andA. Lewis [2007] andMifflin and Sagastizábal [2004]; see also Huang,
Pang, Lu, and Xia [2017].

5 NSO models: Going above and beyond

Superlinear speed is undeniably a desirable feature since it results in the algorithmmaking
less iterations and perhaps even more importantly, in achieving higher precision. This is
not the only concern in NSO, however. When it comes to running times, a bottleneck refers
to the time spent inside of the oracle, computing the function value and one subgradient
for a given iterate. In many real-life applications the overall CPU time is typically divided
into 15%-25% for the bundle calculations. The rest, that is more than three quarters of the
total time, is consumed by the oracle.

Central to this issue is the distinction between serious and null steps. Roughly speaking,
if one is to cut short the oracle computing times, better do it for those iterates that result
in a null step. After all, the subsequence that “matters the most” from the convergence
viewpoint is the one made up of serious steps. With this philosophy, the oracle precision
becomes variable, bringing a new paradigm into the field, in which there is an interaction
between the NSO algorithm and the oracle.

5.1 Dealing with inexactness. When the oracle delivers inexact information

fxk � f (xk) and gxk � gk
2 @f (xk)

there are two different situations, represented by the two rightmost graphs in Figure 4.

Figure 4: Exact, lower inexact, and upper inexact linearizations
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In the figure, the full lines display the function f , with a black circle corresponding to
f (xk). Dotted lines are the linearizations built with an exact oracle on the left, and two
inexact oracles on the center and right. In the middle graph the linearization does not cut
off a portion of the graph of f so the situation is more favourable. Models based on such
linearizations may not miss a region where f attains its minimum.

The formal identification of the favourable situation is given by requiring that the output
of the oracle satisfies, for a nonnegative error �k , that

fxk 2 [f (xk) � �k ; f (xk)] and gxk 2 @�k f (xk) :

The resulting inexact linearization `k remains everywhere below the function, hence jus-
tifying the name of “lower” oracle.

In the less favourable rightmost situation, the “upper” oracle output is

fxk = f (xk) � �k and gxk 2 @�k+�k
g
f (xk) ;

without any specification on the sign of the errors �k and �k
g (nevertheless �k + �k

g � 0,
by construction). In this case, the approximate functional value can be above the exact
one, as in the figure.

Lower oracles appear in situations when the function f is the result of some maximiza-
tion process, like a dual function in Lagrangian relaxation, or a value function in Benders
decomposition, or the recourse function in a two-stage stochastic program. In such cir-
cumstances f (x) = maxfF (x; y) : y 2 Y g for certain smooth function F . Typically,
the feasible set is approximated by Y k � Y , so

fxk := maxfF (x; y) : y 2 Y k
g = F (xk ; yk) and gxk := rxF (xk ; yk) ;

where yk stands for a maximizer.
Lower approximations can also be obtained by stopping before optimality the solution

process of maximizing F (xk ; �) over Y , for instance giving to the oracle a maximum
computing time. This is a good example of the important class of on-demand accuracy
oracles considered in de Oliveira and Sagastizábal [2014]. When compared with the initial
black boxes the originality of such oracles lies in the fact that their output can be delivered
with more or less precision, depending on the nature of the evaluation point. Specifically,
recall that to be declared the next serious step the new functional value needs to be below
the target, that in the inexact setting has the expression

�k := fx̂k � mık :

Figure 5 represents schematically the new setting, in addition to the evaluation point, the
oracle receives a target �k and an error bound "k � 0.
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Figure 5: On-demand accuracy oracle

gxk

xk
fxk

�k

"k

An on-demand accuracy oracle has a maximum computing time to produce its output
and operates as follows. If the oracle reaches a functional value that is below the target,
then the computation error must be smaller than the given bound:

fxk � �k
H) �k + �k

g � "k :

If the oracle reaches the maximum time and the approximate functional value is not below
the target, then the returned value may have any precision (the value of "k is not used).
This ingenious mechanism was initiated with the works by K. Kiwiel K. C. Kiwiel [2008],
K. C. Kiwiel and Lemaréchal [2009] and was later on systematically studied for level
bundle variants in de Oliveira and Sagastizábal [2014]. By managing the error bound so
that "k ! 0, any infinite sequence of serious steps eventually has exact functional values
and therefore converges to an exact minimizer.

Examples of upper oracles abound in Derivative-Free NSO Hare and Planiden [2016],
Stochastic Programming van Ackooij, de Oliveira, and Song [2018], and Probabilistic
Optimization van Ackooij, Berge, de Oliveira, and Sagastizábal [2017]. In the latter the
probability distribution is continuous, and its discretization yields approximations that
can be above or below the exact functional value. On-demand accuracy oracles are still
a possibility, for example for Gaussian distributions, since in this case the approximation
can be computed with any desired accuracy.

If the error bound sent to the oracle is too large the resulting linearization may be so bad
that, to prevent the algorithm from breaking down, certain noise attenuation step needs
to be put in place. When there is noise attenuation, the parameter � is increased and
a third subsequence needs to be considered in the convergence analysis. We do not go
into more details of this rather technical issue. We just mention that the situation can
be avoided if the oracle is of lower type. A comprehensive convergence analysis theory,
covering many different oracle situations can be found in de Oliveira, Sagastizábal, and
Lemaréchal [2014].
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6 Final words

As announced, the presented material is by no means exhaustive. Rather, the writing
reflects insights gained mostly thanks to the generosity of colleagues and mentors I was
lucky toworkwith. I am verymuch indebted to Claude Lemaréchal and RobertMifflin, for
passing on their passion for “kinks”, space decompositions, and black boxes. The works
by Krzysztof Kiwiel have been enlightening more than once. And my PhD students have
taught me how to learn when teaching.

This survey concludes with a tribute to the late Jonathan M. Borwein, an enthusias-
tic pioneer of blending Variational Analysis with Computational Mathematics so that re-
searchers get to “visualise mathematics for greater understanding” (sic).

The readers wishing to catch a glimpse of Jon’s very rich and long lasting legacy, can
visit the page

https://carma.newcastle.edu.au/jon/
In the essay Borwein [2017], one of his last publications, Jon gives advice to young

mathematicians (author, referee, or editor, he says). We include below some of Jon’s final
recommendations in the essay, to encourage its reading, that we found inspirational in
many levels:

(a) Not all questions deserve to be answered.

(b) Aim to have two qualitatively different examples. Ask if they are natural or con-
trived.

(c) Better an interesting new proof of a substantial known result than a modest and
routine generalisation of an uninteresting result.

(d) Don’t imagine many people are reading your paper linearly. Most readers - if one is
lucky enough to have any - are leafing through looking for the punchlines. So avoid
too many running hypotheses or at least make a full statement of each major result.

(e) Remember that your readers or audience may well be using English as a second
language. This does not mean you should dumb down your language but - as with
the advice to restate your main hypotheses - the key points should be made in simple
declarative English.

(f) Most research mathematicians are not scholars let alone trained mathematical his-
torians. Avoid the temptation to say that an idea was invented or introduced by
someone - whether it is Hilbert or your supervisor. Say rather that you first learned
about the topic from a paper you cite.

https://carma.newcastle.edu.au/jon/
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(g) Make sure your citation list is up to date. In the current digital environment there is
no excuse for failing to do a significant literature search.

(h) When you submit your well-motivated and carefully written paper (including a rea-
sonable literature discussion and great examples) to a journal remember that you
alone, and not the referee, are responsible for correctness of your arguments.

(i) Above all be honest.
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SPECTRAHEDRAL LIFTS OF CONVEX SETS

Rൾඁൺ R. Tඁඈආൺඌ

Abstract

Efficient representations of convex sets are of crucial importance for many algo-
rithms that work with them. It is well-known that sometimes, a complicated convex
set can be expressed as the projection of a much simpler set in higher dimensions
called a lift of the original set. This is a brief survey of recent developments in the
topic of lifts of convex sets. Our focus will be on lifts that arise from affine slices
of real positive semidefinite cones known as psd or spectrahedral lifts. The main re-
sult is that projection representations of a convex set are controlled by factorizations,
through closed convex cones, of an operator that comes from the convex set. This
leads to several research directions and results that lie at the intersection of convex ge-
ometry, combinatorics, real algebraic geometry, optimization, computer science and
more.

1 Introduction

Efficient representations of convex sets are of fundamental importance in many areas of
mathematics. An old idea from optimization for creating a compact representation of a
convex set is to express it as the projection of a higher-dimensional set that might poten-
tially be simpler, see for example Conforti, Cornuéjols, and Zambelli [2010], Ben-Tal and
Nemirovski [2001]. In many cases, this technique offers surprisingly compact representa-
tions of the original convex set. We present the basic questions that arise in the context of
projection representations, provide some answers, pose more questions, and examine the
current limitations and challenges.

As a motivating example, consider a full-dimensional convex polytope P � Rn. Re-
call that P can be expressed either as the convex hull of a finite collection of points in Rn

The author was partially supported by the U.S. National Science Foundation grant DMS-1719538. This paper
was written while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, Cal-
ifornia, during the Fall 2017 semester, and based on work supported by the National Science Foundation under
Grant No. 1440140.
MSC2010: primary 52A02; secondary 90C02.
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Figure 1: The permutahedron Π4 and the crosspolytope C3.

or as the intersection of a finite set of linear halfspaces. The minimal set of points needed
in the convex hull representation are the vertices of P , and the irredundant inequalities
needed are in bijection with the facets (codimension-one faces) of P . Therefore, if the
number of facets of P is exponential in n, then the linear inequality representation of P is
of size exponential in n. The complexity of optimizing a linear function over P depends
on the size of its inequality representation and hence it is worthwhile to ask if efficient in-
equality representations can be obtained through some indirect means such as projections.
We illustrate the idea on two examples.

Example 1.1. The n-dimensional crosspolytope Cn is the convex hull of the standard unit
vectors ei 2 Rn and their negatives Ziegler [1995, Example 0.4]. For example, C2 is a
square and C3 is an octahedron, see Figure 1. Written in terms of inequalities,

Cn = fx 2 Rn : ˙x1 ˙ x2 ˙ � � � ˙ xn � 1g

and all 2n inequalities listed are needed as they define facets of Cn. However, Cn is also
the projection onto x-coordinates of the polytope

Qn =

(
(x; y) 2 R2n :

nX
i=1

yi = 1; �yi � xi � yi 8i = 1; : : : ; n

)
which involves only 2n inequalities and one equation.

Example 1.2. The permutahedron Πn is the (n � 1)-dimensional polytope that is the
convex hull of all vectors obtained by permuting the coordinates of the n-dimensional
vector (1; 2; 3; : : : ; n). It has 2n � 2 facets, each indexed by a proper subset of [n] :=



SPECTRAHEDRAL LIFTS OF CONVEX SETS 3839

f1; 2; : : : ; ng Ziegler [ibid., Example 0.10]. In 2015, Goemans used sorting networks to
show thatΠn is the linear image of a polytopeQn that hasΘ(n log n) variables and facets,
and also argued that one cannot do better.

The key takeaway from the above examples is that one can sometimes find efficient
linear representations of polytopes if extra variables are allowed; a complicated polytope
P � Rn might be the linear projection of a polytope Q � Rn+k with many fewer facets.
To be considered efficient, both k and the number of facets of Q must be polynomial
functions of n. Such a polytope Q is called a lift or extended formulation of P . Since
optimizing a linear function over P is equivalent to optimizing the same function over a
lift of it, these projection representations offer the possibility of efficient algorithms for
linear programming over P .

Polytopes are special cases of closed convex sets and one can study lifts in this more
general context. All convex sets are slices of closed convex cones by affine planes and
hence we will look at lifts of convex sets that have this form. Formally, given a closed
convex cone K � Rm, an affine plane L � Rm, and a convex set C � Rn, we say that
K \ L is a K-lift of C if C = �(K \ L) for some linear map � : Rm ! Rn. Recall that
every polytope is an affine slice of a nonnegative orthant Rk

+ and hence polyhedral lifts of
polytopes, as we saw in Examples 1.1 and 1.2, are special cases of cone lifts. A polytope
can also have non-polyhedral lifts.

The main source of non-polyhedral lifts in this paper will come from the positive
semidefinite cone Sk

+ of k � k real symmetric positive semidefinite (psd) matrices. If
a matrix X is psd, we write X � 0. An affine slice of Sk

+ is called a spectrahedron of
size k. If a spectrahedron (of size k) is a lift of a convex set C , we say that C admits a
spectrahedral or psd lift (of size k). It is also common to say that C is sdp representable
or a projected spectrahedron or a spectrahedral shadow. Note that a spectrahedron in Sk

+

can also be written in the form(
x 2 Rt : A0 +

tX
i=1

Ai xi � 0

)
where A0; A1; : : : ; At are real symmetric matrices of size k.

Example 1.3. The square P � R2 with vertices (˙1; ˙1) can be expressed as the pro-
jection of a spectrahedron as follows:

P =

8<:(x; y) 2 R2 : 9 z 2 R s.t.

0@1 x y

x 1 z

y z 1

1A � 0

9=; :

The spectrahedral lift in this example is known as the elliptope and is shown in Figure 2.
It consists of all X 2 S3

+ such that Xi i = 1 for i = 1; 2; 3.
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Figure 2: A spectrahedral lift of a square.

Example 1.4. Given a graph G = ([n]; E)with vertex set [n] and edge set E, a collection
S � [n] is called a stable set if for each i; j 2 S , the pair fi; j g 62 E. Each stable set S

is uniquely identified by its incidence vector �S 2 f0; 1gn defined as (�S )i = 1 if i 2 S

and 0 otherwise. The stable set polytope of G is

STAB(G) := convf�S : S stable set in Gg

where conv denotes convex hull. For x = �S , consider the rank one matrix in Sn+1
+�

1

x

� �
1 x>

�
=

�
1 x>

x xx>

�
=

�
1 x>

x U

�
:

Since �S 2 f0; 1gn, Ui i = xi for all i 2 [n], and since S is stable, Uij = 0 for all
fi; j g 2 E. Therefore, the convex set

TH(G) :=

8̂̂<̂
:̂x 2 Rn :

9U 2 Sn
+ s.t.

�
1 x>

x U

�
� 0;

Ui i = xi 8i 2 [n];

Uij = 0 8fi; j g 2 E

9>>=>>;
known as the theta body of G, contains all the vertices of STAB(G), and hence by con-
vexity, all of STAB(G). In general, this containment is strict. The theta body TH(G) is
the projection onto x-coordinates of the set of all matrices in Sn+1

+ whose entries satisfy a
set of linear constraints. The latter is a spectrahedron.

Theta bodies of graphs were defined in Lovász [1979]. He proved that STAB(G) =

TH(G) if and only if G is a perfect graph. Even for perfect graphs, STAB(G) can have
exponentially many facets, but by Lovász’s result, it admits a spectrahedral lift of size
n + 1.
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We close the introduction with a psd lift of a non-polytopal convex set. Since polyhedra
can only project to polyhedra, any lift of a non-polyhedral convex set is necessarily non-
polyhedral.

Example 1.5. Let X be the n � n symbolic matrix with entries x1; : : : ; xn2 written con-
secutively along its n rows. and let In denote the n � n identity matrix. Consider the
spectrahedron of size 2n defined by the conditions0@ Y X

X> In

1A � 0; trace(Y ) = 1:

The psd condition is equivalent to Y �XX> � 0 via Schur complement. Taking the trace
on both sides we get 1 = trace(Y ) � trace(XX>) =

Pn2

i=1 x2
i . Thus, the projection of

the above spectrahedron onto x = (x1; : : : ; xn2) is contained in the unit ball

Bn2 := f(x1; : : : ; xn2) :
X

x2
i � 1g:

On the other hand, for any x on the boundary of Bn2 , the matrix0@XX> X

X> In

1A
lies in the above spectrahedron and projects onto x. We conclude that Bn2 has a spectra-
hedral lift of size O(n).

In many of the above cases, projections offer a more compact representation of the
convex set in question compared to the natural representation the set came with. Two
fundamental questions we can ask now are the following.
Question 1.6. Given a convex set C � Rn and a closed convex cone K � Rm, does C

admit a K-lift?
Question 1.7. If K comes from a family of cones fKt � Rt g such as the set of all positive
orthants or the set of all psd cones, what is the smallest t for which C admits a Kt -lift?
The smallest such t is a measure of complexity of C .

We will address both these questions and discuss several further related directions and
results. In Section 2 we prove that the existence of aK-lift for a convex set C is controlled
by the existence of aK-factorization of an operator associated toC . This result specializes
nicely to polytopes as we will see in Section 3. These factorization theorems generalize
a celebrated result of Yannakakis [1991] about polyhedral lifts of polytopes. The rest of
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the sections are focussed on spectrahedral lifts of convex sets. In Section 4 we define
the notion of positive semidefinite rank (psd rank) of a convex set and explain the known
bounds on this invariant. We alsomention recent results about psd ranks of certain families
of convex sets. The psd rank of an n-dimensional polytope is known to be at least n+1. In
Section 5, we explore the class of polytopes that have this minimum possible psd rank. We
conclude in Section 6 with the basic connections between sum of squares polynomials and
spectrahedral lifts. We also describe the recent breakthrough by Scheiderer that provides
the first examples of convex semialgebraic sets that do not admit spectrahedral lifts.

2 The Factorization Theorem for Convex Sets

A convex set is called a convex body if it is compact and contains the origin in its interior.
For simplicity, we will always assume that all our convex sets are convex bodies. Recall
that the polar of a convex set C � Rn is the set

C ı = fy 2 Rn : hx; yi � 1; 8x 2 C g:

Let ext(C ) denote the set of extreme points of C , namely, all points p 2 C such that if
p = (p1 +p2)/2, with p1; p2 2 C , then p = p1 = p2. Both C and C ı are convex hulls
of their respective extreme points. Consider the operator S : Rn � Rn ! R defined by
S(x; y) = 1 � hx; yi. The slack operator SC , of a convex set C � Rn, is the restriction
of the operator S to ext(C ) � ext(C ı). Note that the range of SC is contained in R+, the
set of nonnegative real numbers.

Definition 2.1. Let K � Rm be a full-dimensional closed convex cone and C � Rn a
full-dimensional convex body. A K-lift of C is a set Q = K \ L, where L � Rm is an
affine subspace, and � : Rm ! Rn is a linear map such that C = �(Q). If L intersects
the interior of K we say that Q is a proper K-lift of C .

We will see that the existence of a K-lift of C is intimately related to properties of the
slack operator SC . Recall that the dual of a closed convex cone K � Rm is

K� = fy 2 Rm : hx; yi � 0; 8x 2 Kg:

A cone K is self-dual if K� = K. The cones Rn
+ and Sk

+ are self-dual.

Definition 2.2. Let C and K be as in Definition 2.1. We say that the slack operator SC

is K-factorizable if there exist maps (not necessarily linear)

A : ext(C ) ! K and B : ext(C ı) ! K�

such that SC (x; y) = hA(x); B(y)i for all (x; y) 2 ext(C ) � ext(C ı).
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We can now characterize the existence of a K-lift of C in terms of the operator SC ,
answering Question 1.6. The proof relies on the theory of convex cone programming
which is the problem of optimizing a linear function over an affine slice of a closed convex
cone, see Ben-Tal and Nemirovski [2001], or Blekherman, Parrilo, and Thomas [2013,
§2.1.4] for a quick introduction.

Theorem 2.3. Gouveia, Parrilo, and Thomas [2013, Theorem 1] If C has a proper K-lift
then SC is K-factorizable. Conversely, if SC is K-factorizable then C has a K-lift.

Proof. Suppose C has a proper K-lift. Then there exists an affine space L = w0 +L0 in
Rm (L0 is a linear subspace) and a linear map � : Rm ! Rn such that C = �(K \ L)

and w0 2 int(K). Equivalently,

C = fx 2 Rn : x = �(w); w 2 K \ (w0 + L0)g:

We need to construct the maps A : ext(C ) ! K and B : ext(C ı) ! K� that factorize
the slack operator SC , from the K-lift of C . For xi 2 ext(C ), define A(xi ) := wi , where
wi is any point in the non-empty convex set ��1(xi ) \ K \ L.

Let c be an extreme point of C ı. Then maxf hc; xi : x 2 C g = 1 since hc; xi � 1

for all x 2 C , and if the maximum was smaller than one, then c would not be an extreme
point of C ı. Let M be a full row rank matrix such that kerM = L0. Then the following
hold:

1 = maxhc; xi

x 2 C

= maxhc; �(w)i

w 2 K \ (w0 + L0)

= maxh��(c); wi

Mw = Mw0

w 2 K

Since w0 lies in the interior of K, by Slater’s condition we have strong duality for the
above cone program, and we get

1 = min hMw0; yi : M T y � ��(c) 2 K�

with the minimum being attained. Further, setting z = M T y we have that

1 = min hw0; zi : z � ��(c) 2 K�; z 2 L?
0

with the minimum being attained. Now define B : ext(C ı) ! K� as the map that sends
yi 2 ext(C ı) to B(yi ) := z � ��(yi ), where z is any point in the nonempty convex set
L?

0 \ (K� + ��(yi )) that satisfies hw0; zi = 1. Note that for such a z, hwi ; zi = 1 for
all wi 2 L. Then B(yi ) 2 K�, and for an xi 2 ext(C ),

hxi ; yi i = h�(wi ); yi i = hwi ; ��(yi )i = hwi ; z � B(yi )i

= 1 � hwi ; B(yi )i = 1 � hA(xi ); B(yi )i:
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Therefore, SC (xi ; yi ) = 1 � hxi ; yi i = hA(xi ); B(yi )i for all xi 2 ext(C ) and yi 2

ext(C ı).
Suppose now SC is K-factorizable, i.e., there exist maps A : ext(C ) ! K and B :

ext(C ı) ! K� such that SC (x; y) = hA(x); B(y)i for all (x; y) 2 ext(C ) � ext(C ı).
Consider the affine space

L = f(x; z) 2 Rn
� Rm : 1 � hx; yi = hz; B(y)i ; 8 y 2 ext(C ı)g;

and let LK be its coordinate projection into Rm. Note that 0 62 LK since otherwise, there
exists x 2 Rn such that 1 � hx; yi = 0 for all y 2 ext(C ı) which implies that C ı lies
in the affine hyperplane hx; yi = 1. This is a contradiction since C ı contains the origin.
Also, K \ LK ¤ ¿ since for each x 2 ext(C ), A(x) 2 K \ LK by assumption.

Let x be some point in Rn such that there exists some z 2 K for which (x; z) is in L.
Then, for all extreme points y of C ı we will have that 1 � hx; yi is nonnegative. This
implies, using convexity, that 1�hx; yi is nonnegative for all y inC ı, hence x 2 (C ı)ı =

C .
We now argue that this implies that for each z 2 K \LK there exists a unique xz 2 Rn

such that (xz ; z) 2 L. That there is one, comes immediately from the definition of LK .
Suppose now that there is another such point x0

z . Then (txz + (1 � t)x0
z ; z) 2 L for

all reals t which would imply that the line through xz and x0
z would be contained in C ,

contradicting our assumption that C is compact.
The map that sends z to xz is therefore well-defined in K \ LK , and can be easily

checked to be affine. Since the origin is not in LK , we can extend it to a linear map
� : Rm ! Rn. To finish the proof it is enough to showC = �(K\LK). We have already
seen that �(K \ LK) � C so we just have to show the reverse inclusion. For all extreme
points x of C , A(x) belongs to K \ LK , and therefore, x = �(A(x)) 2 �(K \ LK).
Since C = conv(ext(C )) and �(K \ LK) is convex, C � �(K \ LK).

The asymmetry in the two directions of Theorem 2.3 disappears for many nice cones in-
cluding Rk

+ and Sk
+. For more on this, see Gouveia, Parrilo, and Thomas [2013, Corollary

1]. In these nice cases, C has a K-lift if and only if SC has a K-factorization. Theo-
rem 2.3 generalizes the original factorization theorem of Yannakakis for polyhedral lifts
of polytopes Yannakakis [1991, Theorem 3, §4] to arbitrary cone lifts of convex sets.

Recall that in the psd cone Sk
+, the inner product hA; Bi = trace(AB).

Example 2.4. The unit disk C � R2 is a spectrahedron in S2
+ as follows

C =

�
(x; y) 2 R2 :

�
1 + x y

y 1 � x

�
� 0

�
;

and hence trivially has a S2
+-lift. This means that the slack operator SC must have a S2

+-
factorization. Since C ı = C , ext(C ) = ext(C ı) = @C , and so we have to find maps
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A; B : ext(C ) ! S2
+ such that for all (x1; y1); (x2; y2) 2 ext(C ),

hA(x1; y1); B(x2; y2)i = 1 � x1x2 � y1y2:

This is accomplished by the maps

A(x1; y1) =

�
1 + x1 y1

y1 1 � x1

�
and

B(x2; y2) =
1

2

�
1 � x2 �y2

�y2 1 + x2

�
which factorize SC and are positive semidefinite in their domains.

Example 2.5. Consider the spectrahedral lift of the unit ball Bn2 from Example 1.5.
Again, we have that ext(Bn2) = ext(Bı

n2) = @Bn2 . The maps

A(x) =

�
XX> X

X> In

�
; B(y) =

1

2

�
In �Y

�Y > Y Y >

�
whereX is defined as in Example 1.5 andY is defined the sameway, offer aS2n

+ -factorization
of the slack operator of Bn2 .

The existence of cone lifts of convex bodies is preserved under many geometric oper-
ations Gouveia, Parrilo, and Thomas [2013, Propositions 1 and 2]. For instance, if C has
a K-lift, then so does any compact image of C under a projective transformation. An el-
egant feature of this theory is that the existence of lifts is invariant under polarity/duality;
C has a K-lift if and only if C ı has a K�-lift. In particular, if C has a spectrahedral lift
of size k, then so does C ı.

3 The Factorization Theorem for Polytopes

When the convex body C is a polytope, Theorem 2.3 becomes rather simple. This special-
ization also appeared in Fiorini, Massar, Pokutta, Tiwary, and de Wolf [2012].

Definition 3.1. LetP be a full-dimensional polytope inRn with vertex setVP = fp1; : : : ; pvg

and an irredundant inequality representation

P = fx 2 Rn : h1(x) � 0; : : : ; hf (x) � 0g:

Since P is a convex body, we may assume that the constant in each hj (x) is 1. The slack
matrix of P is the nonnegative v � f matrix whose (i; j )-entry is hj (pi ), the slack of
vertex pi in the facet inequality hj (x) � 0.



3846 REKHA R. THOMAS

When P is a polytope, ext(P ) is just VP , and ext(P ı) is in bijection with FP , the set
of facets of P . The facet Fj is defined by hj (x) � 0 and f := jFP j. Then the slack
operator SP is the map from VP � FP to R+ that sends the vertex facet pair (pi ; Fj ) to
hj (pi ). Hence, we may identify the slack operator of P with the slack matrix of P and
use SP to also denote this matrix. Since the facet inequalities of P are only unique up to
multiplication by positive scalars, the matrix SP is also only unique up to multiplication
of its columns by positive scalars. Regardless, we will call SP , derived from the given
presentation of P , the slack matrix of P .

Definition 3.2. Let M = (Mij ) 2 Rp�q
+ be a nonnegative matrix and K a closed con-

vex cone. Then a K-factorization of M is a pair of ordered sets fa1; : : : ; apg � K and
fb1; : : : ; bqg � K� such that hai ; bj i = Mij .

Note that M 2 Rp�q
+ has a Rk

+-factorization if and only if there exist a p � k nonnega-
tive matrix A and a k � q nonnegative matrix B such that M = AB , called a nonnegative
factorization of M . Definition 3.2 generalizes nonnegative factorizations of nonnegative
matrices to cone factorizations.

Theorem 3.3. If a full-dimensional polytope P has a proper K-lift then every slack
matrix of P admits a K-factorization. Conversely, if some slack matrix of P has a K-
factorization then P has a K-lift.

Theorem 3.3 is a direct translation of Theorem 2.3 using the identification between the
slack operator of P and the slack matrix of P . The original theorem of Yannakakis [1991,
Theorem 3, §4] proved this result in the case where K = Rk

+.

Example 3.4. Consider the regular hexagon with inequality description

H =

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
(x1; x2) 2 R2 :

0BBBBBBB@

1
p
3/3

0 2
p
3/3

�1
p
3/3

�1 �
p
3/3

0 �2
p
3/3

1 �
p
3/3

1CCCCCCCA
�

x1

x2

�
�

0BBBBBB@
1

1

1

1

1

1

1CCCCCCA

9>>>>>>>=>>>>>>>;
:

We will denote the coefficient matrix by F and the right hand side vector by d . It is easy
to check that H cannot be the projection of an affine slice of Rk

+ for k < 5. Therefore, we
ask whether it can be the linear image of an affine slice of R5

+. Using Theorem 3.3 this is
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equivalent to asking if the slack matrix of the hexagon,

SH :=

0BBBBBB@
0 0 1 2 2 1

1 0 0 1 2 2

2 1 0 0 1 2

2 2 1 0 0 1

1 2 2 1 0 0

0 1 2 2 1 0

1CCCCCCA ;

has a R5
+-factorization. Check that

SH =

0BBBBBBBBBBB@

1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0

1CCCCCCCCCCCA

0BBBBBBBB@

0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1

1CCCCCCCCA
;

where we call the first matrix A and the second matrix B . We may take the rows of A as
elements of R5

+, and the columns of B as elements of R5
+ = (R5

+)
�, and they provide us

a R5
+-factorization of the slack matrix SH , proving that this hexagon has a R5

+-lift while
the trivial polyhedral lift would have been to R6

+.
We can construct the lift using the proof of the Theorem 2.3. Note that

H = f(x1; x2) 2 R2 : 9 y 2 R5
+ s.t. F x + BT y = dg:

Hence, the exact slice of R5
+ that is mapped to the hexagon is simply

fy 2 R5
+ : 9 x 2 R2 s.t. BT y = d � F xg:

By eliminating the x variables in the system we get

fy 2 R5
+ : y1 + y2 + y3 + y5 = 2; y3 + y4 + y5 = 1g;

and so we have a three dimensional slice of R5
+ projecting down to H . This projection is

visualized in Figure 3.
The hexagon is a good example to see that the existence of lifts depends on more than

the combinatorics of the polytope. If instead of a regular hexagon we take the hexagon
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Figure 3: A R5
+-lift of the regular hexagon.

with vertices (0; �1), (1; �1), (2; 0), (1; 3), (0; 2) and (�1; 0), a valid slack matrix would
be

S :=

0BBBBBB@
0 0 1 4 3 1

1 0 0 4 4 3

7 4 0 0 4 9

3 4 4 0 0 1

3 5 6 1 0 0

0 1 3 5 3 0

1CCCCCCA :

One can check that if a 6 � 6 matrix with the zero pattern of a slack matrix of a hexagon
has a R5

+-factorization, then it has a factorization with either the same zero pattern as the
matrices A and B obtained before, or the patterns given by applying a cyclic permutation
to the rows of A and the columns of B . A simple algebraic computation then shows that
the slack matrix S above has no such decomposition hence this irregular hexagon has no
R5

+-lift.

Example 3.5. In Example 1.3 we saw a S3
+-lift of a square P . Up to scaling of columns

by positive numbers, the slack matrix of P is

SP =

0BB@
0 0 1 1

0 1 1 0

1 1 0 0

1 0 0 1

1CCA
where the rows are associated to the vertices (1; 1); (1; �1); (�1; �1); (�1; 1) in that
order, and the columns to the facets defined by the inequalities

1 � x1 � 0; 1 � x2 � 0; 1 + x1 � 0; 1 + x2 � 0:
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The matrix SP admits the following S3
+-factorization where the first four matrices are

associated to the rows of SP and the next four matrices are associated to the columns of
SP : 0@1 1 1

1 1 1

1 1 1

1A ;

0@ 1 1 �1

1 1 �1

�1 �1 1

1A ;

0@ 1 �1 �1

�1 1 1

�1 1 1

1A ;

0@ 1 �1 1

�1 1 �1

1 �1 1

1A
1

4

0@ 1 �1 0

�1 1 0

0 0 0

1A ;
1

4

0@ 1 0 �1

0 0 0

�1 0 1

1A ;
1

4

0@1 1 0

1 1 0

0 0 0

1A ;
1

4

0@1 0 1

0 0 0

1 0 1

1A :

4 Positive Semidefinite Rank

From now on we focus on the special case of spectrahedral lifts of convex sets. Since the
family of psd cones fSk

+ : k 2 Ng is closed in the sense that any face of a member Si
+

in the family is isomorphic to Sj
+ for some j � i , we can look at the smallest index k for

which a convex set C admits a Sk
+-lift.

Definition 4.1. The psd rank of a convex set C � Rn, denoted as rankpsd(C ) is the
smallest positive integer k such that C = �(Sk

+ \ L) for some affine space L and linear
map � . If C does not admit a psd lift, then define rankpsd(C ) = 1.

The following lemma is immediate from the previous sections and offers an explicit
tool for establishing psd ranks.

Lemma 4.2. The psd rank of a convex set C is the smallest k for which the slack operator
SC admits a Sk

+-factorization. If P is a polytope, then rankpsd(P ) is the smallest integer
k for which the slack matrix SP admits a Sk

+-factorization.

Following Definition 3.2, for any nonnegative matrix M 2 Rp�q
+ , one can define

rankpsd(M ) to be the smallest integer k such that M admits a Sk
+-factorization. The rela-

tionship between rankpsd(M ) and rank (M ) is as follows:

1

2

�q
1 + 8 rank (M ) � 1

�
� rankpsd(M ) � minfp; qg:(1)

For a proof, as well as a comprehensive comparison between psd rank and several
other notions of rank of a nonnegative matrix, see Fawzi, Gouveia, Parrilo, Robinson, and
Thomas [2015].

The goal of this section is to describe the known bounds on psd ranks of convex sets.
As might be expected, the best results we have are for polytopes.
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4.1 Polytopes. In the case of polytopes, there is a simple lower bound on psd rank. The
proof relies on the following technique to increase the psd rank of a matrix by one.

Lemma 4.3. Gouveia, Robinson, and Thomas [2013, Proposition 2.6] Suppose M 2

Rp�q
+ and rankpsd(M ) = k. If M is extended to M 0 =

�
M 0
w ˛

�
where w 2 Rq

+, ˛ > 0

and 0 is a column of zeros, then rankpsd(M 0) = k + 1. Further, the factor associated to
the last column of M 0 in any Sk+1

+ -factorization of M 0 has rank one.

Theorem 4.4. Gouveia, Robinson, and Thomas [ibid., Proposition 3.2] If P � Rn is a
full-dimensional polytope, then the psd rank of P is at least n+1. If rankpsd(P ) = n+1,
then every Sn+1

+ -factorization of the slack matrix of P only uses rank one matrices as
factors.

Proof. The proof is by induction on n. If n = 1, then P is a line segment and we may
assume that its vertices are p1; p2 and facets are F1; F2 with p1 = F2 and p2 = F1.
Hence its slack matrix is a 2 � 2 diagonal matrix with positive diagonal entries. It is not
hard to see that rankpsd(SP ) = 2 and any S2

+-factorization of it uses only matrices of rank
one.

Assume the first statement in the theorem holds up to dimension n � 1 and consider a
polytope P � Rn of dimension n. Let F be a facet of P with vertices p1; : : : ; ps , facets
f1; : : : ; ft and slack matrix SF . Suppose fi corresponds to facet Fi of P for i = 1; : : : ; t .
By induction hypothesis, rankpsd(F ) = rankpsd(SF ) � n. Let p be a vertex of P not in F

and assume that the top left (s +1)� (t +1) submatrix of SP is indexed by p1; : : : ; ps; p

in the rows and F1; : : : ; Ft ; F in the columns. Then this submatrix of SP , which we will
call S 0

F , has the form

S 0
F =

�
SF 0
� ˛

�
with ˛ > 0. By Lemma 4.3, the psd rank of S 0

F is at least n + 1 since the psd rank of SF

is at least n. Hence, rankpsd(P ) = rankpsd(SP ) � n + 1.
Suppose there is now a Sn+1

+ -factorization of SP and therefore of S 0
F . By Lemma 4.3

the factor corresponding to the facetF has rank one. Repeating the procedure for all facets
F and all submatrices S 0

F we get that all factors corresponding to the facets of P in this
Sn+1
+ -factorization of SP must have rank one. To prove that all factors indexed by the

vertices of P also have rank one, we use the fact that the transpose of a slack matrix of P

is (up to row scaling) a slack matrix of the polar polytope P ı, concluding the proof.

For an n-dimensional polytope P � Rn, it is well-known that rank (SP ) = n + 1, see
for instance Gouveia, Robinson, and Thomas [ibid., Lemma 3.1]. Therefore, Theorem 4.4
implies that for a slack matrix SP of a polytope P we have a simple relationship between
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rank and psd rank, namely rank (SP ) � rankpsd(P ), as compared to (1). From (1) we also
have that for a polytope P with v vertices and f facets, rankpsd(P ) � minfv; f g. In gen-
eral, it is not possible to bound the psd rank of nonnegative matrices, even slack matrices,
by a function in the rank of the matrix. For instance, all slack matrices of polygons have
rank three. However, we will see as a consequence of the results in the next subsection
that the psd rank of an n-gon grows with n.

In the next section we will see that the lower bound in Theorem 4.4 can be tight for sev-
eral interesting classes of polytopes. Such polytopes include some 0/1-polytopes. How-
ever, Briët, Dadush and Pokutta showed that not all 0/1-polytopes can have small psd
rank.

Theorem 4.5. Briët, Dadush, and Pokutta [2015] For any n 2 Z+, there exists U �

f0; 1gn such that

rankpsd(conv(U )) = Ω

 
2

n
4

(n logn)
1
4

!
:

Despite the above result, it is not easy to find explicit polytopes with high psd rank. The
most striking results we have so far are the following by Lee, Raghavendra and Steurer,
which provide super polynomial lower bounds on the psd rank of specific families of 0/1-
polytopes.

Theorem 4.6. Lee, Raghavendra, and Steurer [2015] The cut, TSP, and stable set poly-
topes of n-vertex graphs have psd rank at least 2nı , for some constant ı > 0.

We saw the stable set polytope of an n-vertex graph before. The cut and TSP polytopes
are other examples of polytopes that come from graph optimization problems. The TSP
(traveling salesman problem) is the problem of finding a tour through all vertices of the
n-vertex complete graph that minimizes a linear objective function. Each tour can be
represented as a 0/1-vector in f0; 1g(

n
2) and the TSP polytope is the convex hull of all

these tour vectors.

4.2 General convex sets. Wenow examine lower bounds on the psd rank of an arbitrary
convex set C � Rn. The following elegant lower bound was established by Fawzi and
Safey El Din.

Theorem 4.7. Fawzi and Safey El Din [2018] Suppose C � Rn is a convex set and d is
the minimum degree of a polynomial with real coefficients that vanishes on the boundary
of C ı. Then rankpsd(C ) �

p
log d .

The algebraic degree of a convex set C is the smallest degree of a polynomial with real
coefficients that vanishes on the boundary of C . Suppose P is a polytope with v vertices
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and the origin in its interior. Then P ı has v facets each corresponding to a linear polyno-
mial li that vanishes on the facet. The polynomial p := �v

i=1li vanishes on the boundary
of P ı and has degree v. In fact, the algebraic degree of P ı is v. Hence by Theorem 4.7,
rankpsd(P ) �

p
log v. This result is analogous to an observation of Goemans [2015] that

any polyhedral lift Q of P has at least log v facets. The reason is that every vertex in P

is the projection of a face of Q which in turn is the intersection of some set of facets of Q.
Therefore,

v � # faces of Q � 2# facets of Q:

Even for polytopes there are likely further factors from combinatorics and topology that
can provide stronger lower bounds on psd rank.

The lower bound in Theorem 4.7 is very explicit and simple, but it does not involve n.
We now exhibit a simple lower bound that does.

Proposition 4.8. Let C � Rn be an n-dimensional convex body. Then
rankpsd(C ) = Ω(

p
n).

Proof. Suppose rankpsd(C ) = k. Then there exists maps A : ext(C ) ! Sk
+ and B :

ext(C ı) ! Sk
+ such that for all (x; y) 2 ext(C ) � ext(C ı),

SC ((x; y)) = 1 � hx; yi = (1; x>) �

�
1

�y

�
= trace(A(x)B(y)):(2)

Define rank (SC ) to be the minimum l such that SC ((x; y)) = a>
x by for ax ; by 2 Rl .

Equality of the first and third expressions in (2) implies that rank (SC ) � n + 1. Now
consider n + 1 affinely independent extreme points x1; : : : ; xn+1 of C and n + 1 affinely
independent extreme points y1; : : : ; yn+1 ofC ı. Then the values of SC restricted to (x; y)

as x and y vary in these chosen sets are the entries of the matrix0B@1 x>
1

:::

1 x>
n+1

1CA� 1 � � � 1

�y1 � � � �yn+1

�

which has rank n + 1. Therefore, rank (SC ) = n + 1. Equality of the first and last
expressions in (2) implies that the first inequality in (1) holds with M replaced by SC via
the same proof, see Gouveia, Parrilo, and Thomas [2013, Proposition 4]. In other words,
1
2

�p
1 + 8(n + 1) � 1

�
� rankpsd(SC ) = rankpsd(C ); and we get the result.

Example 4.9. The spectrahedral lift ofBn2 in Example 1.5 is optimal, and rankpsd(Bn2) =

Θ(n).
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The lower bounds in Theorem 4.7 and Proposition 4.8 depend solely on the algebraic
degree of C ı and n respectively. A question of interest is how the bound might jointly
depend on both these parameters?

While the lower bounds in Theorems 4.4, 4.7 and Proposition 4.8 can be tight, we do
not have much understanding of the psd ranks of specific polytopes or convex sets except
in a few cases. For example, Theorem 4.7 implies that the psd rank of polygons must grow
to infinity as the number of vertices grows to infinity. However, we do not know if the
psd rank of polygons is monotone in the number of vertices.

5 Psd-Minimal Polytopes

Recall from Theorem 4.4 that the psd rank of an n-dimensional polytope is at least n + 1.
In this section we study those polytopes whose psd rank is exactly this lower bound. Such
polytopes are said to be psd-minimal. The key to understanding psd-minimality is another
notion of rank of a nonnegative matrix.

Definition 5.1. AHadamard square root of a nonnegative real matrixM , denoted as
p

M ,
is any matrix whose (i; j )-entry is a square root (positive or negative) of the (i; j )-entry
of M .

Let rankp (M ) := minfrank (
p

M )g be the minimum rank of a Hadamard square root
of a nonnegative matrix M . We recall the basic connection between the psd rank of a
nonnegative matrix M and rankp (M ) shown in Gouveia, Robinson, and Thomas [2013,
Proposition 2.2].

Proposition 5.2. If M is a nonnegative matrix, then rankpsd(M ) � rankp (M ). In par-
ticular, the psd rank of a 0/1 matrix is at most the rank of the matrix.

Proof. Let
p

M be a Hadamard square root of M 2 Rp�q
+ of rank r . Then there exist

vectors a1; : : : ; ap; b1; : : : ; bq 2 Rr such that (
p

M )ij = hai ; bj i. Therefore, Mij =

hai ; bj i2 = hai a
T
i ; bj bT

j i where the second inner product is the trace inner product for
symmetric matrices defined earlier. Hence, rankpsd(M ) � r .

Even though rankp (M ) is only an upper bound on rankpsd(M ), we cannot find Sk
+-

factorizations of M with only rank one factors if k < rankp (M ).

Lemma 5.3. Gouveia, Robinson, and Thomas [ibid., Lemma 2.4] The smallest k for
which a nonnegative real matrix M admits a Sk

+-factorization in which all factors are
matrices of rank one is k = rankp (M ).

Proof. If k = rankp (M ), then there is a Hadamard square root of M 2 Rp�q
+ of rank

k and the proof of Proposition 5.2 gives a Sk
+-factorization of M in which all factors
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have rank one. On the other hand, if there exist a1aT
1 ; : : : ; apaT

p ; b1bT
1 ; : : : ; bqbT

q 2 Sk
+

such that Mij = hai a
T
i ; bj bT

j i = hai ; bj i2, then the matrix with (i; j )-entry hai ; bj i is a
Hadamard square root of M of rank at most k.

This brings us to a characterization of psd-minimal polytopes.

Theorem 5.4. If P � Rn is a full-dimensional polytope, then rankpsd(P ) = n + 1 if and
only if rankp (SP ) = n + 1.

Proof. By Proposition 5.2, rankpsd(P ) � rankp (SP ). Therefore, if rankp (SP ) = n+1,
then by Theorem 4.4, the psd rank of P is exactly n + 1.

Conversely, suppose rankpsd(P ) = n + 1. Then there exists a Sn+1
+ -factorization

of SP which, by Theorem 4.4, has all factors of rank one. Thus, by Lemma 5.3, we
have rankp (SP ) � n + 1. Since rankp is bounded below by rankpsd, we must have
rankp (SP ) = n + 1.

Our next goal is to find psd-minimal polytopes. Recall that two polytopes P and Q

are combinatorially equivalent if they have the same vertex-facet incidence structure. In
this section we describe a simple algebraic obstruction to psd-minimality based on the
combinatorics of a given polytope, therefore providing an obstruction for all polytopes in
the given combinatorial class. Our main tool is a symbolic version of the slack matrix of
a polytope.

Definition 5.5. The symbolic slack matrix of a d -polytope P is the matrix, SP (x), ob-
tained by replacing all positive entries in the slack matrix SP of P with distinct variables
x1; : : : ; xt .

Note that two d -polytopes P and Q are in the same combinatorial class if and only
if SP (x) = SQ(x) up to permutations of rows and columns, and names of variables.
Call a polynomial f 2 R[x1; : : : ; xt ] a monomial if it is of the form f = ˙xa where
xa = x

a1

1 � � � x
at
t and a = (a1; : : : ; at ) 2 Nt . We refer to a sum of two distinct monomials

as a binomial and to the sum of three distinct monomials as a trinomial. This differs from
the usual terminology that allows nontrivial coefficients.

Lemma 5.6 (Trinomial Obstruction Lemma). Suppose the symbolic slack matrix SP (x)

of an n-polytope P has a (n + 2)-minor that is a trinomial. Then no polytope in the
combinatorial class of P can be psd-minimal.

Proof. Suppose Q is psd-minimal and combinatorially equivalent to P . Hence, we can
assume that SP (x) equals SQ(x). By Theorem 5.4 there is some u = (u1; : : : ; ut ) 2 Rt ,
with no coordinate equal to zero, such that SQ = SP (u2

1; : : : ; u2
t ) and rank (SP (u)) =

n + 1. Since SQ is the slack matrix of an n-polytope, we have

rank (SP (u2
1; : : : ; u2

t )) = n + 1 = rank (SP (u1; : : : ; ut )):
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Now suppose D(x) is a trinomial (n + 2)-minor of SP (x). Up to sign, D(x) has the
form xa +xb +xc or xa �xb +xc for some a; b; c 2 Nt . In either case, it is not possible
for D(u2

1; : : : ; u2
t ) = D(u1; : : : ; ut ) = 0.

5.1 Psd-minimal polytopes of dimension up to four.

Proposition 5.7. Gouveia, Robinson, and Thomas [2013, Theorem 4.7] The psd-minimal
polygons are precisely all triangles and quadrilaterals.

Proof. Let P be an n-gon where n > 4. Then SP (x) has a submatrix of the form2664
0 x1 x2 x3

0 0 x4 x5

x6 0 0 x7

x8 x9 0 0

3775 ;

whose determinant is x1x4x7x8 � x2x5x6x9 + x3x4x6x9 up to sign. By Lemma 5.6, no
n-gon with n > 4 can be psd-minimal.

Since all triangles are projectively equivalent, by verifying the psd-minimality of one,
they are all seen to be psd-minimal. Similarly, for quadrilaterals.

Lemma 5.6 can also be used to classify up to combinatorial equivalence all 3-polytopes
that are psd-minimal. Using Proposition 5.7, together with the fact that faces of psd-
minimal polytopes are also psd-minimal, and the invariance of psd rank under polarity,
we get that that any 3-polytope P with a vertex of degree larger than four, or a facet that
is an n-gon where n > 4, cannot be psd-minimal.

Lemma 5.8. If P is a 3-polytope with a vertex of degree four and a quadrilateral facet
incident to this vertex, then SP (x) contains a trinomial 5-minor.

Proof. Let v be the vertex of degree four incident to facetsF1; F2; F3; F4 such that [v1; v] =

F1 \ F2, [v2; v] = F2 \ F3, [v3; v] = F3 \ F4 and F4 \ F1 are edges of P , where v1, v2
and v3 are vertices of P .

Suppose F4 is quadrilateral. Then F4 has a vertex v4 that is different from, and non-
adjacent to, v. Therefore, v4 does not lie on F1, F2 or F3. Consider the 5 � 5 submatrix
of SP (x) with rows indexed by v; v1; v2; v3; v4 and columns by F1; F2; F3; F4; F where
F is a facet not containing v. This matrix has the form266664

0 0 0 0 x1

0 0 x2 x3 �

x4 0 0 x5 �

x6 x7 0 0 �

x8 x9 x10 0 �

377775 ;
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and its determinant is a trinomial.

Proposition 5.9. The psd-minimal 3-polytopes are combinatorially equivalent to sim-
plices, quadrilateral pyramids, bisimplices, octahedra or their duals.

Proof. Suppose P is a psd-minimal 3-polytope. If P contains only vertices of degree
three and triangular facets, then P is a simplex.

For all remaining cases, P must have a vertex of degree four or a quadrilateral facet.
Since psd rank is preserved under polarity, we may assume that P has a vertex u of degree
four. By Lemma 5.8, the neighborhood of u looks as follows.

u

v1

v2 v3

v4

Suppose P has five vertices. If all edges of P are in the picture, i.e. the picture is a
Schlegel diagram of P , then P is a quadrilateral pyramid. Otherwise P has one more
edge, and this edge is [v1; v3] or [v2; v4], yielding a bisimplex in either case.

If P has more than five vertices, then we may assume that P has a vertex v that is
a neighbor of v1 different from u, v2, v4. Then v1 is a degree four vertex and thus, by
Lemma 5.8, all facets of P containing v1 are triangles. This implies that v is a neighbor
of v2 and v4. Applying the same logic to either v2 or v4, we get that v is also a neighbor
of v3. Since all these vertices now have degree four, there could be no further vertices in
P , and so P is an octahedron. Hence P is combinatorially equal to, or dual to, one of the
polytopes seen so far.

Call an octahedron in R3, biplanar, if there are two distinct planes each containing four
vertices of the octahedron. The complete classification of psd-minimal 3-polytopes is as
follows.

Theorem 5.10. Gouveia, Robinson, and Thomas [2013, Theorem 4.11] The psd-minimal
3-polytopes are precisely simplices, quadrilateral pyramids, bisimplices, biplanar octahe-
dra and their polars.

In dimension four, the classification of psd-minimal polytopes becomes quite compli-
cated. The full list consists of 31 combinatorial classes of polytopes including the 11

known projectively unique polytopes in R4. These 11 are combinatorially psd-minimal,
meaning that all polytopes in each of their combinatorial classes are psd-minimal. For
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the remaining 20 classes, there are non-trivial conditions on psd-minimality. We refer the
reader to Gouveia, Pashkovich, Robinson, and Thomas [2017] for the result in R4.

Beyond R4, a classification of all psd-minimal polytopes looks to be cumbersome. On
the other hand, there are families of polytopes of increasing dimension that are all psd-
minimal. A polytope P � Rn is 2-level if for every facet of P , all vertices of P are either
on this facet or on a single other parallel translate of the affine span of this facet. Examples
of 2-level polytopes include simplices, regular hypercubes, regular cross-polytopes, and
hypersimplices. All 2-level polytopes are psd-minimal, but not conversely. For example,
the regular bisimplex in R3 is psd-minimal but not 2-level. Recall from Example 1.4 that
the stable set polytopes of perfect graphs are psd-minimal. In fact, they are also 2-level
and it was shown in Gouveia, Parrilo, and Thomas [2010, Corollary 4.11] that all down-
closed 0/1-polytopes that are 2-level are in fact stable set polytopes of perfect graphs. On
the other hand, Gouveia, Parrilo, and Thomas [2013, Theorem 9] shows that STAB(G) is
not psd-minimal if G is not perfect.

6 Spectrahedral lifts and sum of squares polynomials

We now look at a systematic technique that creates a sequence of nested outer approxima-
tions of the convex hull of an algebraic set. These approximations come from projections
of spectrahedra and are called theta bodies. In many cases, the theta body at the kth step
will equal the closure of the convex hull of the algebraic set and hence the spectrahedron
that it was a projection of, is a lift of this convex set. We examine how this type of lift fits
into our general picture.

Let I = hp1; : : : ; psi � R[x] := R[x1; : : : ; xn] be a polynomial ideal and letVR(I ) �

Rn be the real points in its variety. Then the closure of the convex hull of VR(I ), C :=

conv(VR(I )), is a closed convex semialgebraic set. Since we are only interested in the
convex hull ofVR(I ), and the convex hull is defined by its extreme points, wemay assume
without loss of generality that I is the largest ideal that vanishes on the extreme points of
C .

Recall that C is the intersection of all half spaces containing VR(I ). Each half space is
expressed as l(x) � 0 for some linear polynomial l 2 R[x] that is nonnegative on VR(I ).
A linear polynomial l is nonnegative on VR(I ) if there exists polynomials hi 2 R[x] such
that l �

P
h2

i 2 I . In this case we say that l is a sum of squares (sos) mod I , and if the
degree of each hi is at most k, then we say that l is k-sos mod I . Define the kth theta
body of I to be the set

THk(I ) := fx 2 Rn : l(x) � 0 8 l linear and k-sos mod I g :
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Figure 4: The theta bodies of I = h(x + 1)x(x � 1)2i and their spectrahedral lifts.
The first theta body is the entire real line, the second is slightly larger than [�1; 1]

and the third is exactly [�1; 1].

Note that all theta bodies are closed convex semialgebraic sets and they form a series
of nested outer approximations of C since

THi (I ) � THi+1(I ) � C for all i � 1:

We say that I is THk-exact if THk(I ) = C . The terminology is inspired by Lovász’s
theta body TH(G) from Example 1.4 which is precisely TH1(IG) of the ideal

IG = hx2
i � xi ; 8i = 1; : : : ; ni + hxi xj ; 8fi; j g 2 E(G)i:

In our terminology, IG is TH1-exact when G is a perfect graph.
Theta bodies of a general polynomial ideal I � R[x] were defined in Gouveia, Parrilo,

and Thomas [2010], and it was shown there that I is THk-exact if and only if C admits a
specific type of spectrahedral lift. This lift has size equal to the number of monomials in
R[x] of degree at most k. Let [x]k denote the vector of all monomials of degree at most
k in R[x]. When THk(I ) = C , Theorem 2.3 promises two maps A and B that factorize
the slack operator of C . These operators are very special.

Theorem 6.1. Gouveia, Parrilo, and Thomas [2013, Theorem 11] The slack operator
of C = conv(VR(I )) has a factorization in which A(x) = [x]k [x]

>
k

if and only if
C = THk(I ). Further, the map B sends each linear functional l(x) corresponding to an
extreme point of the polar of C to a psd matrix Ql such that l(x)�x>Qlx 2 I certifying
that l(x) is nonnegative on VR(I ).

In fact, each theta body is the projection of a spectrahedron. Figure 4 shows the theta
bodies and their spectrahedral lifts of the ideal I = h(x + 1)x(x � 1)2i. In this case,
C = [�1; 1] � R.
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While theta bodies offer a systematic method to sometimes construct a spectrahedral
lift of C , they may not offer the most efficient lift of this set. So an immediate question
is whether there might be radically different types of spectrahedral lifts for C . Since
the projection of a spectrahedron is necessarily convex and semialgebraic, a set C can
have a spectrahedral lift only if it is convex and semialgebraic. So a second question
is whether every convex semialgebraic set has a spectrahedral lift. This question gained
prominence from Nemirovski [2007], and Helton and Nie showed that indeed a compact
convex semialgebraic set has a spectrahedral lift if its boundary is sufficiently smooth and
has positive curvature. They then conjectured that every convex semialgebraic set has a
spectrahedral lift, see Helton and Nie [2009] and Helton and Nie [2010]. This conjecture
was very recently disproved by Scheiderer who exhibited many explicit counter-examples
Scheiderer [2018b]. All these sets therefore have infinite psd rank.

Recall that a morphism � : X ! Y between two affine real varieties creates a ring
homomorphism �� : R[Y ] ! R[X ] between their coordinate rings. By a real variety we
mean a variety defined by polynomials with real coefficients. Let XR denote the R-points
of X .

Theorem 6.2. Scheiderer [ibid., Theorem 3.14] Let S � Rn be a semialgebraic set and
let C be the closure of its convex hull. Then C has a spectrahedral lift if and only if there
is a morphism � : X ! An of affine real varieties and a finite-dimensional R-linear
subspace U in the coordinate ring R[X ] such that

1. S � �(XR),

2. for every linear polynomial l 2 R[x] that is nonnegative on S , the element ��(l) of
R[X ] is a sum of squares of elements in U .

This theorem offers a set of necessary and sufficient conditions for the existence of a
spectrahedral lift of the convex hull of a semialgebraic set by working through an inter-
mediate variety X . The setting is more general than that in Theorem 6.1 where we only
considered convex hulls of algebraic sets. Regardless, the spirit of condition (2) is that the
theta body method (or more generally, Lasserre’s method Lasserre [2000/01]) is essen-
tially universal with the subspace U � R[X ] playing the role of degree bounds on the sos
nonnegativity certificates that were required for THk-exactness. Theorem 6.2 provides
counterexamples to the Helton-Nie conjecture.

Theorem 6.3. Scheiderer [2018b, Theorem 4.23] Let S � Rn be any semialgebraic
set with dim(S) � 2. Then for some positive integer k, there exists a polynomial map
� : S ! Rk such that the closed convex hull of �(S) � Rk is not the linear image of a
spectrahedron.
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These results show, among other examples, that there are high enough Veronese em-
beddings of semialgebraic sets that cannot be the projections of spectrahedra.

Corollary 6.4. Scheiderer [2018b, Corollary 4.24] Let n; d be positive integers with n �

3; d � 4 or n = 2 and d � 6. Let m1; : : : ; mN be the non-constant monomials in R[x]

of degree at most d . Then for any semialgebraic set S � Rn with non-empty interior, the
closed convex hull of

m(S) := f(m1(s); : : : ; mN (s)) : s 2 Sg � RN

is not the linear image of a spectrahedron.

In contrast, Scheiderer had previously shown that all convex semialgebraic sets in R2

have spectrahedral lifts Scheiderer [2018a], thus proving the Helton-Nie conjecture in the
plane. The current smallest counterexamples to the Helton-Nie conjecture are in R11. Is
it possible that there is a counterexample in R3?

7 Notes

There are many further results on spectrahedral lifts of convex sets beyond those men-
tioned here. An important topic that has been left out is that of symmetric spectrahedral
lifts which are lifts that respect the symmetries of the convex set. Due to the symmetry
requirement, such lifts are necessarily of size at least as large as the psd rank of the convex
set. On the other hand, the symmetry restriction provides more tools to study such lifts and
there are many beautiful results in this area, see Fawzi, Saunderson, and Parrilo [2017],
Fawzi, Saunderson, and Parrilo [2015], Fawzi, Saunderson, and Parrilo [2016].

Many specific examples of spectrahedral lifts of convex sets exist, and several of them
have significance in applications. An easy general source is the book Blekherman, Parrilo,
and Thomas [2013]. In particular, Chapter 6 is dedicated to sdp representability of con-
vex sets. This book includes a number of further topics in the area of Convex Algebraic
Geometry.
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Abstract

We report on a series of works done in collaboration with Y. Privat and E. Zuazua,
concerning the problem of optimizing the shape and location of sensors and actuators
for systems whose evolution is driven by a linear partial differential equation. This
problem is frequently encountered in applications where onewants to optimally design
sensors in order to maximize the quality of the reconstruction of solutions by using
only partial observations, or to optimally design actuators in order to control a given
process withminimal efforts. For example, wemodel and solve the following informal
question: what is the optimal shape and location of a thermometer?

Note that we want to optimize not only the placement but also the shape of the
observation or control subdomain over the class of all possible measurable subsets of
the domain having a prescribed Lebesgue measure. By probabilistic considerations
we model this optimal design problem as the one of maximizing a spectral functional
interpreted as a randomized observability constant, which models optimal observab-
nility for random initial data.

Solving this problem strongly depends on the operator in the PDE model and re-
quires fine knowledge on the asymptotic properties of eigenfunctions of that operator.
For parabolic equations like heat, Stokes or anomalous diffusion equations, we prove
the existence and uniqueness of a best domain, proved to be regular enough, andwhose
algorithmic construction depends in general on a finite number of modes. In contrast,
for wave or Schrödinger equations, relaxation may occur and our analysis reveals inti-
mate relations with quantum chaos, more precisely with quantum ergodicity properties
of the Laplacian eigenfunctions.

MSC2010: primary 93B07; secondary 49K20, 49Q10, 35P20, 58J51.
Keywords: observability, controllability, partial differential equations, shape optimization, spectral
inequalities, quantum ergodicity.

3861

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v4-p


3862 EMMANUEL TRÉLAT

1 Introduction and modeling

Our objective is to address the problem of optimizing the shape and location of sensors
and actuators for processes modeled by a linear partial differential equation. Such ques-
tions are frequently encountered in engineering applications in which one aims at placing
optimally, for instance, some given sensors on a system in order to achieve then the best
possible reconstruction from observed signals. Here we also want to optimize the shape
of sensors, without prescribing any a priori restriction on their regularity. Such problems
have been little treated from the mathematical point of view. Our aim is to provide a
relevant and rigorous mathematical model and setting in which the question can be ad-
dressed. Since controllability and observability are dual notions, we essentially focus on
observability. The equations that we will investigate are mainly the wave equation

(1) @t t y = 4y

or the Schrödinger equation

(2) @t y = i4y

or general parabolic equations

(3) @t y = Ay

like heat-like, Stokes and anomalous diffusion equations for instance, settled on some open
bounded connected subset Ω of a Riemannian manifold, with various possible boundary
conditions that can be Dirichlet, Neumann, mixed or Robin.

1.1 Spectral optimal design formulation. The first question arising is the one of for-
mulating the problem in a relevant way. There are indeed several possible approaches to
model the optimal observation problem; in particular we have to make precise the meaning
of optimality here.

Informal considerations. To begin with, let us focus on the wave equation (1) with
Dirichlet conditions on @Ω (considerations for (2) and (3) are similar). The domain Ω

may represent a cavity in which some signals are propagating, in which we want to design
and place some sensors that will then perform some measurements over a certain horizon
of time, in view of a reconstruction inverse problem aiming at getting full information on
the wave signals from the knowledge of these partial measurements.

We want to settle a relevant and appropriate mathematical formulation of the question
of knowing what is the best possible shape and location of sensors, achieving the “best
possible” observation in some sense.
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A first obvious but important remark is that, in the absence of any constraint, certainly
the best strategy consists of observing the solutions over the whole domain Ω, that is,
place sensors everywhere. This is however clearly not reasonable and in practice the
subdomain covered by sensors is limited, due for instance to cost considerations. From
the mathematical point of view, this constraint is taken into account by considering as the
set of unknowns, the set of all possible measurable subsets ! of Ω that are of Lebesgue
measure j!j = LjΩj, where L 2 (0; 1) is some fixed real number.

Given such a subset ! representing the sensors (and that we will try to optimize), we
observe the restriction yj! of solutions of (1) over a certain time interval [0; T ] for some
fixed T > 0, while wanting that these observations be enough to be indeed able to recon-
struct the whole solutions in the most efficient way. This injectivity property is usually
called observability.

Observability inequality. We recall that the wave equation (1) is observable on ! in
time T if there exists C > 0 such that

(4) C k(y(0; �); @t y(0; �))k2L2(Ω)�H �1(Ω) 6
Z T

0

Z
!

jy(t; x)j2 dx dt;

for all solutions y of (1). This is called an observability inequality.
It is well known that, for ! open and @Ω smooth, observability holds if the pair (!; T )

satisfies the Geometric Control Condition (GCC) in Ω (see Bardos, Lebeau, and Rauch
[1992]), according to which every geodesic ray that propagates in Ω at unit speed and re-
flects on its boundary according to the laws of geometric optics (like in a billiard) should in-
tersect ! within time T (note that this result has been extended to the case of time-varying
domains !(t) in Le Rousseau, Lebeau, Terpolilli, and Trélat [2017]). On Figure 1, on the

Figure 1: Illustration of the Geometric Control Condition

right, GCC is not satisfied because of the existence of trapped rays: there are solutions of



3864 EMMANUEL TRÉLAT

the wave equation that can never be observed on !. Note that GCC is necessary if there
is no geodesic ray grazing ! (see Humbert, Privat, and Trélat [2016]).

The observability constant CT (�!), defined as

CT (�!) = inf
� Z T

0

Z
Ω

�!(x)jy(t; x)j2 dx dt j y is solution of (1);

k(y(0; �); @t y(0; �))kL2(Ω)�H �1(Ω) = 1

�
;

is the largest nonnegative constant CT (�!) such that (4) holds true. Here, the notation �!

stands for the characteristic function of !. We have observability if CT (�!) > 0. The
observability constant is defined in a similar way for the Schrödinger equation (2) and for
the general parabolic equation (3) (see Privat, Trélat, and Zuazua [2015b, 2016a]). The
constant CT (�!) measures the well-posedness of the inverse problem of reconstructing
the whole solutions of (1) from partial measurements on [0; T ] � !.

At first sight it seems therefore relevant to model the problem of maximizing observ-
ability as the optimal design problem

(5) sup
�!2UL

CT (�!)

where
UL = f�! j ! � Ω measurable; j!j = LjΩjg:

We stress that, in this problem, we want to optimize not only the placement but also the
shape of ! over all possible measurable subsets of Ω having a prescribed measure. We do
not put any restriction on the a priori regularity of !: the search is over subsets that do not
have a prescribed shape, that are not necessarily BV, etc. This lack of compactness shall
naturally raise important mathematical difficulties.

Anyway, modeling optimal observability as the problem (5) of maximizing the deter-
ministic observability constant leads to a mathematical problem that is difficult to handle
from the theoretical point of view, and more importantly, that is not fully relevant in view
of practical issues. Let us explain these two difficulties and let us then explain how to
adopt a slightly different model.

The first difficulty is due to the emergence of crossed terms in the spectral expansion
of solutions. More precisely, let us fix in what follows a Hilbert basis (�j )j 2N� of L2(Ω)

consisting of eigenfunctions of the Dirichlet-Laplacian operator�4 onΩ, associated with
the positive eigenvalues (�j )j 2N� with �1 6 � � � 6 �j ! +1. Since any solution y of
(1) can be expanded as

y(t; x) =

+1X
j=1

�
aj ei

p
�j t + bj e�i

p
�j t
�

�j (x)
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where the coefficients aj and bj account for initial data, it follows that

CT (�!) =
1

2
inf

(aj );(bj )2`2(C)P+1

j=1
(jaj j2+jbj j2)=1

Z T

0

Z
!

ˇ̌̌̌
ˇ̌+1X
j=1

�
aj ei

p
�j t + bj e�i

p
�j t
�

�j (x)

ˇ̌̌̌
ˇ̌
2

dx dt;

and then maximizing this functional over UL appears to be very difficult from the theo-
retical point of view, due to the crossed terms

R
!

�j �k dx measuring the interaction over
! between distinct eigenfunctions. The difficulty is similar to the one appearing in the
well known problem of determining what are the best constants in Ingham’s inequalities
(see Jaffard andMicu [2001], Jaffard, Tucsnak, and Zuazua [1997], and Privat, Trélat, and
Zuazua [2013b]).

The second difficulty with the model (5) is its lack of practical relevance. Indeed, the
observability constant CT (�!) is deterministic and provides an account for the worst pos-
sible case: in this sense, it is a pessimistic constant. In practice, we perform the optimal
design of sensors a priori, once for all, in view then of realizing a large number of mea-
sures (i.e., for many initial conditions). While performing many measurements, it may be
expected that the worst case does not occur so often, and one would like that the obser-
vation be optimal for most of experiments. This leads us to consider rather an averaged
version of the observability inequality over random initial data.

Randomized observability constant. We define what we call the randomized observ-
ability constant by

CT;rand(�!) =
1

2
inf
�
E

Z T

0

Z
!

ˇ̌̌̌
ˇ̌+1X
j=1

�
ˇ�
1;j aj ei

p
�j t + ˇ�

2;j bj e�i
p

�j t
�

�j (x)

ˇ̌̌̌
ˇ̌
2

dx dt;

(aj ); (bj ) 2 `2(C);

+1X
j=1

(jaj j
2 + jbj j

2) = 1

�
where (ˇ�

1;j )j 2N� and (ˇ�
2;j )j 2N� are two sequences of i.i.d. random laws (for instance,

Bernoulli) on a probability space (X; A; P ), and E is the expectation over the X with re-
spect to the probabilitymeasureP . Definitions are similar for other equations (Schrödinger,
heat, Stokes, etc). The constant CT;rand(�!) corresponds to the largest nonnegative con-
stant of an averaged version of the observability inequality over random initial data. In-
deed, with respect to the previous expression, the Fourier coefficients of the initial data
have been randomized. In turn, by independence and taking the expectation, all crossed
terms disappear and we obtain the following explicit expression of CT;rand(�!), for any of
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the equations (1), (2) and (3). For the latter, we assume that (�j )j 2N� is a Hilbert basis of
L2(Ω; C) consisting of (complex-valued) eigenfunctions of the operator �A, associated
with the (complex) eigenvalues (�j )j 2N� such that Re(�1) 6 � � � 6 Re(�j ) 6 � � � .

Theorem 1 (Privat, Trélat, and Zuazua [2015b, 2016a]). For every measurable subset !

of Ω, we have

CT;rand(�!) = T inf
j 2N�

j (T )

Z
!

j�j (x)j
2 dx

where

j (T ) =

8̂<̂
:

1/2 for the wave equation (1),
1 for the Schrödinger equation (2),
e
2Re(�j )T

�1
2Re(�j )

for the parabolic equation (3).

Note that we always have CT (�!) 6 CT;rand(�!) and that the inequality is strict for
instance in each of the following cases:

• 1D Dirichlet waves on Ω = (0; �), whenever T is not an integer multiple of � (see
Privat, Trélat, and Zuazua [2013b]);

• multi-D Dirichlet waves on Ω stadium-shaped, when ! contains an open neigh-
borhood of the wings (in that case, CT (�!) = 0; see Privat, Trélat, and Zuazua
[2016a]).

Formulation of the optimal observability problem. Taking into account the fact that,
in practice, it is expected that a large number of measurements is to be done, rather than (5),
we finally choose to model the problem of best observability as the problem of maximizing
the functional �! 7! CT;rand(�!) over the set UL, that is:

(6) sup
�!2UL

inf
j 2N�

j (T )

Z
!

j�j (x)j
2 dx

This is a spectral optimal design problem.
Note that the randomized observability constant CT;rand(�!) can also be interpreted as

a time-asymptotic observability constant (see Privat, Trélat, and Zuazua [ibid.]).

Remark 1. Note that, in (5) or in (6) we take an infimum over all (randomized) initial
data. In contrast, if we fix some given initial data, maximizing the functional �! 7!R T

0

R
!

jy(t; x)j2 dx dt over UL is a problem that can be easily solved thanks to a de-
creasing rearrangement argument (see Privat, Trélat, and Zuazua [2015a]), showing that
there always exists (at least) one optimal set !�. The regularity of !� depends on the
initial data. We can show that it may be a Cantor set of positive measure, even for smooth
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data. Of course, in practice designing optimal sensors depending on initial data would
make no sense and this is why we consider in our model an infimum over all (or almost
all) initial data.

Remark 2. As already underlined, in our search of the best possible subset !, we do
not impose any restriction to ! but its measurability. If we restrict the search to subsets
having uniformly bounded (by some A > 0) perimeter or total variation or satisfying the
1/A-cone property, or if we restrict ourselves to subsets parametrized by some compact or
finite-dimensional set, then quite straightforwardly there exists (at least) one optimal set
!�. But then the complexity of !� may then increase with A (spillover phenomenon). We
will observe this phenomenon when considering, further in the paper, a truncated version
of (6) with a finite number of spectral modes.

Imposing no restriction on ! is our choice here because we want to address the mathe-
matical question of knowing if there is a ”very best” subdomain over all possible measur-
able subsets ! such that j!j = LjΩj.

1.2 Related problems and existing results. We first mention that the optimal observ-
ability problem on which we have focused up to now is related, by duality, to the problem
of determining what is the best control domain for controlling to rest, for instance, the
wave equation with internal control

@t t y � 4y = �!u:

We have addressed such best actuator problems in Privat, Trélat, and Zuazua [2013a,
2016b, 2017] with a similar randomization approach.

Another closely related problem is that of finding the best possible domain to stabilize
the equation

@t t y � 4y = �k�!@t y

thanks to a localized damping (see Privat and Trélat [2015] for results). Best means here
that one may want to design ! (over UL) such that exponential decrease of solutions of
the above locally damped wave equation is maximal. Historically, up to our knowledge,
the first papers addressing this problem were Hébrard and Henrot [2003, 2005], in which
the authors studied this problem in 1D and provided complete characterizations of the
optimal set whenever it exists, for the problem of determining the best possible shape and
position of the damping subdomain of a given measure.

Due to their relevance in engineering applications, optimal design problems for placing
sensors or actuators for processes modeled by partial differential equations have been in-
vestigated in a large number of papers. Difficulties come from the facts that solutions live
in infinite-dimensional spaces and that the class of admissible designs is not closed for the
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standard and natural topology. Very few works take into consideration those aspects. In
most of existing contributions, numerical tools are developed to solve a simplified version
of the optimal design problem where either the PDE has been replaced with a discrete ap-
proximation, or the class of optimal designs is replaced with a compact finite dimensional
set – see for example Kumar and Seinfeld [1978], Morris [2011], Uciński and Patan [2010],
van de Wal and de Jager [2001], and Wouwer, Point, Porteman, and Remy [2000] where
the aim is most often to optimize the number, the place and the type of sensors in order to
improve the estimation of the state of the system. Sensors often have a prescribed shape
(for instance, balls with a prescribed radius) and then the problem consists of placing op-
timally a finite number of points (the centers of the balls) and thus is finite-dimensional.
Of course, the resulting optimization problem is already challenging. Here we want to
optimize also the shape of the observation set without making any a priori restrictive as-
sumption to the class of shapes (such as bounded variation) and the search is made over
all possible measurable subsets.

From the mathematical point of view, the issue of studying a relaxed version of opti-
mal design problems for shape and position of sensors or actuators has been investigated
in a series of articles. In Bellido and Donoso [2007] the authors investigate the problem
modeled in Sigmund and Jensen [2003] of finding the best possible distributions of two
materials (with different elastic Young modulus and different density) in a rod in order to
minimize the vibration energy in the structure. The authors of Allaire, Aubry, and Jouve
[2001] also propose a convexification formulation of eigenfrequency optimization prob-
lems applied to optimal design. In Fahroo and Ito [1996] are discussed several possible
criteria for optimizing the damping of abstract wave equations and derive optimality condi-
tions for a certain criterion related to a Lyapunov equation. In Münch and Periago [2011],
the authors study a homogenized version of the optimal location of controllers for the heat
equation problem for fixed initial data, noticing that such problems are often ill-posed. In
Allaire, Münch, and Periago [2010], the authors consider a similar problem and study the
asymptotic behavior as the final time T goes to infinity of the solutions of the relaxed
problem; they prove that optimal designs converge to an optimal relaxed design of the
corresponding two-phase optimization problem for the stationary heat equation. We also
mention Fernández-Cara and Münch [2012] where, still for fixed initial data, numerical
investigations are used to provide evidence that the optimal location of null-controllers of
the heat equation problem is an ill-posed problem.
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2 Study of the optimal design problem

To address the optimal design problem (6), we distinguish between parabolic equations
(3) (like heat, Stokes or anomalous diffusion equations) on the one part and the hyperbolic
equations (1) and (2) on the other.

As a first remark, since the infimum in (6) involves all spectral modes j 2 N�, solving
the problem will require some knowledge on the asymptotic behavior of the squares j�j j2

of the eigenfunctions as j ! +1. Note also that, because of the weights j (T ) in
(6), there is a strong difference between the parabolic case where j (T ) is exponentially
increasing as j ! +1 and the hyperbolic (wave and Schrödinger) case where j (T )

remains constant.

2.1 The parabolic case. For parabolic equations (3), the situation is particularly nice
and we have the following result, under several quite general assumptions on the operator
A, which are satisfied for heat and Stokes equations and also for anomalous diffusion
equations, i.e., A = �(�4)˛ , with ˛ > 1/2. Note that anomalous diffusion equations
provide relevant models in many problems encountered in physics (plasma with slow or
fast diffusion, aperiodic crystals, spins, etc), in biomathematics, in economy or in imaging
sciences.

Theorem 2 (Privat, Trélat, and Zuazua [2015b]). Let T > 0 be arbitrary. Assume that
@Ω is piecewise C 1. There exists a unique1 optimal observation domain !� solving (6).
Moreover !� is open and semi-analytic; in particular, it has a finite number of connected
components. Additionally, we have CT (�!�) < CT;rand(�!�).

Note that this existence and uniqueness result holds for every fixed orthonormal basis
of eigenfunctions of the operator but the optimal set depends on the specific choice of the
Hilbert basis.

This result (of which one can find an even more general version in Privat, Trélat, and
Zuazua [ibid.]) gives a short and satisfactory positive answer to the question of knowing
if there is a “very best” observation domain among all possible measurable subsets. More-
over, we are going to see further that there even exists a nice algorithmic procedure to
compute the optimal set !�, which happens to be fully characterized by a finite number
of modes only.

The fact that the optimal set !� is semi-analytic is a strong (and desirable) regularity
property. In addition to the fact that !� has a finite number of connected components, this
implies also that !� is Jordan measurable, that is, j@!�j = 0. This is in contrast with

1Here, it is understood that the optimal set !� is unique within the class of all measurable subsets of Ω
quotiented by the set of all measurable subsets of Ω of zero measure.
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the already mentioned fact that, for wave-like equations, when maximizing the energy for
fixed data, the optimal set may be a Cantor set of positive measure, even for smooth initial
data (see Privat, Trélat, and Zuazua [2015a]).

Let us explain shortly why Theorem 2 applies to (3) with A = �(�4)˛ (power of
the Dirichlet-Laplacian) for every ˛ > 1/2. It is instrumental in the proof to use the fine
lower estimates of Apraiz, Escauriaza, Wang, and Zhang [2014, Theorem 5], stating thatZ

!

j�j (x)j
2 > Ce�C

p
�j 8j 2 N�

(here, the �j ’s are the eigenvalues of �4) where the constant C > 0 is uniform with
respect to �! 2 UL. This uniform property is remarkable and particularly useful here in
our context. The requirement ˛ > 1/2 comes from a balance between the above lower
estimate and the exponential weight j (T ) ∼ e

�˛
j

T , yielding in that case a favorable coer-
civity property, itself implying compactness features that are crucial in the proof. Another
instrumental tool in the proof is then a refined minimax theorem due to Hartung [1982].

In the critical case ˛ = 1/2, the conclusion of Theorem 2 holds true as well provided
that the time T is moreover large enough.

Furthermore, still considering A = �(�4)˛ , it is proved in Privat, Trélat, and Zuazua
[2016a] that:

• in the Euclidean square Ω = (0; �)2, when considering the usual Hilbert basis of
eigenfunctions consisting of products of sine functions, for every ˛ > 0 there exists
a unique optimal set in UL (as in the theorem), which is moreover open and semi-
analytic (whatever the value of ˛ > 0 may be);

• in the Euclidean disk Ω = fx 2 R2 j kxk < 1g, when considering the usual Hilbert
basis of eigenfunctions parametrized in terms of Bessel functions, for every ˛ > 0

there exists a unique optimal set !� (as in the theorem), which is moreover open,
radial, with the following additional property:

– if ˛ > 1/2 then !� consists of a finite number of concentric rings that are at
a positive distance from the boundary (see Figure 2);

– if ˛ < 1/2 (or if ˛ = 1/2 and T is small enough) then !� consists of an
infinite number of concentric rings accumulating at the boundary.

This quite surprising result shows that the complexity of the optimal shape does not only
depend on the operator but also depends on the geometry of the domain Ω. The proof of
these properties is difficult in the case ˛ < 1/2; it requires involved estimates for Bessel
functions combined with the use of quantum limits in the disk (like in the hyperbolic case
in the next section) and analyticity considerations.
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Figure 2: Optimal domain in the disk for L = 0:2, T = 0:05. On the left: ˛ = 1.
On the right: ˛ = 0:15.

2.2 The hyperbolic case. For the wave equation (1) and the Schrödinger equation (2),
since all weights j (T ) in (6) are equal (and, in turn, the time T thus plays no role), in par-
ticular highfrequencies play an important role. Setting �j = j�j j2 dx, we see that getting
knowledge on the asymptotic behavior of �j as j ! +1 is now required. Noting that
�j is a probability measure for every j 2 N�, the weak limits of the sequence (�j )j 2N�

now enter into consideration.

Theorem 3 (Privat, Trélat, and Zuazua [ibid.]). Assume that the sequence of probability
measures�j = j�j j2(x) dx converges weakly to the uniformmeasure 1

jΩj
dx (assumption

called Quantum Unique Ergodicity on the base) and that there exists p 2 (2;+1] such
that the sequence of eigenfunctions (�j )j 2N� is uniformly bounded in Lp(Ω). Then

(7) sup
�!2UL

inf
j 2N�

Z
!

j�j (x)j
2 dx = L 8L 2 (0; 1):

To prove this result, we define J (�!) = infj 2N�

R
!

j�j (x)j
2 dx and we introduce a

convexified version of the optimal design problem (5) (“relaxation” procedure in shape
optimization), by considering the convex closure of the setUL for theL1 weak star topol-
ogy, that is UL = fa 2 L1(Ω; [0; 1]) j

R
Ω a(x) dx = LjΩjg. The convexified problem

then consists of maximizing the functional a 7! J (a) = infj 2N�

R
Ω a(x)�j (x)

2 dx over
UL. Clearly, a maximizer does exist, and it is easily seen by using Cesàro means of
squares of eigenfunctions that the constant function a(�) = L is a maximizer. But since
the functional J is not lower semi-continuous it is not clear whether or not there may be
a gap between the problem (5) and its convexified version. Theorem 3 above shows that,
under appropriate spectral assumptions, there is no gap. The proof consists of a kind of
homogenization procedure which consists of building a maximizing sequence of subsets
for the problem of maximizing J , showing that it is always possible to increase the values
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of J by considering subsets of measure LjΩj having an increasing number of connected
components. The construction strongly uses the assumption that the sequence (�j )j 2N�

has a unique weak limit (QUE on the base), which is very strong as we explain below.

Link with quantum chaos. Let us comment on the spectral assumptions done in the
theorem.

They are satisfied in 1D: for instance in Ω = (0; �), the Dirichlet eigenfunctions
�j (x) =

q
2
�
sin(jx) are uniformly bounded in L1(Ω) and their squares weakly con-

verge to 1/� .
In multi-D, the assumptions are very strong and actually, except in the 1D case, we

are not aware of domains Ω for which the assumptions are satisfied. Firstly, in general
the eigenfunctions are not uniformly bounded in L1(Ω) but, to the best of our knowl-
edge, nothing seems to be known in general on the uniform Lp-boundedness property for
some p > 2. Secondly the probability measures �j = j�j j2 dx may have several weak
limits. This question is related with deep open questions in mathematical physics and
semi-classical analysis where one of the most fascinating open questions is to determine
what can be these weak limits, called quantum limits or semi-classical measures. The fa-
mous Shnirelman theorem (see Colin de Verdière [1985], Gérard and Leichtnam [1993],
Šnirelman [1974], and Zelditch and Zworski [1996] states that, seeing the domain Ω as a
billiard, if the Riemannian geodesic flow is ergodic (for the canonical measure) then there
exists a subsequence of (�j )j 2N� of density one converging vaguely to the uniform mea-
sure 1

jΩj
dx (Quantum Ergodicity, in short QE – still on the base, here). This result however

lets open the possibility of having an exceptional subsequence of measures �j converging
vaguely to some other measure, for instance, the Dirac measure along a closed geodesic
(scars in quantum physics, see Faure, Nonnenmacher, and De Bièvre [2003]). The QUE
assumption mentioned above consists of assuming that thewhole sequence (�j )j 2N� con-
verges vaguely to the uniform measure. It is likely that QUE holds true on a negatively
curved compact manifold (QUE conjecture, see Sarnak [2011] for a survey).

The idea is here that QUE ensures a delocalization property of the energy of high-
frequency eigenfunctions. The quantity

R
!

�2
j (x) dx is interpreted as the probability of

finding the quantum state of energy �2
j in !. The functional J (�!) considered above can

be viewed as a measure of eigenfunction concentration, which we seek to maximize over
UL.

Theorem 3 thus reveals intimate connections between domain optimization and asymp-
totic spectral properties or quantum ergodicity properties of Ω (quantum chaos theory).
It is interesting to notice that such a relationship was suggested in the early work Chen,
Fulling, Narcowich, and Sun [1991] concerning the exponential decay properties of dissi-
pative wave equations.
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To end with these remarks on asymptotic properties on eigenfunctions, we note that the
weak convergence of themeasures�j which is established in the several results mentioned
above is however weaker than the convergence of the functions �2

j for the weak topology
of L1(Ω) that we need in our context. Indeed, the weak convergence of measures may
fail to capture sets whose measure of the boundary is positive (such as Cantor of positive
measure). This is why we also assume the Lp uniform boundedness property with p >

2 because then, by the Portmanteau theorem and since Ω is bounded, both notions of
convergence coincide.

The assumptions are not sharp. The spectral assumptions made in Theorem 3 are suf-
ficient but are not necessary. It is indeed proved in Privat, Trélat, and Zuazua [2016a]
that (7) is still satisfied if Ω is a 2D square (with the usual eigenfunctions consisting of
products of sine functions) or ifΩ is a 2D disk (with the usual eigenfunctions parametrized
by Bessel functions), although, in the latter case, the eigenfunctions do not equidistribute
as the eigenfrequencies increase, as illustrated by the well-known whispering galleries ef-
fect (see Figure 3): from the mathematical point of view, there exists a subsequence of
(�j )j 2N� converging to the Dirac along the boundary of the disk.

Figure 3: Whispering gallery phenomenon

On the existence of an optimal set. By Theorems 1 and 3, the maximal possible value
of CT;rand(�!) over the set UL is equal to TL/2. We now comment on the problem
of existence of an optimal set: is the supremum reached in (7)? By compactness of the
convexified setUL, it is easy to see that the maximum of J overUL is reached (in general
in an infinite number of ways), but since UL is not compact for any appropriate topology,
the question of the reachability of the supremum of J over UL, that is, the existence of an
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optimal classical set, is a difficult question in general. In particular cases it can however
be addressed using harmonic analysis (see Privat, Trélat, and Zuazua [2013b, 2016a]):

• In 1D, assume that Ω = (0; �), with the usual Hilbert basis of Dirichlet eigenfunc-
tions made of sine functions. The supremum of J over UL (which is equal to L) is
reached if and only if L = 1/2. In that case, it is reached for all measurable subsets
! � (0; �) of measure �/2 such that ! and its symmetric image !0 = � � ! are
disjoint and complementary in (0; �).

• In the 2D squareΩ = (0; �)2, with the usual basis of Dirichlet eigenfunctions made
of products of sine functions, the supremum of J over the more specific class of all
possible subsets ! = !1�!2 of Lebesgue measure L�2, where !1 and !2 are mea-
surable subsets of (0; �), is reached if and only if
L 2 f1/4; 1/2; 3/4g. In that case, it is reached for all such sets ! satisfying

Figure 4: Ω = (0; �)2, L = 1/2: examples of optimal sets. Note that the op-
timal sets on the left-side do not satisfy GCC and that CT (�!) = 0 whereas
CT;rand(�!) = TL/2.

1
4
(�!(x; y) + �!(� � x; y) + �!(x; � � y) + �!(� � x; � � y)) = L for al-

most all (x; y) 2 [0; �2] (see Figure 4).

• In the 2D disk Ω = fx 2 R2 j kxk < 1g, with the usual Hilbert basis of eigenfunc-
tions defined in terms of Bessel functions, the supremum of J (which is equal to L)
over the class of all possible subsets! = f(r; �) 2 [0; 1]�[0; 2� ] j r 2 !r ; � 2 !� g

such that j!j = L� , where !r is any measurable subset of [0; 1] and !� is any mea-
surable subset of [0; 2� ], is reached if and only if L = 1/2. In that case, it is
reached for all subsets ! = f(r; �) 2 [0; 1] � [0; 2� ] j � 2 !� g of measure �/2,
where !� is any measurable subset of [0; 2� ] such that !� and its symmetric image
!0

�
= 2� � !� are disjoint and complementary in [0; 2� ].

In general, the question of the existence of an optimal set is completely open. In view
of the partial results above and in view of the results of the next section, we conjecture that,
for generic domains Ω and for generic values of L 2 (0; 1), the supremum in (7) is not
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reached and hence there does not exist any optimal set. We have no clue how to address
this conjecture in general.

3 Spectral approximation of the optimal design problem

Motivated by the probable absence of optimal set for wave and Schrödinger equations
as explained previously, and motivated by the objective of building the optimal set for
parabolic equations, it is natural to consider the following finite-dimensional spectral ap-
proximation of the problem (6), namely:

(8) sup
�!2UL

min
16j 6N

j (T )

Z
!

j�j (x)j
2 dx

for any N 2 N�. This is a spectral truncation where we keep only the N first modes. We
have the following easy result.

Theorem 4 (Privat, Trélat, and Zuazua [2015b, 2016a]). Let T > 0 be arbitrary. There
exists a unique optimal observation domain !N solving (8). Moreover !N is open and
semi-analytic and thus it has a finite number of connected components.

Actually, since there is only a finite number ofmodes in (8), existence and uniqueness of
an optimal set!N is not difficult to prove (by a standardminimax argument), as well as aΓ-
convergence property of JN towards J for the weak star topology of L1, where we have
set JN (�!) = min16j 6N j (T )

R
!

j�j (x)j
2 dx. In particular, the sets !N constitute a

maximizing sequence for the (convexified) problem of maximizing J over UL, and this,
without geometric or ergodicity assumptions on Ω (under the assumptions of Theorem 3,
these sets constitute a maximizing sequence for the problem of maximizing J over UL).

Let us now analyze how !N behaves as N increases, by distinguishing between the
parabolic case (3) and the hyperbolic case (1) and (2).

3.1 The parabolic case. For parabolic equations (3), under general assumptions on the
operator A, which are satisfied for heat, Stokes equations and anomalous diffusion equa-
tions with ˛ > 1/2, remarkably, the sequence of optimal sets (!N )N 2N� is stationary.

Theorem 5 (Privat, Trélat, and Zuazua [2015b]). For every T > 0 there exists N0(T ) 2

N� such that
!N0(T ) = !N = !�

8N > N0(T ):

As a consequence, the optimal observation set !� whose existence and uniqueness has
been stated in Theorem 2 can actually be built from a finite-dimensional spectral approxi-
mation, by keeping only a finite number of modes. This stationarity property is illustrated
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on Figure 5 where we compute, as announced in the abstract, the “optimal thermometer
in the square”. For this example, we have N0(0:05) = 16, i.e., for T = 0:05 the optimal

Figure 5: Dirichlet heat equation on Ω = (0; �)2, L = 0:2, T = 0:05. Row 1,
from left to right: optimal domain !N (in green) for N = 1, 4, 9. Row 2, from left
to right: optimal domain !N (in green) for N = 16, 25, 36.

domain is computed thanks to the 16 first eigenmodes.
It is also proved in Privat, Trélat, and Zuazua [2015b] that the function T 7! N0(T ) 2

N� is nonincreasing and that if Re(�1) < Re(�2) then N0(T ) = 1 as soon as T is
large enough, which means that the optimal set !� is entirely determined by the first
eigenfunction if the observation time T is large.

3.2 The hyperbolic case. In contrast to the previous parabolic case, for wave and
Schrödinger equations, the fact that all eigenmodes have the same weight (j (T ) remains
constant) causes a strong instability of the optimal sets !N , whose complexity increases
drastically as N increases.

Moreover, the sets !N have a finite number of connected components, expected to
increase in function of N . The numerical simulations of Figures 6 and 7 show the shapes
of these sets. Their increasing complexity (number of connected components) which can
be observed as N increases is in accordance with the conjecture of the nonexistence of an
optimal set for (6).

Of course, however, up to some subsequence the sequence of maximizers �!N of JN

converges (in weak-star topology) to some maximizer a 2 UL of J
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Figure 6: Ω = (0; �)2, Dirichlet boundary conditions, L = 0:2. From left to right:
N = 4; 25; 100; 400. The optimal domain is in green.

Figure 7: Ω = fx 2 R2 j jxk 6 1g, Dirichlet boundary conditions, L = 0:2. From
left to right: N = 4; 25; 100; 400. The optimal domain is in green.

In the 1D caseΩ = (0; �)with Dirichlet boundary conditions, it can be proved that, for
L > 0 sufficiently small, the optimal set !N maximizing JN is the union of N intervals
concentrating around equidistant points and that !N is actually the worst possible subset
for the problem of maximizing JN+1: in other words, the optimal domain for N modes is
the worst possible one when considering the truncated problem with N + 1 modes. This
is the spillover phenomenon, noticed in Hébrard and Henrot [2005] and proved in Privat,
Trélat, and Zuazua [2013b] (the proof is highly technical).

Weighted observability inequalities. This intrinsic instability is due to the fact that in
(6) all modes have the same weight. This is so in the mathematical definition of the (deter-
ministic or randomized) observability constant. One could argue that highfrequencies are
difficult to observe and, trying to reflect the Heisenberg uncertainty principle of quantum
physics, this leads to the intuition that lower frequencies should be in some sense more
weighted than higher ones. One can then introduce a weighted version of the observability
inequality (4), by considering, for instance the (equivalent) inequality

CT;� (�!)
�
k(y0; y1)k2L2�H �1 + �ky0

k
2
H �1

�
6
Z T

0

Z
!

jy(t; x)j2 dx dt
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where � > 0 is some weight. We have CT;� (�!) 6 CT (�!), and considering as before an
averaged version of this weighted observability inequality over random initial data leads
to

CT;�;rand(�!) =
T

2
inf

j 2N�

�2
j

� + �2
j

Z
!

�j (x)
2 dx

where now the weights are an increasing sequence of positive real numbers converging to
1. Actually, if �2

1

�+�2
1

< L < 1 then highfrequencies do not play any role in the problem of
maximizing CT;�;rand over UL and we have the following result for not too small values
of L

Theorem 6 (Privat, Trélat, and Zuazua [2016a]). Assume that the whole sequence of prob-
ability measures �j = �2

j (x) dx converges vaguely to the uniform measure 1
jΩj

dx and
that the sequence of eigenfunctions �j is uniformly bounded in L1(Ω). Then for every
L 2

�
�2
1

�+�2
1
; 1
�
there exists N0 2 N� such that

max
�!2UL

inf
j 2N�

�2
j

� + �2
j

Z
!

�j (x)
2 dx = max

�!2UL

inf
16j 6N

�2
j

� + �2
j

Z
!

�j (x)
2 dx

6
�2
1

� + �2
1

< L 8N > N0:

In particular, the problem of maximizing CT;�;rand over UL has a unique solution �!N0

and moreover the set !N0 is open and semi-analytic.

This result says that, when highfrequencies are weighted as above, there exists a unique
optimal observation set if L is large enough, i.e., if one is allowed to cover a fraction of
the whole domain Ω that is large enough. This is similar to what we have obtained in
the parabolic case. Moreover the optimal set can then be computed from a finite number
of modes because the sequence of optimal sets !N of the truncated problem is stationary.
The threshold value �2

1

�+�2
1
becomes smaller when � increases, in accordance with physical

intuition. We do not know what may happen when L 6 �2
1

�+�2
1
but we suspect that the

situation is the same as when � = 0 (spillover phenomenon and, probably, nonexistence
of an optimal set); this conjecture is supported by some numerical simulations for the
truncated problem (see Privat, Trélat, and Zuazua [ibid.]) which show that, when L is
small, the optimal domains have an increasing complexity as N increases.

As before, we can notice that the assumptions of the above result, which are very strong,
are not necessary and one can prove that the conclusion still holds true in a hypercube with
Dirichlet boundary conditions when one considers the usual Hilbert basis made of products
of sine functions.
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4 Conclusion

We have modeled the problem of optimal shape and location of the observation or control
domain having a prescribed measure, in terms of maximizing a spectral functional over
all measurable subsets of fixed Lebesgue measure. This spectral functional can be inter-
preted as a randomized version of the observability constant over random initial data. For
parabolic equations, we have existence and uniqueness of an optimal set, which can be
determined from a finite number of modes. For wave and Schrödinger equations, the op-
timal observability problem is closely related to quantum chaos, in particular, asymptotic
properties of eigenfunctions and we have seen that, generically, an optimal set should not
exist, in accordance with the spillover phenomenon. In all cases, developing knowledge
on concentration or delocalization properties of highfrequency eigenfunctions is crucial
in order to address optimal observability issues.

We have seen that a way to avoid spillover and to recover existence and uniqueness
of an optimal set for wave and Schrödinger equations is to consider weighted observabil-
ity inequalities in which highfrequencies are penalized. Certainly, other approaches are
possible, exploiting the physics of the problem.

Optimal boundary observability. In the paper we have focused on internal observation
or control subdomains. Similar studies can be led for boundary subdomains. Optimal
observability can be modeled by the optimal design problem

sup
j!j=Lj@Ωj

inf
j 2N�

j (T )

Z
!

1

�j

�
@�j

@�

�2

dHn�1

where now the Neumann traces of the Dirichlet-Laplacian eigenfunctions play a prominent
role (in particular, their asymptotic properties). This problem, which interestingly can be
interpreted as a spectral shape sensitivity problem, is studied in Privat, Trélat, and Zuazua
[2018].

On the deterministic observability constant. We have let untouched the problem of
maximizing the deterministic observability constantCT (�!) overUL. Although we have
explained that this problem is certainly less relevant in practice where a large number of
measurements is performed, it is anyway very interesting from the mathematical point of
view. The crossed terms (which we have ruled out by randomization) are then expected
to have an important role. A first remark is that, extending the functional CT to UL, for
1D wave equations the constant density a � L is not a maximizer of CT if T … �N�.
Knowing if there is a relaxation phenomenon or not is an open problem.
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Another remark is the following. It is proved in Humbert, Privat, and Trélat [2016]
that, for the wave equation (1), given any measurable subset ! of Ω, we have

lim
T !+1

CT (�!)

T
=

1

2
min

 
inf

j 2N�

Z
!

�j (x)
2 dx; lim

T !+1
inf
2Γ

1

T

Z T

0

�!((t)) dt

!
where Γ is the set of all geodesic rays on Ω, provided that ! has no grazing ray, i.e., pro-
vided that there exists no  2 Γ such that (t) 2 @! over a set of times of positive measure.
This equality says that, in large time, the deterministic observability constant CT (�!) is
the minimum of two quantities: the first one is exactly CT;rand(!), which is the functional
we have focused on throughout the paper; the second one is of a geometric nature and
provides an account for the average time spent by geodesic rays in the observation subset.
Although this result is only valid asymptotically in time, it gives the intuition that geodesic
rays play an important role. In order to address the problem of maximizing CT (�!) over
UL, one should first try solve, for any T > 0,

sup
�!2UL

inf
2Γ

1

T

Z T

0

�!((t)) dt:

This is an interesting optimal design problem.

Discretization issues. In the search of an optimal observation domain for a PDE model,
certainly the most usual approach in engineering applications is to discretize the PDE
(for instance by means of finite elements), thus obtaining a family of equations in finite
dimension, indexed by some h > 0 which can be thought as the size of the mesh. Given
some fixed h, one then performs an optimal design procedure to find, if it exists, an optimal
observation set !h. The question is then natural to ask whether !h converges, as h ! 0,
to the (if it exists and is unique) optimal observation set !� of the complete model. In
other words, do the numerical optimal designs converge to the continuous optimal design
as the mesh size tends to 0? Under which assumptions do the optimal designs commute
with discretization schemes?

We have seen with the spectral truncation (which is a particular discretization method)
that the answer is certainly negative for wave and Schrödinger equations but is positive
for parabolic equations. The question is open for general discretization schemes and is of
great interest in view of practical applications, all the more than discrete or semi-discrete
models are often employed.
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GRAPHICAL MODELS IN MACHINE LEARNING,
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Abstract
This paper is a review article on semi-supervised and unsupervised graph models

for classification using similarity graphs and for community detection in networks.
The paper reviews graph-based variational models built on graph cut metrics. The
equivalence between the graph mincut problem and total variation minimization on
the graph for an assignment function allows one to cast graph-cut variational prob-
lems in the language of total variation minimization, thus creating a parallel between
low dimensional data science problems in Euclidean space (e.g. image segmentation)
and high dimensional clustering. The connection paves the way for new algorithms
for data science that have a similar structure to well-known computational methods
for nonlinear partial differential equations. This paper focuses on a class of methods
build around diffuse interface models (e.g. the Ginzburg–Landau functional and the
Allen–Cahn equation) and threshold dynamics, developed by the Author and collabo-
rators. Semi-supervised learning with a small amount of training data can be carried
out in this framework with diverse applications ranging from hyperspectral pixel clas-
sification to identifying activity in police body worn video. It can also be extended
to the context of uncertainty quantification with Gaussian noise models. The prob-
lem of community detection in networks also has a graph-cut structure and algorithms
are presented for the use of threshold dynamics for modularity optimization. With effi-
cient methods, this allows for the use of network modularity for unsupervised machine
learning problems with unknown number of classes.

1 Similarity Graphs and Spectral Clustering

Graphical models provide a mathematical structure for high dimensional data problems
that yield important latent information in the data. They are also the basic building block
This work was supported by NSF grants DMS-1737770, DMS-1417674, NIJ grant 2014-R2-CX-0101, and

ONR grant N00014-16-1-2119.
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Keywords: diffuse interfaces, graphical models, graph Laplacian, machine learning, uncertainty
quantification, social networks, community detection, data clustering, modularity, MBO scheme.
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for network analysis. Graphical models yield useful information about connections be-
tween pieces of data from pairwise comparisons of that data, most notably via a similarity
graph in which nodes represent pieces of data and edge weights are related to pairwise
comparisons of the data. For machine learning methods, a major challenge is the inherent
O(N 2) computational complexity of the weights (for N nodes) unless the graph is sparse.
Another source of complexity is the number of classes. Furthermore, most machine learn-
ing methods, including those developed for complex graphical models, are based on linear
algebra and linear models. Graph-based structures have the potential to provide a useful
framework that is inherently nonlinear providing a broader framework for the data struc-
tures. For classification in machine learning there are basic methods like Support Vector
Machine, which identifies a hyperplane separating different classes of data. This is a su-
pervised algorithm involving a lot of training data with small amounts of unknown data.
Kernel methods allow for unknown nonlinear mappings to be computed as part of the
methodology. Still this restricts that data to have a certain form and for the mapping to be
learned or computed.

In contrast, a similarity graph allows analysis of the data by performing operations
on the graph itself, thus removing the original high- dimensionality of the problem. Lin-
ear structures have been studied, most notably the graph Laplacian matrix of the form
L = D � W where W is the weight matrix of off-diagonal elements wij and the diagonal
matrix D has each entry di equal to the sum of the weights connected to node i . Spec-
tral clustering is an unsupervised method in which clusters are determined by a k-means
method applied to a small set of eigenfunctions of the graph Laplacian matrix von Luxburg
[2007]. Spectral clustering can be paired with a random sampling method using the Nys-
tröm extension, that allows for an approximately O(N ) low-rank approximation of the
graph Laplacian matrix. Spectral clustering in machine learning requires the graph to be
constructed from data. Similarity graphs are well-known in machine learning and have
each node corresponding to a feature vector Vi comprised of high-dimensional data to be
classified, and the weights wij between nodes are computed as a pairwise comparison
between the feature vectors. Some examples include:

1. The Gaussian function

(1) wi;j = exp(�jjVi � Vj jj
2/�)

Depending on the choice of metric, this similarity function includes the Yaroslavsky
filter Yaroslavsky [1985] and the nonlocal means filter Buades, Coll, and Morel
[2005].

2. Gaussian with cosine angle

(2) wi;j = exp�

(1 �
<Vi ;Vj >

jVi jjVj j
)2

2�2
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is a common similarity function used in hyperspectral imaging. In this case one is
interested in alignment of feature vectors rather than their Euclidean distance.

3. Zelnik-Manor and Perona introduced local scaling weights for sparse matrix compu-
tations Zelnik-Manor and Perona [2004]. Given a metric d (Vi ; Vj ) between each
feature vector, they define a local parameter

p
�(Vi ) for each Vi . The choice in

Zelnik-Manor and Perona [ibid.] is
p

�(Vi ) = d (Vi ; VM ), where VM is the M th
closest vector to Vi . The similarity matrix is then defined as

(3) wi;j = exp

 
�

d (Vi ; Vj )
2p

�(Vi )�(Vj )

!
:

This similarity matrix is better at segmentation when there are multiple scales that
need to be segmented simultaneously.

There are two popular normalization procedures for the graph Laplacian, and the normal-
ization has segmentation consequences F. R. K. Chung [1996] and von Luxburg [2007].
The normalization that is often used for the nonlocal means graph for images is the sym-
metric Laplacian Ls defined as

(4) Ls = D�1/2LD�1/2 = I � D�1/2WD�1/2:

The symmetric Laplacian is named as such since it is a symmetric matrix. The random
walk Laplacian is another important normalization given by

Lw = D�1L = I � D�1W:(5)

The random walk Laplacian is closely related to discrete Markov processes.
A novel example of spectral clustering applied to social science data is presented in

van Gennip, Hunter, et al. [2013]. LAPD Field Interview (FI) cards provide a unique op-
portunity to investigate the relationships between individual use of space, social networks
and group identities, specifically criminal street gang affiliation. FI cards are completed
when a patrol officer comes into contact with a member of the public. They record spatio-
temporal data about where and when the stop occurred, individual characteristics (e.g.,
name and home address) and demographic characteristics (e.g., age, sex, ethnic group).
FI cards also record information about criminal activity and gang affiliation, if applicable.
Critical here is information on gang membership. Known or suspected members of gangs
have their gang affiliation recorded, gang moniker if known, and information on the dura-
tion of gang membership (e.g., member since 2004). FI cards also record instances where
two or more gang members were stopped and interviewed together. Thus, each FI with
two or more gang members represents a spatial sample of occasions when nodes in a social



3886 ANDREA L. BERTOZZI

network interacted. We developed a graphical model using both social network informa-
tion from raw observations and spatial coordinates of these observations. Figure 1 shows
results of spectral clustering using the composite graph with both information - the result
finds latent groups of individuals that differ from the known gang affiliations as illustrated
in the Pie chart. The work in Figure 1 used standard spectral clustering methods to identify
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Figure 1: Spectral clustering applied to LAPD Hollenbeck Division Field Interview
card data for 2009 van Gennip, Hunter, et al. [2013]. Left eigenvalues associated
with event data shown with geographic placement. (right) Pie charts showing clus-
ters identified by spectral clustering compared with known ground truth of gang
affiliation (shown in colors) for the 31 gangs in Hollenbeck. Copyright c 2013
Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.

latent groups in the geo-social set space. The results show that natural groupings Hollen-
beck sometimes are comprised of mostly one gang but othertimes, especially in areas with
different gangs in high spatial proximity, can have members of multiple gangs affiliated
with the same observed group.

2 Data classification and the Ginzburg-Landau functional on
graphs

The Author and Arjuna Flenner developed the first suite of binary classifiers for semi-
supervised machine learning (minimal training data) using a fully nonlinear model for
similarity graphs Bertozzi and Flenner [2012]. We proposed the Ginzburg-Landau (GL)
functional as a smooth relaxation of graph total variation (equivalent to graph cuts), as
a regularizer for semi- supervised learning. For large datasets, we incorporate efficient
linear algorithms into a nonlinear PDE-based method for non-convex optimization. Our
work has been republished as a SIGEST paper Bertozzi and Flenner [2016]. Over 50 new



MACHINE LEARNING, NETWORKS AND QUANTIFICATION 3887

papers and methods have arises from this work including fast methods for nonlocal means
image processing using the MBO scheme Merkurjev, Kostic, and Bertozzi [2013], multi-
class learning methods Garcia-Cardona, Merkurjev, Bertozzi, Flenner, and Percus [2014]
and Iyer, Chanussot, and Bertozzi [2017], parallel methods for exascale-ready platforms
Meng, Koniges, He, S. Williams, Kurth, Cook, Deslippe, and Bertozzi [2016], hyperspec-
tral video analysis Hu, Sunu, and Bertozzi [2015], Merkurjev, Sunu, and Bertozzi [2014],
Meng, Merkurjev, Koniges, and Bertozzi [2017], and W. Zhu, Chayes, Tiard, S. Sanchez,
Dahlberg, Bertozzi, Osher, Zosso, andKuang [2017], modularity optimization for network
analysis Hu, Laurent, Porter, and Bertozzi [2013] and Boyd, Bai, X. C. Tai, and Bertozzi
[2017], measurement techniques in Zoology Calatroni, van Gennip, Schönlieb, Rowland,
and Flenner [2017], generalizations to hypergraphs Bosch, Klamt, and Stoll [2016], Pager-
ank Merkurjev, Bertozzi, and F. Chung [2016] and Cheeger cut based methods Merkurjev,
Bertozzi, Yan, and Lerman [2017]. This paper reviews some of this literature and discusses
future problem areas including crossover work between network modularity and machine
learning and efforts in uncertainty quantification.

Given a phase field variable u, the Ginzburg-Landau energy, introduced for Euclidean
space in the last century, involves a competition between the convex functional

R
(ru)2dx

that induces smoothing, with a double well function
R

W (u)dx, that separates its argument
into phases. The Bertozzi-Flenner graph model replaces the first term with the graph
Dirichlet energy,

P
ij wij (ui � uj )

2, equivalent to the inner product of Lu with u where
L is the graph Laplacian:

(6) EGL(f ) =
1

�
hLf; f i + �

X
i

(W (fi )):

For a variant of the GL functional in Equation (6) one can prove Gamma convergence of
the vanishing � limit to the graph TV functional van Gennip and Bertozzi [2012], equiva-
lent to the graph cut energy:

(7) ET V (u) =
X
ij

wij jui � uj j;

for u defining a graph partition. More recent work extending these results is Thorpe
and Theil [2017]. An equivalent result has been known for Euclidean space for several
decades Kohn and Sternberg [1989]. Another variant involves a wavelet GL functional
Dobrosotskaya and Bertozzi [2008] which has a Wulff shape energy as its sharp inter-
face Gamma-limit Dobrosotskaya and Bertozzi [2010]. The GL functional is useful, in
lieu of L1 compressed sensing methods for minimizing total variation, because the com-
putationally expensive graph information only arises in the Dirichlet energy, leveraging
optimization algorithms that can exploit efficient approximations of the graph Laplacian.
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The nonlinear structure can be reduced to simple calculations such as local thresholding,
as shown in theMBO scheme below. The graph cut functional or equivalent TV functional
can be incorporated into a semi-supervised or unsupervised learning problem. Without ad-
ditional terms in the energy, the minimizer of the energy is trivial - simply pick u to be a
constant, one of the minimizers of the well W . However nontrivial solutions can be found
by modifying the energy to include a semi-supervised penalty term or additional balance
terms in the case of unsupervised learning problems. For semi-supervised learning we
consider an L2 penalty for known training data (defined to be set S and with values u0

along with a graph cut term to minimize the sum of the weights between unlike classes:

E1(u) = jujT V +
X
i2S

�

2
(u0(i) � u(i))2 � EGL(u) +

X
i2S

�

2
(u0(i) � u(i))2:

The second term is for semi-supervision and the first is for the graph cut. The parameter
� provides a soft constraint for semi-supervision. In many applications discussed below
the supervision involves a small amount of training data, e.g. 10% or less, compared to
the majority of the data for supervised learning such as SVM.

The semi-supervised learning problem described above can be minimized quickly on
very large datasets using a pseudo-spectral method involving the eigenfunctions and eigen-
values of the graph Laplacian and convex splitting methods Schönlieb and Bertozzi [2011]
from nonlinear PDE. The important eigenfunctions can be computed very quickly for large
datasets using sub-sampling methods, e.g. the Nyström extension Belongie, Fowlkes, F.
Chung, and Malik [2002], Fowlkes, Belongie, F. Chung, and Malik [2004], and Fowlkes,
Belongie, and Malik [2001]. What is remarkable is that the entire TV minimization prob-
lem can be solvedwithout computing all the weights of the graph (which can be prohibitive
in the case of e.g. nonlocal means used in image processing with textures) Buades, Coll,
and Morel [2005], Gilboa and Osher [2007, 2008], and Merkurjev, Sunu, and Bertozzi
[2014]. While there are other fast algorithms out there for TV minimization (e.g. the split
Bregman method Goldstein and Osher [2009]) none of them can easily be adapted to use
the fast algorithms for eigenfunctions that rely on having a symmetric matrix. Indeed the
algorithms presented in this paper only require the knowledge of the important eigenfunc-
tions of the graph Laplacian and do not require the computation of a “right hand side” that
arises in more general TV minimization algorithms, such as split Bregman.

An unsupervised learning model can be constructed as a generalization of the piece-
wise constant Mumford-Shah model from image segmentation, applied to a graphical data
model. We recall the the piecewise constant Mumford-Shah model T. Chan and Vese
[2001], Vese and T. F. Chan [2002], and Esedoğlu and Tsai [2006] involves the identifica-
tion of a contour Φ that divides the image up into n̂ regions Ωr . The energy to minimize
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is

E(Φ; fcrg
n̂
r=1) = jΦj + �

n̂X
r=1

Z
Ωr

(u0 � cr)
2

where u0 is the observed image data, cr denotes a constant approximation of the image in
the set Ωr and jΦj denotes the length of the contour Φ. The works Hu, Sunu, and Bertozzi
[2015] andMeng,Merkurjev, Koniges, and Bertozzi [2017] present a generalization of this
to graphical models. The examples studied are largely hyperspectral imagery however the
idea could be applied to other high dimensional vectors. The data is used both to create the
similarity graph and to solve the clustering problem because the constants will be chosen
in the high dimensional space to approximate the high dimensional vectors within each
class. This is different from the previous example in which the clustering can be computed
outside of the high dimensional data space once the graph is known (or approximated) and
the training data is known. More specifically, we consider the energy

E2 =
1

2
jf jT V + �

n̂X
r=1

X
i

fr(ni )ku0(ni ) � crk
2;

where f is a simplex constrained vector value that indicates class assignment:

f : G ! f0; 1g
n̂;

n̂X
r=1

fr(ni ) = 1g:

Specifically if fr(ni ) = 1 for some r then the data at node ni belongs to the r � th class.
For each f we have a partition of the graph into at most n̂ classes. The connection to the
original piecewise constant Mumford-Shah model is that fr is the characteristic function
of the rth class and thus

P
i fr(ni )ku0(ni )�crk2 is analogous to the term

R
Ωr

(u0 �cr)
2

while the TV norm on graphs is the analogue of the length of the boundary in the Euclidean
space problem.

2.1 The MBO scheme on Graphs. Rather than minimizing the GL functional, using
an efficient convex splitting method such as in Bertozzi and Flenner [2016], we can use an
even more efficient MBO method. Using the original Euclidean GL functional and classi-
cal PDE methods, Esedoğlu and Tsai [2006] developed a simple algorithm for piecewise-
constant image segmentation that alternated between evolution of the heat equation and
thresholding. That paper built on even earlier work byMerriman, Bence, andOsher [1992]
(MBO) for motion by mean curvature. Motivated by this work, the MBO computational
scheme was extended to the graphical setting by Merkurjev, Kostic, and Bertozzi [2013]
for binary classification and methods that build on binary classification such as bit-wise
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greyscale classification for inpainting of greyscale images. The Graph MBO scheme for
semi-supervised learning consists of the following two steps:

1. Heat equation with forcing term. Propagate using

u(n+1/2) � u(n)

dt
= �L

(n)
u � �(i)(u(n)

� u0)

2. Threshold.

u(n+1) =

(
1 if u(n+1/2) � 0

0 if u(n+1/2) < 0:

The results in Merkurjev, Kostic, and Bertozzi [2013] showed significant speed-up in run
time compared to the Ginzburg-Landau method developed here and also faster run times
than the split-Bregman method applied to the Osher-Gilboa nonlocal means graph for the
same datasets. Both the GL and MBO methods for binary learning were extended to the
multiclass case in Garcia-Cardona, Merkurjev, Bertozzi, Flenner, and Percus [2014]. The
MBO scheme in particular is trivial to extend - the algorithm is the same except that the
classes are defined taking the range of u in n̂ dimensions where n̂ is the number of classes
and thresholding to the corners of the simplex. The MBO scheme is quite fast and in most
cases finds the global minimum. For unusual problems that require a provably optimal
solution, we have considered methods built around max flow and ADMM methods that
are less efficient thanMBO, but they can guarantee a global optimal solution for the binary,
semi-supervised segmentation problem Merkurjev, Bae, Bertozzi, and X.-C. Tai [2015].

As an example of a high dimensional problem with multiple classes, consider the clas-
sification of hyperspectral pixels in a video sequence. Figure 2 shows data from standoff
detection of a glass plume using 128 spectra in the Long Wave Infrared (LWIR) from the
Dugway Proving Ground. The graph weights are computed with spectral angle. The Nys-
tröm extension provides eigenfunctions of the graph Laplacian, which can run in Matlab
in 2 minutes on a modest laptop. The actual classification runs in seconds. The Nyström
method and theMBO scheme have recently been optimized on an exascale-ready platform
at the National Energy Research Supercomputing Center (NERSC) Meng, Koniges, He,
S. Williams, Kurth, Cook, Deslippe, and Bertozzi [2016].

Inspired by the work in Esedoğlu and Otto [2015], one can translate the MBO scheme
into a discrete time approximate graph cutminimizationmethod. InHu, Sunu, andBertozzi
[2015] and van Gennip, Guillen, Osting, and Bertozzi [2014] it is shown that the diffusion
operator Γ� = e��L where L is the graph Laplacian defined above and � is the timestep
of the MBO scheme, then the discrete energy

EMBO(u) =
1

�
< 1 � u;Γ� u >
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Figure 2: Feature vectors Vi are 128 dimensional hyperspectral pixels taken from a
video sequence from standoff detection of gas plume in the Dugway ProvingGround.
Shown are 4 of 7 video frames with N = 280; 000 graph nodes. The colors corre-
spond to four classes: plume (red), sky (purple), foreground (green), mounain (blue).
(left) 36% training data and the resulting classification - as in Merkurjev, Sunu, and
Bertozzi [2014]. (right) The same calculation with only 4% training data. In each
case the training data is shown to the left of the fully segmented video. Code for this
calculation is published online in Meng, Merkurjev, Koniges, and Bertozzi [2017]

decreases on each timestep and also approximates the graph TV energy.

2.2 Volume Penalties. In the case of unsupervised classification it is often desireable
to have volume constraints. So rather than just minimizing the size of the graph cut, i.e.
jujT V , one can put in a penalty that forces the size of the classes to be reasonably dis-
tributed. Two such normalizations are the ratio cut and the normalized cut, the problem is
to find a subset S of the graph to minimize cut(S; S̄)R(S)where R is (1/jS j+1/jS̄ j) for
the ratio cut and (1/vol(S) + 1/vol(S̄)) for the normalized cut. Here the volume of the
graph is the sum of the degrees of the all the vertices and the degree of the node is the sum
of the weights connected to that node. Another normalization is the Cheeger cut in which
R = (min(jS j; jS̄ j)�1. All three of these functionals are linear in the graph cut term and
nonlinear in the volumetric constraints. The energy blows up as the size of S or S̄ goes to
zero, thus ensuring a balance cut. There are several important papers related to clustering
with volume penalties by Bresson, Szlam, Laurent, von Brecht. These works use other
methods than the ones described above. In Szlam and Bresson [2010], study a relaxation
of the Cheeger cut problem with connections between the energy of the relaxed problem
and well studied energies in image processing. Authors of Bresson, Laurent, Uminsky,
and von Brecht [2012] detail two procedures for the relaxed Cheeger cut problem. The
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first algorithm is a steepest descent approach, and the second one is a modified inverse
power method. In Bresson, Laurent, Uminsky, and von Brecht [2013], develop another
version of the method shown in Bresson, Laurent, Uminsky, and von Brecht [2012] using
a new adaptive stopping condition. The result is an algorithm that is monotonic and more
efficient. The GL functional on graphs has been extended to these product-form volume
penalized problems. The paper Merkurjev, Bertozzi, Yan, and Lerman [2017] uses a dif-
fuse interface approach along with the graph Laplacian to solve the fully nonlinear ratio
cut problem and the Cheeger cut problem. The results are shown to be very efficient with
the efficiency partly achieved through the use of the Nyström extension method. The main
idea is to approximate the cut term using the GL functional and then use PDE-based meth-
ods for gradient descent in a spectral approach. Jacobs, Merkurjev, and Esedoğlu [2018]
have a very efficient MBO-based method for solving the volume-constrained classifica-
tion problem with different phases and with prescribed volume constraints and volume
inequalities for the different phases. This work combines some of the best features of the
MBO scheme in both Euclidean space and on graphs with a highly efficient algorithm of
Bertsekas [1979] for the auction problem with volume constraints.

One of the challenges in machine learning is the case where the sizes of the classes are
unknown. Volume constraints could perchance become incorporated as building blocks
for solutions to complex data sorting problems, where the amount of data is so large that
it becomes physically impossible for a human to verify all the results by inspection. An
example of such large data currently under collection by law enforcement agencies around
the world are video feeds from body worn cameras. The author and collaborators have
beenworkingwith such a dataset provided by the LosAngeles Police Department and have
developed classification methods based on the MBO scheme. The BW camera poses un-
usual challenges - typically the goal is to identify what is going on in the scene, both in
terms of the wearer of the camera and his or her interaction with the scene. Thus the task
requires understanding both the scene and the ego-motion, i.e. the motion of the individual
to whom the camera is mounted. In Meng, J. Sanchez, Morel, Bertozzi, and Brantingham
[2017], the authors develop an algorithm for the ego-motion classification, combining the
MBO scheme for multi-class semi-supervised learning with an inverse compositional al-
gorithm Sánchez [2016] to estimate transformations between successive frames. Thus the
video is preprocessed to obtain an eight dimensional feature vector for each frame cor-
responding to the Left-Right; Up-Down; Rotational; and Forward-Backward motions of
the camera wearer along with the frequencies of each of these motions. This is a gross
reduction of the action of the video to a very low dimensional vector. These ideas have
been extended by students at UCLA to higher dimensional feature vectors encoding both
the egomotion and information from the scene Akar, Chen, Dhillon, Song, and T. Zhou
[2017]. Studies of the effect of class size are made possible by an extensive effort dur-
ing a summer REU to hand classify sufficient video footage to provide ground truth for a
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Figure 3: Top: Ego-motion classification results of the QUAD video Meng, J.
Sanchez, Morel, Bertozzi, and Brantingham [2017]. The 9 colors represent 9 differ-
ent ego-motion classes: standing still (dark blue), turning left (moderate blue), turn-
ing right (light blue), looking up (dark green) and looking down (light green), jump-
ing (bud green), stepping (aztec gold), walking (orange), runing (yellow). Copyright
c 2018 Springer Nature. Published with permission of Springer Nature. Bottom:
Semi-supervised MBO on LAPD Body Worn Cameras, using a complex motion-
feature vector for each frame. Both examples use 10% of the data as training Akar,
Chen, Dhillon, Song, and T. Zhou [2017].
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larger study. Figure 3 shows results from Meng, J. Sanchez, Morel, Bertozzi, and Brant-
ingham [2017] for the QUAD video in Baker and Matthews [2004] for various clustering
algorithms described here and results on LAPD body worn camera data from Akar, Chen,
Dhillon, Song, and T. Zhou [2017]. In the second example there are catagories of activ-
ity with relatively small sample sizes and those are predominantly misclassified by this
method. As a test, the smaller samples were aumented to an incremental level (shown
in orange) by simply duplicating the video frame feature vectors, thereby increasing both
the size of the classes and the size of the training data. The results show a marked in-
crease in accuracy. Most research papers make use of scripted datasets with real-world
data being relatively scarce for use in basic research (compared to its rate of capture in
real-world applications). This case study shows the need for more algorithm development
and theoretical results centered around the realities of real datasets. Privacy and propri-
etary reasons often hinder the use of such datasets in basic research and reproduceability
can be hindered by the lack of public access to such data, nevertheless there is a strong
societal need for more work to be done on real-world datasets and published in the sci-
entific literature. Another important point related to this study is the fact that the data
compression of entire video footage into low dimensional feature vectors (less than 100
dimensions per frame or group of frames) can serve as a tool for anonymizing sensitive
data in order to develop computational algorithms on online computational platforms in
shared workspaces, which can be forbidden to directly handle sensitive data. Such steps
are imperative if one is to work with real-world data in an academic environment.

3 Uncertainty quantification (UQ) for graphical metrics

Semi-supervised learning combined both unlabeled data with labeled data; however, as
the BWV example elucidates, in many applications there are so many unlabelled data
points that one can not hand label everything. Moreover, there is a myriad of work in
computer science and applied mathematics addressing the development of algorithms and
a modest amount of work addressing performance of these methods in terms of conver-
gence for problems such as clustering. For real-world applications, existing work does
not address many obvious concerns - it is common to use methodologies ‘out of the box’
with measurements of performance of the methods based on ground truth information for
toy/test problems but little information available regarding the likelihood of the results in
general for real-world applications when ground truth is not available or when the existing
ground truth is limited to a small percentage of training data. The graphical models and
methods are particularly appropriate for the development of new mathematical methodol-
ogy for uncertainty quantification, because of their organization around graph Laplacian
matrices and nonlinear functionals that directly use these operators. In Blum and Chawla
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[2001], using a graph min-cut problem for binary semi-supervised learning. This is equiv-
alent to a maximum a posteriori (MAP) estimation on Bayesian posterior distribution for a
Markov random field (MRF) over the discrete state space of binary labels X. Zhu [2005].
Inference for multi-label discrete MRFs is typically intractable Dahlhaus, Johnson, Pa-
padimitriou, Seymour, and Yannakakis [1992]. Some approximate algorithms have been
developed for the multi-label case Y. Boykov, Veksler, and Zabih [2001, 1998] and Madry
[2010], with application to imaging tasks Y. Y. Boykov and Jolly [2001], Berthod, Kato,
Yu, and Zerubia [1996], and Li [2012]. In X. Zhu, Ghahramani, Lafferty, et al. [2003],
relaxed the discrete state space to a continuous real-variable setting, and modeled the semi-
supervised learning problem as a Gaussian random field. D. Zhou, Bousquet, Lal, Weston,
and Schölkopf [2004] generalized the model to handle label noise, and also generalized it
to the case of directed graphs D. Zhou, Hofmann, and Schölkopf [2004]. We note that this
earlier work of Zhou was a precursor to the nonloncal means graph developed by Buades
Coll and Morel Buades, Coll, and Morel [2005] and further developed by Gilboa and Os-
her Gilboa and Osher [2007, 2008] that inspired some of the methods in the work of the
Author and collaborators for the MBO scheme on graphs Merkurjev, Kostic, and Bertozzi
[2013].

The probit classification method in C. K. I. Williams and Rasmussen [1996] uses the
same prior as in X. Zhu, Ghahramani, Lafferty, et al. [2003] but the data takes on bi-
nary values, found from thresholding the underlying continuous variable, and thereby pro-
vides a link between the combinatorial and continuous state space approaches. The probit
methodology is often implemented via MAP optimization – that is the posterior probabil-
ity is maximized rather than sampled – or an approximation to the posterior is computed,
in the neighborhood of the MAP estimator. In the context of MAP estimation, the graph-
based terms act as a regularizer, in the form of the graph Dirichelet energy 1

2
hu; Lui, with

L the symmetrized graph Laplacian. A formal framework for graph-based regularization
can be found in Belkin, Matveeva, and Niyogi [2004] and Belkin, Niyogi, and Sindhwani
[2006]. More recently, other forms of regularization have been considered such as the
graph wavelet regularization Shuman, Faraji, and Vandergheynst [2011] and Hammond,
Vandergheynst, and Gribonval [2011].

The author and collaborators Bertozzi, Luo, Stuart, and Zygalakis [2017] have devel-
oped UQ methodologies for graph classification based on optimization over real-valued
variables developed in the works discussed in Bertozzi and Flenner [2016]. The UQ ap-
proach builds on the following ideas: (a) that a Bayesian formulation of the classification
problem gives UQ automatically, (b) that fully Bayesian sampling is possible if one de-
velops a methodology that scales well with respect to large graph size. The existing work
on scalable algorithms for minimizing the graph GL functional is critical for (b). We have
results for Gaussian noise models for binary classifiers that leverage several Bayesian
models extended to classification on graphs; via the posterior distribution on the labels,
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these methods automatically equip the classifications with measures of uncertainty. These
models build on well-know Bayesian models in Euclidean space with fewer dimensions
that arise in machine learning.

The probit classification C. K. I. Williams and Rasmussen [1996] nicely extends to
graphical models. This involves defining a Gaussian measure through the graph Dirichlet
energy and choosing a likelihood function involving thresholding a continuum latent vari-
able plus noise. Bayes theorem provides a direct calculation of the posterior and its PDF.
One can then compute the maximum a posteriori estimation (MAP) which is the minimizer
of the negative of the log posterior, a convex function in the case of probit. The probit
model may not be the most appropriate when the data is naturally segmented into groups,
in which the variation is often understood to occur within the group. The next step is to
build on several additional methods that have this structure; they are the level set method
for Bayesian inverse problems Iglesias, Lu, and Stuart [2015], atomic noise models, and
the Ginzburg-Landau optimization-based classifier Bertozzi and Flenner [2012] and van
Gennip and Bertozzi [2012], which by virtue of its direct use of the Dirichlet energy, is
tractable to generalize to a Bayesian setting. In all cases the posteriorP (ujy) has the form

P (ujy) / exp(�J (u)); J (u) =
1

2c
hu; Lui +Φ(u)

for some function Φ, different for each of the four models - and for which the Ginzburg-
Landau case, the independent variable is a real-valued relaxation of label space, rather
than an underlying latent variable which may be thresholded by S(�) into label space.)
Here L is the graph Laplacian and c is a known scaling constant. The choice of scaling
of L should be consistent with the scaling used for one of the learning methods (without
UQ) discussed in the previous sections. Furthermore, the MAP estimator is the minimizer
of J: Φ is differentiable for the Ginzburg-Landau and probit models, but not for the level
set and atomic noise models. We are interested in algorithms for both sampling and MAP
estimation.

In Bertozzi, Luo, Stuart, and Zygalakis [2017] the authors develop efficient numerical
methods, suited to large data-sets, for both MCMC-based sampling as well as gradient-
based MAP estimation. In order to induce scalability with respect to size of the graph, we
consider the pCN method described in Cotter, G. O. Roberts, Stuart, and White [2013]
and introduced in the context of diffusions by Beskos in Beskos, G. Roberts, Stuart, and
Voss [2008] and by Neal in the context of machine learning Neal [1998]. The standard
random walk Metropolis (RWM) algorithm suffers from the fact that the optimal proposal
variance or stepsize scales inverse proportionally to the dimension of the state space G. O.
Roberts, Gelman, Gilks, et al. [1997], which is the graph size N in this case. The pCN
method was designed so that the proposal variance required to obtain a given acceptance
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probability scales independently of the dimension of the state space, hence in practice giv-
ing faster convergence of the MCMCwhen compared with RWM. For graphs with a large
number of nodes N , it is prohibitively costly to directly sample from the distribution �0,
since doing so involves knowledge of a complete eigen-decomposition of L. In machine
learning classification tasks it is common to restrict the support of u to the eigenspace
spanned by the first ` eigenvectors with the smallest non-zero eigenvalues of L (hence
largest precision) and this idea may be used to approximate the pCN method. The Au-
thor and collaborators have made use of both low rank Fowlkes, Belongie, F. Chung, and
Malik [2004] approximations of nonsparse matrices and fast algorithms for computing
the smallest non-zero eigenvalues of sparse matrices Anderson [2010]. The upshot is a
confidence score for the class assignment for binary classifiers, based on the node-wise
posterior mean of the thresholded variable.

An example is shown in Bertozzi, Luo, Stuart, and Zygalakis [2017] with the MNIST
database consists of 70; 000 images of size 28�28 pixels containing the handwritten digits
0 through 9; see LeCun, Cortes, and Burges [1998] for details. The nodes of the graph are
the images and as feature vectors one uses the leading 50 principal components given by
PCA; thus the feature vectors at each node have length d = 50: We construct a K-nearest
neighbor graph with K = 20 for each pair of digits considered. Namely, the weights aij

are non-zero if and only if one of i or j is in the K nearest neighbors of the other. The
non-zero weights are set using a local rescaling as in Equation (3). For more details see
Bertozzi, Luo, Stuart, and Zygalakis [2017]. The noise variance  is set to 0:1, and 4%
of fidelity points are chosen randomly from each class. The probit posterior is used to
compute a node-wise posterior mean. Figure 4 shows that nodes with scores posterior
mean closer to the binary ground truth labels ˙1 look visually more uniform than nodes
with score far from those labels. This illustrates that the posterior mean can differentiate
between outliers and inliers that align with human perception.

There are a number of natural avenues to explore building on the work in Bertozzi, Luo,
Stuart, and Zygalakis [ibid.]; (a) there is a natural question of whether one works in label
space, or a relaxation of it, as in GL, or with a latent variable as in probit - more investiga-
tion of the models on toy problems should elucidate this; (b) the models proposed above
are rather simplistic and may not be best tuned to real datasets - it would be interesting to
develop a preprocessing method to probe the data and to learn something about the data -
preliminary results using probit as a preprocessing step for GL show some benefit to such
hybrid methods; (c) these binary classification models will be extended to multiclass - the
GLmethodology is nicely extended in Garcia-Cardona, Merkurjev, Bertozzi, Flenner, and
Percus [2014] but not in a Bayesian setting, whereas the other methods do not directly ex-
tend as easily although recursive methods can be helpful; (d) all of the methods described
here involve a combination of graph Laplacian diffusion and thresholding analogous to
the MBO scheme on graphs developed by the PI and collaborators Merkurjev, Kostic, and
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(a) Fours in MNIST (b) Nines in MNIST

Figure 4: “Hard to classify” vs “easy to classify” nodes in the MNIST (4; 9) dataset
under the probit model. Here the digit “4” is labeled +1 and “9” is labeled -1. The top
(bottom) row of the left column corresponds to images that have the lowest (highest)
values of the node-wise posterior mean out of all the “4” digist. The right column is
organized in the same way for images with ground truth labels 9 except the top row
now corresponds to the highest values of posterior mean. Higher posterior mean
indicates higher confidence that the image is a 4 and not a “9”, hence the top row
could be interpreted as images that are “hard to classify” by the current model, and
vice versa for the bottom row. See Bertozzi, Luo, Stuart, and Zygalakis [2017] for
more details.

Bertozzi [2013]. Those algorithms also involve graph diffusion plus thresholding in a dif-
ferent way from the Bayesian statistical methods - and some measurement of similarity
or difference should be made; (e) furthermore, one can consider unsupervised problems -
for example the hybrid method in the paper Hu, Sunu, and Bertozzi [2015] that considers
k-means plus the MBO scheme for clustering; (f) finally there are natural UQ questions
that will arise from the other thrusts of the project. For example, for data fusion methods,
the development of multimodal graphical models provides a natural context in which to
extend the UQ methodology to these more complex data problems, providing not only
insight into the results but also insight into the best choice of models for the fusion.

4 Network Analysis

The above discussion of uncertainty quantification was mainly directed at graphs that arise
from machine learning problems involving similarity matrices that result from pairwise
comparisons of high dimensional data. Another natural class of graphs are networks - for
example social network graphs such as those that arise from social media, transportation
networks, and other examples M. E. J. Newman [2010]. Mathematical models and al-
gorithms for structure in networks have led to a large body of work, for example in the
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physics literature, that has largely happened independent of the work carried out in ma-
chine learning. There is a need to develop novel ideas in both areas and in some cases,
especially with security applications, there is a need to have models that fit both machine
learning (big data) problems and network problems.

There are several papers in the literature that connect network clustering to machine
learning, and for brevity we mention a few methods here, including issues that arise when
viewing network analysis methods in the context of machine learning: (a) in Peel, Lar-
remore, and Clauset [2016] the authors consider metadata as ‘ground truth’ and prove a
general “No Free Lunch” theorem for community detection, implying that no algorithm
can perform better than others across all inputs; (b) Newman M. E. J. Newman [2013]
considers spectral methods for three different problems - network modularity (discussed
below), statistical inference, and normalized graph partitioning, concluding that algorith-
mically the spectral methods are the same for each class of problems; (c) Devooght et. al.
consider random-walk based modularity applied to semi-supervised learning Devooght,
Mantrach, Kivimäki, Bersini, Jaimes, and Saerens [2014] focusing on paths on the graph
rather than edges. A review of clustering of graphs, including attributes (semi-supervision)
from a network perspective is Bothorel, Cruz, Magnani, and Micenkova [2015]. A recent
review of community detection methods on networks can be found in Fortunato and Hric
[2016].

A few years ago the Author and collaborators developed the first paper to directly con-
nect network modularity optimization and total variation minimization on graphs, using
the null model introduced by Newman and Girvan in Girvan and M. E. J. Newman [2004].
To explain in more detail, the modularity of a network partition measures the fraction of
total edge weight within communities versus what one might expect if edges were placed
randomly according to some null model. More specifically, the objective is to maximize
the modularity

Q =
1

2m

X
ij

(wij � Pij )ı(gi ; gj )

over all possible partitions where gi is the group assignment for node i . Here Pij is
a probability null model (e.g. Pij = ki kj /2m) where kj =

P
i wij and 2m is the total

volume of the graph (
P

i ki ) and  is a resolution parameter. Our workHu, Laurent, Porter,
and Bertozzi [2013] shows that maximizing Q is equivalent to a graph cut problem that
can be rewritten using the TV functional:

Minu:G!V n̂E(u) = jujT V �  ju � m2(u)j
2
L2

for the case of n̂ classes where V n̂ are the end nodes of the n̂-dimensional simplex and
m2 denotes a simple moment whose constraint can be introduced in a computationally
tractable forcing term. Her u denotes the class assignment and takes vales on the corners
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of the simplex. One can then use the above ideas to minimize this functional over all
possible numbers of clusters n̂. We note that our work also sheds new light on some of
the other papers mentioned above. For example the TV-modularity connection is a direct
relationship between the graph cuts and modularity, beyond the connection between spec-
tral algorithms. Furthermore, the method used in Hu, Laurent, Porter, and Bertozzi [2013]
builds on the graph heat equation, which is, roughly speaking, a mean field limit of a ran-
dom walk dynamics. It uses directly the MBO scheme on graphs Merkurjev, Kostic, and
Bertozzi [2013] from Section 2.1 and multiclass methods for TV-minimization on graphs
Garcia-Cardona, Merkurjev, Bertozzi, Flenner, and Percus [2014]. The idea in these re-
cent papers is to develop algorithms for graph clustering, in particular TV minimization,
which is equivalent to graph cut minimization on weighted graphs when applied to parti-
tion functions. In the case of modularity optimization, the main idea is that maximizing
the modularity functional, when applied to a fixed number of classes, is equivalent to min-
imization an energy for the assignment function, comprised of the graph total variation
minus a second moment term. This opens the door to apply compressed sensing ideas
to modularity optimization, a superior but computationally more complex method than
spectral clustering. More can be done in this area and we propose to work on problems
of direct relevance to multimodal graphs such as those that arise from composite informa-
tion such as spatial nonlocal means, as in the example above, social networks, and latent
information such as text-content topics from twitter.

The method is very scalable, which allows the algorithmic approach to go far beyond
sparse network analysis, providing a new tool for analyzing large similarity graphs in
machine learning. For example, the MNIST dataset LeCun, Cortes, and Burges [1998] of
70,000 handwritten digits, with tens of thousands of nodes, this approach is 10-100 times
faster computationally than the GenLouvain algorithm Jutla, Jeub, and Mucha [n.d.] and
produces comparable quality results, exceeding that of basic fast greedy algorithms such
as M. E. Newman [2006] and Blondel, Guillaume, Lambiotte, and Lefebvre [2008b] and
outperforming all other unsupervised clustering methods that we are aware of. What is
most striking is the ability to correctly classify and identify the number of classes, in a
fairly short amount of computational time. In general unsupervised clustering without
prior knowledge of the number of classes is a very difficult problem for large datasets. So
methodologies that are efficient enough to be useful for large data (including scalability)
are needed. For example, in Hu, van Gennip, Hunter, Bertozzi, and Porter [2012] the
GenLouvain code Jutla, Jeub, and Mucha [n.d.] was tested on the nonlocal means graph
for a basic color image with excellent segmentation results for unsupservised clustering
but with a run time that was neither practical nor scalable. Although for completeness
one should compare with other methods such as the C++ implementations of Blondel
of the Louvain method Blondel, Guillaume, Lambiotte, and Lefebvre [2008a]. We note
that even the soft clustering methods like Nonnegative Matrix Factorization and Latent
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Dirichlet Allocation require the user to specify the number of classes and still have the
restriction that they are built around a linear mixture model.

4.1 Network analysis and machine learning. An interesting line of inquiry is to unify
the graphical models developed independently by the machine learning community and by
the network science community for unsupervised learning. We believe that there is an op-
portunity to improve unsupervised learning algorithms (built on similarity graphs) for data
science as well as to further understand the link between network structure and algorithm
type. Starting from our earlier work on network modularity as a constrained multiclass
graph cut problem, we address modularity as a constrained balanced cut problem in which
convex methods can be used apart from the constraint. In a new work Boyd, Bai, X. C.
Tai, and Bertozzi [2017] we have identified four different equivalent formulations of the
modularity problem which we term soft balanced cut, penalized balanced cut, balanced
total variation (TV) minimization, and penalized TV minimization.

Theorem 1 (Equivalent forms of modularity Boyd, Bai, X. C. Tai, and Bertozzi [ibid.]).
For any subset S of the nodes of G, define volS =

P
i2S ki . Then the following opti-

mization problems are all equivalent:

Std. form: argmax
n̂2N;fA`gn̂

`=1
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Each of the preceding forms has a different interpretation. The original formulation of
modularity was based on comparison with a statistical model and views communities as
regions that are more connected than they would be if edges were totally random. The
cut formulations represent modularity as favoring sparsely interconnected regions with
balanced volumes, and the TV formulation seeks a piecewise-constant partition function
u whose discontinuities have small perimeter, together with a balance-inducing quadratic
penalty. The cut and TV forms come in pairs. The first form (labelled “I”) is simpler
to write but harder to interpret, while the second (labelled “II”) has more terms, but the
nature of the balance term is easy to understand, as it is minimized (for fixed n̂) when each
community has volume 2m

n̂
.

In addition to providing a new perspective on the modularity problem in general, this
equivalence shows that modularity optimization can be viewed as minimizing a convex
functional but subject to a binary constraint. These methodologies provide a direct connec-
tion between modularity and other balance cut problems such as the Cheeger or Ratio cut
and a connection to convex optimization methods already developed for semi-supervised
learning on graphs Merkurjev, Bae, Bertozzi, and X.-C. Tai [2015] and Bae and Merkur-
jev [2016]. A significant emphasis on spectral algorithms exists in the literature on graph
cut methods for networks, see e.g. M. E. Newman [2006] for spectral methods for modu-
larity vs. other spectral methods applied to networks, and a large literature on accuracy of
spectral approximations for the Cheeger cut (e.g. Ghosh, Teng, Lerman, and Yan [2014]).
What distinguishes our approach from other efforts is the focus on non-network data using
a network approach. There are many reasons to do this. At the forefront is the ability to
do unsupervised clustering well, without knowing the number of clusters.
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Balanced TV Spectral Clustering

NLTV GenLouvain

Figure 5: Segmentations Boyd, Bai, X. C. Tai, and Bertozzi [2017] of the plume
hyperspectral video using different methods. The Balanced TV is the only method
that has the whole plume into a single class without any extraneous pixels (NLTV
method from W. Zhu, Chayes, Tiard, S. Sanchez, Dahlberg, Bertozzi, Osher, Zosso,
and Kuang [2017]).

The ideas developed in Boyd, Bai, X. C. Tai, and Bertozzi [2017] show that, while
modularity optimization is inherently nonconvex, that working with it as a constrained
convex optimization problem produces results that are noticeably improved compared to
prior methods that do not use such a formulation, including the formulation in Hu, Laurent,
Porter, and Bertozzi [2013]. Another relevant recent work is Merkurjev, Bae, Bertozzi,
and X.-C. Tai [2015] that develops convex optimizationmethods to find global minimizers
of graph cut problems for semi-supervised learning. This work is loosely related to Boyd,
Bai, X. C. Tai, and Bertozzi [2017] and serves as a resource for the use of L1 compressed
sensing methods and max flow methods for constrained cut problems. Regarding bench-
mark testing, we note that Bazzi, Jeub, Arenas, Howison, and Porter [2016] has developed
a new class of benchmark networks that can be tested with algorithms in addition to the
LFR benchmarks.

4.2 Data fusion, multilayer graphs and networks. There are many works in the liter-
ature for data fusion that do not use graphs - they require a specific connection between the
information and are typically not flexible to extend to unrelated data fusion problems. One
such example pan sharpening of remote sensing images in which a panchromatic sensor
has higher spatial resolution than a multispectral sensor Möller, Wittman, Bertozzi, and
Burger [2012]. Graphical methods for data fusion are still in their infancy with a few ideas
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in the literature but very little theoretical understanding of these approaches. Some exam-
ples from the works of the Author include (a) a homotopy parameter for social network
vs. spatial embedding used to study Field Interview cards from Los Angeles van Gen-
nip, Hunter, et al. [2013] (Figure 1 in this paper), (b) a variational model for MPLE for
statistical density estimation of crime data Woodworth, Mohler, Bertozzi, and Branting-
ham [2014] that uses a nonlocal means-based graphical model for high spatial resolution
housing density information as a regularization parameter, and (c) a threshold-based simi-
larity graph for combined LIDAR and multispectral sensors Iyer, Chanussot, and Bertozzi
[2017]. The network science community has different methods for fusing network data
compared to traditional methods used in sensor fusion. One might explore the similar-
ities and differences between the network science models and the sensor fusion models
and to examine and identify opportunities to bring ideas from one community into the
other through the use of graphical models, along with related rigorous analytical results
of relevance.

Another problem is to develop algorithms based on models for more complex networks
- for example multi-layer modularity optimization as proposed by Porter and colleagues
Mucha, Richardson, Macon, Porter, and Onnela [2010] (Science 2010) and more recent
papers that build on that work (e.g. Bazzi, Porter, S. Williams, McDonald, Fenn, and
Howison [2016] and M. E. J. Newman and Peixoto [2015]). The multilayer approach can
give much better granularity of clustering in social networks however it is even more com-
putationally prohibitive than regular modularity in the case of larger datasets (e.g. tens of
thousands of nodes). Multilayer models are able to work with more complex similarity
graphs, such as those that might arise from multimodal data, although little work has been
done unifying these ideas. As an example, for the LAPD field interview cards studied in
van Gennip, Hunter, et al. [2013], one might analyze what additional information might be
encoded in a multilayer network structure compared to a parametric homotopy model on a
single layer graph. For multilayer graphs, we expect TV minimization methods to handle
structures within a layer, however different methods may be required when strong connec-
tions arise across layers. We expect that different issues may arise when considering such
graphs for data fusion rather than complex network applications.

Formultilayer graphmodelsmodels one could explore hybrid schemes that leverage the
ultrafast segmentation that can be done for large clusters using something like MBOwhile
using the combinatorial methods (e.g. Gen Louvain Jutla, Jeub, and Mucha [n.d.]) for the
network structure that has some granularity. This is a main challenge when working with
complex data such as the artificial LFR benchmarks Lancichinetti, Fortunato, and Radic-
chi [2008] that have a power law community distribution. One can also compare against
the new benchmark graphs in Bazzi, Jeub, Arenas, Howison, and Porter [2016] using
their code. Future work might involve a hybrid method that will have components of TV
minimization methods such as the MBO scheme Merkurjev, Kostic, and Bertozzi [2013],
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components of GenLouvain and possible post-processing steps such as Kernighan-Lin
node-swapping M. E. Newman [2006], Porter, Onnela, and Mucha [2009], and Richard-
son, Mucha, and Porter [2009].

5 Final Comments

The Author and collaborators have developed rigorous analysis for the dynamics of the
graphical MBO iteration scheme for semi-supervised learning van Gennip, Guillen, Ost-
ing, and Bertozzi [2014] and and this work could be extended to unsupervised, multiclass,
classification methods such as those that arise in network modularity. The Author and
Luo have developed theoretical convergence estimates Luo and Bertozzi [2017] for the
Ginzburg-Landau convex-splitting method for semi-supervised learning for various ver-
sions of the graph Laplacian discussed above. For example, for the standard graph Lapla-
cian we have maximum norm convergence results for minimizers of the Ginzburg-Landau
energy using a combination of L2-energy estimates and maximum principle results for the
Laplacian operator Luo and Bertozzi [ibid.]. The GL energy is a non-convex functional,
so those results prove convergence to a local minimizer rather than a global one and can
require modest a posteriori estimates to guarantee convergence; these are ones that can be
built directly into the code. One of the rigorous results proved in Luo and Bertozzi [ibid.]
is that the convergence and stability of the scheme are independent of the size of the graph,
and of its sparseness, an important feature for scalability of methods.

Another issue that is rarely discussed for either the semi-supervised or unsupervised
cases, regarding similarity graphs, is whether to thin the graph before performing classi-
fication or to use the fully connected graph in connection with a low rank approximation
of the matrix such as the Nyström extension, discussed above. Research is needed to de-
velop rigorous estimates related to the thinning of the graph in conjunction with models
for clustering data - for example we can take examples models built on the Gaussian priors
in the previous section on UQ and develop estimates for what is lost from the matrix when
removing edges with smaller weights, a common process using e.g. a k-nearest neighbor
graph. This problem involves the role of the graph structure on optimization problems and
can also benefit from existing results from the network literature.
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Abstract

We present an overview of scalable load balancing algorithms which provide fa-
vorable delay performance in large-scale systems, and yet only require minimal imple-
mentation overhead. Aimed at a broad audience, the paper starts with an introduction
to the basic load balancing scenario – referred to as the supermarket model – consist-
ing of a single dispatcher where tasks arrive that must immediately be forwarded to
one of N single-server queues. The supermarket model is a dynamic counterpart of
the classical balls-and-bins setup where balls must be sequentially distributed across
bins.

A popular class of load balancing algorithms are power-of-d or JSQ(d ) policies,
where an incoming task is assigned to a server with the shortest queue among d servers
selected uniformly at random. As the name reflects, this class includes the celebrated
Join-the-Shortest-Queue (JSQ) policy as a special case (d = N ), which has strong
stochastic optimality properties and yields a mean waiting time that vanishes as N

grows large for any fixed subcritical load. However, a nominal implementation of the
JSQ policy involves a prohibitive communication burden in large-scale deployments.
In contrast, a simple random assignment policy (d = 1) does not entail any commu-
nication overhead, but the mean waiting time remains constant as N grows large for
any fixed positive load.

In order to examine the fundamental trade-off between delay performance and
implementation overhead, we consider an asymptotic regime where the diversity pa-
rameter d (N ) depends on N . We investigate what growth rate of d (N ) is required
to match the optimal performance of the JSQ policy on fluid and diffusion scale, and
achieve a vanishing waiting time in the limit. The results demonstrate that the asymp-
totics for the JSQ(d (N )) policy are insensitive to the exact growth rate of d (N ), as
long as the latter is sufficiently fast, implying that the optimality of the JSQ policy
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can asymptotically be preserved while dramatically reducing the communication over-
head.

Stochastic coupling techniques play an instrumental role in establishing the asymp-
totic optimality and universality properties, and augmentations of the coupling con-
structions allow these properties to be extended to infinite-server settings and network
scenarios. We additionally show how the communication overhead can be reduced yet
further by the so-called Join-the-Idle-Queue (JIQ) scheme, leveraging memory at the
dispatcher to keep track of idle servers.

1 Introduction

In the present paper we review scalable load balancing algorithms (LBAs) achieve excel-
lent delay performance in large-scale systems and yet only involve low implementation
overhead. LBAs play a critical role in distributing service requests or tasks (e.g. compute
jobs, data base look-ups, file transfers) among servers or distributed resources in parallel-
processing systems. The analysis and design of LBAs has attracted strong attention in
recent years, mainly spurred by crucial scalability challenges arising in cloud networks
and data centers with massive numbers of servers.

LBAs can be broadly categorized as static, dynamic, or some intermediate blend, de-
pending on the amount of feedback or state information (e.g. congestion levels) that is
used in allocating tasks. The use of state information naturally allows dynamic policies
to achieve better delay performance, but also involves higher implementation complexity
and a substantial communication burden. The latter issue is particularly pertinent in cloud
networks and data centers with immense numbers of servers handling a huge influx of ser-
vice requests. In order to capture the large-scale context, we examine scalability properties
through the prism of asymptotic scalings where the system size grows large, and identify
LBAs which strike an optimal balance between delay performance and implementation
overhead in that regime.

The most basic load balancing scenario consists of N identical parallel servers and a
dispatcher where tasks arrive that must immediately be forwarded to one of the servers.
Tasks are assumed to have unit-mean exponentially distributed service requirements, and
the service discipline at each server is supposed to be oblivious to the actual service re-
quirements. In this canonical setup, the celebrated Join-the-Shortest-Queue (JSQ) policy
has several strong stochastic optimality properties. In particular, the JSQ policy achieves
the minimum mean overall delay among all non-anticipating policies that do not have any
advance knowledge of the service requirements Ephremides, Varaiya, andWalrand [1980]
and Winston [1977]. In order to implement the JSQ policy however, a dispatcher requires
instantaneous knowledge of all the queue lengths, which may involve a prohibitive com-
munication burden with a large number of servers N .
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This poor scalability has motivated consideration of JSQ(d ) policies, where an incom-
ing task is assigned to a server with the shortest queue among d � 2 servers selected
uniformly at random. Note that this involves exchange of 2d messages per task, irre-
spective of the number of servers N . Results in Mitzenmacher [2001] and Vvedenskaya,
Dobrushin, and Karpelevich [1996] indicate that even sampling as few as d = 2 servers
yields significant performance enhancements over purely random assignment (d = 1)
as N grows large, which is commonly referred to as the “power-of-two” or “power-of-
choice” effect. Specifically, when tasks arrive at rate �N , the queue length distribution at
each individual server exhibits super-exponential decay for any fixed � < 1 as N grows
large, compared to exponential decay for purely random assignment.

As illustrated by the above, the diversity parameter d induces a fundamental trade-off
between the amount of communication overhead and the delay performance. Specifically,
a random assignment policy does not entail any communication burden, but the mean
waiting time remains constant asN grows large for any fixed� > 0. In contrast, a nominal
implementation of the JSQ policy (without maintaining state information at the dispatcher)
involves 2N messages per task, but the mean waiting time vanishes as N grows large
for any fixed � < 1. Although JSQ(d ) policies with d � 2 yield major performance
improvements over purely random assignment while reducing the communication burden
by a factor O(N ) compared to the JSQ policy, the mean waiting time does not vanish in the
limit. Thus, no fixed value of d will provide asymptotically optimal delay performance.
This is evidenced by results of Gamarnik, Tsitsiklis, and Zubeldia [2016] indicating that
in the absence of any memory at the dispatcher the communication overhead per taskmust
increase with N in order for any scheme to achieve a zero mean waiting time in the limit.

We will explore the intrinsic trade-off between delay performance and communication
overhead as governed by the diversity parameter d , in conjunction with the relative load �.
The latter trade-off is examined in an asymptotic regime where not only the overall task ar-
rival rate is assumed to grow with N , but also the diversity parameter is allowed to depend
on N . We write �(N ) and d (N ), respectively, to explicitly reflect that, and investigate
what growth rate of d (N ) is required, depending on the scaling behavior of �(N ), in or-
der to achieve a zero mean waiting time in the limit. We establish that the fluid-scale and
diffusion-scale limiting processes are insensitive to the exact growth rate of d (N ), as long
as the latter is sufficiently fast, and in particular coincide with the limiting processes for
the JSQ policy. This reflects a remarkable universality property and demonstrates that the
optimality of the JSQ policy can asymptotically be preserved while dramatically lowering
the communication overhead.

Wewill extend the above-mentioned universality properties to network scenarios where
the N servers are assumed to be inter-connected by some underlying graph topology GN .
Tasks arrive at the various servers as independent Poisson processes of rate �, and each
incoming task is assigned to whichever server has the shortest queue among the one where
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it appears and its neighbors in GN . In case GN is a clique, each incoming task is assigned
to the server with the shortest queue across the entire system, and the behavior is equiva-
lent to that under the JSQ policy. The above-mentioned stochastic optimality properties
of the JSQ policy thus imply that the queue length process in a clique will be ‘better’ than
in an arbitrary graph GN . We will establish sufficient conditions for the fluid-scaled and
diffucion-scaled versions of the queue length process in an arbitrary graph to be equiv-
alent to the limiting processes in a clique as N ! 1. The conditions reflect similar
universality properties as described above, and in particular demonstrate that the optimal-
ity of a clique can asymptotically be preserved while markedly reducing the number of
connections, provided the graph GN is suitably random.

While a zero waiting time can be achieved in the limit by sampling only d (N ) = o(N )

servers, the amount of communication overhead in terms of d (N )must still grow with N .
This may be explained from the fact that a large number of servers need to be sampled for
each incoming task to ensure that at least one of them is found idle with high probability.
As alluded to above, this can be avoided by introducing memory at the dispatcher, in
particular maintaining a record of vacant servers, and assigning tasks to idle servers, if
there are any. This so-called Join-the-Idle-Queue (JIQ) scheme Badonnel and Burgess
[2008] and Lu, Xie, Kliot, Geller, Larus, and Greenberg [2011] has gained huge popularity
recently, and can be implemented through a simple token-based mechanism generating at
most onemessage per task. As established by Stolyar [2015], the fluid-scaled queue length
process under the JIQ scheme is equivalent to that under the JSQ policy as N ! 1, and
this result can be shown to extend the diffusion-scaled queue length process. Thus, the use
of memory allows the JIQ scheme to achieve asymptotically optimal delay performance
with minimal communication overhead. In particular, ensuring that tasks are assigned to
idle servers whenever available is sufficient to achieve asymptotic optimality, and using
any additional queue length information yields no meaningful performance benefits on the
fluid or diffusion levels.

Stochastic coupling techniques play an instrumental role in the proofs of the above-
described universality and asymptotic optimality properties. A direct analysis of the queue
length processes under a JSQ(d (N )) policy, in a load balancing graph GN , or under the
JIQ scheme is confronted with unsurmountable obstacles. As an alternative route, we
leverage novel stochastic coupling constructions to relate the relevant queue length pro-
cesses to the corresponding processes under a JSQ policy, and show that the deviation
between these two is asymptotically negligible under mild assumptions on d (N ) or GN .

While the stochastic coupling schemes provide a remarkably effective and overarching
approach, they defy a systematic recipe and involve some degree of ingenuity and cus-
tomization. Indeed, the specific coupling arguments that we develop are not only different
from those that were originally used in establishing the stochastic optimality properties of
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the JSQ policy, but also differ in critical ways between a JSQ(d (N )) policy, a load bal-
ancing graph GN , and the JIQ scheme. Yet different coupling constructions are devised
for model variants with infinite-server dynamics that we will discuss in Section 4.

The remainder of the paper is organized as follows. In Section 2 we discuss a wide
spectrum of LBAs and evaluate their scalability properties. In Section 3we introduce some
useful preliminaries, review fluid and diffusion limits for the JSQ policy as well as JSQ(d )
policies with a fixed value of d , and explore the trade-off between delay performance
and communication overhead as function of the diversity parameter d . In particular, we
establish asymptotic universality properties for JSQ(d ) policies, which are extended to
systems with server pools and network scenarios in Sections 4 and 5, respectively. In
Section 6 we establish asymptotic optimality properties for the JIQ scheme. We discuss
somewhat related redundancy policies and alternative scaling regimes and performance
metrics in Section 7.

2 Scalability spectrum

In this section we review awide spectrum of LBAs and examine their scalability properties
in terms of the delay performance vis-a-vis the associated implementation overhead in
large-scale systems.

2.1 Basic model. Throughout this section and most of the paper, we focus on a basic
scenario withN parallel single-server infinite-buffer queues and a single dispatcher where
tasks arrive as a Poisson process of rate �(N ), as depicted in Figure 2. Arriving tasks
cannot be queued at the dispatcher, and must immediately be forwarded to one of the
servers. This canonical setup is commonly dubbed the supermarket model. Tasks are
assumed to have unit-mean exponentially distributed service requirements, and the service
discipline at each server is supposed to be oblivious to the actual service requirements.

In Section 4 we consider some model variants with N server pools and possibly finite
buffers and in Section 5 we will treat network generalizations of the above model.

2.2 Asymptotic scaling regimes. An exact analysis of the delay performance is quite
involved, if not intractable, for all but the simplest LBAs. Numerical evaluation or sim-
ulation are not straightforward either, especially for high load levels and large system
sizes. A common approach is therefore to consider various limit regimes, which not only
provide mathematical tractability and illuminate the fundamental behavior, but are also
natural in view of the typical conditions in which cloud networks and data centers operate.
One can distinguish several asymptotic scalings that have been used for these purposes:
(i) In the classical heavy-traffic regime, �(N ) = �N with a fixed number of servers N
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and a relative load � that tends to one in the limit. (ii) In the conventional large-capacity
or many-server regime, the relative load �(N )/N approaches a constant � < 1 as the
number of servers N grows large. (iii) The popular Halfin-Whitt regime Halfin and Whitt
[1981] combines heavy traffic with a large capacity, with

(2-1)
N � �(N )

p
N

! ˇ > 0 as N ! 1;

so the relative capacity slack behaves as ˇ/
p

N as the number of servers N grows large.
(iv) The so-called non-degenerate slow-down regime Atar [2012] involves N � �(N ) !

 > 0, so the relative capacity slack shrinks as /N as the number of servers N grows
large.

The term non-degenerate slow-down refers to the fact that in the context of a central-
ized multi-server queue, the mean waiting time in regime (iv) tends to a strictly positive
constant as N ! 1, and is thus of similar magnitude as the mean service requirement.
In contrast, in regimes (ii) and (iii), the mean waiting time decays exponentially fast in N

or is of the order 1/
p

N , respectively, as N ! 1, while in regime (i) the mean waiting
time grows arbitrarily large relative to the mean service requirement.

In the present paper we will focus on scalings (ii) and (iii), and occasionally also refer to
these as fluid and diffusion scalings, since it is natural to analyze the relevant queue length
process on fluid scale (1/N ) and diffusion scale (1/

p
N ) in these regimes, respectively.

We will not provide a detailed account of scalings (i) and (iv), which do not capture the
large-scale perspective and do not allow for low delays, respectively, but we will briefly
revisit these regimes in Section 7.

2.3 Random assignment: N independent M/M/1 queues. One of the most basic
LBAs is to assign each arriving task to a server selected uniformly at random. In that
case, the various queues collectively behave as N independent M/M/1 queues, each with
arrival rate �(N )/N and unit service rate. In particular, at each of the queues, the total
number of tasks in stationarity has a geometric distribution with parameter �(N )/N . By
virtue of the PASTA property, the probability that an arriving task incurs a non-zero wait-
ing time is �(N )/N . The mean number of waiting tasks (excluding the possible task in
service) at each of the queues is �(N )2

N (N��(N ))
, so the total mean number of waiting tasks

is �(N )2

N��(N )
, which by Little’s law implies that the mean waiting time of a task is �(N )

N��(N )
.

In particular, when �(N ) = N �, the probability that a task incurs a non-zero waiting
time is �, and the mean waiting time of a task is �

1��
, independent of N , reflecting the

independence of the various queues.
A slightly better LBA is to assign tasks to the servers in a Round-Robin manner, dis-

patching every N -th task to the same server. In the large-capacity regime where �(N ) =
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N �, the inter-arrival time of tasks at each given queue will then converge to a constant
1/� as N ! 1. Thus each of the queues will behave as an D/M/1 queue in the limit, and
the probability of a non-zero waiting time and the mean waiting time will be somewhat
lower than under purely random assignment. However, both the probability of a non-zero
waiting time and the mean waiting time will still tend to strictly positive values and not
vanish as N ! 1.

2.4 Join-the-Shortest Queue (JSQ). Under the Join-the-Shortest-Queue (JSQ) policy,
each arriving task is assigned to the server with the currently shortest queue (ties are bro-
ken arbitrarily). In the basic model described above, the JSQ policy has several strong
stochastic optimality properties, and yields the ‘most balanced and smallest’ queue process
among all non-anticipating policies that do not have any advance knowledge of the service
requirements Ephremides, Varaiya, andWalrand [1980] andWinston [1977]. Specifically,
the JSQ policy minimizes the joint queue length vector in a stochastic majorization sense,
and in particular stochastically minimizes the total number of tasks in the system, and
hence the mean overall delay. In order to implement the JSQ policy however, a dispatcher
requires instantaneous knowledge of the queue lengths at all the servers. A nominal imple-
mentation would involve exchange of 2N messages per task, and thus yield a prohibitive
communication burden in large-scale systems.

2.5 Join-the-Smallest-Workload (JSW): centralized M/M/N queue. Under the Join-
the-Smallest-Workload (JSW) policy, each arriving task is assigned to the server with the
currently smallest workload. Note that this is an anticipating policy, since it requires ad-
vance knowledge of the service requirements of all the tasks in the system. Further observe
that this policy (myopically) minimizes the waiting time for each incoming task, and mim-
ics the operation of a centralizedN -server queue with a FCFS discipline. The equivalence
with a centralized N -server queue yields a strong optimality property of the JSW policy:
The vector of joint workloads at the various servers observed by each incoming task is
smaller in the Schur convex sense than under any alternative admissible policy Foss and
Chernova [2001].

The equivalence with a centralized FCFS queue means that there cannot be any idle
servers while tasks are waiting. In our settingwith Poisson arrivals and exponential service
requirements, it can therefore be shown that the total number of tasks under the JSWpolicy
is stochastically smaller than under the JSQ policy. At the same time, it means that the total
number of tasks under the JSW policy behaves as a birth-death process, which renders it
far more tractable than the JSQ policy. Specifically, given that all the servers are busy, the
total number of waiting tasks is geometrically distributed with parameter �(N )/N . Thus
the total mean number of waiting tasks is ΠW (N; �(N )) �(N )

N��(N )
, and the mean waiting
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time is ΠW (N; �(N )) 1
N��(N )

, with ΠW (N; �(N ) denoting the probability of all servers
being occupied and a task incurring a non-zero waiting time. This immediately shows that
the mean waiting time is smaller by at least a factor �(N ) than for the random assignment
policy considered in Section 2.3.

In the large-capacity regime�(N ) = N �, it can be shown that the probabilityΠW (N; �(N ))

of a non-zero waiting time decays exponentially fast in N , and hence so does the mean
waiting time. In theHalfin-Whitt heavy-traffic regime (2-1), the probabilityΠW (N; �(N ))

of a non-zero waiting time converges to a finite constant Π?
W (ˇ), implying that the mean

waiting time of a task is of the order 1/
p

N , and thus vanishes as N ! 1.

2.6 Power-of-d load balancing (JSQ(d)). As mentioned above, the achilles heel of
the JSQ policy is its excessive communication overhead in large-scale systems. This poor
scalability has motivated consideration of so-called JSQ(d ) policies, where an incoming
task is assigned to a server with the shortest queue among d servers selected uniformly at
random. Results in Mitzenmacher [2001] and Vvedenskaya, Dobrushin, and Karpelevich
[1996] indicate that even sampling as few as d = 2 servers yields significant performance
enhancements over purely random assignment (d = 1) as N ! 1. Specifically, in the
fluid regime where �(N ) = �N , the probability that there are i or more tasks at a given
queue is proportional to �

di �1
d�1 as N ! 1, and thus exhibits super-exponential decay as

opposed to exponential decay for the random assignment policy considered in Section 2.3.
As illustrated by the above, the diversity parameter d induces a fundamental trade-off

between the amount of communication overhead and the performance in terms of queue
lengths and delays. A rudimentary implementation of the JSQ policy (d = N , without
replacement) involves O(N ) communication overhead per task, but it can be shown that
the probability of a non-zero waiting time and the mean waiting vanish as N ! 1, just
like in a centralized queue. Although JSQ(d ) policies with a fixed parameter d � 2

yield major performance improvements over purely random assignment while reducing
the communication burden by a factor O(N ) compared to the JSQ policy, the probability
of a non-zero waiting time and the mean waiting time do not vanish as N ! 1.

In Section 3.5 we will explore the intrinsic trade-off between delay performance and
communication overhead as function of the diversity parameter d , in conjunction with
the relative load. We will examine an asymptotic regime where not only the total task
arrival rate �(N ) is assumed to grow with N , but also the diversity parameter is allowed
to depend on N . As will be demonstrated, the optimality of the JSQ policy (d (N ) = N )
can be preserved, and in particular a vanishing waiting time can be achieved in the limit
as N ! 1, even when d (N ) = o(N ), thus dramatically lowering the communication
overhead.
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2.7 Token-based strategies: Join-the-Idle-Queue (JIQ). While a zero waiting time
can be achieved in the limit by sampling only d (N ) = o(N ) servers, the amount of com-
munication overhead in terms of d (N ) must still grow with N . This can be countered by
introducing memory at the dispatcher, in particular maintaining a record of vacant servers,
and assigning tasks to idle servers as long as there are any, or to a uniformly at random se-
lected server otherwise. This so-called Join-the-Idle-Queue (JIQ) scheme Badonnel and
Burgess [2008] and Lu, Xie, Kliot, Geller, Larus, and Greenberg [2011] has received
keen interest recently, and can be implemented through a simple token-based mechanism.
Specifically, idle servers send tokens to the dispatcher to advertise their availability, and
when a task arrives and the dispatcher has tokens available, it assigns the task to one of the
corresponding servers (and disposes of the token). Note that a server only issues a token
when a task completion leaves its queue empty, thus generating at most one message per
task. Surprisingly, the mean waiting time and the probability of a non-zero waiting time
vanish under the JIQ scheme in both the fluid and diffusion regimes, as we will further
discuss in Section 6. Thus, the use of memory allows the JIQ scheme to achieve asymp-
totically optimal delay performance with minimal communication overhead.

2.8 Performance comparison. We now present some simulation experiments that we
have conducted to compare the above-described LBAs in terms of delay performance.
Specifically, we evaluate the mean waiting time and the probability of a non-zero waiting
time in both a fluid regime (�(N ) = 0:9N ) and a diffusion regime (�(N ) = N �

p
N ).

The results are shown in Figure 1. We are especially interested in distinguishing two
classes of LBAs – ones delivering a mean waiting time and probability of a non-zero
waiting time that vanish asymptotically, and ones that fail to do so – and relating that
dichotomy to the associated overhead.

JSQ, JIQ, and JSW.. JSQ, JIQ and JSW evidently have a vanishing waiting time in
both the fluid and the diffusion regime as discussed in Sections 2.4, 2.5 and 2.7. The
optimality of JSW as mentioned in Section 2.5 can also be clearly observed.

However, there is a significant difference between JSW and JSQ/JIQ in the diffusion
regime. We observe that the probability of a non-zero waiting time approaches a positive
constant for JSW, while it vanishes for JSQ/JIQ. In other words, the mean of all positive
waiting times is of a larger order of magnitude in JSQ/JIQ compared to JSW. Intuitively,
this is clear since in JSQ/JIQ, when a task is placed in a queue, it waits for at least a residual
service time. In JSW, which is equivalent to the M/M/N queue, a task that cannot start
service immediately, joins a queue that is collectively drained by all the N servers
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Figure 1: Simulation results for mean waiting time E[W N ] and probability of a
non-zero waiting time pN

wait, for both a fluid regime and a diffusion regime.

Random and Round-Robin. The mean waiting time does not vanish for Random and
Round-Robin in the fluid regime, as already mentioned in Section 2.3. Moreover, the
mean waiting time grows without bound in the diffusion regime for these two schemes.
This is because the system can still be decomposed, and the loads of the individual M/M/1
and D/M/1 queues tend to 1.

JSQ(d) policies. Three versions of JSQ(d ) are included in the figures; d (N ) = 2 6! 1,
d (N ) = blog(N )c ! 1 and d (N ) = N 2/3 for which d(N )

p
N log(N )

! 1. Note that the
graph for d (N ) = blog(N )c shows sudden jumps when d (N ) increases by 1. The vari-
ants for which d (N ) ! 1 have a vanishing waiting time in the fluid regime, while d = 2

does not. The latter observation is a manifestation of the results of Gamarnik, Tsitsiklis,
and Zubeldia [2016] mentioned in the introduction, since JSQ(d ) uses no memory and the
overhead per task does not increase with N . Furthermore, it follows that JSQ(d ) policies
outperform Random and Round-Robin, while JSQ/JIQ/JSW are better in terms of mean
waiting time.

In order to succinctly capture the results and observed dichotomy in Figure 1, we pro-
vide an overview of the delay performance of the various LBAs and the associated over-
head in Table 1, where q?

i denotes the stationary fraction of servers with i or more tasks.
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Scheme Queue length Waiting time
(fixed � < 1)

Waiting time
(1 � � ∼
1/

p
N )

Over-
head per
task

Random q?
i = �i �

1��
Θ(

p
N ) 0

JSQ(d ) q?
i = �

di �1
d�1 Θ(1) Ω(logN ) 2d

d (N ) ! 1 same as JSQ same as JSQ ?? 2d (N )

d(N )
p

N log(N )
! 1 same as JSQ same as JSQ same as JSQ 2d (N )

JSQ q?
1 = �, q?

2 =

o(1) o(1) Θ(1/
p

N ) 2N

JIQ same as JSQ same as JSQ same as JSQ � 1

Table 1: Queue length distribution, waiting times and communication overhead for
various LBAs.

3 JSQ(d) policies and universality properties

In this section we first introduce some useful preliminary concepts, then review fluid and
diffusion limits for the JSQ policy as well as JSQ(d ) policies with a fixed value of d , and
finally discuss universality properties when the diversity parameter d (N ) is being scaled
with N .

As described in the previous section, we focus on a basic scenario where all the servers
are homogeneous, the service requirements are exponentially distributed, and the service
discipline at each server is oblivious of the actual service requirements. In order to obtain
a Markovian state description, it therefore suffices to only track the number of tasks, and
in fact we do not need to keep record of the number of tasks at each individual server, but
only count the number of servers with a given number of tasks. Specifically, we represent
the state of the system by a vector Q(t) := (Q1(t); Q2(t); : : : ), with Qi (t) denoting the
number of servers with i or more tasks at time t , including the possible task in service,
i = 1; 2 : : : . Note that if we represent the queues at the various servers as (vertical)
stacks, and arrange these from left to right in non-descending order, then the value of Qi

corresponds to the width of the i -th (horizontal) row, as depicted in the schematic diagram
in Figure 3.

In order to examine the asymptotic behavior when the number of servers N grows
large, we consider a sequence of systems indexed by N , and attach a superscript N to the
associated state variables.
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 Q2 = 10

�

�

�
 Qi = 7

�

�

�

Figure 2: Tasks arrive at the dis-
patcher as a Poisson process of
rate �(N ), and are forwarded to
one of the N servers according
to some specific load balancing
algorithm.

Figure 3: The value of Qi rep-
resents the width of the i -th row,
when the servers are arranged
in non-descending order of their
queue lengths.

The fluid-scaled occupancy state is denoted by qN (t) := (qN
1 (t); qN

2 (t); : : : ), with
qN

i (t) = QN
i (t)/N representing the fraction of servers in the N -th system with i or

more tasks as time t , i = 1; 2; : : : . Let S = fq 2 [0; 1]1 : qi � qi�18i = 2; 3; : : : g be
the set of all possible fluid-scaled states. Whenever we consider fluid limits, we assume
the sequence of initial states is such that qN (0) ! q1 2 S as N ! 1.

The diffusion-scaled occupancy state is defined as Q̄N (t) = (Q̄N
1 (t); Q̄N

2 (t); : : : ),
with

(3-1) Q̄N
1 (t) = �

N � QN
1 (t)

p
N

; Q̄N
i (t) =

QN
i (t)

p
N

; i = 2; 3; : : : :

Note that �Q̄N
1 (t) corresponds to the number of vacant servers, normalized by

p
N . The

reason why QN
1 (t) is centered around N while QN

i (t), i = 2; 3; : : : , are not, is because
for the scalable LBAs that we pursue, the fraction of servers with exactly one task tends
to one, whereas the fraction of servers with two or more tasks tends to zero as N ! 1.

3.1 Fluid limit for JSQ(d) policies. We first consider the fluid limit for JSQ(d ) poli-
cies with an arbitrary but fixed value of d as characterized by Mitzenmacher [2001] and
Vvedenskaya, Dobrushin, and Karpelevich [1996].

The sequence of processes fqN (t)gt�0 has a weak limit fq(t)gt�0 that satisfies the
system of differential equations

(3-2)
dqi (t)

dt
= �[(qi�1(t))

d
� (qi (t))

d ] � [qi (t) � qi+1(t)]; i = 1; 2; : : : :

The fluid-limit equations may be interpreted as follows. The first term represents the rate
of increase in the fraction of servers with i or more tasks due to arriving tasks that are
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assigned to a server with exactly i �1 tasks. Note that the latter occurs in fluid state q 2 S
with probability qd

i�1 � qd
i , i.e., the probability that all d sampled servers have i � 1 or

more tasks, but not all of them have i or more tasks. The second term corresponds to the
rate of decrease in the fraction of servers with i or more tasks due to service completions
from servers with exactly i tasks, and the latter rate is given by qi � qi+1.

The unique fixed point of (3-2) for any d � 2 is obtained as

(3-3) q?
i = �

di �1
d�1 ; i = 1; 2; : : : :

It can be shown that the fixed point is asymptotically stable in the sense that q(t) ! q? as
t ! 1 for any initial fluid state q1 with

P1
i=1 q1i < 1. The fixed point reveals that the

stationary queue length distribution at each individual server exhibits super-exponential
decay as N ! 1, as opposed to exponential decay for a random assignment policy. It
is worth observing that this involves an interchange of the many-server (N ! 1) and
stationary (t ! 1) limits. The justification is provided by the asymptotic stability of the
fixed point along with a few further technical conditions.

3.2 Fluid limit for JSQ policy. We now turn to the fluid limit for the ordinary JSQ pol-
icy, which rather surprisinglywas not rigorously established until fairly recently inMukher-
jee, Borst, van Leeuwaarden, andWhiting [2016c], leveraging martingale functional limit
theorems and time-scale separation arguments Hunt and Kurtz [1994].

In order to state the fluid limit starting from an arbitrary fluid-scaled occupancy state,
we first introduce some additional notation. For any fluid state q 2 S, denote by m(q) =
minfi : qi+1 < 1g the minimum queue length among all servers. Now if m(q) = 0,
then define p0(m(q)) = 1 and pi (m(q)) = 0 for all i = 1; 2; : : :. Otherwise, in case
m(q) > 0, define

(3-4) pi (q) =

(
min

˚
(1 � qm(q)+1)/�; 1

	
for i = m(q) � 1;

1 � pm(q)�1(q) for i = m(q);

and pi (q) = 0 otherwise. The coefficient pi (q) represents the instantaneous fraction of
incoming tasks assigned to servers with a queue length of exactly i in the fluid state q 2 S.

Any weak limit of the sequence of processes fqN (t)gt�0 is given by the deterministic
system fq(t)gt�0 satisfying the following system of differential equations

(3-5)
d+qi (t)

dt
= �pi�1(q(t)) � (qi (t) � qi+1(t)); i = 1; 2; : : : ;

where d+/dt denotes the right-derivative.
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The unique fixed point q? = (q?
1 ; q?

2 ; : : :) of the dynamical system in (3-5) is given by

(3-6) q?
i =

�
�; i = 1;

0; i = 2; 3; : : : :

The fixed point in (3-6), in conjunction with an interchange of limits argument, indicates
that in stationarity the fraction of servers with a queue length of two or larger under the
JSQ policy is negligible as N ! 1.

3.3 Diffusion limit for JSQ policy. We next describe the diffusion limit for the JSQ
policy in the Halfin-Whitt heavy-traffic regime (2-1), as recently derived by Eschenfeldt
and Gamarnik [2015].

For suitable initial conditions, the sequence of processes
˚
Q̄N (t)

	
t�0

as in (3-1) con-
verges weakly to the limit

˚
Q̄(t)

	
t�0

, where (Q̄1(t); Q̄2(t); : : :) is the unique solution to
the following system of SDEs

dQ̄1(t) =
p
2dW (t) � ˇdt � Q̄1(t)dt + Q̄2(t)dt � dU1(t);

dQ̄2(t) = dU1(t) � (Q̄2(t) � Q̄3(t))dt;

dQ̄i (t) = �(Q̄i (t) � Q̄i+1(t))dt; i � 3;

(3-7)

for t � 0, where W (�) is the standard Brownian motion and U1(�) is the unique nonde-
creasing nonnegative process satisfying

R1
0 1[Q̄1(t)<0]dU1(t) = 0.

The above diffusion limit implies that the mean waiting time under the JSQ policy is of
a similar order O(1/

p
N ) as in the corresponding centralized M/M/N queue. Hence, we

conclude that despite the distributed queueing operation a suitable load balancing policy
can deliver a similar combination of excellent service quality and high resource utilization
in the Halfin-Whitt regime (2-1) as in a centralized queueing arrangement. It it important
though to observe a subtle but fundamental difference in the distributional properties due
to the distributed versus centralized queueing operation. In the ordinary M/M/N queue a
fraction Π?

W (ˇ) of the customers incur a non-zero waiting time as N ! 1, but a non-
zero waiting time is only of length 1/(ˇ

p
N ) in expectation. In contrast, under the JSQ

policy, the fraction of tasks that experience a non-zero waiting time is only of the order
O(1/

p
N ). However, such tasks will have to wait for the duration of a residual service

time, yielding a waiting time of the order O(1).

3.4 Heavy-traffic limits for JSQ(d) policies. Finally, we briefly discuss the behavior
of JSQ(d ) policies for fixed d in a heavy-traffic regime where (N � �(N ))/�(N ) !

ˇ > 0 as N ! 1 with �(N ) a positive function diverging to infinity. Note that the
case �(N ) =

p
N corresponds to the Halfin-Whitt heavy-traffic regime (2-1). While a
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complete characterization of the occupancy process for fixed d has remained elusive so far,
significant partial results were recently obtained by Eschenfeldt and Gamarnik [2016]. In
order to describe the transient asymptotics, we introduce the following rescaled processes
Q̄N

i (t) := (N � QN
i (t))/�(N ), i = 1; 2; : : :.

Then, for suitable initial states, on any finite time interval, fQ̄N (t)gt�0 converges
weakly to a deterministic system fQ̄(t)gt�0 that satisfies the following system of ODEs

(3-8)
dQ̄i (t)

dt
= �d [Q̄i (t) � Q̄i�1(t)] � [Q̄i (t) � Q̄i+1(t)]; i = 1; 2; : : : ;

with the convention that Q̄0(t) � 0.
It is noteworthy that the scaled occupancy process loses its diffusive behavior for

fixed d . It is further shown in Eschenfeldt and Gamarnik [ibid.] that with high proba-
bility the steady-state fraction of queues with length at least logd (N /�(N ))� !(1) tasks
approaches unity, which in turn implies that with high probability the steady-state delay is
at least logd (N/�(N )) � O(1) as N ! 1. The diffusion approximation of the JSQ(d )
policy in the Halfin-Whitt regime (2-1), starting from a different initial scaling, has been
studied by Budhiraja and Friedlander [2017]. Recently, Ying [2017] introduced a broad
framework involving Stein’s method to analyze the rate of convergence of the scaled
steady-state occupancy process of the JSQ(2) policy when �(N ) = N ˛ with ˛ > 0:8.
The results in Ying [ibid.] establish that in steady state, most of the queues are of size
log2(N /�(N )) + O(1); and thus the steady-state delay is of order log2(N /�(N )).

3.5 Universality properties. We now further explore the trade-off between delay per-
formance and communication overhead as a function of the diversity parameter d , in con-
junction with the relative load. The latter trade-off will be examined in an asymptotic
regime where not only the total task arrival rate �(N ) grows with N , but also the di-
versity parameter depends on N , and we write d (N ), to explicitly reflect that. We will
specifically investigate what growth rate of d (N ) is required, depending on the scaling
behavior of �(N ), in order to asymptotically match the optimal performance of the JSQ
policy and achieve a zero mean waiting time in the limit. The results presented in this
section are based on Mukherjee, Borst, van Leeuwaarden, and Whiting [2016c], unless
specified otherwise.

Theorem 3.1. (Universality fluid limit for JSQ(d (N ))) If d (N ) ! 1 as N ! 1, then
the fluid limit of the JSQ(d (N )) scheme coincides with that of the ordinary JSQ policy
given by the dynamical system in (3-5). Consequently, the stationary occupancy states
converge to the unique fixed point in (3-6).

Theorem 3.2. (Universality diffusion limit for JSQ(d (N ))) If d (N )/(
p

N logN ) ! 1,
then for suitable initial conditions the weak limit of the sequence of processes

˚
Q̄d(N )(t)

	
t�0
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n(N)+1

Figure 4: CJSQ(n(N )) scheme. High-level view of the CJSQ(n(N )) class of
schemes, where as in Figure 3, the servers are arranged in nondecreasing order of
their queue lengths, and the arrival must be assigned through the left tunnel.

coincides with that of the ordinary JSQ policy, and in particular, is given by the system of
SDEs in (3-7).

The above universality properties indicate that the JSQ overhead can be lowered by
almost a factor O(N ) and O(

p
N / logN ) while retaining fluid- and diffusion-level opti-

mality, respectively. In other words, Theorems 3.1 and 3.2 thus reveal that it is sufficient
for d (N ) to grow at any rate and faster than

p
N logN in order to observe similar scaling

benefits as in a corresponding centralizedM/M/N queue on fluid scale and diffusion scale,
respectively. The stated conditions are in fact close to necessary, in the sense that if d (N )

is uniformly bounded and d (N )/(
p

N logN ) ! 0 as N ! 1, then the fluid-limit and
diffusion-limit paths of the system occupancy process under the JSQ(d (N )) scheme differ
from those under the ordinary JSQ policy, respectively. In particular, if d (N ) is uniformly
bounded, the mean steady-state delay does not vanish asymptotically as N ! 1.

High-level proof idea. The proofs of both Theorems 3.1 and 3.2 rely on a stochastic
coupling construction to bound the difference in the queue length processes between the
JSQ policy and a scheme with an arbitrary value of d (N ). This S-coupling (‘S’ stands for
server-based) is then exploited to obtain the fluid and diffusion limits of the JSQ(d (N ))
policy under the conditions stated in Theorems 3.1 and 3.2.

A direct comparison between the JSQ(d (N )) scheme and the ordinary JSQ policy is
not straightforward, which is why the CJSQ(n(N )) class of schemes is introduced as an
intermediate scenario to establish the universality result. Just like the JSQ(d (N )) scheme,
the schemes in the class CJSQ(n(N )) may be thought of as “sloppy” versions of the JSQ
policy, in the sense that tasks are not necessarily assigned to a server with the shortest
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Figure 5: Asymptotic equivalence relations. The equivalence structure is depicted
for various intermediate load balancing schemes to facilitate the comparison be-
tween the JSQ(d (N )) scheme and the ordinary JSQ policy.

queue length but to one of the n(N ) + 1 lowest ordered servers, as graphically illustrated
in Figure 4. In particular, for n(N ) = 0, the class only includes the ordinary JSQ policy.
Note that the JSQ(d (N )) scheme is guaranteed to identify the lowest ordered server, but
only among a randomly sampled subset of d (N ) servers. In contrast, a scheme in the
CJSQ(n(N )) class only guarantees that one of the n(N ) + 1 lowest ordered servers is
selected, but across the entire pool ofN servers. It may be shown that for sufficiently small
n(N ), any scheme from the class CJSQ(n(N )) is still ‘close’ to the ordinary JSQ policy.
It can further be proved that for sufficiently large d (N ) relative to n(N ) we can construct
a scheme called JSQ(n(N ); d (N )), belonging to the CJSQ(n(N )) class, which differs
‘negligibly’ from the JSQ(d (N )) scheme. Therefore, for a ‘suitable’ choice of d (N ) the
idea is to produce a ‘suitable’ n(N ). This proof strategy is schematically represented in
Figure 5.

In order to prove the stochastic comparisons among the various schemes, the many-
server system is described as an ensemble of stacks, in a way that two different ensembles
can be ordered. This stack formulation has also been considered in the literature for estab-
lishing the stochastic optimality properties of the JSQ policy Sparaggis, Towsley, and Cas-
sandras [1994], Towsley [1995], and Towsley, Sparaggis, and Cassandras [1992]. How-
ever, it is only through the stack arguments developed in Mukherjee, Borst, van Leeuwaar-
den, andWhiting [2016c] that the comparison results can be extended to any scheme from
the class CJSQ.

4 Blocking and infinite-server dynamics

The basic scenario that we have focused on so far involved single-server queues. In this
section we turn attention to a systemwith parallel server pools, each withB servers, where
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B can possibly be infinite. As before, tasks must immediately be forwarded to one of the
server pools, but also directly start execution or be discarded otherwise. The execution
times are assumed to be exponentially distributed, and do not depend on the number of
other tasks receiving service simultaneously. The current scenario will be referred to as
‘infinite-server dynamics’, in contrast to the earlier single-server queueing dynamics.

As it turns out, the JSQ policy has similar stochastic optimality properties as in the case
of single-server queues, and in particular stochastically minimizes the cumulative num-
ber of discarded tasks Sparaggis, Towsley, and Cassandras [1993], Johri [1989], Menich
[1987], and Menich and Serfozo [1991]. However, the JSQ policy also suffers from a
similar scalability issue due to the excessive communication overhead in large-scale sys-
tems, which can be mitigated through JSQ(d ) policies. Results of Turner [1998] and re-
cent papers by Karthik, Mukhopadhyay, and Mazumdar [2017], Mukhopadhyay, Karthik,
Mazumdar, and Guillemin [2015], Mukhopadhyay, Mazumdar, and Guillemin [2015], and
Xie, Dong, Lu, and Srikant [2015] indicate that JSQ(d ) policies provide similar “power-of-
choice” gains for loss probabilities. It may be shown though that the optimal performance
of the JSQ policy cannot be matched for any fixed value of d .

Motivated by these observations, we explore the trade-off between performance and
communication overhead for infinite-server dynamics. We will demonstrate that the op-
timal performance of the JSQ policy can be asymptotically retained while drastically re-
ducing the communication burden, mirroring the universality properties described in Sec-
tion 3.5 for single-server queues. The results presented in the remainder of the section
are extracted from Mukherjee, Borst, van Leeuwaarden, and Whiting [2016a], unless in-
dicated otherwise.

4.1 Fluid limit for JSQ policy. As in Section 3.2, for any fluid state q 2 S, denote
by m(q) = minfi : qi+1 < 1g the minimum queue length among all servers. Now if
m(q) = 0, then define p0(m(q)) = 1 and pi (m(q)) = 0 for all i = 1; 2; : : :. Otherwise,
in case m(q) > 0, define

(4-1) pi (q) =

(
min

˚
m(q)(1 � qm(q)+1)/�; 1

	
for i = m(q) � 1;

1 � pm(q)�1(q) for i = m(q);

and pi (q) = 0 otherwise. As before, the coefficient pi (q) represents the instantaneous
fraction of incoming tasks assigned to servers with a queue length of exactly i in the fluid
state q 2 S.

Any weak limit of the sequence of processes fqN (t)gt�0 is given by the deterministic
system fq(t)gt�0 satisfying the following of differential equations

(4-2)
d+qi (t)

dt
= �pi�1(q(t)) � i(qi (t) � qi+1(t)); i = 1; 2; : : : ;
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where d+/dt denotes the right-derivative.
Equations (4-1) and (4-2) are to be contrasted with Equations (3-4) and (3-5). While the

form of (4-1) and the evolution equations (4-2) of the limiting dynamical system remains
similar to that of (3-4) and (3-5), respectively, an additional factor m(q) appears in (4-1)
and the rate of decrease in (4-2) now becomes i(qi � qi+1), reflecting the infinite-server
dynamics.

LetK := b�c and f := ��K denote the integral and fractional parts of �, respectively.
It is easily verified that, assuming � < B , the unique fixed point of the dynamical system
in (4-2) is given by

(4-3) q?
i =

8<: 1 i = 1; : : : ; K

f i = K + 1

0 i = K + 2; : : : ; B;

and thus
PB

i=1 q?
i = �. This is consistent with the results in Mukhopadhyay, Karthik,

Mazumdar, and Guillemin [2015], Mukhopadhyay, Mazumdar, and Guillemin [2015], and
Xie, Dong, Lu, and Srikant [2015] for fixed d , where taking d ! 1 yields the same fixed
point. The fixed point in (4-3), in conjunction with an interchange of limits argument,
indicates that in stationarity the fraction of server pools with at least K + 2 and at most
K � 1 active tasks is negligible as N ! 1.

4.2 Diffusion limit for JSQ policy. As it turns out, the diffusion-limit results may be
qualitatively different, depending on whether f = 0 or f > 0, and we will distinguish
between these two cases accordingly. Observe that for any assignment scheme, in the
absence of overflow events, the total number of active tasks evolves as the number of jobs
in an M/M/1 system, for which the diffusion limit is well-known. For the JSQ policy, it
can be established that the total number of server pools with K � 2 or less and K + 2 or
more tasks is negligible on the diffusion scale. If f > 0, the number of server pools with
K �1 tasks is negligible as well, and the dynamics of the number of server pools withK or
K+1 tasks can then be derived from the known diffusion limit of the total number of tasks
mentioned above. In contrast, if f = 0, the number of server pools with K �1 tasks is not
negligible on the diffusion scale, and the limiting behavior is qualitatively different, but
can still be characterized. We refer to Mukherjee, Borst, van Leeuwaarden, and Whiting
[2016a] for further details.

4.3 Universality of JSQ(d) policies in infinite-server scenario. As in Section 3.5, we
now further explore the trade-off between performance and communication overhead as
a function of the diversity parameter d (N ), in conjunction with the relative load. We will
specifically investigate what growth rate of d (N ) is required, depending on the scaling
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behavior of �(N ), in order to asymptotically match the optimal performance of the JSQ
policy.

Theorem 4.1. (Universality fluid limit for JSQ(d (N ))) If d (N ) ! 1 as N ! 1, then
the fluid limit of the JSQ(d (N )) scheme coincides with that of the ordinary JSQ policy
given by the dynamical system in (4-2). Consequently, the stationary occupancy states
converge to the unique fixed point in (4-3).

In order to state the universality result on diffusion scale, define in casef > 0, f (N ) :=

�(N ) � K(N ),

Q̄
d(N )
i (t) :=

N � Q
d(N )
i (t)

p
N

(i � K);

Q̄
d(N )
K+1 (t) :=

Q
d(N )
K+1 (t) � f (N )

p
N

;

Q̄
d(N )
i (t) :=

Q
d(N )
i (t)
p

N
� 0 (i � K + 2);

and otherwise, if f = 0, assume (KN � �(N ))/
p

N ! ˇ 2 R as N ! 1, and define

Q̂
d(N )
K�1 (t) :=

K�1X
i=1

N � Q
d(N )
i (t)

p
N

;

Q̂
d(N )
K (t) :=

N � Q
d(N )
K (t)

p
N

;

Q̂
d(N )
i (t) :=

Q
d(N )
i (t)
p

N
� 0 (i � K + 1):

Theorem 4.2 (Universality diffusion limit for JSQ(d (N ))). Assume

d (N )/(
p

N logN ) ! 1

Under suitable initial conditions
(i) If f > 0, then Q̄

d(N )
i (�) converges to the zero process for i ¤ K + 1, and Q̄

d(N )
K+1 (�)

converges weakly to the Ornstein-Uhlenbeck process satisfying the SDE dQ̄K+1(t) =

�Q̄K+1(t)dt +
p
2�dW (t), where W (�) is the standard Brownian motion.

(ii) If f = 0, then Q̂
d(N )
K�1 (�) converges weakly to the zero process, and

(Q̂
d(N )
K (�); Q̂

d(N )
K+1 (�)) converges weakly to (Q̂K(�); Q̂K+1(�)), described by the unique
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solution of the following system of SDEs:

dQ̂K(t) =
p
2KdW (t) � (Q̂K(t) + KQ̂K+1(t))dt + ˇdt + dV1(t)

dQ̂K+1(t) = dV1(t) � (K + 1)Q̂K+1(t)dt;

where W (�) is the standard Brownian motion, and V1(�) is the unique nondecreasing pro-
cess satisfying

R t

0 1[Q̂K(s)�0]dV1(s) = 0.

Given the asymptotic results for the JSQ policy in Sections 4.1 and 4.2, the proofs of
the asymptotic results for the JSQ(d (N )) scheme in Theorems 4.1 and 4.2 involve estab-
lishing a universality result which shows that the limiting processes for the JSQ(d (N ))

scheme are ‘g(N )-alike’ to those for the ordinary JSQ policy for suitably large d (N ).
Loosely speaking, if two schemes are g(N )-alike, then in some sense, the associated sys-
tem occupancy states are indistinguishable on g(N )-scale.

The next theorem states a sufficient criterion for the JSQ(d (N )) scheme and the ordi-
nary JSQ policy to be g(N )-alike, and thus, provides the key vehicle in establishing the
universality result.
Theorem 4.3. Let g : N ! R+ be a function diverging to infinity. Then the JSQ policy
and the JSQ(d (N )) scheme are g(N )-alike, with g(N ) � N , if (i) d (N ) ! 1 for

g(N ) = O(N ), (ii) d (N )
�

N
g(N )

log
�

N
g(N )

���1
! 1 for g(N ) = o(N ).

The proof of Theorem 4.3 relies on a novel coupling construction, called T-coupling
(‘T’ stands for task-based), which will be used to (lower and upper) bound the differ-
ence of occupancy states of two arbitrary schemes. This T-coupling Mukherjee, Borst,
van Leeuwaarden, and Whiting [2016a] is distinct from and inherently stronger than the
S-coupling used in Section 3.5 in the single-server queueing scenario. Note that in the cur-
rent infinite-server scenario, the departures of the ordered server pools cannot be coupled,
mainly since the departure rate at the mth ordered server pool, for some m = 1; 2; : : : ; N ,
depends on its number of active tasks. The T-coupling is also fundamentally different from
the coupling constructions used in establishing the weak majorization results in Winston
[1977], Sparaggis, Towsley, and Cassandras [1994], Towsley [1995], Towsley, Sparaggis,
and Cassandras [1992], and Weber [1978] in the context of the ordinary JSQ policy in the
single-server queueing scenario, and in Sparaggis, Towsley, and Cassandras [1993], Johri
[1989], Menich [1987], and Menich and Serfozo [1991] in the scenario of state-dependent
service rates.

5 Universality of load balancing in networks

In this section we return to the single-server queueing dynamics, and extend the universal-
ity properties to network scenarios, where theN servers are assumed to be inter-connected
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by some underlying graph topology GN . Tasks arrive at the various servers as indepen-
dent Poisson processes of rate �, and each incoming task is assigned to whichever server
has the smallest number of tasks among the one where it arrives and its neighbors in GN .
Thus, in case GN is a clique, each incoming task is assigned to the server with the shortest
queue across the entire system, and the behavior is equivalent to that under the JSQ policy.
The stochastic optimality properties of the JSQ policy thus imply that the queue length
process in a clique will be better balanced and smaller (in a majorization sense) than in an
arbitrary graph GN .

Besides the prohibitive communication overhead discussed earlier, a further scalability
issue of the JSQ policy arises when executing a task involves the use of some data. Storing
such data for all possible tasks on all servers will typically require an excessive amount of
storage capacity. These two burdens can be effectively mitigated in sparser graph topolo-
gies where tasks that arrive at a specific server i are only allowed to be forwarded to a
subset of the servers Ni . For the tasks that arrive at server i , queue length information
then only needs to be obtained from servers in Ni , and it suffices to store replicas of the
required data on the servers in Ni . The subset Ni containing the peers of server i can be
naturally viewed as its neighbors in some graph topology GN . In this section we focus on
the results in Mukherjee, Borst, and van Leeuwaarden [2017] for the case of undirected
graphs, but most of the analysis can be extended to directed graphs.

The above model has been studied in Gast [2015] and Turner [1998], focusing on cer-
tain fixed-degree graphs and in particular ring topologies. The results demonstrate that
the flexibility to forward tasks to a few neighbors, or even just one, with possibly shorter
queues significantly improves the performance in terms of the waiting time and tail dis-
tribution of the queue length. This resembles the “power-of-choice” gains observed for
JSQ(d ) policies in complete graphs. However, the results in Gast [2015] and Turner
[1998] also establish that the performance sensitively depends on the underlying graph
topology, and that selecting from a fixed set of d � 1 neighbors typically does not match
the performance of re-sampling d � 1 alternate servers for each incoming task from the
entire population, as in the power-of-d scheme in a complete graph.

If tasks do not get served and never depart but simply accumulate, then the scenario
described above amounts to a so-called balls-and-bins problem on a graph. Viewed from
that angle, a close counterpart of our setup is studied in Kenthapadi and Panigrahy [2006],
where in our terminology each arriving task is routed to the shortest of d � 2 randomly
selected neighboring queues.

The key challenge in the analysis of load balancing on arbitrary graph topologies is
that one needs to keep track of the evolution of number of tasks at each vertex along with
their corresponding neighborhood relationship. This creates a major problem in construct-
ing a tractable Markovian state descriptor, and renders a direct analysis of such processes
highly intractable. Consequently, even asymptotic results for load balancing processes on
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an arbitrary graph have remained scarce so far. The approach in Mukherjee, Borst, and
van Leeuwaarden [2017] is radically different, and aims at comparing the load balancing
process on an arbitrary graph with that on a clique. Specifically, rather than analyzing the
behavior for a given class of graphs or degree value, the analysis explores for what types
of topologies and degree properties the performance is asymptotically similar to that in a
clique. The proof arguments in Mukherjee, Borst, and van Leeuwaarden [ibid.] build on
the stochastic coupling constructions developed in Section 3.5 for JSQ(d ) policies. Specif-
ically, the load balancing process on an arbitrary graph is viewed as a ‘sloppy’ version of
that on a clique, and several other intermediate sloppy versions are constructed.

Let Qi (GN ; t) denote the number of servers with queue length at least i at time t ,
i = 1; 2; : : :, and let the fluid-scaled variables qi (GN ; t) := Qi (GN ; t)/N be the cor-
responding fractions. Also, in the Halfin-Whitt heavy-traffic regime (2-1), define the
centered and diffusion-scaled variables Q̄1(GN ; t) := �(N � Q1(GN ; t))/

p
N and

Q̄i (GN ; t) := Qi (GN ; t)/
p

N for i = 2; 3; : : :, analogous to (3-1).

The next definition introduces two notions of asymptotic optimality.

Definition 5.1 (Asymptotic optimality). A graph sequence G = fGN gN�1 is called
‘asymptotically optimal on N -scale’ or ‘N -optimal’, if for any � < 1, the scaled oc-
cupancy process (q1(GN ; �); q2(GN ; �); : : :) converges weakly, on any finite time interval,
to the process (q1(�); q2(�); : : :) given by (3-5).

Moreover, a graph sequenceG = fGN gN�1 is called ‘asymptotically optimal on
p

N -
scale’ or ‘

p
N -optimal’, if in the Halfin-Whitt heavy-traffic regime (2-1), on any finite

time interval, the process (Q̄1(GN ; �); Q̄2(GN ; �); : : :) converges weakly to the process
(Q̄1(�); Q̄2(�); : : :) given by (3-7).

Intuitively speaking, if a graph sequence is N -optimal or
p

N -optimal, then in some
sense, the associated occupancy processes are indistinguishable from those of the sequence
of cliques on N -scale or

p
N -scale. In other words, on any finite time interval their occu-

pancy processes can differ from those in cliques by at most o(N ) or o(
p

N ), respectively.

5.1 Asymptotic optimality criteria for deterministic graph sequences. We now de-
velop a criterion for asymptotic optimality of an arbitrary deterministic graph sequence
on different scales. We first introduce some useful notation, and two measures of well-
connectedness. Let G = (V; E) be any graph. For a subset U � V , define ർඈආ(U ) :=

jV n N [U ]j to be the set of all vertices that are disjoint from U , where N [U ] := U [ fv 2

V : 9 u 2 U with (u; v) 2 Eg. For any fixed " > 0 define

(5-1) ൽංඌ1(G; ") := sup
U�V;jU j�"jV j

ർඈආ(U ); ൽංඌ2(G; ") := sup
U�V;jU j�"

p
jV j

ർඈආ(U ):
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The next theorem provides sufficient conditions for asymptotic optimality on N -scale
and

p
N -scale in terms of the above two well-connectedness measures.

Theorem 5.2. For any graph sequence G = fGN gN�1, (i) G is N -optimal if for any
" > 0, ਉਓ1(GN ; ")/N ! 0 as N ! 1. (ii) G is

p
N -optimal if for any " > 0,

ਉਓ2(GN ; ")/
p

N ! 0 as N ! 1.

The next corollary is an immediate consequence of Theorem 5.2.

Corollary 5.3. Let G = fGN gN�1 be any graph sequence. Then (i) If dmin(GN ) =

N � o(N ), then G is N -optimal, and (ii) If dmin(GN ) = N � o(
p

N ), then G is
p

N -
optimal.

Wenowprovide a sketch of themain proof arguments for Theorem 5.2 as used inMukher-
jee, Borst, and van Leeuwaarden [2017], focusing on the proof ofN -optimality. The proof
of

p
N -optimality follows along similar lines. First of all, it can be established that if a

system is able to assign each task to a server in the set SN (n(N )) of the n(N ) nodes with
shortest queues, where n(N ) is o(N ), then it is N -optimal. Since the underlying graph is
not a clique however (otherwise there is nothing to prove), for any n(N ) not every arriv-
ing task can be assigned to a server in SN (n(N )). Hence, a further stochastic comparison
property is proved in Mukherjee, Borst, and van Leeuwaarden [ibid.] implying that if on
any finite time interval of length t , the number of tasks ∆N (t) that are not assigned to a
server in SN (n(N )) is oP (N ), then the system is N -optimal as well. The N -optimality
can then be concluded when∆N (t) is oP (N ), which is demonstrated inMukherjee, Borst,
and van Leeuwaarden [ibid.] under the condition that ൽංඌ1(GN ; ")/N ! 0 as N ! 1 as
stated in Theorem 5.2.

5.2 Asymptotic optimality of random graph sequences. Next we investigate how
the load balancing process behaves on random graph topologies. Specifically, we aim to
understand what types of graphs are asymptotically optimal in the presence of randomness
(i.e., in an average-case sense). Theorem 5.4 below establishes sufficient conditions for
asymptotic optimality of a sequence of inhomogeneous random graphs. Recall that a graph
G0 = (V 0; E 0) is called a supergraph of G = (V; E) if V = V 0 and E � E 0.

Theorem 5.4. Let G = fGN gN�1 be a graph sequence such that for each N , GN =

(VN ; EN ) is a super-graph of the inhomogeneous random graph G0N where any two ver-
tices u; v 2 VN share an edge with probability pN

uv .

(i) If inf fpN
uv : u; v 2 VN g is !(1/N ), then G is N -optimal.

(ii) If inf fpN
uv : u; v 2 VN g is !(log(N )/

p
N ), then G is

p
N -optimal.
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The proof of Theorem 5.4 relies on Theorem 5.2. Specifically, if GN satisfies condi-
tions (i) and (ii) in Theorem 5.4, then the corresponding conditions (i) and (ii) in Theo-
rem 5.2 hold.

As an immediate corollary to Theorem 5.4 we obtain an optimality result for the se-
quence of Erdős–Rényi random graphs.

Corollary 5.5. Let G = fGN gN�1 be a graph sequence such that for each N , GN is a
super-graph of ERN (p(N )), and d (N ) = (N � 1)p(N ). Then (i) If d (N ) ! 1 as
N ! 1, then G is N -optimal. (ii) If d (N )/(

p
N logN ) ! 1 as N ! 1, then G is

p
N -optimal.

The growth rate condition for N -optimality in Corollary 5.5 (i) is not only sufficient,
but necessary as well. Thus informally speaking, N -optimality is achieved under the
minimum condition required as long as the underlying topology is suitably random.

6 Token-based load balancing

While a zero waiting time can be achieved in the limit by sampling only d (N ) = o(N )

servers as Sections 3.5, 4 and 5 showed, even in network scenarios, the amount of com-
munication overhead in terms of d (N ) must still grow with N . As mentioned earlier,
this can be avoided by introducing memory at the dispatcher, in particular maintaining a
record of only vacant servers, and assigning tasks to idle servers, if there are any, or to a
uniformly at random selected server otherwise. This so-called Join-the-Idle-Queue (JIQ)
scheme Badonnel and Burgess [2008] and Lu, Xie, Kliot, Geller, Larus, and Greenberg
[2011] can be implemented through a simple token-based mechanism generating at most
one message per task. Remarkably enough, even with such low communication overhead,
the mean waiting time and the probability of a non-zero waiting time vanish under the JIQ
scheme in both the fluid and diffusion regimes, as we will discuss in the next two sections.

6.1 Asymptotic optimality of JIQ scheme. We first consider the fluid limit of the JIQ
scheme. Let qN

i (1) be a random variable denoting the process qN
i (�) in steady state. It

was proved in Stolyar [2015] for the JIQ scheme (under very broad conditions),

(6-1) qN
1 (1) ! �; qN

i (1) ! 0 for all i � 2; as N ! 1:

The above equation in conjunction with the PASTA property yields that the steady-state
probability of a non-zero wait vanishes as N ! 1, thus exhibiting asymptotic optimality
of the JIQ scheme on fluid scale.

We now turn to the diffusion limit of the JIQ scheme.
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Theorem 6.1. (Diffusion limit for JIQ) In the Halfin-Whitt heavy-traffic regime (2-1),
under suitable initial conditions, the weak limit of the sequence of centered and diffusion-
scaled occupancy process in (3-1) coincides with that of the ordinary JSQ policy given by
the system of SDEs in (3-7).

The above theorem implies that for suitable initial states, on any finite time interval,
the occupancy process under the JIQ scheme is indistinguishable from that under the JSQ
policy. The proof of Theorem 6.1 relies on a coupling construction as described in greater
detail in Mukherjee, Borst, van Leeuwaarden, and Whiting [2016b]. The idea is to com-
pare the occupancy processes of two systems following JIQ and JSQ policies, respectively.
Comparing the JIQ and JSQ policies is facilitated when viewed as follows: (i) If there is an
idle server in the system, both JIQ and JSQ perform similarly, (ii) Also, when there is no
idle server and only O(

p
N ) servers with queue length two, JSQ assigns the arriving task

to a server with queue length one. In that case, since JIQ assigns at random, the probability
that the task will land on a server with queue length two and thus JIQ acts differently than
JSQ is O(1/

p
N ). Since on any finite time interval the number of times an arrival finds

all servers busy is at most O(
p

N ), all the arrivals except an O(1) of them are assigned in
exactly the same manner in both JIQ and JSQ, which then leads to the same scaling limit
for both policies.

6.2 Multiple dispatchers. So far we have focused on a basic scenario with a single
dispatcher. Since it is not uncommon for LBAs to operate across multiple dispatchers
though, we consider in this section a scenario with N parallel identical servers as before
and R � 1 dispatchers. (We will assume the number of dispatchers to remain fixed as
the number of servers grows large, but a further natural scenario would be for the number
of dispatchers R(N ) to scale with the number of servers as considered by Mitzenmacher
[2016], who analyzes the case R(N ) = rN for some constant r , so that the relative load
of each dispatcher is �r .) Tasks arrive at dispatcher r as a Poisson process of rate ˛r�N ,
with ˛r > 0, r = 1; : : : ; R,

PR
r=1 ˛r = 1, and � denoting the task arrival rate per server.

For conciseness, we denote ˛ = (˛1; : : : ; ˛R), and without loss of generality we assume
that the dispatchers are indexed such that ˛1 � ˛2 � � � � � ˛R.

When a server becomes idle, it sends a token to one of the dispatchers selected uni-
formly at random, advertising its availability. When a task arrives at a dispatcher which
has tokens available, one of the tokens is selected, and the task is immediately forwarded
to the corresponding server.

We distinguish two scenarios when a task arrives at a dispatcher which has no tokens
available, referred to as the blocking and queueing scenario respectively. In the blocking
scenario, the incoming task is blocked and instantly discarded. In the queueing scenario,
the arriving task is forwarded to one of the servers selected uniformly at random. If the
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selected server happens to be idle, then the outstanding token at one of the other dispatchers
is revoked.

In the queueing scenario we assume � < 1, which is not only necessary but also suf-
ficient for stability. Denote by B(R; N; �; ˛) the steady-state blocking probability of an
arbitrary task in the blocking scenario. Also, denote by W (R; N; �; ˛) a random vari-
able with the steady-state waiting-time distribution of an arbitrary task in the queueing
scenario.

Scenarios withmultiple dispatchers have received limited attention in the literature, and
the scant papers that exist Lu, Xie, Kliot, Geller, Larus, and Greenberg [2011], Mitzen-
macher [2016], and Stolyar [2017] almost exclusively assume that the loads at the various
dispatchers are strictly equal. In these cases the fluid limit, for suitable initial states, is the
same as that for a single dispatcher, and in particular the fixed point is the same, hence,
the JIQ scheme continues to achieve asymptotically optimal delay performance with min-
imal communication overhead. As one of the few exceptions, van der Boor, Borst, and
van Leeuwaarden [2017b] allows the loads at the various dispatchers to be different.

Results for blocking scenario. For the blocking scenario, it is established in van der
Boor, Borst, and van Leeuwaarden [ibid.] that,

B(R; N; �; ˛) ! maxf1 � R˛R; 1 � 1/�g as N ! 1:

This result shows that in the many-server limit the system performance in terms of block-
ing is either determined by the relative load of the least-loaded dispatcher, or by the aggre-
gate load. This indirectly reveals that, somewhat counter-intuitively, it is the least-loaded
dispatcher that throttles tokens and leaves idle servers stranded, thus acting as bottleneck.

Results for queueing scenario. For the queueing scenario, it is shown in van der Boor,
Borst, and van Leeuwaarden [ibid.] that, for fixed � < 1

E[W (R; N; �; ˛)] !
�2(R; �; ˛)

1 � �2(R; �; ˛)
as N ! 1;

where �2(R; �; ˛) = 1 �
1��

Pr?

i=1 ˛i

1��r?/R
, with r? = sup

˚
r
ˇ̌
˛r > 1

R

1��
Pr

i=1 ˛i

1��r/R

	
, may be

interpreted as the rate at which tasks are forwarded to randomly selected servers.

When the arrival rates at all dispatchers are strictly equal, i.e., ˛1 = � � � = ˛R = 1/R,
the above results indicate that the stationary blocking probability and the mean waiting
time asymptotically vanish as N ! 1, which is in agreement with the observations
in Stolyar [2017] mentioned above. However, when the arrival rates at the various dis-
patchers are not perfectly equal, so that ˛R < 1/R, the blocking probability and mean
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waiting time are strictly positive in the limit, even for arbitrarily low overall load and an
arbitrarily small degree of skewness in the arrival rates. Thus, the ordinary JIQ scheme
fails to achieve asymptotically optimal performance for heterogeneous dispatcher loads.

In order to counter the above-described performance degradation for asymmetric dis-
patcher loads, van der Boor, Borst, and van Leeuwaarden [2017b] proposes two enhance-
ments. Enhancement A uses a non-uniform token allotment: When a server becomes idle,
it sends a token to dispatcher r with probability ˇr . Enhancement B involves a token ex-
change mechanism: Any token is transferred to a uniformly randomly selected dispatcher
at rate �. Note that the token exchange mechanism only creates a constant communication
overhead per task as long as the rate � does not depend on the number of servers N , and
thus preserves the scalability of the basic JIQ scheme.

The above enhancements can achieve asymptotically optimal performance for suitable
values of the ˇr parameters and the exchange rate �. Specifically, the stationary blocking
probability in the blocking scenario and the mean waiting time in the queueing scenario
asymptotically vanish as N ! 1, upon using Enhancement A with ˇr = ˛r or Enhance-
ment B with � �

�
1��

(˛1R � 1).

7 Redundancy policies and alternative scaling regimes

In this section we discuss somewhat related redundancy policies and alternative scaling
regimes and performance metrics.

Redundancy-d policies. So-called redundancy-d policies involve a somewhat similar
operation as JSQ(d ) policies, and also share the primary objective of ensuring low delays
Ananthanarayanan, Ghodsi, Shenker, and Stoica [2013] and Vulimiri, Godfrey, Mittal,
Sherry, Ratnasamy, and Shenker [2013]. In a redundancy-d policy, d � 2 candidate
servers are selected uniformly at random (with or without replacement) for each arriving
task, just like in a JSQ(d ) policy. Rather than forwarding the task to the server with the
shortest queue however, replicas are dispatched to all sampled servers.

Two common options can be distinguished for abortion of redundant clones. In the
first variant, as soon as the first replica starts service, the other clones are abandoned.
In this case, a task gets executed by the server which had the smallest workload at the
time of arrival (and which may or may not have had the shortest queue length) among the
sampled servers. This may be interpreted as a power-of-d version of the Join-the-Smallest
Workload (JSW) policy discussed in Section 2.5. In the second option the other clones of
the task are not aborted until the first replica has completed service (which may or may
not have been the first replica to start service). While a task is only handled by one of the
servers in the former case, it may be processed by several servers in the latter case.
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Conventional heavy traffic. It is also worth mentioning some asymptotic results for the
classical heavy-traffic regime as described in Section 2.2 where the number of servers N

is fixed and the relative load tends to one in the limit. The papers Foschini and Salz [1978],
Reiman [1984], and Zhang, Hsu, and Wang [1995] establish diffusion limits for the JSQ
policy in a sequence of systems with Markovian characteristics as in our basic model set-
up, but where in the K-th system the arrival rate is K� + �̂

p
K, while the service rate of

the i -th server is K�i + �̂i

p
K, i = 1; : : : ; N , with � =

PN
i=1 �i , inducing critical load

as K ! 1. It is proved that for suitable initial conditions the queue lengths are of the
order O(

p
K) over any finite time interval and exhibit a state-space collapse property.

Atar, Keslassy, and Mendelson [n.d.] investigate a similar scenario, and establish dif-
fusion limits for three policies: the JSQ(d ) policy, the redundancy-d policy (where the
redundant clones are abandoned as soon as the first replica starts service), and a combined
policy called Replicate-to-Shortest-Queues (RSQ) where d replicas are dispatched to the
d -shortest queues.

Non-degenerate slowdown. Asymptotic results for the so-called non-degenerate slow-
down regime described in Section 2.2 where N � �(N ) !  > 0 as the number of
servers N grows large, are scarce. Gupta and Walton [2017] characterize the diffusion-
scaled queue length process under the JSQ policy in this asymptotic regime. They further
compare the diffusion limit for the JSQ policywith that for a centralized queue as described
above as well as several LBAs such as the JIQ scheme and a refined version called Idle-
One-First (I1F), where a task is assigned to a server with exactly one task if no idle server
is available and to a randomly selected server otherwise.

It is proved that the diffusion limit for the JIQ scheme is no longer asymptotically
equivalent to that for the JSQ policy in this asymptotic regime, and the JIQ scheme fails
to achieve asymptotic optimality in that respect, as opposed to the behavior in the large-
capacity and Halfin-Whitt regimes discussed in Section 2.7. In contrast, the I1F scheme
does preserve the asymptotic equivalence with the JSQ policy in terms of the diffusion-
scaled queue length process, and thus retains asymptotic optimality in that sense.

Sparse-feedback regime. As described in Section 2.7, the JIQ scheme involves a com-
munication overhead of at most one message per task, and yet achieves optimal delay
performance in the fluid and diffusion regimes. However, even just one message per task
may still be prohibitive, especially when tasks do not involve big computational tasks, but
small data packets which require little processing.

Motivated by the above issues, van der Boor, Borst, and van Leeuwaarden [2017a]
proposes a novel class of LBAs which also leverage memory at the dispatcher, but allow
the communication overhead to be seamlessly adapted and reduced below that of the JIQ
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scheme. Specifically, in the proposed schemes, the various servers provide occasional
queue status notifications to the dispatcher, either in a synchronous or asynchronous fash-
ion. The dispatcher uses these reports to maintain queue estimates, and forwards incoming
tasks to the server with the lowest queue estimate. The results in van der Boor, Borst, and
van Leeuwaarden [2017a] demonstrate that the proposed schemes markedly outperform
JSQ(d ) policies with the same number of d � 1 messages per task and they can achieve
a vanishing waiting time in the limit when the update frequency exceeds �/(1 � �). In
case servers only report zero queue lengths and suppress updates for non-zero queues, the
update frequency required for a vanishing waiting time can in fact be lowered to just �,
matching the one message per task involved in the JIQ scheme.

Scaling of maximum queue length. So far we have focused on the asymptotic behavior
of LBAs in terms of the number of servers with a certain queue length, either on fluid scale
or diffusion scale, in various regimes as N ! 1. A related but different performance
metric is the maximum queue length M (N ) among all servers as N ! 1. Luczak
and McDiarmid [2006] showed that for fixed d � 2 the steady-state maximum queue
length M (N ) under the JSQ(d ) policy is given by log(log(N ))/ log(d ) + O(1) and is
concentrated on at most two adjacent values, whereas for purely random assignment (d =

1), it scales as log(N )/ log(1/�) and does not concentrate on a bounded range of values.
This is yet a further manifestation of the “power-of-choice” effect.

The maximum queue length M (N ) is the central performance metric in balls-and-bins
models where arriving items (balls) do not get served and never depart but simply accumu-
late in bins, and (stationary) queue lengths are not meaningful. In fact, the very notion of
randomized load balancing and power-of-d strategies was introduced in a balls-and-bins
setting in the seminal paper by Azar, Broder, Karlin, and Upfal [1999].
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MATHEMATICAL MODELS OF COLLECTIVE DYNAMICS
AND SELF-ORGANIZATION
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Abstract

In this paper, we beginning by reviewing a certain number of mathematical chal-
lenges posed by the modelling of collective dynamics and self-organization. Then,
we focus on two specific problems, first, the derivation of fluid equations from parti-
cle dynamics of collective motion and second, the study of phase transitions and the
stability of the associated equilibria.

Data statement: No new data were collected in the course of this research.
Conflict of interest: The authors declare that they have no conflict of interest.

1 Overview

Fascinating examples of collective motion can be observed in nature, such as insect
swarms Bazazi, Buhl, Hale, Anstey, Sword, Simpson, and Couzin [2008] and Khuong,
Theraulaz, Jost, Perna, andGautrais [2011], bird flocks Lukeman, Li, and Edelstein-Keshet
[2010], fish schools Aoki [1982], Degond and Motsch [2008b, 2011], Domeier and Colin
[1997], Gautrais, Jost, Soria, Campo, Motsch, Fournier, Blanco, and Theraulaz [2009],
and Gautrais, Ginelli, Fournier, Blanco, Soria, Chaté, and Theraulaz [2012], or in social
phenomena, such as the spontaneous formation of lanes in pedestrian crowds Moussaid
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et al. [2012]. Similarly, at the microscopic scale, collective bacterial migration is fre-
quently observed Czirók, Ben-Jacob, Cohen, and Vicsek [1996] and collective cell migra-
tion occurs during organism development Shraiman [2005] or healing Poujade, Grasland-
Mongrain, Hertzog, Jouanneau, Chavrier, Ladoux, Buguin, and Silberzan [2007]. Such
systems ofmany autonomous agents locally interactingwith each other are able to generate
large-scale structures of sizes considerably exceeding the perception range of the agents.
These large-scale structures are not directly encoded in the interaction rules between the
individuals, which are usually fairly simple. They spontaneously emerge when a large
number of individuals collectively interact Vicsek and Zafeiris [2012]. This is referred to
as “emergence”.

Emergence is a sort of bifurcation, or phase transition. In physics, phase transitions are
dramatic changes of the system state consecutive to very small changes of some parame-
ters, such as the temperature. In self-organized systems, the role of temperature is played
by the noise level associated to the random component of the motion of the agents. For
instance, in road traffic, the presence of drivers with erratic behavior can induce the for-
mation of stop-and-go waves leading to a transition from fluid to congested traffic. Here,
an increase of temperature (the random behavior of some agents) leads to a sudden block-
age of the system. This is an example of the so-called “freezing-by-heating” phenomenon
Helbing, Farkas, and Vicsek [2000] also observed in pedestrian crowds and a signature of
the paradoxical and unconventional behavior of self-organized systems.

Another parameter whichmay induce phase transitions is the density of individuals. An
increase of this density is very often associated with an increase of the order of the system
Vicsek, Czirók, Ben-Jacob, Cohen, and Shochet [1995]. For instance, the spontaneous
lane formation in pedestrian crowds only appears when the density is high enough. This
increase of order with the density is another paradoxical phenomenon in marked contrast
with what is observed in more classical physical systems where an increase of density is
generally associated with an increase of temperature, i.e. of disorder (this can be observed
when pumping air into a bicycle tire: after using it, the pump core has heated up).

The passage between two different phases is called a critical state. In physical systems,
critical states appear only for well-chosen ranges of parameters. For instance, at ambient
pressure, liquid water passes to the gaseous state at the temperature of 100 ıC. In self-
organized systems, by contrast, critical states are extremely robust: they appear almost
systematically, whatever the initial conditions of the system. In dynamical systems terms,
the critical state is an attractor. The presence of critical states which are attractors of the
dynamics is called “Self-Organized Criticality” Bak, Tang, and Wiesenfeld [1987] and its
study is important in physics.
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We shall focus on models of collective dynamics and self-organization that provide a
prediction from an initial state of the system. These are stated as Cauchy problems for ap-
propriate systems of differential equations. The modelling of self-organization meets im-
portant scientific and societal challenges. There are environmental and societal stakes: for
instance, better understanding the behavior of a gregarious species can lead to improved
conservation policies ; modelling human crowds improves the security, efficiency and
profitability of public areas ; understanding collective cell migration opens new paradigms
in cancer treatment or regenerative medicine. There are also technological stakes: roboti-
cists use social interaction mechanisms to geer fleets of robots or drones ; architects study
social insect nests to look for new sustainable architecture ideas.

Large systems of interacting agents (aka particles) are modelled at different levels of
detail. The most detailed models are particle models (aka individual-based or agent-based
models). They describe the position and state of any single agent (particle) of the system
as it evolves in time through its interactions with the other agents and the environment.
This leads to large coupled systems of ordinary or stochastic differential equations (see an
example in Vicsek, Czirók, Ben-Jacob, Cohen, and Shochet [1995]). When the number of
particles is large, these systems are computationally intensive as their cost increases poly-
nomially with the number of particles. Additionally their output is not directly exploitable
as we are only interested in statistical averages (e.g. the pressure in a gas) and requires
some post-processing which can generate errors.

For this reason, continuum models are often preferred Toner and Tu [1998]. They
consist of partial differential equations for averaged quantities such as the mean density
or mean velocity of the agents. However, in the literature, a rigorous and systematic link
between particle and continuum models is rarely found. Yet, establishing such a link is
important. Indeed, often, the microscopic behavior of the agents is not well-known and
is the actual target. On the other hand, large-scale structures are more easily accessible to
experiments and can be used to calibrate continuummodels. But to uncover the underlying
individual behavior requires the establishment of a rigorous correspondence between the
two types of models. Our goal is precisely to provide methodologies to establish this
correspondence.

To derive continuummodels from particle models rigorously requires a coarse-graining
methodology. There are two steps of coarsening. The first step consists of deriving a
“kinetic model”, which provides the time evolution of the probability distribution of the
agents in position and state spaces. The equation for this kinetic distribution can be de-
rived from the particle model, however not in closed form unless one assumes a strong
hypothesis named “propagation of chaos” which means statistical independence between
the particles. This hypothesis is generally wrong but admittedly, becomes asymptotically
valid as the particle number tends to infinity. To prove such a result is a very difficult
task and until recently Gallagher, Saint-Raymond, and Texier [2013] and Mischler and
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Mouhot [2013], the only available result one was due to Lanford for the Boltzmann model
Lanford [1976]. Kinetic models are differential or integro-differential equations posed on
a large dimensional space such as the Boltzmann or Fokker-Planck equations.

The second step of coarsening consists of reducing the description of the system to
a few macroscopic averages (or moments) such as the density or the mean velocity as
functions of position and time. The resulting fluid models are systems of nonlinear partial
differential equations such as the Euler or Navier-Stokes equations. Fluid models are
derived by averaging out the state variable of kinetic models (such as the particle velocity)
to only keep track of the spatio-temporal dependence. Here again, a closure assumption is
needed, by which one postulates a known shape of the distribution function as functions
of its fluid moments. It can be justified in the hydrodynamic regime when the kinetic
phenomena precisely bring the distribution function close to the postulated one. Providing
a rigorous framework to these approaches is the core subject of “kinetic theory”, whose
birthdate is the statement of his 6th problem by Hilbert in his 1900 ICM address. Since
then, kinetic theory has undergone impressive developments, with Field’s medals awarded
to P. L. Lions and C. Villani for works in this theory.

It is therefore appealing to apply kinetic theory methods to collective dynamics and
self-organization. However, this has proved more delicate than anticipated and fascinating
new mathematical questions have emerged from these difficulties. A first difficulty is that
kinetic models may lose validity as propagation of chaos may simply be not true. Indeed,
self-organization supposes the build-up of correlations between the particles. It is not clear
that these correlations disappear with the number of particles tending to infinity. We have
indeed proved (with E. Carlen and B. Wennberg Carlen, Degond, and Wennberg [2013])
in a simple collective dynamics model that propagation of chaos may break down at large
temporal scales. Are there new models that can replace the defective kinetic equations
when propagation of chaos breaks down ? Some phenomenological answers have been
proposed but to the best of our knowledge, no mathematical theory is available yet.

A second difficulty arises at the passage between kinetic and fluid models. In classical
physics, a fundamental concept is that of conservation law (such as mass, momentum or
energy conservations). These conservation laws are satisfied at particle level and so, are
transferred to the macroscopic scale and serve as corner stone in the derivation of fluid
equations. By contrast, biological or social systems are open systems which exchange
momentum and energy with the outside world and have no reason to satisfy such conser-
vation laws. This is a major difficulties as acknowledged in Vicsek’s review Vicsek and
Zafeiris [2012]. In a series of works initiated in Degond and Motsch [2008a], we have
overcome this problem and shown that some weaker conservation laws which we named
“generalized collision invariants (GCI)” prevail. They enabled us to derive fluid models
showing new and intringuing properties. Their mathematical study is still mostly open.
We will provide more details in Section 2.
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The third difficulty is linked to the ubiquity of phase transitions in self-organized sys-
tems. This puts a strong constraint on fluid models which must be able to correctly de-
scribe the various phases and their interfaces. Complex phenomena like hysteresis Couzin,
Krause, James, Ruxton, and Franks [2002], which results from the presence of multiple
stable equilibria and involves the time-history of the system, must also be correctly ren-
dered. However, different phases are described by types of fluid models. For instance,
in symmetry-breaking phase transitions, the disordered phase is described by a parabolic
equation while the ordered phase is described by a hyperbolic equation Degond, Frouvelle,
and Liu [2013, 2015]. At the critical state, these two phases co-exist and should be related
by transmission conditions through phase boundaries. These transmission conditions are
still unknown. More about phase transitions can be found in Section 3 and references Bar-
baro and Degond [2014] and Frouvelle and Liu [2012]. Convergence to swarming states
for the Cucker-Smale model Cucker and Smale [2007] has been extensively studied in
the mathematical literature Carrillo, Fornasier, Rosado, and Toscani [2010], Ha and Liu
[2009], Ha and Tadmor [2008], Motsch and Tadmor [2011], and Shen [2007/08], as well
as for related models Chuang, D’Orsogna, Marthaler, Bertozzi, and Chayes [2007].

We have used symmetry-breaking phase transitions in a surprising context: to design
automatized fertility tests for ovine sperm samples Creppy, Plouraboué, Praud, Druart,
Cazin, Yu, and Degond [2016]. Other types of phase transition play important roles. One
of them is the packing transition which occurs when finite size particles reach densities
at which they are in contact with each other. This transition occurs for instance in can-
cer tumors Leroy-Lerêtre, Dimarco, Cazales, Boizeau, Ducommun, Lobjois, and Degond
[2017], crowds Degond and Hua [2013] and Degond, Hua, and Navoret [2011], road traf-
fic Berthelin, Degond, Delitala, and Rascle [2008], herds Degond, Navoret, Bon, and
Sanchez [2010] or tissue self-organization Peurichard, Delebecque, Lorsignol, Barreau,
Rouquette, Descombes, Casteilla, and Degond [2017]. Another example is the transition
from a continuum to a network, and is at play for instance in the emergence of ant-trail net-
works Boissard, Degond, and Motsch [2013] and Haskovec, Markowich, Perthame, and
Schlottbom [2016]. For such systems, many challenges remain such as the derivation of
macroscopic models.

In the forthcoming sections, we will focus on two specific aspects: the derivation of
fluid models in spite of the lack of conservations relations (Section 2) and the investigation
of phase transitions (Section 3).

2 Derivation of fluid models
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2.1 The Vicsek model. We start with the description of particle models of collective
behavior. As an example, we introduce the Vicsek model Vicsek, Czirók, Ben-Jacob, Co-
hen, and Shochet [1995] (see relatedmodels in Bertin, Droz, andGrégoire [2009], Degond,
Manhart, and Yu [2017], and Ginelli, Peruani, Bär, and Chaté [2010]). It considers sys-
tems of self-propelled particles moving with constant speed (here supposed equal to 1 for
notational simplicity) and interacting with their neighbors through local alignment. Such
a model describes the dynamics of bird flocks and fish schools Vicsek and Zafeiris [2012].
It is written in the form of the following stochastic differential system:

dXi (t) = Vi (t)dt;(2-1)

dVi (t) = PVi (t)? ı (Fi (t) dt +
p
2 �dB i

t );(2-2)

Fi (t) = � Ui (t); Ui (t) =
Ji (t)

jJi (t)j
; Ji (t) =

X
j j jXj (t)�Xi (t)j�R

Vj (t):(2-3)

Here, Xi (t) 2 Rd is the position of the i -th particle (with i 2 f1; : : : ; N g), Vi (t) 2 Sd�1

is its velocity direction. B i
t are standard independent Brownian motions in Rd describing

idiosyncratic noise i.e. noise specific to each agent and
p
2 � is a constant and uniform

noise intensity. Fi is the alignment force acting on the particles: it is proportional to the
mean orientation Ui (t) 2 Sd�1 of the agents around agent i , with a constant and uniform
multiplication factor � encoding the alignment force intensity. Ui (t) itself is obtained
by normalizing the total momentum Ji (t) of the agents belonging to a ball of radius R
centered at the position Xi (t) of agent i . The normalization of Ji (t) (i.e. its division by
jJi (t)j where j � j denotes the euclidean norm) makes only sense if Ji (t) 6= 0, which we
assume here. The projection PVi (t)? onto fVi (t)g

? is there to maintain Vi (t) of unit norm
and is a matrix given by PV ?

i
= Id � Vi ˝ Vi where Id is the identity matrix of Rd and

˝ denotes the tensor product. The Stochastic Differential Equation (2-2) is understood in
the Stratonovich sense, hence the symbol ı, so that the noise term provides a Brownian
motion on the sphere Sd�1 Hsu [2002]. Equation (2-2) models two antagonist effects
acting on the particles: the alignment force (the first term) which has a focusing effect and
the noise (the second term) which has a defocusing effect. The original model proposed
in Vicsek, Czirók, Ben-Jacob, Cohen, and Shochet [1995] is a time-discretized variant of
this model.
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Next, we present the kinetic model corresponding to this discrete model. It is written:

@tf + rx � (vf ) = rv �
�

� (Pv? Ff )f + � rvf
�
;(2-4)

Ff (x; t) = � Uf (x; t); Uf (x; t) =
Jf (x; t)

jJf (x; t)j
;(2-5)

Jf (x; t) =

Z
jy�xj�R

Z
Sd�1

f (y;w; t)w dw dy;(2-6)

where f = f (x; v; t) is the particle distribution function and is a function of the position
x 2 Rd , velocity v 2 Sd�1 and time t > 0, rv stands for the nabla operator on the sphere
Sd�1 and Pv? is the projection operator on fvg?. f (x; v; t) represents the probability
density of particles in the (x; v) space. The left-hand side of (2-4) describes motion of the
particles in physical space with speed v, while the right-hand sidemodels the contributions
of the alignment force Ff and of velocity diffusion (with diffusion coefficient � ) induced
byBrownian noise at the particle level. The construction of the force term follows the same
principles as for the discrete model, with Ff (x; t), Uf (x; t), Jf (x; t) replacing Fi (t),
Ui (t), Ji (t). The sum of the velocities over neighboring particles in the computation of
the momentum (2-3) is replaced by integrals of the velocity weighted by f , with spatial
integration domain being the ball centered at x and of radius R, and velocity integration
domain being the whole sphere Sd�1 (Equation (2-6)). Analysis of this model can be
found in Figalli, Kang, and Morales [2018] and Gamba and Kang [2016]. The passage
from (2-1)-(2-3) to (2-4)-(2-5) is shown in Bolley, Cañizo, and Carrillo [2012], in the
variant where Ji (t) is directly used in (2-2) instead of Fi (t). In the case presented here,
the control of Ji (t) away from zero presents additional difficulties which haven’t been
solved yet.

The macroscopic equations describe a large spatio-temporal scale regime. This regime
is modelled by a time and space rescaling in (2-4)-(2-5) involving a small parameter " � 1

describing the ratio between the micro and the macro scales, which leads to

"
�
@tf

" + rx � (vf ")
�
= rv �

�
� (Pv? Ff ")f " + � rvf

"
�
;(2-7)

Ff (x; t) = � uf (x; t); uf (x; t) =
jf (x; t)

jjf (x; t)j
;(2-8)

jf (x; t) =

Z
Sd�1

f (x;w; t)w dw:(2-9)

The scale change brings a factor " in front of the terms at the left-hand side of (2-7) describ-
ing the motion of the particles in position space. It also localizes the integral describing
the momentum of particles which now only involves an integration with respect to the
velocity w of the distribution at the same location x as the particle onto which the force
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applies (see Equation (2-8)). This is due to the interaction radius R being of order " in
this regime. The expansion of Jf in powers of " leads to (2-8) up to terms of order "2
which are neglected here as not contributing to the final macroscopic model at the end.
The macroscopic model is obtained as the limit " ! 0 of this perturbation problem.

Before stating the result, we introduce the “von Mises Fisher (VMF)” distribution of
orientation u and concentration parameter � where u is an arbitrary vector in Sd�1 and
� 2 [0;1). This distribution denoted byM�u is such that for all v 2 Sd�1:

(2-10) M�u(v) =
1

Z
exp

�
� u � v

�
;

where u � v is the euclidean inner product of u and v and Z is a normalization constant
only depending on �. In Degond and Motsch [2008a], we proved the following formal
theorem

Theorem 2.1. If the solution f " of (2-7), (2-8) has a limit f 0 when " ! 0, it is given by

(2-11) f 0(x; v; t) = �(x; t)M�u(x;t)(v);

where � = �/� and the pair (�; u) satisfies the following “self-organized hydrodynamic”
(SOH) model:

@t� + c1rx � (�u) = 0;(2-12)
�
�
@tu+ c2(u � rxu)

�
+ � Pu?rx� = 0;(2-13)

juj = 1;(2-14)

with the coefficients c1; c2 depending on � and � and Pu? being the projection onto fug?.

The VMF distribution provides a way to extend the concept of Gaussian distribution
to statistical distributions defined on the sphere. The orientation u describes the mean
orientation of the particles while 1/� measures the dispersion of the particles around this
mean. When � is close to zero, the VMF is close to a uniform distribution while when it is
large, it is close to a Dirac delta at u. The theorem states that at large scales, the distribution
function approaches a VMF distribution weighted by the local density �. However, both
� and the orientation u of the VMF depend on position and space and they are determined
by solving the SOH model.

The SOH model is akin to the compressible Euler equations of gas dynamics, but with
some important differences. First, the mean orientation u is constrained to lie on the
sphere as (2-14) shows. The presence of the projection Pu? in (2-13) guarantees that it is
the case as soon as the initial orientation ujt=0 belongs to the sphere. The presence ofPu?
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makes the system belong to the class of non-conservative hyperbolic problems, which are
notoriously difficult (we can show that the model is hyperbolic). Finally, the convection
terms in the two equations are multiplied by different coefficients c1 6= c2, while they
are the same in standard gas dynamics. This is a signature of a non-Galilean invariant
dynamics. Indeed, as the particles are supposed to move with speed 1, there is a preferred
frame in which this speed is measured. In any other Galilean frame this property will be
lost. The mathematical properties of the SOHmodel are open, except for a local existence
result in Degond, Liu, Motsch, and Panferov [2013]. A rigorous proof of Theorem 2.1 has
been given in Jiang, Xiong, and Zhang [2016].

To understand how Theorem 2.1 can be proved, we write (2-7) as

@tf
" + rx � (vf ") =

1

"
Q(f ")(2-15)

Q(f ) = rv �
�

� (Pv? Ff )f + � rvf
�
;(2-16)

with Ff given by (2-8), (2-9). It is readily seen thatQ(f ) can be written as

Q(f ) = Q(f ;uf );(2-17)

where uf is the mean orientation associated with f and is given by (2-8) and where for
any u 2 Sd�1,

Q(f ;u)(v) = � rv �

�
M�u(v)rv

� f (v)

M�u(v)

��
:(2-18)

We note that for a given u 2 Sd�1, the operator Q(�;u) is linear. However, this is not
the linearization ofQ around �M�u as extra terms coming from the variation of uf with
respect to f would appear.

By formally letting " ! 0 in (2-15), we get that f 0 is a solution of Q(f 0) = 0. It is
an easy matter to show that this implies the existence of two functions �(x; t) and u(x; t)
with values in [0;1) and Sd�1 respectively such that (2-11) holds. Indeed, from (2-18)
and Green’s formula, we getZ

Q(f ;u)(v)
f (v)

M�u(v)
dv = �d

Z
M�u(v)

ˇ̌̌
rv

� f (v)

M�u(v)

�ˇ̌̌2
dv � 0:(2-19)

Therefore, if Q(f ;u) = 0, this implies that f (v)
M�u(v)

does not depend on v. The result
follows easily.

To find the equations satisfied by � and u, it is necessary to remove the 1/" singularity
in (2-15), i.e. to project the equation on the slow manifold. In gas dynamics, this is done
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by using the conservations of mass, momentum and energy. Here, the model only enjoys
conservation of mass, which is expressed by the fact thatZ

Q(f ) dv = 0; 8f:(2-20)

Hence, integrating (2-15) with respect to v and using (2-20), we get that

@t�f " + rx � jf " = 0:(2-21)

Letting " ! 0, with (2-11), we get

�f " ! �; jf " ! jf 0 = c1�u;(2-22)

where c1 is the so called order-parameter and is given by

c1 = c1(�) =

Z
M�u(v) (v � u) dv::(2-23)

This leads to (2-12).
We need another equation to find u. In gas dynamics, this is done by using momentum

conservation, which in this context would be expressed by
R
Q(f ) v dv = 0. However,

this equation is not true and the lack of momentum conservation relates to the particles be-
ing self-propelled and therefore, able to extract or release momentum from the underlying
medium. However, in Degond and Motsch [2008a], I showed that weaker forms of con-
servations (named generalized collision invariants or GCI) hold and provide the missing
equation.

More precisely, we define

Definition 2.2. For a given orientation u 2 Sd�1, we define a GCI associated with u as
a function  (v) such thatZ

Q(f ;u)(v) (v) dv = 0; 8f such that Pu?jf = 0:(2-24)

By restricting the set of f to which we request the conservations to apply, we enlarge
the set of candidate GCI  . In Degond and Motsch [ibid.] (see also Frouvelle [2012]), we
show that the following theorem:

Theorem 2.3. The set Cu of GCI associated to a given orientation u is a linear vector
space of dimension d expressed as follows:

Cu = fC + A � Pu?v h(u � v) j C 2 R; A 2 fug
?

g:(2-25)



MODELS OF COLLECTIVE DYNAMICS AND SELF-ORGANIZATION 3953

Here, defining � by cos � = u � v, h is given by

h(cos �) =
g(�)

sin �
; � 2 (0; �);(2-26)

with g being the unique solution of the elliptic problem

�
d

d�

�
sind�2 � e� cos � dg

d�

�
+ (d � 2) sind�4 � e� cos � g = sind�1 � e� cos �(2-27)

in the space

V = fg j (d � 2) sin
d
2 �2 � g 2 L2(0; �); sin

d
2 �1 � g 2 H 1

0 (0; �)g:(2-28)

We recall thatL2(0; �) is the Lebesgue space of square-integrable functions on (0; �) and
H 1

0 (0; �) is the Sobolev space of functions which are in L2(0; �) and whose first order
derivative is in L2(0; �) and which vanish at 0 and � .

The GCI have the remarkable property thatZ
Q(f )Pu?

f
v h(uf � v) dv = 0; 8f:(2-29)

Indeed, Pu?
f
v h(uf � v) is a GCI  associated with uf . Thus, using (2-17), and the

Equation (2-24) of GCI, we getZ
Q(f ) (v) dv =

Z
Q(f; uf ) (v) dv = 0;

as Pu?
f
jf = jjf jPu?

f
uf = 0. Multiplying (2-15) by Pu?

f "
v h(uf " � v), applying (2-29)

with f = f " to cancel the right-hand side of the resulting equation, letting " ! 0 and
using (2-11), we get:

Pu?

Z �
@t + v � rx

�
(�M�u) h(u � v) v dv = 0:(2-30)

After some computations, this equation gives rise to (2-13), where the constant c2 depends
on a suitable moment of the function h.

The GCI concept has provided a rigorous way to coarse-grain a large class of KM
sharing similar structures Degond, Frouvelle, andMerino-Aceituno [2017], Degond, Man-
hart, and Yu [2017], and Degond and Motsch [2011]. As an example, we now consider
the model of Degond, Frouvelle, and Merino-Aceituno [2017] and Degond, Frouvelle,
Merino-Aceituno, and Trescases [2018] where self-propelled agents try to coordinate their
full body attitude. This model is described in the next section.
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2.2 A new model of full body attitude alignment. The microscopic model consid-
ers N agents with positions Xi (t) 2 R3 and associated rotation matrices Ai (t) 2 SO(3)
representing the rotation needed to map a fixed reference frame (e1; e2; e3) to the local
frame (Ai (t) e1, Ai (t) e2, Ai (t) e3) attached to the body of agent i at time t . As the parti-
cle are self-propelled, agent i moves in the direction Ai (t) e1 with unit speed. Agents try
to coordinate their body attitude with those of their neighbors. Following these principles,
the particle model is written:

dXi (t) = Ai (t) e1 dt;(2-31)

dAi (t) = PTAi (t)
ı (Fi (t) dt + 2

p
�dB i

t ); Fi (t) = � Λi (t);(2-32)

Λi (t) = PD(Gi (t)); Gi (t) =
X

j j jXj (t)�Xi (t)j�R

Aj (t):(2-33)

Here, B i
t are standard independent Brownian motions in the linear space of 3�3matrices

(in which SO(3) is isometrically imbedded) describing idiosyncratic noise and 2
p
� is

the noise intensity. Fi is the force that aligns the body attitude of Agent i to the mean
body attitude of the neighbors defined by Λi (t) with a force intensity �. Λi (t) is obtained
by normalizing the matrix Gi (t) constructed as the sum of the rotation matrices of the
neighbors in a ball of radius R centered at the position Xi (t) of Agent i . The normal-
ization is obtained by using the polar decomposition of matrices. We suppose that Gi (t)

is non-singular. Then there exists a unique rotation matrix PD(Gi (t)) and a unique sym-
metric matrix Si (t) such that Gi (t) = PD(Gi (t))Si (t). The quantity PTAi (t)

denotes
the orthogonal projection onto the tangent space TAi (t)to SO(3) at Ai (t) to guarantee that
the dynamics maintains Ai (t) on SO(3). The Stochastic Differential Equation (2-32) is
again understood in the Stratonovich sense, using the symbol ı to highlight this fact. As
a consequence, the noise term provides a Brownian motion on SO(3) as shown in Hsu
[2002]. Note however that the noise intensity is 2

p
� instead of

p
2� as before. This is

because we endow SO(3) with the inner product A �B = 1
2
Tr(ATB), where Tr stands for

the trace and the exponent T for the matrix transpose, which corresponds to the standard
metric on 3 � 3 matrices divided by 2. With this convention, the noise 2

p
� will exactly

yields a diffusion coefficient equal to � in the mean-field limit.
The mean-field model now provides the evolution of the distribution function f =

f (x;A; t) which depends on the position x 2 Rd , rotation matrix A 2 SO(3) and time
t > 0. It is written

@tf + rx � (Ae1f ) = rA �
�

� (PTA
Ff )f + � rAf

�
;(2-34)

Ff (x; t) = � Λf (x; t); Λf (x; t) = PD(Gf (x; t));(2-35)

Gf (x; t) =

Z
jy�xj�R

Z
SO(3)

f (y;B; t)B dB dy;(2-36)
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Here, as pointed out before, rA and rA� stand for the gradient and divergence operators
on SO(3) when endowed with the Riemannian structure induced by the euclidean norm
kAk = 1

2
Tr(ATA). The measure on SO(3) is the Haar measure normalized to be a prob-

ability measure. The passage from (2-31)-(2-33) to (2-34)-(2-36) is open but in a variant
where Gi is used in the expression of Fi instead of Λi , the proof of Bolley, Cañizo, and
Carrillo [2012] is likely to extend rather straightforwardly. In the case presented here, the
control ofGi (t) away from the set of singular matrices presents additional challenges. To
the best of our knowledge, the mathematical theory of this model is nonexistent.

A similar rescaling as in the previous section leads to the following perturbation prob-
lem (dropping terms of order "2):

"
�
@tf

" + rx � (Ae1 f
")

�
= rA �

�
� (PTA

Ff ")f " + � rAf
"
�
;(2-37)

Ff (x; t) = � �f (x; t); �f (x; t) = PD(gf (x; t));(2-38)

gf (x; t) =

Z
SO(3)

f (x;B; t)B dB;(2-39)

where we have denoted by gf the local modification of Gf (involving only values of f
at location x) and �f its associated polar decomposition. This model can be written:

@tf
" + rx � (Ae1 f

") =
1

"
Q(f ")(2-40)

Q(f ) = rA �
�

� (PTA
Ff )f + � rAf

�
(2-41)

with Ff given by (2-38), (2-39). The von Mises distribution is now defined by

(2-42) M�Λ(A) =
1

Z
exp

�
� Λ � A

�
;

where Λ � A is the matrix inner product of Λ and A defined above, � = �/� and Z is a
normalization constant only depending on �. Then,Q(f ) can be written as

Q(f ) = Q(f ;�f );(2-43)

where �f is given by (2-38) and

Q(f ;�)(A) = � rA �

�
M��(A)rA

� f (A)

M��(A)

��
:(2-44)

In the same way as before, as " ! 0, f " ! f 0, where f 0 is a solution of Q(f 0) = 0.
This implies the existence of � = �(x; t) 2 [0;1) and � = �(x; t) 2 SO(3) such that

(2-45) f 0(x;A; t) = �(x; t)M��(x;t)(A):

Now, we define the GCI as follows:
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Definition 2.4. For a body orientation given by the rotation matrix � 2 SO(3), we define
a GCI associated with � as a function  (A) such thatZ

Q(f ;�)(A) (A) dA = 0; 8f such that PTA
gf = 0:(2-46)

Up to now, the above body attitude alignment model could have been written in any
dimension, i.e. for A 2 SO(d ) for any dimension d . The following characterization of
the set of GCI now requires the dimension d to be equal to 3. A characterization like this
in the case of a general dimension d is still an open problem.

Theorem 2.5. The set C� of GCI associated to the body orientation given by the rotation
matrix � 2 SO(3) is a linear vector space of dimension 4 expressed as follows:

C� = fC + P � (�T A) h(� � A) j C 2 R; P 2 Ag;(2-47)

where A denotes the space of antisymmetric 3 � 3 matrices and where h: (0; �) ! R is
the unique solution of

�
d

d�

�
sin2(�/2)m(�)

d

d�

�
sin � h(�)

��
+

1

2
sin � m(�) h(�)

= � sin2(�/2) sin � m(�);(2-48)

in the space

H = fh : (0; �) ! R j

sin � h 2 L2(0; �); sin(�/2)
d

d�
(sin � h) 2 L2(0; �)g:(2-49)

Here, we have denoted by

m(�) =
1

Z
exp

�
� (

1

2
+ cos �)

�
;

where Z is the normalization constant involved in (2-42)

Using this expression of the GCI and the same methodology as in the previous section,
in Degond, Frouvelle, and Merino-Aceituno [2017], we have proved the following:

Theorem 2.6. Suppose that the solution f " of (2-37), (2-38) has a limit f 0 when " ! 0.
Then, f 0 is given by (2-45) where � = �/� and the pair (�; �): (x; t) 2 R3 � [0;1) 7!
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(�; �)(x; t) 2 [0;1) � SO(3) satisfies the following “self-organized hydrodynamics for
body attitude coordination” (SOHB) model:

@t� + c1rx � (� �e1) = 0;(2-50)
�
�
@t�+ c2(�e1 � rx)�

�
+

h
(�e1) �

�
c3 rx� + c4 � rx(�)

�
+ c4 � ıx(�)�e1

i
�
� = 0;(2-51)

with the coefficients c1 to c4 depending on � and � . The quantities rx(�) and ıx(�) are
given by:

ıx(�) = TrfDx(�)g; rx(�) = Dx(�) � Dx(�)
T ;(2-52)

where Dx(�) is the matrix defined, for any vector w 2 R3, as follows:

(w � rx)� = [Dx(�)w]��:(2-53)

Here and above, for a vectorw 2 R3, we denote by [w]� the antisymmetric matrix defined
for any vector z 2 R3 by

[w]�z = w � z;(2-54)

where � denote the cross product of two vectors.

We note that (2-53 ) makes sense as (w �rx)� belongs to the tangent space T� of SO(3)
at � and T� = fP � jP 2 Ag. So, there exists u 2 R3 such that (w � rx)� = [u]� �

and since u depends linearly on w, there exists a matrix Dx(�) such that u = Dx(�)w.
The notation Dx(�) recalls that the coefficients of this matrix are linear combinations of
first order derivatives of �. Using the exponential map, in the neighborhood of any point
x0, we can write (omitting the time-dependence) �(x) = exp

�
[b(x)]�

�
�(x0) where b is

a smooth function from a neighborhood of x0 into R3. It is shown in Degond, Frouvelle,
and Merino-Aceituno [ibid.] that

ıx(�)(x0) = (rx � b)(x0); rx(�)(x0) = (rx � b)(x0);

and thus, ıx(�) and rx(�) can be interpreted as local “divergence” and “curl” of the matrix
field �. We note that (2-51) equally makes sense. Indeed, the expression on the first line
is a derivative of the rotation field � and should consequently belong to T�(x;t). But the
second line has precisely the required structure as it is the product of an antisymmetric
matrix with �. Equation (2-50) is the continuity equation for the density of agents moving
at bulk velocity c1 �e1 so that �e1 describes the fluid direction of motion. Equation (2-51)
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gives the evolution of �. The first line describes transport at velocity c2 �e1 and since
c2 6= c1, the transport of � occurs at a different speed from the transport of mass, as in the
SOH model (2-12), (2-13). The second line describes how � evolves during its transport.
The first term (proportional to rx�) is the action of the pressure gradient and has the effect
of turning the direction of motion away from high density regions. The other two terms
are specific to the body attitude alignment model and do not have their counterpart in the
classical SOH model (2-12), (2-13). The expressions of the coefficients c2 to c4 involve
moments of the function h intervening in the expression of the GCI. The mathematical
theory of the SOHBmodel is entirely open. We note that the above theory can be recast in
the unitary quaternion framework, as done in Degond, Frouvelle, Merino-Aceituno, and
Trescases [2018].

3 Phase transitions

3.1 A Vicsek model exhibiting multiple equilibria. Now, we go back to the Vicsek
model of Section 2.1. More precisely, we consider the kinetic model (2-7)-(2-9) in the
spatially homogeneous case (i.e. we drop all dependences and derivatives with respect to
position x) and with " = 1. However, we are interested in the case where the coefficients
� and � are functions of jjf j. More precisely, we consider the system

@tf (v; t) = Q(f )(v; t);(3-55)

Q(f )(v; t) = rv �
�

� �(jjf (t)j) (Pv? uf (t))f (v; t) + �(jjf (t)j)rvf (v; t)
�
;

(3-56)

uf (t) =
jf (t)

jjf (t)j
; jf (t) =

Z
Sd�1

f (w; t)w dw:(3-57)

For future usage, we introduce the function k(jj j) = �(jj j)
�(jj j)

, as well as Φ the primitive of
k: Φ(r) =

R r

0 k(s) ds. Introducing the free energy

F (f ) =

Z
Sd�1

f (v) logf (v) dv � Φ(jjf j);(3-58)

we find the free energy dissipation inequality

d

dt
F (f )(t) = �D(f )(t);

(3-59)

D(f )(t) = �(jjf (t)j)

Z
Sd�1

f (v; t)
ˇ̌̌
rv

�
f (v; t) � k(jjf (t)j) (v � uf (t))

�ˇ̌̌2
:(3-60)
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In Degond, Frouvelle, and Liu [2015] (see a special case in Degond, Frouvelle, and Liu
[2013]), we first give the proof of the following

Theorem3.1. Given an initial finite nonnegativemeasuref0 in the Sobolev spaceH s(Sd�1),
there exists a unique weak solution f of (3-55) such that f (0) = f0. This solution is
global in time. Moreover, f 2 C 1(R�

+; C
1(Sd�1)), with f (v; t) > 0 for all positive t .

Furethermore, we have the following instantaneous regularity and uniform boundedness
estimates (for m 2 N, the constant C being independent of f0):

kf (t)k2H s+m 6 C

�
1 +

1

tm

�
kf0k

2
H s :

For these solutions, the density �(t) =
R

Sd�1 f (v; t) dv is constant in time, i.e. �(t) = �,
where � =

R
Sd�1 f0(v) dv.

The equilibria, i.e. the solutions ofQ(f ) = 0 are given by �M�u where � is the initial
density as defined in Theorem 3.1 andM�u is still the vonMises Fisher distribution (2-10)
with arbitrary value of u 2 Sd�1. However, now the value of � is found by the resolution
of a fixed-point equation (the consistency condition)

� = k(jj�M�u
j):(3-61)

This equation can be recast by noting that jj�M�u
j = � c1(�) where c1(�) is the order

parameter (2-23). Assuming that the function k: jj j 2 [0;1) 7! k(jj j) 2 [0;1) is
strictly increasing and surjective, we can define its inverse �: � 2 [0;1) 7! �(�) 2 [0;1).
This assumption may be seen as restrictive, but it is easy to remove it at the expense
of more technicalities, which we want to avoid in this presentation. As by definition
�(k(jj j)) = jj j, applying the function � to (3-61), we can recast it in

either � = 0 or
�(�)

c1(�)
= �:(3-62)

Note that for � = 0, the von Mises distribution is the uniform distribution on the sphere.
We will call the corresponding equilibrium, “isotropic equilibrium”. Any von Mises dis-
tribution with � > 0 will be called a “non-isotropic equilibrium”. For a given � > 0, the
vonMises equilibria �M�u form amanifold diffeomorphically parametrized by u 2 Sd�1.
Both � and c1 are increasing functions of � so the ratio �(�)

c1(�)
has no defined monotonicity a

priori. For a given � the number of solutions � of (3-62) depends on the particular choice
of the function k. However, we can state the following proposition:

Proposition 3.2. Let � > 0. We define

�c = lim
�!0

�(�)

c1(�)
; �� = inf

�2(0;1)

�(�)

c1(�)
;(3-63)
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where �c > 0 may be equal to +1. Then we have �c > ��, and

(i) If � < ��, the only solution to (3-62) is � = 0 and the only equilibrium with total
mass � is the uniform distribution f = �.

(ii) If � > ��, there exists at least one positive solution � > 0 to (3-62). It corresponds
to a family f�M�u; u 2 Sd�1g of non-isotropic von Mises equilibria.

(iii) The number of families of nonisotropic equilibria changes as � crosses the thresh-
old �c . Under regularity and non-degeneracy hypotheses, in a neighborhood of �c ,
this number is even when � < �c and odd when � > �c .

Now, the key question is the stability of these equilibria. A first general result can be
established thanks to the La Salle principle:

Proposition 3.3. Let f0 be a positive measure on the sphere Sd�1, with mass �, and
f (t) the associated solution to (3-55). If no open interval is included in the set f� 2

[0;1) j �c(�) = �(�)g, then there exists a solution �1 to (3-62) such that:

lim
t!1

jjf (t)j = �c(�1)(3-64)

and

8s 2 R; lim
t!1

kf (t) � �M�1uf (t)kH s = 0:(3-65)

In other words, under these conditions, the family of equilibria f�M�1u ju 2 Sd�1g

is an !-limit set of the trajectories of (3-55). Now, we study separately the stability of the
isotropic and non-isotropic equilibria.

3.2 Stability of the isotropic equilibria. For the isotropic equilibria, we have the fol-
lowing two propositions:

Proposition 3.4. Let f (t) be the solution to (3-55) associated with initial condition f0 of
mass �. If � > �c , and if jf0

¤ 0, then we cannot have �1 = 0 in Proposition 3.3.

Proposition 3.5. Suppose that � < �c . We define

(3-66) � = (n � 1)�0(1 �
�

�c

) > 0:

Let f0 be an initial condition with mass �, and f the corresponding solution to (3-55).
There exists ı > 0 independent of f0 such that if kf0 � �kH s < ı, then for all t > 0

kf (t) � �kH s 6
kf0 � �kH s

1 �
1
ı
kf0 � �kH s

e��t :
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Proposition 3.4 implies the instability of the uniform equilibria for � > �c (provided
the initial current jf0

does not vanish) as the !-limit set of the trajectories consists of
non-isotropic equilibria. Proposition 3.5 shows the stability of the uniform equilibria for
� < �c in anyH s norm with exponential decay rate given by (3-66). We stress that these
are fully nonlinear stability/instability results.

3.3 Stability of the non-isotropic equilibria. Let � > 0 and � > 0 be such that � is
a solution to (3-62). In addition to the hypotheses made so far on k, we assume that k
is differentiable, with its derivative k0 being itself Lipschitz. The following result shows
that the stability or instability of the non-isotropic equilibria is determined by whether the
function � 7!

�(�)
c1(�)

is strictly increasing or decreasing.

Proposition 3.6. Let � > 0 and � = �(�)
c1(�)

. We denote by F� the value of F (�M�u)

(independent of u 2 Sd�1).

(i) Suppose ( �
c1
)0(�) < 0. Then any equilibrium of the form �M�u is unstable, in the

following sense: in any neighborhood of �M�u, there exists an initial condition f0
such that F (f0) < F� . Consequently, in that case, we cannot have �1 = � in
Proposition 3.3.

(ii) Suppose ( �
c1
)0(�) > 0. Then the family of equilibria f�M�u; u 2 Sd�1g is stable,

in the following sense: for all K > 0 and s > n�1
2

, there exists ı > 0 and C such
that for all f0 with mass � and with kf0kH s 6 K, if kf0 � �M�ukL2 6 ı for
some u 2 Sd�1, then for all t > 0, we have

F (f ) > F� ;

kf � �M�uf
kL2 6 Ckf0 � �M�uf0

kL2 :

Note that the marginal case ( �
c1
)0(�) = 0 is not covered by the above theorem and is

still an open problem. In the stable case, the following proposition provides the rate of
decay to an element of the same family of equilibria:

Theorem 3.7. Suppose ( �
c1
)0(�) > 0. Then, for all s > n�1

2
, there exist constants ı > 0

and C > 0 such that for any f0 with mass � satisfying kf0 � �M�ukH s < ı for some u 2

Sd�1, there exists u1 2 Sd�1 such that

kf � �M�u1
kH s 6 Ckf0 � �M�ukH s e��t ;

where the rate � is given by

(3-67) � =
c1(�) �(�(�))

�0(�)
Λ�

� �
c1

�0
(�):
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The constant Λ� is the best constant for the following weighted Poincaré inequality (see
the appendix of Degond, Frouvelle, and Liu [2013]):

(3-68) hjr!gj
2
iM > Λ�h(g � hgiM )2iM ;

where we have writen hgiM for
R

S g(v)M�u(v) dv.

4 Conclusion

In this short overview, we have surveyed some of the mathematical questions posed by
collective dynamics and self-organization. We have particularly focused on two specific
problems: the derivation of macroscopic models and the study of phase transitions. There
are of course many other fascinating challenges posed by self-organized systems. These
have shown to be an inexhaustible source of problems for mathematicians and a drive for
the invention of new mathematical concepts.
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ALGORITHMS FOR MOTION OF NETWORKS BY
WEIGHTED MEAN CURVATURE
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Abstract
I will report on recent developments in a class of algorithms, known as threshold dy-
namics, for computing the motion of interfaces by mean curvature. These algorithms
try to generate the desired interfacial motion just by alternating two very simple op-
erations: Convolution, and thresholding. They can be extended to the multi-phase
setting of networks of surfaces, and to motion by weighted (anisotropic) mean curva-
ture, while maintaining the simplicity of the original version. These extensions are
relevant in applications such as materials science, where they allow large scale simu-
lation of models for microstructure evolution in polycrystals.

1 Introduction

Wewill discuss algorithms for simulating themotion of a network of intersecting interfaces
inRd , with focus on d = 2 or 3. Mathematically, we describe such a network as the union
of boundaries [N

i=1@Σi of sets ˙ = (Σ1; : : : ;ΣN ) (also called phases) that partition a
domainD � R3 (typically a periodic box) without overlaps or vacuum:

D =

N[
j=1

Σj , and

Σi \ Σj = (@Σi ) \ (@Σj ) for i 6= j:

(1)
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Many applications in science and engineering, ranging from models of microstructural
evolution in polycrystalline materials to segmentation of images in computer vision, entail
variational models with cost functions of the form

(2) E(˙ ) =

NX
i;j=1
i 6=j

Z
(@Σi )\(@Σj )

�i;j (ni;j (x)) dS(x)

Here, dS is the length element in d = 2 or surface area element in d = 3, ni;j (x) for
x 2 (@Σi ) \ (@Σj ) denotes the unit normal from Σi to Σj , and the continuous, even
functions �i;j : Sd�1 ! R+ are the surface tensions associated with the interfaces.

In materials science, energy (2) and its L2 gradient descent dynamics we recall below,
was proposed by Mullins [1956] as a continuum model for grain boundary motion in poly-
crystalline materials – a class that includes most metals and ceramics. In this context, the
sets Σi in (1) represent the space occupied by single crystal pieces (grains) in the material
that differ from one another only in their crystallographic orientations. When the material
is heated, atoms may detach from one grain and attach to a neighbor, leading to the motion
of the boundaries: Some grains grow at the expense of others, leading to many topological
changes in the network as it coarsens; see Figures 1 and 2. There are models that describe
how the surface tensions �i;j are to be determined from the orientations of any two grains
Σi and Σj . The orientations may be chosen e.g. at random at the beginning of a simula-
tion and are typically assumed to remain constant in time. The �i;j turn out to also depend
on the normal to the interface between the two neighboring grains. For this application, it
is therefore important to have numerical algorithms capable of treating the full generality
of model (2).

When �i;j (x) = 1 for all x and i 6= j , energy (2) becomes simply the sum of Eu-
clidean surface areas of the interfaces in the network. In this form, it appears often as part
of variational models in image segmentation, such as the Mumford-Shah model Mumford
and Shah [1989] and its piecewise constant variants Chan and Vese [2001] and Vese and
Chan [2002], where the sets Σi represent the space occupied by distinct objects in a scene.
The goal of image segmentation is then to automatically discover these regions, which
variational models such as Mumford and Shah [1989] exhibit as the minimizer of a cost
function. Perimeter of the unknown sets is penalized in the cost function to control the
level of detail in the segmentation obtained. While gradient flow for suitable approxima-
tions of (2) is certainly often employed to minimize the cost function, in this application
the minimizer rather than the precise evolution required to reach it is of main interest, and
there may be more effective ways than gradient flow to do so.
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It is convenient to extend �i;j as one-homogeneous, continuous functions to all of Rd

as

(3) �(x) = jxj�

�
x

jxj

�
for x 6= 0

in which case well-posedness of model (2) requires them to be also convex. We will in
fact assume that all �i;j have strongly convex and smooth unit balls in this discussion, in
particular staying away from crystalline cases where the unit ball is a polytope.

For d = 2 or 3, we will study approximations for L2 gradient flow of energy (2),
which is known as multiphase weighted mean curvature flow. In three dimensions, for an
x 2 (@Σi )\(@Σj ) away from junctions (where three or more phases meet), normal speed
under this flow is given by

(4) v?(x) = �i;j (ni;j (x))
� �
@2s1�i;j (ni;j (x)) + �i;j (ni;j (x))

�
�1(x)

+
�
@2s2�i;j (ni;j (x)) + �i;j (ni;j (x))

�
�2(x)

�
where �1 and �2 are the two principal curvatures, and @si

denotes differentiation along
the great circle on S2 that passes through n(x) and has as its tangent the i -th principal
curvature direction. The additional factor �i;j is known as the mobility associated with
the interface (@Σi )\ (@Σj ), and may be a anisotropic: �i;j : S2 ! R+. We will assume
that it is smooth and has a one-homogeneous extension to R3 that is a norm. In two
dimensions, (4) simplifies to

(5) v?(x) = �i;j (ni;j (x))
�
� 00

i;j (ni;j (x)) + �i;j (ni;j (x))
�
�(x):

In addition to (4), a condition known as the Herring angle condition Herring [1951]
holds along triple junctions: In three dimensions, at a junction formed by the meeting of
the three phases Σi , Σj , and Σk , this condition reads

(6) (` � ni;j )�i;j (ni;j ) + (` � nj;k)�j;k(nj;k) + (` � nk;i )�k;i (nk;i )

+ nj;i�
0
i;j (ni;j ) + nk;j�

0
j;k(nj;k) + ni;k�

0
k;i (nk;i ) = 0

where ` = nj;k �ni;j is a unit vector tangent to the triple junction, and � 0
i;j (ni;j ) denotes

derivative of �i;j taken on S2 in the direction of the vector `�ni;j . In the isotropic setting,
(6) simplifies to the following more familiar form, known as Young’s law:

(7) �i;jni;j + �j;knj;k + �k;ink;i = 0:

which can be rearranged to determine the angles between interfaces at a triple junction in
terms of their surface tensions. For example, in the simplest case �i;j = 1 for all i 6= j ,
(7) implies all three angles at a triple junction are 120ı.
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Finally, we note that well-posedness of the multiphase energy (2) in its full generality
is complicated Ambrosio and Braides [1990]. At the very least, in addition to convexity,
the �i;j need to satisfy a pointwise triangle inequality

(8) �i;j (n) + �j;k(n) � �i;k(n)

for all distinct i , j , and k, and all n 2 Sd�1. In case the �i;j are positive constants, (8) is
known to be also sufficient for well-posedness of model (2).

2 Isotropic and Equal Surface Tensions

In Merriman, Bence, and Osher [1992, 1994], the authors proposed a remarkably elegant
algorithm for dynamics (Equations (4) and (7)) in the special case that all surface tensions
and mobilities satisfy �i;j (x) = �i;j (x) = 1 for all x and i 6= j . Called threshold
dynamics (also diffusion generated motion), it generates a discrete in time approximation
to the flow from an initial partition ˙ 0 = (Σ0

1; : : : ;Σ
0
N ) as follows:

Algorithm: (from Merriman, Bence, and Osher [1994]): Given a time
step size ıt > 0, alternate the following steps:

1. Convolution:

(9)  k
i = Kp

ıt
� 1Σk

i
:

2. Redistribution:

(10) Σk+1
i =

�
x :  k

i (x) � max
j 6=i

 k
j (x)

�
:

where K is a convolution kernel that has the properties

(11) K(x) 2 L1(Rd ) ; xK(x) 2 L1(Rd ), and K(x) = K(�x)

and the notationK"(x) = "�dK(x/") denotes its rescaled version. In the original papers
Merriman, Bence, and Osher [1992, 1994], the convolution kernel K is chosen to be the
Gaussian

(12) G(x) =
1

(4�)
d
2

exp
�

�
jxj2

4

�
but the intriguing possibility of replacing it with other kernels that may not be radially
symmetric is also suggested.
Benefits of the algorithm include
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Figure 1: A large scale simulation in two dimensions at an earlier (left) and later (right) time
using a variant Elsey, Esedoğlu, and Smereka [2009] of threshold dynamics (Equations (9)
and (10)). This is the isotropic, equal surface tension and mobility case.

1. Unconditional stability: Time step size is restricted only by accuracy considerations.

2. Low per time step cost: Step (9) can be implemented on uniform grids via the fast
Fourier transform atO(M logM ) cost, whereM is the number of grid points. Step
(10) is pointwise and costs even less.

3. All points x 2 D, whether they are in the interior of a phase, on an interface (@Σi )\

(@Σj ), or at a junction, are treated equally: No need to track or even detect surfaces
or junctions. The correct Herring angle condition (all 120ı) is attained automatically
at triple junctions.

4. As in phase field, level set, and other implicit interfacemethods, topological changes
in the network occur with no need for intervention.

These benefits have made it possible to carry out very large scale simulations (hundreds of
thousands of phases) of dynamics (Equations (4) and (6)) in both two and three dimensions
– a capability desired by e.g. materials scientists interested in the statistics of shapes and
sizes of grains during microstructural evolution. See Figures 1 and 2 for sample computa-
tions from Elsey, Esedoğlu, and Smereka [2009, 2011] that used a variant of Equations (9)
and (10), and Barmak et al. [2006] for examples of grain statistics of interest for materials
scientists.
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Figure 2: A large scale simulation in three dimensions using a variant Elsey, Esedoğlu, and
Smereka [2009] of threshold dynamics (Equations (9) and (10)). Only some of the phases
are shown to aid visualization. This is the isotropic, equal surface tension and mobility case.
Taken from Elsey, Esedoğlu, and Smereka [2011].

In the two-phase setting, writing Σ = Σ1 so that Σ2 = D nΣ and takingK = G, steps
(Equations (9) and (10)) can be combined to succinctly read

(13) Σk+1 =

�
x 2 D : Gp

ıt
� 1Σk (x) �

1

2

�
in the original form given in Merriman, Bence, and Osher [1992]. The motivation behind
Equation (13) is an older idea known as the the phase field, or diffuse interface method:
To approximate the motion by mean curvature of the boundary @Σ of a set Σ, one carries
out gradient descent

(14) ut = ∆u �
1

"2
W 0(u)

for the energy

(15)
Z
"

2
jruj

2 +
1

"
W (u) dx

starting with the initial condition u(x; 0) = 1Σ. Here, W is a double well potential with
equal depth wells at 0 and 1, e.g. W (�) = �2(1 � �)2. The second term in (15) is thus a
penalty term that forces u to approximate the characteristic function of a set as " ! 0+,
while the Dirichlet energy term exacts a penalty on the rapid transition across the boundary
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of the set. Following Merriman, Bence, and Osher [ibid.], time splitting Equation (14)
leads to

(16) Step 1: ut = ∆u, followed by Step 2: ut = �
1

"2
W 0(u):

Step 1 explains the convolution with the Gaussian in (13), whereas Step 2 turns to thresh-
olding in the limit " ! 0: Gradient descent for the pointwise energy W (u), represented
by Step 2, ends in either one of the wells 0 or 1 ofW , depending on whose basin of attrac-
tion u starts in. For W (�) = �2(1 � �)2, the basins of attraction are separated by � = 1

2
,

which explains the threshold value of 1
2
in (13).

Unfortunately, this original motivation, based on time splitting the evolutionary PDE
(14), turns out to be an inadequate explanation for even the consistency of threshold dy-
namics. Indeed, (15) Γ-converges to perimeter of sets Modica and Mortola [1977], and
(14) approximates motion by mean curvature Rubinstein, Sternberg, and Keller [1989]
and Evans, Soner, and Souganidis [1992], for e.g. W (�) = �4(1 � �)2 also, the basins
of attraction of which are separated by 2

3
. The naive time splitting idea then suggests

(13) with threshold value 1
2
replaced by 2

3
as an algorithm for motion by mean curvature.

However, a simple truncation error analysis (as in Ruuth [1996]) shows that in the limit
" ! 0+, the resulting dynamics is notmotion by mean curvature. We were lucky above in
choosing aW that is symmetric about its local maximum. This also means that, in general,
one cannot find extensions of threshold dynamics (Equation (13)) to more general flows
simply by time splitting corresponding phase field models and sending " ! 0+.

However, consistency of the two-phase scheme (13) on smooth interfaces can be veri-
fied easily with a simple Taylor expansion. For example, in R2 withK = G, take a point
p 2 @Σ. We may assume that p = 0 and @Σ is given as the graph of a function f near 0
and is tangent to the x-axis there, as shown in Figure 3. Then, according to Mascarenhas
[1992] and Ruuth [1996, 1998b], Taylor expanding f at 0 in the convolution integral of
(13) gives

(17)
�
Gp

ıt
� 1Σ

�
(0; y) =

1

2
�

1
p
4�t

y +

r
t

4�
f 00(0) +O(t)

as t ! 0, provided that y = O(t). Setting (17) to 1
2
as scheme (13) prescribes, and solving

for y (the new position of the interface along the normal direction at present) exhibits the
curvature of the curve as the leading order contribution to normal speed.

The analogue of Taylor expansion (17) for general kernelsK (that need not be radially
symmetric) was given in Ishii, Pires, and Souganidis [1999] in any dimension d . When
K � 0, the two-phase scheme (13) enjoys the following monotonicity property: If two
different evolutions Σk and Ωk are generated by Equation (13) from the two different
initial conditions Σ0 and Ω0, respectively, satisfying the ordering Σ0 � Ω0, the same
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Figure 3: Consistency of the two-phase scheme (13) with curvature motion can be easily
verified with a Taylor expansion.

order is preserved at later times by the algorithm: Σk � Ωk for all k. Combined with the
consistency implied by (17), this comparison principle can be used to prove the conver-
gence of scheme (13) to the viscosity solution of the level-set formulation of motion by
mean curvature; see e.g. Evans [1993], Barles and Georgelin [1995], and Ishii, Pires, and
Souganidis [1999] for the earliest rigorous convergence results for two-phase thresholding
schemes. More recently, Swartz and Yip [2017] does not require the maximum principle
and establishes convergence to the classical solution of two-phase mean curvature motion,
with a rate.

In the multi-phase (N > 2) setting, Ruuth [1996, 1998a] present a truncation error anal-
ysis similar to (17) in the vicinity of a triple junction in order to verify that Equations (9)
and (10) imposes the correct (in this case symmetric, 120ı) Herring angle condition (7).
This analysis also suggests an extension of Equations (9) and (10) to constant (isotropic)
but unequal surface tensions. However, the resulting algorithm is considerably more com-
plicated than the original, and contains some heuristic steps to handle multiple junctions.
A natural, systematic extension of multi-phase threshold dynamics even to constant but
unequal surface tensions (let alone anisotropic ones) was thus unavailable until recently.

3 New Algorithms: Arbitrary Surface Tensions

We will discuss the following questions:

1. What is the analogue of Equations (9) and (10) for:

• Constant but possibly unequal surface tensions �i;j 2 R+, and then
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• The full generality of model (2), where
�

n
2

�
possibly distinct surface tension

and mobility functions are specified?

2. Can we find a convolution kernel K for any given �; � : Sd�1 ! R+ pair? If so,
can we ensure K � 0 (hence two-phase monotonicity) or bK � 0?

Our starting point is a variational interpretation that was given in joint work Esedoğlu
and Otto [2015] with Felix Otto for the original threshold dynamics Equations (9) and (10).
It turns out that there is a systematic way to derive elegant algorithms in the style of Equa-
tions (9) and (10) from certain non-local approximations to perimeter of sets. In the sim-
plest two-phase setting of (13), consider the energy

(18) E"(Σ) =
1

"

Z
Σc

K" � 1Σ dx

Energies of this type and their limit as " ! 0 had been studied previously, e.g. in Alberti
and Bellettini [1998], and with K the Gaussian in Miranda, Pallara, Paronetto, and Pre-
unkert [2007]. Called the “heat content” of the set Σ in Miranda, Pallara, Paronetto, and
Preunkert [ibid.], energies E" converge to a multiple of the Euclidean perimeter of sets in
the sense of Γ-convergence Dal Maso [1993].

As explained in Esedoğlu and Otto [2015], Equation (13) can be recognized as the
solution of the following optimization problem:

(19) Σk+1 = argmin
Σ�D

Ep
ıt
(Σ) +

1
p
ıt

Z
(1Σ � 1Σk )Kp

ıt
� (1Σ � 1Σk ) dx

revealing a previously unknown connection between heat content and threshold dynamics.
For any kernelK with positive Fourier transform bK � 0 (such as theGaussian), the second
term in (19) is easily seen to be positive; it also vanishes at Σ = Σk . It follows that

Ep
ıt
(Σk+1) � Ep

ıt
(Σk);

identifying (18) as a Lyapunov functional for scheme (13).
Moreover, (19) is reminiscent of the minimizing movements De Giorgi [1993] formula-

tion of motion bymean curvature, due to Almgren, Taylor, andWang [1993] and Luckhaus
and Sturzenhecker [1995], the second term in (19) playing the role of the movement lim-
iter. Indeed, it is easily verified on smooth interfaces that it measures (as ıt ! 0) the
squared L2 norm of the normal vector field that is needed to perturb Σk to Σ. Along with
the previously known Γ-convergence of energies (18), formulation (19) thus suggests very
strongly that threshold dynamics (13) carries out gradient flow for approximately the right
energy with respect to approximately the right metric.
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One point is worth repeating: If all we want is a computational method to approximate
the perimeter of a set, energy (18) would be a rather indirect and complicated way of doing
it; certainly there aremore practical and accuratemethods. The reason for our interest is, as
indicated above, these non-local approximations to perimeter turn out to offer a systematic
way of deriving fast and elegant algorithms for curvature motion, such as (13).

3.1 Arbitrary Isotropic Surface Tensions. The following non-local energy is a natural
candidate for approximating the surface area of (@Σi ) \ (@Σj ) in the multiphase setting
of (2), in the same nonlocal style as (18):

(20)
1

"

Z
Σj

K" � 1Σi
dx

WithK the Gaussian, for example, it measures the amount of heat that escapes fromΣi to
Σj , starting from the initial binary temperature distribution 1Σi

, which ought to be related
to the size of the boundary between the two phases. This simple intuition leads us to the
following non-local approximation for the multiphase model (2) in the isotropic case that
all surface tensions �i;j are (possibly different) constants:

(21) E"(˙ ) =
1

"

X
i;j=1
i 6=j

�i;j

Z
Σj

K" � 1Σi
dx:

The analogue for (21) of the minimizing movements step (19) is

(22) ˙ k = argmin
˙

Ep
ıt
(˙ ) �

1
p
ıt

NX
i;j=1
i 6=j

�i;j (1Σj
� 1Σk

j
)Kp

ıt
� (1Σi

� 1Σk
i
) dx

the solution of which is given by the following algorithm from Esedoğlu and Otto [2015]
which is the natural extension of the original threshold dynamics Equations (9) and (10)
to isotropic, unequal surface tensions:
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Algorithm: (from Esedoğlu and Otto [ibid.]): Given a time step size
ıt > 0, alternate the following steps:

1. Convolution:

(23)  k
i = Kp

ıt
�

X
j 6=i

�i;j 1Σk
j
:

2. Redistribution:

(24) Σk+1
i =

�
x :  k

i (x) � min
j 6=i

 k
j (x)

�
:

Equations (23) and (24) reduces to Equations (9) and (10) if �i;j = 1 (i 6= j ). Two
immediate questions concerning the new algorithm are:

1. Do the non-local energies E" in (21) approximate (2)?

2. Does Equations (23) and (24) decrease E"?

Theorem 1. (from Esedoğlu and Otto [ibid.]) LetK be the Gaussian, and let the surface
tensions �i;j satisfy the triangle inequality (8). Then, as " ! 0+, E" Γ-converge to the
appropriate formulation of (2) in terms of sets of finite perimeter.

Whether Ep
ıt
(˙ ) is a Lyapunov functional for scheme (Equations (23) and (24)) ap-

pears to depend (even when bK � 0) on whether the surface tension matrix �i;j is condi-
tionally negative semi-definite, which is known Schoenberg [1938], Avis and Deza [1991],
and Deza and Laurent [1997] to be related to isometric embedding of finite metric spaces
in Euclidean spaces. Based on these references, we conclude Equations (23) and (24)
dissipates energy Equation (21) if

1. There exist p1; : : : ; pN 2 Rk for some k such that �i;j = jpi � pj j1, or

2. There exist p1; : : : ; pN 2 Rk for some k such that �i;j = jpi � pj j22.

The latter is also necessary for the movement limiter in (22) to be positive.
As a more immediately applicable example of allowed surface tensions, let us consider

models of grain boundary motion from materials science. In Read and Shockley [1950],
Read and Shockley describe a well known surface tension model for a two dimensional
material with a square lattice structure. Subsequently, extensions of this model to three
dimensional crystallography were given, see e.g. Holm, Hassold, and Miodownik [2001].
Let the orientations of the grains in the network be g1; : : : ; gN 2 SO(3), describing the
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rotations needed to map a reference cubic lattice to those of the grains. Then, the surface
tension of the interface between grains Σi and Σj is given by

(25) �i;j =

(
�
��

�
1 � log

�
�
��

��
if � < ��

�� if � � ��:
with � = min

r2O
arccos

� tr(rgjg
�1
i ) � 1

2

�
where O is the octahedral group of symmetries of the cube in d = 3, and �� is a cut-off
value. The angle � represents the minimum angle needed to rotate the lattice of grain Σi

to that of grain Σj ; Read and Shockley tell us that �i;j is the specific function shown of
this angle. We have

Theorem 2. (from Esedoğlu and Otto [2015]) Let the surface tensions �i;j be determined
from orientations gi 2 SO(3) of the grains by the Read and Shockley model (25). Then,
movement limiter in (22) is positive, so that energy (21) is a Lyapunov function for Equa-
tions (23) and (24).

Theorems 1 and 2 do not establish convergence of the evolution generated by Equa-
tions (9) and (10) or (23) and (24) to their intended limits. This was recently achieved by
Laux and Otto in Laux and Otto [2016] and Laux and Otto [2017]. In a culmination of
the minimizing movements formulation (22) of threshold dynamics, they obtain the first
convergence result for the multi-phase dynamics generated by thresholding algorithms
(Equations (9) and (10)) and Equations (23) and (24). Roughly speaking, their result says

Theorem 3. (from Laux and Otto [2016]) Given a sequence of ıt ! 0, the piecewise con-
stant in time extensions of the discrete in time approximations generated by Equations (23)
and (24) have a subsequence that converges. If the time integral of their energies converge
to that of the limit, then the limit solves the multi-phase version of the weak formulation
of mean curvature motion given in Luckhaus and Sturzenhecker [1995].

More recently, Laux and Otto [2017] establishes that this limit is a solution of motion
by mean curvature also in Brakke’s sense Brakke [1978]. These are the first rigorous
convergence results on practical numerical algorithms for multi-phase motion by mean
curvature, persisting through possible topological changes.

3.2 Anisotropic SurfaceTensions andMobilities. Generalizations ofMerriman, Bence,
and Osher’s Equations (9) and (10) to anisotropic surface energies had been considered in
a number of works previously, though always in the two-phase setting.

One of the first contributions to the study of Equation (13) with general convolution
kernels K (replacing G) is by Ishii, Pires, and Souganidis [1999], who establish the con-
vergence of the algorithm to the viscosity solution of the equation ut = F (D2u;Du)
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where

(26) F (M;p) =

�Z
p?

K(x) dS(x)

��1 �
1

2

Z
p?

hMx ; xiK(x)dS(x)

�
for p 2 Rd andM a d � d symmetric matrix, provided that K is a positive convolution
kernel with certain additional decay and continuity properties. Positivity of the kernel is
required for the scheme to preserve the comparison principle that applies to the underlying
interfacial motion, and is essential for the viscosity solutions approach taken in Ishii, Pires,
and Souganidis [ibid.] (but the consistency calculation given in the paper applies to more
general – i.e. sign changing – kernels).

Yet Ishii, Pires, and Souganidis [ibid.] does not address the inverse problem of con-
structing a convolution kernel for a given surface tension – mobility pair, which is perhaps
the more practical question. The first contribution in this direction is by Ruuth and Mer-
riman [2000], who propose a construction in R2. They show how to construct a kernel
(characteristic function of a judiciously chosen star shaped domain) that, when used in
(13), would generate a normal speed of the form

(27) v?(x) =
�
f 00

�
�(x)

�
+ f

�
�(x)

��
�(x)

for a desired f : [0; 2� ] ! R+, where �(x) is the angle that the normal at x 2 @Σmakes
with the positive x-axis. However, there are infinitely many surface tension and mobility
pairs (�; �) that correspond to the same f and hence the same normal speed in (27); the
discussion in Ruuth and Merriman [ibid.] does not elucidate what the two factors � and �
are for their kernel construction. This is particularly important in the multi-phase setting,
since surface tensions determine the angles (6) at junctions.

More recently, Bonnetier et. al. Bonnetier, Bretin, and A. Chambolle [2012] have
proposed a construction that works in both R2 and R3. The Fourier transform of their
kernels is explicit in terms of the surface tension:

(28) bK(�) = exp
�
��2(�)

�
:

It turns out that the corresponding mobility satisfies � = � , an important but very spe-
cial case. This construction often yields sign changing kernels, even in two dimensions,
preventing the authors from giving a rigorous proof of convergence. Moreover, as soon
as the anisotropy � does not have an ellipsoid as its unit ball, (28) has a singularity at the
origin, leading to slow decay of K.

The variational formulation (19) of threshold dynamics and its multiphase extension
(22) prove particularly helpful with questions of anisotropy. For example, simply by eval-
uating the limit as " ! 0+ of energy (18) on a set Σ with smooth boundary, we are led to
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the following natural candidate for the surface tension associated with a given kernel K:

(29) �K(n) :=
1

2

Z
Rd

jn � xjK(x) dx:

Likewise, evaluating themovement limiter in the minimizing movements formulation (19)
on smooth interfaces yields the following natural candidate for the mobility associated
with K:

(30)
1

�K(n)
:=

Z
n?

K(x) dS(x):

It can be verified Elsey and Esedoğlu [2017] on smooth interfaces that threshold dynamics
(13) is consistent with the normal speed (4) where � and � in (4) are given by (29) and
(30). Formula (29) can be expressed in terms of the cosine transform T for even functions
on Sd :

(31) �K(n) = T !K :=

Z
Sd�1

!K(x)jn � xj dS(x)

where, according to (29), !K is given by

(32) !K(x) =
1

2

Z 1

0

K(rn)rd dr

!K is known as the generating function of the anisotropy �K . Formula (30) can alterna-
tively be written using the spherical Radon transform Js:

(33)
1

�K

= Js

Z 1

0

K(rn)rd�2 dr:

Also helpful are the following expressions of (29) and (30) in terms of the Fourier trans-
form of the kernel K:

�K(n) = �
1

2�
F. P.

Z
R

bK(n�)

�2
d� , and

�K(n) = 2�

�Z
R

bK(n�) d�

��1

:

(34)

These formulas allow us to draw upon existing results concerning the positivity of inverse
cosine and inverse spherical Radon transforms in the convex geometry literature. For ex-
ample, it is known that the generating function T �1� of an anisotropy � is always positive
in R2, but may be negative for certain anisotropies in R3 Goodey and Weil [1992] and
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Bolker [1969]. Those � for which T �1� is positive have a nice geometric characteriza-
tion: The unit ball of the dual norm, known as the Wulff shape W� of the anisotropy � ,
is a zonoid. Zonoids are convex bodies that are the limits with respect to the Hausdorff
distance of centrally symmetric polytopes each face of which are also centrally symmetric
Goodey and Weil [1992]. For example, in R3, there is a neighborhood of the octahedron
that contains no zonoids. On the other hand, (32) tells us that the corresponding anisotropy
�K of any positive convolution kernel K in threshold dynamics Equation (13) must have
a positive generating function !K and hence has to be zonoidal.

Moreover, it turns out there are restrictions on the attainable mobilities with positive
kernels as well. Via (33), this matter is clearly related to positivity properties of the in-
verse spherical Radon transform J�1

s , which also appears prominently in the convex ge-
ometry literature, especially in the context of the Busemann-Petty problem Busemann and
Petty [1956] and Gardner [1994b]. Indeed, results given in Gardner [1994a] on J�1

s , to-
gether with the foregoing discussion, yields the following limitation of threshold dynamics
schemes (under assumptions on � and � from the Introduction):

For certain surface tensions � in R3, it is not possible to design a threshold
dynamics Equation (13) that preserves the two-phase comparison principle.
In particular, unless the Wulff shape of the anisotropy � is the dilation of a
zonoid by a sphere, there is no monotone threshold dynamics scheme for it.

It is interesting to compare with an alternative approach due to Chambolle and Novaga
M. Chambolle A. N. [2006] for generating weighted motion by mean curvature that was
inspired by threshold dynamics. Their idea is to replace the convolution (9) in the original
Equation (13) with the solution of a nonlinear parabolic PDE:

Threshold Dynamics

Step 1: Convolution:

 k = Kp
ıt

� 1Σk

Step 2: Thresholding:

Σk+1 =

�
x :  k(x) �

1

2

Z
Rd

K(x) dx

�

Nonlinear Threshold Dynamics

Step 1: Nonlinear Diffusion8<: @t 
k = r �

�
�(r k)r�(r k)

�
 k(x; 0) = 1Σk (x):

Step 2: Thresholding:

Σk+1 =

�
x :  k(x; ıt) �

1

2

�
The Chambolle and Novaga scheme preserves the comparison principle for any anisotropy
� , since the nonlinear diffusion equation in Step 1 of their algorithm enjoys this princi-
ple. Their Step 1, however, is more costly than the simple convolution involved in the
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corresponding step of the original threshold dynamics scheme. It thus appears that the
variational formulation (19) along with formulas (Equations (29) and (30)) suggest the
following guideline in searching for diffusion generated motion algorithms with various
desirable properties:

If we want to get away with just convolutions and avoid the costly solution
of nonlinear PDE, we have to give up something: Namely, the two-phase
comparison principle, for certain anisotropies in three dimensions.

Formulas (29) and (30), (32) and (33), and (34) also help explore how to construct
a convolution kernel K to be used in threshold dynamics Equation (13) to generate mo-
tion (4) with a given desired surface tension and mobility pair �; � : Sd�1 ! R+. For
example, we can look for a kernel that in polar coordinates has the form

(35) K(r; �) = ˛(�; �)�(ˇ(�; �)r)

where � : R ! R is any smooth, positive, non-zero function supported in [1; 2]. Substi-
tuting (35) in equations (32) and (33) yields simple, pointwise equations for ˛(�; �) and
ˇ(�; �) in terms of T �1� and J�1

s ( 1
�
) which, in case d = 2, can always be solved with

˛ � 0:

Theorem 4. (from Esedoğlu, Jacobs, and Zhang [2017]) In R2, for any desired surface
tension � : S1 ! R+ and any desired mobility � : S1 ! R+, there exists a smooth,
positive, compactly supported convolution kernel K such that �K and �K given by (29)
and (30) satisfy �K = � and�K = �, so that threshold dynamics Equation (13) generates
the correspondingmotion byweighted curvature (4) and satisfies the comparison principle.
This is also possible in R3, provided that the Wulff shape of � is the dilation of a zonoid
by a sphere.

If we give up the two-phase comparison principle (as we must in general in R3), we
can turn to (34) and look for e.g. kernels of the form

(36) bK(�) = exp
�

� �
�
˛(�)

��
+ exp

�
� �

�
ˇ(�)

��
:

where � : R ! R+ is smooth, even, with �(x) = 0 for jxj � 1 and �(x) = x2 for
jxj � 2. Once again, one gets simple pointwise equations for ˛ and ˇ that can always be
solved Esedoğlu, Jacobs, and Zhang [ibid.], yielding a version of (28) that allows baking
the mobility as well as the surface tension into a kernel with positive Fourier transform.

The immediate analogue of our non-local energies (21) in the multi-phase anisotropic
setting is

(37) E"(˙ ) =
1

"

X
i;j=1
i 6=j

Z
Σj

�
Ki;j

�
"

� 1Σi
dx
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along with the following analogue of Equations (23) and (24):

Algorithm: (from Elsey and Esedoğlu [2017]) Alternate the following
steps:

1. Convolution:

(38)  k
i =

X
j 6=i

�
Ki;j

�
p

ıt
� 1Σk

j
:

2. Thresholding:

(39) Σk+1
i =

�
x :  k

i (x) � min
j 6=i

 k
j (x)

�
:

The
�

n
2

�
surface tensions and mobilities can be baked into the kernels Ki;j by one of the

new constructions (35) or (36). We repeat that in R2, there are infinitely many surface
tension - mobility pairs (�i;j ; �i;j ) corresponding to the same normal speed (5) for each
interface in the network. However, if kernelsK are more stringently chosen by specifying
their surface tensions and mobilities separately via (29) and (30) by e.g. the new kernel
construction (35), numerical experiments show that in addition to achieving the correct
normal speed along interfaces, threshold dynamics attains the correct angle conditions (6)
at junctions, as the variational formulation (22) suggests. Figure 4 shows a three-phase
simulation using (38) and (39) fromEsedoğlu, Jacobs, and Zhang [2017] where the kernels
are constructed via (35) corresponding to the following surface tension-mobility pairs:

�1;2(x1; x2) =
q
x21 + x22 �1;2(x1; x2) = 1;(40)

�1;3(x1; x2) =

r
1

4
x21 + x22 +

r
x21 +

1

4
x22 �1;3(x1; x2) =

2x21 + 3x22

4
p
x21 + x22

(41)

�2;3(x1; x2) =

r
x21 +

25

16
x22 �2;3(x1; x2) = 1:(42)

Although Equations (38) and (39) thus appears to work as expected, we do not know
sufficiently general conditions to be of interest on the surface tensions �i;j that would
ensure an analogue of Theorem 2, guaranteeing dissipation of energy (37). However, we
can come up with slightly slower versions of Equations (38) and (39) for which an ana-
logue of Theorem 2 can be easily shown to hold. The idea is to refresh convolutions more
frequently during the course of a single time step. In the interest of brevity, let us consider
the two-phase setting as an example. The following analogue of the original threshold
dynamics scheme (13) requires two convolutions per time step vs. one:
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Figure 4: Kernels constructed using formulas (29) and (30) for the prescribed (�i;j ; �i;j )
pairs (40), (41), (42), and a sample three-phase simulation: The black curves are the initial
condition, the red curves are by Equations (38) and (39) using the kernels shown, and the blue
curves are a benchmark result using front tracking Bronsard and Wetton [1995] and Kinder-
lehrer, Livshitz, and Taasan [2006] – a very accurate method that can have difficulties with
topological changes. Being able to bake in a target surface tension and mobility of an inter-
face into the convolution kernel of threshold dynamics is a new capability elucidated by the
variational formulation (19) and (22). Taken from Esedoğlu, Jacobs, and Zhang [2017].

Algorithm: (from Esedoğlu and Jacobs [2017]) Alternate the following
steps:

1. 1st Convolution:

(43)  k+ 1
2 = Kp

ıt
� 1Σk

2. 1st Thresholding:

(44) Σk+ 1
2 = Σk

[

�
x :  k+ 1

2 (x) �
1

2

�
:

3. 2nd Convolution:

(45)  k+1 = Kp
ıt

� 1
Σk+1

2

4. 2nd Thresholding:

(46) Σk+1 = Σk+ 1
2 n

�
x :  k+1(x) �

1

2

�
:
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Unlike (13), this slightly more costly version dissipates energy (18) for a much wider class
of convolution kernels, e.g. any kernelK of the formK = f +g where f � 0 andbg � 0.
This additional ease in establishing stability extends to multiple phases, so that similarly
slowed down (but still unconditionally gradient stable) versions of Equations (38) and (39)
are given in Esedoğlu and Otto [2015], Esedoğlu and Jacobs [2017], and Esedoğlu, Jacobs,
and Zhang [2017] under a variety of assumptions on the convolution kernels that include
the new constructions (35) and (36) that allow baking anisotropic surface tensions and
mobilities simultaneously into convolution kernels.
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1 Symmetry and invariance

Physicists and mathematicians have long tried to understand the structure of matter from
a deductive viewpoint. Early examples are Hooke’s Micrographia Hooke [1665] and, in-
spired in part by microscopic observations, Euler’s “Physical investigations on the nature
of the smallest parts of matter” Euler [1745]. As the incredible difficulty of achieving
rigorous results in this direction became better appreciated, the problem was narrowed
to the “crystallization problem”: that is, prove for the simplest models of atomic forces
that the Face-Centered Cubic lattice (FCC, defined below) minimizes the potential en-
ergy. Inspired by the seminal work of Gardner and Radin [1979] and also relying on
recent advances in the calculus of variations, research on the crystallization problem has
achieved significant advances Friesecke and Theil [2002], Theil [2006], and Flatley and
Theil [2015]. In these works the symmetry of the FCC lattice and the invariance of the
underlying equations play a dominant role.

Our purpose is not to survey these advances, but rather to broaden the discussion by
collecting a list of examples in which structure and invariance are intimately related. There
are three benefits: 1) a treasure trove of interesting mathematical problems is revealed, 2)
modern research on nanoscience is given a mathematical perspective, and 2) one realizes
that the subject is more about invariance than structure.

2 The Periodic Table

We start at the most basic level: the Periodic Table of the elements. Most people think
of the crystal structures of the elements in terms of Bravais lattices, and the standard
databases are organized on this basis. ABravais lattice is the infinite set of pointsL(e1; e2; e3) =

f�1e1+�
2e2+�

3e3 : (�1; �2; �3) 2 Z3g, where e1; e2; e3 are linearly independent vectors
in R3 called lattice vectors.

For example, consider lattice vectors e1 = ˛ê1; e2 = ˛ê2 and e3 = ˛(ê1+ ê2+ê3)/2

where ê1; ê2; ê3 = ê1 � ê2 are orthonormal and ˛;  > 0. The constants ˛;  that quantify
the distances between atoms are called lattice parameters. The value  = 1 gives the
Body-Centered Cubic (BCC) lattice. A famous observation of Bain [1924] is that there
is exactly one other choice of  > 0 in which the associated Bravais lattice has cubic
symmetry, that being  =

p
2, which in fact gives the FCC lattice. About half of the

Periodic Table consists of elements whose normal crystal structure at room temperature is
either BCC or FCC. In fact, Bain theorized that best represented phase transformation in
the Periodic Table, BCC!FCC, is achieved by passing  from 1 to

p
2.

How about the other half? To discuss this more precisely, let us remove the last row
of the Periodic Table, atomic numbers 87-118, which are typically radioactive and often
highly unstable, and also number 85 (Astatine), for which there exists much less than 1
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gram in the earth’s crust at any one time and cannot be considered to have a bulk crystal
structure. For definiteness, we take the accepted most common crystal structure at room
temperature, unless the material is not solid at room temperature, in which case we take the
accepted structure at zero temperature. Many (but not all) of the other half are 2-lattices,
i.e., the union of two displaced Bravais lattices made with the same lattice vectors:

(1) fa + L(e1; e2; e3)g [ fb + L(e1; e2; e3)g;

where a ¤ b 2 R3, or equivalently, the periodic extension of two atomic positions a; b
using the periodicity e1; e2; e3. For example, the third most prominent structure in the
Periodic Table is the Hexagonal Close Packed (HCP) lattice for which we can choose
e1 =

p
3˛ê1; e2 =

p
3˛
�
(1/2)ê1 + (

p
3/2)ê2

�
, e3 = 2˛

p
2ê3 and, for example, a =

0; b = ˛ê2 +
p
2˛ê3. Clearly, HCP is not a Bravais lattice, since a + 2(b � a) = 2b

does not belong to (1). HCP accounts for about 1/5 of the Periodic Table. Silicon and
germanium (and carbon) adopt the diamond structure under ordinary conditions, which
is also a 2-lattice. Many layered compounds such as the halogens, carbon (as graphite),
oxygen and nitrogen are also 2-lattices, either as individual layers or as their accepted
layered structures. Altogether, about 1/4 of the elements in the Periodic Table are 2-
lattices. There are also examples that are not crystals at all under ordinary conditions,
such as sulfur (a double ring) and boron (icosahedra, sometimes weakly bonded).

Even if they are not common, we also should mention the celebrated structures of nan-
otechnology: graphene, carbon nanotubes, the fullerines, phosphorene, and themany other
2D materials now under study.

We will explore an alternative way of looking at the Periodic Table, and structure in
general, via the concept of objective strutures James [2006]. In fact the examples men-
tioned above have a common mathematical structure not based on Bravais lattices. An
objective atomic structure (briefly, a 1-OS) has the defining property that each atom “sees
the same environment”. Imagine Maxwell’s demon, sitting on an atom, and looking at
the environment (out to infinity). The demon hops to another atom, reorients itself in a
certain way, and sees exactly the same environment. Mathematically, a set of points in
R3 is given, S = fx1; x2; : : : ; xN g 2 (R3)N , N � 1 (most of the structures mentioned
above are infinite). S is a 1-OS if there are orthogonal transformationsQ1; : : : ;QN such
that

(2) fxi +Qi (xj � x1) : j = 1; : : : ; N g = S for i = 1; : : : ; N:

Again, in words, the structure as viewed from atom 1, xj � x1, undergoes an orthogonal
transformationQi (xj � x1) depending on i , is added back to atom i , xi +Qi (xj � x1),
and the structure is restored. The surprising fact is that nearly all of the structures men-
tioned above, including the 2-lattices and those workhorse structures of nanotechnology,
are examples of 1-OS.
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It is indeed surprising. One would expect that identical environments would require
some kind of isotropy of atomistic forces (for example, pair potentials, with force between
a pair depending only on the distance). But some of the examples above are covalently
bonded with complex electronic structure Banerjee, Elliott, and James [2015]. Evidently,
the property of identical environments is not coincidental. Unsurprisingly, many useful
necessary conditions about equilibrium and stability follow from the definition James
[2006]. However, the basic reason why these structures are so common can be consid-
ered one of the fundamental open questions of atomic structure.

There is a glaring counter-example: atomic number 25, Manganese. In fact, this “most
complex of all metallic elements”Hobbs, Hafner, and Spišák [2003] is (at room tempera-
ture and pressure) a 4-lattice. According to Hobbs et al. Hobbs, Hafner, and Spišák [ibid.],
due to nearly degenerate spin configurations, the observed structure should be considered
as containing four different magnetic atoms MnI, MnII, MnIII, MnIV. Briefly, Mn should
be considered an alloy, rather than an element. There are a few other cases that could be
considered equivocal: Is the structure of boron icosahedral (a 1-OS) or the weakly bonded
lattice of icosahedra (not a 1-OS) that is sometimes given as its structure? But, overwhelm-
ingly, the assertion made above about the prevalence of 1-OS on both the Periodic Table,
and also for nanostructures made with one type of atom, is accurate.

Intuitively, one can easily imagine why such structures are interesting. If a property
can be assigned to each atom, depending on its environment, it is frame-indifferent (inde-
pendent of theQi ), and one can superpose it by summing over atoms, then an appreciable
bulk property could result. This property, and fact that the patterns of bonding that in
nanostructures differ appreciably those from bulk crystals, underlies significant research
in nanoscience.

The idea of objective structures was articulated by Crick and Watson [1956], Caspar
and Klug [1962] and in the less well-known work of Crane [1950]. Caspar and Klug used
the term equivalence to denote structures in which each subunit is “situated in the same en-
vironment”. The fundamental paper of Dolbilin, Lagarias, and Senechal [1998] proposed
the concept of regular point systems, which adds to the idea of identical environments the
hypotheses of uniform discreteness and relative denseness.

3 Objective structures

Structures containing only one element are interesting, but very special. There is a more
general concept James [2006] applicable to the structures of many alloys and many molec-
ular structures. Consider a structure consisting of N “molecules”, each consisting ofM
atoms. The terminology is for convenience – they may not be actual molecules. We
say that a structure is an objective molecular structure (briefly, an M-OS) if one can
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set up a one-to-one correspondence between atoms in each molecule such that equiva-
lent atoms see that same environment. So, in this case we use a double-index notation
S = fxi;k 2 R3 : i = 1; : : : ; N; k = 1; : : : ;M g, where xi;k is the position of atom k in
molecule i . Here, with N � 1 andM < 1. S is an M-OS if x1;1; : : : x1;M are distinct
and there are NM orthogonal transformations Qi;k ; i = 1; : : : ; N; k = 1; : : : ;M such
that

(3) fxi;k +Qi;k(xj;` � x1;k) : j = 1; : : : ; N; ` = 1; : : : ;M g = S

for i = 1; : : : ; N , k = 1; : : : ;M . Note that the reorientation Qi;k 2 O(3) is allowed to
depend on both i and k. Briefly, xi;k sees the same environment as x1;k . This definition is
the direct analog ofmultiregular point systems of Dolbilin, Lagarias, and Senechal [1998],
but excluding the conditions of uniform discreteness and relative denseness. The author
was led to it in a study with Falk and James [2006] of the helical tail sheath of Bacte-
riophage T-4, while writing a formula for the positions and orientations of its molecules
consistent with measured electron density maps. An M-OSjM=1 is a 1-OS.

The definition of anM-OS can bewritten using a permutationΠ on two indices (p; q) =
Π(j; `):

(4) xi;k +Qi;k(xj;` � x1;k) = xΠ(j;`):

It is not reflected by the notation here, but Π depends on the choice of (i; k). We can also
assign a species to each (j; `). In most applications it would be required that atom (j; `) is
the same species as atom (j 0; `). Also, it would be required thatΠ preserve species, so that
the environment of atom (i; k)matches the environment of atom (1; k) in both placement
and species of atoms. The most interesting dimensions for the structure of matter are 3 and
2, but the definition is meaningful in any number of dimensions. Finally, in applications
to atomic structure we are only interested in discrete M-OS. Of course, if one point of a
1-OS is an accumulation point, then every point is an accumulation point, since each point
sees the same environment.

The assertions about 1-OS made in the preceding section are easily proved using the
definitions above, but an even easier method is to note the following relation between
objective structures and isometry groups. An isometry group is a group of elements of the
form (Qjc); Q 2 O(n), c 2 Rn based on the product (Q1jc1)(Q2jc2) = (Q1Q2jc1 +

Q1c2), the identity (I j0), and inverses (Qjc)�1 = (QT j �QT c). Isometries can act on
Rn in the obvious way: g(x) = Qx + c where g = (Qjc). The product is designed to
agree with composition of mappings: g1g2(x) = g1(g2(x)). As above, in view of the
applications, we will put n = 3.

Let S = fxi;k 2 R3 : i = 1; : : : ; N; k = 1; : : : ;M g be a discrete M-OS. Any such
structure has an isometry group G:

(5) G = f(Qjc);Q 2 O(3); c 2 R3 : Qxi;k + c = xΠ(i;k) for a permutation Πg:
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Let M1 = fx1;k : k = 1; : : : ;M g be “molecule 1”. We wish to show that S is the orbit
of molecule 1 under a discrete group of isometries. To see this, rearrange the definition of
an M-OS as

(6) Ri;kxj;` + xi;k �Ri;kx1;k = xΠ(j;`):

Hence, gi;k := (Ri;k j xi;k � Ri;kx1;k) 2 G. However, trivially, gi;k(x1;k) = xi;k , and
this holds for all i = 1; : : : ; N; k = 1; : : : ;M . Hence, S is contained in the orbit of
M1 under G. Conversely, putting i = 1 in (5) we have that the orbit of M1 under G is
contained in S.

This simple argument apparently has two flaws. First, the group G that one gets may
not be discrete. That would be a serious flaw, since evidently we know very little about
the nondiscrete groups of isometries, even in R3. (However, see remarks below for why
these groups might be important to the structure of matter.) We should mention that dis-
creteness is not merely a technical condition that rules out some special cases, but rather it
plays a dominant role in the derivation of the groups, particularly in the subperiodic case
appropriate to nanostructures. Second, in this argument there is nothing that prevents the
images of M1 from overlapping. The latter is consistent with the definitions, and also
advantageous from the physical viewpoint. That is, while we have imposed the condition
that the points in M1 are distinct, the definition of M-OS allows xi;j = xi 0;j for i ¤ i 0.
This is advantageous as it saves the result above. Also, it allows a structure such as ethane
C2H6 to be a 2-OS, which is certainly reasonable: M1 is C-H, each H sees the same
environment, each C sees the same environment, and the image of C-H has overlapping
Cs.

The geometric concept of identical environments allows Qi;k to depend on both i; k.
However, ifS is the orbit of x1;k ; k = 1; : : : ;M , under an isometry groupg1 = (Q1jc1); : : : ; gN =

(QN jcN ), i.e., xi;k = Qix1;k + cc , then Qi;k in (3) can be chosen as Qi , and thus is in-
dependent of k. This is seen by direct substitution ofQi;k = Qi into (3).

The nondiscreteness turns out not to be a problem. It is easily proved that if a nondis-
crete group of isometries in 3-D generates a discrete structure when applied to a point x1,
it gives a single point, a 1-D Bravais lattice, or a 1-D 2-lattice.

Now we can revisit some of the assertions make in Section 2 concerning examples of
1-OS.

Buckminsterfullerine (C60). Let G = fR1; : : : ; RN g be a finite subgroup of O(3) and
x1 ¤ 0. (For C60 choose the icosahedral group, N = 60) and let xi = Rix1; i =

1; : : : ; N . One can also see directly that (2) is satisfied with Qi = Ri . In case that x1 is
fixed by some elements of R1; : : : ; RN , then in this case one can replace G by G/Gx1 to
obtain a free action (i.e., avoid duplication).
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Figure 1: Buckminsterfullerine.
Pentagons added for clarity.

Single-walled carbon nanotubes (of any chirality).
The formulas below can be found by rolling up a
graphene sheet isometrically and seamlessly (see, e.g.,
Dumitrica and James [2007]) and then noticing the
group structure. The positive integers (n;m) define the
chirality. Letting ê1; ê2; ê3 be an orthonormal basis and
R� 2 SO(3) a rotation with counterclockwise angle �
and axis ê3, carbon nanotubes are given by the formula

(7) g
�1
1 g

�2
2 g

�3
3 (x1); �1; �2; �3 2 Z;

with g1 = (R�1 jt1); g2 = (R�2 jt2) and g3 = (�I + 2e ˝ e j0),

(8) t1 = �1ê3; t2 = �2ê3; e = cos(��)ê1 + sin(��)ê2; x1 = �ê1 � �ê3;

and

�1 =
�(2n+m)

n2 +m2 + nm
; �2 =

�(2m+ n)

n2 +m2 + nm
; �1 =

3m`C�C

2
p
n2 +m2 + nm

;

�2 =
�3n`C�C

2
p
n2 +m2 + nm

; � =
(2n+m) + (2m+ n)

6(n2 +m2 + nm)
;

� =
`C�C

2�

q
3(n2 +m2 + nm); � =

`C�C (m � n)

4
p
n2 +m2 + nm

:(9)

The fixed integers n;m define the chirality of the nanotube and `C�C is the carbon-carbon
bond
length before rolling (To account for additional relaxation of the bond lengths after rolling
one can simply omit the formula for the radius � and treat � as an independent parameter).

Figure 2: Carbon
nanotube (a 1-OS)
with chirality
n = 3; m = 8,
`C�C = 1:42,
colored according
to the value of
�3 2 f1; 2g.

We see that g1g2 = g2g1 and gig3 = g3g
�1
i ; i = 1; 2, so

g
�1
1 g

�2
2 g

�3
3 ; �1; �2; �3 2 Z is a (discrete) group. Therefore the or-

bit (7) describes a 1-OS. To obtain a free action, confine �3 2 f1; 2g,
�1 2 Z and �2 2 f1; : : : ; �?g, where �? is the smallest positive integer
such that g�1g

�?
2 = id is solvable for � 2 Z.

Any 2-lattice. Of course any Bravais lattice is a 1-OS: use a suitable
indexing in terms of triples of integers � = (�1; �2; �3), write x� =

�1e1 + �2e2 + �3e3 and chooseQ� = I in (2). As noted above and
represented prominently in the Periodic Table, any 2-lattice is also a
1-OS. To see this, choose g1 = (I je1); g2 = (I je2); g3 = (I je3)

and g4 = (�I j0). Then, for s = 1; 2,

(10) g
�1
1 g

�2
2 g

�3
3 g

s
4(x1) = �1e1 + �

2e2 + �
3e3 ˙ x1:
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Referring to (1) we can choose x1 = (b � a)/2 and modify these
isometries to translate the whole structure1 by (a + b)/2 to get ex-
actly (1). Of course, fg

�1
1 g

�2
2 g

�3
3 g

s
4 : �1; �2; �3 2 Z3; s = 1; 2g is

a (discrete) group, because g1; g2; g3 commute and gig4 = g4g
�1
i ,

i = 1; 2; 3.
This kind of argument works in any number of dimensions and therefore covers two-

dimensional 2-lattices, such as graphene.

HCP. The hexagonal close packed lattice is a 2-lattice, as proved above, and therefore
is a 1-OS by the result just above. However, it is useful to express it by a different group
to expose an important issue. Beginning from the description HCP above, i.e.,

(11) e1 =
p
3˛ê1; e2 =

p
3˛
�
(1/2)ê1 + (

p
3/2)ê2

�
; e3 = 2˛

p
2ê3;

and with R� 2 SO(3) a counterclockwise rotation of � about ê3, define

(12) h = (R�/3 j (1/2)e3); t1 = (I je1) t2 = (I je2):

The set fhig
j
1g

k
2 : i; j; k 2 Zg is a group (t1t2 = t2t1, t2h = ht1, t1h = ht1t

�1
2 ),

and the orbit of (2/3)e2 � (1/3)e1 is HCP. This illustrates that we can have two groups,
this one and the one of the preceding paragraph, not related by an affine transformation
G ! aGa�1, a = (Ajc); detA ¤ 0, that generate the same structure when the orbits of
suitable points are taken.

For the purpose of this article we do not care about multiplication tables (we need the
actual isometries with their parameter dependence), affine equivalence (example of HCP)
or whether the closure of the fundamental domain is compact (not true for nanostructures).
Embarrassingly, we do not even care much about symmetry. If we have a set of genera-
tors, depending smoothly on parameters, and the symmetry suddenly jumps up at values
of the parameters – such as at  = 1;

p
2 in the example of Bain above – it makes no

difference for any of the results given below. On the other hand, the analytical structure
of the generators is critically important. For the purposes here it would be very useful
to have a short lists of formulas for generators giving all objective structures, not further
broken down according to their abstract groups.

4 An invariant manifold of molecular dynamics

Structure and invariance come together when we assign a set of differential equations
having an invariance group that matches the group used to make the structure. Isometries

1Change each gi to tgi t�1 where t = (I jc); c = (a+ b)/2.
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are expected to play an important role because of the frame-indifference of atomic forces.
Examples of exploiting symmetries in continuum theory Ericksen [1977] might suggest
that a differential structure (i.e, a Lie group) is essential, but, in fact, the matching of
discrete group and discrete structure is also possible.

Molecular dynamics is an interesting example. The basic invariance of the equations of
molecular dynamics is frame-indifference and permutation invariance. Let us use the in-
dexing ofM-OS to describe these invariances, but without any assumptions about the struc-
ture. So we assume a collection of atomic positions S = fxi;k 2 R3 : i = 1; : : : ; N; k =

1; : : : ;M g with N � 1 andM < 1, and suppose that the force on atom (i; k) is given
by

(13) fi;k(: : : ; xj;1; xj;2; : : : ; xj;M ; xj+1;1; xj+1;2; : : : ; xj+1;M ; : : : ):

As indicated, the force on atom (i; k) depends on the positions of all the atoms. We have
NM such forces. They are subject to two fundamental invariances: frame-indifference
and permutation invariance.

Frame-indifference. ForQ 2 O(3), c 2 R3,

(14) fi;k(: : : ;Qxj;1 + c; : : : ;Qxj;M + c;Qxj+1;1 + c; : : : ;Qxj+1;M + c; : : : )=

= Qfi;k(: : : ; xj;1; : : : ; xj;M ; xj+1;1; : : : ; xj+1;M ; : : : );

for allQ 2 O(3), c 2 R3 and xj;` 2 (R3)NM .

Permutation invariance. For all permutations Π and xj;` 2 (R3)NM ,

(15) fi;k(: : : ; xΠ(j;1) : : : ; xΠ(j;M ); xΠ(j+1;1); : : : ; xΠ(j+1;M ); : : : )=

= fΠ(i;k)(: : : ; xj;1; : : : ; xj;M ; xj+1;1; : : : ; xj+1;M ; : : : );

If we introduce species as described above, then Π is also required to preserve species: if
atom i; k has species A and (p; q) = Π(i; k) then the species of atom p; q is A.

Typically, NM = 1, in which case one cannot speak of a potential energy, but, in
the finite case, if fi;k = �@'/@xi;k then the conditions (14), (15) follow from the fa-
miliar invariances '(: : : ;Qxj;` + c; : : : ) = '(: : : ; xj;`; : : : ) and '(: : : ; xΠ(j;`); : : : ) =

'(: : : ; xj;`; : : : ), respectively.
As one can see from the examples (7)-(12), the formulas for objective structures contain

lots of parameters. Eventually, we are going to solve the equations of molecular dynamics
for functions depending on time, t > 0. To use the invariance as completely as possible
without unduly restricting the number of atoms or their motions, we could allow these
group parameters to depend on time. In general suppose we have an isometry group g1 =
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(Q1(t)j c1(t)); : : : ; gN = (QN (t)j cN (t)) smoothly depending on t . The property we
will need is

(16)
d 2

dt2
gi (y(t)) =

d 2

dt2

�
Qi (t)y(t) + ci (t)

�
= Qi (t)

d 2y(t)

dt2
;

but wewill know very little a priori about y(t); t > 0; beyond some smoothness. Letting a
superimposed dot indicate the time derivative and using Q̇i = QiWi , whereW T

i = �Wi ,
the condition (16) is

(17) c̈i = �Qi
�
W 2
i y + Ẇiy + 2Wi ẏ

�
:

The only way this holds for any reasonable class2 of smooth motions y(t) is

(18) Qi = const: 2 O(3) and ci = ai t + bi ;

where ai ; bi 2 R3; i = 1; : : : ; N . While the latter may appear to be merely a Galilean
transformation, the dependence on i gives many nontrivial cases. Of course, one has to
check that the (18) is consistent with the group properties at each t > 0.

We say that the group G = fg1; : : : ; gN g, gi = (Qi j ai t + bi ); is a time-dependent
discrete group of isometries if (18) is satisfied, and we use the notation gi (y; t) = Qiy +

ai t+bi . We also assign amassmk > 0 to each atom (1; 1); : : : (1;M ), and we assume that
atom i; k also has massmk , consistent with the remarks about species above. Now, instead
of thinking of atoms (1; 1); : : : (1;M ) as molecule 1, we think in terms of a numerical
method, and call atoms (1; 1); : : : (1;M ) the simulated atoms. In many cases they will not
behave at all like a molecule. We will also have nonsimulated atoms and their positions
will be given (as in an M-OS) by the group:

(19) yi;k(t) = gi (y1;k(t); t); i = 1; : : : ; N; k = 1; : : : ;M

Obviously we have assigned g1 = id .
Let G = fg1; : : : ; gN g be a time-dependent discrete group of isometries. Let initial

positions yı
k

2 R3 and initial velocities vı
k
, k = 1; : : : ;M , be given and suppose the

simulated atoms y1;k(t); t > 0; satisfy the equations of molecular dynamics for forces
that are frame-indifferent and permutation invariant:

mk ÿ1;k = f1;k(: : : ; yj;1; yj;2; : : : ; yj;M ; yj+1;1; yj+1;2; : : : ; yj+1;M ; : : : )

= f1;k(: : : ; gj (y1;1; t); : : : ; gj (y1;M ; t); gj+1(y1;1; t); : : : ; gj+1(y1;M ; t); : : : );(20)

subject to the initial conditions

(21) y1;k(0) = yı
k ; ẏ1;k(0) = vı

k ; k = 1; : : : ;M:

2It is not sufficient for our purposes to satisfy (17) in a statistical sense.
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Then, the nonsimulated atoms also satisfy the equations of molecular dynamics:

(22) mk ÿi;k = f1;k(: : : ; yj;1; yj;2; : : : ; yj;M ; yj+1;1; yj+1;2; : : : ; yj+1;M ; : : : ):

Note that (20),(21) is a (nonautonomous) system of ODEs in standard form for the
simulated atoms. We have not stated this as a theorem because we have not spelled out
the (straightforward) conditions on f1;k that would allow us to invoke one of the standard
existence theorems of ODE theory. Another (also straightforward to handle) technical
issue is that a standard atomic forces blow up repulsively when two atoms approach each
other. Aside from these issues, the proof is a simple calculation that uses both frame-
indifference and permutation invariance. To see this, fix i; k and suppose we want to
prove that yi;k(t) satisfies (22) as written. Write gi = (Qi j ci ), ci = ai t + bi , so that
g�1
i = (QT j �QT ci ). There is a permutation Π (depending on i ) such that yΠ(j;`)(t) =

g�1
i (yj;`; t). This permutation satisfies Π(i; k) = (1; k). Now use (16), permutation

invariance, and frame-indifference (in that order):

mk ÿi;k = mkQi ÿ1;k

= Qif1;k(: : : ; yj;1; : : : ; yj;m; yj+1;1; : : : ; yj+1;M ; : : : )

= QifΠ(i;k)(: : : ; yj;1; : : : ; yj;m; yj+1;1; : : : ; yj+1;M ; : : : )

= Qifi;k(: : : ; yΠ(j;1); : : : ; yΠ(j;m); yΠ(j+1;1); : : : ; yΠ(j+1;M ); : : : )

= Qifi;k(: : : ; g
�1
i (yj;1); : : : ; g

�1
i (yj;m); g

�1
i (yj+1;1); : : : ; g

�1
i (yj+1;M ); : : : )

= Qifi;k(: : : ;Q
T
i (yj;1 � ci ); : : : ;Q

T
i (yj;m � ci );Q

T
i (yj+1;1 � ci );

: : : ;QT
i (yj+1;M � ci ); : : : )

= fi;k(: : : ; yj;1; : : : ; yj;m; yj+1;1; : : : ; yj+1;M ; : : : ):(23)

This result can be rephrased as the existence of a (time-dependent) invariant manifold
of molecular dynamics. Given the many isometry groups and their time dependences, this
provides amultitude ofmainly unstudied invariant manifolds of the equations ofmolecular
dynamics. Their stability of course is also unknown.

We can describe these invariant manifolds in terms of the isometry groups. The conven-
tional description is in phase space, using momenta pi;k = mk ẏi;k and positions qi;k =

yi;k . Using our notation for time-dependent discrete isometry groups, G = fg1; : : : ; gN g,
gi = (Qi j ai t + bi ), we observe that

(24) pi;k = Qip1;k +mkai ; qi;k = Qiq1;k + ai t + bi ;

which describes an affine manifold in phase space with a simple affine time dependence.
Except for the trivialmk dependence in the first of (24), this family of invariant manifolds
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is independent of the material. That is, this large set of invariant manifolds is present
whether one is simulating steel, water or air. (Of course, there is a large number, typically
3NM = 1, of dimensions too!). More importantly, this becomes a powerful simulation
tool if the atomic forces have a cut-off. One can simulate certain large-scale flows, or the
failure of nanostructures, by a small simulation Dayal and James [2010, 2012]. One solves
(20)-(21) merely for the simulated atoms, with forces given by all the atoms. Of course,
this requires a goodmethod for tracking some of the nonsimulated atoms, i.e., those within
the cut-off. As a numerical method, this is called objective molecular dynamicsDayal and
James [2010].

Let us take a simple example, the translation group. Using a convenient indexing in
terms of triples of integers � = (�1; �2; �3), we write g� = (I ja� t + b�). We see that to
satisfy closure with this time-dependence, we must have

(25) a� t + b� = �1(b̂1 + â1t) + �
2(b̂1 + â1t) + �

3(b̂1 + â1t) =

3X
`=1

�`(I + tA)e`;

where e` = b̂` and the 3�3matrixA is chosen so that â` = Ae`. Tacitly, we have assumed
that the e` = b̂` are linearly independent, so that, initially, the atoms are not confined to a
layer. The simulated atom positions are say y1(t); : : : ; yM (t) and the nonsimulated atoms,
y�;k(t) = g�(yk(t)) = yk(t) + �

`(I + tA)e`; � = (�1; �2; �3) 2 Z3; k = 1; : : : ;M .
In this method atoms are moving around, filling space roughly uniformly. During com-

putations, the simulated atoms quickly diffuse into the nonsimulated atoms. What is the
macroscopic motion? We could spatially average the velocity, but that would be wrong:
the velocity of continuummechanics is not the average velocity of the particles! (For a sim-
ple explanation see James [2015].) To get the velocity of continuummechanics we should
average the momentum, and divide by the average density. Briefly, a suitable method in
the present case is to prove that the center of mass of the simulated atoms moves with con-
stant velocity which, by adding an overall Galilean transformation, we take to be zero3.
Then the centers of mass of the images of the simulated atoms g�(yk(t)) then lie on a grid
deforming according to the motion4

(26) y(x; t) = (I + tA)x; or; in Eulerian form; v(y; t) = A(I + tA)�1y

Here, v(y; t) is the velocity field. Note that by looking at the motions of centers of mass,
we are precisely doing a spatial average of themomentum and then dividing by the average

3This requires an additional assumption on the forces fi;k that the resultant force on large volume, divided
by the volume, tends to zero as the volume (at constant shape) goes to infinity Dayal and James [2012]. This
effectively rules out body forces, such as those due to gravity. It is easily proved directly for many accepted
models of atomic forces.

4The Eulerian and Lagrangian forms are related by the parameterized ODE, @y/@t = v(y(x; t); t), y(0) =
x 2 Ω � R3.
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density. Given that we get to choose A, we get quite a few interesting motions. They can
be very far-from-equilibrium, have nonzero vorticity (in fact, vortex stretching), and there
are quite a few of both isochoric and non-isochoric examples.

Another interesting example is based on the (largest) Abelian helical group. In Dayal
and James [2010] it was used to study the failure of carbon nanotubes when stretched at
constant strain rate.

5 Continuum and structural mechanics

Let’s take the translation group, leading to (26). We have a macroscopic velocity field
v(y; t) = A(I + tA)�1y arising from molecular dynamics simulation. For what choices
of A, if any, does v(y; t) satisfy some accepted equations of continuum mechanics? We
can try the Navier-Stokes equations in the incompressible case. First we check that there
are choices of A such that div v = 0. It is easily5 seen that div v = 0 for t > 0 if and only
if detA = trA = trA2 = 0, which, in turn implies that there is an orthonormal basis in
which A has the form

(27) A =

0@ 0 0 �

1 0 3
0 0 0

1A :
(So, even for isochoric motions we can have a time-dependent vorticity, curl v = (3 �

�1t;��; 1) in this basis.) Now substitute v(y; t) = A(I + tA)�1y into the Navier-
Stokes equations

�

�
@v

@t
+ rv v

�
= �rp +∆v(28)

i.e., �(�A(I + tA)�1A(I + tA)�1y+A(I + tA)�1A(I + tA)�1y) = �rp+0; so, with
p = const:, the Navier–Stokes equations are identically satisfied.

The key properties being exploited in this case is that the left hand side of the balance
of linear momentum is identically zero, and, for the right hand side, the stress is only a
function of time when evaluated for the velocity field v(y; t) = A(I + tA)�1y. So its
divergence is zero. In fact, v(y; t) = A(I + tA)�1y identically satisfies the equations of
all accepted models of fluid mechanics, including exotic models of non-Newtonian fluids
and liquid crystals. The same is true of all accepted models of solid mechanics6. It is
fascinating to observe that, despite the fact that molecular dynamics is time-reversible7 and

5Even easier, use the equivalent det(I + tA) = 1 and write out the characteristic equation.
6It was advocated in Dayal and James [2010] that a a fundamental requirement on models should be that

v(y; t) = A(I + tA)�1y is a solution, i.e., that all continuum models inherit the invariant manifold.
7The function yi;k(�t) is a solution of (20) for initial conditions yı

i;k
;�vı

i;k
.
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much of continuum mechanics is not time-reversible, this invariant manifold is inherited,
in this sense, exactly.

Perhaps the most important feature of this family of solutions is that its form does
not depend on the material. This is expected: as already noted, the invariant manifold of
molecular dynamics (24) is also independent of the species of atoms being simulated. This
feature strikes to the heart of experimental science, especially experimental mechanics. If
you want to learn about a material by testing it, you should impose boundary conditions
that are at least consistent with a possible solution of the governing equations. But one
does not know the coefficients of the governing equations ahead-of-time8, because one has
not yet measured the material properties! This fundamental dichotomy of experimental
science is overcome by solutions of the type discussed here. Design the testing machine
to produce boundary conditions consistent with a possible solution, and learn about the
material by measuring the forces.

In fact, if one looks at the Couette viscometer in fluid mechanics or tension-torsion
machine in solid mechanics, they do in fact, have a relation to these groups and their
invariant manifolds. On the other hand these ideas could be more widely exploited in
experimental science (e.g., Dayal and James [2012]).

These were all purely mechanical cases. What happens when one adds thermodynam-
ics? Let’s return to the invariant manifold (24). In atomistic theory temperature is usually
interpreted as mean kinetic energy based on the velocity obtained, importantly, after sub-
tracting off the mean velocity. The temperature is then the mean kinetic energy of the
simulated atoms, assuming, as we have done above, that the center of mass of the simu-
lated atoms moves with zero velocity. But, unlike the velocity, there is nothing about a
simulation based on (20) that would determine this temperature, beyond the expectation
that it depends on A and the initial conditions (21) and, of course, the atomic forces. In
simulations it can be rapidly changing, and, in fact, it is expected in some situations to go
to infinity in finite time9. In summary, the temperature �(t) is expected to be a function of
time only, and not universal. The agrees with continuum theory, for which in most cases
the energy equation reduces to an ODE for the temperature, when v(y; t) = A(I+tA)�1y.
In short, temperature is a function of time and its evolution is material dependent.

Experimental design is one of many subareas in continuum mechanics in which ob-
jective structures play an interesting role. Another is the blossoming area of structural
mechanics called “origami structures”10. Fundamentally, frame-indifference is again be-
ing used: isometries take stress-free states to stress-free states.

8In cases on the cutting edge, one does not even know the form of the equations.
9See Section 6. Note that (I + tA) can lose invertibility in finite time.
10Already, the link between architecture and molecular structure was articulated by Caspar and Klug [1962].

See also Coxeter [1971]



SYMMETRY, INVARIANCE AND THE STRUCTURE OF MATTER 3999

Kawasaki’s theorem in piecewise rigid origami concerns the 2n-fold intersection. For
example, in the ubiquitous case 2n = 4, draw four lines on a piece of paper and fold along
the lines11. This structure can be folded flat if and only if the sum of opposite angles is
� . Without loss of generality ê1; ê2; ê3 are orthonormal, the paper is the ê1; ê2-plane and
consider fold-lines coming out of the origin in directions

t1 = ê1; t2 = cos˛ê1 + sin˛ê2; t3 = cos(˛ + ˇ)ê1 + sin(˛ + ˇ)ê2;

t4 = cos(� + ˇ)ê1 + sin(� + ˇ)ê2;(29)

corresponding to successive (sectors : angles) (S1 : ˛); (S2 : ˇ); (S3 : ��˛); (S4 : ��ˇ)

with 0 < ˛; ˇ < � . Letting t?i = Q3ti , i = 1; : : : ; 4, where Q3 is a counter-clockwise
rotation of �/2with axis ê3, it is easy to write down the folding deformation y : Ω ! R3,
with 0 2 Ω � R2:

(30) y(x) =

8̂̂<̂
:̂
x; x � ê3 = 0; x � t?2 < 0; x � t?1 � 0;

R2(�)x; x � ê3 = 0; x � t?3 < 0; x � t?2 � 0;

R2(�)R3(�)x; x � ê3 = 0; x � t?4 < 0; x � t?3 � 0;

R2(�)R3(�)R4(!)x; x � ê3 = 0; x � t?1 < 0; x � t?4 � 0;

where � = ˙! and

(31) tan � =

8̂<̂
:

(cos˛�cosˇ) sin!
cos!�cos˛ cosˇ cos!+sin˛ sinˇ ; � = !;

(cos˛+cosˇ) sin!
cos!+cos˛ cosˇ cos!�sin˛ sinˇ ; � = �!:

Here Ri (�) 2 SO(3) has axis ti and counter-clockwise angle � , and 0 � ! < � can
be considered the homotopy parameter. We have fixed the overall rotation by putting
y(x) = x in S1

12

Nowwe make a special choice ofΩ: we choose it to be a general parallelogram, so that
the fold-lines go from the origin to the corners. We have some freedom to assign angles
and side lengths, as well as on the placement of the origin, but these restrictions can be
easily organized. Now partially fold it, i.e., choose ˙ and a value of 0 < ! < � in (30),
(31). In the partly folded state let `1; `2; `3; `4 be consecutive edges on the boundary of

11Or, simply crush a piece of paper and push down onto the table so it is flat. Upon unfolding, you will see
numerous four-fold intersections with the sum of opposite angles equal to � . Even better, check many of the
delightful folding arrangements discovered by Robert J. Lang and others Miura, Kawasaki, Tachi, Uehara, Lang,
and Wang-Iverson [2015].

12In fact, this pair of homotopies, parameterized by 0 � ! < � and ˙, are the only piecewise rigid defor-
mations of Ω (with these fold lines) if y(x) = x in S1 and ˛ ¤ ˇ;˛ + ˇ ¤ � . If the latter holds there are
some additional ones. The foldability of general arrays of 4-fold intersections, and a corresponding algorithm
for folding them in terms of formulas like (30), is given in Plucinsky, Feng, and James [2017].
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Figure 3: Helical origami structures generated by two commuting isometries whose
powers give a discrete group. Bottom: the parallelogram is partly folded, as seen
at left. Top: the same parallelogram is folded a little more. These solutions are
isolated: for intermediate values of the homotopy parameter ! the associated group
is not discrete.

the deformed parallelogram, so that j`1j = j`3j and j`2j = j`4j. Choose two isometries
g1 = (Q1jc1), and g2 = (Q2jc2) out of the air, arrange that they commute, and arrange
that g1(`1) = `3 and g2(`2) = `4. Of course, the latter is possible because g1; g2 are
isometries, and there is obviously some freedom. This freedom is quantifiable without
much difficulty. The underlying Abelian group is fgi1g

j
2 : i; j 2 Zg.

Now we are done. The beauty of Abelian groups is that, not only does gi1(y(Ω)); i =
1; 2; : : : produce a perfectly fitting helical origami chain, and gj2 (y(Ω)); j = 1; 2; : : :

another such chain, but also gi1g
j
2 (y(Ω)); i; j = 1; 2; : : : fills in the space between the

chains perfectly with no gaps. See Figure 3.
However, Figure 3 is not the generic case. More typically, as i; j get large, the structure

gets more and more complicated and begins to intersect itself. Of course, we knew that
could happen because nothing above prevents self-intersections. But it is worse than that:
there are accumulation points. The issue is: if we choose two commuting isometries
“out of the air”, invariably we will get a non-discrete group. Discreteness is a highly
restrictive condition for isometry groups, and is the main force behind the structure of the
crystallographic groups of the International Tables. It is nevertheless worth illustrating
the appearance of the structure one gets. This is done in Figure 4 with balls instead of
origami, for clarity. If one cuts off the powers i; j early enough, one gets a perfectly nice
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Figure 4: Orbit of a single blue ball under a subset of a nondiscrete Abelian group
with two generators. The coloring is according to powers of one of these generators.
Note that subsets of this structure coincide with structures that are locally 1-OS,
2-OS, etc.

structure that in fact, at least with two generators, exhibits locally identical environments
for most of the atoms. For that reason, these non-discrete groups – or more accurately,
their generators – about which evidently we know nothing, are in fact quite interesting.

Moreover, orbits of non-discrete groups (with restricted powers) are seen in biology.
Perhaps the most obvious example is the biologically important microtubule. Its structure
is closely given by the construction abovewith two generators and carefully restricted pow-
ers13. Another interesting example is from the work of Reidun Twarock and collaborators
Keef, Wardman, Ranson, Stockley, and Twarock [2013] and Indelicato, Keef, Cermelli,
Salthouse, Twarock, and Zanzotto [2012]. To understand the placement of receptors on the
surface of a viral capsid, she takes the orbit of a certain non-discrete group with carefully
restricted powers14. What are the nondiscrete isometry groups, and how do we restrict the
powers of their generators in a rational way, perhaps guided by the concept of identical
local environments?

In fact, one can satisfy all the matching conditions stated above using two commuting
isometries that do generate a discrete group, and there are many choices. Figure 3 is an
example. General theorems about these structures can be found in Feng, Plucinsky, and
James [2017]. Beautiful origami structures that approximate an arbitrary Lipschitz map
that shortens distances are given by Conti and Maggi [2008].

Before moving on, it is worth highlighting the fundamental problem of self-intersection
in origami structures, since it so often prevents foldability and there are no good methods
to decide this ahead-of-time15. For mappings y : Ω ! Rm, Ω 2 Rn, with n = m a lot
is known that relates invertibility to invertibility on the boundary or to bounded measures
of distortion Ball [1981], Ciarlet and Nečas [1987], and Iwaniec, Kovalev, and Onninen
[2011]. The concept of global radius of curvature Carlen, Laurie, Maddocks, and Smutny

13Its seam can be considered a consequence of non-discreteness and carefully restricted powers.
14To see that the generated group is not discrete in their simplest example (Figure 2 of Keef, Wardman, Ranson,

Stockley, and Twarock [2013]), let g1 = (I j t); g2 = (R j 0) be the generators considered, where R 2 SO(2)
is a rotation of �/5 and 0 ¤ t 2 R2. Then g3 := g2g1g

�2
2 g1g2 = (I j (2 cos(�/5)) t). Thus g1 and g3

generate a nondiscrete subgroup because 2 cos(�/5) = (1/2)(1 +
p
5) is irrational.

15Writing deformations in the form (30) – the continuum mechanics approach to origami structures – is a
reasonable step 1.



4002 RICHARD D. JAMES

[2005] has also been used for this purpose in knotted rods (n = 1; m = 3). Both of these
approaches seem relevant, but neither seems ideally suited.

6 Boltzmann equation

We return to the family of invariant manifolds of the equations of molecular dynamics,
whichwas seen to be inherited in a perfect way by continuummechanics. We now consider
statistical theories intermediate between molecular dynamics and continuum mechanics.
Of greatest interest, in view of its remarkable predictive power in the far-from-equilibrium
case, is the Boltzmann equation.

The Boltzmann equation Maxwell [1867] and Villani and Mouhot [2015] is an evo-
lution law for the molecular density function f (t; y; v), t > 0; y 2 R3; v 2 R3, the
probability density of finding an atom at time t , in small neighborhood of position y, with
velocity v. It satisfies the Boltzmann equation:

(32)
@f

@t
+ v

@f

@x
= Cf (v) :=

Z
R3

Z
S2

B (n � !; jv � v�j) [f 0f 0
� � f�f ] d! dv�;

where S2 is the unit sphere in R3, n = n (v; v�) = (v�v�)
jv�v�j

, (v; v�) is a pair of veloci-
ties associated to the incoming collision of molecules and (v0; v0

�) are outgoing velocities
defined by collision rule

v0 = v + ((v� � v) � !)!;(33)
v0

� = v� � ((v� � v) � !)!:(34)

The form of the collision kernel B (n � !; jv � v�j) is obtained from the solution of the
two-body problem of dynamics with the given force law between molecules. We use
the conventional notation in kinetic theory, f = f (t; x; v) ; f� = f (t; x; v�) ; f

0 =

f (t; x; v0) ; f 0
� = f (t; x; v0

�).
LetA be any 3�3matrix. We consider the translation group and the time-dependent in-

variantmanifold specified by (24)with isometry group (25), macroscopic velocity v(y; t) =
A(I + tA)�1y, and a corresponding molecular dynamics simulation with atom positions
y�;k(t); � 2 Z3; k = 1; : : : ;M . At time t consider a ball Br(0) of any radius r > 0 cen-
tered at the origin, and another ballBr(y�) of the same radius centered at y� = (I+tA)x� ,
where x� = �1e1+�

2e2+�
3e3. Both balls may contain some simulated atoms and some

nonsimulated atoms. However, no matter how irregular the simulation, if I am given the
velocities of atoms in Br(0) at time t , then I immediately know the velocities of atoms
in Br(y�) at time t . Specifically, if v1; : : : ; vp are the velocities of atoms in Br(0), then
v1+Ax� ; : : : ; vp+Ax� are the velocities inBr(y�). Or, in the Eulerian form appropriate
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to the Boltzmann equation, the velocities in Br(y�) are

(35) v1 + A(I + tA)�1y� ; : : : ; vp + A(I + tA)�1y� :

But f (t; y; v) is supposed to represent the probability density of finding a velocity v in
a small neighborhood of y. Therefore, we expect that this simulation corresponds to a
molecular density function satisfying

(36) f (t; 0; v) = f (t; y; v + A(I + tA)�1y);

or, rearranging,

(37) f (t; y; v) = g(t; v � A(I + tA)�1y):

Substitution of (37) into the Boltzmann equation formally gives an immediate reduction:
g(t; w) satisfies

(38)
@g

@t
�
�
A(I + tA)�1w

�
�
@g

@w
= Cg (w) ;

where the collision operator C is defined as in (32). Once, again, despite the Boltzmann
equation being time-irreversible, the invariantmanifold ofmolecular dynamics is inherited
in the most obvious way. Note that at the level of the Boltzmann equation, periodicity has
disappeared.

Equation (38) was originally found without reference to molecular dynamics, but rather
by noticing similarities between special solutions of equations of fluid mechanics and the
moment equations16 of the kinetic theory Galkin [1958] and Truesdell [1956]. Recently,
an existence theorem for (38) has been given James, Nota, and Velázquez [2017], with
surprising implications for the invariant manifold.

Themost explicit results are forMaxwellianmolecules. These aremolecules that attract
with a force proportional to the inverse 5th power of their separation. For the collision
kernel B appropriate to these molecules the invariance of the left and right hand sides of
(32) or (38) match. We focus on the entropy (minus theH -function) given by

(39) �(t) = �

Z
R3

g(t; w) logg(t; w) dw:

The asymptotic analysis of self-similar solutions James, Nota, and Velázquez [ibid.] gives,
for a large class of choices of A,

(40) �(t) = �(t) log

 
e(t)3/2

�(t)

!
+ Cg ;

16Multiply (38) by polynomials in w and integrate over R3. The study of the solutions of the moment equa-
tions has an extensive history beginning with Galkin [1958] and Truesdell [1956] and reviewed in Truesdell and
Muncaster [1980]
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where the density � and temperature e are given by explicit formulas:

(41) �(t) =

Z
R3

g(t; w) dw; e(t) =

Z
R3

1

2
w2g(w; t) dw;

and Cg is constant. In these far-from-equilibrium solutions the temperature and density
can be rapidly changing, and the entropy rapidly increasing. Nevertheless, the relation (40)
between entropy, density and temperature expressed by (40) is the same as for the equilib-
rium Maxwellian distribution. That’s true except for one small but interesting point: the
constant Cg is strictly less than that of the Maxwellian distribution. From an information
theoretic viewpoint, the uncertainty of positions and velocities of atoms on the invariant
manifold differs from those of an equilibrium state at the same temperature and density
by a constant, even as the temperature evolves rapidly to infinity.

7 Maxwell’s equations

Maxwell’s equations have a bigger invariance group, the Lorentz group17 of special relativ-
ity. It would be interesting to have a look at this full group, but we shall confine attention
to its Euclidean subgroup of isometries. The solutions of Maxwell’s equations do not
describe matter itself, but they interact with matter. In fact, almost everything we know
about the structure of matter comes by interpreting this interaction. This interpretation is
not straightforward because, at the relevant wavelengths, we cannot measure the scattered
electric or magnetic fields directly, but only the time average of the magnitude of their
cross product18. Nevertheless, increasingly, such as in quasicrystals, the classification of
atomic structures is defined in terms of this interaction.

Even in the case of the now accepted definition of quasicrystals, the incoming radiation
is plane waves. That is, we assign electric and magnetic fields, respectively,

(42) E(y; t) = nei(k�y�!t) and B(y; t) =
1

!
(k � n)ei(k�y�!t);

where n 2 C3, k 2 R3, k �n = 0, ! = cjkj and c is the speed of light. These plane waves
exert a force e(E + v �B) on each electron of the structure, which vibrates with velocity
v. Moving charges generate electromagnetic fields and so, the vibrating electrons, each
with charge e, send out spherical waves which in the far-field are again approximately
plane waves. The rigorous asymptotics of this process is delicate Friesecke, James, and
Jüstel [2017] and involves several small parameters in addition to the Fresnel number

17in fact, the conformal Lorentz group, which includes dilatations as well as Lorentz transformations Bateman
[1910].

18that is, the time average of the Poynting vector (see Friesecke, James, and Jüstel [2016], p. 1196).
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dia(Ω)2jkj/d � 1. Here Ω � R3 is the illuminated region, and d is the distance to
the detector. The results are formulas in terms of E0(y) = neik�y for the electric and
magnetic fields in the far-field:

Eout (y; t) = � ce`
ei(k

0(y)�y�!t)

jy � yc j

�
I �

k0(y)

jk0(y)j
˝

k0(y)

jk0(y)j

�Z
Ω

E0(z)�(z) e
�ik0(y)�zdz;

Bout (y; t) =
1

!
k0(y) � Eout (y; t);

(43)

where � : R3 ! R� is the electronic density, xc 2 Ω is a typical point of the illuminated
region, cel is a universal constant depending on the charge and mass of an electron, and

(44) k0(y) =
!

c

y � yc

jy � yc j
:

With a simple idealized example we can begin to understand plane waveX-raymethods.
In the notation of Section 2, we assume that the electronic density is a sum of Dirac masses
at the points of a Bravais lattice generated by the linearly independing vectors e1; e2; e3,

(45) �(y) =
X

z2L(e1;e2;e3)\Ω

ız(y):

With this choice the integral in (43) is

(46)
Z
Ω

neik�z�(z) e�ik0(y)�zdz =
X

z2L(e1;e2;e3)\Ω

n e�i((k0(y)�k)�z :

Therefore, if k0(y)�k belongs to the reciprocal lattice L(e1; e2; e3), ei �ej = 2�ıij , then
the exponential factor contributes 1 to the (complex19) magnitude of (46) for every lattice
point: that is, constructive interference.

Howmuch of this constructive interference is a consequence of choosing the electronic
density to be a sum of Dirac masses? Almost nothing Friesecke, James, and Jüstel [2016]
and Friesecke [2007]: Suppose instead we assume

(47) �r(y) =
X

z2L(e1;e2;e3); jzj<r

'(y � z)

for a smooth function ' : R3 ! R� with compact support, or, more generally, in the
Schwartz class S(R3). Here we have chosen Ω = Br(0) as the illuminated region. Then,

19Ibid. The time average of the Poynting vector for time-harmonic radiation is, up to a constant factor, the
complex magnitude of the electric field in the time harmonic case.
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the limit in the sense of distributions of the complex magnitude of the integral in the ex-
pression (43) for Eout is

(48) lim
r!1

ˇ̌̌̌Z
Br (0)

E0(z)�(z) e
�ik0(y)�zdz

ˇ̌̌̌
=

X
z02L(e1;e2;e3)

j'̂(z0)j ız0(k0(y) � k):

From this result we not only see constructive interference but also strong destructive inter-
ference: the sum in (48) is zero when k0(y)�k does not belong to the reciprocal lattice. It
is this result that underlies the 2 to 4 order-of-magnitude difference between peak heights
and background, and the sharpness of the peaks, in X-ray methods. This in turn is what
makes this method so accurate for structure determination. Discovery, improvement and
application of the method has led to no less than 14 Nobel prizes.

All this works because of matching symmetries. In the calculation (46) it is the ability
to combine the phase factors, or more precisely, that the translation group acting on plane
waves gives a phase factor times the plane wave back again. For more general choices of
�, we can use translation invariance (up to the multiplicative phase factor) of �(z) on the
left hand side of (46) to condense the integral to a lattice sum of an integral over the unit
cell, to see constructive interference. A more powerful method is the italicized theorem
just above, which is proved by a direct application of the Poisson summation formula
Friesecke, James, and Jüstel [2016]. The property of plane waves being used is, for the
translation gc = (I j c),

(49) gc(ne
ik�y) := neik�(y+c) = eik�c(neik�y);

i.e., with the group action indicated on the left of (49), the plane wave neik�y is an eigen-
function of the translation group. The eigenvalues eik�c are the characters of this Abelian
group. The two key mathematical properties of plane waves are that, with the natural ac-
tion (49), (i) they are eigenfunctions of the translation group and (ii) they are solutions of
Maxwell’s equations.

So much for plane waves. In principle, everything should work in the same way for
any other Abelian isometry group G. As seen in Section 2 and elsewhere, many of the
most studied structures today are not crystals, and it would be good to have an accurate
method of structure determination for them. Perhaps the most interesting mathematically
are helical structures like single-walled carbon nanotubes20. For one, the helical groups
do not fit the classification scheme of the International Tables of Crystallography – there
are infinitely many helical groups according to that scheme. For another, helical (as well
as many other) structures tend to resist crystallization. Third, even if helical structures can
be crystallized, it is quite unclear that the structure will be close to the native structure.

20Due to the issues discussed here and the typical presence of mixed chiralities in samples, the lattice param-
eters of carbon nanotubes are not accurately known.
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We shall consider time harmonic solutions of Maxwell’s equations:

E(y; t) = E0(y)e
�i!t ; B(y; t) = B0(y)e

�i!t ; E0 : R3
! C3; B0 : R3

! C3

In this case Maxwell’s equations become

(50) ∆E0 = �
!2

c2
E0; divE0 = 0; B0 = �

i

!
curlE0:

For time-harmonic radiation the electric and magnetic fields in the far-field are still given
by (43), but now for a solution E0(y) of (50).

A critical part is choosing the action so that (i) is nontrivial and (ii) exploits the invari-
ance of Maxwell’s equations. The right action is

(51) for g = (Q j c) 2 G; g[E](y; t) = QE(g�1(y); t) = QE(QT (y � c); t):

Here we use the bracket notation [:::] to distinguish the action from that already introduced,
g(y) = Qy + c. Summarizing, we have design equations:
(52)
(i) for all g 2 G; g[E0] = �gE0; and (i i) E0 satisfies Maxwell0s equations (50):

Of course, plane waves satisfy the design equations.
The largest (discrete) Abelian helical group is

(53) fhigj : i 2 Z; j = 1; : : : ; ng where h = (R� j �e); g = (R2�/n j 0):

with R 2 SO(3) having angle  and axis through e; jej = 1, 0 < � < 2� and21 n 2 N.
Exploiting (52) for the helical group (53) is quite easy if we begin with (i). First, the

eigenvalue �g ; g 2 G, is seen to be a bounded continuous homomorphism from G to
C n 0 under multiplication in C, and therefore a character of G. The characters are �g =

�(�; �) = ei(˛�+ˇ�), ˛ 2 Z; ˇ 2 R. Then, one can easily find the general form ofE0 satis-
fying (i): in cylindrical coordinates (r; '; z) this is E0(r; '; z) = ei(˛'+ˇz)R'E0(r; 0; 0).
Finally, substitution of the latter into Maxwell’s equations reduces them to a solvable sys-
tem of ODEs. A general form of the result are twisted waves22:

(54) E(y; t) =
1

2�
e�i!t

Z �

��

ei˛ R n e
i y�R kd ; k = (0; ; ˇ):

Here, n 2 C3 satisfies n � k = 0. A picture of a twisted wave is shown in Figure 5.
21Strictly speaking, to be a helical group, � is an irrational multiple of 2� but we will not need this restriction.
22For the form given here, see Jüstel [2014]; for alternative expressions see Jüstel, Friesecke, and James

[2016].
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Figure 5: A twisted wave showing electric field vectors plotted along an integral
curve (blue) of the Poynting vector.

Theoretically, twisted waves can be used for structure determination of helical struc-
tures similar to the way plane waves are used on periodic structures. A complete scheme
for theoretical structure determination is proposed in Friesecke, James, and Jüstel [2016]
and Jüstel, Friesecke, and James [2016]. The key parameters that are varied are ˛ and ˇ.
We cannot describe this in detail here, but one can get a glimpse of the idea from Figure 6.
Suppose we have an helical objective structure as shown in 6a. We are looking down the
axis. Each yellow atom sees the same environment; each red atom sees the same envi-
ronment; each green atom sees the same environment. In 6b we have superposed on this
structure a twisted wave whose values of ˛; ˇ; n are tuned to give constructive interfer-
ence, and we have plotted just the electric field vectors at the atoms. As one can see, all
the red vectors are parallel, all the green vectors are parallel, and all the yellow vectors are

(a) A 3-OS (b) 3-OS with twisted wave
Figure 6: (a) A 3-OS with green, yellow and red atoms, viewed down the axis.
(b) The same structure with a superimposed twisted wave highlighted at the atom
positions.

parallel in this projection. One can imagine that, if the phases are properly tuned one can
get constructive interference, measured at a detector on the axis. Moreover, the different
length vectors should in fact give information about what is in the unit cell.



SYMMETRY, INVARIANCE AND THE STRUCTURE OF MATTER 4009

These pictures illustrate constructive interference. Destructive interference that occurs
when the parameters or structure is tuned slightly off resonance relies on a far reaching
generalization of the Poisson summation formula Weil [1964] which in turn requires that
the group be extendable to a continuous symmetry group. In the case of the helical group
this generalization can also be seen in a simpler way Friesecke, James, and Jüstel [2016].

8 Perspective

Clearly the subject of structure and invariance has a ragged boundary! Some questions
that could have been considered a century ago seem not to have been asked, and simple
questions posed then seem to be excruciatingly difficult. But the subject has a vibrant
connection with materials science and technology today, with links to nanoscience, qua-
sicrystals, origami, structure determination and multiscale mathematics. In this section
we make a selection of what are (to the author) intriguing mathematical problems related
to this line of thinking.

The most fundamental question seems to us to be: why do elements in the Periodic
Table, and nanostructures made with one element, having widely differing atomic forces
and bonding patterns, choose to crystallize as objective structures? Can that be proved in
some framework, while initially avoiding the question of what is the detailed structure?

There is an intriguing link between subsets of nondiscrete groups of isometries, ob-
jective structures and quasicrystals. What are these groups, and how does one rationally
choose the subsets. Does this lead to a more physically-based approach to quasicrystalline
structures than the projection method?

Seeking some kind of general nonequilibrium statistical mechanics, that has something
like the simplicity of equilibrium statistical mechanics, is in the author’s view hopeless.
After all, even the Boltzmann equation treats only the more rudimentary kind of material,
and it has all the complexity of a general initial-value problem of a nonlinear integro-
differential equation for a function of 7 variables. A classic approach is to try to simplify
by looking near equilibrium. A fresh approach could be the following. We have followed a
far-from-equilibrium invariant manifold frommolecular dynamics to the Boltzmann equa-
tion to continuum mechanics. There seem to be many coincidences, such as an explicit
relationship between density, temperature and entropy that holds far from equilibrium.
These are highly suggestive that there may be a relatively simple statistical mechanics
on this manifold. There, the only gradient is the velocity gradient. Of course, any such
statistical mechanics cannot be based on Hamiltonian = const .

The method of objective molecular dynamics presented in Section 4 could be more
widely used. There are also fundamental mathematical questions (stability) and subtle
numerical issues (efficiency). Note that in a general continuum flow, a piecewise constant
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spatial approximation of the Lagrangian velocity field nominally gives a set of elements
each with a constant A. Is there a general multiscale method here?

What is the scope of the interaction light with matter? For example, even though the
structure in Figure 4 is not the orbit of a discrete group of isometries, it seems likely that,
with the right radiation, we could get a pretty strong constructive interference from it.

And finally, like a lot of mathematics, the key to understanding origami seems to be
rigidity. But, established lines of thinking about rigidity in differential geometry or elas-
ticity seem not to be fruitful. On the other hand, the link between martensitic phase trans-
formations and origami, already pioneered by Conti andMaggi [2008], seems to be highly
suggestive.

Acknowledgments. The author thanks A. Banerjee, K. Dayal, R. Elliott, F. Feng, G.
Friesecke, D. Jüstel, P. Plucinsky and R. Twarock for stimulating discussions about these
topics.
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MATHEMATICS FOR CRYO-ELECTRON MICROSCOPY
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Abstract

Single-particle cryo-electronmicroscopy (cryo-EM) has recently joinedX-ray crys-
tallography and NMR spectroscopy as a high-resolution structural method for biolog-
ical macromolecules. Cryo-EM was selected by Nature Methods as Method of the
Year 2015, large scale investments in cryo-EM facilities are being made all over the
world, and the Nobel Prize in Chemistry 2017 was awarded to Jacques Dubochet,
Joachim Frank and Richard Henderson “for developing cryo-electron microscopy for
the high-resolution structure determination of biomolecules in solution”. This paper
focuses on the mathematical principles underlying existing algorithms for structure
determination using single particle cryo-EM.

1 Introduction

The field of structural biology is currently undergoing a transformative change Kühlbrandt
[2014] and Smith and Rubinstein [2014]. Structures of many biomolecular targets previ-
ously insurmountable by X-ray crystallography are now being obtained using single par-
ticle cryo-EM to resolutions beyond 4Å on a regular basis Liao, Cao, Julius, and Cheng
[2013], Amunts et al. [2014], and Bartesaghi, Merk, Banerjee, Matthies, X. Wu, Milne,
and Subramaniam [2015]. This leap in cryo-EM technology, as recognized by the 2017
Nobel Prize in Chemistry, is mainly due to hardware advancements including the inven-
tion of the direct electron detector and the methodological development of algorithms for
data processing. Cryo-EM is a very general and powerful technique because it does not
require the formation of crystalline arrays of macromolecules. In addition, unlike X-ray
crystallography and nuclear magnetic resonance (NMR) that measure ensembles of parti-
cles, single particle cryo-EM produces images of individual particles. Cryo-EM therefore
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has the potential to analyze conformational changes and energy landscapes associated with
structures of complexes in different functional states.

As there exist many excellent review articles and textbooks on single particle cryo-EM
Frank [2006], van Heel, Gowen, et al. [2000], Nogales [2016], Glaeser [2016], Subrama-
niam, Kühlbrandt, and Henderson [2016], C. O. S. Sorzano and Carazo [2017], and F. J.
Sigworth [2016], we choose to solely focus here on the mathematical foundations of this
technique. Topics of great importance to practitioners, such as the physics and optics of
the electron microscope, sample preparation, and data acquisition are not treated here.

In cryo-EM, biological macromolecules are imaged in an electron microscope. The
molecules are rapidly frozen in a thin layer of vitreous ice, trapping them in a nearly-
physiological state. The molecules are randomly oriented and positioned within the ice
layer. The electronmicroscope produces a two-dimensional tomographic projection image
(called a micrograph) of the molecules embedded in the ice layer. More specifically, what
is being measured by the detector is the integral in the direction of the beaming electrons
of the electrostatic potential of the individual molecules.

Cryo-EM images, however, have very low contrast, due to the absence of heavy-metal
stains or other contrast enhancements, and have very high noise due to the small electron
doses that can be applied to the specimen without causing too much radiation damage.
The first step in the computational pipeline is to select “particles” from the micrographs,
that is, to crop from each micrograph several small size images each containing a single
projection image, ideally centered. The molecule orientations associated with the particle
images are unknown. In addition, particle images are not perfectly centered, but this would
be of lesser concern to us for now.

The imaging modality is akin to the parallel beam model in Computerized Tomogra-
phy (CT) of medical images, where a three-dimensional density map of an organ needs
to be estimated from tomographic images. There are two aspects that make single parti-
cle reconstruction (SPR) from cryo-EM more challenging compared to classical CT. First,
in medical imaging the patient avoids movement, hence viewing directions of individual
projections are known to the scanning device, whereas in cryo-EM the viewing directions
are unknown. Electron Tomography (ET) employs tilting and is often used for cellular
imaging, providing reconstructions of lower resolution due to increased radiation damage
for the entire tilt series. While it is possible to tilt the specimen and register relative view-
ing directions among images within a tilt series, radiation damage destroys high frequency
content and it is much more difficult to obtain high resolution reconstructions using ET.
In SPR, each particle image corresponds to a different molecule, ideally of the same struc-
ture, but at different and unknown orientation. Second, the signal-to-noise ratio (SNR)
typical of cryo-EM images is smaller than one (more noise than signal). Thus, to obtain a
reliable three-dimensional density map of a molecule, the information from many images
of identical molecules must be combined.
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Image Formation Model and Inverse Problem
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Figure 1: Schematic drawing of the imaging process: every projection image corre-
sponds to some unknown rotation of the unknown molecule. The effect of the point
spread function is not shown here.

2 Image formation model and inverse problems

The mathematical image formation model is as follows (Figure 1). Let � : R3 ! R be the
electrostatic potential of the molecule. Suppose that following the step of particle picking,
the dataset contains n particle images, denoted I1; : : : ; In. The image Ii is formed by
first rotating � by a rotation Ri in SO(3), then projecting the rotated molecule in the z-
direction, convolving it with a point spread function Hi , sampling on a Cartesian grid of
pixels of size L � L, and contaminating with noise:

(1) Ii (x; y) = Hi ?

Z 1

�1

�(RT
i r) dz + “noise”; r = (x; y; z)T :

The rotations R1; : : : ; Rn 2 SO(3) are unknown. The Fourier transform of the point
spread function is called the contrast transfer function (CTF), and it is typically known,
or can be estimated from the data, at least approximately, although it may vary from one
image to another. Equivalently, we may rewrite the forward model (Equation (1)) as

(2) Ii = Hi ? PR ı � + “noise”;

whereRı�(r) = �(RT r) andP is the tomographic projection operator in the z-direction,
Pf (x; y) =

R
R f (x; y; z) dz. We write “noise” in Equations (1) and (2) as a full discus-

sion of the noise statistics and its possible dependence on the structure itself (i.e., structural
noise) are beyond the scope of this paper.

The basic cryo-EM inverse problem, called the cryo-EM reconstruction problem, is
to estimate � given I1; : : : ; In and H1; : : : ; Hn, without knowing R1; : : : ; Rn. Notice
that cryo-EM reconstruction is a non-linear inverse problem, because the rotations are
unknown; if the rotations were known, then it would become a linear inverse problem, for
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which there exist many classical solvers. Because images are finitely sampled, � cannot
be estimated beyond the resolution of the input images.

An even more challenging inverse problem is the so-called heterogeneity cryo-EM
problem. Here each image may originate from a different molecular structure correspond-
ing to possible structural variations. That is, to each image Ii there may correspond a
different molecular structure �i . The goal is then to estimate �1; : : : ; �n from I1; : : : ; In,
again, without knowing the rotations R1; : : : ; Rn. Clearly, as stated, this is an ill-posed in-
verse problem, sincewe are required to estimatemore output parameters (three-dimensional
structures) than input data (two-dimensional images). In order to have any hope of making
progress with this problem, we would need to make some restrictive assumptions about
the potential functions �1; : : : ; �n. For example, the assumption of discrete variability im-
plies that there is only a finite number of distinct conformations from which the potential
functions are sampled from. Then, the goal is to estimate the number of conformations,
the conformations themselves, and their distribution. Another popular assumption is that
of continuous variability with a small number of flexible motions, so that �1; : : : ; �n are
sampled from a low-dimensional manifold of conformations. Either way, the problem is
potentially well-posed only by assuming an underlying low-dimensional structure on the
distribution of possible conformations.

In order to make this exposition less technical, we are going to make an unrealistic
assumption of ideally localized point spread functions, or equivalently, constant contrast
transfer functions, so that H1; : : : ; Hn are eliminated from all further consideration here.
All methods and analyses considered below can be generalized to include the effect of
non-ideal CTFs, unless specifically mentioned otherwise.

3 Solving the basic cryo-EM inverse problem for clean images

Even with clean projection images, the reconstruction problem is not completely obvi-
ous (Figure 2). A key element to determining the rotations of the images is the Fourier
projection slice theorem Natterer [1986] that states that the two-dimensional Fourier trans-
form of a tomographic projection image is the restriction of the three-dimensional Fourier
transform of � to a planar central slice perpendicular to the viewing direction:

(3) F PR ı � = SR ı F �;

where F denotes the Fourier transform (over R2 on the left hand side of Equation (3), and
over R3 on the right hand side of Equation (3)), and S is the restriction operator to the
xy-plane (z = 0).

The Fourier slice theorem implies the common line property: the intersection of two
(non-identical) central slices is a line. Therefore, for any pair of projection images, there
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Figure 2: Illustration of the basic cryo-EM inverse problem for clean images. How
to estimate the three-dimensional structure (top) from clean projection images taken
at unknown viewing angles (bottom)?
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Figure 3: Left: Illustration of the Fourier slice theorem and the common line prop-
erty. Right: Angular reconstitution

is a pair of central lines (one in each image) on which their Fourier transforms agree (Fig-
ure 3, left panel). For non-symmetric generic molecular structures it is possible to uniquely
identify the common-line, for example, by cross-correlating all possible central lines in
one image with all possible central lines in the other image, and choosing the pair of lines
with maximum cross-correlation. The common line pins down two out of the three Eu-
ler angles associated with the relative rotation R�1

i Rj between images Ii and Ij . The
angle between the two central planes is not determined by the common line. In order to
determine it, a third image is added, and the three common line pairs between the three
images uniquely determine their relative rotations up to a global reflection (Figure 3, right
panel). This procedure is known as “angular reconstitution”, and it was proposed inde-
pendently by Vainshtein and A. Goncharov [1986] and van Heel [1987]. Notice that the
handedness of the molecule cannot be determined by single particle cryo-EM, because
the original three-dimensional object and its reflection give rise to identical sets of pro-
jection images with rotations related by the following conjugation, R̃i = JRi J

�1, with
J = J �1 = diag(1; 1; �1). For molecules with non-trivial point group symmetry, e.g.,
cyclic symmetry, there are multiple common lines between pairs of images, and even self-
common lines that enable rotation assignment from fewer images.

As a side comment, notice that for the analog problem in lower dimension of recon-
structing a two-dimensional object from its one-dimensional tomographic projections taken
at unknown directions, the Fourier slice theorem does not help in determining the viewing
directions, because it only has a trivial geometric implication that the Fourier transform of
the line projections intersect a point, the zero frequency, corresponding to the total mass of
the density. Yet, it is possible to uniquely determine the viewing directions by relating the
moments of the projections with those of the original object, as originally proposed by A.
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(a) Clean (b) SNR=20 (c) SNR=2�1 (d) SNR=2�2 (e) SNR=2�3

(f) SNR=2�4 (g) SNR=2�5 (h) SNR=2�6 (i) SNR=2�7 (j) SNR=2�8

Figure 4: Simulated projections of size 129 � 129 pixels at various levels of SNR.

Goncharov [1987] and further improved and analyzed by Basu and Bresler [2000a,b]. An
extension of the moment method to 3-D cryo-EM reconstruction was also proposed A. B.
Goncharov [1988] and A. Goncharov and Gelfand [1988]. As the moment based method
is very sensitive to noise and cannot handle varying CTF in a straightforward manner, it
mostly remained a theoretical curiosity.

4 Solving the basic cryo-EM inverse problem for noisy images

For noisy images it is more difficult to correctly identify the common lines. Figure 4 shows
a simulated clean projection image contaminated by white Gaussian noise at various levels
of SNR, defined as the ratio between the signal variance to noise variance. Section 4
specifies the fraction of correctly identified common lines as a function of the SNR for
the simulated images, where a common line is considered to be correctly identified if
both central lines deviate by no more than 10ı from their true directions. The fraction
of correctly identified common lines deteriorates quickly with the SNR. For SNR values
typical of experimental images, the fraction of correctly identified common lines is around
0:1, and can be even lower for smaller molecules of lower SNR. As angular reconstitution
requires three pairs of common lines to be correctly identified, its probability to succeed
is only 10�3. Moreover, the procedure of estimating the rotations of additional images
sequentially using their common lines with the previously rotationally assigned images
quickly accumulates errors.



4020 AMIT SINGER

log2(SNR) p

20 0.997
0 0.980
-1 0.956
-2 0.890
-3 0.764
-4 0.575
-5 0.345
-6 0.157
-7 0.064
-8 0.028
-9 0.019

Table 1: Fraction p of correctly identified common lines as a function of the SNR.

The failure of angular reconstitution at low SNR, raises the question of how to solve
the cryo-EM reconstruction problem at low SNR. One possibility is to use better common
line approaches that instead of working their way sequentially like angular reconstitution
use the entire information between all common lines at once, in an attempt to find a set of
rotations for all images simultaneously. Another option is to first denoise the images in
order to boost the SNR and improve the detection rate of common lines. Denoising can
be achieved for example by a procedure called 2-D classification and averaging, in which
images of presumably similar viewing directions are identified, rotationally aligned, and
averaged, thus diminishing the noise while maintaining the common signal. While these
techniques certainly help, and in many cases lead to successful ab-initio three-dimensional
modeling (at least at low resolution), for small molecules with very low SNR they still fail.

The failure of these algorithms is not due to their lack of sophistication, but rather a
fundamental one: It is impossible to accurately estimate the image rotations at very low
SNR, regardless of the algorithmic procedure being used. To understand this inherent limi-
tation, consider an oracle that knows the molecular structure �. Even the oracle would not
be able to accurately estimate image rotations at very low SNR. In an attempt to estimate
the rotations, the oracle would produce template projection images of the form PR ı �,
and for each noisy reference experimental image, the oracle would look for its best match
among the template images, that is, the rotation R that minimizes the distance between
the template PR ı � ad the reference image. At very low SNR, the random contribution
of the noise dominates the distance, and the oracle would be often fooled to assign wrong
rotations with large errors.
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Since at very low SNR even an oracle cannot assign rotations reliably, we should give
up on any hope for a sophisticated algorithm that would succeed in estimating the rotations
at any SNR. Instead, we shouldmainly focus on algorithms that try to estimate the structure
� without estimating rotations. This would be the topic of the next section. Still, because
in practice algorithms for estimating rotations are quite useful for large size molecules, we
would quickly survey those first.

4.1 Common-line approaches. There are several procedures that attempt to simulta-
neously estimate all rotations R1; : : : ; Rn from the common lines between all pairs of
images at once Singer, Coifman, F. J. Sigworth, Chester, and Shkolnisky [2010], Singer
and Shkolnisky [2011], Shkolnisky and Singer [2012], andWang, Singer, andWen [2013].
Due to space limitations, we only briefly explain the semidefinite programming (SDP) re-
laxation approach Singer and Shkolnisky [2011]. Let (xij ; yij ) be a point on the unit circle
indicating the location of the common line between images Ii and Ij in the local coordi-
nate system of image Ii (see Figure 3, left panel). Also, let cij = (xij ; yij ; 0)T . Then, the
common-line property implies that Ri cij = Rj cj i . Such a linear equation can be written
for every pair of images, resulting an overdetermined system, because the number of equa-
tions is O(n2), whereas the number of variables associated with the unknown rotations is
only O(n). The least squares estimator is the solution to minimization problem

(4) min
R1;R2;:::;Rn2SO(3)

X
i¤j

kRi cij � Rj cj i k
2:

This is a non-convex optimization problem over an exponentially large search space. The
SDP relaxation and its rounding procedure are similar in spirit to the Goemans-Williamson
SDP approximation algorithm for Max-Cut Goemans and Williamson [1995]. Specifi-
cally, it consists of optimizing over a set of positive definite matrices with entries related
to the rotation ratios RT

i Rj and satisfying the block diagonal constraints RT
i Ri = I ,

while relaxing the rank-3 constraint. There is also a spectral relaxation variant, which is
much more efficient to compute than SDP and its performance can be quantified using rep-
resentation theory Hadani and Singer [2011], but requires the distribution of the viewing
directions to be uniform.

A more recent procedure A. S. Bandeira, Y. Chen, and Singer [2015] attempts to solve
an optimization problem of the form

(5) min
R1;R2;:::;Rn2SO(3)

X
i¤j

fij (R
T
i Rj )

using an SDP relaxation that generalizes an SDP-based algorithm for unique gamesCharikar,
K. Makarychev, and Y. Makarychev [2006] to SO(3) via classical representation theory.
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The functions fij encode the cost for the common line implied by the rotation ratioRT
i Rj

for images Ii and Ij . The unique feature of this approach is that the common lines do
not need to be identified, but rather all possibilities are taken into account and weighted
according to the pre-computed functions fij .

4.2 2-D classification and averaging. If images corresponding to similar viewing di-
rection can be identified, then they can be rotationally (and translationally) aligned and
averaged to produce “2-D class averages” that enjoy a higher SNR. The 2-D class aver-
ages can be used as input to common-line based approaches for rotation assignment, as
templates in semi-automatic procedures for particle picking, and to provide a quick assess-
ment of the particles.

There are several computational challenges associated with the 2-D classification prob-
lem. First, due to the low SNR, it is difficult to detect neighboring images in terms of
their viewing directions. It is also not obvious what metric should be used to compare im-
ages. Another difficulty is associated with the computational complexity of comparing all
pairs of images and finding their optimal in-plane alignment, especially for large datasets
consisting of hundreds of thousands of particle images.

Principal component analysis (PCA) of the images offers an efficient way to reduce
the dimensionality of the images and is often used in 2-D classification procedures Van
Heel and Frank [1981]. Since particle images are just as likely to appear in any in-plane
rotation (e.g., by rotating the detector), it makes sense to perform PCA for all images and
their uniformly distributed in-plane rotations. The resulting covariance matrix commutes
with the group action of in-plane rotation. Therefore, it is block-diagonal in any steerable
basis of functions in the form of outer products of radial functions and Fourier angular
modes. The resulting procedure, called steerable PCA is therefore more efficiently com-
puted compared to standard PCA Zhao, Shkolnisky, and Singer [2016]. In addition, the
block diagonal structure implies a considerable reduction in dimensionality: for images
of size L � L, the largest block size is O(L � L), whereas the original covariance is of
size L2 � L2. Using results from the spiked covariance model in high dimensional PCA
Johnstone [2001], this implies that the principal components and their eigenvalues are bet-
ter estimated using steerable PCA, and modern eigenvalue shrinkage procedures can be
applied with great success Bhamre, Zhang, and Singer [2016].

The steerable PCA framework also paves the way to a natural rotational invariant rep-
resentation of the image Zhao and Singer [2014]. Images can therefore be compared using
their rotational invariant representation, saving the cost associated with rotational align-
ment. In addition, efficient algorithms for approximate nearest neighbors search can be
applied for initial classification of the images. The classification can be further improved
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by applying vector diffusion maps Singer and H.-T. Wu [2012] and Singer, Zhao, Shkol-
nisky, and Hadani [2011], a non-linear dimensionality reduction method that generalizes
Laplacian eigenmaps Belkin and Niyogi [2002] and diffusion maps Coifman and Lafon
[2006] by also exploiting the optimal in-plane transformation between neighboring im-
ages.

5 How to solve the cryo-EM problem at very low SNR?

The most popular approach for cryo-EM reconstruction is iterative refinement. Itera-
tive refinement methods date back to (at least) Harauz and Ottensmeyer [1983, 1984]
and are the cornerstone of modern software packages for single particle analysis Shaikh,
Gao, Baxter, Asturias, Boisset, Leith, and Frank [2008], van Heel, Harauz, Orlova, R.
Schmidt, and Schatz [1996], C. Sorzano, Marabini, Velázquez-Muriel, Bilbao-Castro,
S. H. Scheres, Carazo, and Pascual-Montano [2004], Tang, Peng, Baldwin, Mann, Jiang,
Rees, and Ludtke [2007], Hohn et al. [2007], Grigorieff [2007], S. Scheres [2012], and
Punjani, Rubinstein, Fleet, and Brubaker [2017]. Iterative refinement starts with some
initial 3-D structure �0 and at each iteration project the current structure at many different
viewing directions to produce template images, then match the noisy reference images
with the template images in order to assign rotations to the noisy images, and finally per-
form a 3-D tomographic reconstruction using the noisy images and their assigned rota-
tions. Instead of hard assignment of rotations, a soft assignment in which each rotation is
assigned a distribution rather than just the best match, can be interpreted as an expectation-
maximization procedure for maximum likelihood of the structure � while marginalizing
over the rotations, which are treated as nuisance parameters. The maximum likelihood
framework was introduced to the cryo-EM field by F. Sigworth [1998] and its implemen-
tation in the RELION software package S. Scheres [2012] is perhaps most widely used
nowadays. Notice that a requirement for the maximum likelihood estimator (MLE) to be
consistent is that the number of parameters to be estimated does not grow indefinitely with
the number of samples (i.e., number of images in our case). The Neyman-Scott “paradox”
Neyman and Scott [1948] is an example where maximum likelihood is inconsistent when
the number of parameters grows with the sample size. The MLE of � and R1; : : : ; Rn is
therefore not guaranteed to be consistent. On the other hand, the MLE of � when treating
the rotations as hidden parameters is consistent.

The MLE approach has been proven very successful in practice. Yet, it suffers from
several important shortcomings. First, expectation-maximization and other existing opti-
mization procedures are only guaranteed to converge to a local optimum, not necessary the
global one. Stochastic gradient descent Punjani, Rubinstein, Fleet, and Brubaker [2017]
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and frequency marching Barnett, Greengard, Pataki, and Spivak [2017] attempt to miti-
gate that problem. MLE requires an initial starting model, and convergence may depend
on that model, a phenomenon known as “model bias”. MLE can be quite slow to com-
pute, as many iterations may be required for convergence, with each iteration performing
a computationally expensive projection template-reference matching and tomographic re-
construction, although running times are significantly reduced in modern GPU implemen-
tations. From a mathematical standpoint, it is difficult to analyze the MLE. In particular,
what is the sample complexity of the cryo-EM reconstruction problem? That is, howmany
noisy images are needed for successful reconstruction?

6 Kam’s autocorrelation analysis

About 40 years ago, Kam [1980] proposed amethod for 3-D ab-initio reconstructionwhich
is based on computing the autocorrelation and higher order correlation functions of the 3-
D structure in Fourier space from the 2-D noisy projection images. Remarkably, it was
recently shown in A. S. Bandeira, Blum-Smith, Perry, Weed, and Wein [2017] that these
correlation functions determine the 3-D structure uniquely (or at least up to a finite number
of possibilities). Kam’s method completely bypasses the estimation of particle rotations
and estimates the 3-D structure directly. The most striking advantage of Kam’s method
over iterative refinement methods is that it requires only one pass over the data for com-
puting the correlation functions, and as a result it is extremely fast and can operate in
a streaming mode in which data is processed on the fly while being acquired. Kam’s
method can be regarded as a method of moments approach for estimating the structure �.
The MLE is asymptotically efficient, therefore its mean squared error is typically smaller
than that of the method of moments estimator. However, for the cryo-EM reconstruction
problem the method of moments estimator of Kam is much faster to compute compared
to the MLE. In addition, Kam’s method does not require a starting model. From a theo-
retical standpoint, Kam’s theory sheds light on the sample complexity of the problem as
a function of the SNR. For example, using Kam’s method in conjunction with tools from
algebraic geometry and information theory, it was shown that in the case of uniformly dis-
tributed rotations, the sample complexity scales as 1/SNR3 in the low SNR regime A. S.
Bandeira, Blum-Smith, Perry, Weed, and Wein [ibid.].

Interest in Kam’s theory has been recently revived due to its potential application to
X-ray free electron lasers (XFEL) Kam [1977], Liu, B. K. Poon, Saldin, Spence, and
Zwart [2013], Starodub et al. [2012], Saldin, Shneerson, et al. [2010], Saldin, H.-C. Poon,
Schwander, Uddin, and M. Schmidt [2011], and Kurta et al. [2017]. However, Kam’s
method has so far received little attention in the EM community. It is an idea that was
clearly ahead of its time: There was simply not enough data to accurately estimate second
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and third order statistics from the small datasets that were available at the time (e.g. typ-
ically just dozens of particles). Moreover, accurate estimation of such statistics requires
modern techniques from high dimensional statistical analysis such as eigenvalue shrinkage
in the spiked covariance model that have only been introduced in the past two decades. Es-
timation is also challenging due to the varying CTF between micrographs and non-perfect
centering of the images. Finally, Kam’s method requires a uniform distribution of particle
orientations in the sample, an assumption that usually does not hold in practice.

In Bhamre, Zhang, and Singer [2016], we have already addressed the challenge of vary-
ing CTF and also improved the accuracy and efficiency of estimating the covariance ma-
trix from projection images by combining the steerable PCA framework Zhao and Singer
[2013] and Zhao, Shkolnisky, and Singer [2016] with optimal eigenvalue shrinkage proce-
dures Johnstone [2001], Donoho, Gavish, and Johnstone [2013], and Gavish and Donoho
[2017]. Despite this progress, the challenges of non-perfect centering of the images that
limits the resolution and the stringent requirement for uniformly distributed viewing di-
rections, still put severe limitations on the applicability of Kam’s method in cryo-EM.

Here is a very brief account of Kam’s theory. Kam showed that the Fourier projection
slice theorem implies that if the viewing directions of the projection images are uniformly
distributed, then the autocorrelation function of the 3-D volumewith itself over the rotation
group SO(3) can be directly computed from the covariance matrix of the 2-D images,
i.e. through PCA. Specifically, consider the spherical harmonics expansion of the Fourier
transform of �

(6) F �(k; �; ') =

1X
l=0

lX
m=�l

Alm(k)Y m
l (�; ');

where Y m
l

are the spherical harmonics, and Alm are functions of the radial frequency k.
Kam showed that from the covariance matrix of the 2-D Fourier transform of the 2-D
projection images it is possible to extract matrices Cl (l = 0; 1; 2; : : :) that are related to
the radial functions Alm through

(7) Cl(k1; k2) =

lX
m=�l

Alm(k1)Alm(k2):

For images sampled on a Cartesian grid of pixels, each Cl is a matrix of size Kl � Kl ,
where Kl is determined by a sampling criterion dating back to Klug and Crowther [1972]
to avoid aliasing. Kl is a monotonic decreasing function of l , and we set L as the largest l

in the spherical harmonics expansion for which Kl � l . In matrix notation, Equation (7)
is equivalent to

(8) Cl = AlA
�
l ;
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whereAl is a matrix of sizeKl �(2l+1)whosem’th column is the vectorAlm and whose
rows are indexed by the radial frequency k, and whereA� is the Hermitian conjugate ofA.
However, the factorization of Cl in Equation (8), also known as the Cholesky decomposi-
tion, is not unique: If Al satisfies Equation (8), then for any (2l + 1) � (2l + 1) unitary
matrix U (i.e., U satisfies U U � = U �U = I2l+1), also AlU satisfies Equation (8).
In fact, since the molecular density � is real-valued, its Fourier transform is conjugate-
symmetric, and hence the matrices Al are purely real for even l , and purely imaginary for
odd l . Therefore, Equation (8) determines Al uniquely up to an orthogonal matrix Ol of
size (2l+1)�(2l+1) (i.e.,Ol is a real valuedmatrix satisfyingOlO

T
l

= OT
l

Ol = I2l+1).
Formally, we take a Cholesky decomposition of the estimated Cl to obtain a Kl � (2l +1)

matrix Fl satisfying Cl = FlF
�
l
. Accordingly, Al = FlOl for some unknown orthogonal

matrix Ol .
In other words, from the covariance matrix of the 2-D projection images we can re-

trieve, for each l , the radial functions Alm (m = �l; : : : ; l) up to an orthogonal matrix Ol .
This serves as a considerable reduction of the parameter space: Originally, a complete
specification of the structure requires, for each l , a matrix Al of size Kl � (2l +1), but the
additional knowledge of Cl reduces the parameter space to that of an orthogonal matrix
of size (2l + 1) � (2l + 1) which has only l(2l + 1) degrees of freedom, and typically
Kl � l .

In Bhamre, Zhang, and Singer [2015] we showed that the missing orthogonal matrices
O1; O2; : : : ; OL can be retrieved by “orthogonal extension”, a process that relies on the
existence of a previously solved similar structure and in which the orthogonal matrices
are grafted from the previously resolved similar structure to the unknown structure. How-
ever, the structure of a similar molecule is usually unavailable. We also offered another
method for retrieving the orthogonal matrices using “orthogonal replacement”, inspired
by molecular replacement in X-ray crystallography. While orthogonal replacement does
not require any knowledge of a similar structure, it assumes knowledge of a structure that
can bind to the molecule (e.g., an antibody fragment of known structure that binds to a
protein).

An alternative approach for determining the orthogonal matrices was already proposed
by Kam [1980] and Kam and Gafni [1985], who suggested using higher order correla-
tions. Specifically, Kam proposed using triple products of the form Î 2(k1)Î (k2) and
quadruple products of the form Î 2(k1)Î 2(k2), where Î is the 2-D Fourier transform of
image I . The main disadvantage of using higher order correlations is noise amplification:
Methods based on triple correlations require number of images that scale as 1/SNR3, and
even more badly as 1/SNR4 in the case of quadruple correlation. The higher correlation
terms that Kam proposed are not complete. In general, a triple product takes the form
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Î (k1)Î (k2)Î (k3). Kam is using only a slice of the possible triple products (namely, set-
ting k3 = k1) due to the large number of coefficients it results in. This is closely related
to restricting the bispectrum due to its high dimensionality Marabini and Carazo [1996].
In that respect we note that a vast reduction in the dimensionality of the triple correlation
(or bispectrum coefficients) can be achieved by only using triple products of the steerable
PCA coefficients. The number of meaningful PCA expansion coefficient is typically of
the order of a few hundreds (depending on the noise level), much smaller than the number
of pixels in the images.

7 A mathematical toy model: multi-reference alignment

The problem of multi-reference alignment serves as a mathematical toy model for ana-
lyzing the cryo-EM reconstruction and heterogeneity problems. In the multi-reference
alignment model, a signal is observed by the action of a random circular translation and
the addition of Gaussian noise. The goal is to recover the signal’s orbit by accessing mul-
tiple independent observations (Figure 5). Specifically, the measurement model is of the
form

(9) yi = Ri x + "i ; x; yi ; "i 2 RL; "i ∼ N(0; �2IL�L); i = 1; 2; : : : ; n:

While pairwise alignment succeeds at high SNR, accurate estimation of rotations is
impossible at low SNR, similar to the fundamental limitation in cryo-EM. Two natural
questions arise: First, how to estimate the underlying signal at very low SNR, and how
many measurements are required for accurate estimation.

Just like in the cryo-EM reconstruction problem, an expectation-maximization type
algorithm can be used to compute the MLE of the signal x, treating the cyclic shifts as nui-
sance parameters. Alternatively, a method of moments approach would consist of estimat-
ing correlation functions that are invariant to the group action. Specifically, the following
are invariant features (in Fourier / real space), and the number of observations needed for
accurate estimation by the central limit theorem:

• Zero frequency / average pixel value:

(10)
1

n

nX
i=1

ŷi (0) ! x̂(0) as n ! 1: Need n & �2:

• Power spectrum / autocorrelation:

(11)
1

n

nX
i=1

jŷi (k)j
2

! jx̂(k)j2 + �2 as n ! 1: Need n & �4:
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Figure 5: Multi-reference alignment of 1-D periodic signals, at different noise levels
� .

• Bispectrum / triple correlation Tukey [1953]:

(12)
1

n

nX
i=1

ŷi (k1)ŷi (k2)ŷi (�k1 � k2) !x̂(k1)x̂(k2)x̂(�k1 � k2)

as n ! 1Need n & �6:

The bispectrum Bx(k1; k2) = x̂(k1)x̂(k2)x̂(�k1 � k2) contains phase information
and is generically invertible (up to global shift) Kakarala [1993] and Sadler and Gian-
nakis [1992]. It is therefore possible to accurately reconstruct the signal from sufficiently
many noisy shifted copies for arbitrarily low SNR without estimating the shifts and even
when estimation of shifts is poor. Notice that if shifts are known, then n & 1/SNR is
sufficient for accurate estimation of the signal. However, not knowing the shifts make a
big difference in terms of the sample complexity, and n & 1/SNR3 for the shift-invariant
method. In fact, no method can succeed with asymptotically fewer measurements (as a
function of the SNR) in the case of uniform distribution of shifts Perry, Weed, A. Ban-
deira, Rigollet, and Singer [2017], A. Bandeira, Rigollet, and Weed [2017], and Abbe,
J. M. Pereira, and Singer [2017]. The computational complexity and stability of a vari-
ety of bispectrum inversion algorithms was studied in Bendory, Boumal, Ma, Zhao, and
Singer [2017] and H. Chen, Zehni, and Zhao [2018]. A somewhat surprising result is
that multi-reference alignment with non-uniform (more precisely, non-periodic) distribu-
tion of shifts can be solved with just the first two moments and the sample complexity
is proportional to 1/SNR2 Abbe, Bendory, Leeb, J. Pereira, Sharon, and Singer [2017]
and Abbe, J. M. Pereira, and Singer [2018]. The method of moments can also be applied
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to multi-reference alignment in the heterogeneous setup, and avoids both shift estimation
and clustering of the measurements Boumal, Bendory, Lederman, and Singer [2017].

The analysis of the multi-reference alignment model provides key theoretical insights
into Kam’smethod for cryo-EM reconstruction. In addition, themulti-reference alignment
problem also offers a test bed for optimization algorithms and computational tools before
their application to the more challenging problems of cryo-EM.

8 Summary

Computational tools are a vital component of the cryo-EM structure determination process
that follows data collection. Still, there are many computational aspects that are either un-
resolved or that require further research and development. New computational challenges
constantly emerge from attempts to further push cryo-EM technology towards higher res-
olution, higher throughput, smaller molecules, and highly flexible molecules. Important
computational challenges include mapping conformational landscapes, structure valida-
tion, dealingwith low SNR for small molecule reconstruction, motion correction and video
processing, ab-initio modeling, and sub-tomogram averaging, among others. We empha-
size that this paper is of limited scope, and therefore addressed only a few core elements
of the reconstruction pipeline, mainly focusing on the cryo-EM reconstruction problem.

Moreover, the paper did not aim to present any new algorithms and techniques, but
instead provide a review of some of the already existing methods and their analysis, with
perhaps some new commentary. Although the heterogeneity problem is arguably one of
the most important challenges in cryo-EM analysis nowadays, techniques for addressing
this problemwere not discussed here mainly for space limitations. Another reason to defer
the review of methods for the heterogeneity problem is that techniques are still being de-
veloped, and that aspect of the cryo-EM analysis is less mature and not as well understood
compared to the basic cryo-EM reconstruction problem.

To conclude, mathematics plays a significant role in the design and analysis of algo-
rithms for cryo-EM. Different aspects of representation theory, tomography and integral
geometry, high dimensional statistics, random matrix theory, information theory, alge-
braic geometry, signal and image processing, dimensionality reduction, manifold learn-
ing, numerical linear algebra, and fast algorithms, all come together in helping structural
biologists discover new biology using cryo-electron microscopy.
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Abstract

This paper presents a line of research in didactics of mathematics developed during
the past decade within the Anthropological Theory of the Didactic around what we
call study and research paths (SRPs). SRPs are initially proposed as a study format
based on the inquiry of open questions, which can be implemented at all educational
levels, from pre-school to university, including teacher education and professional
development. Additionally, they provide a general schema for analysing any kind
of teaching and learning process, by especially pointing out the more or less explicit
questions that lead the study process and the way new knowledge is built or introduced
to elaborate answers to these questions. Current research on SRPs focuses on their
didactic ecology, defined as the set of conditions required to generally implement
SRPs at different educational levels, together with the constraints that hinder their
development and dissemination.

1 Delimiting a unit of analysis

1.1 The anthropological theory of the didactic. Mathematics education—or didactics
of mathematics, as we prefer to call it in many countries—is still a young field of research
and comprises different approaches that do not always share their main assumptions or
goals. The research here presented corresponds to the Anthropological Theory of the
Didactic (ATD), a framework whose main creator, Yves Chevallard, received the ICMI
Hans Freudenthal Medal in 2009 in recognition of the foundation and development of “a
very original, fruitful and influential research programme in mathematics education”. To
begin with, I will briefly explain how the ATD defines and delimits the object of study of
didactics and the type of research questions that are primarily raised.

From the perspective of the ATD, the aim of didactics as a science is to elucidate the
mechanisms by which, in a given society, knowledge is diffused within institutions and
among persons. The conception of knowledge adopted is very broad. It embraces what
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is usually considered as knowledge as such, in the sense of theoretical elaborations or
constructions or, according to the dictionary, the “sum ofwhat is known” in a given domain
or discipline, close to what the French mathematician Georges Bouligand (1889-1979)
defined as syntheses, which “keep track of new problems and assembles results known
to coordinate an inventory of methods and operations” Bouligand [1957, p. 139]. And it
also includes the practical dimension of knowledge, the know-how that supports all kind
of human activities.

Knowledge, in both the theoretical and practical sense, is modelled in the ATD through
the notion of praxeology. The term is formed by a combination of praxis—the know-how
or ways of doing—and logos—an organised discourse about the praxis. The praxis and
the logos blocks of a praxeology are in turn made up of two distinct elements: types of
tasks and techniques to carry them out, for the praxis; a technology or discourse about the
technique, and a theory or justification of the technology, for the logos.

One of the main postulates of the ATD is that any kind of human activity, as well as
the knowledge (in the broad sense) derived from it, can be described in terms of praxe-
ologies. Therefore, group theory or complex analysis are praxeologies, made up of elab-
orated theoretical discourses that describe, justify and structure a wide array of problems
and techniques. However, there also exist more humble praxeologies that are activated,
for instance, when we wash dishes, ride a bike or give a lecture. Many of the praxeolo-
gies people enact are difficult to describe: they consist of informal techniques that do not
always have a name and include poorly organised descriptions and justifications, based
on implicit assumptions and concepts. The situation is a little different in the case of sci-
ences or academic disciplines, since a great collective effort is regularly made to make
them explicit, by describing the methods used, especially to test them and share them with
the community; by specifying their main assumptions and organising them coherently; by
defining and structuring the notions that constitute these assumptions, the results gathered
and the methods used to produce them, that will soon become new assumptions to put to
use.

The need to disseminate praxeologies clearly contributes to developing them, by enrich-
ing their description (logos) and by assembling amalgams of praxeologies to build new bet-
ter organised bodies of knowledge. It also helps developing their praxis to adapt it to new
situations and new users. Didactics as a research field is mainly concerned by the study
of “the conditions and constraints under which praxeologies start to live, migrate, change,
operate, perish, disappear, be reborn, etc. within human groups” Chevallard [2007].

The dissemination of praxeologies takes place through what we call didactic systems.
A didactic system is a tern S(X; Y; }) which is formed any time a person or a group of
persons Y (the teachers) does or do something to help a group of persons X (the students)
to learn a given body of knowledge or praxeology }. X and Y can be reduced to single
persons x and y, which can also coincide, thus forming an auto-didactic systemS(x; x; }).
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The questioning about the delimitation, composition and origin of }—the knowledge or
praxeology to be studied—is a core problem in didactics, and it leads to what we call
the epistemological or praxeological dimension of the problem. The dynamic of didactic
systems—what X and Y do to make it evolve—and the conditions and constraints that
enable and hinder this dynamic are also important dimensions at the centre of the didactic
questioning. They correspond to what we call the economy and the ecology of didactic
systems.

1.2 The scale of levels of didactic codeterminacy. Didactic systems do not exist in a
vacuum. In order to facilitate the analysis of their ecology, we consider a scale of levels of
didactic codeterminacyChevallard [2002]. The higher levels of the scale correspond to the
conditions and constraints related to the general way of organising teaching and learning
processes (Fig. 1). The level of pedagogies comprises everything X and Y do for the
didactic system to run that does not depend on the particular praxeology } at play. For
instance, many of the instructional formats that are usually proposed to improve university
teaching practices (for instance, “interactive lectures”, “cooperative learning”, “discovery
learning”, “participative tutorials”, etc.) are defined independently of the precise content
that is to be taught and learn and can thus be located at the pedagogical level. Their
specification to a given content is then left under the teachers’ own responsibility, even if
it is not always a trivial affair...

The level of schools includes all the infrastructures provided by educational institu-
tions to organise didactic systems and help them run: organisations of groups of teachers
and students, structures in courses and modules, physical and virtual spaces, time sched-
ules, final exam obligations, access to knowledge resources and experts, accreditations,
etc. Depending on the school systems and traditions, some pedagogical resources will be
easier to develop than others and, therefore, some types of praxeologies will be easier to
disseminate than others.

The levels situated at the higher end of the scale include the way teaching and learning
processes are conceived and managed in societies or, when shared by different societies,
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in civilisations. The scale ends at the most general level, the level of humanity (Fig. 1).

Humanity
"#

Civilisations
"#

Societies
"#

Schools
"#

Pedagogies
:::

Figure 1. Scale of levels of didactic codeterminacy - Higher levels

In our societies, teaching and learning processes are mainly organised according to
what has been called the paradigm of visiting works Chevallard [2015]. In this paradigm,
instructional processes are determined by the selection of a set of works or praxeologi-
cal organisations—a curriculum—that students are asked to “visit” under the guidance of
the teacher. The visit includes learning what those works are made of, which their main
elements are and how they can be used, for instance to solve some given sets of problems—
usually called “applications”. It not only comprises becoming aware of their existence, but
also acknowledging their importance as historical productions.

In this paradigm, the selection of praxeologies that form a curriculum leads to specific
knowledge organisations, which can vary depending on the society, school institution
and historical period considered, but remain relatively stable over long periods of time.
Think, for instance, in a first year university course of Calculus or Linear Algebra, or in
the teaching of equations in secondary school. The lower levels of the scale of didactic
codeterminacy take these structures into account by distinguishing different “sizes” of the
praxeological organisations: disciplines, sectors, domains, themes and questions (Fig. 2).
Thus, when a didactic system is formed in a regular school setting, the question about the
delimitation and composition of } is answered internally: } corresponds to this or that
type of tasks, or to this or that theme, domain, sector or discipline, which, in turn, belongs
to (or is composed of) these themes, domains, sectors, etc.
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Figure 2. Scale of codeterminacy in the paradigm of visiting works

The scale of didactic codeterminacy is first of all a tool for researchers in didactics to
question the reality they aim at studying. Its main utility is to enlarge our vision towards
certain empirical fields that are traditionally kept outside the didacticians’ perspective and
are thus taken for granted. In effect, a great amount of research in didactics that focuses
on the levels of the questions or the themes that are taught and learnt, rarely questions the
specific structuring of disciplines, sectors or domains these questions or themes belong
to. Therefore, many of the conditions and constraints that come from the lower levels
remain hidden, as if they were not part of the problems addressed. Let us take a single
example. Many studies about the teaching and learning of negative numbers assume that
this work belongs to the school arithmetical domain, where numbers are introduced as
measures of quantities—directional quantities, in this case. The possibility of introducing
integers within the algebraic domain, for instance as necessary tools to give coherence to
the work with equations and formulas Cid [2015], is rarely considered, mainly because this
situation does not correspond to the current school structuring of the mathematical content.
It is important for research in didactics to question the way mathematics is organised and
considered at the different levels of the scale of didactic codeterminacy. At this respect,
didacticians have to assume a different perspective from the one of the teachers who are
asked to teach a body of knowledge that is already organised into sectors, domains and
even themes. On the contrary, didactic analyses and interventions should dare approach
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the higher levels of the scale, in spite of the important methodological difficulties they
might encounter.

A first step in this direction is the study of what we call themathematical praxeological
models prevailing in educational institutions regarding the content to be taught: how is
mathematics conceived, why is it structured in these sectors and domains, what is the role
of such and such themes or domains in the whole organisation, which are and which could
be their raisons d’être. To avoid taking the vision proposed by the educational institution
for granted, researchers in didactics had to build their own praxeological reference models
of the mathematical works that are taught and learnt, if they want to be able to question
them, as a first step towards proposing possible alternatives Bosch and Gascón [2006].
The consideration of integers as algebraic entities is a good example of these reference
praxeological models: once it is specified as an alternative mathematical organisation
(compared to the school ones), it can be used to point out different didactic phenomena
that explain many difficulties encountered by secondary school teachers and students in
relation to negative numbers—and to algebra Cid [2015].

Questioning the prevailing epistemological models in educational institutions is at the
core of research in didactics of mathematics in the perspective proposed by the theory of
didactic situations Brousseau [1997], which is at the origin of the ATD. The evolution
of a didactic system S(X; Y; }) undoubtedly depends on what X and Y can do, but also
on how the praxeology } is delimited, conceived, considered, imported, used, legitimised
in school institutions—as well as at the other higher levels of codeterminacy. We talk
about didactic phenomena to refer to all regular facts occurring in teaching and learning
processes that are specific of the content. The frontier between didactic and pedagog-
ical phenomena is not always clear and many teaching or learning difficulties—like the
students’ lack of motivation, for instance—are sometimes approached as pedagogical phe-
nomena when they are of a clear didactic nature. Didactic research tries to overcome the
frontiers between the pedagogical proposals that rarely take into account the specificity of
the content to be taught and learnt, and the specific levels related to the structuring of this
content. All in all, and in order to be operational, any general pedagogical change—such
as the incorporation of competencies as a key tool to define educational objectives—have
to be developed on close interaction with the specific praxeological organisations that are
at the centre of didactic systems.

2 A change of paradigm: from “visiting works” to “questioning the
world”

The paradigm of visiting works bases its legitimacy on the social importance given to
the selected bodies of knowledge that constitute the curriculum. These are supposed to
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have been chosen because of their utility in the future life of students, but this utility is
more assumed than proved, since there is rarely the need in making it explicit. The main
objective of the study process is defined by getting to know the selected praxeologies and
being able to activate them—up to a given extent—, the raison d’être of these praxeologies,
not only the reasons for learning them but also their reasons for existence, can remain in
the shadow or simply be delayed, presented as something that will appear later on—if it
does.

This does not mean that the paradigm of visiting works necessarily implies “transmis-
sive” instructional formats, where the teacher presents or depicts a given body of knowl-
edge for the students to acquire it and try to apply it through a given set of activities.
It is also compatible with student-centred instructional formats or even with inquiry or
problem-based learning. However, in these cases, the choice and role of the activities,
problems or inquiries remains subordinate to the construction of the praxeologies.

This traditional way to disseminate mathematical knowledge is based on the transmis-
sion of syntheses—in the sense of Bouligand. The way mathematical knowledge has been
selected and organised for schools, is structured as an already finished product, which in-
cludes precise terminology to describe its main notions, results and techniques. However,
it leaves little room for the questions that motivated or could motivate their construction.
This situation leads to what Chevallard [2015] has called the monumentalisation of cur-
riculum, where each selected mathematical work appears as “a monument, a masterpiece
even, that, however impudently, we are expected to revere and bow towards”. It also
leads to a sacralisation of syntheses, that is, of the praxeological organisations elaborated
to structure the bodies of knowledge in themes, sectors and domains. The monumental-
isation of curriculum goes together with the unquestionability of the lower levels of the
scale of didactic codeterminacy.

To avoid assuming this state of things, as researchers—but also as citizens—, the
paradigm of visiting works is subsumed into a larger pedagogical paradigm, the paradigm
of questioning the world, which can also appear as a counter-paradigm because of the im-
portant changes it requires in the scale of codeterminacy, from the lowest to the highest
levels. The main element to define the paradigm of questioning the world is the notion of
study and research path (SRP) based on the so-called Herbartian schema:

[S(X ;Y ;Q) Õ M ] ,! A~:

In this paradigm, the didactic system S(X ;Y ;Q) is not formed around a given praxeology
} to be studied, but around a question Q to which X , with the help of Y , has to provide
an answer A~. The study of Q generates an inquiry process involving a didactic milieu
M made up of different types of objects or tools for the inquiry:

M = fA˘
1 ; A˘

2 ; :::; A˘
m; Wm+1; Wm+2; :::; Wn; Qn+1; Qn+2; :::; Qp ; Dp+1; Dp+2; :::; Dqg:
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The heart in superscript in A~ means both that A~ is dear to the didactic system’s “heart”
and will be “at the heart” of the didactic system’s activity during the inquiry process: it
will be the official answer to Q in the class [X; Y ].

The A˘
i are “ready-made” answers that seem helpful to answer Q (or to answer some

questions Qk derived from Q) that the investigators X , supervised by Y , have discovered
in the institutions around them: they are institutional answers to Q, and the lozenge ˘ in
superscript indicates that this answer A˘ is labelled or “hallmarked” by the institution that
presents it as the “official” answer to Q. The Wj are works drawn upon to make sense of
the A˘

i , analyse and “deconstruct” them, and to build up A~. The Qk are the questions
induced by the study of Q, the A˘

i , and the Wj , as well as the questions raised by the
construction of A~. Finally, the Dl are sets of data of all natures gathered in the course
of the inquiry.

In this schema, the “visit of works” does not disappear: in order to find the appropriate
labelled answers A˘

i that would turn out to be productive for the inquiry, it can be some-
times necessary to explore large domains of knowledge and requiring the help of experts
guides. However, the visit in this case is motivated, not by the importance or prestige of
A˘

i , but only by its productivity in the construction of A~.
The Herbartian schema indicates the main elements of the inquiry process. Its dynam-

ics is captured in terms of some dialectics that describe the production, validation and
dissemination of A~. We will consider three of them here. The first one is the question-
answer dialectic, which will provide a first description of the structure of the process as
well as a number of milestones on the paths followed or foreseen during the inquiry. The
dialectical character of the questions and answers is related to the notions of study and
research: to approach a question Q, one usually searches for available answers A˘

i and
has to study them: that is, to deconstruct and reconstruct to adapt them to Q. This study
generates new questions about the validity and limitations of A˘

i , its adequacy to Q, the
adaptations required, etc. The question-answer dialectic is the one that provides visible
proof of the progress of the inquiry and contributes to what is called the chronogenesis of
the process.

Another crucial element of the dynamics of inquiry processes is the media-milieu di-
alectic. Media refers to any system emitting messages. A milieu in didactics is a system
that is supposed to be devoid of intention with respect to the question studied and to which
elements of response can be “extorted” Brousseau [1997]. To put the media-milieu dialec-
tic into play, any message from the media has to be confronted with the milieu to test
its validity and to collect critical elements providing new information. In a sense, the
answers supplied by the media have to be integrated in the milieu—turning into “sure”
knowledge—and the elements of the milieu have to be worked out in order to make it
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send new messages—to become a media. The evolution of the milieu by the incorpora-
tion of new objects and partial answers constitutes the mesogenesis of the inquiry (the
generation of the milieu).

The third dialectic is the one of the individual and the collectivity, which reminds us that
the inquirers X act jointly and in cooperation with Y , while the production of the group
will also depend on the capacity of each member x and y to contribute to the common
project. The way responsibilities are shared in the process and how each member assumes
different roles is called the topogenesis of the inquiry (the generation of different places
or topos to teachers and students).

2.1 The herbartian schema as an analytical tool. If we take the chronogenesis, meso-
genesis and topogenesis as the main dimensions of the inquiry, we can obtain an outline of
the study and research process. Its first description can take the form of a tree or arbores-
cence of derived questions raised and partial answers obtained till the elaboration of the
final answer A~ Bosch and Winsløw [2015], Hansen and Winsløw [2011], Jessen [2014],
and Winsløw, Matheron, and Mercier [2013] (Fig. 3). This first model, which shows the
progress of the inquiry, including its possible detours and dead-ends, can then be enriched
by the description of the evolution of the milieu M . Finally, it is possible to incorporate
the didactic sub-systems created and the position and responsibilities of their actors into
the model obtained.

Figure 3. Example of questions-answers map Winsløw, Matheron, and Mercier [2013, p. 271]

With these elements, the Herbartian schema can be used as a tool to describe any kind
of study and research process, from the most “transmissive” formats to the most “construc-
tivist” ones; from a traditional course to a PhD research. For instance, the traditional case
of a course based on lectures can be depicted with the following schema:

[S(X ;y;��Q ) Õ ��M ] ,! A~ = A˘
y = }:

In this case, the question Q is usually kept in the shadow (to be discovered later on) and
the answer provided by the class [X; y] corresponds to the teacher’s answer A˘

y which is
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supposed to reproduce a pre-established praxeology }. At the other extreme, there may
be a purely problem-based activity in which the students are supposed to work out the
answer from the sole exploitation of the available milieu, without the possibility to access
any external media. In between, one can imagine several different inquiry formats, the
most common one being:

[S(X ;y;Q}) Õ M ] ,! A~ = }:

where the teacher poses a question Q} which is supposed to lead to a previously es-
tablished praxeology } and progressively incorporates some derived questions, data and
pieces of answers into the milieu for the students to reproduce }.

The Herbartian schema can thus be exploited as an analytical tool, not only to describe
any kind of study and research process, but also to question the choices made in its organ-
isation with respect to many possible alternatives, by asking questions such as:

- What is Q0? Where does it come from? Who poses it? Why do we need to answer
it? What kind of answer is required? To whom is it addressed?

- What derived questions Qj appear during the process? Which ones fail to do so?
Who poses them? How are they addressed? By whom? What kind of answers are
searched for? In what types of media? How are they incorporated in the milieu M ?

- What are the main initial elements of the milieu M ? How are they used? How do
they evolve?

- How is the sharing of responsibilities among teacher(s) and students established?
Who does what?

Besides these basic methodological elements for the analysis of the pedagogy of the in-
quiry, the Herbartian schema also appears as a productive tool for the didactic design and
explorations of the possibilities open by the new paradigm, as we will see in the next
sections.

3 Implementing study and research paths

During the past decade, the Herbartian schema has been used in several research studies
to design and implement various types of study and research paths (SRPs) in different
educational institutions. These experimentations provide interesting empirical material to
study the economy of SRPs—the possible ways to implement and manage them—and es-
pecially their ecology—the institutional conditions and constraints that facilitate or hinder
their implementation. They also show possible ways of approaching certain previously
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identified didactic phenomena originated in the paradigm of visiting works. A detailed
account of these investigations cannot be done here, but partial reviews can be found in
Parra and Otero [2017] and Jessen [2017].

3.1 Commonalities in the design and implementation of SRPs. The experimented
SRPs were mainly implemented at secondary and tertiary levels—with an interesting ex-
ception at pre-school we are not considering here Ruiz-Higueras and García García [2011].
They adopt different instructional formats depending on the school conditions assumed
and those that were modified. There are, however, some commonalities that should be
emphasised.

3.1.1 The generating question. The starting point of all SRPs was a generating ques-
tion Q0 posed by the teacher who was in most cases also a researcher in didactics. When
the teacher was not a researcher, there was always a team of researchers closely collaborat-
ing with her. In order to give predominance toQ0—and not to the hypothetical knowledge
that was supposed to be activated during the study and research process—a role-playing
activity was carried out, in which the class (X; Y ) acted as a consultancy team, the teachers
Y assuming the role of the leaders and the students X of junior consultants. Q0 was then
introduced as an assignment that came from an instance external to the class—a client—to
whom an answer in the form of a report had to be handed in after a given period of time
(some weeks or months). During the SRP, some interactions with the client were made
possible (for instance requesting more information by e-mail), and some intermediate re-
ports were occasionally required.

3.1.2 Collective work. It is important to point out that there was a unique question
addressed to thewhole class and, therefore, there was also only one joint report to elaborate
at the end of the SRP. However, during the SRP, students could be organised in small
teams Xi and different responsibilities could be assigned to each team, according to the
derived questions Qi ’ generated by the SRP. This organisation differs from many inquiry-
based learning formats where students work individually on their own project under the
supervision of a teacher. The way to manage the dialectic between the collective and the
individual work thus appears as an important condition to take into account, and it soon
revealed the lack of pedagogical resources available (at least in the mathematics class) to
address it.

In most of the cases, student teams were asked to present weekly reports of the work
done, including the questions addressed, the partial results obtained, the difficulties met
and the new questions raised. These reports were shared with the large group in different
ways, such as oral presentations, peer-reviews or simply saved in a shared web folder.
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Sometimes the teacher would name a “secretary” of the class to elaborate a synthesis
of the joint work carried out during the session. On some occasions, the students’ lack
of experience and strategies to work in small teams, for instance to collectively perform
a mathematical task, caused difficulties and some simple devices such as what Liljedahl
[2016] calls “vertical learning” (letting student teamswork in different corners of the room,
using the blackboard or blank posters) turn out to be very useful.

3.1.3 Chronogenesis: managing long study processes. With regard to the length of
the whole process, all SRPs took place during several sessions that, depending on the
school constraints, varied from 50 minutes to 2 hours. This situation was completely new
to the students, who are used to being asked to solve several problems within one session,
especially in mathematical classrooms. They very rarely have to approach the same prob-
lematic question for weeks or months. At times, a feeling of tiredness was observed in
some students—“Again the duck populations?”—that can be interpreted in two ways. On
the one hand, it attests their poor engagement in the activity and their difficulty in getting
rid of the traditional didactic contract Brousseau [1997] where students rarely assume the
responsibility of “carrying with them” a given problem till they are finally able to solve
it... On the other hand, the students’ tiredness can also be seen as a consequence of the
teacher’s failure to keep the chronogenesis of the process alive. An important constraint
here is the scarcity of mathematical and didactic resources available—for both the teacher
and the students—to describe the inquiry process, identify the results obtained and estab-
lish milestones for the work to do. We will come back to this point later on.

3.1.4 Topogenesis: sharing responsibilities between the teacher and the students.
The most evident constraint that appeared in almost all SRPs was the difficulty for the
teacher to share responsibilities with the students beyond those (few) assigned to them in
the traditional didactic contract. At the beginning, students were easily involved in the
process, but they were not used to lead the questioning, not even to raise the questions
to follow during the inquiry, to select the ways that seem more promising and discard
possible dead-ends. At the beginning, even us as researchers had difficulties in assuming
the new contract. For instance, in the design of one of the first SRPs, we struggled with the
elaboration of a realistic schedule (since we had no elements of contrast) before realising
that planning the work was not necessarily the teacher’s responsibility, that students could
also contribute to it. From then onwards, students were always asked to keep a logbook
with a planning that was regularly updated. Again, the lack of words to describe the steps
followed and those foreseen appeared as an important constraint for both the teacher and
the students.
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3.1.5 Mesogenesis: the media-milieu dialectics. The disappearing of the teacher as
the main media and milieu of validation for the students (to tell them what is wrong or
correct) appeared as another difficulty—especially for the teacher. Therefore, the inquiry
work also required to enrich the traditional media-milieu dialectic to obtain new sources
of proof and information. In what concerns the access to the media, in all SRPs, the
choice of the initial question was based on a priori analyses that showed the inclusion
of some empirical work available to the students and the need of new information to be
searched for (in Internet, textbooks, by asking experts, etc.). Again a lack of pedagogical
resources appeared: for the teacher to manage new situations requiring knowledge she
may not master; for the students to be critical of the information obtained, independently
of the source consulted; for both of them to create ad hoc ways to (in)validate answers A˘

i

when they came from “expert sources” but were not necessarily appropriate to the specific
needs of the inquiry. Very elementary strategies of validation had to be established, besides
the classic mathematical ones, like the comparison of different sources, the questions to
experts, the rejection of useless answers, etc. On some occasions, however, it was the
teacher who finally ended up introducing some key elements to let the inquiry progress.

3.1.6 Openness and assessment. The different levels of openness of the inquiry pro-
cess are what make it at the same time exciting and disturbing for the study group. The
design strategy followed by the research team consists in elaborating an a priori questions-
answers map (Q-A map) of some expected questions derived from Q0 and possible avail-
able answers, while keeping the end of the story obviously open. This previous analysis
of the generating power of Q0 ensures a minimal viability of the inquiry process and also
gives the teacher a first insight of the students’ possible proposals. In many SRPs, and in
spite of the normal resistance experienced by teachers to let the process advance towards
unexpected–and sometimes dead-end–paths, the more freedom was given to the students,
the richer the inquiry became. A possible reason is that strong guidance reveals that the
initial question is not the real goal of the study, as if the means were more important than
the end. This of course contributes to weaken the initial question and, therefore, frustrates
the students’ efforts made to elaborate the final answer A~.

The importance given to the initial question should be made visible at the end of the
process with the type of assessment method applied. In the experienced SRPs, the as-
sessment strategy included part of the intermediate oral or written reports required of the
students, as well as the final presentation of the answer given to Q0 or to the derived ques-
tions Qi assigned to each team. A peer-review process among the teams of students was
sometimes organised, but on most occasions the feedback was mainly given by the teacher
acting as the leader of the consultant group or as the client’s representative. Panels with
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external teachers and experts were organised at times, and they included oral or poster
presentations depending on the number of students to be assessed.

3.2 Questioning the sector and domain levels. Some of the first experiences of the
SRPs came as the response to previously identified didactic phenomena that were as-
sumed to be intimately correlated to monumentalism. In the case at hand, this phenomena
were also related to some key curricular contents—proportionality, algebra, functions and
derivatives—and can thus be located at the level of the sector or domain in the scale of
codeterminacy.

In the case of lower secondary school, a first proposal by García [2005] addressed the
question of the isolation of proportionality from other functional relationships and the
implicit preponderance given to linear growth in school mathematics. In this context, the
proposed SRP started with a question that motivated the construction and comparison of
different possible relationships:

How can we save money for the end-of-the-year trip, or any other trip we plan
to go on in 6 to 9 months time?

Students were invited to propose different saving strategies, starting with a regular con-
stant instalment (linear growth) and comparing it with other possible plans of increasing
and decreasing instalments. It was also part of the SRP to determine the periodicity of
the instalments and to make a final decision in accordance with the priorities assumed by
the students and the consideration of possible unexpected events (withdrawals, newcom-
ers, etc.). Students were led to carry out an algebraic modelling of the proposed saving
plans using Excel simulations as a milieu and study the characteristics of each proposal
through the adequate manipulation of equations with parameters (formulas), a work that
is very unusual in secondary school mathematics. The design of the SRP was based on
a previous reconstruction of the school mathematical domain of proportionality and func-
tions to relate proportionality with other relationships between quantities and present it as
a possible model among many others García, Gascón, Ruiz Higueras, and Bosch [2006].

A similar type of SRPwas proposed by Ruiz-Munzón [2010] at upper secondary school
to facilitate the passage from the algebraic modelling of relationships between quantities
to the functional one. This SRP addressed the question of how much money a group of
students can make by selling one-print T-shirts, taking into account their unit cost, the
selling price and some fixed expenses due to the rent of a stand and/or a store. The data
provided to the students were the sales of the previous years and they had to elaborate a
plan to reach a given amount of money for an end-of-the-year trip. In this case, students
had to search for information about the T-shirts production cost and possible prices, and
use functional tools to solve algebraic inequalities with three or four parameters Ruiz-
Munzón, Matheron, Bosch, and Gascón [2012]. The important aspect of the work carried
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out was to introduce and use functions and functional graphs to answer questions that
were not initially formulated in the functional domain. Functions were not to be studied
per se (as it is usually the case at secondary level) but because they were needed to solve
inequalities that could not be solved algebraically.

In continuity with this work, Oliveira Lucas [2015] designed and implemented an SRP
aimed at connecting functional modelling with elementary calculus. As in the previous
cases, the research was based on an empirical study of the prevailing epistemological
model at secondary level about elementary calculus and the elaboration of an alternative
praxeological organisation to reconstruct the raison d’être of elementary calculus in a func-
tional modelling context. The SRP started with some data about a Dengue epidemic and
requested a forecast for the following weeks. An extensive a priori analysis of the gen-
erating question considering two main inquiry paths, depending on the type of data and
quantities (discrete/continuous), and the variable used (the original one, its rate of change,
its relative rate of change) was performed. Then, continuous models were introduced be-
cause of their technical facilities to calculate the variations of the variables considered,
reversing in a way the traditional organisation of concepts, where the rate of change ap-
pears as a previous step to defining the derivative: here, it is the derivative that is at the
service of the rate of change.

In summary, these types of SRPs started by the questioning of the epistemological mod-
els about certain themes, sectors or domains that prevail at secondary school and that can
be interpreted as a consequence of monumentalism. In these models, mathematical praxe-
ologies like proportionality, algebraic equations, elementary functions and derivatives are
organised according to their theoretical components—their logos—, and the types of ques-
tions addressed—the praxis—are always presented as applications of already introduced
notions or properties. Even in the case where real questions are proposed, their final aim
is always to illustrate or construct the previously established praxeologies and, especially,
their theoretical components: the concepts of proportionality, function, derivative, etc. In
this school organisation of mathematics, modelling activities cannot find their real place,
since the resolution of problems is always subordinated to the construction of the notions
that structure the curriculum.

These examples illustrate how the problem of the ecology of some mathematical activi-
ties taking place at the level of the theme or the domain has to be addressed by questioning
the higher levels of the scale of didactic codeterminacy because it is in these higher levels
where some raison d’être of the aimed praxeologies can be found. This questioning leads
to a redefinition, from the research perspective, of the praxeological organisations that
conform the knowledge to be taught and learn. In this context, the role of SRPs is to serve
as a study format that breaks some of the main assumptions of monumentalism and offers
better conditions of existence for the alternative praxeological organisations.



4048 MARIANNA BOSCH CASABÒ

3.3 Questioning the discipline level at the university. The previous SRPs take as a
starting point a previous praxeological analysis of the content to be taught and learnt in
order to overcome some identified didactic phenomena, especially related to the isola-
tion and loss of the raison d’être of some curricular praxeologies. In a way, the generating
question of the SRP is not the core objective of the inquiry process; the elements produced
during the inquiry are. In this case, the SRP is not open, but finalised. The previous exam-
ples addressed a given theme or domain of school mathematics in order to reconstruct it in
a more functional way. It was always foreseen that some or most of the praxeologies that
constitute the curriculum would appear as answers to the questions raised during the in-
quiry. If a given syllabus is defined as a set of mathematical praxeologies fA˘

1 ; A˘
2 ; :::; A˘

r g,
the design of a finalised SRP consists in finding a sequence of questions fQ1; Q2; :::; Qkg

that could be derived from an initial question Q0, the study of which is highly likely to
activate a subset of the targeted praxeologies A˘

i .
In the case of university education, the constraints imposed by the curricula are usually

weaker than in secondary education, and lecturers have a greater degree of freedom to
select and rearrange the subject matter content. The research carried out by Barquero
[2009] proposes a finalised SRP that covers almost all the mathematical content of a first
year course of Natural Sciences degrees. In this case, the level of the scale of didactic
codeterminacy addressed is the discipline one. A unique question about the study of the
dynamics of populations was proposed to a group of first year students of a degree in
Chemical Engineering during four consecutive academic years. The SRP was proposed
as a “mathematical modelling workshop” running parallel to the normal course during the
whole year. Its main aim was to establish appropriate conditions for mathematics to be
learnt as a modelling tool, starting from a generating question in the domain of natural
science and using some of the main praxeologies included in the course syllabus. The
initial question was formulated as follows:

Given the size of a population over previous periods of time, how can we
predict the long-term behaviour of its size? What sort of assumptions about
the population, its growth and its surroundings should be made? What kind
of forecasts can be made and how to test them?

This question was specified with different populations: pheasants, fish and yeast. The
first ones were modelled with discrete models and considered two cases: independent and
mixed generations; with the third population a similar path was reproduced for the contin-
uous case. The proposed SRP was divided into four branches (Fig. 4).
The design of the SRP also included the elaboration of a productive enough milieu to pro-
duce the emergence of the derived questions and the deconstruction and reconstruction of
the new praxeological organisations that were required to help the inquiry progress. Some
of these praxeological organisations were introduced by the lecturer in the “normal course”
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Figure 4. Structure of an SRP on population dynamics Barquero and Bosch [2015, p. 265]

(sequences, functions, derivatives, matrices, ordinary differential equations, etc.) and the
students were asked to search for the more specific ones (Malthus and Verhulst models,
transition and Leslie matrices, etc.) in the media available. During the four implementa-
tions of the SRP, the relationship between the course and the workshop evolved towards
greater integration. It seemed as if the logic of the questions and answers derived from
the SRP was gradually modifying the traditional organisation of the course contents since
the lecturer agreed to introduce them when needed at the workshop, sometimes modifying
the traditional organisation based on the theoretical coherence of the syntheses. Therefore,
a workshop that was initially implemented as a complement to the course—to illustrate
the main applications of the mathematical content introduced—started to acquire a promi-
nent role, letting the course run as a nourisher of the inquiry process. This is in fact the
ideal situation of the paradigm of questioning the world: a curriculum structured around
a set of crucial questions to be studied and some flexible modules “on demand”, aimed
at supplying the inquiry processes, when required, with some of the more basic needed
praxeologies.
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Unfortunately, this was not the destiny of the SRP on population dynamics, even if
its evolution towards a more traditional teaching format can be easily explained by some
constraints originated at the higher levels of didactic codeterminacy (see Barquero, Bosch,
and Gascón [2013].

3.4 Weakening the school and pedagogical constraints. The previous examples of
SRPs were designed to ensure their viability by introducing new conditions and didactic
resources given the common constraints encountered at the levels of schools, pedagogies
and disciplines. What happens when we try to weaken these constraints and implement
more open SRPs?

Quintana [2005] implemented an SRP at upper secondary level generated by the ques-
tion of how to determine which of the three mobile companies operating at this moment in
Spain was giving the best rate plans depending on the customer profile. This question was
chosen by the research team to propose a situation where students had to build their own
functional models and use the graph sketching as a tool to solve a problem (inequalities)
that was too complex to be solved algebraically Rodríguez, Bosch, and Gascón [2008].
The SRP lasted for 18 two-hour sessions and was implemented as an after-class activity
for two consecutive academic years with groups of 10-12 volunteer students. The math-
ematics teacher presented it to the students as a mathematical workshop that would help
them with the subject.

It is worth mentioning that this SRP, one of the first to be experienced, revealed im-
portant features about the traditional didactic contract that were implicitly assumed by the
research team. Maybe the fact that the SRPwas proposed as an optional after-class activity
facilitated the participation of motivated students and weakened the school, the pedagogi-
cal and even the didactic constraints. Many unexpected outcomes appeared thanks to the
students’ initiative. For instance, during the very first session, once the class had raised
some initial derived questions to approach the problem, and because there was no empir-
ical information available (no Internet connection in the class), the students decided to
invent some basic cases to start with. They were spontaneously creating their own exer-
cises for a functional purpose! Another interesting anecdote to report is the teacher asking
the students to stop comparing rates, once she saw that many of the most interesting func-
tions had already been used and that the comparison was taking a lot of time. “There is no
point in making comparisons if we do not compare everything with everything!”, the stu-
dents answered, thus reminding the teacher that the SRP was about providing an answer
to the initial question, and not only about using functions to solve inequalities...

Another interesting and unexpected outcome was the fact that the students proposed
to present the final report as an open interactive internet site where people could enter
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their regular consumption and get advice in return. Three options were established de-
pending on the kind of information required from the consumer: “normal people”, “lazy
people” and “very lazy people” —the last one only asking for the minutes of conversation
per day and the number of messages sent. Also, in one of the editions, the students de-
cided to use their own invoices as a validation of their final answers, thus enriching the
expected work with functions with some basic statistics description. Finally, surprised
at the complexity of the work involved, they decided to write a letter to the Minister for
Economy and Finance to complain about the consumers’ situation and the opacity of the
information provided by companies. This illustrates how the inquiry into a question soon
penetrates activity domains of different sorts, breaking the limits established at schools
between disciplines and between domains within a discipline.

4 The evolution of SRPs: integrating didactic tools into the inquiry
process

It seems clear that the paradigm of questioning the world represents important changes in
the organisation of study processes at the different levels of the scale of didactic codeter-
minacy. Those at the level of civilisations are possibly the most hidden ones, since they
correspond to beliefs or assumptions that are difficult to identify, unless we move to an-
other civilisation, through the space or the time. The last case presented shows that the
act of questioning, of posing queries about any aspect of our surrounding reality, has not
always been assumed with normality by all civilisations and is still not clearly approved in
all domains. It is not clear either that the access to any kind of labelled answerA˘ is seen as
possible or appropriate for everybody at any time and in all the domains: each civilisation
has its own forbidden spaces and implicit regulations. The hierarchy established among
different types of knowledge—some being noble, others plebeian—is another variable
to take into account. Societies also establish certain compartments in the organisation
of knowledge and not everybody can easily move from one part to another. They also
promote a given model of teacher that makes erudition prevail over inquiry, and do not
succeed in making education evolve beyond the paradigm of visiting works: curricula
formulated as lists of works, individual conception of learning, final school examinations
based on tightly identified content, etc.

However, changes performed at the higher levels of the scale will remain limited if they
do not come with the corresponding modifications at the lower levels. The inclusion of
“competencies” as a key tool to impulse university teaching renovation shows the limita-
tions of proposals that do not easily surpass the pedagogical level... But the lower levels of
the scale introduced in figure 2 correspond to the paradigm of visiting works, where didac-
tic systems S(X; Y; Q) are established around previously determined pieces of knowledge
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located in relation to a given discipline. This cannot be assumed in the paradigm of ques-
tioning the world, where didactic systems are not formed around some selected works but
a set of selected questions. In this case, the scale of levels of codeterminacy should end at
the level of the didactic system, since what appears below will not only depend on the type
of question addressed, but also on the decisions made by the inquirers about the possible
works that are candidates to provide partial answers to the derived questions. Moreover,
the choice of disciplines, domains or sectors where some existent labelled answers A˘

i

could be found is not a simple issue and, in any case, should be included as a question to
deal with in the inquiry process. And it is not always a simple issue: let us just remember
that, inWorldWar 2, it took the British secret intelligence services a certain amount of time
to associate the problem of deciphering the Nazi codes with the discipline of mathematics,
a question that was traditionally associated with linguistics...

Therefore, in the paradigm of questioning the world, questions do not belong to any pre-
established field of knowledge. Moreover, it is part of the inquiry process to investigate
the possible sources of useful answers and, in particular, to mix praxeologies of a different
nature, size and degree of “honourability”. Thus, the specific levels corresponding to the
given disciplines have to be located below—or after—the didactic system (Fig. 5).

Humanity
"#

Civilisations
"#

Societies
"#

Schools
"#

Pedagogies
"#

Didactic systemS(X; Y; Q)

"#

Disciplines � Sectors � Domains � Themes � Questions
Figure 5. Scale of codeterminacy in the paradigm of questioning the world

An important constraint the experimented SRPs have revealed is precisely related to
this intermediate level of the didactic system in the scale. It refers to a certain lack of
knowledge resources to guide the inquiry that are not easy to locate in any of the official
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descriptions of the disciplines. We have already mentioned this issue in the description
of the SRPs’ chronogenesis, concerning the difficulties of proposing explicit milestones
to structure the inquiry process: teachers, together with students, need to discern where
they are, what has been done so far and what seems to remain to be done at some cru-
cial moments of the inquiry. When the inquiry is not a pre-established path—which it
rarely is—the words and concepts to describe its main steps are not always available. In
the paradigm of visiting works, the evolution of teaching processes can be formulated in
terms of the praxeologies that have been visited, by naming their main components, the
practical ones as well as the theoretical ones. The logos of the praxeologies provide de-
scriptions of their main elements and present already-made assemblages of types of tasks
and techniques, of techniques and properties or theorems, etc. As the study programme
is predetermined, there are words, expressions and labels to designate the paths followed
during the visits carried out in the study process: “We have covered limits of functions,
we can now start with derivatives”.

The situation is very different when one is in themiddle of a long inquiry process. There
is no “official” discourse to name the elements of the inquiry process: the provisional
results obtained, the questions derived, the paths selected and those that have been ruled
out, etc. The work carried out in an SRP is always in need of new words, concepts and
discourses. It is also in need of didactic—or epistemological—resources, for instance
to manage the media-milieu dialectic, now that the school can no longer ignore that the
access to external and unfiltered information is absolutely unavoidable.

The currently available school, pedagogical and didactic resources are unable to support
the teachers’ and the students’ work in the same way textbooks, treatises, encyclopaedias,
documentaries, etc. do in the paradigm of visiting works. In our first explorations of the
ecology of the paradigm of questioning the world, it was up to teachers and students to
elaborate their own narrative of the inquiry process, and to establish their own milestones
to mark the path and set the pace. In the last experimented SRPs Florensa, Bosch, and
Gascón [2016], some of the elements of the Herbartian schema, such as the questions-
answers maps, are starting being used as explicit tools for teachers and students to manage
the inquiry process. It is not impossible than others, like the media-milieu dialectics for
instance, will also turn out to be productive at this respect. The lack of epistemological
resources to manage inquiry processes seems to be one of the main open problems raised
by the research on SRPs. Its solution will certainly require the contribution of scholars
of different fields—and also mathematicians—to create new knowledge means to fill the
gap. Our current efforts go in this direction.
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Abstract

In this article I discuss some theories in mathematics education research. My goal
is to highlight some of their differences. How will I proceed? I could proceed by
giving a definition, T, of the term theory and by choosing some differentiating criteria
such as c1, c2, etc. Theories, then, could be distinguished in terms of whether or not
they include the criteria c1, c2, etc. However, in this article I will take a different path.
In the first part I will focus on a few well-known theories in Mathematics Education
and discuss their differences in terms of their theoretical stances. In the last part of
the article, I will comment on a sociocultural emergent trend.

Introduction

In order to make sense of problems around the teaching and learning of mathematics,
mathematics educators have come up with different theories. Currently, there is a large
number of theories in use. My goal is to highlight some of their differences. How will I
proceed? I could proceed by giving a definition, T, of the term theory and by choosing
some differentiating criteria such as c1, c2, etc. Theories, then, could be distinguished in
terms of whether or not they include the criteria c1, c2, etc. see Radford [2008a, 2017a]. In
this article, however I will take a different path. In the first part of the article, I will focus
on a few well-known theories in Mathematics Education and discuss their differences
in terms of their theoretical stances. In the last part of the article, I will comment on a
sociocultural emergent trend.

My choice of theories has been guided by what may be termed their historical impact
in the constitution of mathematics education as a research field. By historical impact I do
not mean the number of results that a certain theory produced in a certain span of time.
Although important, what I have in mind here is something related to the foundational
principles of a theory. The foundational principles of a theory determine the research
MSC2010: primary 97C50; secondary 97C30.
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questions and how to tackle them within a certain research field, thereby helping to shape
the form and determine the content of the research field itself.

To discuss the types of theories in our field is to discuss their differences and, more
importantly, what accounts for these differences. My argument is that these differences
are better understood in terms of theoretical suppositions. Sriraman and English [2005]
argued that the variety of frameworks in mathematics education is directly related to differ-
ences in their epistemological perspectives. I suggest that, in addition to the underpinning
corresponding epistemologies, differences can also be captured by taking into account the
cognitive and ontological principles that theories in mathematics education adopt.

Obviously, I will neither be able to present a rich sample of theories in mathematics
education nor will I be able to delve deeply into the intricacies of any of them. I hope,
nonetheless, that by focusing on a few theories, and contrasting their theoretical supposi-
tions, we may gain a sense of their distinctiveness and thereby better understand the notion
and the types of theories in our field.

Because of space constraints, I will deal with three theories. Although other choices
are certainly possible, I will deal with Constructivism, the Theory of Didactic Situations,
and Socio-Cultural Theories.

1 Constructivism

1.1 The Theoretical Principles. During the 1980s and 1990s, Constructivists intro-
duced their theory as based on two main principles:

p1: knowledge is not passively received but built up by the cognizing subject;
and
p2: the function of cognition is adaptive and serves the organization of the
experiential world, not the discovery of ontological reality. von Glasersfeld
[see 1995, p. 18]

Principle p1 stresses constructivism’s opposition to teaching by transmission. Con-
structivism, indeed, emerged as an option against behaviourism and its pedagogy of direct
teaching. It is in this context that Paul Cobb remarked some twenty years ago that

An abundance of research indicates that students routinely use prescribed
methods to solve particular sets of tasks on which they have received in-
struction without having developed the desired conceptual knowledge. Cobb
[1988, p. 90]

However, although historically important, the true novelty of the constructivist perspec-
tive does not rest on the first principle. It rests, rather, as von Glaserfeld claims, on the
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epistemic and ontological attitudes conveyed by the second principle and its concomitant
concept of knowledge. Without necessarily denying the existence of a pre-existent reality,
and in a move consistent with Kant’s theory of knowledge, constructivism does not claim
that the knowledge constructed by the cognizing subject corresponds to such a reality; its
epistemology rests precisely on the denial of the possibility of any certain knowledge of
reality Ernest [1991].

In the beginning, constructivism envisioned the goals of mathematics instruction along
the lines of Piaget’s epistemology. At the end of the 1980s, Cobb argued that the goal of
instruction is or should be to help students build [mental] structures that are more complex,
powerful, and abstract than those that they possess when instruction commences Cobb
[1988, p. 89]. The pedagogical problem was then to create the classroom conditions for
the development of complex and powerful mental structures.

The constructivist research was oriented to a great extent to the study of the develop-
ment of the students’ mental arithmetic and other mathematical structures and to the in-
vestigation of the students’ difficulties in developing them. Particular attention was paid
to the students’ counting types and construction of arithmetic units see e.g. Cobb [1985],
Steffe and von Glasersfeld [1983] and Steffe, von Glasersfeld, Richards, and Cobb [1983].

The creation of the classroom conditions for the development of mental structures led
unavoidably to the question of the role of the teacher. Cobb said:

The teacher’s role is not merely to convey to students information about math-
ematics. One of the teacher’s primary responsibilities is to facilitate profound
cognitive restructuring and conceptual reorganizations. Cobb [1988, p. 89]

A close examination of the role of the constructivist teacher shows that the construc-
tivist epistemic and ontological principles were underpinned by a general concept of the
cognizing subject that framed the specific role of the student and the teacher. For construc-
tivism, the epistemic and ontological principles p1 and p2 make sense only in the context
of a self that is autonomously constructing her knowledge. If we remove the autonomy
principle, constructivism becomes simply a variant of certain socio-cultural approaches.
This third principle can be formulated as follows:

p3: the cognizing subject not only constructs her own knowledge but she does
so in an autonomous way.

Intellectual autonomy was in fact part of two of the general goals identified by con-
structivism from the outset:

teaching by imposition is incompatible with two general goals of mathematics
instruction that follow from constructivism, the construction of increasingly
powerful conceptual structures and the development of intellectual autonomy.
Cobb [ibid., p.100]
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As I argued elsewhere Radford [2008c], the idea of the autonomous cognizing subject
conveyed by constructivism was not a novelty in education. In fact, just such an idea is at
the heart of the concept of the self of Western modernity–an idea that goes back to the very
roots of Kant’s theory of knowledge and its related epistemic subject. Kant’s epistemic
subject is not one that receives knowledge but one that produces it. It is a constructor
that epitomizes the idea of man as homo faber. However, as we shall see later, although
interesting from a historic viewpoint, this epistemic concept of the cognizing subject as an
autonomous constructor of its own knowledge is considered too restrictive to account for
the concrete processes of learning in the classroom and constitutes a point of divergence
of theories in mathematics education.

1.2 The Ontology of Constructivism. The constructivist denial of the possibility of
knowledge of reality is not mere fancy nor extravagant ontological position. It is, rather,
one of the consequences of the remarkable subjectivism in which it was rooted from the
start. The cognizing subject of modernity found itself in a world whose understanding
was no longer assured by tradition and the interpretations offered by religion. The under-
standing of the world could only come from what the cognizing subject could accomplish
through its sensing body and its intellect. Starting from the senses as the basic structure of
knowledge, David Hume argued in the 18th century that the establishment of logical ne-
cessity was impossible to ascertain, for all that we can witness are particular associations
occurring among events. Hume was perhaps the first thinker to express in the clearest way
the finitude of the human condition that results from a subjectivism that started to arise
from the Renaissance and that was clearly articulated by the philosophers of the Enlight-
enment. The long period that followed Kant’s Inaugural Dissertation, published in 1770
(for a modern translation see Kant [1894]) and the first critique, that is theCritique of Pure
Reason, published in 1781 (for a modern translation see Kant [2003]), the so-called silent
decade, is explained by the intense cogitations in the course of what Kant sought for a so-
lution to Hume’s problem. This decade of intense cogitations led Kant to the development
of his ontology Goldmann [1971], a neutral ontology, the main feature of which is, as von
Glasersfeld noted, the abandonment of claims about the knowability of reality – i.e., an
ontology that neither asserts that knowledge is about reality nor that it is not.

However, Kant’s neutral ontology has an exception: the neutral ontology of Kant does
not apply to mathematical knowledge. For Kant, mathematics was the paradigmatic exam-
ple of certain knowledge. This is what Kant meant by the a priori status of mathematics,
a status that put mathematical objects (in opposition to phenomenological objects such as
chairs and dogs) within the realm of the truly knowable.

Kant’s ontology rests on a form of a priorism that Piaget did not endorse. For Piaget,
and for the ensuing constructivism in education, knowledge (mathematical or not) has to
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be constructed. Since there was no way to check the correspondence between subjective
constructs produced by the cognizing subject and reality, von Glasersfeld suggested that
knowledge is not about certainty but about viability. A piece of knowledge is kept by the
cognizing subject as long as it seems to work. All knowledge is hypothetical.

This concept of knowledge has some interesting corollaries. One of them is that since
everyone constructs his or her own knowledge, we can never be sure that we are talking
about the same things. We can just assume or pretend that we are perhaps sharing some-
thing. For constructivists, we take knowledge and meanings as taken-as-shared. Natu-
rally, one question that has been raised in this regard is whether or not the subjectivist idea
of knowledge and meaning conveyed by constructivism is a form of solipsism. Construc-
tivists answer negatively, stressing the role of social interaction in the cognizing subject’s
construction of viable knowledge.

1.3 SocialKnowledge inConstructivism. Although somemathematics educators were
intrigued by the extreme relativism of the Kantian constructivist neutral epistemology see
e.g. Goldin [1990], ontological questions seemed to recede into the background as con-
structivist teachers and researchers were preoccupied with the understanding of good prac-
tices to ensure the students’ development of mental structures. Naturally, the search for
solutions was framed by constructivism’s principles. In particular, the question was to
devise pedagogical actions coherent with the idea of avoiding teaching the answers and
influencing the student’s reasoning. In short, the question was how to teach without tres-
passing into the domains of the student’s self-determination. The solution was sought in
the idea of the classroom as a space of negotiation of meanings.

Later on, this idea was developed further, perhaps as a result of the dialogue between
constructivists and the German interactionists Bauersfeld [1980], Voigt [1985], etc. Thus,
in the early 1990s, constructivism was formulating the learning-teaching process as a pro-
cess that is interactive in nature and involves the implicit and explicit negotiation of math-
ematical meanings. In the course of these negotiations, the teacher and students elaborate
the taken-as-shared mathematical reality that constitutes the basis for their ongoing com-
munication Cobb, Yackel, and Wood [1992, p. 10].

Through the insertion of the idea of mathematics as a social practice and the classroom
as aspace of negotiation of meanings, constructivism moved into a new direction. In an
article published in 1994, Cobb described two different constructivist research lines. The
first remained centred around the investigation of the students’ development of mental
structures. The second focused rather on the evolution of meanings in the course of the
students’ interaction in the classroom Cobb [1994].

One of the challenges for this second line of research was to make the idea of inter-
action operational within the constraints imposed by their three basic principles. The



4060 LUIS RADFORD

operationalization was made through a clear distinction between: (1) the students’ psy-
chological processes, on the one hand, and (2) the social processes of the classroom, on
the other. While the investigation of students’ psychological processes went along the
lines of Piaget’s concept of reflective abstraction, the social processes were related to the
idea of collective classroom reflection Cobb, Boifi, McClain, and Whitenack [1997].

Certainly, developing the new research line was not an easy move. It had to take into
account social interaction in a context where, as a result of the theoretical principles, con-
structivism found itself with not too much room left. Indeed, interaction had to be devised
in such a way that the inclusion of the Other in the cognizing subject’s act of knowing
left no room for interference with the autonomous constructivist cognizing subject. From
the outset, there was a vivid tension between the students’ mathematical meanings and
those of the teacher: “The teachers’ role in initiating and guiding mathematical negotia-
tions is a highly complex activity that includes … implicitly legitimizing selected aspects
of contributions” Cobb, Wood, Yackel, Nicholls, Wheatley, Trigatti, and Perlwitz [1991,
p. 7]. To explicitly legitimize selected students’ contributions would jeopardize, indeed,
the constructivist project and its principle that knowledge construction is a personal and
self-determining matter.

The dichotomy that constructivism erects between its culturally detached autonomous
cognizing subject and the socio-cultural historical traditions in which this cognizing sub-
ject thinks and acts, turns out to be, as many find, an unsatisfactory solution. Thus, given
the theoretical principles adopted by constructivism, Waschescio [1998] argues that a link
between the individual and the cultural realm is certainly missing. Actually, as Lerman
claims, such a link is simply impossible to find Lerman [1996].

To sum up, constructivism is a student-centred theory. Its influence in education has
been very impressive, not only in North America but all over the world. The detailed anal-
yses of classroom interaction and the sophisticated methodologies designed to scrutinize
the negotiation of meanings underpinning the students’ conceptual growth have helped the
community of mathematics educators become aware of the variety of meanings that the
students mobilize in tackling mathematical problems. Constructivism has certainly helped
us to better understand the complexities surrounding the students’ processes of learning
and provides us with an alternative to direct teaching.

2 The Theory of Didactic Situations

The Theory of Didactical Situations (TDS) seeks to offer a model, inspired by the math-
ematical theory of games, to investigate, in a scientific way, the problems related to the
teaching of mathematics and the means to enhance it.
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In the beginning, the term situation referred to the student’s environment as handled by
the teacher for whom it appears as a tool in the process of teaching. Later, the situation
was enlarged in order to include the teacher herself and even the educational system as a
whole Brousseau [1997a].

As any theory, the TDS works on a set of principles, among them the following epis-
temic ones:

p1: knowledge results as the ―optimal solution to a certain situation or prob-
lem.

p2: learning is –in accordance to Piaget’s genetic epistemology— a form of
cognitive adaptation.

As in the case of constructivism, these principles are supplemented by a conception of
the roles that teacher and students have to play in the classroom:

2.1 The Role of the Teacher. An essential part of the teacher’s role is not to show the
students how to solve the problems, but rather to let the students deal with them, for doing
mathematics does not consist only of receiving, learning, and sending correct, relevant
(appropriate) mathematical messages Brousseau [1997b, p. 15]. Like Constructivism, the
TDS is opposed to direct teaching. The teacher’s role is rather to identify the problems or
situations that will be given to the students and that will provoke the expected learning.

2.2 The Role of the Student. The student which the TDS talks about is an epistemic
subject, a sort of ideal model of the individual, conceived of as behaving (or having to
behave) in a rational manner, in a way close to the behaviour of the mathematician. Her
role is to engage in mathematical problems in a way that is coherent with the professional
scientific practice. In the course of a faithful reproduction of scientific activities, the stu-
dent is required to produce, formulate, prove, and construct models, languages, concepts
and theories. Brousseau [ibid., p.22].

The roles of the teacher and the student are explained in the following passage:

The modern conception of teaching … requires the teacher to provoke the
expected adaptation in her students by a judicious choice of problems that
she puts before them. These problems, chosen in such a way that the students
can accept them, must make the students act, speak, think, and evolve by their
own motivation. Brousseau [ibid., p. 30]

The judicious choice of problems is, of course, a delicate part of the teaching process.
Its concrete possibility rests on the following epistemological assumption:
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p3: for every piece of mathematical knowledge there is a family of situations
to give it an appropriate meaning.

This family is called a fundamental situation. For Brousseau [1997b, p. 24], the search
for fundamental situations and their insertion into the more general classroom project of
teaching and learning requires at least two elements: a good epistemological theory, which
would reveal the deepness of mathematical knowledge and positively inform the teaching
process, and a good didactic engineering, which would be oriented to the design of situa-
tions and problems to be solved by the students.

A fourth principle specifies further the concept of learning in the TDS. The general
epistemic principle p2 tells us that learning is of an adaptive nature; it consists of the
students’ adaptations to a milieu, but it does not say anything about the socio-interactional
conditions to be fulfilled for it to occur. Principle four fills the gap and gives an impeccable
theoretical consistency to the TDS –although, as we will see, some paradoxes will appear
later on:

p4: the student’s autonomy is a necessary condition for the genuine learning
of mathematics.

Thus, if the process of learning was not accomplished autonomously vis-à-vis the
teacher, learning could not have happened. For “if the student produces her answer with-
out having had herself to make the choices which characterize suitable knowledge and
which differentiate this knowledge from insufficient knowledge, the evidence [of learn-
ing] becomes misleading” Brousseau [ibid., p. 41]. In other words, “if the teacher teaches
her [the student] the result, she does not establish it herself and therefore does not learn
mathematics” Brousseau [ibid., pp. 41-42].

The student is hence expected to engage with a fundamental situation in a particular
type of game that gives rise to another situation, called adidactic Brousseau [ibid., p. 30],
characterized by the student’s autonomy vis-à-vis the teacher. What makes the adidac-
tic situation different is the fact that it is partially freed from the teacher’s direct inter-
ventions Brousseau [2003, p. 2]. This is why, referring to the adidactic situations –the
only one through which true knowledge acquisition can be said to happen (knowledge by
adaptation)– Brousseau asserts that “Between the moment the student accepts the problem
as if it were her own and the moment when she produces her answer, the teacher refrains
from interfering and suggesting the knowledge that she wants to see appear” Brousseau
[1997b, p. 30].

Within this context, the teacher’s mission is not only to ensure the successful devo-
lution of the fundamental situation to the student in the adidactic situation, but also to
maintain a fruitful interaction with the milieu (i.e., the antagonist system of the actors) in
an encompassing context called the didactic situation. As Brousseau puts it,
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Figure 1: The four-pole (simplified) diagram shows the basic components of a Di-
dactic Situation.

This situation or problem chosen by the teacher is an essential part of the
broader situation in which the teacher seeks to devolve to the student an adi-
dactical situation which provides her with the most independent and most
fruitful interaction possible. For this purpose, according to the case, the
teacher either communicates or refrains from communicating information,
questions, teaching methods, heuristics, etc. She is thus involved in a game
with the system of interaction of the student with the problem she gives her.
This game, or broader situation, is the didactical situation. Brousseau [ibid.,
pp. 30–31]

Figure 1 (which is a simplified and modified version of Perrin-Glorian and Hersant
[2003] diagram) conveys the complexity of a didactic situation.

The didactic situation is in the end a model that can be better conceptualized as a game
see Brousseau [1988]. The situation models the interaction of a subject with a milieu
by a game (e.g. a problem to solve) where players have to take decisions: some states
of the game are more favourable than others to win; thus the situation defines a piece of
knowledge as a means for the subject to reach or maintain a favourable state (for the game)
in this milieu Perrin-Glorian [1994]

In practice, however, the game does not necessarily proceed smoothly. The student
may fail to solve the problem or simply may avoid it. A negotiation takes place:

Then a relationship is formed which determines – explicitly to some extent,
but mainly implicitly – what each partner, the teacher and the student, will
have the responsibility for managing and, in some way or other, be responsi-
ble to the other person for. This system of reciprocal obligation resembles a
contract. What interests us here is the didactical contract, that is to say, the
part of this contract which is specific to the “content”, the target mathematical
knowledge. Brousseau [1997b, pp. 31-32]
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Brousseau acknowledges that this system of reciprocal obligations is not exactly a con-
tract in so far as it is not fully explicit. It is rather something like a flexible, ongoing
negotiation. However, this is not a negotiation in the sense of constructivism, for what is
being negotiated in the TDS is neither the mathematical meanings constructed in the class-
room by the students and the teachers nor the mathematical forms of proving, arguing, etc.
For the TDS, in opposition to constructivism, mathematical meanings and the mathemati-
cal forms of proving are not negotiable: they are part of the target knowledge, the cultural
knowledge of reference. Negotiation is about the fluctuating borders of a teacher-student
division of labour that seeks to ensure that the teacher’s devolution of the fundamental
situation is accepted by the student; that is to say, that the student takes responsibility for
the solution of the problem and enters into an adidactic situation.

Because of its own nature, the unavoidable fuzzy didactic contract is haunted by some
paradoxes. Let me dwell briefly on this point.

2.3 The Paradoxes of Learning. Teachers have the social obligation to make sure that
learning is happening in the classroom.

What to do, then, if the student fails to learn? The student will ask the teacher to be
taught. But

the more the teacher gives in to her demands and reveals whatever the student
wants, and the more she tells her precisely what she must do, the more she
risks losing her chance of obtaining the learning which she is in fact aiming
for. Brousseau [1997b, p. 41]

Brousseau does not consider this paradox as a contradiction. The paradox reveals the
tricky situation that the teacher will be often called upon to live in the classroom. If the
teacher gives up, knowledge attainment will be compromised:

everything that she [the teacher] undertakes in order to make the student
produce the behaviours that she expects tends to deprive this student of the
necessary conditions for the understanding and the learning of the target no-
tion; if the teacher says what it is that she wants, she can no longer obtain it.
Brousseau [ibid., p. 41]

Another paradox may arise when it is not possible to find a fundamental situation that
would fit the students’ intellectual possibilities at a certain point of their development. In
this case, the teacher

gives up teaching by adaptation; she teaches knowledge directly in accor-
dance with scientific requirements. But this hypothesis implies that she must
give up providing a meaning to this knowledge and obtaining it as an answer



MATHEMATICS EDUCATION AND THEIR CONCEPTUAL DIFFERENCES 4065

to situations of adaptation because then the students will colour it with false
meanings. Brousseau [ibid., p. 42]

According to Brousseau, the student is also put in a paradoxical situation: “she must
understand AND learn; but in order to learn she must to some extent give up understanding
and, in order to understand, she must take the risk of not learning” Brousseau [ibid., p. 43].

For the TDS, these (and other paradoxes) are an intrinsic part of didactic situations.
They are part of the teaching of mathematics and knowledge acquisition. However, these
paradoxes can also be seen as the result of a tension in the TDS’ account of teaching and
learning –a tension that results from a particular conception of learning, an epistemological
and ontological rationalist view of mathematics and its adherence to a classical concept of
the cognizing subject.

2.4 The Idea of Learning. As seen previously, for the TDS, genuine learning can only
arise from the individual’s own deeds and reflections. It is this theoretical stance on learn-
ing that gives sense to the ideas of adidactic situation and devolution. Although the TDS
involves social interaction at different levels Kidron, Lenfant, Bikner-Ahsbahs, Artigue,
and Dreyfus [2008], knowledge acquisition is, in the end, the result of the student’s per-
sonal relationship with the object of knowledge. There is no difference in this respect
between constructivism and the TDS. Differences arise in terms of, for example, the epis-
temic role of the problem: while in the former, a problem may lead to diverse, equally
genuine viable pieces of knowledge, in the latter, in contrast, the design of the didactic
situation should lead to the target cultural knowledge.

As we will see in the next section, the road taken by Vygotskian Sociocultural con-
temporary approaches to the problem of teaching and learning is different in important
ways.

The TDS has had a significant influence in France and French-speaking communities
around the world. It has also had an important influence in Spain and Central and South
America. The detailed epistemic analyses of fundamental situations, their engineering and
control in the classroom by the teacher, have helped mathematics educators understand the
key role of suitable problems in the development of students’ mathematical thinking.

3 Sociocultural Approaches

We have seen that for both constructivism and the TDS, the autonomy of the cognizing
subject vis-à-vis the teacher, is a prerequisite for knowledge acquisition. For sociocultural
approaches, autonomy is not the prerequisite of knowledge acquisition. Autonomy is, in
fact, its result. This is one of the central ideas of Vygotsky’s concept of zone of proximal
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development. Therefore, it is easy to imagine that, within sociocultural approaches of Vy-
gotskian ascent, the roles of the teacher and the students are theorized along very different
lines from what is found in other theories.This important difference will become clearer
as I present a summary of the main principles of sociocultural approaches.

3.1 The Ontological and Epistemological Principles. The ontological position of a
theory consists of specifying the sense inwhich the theory approaches the the nature of con-
ceptual objects (in our case, the nature of mathematical objects, their forms of existence,
etc.). The epistemological position consists of specifying the way in which, according to
the theory, these objects can (or cannot) end up being known.

One of the most popular ontologies is Realism. Realists consider that the existence of
mathematical objects precedes and is independent from the activity of individuals and that
they exist independently of time and culture. Contemporary sociocultural approaches take
a different route:

p1: knowledge is historically generated during the course of the mathematical
activity of individuals.

The principles of the TDS and constructivism seem to be in agreement with this on-
tological stance. If there is not a discrepancy in the “mode of being” of mathematical
knowledge, there might be nonetheless some discrepancies in terms of its “modes of pro-
duction.” As seen earlier, the TDS and constructivism consider knowledge as the result
of the adaptive actions of the cognizing subject. For socioculturalists, however, adapta-
tion is insufficient to account for the production of knowledge. One of the reasons is
that socioculturalists consider cognition as a cultural and historically constituted form of
reflection and action embedded in social praxes and mediated by language, interaction,
signs, and artifacts. As a result, knowledge is produced by cognizing subjects who are,
in their productive endeavours, subsumed in historically constituted traditions of thinking.
The cognizing subject of sociocultural theories is a subject that thinks within a cultural
background and that, in so doing, goes beyond the necessities of mere ahistorical adap-
tive urges. In other terms, the “will to knowledge” (to borrow Foucault’s term) and the
way knowledge comes into being are neither driven nor shaped by adaptive needs or im-
pulses to produce “viable” hypotheses or “optimal” results. The “will to knowledge” and
knowledge itself are rather mediated by cultural forms of thinking and values (scientific,
aesthetic, ethic, etc.) that orient (without imposing) the growth of knowledge into cer-
tain new directions. Within sociocultural contexts, viability cannot be understood as a
mere subjective game of hypothesis generation by a cognizing subject in its attempt at
getting around its environment. Much in the same way, optimality cannot be understood
in terms of some universal, intrinsic mechanisms of mathematical knowledge. Mathemat-
ical thinking and mathematical responses are always framed by the particular rationality
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of the culture where they take place; within these cultures optimality can have different
meanings and may not be the main drive to move mathematical thinking to new levels of
development Radford [1997b], Radford [2008a].

For instance, the ways of dealing with the prediction of future events or the understand-
ing of past events in early 20th century Azande culture was not at all moved by questions
of optimality. The Azande reasoning was inscribed in a different worldview from the Ho
versus Ha view of hypotheses testing of Western mathematics. And yet, like the latter, the
Azande’s ceremonial procedures were clear processes of understanding and making sense
of their reality Evans-Pritchard [1937], Feyerabend [1987], and Radford [2017b].

We can summarize this discussion in the following principle:

p2: the production of knowledge does not respond to an adaptive drive but is
embedded in cultural forms of thinking entangled with a symbolic and mate-
rial reality that provides the basis for interpreting, understanding, and trans-
forming the world of the individuals and the concepts and ideas they form
about it.

3.2 Learning. In the previous section it was argued that socioculturalists claim that
from a phylogenetic point of view, conceptual objects are generated in the course of hu-
man activity. From an ontogenetic point of view, the central problem is to explain how
acquisition of the knowledge deposited in a culture can be achieved: this is a fundamental
problem of mathematics education in particular and of learning in general.

Themetaphor of knowledge construction seems to convey verywell the idea that knowl-
edge is not something transcendental to the human sphere and that knowledge is rather
something made by human beings. Constructivism, the TDS, and sociocultural perspec-
tives agree on this point.

However, from a sociocultural perspective, the extrapolation of this metaphor to the
ontogenetic dimension leads to a series of important irresolvable problems. Instead of
talking about students constructing knowledge, some socioculturalists prefer to talk about
students making sense of, and becoming fluent with, historically constituted modes of
thinking. One of the advantages in putting the problem of learning in this way is that the
student’s knowledge is not seen as something coming fromwithin (a kind of private or sub-
jective construction endlessly seeking to reach a culturally-objective piece of knowledge)
but from without. Principle 3 summarizes this idea:

p3: learning is the reaching of a culturally-objective piece of knowledge that
the students attain through a social process of objectification mediated by
signs, language, artifacts, and social interaction as the students engage in cul-
tural forms of reflecting and acting.
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The idea of learning as the reaching of cultural knowledge should not be interpreted as
if the students reach knowledge in a passive way. Unfortunately, we have become used
to making a dichotomy and to thinking that either students construct their own knowledge
or knowledge is imposed upon them. This is a too easy and misleading oversimplification
–what Lerman has termed the absolutist view about learning Lerman [1996]. Learning,
from a sociocultural perspective, is the result of an active engagement and self-critical,
reflexive, attitude towards what is being learned. Learning is also a process of transforma-
tion of existing knowledge. And perhaps more importantly, learning is a process of the
formation of subjectivities, a process of agency and the constitution of the self.

Sociocultural approaches resist indeed the idea that learning is just the uncritical appro-
priation of existing knowledge absorbed by a passive student-spectator. Knowledge has a
transformative power: it transforms the object of knowledge and, in the course of knowing
and learning, the subject is itself transformed. There is a dialectical relationship between
subject and object that can be better understood by saying that learning is a process of ob-
jectification (knowing) and subjectification (or agency), that is a process of being Radford
[2008c].

3.3 The Role of the Teacher and the Students. The role of the teacher is not, as it
can be imagined from what we just said, to dispense knowledge. Since sociocultural ap-
proaches argue that knowledge cannot be injected into the students’ mind1, in order to get
the students to know (in the sociocultural transformative sense) objects and products of
cultural development, one of the roles of the teacher is to offer students rich classroom ac-
tivities featuring, in a suitable manner, the encounter with the various layers of generality
of historical cultural objects and the encounter with other voices and forms of understand-
ing.

The configuration of these activities (both in terms of the mathematical content and
its social- interactive dimension) is framed by the ultimate socioculturalists’ idea of how
learning occurs. As already mentioned, for socioculturalists, learning will not necessarily
or uniquely occur as the result of the student’s autonomous cogitations in her attempt to
create viable hypotheses or to give optimal solutions to a problem. Learning, in fact, very
often starts when the student is no longer able to continue by herself and requires the ac-
tive participation of the teacher (this is one of the ideas of Vygotsky’s zone of proximal
development). This participation may become apparent in terms of questions and clues
to redirect the student’s attention to certain unattended features of the problem under con-
sideration and that are vital to the attainment of a certain form of mathematical thinking.
But it also can result from actively and critically interacting with the teacher while both

1Knowledge does not spring up in the individual as a result of a direct projection on his brain of the ideas
and concepts worked out by preceding generations Leont’ev [1978, p. 19].
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teacher and students solve the problem together. Of course, such a way of doing cannot
be accounted for as an instance of learning in other theories, where the intellectual auton-
omy of the student plays the role of a prerequisite for learning. For sociocultural theories,
however, autonomy is not a prerequisite, but, as already mentioned, its result.

The nuance is in fact subtler, for the idea of autonomy is not taken by sociocultural
perspectives as something that develops from within the individual, or as something latent
that the subject manages to expand: autonomy is not seen as my capability to do things
without the help of others: autonomy is a social relation that I acquire as I engage in social
praxes, and as such, is always a commitment to others Radford [2008c, 2012].

Sociocultural approaches to teaching and learning are younger than the other two ap-
proaches discussed in this paper. They were introduced in the early 1990s into mathe-
matics education by mathematics educators, such as Ubiratan D’Ambrosio, Alan Bishop,
Steve Lerman, and Mariolina Bartolini Bussi. The sociocultural approaches have gained
some impetus in the past few years and shed some light on the problem of the cultural
nature of mathematics D’Ambrosio [2006] and Bishop [1991], classroom interaction and
discourse M. G. Bartolini Bussi [1998] and Lerman [1996, 2001], classroom conceptual-
ization Radford [2000, 2008d] and Radford, Bardini, and Sabena [2007], semiotic media-
tion Arzarello and Robutti [2004], M. G. Bartolini Bussi andMariotti [1999], M. Bartolini
Bussi and Mariotti [2008], and Radford [2005], and the question of culture and cognition
Radford [1997a, 2008b,e].

4 A New Trend

In this last section, I want to briefly mention a new trend as observed in the Fifth Congress
of the European Society for Research in Mathematics Education (CERME-5, February 22-
26, 2007). The European Society for Research in Mathematics Education organizes bian-
nual conferences that are designed to encourage an exchange of ideas through thematic
working groups. A few plenary activities take place, yielding most of the space to group
work. One of the recurring CERME working groups is the one devoted to theories in
mathematics education. For instance, in the CERME-5 conference held in the city of Lar-
naca, Cyprus, the working group 11 Different Theoretical Perspectives / Approaches in
Research in Mathematics Education was one of the most popular, which attests to the
interest in understanding that which makes theories different. However, the goal of this
working group was not just to understand differences, but to seek new forms of linking
and connecting current theories. More specifically, the idea was to discuss and investigate
theoretical and practical forms of networking theories. Most of the papers presented at the
meetings of working group 11 will appeared in an issue of the journal ZDM - The Interna-
tional Journal on Mathematics Education. As I mention in the commentary paper written
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for this ZDM issue Radford [2008a], this new trend consisting of investigating ways of
connecting theories is explained to a large extent by the rapid contemporary growth of
forms of communication, increasing international scientific cooperation, and the attenua-
tion of political and economic barriers in some parts of the world, a clear example being,
of course, the European Community.

This new trend is leading to an enquiry about the possibilities and limits of using sev-
eral theories and approaches in mathematics education in a meaningful way. The papers
presented at the conference provided an interesting array of possibilities.

Depending on the goal, connections may take several forms. Prediger, Bikner-Ahsbahs,
and Arzarello [2008] identify some of them, like comparing and contrasting, and define
them as follows. In comparing, the goal is to find similarities and differences between
theories, while in contrasting theories, the goal is to stress big differences. Cerulli, Geor-
get, Maracci, Psycharis, and Trgalova [2008] is an example of comparing theories, while
Rodríguez, Bosch, and Gascón [2008] is an example of contrasting theories. These forms
of connectivity are distinguished from others like coordinating and combining. In coor-
dinating theories, elements from different theories are chosen and put together in a more
or less harmonious way to investigate a certain research problem. Halverscheid’s article
(2008) is a clear example of an attempt at coordinating theories, in that, the goal is to study
a particular educational problem (the problem of modelling a physical situation) through
the use of elements from two different theories (a modelling theory and a cognitive one).
In combining theories, the chosen elements do not necessarily show the coherence that
can be observed in coordinating connections. It is rather a juxtaposition of theories (see
Prediger et al.’s paper, (2008)). Maracci [2008] and Bergsten [2008] furnish examples of
combining theories.

At least in principle, comparing and contrasting theories are always possible: given
two mathematics education theories, it is possible to seek out their similarities and/or dif-
ferences. In contrast, to coordinate or to integrate theories, which is another possible form
of connection Prediger, Bikner-Ahsbahs, and Arzarello [2008] paper, seems to be a more
delicate task.

Connecting theories can, in sum, be accomplished at different levels (principles, method-
ology, research questions), with different levels of intensity. Sometimes the connection
can be strong, sometimesweak. It is still too early to predict how this new trendwill evolve.
What is clear, in contrast, is that the investigation of integration of theories and their dif-
ferentiation is likely to lead to a better understanding of theories and richer solutions to
practical and theoretical problems surrounding the teaching and learning of mathematics.
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IN SEARCH OF THE SOURCES OF INCOMPLETENESS
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Abstract
Kurt Gödel said of the discovery of his famous incompleteness theorem that he sub-

stituted “unprovable” for “false” in the paradoxical statement This sentence is false.
Thereby he obtained something that states its own unprovability, so that if the state-
ment is true, it should indeed be unprovable. The big methodical obstacle that Gödel
solved so brilliantly was to code such a self-referential statement in terms of arithmetic.
The shorthand notes on incompleteness that Gödel had meticulously kept are exam-
ined for the first time, with a picture of the emergence of incompleteness different
from the one the received story of its discovery suggests.

1. Pඋൾඅඎൽൾ ඍඈ ංඇർඈආඉඅൾඍൾඇൾඌඌ. Kurt Gödel’s paper of 1931 about the incompleteness
of mathematics, Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I, belongs to the most iconic works of the first half of 20th century sci-
ence, comparable to the ones of Einstein on relativity (1905), Heisenberg on quantum
mechanics (1925), Kolmogorov on continuous-time random processes (1931), and Tur-
ing on computability (1936). Gödel showed that the quest of representing the whole of
mathematics as a closed, complete, and formal system is unachievable.

It has been said repeatedly that Gödel’s discovery has had close to no practical effect on
mathematics: the impossibility to decide some questions inside a formal system has not
surfaced except in a few cases, such as the question of the convergence of what are known
as Goodstein sequences. On the other hand, the effect of methods Gödel developed to
prove his theorems has been immeasurable: He invented the idea of a formal syntax coded
through primitive recursive functions, from which Turing’s idea of machine-executable
code arose.
I thank Thierry Coquand, Martin Davis, John Dawson, Warren Goldfarb, and Bill Howard for their suggestions

and generous encouragement, Maria Hämeen-Anttila for moral support in moments of doubt during the study
of Gödel’s manuscripts, and the splendid class of participants in my “Gödel detective” lecture course at the
University of Helsinki in 2017, during which the results reported here were achieved. Unpublished works of
Kurt Gödel (1934–1978) are Copyright Institute for Advanced Study and are used with permission. All rights
reserved by Institute for Advanced Study.
MSC2010: primary 03F40; secondary 01A60, 03-03, 03A05.

4075

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v4-p


4076 JAN VON PLATO

Gödel was enormously lucky, or sagacious, to find in 1928 a very precise problem in
logic to work with. It occurs in the textbook Grundzüge der theoretischen Logik (Basic
traits of theoretical logic) by David Hilbert and Wilhelm Ackermann, actually written by
Hilbert’s assistant Paul Bernays (for which see Hilbert [2013, p. 49]). It gave, for the
first time, a complete system of axioms and rules for the logic of the connectives and
quantifiers and was the first important step in Hilbert’s program that had set as its aim
the formalization of mathematical reasoning within a logical language, with proofs of the
consistency and completeness of the formalization. Predicate logic is such a language in
which proofs in elementary arithmetic can be expressed as derivations in a formal system.
Derivations, alongside expressions of a formal language, form an inductively defined class
of objects. Hilbert’s inspiration for the formalization of mathematical proofs within a
logical language came from the three-volume Principia Mathematica 1927 that became
known and read in Hilbert’s Göttingen from 1917 on.

In [Hilbert and Ackermann 1928], the completeness of predicate logic is given as an
important open problem (p. 68):

Whether the axiom system is complete in the sense that all logical formulas
correct in each domain of individuals really are derivable in it, is a question
still unresolved. One can say only purely empirically that the axiom system
has been always sufficient in all applications. The independence of the single
axioms has not been studied yet.

Gödel set out to solve the completeness problem, a work that led to his doctoral thesis of
1929, with even proofs of the independence of the axioms and rules included.

I recently found in Gödel’s Nachlass an 84 page notebook entitled Übungsheft Logik
(Logic exercise notebook) based on his reading of Hilbert-Ackermann. Besides predicate
logic in which one quantifies only over individuals, the book also presents higher-order
logic, with short explanations of how the formalism could be applied in arithmetic and
set theory. By the comprehension principle, higher-order predicates correspond to sets, or
functions as well over which one can apply the quantifiers, with a very powerful formalism
in which to express the principles and postulates used in mathematical theories as a result.
One thing that transpires from the Übungsheft is that Gödel’s main initial objective was
to use higher-order logic for a formalization of proofs in arithmetic and set theory. The
formalizations are in the “logicist” tradition of Gottlob Frege and Russell ( see von Plato
[2018] for a detailed account).

Another, astonishing feature of the Übungsheft is the way Gödel overcomes the main
difficulty of the axiomatic logic of Frege and Russell which is that formal derivations are,
as a practical matter, impossible to construct in axiomatic logic. With no explanation or
hesitation whatsoever, he starts to use a system of natural deduction in place of the hope-
lessly clumsy axiomatic calculus for his formal proofs, in a format in which the formulas
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follow in a linear vertically arranged succession. Gerhard Gentzen is generally consid-
ered to be the inventor of natural deduction, a logical calculus in which derivations are
presented in a tree-form that allows for a deep analysis of their structure. His way to nat-
ural deduction is detailed out on the basis of his manuscripts in the book Saved from the
Cellar [von Plato 2017a].

Gödel changed his objective from the actual formalization of mathematics as in the
Übungsheft into a study of the properties of any such formalization: On 6 July 1929, Gödel
handed in a brilliant doctoral thesis with the titleÜber die Vollständigkeit des Logikkalküls
(On the completeness of the calculus of logic). A shorter version got published in 1930.

Gödel used the term completeness (Vollständigkeit) for the case of predicate logic. The
contrary was not Unvollständigkeit, but undecidability (Unentscheidbarkeit). In the 1931
article , he uses “formal undecidability,” even in the title and writes then specifically of a
sentence A “axiomatically undecidable,” i.e., undecidable or unsolvable in an axiomatic
system in the sense of unprovability of both A and its negation :A within the system.
There is some danger of confusing this term with another notion of undecidability, the
one of Hilbert’s Entscheidungsproblem, as found in Turing’s 1936 title. The two senses
of undecidability have a somewhat tricky relation with all four combinations possible:
Classical propositional logic is decidable and complete, but if you leave out one axiom
you get an incomplete though still decidable axiom system. Similarly, classical predicate
logic is complete but undecidable, and Peano arithmetic incomplete and undecidable.

2. Tඁൾ ඌඈඎඋർൾඌ ඈൿ ංඇർඈආඉඅൾඍൾඇൾඌඌ. Gödel was a maniacal keeper of notebooks in which
he recorded his thoughts, from his earliest school years on, and there is an enormous
amount of material left behind and kept in Princeton. These notebooks are written in
the Gabelsberger shorthand that was regularly taught at schools at the time, but rendered
obsolete since its substitution by the “unified shorthand” in 1925. Work on these archival
sources was done in connection with the publication of the third of Gödel’s five-volume
Collected Works, which led to the incorporation of two very important manuscripts in
the volume: a lecture on the consistency of the continuum hypothesis of December 1939,
and another on Gödel’s well-known functional interpretation of arithmetic in April 1941.
Since those days, with publication in 1995, Gödel’s notebooks have lain dormant except
for his collection of fifteen philosophical notebooks, the MaxPhil series (Philosophical
Maxims).

I started to work with the Gödel notes on 20 March, 2017, after a volume of shorthand
notes by Gödel’s younger contemporary Gentzen, the mentioned Saved from the Cellar.
Here I report on my findings that concern the sources of Gödel’s work on incomplete-
ness, with a typewritten manuscript of Über formal unentscheidbare Sätze der Principia
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Mathematica und verwandter Systeme submitted on 17 November and published inMarch
1931.

The Gödel archives contain three suites of notes in preparation of the incompleteness
paper. The third version comes close to the published paper and bears the cover title
Unentsch unrein. This text comes first in the microfilm and is in 39 pages. There follow
about the same number of additional pages, some of which with remarkable connections to
the main text. A second notebook follows that has the same title, this time written inside,
and it is even a bit longer, with a break and what seems a new start in the middle. Finally,
there is a third notebook with no title and with the first preserved notes on incompleteness,
some 45 pages followed by a dozen pages that are very similar to the introduction of the
printed paper.

3. Tඁൾ ർඋඎർංൺඅ ඉඈංඇඍ ඈൿ ඍඁൾ ർඈආඉඅൾඍൾඇൾඌඌ ඉඋඈඈൿ. Gödel’s proof of completeness for
the “narrower functional calculus,” i.e., first-order classical predicate logic, has disjunc-
tion, negation, and universal quantification as the basic notions. The simplest case of
quantification is the formula 8xF (x) with F propositional. Gödel states in a shorthand
passage that if such a formula is “correct,” i.e., becomes true under any choice of domain
of individuals and relations for the relation symbols of the formula, then the instance with
a free variable x must be a “tautology” of propositional logic.1 In the usual “Tarski se-
mantics” that is–unfortunately–included in almost every first course in logic, the truth of
universals is explained by the condition that every instance be true, an explanation that
with an infinite domain of objects leads to circles.

In Gödel, in contrast, with the free-variable formula F (x) a tautology, it must be prov-
able in propositional logic by the completeness of the latter, a result from Bernays’ Ha-
bilitationsschrift of 1918 and known to Gödel from Hilbert-Ackermann. That book is
also the place in which the rules of inference for the quantifiers appear for the first time
in an impeccable form (p. 54, with the acknowledgment that the axiom system for the
quantifiers “was given by P. Bernays”). With the free-variable formula F (x) provable in
propositional logic, the rule of universal generalisation gives at once that even 8xF (x)

is derivable. The step is rather well hidden in Gödel’s proof in the thesis that proceeds in
terms of satisfiability. At one point, he moves to provability of a free-variable formula,
then universally quantified “by 3,” the number given for the rule of generalisation.

Gödel’s profound understanding of predicate logic, especially the need for rules of in-
ference for the quantifiers without which no proof of completeness is possible, is evident
through comparison: Rudolf Carnap, whose course he followed in Vienna in 1928, pub-
lished in 1929 a short presentation of Russell’s Principia, the Abriss der Logistik, but one
searches in vain for the quantifier rules in this booklet. Other contemporaries who failed

1 My notes are incomplete at this point and I have so far not found again this passage in Gödel’s manuscripts.
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in this respect include LudwigWittgenstein and Alfred Tarski. The former was a dilettante
in logic who thought that truth-tables would do even for predicate logic. With the latter,
no trace of the idea of the provability of universals through an arbitrary instance is found
in his famous tract on the concept of truth of 1934. We shall see that Gödel was way ahead
of him in understanding these matters by the summer of 1930.

Gödel’s thesis, but not its short published version of 1930, contains a deep remark by
which the proof of completeness cannot be finitary because such a proof would give a
decision method for predicate logic.

4. Eඇർඈඎඇඍൾඋ ංඇ Kදඇංඌൻൾඋ. There exists a very short and readable lecture about
completeness in Gödel’s hand, namely the one he gave in a conference in Königsberg in
early September 1930. Close to the end of that lecture, we find the following passage
[Gödel 1930c, p. 28]:

If one could prove the completeness theorem even for the higher parts of logic
(the extended functional calculus), it could be shown quite generally that from
categoricity, definiteness with respect to decision [Entscheidungsdefinitheit]
follows. One knows for example that Peano’s axiom system is categorical, so
that the solvability of each problem in arithmetic and analysis expressible in
the Principia Mathematica would follow. Such an extension of the complete-
ness theorem as I have recently proved is, instead, impossible, i.e., there are
mathematical problems that can be expressed in the Principia Mathematica
but which cannot be solved by the logical means of the Principia Mathemat-
ica.

It is clear from these remarks that Gödel’s first thought was to extend the completeness
result to higher-order logic, a point emphasised in [Goldfarb 2005]. The above is an indi-
cation of his way to the first incompleteness theorem from the time when the actual work
was done, not later reconstruction.

The second version of the incompleteness paper has, after some fifteen pages, the title
“Meine Damen und Herren!” Then comes the text of the Königsberg lecture on complete-
ness in shorthand. The ending is:

I have succeeded, instead [of extending the completeness theorem to higher-
order logic], in showing that such a proof of completeness for the extended
functional calculus is impossible or in other words, that there are arithmetic
problems that cannot be solved by the logicalmeans of the PMeven if they can
be expressed in this system. These things are, though, still too little worked
through to go into more closely here.
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The last sentence reads in German: “Doch sind diese Dinge noch zu wenig durchgearbeitet
um hier näher auf einzugehen.” In the typewritten version, we read somewhat differently
about his proof of the failure of completeness:

In this [proof], the reducibility axiom, infinity axiom (in the formulation:
there are exactly denumerable individuals), and even the axiom of choice are
allowed as axioms. One can express the matter also as: The axiom system of
Peano with the logic of the PM as a superstructure is not definite with respect
to decision. I cannot, though, go into these things here more closely.

The German is: “Auf diese Dinge kann ich aber hier nicht näher eingehen.” Then this last
sentence is cancelled and the following written: “Doch würde es zu weit führen, auf diese
Dinge näher einzugehen” (It would, though, take us too far to go more closely into these
things). It would seem that matters concerning the incompleteness proof had cleared in
Gödel’s mind between the writing of the shorthand text for the lecture and the typewritten
version. This must have been in the summer of 1930.

Just a few pages before the Königsberg outbreak, Gödel writes that the formally unde-
cidable sentences have “the character of Goldbach or Fermat,” i.e., of universal proposi-
tions that can be refuted by a numerical counterexample. A formally undecidable proposi-
tion 8xF (x) can have each of its numerical instances F (n) provable, but still, addition of
the negation :8xF (x) does not lead to an inconsistency. Were the free-variable instance
F (x) provable, universal generalisation would at once give a contradiction.

Among Gödel’s audience in Königsberg sat Johann von Neumann, who reacted at once
and wanted more explanations. Gödel gave such in a discussion among the two and most
likely during his stay in Berlin immediately after. The most detailed account of these
events is [Wang 1996], section “Some facts about Gödel in his own words” [ibid., p. 82–
84]:

I represented real numbers by predicates in number theory and found that I had
to use the concept of truth to verify the axioms of analysis. By an enumeration
of symbols, sentences, and proofs of the given system, I quickly discovered
that the concept of arithmetic truth cannot be defined in arithmetic.
…
Note that this argument can be formalised to show the existence of undecid-
able propositions without giving any individual instances.

Von Neumann suggested in the discussion to transform undecidability “into a proposition
about integers.” Gödel then found “the surprising result giving undecidable propositions
about polynomials.”

Von Neumann lectured from late October 1930 on in Berlin on “Hilbert’s proof theory”
of which Carl Hempel, later a very famous philosopher, has recollected the excitement
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created, even evidenced by contemporary letters for which see [Mancosu 1999]. The
account is [Hempel 2000, pp. 13–14]:

I took a course there with von Neumann which dealt with Hilbert’s attempt to
prove the consistency of classical mathematics by finitary means. I recall that
in the middle of the course von Neumann came in one day and announced that
he had just received a paper from... Kurt Gödel who showed that the objec-
tives which Hilbert had in mind and on which I had heard Hilbert’s course in
Göttingen could not be achieved at all. Von Neumann, therefore, dropped the
pursuit of this subject and devoted the rest of the course to the presentation
of Gödel’s results. The finding evoked an enormous excitement.

These are later recollections; for example, it is known that von Neumann got the proofs
of Gödel’s paper around the tenth of January 1931. The lectures of late 1930 were based
on other sources to be presented below.

Jacques Herbrand was born in 1908 and received his education at the prestigious Ecole
normale superieure of Paris. He finished his thesis Recherches sur la théorie de la démon-
stration at the precocious age of 21 in the spring of 1929. He went to stay for the academic
year 1930–31 in Germany, first Berlin from October 1930 on, then from late spring 1931
to July in Hamburg and Göttingen. These stays were in part prompted by his work on
algebra, where Emil Artin in Hamburg and Emmy Noether in Göttingen were the leading
figures.2

There is a letter of Herbrand’s of 28November 1930 to the director of theEcole normale
Ernest Vessiot in which he mentions von Neumann’s “absolutely unexpected results,” then
writes that for now he will tell about the

extremely curious results of a young Austrian mathematician who succeeded
in constructing arithmetic functions P n with the following properties: one
calculates Pa for each number a and finds Pa = 0, but it is impossible to
prove that P n is always zero.

Gödel’s account, as reported by Wang, suggests that he had found this result right after
the Königsberg meeting; it is further clear that he must have explained it to von Neumann
during his visit to Berlin right after.

Eight days before Herbrand’s letter, von Neumann had written to Gödel about his proof:

It can be expressed in a formal system that contains arithmetic, on the basis
of your considerations, that the formula 1 = 2 cannot be the endformula in a
proof that starts from the axioms of this system—and in this formulation in
fact a formula of the formal system mentioned. Let it be called W.

2[von Plato 2017b], section 8.3 on two “Berliners” contains a detailed account of Herbrand’s stay in Germany
and his relation to von Neumann.
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…

I show now: W is always unprovable in systems free of contradiction, i.e., a
possible effective proof of W could certainly be transformed into a contradic-
tion.

Gödel must have explained to von Neumann the essential point, not just a blunt statement
of incompleteness, namely that provability of a formula in a system can be expressed as a
formula of that system, here provability of 1 = 2.

Von Neumann writes next that if Gödel is interested, he would send the details once
they are ready for print. He asks further when Gödel’s treatise will appear and when he
can have proofs, with the wish to relate his work “in content and notation to yours, and
even the wish for my part to publish sooner rather than later.”

5. Gදൽൾඅ’ඌ අඈඌඍ උൾඉඅඒ ඍඈ ඏඈඇ Nൾඎආൺඇඇ’ඌ අൾඍඍൾඋ. Gödel’s final shorthand version for
his incompleteness paper occupies the first 39 pages of a notebook. It begins very closely
the way the typewritten version does. Even footnotes are numbered consecutively until
number 29 on page 24 of the manuscript. The impressive list of 45 recursive relations in
the published paper matches a similar list of 43 items, some ten pages, followed by the
upshot of the laborious work in the form of a theorem:

VI. Every recursive relation is arithmetic.

After the text proper of the manuscript for the article ends, there are two attempts at a
formulation of a title, like this:

On the existence of undecidable mathematical propositions in the system of
Principia Mathematica

On unsolvable mathematical problems in the system of Principia Mathemat-
ica

There follow five pages with formulas, recursive definitions of functions, elementary com-
putations, and a stylish layout for a lecture on the completeness of predicate logic given
in Vienna on 28 November. Next the title “Lieber Herr von Neumann” hits the eye, with
the following letter-sketch:3

3 A word about the nature of shorthand sources is in place here: The transcription of shorthand is by the very
nature of the script, with missing endings of words and abrupt shortenings–a single letter can stand for different
words that have to be figured out from the context–also error-bound interpretation and guesswork. There are in
addition uncertainties for reasons such as faded sources, badly written or heavily cancelled passages, etc. I have
no pretense to a grammarian’s exact reading, word for word, but offer my English translations as accounts of
what Gödel wrote down about 87 years ago, in the hope that they appear consonant with Gödel’s thought, with
the suggestion to anyone who should like to quote them to give their own interpretation of the text. At places, I



IN SEARCH OF THE SOURCES OF INCOMPLETENESS 4083

Dear Mr von Neumann

Many thanks for your letter of [20 November]. Unfortunately I have to inform
you that I am already since about three months in possession of the result you
communicated. It is also found in the attached offprint of a communication
to the Academy of Sciences. I had finished the manuscript for this commu-
nication already before my departure for Königsberg and had presented it
to Carnap. I gave it over for publication in the Anzeiger of the Academy
on 17 September. [Cancelled: The reason why I didn’t make any presen-
tation [written heavily over: didn’t tell anything] of the above result is that
the precise proof is not suited to oral communications and an approximate
indication could easily arouse doubts about the correctness…that would not
convince]. As concerns the publication of this matter, there will be given only
a shorter sketch of the proof of impossibility of freedom from contradiction
in the Monatshefte that will appear in the beginning of 1931 (the main part
of this treatise will be filled with the proof of existence of undecidable sen-
tences). The detailed carrying through of the proof appears in a Monatsheft
only in July or August. I can send you proofs in a few weeks.
I shall include a part of my work that concerns the proof of freedom from
contradiction so that you can state to what extent your proof matches mine.
The carrying out of the proof appears together withmy proof of undecidability
in the next volume of the Monatshefte. I didn’t want to talk about it further
provisionally because this thing (even more than the proof of undecidability)
must arouse doubt about its executability before it is laid out in a concrete
way.

There are eight pages between the first and second versions of the letter, filled with Gödel’s
attempts at formulating the second incompleteness theorem in various ways and how it
should be proved, until a second letter sketch:

Dear Mr von Neumann!

Hearty thanks for your letter of 20�/XI. The result of which you write to me is
known to me since already about three months, but I didn’t want to talk any-
thing about it before I had done it in a print-ready form. I send you enclosed
an offprint in which the proved theorem gets expressed. The manuscript of

have left a question mark in place of a word or two that I failed to read. A sentence can be informative even if
one doesn’t see what precise verb is used in it, say. There are very many cancelled passages in the letter sketches;
I have included just some of these details, with the aim of a readable result in mind, as close to something Gödel
may have intended to send to von Neumann.
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this communication to the Academy was finished already before my depar-
ture to Königsberg and presented it to Carnap. I gave it over for publication
in September. The carrying through of the proof will appear together with
the proof of undecidability in a near Monatsheft (beginning of 1931). I shall
have proofs of this work in a few weeks and will then send them to you im-
mediately.

Now to the matter itself. A basic idea of my proof can be described (quite
roughly) like this. The sentence A that I have put up and that is undecid-
able in the formal system S asserts its own unprovability and is therefore
correct. If one analyses precisely how this undecidable sentence A could still
be metamathematically decided, it appears that this is possible only under the
condition of the freedom of contradiction of S . That is, it is strictly taken
not A but W ! A that is proved (W means the proposition: S is free from
contradiction). The proof of W ! A lets itself be carried through, though,
within the system S , so that if even W is provable in S , then also A which
contradicts the undecidability of A.

As concerns the meaning of this result, my opinion is that only the impossibil-
ity of a proof of freedom from contradiction for a system within this system is
thereby proved. For the rest, I am fully convinced that there is [cancelled: a
finite] an intuitionistically unobjectionable proof of freedom of contradiction
for classical mathematics [added above: and set theory], and that therefore
the Hilbertian point of view has in no way been refuted. Only one thing is
clear, namely that this proof of freedom from contradiction is in any case far
more (?) complicated than had been assumed so far.

As concerns the question that remains, my opinion is that exists no formal sys-
tem in which all [cancelled: intuitionistically unobjectionable constructive]
finite proofs would be expressible.*4 Still, I would like very much to hear
about your contrary argument concerning the matter. I would be further in-
terested whether your proof is built on the same thought as mine, something
I hope all the same from what you intend in relation to publication, namely
that you relate your work to mine.

Unfortunately, nothing seems to come of my travel to Berlin this year.

In the hope of a swift reply, I remain with

4 [Ed: The asterisk directs to an addition at the end of the letter sketch:]
� From the treatise of P. Bernays on “Philosophie der Mathematik und die hilbertsche Beweistheorie” in the

Blätter für Deutsche Philosophie, volume 4, issue 3/4, 1930, I gather that this is also the view of Hilbert and
Bernays (cf. what is said on page 366).
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best wishes, yours sincerely

6. Hൾඋൻඋൺඇൽ’ඌ ඍൾඌඍංආඈඇඒ. Herbrand had explained the post-Königsberg statement of
incompleteness in terms of polynomials to Vessiot, and five days later he writes another
letter, to his friend Claude Chevalley, in the worst handwriting imaginable, but full of
sparkling ideas that seem to spring from nothing. In the letter, Herbrand explains von
Neumann’s argument for the second incompleteness theorem as follows:

Let T be a theory that contains arithmetic. Let us enumerate all the demon-
strations in T ; let us enumerate all the propositions Q x; and let us construct
a function P x y z that is zero if and only if demonstration number x demon-
strates Q y, Q being proposition number z.

We find that P x y z is an effective function that one can construct with arith-
metic functions that are easily definable.

Let ˇ be the number of the proposition (x) ∼ P x y y (∼ means: not); let
A x be the proposition ∼P x ˇ ˇ

A the proposition (x):A x (A x is always true)
A x, equivalent to: demonstration x does not demonstrate the proposition ˇ;
so

A x: � : demonstration x does not demonstrate A

Let us enunciate:

A x: � : ∼D(x; A)

1) A x is true (for each cipher x); without it D(x; A) would be true; therefore
A; therefore A x; therefore ∼ D(x; A).

2) A cannot be demonstrated
for if one demonstrates A, A x would be false; contradiction.

Therefore: A 0; A 1; A 2 : : : are true

(x)A x cannot be demonstrated in T

Next in Herbrand’s letter comes von Neumann’s striking addition to Gödel’s first theo-
rem: with D(x; A) standing as above for: proof number x demonstrates proposition A,
Herbrand writes in the letter the magic formulas:

3) ∼A ! D(x; A) et D(z;∼A)

therefore: ∼(D(x; A) et D(z;∼A)) ! A
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The conclusion, for the unprovable proposition A, is that “if one proves consistency, one
proves A”: Consistency requires that for any proposition A, there do not exist proofs of A

and ∼A, i.e., ∼9x9z(D(x; A) et D(z;∼A)), or in a free-variable formulation, for each
x and z, ∼(D(x; A) et D(z;∼A)).

At the time Herbrand wrote to Vessiot, 28 November, the “absolutely unexpected re-
sults” he alludes to are perhaps an indication of von Neumann’s version of the second
theorem. By 29 November, von Neumann has read Gödel’s letter of reply and that shows
in Herbrand’s letter to Chevalley of 3 December. Gödel had explained to von Neumann
that the second theorem is proved by first showing an implication within the formal sys-
tem. The details are found in the interim pages between the two letter sketches–with even
references to the incompleteness paper. Here K is any “recursive consistent class” of for-
mulas:

Let us now turn back to the undecidable proposition 17Gen r . The propo-
sition that K is free from contradiction will be denoted by W id (K) for the
proof that 17Gen r is unprovable, and only the freedom of contradiction of
K is used (cf. 1.) on page 30) so we have

W id (K) ! BewK(17Gen r)

If now W id (K) were provable within the system, also the unprovable sentence
BewK(17Gen r) would, which is impossible.

In von Neumann’s second letter to Gödel, of 29 November, he writes:

I believe I can reproduce your sequence of thoughts on the basis of our com-
munication and can therefore tell you that I used a somewhat different method.
You prove W ! A, I show independently the unprovability of W , though
with a different kind of inference that likewise copies the antinomies.

Von Neumann’s proof idea brings to mind Gödel’s early formulations of the unprovability
of consistency. More cannot be said unless notes for the course are found somewhere.
The lectures must have been widely attended, but I have been able to secure only Hempel,
Herbrand, and B. H. Neumann, and very likely Gerhard Gentzen as participants.

There is a third letter of von Neumann’s of 12 January 1931, after he had received the
page proofs of Gödel’ article, in which he sketches what he describes as a “somewhat
shorter carrying out of the unprovability of freedom from contradiction.”

7. Gදൽൾඅ ංඇ ඉൺඇංർ. The sequence of events in and around Gödel’s two sketches of letters
is psychologically interesting. He was of course worried about von Neumann’s plans:
First he wants to assure von Neumann that he had both results, even mentioning Carnap
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as witness and quoting 17 September as the date he sent in the short note to press. He
writes that he will copy a part of his manuscript for the incompleteness paper, about the
second theorem, etc. Then come eight pages of attempts at a satisfactory formulation, and
the second letter sketch in which just the proofs of the incompleteness article are promised
once they arrive.

The pages betweenGödel’s two letter sketches to vonNeumann are his notes for section
4 of his incompleteness paper. An inspection of his typewritten manuscript shows that the
last three lines of page 41 have been cancelled. They contain the beginning of his closing
paragraph as in the shorthand manuscript. Pages 42–44 contain the added section 4. The
first proofs have a “I” added in the end of the title, a paragraph that explains the second
theorem added at the end of the introduction, and a long footnote on the second theorem
added in another place. The original proofs have no mention at all of the second theorem
before section 4 that Gödel wrote, and must have taken directly to the printer’s, some time
after he had received von Neumann’s letter.

A shadow is cast on Gödel’s great achievement; there is no way of undoing the fact that
Gödel played a well-planned trick to persuade von Neumann not to publish. In his letter
of reply, he reproduced details from section 4, freshly written after von Neumann’s letter,
but he also included his short note of October 1930 that contains a statement of the second
theorem. The latter would have been enough, but Gödel panicked at the prospect of von
Neumann publishing his second theorem. The writing is quite nervous, with cancellations
and additions all over. Moreover, the first proofs that reveal his trick must have caused
him quite a stress; nothing he could send to von Neumann who would have wondered
why the magnificent second incompleteness theorem is not even mentioned in the lengthy
introduction. He got page proofs for the article only around the tenth of January.

Concerning the October 1930 one-page notice to the Vienna academy, the last page
of the shorthand manuscript instructs to add to page 1 a reference to this note. There is
in the title (!) of Gödel’s article a footnote that points to it, without further explanations.
The microfilms contain a typewritten copy with a stamp “Akademie der Wissenschaften
in Wien, Zahl 721/1930 eingefangt: 21.X.1930.” The wording of “Satz II” is well known:

Even when one allows in metamathematics all the logical means of the Prin-
cipiaMathematica (especially therefore the extended functional calculus with
the axiom of reducibility or without ramified type theory and the axiom of
choice), there is no proof of freedom from contradiction for the system S

(and even less if one restricts the means of proof in some way). Therefore, a
proof of freedom from contradiction of the system S can be carried through
only by methods that lie outside the system S , and the case is analogous for
other formal systems, say the Zermelo-Fraenkel axiom system for set theory.
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Having sent the note to von Neumann, it is clear that the latter had no new result to publish,
and there would have been no need for Gödel to change anything, at most mention the
results in the short notice. The formulation also confirms what I said above, namely that
Gödel’s early metamathematics used strong methods. Moreover, the printed text mentions
!-consistency, but in the manuscript and in the notes before Königsberg, Gödel always
wrote @0-consistency, the latter a distinctly set-theoretic notation.

The typewritten manuscript with the typesetters’ leaden fingerprints on it contains three
lines at the end of page 41, and the rest exists only in his shorthand:

To finish, let us point at the following interesting circumstance that concerns
the undecidable sentence A put up in the above. By a remark made right
in the beginning [page 41 ends here, in the shorthand the letter S is used
instead of A], S claims its own unprovability. Because S is undecidable, it
is naturally also unprovable. Then, what S claims is correct. Therefore the
sentence S that is undecidable in the system has been decided with the help
of metamathematical considerations. An exact analysis of this state of affairs
leads to interesting results that concern a proof of freedom from contradiction
of the system P (and related systems) that will be treated in a forthcoming
continuation of this work.

Gödel shows here a cautiousness the editor of his Collected Works Sol Feferman liked to
emphasise about him, just “interesting results” about consistency. The thought of von
Neumann publishing the second theorem must have haunted him and led to the hasty
addition of a section on results so far “zu wenig durchgearbeitet” as he put his closing
words in the Königsberg lecture. In fact, Gödel was unable to prove the second theorem
to his satisfaction and no “Part II” of the incompleteness paper ever appeared, neither do
the shorthand notes suggest any such work even in manuscript form.

8. Iඇർඈආඉඅൾඍൾඇൾඌඌ ൻൾൿඈඋൾ ඍඁൾ ඌൾർඈඇൽ ඍඁൾඈඋൾආ? We have now looked ahead from the
Königsberg meeting; let’s look back also. Among Gödel’s preserved notes for the incom-
pleteness article, the last one is, as noted, very close to the printed paper. The first of
these notebooks is a rather carefully composed set that seems to have been written for an
article before Gödel had found the second theorem, so before August 1930 and before the
part of the second notebook that was written down before the notes for the Königsberg
lecture. This timing is in accordance with what Gödel wrote to von Neumann toward the
end of November, namely that he had been in possession of the second theorem for some
three months, and with what he told Hao Wang in 1976–77. Therein we find Gödel state
that he discovered his second theorem “shortly after the Königsberg meeting.” Therefore,
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anything that precedes the Königsberg lecture notes in the second suite of notes for incom-
pleteness, must be before the second theorem about the unprovability of consistency had
surfaced.

The first version of the incompleteness article opens with the words:

The question whether every mathematical problem is solvable, i.e. whether
for every mathematical proposition A either A or nonA is provable, was so
far devoid of a concrete sense, because the words “mathematical proposition”
and “mathematically provable” had not been made precise. The opinions of
variousmathematicians diverge strongly on this point, as is shown sufficiently
by the discussions over the axiom of choice and the law of excluded middle.
The way to make for precision that is at the basis of the investigation at hand
is essentially the one given in the Principia Mathematica.

A detailed examination of this early incompleteness work has to await another occasion.
Let us note two interesting remarks therein. Page 32 has:

It is easy to convince oneself by complete induction about the correctness of
the following theorem:
Every provable formula is true because the axioms are obviously true and this
property is not destroyed by the rules of inference. This result can be proved,
though, only with the help of the axiom of choice.

The passage refers to a formal system that contains higher-order logic. On page 18, the
nature of metamathematics is described:

No limitations in the means of proof are required. One can use all the theo-
rems and methods of analysis, set theory, etc in metamathematical proofs. A
proof of a metamathematical theorem conducted in such a way is comparable
to a proof in analytical number theory.

At the end of the more than forty pages of notes, there is a text for an introduction that
begins with:

Inwhat follows, a proof is sketched in coarse outline bywhich Peano’s axioms
with the logic of the Principia Mathematica (natural numbers as individuals)
don’t form any system definite with respect to decidability, even allowing the
axiom of choice. In other words, there are in the system unsolvable problems,
even of a relatively simple structure.

The second set of Gödel’s notes for incompleteness is, as its first page tells, “a provi-
sional version.” It gets a fairly good dating by the presence of the Königsberg lecture in it:
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anything before the lecture text is before the Königsberg meeting. An “exact definition”
of the notion of truth is given in the earlier part and the theorem stated that all provable
formulas are true. A proposition is then constructed by arithmetic coding that states its
own unprovability. If it is provable, it is true, so must in fact be unprovable.

The critical point in the truth definition is with the universal quantifier:

(x)F (x) shall be called true when and only when for every number n [of right
type], F (n) is true. This definition fails in that it presupposes that there are
names for all classes and relations which certainly is not the case (there are
especially only denumerably many names).
…

When one asks by what means not contained in the system S undecidability
was concluded, the answer can be only: through the definition of truth that
extends type theory into the transfinite.

A footnote tells: “The idea of such a definition has been expressed [cancelled: simulta-
neously] independently by Mr A. Tarski of Warsaw.” Tarski had lectured in Vienna in
February 1930 and a letter of Gödel’s of 2 April 1931 to Bernays even recollects a discus-
sion on the topic with Tarski. It seems clear that at that time, Gödel was trying to prove the
completeness of higher-order logic and needed a truth definition for the soundness part.
The other direction failed, though.

Gödel has seen clearly the critical point, namely that the syntactic condition of provabil-
ity of F (x)with a free variable suffices for (x)F (x) in predicate logic, whereas universal
quantification in higher-order logic becomes a transfinite notion.

Soon after the Königsberg lecture notes break in the shorthand, Gödel saw that one
can restrict the methods used in metamathematics. This change was prompted by von
Neumann’s suggestion inKönigsberg. Close to fifty years later, Gödel regretted not having
mentioned the suggestion [Wang 1996, p. 84]. The proof of the first theorem in the final
version is, as Gödel emphasised, carried out “constructively,” and he planned undoubtedly
to do the same with the second theorem. There would then be two versions each of the
two incompleteness theorems.

9. Gදൽൾඅ’ඌ ඌඈඎඋർൾඌ, ർංඍൾൽ ൺඇൽ ඎඇർංඍൾൽ. Later in his life, Gödel gave various explana-
tions of how he found the incompleteness results. He often repeated that he was thinking
of self-referential statements, as in the liar paradox: This sentence is false. Substituting
unprovable for false, one gets a statement that expresses its own unprovability. The expla-
nation is good, and indeed given as a heuristic argument in Gödel’s 1931 paper, but it gives
little clue as to how one would start thinking along such lines in the first place. Another
explanation was that he tried to prove the consistency of analysis relative to first-order
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arithmetic. This explanation has an affinity with the early formulations of incomplete-
ness.

The middle version, where the definition of truth is given, makes the following com-
ment after the proposition that states its own unprovability is shown to be true and therefore
unprovable:

One recognises a close connection of this proof to the Richard antinomy and
it can be expected that even other epistemic antinomies can be reorganized
into analogous proofs, something that actually is the case.

Hilbert-Ackermann contains a lengthy discussion of such paradoxes and the analogy was
therefore fresh in Gödel’s mind. The effect of starting in the 1931 paper with the heuris-
tic analogy gave the impression–whether planned or accidental–that the paradoxes were
his way to the result, an impression that created an unprecedented aura of genius around
the discovery and around him, shared by von Neumann and everyone else who read his
finished paper.

Gödel’s meticulously kept notes and other material point at interesting circumstances
that concern his discovery of the undecidable sentences, to be treated in a forthcoming
continuation of this work. Let me just refer to a couple of unmentioned sources: Gödel
had begun work on incompleteness in the summer of 1930 by [ibid., p. 82]; I would say
perhapsMay). Gödel’s library request cards show that he had taken out in April Fraenkel’s
Einleitung in die Mengenlehre in which the question of completeness of mathematical
theories is discussed. The most poignant remark is that “there should be nothing absurd
in imagining that the unsolvability of a problem could even be proved” (p. 235).

On 13 May and again right after Königsberg on 12 September while in Berlin, Gödel
borrowed an obscure Norwegian journal issue, Skolem’s separately published 49 page
“Über einige Grundlagenfragen der Mathematik,” of the previous year. There Skolem
states a version of the “Skolem paradox,” namely that the theorems of a truly formal system
are denumerable, indeed they can be ordered lexicographically, but that the properties of
natural numbers cannot be in that way ordered, by which (p. 269):

It would be an interesting task to show that every collection of propositions
about the natural numbers, formulated in predicate logic, continues to hold
when one makes certain changes in the meaning of “numbers.”

Gödel wrote down detailed summaries of the works he read. In his three page summary
of Skolem’s paper, we read for Skolem’s §7, with the condition ah � bk = 1 pointing at
the unique decomposition into prime elements in principal ideal domains:

§7 Example of a domain that is not isomorphicwith the number sequence even
if it is an integral domain and even if for every two relatively prime h; k; ah�
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bk = 1. Conjecture that the number sequence is not at all characterisable by
propositions of first-order logic.
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IMPA’S COMING OF AGE IN A CONTEXT OF
INTERNATIONAL RECONFIGURATION OF MATHEMATICS
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Abstract

In the middle of the 20th century, the intimate link between science, industry and
the state was stimulated, in its technical-scientific dimension, by the Cold War. Ques-
tions of a similar strategic nature were involved in the Brazilian political scene, when
the CNPq was created. This presentation investigates the nature of the connection be-
tween this scientific policy and the presumed need for an advanced research institute
in mathematics, that gave birth to IMPA. By retracing the scientific choices of the few
mathematicians working at the institute in its first twenty years, we demonstrate how
they paralleled the ongoing reconfiguration of scientific research. The development
of dynamical systems theory provides a telling example of internationalization strate-
gies which situated IMPA within a research network full of resources, that furnished,
moreover, a modernizing drive adapted to the air of that time.

On October 19, 1952, O Jornal do Comércio, a newspaper published in Brazil’s then
capital city of Rio de Janeiro, reported that the National Research Council (CNP, Conselho
Nacional de Pesquisas) had created an associated research arm called the Institute for Pure
and AppliedMathematics (IMPA, Instituto deMatemática Pura e Aplicada). The National
Research Council, later known as CNPq, had been created just a year beforehand and was
directly connected to the country’s government. On the same day, the first pages of the
newspaper reported:

• The Soviet delegate presented a proposal for peace at the General Assembly of the
United Nations. Stalin’s Foreign Minister, Andrei Vyshinsky called for a reduction
of one-third of the armaments of the great powers and an unconditional ban on
atomic weapons. The “peace pact” would be a condition to stop the then ongoing
Korean War;
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• As the de facto leader of the Republican Party, Eisenhower’s campaign to become
US president had become fierce. His disagreements with Truman included an al-
leged covert plan by the General to end the Korean War. Foreign policy was pre-
sented as a weakness of the Democrats. Eisenhower’s focus was to defeat the Com-
munists, maintain pressure on the USSR and expand the American atomic arsenal.

The reaction of the Soviet envoy had been motivated by the signing of the North At-
lantic Treaty in Washington in April 1949, designed to contain an armed attack by the
Soviet Union against Western Europe. The key section of the treaty was Article V, which
commits eachmember state to consider an attack against another member state as an attack
against all members. In 1951, the treaty gave rise to NATO, with General Eisenhower at
the head.

In the same year of 1951, the coordination to establish the CNPq was finalized, in large
part due to the stubborn efforts of Admiral Álvaro Alberto da Motta e Silva, who acted
as spokesman for the interests of a small but significant group of scientists. They wanted
to overcome the country’s chronic backwardness and boost economic development, and
attributed a strategic role to nuclear power for both industry and national security. In the
early years, the National Research Council’s investments concentrated on infrastructure
for the nuclear sector, which was closely connected with the field of atomic physics. The
Brazilian Center for Research in Physics (CBPF, Centro Brasileiro de Pesquisas Físicas)
had been created in 1949, contributing significantly to the foundation of CNPq and IMPA.
Due to their international recognition, particle physicists such as César Lattes and José
Leite Lopes played a central role in the public discussion on science policies Vieira and
Videira [2014].

This was the time when Big Science began reshaping the very meaning of science and
came to symbolize modernity, occupying the center of a new social contract between scien-
tists and the state. As Pestre and Krige propose, after the Second World War, the intimate
link between science, industry and the state was stimulated, in its technical-scientific di-
mension, by the Cold War Krige and Pestre (eds.) [1997]. Even if “the desire to produce
knowledge, to know more about ‘nature’ still remained the main motive of the practition-
ers”, scientists pragmatically exploited the possibilities that only the state had to provide
material resources – producing a “new identification between science and technology and
state power and prestige” Krige and Pestre (eds.) [ibid., p.xxxiii].

Negotiations of a similar strategic nature were involved in the Brazilian political scene.
The CNPqwas meant to lay the groundwork for the purchase of reactors, assessing interna-
tional scientific cooperation agreements, as well as helping to fight against monazite and
thorium oxide exports, which could be useful to Brazil in the development of its own nu-
clear program. The goals of Álvaro Alberto were clearly to construct a sovereign position
to the country in a Cold War background de Andrade [1999].
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The question arises, however, as to the nature of the connection between this scientific
policy and the presumed need for an advanced research institute in mathematics. What
was the relationship between the mathematics stimulated by IMPA and nuclear physics
that was at the center of the political power of CNPq? The institute could have been
expected to focus on the mathematical foundations of atomic physics, yet this was not the
case. The relationship between the political atmosphere and the core subject matter of
mathematical research in the first years of IMPA is a complex question that so far has not
been explored.

In fact, this weakness fits into a broader historiographical problem. Valuing the social
and political context is now common practice in the history of science. What is less com-
mon, however, is to convincingly show how this context of knowledge production really
matters to the knowledge being produced. This is one of the questions raised in the book
Science and Technology in the Global Cold War Oreskes and Krige (eds.) [2014]. The
authors ask how Cold War patronage specifically affected the patterns and priorities of
scientific research, and seek to determine what role national ambitions played in foster-
ing, enabling, or disabling certain lines of investigation. These questions are even more
difficult to answer in the case of mathematics (not covered in the mentioned book).

There was a change in the direction of research at the end of the 1960s at IMPA, with
greater focus being put on dynamical systems theory. We will show, in the final sections,
how this reorientation occurred and explore the possible relationship with the development
of applied mathematics in the US, which was itself related to priorities adopted due to the
ColdWar. This study can thus be considered as a step towards understanding the roles that
patronage and Cold War geopolitics played in shaping mathematicians choices, defining
spheres of possibility for concrete research (related to a question raised in Oreskes and
Krige (eds.) [ibid., p.7]). This means understanding why some lines of research in math-
ematics were pursued while others were left out, and to what extent these choices were
driven by the possibilities of patronage and international connections. In order to empha-
size the changing priorities that would take place in the end of the 1960s, the first two sec-
tions describe the beginnings of IMPA, the political forces leading the project and its main
directions of research before this turning point. By retracing the scientific choices of the
few mathematicians working at the institute in its first twenty years, we will demonstrate
how they paralleled the ongoing reconfiguration of scientific research. The development
of dynamical systems theory provides a telling example of internationalization strategies
which situated IMPAwithin a research network full of resources, that furnished, moreover,
a modernizing drive adapted to the air of that time.
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1 Periodization and institutional dimensions

The period of interest for this study begins in 1949, when the CBPF was founded, and
ends in 1971, when IMPA began having a formally established post-graduate program
and a stable research team1. In this same year, one of its founders, Leopoldo Nachbin, left
IMPA. Nachbin’s departure has not been sufficiently explored from a historiographical
point of view. Testimonies evoke personal reasons and disagreements with colleagues2.
These explanations are not good enough for a historian. The controversy surrounding
Nachbin’s departure is of particular interest because it opens the possibility of mapping
the distinct mathematical influences that contributed to the consolidation of specific fields
of research at IMPA in the 1960s.

Around 1970, the mathematical community became more numerous and institutional-
ized in IMPA. From then on, the organization of research changed. IMPA started its activ-
ities in a room of the CBPF. There was a director, Lélio Gama, and researchers who gave
courses more or less regularly: Mauricio Peixoto, Leopoldo Nachbin and Paulo Riben-
boim. Even after moving to a new building in 1957, the institute consisted of a small
number of professors and students. Elon Lages Lima joined as a researcher in 1956 and
helps to give an idea of the dimensions IMPA had at this time:

At the end of every month, Mr. Antonio came, he was the one who looked
after the building at the corner of Sorocaba with São Clemente. Mr. Antonio
was the guardian of the building, he lived there with his wife, DonaMaria. At
the end of the month, Mr. Antonio came with a paper bag containing several
parcels of money, which were our salaries, and he said: sign here, professor!
This money came from the CNPq. He received the money and gave it to us,
that’s all Lima [11 May 2016].

Since 1939, there was a department of mathematics in the Philosophy Faculty of the
University of Brazil (now, Universidade Federal do Rio de Janeiro)3. But, in the minds
of IMPA’s early supporters, advanced research was associated with the possibility of cre-
ating spaces outside the university. When the CBPF was founded, Leite Lopes was con-
vinced that Brazil had to become something other than a “science-starving country”, by
strongly associating this possibility with the creation of research centers outside the uni-
versity: “Our hopes turned to the university where unfortunately, by virtue of the lack of

1Before this, the degrees depended on an agreement with the University of Brazil.
2Nachbin himself says: “I was one of the founders of IMPA, and I left IMPA for personal reasons, these

fights can occur everywhere”. In: Interview with Leopoldo Nachbin by Roberto Martins and Hiro Kumasaka.
CLE/Unicamp Historical Archives.

3In 1964, this department has been merged with the mathematics department of the Faculty of Engineering
and others in the same university, giving birth to the Institute of Mathematics of the UFRJ.
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understanding and intolerance of our statesmen, science advances slowly and painfully”
Videira [2004]. IMPA was the result of the efforts of a small group of very well organized
and politically articulated scientists who convinced the government that a key factor in
economic development is the encouragement of autonomous research institutions.

While debating the creation of IMPA as an entity directly linked to the National Re-
search Council, Baptista Pereira, a member of the Council, asked whether it was better
to create, instead of a new institute, a new course at the university. But another mem-
ber, Cândido Dias, responded by stressing that independence was justified by the fact that
universities could only have a very small number of professors, which made it difficult
to hire all the mathematicians then dedicated to research. Dias specifically invoked the
situation in Rio de Janeiro, where some prominent researchers (as Leopoldo Nachbin and
Mauricio Peixoto) were not full professors at the university. The creation of an indepen-
dent institute, he added, would give them a stable form of support. This also followed
the understanding that high-level research needed “protected spaces”, detached from the
constraints imposed by universities:

When there was a competition for a full position in mathematical analysis at
the National Faculty of Philosophy, in 1950, José Abdelhay and Leopoldo
Nachbin were candidates. The difference in titles between Abdelhay (bac-
calaureate in mathematics) and Nachbin (engineer) served as the basis for
challenging Nachbin’s registration, who filed an appeal and thus the competi-
tion was suspended pending the court’s decision. This has become one of the
longest known academic disputes at any Brazilian university. On the initia-
tive of physicist José Leite Lopes, who would become one of the most distin-
guished Brazilian scientists, Monteiro4 had been hired at the Centro Brasileiro
de Pesquisas Físicas (CBPF), which was founded in Rio de Janeiro. Leopoldo
Nachbin was also hired at this center. Thus, the CBPF set up the first “pro-
tected space” for mathematical research supported by the federal government
5.

The same argument applied to the need to create IMPA as an independent institute. As
Nachbin says, the CBPF was established because at the University of Brazil “there were
no conditions to create a post-graduate program in physics”. He and Cândido Dias talked
often about the necessity to have also an independent institute of mathematics. In fact,
Joaquim Costa Ribeiro, the scientific director at the time, preferred to create a program

4Antonio Aniceto Monteiro was a Portuguese mathematician that stayed in Brazil from 1945 to 1949.
5Proceeding 112: meeting held at 17/10/1952; Proceeding 117: meeting held at 15/10/1952. Rio de Janeiro.

MAST. Archives CNPq.
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inside the university, but was convinced by Dias (with the support of the president of the
Academy of Science, Artur Moses)6.

Nachbin and Peixoto were very influential in the decision processes of the National
Research Council. During the 1950s, the CNPq complemented the salaries of researchers
from different universities (where there were very few stable positions), gave scholarships
for students and promoted travels of Brazilian researchers inside the country or abroad,
besides inviting foreign mathematicians. The decisions were centralized in the hands of
the Orientation Committee (that linked IMPA to the CNPq, being above the Scientific
Local Committee). A rejected proposal from the University of Brazil shows that it was
probably not accommodating the role community of mathematicians.

In 1959, Carlos Alberto Aragão de Carvalho, a professor from the University of Brazil,
presented to the CNPq a project to create a National Commission of Mathematics. It
was conceived as a means to unify different programs of research in mathematics and to
have an impact on the training of future engineers. The commission would establish an
Inter-American Instituto deMatemática Pura e Aplicada, integrating other Latin American
countries, giving grants and stimulating visits from foreign researchers7. Charged with
making a report on the project for the president of CNPq, Lélio Gama saw no interest
in the proposal. It would be too complex and its goals “constitute regional problems,
with singular characteristics in each country, and so demanding national solutions”8. One
significant point of Aragão’s project was the assimilation of all mathematical institutes
into the university, a problem that, Gama said, “in our view must be examined in light of
particular circumstances in each case presented, in the sense to verify if this assimilation
would imply, really, greater facilities for mathematical research in the region considered”.
In Brazil, the only mathematical institute was IMPA. And it is clear that the project aimed
to incorporate it into the university, an idea promptly rejected by the CNPq.

The development of advanced institutions outside the university was not a Brazilian
exception. The evolution of the research systems in India has been described in terms of
a dualism, as suggested by Raina and Jain [1997]. This notion characterizes the institu-
tions of science and technology as structured by the requirements of a rapidly evolving
knowledge standards as much as by the imperatives of modernization. The role of sci-
ence in constructing a sovereign and modern state had similar flavors in Brazil and India
during the 1950s9, and scientific institutions played a central role in reconfiguring the
nation-state. In both countries, forming a scientific elite was seen as a key strategy to

6As Nachbin tells himself in an interview given to Elisabete Burigo in June 1988, available at
http://www2.unifesp.br/centros/ghemat/paginas/teses.htm

7In 1958, amathematical center had been created in BuenosAires, with the support of UNESCO, that Nachbin
visited in 1959.

8Processo 3595/59 CNPq. Arquivos Lélio Gama, MAST (LG-T-05-065).
9Even if the two countries have different histories with regard to colonization.
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the mission of building a new nation. As Raina and Jain affirm, “the emergence of Big
Science required the emergence of new institutions and the concomitant supersession of
the university considered as ‘the age-old site for the production of knowledge’.” Raina
and Jain [ibid., p.859]. The tasks of national development, linked to research in atomic
energy, implied the creation of a solid infrastructure of research, conceived as elite institu-
tions where: “young men of the highest intellectual calibre in a society” could be trained
Raina and Jain [ibid., p.866].

Travels were a decisive mean to train researchers. Foundations like Guggenheim and
Rockefeller, as well as the Department of State, played an important role in promoting sci-
entific exchanges in the period. Between the two wars, a Europe weakened by reconstruc-
tion efforts and the rise of Nazism helped to explain the importance gained by American
philanthropic foundations, as Reinhard Siegmund-Schultze shows, with special attention
to the case of mathematics Siegmund-Schultze [2001], and John Krige develops for the pe-
riod after the SecondWar Krige [2006]. A considerable number of Brazilian mathematics-
related researchers traveled to US with a Rockefeller fellowship grant – their travels have
already been elucidated in Trivizoli [2011] and Barany [2016]. Leopoldo Nachbin and
Mauricio Peixoto both received grants from US foundations.

In the beginning, the University of Chicago was a preferred destination of Brazilian
mathematicians. This is also due to the presence of André Weil and his close relationship
with Nachbin, since the years Weil stayed at São Paulo. Marshall Stone had become chair
of the Department of Mathematics at Chicago in 1946, spearheading its renewal. Policies
during Stone’s tenure were aligned with post-war American politics, which included train-
ing a cadre of high-level students from different countries Parshall [2009]. Nachbin has
stayed in Chicago for a first time from 1948 to 1950 and Peixoto also was there from 1949
to 1951. After going to Chicago for a second time in 1957, Nachbin went to Princeton, as
well as Peixoto.

During the second half of the 1960s, other Brazilian mathematicians went on to study
in the United States. From 1968 onward, some of them returned and settled at IMPA,
like Jacob Palis, in 196810, and Manfredo Perdigão do Carmo, in 196911. Jacob Palis
underlines the changes going on, in the late 1960s, in the conduction of mathematical
research: “In fact, in 1969, a group of researchers arrived from abroad with the intention
of shaking up IMPA” Palis, Camacho, and Lima (eds.) [2003, p.125].

In a move potentially related to the transformation of mathematics research at IMPA,
Nachbin left the institute soon afterwards. This question requires further historical analy-
sis.

10Palis was hired as assistant researcher and promoted immediately to associate researcher and then tenured
professor in 1970.

11Carmo was officially a researcher at IMPA since 1966, but he started effectively in 1969, after a stay in the
US and at the University of Brasilia.
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2 Leopoldo Nachbin and the Bourbakist approach

Leopoldo Nachbin received an engineering degree from the University of Brazil in 1943,
the same year as Mauricio Peixoto. He started working with Antonio Monteiro. Although
more intensely devoted to logic, Monteiro also had a strong working knowledge of order
structures. Connecting it to topology would be fundamental to Nachbin, who defended his
livre-docência thesis on metrizable and pseudo-metrizable topologies in 1948. Just before,
a version of this work had been sent by Dieudonné to the Comptes Rendus de l’Académie
des Sciences de Paris L. Nachbin [1946].

In 1945, André Weil came to the University of São Paulo (where he stayed until 1947)
and, after him, several mathematicians from the Bourbaki group had residences at Brazil-
ian universities: JeanDieudonné, Charles Ehresman, AlexanderGrothendieck and Lawrence
Schwartz Pires [2006]. Nachbin was 26 years old in 1948, when he published a mono-
graph on topological vector spaces, which became very useful for training researchers
L. Nachbin [1948]. Mário Carvalho de Matos credits Nachbin with having promoted the
“Bourbaki spirit” in Brazil, specifically mentioning the theory of topological vector spaces,
a characteristic of Nachbin’s “mathematical style” Barroso and A. Nachbin [1997].

Cândido Dias’ 1951 professorial thesis provides an example of how topological vector
spaces were having influence in the practice of mathematics Dias [1951]. Before 1945,
the mathematics department at the University of São Paulo had been frequented by Italian
mathematicians, the most famous being Luigi Fantappié. However, according to Cândido
Dias, the topological base of Fantappiè’s theory of linear functionals was “precarious”.
It lacked an element that later proved to be indispensable: the generalization of normed
spaces. Topological vector spaces were thus of special interest in the study of analytic
functionals. The vector space that would serve as a basis and the class of functionals were
perfectly clear elements, but it was still necessary to combine the two. That is to say, it was
necessary to “put a topology in the vector space whose continuous functionals were the
class of Fantappié’s analytics”. This demonstrates how the theory of analytic functionals
gets along with modern functional analysis.

“Writing in Bourbaki language”, as Cândido Dias puts it, was a trend within the small
mathematical research community of the early 1950s. The question of adapting notations,
definitions and demonstrations to such a language was a key one. Nachbin went frequently
to São Paulo and was the main researcher at Rio de Janeiro working on related topics. In
the early 1950s, a problem posed by Dieudonné (and signed by Bourbaki) drew Nachbin’s
attention, it was the question of knowing if any bornological space is barreled Bourbaki
[1950]. A negative answer was published by the Brazilian in 1954 L. Nachbin [1954]12.
During the years 1953 and 1954, Grothendieck gave a course on topological vector spaces

12Cited in Bourbaki’s book on topological vector spaces, edition of 1955, v.2, p.13.
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at IMPA and published a book on the subject Grothendieck [1954]. In the introduction,
he announced a forthcoming work that would bring together his reflections and those of
Nachbin – this never materialized, perhaps because the research interests of Grothendieck
changed.

In parallel, Nachbin was doing research on a generalization of Hahn-Banach’s theo-
rem, about which he had published one of his most important articles in 1950 L. Nach-
bin [1950]. Nachbin was also working on the theory of approximation and extended the
Stone-Weierstrass theorem to differentiable functions, a result published in the Annals of
Mathematics L. Nachbin [1959]. This research, which developed from interactions with
Marshal Stone, continued throughout the 1960s and involved some doctoral students13.
However, most of Nachbin’s PhD students at IMPA worked on a subject he inaugurated
around 1963 and would engage him until the end of this life: the topology of spaces of
holomorphic mappings.

After his second stay in Chicago, in 1957, Nachbin wanted to go to Paris to follow
Schwartz’s seminar on partial differential equations. Schwartz supported the idea14. Nach-
bin did not end up going to Paris, however, perhaps because he discovered, some months
afterwards, that the plans for the seminar had changed, since Schwartz wanted to study
the applications of his theory of distributions to theoretical physics.

After Schwartz visited Brazil, in 1961, Nachbin finally went to Paris. In the same
letter in which he had confirmed the invitation and stipulated Nachbin’s salary as associate
professor, Schwartz presented the subject of the conferences he was planning to make in
Brazil. Schwartz seems more interested in talking about the irreducible representation of
Lorenz groups in spaces of distributions with vector values than about topics related to
topological vector spaces or partial differential equations (as we see in Figure 1).

In the 1960s, the point of view of topological vector spaces was not unanimously rec-
ognized as being so interesting as it was before. In 1957, Schwartz proposed extending to
distributions with vector values the main properties of ordinary distributions (scalar dis-
tributions) Schwartz [1957]. In particular, he showed that the topological properties of
spaces of distributions could be studied using similar tools to those already employed in
the ordinary case. Other properties, however, were more difficult to extend. Nonetheless,
it was important to study distributions with vector values, as Schwartz supports, because
theoretical physics uses distributions with values in operator spaces. Schwartz’s articles
were deeply influenced by Grothendieck’s works on kernel theorems and topological ten-
sor products. However, as Anne Sandrine Paumier shows, the reception of this approach
was controversial, since some mathematicians saw the introduction of topological vector

13As Silvio Machado, João Bosco Prolla and Guido Zapata.
14He says in a letter to Harry M. Miller of the 5th May 1956. I thank Lucieli Trivizoli for showing me some

letters, found in the Rockfeller Foundation, suggesting the following version.
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Figure 1: Extracts from a letter Schwartz sent to Nachbin in November 23 1960

spaces in the theory of distributions as unnecessarily complicated. Paumier observes that:
“the transformation of the kernel theorem into a nuclear property of certain topological
vector spaces leads to a much more important imbrication of distributions with topolog-
ical vector spaces; and this even ensues a transformation of the theory of distributions
itself, as well as the creation of the theory of distributions with vector values (...) The
objects considered are no more distributions that are represented by kernels but spaces
of distributions to which we give a structural property of nuclearity. Developing the the-
ory of distributions with vector values, Schwartz incorporates, in some way, the writing
practices around topological vector spaces” Paumier [2014, p.170].

This point of view, namely the writing practices around topological vector spaces, may
have influenced Nachbin. Beyond his usual domains of research, around 1963, he was in-
vesting on the study of topologies of spaces of holomorphic mappings. In this year, Nach-
bin gave a course on the theory of distributions at the University of Rochester (published
in 1964 by the University of Recife as L. Nachbin [1964]). There, he treated distributions
in a new way:

“In planning my course, I had to face the following dilemma. Should I teach distribu-
tions on Rn (by using the coordinatewise approach), or should I do it on a finite dimen-
sional real vector space (by preferring the intrinsic viewpoint)? Many, many years ago,
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algebraists used to find it more pedagogical to talk first of permutation groups, and next
of the then called ‘abstract’ groups (...). This is no longer the usual attitude in Algebra
courses; groups are introduced from the very start, and permutation groups are mentioned
as a fundamental example (...). Surprisingly enough, analysts still find it more pedagogical
to present firstly analysis inRn, and next maybe talk about analysis on a finite dimensional
real vector space (...). By following a recent trend, we believe that analysis on a finite di-
mensional vector space should get an increasing emphasis from the very beginning of
graduate courses, and should prevail over analysis on Rn” [p.3-4].

Besides this “pedagogical” reason, the adoption of an intrinsic approach in the case of
finite dimensional vector spaces stems from the need for such an approach in dealing with
infinite dimensional vector spaces. Nachbin wanted in fact to extend Schwartz’s results
to infinite-dimensional spaces. He started to work hard and to direct theses mainly on this
subject15. John Horváth says that, in 1965, Nachbin started to build a “very important
theory, totally original, the Theory of Holomorphic Functions in Banach Spaces, with ap-
plications to convolution equations and to partial differential equations in these spaces”.
He adds this new theory attracted some of his own students16. As we learn fromNachbin’s
writings and from interviews with some of his colleagues and former students, Nachbin
believed he was founding a new field of research. Foreign students, some of whom met
Nachbin in Rochester, came to IMPA attracted by this domain. This was the case of Sean
Dineen, Richard Aron, and Philip Bolan. The working conditions for the subject at IMPA
were favorable. As Dineen attests: “they were interested in making IMPA a world class
institute, so they paid quite good salaries to all staff, including the PhD students” McGuire
[2009]. In Brazil, they met other Nachbin students, such as Jorge Alberto Barroso, Mário
Carvalho Matos, Soo Bong Chae and Jorge Mujica. Besides the three theses directed by
Peixoto, there were six theses at IMPA in the period, that were all directed by Nachbin17.
These theses were either about the theory of approximation or about the topology on spaces
of holomorphic mappings. And there were also the thesis on this last subject that Nach-
bin directed in Rochester. These researches gave rise to a book published by Springer L.
Nachbin [1969]18.

The number of people who continued working in this field after the end of the 1970s
diminished markedly. A plausible hypothesis is that the study of topologies of spaces of
holomorphic mappings, with a possible extension to infinite dimension, did not have the

15During his years in Paris, besides Schwartz’s seminar, Nachbin frequented Pierre Lelong’s seminar. He
knew the works of Andre Martineau and attracted students to this field, as Philippe Noverraz, Gérard Coeuré,
André Hirschcowitz and Jean-Pierre Ramis. Nachbin’s contacts in Paris must have motivated him to move to
this new area

16Testimony for the title of honoris causa to Nachbin given by UFPE.
17Just the one of Luiz Adauto Medeiros was signed by Nachbin but effectively directed by Felix Browder.
18Already presented in the Sexto Colóquio Brasileiro de Matemática, in 1967.
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success and posterity expected by Nachbin. In 1972, questions were more numerous than
answers and some actors admitted “‘the poverty of the theory in regard of the hopes we can
put in it” Hirschowitz [1972, p.256]. Dinamérico Pombo, one of Nachbin’s last students,
chose another domain when he started, motivated by the recognition that holomorphy the-
ory was not a very stimulating subject (a perception shared by Luiz Adauto Medeiros)19.
When asked if he continued working on infinite-dimensional complex analysis, Sean Di-
neen answered:

In the 1970s it was very topological, locally convex spaces, pseudo- convex-
ity, holomorphic convexity, analytic continuation and things like that. At the
end of the 1970s Phil Boland moved into statistics, Richard Aron went per-
manently to Kent State, so that stream had sort of finished. But if you want
to stay active as a research mathematician, you have to reinvent yourself reg-
ularly.

The progressive decline of what Paumier calls “writing practices of topological vector
spaces” during the 1960s may have been one of the reasons for the departure of Nachbin
and his group from IMPA in 197120. In fact, the point of view proposed by Schwartz
in 1957 had already met some resistances during the 1960s. This explains the success
of the works of Lars Hörmander, since this author preferred considering the theory of
distributions without any practices linked to topological vector spaces. Paumier observes
that “the objects ‘distributions’ are very important, but the structure, mainly topological,
of spaces under consideration are not essential in his work” Paumier [2014, p.170].

It is often said, mainly rooted in declarations of Elon Lima, that one reason for Nach-
bin’s depart was his attempt to hire one of his students at IMPA Palis, Camacho, and Lima
(eds.) [2003]. This explanation is not convincing per se. Nachbin sent a letter to Lima, in
18 September 1969, supporting the proposal to hire Jorge Alberto Barroso after the end
of his thesis21. He strongly emphasized the key role Barroso would play in elucidating
questions related to Nachbin’s own interests in that time, namely the extension to locally
convex complex spaces of the theory for Banach spaces developed in L. Nachbin [1969].
Beyond personal motivations, which certainly existed and had probably influenced the
outcome, there were important changes going on in the global scene of mathematical re-
search. In particular, the US was acquiring an increasingly prominent role in mathematics
and, importantly, the preferred domains began shifting away from topics related to the

19Interviews done at Rio de Janeiro in 2017 in the writing of this article.
20We asked Mário Carvalho if he agrees that the field of holomophy had a decline but he contests, naming

researchers that continued working on related themes. Toledo [2012] can be consulted for a list of researches in
the field afterwards.

21Letter found in the archives of Lélio Gama at MAST (LG-D10-138-0011).
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Bourbaki lineage, which had been so influential until this time. In order to fully under-
stand the context, it is necessary to look at the wider picture, as we do in the following
sections.

3 The rise of dynamical systems theory in the United States and the
role of Mauricio Peixoto

In the aftermath of the SecondWorldWar, a redistribution of scientific forces took place on
a global scale with major repercussions in mathematical research. AmyDahan-Dalmedico
shows that applied mathematics gained much more importance
Dahan-Dalmedico [1996] and the United States became the leading mathematical power
by the sheer breadth of its scientific community, the variety of fields covered, and by the
dynamism of its research systems. Solomon Lefschetz was an exemplary figure in this
scenario Dahan-Dalmedico [1994], since he moved from topology to differential equa-
tions during the war. Mauricio Peixoto worked with him and played a key role in shaping
dynamical systems theory to be adapted to a transition towards US dominance in mathe-
matics.

Just after the war, Lefschetz started leading a research program on Nonlinear Differen-
tial Equations and Nonlinear Oscillations funded by the Office of Naval Research. That
allowed him to translate important works of the Soviet school of research in the theory of
oscillations. After his stay in Chicago, where he went to work in analysis, Peixoto went
back to the US in 1957, to work with Lefschetz. Just after the launch of the Sputnik, it
became clear that it was necessary to fill the “mathematical gap” between Russia and the
West, as Lefschetz said, so he created a mathematical center in the Research Institute for
Advanced Studies (RIAS), in Baltimore, which has gained worldwide recognition. The
focus was on the theory of nonlinear oscillations.

Lefschetz’s laboratory is known for having introduced in the US concepts formulated
in the Soviet Union by Andronov and his group. Most notably among them was the con-
cept of structural stability, which later became central to Peixoto and Brazilian researchers.
The notion of a “systèmes grossiers” was proposed by Andronov and Pontryagin in an ar-
ticle published in French in 1937 Andronov and Pontryagin [1937], and developed in a
book that Andronov wrote (in Russian), with other researchers, about the requirements
mathematical models should fulfill to be useful to physics (translated as Andronov, Vitt,
and Khaikin [1949]). The mathematical definition of this idea became what is now known
as structural stability. Mauricio Peixoto, as well as other researchers who worked with
Lefschetz in the beginning, specially De Baggis and Marilia Peixoto, played a key role in
these developments, giving mathematical consistence to the initial concepts Roque [2007].
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In 1959, Mauricio Peixoto led a round table on structural stability in a symposium on dif-
ferential equations in Mexico. Lefschetz collaborated with a PhD Program at UNAM
(Universidad Nacional Autónoma de México) and organized this International Sympo-
sium on Ordinary Differential Equations. Thanks to his meeting with Peixoto, Stephen
Smale came to Brazil in 1960 and began conducting a research at Berkeley. This research
was an extension of the work already done by Peixoto in two dimensions to higher dimen-
sions, and included other mathematicians at Berkeley such as Morris Hirsch and Abraham.
Abraham claimed that “the new subject was well under way in the fall of 1960, when I
arrived in Berkeley, and the golden age of global analysis began” Abraham [2009]. It is
interesting to note that “dynamical systems” was not the official name of the field in these
times. In the proceedings of the 1962 Brazilian Colloquium of Mathematics, Mauricio
Peixoto presented the question of structural stability, which he maintained was a funda-
mental problem in “the theory of differential equations” and he felt it necessary to add
that such a theory “is also called theory of vector fields of of dynamical systems” Peixoto
[1961].

The first three theses done at IMPA were supervised by Mauricio Peixoto, all finished
in 1964 on subjects related to structural stability or generic vector fields (Ivan Kuptka,
Jorge Sotomayor and Aristides C. Barreto). In 1964, the center Lefschetz directed at the
RIAS moved to Brown University, renamed as Center for Dynamical Systems. Peixoto
went to work there and the research at IMPA was most conducted by Nachbin during
the 1960s. It was only around 1970 after other researchers, who had done their PhDs in
the United States, returned to Brazil, as Jacob Palis, that the field of dynamical systems
began to establish itself. Since then, research in dynamical systems became increasingly
valued and played a key role in the institutionalization of research at IMPA. Some intrinsic
characteristics of dynamical systems theory help to explain why it was a better fit for the
direction that mathematics was taking at the time across the world.

4 The Americanization of mathematics

Americanization is a controversial term. It has ambiguous meanings, representing either a
deliberate action of conquest or the disinterested attitude of a country which sees itself as
a benefactor vis-à-vis the rest of the world. These meanings were obviously constructed
over time and have a long history. Here, Americanization refers to the meaning suggested
by the historian Ludovic Tournès, who has studied the actions of philanthropic foundations
in French science during the interwar period Tournès [2010].

Michael Barany speaks of “mathematical colonialism” to describe the scientific actions
of the United States at the time Barany [2016]:
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On a geopolitical scale, postwar mathematical colonialismwas an elite driven,
internationally oriented endeavor that blended the lofty discourse of techni-
cal and moral development with the tangled bureaucratic negotiations that
enabled substantive coordination among a diverse mix of governments, foun-
dations, and other organizations.

Barany observes that special attention must be paid to the personal scale. In the above
quote, the qualification of “elite driven” accurately highlights the key role of certain in-
dividuals during the period treated here. But the coordination between foundations, local
governments and institutions that were being created in South America also played a key
role in the reorientation of mathematical research. Upon closer investigation of the math-
ematics that was being done – that is, moving from the scale of major science policies to
that of the mathematicians at work – it seems that it would be a mistake to characterize
the action of US policies on Brazilian mathematics as colonialism. The notion of Amer-
icanization as a transnational action, proposed by Tournès, would be more appropriate.
Analyzing the literature about the history of science in the period, we found this notion
resonates better with what was going on in Brazil.

Tournès’ work discusses the biological sciences and the introduction of experimental
methods in the social sciences. He shows that the actions of philanthropic foundations are
not limited to a disinterested financing of research, but they do not follow acculturation
strategies either. The consequences of financial priorities are to be searched on the subjects
chosen and on the methodologies borrowed from interactions with foreign researchers.
These foundations do not necessarily have any a priori goal aimed at acculturating other
countries to an American ideology. Rather, financing constitutes a transnational action
aimed at intervening in existing research environments that, based on common interests,
may converge with the foundation’s investment priorities. It can be described as a kind of
seduction, that is the term Antonio Pedro Tota uses to describe Americanization strategies
in Brazil Tota [2009].

Within the history of mathematics, internationalization during the period under inves-
tigation is strongly linked to the action of US institutions that turned attention to Latin
America after the Second World War. One of their main programs was to offer grants for
young Latin American intellectuals to do internships at universities in the United States.
The goal was to constitute an “invisible college”, with George D. Birkhoff as a prominent
proponent for the development of mathematics in Latin America. In addition to increas-
ing interactions among mathematicians, the program also invested in libraries and opened
American newspapers to mathematicians from South American countries Ortiz [2003].

Other cultural arenas in Brazil experienced a similar process. Controversy over Amer-
ican influence on Bossa Nova was intense in the same period. The musical style that be-
came a symbol of Brazil abroad emerged in 1958, after a period of complaints regarding
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the golden age of the good neighbor policy implemented by the United States to influence
Brazilian culture. Brazilian films and songs, symbolized by Carmen Miranda, had great
impact in the US. But, since nationalism was a strong current in Brazilian thinking, Mi-
randa was criticized for being “Americanized”, leading her even to write a song to contest
such criticism. Unlikemovies and songs from this first period, marked by amore offensive
action, Bossa Nova could not be said to be a product of American acculturation. It was a
new kind of synthesis, that intrinsically mixed elements of Brazilian music with character-
istics of American jazz, associated with a modernization trend. This merging of different
cultural influences, with jazz as one important component, could have contributed to the
broad and increasing international recognition of Bossa Nova during the 1960s Medaglia
[2013].

The relationship of Brazilian scientific research to economic and ColdWar histories has
been studied by few historians of science, andmainly in health sciences Cueto (ed.) [1994].
Freire and Silva seek to remedy this situation by focusing on the role played by physicists
in connecting their disciplinary communities and international scientific networks Freire
and Silva [forthcoming].

In mathematics we can observe, at the same time, a decline of the highly abstract ap-
proach associated with Bourbakist (so, French) mathematics. This came along with an
increasing vaporization of a more geometric point of view, symbolized by the works of
René Thom and others 22. There was a subtle malaise with the excess of formalism that
the Bourbakist’s orientation reinforced. Diminishing the importance of Nachbin’s works
as compared to Peixoto’s, Elon Lima associates Nachbin to an excessively formal “French
style”:

At IMPA, researchers have always had a vision that it was not necessary to
learn a ton of mathematics to do high-level research, meaningful research.
Many of the formalisms, general, abstract and complex theories can be ig-
nored, and one can focus on important, basic problems, and be successful in
the same way – the greatest example of this is Professor Mauricio Peixoto.
Professor Nachbin had a slightly different vision, because he had a more
French-style training, that is to say, he had to learn a ton of things, but he
still managed to do some good quality research. He had a vision of mathe-
matics as a formal system, while Mauricio had a vision closer to that of an
engineer Palis, Camacho, and Lima (eds.) [2003, p.119].

Taking into account the place Lima occupied at IMPA in subsequent years, we can infer
that this opinion influenced the choices that the Institute would later take. Lima had gone

22See for instance the discourse of Hassler Whitney about one of the Fields Medalist, John Milnor, in the ICM
of 1962 (the other Fields Medalist was Hörmander).
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to the University of Chicago in 1954, under Nachbin’s advice23. While talking to us about
the years spent there, he remembered a little song: Analysts, topologists, geometers agree
/ if you go for generality / there’s no one but Bourbaki / one theorem by them / is almost
ten by you and me / Bourbaki goes marching on Lima [11 May 2016].

Lima quoted Morris Hirsch as one author of the song, which describes a somewhat
ironic atmosphere involving what was perceived as an excess of generality of Bourbakist’s
concerns. Hirsch himself, to whom I wrote to ask about the song (that he remembers but
says not to be of his own), describes the feelings related to Bourbaki in Chicago:

I didn’t feel any unease about the Bourbaki approach, but as the song sug-
gests, we thought it extremely, and perhaps unnecessarily, abstract. But we
appreciated its logical and systematic treatment. I remember having difficulty
finding standard results in Bourbaki – maybe in real analysis, or group theory
– because their expositions started with the most general case, in which I had
no interest or understanding, and only after many pages getting down to what
I considered to be the real subject.

Bourbaki’s mathematics was associated with being “too general”, and therefore too
restrictive for “finding standard results”. At the same time, applied mathematics was ac-
quiring greater importance. Peixoto, with his approach to dynamical systems, synthesized
two strands, the declining and the ascending one, as will be explained below.

When discussing his motivation for proposing structural stability and genericity as key
notions for the development of a theory of dynamical systems, Peixoto says that he was
convinced that the main goal of the mathematics of his time was to classify mathemati-
cal objects, by means of equivalence relations between them, putting emphasis in their
structures Peixoto [2000]. He thought that it would be fruitful to express the theory of dif-
ferential equations in a set-theoretic language. The suggestion already given by Poincaré
(to classify the functions defined by differential equations) had to be fulfilled with notions
from set theory. In order to do that, Peixoto sought to introduce two new elements Peixoto
[1987]:

1. A space of differential equations, or dynamical systems, possessing a topological
structure;

2. A notion of qualitative equivalence between two differential equations.

Both requirements were fulfilled in Peixoto [1959] and Peixoto [1962]. Peixoto defined
the space of dynamical systems by considering a dynamical system as a point of a Banach
space, and proposed that an equivalence relation between two systems in this space should

23Lima was supervised by Nachbin at the beginning of his research in analysis, but ended up getting his
doctorate in topology, in 1958, with a thesis directed by Edwin Spanier in Chicago.
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be a homeomorphism transforming trajectories of one system into trajectories of the other.
This last definition was inspired by the work of Andronov and Pontryagin. This confirms
that Americanization cannot be defined as the action of a nation towards another. Indeed,
one of Peixoto’s major innovations was the adaptation of a proposal first introduced by –
great irony – soviet mathematicians.

After Peixoto’s results, an analogous program seeking to generally describe dynamical
systems, in higher dimensions, was proposed, with a special role played by Smale in the be-
ginning of the 1960s. During this decade, some counterexamples, came directly from the
modeling of physical phenomena (like the works of Lorentz on meteorology), challenged
the theory and made it advance in forging new definitions Aubin and Dahan-Dalmedico
[2002]. The tension between physical examples and mathematical categories that could or
could not express some kind of generality has been a driving force in the development of
dynamical systems theory (as I show in Roque [2016]). A research program was then con-
ceived that synthesized, on the one hand, a less formal, more applied, and more “oriented
to specific problems” mathematics and, on the other, abstract and general concerns.

This program facilitated the relations with institutions in the United States and also
served the project of Brazilian mathematicians to develop an autonomous and internation-
alized research center. The geopolitical situation restructured the relationship between
governments, patronage agencies and scientists, the whole process being governed by in-
formal evaluations and political compromises with the aim of building a new world-class
institution. The focus on dynamical systems took on a strategic role, as it enabled a com-
bination of various elements:

• Connection with research centers in the United States, guaranteeing the means for
Brazilian mathematicians to access and take part in ongoing changes at the core of
mathematics;

• Flexibility of an autonomous institution to build a modern image, particularly asso-
ciated, at this time, with the research done in the US;

• Construction of a new field of research that did not require prior knowledge of a
great number of mathematical results and that, being less formal, was adapted to
the profiles of researchers;

• Association with the applied trend that was becoming dominant in the US. The
field was seen as being useful to applied domains, even if it did not always focus on
effective applications.

Americanization was a strategy of transnational appropriation of both the research ques-
tions and the means of making their development possible. It was a trend observed in the
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core of mathematics, as well as in more subtle extra-mathematical motivations (associ-
ated with scientific policies and patronage), stimulating mathematicians to follow certain
directions of research instead of others.
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Abstract

The first ICMs took place during a era when the longstanding rivalry between
France and Germany strongly influenced European affairs. Relations between lead-
ing mathematicians of these two countries were also colored by this tense political
atmosphere. This brief account highlights what was at stake by focusing on events in
Paris and Göttingen from the period 1870 to 1920.

Introduction

Last year the Institut Henri Poincaré commemorated the hundredth anniversary of the
death of Gaston Darboux, one of the greatest mathematicians of his time. On that occasion
I tried to give an idea of how Darboux was viewed by some of his contemporaries who
lived outside of France. In this paper, I will expand on that theme in order give a somewhat
broader picture of Franco-German mathematical relations during the period bounded by
two wars.

As the leading French geometer of his generation, Darboux was admired by many dis-
tinguished foreign mathematicians who knew his work well, including Sophus Lie, Julius
Weingarten, Luigi Bianchi, and of course Felix Klein. Darboux met Klein and Lie already
in 1870, and he corresponded with both quite regularly for many years afterward. He also
wrote a warm obituary for Lie, Darboux [1899] after the latter’s death in 1899. So it might
seem at first rather surprising that in 1917 it was not Klein, but rather his Göttingen col-
league, David Hilbert, who wrote an obituary for Darboux, Hilbert [1917]. Perhaps even
more surprising, given the ongoing slaughter on the battlefields, is that any mathemati-
cian in Germany would have chosen to write in honor of an esteemed French colleague at
that time. In his autobiography Schwartz [2001], Laurent Schwartz commented that this
would have been unthinkable in France, though I believe Schwartz was probably wrong

MSC2010: primary 01A60; secondary 01A55.

4113

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v4-p


4114 DAVID E. ROWE

when he wrote that chauvinism during the First World War was greater in France than in
Germany.

Many French mathematicians would have known about Hilbert’s tribute to Darboux be-
cause it was reprinted in 1935 in the third volume of his collected works. Somewould have
read it long before, since Mittag-Leffler published a French translation in Acta Mathemat-
ica already in 1919. I will return to Hilbert’s wartime éloge for Darboux momentarily, but
first let me say a few words about relations between French and German mathematicians
in the wake of the Franco-Prussian War. Given the fact that Émile Picard’s father died
during the siege of Paris and that Paul Appell’s family fled from Strasbourg to Nancy, one
can easily imagine the impact the war had on their views of the new German state. Henri
Poincaré and his family worried that a similar fate would befall Nancy when it was under
occupation. A German military official was then stationed at their home, which gave the
16-year-old Poincaré the chance to pick up spoken German. In his Dernières pensées he
wrote:

When asked to justify rationally our love of country, we can be quite embar-
rassed, but our mind imagines our defeated armies, France invaded, we feel
altogether nauseous, tears begin to flow and we listen no further. And if there
are those today who repeat so many sophisms, it is most likely due to their
lack of imagination. They are unable to imagine by themselves all this suf-
fering, and if misfortune or some divine punishment fixed their eyes upon it,
their soul would revolt as does our own. Poincaré [1913]

In Darboux’s case, I suppose he probably felt no differently, though he came, of course,
from an older generation.

The Franco-Prussian War surely did have an impact on mathematical relations after-
ward, but of course its political fallout was nothing like the damage caused by the Great
War. Klein already wrote a friendly letter to Darboux in February 1871, after which their
mathematical correspondence took up a whole series of common interests (see Tobies
[2016]). One can also read Hermite’s words of praise after he visited Göttingen in 1877
to attend the Gauss celebration. Probably no French mathematician could match Her-
mite’s enthusiasm for German mathematics, despite his difficulties with the language (see
Archibald [2002]). By the 1880s, a handful of younger French mathematicians were go-
ing abroad to study at leading German universities. One of these was Paul Painlevé, who
spent a year in Göttingen attending lectures offered by H. A. Schwarz and Klein. During
the First World War when he served briefly as War Minister, Painlevé spoke out strongly
against the German war machine. His words were long remembered by German mathe-
maticians after the war.
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Klein and Lie in Paris

Just before the Franco-Prussian War broke out in mid-July 1870, Klein and Lie sent a
status report on French mathematics to the Mathematics Club at the University of Berlin.
This contains many remarkable things, particularly when we consider that Klein was only
twenty-one years old when he wrote it. The report also contains these remarks about
Darboux’s new journal, Bulletin des Sciences Mathématiques et Astronomiques:

We believe that such a journal is a very useful, but also very difficult un-
dertaking whose goal can be fully achieved only if it has a large number of
contributors who are well versed in the areas on which they report. The Bul-
letin is not yet in this fortunate situation. Nor, indeed, is it difficult to find
evidence, in the issues which have appeared so far, of a number of flawed
reviews. But the personality of the editor, G. Darboux, a man whom we con-
sider exceptionally gifted (and whose gifts are precisely suited to this cause),
seems to us to ensure that the Bulletin will continue to improve with time.1

Klein and Lie found that Darboux’s reviews “stand out in their expertise and clear ex-
position,” and they compared these favorably with those written by Jules Hoüel for the
Nouvelles Annales. They went on to underscore their support for Darboux’s undertaking,
noting that his goal was “to familiarize French mathematicians with the modern branches
of geometry and algebra, which have been relatively unknown in France up to now.”

Many of you will know the story about how Darboux travelled to Fontainebleau to free
Sophus Lie from prison. The Norwegian had been detained there at the outset of the war
on suspicions that he might have been a German spy. Lie happened to be carrying letters
from Klein, written in what seemed like a strange German code language with words like
Linien- und Kugelkomplex, etc. Darboux wrote about this incident in his obituary for Lie,
noting that he was relieved on meeting him to see that his friend was not at all angry with
the police who had arrested him Darboux [1899]. Soon after his release, Lie wrote to a
friend, “the sun has never seemed to me to have shone so clearly, the trees have never been
so green as those I saw yesterday as a free man on my way to the Fontainebleau station”
(Stubhaug [2002], p. 147).

Lie’s Line-to-Sphere Mapping

Only shortly before this time, Lie had found his famous line-to-sphere mapping, a contact
transformation with many interesting properties. A pretty example comes from the image

1Appendix in Letters from Felix Klein to Sophus Lie, 1870-1877, Heidelberg: Springer-Verlag, scheduled to
appear in 2019. For a detailed account of the first five years of Darboux’s Bulletin, see Croizat [2016], 470-550.
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of a quadric surface given by one of its families of generators. These lines map to a fam-
ily of spheres that envelopes a Dupin cyclide. One can picture this most easily by taking
three skew lines in space which then map to three spheres. The set of lines that meet these
mutually skew lines form the generators of a quadric surface, and since Lie’s mapping is
a contact transformation these lines go over to a one-parameter family of spheres tangent
to three fixed spheres. Since the second system of generators has the same property, the
analogy with a a Dupin cyclide becomes clear: these are surfaces enveloped by two fam-
ilies of spheres. Moreover, this mapping has the property that the asymptotic curves of
the first surface go over to the curvature lines of the second. In this case, the generators
themselves are the asymptotic curves, and these then correspond to the circles of tangency
of the Dupin surface (see Lie and Scheffers [1896], pp. 470-475). There is an important
connection here with Darboux’s mathematics that I should briefly mention.

Figure 1: Historical model of a hyperboloid of one sheet by Theodor Olivier.

In 1864 Darboux and Theodore Moutard began work on generalized cyclides, which
they studied in the context of inversive geometry.2 Klein and Lie learned about this new

2For a detailed account of this theory and related work by Darboux and others, see Croizat [2016].
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Figure 2: Historical model of a cyclide from the Brill collection.

French theory when they met Darboux just before the Franco-Prussian War broke out.
Darboux later developed the theory of generalized cyclides by introducing pentaspherical
coordinates Darboux [1873].3 These cyclides are special quartic surfaces with the property
that they meet the plane at infinity in a double curve, namely the imaginary circle that
lies on all spheres. Darboux also found that their lines of curvature are algebraic curves
of degree eight. This finding set up one of Lie’s earliest discoveries, communicated to
Darboux at that time. This came from Lie’s line-to-sphere mapping, when he considered
the caustic surface enveloped by lines in a congruence of the second order and class Rowe
[1989].

A few years earlier, these special quartics had been studied by the Berlin mathemati-
cian Kummer, and they soon came to be called Kummer surfaces. Lie found that these
Kummer surfaces will map to the generalized cyclides of Darboux, and since the curvature
lines of the latter were known, he immediately deduced that the asymptotic curves on a
Kummer surface are algebraic of degree sixteen. In early July 1870, Lie communicated
these findings to the Norwegian Scientific Society in Christiania, but this note was only
published by Ludwig Sylow in 1899, the year of Lie’s death (Lie [1934], pp. 86-87). Lie
and Klein discussed this breakthrough in detail, as Klein gradually came to understand

3Darboux had already worked out many of these ideas when Klein and Lie met him, but it took him another
two years to develop the whole theory in detail and publish it in Darboux [1873]. For further background on his
early career and mathematical research, see Croizat [2016].
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Figure 3: Klein’s model of a Kummer surface designed in 1871. Courtesy of the
Collection of Mathematical Models, Göttingen University.

Lie’s line-to-sphere mapping. He then quickly realized that Lie’s claim was correct be-
cause he had already come across these same curves of degree sixteen in his own work.
Klein had found these curves while studying quadratic line complexes that share the same
Kummer surface as their surface of singularity, but he had not realized that they were its
asymptotic curves. Little more than a week later, Klein had to flee from Paris, but he
soon reported to Lie that he was able to trace the paths of these asymptotic curves and to
describe their singularities. He did so by studying a physical model of a Kummer surface
made by his friend Albert Wenker.

Klein imparted this information to Lie in a letter from 29 July, possibly one of those
that left the sentries in Fontainebleau suspicious when Lie tried to tell them this was only
mathematics. By this time, Klein realized that what he he had told Lie earlier in Paris
about the singularities of these asymptotic curves was, in fact, incorrect. After giving the
necessary corrections, he wrote:

I came across these things by means of Wenker’s model, on which I wanted
to sketch asymptotic curves. To give you a sort of intuitive idea how such
curves look, I enclose a sketch. The Kummer surface contains hyperboloid
parts, like those sketched; these are bounded by two of the six conics (K1

and K2) and extend from one double point (d1) to another (d2). Two of the
curves are drawn more boldly; these are the two that not only belong to linear
complexes but also are curves with four-point contact. They pass through d1
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Figure 4: Klein’s sketch of the asymptotic curves between two double points on a
Kummer surface from his letter to Sophus Lie.

and d2 readily, whereas the remaining curves have cusps there. This is also
evident from the model. At the same time, one sees how K1 and K1 are true
enveloping curves.4

By the “hyperboloid parts” on a Kummer surface, Klein meant those places where the
curvature was negative. Only in these regions were the asymptotic curves real and hence
visible. He later reproduced the same figure in the note that he and Lie sent to Kummer
for publication in theMonatsberichte of the Prussian Academy Klein and Lie [1870].

4Klein to Lie, 29 July 1870, Letters from Felix Klein to Sophus Lie, 1870-1877, Heidelberg: Springer-Verlag,
scheduled to appear in 2019.
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Lie on Parisian Mathematics in 1882

These were obviously exciting times, both mathematically and politically, and for many
years afterward Klein and Lie hoped to meet again in Paris. In 1882, that chance finally
looked possible, but then Klein suffered a major collapse in his ongoing effort to compete
with Henri Poincaré, who published five long papers on the theory of automorphic func-
tions in Mittag-Leffler’s new journal, Acta Mathematica. So Lie visited Paris on his own,
but he reported on his various conversations with French mathematicians in three letters
written to Klein. I would like to cite just a few passages from these letters, which give a
vivid picture of how Darboux and others were seen by Lie at the time. Private correspon-
dence has, of course, the decided advantage that people will write things they would never
put in print, least of all in an obituary for a distinguished figure.

So here is a little gossip from Paris in 1882 Rowe [2018b]:

I have spoken now with Hermite about all kinds of things. He has a very
amiable nature, but I still don’t know how much of it is genuine. People here
say it is certain that he can’t read a word of German, which indeed explains
a number of things. The most remarkable thing he said was the following
(which I communicate to you in confidence): Mittag-Leffler told him that the
German mathematicians hate the French mathematicians. Nor did he want
to hear anything of my protests against this. That is certainly strong. He
was eager to hear about friction between German mathematicians, whereas
he described the situation in Paris as idyllic in this regard. Probably it is no
better in Paris than in Germany.

In another letter, Lie wrote that he regretted telling Klein aboutMittag-Leffler’s remark,
which, in any case, was clearly an overstatement. The rivalries within Germany were at
this time in many cases more significant than those between leading mathematicians of
these two countries. Klein continually advised young Germans to visit Paris, and quite a
few of his students and protégés did so, including Ferdinand Lindemann, Walther Dyck,
Eduard Study, and Hilbert. We should also keep in mind that Darboux and Jordan had both
met Klein and Lie back in 1870 when their ideas had considerable influence on Klein’s
Erlangen Program (see Rowe [1989]). This circumstance makes the following remarks by
Lie quite surprising:

Poincaré mentioned on one occasion that all of mathematics was a matter of
groups. I told him about your [Erlangen] Program, which he did not know.
Halphen, Darboux, and Stephanos spoke with the highest praise about you.
Until now I have spoken very little with Jordan, whose mother died recently.

And then a little later, Lie wrote:
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. . . In the meantime I have spoken at length with Jordan. He finds your in-
vestigations difficult to understand. Poincaré said that at first it was hard for
him to read your work, but that now it goes very easily. A number of mathe-
maticians, such as Darboux and Jordan, say that you make great demands on
the reader in that you often do not supply proofs. I am trying to report on this
as correctly as possible.

Lie also commented on how leading French mathematicians reacted to his own work:

So far as my own things go, I am more or less satisfied. Darboux has stud-
ied my work with remarkable thoroughness. This is good insofar as he has
given gradually more lectures on my theories at the Sorbonne, for example
on line and sphere geometry, contact transformations, and first-order partial
differential equations. The trouble is that he continually plunders my work.
He makes inessential changes and then publishes these without mentioning
my name. Now he is starting on the surfaces of constant curvature. I must
therefore rework my papers from Christiania [present day Oslo] for theMath-
ematische Annalen just as soon as possible.

Finally, there is this remark about Victor Mannheim, the inventor of the modern slide
rule:

Mannheim is friendly as always. He is really a good fellow and warns me
constantly about Darboux, for which he really has good reason. But I must
speak with Darboux, as he is the one who understands me the best. And for
the pleasure I must pay something. In any case, he is promoting mathematical
science.

Franco-German Relations after the Outbreak of the Great War

Darboux later had several dealings with Klein, as both were highly involved in promot-
ing various national and international projects. A year after the Paris ICM, Darboux suc-
ceeded Joseph Bertrand as perpetual secretary for the mathematical sciences section of the
academy. By then, he and Klein had emerged as the two most active and visible mathe-
maticians in their respective countries. Their contacts ended, however, with the outbreak
of the Great War. Let us recall how, right at its outset, 93 German intellectuals attached
their names to a manifesto that proudly announced full support of all actions taken by the
German army, beginning with its invasion of Belgium. Quite a number of the signatories
were prominent natural scientists – including Max Planck, Fritz Haber, Walther Nernst,
Ernst Fischer, and Ernst Haeckel – whereas only one mathematician appeared on the list:
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Felix Klein. We know rather little about how these names were collected, so it is unclear
whether Hilbert actually withheld his support. I’m unaware of any evidence that he was
contacted at all. On the other hand, if he had been asked to lend his name, he probably
would have refused. Klein was reached by telephone and gave his support without ever
having read the document. When it was released, the French Academy dropped his name
from its membership roles. There was debate, in fact, over whether all Germans should
be dismissed from the academy, but such action was not taken, so Hilbert remained a for-
eign member. To the best of my knowledge, no actions were taken by any of the German
academies against French members.

At this time, Klein had begun his wartime lectures on the history of mathematics in
the nineteenth century. These later circulated in mimeographed form and were eventually
published in Klein [1926], one year after Klein’s death. They offer a highly personal
view, as seen from Klein’s own vantage point within the Göttingen tradition. National
rivalries were also a major theme, and Klein underscored the significance of the École
Polytechnique as a model for several polytechnical institutes that followed as well as for
applied mathematics in general. He alluded to Jacobi’s remarkable lecture in praise of this
new institution, a speech delivered at a time when Parisian mathematics stood at its peak.
Klein had cultivated friendly relations with Darboux, Poincaré, and other leading French
mathematicians Tobies [2016], but his high respect for French achievements in no way
diminished his nationalism. Like nearly all Germans of his generation, Klein celebrated
the Battle of Sedan as the key event that led to the unification of Germany. No doubt, he
attached significance to the fact that the crowning of King Wilhelm of Prussia as Emperor
took place in the Hall of Mirrors in Versailles rather than in his palace in Berlin.

Before the war, Darboux and Klein had worked together to help found the International
Association of Academies. Such cooperation was obviously unthinkable in wartime, when
the French and German scientific communities felt only hostility for one another. One of
the most prominent Italian mathematicians, Vito Volterra, sided strongly with the French
cause (see Mazliak and Tazzioli [2009].) In November 1916, Darboux wrote to the physi-
cist Arthur Schuster, Secretary of the Royal Society, suggesting a meeting of leading
scientists from the Entente powers to address what should be done with regard to inter-
national relations after the war (Lehto [1998], p. 16). Since he died in February 1917,
nothing came of this initiative, though his successor, Émile Picard, took up this matter
before the fighting had come to an end. Picard’s attitude toward German scientists was
similar to Clemenceau’s view of German politicians, and if we remember that Briand and
Stresemann were able to overcome the intransigence that hampered the early years of the
Weimar Republic, we might think of Hilbert as the leading representative of rapproche-
ment in the world of mathematicians. His call to break the counter-boycott of the Bologna
ICM in 1928 led to a direct conflict with Bieberbach, but even more with Brouwer, who
had become his arch-nemesis (Blumenthal [1935], p. 427). These events only underscore
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Hilbert’s longstanding commitment to internationalism, but let me return to his portrait of
Darboux.

Hilbert’s Tribute to Darboux

After Darboux’s death in February 1917, he received a fitting eulogy from the Göttingen
Scientific Society. Darboux belonged to that body as a foreign member since 1901 when
he succeeded Hermite. As I noted at the outset, it would seem at first surprising that
Hilbert wrote this obituary, Hilbert [1917], considering that Klein had known Darboux
far better, both personally and mathematically, than had his younger colleague. In fact,
this was an altogether unusual tribute to a foreign scholar, and it caused an immediate stir
within Göttingen academic circles.

We should first of all note that the Göttingen Scientific Society did not ordinarily honor
its deceased foreign members in this way. Neither Klein nor Hilbert wrote an obituary
for Hermite or for any other foreign member of the society, so there was certainly no
compulsion for Hilbert to take up his pen to eulogize Darboux. One can hardly escape
the conclusion that his motivation was, in large part, political, though personal gratitude
could also have played a role as well. In 1905, Darboux and Klein had been charged
with the difficult task of judging who should be awarded the first Bolyai Prize. What
made this decision difficult was the personal and national prestige involved, since only
two names needed to be taken into consideration: Poincaré and Hilbert. Klein naturally
favored Hilbert, just as Darboux supported Poincaré, who was awarded the prize. But
Darboux apparently agreed that he would back Hilbert’s nomination for the second prize
in 1910, and on that occasion Poincaré himself wrote the report in support of this decision.

Still, Hilbert surely had other reasons for writing this obituary, and the more likely
motives would have been connected to his special place within the larger academic com-
munity in Göttingen. Hilbert’s outspoken internationalist views had led to many open
clashes, both within the philosophical faculty as well as the scientific society. If we take
into account that Hilbert’s text was presented at the society’s annual public session, held on
12 May 1917, then his political motivation becomes even more obvious. Clearly, he knew
that his speech was bound to provoke great controversy, and just as surely this was his
very intention. According to his biographer, Constance Reid, when word got out in Göt-
tingen about the Darboux Nachruf, an angry band of students gathered in front of Hilbert’s
house to demand that he withdraw the text (Reid [1970], p. 145). Reid’s rather romantic
account was largely based on oral interviews, so we cannot be be too confident about the
details of this incident, particularly her claim that Hilbert threatened to resign his position
if he did not receive an official apology from the Rector of the university for the behavior
of these students. Still, even if the details cannot be corroborated, there is every reason
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to believe that something like this happened. In fact, two years later Hilbert did seriously
consider resigning his professorship to accept a chair in Bern. Without doubt, his éloge
for Darboux was intended not only to honor a great mathematician; it was also meant as a
direct provocation to all those in the Göttingen Scientific Society who saw French scholars
as their mortal enemies.

Hilbert began by praising Darboux and Camille Jordan for their universality, which he
claimed had opened the way for a younger generation of mathematicians who no longer
felt hemmed in by the special disciplines that dominated most research during the late
nineteenth century. This universal outlook had become a watchword for Göttingen math-
ematics, so by identifying Darboux with it, Hilbert underscored the intellectual affinities
that linked him with them. He then recalled how Darboux, in his plenary address at the
1908 ICM in Rome, had compared his own era with the new trends that were unfolding
since the turn of the century. For Hilbert, it had been personally gratifying that Darboux
brought up his famous speech on “Mathematical Problems” from the Second ICM held
in Paris in 1900. He was also pleased to recall how this older representative of French
mathematics, though by now only an outside observer, had spoken up in support of these
radically new developments. In short, he saw Darboux as a progressive spirit.

Following these introductory remarks, Hilbert alluded to the various phases in Dar-
boux’s career, starting with the impression he made already as a student on his country-
men. Here he recalled the well-known anecdote about how, after scoring first among
all candidates for both écoles, Darboux chose to attend the École Normale. In Hilbert’s
telling, though, we can easily hear echoes of an anti-militarist theme. He noted that Dar-
boux grew up in modest circumstances and that he lost his father at a young age. About
his decision not to attend the École Polytechnique, Hilbert wrote that Darboux chose “to
decline the sword and gold-embroidered cloak of an officer or civil engineer in preference
for the more humble title of a professor and the less distinguished teaching profession …,
Hilbert [1917, p. 366].” He added that this “was something that had never before occurred
and that awakened general astonishment” at the time, citing an article by the “then famous
French Goethe-expert Jean-JacquesWeiss”Weiss [1861]. Probably no one in the audience
knew this name, but one can almost imagine their faces when they heard the most famous
living German mathematician refer to some obscure Frenchman as a famous expert on
Goethe. Hilbert went on to say that Weiss wanted to record Darboux’s decision in order
to show “how at least once something like this had occurred on our planet.”

Not surprisingly, Hilbert mentioned Darboux’s influence on Lie and Klein, but he
also briefly described three dissertations written in Göttingen that were inspired by lesser
known works by Darboux. When, toward the end, he turned to Darboux’s four-volume
Theorie des surfaces, his praise for it was almost boundless. He called this not only a clas-
sic work for surface theory but also an invaluable tool for studying mechanics, calculus
of variations, partial differential equations, and invariant theory. Moreover, in Hilbert’s
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view, no one before Darboux had recognized the deep connections between these fields
of central importance for contemporary research. Darboux’s treatise, he wrote, belongs
in the library of every mathematician, like other great works by French authors, such as
Jordan’s Cours d’Analyse, Picard’s Traité d’Analyse, and Poincaré’s Mécanique celeste.
The message could hardly have been clearer – these works belong to all mathematicians
because the world of mathematics knows no national boundaries. Hilbert even alluded
to the relevance of Darboux’s work for Einstein’s new theory of gravitation, truly a new
theory in 1917.

Einstein and Hilbert as Leading Internationalists

Einstein first met Hilbert when he came to Göttingen in 1915 to give a series of lectures.
The not yet famous physicist knew that Hilbert was a brilliant mathematician, but he now
came to realize he was also an outspoken internationalist who was unafraid to clash with
opponents. Emmy Noether’s attempt to habilitate had begun at this time, and Einstein was
well aware of Hilbert’s efforts to promote her case. She taught special courses under his
name, but could only gain an official appointment after the war ended, since the Prussian
Ministry of Education quashed all proposals to allow women such rights before then.5

In the final year of the war, Einstein contacted Hilbert to propose that they join hands
with like-minded colleagues from other countries in order to make the case for peace and
moral progress. He began this appeal with these words:

Countless times in these desolate years of general nationalistic delusion, men
of science and the arts issued statements to the public that have already in-
flicted incalculable damage to the feeling of solidarity that had been develop-
ing with such promise before the war . . .. The hue and cry of straight-laced
preachers and servants of the bleak principle of power is becoming so loud
and public opinion is being misled to such a degree by methodical silenc-
ing of the press that those with better intentions, feeling wrtechedly isolated,
do not dare to raise their voices. (Einstein to Hilbert, before 27 April 1918,
Schulmann, Kox, Janssen, and Illy [1998]).

After consulting with some friends, Hilbert replied that in his opinion the time was not
yet ripe for Einstein’s “well-meaning and appealing undertaking.” In fact, he warned that
any such declarations “would be tantamount to self-denunciations, which all our enemies
in the faculties would be extremely glad to cite.” For them, “the very word ‘international’
is like a red flag for a bull.” Hilbert also cautioned Einstein against:

5On the events and conflicts associated with this effort, see Tollmien [1990]. Noether’s wartime contributions
to general relativity are discussed in Rowe [n.d.].
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firing off our gunpowder at the wrong time and possibly also at the wrong
persons. . . . I would like to recommend waiting until the mad hurricane has
spent itself and reason has the opportunity of returning – and this time is sure
to come. We would have to restrict ourselves to the German professors, since
they alone are thoroughly known to us here and also have most to do with it.
Other peoples must wash their own dirty laundry. (Hilbert to Einstein, 1 May
1918, Schulmann, Kox, Janssen, and Illy [1998]).

Nothing came of this venture, but the exchange reveals that Hilbert had a far better
feel for academic opinion in Germany at this time than did Einstein. He was also a firm
advocate of academic freedom and a defender of those, such as Leonard Nelson, who came
under attack during wartime for their pacifist views. Around the same time that he wrote
this letter to Einstein, Hilbert informed Klein that he refused to attend future meetings
of the Göttingen Academy, so long as no one besides him was willing to protest against
the behavior of its secretary, Edward Schröder. Hilbert was incensced that Schröder had
taken it upon himself to inform military authorities about the pacifist views of a colleague
in physics. After the war, he took steps to force Schröder’s resignation, though without
success; the latter remained secretary of the philological-historical section until 1924.

These few remarks offer a glimpse of the atmosphere in Göttingen during wartime as
well as some of the events that help to place Hilbert’s obituary for Darboux in its original
context. Let me end by quoting Hilbert again, this time from the year 1909 when Poincaré
came to Göttingen to deliver the first series of Wolfskehl lectures. Here are a few words
taken from Hilbert’s welcoming address on that occasion Rowe [2018a, p. 197]:

You know, highly honored colleague, as do we all, how steady and close
the mathematical interests of France and Germany have been and continue
to be. Even when we recall only quickly the developments of the recent
past, and out of the rich and many-voiced concert of mathematical science
we take hold of the two fundamental tones of number theory and function the-
ory, then we think perhaps of Jacobi, who had in Hermite the outstanding heir
to his arithmetical ideas. And Hermite, who unfolded the flag of arithmetic in
France, had our Minkowski, who brought it back to Germany again. Or if we
only think of the names Cauchy, Riemann, Weierstrass, Poincaré, Klein, and
Hadamard, these names build a chain whose links join one another in succes-
sion. The mathematical threads tying France and Germany are, like no two
other nations, diverse and strong, so that from a mathematical perspective we
may view Germany and France as a single land.
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